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Abstract 

 

Sulfinate-mediated radical C–H functionalisation reactions are widely used for the 

modification and diversification of scaffolds in drug discovery. However, prediction 

of the regiochemistry in these reactions can be challenging. For a given substrate, 

there may be multiple sites of reaction, each with its own unique steric and electronic 

environment. Here we present Rega, an automated transition state searching 

program for the prediction of regioselectivity from inexpensive HF/6-31G* activation 

energies. We show that in a set of 23 compounds, the regioselectivity is correctly 

identified in 22 cases (reactivity correctly identified for 65/68 potential sites of 

reaction). The easy-to-use and modular Rega workflow allows reaction exploration 

of multiple substrates simultaneously, enabling the generation of a synthetic dataset 

of 490 compounds consisting of 2780 sites with labelled reactivity for this reaction 

for use in machine learning models. Rega is designed to be readily extensible to other 

reaction systems and can be applied to many other reaction classes in which a radical 

intermediate is formed as the regiochemistry determining step. From the generation 

of this dataset, machine learning was applied to predict regioselectivity in both 

regression and classification tasks. 
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Chapter 1  -  Introduction 

 

1.1 Machine Learning in Chemistry 

 

Machine learning (ML) is having a profound impact in chemistry. From analytical and 

computational disciplines to the automation of full laboratories and scientific 

workflows, machine learning is changing how the modern chemist conducts their 

research and has the potential to dramatically accelerate breakthroughs in a wide 

range of areas.1 Machine learning’s ability to identify patterns in data allows chemists 

to gain new insights into their research in a less time and resource-intensive manner 

than traditional methods and allows for easier transferability to new areas of work. 

Some key areas of interest in the application of machine learning in chemistry, 

particularly of interest to drug discovery are reaction development, quantitative 

structure-activity relationship (QSAR) and absorption, distribution, metabolism, 

excretion and toxicity (ADMET) studies. Through the use of a variety of different 

depictions of compounds in a dataset known as descriptors, chemical structures are 

transformed to a machine-readable vector and are then fed into a machine learning 

algorithm and used to infer the inherent features of each compound that give rise to 

the output value being studied. This can be used to predict the output value of a 

compound that has not been studied before. This estimate can be used to inform 

decisions on the next steps in research, saving time and cost (i.e. avoiding synthesis 
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of a compound that is predicted to be inadequate for the project goal since the 

predicted result is given instantaneously).   

In this section, we discuss in more detail some key applications of machine learning 

in chemistry and their impact on the area of drug discovery. Firstly, we will explore 

broader applications of machine learning in fields such as retrosynthesis, protein 

folding and metabolite prediction and their utility to the pharmaceutical industry. 

Next, we will discuss machine learning implementations in the context of 

computational chemistry through the generation of new ML-derived quantum 

chemistry methods, prediction of molecular properties. Lastly, we will discuss recent 

implementations of machine learning for the prediction of reaction outcomes and 

reactivity. This serves to give a broader understanding of the importance of machine 

learning in chemistry and its’ impact on a wide array of fields. 

 

1.1.1 Retrosynthesis and Synthetic Route Planning 

The cost of bringing a new therapeutic drug to market was estimated to be $2.3 

billion in 2023,2 highlighting the need for efficiencies to be found in every step of the 

drug discovery process. One key area is the improvement in synthetic chemistry 

method development.3 In the past, synthetic routes to new compounds were 

developed based on a trial-and-error search of appropriate reactions for pre-selected 

starting materials to give the desired product4. This approach lacks flexibility and 

often leads to the selection of a suboptimal route.5 Retrosynthetic analysis serves to 
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combat this problem by decomposing the final molecule into several simpler 

precursor compounds6 and defining the appropriate reactions to complete the 

conversion of reactant to product. With the ever-growing library of different 

reactions developed each year, it becomes impossible for an organic chemist to know 

every possible synthetic route to their desired compound, as it is thought that 10,000 

different chemical transformations could be considered in each step of the 

synthesis.7 Therefore, tools were developed to navigate this reaction landscape and 

suggest the most viable synthetic route to the user. While initial iterations of these 

retrosynthesis applications were based upon hard-coded rules of reaction types,8 this 

hindered the real-world application. Thus, deep learning was applied to the 

retrosynthetic problem,9–12 which provided greater flexibility in the selection of 

reaction classes and gave a higher chance of these routes being effective in the real 

world.  Retrosynthesis tools can be separated into two distinct classes. Single-step 

tools primarily focus on selecting the most appropriate precursors for a single 

transformation; multi-step tools attempt to decompose a more complex target 

compound into a full synthetic route comprising a multitude of different reactions 

(Figure 1.1). Data used to train these models are typically derived from the US patent 

office,13 a large open-source database of over 1,000,000 different chemical reactions. 

