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Abstract 
It is increasingly recognized that chronic pain is characterized by abnormalities in the neural circuits 
that process the pain signal. The anterior insula (AI) and anterior cingulate cortex (ACC) are two key 
hubs of  high-level attentional processing that have been observed to be altered in chronic pain. 
Furthermore, the descending pain modulation system (DPMS) that exerts top-down control over 
afferent nociceptive signals can exhibit maladaptive dynamics in chronic pain. Transcranial magnetic 
stimulation (TMS) has been proposed as a non-invasive therapy for inducing normalization of  
aberrant brain circuits. A randomized sham-controlled clinical trial (BoostCPM) was conducted to 
evaluate the efficacy of  an accelerated TMS protocol for treating chronic pain in a cohort of  
patients with knee osteoarthritis. Diffusion MRI (dMRI) was collected at baseline and after TMS 
treatment to assess for neuroplastic changes in key pain processing centers. 

This thesis presents an analysis of  the dMRI data from the BoostCPM trial. The details of  this 
image analysis were defined a priori in a documented plan uploaded to the University of  
Nottingham’s Research Data Repository (http://doi.org/10.17639/nott.7388). The dMRI data was 
processed through an extensive pipeline and closely inspected for quality control at every step. 
Minor errors in data processing were noted and discussed alongside final results. Grey matter hubs 
of  cognitive pain processing and the DPMS were chosen as regions of  interest. Three advanced 
dMRI models were applied, generating five quantitative indices of  neural microstructure. Statistical 
tests were performed for comparisons within-group (pre- vs. post-TMS) and between-group (active 
vs. sham intervention). Six significant results were obtained out of  135 tests; none of  these survived 
p-value correction for multiple tests. Interpretation the results within the context of  the analysis 
methods used and plausible neurobiological mechanisms tends to suggest that the six significant test 
results are spurious. It is most reasonably concluded that accelerated TMS does not induce structural 
neuroplasticity in grey matter pain centers within this cohort of  knee osteoarthritis patients.  
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I. Introduction and Background  

1. Chronic pain 

1.1 The burden of  chronic pain 

Chronic pain, a condition defined as continued or recurrent pain for more than 3 months [Treede 
2019], affects an estimated 10-25% of  people globally [Goldberg 2011]. The societal burden of  
chronic pain is consistently demonstrated to be a leading issue across countries. For example, the 
disorder has been estimated to cause the greatest loss in quality-adjusted life years in Singapore 
[Abdin 2020] and account for greater economic losses than heart disease and cancer in the United 
States [Gaskin 2012]. In the United Kingdom, the prevalence of  chronic pain among adults has been 
estimated at 35-50% [Fayaz 2016].  

Despite the prevalence and burden of  chronic pain, current treatments are insufficient to manage 
the breadth of  conditions. Opioids are commonly prescribed to manage the condition, but they 
demonstrate limited analgesic efficacy and are highly addictive. Opioids also carry associated risks 
for overdoses and other serious medical complications [Chou 2015]. Given the global burden of  
chronic pain and the significant shortcomings of  current clinical treatment regimens, new analgesic 
therapies for managing the condition are urgently necessary.  

1.2 Peripheral nociception in acute pain 

To understand chronic pain, it is necessary to first establish the neuronal mechanics of  acute pain. 
The acute pain pathway begins in the peripheral nervous system with the firing of  primary 
nociceptors—sensory neurons that respond differentially to stimuli capable of  causing tissue injury 
[Julius 2001]. The noxious stimulus can be mechanical, thermal, or chemical in nature, and indeed 
many nociceptors are polymodal (Figure 1) [Julius 2001]. The axons of  afferent nociceptors are 
either thinly myelinated Aδ fibers (responsible for fast, sharp pain) or unmyelinated C fibers 
(responsible for longer, diffuse pain).  

The prominent ascending nociceptive pathway is the spinothalamic tract (Figure 1). This pathway 
begins with first-order peripheral nociceptors entering the central nervous system through the dorsal 
horn of  the spinal cord, where they synapse onto second-order neurons. The dorsal horn is 
organized in laminae, with Aδ and C fibers synapsing in laminae I and II [Todd 2010]. The dorsal 
horn laminae also contain a complex circuitry of  interneurons which integrate and modulate the 
nociceptive signal. Among these are wide dynamic range neurons which respond to nociceptive and 
non-nociceptive neurons and generate an integrated response [Price 2003]. After processing in the 
dorsal horn, second-order neurons decussate to the anterolateral quadrant of  the contralateral spinal 
cord, then ascend to the central lateral and ventral posterior lateral nuclei in the thalamus [Willis 
1997]. Downstream processing of  this sensory information then involves the primary (S1) and 
secondary (S2) somatosensory cortices, as well as the insula and anterior cingulate cortex [Fields 
2004].  

This pathway from primary afferent nociceptor to spinothalamic tract is a useful but simplified 
model of  peripheral nociception. It should be noted that while the spinothalamic tract is a 
prominent pathway for peripheral nociception, there are other pain pathways that ascend in the 
ventrolateral (e.g. spinomesencephalic tract) and dorsal (e.g. spinocervicothalamic tract) quadrants of  
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the spinal cord [Willis 1997]. Additionally, although primary nociceptors can be broadly defined as 
neurons responding to noxious stimulus, recent RNA sequencing studies have found tens of  
genetically diverse sensory neurons capable of  generating pain [Lindsay 2021]. Finally, the dorsal 
horn circuits integrating afferent nociceptive and non-nociceptive signals involve many 
heterogeneous populations in neurons with incompletely elucidated interactions [Todd 2010]. A full 
review of  the nuances of  peripheral nociception is beyond the scope of  this thesis. 

1.3. Cognitive and affective pain 

Pain is not an exclusively sensory-discriminative experience. It is a multisensory phenomenon that 
heavily involves cognitive-affective components [Wiech 2016]. The insufficiency of  sensory 
nociception alone to describe pain is apparent when considering a clinical condition such as 
fibromyalgia, where pain arises without clear evidence of  ongoing tissue damage and central 
processing is considered to be abnormally pro-nociceptive. Cognitive and affective processing can 
also lead to potent analgesic effects as in the cases of  placebo and attentional analgesia.  
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Figure 1. The acute pain pathway via spinothalamic tract. Primary nociceptors in the peripheral 
nervous system relay signals to second order neurons in the dorsal horn of  the spinal cord. Second 
order neurons decussate and ascend in the anterolateral quadrant, then synapse onto third order 
neurons in the thalamus. Third order neurons relay the signal to the primary somatosensory cortex. 
Lower box: nociceptors can be polymodal, with ion channels sensitive to mechanical, chemical, and 
thermal stimuli. Upper box: axons of  primary nociceptors are either thin, myelinated Aδ fibers or 
unmyelinated C fibers. 



There are several proposed frameworks for conceptualizing the cognitive-affective dimensions of  
pain. A basic approach is to deconstruct the experience of  pain into three sequential components: 
sensory pain (how much pain do you feel?), pain unpleasantness (how much does the pain bother 
you?), and secondary affect (how does the pain affect your sense of  homeostasis?) [Price 2000]. 
Recent evidence from small mammal studies lends a strong biological basis to this conceptual 
breakdown—a subset of  neurons in the basolateral amygdala of  rats has been shown to encode pain 
unpleasantness and pain-avoidant behavior in a manner dissociable from sensory pain perception 
[Corder 2019]. Another approach is to view pain through the lens of  salience processing. Salience 
processing refers to the central brain mechanisms for filtering and identifying important stimuli from 
the constant afferent stream of  sensory information [Legrain 2011]. In the context of  pain, it is 
proposed that increased attention to a noxious stimulus may amplify pain, and abnormal salience 
processing may contribute to chronic pain [Borsook 2013]. A “salience network” (SN) of  brain 
regions has been identified [Seeley 2007], and two key nodes of  the SN are consistently implicated in 
affective pain processing: the anterior insula (AI) and anterior cingulate cortex (ACC) (Figure 2). 
Experimental evidence shows that these areas are differentially active when modulating pain 
unpleasantness while holding peripheral pain constant [Price 2000]. Anatomical connectivity also 
implicates these regions in central pain processing, as ascending nociceptive pathways project to the 
AI and ACC both directly from the thalamus and after processing in S1 and S2 (Figure 2) [Price 
2000]. Finally, cognitive processing of  pain may be conceptualized through a computational model 
of  “predictive coding” emphasizing the importance of  expectation [Wiech 2016]. Predictive coding 
models offer specific structure to the framework salience processing whereby stimuli congruent with 
expectation are amplified, while those that do not fit expectation are diminished [Wiech 2016]. The 
phenomena of  placebo analgesia and diminished effect of  opioids when administered without 
subject knowledge readily fit predictive coding models.  
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Figure 2. Nociceptive processing involves the ACC and AI, two key nodes of  the SN. Ascending 
signals from the spinothalamic tract are processed in the AI and ACC via direct connections from the 
thalamus and indirect connections via the S1 and S2. ACC: anterior cingulate cortex; AI: anterior 
insula; S1: primary somatosensory cortex; S2: secondary somatosensory cortex; SN: salience network.



In summary, cognitive and affective processing of  nociceptive input can lead to potent pro- and 
anti-pain effects and is strongly mediated through the AI and ACC, two key nodes of  the SN. It 
should be noted at this point that the brain regions involved in sensory-discriminative and cognitive-
affective processing are not entirely distinct but are instead overlapping and highly interconnected 
[Wiech 2016]. 

1.4. Descending pain modulation 

In addition to the afferent nociceptive pathway discussed in section 1.3. and cognitive-affective 
central processing described in section 1.4., there is a descending efferent system which can 
modulate the action of  nociceptors in the dorsal horn of  the spinal cord. This modulation is 
bidirectional, capable of  both enhancing and inhibiting pain [Fields 2004]. Recent advances have 
elucidated the specific pathways and biochemistry of  this descending control system. It is now 
established that the system consists of  opioidergic and serotonergic projections from the 
periaqueductal grey (PAG) to the rostral ventromedial medulla (RVM) to the dorsal horn of  the 
spinal cord [Fields 2004]. Higher control of  the PAG is mediated by multiple cortical and subcortical 
regions including the amygdala, ACC, orbitofrontal cortex, and prefrontal cortex (PFC) [Fields 2004, 
Lindsay 2021]. Together, the inputs to PAG and its descending projections to RVM and the spinal 
cord can be conceptualized as a “descending pain modulation system” (DPMS). This section will 
review the anatomical and functional characteristics of  the DPMS (Figure 3). 
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Figure 3. The descending pain modulation system (DPMS). The DPMS facilitates top-down control 
of  ascending nociception through the PAG and RVM. Output from the RVM synapses in the dorsal 
horn of  the spinal cord to modulate incoming nociceptive signals. The PAG is mediated by cortical 
structures like the ACC and mPFC, and subcortical structures like the amygdala. The top-down 
pathway is shown in blue, while the bottom-up pathway is shown in green. ACC: anterior cingulate 
cortex; mPFC: medial prefrontal cortex; PAG: periaqueductal grey; RVM: rostral ventromedial 
medulla.



Anatomically, the PAG is a small region of  grey matter which sits adjacent to the mesencephalic 
aqueduct in the midbrain of  the brainstem. Its shape is an open cylinder approximately 14mm in 
length and 4-5mm in diameter, and it can be differentiated into four columns with distinct afferent 
and efferent connectivity [Linnman 2012]. The dorsomedial (dm), lateral, and ventrolateral (vl) 
columns project to lower brainstem regions including the RVM, while the dorsolateral (dl) column 
projects to the midbrain and pons [Linnman 2012]. Early work in rats showed that electrical 
stimulation of  the PAG leads to a decrease in pain-related behaviors [Reynolds 1969], and analogous 
direct stimulation in humans can induce analgesia in a subset of  patients [Bittar 2005]. PAG 
stimulation produces analgesia by activating its efferent connections to RVM [Ossipov 2010]. The 
RVM is a collection of  nuclei in the medullary portion of  the brainstem and represents the final and 
most inferior relay point for descending pain modulation signals in the brain. This region contains 
two functionally distinct populations of  neurons that highlight the dichotomy of  descending 
modulation—these are termed “on-cells” and “off-cells.” The firing patterns of  these two classes of  
neurons are diametrically opposed during painful behaviors: on-cells are activated, while off-cells are 
inhibited [Ossipov 2010]. More generally, firing of  on-cells elicits pain-facilitating descending 
modulation, while firing of  off-cells elicits pain-inhibiting modulation [Ossipov 2010]. In line with 
this functional specification, pharmacological activation of  RVM with opioid injection enhances the 
firing of  off-cells, inhibits on-cells, and leads to potent analgesia [Heinricher 1994]. The analgesic 
effect of  PAG stimulation is notably blocked by administering naloxone (a µ-opioid receptor 
antagonist) to the RVM, demonstrating that descending pain inhibition is mediated through an 
endogenous opioidergic pathway [Fields 2004]. On- and off-cells synapse onto interneurons in the 
substantia gelatinosa in the dorsal horn of  the spinal cord, where they modulate the activity of  
ascending nociception via serotonergic, GABAergic, and opioidergic mechanisms [Lubejko 2022].  

The PAG receives input from an array of  cortical and subcortical structures. Given the varied 
functions of  PAG (e.g. vocalization, micturition, thermoregulation), only a subset of  these 
connections is strongly linked to descending pain modulation [Benarroch 2012]. Cortical modulation 
of  PAG is mainly mediated through the PFC [Ong 2019]. Retrograde tracing studies of  the PAG 
localize cortical afference mainly in the medial PFC (mPFC), and this mPFC to PAG connection has 
been strongly linked to cortical control of  the DPMS in animal models [Ong 2019, Huang 2019]. 
Recently, a specific set of  connections from the basolateral amygdala to mPFC to vlPAG was shown 
to be altered in neuropathic pain in a way that inhibited descending anti-pain modulation via the 
RVM [Huang 2019]. The ACC has also been shown to project directly to PAG, and stimulation of  
ACC can also modulate descending pain control [Urien 2019]. Subcortically, the central nucleus of  
the amygdala has direct projections to the lateral and ventrolateral columns of  PAG [Lindsay 2021]. 
Optogenetic stimulation of  this connection has been shown to modulate pain-related behaviors in 
animal models, implicating this pathway in descending control [Lindsay 2021]. It is important to note 
that other cortical and subcortical regions are also capable of  modulating the activity of  PAG even 
in the absence of  direct connections. Such indirect modulation can occur via the direct connections 
of  mPFC, ACC, and CeA discussed above. For example, while the dorsolateral PFC (DLPFC) does 
not project directly to PAG, it is heavily connected with mPFC and can therefore influence 
descending pain modulation through this indirect connection [Ong 2019]. Thus, the complete 
picture of  afferent modulation of  PAG is highly complex, but the most prominent direct 
connections have been highlighted here. 
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1.5. Chronic pain and abnormal pain processing 

Chronic pain is accompanied by abnormalities in pain processing on the cellular and functional 
levels. In other words, chronic pain is not simply caused by persistent activation of  nociceptors, but 
rather is characterized by aberrations in how the pain signal is processed in the central nervous 
system. Since acute pain is multidimensional, so too are the mechanisms of  chronic pain. This 
section will review evidence of  abnormalities that contribute to chronic pain occurring in ascending 
nociception, cognitive-affective processing, and descending modulation.  

Neurons in the ascending nociceptive pathway can be sensitized under certain conditions to exhibit 
enhanced excitability, thereby enhancing the pain signal [Basbaum 2009]. Sensitized neurons exhibit 
lower thresholds for activation and greater evoked potentials [Baron 2013]. Sensitization can occur 
peripherally in primary nociceptors or centrally in second-order spinal cord neurons. Peripheral 
sensitization can follow disease or injury, where chronic inflammation creates a biochemical 
environment that increases the excitability of  primary nociceptors, contributing to a chronic pain 
state [Basbaum 2009]. Central sensitization in contrast, occurs in second-order neurons and 
interneurons of  the spinal dorsal horn that process primary nociceptive signals, but not in the 
spinothalamic tract axons themselves [Woolf  2000]. This heightened state of  central responsiveness 
can be transiently induced by strong activation of  peripheral nociceptors [Woolf  2011]. If  peripheral 
nociceptive input is sustained, central sensitization may persist and contribute to chronic pain [Baron 
2013]. On the biomolecular level, central sensitization is mediated by strengthened glutamatergic 
connections between primary nociceptors and second-order spinal cord neurons, downregulation of  
GABAergic and glycinergic inhibitory interneurons in the dorsal horn, and activation of  microglial 
cells [Basbaum 2009]. Clinically, central sensitization leads to hyperalgesia and allodynia. 
Hyperalgesia refers to an increased sensitivity to noxious stimuli, and allodynia refers to activation of  
the pain pathway by a typically innocuous stimuli (e.g. by a mechanoreceptor) [Woolf  2011]. 
Hyperalgesia can be a sign of  peripheral or central sensitization, while allodynia suggests a 
neuropathic component to pain that includes but often extends beyond central sensitization. 

Abnormalities in salience processing have also been proposed to be associated with pain 
chronification. Since the salience one assigns to a painful stimulus can dramatically alter the 
perceived intensity of  pain, altered salience processing may contribute to the chronic pain state 
[Borsook 2013]. Animal models of  chronic pain have demonstrated synaptic potentiation of  the AI 
and ACC, two key brain regions that modulate salience processing [Tan 2021]. In humans, 
neuroimaging studies have shown structural and functional aberrations in these regions. Studies of  
the AI in chronic pain patients have indicated decreased grey matter volume, altered connectivity 
with nodes of  other major resting-state brain networks, and increased activity when viewing pain-
related words when compared to healthy controls [Borsook 2013, Lu 2016, Cottam 2018, 
Muthulingam 2020, Xu 2022]. In one study, altered functional connectivity of  the AI was correlated 
with pain severity and accompanied by structural breakdown of  white matter tracts between AI and 
ACC [Xu 2022]. These imaging studies suggest that cortical reorganization of  salience processing 
regions may occur in chronic pain. Coarser evidence suggesting the importance of  salience comes 
from post-cingulotomy patients who report being unbothered by their pain [Borsook 2013]. A final 
point to consider is that chronic pain is often comorbid with major depression and other affective 
disorders [Tunks 2008]. These comorbidities are also associated with altered activity in the insular 
and cingulate cortices, which may contribute to abnormal salience processing of  pain [Borsook 
2013]. 
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Altered dynamics of  the descending control system involving PAG and RVM may also contribute to 
chronic pain. It is proposed that healthy individuals exhibit a balance of  inhibitory and facilitatory 
control in their DPMS, while chronic pain states may arise if  descending inhibition fails [Ossipov 
2014]. The inhibitory capability of  the DPMS to suppress persistent nociception is evidenced by 
animal studies where hyperalgesia is elicited in injured rats only after suppression of  the RVM 
[Ossipov 2014]. An experimental paradigm to measure descending inhibition in animals is diffuse 
noxious inhibitory control (DNIC), where a painful stimulus applied at a remote location inhibits 
neurons in the dorsal horn of  the spinal cord [Le Bars 1979]. The analogous experimental procedure 
in humans is known as conditioned pain modulation (CPM), where subjective pain ratings to one 
stimulus are measured before and during application of  a second painful stimulus at a remote 
location [Yarnitsky 2010]. It is important to note here that the DNIC effect is mediated through the 
caudal medulla in addition to the RVM, and the specific neurobiology of  the CPM effect in relation 
to DNIC is a topic of  active debate [Le Bars 1992, Sirucek 2023]. With this caveat in mind, it has 
been consistently shown that DNIC and CPM are diminished in chronic pain states, suggesting a 
decreased efficacy of  descending inhibition via the DPMS [Lewis 2012, Chen 2019]. Plasticity of  
RVM neurons in animals exposed to persistent pain supports this notion [Chen 2019]. 

Abnormalities in afferent processing (peripheral and central sensitization), cognitive-affective 
processing (aberrant salience processing), and descending modulation (loss of  descending inhibition 
and CPM) can all contribute to the chronic pain state. Since chronic pain can arise from many 
different conditions, the specific contributions from each abnormality can vary widely and is specific 
to the etiology for each patient.  