These tools then evaluate the similarity of the user’s input compound with each 

reaction in the database to determine the most suitable route to their desired 

compound. One key multi-step example was the 3N-MCTS tool,14 which combined a 

Monte-Carlo tree search15 with deep learning to provide a multi-step retrosynthesis 

tool capable of suggesting appropriate chemical transformations faster than any 
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previous attempts. A notable example of single-step retrosynthesis software is 

Zhang’s work on the development of an evolutionary algorithm to optimise the 

search space and suggest routes 83.9% faster than other single-step Monte-Carlo 

methods.16 Another promising retrosynthetic tool is SynPlanner, which utilises 

Monte-Carlo tree search and graph neural networks to generate a multi-step 

synthesis tool with features such as a value network to provide a measure of 

synthetic feasibility for each suggested route.17 Lastly,  the current state-of-the-art 

retrosynthesis tool is AiZynthFinder, an open-source tool using Monte-Carlo tree 

search alongside a neural network (see section 2.2.2) to suggest synthetic routes 

from a library of known reaction templates. One key differentiator here is the 

incorporation of precursor-pricing metrics to determine not only the most 

synthetically tractable route but also the most commercially viable.18 Another 

exciting extension of ML in retrosynthesis is the implementation into computer-aided 

synthesis planning. In this work, retrosynthesis tools are used to offer a synthetic 

route to the desired compound as before. Once the route is confirmed by the user, a 

series of actions are defined for a robotic arm to carry out the synthesis directly 

without the need for human intervention. One key example of this work is ASKCOS,19 

where their retrosynthesis prediction algorithm was paired with a configurable flow 

chemistry apparatus. This newly developed workflow enables chemists to easily 

synthesise a compound of interest using chemically viable reactions without having 

to perform the direct synthesis themselves. Robotic synthesis allows for high levels 

of control over the reaction and greatly increases synthetic reproducibility. 
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While the databases used to train these retrosynthetic tools are very large, they do 

not account for the entirety of chemical space and so depending on the region of 

chemical space being studied, model applicability may be poor. Thus, more work is 

being done to generate models with larger datasets and with a greater understanding 

of the impact other functional groups may have on a given reaction’s feasibility.  

 

Figure 1.1: Overview of single and multi-step retrosynthesis tools, including goals, methods and evaluation 
metrics. Figure reproduced from reference.4 

 

1.1.2 Protein Folding 

One prominent application of machine learning in drug discovery is the prediction of 

protein folding. When developing a new therapeutic compound, the drug’s structure 

is tailored to fit the receptor identified as playing a key role in the disease of interest. 

While great strides have been made to isolate and obtain protein conformational 

data on over 100,000 proteins20 using a variety of experimental techniques,21–24 this 

is only a small fraction of the billions of protein sequences known.25,26 In order to 
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circumvent the lengthy process of isolating and obtaining an X-ray crystal structure 

for every protein of interest, an accurate estimation of the protein conformation 

through machine learning techniques was needed to accelerate drug discovery. The 

protein folding problem – the deduction of 3-dimensional protein conformation 

based solely on amino acid sequence has been a challenge in the field of 

bioinformatics for over 50 years.27,28 The current completed benchmark used to 

evaluate the performance of protein folding tools is the 15th critical assessment of 

protein structure prediction (CASP15),29 an unseen amino acid sequence is given 

where the model’s output conformation is validated against experiment to 

determine the conformational accuracy. While other methods30–34 of conformational 

prediction had some level of agreement with experiment, there was one model that 

provided near atom-level accuracy of conformational prediction, AlphaFold.35 

AlphaFold utilises a neural network with a unique understanding of biological and 

geometrical constraints of amino acids that enable an accuracy of 0.96 Å RMSE 

against the CASP15 benchmark, with the next best model only achieving an accuracy 

of 2.8 Å. This level of predictive performance has changed the landscape of life 

sciences, enabling huge developments in a variety of fields, from the modelling of 

antibiotic-resistant enzymes in bacteria;36 to finding new treatments for Parkinson’s 

disease through the identification and mapping of the mutations of the PINK1 

protein, thought to be a leading factor for the development of early-onset 

Parkinson’s.37–39 The AlphaFold system takes the amino acid sequence as an input 

and constructs a multiple sequence alignment (MSA) to identify common sequence 

structures with known conformations from living organisms. This process enables 
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the identification of parts of the sequence where conformation is more likely to differ 

from one another. An initial structural template is built from proteins with a similar 

structure to the input sequence to determine the amino acid residues that are likely 

to be in contact with one another and feeds this alongside the multiple sequence 

alignment into a transformer model. The transformer model refines the multiple 

sequence alignment through comparison with the structural template and vice versa, 

in an iterative process until a specified number of cycles is reached. The final part of 

the pipeline takes these refined sequence alignment and structure representations 

to construct a three-dimensional model of the structure. This entire process is also 

iterative, where the refined MSA, template and predicted structure is fed back into 

the model to refine its structural prediction further. 

Advancements in this field are continuing today, with the launch of AlphaFold3 

substantially improving both protein structure prediction but also protein-ligand 

interaction behaviour.40 This breakthrough in protein structure prediction has led to 

AlphaFold being used as a primary tool for protein structure analysis, highlighting the 

benefits of machine learning in science. This work has led to the award of the 2024 

Nobel Prize in chemistry, specifically Demis Hassabis and John Jumper of DeepMind 

for the development of the AlphaFold program and to David Baker of the University 

of Washington for the design of proteins using AlphaFold to create steroid binding 

proteins with high affinity and selectivity,41 the creation of self-assembling protein 

macrostructures42 and the creation of protein switches and sensors43 for the 

detection of the widely abused opioid fentanyl.44 
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1.1.3 Catalysis 

Catalysts are essential for the development of new chemical processes in an efficient 

manner. Catalytic species serve to offer a new reaction pathway to reach a desired 

compound while avoiding the use of energy- and resource-intensive processes used 

prior. The shape of the catalyst plays a key role in the determination of the reaction’s 

feasibility, and therefore catalyst design is of great importance in the advancement 

of these processes. Typically, heterogeneous catalysis optimisation requires the use 

of molecular dynamics simulations with long timescales to effectively model the 

interactions between catalyst and substrate (Figure 1.2).45 This process of 

optimisation remains a formidable task, and as such, many novel catalysts and 

catalytic reactions are still discovered using a trial-and-error approach. This highlights 

the need for efficiencies to be found in the field of catalysis through the incorporation 

of machine learning. 

 

Figure 1.2 Simulation of heterogeneous catalysis from the atomic level to large-scale reactors. Figure reproduced 
from reference.45 
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Since in homogeneous catalysis, a catalyst’s particular steric or electronic property 

governs the performance of a given material, initial work was done in the prediction 

of one of these materials’ properties such as atomisation energies,46,47 formation 

energies48,49 and band gaps.50 This approach however is not directly applicable to 

heterogenous catalysis due to the complex nature of the interactions between 

catalyst and substrate not being dictated by a single property. Initial work has been 

done in the direct prediction of catalytic rates and selectivity using machine 

learning,51 with Hattori et al. pioneering studies in the development of machine 

learning for catalyst design.52–54 Design of novel heterogeneous catalysts using 

machine learning for the oxidative coupling of methane to new C2 products including 

ethane and ethene has recently been achieved through understanding the 

relationship between catalyst physical properties and catalytic activity.55 Another 

application of machine learning in catalysis is the prediction of acid catalyst activity 

for the promotion of a Friedel-Crafts reaction.56 This was done through the learning 

of the relationship between physiochemical properties of different acid additives and 

reaction activity using Gaussian Processes Regression (see section 2.2.1) and 

predictions were verified through experiment. 

ML has also been shown to be a powerful tool in photocatalysis. Using data mining, 

540 cases of photocatalytic water-splitting were studied and enabled the generation 

of rules that govern the effectiveness of hydrogen generation in an energy-efficient 

manner.57 This has great possible implications for the future of global CO2 reduction 

through the development of hydrogen-based energy solutions, reducing reliance on 

fossil fuels. Lastly, the discovery of new CO2 hydrogenation catalysts using ML-
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derived activity predictions has the potential to further reduce climate change. 

Effective carbon capture and conversion to long-chain hydrocarbons both reduce the 

need for new fossil fuel mining and actively reduce atmospheric carbon dioxide, a 

key contributor to global warming. This work found that iron-based catalysts with 

potassium, zinc or copper additives promoted high conversion of CO2 with high 

selectivity towards C5-C15 hydrocarbons. The addition of TiO2 was also essential for 

high selectivity against conversion to CH4, another key greenhouse gas. These 

advances in catalyst design using ML show the great impact of these techniques in 

not only reaction development but also the possibility of tackling some of the biggest 

issues facing the world today. 