1.6 Chronic pain in knee osteoarthritis 

The body of  this thesis will study a cohort of  patients with chronic pain secondary to knee 
osteoarthritis (OA). OA is a degenerative joint disease where cartilage is lost due to a combination 
of  mechanical, metabolic, or endocrine factors. The knee is the joint that is most frequently affected 
by OA, and musculoskeletal pain is a common symptom of  the disease [Michael 2010]. While the 
pain caused by knee OA has a specific localizable source, chronic pain caused by the condition is 
more complex than sustained afferent nociception. Due to chronic inflammation and the persistent 
presence of  a nocifensive stimulus, patients with chronic pain in knee OA sometimes exhibit 
peripheral and central sensitization [Fingleton 2015]. Thus, while chronic pain in knee OA was 
classically thought to be entirely nociceptive, many knee OA patients exhibit sensitization and some 
meet established criteria for neuropathic pain [Dimitroulas 2014]. Recent neuroimaging has found 
that the subset of  patients with neuropathic pain exhibit altered functional activity of  the ACC and 
RVM [Soni 2019]. The psychological impact of  chronic pain in knee OA is variable. Patients who 
focus more on their pain and its associated negative affect (pain catastrophizing) are likely to be 
more psychologically and functionally disabled by their condition [Somers 2009].  

2. MRI imaging of  structural neuroplasticity 

Although abnormalities in the CNS are increasingly recognized to contribute to the chronic pain 
state, the underlying mechanisms of  these abnormalities are still unclear. One possible driver of  
CNS abnormalities is maladaptive neuroplasticity: changes in the structure and function of  neurons 
and brain networks that deviate from the healthy norm. This neuroplasticity can be studied in 
humans using imaging. Over the past few decades, magnetic resonance imaging (MRI) has become a 
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dominant modality for imaging the structure and function of  the human brain in vivo. Compared to 
other common techniques for imaging structure and function, (e.g. CT and PET), MRI has two 
distinct advantages. First, it does not require ionizing radiation and therefore minimizes risks to the 
subject. Both CT and PET generate image contrast by recording the absorption of  ionizing 
radiation through tissue, a process that carries a risk of  mutating somatic DNA which may lead to 
cancer. In contrast, MRI relies on differences in magnetic properties between tissue types to 
generate image contrast, a process that does not inherently expose the subject to additional risks. A 
second advantage of  MRI is its multimodal nature, meaning it is possible to image both structure 
and function with a wide variety of  contrasts within the same scanning session. Its multimodal 
capabilities arise from the large parameter space of  acquisition and processing methods within the 
MRI framework. Within this parameter space, this thesis will focus on the utility of  MRI for imaging 
structural neuroplasticity with a technique known as diffusion MRI (dMRI). Previous work using 
dMRI has demonstrated structural variability in the DPMS across individuals, and that this variability 
correlates with levels of  endogenous pain modulation [Stein 2012]. If  structural integrity in the 
DPMS is predictive of  pain sensitivity, then modulating structural features may be therapeutic in 
chronic pain conditions. This thesis builds on this existing work by examining whether structural 
indices measured by dMRI can be experimentally altered by a novel brain stimulation technique. This 
section will first summarize basic MRI principles to ground the theory of  dMRI acquisition, then 
describe how dMRI data is processed and modeled to index biological parameters of  interest.  

2.1. Basic MRI principles 

This section reviews the basic principles of  MRI imaging. Note that this is not meant to be a formal 
description of  MRI physics, but rather a general overview to introduce concepts relevant to later 
discussions of  dMRI. At the most fundamental level, the MRI signal arises from precessing 1H 
protons in a strong magnetic field, and the contrast within an image comes from varying 1H 
magnetization dynamics within a sample. When a subject is exposed to a strong static magnetic field 
(B0), protons within the subject exhibit a slight preference for aligning with the field [Hanson 2008]. 
The aggregate effect of  this directional preference is a net magnetic moment in line with the field. 
The manipulation and movement of  this net magnetic moment induces current in receive coils via 
Faraday’s law of  induction. This is the basis of  the MRI signal. 

When imaging biological tissue, the overwhelming majority of  protons contributing to the MRI 
signal are from water. Each individual proton precesses at a frequency (ω) proportional to the 
magnetic field strength (B0) according to the Larmor Equation. 

 

 is the gyromagnetic ratio, a physical constant distinct to each atomic nucleus (for 1H, 
MHz/T). The precession of  protons in a magnetic field is known as Larmor precession.  

For the simplest MRI acquisition, the first step to generating an image is to tip the net magnetization 
vector 90° into the transverse plane using a resonant radiofrequency (RF) excitation pulse. When 
precessing protons are subject to an RF pulse applied at their Larmor frequency, a resonance effect 
is observed which tips the axis of  their spins towards the transverse plane. This resonance excitation 
underlies the etymology of  magnetic resonance imaging. After the RF pulse is turned off, 1H spins 
realign with the original net magnetic field. The movement of  the net magnetic moment back 
towards the original configuration, or “relaxation” of  spins, induces a signal in the receive coils of  
the MRI scanner. The resulting signal reflects the dynamics of  relaxation, which vary between tissue 

ω = γ ⋅ B0

𝛾  𝛾 = 42.58 
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types. Variations in proton density, magnetic susceptibilities, and local chemical environment 
between tissues lead to different magnetic relaxation properties, giving rise to MRI contrast. The 
three main types of  MR contrast are proton density, T1, and T2. Proton density simply reflects the 
concentration of  resonant protons independent of  relaxation properties. T1 captures the relaxation 
of  net magnetization away from the transverse plane and back into the longitudinal axis, while T2 
captures signal decay due to in-plane dephasing of  spins from local magnetic effects. 

MRI images are composed of  voxels (3D volumetric pixels). The spatial localization of  MRI signal 
to a specific voxel in the imaged subject is achieved through slice selection, phase and frequency 
encoding, and k-space reconstruction. First, a slice of  the sample (typically axial) can be selectively 
excited by the RF pulse by leveraging the application of  a gradient field along the longitudinal axis. 
This gradient modulates the Larmor frequency according to position along the longitudinal axis. 
Thus, the RF pulse frequency can be adjusted to selectively obtain signal from target slices in the 
sample (recall that RF frequency must match the Larmor frequency for resonant excitation to 
occur). Within a slice, two additional gradients are applied during acquisition to encode the x and y 
positions of  the signal. One gradient, known as the phase-encoding gradient, is pulsed for a short 
period of  time to induce a spatially varying phase across the slice. The other gradient, known as the 
frequency-encoding gradient, is applied in the orthogonal in-plane direction during signal readout to 
induce a spatially varying frequency across the slice. The raw data that is acquired for each slice 
exists in a frequency domain known as k-space, where the magnitude at each location specifies the 
contribution of  a particular spatial frequency to the final image. Taking the Fourier transform of  k-
space generates the MRI image. 

2.2. dMRI contrast and acquisition 

Diffusion is the aggregate observable effect of  random Brownian motion from individual particles. 
Brownian motion is the random movement of  a particle suspended in a free medium due to 
thermally driven molecular collisions, and it was first observed of  pollen suspended in water by 
Robert Brown in 1827 [Brown 1828]. For an individual particle, Brownian motion may be modeled 
as a random walk, where the direction of  movement at each time point is given at random due to 
unpredictable molecular collisions. When observing the aggregate effect of  random Brownian 
motion on a collection of  particles, particles tend to disperse from areas of  high concentration to 
areas of  low concentration. It should be emphasized, though, that diffusion constantly occurs even 
when no concentration gradient exists. Within a solution of  uniform concentration, the flux of  
diffusion across any surface is equal and opposite. Thus, diffusion is an inherent process for all 
particles within a free medium at any temperature above absolute zero, although it is most easily 
observed in the context of  equalizing concentration gradients. Of  relevance to dMRI is the concept 
of  the diffusion coefficient (D). In its purest form, D is an inherent property of  particles that 
describes how easily particles diffuse. It is related to the temperature (T), Boltzmann constant (kB), 
viscosity of  the solution (µ), and radius of  the particle (r) as formulated by Einstein [Einstein 1905]. 

 

However, in the more macroscopic context of  dMRI, diffusion coefficients are approximations of  
the aggregate diffusion occurring within a voxel. Voxels in which diffusion is hindered (e.g. by 
biological barriers) have lower D values than voxels with free diffusion. 

D =
kBT

6πμr
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Diffusion captures valuable neurobiological information because the dynamics of  water diffusion 
within the brain vary widely between the three major tissue types: grey matter (GM), white matter 
(WM), and cerebrospinal fluid (CSF) (Figure 4). Since the magnetization of  protons in water forms 
the basis of  the MRI signal in biological contexts, MRI contrasts can be generated based on the 
distinct diffusion properties of  different tissues. Importantly, the diffusion of  water is hindered by 
the phospholipid bilayer of  cell membranes. CSF is purely fluid; therefore, water molecules are free 
to diffuse in all directions without hindrance (high D). In contrast, the cell bodies of  neurons in GM 
restrict the diffusion of  water molecules, although not in any specific direction (low D). Most 
interesting are the diffusion characteristics of  WM, which consists of  axon tracts connecting GM 
regions. The cell membranes of  WM tracts are tubular and therefore allow diffusion of  water 
molecules in one specific direction while hindering diffusion in other directions. The diffusion of  
water in WM tracts is therefore highly anisotropic (high D in some directions, very low D in others). 
A visual graphic of  the diffusion characteristics of  GM, WM, and CSF is shown in Figure 4.  
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Figure 4: 2-dimensional diffusion profiles of  the three main tissue types in the brain. GM and CSF 
have isotropic diffusion profiles, while white matter has characteristically anisotropic diffusion due to 
the tubular structure of  axons. Diffusion is unhindered in CSF, while cellular membranes in GM and 
WM decrease the diffusivity of  water molecules. CSF: cerebrospinal fluid, GM: grey matter, WM: 
white matter.



The simplest way to demonstrate how diffusion contrasts can be achieved with MRI is through a 
basic pulsed gradient spin echo (PGSE) sequence [Stejskal 1965]. The pulse diagram for this 
sequence is shown in Figure 5. Shortly after a 90° RF pulse tips the spins into the transverse plane, a 
gradient is applied to dephase the spins. That is, as protons precess at different rates due to the field 
gradient, they acquire a relative phase dependent on their position along the gradient. After some 
time (TE/2), a 180° RF pulse is applied to induce a spin echo which can be read at time TE. 
Immediately following the inversion pulse, a gradient with the same duration and strength as the first 
pulsed gradient is applied. Since the precessing protons were inverted with a 180° pulse, this gradient 
now has an equal and opposite effect on the phase of  proton. In other words, the gradient-induced 
phases acquired after the 90° pulse are canceled out by the second gradient pulse. However, protons 
only completely rephase if  they are stationary. Any proton which has diffused to a different location 
between the two pulses will gain a slightly different amount of  phase during the second pulse and 
thus will not completely rephase. The result is an attenuation of  the MRI signal that is proportional 
to the dephasing of  the proton, which in turn depends on the distance it has diffused. In a PGSE 
sequence, low signal in a voxel suggests freer diffusion compared to a voxel with high signal. When 
imaging the brain, the signal will be lowest in CSF where free diffusion occurs. Using this contrast, a 
map of  apparent diffusion coefficient (ADC) can be calculated where high ADC values (e.g. in CSF) 
indicate freer diffusion compared to lower ADC values (e.g. in GM) [Le Bihan 1986]. Note that all 
dMRI acquisitions are based on a T2-weighted spin-echo since dephasing due to diffusion primarily 
affects the dynamics of  transverse relaxation reflected in T2 images.  

There are two crucial parameters that define dMRI acquisitions: the diffusion direction and b-value. 
The diffusion direction is the direction in which the pulsed gradient is applied, and this determines 
the axis through which apparent diffusion is weighted. To illustrate this concept, consider a rigid 
tube which only allows water to diffuse in the x-direction. If  the pulsed gradient is in the x-direction, 
the spins will diffuse along the direction of  the gradient, leading to dephasing and generating 
diffusion contrast. However, if  the pulsed gradient is in the y-direction, no protons diffuse along the 
gradient, and therefore no dephasing (and no diffusion contrast) occurs. While it is possible to 
generate an ADC map with a single diffusion direction, more accurate modeling of  diffusion 
dynamics in modern dMRI implementations requires multiple diffusion directions. 

dMRI acquisitions are also defined by their b-value, a parameter which defines the strength of  the 
diffusion weighting. From the following equation (derived from a formal description of  PGSE 
dynamics outside the scope of  this thesis), the b-value of  a sequence depends primarily on two 
factors: the diffusion time (t) and the strength of  the pulsed gradient (G).  

 

Increasing the diffusion time (the time between the two pulsed gradients, t) allows more time for 
spins to diffuse and dephase, leading to a more attenuated signal. Increasing the strength of  the 
pulsed gradient (G) causes greater dephasing given the same distance of  diffusion, also leading to a 
more attenuated signal. Thus, acquisitions with higher b-values have greater diffusion-related signal 
dropout, which generates images that are highly sensitive to diffusion but have poor signal-to-noise 
ratio. Note that an image with b=0 has no diffusion weighting and is simply T2-weighted. Since the 
contrast of  all diffusion-weighted images (b>0) also reflects T2-weighting alongside diffusion 
effects, all dMRI acquisitions will acquire b0 volumes to normalize the T2 contrasts. Stejskal and 

𝑏 = 𝛾2𝐺2Δ2(𝑡 −
Δ
3 )
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Tanner derived the following equation which relates signal attenuation to b-value and the diffusion 
coefficient (D) [Stejskal 1965]. 

 

S(b) is the signal in a diffusion-weighted image of  b-value equal to b, D is the diffusion coefficient, 
and S0 is the signal in a T2-weighted image (b=0). 

It can be observed from this relation that higher diffusivity D will lead to greater attenuation of  the 
signal S(b). Also note that deriving D from the relation requires normalizing the signal S(b) to S0, 
(normalizing for the inherent T2 contrast of  the sequence).  

ln(
S(b)

S0 ) = − bD
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Figure 5. Theory of  a simple PGSE pulse sequence acquisition. Top: the PGSE pulse sequence 
diagram. A diffusion gradient with strength G and duration Δ is applied shortly after the first RF 
pulse of  90°. After time TE/2, an inversion RF pulse is applied, and an identical diffusion gradient is 
pulsed. This leads to rephasing of  spins at time TE. Bottom: the phase effect on a diffusing proton. 
The inversion pulse reverses the phase acquired during the first diffusion gradient, therefore the net 
phase acquired is proportional to the distance diffused. PGSE: pulsed gradient spin echo; RF: 
radiofrequency.



Modern dMRI sequences use an echo-planar imaging (EPI) readout, where k-space is acquired in a 
single excitation. The usage of  EPI significantly decreases the amount of  time required to acquire a 
single diffusion-weighted image, therefore enabling many diffusion directions and b-values to be 
collected in a short amount of  time. EPI also reduces motion artifacts which can skew diffusion 
estimates by minimizing the window for motion to affect the scan. In contrast with basic readouts, 
where a single frequency-encoding gradient is applied during the readout (thus filling one line of  k-
space), EPI readouts quickly alternate the frequency-encoding gradient to fill multiple lines of  k-
space in one echo (Figure 6).  

However, EPI images are highly susceptible to geometric distortions. Because the entirety of  k-
space is acquired during an extended application of  a single frequency-encoding gradient, deviations 
from theoretical precession frequencies due to inhomogeneity accumulate throughout the 
acquisition. Distortions affect the phase-encoding direction disproportionately because it is acquired 
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Figure 6: K-space acquisition for echo planar imaging (EPI) occurs in one frequency encoding step; 
taking the Fourier transform of  k-space results in an image that is heavily distorted in the phase-
encoding direction. Reversing the direction of  phase-encoding in k-space causes spatial distortions to 
occur in the opposite direction. 



with a lower bandwidth (i.e. successive points in the phase-encoding direction are acquired at a lower 
rate in k-space compared to the frequency-encoding direction). The lower bandwidth of  the phase-
encoding direction means that phase errors (due to deviations from the expected precession 
frequency) have more time to accumulate along this axis. Thus, the encoded spatial information in 
the phase-encoding direction is subject to error caused by deviations from the expected magnetic 
field. In practice, this leads to an observed stretching or compression of  the image along the phase-
encoding direction in regions of  high magnetic field inhomogeneity (Figure 6).  

2.3. Diffusion tensor imaging (DTI) 

While a single diffusion-weighted image only provides information about apparent diffusion in one 
direction, combining information from multiple diffusion-weighted scans can elucidate detailed 
information about the overall diffusion characteristics in each voxel. Starting with a set of  
assumptions about the diffusive properties of  neural tissue, one can mathematically formulate dMRI 
models for deriving quantitative diffusion metrics that describe microstructure. The simplest and 
most commonly used dMRI model is diffusion tensor imaging (DTI). In each voxel, the DTI model 
fits a diffusion tensor: a 3x3 matrix which describes the 3-dimensional diffusivity profile within the 
voxel. Conceptually, the diffusion tensor (D) is a 3-dimensional diffusion coefficient. 

 

The 3 diagonal elements of  the matrix (Dxx, Dyy, Dzz) describe the apparent diffusivity in each of  the 
applied gradient directions (x, y, and z), while 3 off-diagonal elements (Dxy, Dxz, Dyz) describe the 
correlation between pairs of  diffusion directions. A hypothetical case illustrating the importance of  
the off-diagonal elements of  the matrix is described in Appendix A. Note that Dxy and Dyx both 
quantify correlation between the same pair of  directions and are therefore equivalent (the same is 
true for Dxz with Dzx, and Dyz with Dzy). Thus, the diffusion tensor contains 6 independent 
components and therefore requires at least 6 diffusion-weighted scans in unique directions to 
estimate. A formal derivation of  how to estimate the diffusion tensor from dMRI (first described by 
Basser and colleagues in 1994) is out of  the scope of  this thesis, but it should be stated that the 
calculation of  D is based on a generalization of  the 1D Stejskal-Tanner relation into 3-dimensional 
space. For an applied gradient (G) in a direction with x, y, and z components, the equation relates the 
T2-normalized signal attenuation (S(b)/S0) to a linear combination of  b-values which depend on the 
gradient direction [Basser 1994]. 

 

Note that D is never explicitly calculated in practice, but instead is estimated based on a best fit 
model. This is because dMRI measurements are subject to many sources of  error, including field 
inhomogeneities, thermal noise, motion artifacts, and eddy-current effects. Therefore, while the 
theoretical minimum number of  diffusion scans needed to estimate a diffusion tensor is 7 (6 
diffusion directions plus a b0 volume), 30 or more scans are typically acquired in practice to increase 
the accuracy of  the estimate. 

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

ln ( S(b)
S0 ) = − (bxxDxx + byyDyy + bzzDzz + (bxy + byx)Dxy + (bxz + bzx)Dxz + (byz + bzy)Dyz)
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It is useful to decompose the diffusion tensor into its eigenvectors and eigenvalues (principle 
components). This decomposition reveals the primary direction of  diffusion as the eigenvector 
associated with the largest eigenvalue. In a WM voxel, this may be conceptualized as the direction of  
the axon tract. The other two eigenvectors are orthogonal to this primary direction of  diffusion, and 
their associated eigenvalues are the diffusion coefficients in these secondary and tertiary directions.  

 

λ1, λ2, and λ3 are the three eigenvalues of  the diffusion tensor D. The three vertical columns of  the 
matrix before the matrix of  eigenvalues are the eigenvectors, and the matrix after the eigenvalues is 
simply the transpose of  the eigenvector matrix. 

The two most common metrics to characterize diffusion using DTI can be derived from the 
decomposed matrix: fractional anisotropy (FA) and mean diffusivity (MD). FA is an index of  
diffusional anisotropy in the voxel, and it ranges from 0 (indicating perfect isotropy) to 1 (indicating 
perfect anisotropy). MD is an index of  the average diffusivity within the voxel and is simply the 
average of  the three primary eigenvalues. Note that MD is also equivalent to the average of  the 
three primary diffusivities before eigenvalue decomposition. 