1.1.4 Metabolism Prediction 

Another important application of machine learning in drug discovery is the prediction 

of metabolic pathways. This process identifies potential sites of reaction for the 

compound of interest, informs the user if the compound is likely to be metabolised 

by a particular enzyme, and identifies the possible metabolites of the xenobiotic of 

interest. Doing so allows the user to understand whether their compound of interest 

is suitable for their desired application, and if potentially harmful by-products of 

metabolism are formed, then changes to the structure can be made early to avoid 

costly mistakes later in drug development. Successful models have been generated 

for the most likely xenobiotic metabolising enzyme found in the human body, 

Cytochrome P450,58–61 as well as lesser-known enzymes which can also metabolise 

drug-like compounds, UDP-glucuronosyltransferases and flavin-containing 
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monooxygenases.62 The modelling of the entire metabolic profile of xenobiotics is a 

continuing challenge, as the collection of biological data introduces a large amount 

of noise through varying conditions in the biological assays and different enzyme 

isoforms having varying activity towards each xenobiotic. As such, the true enzymatic 

activity towards these drug compounds can be difficult to measure and accurately 

predict using machine learning, since data quality is imperative for the understanding 

of the structure/function relationship. Nonetheless, recent advances in biological 

assay data acquisition and modelling have led to the development of commercially 

viable tools commonly used in the pharmaceutical industry. These models have had 

a profound impact on the workflow of the medicinal chemist, allowing more targeted 

optimisation of a lead compound in order to bring the final drug through to clinical 

trials in a shorter timescale. 

 

1.2 Machine Learning and Quantum Chemistry 

 

Quantum Chemistry has been profoundly impacted by the incorporation of machine 

learning. From the direct use of these techniques to generate new quantum 

mechanical calculation methods63 to the prediction of properties and reaction 

pathways, machine learning has benefitted the quantum chemistry field greatly. 

Previously, if an individual desired to understand the intricacies of a particular 

compound, be it the mechanistic pathway that compound took to generate a given 

product; or the calculation of certain molecular properties; it required the 
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recruitment of knowledgeable professionals to run calculations and report their 

findings. Nowadays, the insights that machine learning methods have provided into 

the applications of quantum mechanics and the relationship between structure and 

experimental observations have enabled the generation of machine learning models 

that can dramatically improve the scientific discovery workflow. These models allow 

for more synergistic collaboration between QM and experimental fields and 

dramatically accelerate the rate at which breakthroughs can be found. In this section, 

we discuss some of the key implementations of machine learning in the field of 

quantum chemistry and its impact on the drug discovery landscape. 

1.2.1 Machine Learning and QM Methods 

In order to offer accurate predictions of experimental observation, appropriate 

quantum mechanical calculation methods must be selected. In each new instance of 

these investigations, a trade-off must be made between the level of accuracy and the 

computational cost of the calculation. Many rapidly calculated methods do not offer 

a level of accuracy suitable to be indicative of experiment, as a great number of 

approximations must be made which do not reflect the true nature of the 

interactions between subatomic particles taking place within a molecule. Therefore, 

more costly computational methods are often selected, at the expense of increased 

lead times. The use of machine learning in the development of new computational 

methods typically aims to offer the level of accuracy seen in more costly traditional 

methods in a fraction of the time.64–85 Some key examples include the ability to use 

much longer timescales in molecular photodynamic simulations,69 gaining a greater 
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understanding of the mechanistic behaviour of rapid photo-induced reactions; or a 

dramatically increased accuracy of simulations of the same timescale with the 

incorporation of quantum mechanical effects in machine-learned force fields.73 

Machine learning is highly dependent on the quality of the input data, making it ideal 

for application in quantum chemistry where simulations are highly controlled and 

repeatable. Depending on the dataset type used, ML can be trained on costly ab-

initio methods and then predicted energies can be fed into lower cost simulations to 

provide additional accuracy77 Another possible implementation is improving density 

functional theory accuracy by augmenting exchange-correlation functionals such as 

B3LYP with additional high-order contributions to the energy from a neural network86 

or increasing efficiency by avoiding the explicit calculation of key components 

through the use of machine learning-derived predicted values.87,88 It is worth noting 

the importance of the domain of applicability of these ML/QM methods. While 

machine learning can be extremely capable of interpolation, extrapolation ability is 

poor. Therefore, typical ML/QM publications involve the training of a model to solve 

a specific chemical problem rather than generating a general model aimed at broad 

applicability to a wide range of chemical systems.89–99 

1.2.2 Molecular Property and Reaction Prediction 

Another key area of efficiency improvements to the drug discovery process is the use 

of machine learning to predict molecular properties and reaction outcomes. These 

methods aim to reduce the cost of drug development through the reduction of the 

“trial-and-error” procedures traditionally used in drug design.100 These tools allow 
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for rapid optimisation of synthetic route development and lead compound design by 

allowing medicinal chemists to test their hypotheses of different reaction pathways 

and scaffold substitutions without the need for wet lab experiments, which can be 

extremely time and resource-intensive. In these models, the relationship between 

the compound and the predicted property is learned through the use of chemical 

descriptors. These descriptors give the model an understanding of the full molecular 

environment as well as local atom-specific environments. The features of the 

environment that give rise to either a given molecular property or reaction outcome 

are learned and then used to predict new examples for the end-user. The 

underpinnings of machine learning and their relation to reactivity modelling are 

described later in this work (Chapter 2).  

Some examples of molecular property prediction pertinent to drug discovery are the 

prediction of pharmacokinetic parameters.101 These properties are traditionally 

measured in a biological assay which can be a costly and difficult process to generate 

accurate data. Also, the inherent variability of biological systems introduces noise 

into the measurement leading to uncertainty on the validity of the result. Machine 

learning implementation on tasks such as these allows for the estimation of these 

properties in an expedient manner and enables rapid decision-making on the 

direction of the research. Examples such as the prediction of half-life, clearance, 

volume of distribution and fraction bound/unbound were shown to be effective for 

cephalosporins and a variety of structurally diverse antihistamines.102,103 
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Seminal work in the prediction of reaction outcome prediction was carried out by 

Doyle et al.,104 who utilised random forest modelling to map the relationship 

between calculated molecular/vibrational descriptors and reaction yield for the 

Buchwald-Hartwig C-N cross-coupling reactions. This work was limited to the 

reaction between singly substituted aryl halides and 4-methylaniline, but the 

promising predictive performance of these models warranted further expansion 

from other groups. Yield prediction of Buchwald-Hartwig amination reactions was 

extended to new amine derivatives with great success.105,106 The use of deep learning 

with graph neural networks105 saw the generation of industrially viable models that 

allow the user the understand whether their planned reaction will work as intended 

before having to invest the time and resources performing the experiment. One 

other example of this extension was conducted by the Hirst group,107 who utilised 

support vector regression modelling rather than random forests to predict reaction 

yield on the same combinatorial dataset used in their work. They saw a large increase 

in R2 and a reduction in RMSE over methods previously attempted. This shows that 

the continuing advancements in the development of new machine learning 

techniques can improve model performance and generalisability over time in the 

field of reaction outcome prediction.  
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1.3 ML/QM for Reactivity 

 

In the same vein as molecular property prediction, the site-specific reactivity of a 

particular compound can be predicted using machine learning.108 This area of study 

is contributing to the field of retrosynthesis and synthetic route planning through the 

understanding of reaction behaviour without the need for experimental 

techniques.108–110 This advancement in synthetic organic chemistry allows the rapid 

deployment of newly developed reactions to industry where the chemical space 

being studied is much larger than the reaction scope investigations carried out in 

initial research.111–114 The range of applications includes the prediction of 

enantioselectivity in asymmetric catalysis,115 diastereoselectivity of Diels-Alder 

reactions116 and the focus of this work, the prediction of regioselectivity for an array 

of different reactions.117–119 This is an exciting area of research since the ability to 

integrate new chemistry into the pharmaceutical industry quickly and effectively has 

the potential to have a profound impact on the drug discovery pipeline.  

 

1.4 C-H Functionalisation 

 

Since its inception, C-H functionalisation represents a new era of organic synthesis 

with its departure from functional conventional group manipulation. Instead, this 

approach relies on the selective functionalisation of specific C-H bonds under mild 

reaction conditions, allowing for a strong tolerance for other functional groups that 

may be present in the compound.120–124 As the field of C-H functionalisation has 
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advanced it has become more sophisticated and can now be deployed in more 

complex molecules that contain multiple functional groups such as potential drug 

candidates.125 This new era of functionalisation (known as late-stage 

functionalisation) has the advantage of reducing the number of steps in synthesis 

over classical synthetic methods, improving synthetic efficiency.126 This ease of 

diversification of drug-like scaffolds allows facile structure-activity relationship 

exploration, modulation of pharmacokinetic properties to aid bioavailability and/or 

metabolism and installation of new handles for further functionalisation without the 

need for modification of synthetic route.127–129  There are many methods of C-H 

functionalisation, but selectivity is dependent on three key determinants of 

reactivity. The first is the presence of directing groups in the compound. The second 

is the innate reactivity of the substrate, which can be influenced by the steric and 

electronic features of the molecule. Lastly, selectivity can be under reagent or 

catalyst control, where the electronic/conformational features of these components 

of the reaction determine regioselectivity.130 Some examples of directing group 

functionalisation include the use of a pentafluoroaniline-derived sulfonamide to 

iodinate the position ortho to this group despite the presence of the strongly 

coordinating pyrazole functional group (Figure 1.3a);131 or the  cobalt(III)-catalysed 

C-H methylation of natural products (Figure 1.3b).132 Innate selectivity examples 

include the C4-selective synthesis of phosphonium salts by triflic anhydride-mediated 

pyridine activation (Figure 1.3c),133 and the selective C4 chlorination of the imidazole 

core of clotrimazole (Figure 1.3d).134 Catalytic control examples include the one-pot 

iridium- and copper-catalysed methylation of loratadine (Figure 1.3e)135 and the 



18 

 

palladium(II)-catalysed functionalisation of quinolines and isoquinolines such as 

camptothecin (Figure 1.3f).136 While there are many different categories of C-H 

functionalisation, the primary focus of this work is in the area of functionalisation of 

heterocyclic species due to its particular value to the agrochemical and 

pharmaceutical industries.137  

 

Figure 1.3 Examples of C-H functionalisation with varying selectivity-determining processes. 