 

 

Canonically, it is thought that a decrease in FA accompanied by an increase in MD indicates 
structural breakdown, as freer diffusion might occur when a cellular membrane is compromised. 
However, interpretation of  FA and MD should be made with caution, as the DTI model makes 
several assumptions that may not be accurate in vivo. Importantly, DTI assumes Gaussian diffusion 
(explored in the following section) and homogenous diffusive properties within a voxel. The 
limitations of  DTI are apparent when considering the case of  crossing axon fibers within a voxel. If  
there are 3 crossing fibers in orthogonal directions, a diffusion tensor might estimate isotropic 
diffusion while the reality of  diffusive properties within the voxel is far more complex. While 
recognizing the limitations of  DTI as the simplest dMRI model, FA and MD are still informative 
and clinically relevant indices of  neural microstructure. 

2.4. Diffusion kurtosis imaging (DKI) 

Diffusion kurtosis imaging (DKI) is an extension of  the DTI model which removes the assumption 
of  a Gaussian diffusion. To understand the significance of  this assumption, it is helpful to consider 
the diffusion displacement probability distribution P(r,t). P(r,t) is a probability density function that 
captures the likelihood that a single molecule will diffuse a distance (r) due to diffusion after a 
certain time (t). For free diffusion occurring in a uniform medium, P(r,t) is a Gaussian distribution 
which has a width dependent on the diffusion coefficient (D).  

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

=
v11 v12 v13
v21 v22 v23
v31 v32 v33

λ1 0 0
0 λ2 0
0 0 λ3

v11 v21 v31
v12 v22 v32
v13 v23 v33

MD =
Dxx + Dyy + Dzz

3
=

λ1 + λ2 + λ3

3

FA =
3
2

⋅
(λ1 − MD)2 + (λ2 − MD)2 + (λ3 − MD)2

λ2
1 + λ 2

2 + λ2
3
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This relation is assumed in the derivation of  Stejskal and Tanner’s equation relating signal 
attenuation to diffusion coefficient. Since the entire shape of  the distribution is solved if  D is 
known, only a single diffusion-weighted scan is required to estimate P(r,t). However, diffusion in 
neural tissue is hindered by cell membranes and other biological substrate, causing P(r,t) to deviate 
from the Gaussian. The extent of  deviation from a Gaussian diffusion is known as kurtosis (K). 
Greater kurtosis suggests a greater degree of  cell structure, as there are more barriers to free 
diffusion. A key consequence of  having a diffusion profile with non-zero kurtosis is that a single 
diffusion-weighted scan is no longer sufficient to estimate D. Instead, two scans with different b-
values must be obtained for a diffusion direction to quantify both D and K. dMRI datasets acquired 
with multiple non-zero b-values are known as multi-shell acquisitions. When fitting the observed 
signal in each voxel to estimate D and K, an adjustment is made to the Stejskal-Tanner equation 
[Jensen 2005]: 

 

S(b) is the signal in a diffusion-weighted image of  b-value equal to b, D is the diffusion coefficient,  
K is the diffusion kurtosis, and S0 is the signal in a T2-weighted image (b=0). 

It is evident from this equation that for a given diffusion direction, two b-values are necessary to 
solve the two variables D and K. Additionally, while kurtosis in a single diffusion direction can be 
quantified by a single value, a 4th order kurtosis tensor is necessary to fully describe a a 3-
dimensional kurtosis profile. The kurtosis tensor Wijkl is a 3x3x3x3 matrix that describes the shape 
of  P(r,t) in each direction (x, y, and z) and how they interact with diffusion profiles of  the other 
directions. For example, the term Wxxxx represents kurtosis along the x-direction, Wxxyy represents 
interactions between the kurtosis profiles of  the x- and y-directions, and Wxxyz describes interactions 
between all three directions. As with the 3x3 diffusion tensor, the kurtosis tensor is symmetric (Wxxyy 
is equivalent to Wyyxx). This symmetry means that there are only 15 independent components out of  
the 81 elements of  the kurtosis tensor. Thus, Wijkl can be theoretically defined with 16 scans: a b0 
scan and 15 diffusion-weighted images sensitized in different directions across two b-values. As with 
DTI, though, much more data is acquired in practice to decrease the effect of  noise and generate 
better estimates. Once the kurtosis tensor is estimated, it can be summarized into an average kurtosis 
coefficient (AKC) in the x, y, and z directions. These can be further summarized into a mean 
kurtosis (MK) value in each voxel by averaging AKC across the three directions. Typical values of  
MK in GM reported in literature range from about 0.4 - 1.2. Larger values of  MK, indicating greater 
deviation from Gaussian diffusion, imply greater complexity of  the local microstructure. 

2.5. Neurite orientation dispersion and density imaging (NODDI) 

A limitation of  the DTI and DKI models is that they are agnostic to known neurobiological 
structure. In other words, they collapse complex and heterogeneous cellular microstructure into 
gross tensors that describe the aggregate diffusion profile of  a voxel but do not have direct 
neurobiological meaning. In contrast, the neurite orientation dispersion and density imaging 
(NODDI) method is fundamentally built to model diffusion in neurobiological tissue. NODDI is a 

P(r, t) =
1

(4πDt)3/2
exp (−

r2

4Dt )

ln(
S(b)

S0 )  =   − bD  +   1
6

b2D2K
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method of  quantifying the dispersion of  axons and dendrites (collectively known as neurites) to 
offer biologically specific insight into microstructure [Zhang 2012]. The model breaks down each 
voxel into 3 components: the intracellular compartment, the extracellular compartment, and CSF. 
The total signal in each voxel is a linear combination of  modeled signal from each of  the 3 
components, weighted by their volume fraction (how much of  the voxel’s volume is taken by the 
component). 

 

Here, S is the aggregate voxel signal, Siso is the CSF signal, viso is the CSF volume fraction (ISOVF), 
Sic is the intracellular compartment signal, vic is the intracellular volume fraction (ICVF), Sec is the 
extracellular compartment signal, and vec is the extracellular compartment volume fraction. 

The intracellular compartment represents water within neurites. Their narrow, tubular structure 
imposes significant anisotropic restrictions on diffusion; therefore, neurites are represented as zero-
radius cylinders. Conceptually, this is equivalent to a specific case of  the diffusion tensor with only 
one nonzero eigenvalue. The NODDI model considers the intracellular signal Aic to be an integral 
of  zero-radius cylinders over a spatial distribution. The spatial distribution is defined by a spherical 
probability density function called the Watson Distribution (Figure 7) [Watson 1960]. A 
formalization of  this function is outside the scope of  this thesis, but importantly, it is always 
bidirectionally and cylindrically symmetric. These symmetries are reasonable constraints on neurite 
dispersion from a biological perspective, and they allow the Watson distribution’s shape to be fully 
defined by two variables: µ—the principal orientation direction, and κ—the degree of  dispersion 
about µ. κ is the key parameter of  NODDI: a high κ represents low dispersion and low κ represents 
high dispersion. The principal outcome metric of  NODDI is orientation dispersion index (ODI), 
which is simply a transformation of  κ to constrain its range to [0, 1] and invert its interpretation 
such that 0 indicates low dispersion: 

 

The extracellular compartment represents water outside of  neurites in GM and WM regions. 
NODDI models the diffusion in this compartment as anisotropic and Gaussian with its shape 
determined by the Watson distribution of  the intracellular compartment. The signal from the 
extracellular compartment is analogously an integral over the Watson distribution where anisotropic 
diffusion tensors with components parallel and perpendicular to the zero-radius cylinders are 
integrated instead of  the cylinders themselves. The parallel component is equivalent to free diffusion 
in the direction of  the neurite, while perpendicular diffusion is hindered by the neurite cell 
membrane. In the NODDI model, this relationship is simplified by an assumption about diffusion 
around cell membranes such that the two components are dependent. Therefore, a Watson 
distribution of  neurites defined by κ fully determines the parallel and perpendicular components of  
extracellular diffusion tensors which are integrated across the distribution to model the extracellular 
signal component Aec. The third and final compartment is for CSF and is simply modeled by an 
isotropic Gaussian diffusion profile.  

To summarize, while DTI and DKI can provide hints about cellular microstructure by modeling the 
aggregate diffusion profile in each voxel, NODDI is built on biological priors and therefore offers 
indices of  microstructure specific to neural tissue. In practice, NODDI requires multiple b-shells 
and nearly 100 total diffusion directions to accurately estimate its model parameters. ODI is the 

S = visoSiso + vicSic + vecSec

ODI  =   2
π

arctan( 1
κ )
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primary outcome metric of  this method, but ISOVF and ICVF (the volume fractions of  CSF and 
intracellular components) are also commonly reported. In cortical GM, increases in ODI are 
associated with brain development in youth, while decreases in ODI are seen in aging elderly 
patients [Zhang 2012]. 

3. Modulating the cortex with TMS 

While neuroimaging can non-invasively elucidate structural and functional abnormalities of  the 
human brain in vivo, it is a purely diagnostic tool with no therapeutic effect. Other methods are 
needed to target and therapeutically modulate the abnormalities observed by imaging. In the context 
of  chronic pain, several methods have been explored to varying degrees of  success. The method 
used in the body of  this thesis is a non-invasive brain stimulation (NIBS) technique known as 
transcranial magnetic stimulation (TMS). This section will review the advantages and disadvantages 
of  using TMS to modulate the cortex compared to other therapies, describe the basic principles of  
TMS, and finally discuss the specific, recently developed implementation of  TMS used in this thesis.  

3.1. Therapeutic neuromodulation methods in chronic pain: why TMS? 

Therapeutic modulation of  the human brain in vivo can be achieved via many mechanisms. These 
therapies can be grouped conceptually into a few categories, including pharmacological intervention, 
cognitive-behavioral training, lifestyle changes, and brain stimulation therapies (invasive and non-
invasive). In the context of  chronic pain, common pharmacological interventions include opioids, 
selective serotonin reuptake inhibitors (SSRIs), non-steroid anti-inflammatory drugs (NSAIDs), and 
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Figure 7: Example Watson distributions with for NODDI orientation dispersion index (ODI) values 
ranging from 0.04 to 1.0. NODDI uses the 3D Watson distribution to model the dispersions of  axons 
and dendrites. Note that the distributions are cylindrically symmetrical, therefore only the 2D 
projections are shown. Figure reproduced from Zhang et al., 2012.



anti-seizure medications [Kuijpers 2011, Wiffen 2013, Patetsos 2016]. While there is moderate 
evidence that these drugs can provide some pain relief  and functional restoration, they have a global 
non-specific influence on the whole CNS, leading to a risk of  adverse side effects. Moreover, opioids 
are known to be highly addictive and carry risks of  overdose and drug abuse [Chou 2015].  
Cognitive-behavioral interventions for chronic pain include cognitive behavioral therapy (CBT) and 
mindfulness meditation. These therapies focus on modulating coping strategies and psychological 
symptoms associated with pain, but they can also lead to mild pain relief  and induce neuroplastic 
changes [Broderick 2016, Hilton 2017]. However, the efficacy of  these interventions crucially 
depends on patient compliance, motivation, and expectation for the treatment, which limits its 
universal applicability [Broderick 2016]. Lifestyle changes that can be effective in chronic pain 
include exercise and diet regimens. These treatments can induce pain relief, improve mood, and 
beneficial neuroplastic changes [Ambrose 2015, Field 2021]. However, their implementation varies 
widely, and they are additionally limited by patient compliance and ability to adhere to the prescribed 
regimen.  

Multiple brain stimulation treatments for chronic pain have been studied. Invasive stimulation 
therapies include deep brain stimulation (DBS), spinal cord stimulation, motor cortex stimulation, 
and peripheral nerve stimulation. All these methods involve surgical placement of  an electrode or 
array of  electrodes at different points in the nervous system. These electrodes are then used to 
directly stimulate target neurons. Stimulation of  the spinal cord, peripheral nerves, and motor cortex 
attempt to modulate the pain signal early in its processing, while DBS can modulate downstream 
processing of  pain by targeting areas like PAG and ACC. These invasive electrical stimulation 
therapies are effective at reducing pain for some patients, but a large proportion of  patients do not 
respond to the treatment (estimated 20-50% in spinal cord stimulation, 24-33% in motor cortex 
stimulation, and 33% for peripheral nerve stimulation) [Boccard 2015, Helm 2021, Levy 2010, 
Verrills 2016]. This family of  therapies also carry the risks, costs, and barriers to access associated 
with any surgical procedure. In contrast with invasive techniques, several NIBS therapies for chronic 
pain have also been explored. These include transcutaneous electrical nerve stimulation (TENS), 
peripheral magnetic stimulation (PMS), transcranial direct current stimulation (tDCS), transcranial 
alternating current stimulation (tACS), focused ultrasound stimulation (FUS), and TMS. TENS and 
PMS are non-invasive analogs to peripheral nerve stimulation, while tDCS and tACS modulate the 
excitability of  the cortex by applying a current across two electrodes placed on the scalp. Current 
evidence surrounding tDCS and tACS therapies for chronic pain indicate inconclusive outcomes or 
nonsignificant effects of  the interventions [Alwardat 2020, Chang 2023]. FUS is a novel technique 
for non-invasively stimulating deeper brain regions which shows promising effects in preclinical 
studies but has not been tested in clinical cohorts.   

TMS utilizes the principle of  magnetic induction to directly stimulate cortical neurons in a targeted 
area. A brief  review of  the basic principles of  TMS is presented in the following section. Here, the 
advantages and disadvantages of  TMS as a treatment for chronic pain are discussed in relation to the 
other therapies presented. TMS is non-invasive and can target a specific cortical area, eliminating 
complications related to invasive surgeries and globally active pharmacological treatments. It is also 
less dependent on patient compliance compared to cognitive-behavioral therapies and prescribed 
lifestyle changes, since the participant is a passive recipient of  treatment in TMS rather than an 
active participant. Compared to non-invasive peripheral nerve stimulation therapies, TMS can 
modulate cortical regions involved in higher-level processing of  pain which are thought to be 
abnormal in chronic pain states. Finally, TMS is a more clinically mature technique compared to 
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other cortical NIBS methods like tDCS, tACS, and FUS. Current evidence of  TMS in chronic pain 
from clinical trials generally supports a higher degree of  efficacy compared to these other 
techniques, although it should be noted that the efficacy of  NIBS in pain is unclear even for TMS. 
To accurately describe how TMS fits into the space of  chronic pain therapies, its disadvantages 
should also be noted. Notably, the specific therapeutic mechanism of  TMS is still unclear, making it 
difficult to design and optimize treatment protocols. TMS also requires specialized equipment and 
knowledge to operate, making it less accessible and harder to implement compared to some other 
options. While the side effects of  TMS are less substantial compared to pharmacological 
interventions and invasive stimulation procedures, there is a low chance of  inducing seizure and 
syncope during treatment. The targeting of  TMS is less focused compared to invasive brain 
stimulations, and it is not able to directly stimulate deeper brain targets like DBS or FUS. 
Considering its advantages and disadvantages holistically in the context of  other chronic pain 
treatments, TMS occupies a unique niche in its non-invasive and targeted mechanism which holds 
potential for positive analgesia and functional improvements with few side effects. 

3.2. Basic TMS principles 

TMS is a technique for non-invasively stimulating neurons in the human cortex in vivo by leveraging 
laws of  electromagnetic induction. Its basic principles can be demonstrated by considering the 
simplest TMS experiment, first described by Barker and colleagues in 1985 [Barker 1985]. In their 
experiment, a single pulse from a circular coil stimulator is applied over the hand knob region of  the 
primary motor cortex (M1) to induce a muscle twitch in the contralateral hand (Figure 8). The 
circular stimulator is a handheld coil of  wire made of  a variable number of  turns (ranging from less 
than a dozen to a few hundred) and with a typical diameter of  about 5 to 10 cm. This coil is 
connected to a circuit with capacitors for storing electrical charge and a thyristor to quickly discharge 
the current through the coil stimulator. Typical TMS systems can generate thousands of  amps within 
a few hundred milliseconds [Rotenberg 2014]. Consider a single pulse of  current released by the 
circuit which passes through the TMS coil. According to the Biot-Savart law, this current will induce 
a magnetic field directed orthogonally through the center of  the coil:  

, 

where B is the induced magnetic field,  is the permeability of  free space (a physical constant), N is 
the number of  turns in the wire, I is the current through the wire, and R is the radius of  the wire. 

Note that the strength of  the induced magnetic field varies in direct proportion with the current 
through the coil. As the discharged current rapidly rises and falls during the pulse (dI/dt), the 
magnetic field also fluctuates rapidly (dB/dt), reaching about 2.5T and falling back to zero within a 
millisecond [Rotenberg 2014]. The magnetic pulse passes through the skull with little impedance 
from tissue, but its strength decreases rapidly according to the inverse cube law. Due to this rapid 
distance-dependent attenuation of  the magnetic pulse, TMS preferentially targets superficial cortical 
areas. Once the magnetic pulse reaches the brain, it induces current in the neural tissue according to 
Faraday’s law of  induction. 

, 

where is the induced voltage, N is the number of  turns in the wire, is the change in magnetic 
flux, and is the change in time. 
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For a single pulse from a circular coil, the induced eddy current is circular, centered about the 
magnetic pulse, and parallel to the TMS coil. This current can depolarize neurons and generate 
action potentials which propagate to downstream pathways. TMS stimulates regions connected to 
the targeted area in a nonspecific manner—it is not selective for any one connection from the target 
region. In the case of  hand knob M1 stimulation, TMS depolarizes neurons in the corticospinal tract 
down to the motor end plates innervating the hand muscles, generating the twitch observed in the 
contralateral hand. Note that M1 is somatotopically organized, with different subregions controlling 
distinct body parts (see Penfield’s homunculus [Penfield 1937]), therefore precise targeting of  the 
hand subregion is required to elicit the hand twitch response. Electromyography (EMG) electrodes 
can be placed on the abductor muscles of  the target hand to record a motor-evoked potential 
(MEP), which reflects the aggregate activity of  motor neurons stimulated by the magnetic pulse. 
This is the response which was recorded and reported by Barker and colleagues in their seminal 
1985 experiment with single-pulse TMS over M1 (Figure 8).  

Expanding upon this basic paradigm, many parameters can be modified and must be considered 
when designing a TMS study. In the interest of  streamlining this introduction, the full explanation 
of  TMS parameters is presented in appendix B. 
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Figure 8: Graphical abstract of  TMS stimulation of  M1. A pulse of  current (dI/dt) through the TMS 
coil induces a magnetic pulse (dB/dt), which stimulates neurons in M1. If  the TMS pulse is targeted 
over the hand knob region of  M1, the stimulated action potentials propagate from the upper motor 
neuron to the lower motor neuron, inducing a muscle twitch captured by EMG. EMG: 
electromyography; M1: primary motor cortex; TMS: transcranial magnetic stimulation.



3.3. Connectivity-guided intermittent theta-burst stimulation 

TMS applied at a frequency of  1 Hz or higher is known as repetitive TMS (rTMS). The purported 
mechanism of  rTMS interventions is to induce long-term potentiation (LTP) or long-term 
depression (LTD) of  synaptic connections involving the target area. LTP refers to a sustained 
strengthening of  a synaptic connection, while LTD refers to sustained synaptic weakening. Since the 
1990’s, rTMS has historically been the dominant paradigm of  TMS applied in clinical trials to induce 
intransient neuroplasticity in human subjects. That is, rTMS is proposed to alter the strength of  
connections involving the target region, which may reflect LTP or LTD on the neuronal level. 
Recently, another specific TMS stimulation protocol known as connectivity-guided intermittent 
theta-burst stimulation (cg-iTBS) has been shown to have increased efficacy compared to rTMS in 
some clinical trials [Cole 2020]. Theta-burst stimulation (TBS) refers to TMS stimulation patterns 
which deliver high-frequency bursts of  pulses (one burst is typically 3-5 pulses at 50-100Hz), with 
the interval between bursts corresponding to a frequency within the theta-band of  EEG signals (4-8 
Hz) [Huang 2005]. This pattern of  stimulation was observed to be effective in animal studies, and 
indeed its high efficacy in inducing neuroplasticity was demonstrated by stimulating the human M1 
and observing changes in MEP response [Huang 2005]. Intermittent TBS (iTBS) refers to theta-
burst stimulation protocols which include periods of  rest within the protocol which are longer than 
TBS stimulation (e.g. 2 seconds of  stimulation followed by 8 seconds of  rest). Finally, connectivity-
guidance for TMS refers to the practice of  using fMRI to determine the stimulation target. For 
example, a recent study in depression used resting-state fMRI analysis to determine the region of  
the lDLPFC most anticorrelated with the subgenual ACC [Cole 2020]. Then they used this 
individualized coordinate as a stimulation target for iTBS. The rationale behind this connectivity-
guidance was to target the specific connection between lDLPFC and subgenual ACC, as modulation 
of  this interaction was hypothesized as a possible therapeutic mechanism. Thus, combining the 
technique of  connectivity-guidance with iTBS stimulation parameters gives a TMS protocol which is 
accelerated (delivers more pulses in shorter time), individualized, and reported to have greater 
efficacy compared to traditional rTMS designs. 