 

The reaction of interest in our study is the functionalisation of aromatic heterocycles 

using a metal sulfinate reagent. Langlois et al.138 originally developed sodium 

trifluoromethanesulfinate (Langlois reagent) as an effective trifluoromethylating 

agent for heteroarenes. This was revisited by Baran and co-workers,124,139–144 who 
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found that zinc sulfinate salts were similarly effective in C–H functionalisation but 

offered increased reactivity and bench-stability over sodium derivatives. This 

collection of zinc sulfinate salts is known as the Baran Diversinates. This method of 

functionalisation is attractive to organic chemists, due to its generalisability across a 

wide array of possible substitutions, provided that the required diversinate is 

available (Figure 1.4).145,146 The reaction conditions reported by Baran et al. are also 

milder than those in Minisci147,148 and Borono-Minisci149,150 reactions, which require 

higher temperatures, strong oxidising agents and the use of expensive metal 

reagents such as AgNO3. This class of C-H functionalisation reaction is attractive to 

the field of drug discovery as it offers the ability to optimise a lead compound through 

substitution of the diversinate used in the reaction in a process known as late-stage 

functionalisation. This approach enables slight modifications to the structure of their 

compound that can be screened against their target of interest without the need for 

modification of the entire synthetic route to the parent compound.  

 

 

Figure 1.4. Oxidative C–H functionalisation reactions of heteroarenes using zinc and sodium sulfinates. 

A proposed mechanism (Figure 1.5)124 involves the reduction of the tert-

butylhydroperoxide oxidant (a) by trace metals to form the oxygen-centred radical 

tBuO· (b), which oxidises the trifluoromethanesulfinate anion (c). This generates the 



20 

 

trifluoromethyl radical (d) upon release of SO2, which propagates through addition 

to the heteroarene (e) and tert-butyl peroxide-mediated re-aromatisation of the 

heterocycle to afford the desired product (f). An isobutene by-product (g) from 

sulfate anion formation can act as a radical trap, generating a new carbon radical 

which can then participate in Minisci-type addition to the aromatic moiety giving a 

second functionalised aromatic species as a side-product (h).151  

 

Figure 1.5: Mechanism for metal sulfinate-mediated C-H functionalisation 

A detailed kinetic, spectroscopic and density functional theory (DFT) study152 of this 

functionalisation reaction showed that the attack of the radical on the heteroarene 

is the rate-limiting step (Figure 1.6) and that regioselectivity is kinetically controlled. 

However, the highly reactive nature of the attacking carbon radical intermediate 

makes the prediction of the position of radical addition challenging. While the radical 
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studied in this work differs from the arene species analysed in the study, the rate-

limiting step is consistent between diversinates. 

 

Figure 1.6: Free energy diagram for each step in zinc sulfinate-mediated C-H functionalisation computed at 

CPCM(water)-M06-2X/6-311+G(d,p)// B3LYP/6-31+G(d) level of theory. Figure reproduced from reference.152 
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1.5  Project Goals 

 

This project aims to provide an effective method for predicting regioselectivity for 

this C-H functionalisation reaction through the application of quantum chemistry and 

machine learning. Through computational chemistry investigations, an effective 

method for predicting regioselectivity needs to be identified that balances accuracy 

with computational cost. Since there are only a select number of experimental 

examples with which to compare computational regiochemical predictions, 

calculation accuracy across these examples needs to be high to have confidence in 

the method’s predictive ability on new areas of chemical space.  

In order to utilise machine learning to effectively predict this regioselective 

behaviour, thousands of datapoints must be used to train the model to capture the 

relationship between descriptor and output. Therefore, the lack of experimental data 

motivates efforts towards the generation of an artificial dataset of a wide range of 

chemically different compounds. An accurate predictive model with a large domain 

of applicability is of great interest to drug discovery as this increases confidence in 

model output no matter the input compound. In order to model chemical 

processes/properties effectively, it is imperative that high-quality data is used. 

Publications in chemistry are heavily biased towards successful reactions, posing a 

problem for machine learning algorithms which require both positive and negative 

examples to understand the relationship between structure and experimental 

observation. Also, depending on the objective of the experiment, insufficient 

reporting of the full reaction conditions and side products leads to an incomplete 
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picture of the interactions between reagents in experiment and can therefore cause 

inaccurate predictions from the machine learning algorithm.153 Artificial datasets 

have an advantage over data gathered from publications as they remove this 

experimental noise and isolate the key factors influencing regioselectivity.  

Generation of this dataset requires large-scale calculation on an array of different 

compounds, leading to the development of an automated workflow to run and 

monitor these calculations in an efficient manner. Once this dataset has been 

generated it will then be used to build machine learning models to predict the 

regioselectivity, providing utility to the drug discovery industry. 

In chapter 2 we discuss the theory behind two key areas of research used in this work, 

quantum chemistry and machine learning. In chapter 3 we examine the various 

quantum chemistry methods used to attempt to predict the regioselectivity of this 

C-H functionalisation reaction. In chapter 4 we discuss the computational workflow 

known as Rega which was developed for the generation of an artificial dataset for 

this reaction. In chapter 5 we discuss the deployment of Rega on a selected dataset 

and the generation of a variety of machine learning models to predict 

regioselectivity.  
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Chapter 2  -  Background Theory 

There are two key fields of study throughout this work, quantum chemistry and 

machine learning. In order to understand the advancements in these areas covered 

in this research, it is important to familiarise oneself with the foundations upon which 

this work was built. 

2.1  Quantum Chemistry 

 

In this section, we discuss the fundamental principles of quantum chemistry, 

including the foundational Schrödinger wave equation and the approximations used 

to apply it to real-world chemical systems for the calculation of energies. 

2.1.1 The Schrödinger Equation 

The field of quantum chemistry is the study of quantum mechanics to explain 

relevant phenomena in chemistry. This may include the study of electronic 

configuration, bonding and potential energy surface exploration. “Modern” quantum 

mechanics was established in the 1920s, with the major breakthrough being the 

Schrödinger wave equation:154 

 �̂�𝛹 = 𝐸𝛹 (2.1) 

where Ψ represents the wavefunction of the system, which describes the nature of 

the particles in the system, �̂� represents the molecular Hamiltonian operator and 

describes the energy of the associated electrons and nuclei in the system; and 𝐸 is 
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the energy. The molecular Hamiltonian can be broken down further into kinetic and 

potential energy operators: 

 �̂� = �̂� + �̂� (2.2) 

where the kinetic energy operator �̂� describes each particle’s kinetic energy term 

derived from its momentum: 

 
�̂� =  −

ℏ2

2𝑚

𝑑2

𝑑𝑟2
 (2.3) 

where 𝑚 represents the particle’s mass. The potential energy operator �̂� describes 

the interactions of electrons and nuclei in the system using Coulomb’s law: 

 
𝐸 = 

1

4𝜋𝜀0

𝑞1𝑞2

r
 (2.4) 

where 𝑞1𝑞2 represents the charge of the two interacting particles and 𝑟 represents 

the distance between them. These equations can be simplified using atomic units, 

where 𝑚𝑒 (electron mass), 𝑒 (charge of an electron), 𝑎0 (Bohr’s radius, nuclei-

electron distance), ℏ (reduced Planck constant) and 4𝜋𝜀0 (vacuum permittivity) are 

set to 1, yielding a simplified Hamiltonian accounting for all kinetic energy and 

Coulombic attraction/repulsion terms: 
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where the first term describes the sum of the nuclear kinetic energy of the nuclei, 

the second term describes the sum of the nuclear-nuclear repulsion, the third term 

is the sum of the electronic kinetic energy, the fourth term is the sum of the electron-

nuclear attraction, and the final term is the sum of the electron-electron repulsion.  

As can be seen above, the Schrödinger equation becomes very complex when all 

factors influencing the energy are accounted for. In fact, for a many-body system the 

Schrödinger equation becomes impossible to solve exactly. Therefore, 

approximations are employed to simplify the problem. Firstly, the Born-

Oppenheimer approximation155 assumes that the electronic structure of the 

molecule adjusts instantaneously to shifts in the position of the nuclei, giving two 

separate Schrödinger equations for nuclear and electronic motion. Since in quantum 

chemistry, the primary concern is the electronic structure, the Hamiltonian is 

simplified through removal of the nuclear kinetic energy term, leaving only electronic 

terms in the operator known as the electronic Hamiltonian. This is simplified further 

by molecular orbital theory, which approximates the exact wavefunction of the 

system by constructing molecular orbitals. The variational principle dictates that the 

approximate wavefunction of the system will be greater in energy than the exact 

wavefunction, giving rise to an approximate energy of the system. The molecular 

orbitals comprising the approximate wavefunction can be tuned to give as low an 

energy as possible to get as close to the exact wavefunction as possible. These 

molecular orbitals are comprised of a linear combination of atomic orbitals and take 

the form: 
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𝜓 = ∑𝑎𝑖

𝑖

𝜙𝑖  (2.6) 

where 𝜓 represents a single molecular orbital, 𝑎𝑖 is the molecular orbital coefficient 