3.4. TMS in chronic pain 

Clinical trials have used rTMS to try to alleviate pain across a variety of  conditions. A review from 
2020 found 106 studies applying rTMS to 16 pain conditions, including central pain after stroke, 
fibromyalgia, migraine, chronic low back pain and knee OA among others [Yang 2020]. Note that 
these pain conditions have a wide range of  etiologies and underlying mechanisms (e.g. traumatic vs. 
degenerative, neuropathic vs. musculoskeletal). Despite the heterogeneity of  pain conditions, almost 
all studies have targeted one of  two regions for stimulation: M1 or DLPFC. Systematic reviews have 
found that stimulation of  M1 has weak to moderate analgesic effects [Cruccu 2016, Yang 2020]. The 
mechanism of  analgesia induced by M1-stimulation is uncertain, but several hypotheses have been 
proposed. Stimulation of  M1 could alter cortical excitability of  the motor circuit and enhance motor 
cortex inhibition [Lefaucheur 2008]. The activity of  further targets involved in the cortical 
processing of  pain (e.g. anterior insula and thalamus) could also be affected by M1 stimulation 
[Lindsay 2021]. Finally, M1 stimulation may also act on the descending pathways projecting to the 
dorsal horn of  the spinal cord. Note that because TMS pulses have nonspecific downstream effects 
and do not selectively activate specific efferent connections from the target region, all of  the 
purported mechanisms are possible. Preliminary evidence of  M1 stimulation in one patient with 
chronic pain in knee OA shows promising analgesic effects [Nguyen 2019]. There have been fewer 
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studies targeting DLPFC in chronic pain, and the efficacy of  DLPFC stimulation is inconclusive 
[Cruccu 2016]. DLPFC stimulation is purported to relieve pain by acting on the cognitive-affective 
processing of  pain. The DLPFC also has downstream connections to the anterior cingulate and 
PAG, which may affect the cognitive processing and descending modulation of  pain respectively 
[Lindsay 2021]. While rTMS of  the DLPFC has been applied in other pain conditions with 
inconclusive results, no studies have used this intervention in chronic pain secondary to knee OA. 
Furthermore, there is no published evidence to date using cg-iTBS in human pain conditions. 

4. BoostCPM: A clinical trial using iTBS in patients with chronic knee OA  

The body of  this thesis analyzes neuroimaging data collected from the clinical trial “Brain 
connectivity-guided optimized theta-burst stimulation to improve central pain modulation in knee 
osteoarthritis (BoostCPM)” [Drabek 2023]. This is a randomized controlled trial evaluating the 
efficacy of  a cg-iTBS protocol for modulating cortical control mechanisms in chronic pain. The cg-
iTBS target is an individualized point in the lDLPFC that is most functionally anticorrelated with the 
rAI, defined by functional connectivity analysis of  baseline functional MRI (fMRI) data. The 
lDLPFC-rAI connection was chosen as the target to be modulated based on evidence from a 
previous study showing that stimulation of  this connection improves symptoms of  depression 
[Morriss 2024]. By targeting the lDLPFC, the intervention aims to modulate the cognitive-affective 
dimensions of  pain, even if  there is little effect on sensory pain. This study is novel in several ways: 
it is the first study using cg-iTBS in a chronic pain condition and one of  the first targeting the 
lDLPFC with TMS in patients with knee OA.  

This trial is a pilot study and therefore meant to build preliminary evidence by establishing a variance 
of  treatment outcomes and explore mechanistic hypotheses. It should be emphasized that this study 
is therefore not meant to be inferentially informative about the efficacy of  the cg-iTBS intervention. 
The mechanistic hypotheses to be explored are stated in the pre-published study protocol [Drabek 
2023] and are as follows: 

1. “Accelerated, personalized iTBS of  the DLPFC modulates functional activity and 
connectivity of  brain circuits involved in central pain control in chronic musculoskeletal pain 
compared with sham controls.”  

2. “Accelerated, personalized iTBS of  the DLPFC increases endogenous antinociception in 
chronic musculoskeletal pain compared to sham controls.” 

To evaluate mechanistic hypotheses, neuroimaging data is collected at baseline and after the 
intervention. The neuroimaging protocol includes arterial spin labeling (ASL) and fMRI, which are 
used to evaluate functional neuroplasticity, and dMRI, which is used to evaluate structural 
neuroplasticity. This thesis analyzes the dMRI data from the BoostCPM trial.  

Neuroplastic changes are hypothesized in DPMS following the cg-iTBS intervention. These regions 
include the lDLPFC, rAI, vmPFC, dmPFC, ACC, and PAG. A previous study using dMRI to 
evaluate the effects of  rTMS found small microstructural changes in pertinent white matter tracts 
that were related to treatment efficacy [Ning 2022]. This result suggests that TMS does affect neural 
microstructure, and that modern dMRI techniques are sensitive enough to detect these changes. 
While the study by Ning et al analyzes microstructural changes in WM (as is most common in dMRI 
analysis), this thesis will analyze microstructure in GM regions. Indexing GM microstructure with 
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dMRI is typically more difficult, as the distinct anisotropy of  WM regions lends to simpler analysis 
and interpretation. However, it has been shown that a simple learning and memory task can 
engender changes in the GM detectable by dMRI acquisitions [Brodt 2018]. Therefore, it is 
hypothesized that cg-iTBS of  the lDLPFC in patients with chronic pain secondary to knee 
osteoarthritis induces microstructural changes in GM regions of  the DPMS, detectable with dMRI. 
The following sections present and discuss the neuroimaging analysis evaluating this hypothesis. 
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II. Methodology 

1. Study design 

The protocol for the BoostCPM trial was pre-published [Drabek 2023]. Specifics of  this protocol 
relevant to the present thesis are summarized in this section, including participant characteristics, the 
iTBS protocol, and the MRI scanning protocol.  

1.1. Participants 

The recruitment target for this study was 45 participants, with 30 in the active iTBS intervention 
arm, and 15 in the sham arm. In the end, 43 participants completed the study, with 31 in the active 
arm, and 12 in sham. Inclusion criteria for the study restricted the cohort to patients aged 18-75 with 
knee OA and chronic pain (≥6 month duration) with a pain score via visual analog scale of  ≥4/10. 
Participants were excluded if  they had major medical or neurological conditions, imminent major 
changes in their treatment plan (e.g. arthroplasty), a change in pain medications within the last 4 
weeks, a prescription medication acting on the central nervous system (except stable antidepressants 
or opioidergic analgesics), any medication increasing the risks of  seizure or syncope, or experienced 
frequent headaches. 

1.2. iTBS protocol 

In total, iTBS was delivered on four separate days within a 5-day span, with one day of  rest. The 
protocol on each of  the 4 intervention days was identical, with 5 sessions of  iTBS per day separated 
by 50 minute breaks (see Figure 9). iTBS was delivered using a neuronavigated MagStim system with 
a figure-eight coil (7cm diameter) with the following stimulation parameters: 3 pulses at 50Hz 
repeated with a inter-train interval of  200ms (5Hz) for 2 minutes, for a total of  1800 pulses at a 
stimulation intensity of  80% resting motor threshold (rMT).  The number of  pulses delivered each 
day across the 5 sessions was 9,000. The total number of  pulses delivered across the 4 intervention 
days was 36,000. Each participant’s rMT was determined at the start of  the first visit by delivering 
single pulses to left M1 at increasing intensities until an MEP is evoked in the abductor pollicis 
brevis of  the right hand in 5 out of  10 trials.  

The stimulation target for iTBS was a point in the participant’s lDLPFC determined by functional 
connectivity analysis of  their baseline resting state fMRI (rs-fMRI) data. Rs-fMRI data was 
preprocessed, and functional connectivity was calculated using a seed region in the rAI and an 
anatomically masked region in the lDLPFC. The rAI seed was a 6mm spherical region of  interest 
(ROI) centered about the Montreal Neurological Institute atlas (MNI) coordinate [30, 24, -14], taken 
from previous studies targeting the lDLPFC-rAI connection in depression [McGrath 2013]. The 
lDLPFC anatomical mask is a large regional ROI and was taken from a previous study targeting this 
connection for stimulation [Fox 2012]. From functional connectivity analysis, the coordinate in the 
lDLPFC mask most anti-correlated with the rAI seed was used as the target for stimulation. The 
StimGuide neuronavigation system allows this individualized stimulation point to be accurately 
targeted during iTBS. StimGuide is a technique for registering a participant’s head position in space 
during stimulation to their anatomical MRI scan, thereby allowing accurate, individualized placement 
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of  the TMS coil. In brief, cameras within the iTBS stimulation room are used to generate reference 
points at the participant’s nasion and left/right tragus. Then, the participant’s T1 image is registered 
to these reference points, thereby allowing for accurate, real-time guidance to of  the TMS coil to the 
target identified with fMRI analysis. 

1.3. MRI protocol 

MRI scans were acquired before and after the iTBS interventions. The scanning protocol for each 
time point was identical, with T1, T2-weighted-Fluid-Attenuated Inversion Recovery (T2-FLAIR), 
rs-fMRI, and dMRI scans being obtained. T2-FLAIR is an MRI sequence which generates a 
structural image with T2-weighted contrast and is designed to suppress signal from CSF. All images 
were acquired on a 3T GE Premier scanner with a 48-channel head coil. The two structural scans 
(T1 and T2-FLAIR) were acquired with 256 sagittal slices, 256x256 in-plane resolution, voxel size of  
1mm isotropic, and a 3D readout. T1 images were acquired with an MP-RAGE sequence 
(TI=800ms, flip angle=8), and T2-FLAIR images were acquired with Cube sequence (TE=121ms, 
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Figure 9. Graphical overview of  BoostCPM study timeline. For each recruited patient, the study 
takes place over 6 visits. On the first and last visits, patients receive an MRI with T1, T2-FLAIR, 
dMRI, and fMRI scans. During each intervention visit (days 2-5), patients receive 5 sessions of  cg-
iTBS with 50-minute breaks between sessions.



TR=6300ms, TI=1787ms, echo train length=220). rs-fMRI scans were acquired with a gradient-
echo EPI sequence: TR=1400ms, TE=35ms, flip angle=68°, multiband acceleration=3, 57 axial 
slices, 106x106 in-plane resolution with 2mm isotropic voxels, 643 timepoints for a total acquisition 
time of  15 minutes. dMRI scans were acquired with a spin-echo EPI sequence: TR=4600ms, 
TE=90ms, multiband acceleration=3, 117 diffusion directions, 3 shells (b=300, 1000, and 2000), 63 
axial slices, 104x104 in-plane resolution with 2mm isotropic voxels. For field mapping and EPI 
distortion correction, images with reversed phase encoding were acquired for rs-fMRI and dMRI. 

2. MRI processing and analysis 

Neuroimaging data must be processed through a series of  steps (known as a pipeline) before it can 
be analyzed. There exist many software tools and methods for performing this processing, and the 
best practice may vary depending on the quality of  the data and the goals of  the analysis. This 
section details the processing and analysis procedures that were applied to the neuroimaging data 
acquired from the BoostCPM study. These details were specified a priori in an image analysis plan 
which was written and uploaded to the University of  Nottingham’s research data repository (DOI: 
http://doi.org/10.17639/nott.7388). The relevant components of  this protocol are summarized and 
expanded upon in this section. All image processing, quality control (QC), and analysis were 
performed while blinded to the subjects’ treatment allocation (sham or active). 

2.1. Software and setup 

Image preprocessing was conducted using the BRC imaging pipeline version 1.6.3, which is openly 
available on Github (github.com/SPMIC-UoN/BRC_Pipeline). The pipeline implements tools from 
various imaging software packages, including Statistical Parametric Mapping 12 (SPM12), FMRIB 
Software Library (FSL), Advanced Normalization Tools (ANTs), and Freesurfer. EDDY motion 
correction and NODDI analysis use the NVIDIA CUDA Toolkit. Processing and analysis were run 
on a combination of  servers (Chilli) and high-performance computing clusters (Augusta and Ada) at 
the University of  Nottingham.  

Raw data is output from the MRI scanner in the DICOM data format. These data files were 
converted to NIFTI files using the dcm2niix software, as the NIFTI data format is more compact 
and has greater compatibility with image processing software. Then, the NIFTI files were organized 
and renamed according to the brain imaging data structure (BIDS) specification [Gorgolewski 2016]. 
BIDS is a standard data format created by consensus from the neuroimaging research community. 
Its purpose is to standardize file naming and data organization formats to facilitate comprehension 
when sharing data with other researchers. The preprocessing subsequently described is performed 
on the raw, BIDsified NIFTI data.  

2.2. Structural processing and QC 

T1 and T2-FLAIR data were processed using the struc_preproc.sh script within the BRC pipeline. 
There are six steps in the T1 processing pipeline: cropping to center the brain, brain extraction, 
nonlinear registration to the MNI152 template, bias-field correction, segmentation into major tissue 
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types (GM, WM, and CSF), and cortical parcellation. A graphical summary of  structural processing 
is shown in Figure 10. 
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Figure 10. Graphical abstract of  structural processing. T1 images are cropped, brain extracted, 
nonlinearly registered to MNI space, bias-field corrected, tissue segmented, and parcellated with 
Freesurfer. T2-FLAIR images are cropped, brain extracted, and linearly registered to T1 space, then 
the downstream results from T1 processing are applied to the T2 image in T1-space. 



1. Cropping the image to center the brain removes extraneous voxels below the level of  the 
brainstem, thereby reducing the file size for future computation. This step is necessary 
because the field of  view (FOV) of  raw structural images includes the entire head down to 
approximately the C5 level. Cropping was performed using FSL’s robust_fov.  

2. Brain extraction isolates the neural tissue in the image, which helps facilitate later 
processing steps. Brain extraction was performed using FSL’s brain extraction tool (BET). 
This step generates a binary mask of  the brain and removes the skull and rest of  the head 
from the data. BET was run with the “-R” flag, which recursively estimates the brain mask 
to improve robustness. The “-g” and “–f ” flags (which modulate the brain extraction to be 
more liberal or conservative in certain directions) were left to their default values. Alternate 
options for this step include the 3dSkullStrip tool in the Analysis of  Functional NeuroImages 
(AFNI) toolbox and antsBrainExtraction in the ANTs toolbox. Note that in the BRC pipeline, 
while BET is used to isolate the brain prior to nonlinear registration, the brain mask is 
updated after registration. This is done by applying the inverse warp field (MNI-to-T1) to 
the brain mask in MNI space. The additional step is performed because brain mask 
estimations from this process are generally more robust than the raw estimates from BET. 

3. Nonlinear registration warps the subject’s structural scan to match an anatomical template. 
The most common template for adult neuroimaging studies is the MNI152 template from 
the Montreal Neurological Institute based on an average of  152 scans of  healthy adults 
taken from the International Consortium for Brain Mapping (ICBM) project [Mazziotta 
2001, Fonov 2009]. Registration to a template is necessary to facilitate comparisons between 
subjects, as it provides a standard space to compare individuals with different neuroanatomy. 
There are two general types of  registration: linear and nonlinear. Linear registrations are 
defined by a 4x4 affine matrix which specifies translations, rotations, scalings, and shears in 
the x, y, and z directions. This type of  registration is commonly used for intra-subject 
registrations (e.g. aligning T1 scans at two time points), as its parameters are sufficient to 
align brains with the same anatomy. However, when registering brains of  different 
individuals (i.e. inter-subject registration), nonlinear registration is necessary. Nonlinear 
registrations are defined by warp fields and are therefore more flexible to deform anatomy. 
Registration to the MNI152 template requires nonlinear registration because the template is 
an averaged brain with blurred anatomy that is distinct from every individual. Two methods 
of  nonlinear registration to the MNI152 template were performed. The first method is 
FMRIB’s Nonlinear Image Registration Tool (FNIRT) from the FSL toolbox. This algorithm 
calculates a warp field from an input image to a target image, using cubic splines to fit the 
transformation and a sum of  squared differences cost function to optimize the registration 
[Andersson 2007]. The second method is the antsRegistrationSyn tool in the ANTs toolbox. 
This algorithm uses a symmetric diffeomorphic transformation, which differs from the 
FNIRT method in two key ways [Avants 2006]. First, it considers the bidirectional 
registrations equally, optimizing for both the registration from source to target image and the 
reverse registration from target to source. Second, it ensures the calculated warp field is 
diffeomorphic, meaning that both the field and its inverse (the reverse transformation) is 
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smooth and differentiable. Note that the ANTs method was shown to generate more 
accurate registrations than FNIRT in a study comparing 12 different registration algorithms 
[Ou 2014], but both methods were tested in the present analysis to validate the approach. 
Prior to running FNIRT, FSL’s Linear Image Registration Tool (FLIRT) was used to 
estimate an affine matrix for the T1-to-MNI transformation. This affine matrix was used to 
initialize FNIRT, a step which accounts for parts of  the transformation and therefore 
decreases the required intensities of  the warp field. The interpolation (resampling) method 
used for FNIRT was spline. For the ANTs approach, antsRegistrationSyn was implemented 
with the “-d” flag set to 3, indicating 3-dimensional registration (as opposed to in-plane). 

4. Bias-field correction adjusts the intensities of  voxels in the image to account for the bias 
field, which is estimated empirically during this step. The bias field refers to the field 
inhomogeneities that are present in every MRI scanner. Recall from the discussion of  MRI 
physics (Introduction section 2.1.) that all protons in the scanner are assumed to be exposed 
to the same net magnetic field at rest. In practice, the field inside the scanner will vary due to 
hardware limitations. Additionally, when subjects are placed in the scanner, further 
inhomogeneities are introduced due to magnetic susceptibility effects. These 
inhomogeneities systematically modulate voxel intensities and must be corrected for in 
preprocessing. Bias-field correction was performed by the FMRIB’s Automated 
Segmentation Tool (FAST) in the FSL toolbox [Zhang 2001]. This method assumes that 
there are 3 tissue classes in the image (GM, WM, and CSF), which each have a different 
Gaussian voxel intensity distribution with distinct means and a small width [Guillemaud 
1997]. The algorithm then iteratively updates an estimated bias field to adjust intensities in 
each voxel to best fit the assumed distribution of  intensities. Thus, the bias-field correction 
method implemented in FSL FAST is purely data-driven (only requiring a T1-image as an 
input) and also segments the image into GM, WM, and CSF voxels.  

5. Segmentation into major tissue types creates masks for GM, WM, and CSF. These masks 
are useful in later processing steps to isolate specific tissue types. This step was performed 
using FSL FAST using the method described for bias-field correction above. 

6. Cortical parcellation further segments the cortical GM into distinct regions defined by 
topographical or functional characteristics. The method used for cortical parcellation is the 
Freesurfer software [Fischl 2012]. Freesurfer contains a comprehensive 29-step pipeline that 
includes preprocessing of  structural data, fits a surface-based topological model, and outputs 
multiple segmentations. For the purposes of  cortical parcellation, it should be noted that the 
segmentations that Freesurfer produces are based primarily on topology by a procedure 
which divides a surface representation of  the cortex into sulci and gyri [Desitreux 2010]. 
Freesurfer was run with the recon-all command on the raw, unprocessed T1 images, subjecting 
the raw data to the entire pipeline of  Freesurfer processing and modeling. 
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T2-FLAIR data were processed following the T1 data. The processing of  T2-FLAIR data was 
largely analogous to that of  T1, and many of  the results from T1 processing were simply applied to 
the T2-FLAIR data. There were 5 steps in the T2 processing procedure: cropping to center the 
brain, brain extraction, linear registration to T1-space, application of  T1-to-MNI nonlinear 
registration results, and bias field correction. Cropping and brain extraction were performed on the 
raw T2-FLAIR data as described above for the T1 data. Linear registration to T1-space was 
performed using FLIRT. Note that linear registration is used for this step because the brain anatomy 
is identical across the two images. Instead of  recomputing the nonlinear registration from T2-to-
MNI, the warp field estimated from T1 processing is simply applied to the T2-FLAIR data. Similarly, 
the bias field estimated from T1 processing is applied to the T2-FLAIR data. 

QC of  structural preprocessing was performed qualitatively, with focus on visually evaluating the 
accuracies of  brain extraction, MNI registration, and tissue segmentation. For each dataset, 
FSLEYES was used to overlay the brain extraction mask on the processed T1 image, assessing for 
discrepancies (e.g. an overly liberal or conservative brain mask). FSLEYES was also used to inspect 
GM, WM, and CSF masks generated by FSL FAST. Finally, MNI registration was evaluated by using 
FSL’s slicesdir tool to overlay GM-WM boundaries of  the registered T1 image with the MNI atlas.  

2.3. dMRI processing and QC 

While several of  the basic preprocessing steps performed in structural processing must also be 
applied to dMRI data (e.g. brain extraction and spatial registration), there are several unique 
challenges presented by diffusion-weighted acquisitions which require specialized tools. These 
challenges arise from two aspects of  the dMRI acquisition: the fast EPI readout and the rapidly 
switching gradient coils. Recall that dMRI uses fast EPI readouts to enable collection of  more 
gradient directions within a given amount of  time and reduce motion artifacts, and that this method 
is susceptible to geometric distortions along the phase-encoding direction due to magnetic field 
inhomogeneities (see Introduction section 2.2). In addition, each diffusion-weighted scan requires 
the application of  two pulsed gradients in a specified direction. The constant on-off  switching on of  
the gradient coils leads to induced electric currents in the scanner hardware which can introduce 
distortions into the image. Therefore, specific methods for correcting these sources of  distortion are 
necessary in the dMRI processing pipeline. Diffusion data were preprocessed using the 
dMRI_preproc.sh script within the BRC pipeline. There are 5 steps in the dMRI preprocessing 
pipeline: normalization of  b0 intensities, distortion correction based on field map estimation, brain 
extraction, motion correction and eddy current distortion correction, and registration to T1- and 
MNI-space. A graphical summary of  dMRI processing is shown in Figure 11. 
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Figure 11. Graphical abstract of  dMRI processing. The raw dMRI dataset (117 volumes across 3 
non-zero b-values) has b0 volume intensities normalized, is distortion-corrected using the field map 
estimation method FSL topup, brain-extracted, motion and eddy current distortion-corrected using 
FSL eddy, linearly registered to T1 space and nonlinearly registered to MNI space, and fitted with the 
DTI, DKI, and NODDI models. The methods of  FSL topup and FSL eddy are shown to the right. FSL 
topup uses dMRI images acquired with reverse phase encoding to estimate a field map, correcting for 
gross geometric distortions due to field inhomogeneity. FSL eddy uses an iterative method of  
estimating eddy current and motion parameters, using a Gaussian predictor to evaluate the accuracy 
of  the estimates during each epoch. 



1. Normalization of  b0 intensities rescales the intensities of  all b0 volumes within a dMRI 
acquisition to be consistent. In a dMRI dataset, multiple b0 volumes are acquired for the 
purpose of  improving signal-to-noise ratio (SNR) by averaging across scans. For the data 
collected in this study, 7 b0 volumes are collected for the dMRI scan. The global average of  
these scans may drift due to slight variations in scanning conditions, for example from 
hardware performance or thermal noise. By normalizing the intensity of  each b0 scan to its 
average and rescaling to the mean intensity of  the first b0 volume, the effect of  this global 
drift is diminished. This step is performed using various FSL tools to perform basic 
mathematical operations.  

2. Distortion correction based on field map estimation is a method of  correcting EPI 
geometric distortions by using two images with opposite phase-encoding to estimate 
magnetic field inhomogeneities [Andersson 2003]. dMRI data in the Boost study is acquired 
with anterior-posterior (A/P) phase-encoding, which compresses the image according to 
deviations in the field along the A/P axis. The second, brief  acquisition of  dMRI data uses 
the same parameters but performs phase-encoding in the P/A direction, thereby stretching 
the image in the other direction along the same axis. The FSL tool topup uses information 
from these two scans to estimate the underlying field map which causes these distortions 
(see Figure 11 for a graphical representation). It uses an iterative method which begins by 
guessing a field map, applying the distortion correction to both images, calculating the 
difference between the two images, then making a new prediction based on the result to 
minimize the difference. After many iterations, the algorithm converges on an estimated field 
map which most closely aligns the two images when correcting distortions using the map. 
FSL topup is run using b0 volumes from the A/P and P/A dMRI scans. The output is a 
distortion-corrected b0 volume and the estimated field map. 

3. Brain extraction is performed on the distortion-corrected b0 volume from topup in 
preparation for registration to T1-space. This step is performed with FSL BET, analogous to 
structural processing.  

4. Motion correction and eddy current distortion correction account for two important 
sources of  noise in dMRI (subject motion and gradient-induced eddy currents) by modeling 
their effects on the acquired data. They are separate processes but can be simultaneously 
modeled and corrected using the method implemented in the FSL tool eddy [Andersson 
2016]. The crux of  this method is a prediction algorithm that models the diffusion profile 
(and corresponding dMRI signal intensities) in each voxel as a Gaussian process and adjusts 
the model to fit observed data while being constrained by a parametrized covariance 
function [Andersson 2015]. This dMRI prediction maker is leveraged in the context of  
distortion correction preprocessing by using it in an iterative algorithm to update guesses for 
eddy current and motion parameters. The iterative algorithm begins with processing each 
diffusion-weighted image in the dMRI dataset by applying the field map from topup and a 
guess of  the eddy current and motion parameters. The “distortion-corrected” images are 
then fed into the prediction maker, which estimates the diffusion profile in each voxel. Note 
that the predicted data will differ from the input images because they reflect the estimated 
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diffusion profile generated by the Gaussian process, which is encouraged to be smooth and 
axially symmetric by the imposed covariance function. The inverse of  the guessed distortion 
correction is then applied to the predicted images, and a difference map is calculated 
between the original data and the result is compared to the initial data. This difference map 
is used to update the estimated eddy current and motion distortion terms. As the estimated 
terms get closer to their true values, the difference between the “distortion-corrected” (with 
guessed parameters) images and the images output by the prediction maker will become 
more similar. Thus, the difference maps will tend towards 0 as the process converges on an 
optimal set of  distortion correction parameters. In practice, eddy was applied with a few 
notable options, including: the “--repol” flag to replaces outlier volumes with their Gaussian 
process predictions, the “--flm=quadratic” flag to model eddy-induced currents as quadratic, 
and the “--mporder=4” flag to perform slice-to-volume correction (used for multiband 
acquisitions). 

5. Registration to T1- and MNI-space was performed to enable cross-subject comparisons 
and utilization of  segmentation from T1-processing. Diffusion-to-T1 registration was linear 
and was performed with FSL FLIRT. The source volume for dMRI-space was the averaged 
b0 data, and the target volume in T1-space was the processed T1 data. This registration used 
a boundary-based registration cost function, which uses the WM segmentation in T1-space 
to optimize alignment [Greve 2009]. After linear registration to T1-space was performed, the 
nonlinear registration warp field calculated during structural preprocessing was applied to the 
dMRI data to transform it to the standard MNI152 space. 

After preprocessing, the dMRI_preproc.sh script subsequently modeling of  the data. Diffusion 
tensors were fitted according to the DTI and DKI models described in Introduction sections 2.3 
and 2.4. DTI modeling was performed using the FSL implementation dtifit, while DKI modeling 
used the dipy (Diffusion Imaging in Python) toolbox. NODDI modeling was performed with the 
CUDA Diffusion Modeling Toolbox (cuDIMOT). 

QC of  dMRI data was performed quantitatively and qualitatively. Quantitative QC metrics were 
generated with the FSL QUAD software as part of  eddy preprocessing [Bastiani 2019]. For each 
dataset, QUAD calculates absolute motion, average relative motion (including decomposition into 
between and within-volume translations and rotations), number of  outlier volumes, linear terms of  
eddy current distortions, SNR of  b0 volumes, and contrast-to-noise ratio (CNR) of  all other 
volumes. Then, the participant-level QUAD reports are combined into a group-level SQUAD report 
showing the distributions of  each metric across the cohort. The group-level distributions are also 
split between pre-iTBS and post-iTBS sessions to determine if  any systematic variation in data 
quality exists between sessions. Pre-post comparisons were also performed intra-subject. Datasets 
with outlier QC metric values within the group distribution, defined as greater than two standard 
deviations from the mean, were flagged for visual inspection. Finally, the group-level distributions 
were compared to distributions from the UK Biobank study as a benchmark for overall study-level 
image quality.  

Qualitative QC of  dMRI data focused on assessing for issues with distortion correction, FOV 
truncations, and motion correction. Raw and processed dMRI data were overlaid and visually 
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inspected with FSLEYES, with particular focus on the frontal polar region of  the brain where 
susceptibility effects are most prominent due to proximity to the air-filled paranasal sinuses. Any 
datasets with issues (e.g. imperfect distortion correction, truncated brain regions) were flagged but 
only removed from subsequent analysis if  the issue was seen to affect the extraction of  final metrics. 

2.4. ROI definitions 

After processing structural and dMRI data, ROIs must be defined to specify the parts of  the brain 
that will be analyzed with statistical testing. In practical terms, an ROI is a binary image data file with 
dimensions matching the target space. For example, an ROI in T1-space will have the same 
dimensions as the T1 image with voxels of  value “1” indicating points within the region of  interest 
and voxels of  value “0” indicating all points outside the region. As specified by the mechanistic 
hypotheses stated in Introduction section 4, the brain regions to be analyzed will be PAG, ldlPFC, 
rAI, bilateral rACC, bilateral dmPFC, and bilateral vmPFC. These are key components of  the DPMS 
which may be structurally modulated by the cg-iTBS intervention. In addition to these 11 
anatomically defined ROIs, the GM stimulation target and two control regions are included for 
analysis. All ROIs were defined in T1-space, and multiple techniques for defining the binary ROIs 
for these regions were tested and validated (Figure 12). As an experimental analysis, ROIs were also 
transformed to a subject-specific T1-midspace, but this additional step was ultimately removed to 
minimize registration-associated errors. 

Two atlases were tested for defining cortical ROIs: the multimodal Glasser atlas and the surface-
based Freesurfer parcellation. The Glasser atlas is based on architectural, functional, connectivity-
based, and topographic information and contains 180 cortical parcellations per hemisphere [Glasser 
2016]. While the primary implementation of  this atlas is as a machine learning classifier which 
outputs a parcellation given structural data and resting-state fMRI, it has also been translated to a 
volumetric atlas in MNI space. The volumetric MNI version of  the Glasser atlas was used for 
analysis (see Discussion section 3.1. for explanation). The Freesurfer atlas is based solely on 
topographical features and contains 74 parcellations per hemisphere [Destrieux 2010]. Freesurfer 
uses structural information from anatomical MRI to generate subject-specific parcellations in T1-
space. Note that there are two Freesurfer atlases: the Desikan-Killiany atlas from 2006 and the 
Destriex atlas from 2010 [Desikan 2006, Destrieux 2010]. The latter is used in this thesis due to its 
finer parcellations (74 labels per hemisphere vs. 35 in the Desikan-Killiany atlas). 

Using the Glasser approach, parcels of  the MNI atlas corresponding to each of  the cortical ROIs 
were identified based on a combination of  literature and identification by a neuroradiologist (DPA). 
These ROIs were then nonlinearly transformed to each subject’s T1-space by using FSL applywarp to 
apply the nonlinear warp field calculated by ANTs during structural preprocessing. The masks in T1-
space are probabilistic (since the transformation requires interpolation) and therefore must be 
binarized. Multiple thresholds for binarization were tested, and a cutoff  of  75% was chosen based 
on empirical evaluation of  the resulting masks. Using the Freesurfer approach, parcels 
corresponding to each of  the cortical ROIs were identified by a neuroradiologist (DPA). Since the 
parcellation is made in native T1-space, nonlinear transformation is not necessary in this approach. 
However, the Freesurfer parcellations of  lDLPFC, dmPFC, and vmPFC are broad and encompass 
areas outside those relevant to pain processing. To narrow the scope of  these ROIs, they are 
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intersected with 1cm radius spherical ROIs centered on relevant coordinates taken from the pain 
neuroimaging literature. For dmPFC, the MNI coordinates [-12, 50, 34] and [12, 50, 34] were used 
[Zhang 2021]. For vmPFC, the MNI coordinates [-6, 45, -6] and [6, 42, –12] were used [Yu 2014]. 
The iTBS stimulation target ROI was defined by intersecting a cortical GM mask from Freesurfer 
with a 1cm sphere centered on the stimulation coordinate calculated from functional connectivity 
analysis. Note that the stimulation target was only calculated for 17/28 of  the participants in the 
active group due to logistical issues and for 0/12 of  the participants in the sham group.  
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Figure 12. ROI processing steps for the Glasser and Freesurfer approaches. Top: for the Glasser 
approach, all ROIs are initially defined in MNI space and must be transformed into T1 space by 
applying the nonlinear warp field calculated during structural processing. Then, the ROIs are 
thresholded based on an empirical threshold of  0.75. Bottom: for the Freesurfer approach, only the 
dmPFC and vmPFC ROIs need to be processed, as the others are simply defined in T1 space. The 
extent of  the dmPFC and vmPFC Freesurfer ROIs (yellow) is limited by intersecting them with a 1cm 
radius spherical ROI centered on coordinates taken from literature (blue) to generate the final focal 
ROI (red).



For the subcortical PAG, the chosen ROI was taken from a published atlas which probabilistically 
mapped subcortical structures using 7T MRI [Keuken 2014]. In contrast with binary ROIs, voxels in 
probabilistic ROIs may have values ranging from [0, 1] indicating the likelihood that that voxel 
belongs to the region (where 1 indicates 100% chance of  belonging). This atlas included 
probabilistic ROIs for young, middle-aged, and elderly populations to account for systematic age-
related variations in anatomy. The “elderly” ROI was chosen, as this age range most closely matches 
the demographics for this clinical trial. Since this ROI was defined in the standard MNI space, it was 
nonlinearly transformed to each subject’s T1-space. The transformed ROI in T1-space was then 
thresholded at a probability of  100% (cutoff  determined empirically) to binarize the probabilistic 
map. 
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Figure 13. Final ROIs in T1 space. Left: mPFC and rACC ROIs using the Freesurfer and Glasser 
approaches. Note that the Freesurfer image in this column also includes the region of  no interest 
(cuneus, yellow). The Glasser ROIs from left to right in this image are: anterior_24_prime_L (white), 
area_posterior_24 (light blue), area_24 (orange), area_9_Middle (beige), area_10r (pink), area_10v 
(red),. The Freesurfer ROIs from left to right in this image are: mid-anterior ACC (red), anterior ACC 
(white), dmPFC (dark blue), and vmPFC (light blue). Middle: rAI ROIs using the Freesurfer and 
Glasser approaches. Right: PAG ROI, defined from an independent atlas without Freesurfer or 
Glasser. 



Two control ROIs included in the analysis are a nonspecific cortical GM mask and the cuneus. The 
nonspecific cortical GM mask includes all cortical GM and serves to check for global drifts in the 
dMRI signal, which are not expected. However, this mask includes regions of  interest where 
hypothesized changes could bias the global GM signal. Therefore, the cuneus (part of  the occipital 
lobe) was chosen as a region of  no interest. The cuneus is anatomically and functionally distinct 
from the other 11 regions of  interest included above. It is also not expected to be involved in the 
processing or modulation of  pain signals. The ROI for the cuneus was defined from 5 Freesurfer 
regions which were concatenated to form a large region encompassing the entire lobe.  

A visualization of  all ROIs generated by the Glasser and Freesurfer methods is shown in Figure 13. 

2.5. Extraction of  dMRI outcomes 

Following the analysis of  preprocessed dMRI data using the DTI, DKI, and NODDI models, 
relevant imaging metrics were extracted from the ROIs defined. The extraction was performed using 
a custom script written in Python3. To perform the extraction, binary ROI masks were used to index 
the MD, MK, ODI, ISOVF, and ICVF maps in T1-space, generating a distribution of  values 
corresponding to the relevant region. For the MD distribution, values outside the range of  
biologically plausible values (0.0005-0.001 mm2/sec) were excluded [Brodt 2018]. The histogram of  
values was plotted for each distribution of  metrics in each ROI for each subject, and these were 
visually inspected to assess for abnormalities. Large, implausible shifts or skewed distributions 
suggest a possible methodological issue which warrants visual inspection. If  the distributions do not 
suggest any methodological issues, the median of  the distribution is extracted. The median is chosen 
as the outcome statistic because it is less susceptible to being skewed by outliers than the mean. 
Thus, after extraction of  the median value of  5 dMRI metrics (MD, MK, ODI, ISOVF, and ICVF) 
from 14 ROIs (PAG, rAI, cuneus, cortical GM, lDLPFC, iTBS target, bilateral anterior ACC, 
bilateral mid-ACC, bilateral dmPFC, and bilateral vmPFC), each subject will have 70 median 
diffusion statistics which can be compared pre- and post-iTBS. 

3. Statistical testing 

All statistical tests are performed on an exploratory basis and are not inferential, as the BoostCPM 
study was designed as a pilot without prior knowledge of  variance in each metric of  interest. 
Furthermore, tests on the 12 predefined regions of  interest (the iTBS targeted connection, cortical 
DPMS regions, and PAG) are interpreted separately from the tests on the two control regions 
(nonspecific cortical GM and cuneus) as they serve a different purpose. Tests on the regions of  
interest were predefined in the registered image analysis plan and are hypothesized to show an effect. 
In contrast, tests on the two control regions constitute a sensitivity analysis to compare against 
preplanned test. The control regions are not expected to show an effect. Note that the frequentist 
statistical framework used does not allow for acceptance of  the null hypothesis. Nonsignificant 
results are interpreted as absence of  evidence for an effect, not as evidence for no effect. This 
distinction is important for the multiple comparison correction method explained later in this 
section. 

38



With these caveats in mind, statistical testing evaluated the significance of  two contrasts per metric: 
a within-group pre-post comparison and a between-group difference-of-differences comparison. 
The within-group comparison considers the active and sham groups separately and tests whether 
there is a difference in each dMRI metric between the pre-iTBS and post-iTBS time points. For 
example, one of  these tests will evaluate whether there is a difference in MD in the rAI from pre- to 
post-iTBS for patients in the active group. In total, 135 of  these tests are performed: 14 ROIs x 5 
dMRI metrics x 2 groups, without the iTBS target ROI in sham. Formally, these tests are two-tailed 
paired t-tests, with hypotheses: 

H0: xpost - xpre = 0 

H1: xpost - xpre ≠ 0 

where xpost is the median dMRI metric in the ROI post-iTBS, and xpre is the median dMRI metric in 
the ROI pre-iTBS. 

The between-group comparison tests whether the magnitude of  pre-post change is different 
between the active and sham conditions. In total, 65 of  these tests are performed: 13 ROIs x 5 
dMRI metrics (again, the iTBS target is not included because there is no sham data). Formally, these 
tests are two-tailed independent samples t-tests, with hypotheses: 

H0: ∆xactive - ∆xsham = 0 

H1: ∆xactive - ∆xsham ≠ 0 

where ∆xactive is the pre-post difference in the dMRI metric within the specified ROI for the active 
group (xpost, active - xpre, active), and ∆xsham is the pre-post difference in the dMRI metric within the 
specified ROI for the sham group (xpost, sham - xpre, sham). 

All significance tests will initially be conducted with a significance threshold of  p=0.05, defined a 
priori in the image analysis plan. After the initial round of  testing, p-values for the 12 regions of  
interest will be corrected for multiple comparisons. Although each t-test specified involves distinct 
sets of  data and no distribution is tested against multiple contrasts, the high number of  tests 
performed means that the probability of  observing a false positive in this suite of  tests is inflated. 
To counteract this inflation, p-values will be adjusted using Benjamini and Hochberg’s method to 
adjust the false discovery rate (FDR) to 0.05 [Benjamini 1995]. That is, any significant result 
surviving the correction will have a 5% chance of  being a false positive. Note that this is a more 
liberal approach to the multiple comparisons problem compared to other common methods such as 
Bonferroni or Sidak corrections, which broadly adjust for the probability of  observing any false 
positives in the set of  tests. Due to the relatively small expected effect size, sample size, and number 
of  tests (compared to, say, voxelwise fMRI designs) in this study, the comparatively liberal FDR 
method is used here. FDR correction is only performed for t-tests involving the 12 regions of  
interest. T-tests for the two control regions are not included in the correction because they serve as a 
qualitative benchmark to compare the other results against, and their results are interpreted in an 
entirely distinct way. 
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III. Results 

1. Quality control of  MRI data and analysis 

1.1. Data exclusion and harmonization 

Out of  the 43 participants who completed the study, 41 were deemed to have a complete and usable 
set of  MRI data. Two datasets (subjects 002 and 006) were excluded because their pre-iTBS dMRI 
images were acquired with different parameters compared to all other data in the study. The pre-
iTBS dMRI data for these datasets were acquired with a much higher in-plane resolution than other 
datasets (256x256 instead of  106x106 for all other data). To ensure data homogeneity throughout 
the cohort and prevent pre-post comparisons between datasets acquired with different parameters, 
these subjects were removed from analysis. One other dataset (subject 035) was excluded during 
preprocessing after encountering a dataset-specific software error during dMRI processing. Thus, 
data from 40/43 participants who completed the study were fully processed and used for analysis. 

1.2. QC of  structural preprocessing 

QC of  structural data revealed slight errors in BET, tissue segmentation, and nonlinear registration 
to MNI space, but none of  the errors were deemed to significantly affect downstream results 
(Figure 14). Checking the accuracy of  BET by overlaying the extracted brain mask over the T1 
image revealed small truncations in the most superior part of  the parietal lobe. These truncations 
were on the order of  a few voxels and affected 16/40 datasets. Slight truncations can affect 
downstream processing in two ways: if  we are extracting outcome metrics from the truncated area 
or if  it alters spatial registration. This region of  the parietal lobe was not defined as a region of  
interest in the analysis plan since it is not expected to be active in pain. Therefore, these slight 
truncations may only affect spatial registration, which is also checked in the QC process.  

Registration with both ANTs and FNIRT was checked by overlaying the cortical GM boundary with 
the T1 image transformed to MNI space. When considering the GM boundary, registrations from 
both ANTs and FNIRT were observed to deviate from MNI in various datasets. Note that 
registration is not expected to always result in perfectly aligned GM boundaries because this will 
require large distortions in some datasets. In other words, registration algorithms should not overfit 
data and eliminate all true variations in anatomy. However, FNIRT resulted in registrations that 
warped the brain into anatomically unreasonable constructions in 5/40 datasets (see Figure 14, 
bottom). Furthermore, ANTs resulted in better-aligned cortical GM in most of  the remaining 35 
datasets. Therefore, ANTs was chosen as the registration method for this pipeline.  

Tissue segmentation with FAST was checked by overlaying the GM, WM, and CSF masks on the T1 
data. Cortical GM was observed to be segmented well in all datasets, but subcortical GM was not 
captured by the algorithm. This is an expected result, as FAST is known to have poor results in 
subcortical GM due to the low contrast with surrounding WM voxel intensities. Poor segmentation 
in subcortical GM is not expected to affect downstream processing, as the tissue segmentations are 
only used as an initialization for linear registration of  dMRI to T1 using boundary-based 
registration. 
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Figure 14. Quality control of  structural processing in three steps. Top left: Brain extraction (BET) is 
checked by overlaying the BET mask (red) over the T1 image. Very slight truncations in the cortex 
(green arrows) are noted in 16/40 datasets, but these are not expected to affect downstream results.  
Top right: Tissue segmentation of  grey matter (GM), white matter (WM), and cerebrospinal fluid 
(CSF) is checked by overlaying the GM mask (red) and CSF mask (dark blue) over the T1 image. 
Tissue segmentation with FSL FAST is observed to miss subcortical GM structures (green crosshair), 
but this is not expected to affect downstream results. Bottom: Nonlinear registration to MNI space is 
checked by overlaying the GM boundary of  the MNI template (red traces) over the transformed T1 
images in MNI space. For this subject (sub-016), the T1 image registered by ANTs has cortical 
folding that deviates from MNI (yellow arrows). However, the T1 image registered by FNIRT has 
anatomically unreasonable constructions (blue arrows). 



1.3. QC of  dMRI preprocessing 

Quantitative QC of  dMRI data using the FSL QUAD software (part of  eddy) generated group-level 
distributions of  SNR for b0 volumes, CNR for all b-shells, absolute motion and relative motion 
parameters, and percentage of  volumes classified as outliers. The group-level distributions for the 
BoostCPM study were compared to distributions from a subset of  the UK Biobank study generated 
by Bastiani et al [Bastiani 2019] (Figure 15, top). The UK Biobank was chosen for comparing the 
distributions because its acquisition parameters are similar to those used in the BoostCPM study 
(both studies used 2mm isotropic voxel size, b1000 and b2000 shells with 50 diffusion directions 
each). The SNR and CNR of  dMRI scans from the present study are slightly lower but within 
reasonable ranges. The estimated relative motion parameters are lower than the UK Biobank 
distribution, indicating less head movement on average. The distributions of  QC metrics were also 
compared between all pre-iTBS scans and post-iTBS scans to assess for bias across time points 
(Figure 15, middle). No difference in the mean and variance of  these distributions was apparent. 
However, a few datasets with large motion stood out from the others—these were more carefully 
inspected. The time series of  motion estimates, raw data, and processed data were visualized (Figure 
15, bottom). Volumes associated with large movements were often seen to have large artifacts in the 
raw data, however these are not present in the processed data as eddy replaces these volumes with 
predicted data from the fitted Gaussian process (see Figure 11, bottom right). Thus, it was 
determined that even datasets with large spikes in motion were usable for subsequent analysis.  

Qualitative QC of  dMRI data using FSLEYES revealed distortion-correction errors in the frontal 
polar region of  the brain (Figure 16). The errors could be classified as either blurring of  the 
distortion-correction region (32/40 datasets) or undercompensation of  the spatial unwarping (6/40 
datasets). Blurring was characterized by spatial unwarping that appeared anatomically faithful, but 
with signal intensities in the undistorted region that dropped out and appeared smoothed (Figure 16, 
top). This was present in most datasets and is an expected feature of  the topup distortion correction 
method in regions of  high inhomogeneity. However, it is notable that this blurring propagated to the 
calculated MD map. The affected region is anterior to the vmPFC ROI defined by Freesurfer but 
near enough to warrant cautious interpretation of  the results from this area. Undercompensation of  
spatial unwarping was present in only a few datasets, but these represent a more serious failure of  
topup. The estimated field map in these datasets was insufficient to fully unwarp the spatial 
distortions, leading to an anatomically compromised image (Figure 16, bottom). It is apparent from 
the distortion-corrected image that unwarping has not been successful, as evidenced by persistent 
hyperintensities that indicate aggregation of  dMRI signal. As with the blurring errors, 
undercompensation of  spatial unwarping also propagates to errors in the MD map in the frontal 
polar region. 

QC with FSLEYES also revealed FOV truncations of  the superior parietal lobe of  the brain for 
26/40 datasets, akin to those seen in the QC of  structural processing (e.g. Figure 14, top left). This 
region is not used for extraction of  dMRI data; therefore, the truncations should not affect the 
results. There were no issues with between-volume motion correction observed. 
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Figure 15. Quantitative quality control of  dMRI processing with FSL eddy’s quality assessment tool 
(QUAD). QUAD outputs average SNR for b0 volumes, average CNR for all b>0 shells, and estimated 
motion parameters for each dataset, then plots the group-level distribution of  these metrics. Top: 
group-level dMRI QC metrics are compared to a subset of  the UK Biobank. While SNR and CNR is 
slightly lower for the Boost study, motion is generally lower in the Boost cohort (except a few 
outliers). Middle: group-level dMRI QC metrics are compared for all pre-iTBS vs. post-iTBS scans. 
No systematic differences in the distributions are seen, but a few scans are noted as outliers. Subject 
001, ses-1 is marked with a red dot. Bottom: outlier datasets are inspected by examining the evolution 
of  their motion parameters and visually inspecting volumes with large translations. While a large 
artifact is seen in the raw data, eddy replaces this scan with the Gaussian prediction.
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Figure 16. Qualitative assessment of  distortion correction during dMRI processing reveals blurry 
frontal lobes where high levels of  distortions exist in the raw image, and undercompensation on some 
datasets. These errors are seen to carry through to the calculated MD maps and are limited to the 
frontal polar region. 



1.4. Comparison of  Freesurfer and Glasser ROIs 

While the ROIs defined by Freesurfer were seen to closely follow the cortical GM ribbon, the 
Glasser ROIs transformed to T1 space deviated significantly from anatomical boundaries (Figure 
17). It was observed during QC of  structural processing that although ANTs was a superior method 
to FNIRT for nonlinear registration to MNI space, it still generated transformations with misaligned 
cortical GM ribbons. Therefore, the reverse transformation (MNI-to-T1) applied to the Glasser 
ROIs in MNI space were subject to the same misalignment. Because the diffusion characteristics of  
GM, WM, and CSF are vastly different, it is imperative that chosen ROIs closely follow the GM 
boundary. For this reason, Freesurfer ROIs were chosen for final extraction of  dMRI metrics.  
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Figure 17. Glasser ROIs transformed into T1 space do no align with the cortical GM ribbon. The 6 
Glasser ROIs representing rACC, dmPFC, and vmPFC are all observed to have poor alignment with 
the cortical GM. Yellow lines indicate the plane corresponding to the images on the right.  



2. Structural neuroplasticity 

The outcome indices of  iTBS-induced structural neuroplasticity are MD from the DTI model, MK 
from the DKI model, and ODI, ICVF, and ISOVF from the NODDI model. Changes in these 
metrics are evaluated by model for each of  the 14 ROIs in the analysis. The ROIs are split into four 
conceptual groupings: two control regions (cortical GM and cuneus), three regions involving the 
targeted lDLPFC-rAI connection (lDLPFC, iTBS target, and rAI), eight regions involving the 
cortical DPMS (bilateral dmPFC, vmPFC, anterior ACC, and mid-anterior ACC), and finally the 
subcortical PAG.  

2.1. Neuroplastic changes: MD 

The results for changes in median MD values across the active and sham treatment groups are 
summarized in Figure 18. Results of  statistical tests from within-group comparisons are presented in 
Table 1.1., and results from between-group comparisons are presented in Table 1.2.  

At the subject level, there is high variability in the direction and magnitude of  pre-post differences 
observed for both the active and sham groups in all 14 ROIs (Figure 18, panel C for active group, 
panel D for sham group). Median MD is seen to increase in some subjects and decrease in others—
no region shows a consistent direction of  effect. Some subjects demonstrate large changes in 
median MD extracted from vmPFC regions which exceed 0.0001 mm2/sec. This magnitude of  
change is physiologically unlikely and may be suggestive of  errors attributable to methodological 
variability, especially considering that these regions are closest to areas of  distortion-correction 
errors (see Figure 18).  

At the group level, distributions of  MD values for the pre- and post-iTBS time points (Figure 18, 
panel A for active group, panel B for sham group) are largely similar in most ROIs, with some 
regions showing slight changes in the median (e.g. cuneus, iTBS target, rAI, lvmPFC). However, the 
range and inter-quartile range of  the iTBS target and rAI distributions are largely similar between 
the two time points. There is a starker difference in the overall distributions for lvmPFC. Note that 
the variance in distributions ranges widely—it is tighter in the large cortical GM ROI and looser in 
the vmPFC ROIs closest to the high-distortion frontal polar area. There is an observable difference 
between the median MD distribution in cortical GM and cuneus, suggesting that the cuneus may not 
be an appropriately defined control region.  

Statistical testing indicated within-group significance in the active group for lvmPFC and cortical 
GM (Figure 18, panel E). In both cases, there was an increase in MD from pre- to post-iTBS. The 
significance in lvmPFC does not survive FDR correction (recall that FDR correction is not 
performed for control regions for conceptual reasons, see methods section 3). The MD increase in 
cortical GM appears to be driven by increases in ldlPFC, rAI, vmPFC, and ACC regions. Pre-post 
differences are again most variable in vmPFC regions compared to other ROIs. Note how the 
confidence intervals for the sham group are generally larger due to the smaller sample size. While 
none of  the other groups reached statistical significance, the confidence intervals for the active 
group seem to skew more positive compared to the sham group, which generally seem to be more 
centered about Δ=0. 
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Figure 18. MD results for 14 ROIs including control regions, the iTBS-targeted connection, cortical DPMS, and 
PAG. A) Boxplot distributions  for each of the 14 ROIs, active group only. Pre-iTBS median MD distributions are 
in blue, and post-iTBS distributions are in beige. B) Same as plot A, but for the sham group. C) Raw data points 
for each participant in the active group, pre-post change indicated by lines connecting points from the same 
subject. D) Same as plot C, but for the sham group. E) Magnitude of pre-post changes for the active (green) and 
sham (red) groups. Individual pre-post changes are plotted as points. The shaded areas represent the 95% 
confidence interval of pre-post change from statistical testing. Significant results (p<0.05 before multiple 
comparison correction) for within-group comparisons are indicated by a star.
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Figure 18. MD results for 14 ROIs including control regions, the iTBS-targeted connection, cortical 
DPMS, and PAG. A) Boxplot distributions  for each of  the 14 ROIs, active group only. Pre-iTBS 
median MD distributions are in blue, and post-iTBS distributions are in beige. B) Same as plot A, but 
for the sham group. C) Raw data points for each participant in the active group, pre-post change 
indicated by lines connecting points from the same subject. D) Same as plot C, but for the sham 
group. E) Magnitude of  pre-post changes for the active (green) and sham (red) groups. Individual 
pre-post changes are plotted as points. The shaded areas represent the 95% confidence interval of  
pre-post change from statistical testing. Significant results (p<0.05 before multiple comparison 
correction) for within-group comparisons are indicated by a star.



Table 1.1: Within-group statistical testing results for MD (Post - Pre) 

ROI Group 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM Active 4.7E-07 7.2E-06 0.03* 0.62

Cortical GM Sham -2.7E-06 7.8E-06 0.31 0.83

Cuneus Active -2.8E-07 8.7E-06 0.07 0.62

Cuneus Sham -6.8E-06 1.0E-05 0.66 0.92

lDLPFC Active -5.3E-06 1.7E-05 0.30 0.83

lDLPFC Sham -1.2E-05 1.5E-05 0.84 0.97

iTBS target Active -8.1E-06 1.9E-05 0.40 0.87

iTBS target Sham N/A N/A N/A N/A

rAI Active -5.8E-06 1.2E-05 0.48 0.90

rAI Sham -1.6E-05 2.4E-05 0.68 0.92

ldmPFC Active -1.1E-05 1.3E-05 0.89 0.97

ldmPFC Sham -1.3E-05 1.9E-05 0.68 0.92

rdmPFC Active -1.0E-05 1.3E-05 0.80 0.95

rdmPFC Sham -8.4E-06 2.6E-05 0.29 0.83

lvmPFC Active 4.0E-06 3.0E-05 0.01* 0.62

lvmPFC Sham -2.3E-05 2.2E-05 0.97 0.99

rvmPFC Active -2.0E-06 3.3E-05 0.08 0.62

rvmPFC Sham -4.2E-05 2.8E-05 0.68 0.92

lAntACC Active -5.4E-06 1.4E-05 0.39 0.87

lAntACC Sham -1.1E-05 2.4E-05 0.43 0.87

rAntACC Active -5.1E-06 1.5E-05 0.32 0.83

rAntACC Sham -1.2E-05 2.1E-05 0.57 0.92

lMidAntACC Active -4.2E-06 5.9E-06 0.73 0.94

lMidAntACC Sham -4.6E-06 1.2E-05 0.33 0.83

rMidAntACC Active -8.4E-06 8.1E-06 0.97 0.99

rMidAntACC Sham -4.3E-06 7.3E-06 0.58 0.92

PAG Active -5.0E-06 8.3E-06 0.62 0.92

PAG Sham -7.5E-06 1.7E-05 0.41 0.87
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Table 1.2: Between-group statistical testing results for ∆MD (Active - Sham) 

ROI 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM -4.8E-06 7.3E-06 0.66 0.92

Cuneus -6.9E-06 1.2E-05 0.59 0.92

lDLPFC -1.2E-05 2.1E-05 0.60 0.92

rAI -2.2E-05 2.1E-05 0.94 0.95

ldmPFC -2.2E-05 1.7E-05 0.80 0.95

rdmPFC -2.7E-05 1.3E-05 0.46 0.92

lvmPFC -7.7E-06 4.3E-05 0.16 0.92

rvmPFC -1.6E-05 6.1E-05 0.23 0.92

lAntACC -2.1E-05 1.7E-05 0.80 0.95

rAntACC -1.8E-05 1.9E-05 0.94 0.95

lMidAntACC -1.3E-05 6.5E-06 0.51 0.92

rMidAntACC -1.1E-05 8.1E-06 0.73 0.92

PAG -1.7E-05 1.0E-05 0.64 0.92
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2.2. Neuroplastic changes: MK 

The results for changes in median MK values across the active and sham treatment groups are 
summarized in Figure 19. Results of  statistical tests from within-group comparisons are presented in 
Table 2.1., and results from between-group comparisons are presented in Table 2.2.  

At the subject level, there is low consistency in the direction and magnitude of  pre-post change, 
similar to what was observed for MD (Figure 19, panels C and D). In contrast to the raw MD 
values, the relative magnitude of  pre-post change is higher for many of  the ROIs except the control 
regions. Pre-post changes in the vmPFC ROIs appear especially large for MK as well. In one subject, 
the MK values for the iTBS target ROI appears to be an outlier and may warrant more careful 
methodological inspection. 

At the group level, distributions of  MK values for the pre- and post-iTBS time points (Figure 19, 
panel A for active group, panel B for sham group) are again largely similar in most ROIs. The 
variability in MK median distributions is larger across different ROIs than across the two time 
points. The median MK value appears elevated from pre- to post-iTBS for the rAI in the sham 
group. There is again a difference in the median MK distribution in cortical GM and cuneus, further 
suggesting that the cuneus ROI may not be representative of  unaffected cortical GM.  

Statistical testing indicated a within-group significance in the active group for the left mid-anterior 
ACC (Figure 19, panel E). The direction of  change was an increase in MK from pre- to post-iTBS. 
The p-value did not survive FDR correction. Large confidence intervals are again observed for the 
bilateral vmPFC ROIs. Some of  the confidence intervals for the sham group appear to skew positive 
while the active group for the same ROI is centered about Δ=0 (e.g. in rAI, bilateral vmPFC, and 
bilateral anterior ACC). 
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Figure 19. MK results for 14 ROIs including control regions, the iTBS-targeted connection, cortical DPMS, and 
PAG. A) Boxplot distributions  for each of the 14 ROIs, active group only. Pre-iTBS median MK distributions are 
in blue, and post-iTBS distributions are in beige. B) Same as plot A, but for the sham group. C) Raw data points 
for each participant in the active group, pre-post change indicated by lines connecting points from the same 
subject. D) Same as plot C, but for the sham group. E) Magnitude of pre-post changes for the active (green) and 
sham (red) groups. Individual pre-post changes are plotted as points. The shaded areas represent the 95% 
confidence interval of pre-post change from statistical testing. Significant results (p<0.05 before multiple 
comparison correction) for within-group comparisons are indicated by a star.

Figure 19. MK results for 14 ROIs including control regions, the iTBS-targeted connection, cortical 
DPMS, and PAG. A) Boxplot distributions  for each of  the 14 ROIs, active group only. Pre-iTBS 
median MK distributions are in blue, and post-iTBS distributions are in beige. B) Same as plot A, but 
for the sham group. C) Raw data points for each participant in the active group, pre-post change 
indicated by lines connecting points from the same subject. D) Same as plot C, but for the sham 
group. E) Magnitude of  pre-post changes for the active (green) and sham (red) groups. Individual 
pre-post changes are plotted as points. The shaded areas represent the 95% confidence interval of  
pre-post change from statistical testing. Significant results (p<0.05 before multiple comparison 
correction) for within-group comparisons are indicated by a star.



Table 2.1: Within-group statistical testing results for MK (Post - Pre) 

ROI Group 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM Active -0.003 0.016 0.16 0.77

Cortical GM Sham -0.016 0.018 0.91 0.98

Cuneus Active -0.009 0.015 0.64 0.92

Cuneus Sham -0.036 0.009 0.22 0.77

lDLPFC Active -0.025 0.038 0.68 0.92

lDLPFC Sham -0.025 0.045 0.54 0.92

iTBS target Active -0.016 0.047 0.32 0.83

iTBS target Sham N/A N/A N/A N/A

rAI Active -0.047 0.039 0.85 0.97

rAI Sham -0.003 0.089 0.06 0.62

ldmPFC Active -0.046 0.028 0.61 0.92

ldmPFC Sham -0.066 0.051 0.78 0.95

rdmPFC Active -0.020 0.054 0.36 0.84

rdmPFC Sham -0.058 0.051 0.89 0.97

lvmPFC Active -0.067 0.050 0.77 0.95

lvmPFC Sham -0.047 0.101 0.43 0.87

rvmPFC Active -0.051 0.072 0.73 0.94

rvmPFC Sham -0.073 0.156 0.45 0.87

lAntACC Active -0.038 0.034 0.91 0.98

lAntACC Sham -0.037 0.073 0.49 0.90

rAntACC Active -0.034 0.033 0.98 0.99

rAntACC Sham -0.017 0.079 0.19 0.77

lMidAntACC Active 0.005 0.049 0.02* 0.62

lMidAntACC Sham -0.008 0.040 0.17 0.77

rMidAntACC Active -0.001 0.037 0.06 0.62

rMidAntACC Sham -0.018 0.040 0.43 0.87

PAG Active -0.012 0.064 0.17 0.77

PAG Sham -0.010 0.044 0.19 0.77
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Table 2.2: Between-group statistical testing results for ∆MK (Active - Sham) 
ROI 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM -0.013 0.024 0.54 0.92

Cuneus -0.009 0.041 0.19 0.92

lDLPFC -0.049 0.042 0.88 0.95

rAI -0.107 0.013 0.12 0.92

ldmPFC -0.069 0.065 0.95 0.95

rdmPFC -0.043 0.083 0.52 0.92

lvmPFC -0.127 0.055 0.42 0.92

rvmPFC -0.156 0.095 0.62 0.92

lAntACC -0.083 0.043 0.52 0.92

rAntACC -0.088 0.025 0.27 0.92

lMidAntACC -0.021 0.043 0.49 0.92

rMidAntACC -0.026 0.041 0.65 0.92

PAG -0.036 0.054 0.69 0.92
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2.3. Neuroplastic changes: NODDI 

The results for changes in median ODI, ICVF, and ISOVF values across the active and sham groups 
are summarized in Figures 20, 21, and 22, respectively. Results of  statistical tests from within-group 
comparisons are presented in Table 3.1. (ODI), Table 4.1. (ICVF), and Table 5.1. (ISOVF). Statistical 
results from between-group comparisons are presented in Table 3.2. (ODI), Table 4.2. (ICVF), and 
Table 5.2. (ISOVF).  

At the subject level, pre-post changes in ODI appear to be relatively higher in the iTBS target ROI 
compared to other regions. The magnitude of  change in the vmPFC regions does not appear to be 
significantly larger than in the other ROIs for ODI. This is in contrast with the data for ICVF, where 
there are exceptionally high magnitudes of  change in the vmPFC regions. Considering the raw 
ISOVF data, there appear to be more outlier datasets which deviate from the other data for the 
given ROI.  

At the group level, the distribution of  ODI values in PAG is starkly lower than for all other regions. 
This may be due to the PAG having a simpler structure with strong preference for superior-inferior 
neurite direction since it sits in the brainstem, in contrast with all 13 other ROIs which are in cortical 
GM. The distributions for ODI appear to vary more across ROIs than across the two time points. 
There is little variation in ICVF distributions either across ROIs or across time points. The 
distribution of  ISOVF values in cuneus is starkly higher than for all other regions. This suggests that 
the cuneus ROI may be contaminated by CSF, likely due to the proximity of  this region to the 
cerebral aqueduct. There are some differences in the median of  the distributions for ISOVF in both 
the sham and active groups, but also note that the variance in these distributions is quite large.  

Statistical testing indicated between-group significance in ODI for the cortical GM and cuneus. The 
direction of  change for both tests indicates greater pre-post change in ODI in the active group 
compared to the sham group. Note that these contrasts are generated from bidirectional effects: a 
slight increase in ODI for the active group and a slight decrease in ODI for the sham group are 
observed, neither of  which are significant within-group. Statistical testing also indicated within-
group significance in ICVF for the cortical GM active group. The direction of  change for this result 
was a slight decrease in ICVF. Note that this effect is very small, and significance is aided by the low 
variance observed. FDR correction is not performed on any of  the three significant NODDI results 
because they all occurred in control regions. It is worth pointing out that the confidence intervals for 
ODI in rAI and PAG are skewed heavily positive for the active group while being centered about 
Δ=0 for the sham group, even though testing did not reach significance. Also note the larger 
confidence intervals for vmPFC regions for ICVF and ISOVF. 
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Figure 20. ODI results for 14 ROIs including control regions, the iTBS-targeted connection, cortical DPMS, and 
PAG. A) Boxplot distributions  for each of the 14 ROIs, active group only. Pre-iTBS median ODI distributions are 
in blue, and post-iTBS distributions are in beige. B) Same as plot A, but for the sham group. C) Raw data points 
for each participant in the active group, pre-post change indicated by lines connecting points from the same 
subject. D) Same as plot C, but for the sham group. E) Magnitude of pre-post changes for the active (green) and 
sham (red) groups. Individual pre-post changes are plotted as points. The shaded areas represent the 95% 
confidence interval of pre-post change from statistical testing. Significant results (p<0.05 before multiple 
comparison correction) for between-group comparisons are indicated by a star with brackets.

Figure 20. ODI results for 14 ROIs including control regions, the iTBS-targeted connection, cortical 
DPMS, and PAG. A) Boxplot distributions  for each of  the 14 ROIs, active group only. Pre-iTBS 
median ODI distributions are in blue, and post-iTBS distributions are in beige. B) Same as plot A, but 
for the sham group. C) Raw data points for each participant in the active group, pre-post change 
indicated by lines connecting points from the same subject. D) Same as plot C, but for the sham 
group. E) Magnitude of  pre-post changes for the active (green) and sham (red) groups. Individual 
pre-post changes are plotted as points. The shaded areas represent the 95% confidence interval of  
pre-post change from statistical testing. Significant results (p<0.05 before multiple comparison 
correction) for between-group comparisons are indicated by a star with brackets.



Table 3.1: Within-group statistical testing results for ODI (Post - Pre) 

ROI Group 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM Active -0.000 0.004 0.09 0.62

Cortical GM Sham -0.010 0.001 0.08 0.62

Cuneus Active -0.000 0.009 0.06 0.62

Cuneus Sham -0.018 0.0001 0.05 0.62

lDLPFC Active -0.009 0.006 0.66 0.92

lDLPFC Sham -0.011 0.010 0.95 0.99

iTBS target Active -0.016 0.015 0.95 0.99

iTBS target Sham N/A N/A N/A N/A

rAI Active -0.002 0.017 0.10 0.62

rAI Sham -0.028 0.016 0.59 0.92

ldmPFC Active -0.009 0.009 0.98 0.99

ldmPFC Sham -0.020 0.013 0.69 0.92

rdmPFC Active -0.003 0.013 0.24 0.77

rdmPFC Sham -0.014 0.016 0.88 0.97

lvmPFC Active -0.009 0.012 0.78 0.95

lvmPFC Sham -0.024 0.015 0.60 0.92

rvmPFC Active -0.022 0.005 0.20 0.77

rvmPFC Sham -0.027 0.002 0.09 0.62

lAntACC Active -0.009 0.006 0.69 0.92

lAntACC Sham -0.013 0.009 0.66 0.92

rAntACC Active -0.011 0.005 0.45 0.87

rAntACC Sham -0.020 0.003 0.12 0.69

lMidAntACC Active -0.005 0.007 0.70 0.92

lMidAntACC Sham -0.015 0.010 0.63 0.92

rMidAntACC Active -0.007 0.007 0.99 0.99

rMidAntACC Sham -0.022 0.002 0.09 0.62

PAG Active -0.002 0.022 0.09 0.62

PAG Sham -0.040 0.010 0.21 0.77
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Table 3.2: Between-group statistical testing results for ∆ODI (Active - Sham) 

ROI 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM 0.001 0.013 0.02* 0.79

Cuneus 0.003 0.024 0.01* 0.74

lDLPFC -0.013 0.011 0.83 0.95

rAI -0.010 0.037 0.25 0.92

ldmPFC -0.015 0.021 0.72 0.92

rdmPFC -0.012 0.020 0.63 0.92

lvmPFC -0.015 0.027 0.55 0.92

rvmPFC -0.015 0.022 0.71 0.92

lAntACC -0.012 0.014 0.90 0.95

rAntACC -0.008 0.019 0.39 0.92

lMidAntACC -0.009 0.017 0.54 0.92

rMidAntACC -0.003 0.023 0.13 0.92

PAG -0.001 0.052 0.06 0.92
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Figure 21. ICVF results for 14 ROIs including control regions, the iTBS-targeted connection, cortical DPMS, and 
PAG. A) Boxplot distributions  for each of the 14 ROIs, active group only. Pre-iTBS median ICVF distributions are 
in blue, and post-iTBS distributions are in beige. B) Same as plot A, but for the sham group. C) Raw data points 
for each participant in the active group, pre-post change indicated by lines connecting points from the same 
subject. D) Same as plot C, but for the sham group. E) Magnitude of pre-post changes for the active (green) and 
sham (red) groups. Individual pre-post changes are plotted as points. The shaded areas represent the 95% 
confidence interval of pre-post change from statistical testing. Significant results (p<0.05 before multiple 
comparison correction) for within-group comparisons are indicated by a star.
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Figure 21. ICVF results for 14 ROIs including control regions, the iTBS-targeted connection, cortical 
DPMS, and PAG. A) Boxplot distributions  for each of  the 14 ROIs, active group only. Pre-iTBS 
median ICVF distributions are in blue, and post-iTBS distributions are in beige. B) Same as plot A, 
but for the sham group. C) Raw data points for each participant in the active group, pre-post change 
indicated by lines connecting points from the same subject. D) Same as plot C, but for the sham 
group. E) Magnitude of  pre-post changes for the active (green) and sham (red) groups. Individual 
pre-post changes are plotted as points. The shaded areas represent the 95% confidence interval of  
pre-post change from statistical testing. Significant results (p<0.05 before multiple comparison 
correction) for within-group comparisons are indicated by a star.



Table 4.1: Within-group statistical testing results for ICVF (Post - Pre) 

ROI Group 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM Active -0.008 -0.000 0.04* 0.62

Cortical GM Sham -0.015 0.002 0.14 0.74

Cuneus Active -0.005 0.010 0.52 0.92

Cuneus Sham -0.033 0.010 0.27 0.82

lDLPFC Active -0.012 0.010 0.82 0.97

lDLPFC Sham -0.028 0.017 0.58 0.92

iTBS target Active -0.013 0.016 0.82 0.97

iTBS target Sham N/A N/A N/A N/A

rAI Active -0.020 0.007 0.36 0.84

rAI Sham -0.034 0.008 0.21 0.77

ldmPFC Active -0.014 0.012 0.88 0.97

ldmPFC Sham -0.028 0.013 0.44 0.87

rdmPFC Active -0.009 0.016 0.61 0.92

rdmPFC Sham -0.033 0.005 0.14 0.75

lvmPFC Active -0.045 0.004 0.10 0.62

lvmPFC Sham -0.029 0.007 0.21 0.77

rvmPFC Active -0.060 0.005 0.09 0.62

rvmPFC Sham -0.032 0.050 0.64 0.92

lAntACC Active -0.022 0.002 0.11 0.64

lAntACC Sham -0.031 0.007 0.20 0.77

rAntACC Active -0.021 0.002 0.10 0.62

rAntACC Sham -0.028 0.007 0.22 0.77

lMidAntACC Active -0.006 0.008 0.77 0.95

lMidAntACC Sham -0.019 0.001 0.09 0.62

rMidAntACC Active -0.010 0.007 0.75 0.95

rMidAntACC Sham -0.012 0.003 0.24 0.77

PAG Active -0.006 0.011 0.54 0.92

PAG Sham -0.026 0.014 0.49 0.90
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Table 4.2: Between-group statistical testing results for ∆ICVF (Active - Sham) 

ROI 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM -0.007 0.011 0.60 0.92

Cuneus -0.009 0.037 0.21 0.92

lDLPFC -0.020 0.029 0.69 0.92

rAI -0.018 0.031 0.57 0.92

ldmPFC -0.017 0.030 0.57 0.92

rdmPFC -0.005 0.039 0.13 0.92

lvmPFC -0.039 0.020 0.51 0.92

rvmPFC -0.087 0.014 0.15 0.92

lAntACC -0.020 0.024 0.86 0.95

rAntACC -0.019 0.021 0.93 0.95

lMidAntACC -0.002 0.021 0.10 0.92

rMidAntACC -0.008 0.014 0.59 0.92

PAG -0.012 0.030 0.38 0.92
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Figure 22. ISOVF results for 14 ROIs including control regions, the iTBS-targeted connection, 
cortical DPMS, and PAG. A) Boxplot distributions  for each of  the 14 ROIs, active group only. Pre-
iTBS median ICVF distributions are in blue, and post-iTBS distributions are in beige. B) Same as plot 
A, but for the sham group. C) Raw data points for each participant in the active group, pre-post 
change indicated by lines connecting points from the same subject. D) Same as plot C, but for the 
sham group. E) Magnitude of  pre-post changes for the active (green) and sham (red) groups. 
Individual pre-post changes are plotted as points. The shaded areas represent the 95% confidence 
interval of  pre-post change from statistical testing.



Table 5.1: Within-group statistical testing results for ISOVF (Post - Pre) 

ROI Group 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM Active -0.004 0.007 0.58 0.92

Cortical GM Sham -0.011 0.009 0.87 0.97

Cuneus Active -0.001 0.022 0.06 0.62

Cuneus Sham -0.048 0.013 0.23 0.77

lDLPFC Active -0.011 0.012 0.92 0.98

lDLPFC Sham -0.010 0.027 0.33 0.83

iTBS target Active -0.008 0.018 0.42 0.87

iTBS target Sham N/A N/A N/A N/A

rAI Active -0.026 0.011 0.42 0.87

rAI Sham -0.010 0.026 0.35 0.84

ldmPFC Active -0.026 0.013 0.48 0.90

ldmPFC Sham -0.033 0.024 0.74 0.95

rdmPFC Active -0.019 0.016 0.86 0.97

rdmPFC Sham -0.023 0.016 0.68 0.92

lvmPFC Active -0.046 0.012 0.25 0.78

lvmPFC Sham -0.045 0.035 0.78 0.95

rvmPFC Active -0.049 0.018 0.36 0.84

rvmPFC Sham -0.036 0.041 0.89 0.97

lAntACC Active -0.027 0.009 0.32 0.83

lAntACC Sham -0.017 0.015 0.94 0.99

rAntACC Active -0.020 0.007 0.31 0.83

rAntACC Sham -0.016 0.025 0.61 0.92

lMidAntACC Active -0.004 0.019 0.17 0.77

lMidAntACC Sham -0.026 0.034 0.78 0.95

rMidAntACC Active -0.006 0.013 0.46 0.89

rMidAntACC Sham -0.021 0.013 0.64 0.92

PAG Active -0.000 0.038 0.05 0.62

PAG Sham -0.015 0.041 0.33 0.83
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Table 5.2: Between-group statistical testing results for ∆ISOVF (Active - Sham) 

ROI 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM -0.009 0.013 0.66 0.92

Cuneus -0.004 0.060 0.08 0.92

lDLPFC -0.029 0.013 0.44 0.92

rAI -0.040 0.010 0.22 0.92

ldmPFC -0.035 0.031 0.89 0.95

rdmPFC -0.023 0.027 0.86 0.95

lvmPFC -0.060 0.036 0.62 0.92

rvmPFC -0.067 0.031 0.46 0.92

lAntACC -0.032 0.015 0.46 0.92

rAntACC -0.035 0.012 0.31 0.92

lMidAntACC -0.028 0.035 0.81 0.95

rMidAntACC -0.012 0.026 0.44 0.92

PAG -0.027 0.038 0.72 0.92
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IV. Discussion and Conclusion 

These results do not suggest that iTBS of  the DLPFC has a detectable influence on the 
microstructure of  DPMS GM regions in patients with chronic pain in knee OA. None of  the 135 
statistical tests performed were close to reaching the significance threshold of  0.05 after multiple 
comparisons correction. Four of  the six tests which reached significance before correction were in 
control regions, contradicting the hypothesis of  microstructural change specific to the DPMS.  

It is prudent to be cautious in interpreting results from dMRI data in patient cohorts due to the 
inherent indirectness of  diffusion outcome metrics and the many layers of  data processing which 
can all add variance to the final quantitative outputs. This is especially true with a relatively small 
sample size as in the present dataset. Note that even as data processing is meant to filter unwanted 
noise and isolate the underlying signal of  interest, flexibility in processing methods means that 
different conclusions can be drawn from the same dataset when using distinct pipelines with 
individually justifiable methods [Poldrack 2017, Veraart 2022]. Nevertheless, the insights into neural 
microstructure offered by modern dMRI methods may have great utility for informing the 
development of  new therapies like iTBS if  analyses are properly scrutinized. This discussion will 
therefore begin by considering the robustness of  the results obtained, then explore possible 
interpretations and clinical implications, suggest alternative methods and future analyses, and finally 
offer concluding remarks. 

1. Robustness of  results 

1.1. Pipeline variability and QC considerations 

Within the anatomical preprocessing pipeline, the only significant step where variations could be 
introduced is in the nonlinear registration to MNI space. Both FNIRT and ANTs were explored for 
this step. ANTs produced more accurate results out of  these two methods, but it may be possible to 
generate a better registration either with a different software package or with different parameters 
within ANTs. The impact of  variability in nonlinear registration would have been greater if  ROIs 
were defined in MNI space and then transformed to structural space, utilizing the warp field 
calculated during registration. Instead, using Freesurfer ROIs defined in T1 space eliminates this 
extra transformation. Therefore, the effect of  variability in nonlinear registration is negligible for the 
present analysis.  

However, using Freesurfer constrained the definition of  regions to those defined by this software, 
which is primarily based on topography. There are multiple ways to segment the brain (e.g. based on 
topography, histology, functional activity, or connectivity), and other atlases draw regional 
boundaries at different locations. For example, the location and extent of  the rAI varies significantly 
between the Freesurfer parcellation, Glasser atlas, and Harvard-Oxford cortical atlas (Figure 17). 
The choice of  atlas used to define ROIs can greatly affect results. It should be emphasized that the 
reason for using Freesurfer in this analysis was primarily to reduce variability attributable to 
nonlinear registration errors and not a preference for its segmentation methodology.  

The processing of  dMRI data followed a standard pipeline within the FSL software. Other software 
options exist for processing dMRI data which may lead to slightly different results in the outcome 
maps. Considering group-level QC, the distribution of  quantitative QC metrics suggests that the raw 
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data from this study reaches field standards (Figure 15). However, qualitative QC revealed 
inadequacies in the distortion correction step which propagated to final maps (Figure 16). These 
errors primarily affected the mPFC region; therefore, interpretation of  outcomes from the vmPFC 
and dmPFC ROIs should be done with some caution. 

In summary, the key takeaways from considering pipeline variability and QC results are: 

1. Using Freesurfer ROIs eliminated the effect of  variability in nonlinear registration. 
2. ROI boundaries can vary across different atlases, and this variability can influence results. 
3. The interpretation of  dMRI metrics in the mPFC may be less robust due to issues with 

distortion correction.  

These caveats should be kept in mind for interpretation of  all results.  

1.2. Validity of  quantitative dMRI results 

The MD values obtained lie within a biologically plausible range: 0.0005 - 0.001 mm2/sec. However, 
MK values in this study drifted below the lower bound of  what is typically reported for GM: 0.4 - 
1.2 is commonly published, while certain ROIs in this study exhibited MK < 0.4. Lower MK values 
could potentially be explained by partial voluming of  the ROIs with CSF, as CSF would be expected 
to exhibit lower kurtosis (more Gaussian-like diffusion) compared to GM. The ISOVF data lends 
some support to this partial voluming hypothesis. Some outlier data points exhibit abnormally high 
ISOVF values, suggesting increased presence of  CSF within the ROI. The ODI values for cortical 
GM regions lie within a plausible range (0.4 - 0.6 in this dataset). The PAG is the only subcortical 
GM ROI, and it has notably lower ODI than the cortical GM regions. This may reflect the relatively 
simpler organization of  the brainstem compared to cortex. Low SNR in the brainstem compared to 
cortical regions may also contributed to the lower ODI values in PAG. Although there is greater 
concern for CSF partial voluming for the PAG ROI due to its proximity to the cerebral aqueduct, 
ISOVF values for the PAG are not notably higher than the other regions. Together, the reasonably 
lower ODI values and non-elevated ISOVF values for the PAG increase confidence in this region’s 
quantitative outcomes. 

There is notably high variability in all 5 metrics within the vmPFC and dmPFC regions. This 
observation is consistent with the errors in distortion correction around this region noted during 
QC. Taken together, the high variability and distortion correction errors decrease confidence in 
results from the mPFC regions. It is therefore difficult to discern whether the significant increase of  
MD in lvmPFC before multiple comparisons correction reflects true neuroplasticity or is an artifact 
of  poor data. Future studies are advised carefully check the integrity of  dMRI data from this area.  

2. Interpretation and implications 

2.1. Interpretation of  quantitative results 

While none of  the six tests which reached statistical significance were significant following 
correction for multiple tests, the shifts suggested by these tests may still be suggestive and update 
posterior beliefs about neuroplasticity in iTBS. The tests resulting in pre-correction p-values below 
the 0.05 threshold are presented in Table 6.  
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Table 6: Statistical tests with pre-correction significance 

Before speculating upon possible interpretations, though, a few points are worth raising. It should be 
emphasized again that BoostCPM was a pilot study, and that these statistical tests are meant to be 
exploratory and non-inferential. In addition, note that all the significant tests within-group occurred 
in the active group, which has over two times as many subjects as the sham group. It is therefore 
possible that the two groups have the same underlying effect size, but that the active group simply 
has enough subjects to generate a significant result while the sham group does not. Furthermore, 
two observations about these six results tend to suggest that they are spurious. First, four of  the six 
significant results occur in control regions (cortical GM and cuneus) which are rather nonspecific 
regions and not expected to be affected by the intervention. These are also large ROIs with lower 
variance of  medians, therefore smaller changes may be detected as significant.  Second, significant 
within-group results are not corroborated by test of  other metrics in the same region. An increase in 
MD might be expected to be accompanied by a decrease in MK or an increase in ODI, all 
suggesting increased structural disorganization. Instead, the significant results stand alone, increasing 
suspicion that they are an artifact of  having 135 t-tests. Finally, a cursory look at the p-values 
adjusted for multiple tests also suggests that the results are spurious. With these cautions in mind, 
one may entertain some interpretations of  the results. 

The two significant tests for MD were within-group increases following active iTBS in the cortical 
GM and lvmPFC. An increase in MD suggests greater diffusivity within the ROI, canonically 
indicating a less structured architecture. This result conflicts with the hypothesized reduction in MD. 
The significant result within nonspecific cortical GM for this metric is interesting for a few reasons. 
First, cortical GM was a control region not expected to change from pre- to post-iTBS. Second, this 
ROI encompasses by far the greatest number of  voxels, diminishing the variance in its medians. 
Within the ROIs evaluated, increases in MD (mostly not significant) observed in ldlPFC, rAI, 
vmPFC, and ACC appear to contribute to this result. It is also possible that iTBS influences cortical 
GM microstructure in regions outside the predefined DPMS ROIs, and future work may look at 
which regions of  cortical GM are driving this result. It is also possible that this is a spurious result 
arising from random chance or unknown, systematic errors in methodology. The increase of  MD in 

ROI Metric Comparison 95% CI, Low 95% CI, High p-value Adjusted p-value

Cortical GM MD Within-group, 
Active 4.7E-07 7.2E-06 0.03* 0.62

lvmPFC MD Within-group, 
Active 4.0E-06 3.0E-05 0.01* 0.62

lMidAntACC MK Within-group, 
Active

0.005 0.049 0.02* 0.62

Cortical GM ODI Between-group 0.001 0.013 0.02* 0.79

Cuneus ODI Between-group 0.003 0.024 0.01* 0.74

Cortical GM ICVF Within-group, 
Active

-0.008 -0.000 0.04* 0.62
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lvmPFC should be interpreted with caution, given that this ROI is part of  the mPFC region possibly 
affected by distortion correction issues. If  the result is believed, the increased MD could signify 
structural breakdown within the region, potentially due to reorganization induced by iTBS. The 
widespread change in MD across cortical GM could indicate a large nonspecific effect of  iTBS on 
GM structure facilitated by second, third, or higher degree connections to distant cortical regions. 
Given that TMS stimulates widespread connections and a large number of  pulses are delivered in 
the iTBS protocol, neuronal reorganization may be occurring even at distant sites. In addition to 
cortical GM, increase in MD is also seen in the lvmPFC. The lvmPFC is part of  the mPFC region 
which can influence PAG and the DPMS. Therefore, true microstructural changes in this region 
would be an important result, especially if  accompanied by patient-reported analgesia. 

The significant test for MK was a within-group increase in the lMidAntACC ROI following active 
iTBS. An increase in MK suggests a more structured architecture. The anterior ACC is a key node 
for cognitive pain processing, and microstructural change in this region could suggest a change in 
the salience and affective processing of  nociception. Since low MK values suggest structural 
breakdowns associated with cognitive aging, it could be construed that an increase in MK is a 
positive marker of  healthy function within the lMidAntACC region, although this interpretation is 
rather speculative. As with all the other “significant” dMRI results, the increase in lMidAntACC MK 
would be more interesting and important if  it is correlated with patient-reported improvements. 

The two significant results for ODI were between-group comparisons suggesting a greater post-
iTBS increase in the active arm compared to the sham arm for both control regions: cortical GM 
and cuneus. Again, these were large, nonspecific areas not expected to be affected by the iTBS 
intervention. The within-group comparisons were not significant. An increase in ODI indicates 
greater dispersion of  neurites, possibly suggesting neural reorganization. It is difficult to construe a 
mechanism by which iTBS of  the lDLPFC would increase ODI in the cuneus, which is not only 
spatially distant but also functionally distinct from the stimulated region. This increases suspicion in 
a spurious result in the cuneus, and since the cortical GM ROI encompasses the cuneus, it is 
possible that the other significant result is driven by the observation in the cuneus. Note that 
significance in the cuneus is more likely to affect the cortical GM ROI than the other ROIs because 
it is a much larger region. 

The significant result for ICVF was a within-group decrease in the cortical GM following active 
iTBS. This result seems to suggest that less volume in the cortical GM was taken up by intracellular 
space following iTBS. It is difficult to propose a mechanism by which this might occur. Also note 
that this result is not accompanied by a similarly significant increase in ISOVF. The lack of  a 
plausible mechanism and isolation of  this result suggest that it is spurious.  

2.2. Clinical implications 

While the two pre-adjusted significant p-values in lvmPFC and lMidAntACC would be interesting 
and important in the context of  chronic pain, it is difficult to trust these results given the limitations 
discussed in the previous section. It is most reasonable to simply conclude that iTBS of  the lDLPFC 
does not produce a measurable change in the microstructure of  DPMS GM regions. However, the 
lack of  a positive result from this analysis does not rule out the possibility of  other effects on neural 
microstructure. It is possible that the effect is localized in a different region of  the brain, that our 
outcome metrics (MD, MK, ODI, ISOVF, and ICVF) measure the wrong indices of  neural 
structure, or that our techniques are not sensitive enough to capture the effect. Future analyses on 
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this dataset may be warranted to explore potential effects of  iTBS on different regions.  Analysis of  
fMRI data from this study may also reveal that the iTBS affects the brain function rather than 
structure. However, even if  no changes are observed by neuroimaging, patients may still experience 
improvements in their symptoms or affect. The analysis of  patient-reported outcome measures is 
not in the scope of  this thesis but is clearly a critical piece of  advancing the iTBS intervention for 
chronic pain. Therefore, while the analysis presented in this thesis does not provide evidence for the 
mechanistic hypothesis that iTBS can structurally influence the DPMS, this result does not rule out 
other mechanisms of  the intervention. Depending on the results from patient-reported outcomes 
(which are more clinically pertinent), iTBS may still be a viable and effective treatment for patients 
with chronic pain conditions. 

3. Choice of  methods and future directions 

3.1. Potential alternative methods 

This section discusses alternative methods that could have been applied in this analysis. Using 
different methods at certain steps could have changed the results obtained. The definition of  ROIs 
is a step with significant flexibility, and an alternative implementation of  the Glasser atlas should be 
discussed. The Glasser atlas is meant to be implemented as a classifier algorithm to be used on 
datasets with T1, T2, a b0 field map, and over 30 minutes of  resting-state fMRI data. It uses these 
data as an input and outputs a segmentation based on the multimodal features of  the data [Glasser 
2016]. While fMRI was collected for this study, the duration of  fMRI data acquired at each time 
point was less than 30 minutes. Therefore, a volumetric version of  the atlas in MNI space was used 
instead. However, it may be possible to concatenate the rs-fMRI data from the pre- and post-iTBS 
scans together to create a dataset of  sufficient length for the classifier. This would allow utilization 
of  the Glasser classifier in its intended form and generate segmentations in native T1 space. Recall 
that the advantage of  using the Freesurfer atlas was to circumvent the need to nonlinear register 
MNI-based atlases to T1 space. Using the Glasser classifier would retain this advantage and is 
therefore a reasonable alternative to the Freesurfer parcellations. One point to consider, though, is 
that changes in rs-fMRI are explicitly hypothesized in the BoostCPM protocol. The validity of  
concatenating two datasets which are hypothesized to be different for the purpose of  segmentation 
is debatable. On one hand, the classifier may be more tuned to detect general features that are 
unlikely to change between the two sessions, such as the boundaries of  established networks like the 
default mode network and central executive network. The hypothesized changes in connectivity 
strengths between specific nodes may not hold much weight in the classification algorithm. On the 
other hand, it can be argued that the classifier should be trained on baseline rs-fMRI data, and one 
might expect significant changes in rs-fMRI dynamics following an accelerated and intensive brain 
stimulation treatment.  

Further downstream in the analysis, thresholding could have been more broadly applied to guard 
against errant voxels. Thresholding was performed for MD to only consider data within a 
physiologically meaningful range (0.0005-0.001 mm2/sec). Similarly, thresholds could have been 
applied for MK, ODI, ISOVF, and ICVF to only consider physiologically reasonable values. 

The quantitative outputs could also have been normalized to the values obtained in the control 
regions for each dataset. Normalization could protect against random intersession drift due to 
inherent experimental variability. Since it was hypothesized that no effects should be seen in the 
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cuneus, any drift in median dMRI outcome in this region could perhaps be attributed to intersession 
drift. By normalizing to a control region, dMRI outcomes would be relative to that day’s baseline. 
However, since pre-correction significance was observed in four statistical tests in the two control 
regions, this approach may be less valid. 

3.2. Future analyses 

Additional analyses may be applied to this dataset to explore different brain regions and 
relationships between these results and other data from the BoostCPM trial. At a basic level, more 
ROIs could be added to the analysis. For example, the amygdala and mediodorsal thalamus would be 
pertinent ROIs to explore given their involvement in cortical pain processing. While this thesis 
focused on analyzing microstructual neuroplasticity in GM regions of  the DPMS, further analyses 
could investigate changes in the WM tracts connecting these regions. In particular, the vmPFC-
dmPFC tract and connections from the PFC to the ACC are of  interest for descending pain 
modulation. The analysis of  WM could be done with tract-based spatial statistics (TBSS), a common 
method of  performing statistical tests on quantitative dMRI data. Briefly, this method would 
generate a WM “skeleton” on each dataset by finding the center of  each WM tract. Then, these WM 
skeletons are spatially registered to a common space and voxel-wise statistics can be performed on 
the group-level. TBSS is implemented in the BRC pipeline software used to analyze this dataset and 
could therefore be performed within the same framework of  methods. 

Changes in dMRI metrics could also be analyzed on a voxel-wise basis instead of  summarizing the 
outcomes within ROIs. This would entail transforming the quantitative maps of  the pre- and post-
iTBS time points to a common space and subtracting to generate a difference map. This kind of  
visualization could reveal whether there are systematic increases or decreases in any region. If  the 
maps were all transformed to the standard MNI152 space, group-level statistics could be performed 
on the difference maps. Note that voxel-wise analysis relies on highly accurate spatial registrations. 

Finally, it would be useful to correlate the quantitative dMRI outcomes with patient-reported 
outcomes. The baseline values and pre-post changes in each metric could be correlated with, for 
example, change in pain scores. It is typical that not all patients will respond to a treatment, and this 
certainly the case for brain stimulation therapies. Thus, correlating insights from dMRI with patient 
outcomes could reveal a microstructure feature that seems to predict which patients respond to 
treatment. It could also reveal that patient improvements are associated with certain changes in 
microstructure, an effect that could be obscured when considering the whole cohort. However, it 
should be noted that these forms of  “responder analyses” can be fraught with methodological issues 
[Cook 2023]. If  applied properly, though, exploring the relationship between neuroimaging 
outcomes and patient outcomes is a crucial next step with potentially significant clinical implications.  

4. Conclusion 

This analysis of  dMRI data from patients with chronic knee pain did not reveal significant 
microstructural changes in GM hubs of  the DPMS in response to an accelerated, connectivity-
guided iTBS treatment targeting the lDLPFC. Structural and dMRI data from the BoostCPM pilot 
clinical trial were processed with a modern in-house pipeline, and the results of  each step were 
carefully assessed. Three dMRI models were applied to the processed data: the diffusion tensor 
model, diffusion kurtosis model, and NODDI model. Within-group and between-group statistical 
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tests were performed. While six tests reached statistical significance when performed independently, 
none survived p-value correction for multiple tests. Furthermore, when holistically considering 
observed shortcomings in data processing, the high variance in each outcome metric, and lack of  
consistency and mechanistic explanations for the six pre-correction significant results, it is perhaps 
most reasonably concluded that these are spurious results. The analysis presented does not support 
that iTBS induces microstructural change. However, further analyses as discussed in section 4 may 
yet reveal that iTBS does have an effect on neural structure. This thesis presented a purely 
mechanistic analysis to supplement results from patient-reported outcomes, which are of  far greater 
relevance for the future viability of  iTBS as a clinical treatment for chronic pain in knee 
osteoarthritis. 
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V. Appendices 

Appendix A: Understanding the off-diagonal elements in the diffusion tensor 

The necessity of  the off-diagonal elements of  the diffusion tensor D can be understood by 
considering the following example. Consider a voxel with a single axon passing through at an angle 
which is exactly 45 degrees to the x and y axes.  

A diffusion-weighted image of  this voxel is acquired, with gradients pulsed in the x and y directions. 
The resulting ADCs measured in each of  these directions will be equivalent, accurately indicating 
that diffusion in the x and y directions is equally restricted. This might mislead one to conclude that 
diffusion in the voxel is perfectly isotropic when, in fact, it is perfectly anisotropic. However, the off-
diagonal element Dxy will capture perfect correlation between the diffusivity patterns in both 
directions. The reality of  the diffusivity profile is made even more obvious by decomposing this 
diffusion tensor into its eigenvectors and eigenvalues. 

 

The eigenvector decomposition clearly shows that all diffusion in the voxel occurs in one direction  
(λ1=1) with 0 diffusion in the secondary direction (λ2=0). The diffusion is purely anisotropic. 
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Figure 23. An axon oriented 45° to the x and y axes. 



Appendix B: TMS protocol parameters 

To expand upon the basic TMS paradigm, many parameters can be modified and must be 
considered when designing a TMS study. These include coil geometry, stimulation intensity, pulse 
shape, stimulation pattern, and total dosage [Caulfield 2022]. Improving upon the simple geometry 
of  the original circular TMS coil, Ueno and colleagues introduced the figure-eight coil in 1988 [Ueno 
1988]. This design utilizes two circular coils with current running in opposite directions. The 
resulting eddy currents induced in the brain by the two coils intersect and sum at their midpoint, 
thereby focusing the stimulation at that point. The figure-eight coil is commonly used today in the 
clinic and in research due to this specificity of  stimulation. Other coil geometries also exist for 
specialized applications, but these are beyond the scope of  this thesis.  

The parameter of  stimulation intensity (SI) indicates the magnitude of  the magnetic pulse. 
Conceptually, this is most readily described with the peak magnetic field strength of  the induced 
pulse (measured in T) and the rate of  change of  the magnetic pulse (dB/dT). In practice, however, 
SI is commonly described as either a percentage of  maximum output or a percentage of  an 
individual’s resting motor threshold (rMT). Percentage of  maximum output is relative to the 
hardware characteristics of  the stimulator, while percent rMT scales to an individual’s motor 
threshold. The rMT of  an individual is the intensity at which stimulation of  M1 induces an MEP in 
50% of  trials. This quantity is variable across individuals (reflecting factors such as skull thickness 
and cortical excitability) and is commonly used to scale stimulation intensities based on the 
participant. A more recent and perhaps more objective way to calculate a standardized stimulation 
intensity is with MRI-based electric-field modeling, which uses structural information to estimate 
how much energy reaches various parts of  the cortex [Stenroos 2019].  

The shape of  a TMS pulse can be monophasic or biphasic, and its width can vary. Most TMS studies 
use biphasic stimulation, where current runs through the coil in both directions sequentially, 
inducing currents bidirectionally in the targeted area. In contrast, monophonic stimulation rectifies 
the pulse to a single direction. The width of  the TMS pulse alters the total amount of  energy 
delivered, with wider pulses imparting greater energy per pulse.  

Stimulation pattern encompasses a large parameter space describing the timing of  pulses and pauses 
during a TMS protocol. A key parameter within this space is stimulation frequency: the number of  
pulses delivered per second (expressed in Hz). Early TMS stimulators were limited by hardware to 
frequencies less than 1Hz. In 1990, a stimulator capable of  generating patterns at >1Hz was 
manufactured, ushering in repetitive TMS (rTMS) protocols which are defined by this stimulation 
frequency cutoff. Modern stimulators can generate frequencies over 100 Hz. TMS stimulation 
patterns often consist of  trains of  pulses with pauses interspersed. For example, a 2024 study using 
TMS in fibromyalgia used trains of  20Hz pulses for 2 seconds separated by an inter-train interval 
pause of  20 seconds [Tilbor 2024].  

Finally, the total dosage of  a TMS protocol is the total number of  pulses delivered. Some TMS 
interventions consist of  a single session on one day, while more longitudinal designs deliver multiple 
TMS sessions over weeks. Recent accelerated protocols have compressed several sessions into a 
single day, shortening the total duration of  the intervention (e.g. 10 sessions/day for 5 days instead 
of  1 session/day for 50 days) while delivering the same number of  total pulses [Cole 2020].  

The parameter space for designing a TMS study is large and altering any of  the variables described 
here may change the effect of  the intervention. 
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