and 𝜙𝑖  is the atomic orbital. Alterations in size and complexity of the atomic orbitals 

through the use of different basis sets give rise to different approximations to the 

exact electronic wavefunction of the system. Basis sets describe the size and shape 

of the atomic orbitals and includes different approximations to account for potential 

interactions between electrons in a molecule. The basis set chosen is based on 

the computational cost and accuracy required to effectively simulate the system in 

question. One family of basis sets used in this work is the split-valence set.156 This 

family use a greater number of basis functions to describe the valence orbitals than 

the core orbitals since these electrons are used for bonding and take part in the 

modelling of chemical reactions. The 6-31G* split valence basis set uses one basis 

function comprised of six Gaussian functions to describe the core electronic orbitals; 

and two basis functions comprising three Gaussians and one Gaussian respectively 

to describe the valence electronic orbitals. While the use of Gaussian functions (2.7) 

in this family is not as accurate a depiction of orbital shape/size as the Slater-type 

Orbital (STO)157(2.8), the exponential term in the function allows for rapid evaluation 

of the two-electron integrals:  

 𝑔(𝑟) =  𝑒−𝜁𝜈𝑟2
= 𝑒−𝜁𝜈(𝑥2+𝑦2+𝑧2) (2.7) 

 S𝜈(𝑟) =  𝑒−𝜁𝜈|𝑟| = 𝑒−𝜁𝜈√𝑥2+𝑦2+𝑧2
 (2.8) 

where zeta (𝜁) controls the shape of the function and (𝑥2 + 𝑦2 + 𝑧2) represent 

Cartesian space. The combination of multiple gaussian functions allows for effective 
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mapping of the STO while improving calculation efficiency. Another basis set family 

used in this work is the Karlsruhe set.158–161 This family of basis sets use split valence 

approach comprising of gaussian basis functions with varying levels of splitting 

depending on the desired accuracy. Additional functions can be added that describe 

the atomic orbitals’ polarizability and diffusion. In this work, def2-TZVP is used, which 

uses a triple zeta (𝜁) valence orbital with added polarisation function to accurately 

model the atomic orbital shape. When calculating the energy of the molecule using 

these basis sets, a fixed set of atomic orbitals allows optimisation of the molecular 

orbital coefficients 𝑎𝑖 and therefore the minimisation of the energy through 

the application of the variational principle.  

Assembly of the molecular orbitals through modification of the molecular orbital 

coefficients is challenging because the energy of the system is dependent on the 

wavefunction of the system. To circumvent this, an iterative process known as the 

self-consistent field (SCF) method is applied. Initially, a “guess” set of molecular 

orbitals is chosen to represent the molecule which are then used to find the energy 

of the system. Then a new set of molecular orbitals is constructed, and the energy of 

that system is compared with the first. This process continues until the energy of the 

system is minimised and the best set of molecular orbitals to represent the 

wavefunction of the system has been found. 
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2.1.2 Hartree-Fock Theory 

The simplest ab initio method (clarification into approximations used given in 2.1.4) 

is Hartree-Fock theory,162,163 which utilises this variational principle to determine the 

orbital energies comprising the approximate electronic wavefunction. It does this 

through the understanding of electron spin and the interactions of these electrons 

to construct a spin orbital: 

 𝜒↑(𝑥) =  𝜓(𝑟)𝛼(𝜔) (2.9) 

 𝜒↓(𝑥) =  𝜓(𝑟)𝛽(𝜔) (2.10) 

where 𝜒 are the spin orbitals, 𝜓(𝑟) is the spatial orbital and 𝛼(𝜔) and 𝛽(𝜔) are the 

spin functions for spin up and spin down orbitals respectively. This gives rise to the 

construction of the N-electron wavefunction of the system, comprised of these spin 

orbitals through the use of a Slater determinant: 

 

𝛹𝑆𝐷(𝑥1. . . 𝑥𝑁) =  
1

√𝑁!
[
𝜒1(𝑥1) ⋯ 𝜒𝑁(𝑥1)

⋮ ⋱ ⋮
𝜒1(𝑥𝑁) ⋯ 𝜒𝑁(𝑥𝑁)

] (2.11) 

where 𝑥1. . . 𝑥𝑁 are the space, spin coordinates for each electron in the N-electron 

system. The electronic Hamiltonian acting on this Slater determinant gives the 

Hartree-Fock energy. The factors influencing each electron are the kinetic and 

nuclear attraction energy, the Coulomb interaction (energy of each electron repelling 

one another) and the exchange interaction energy (a purely quantum mechanical 

effect of electrons of the same spin in the same molecular orbital interacting with 

one another). Application of the variational principle in the Hartree-Fock method 

gives the following: 
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 𝑓𝜓𝑖 = 𝜀𝑖𝜓𝑖(𝑟) (2.12) 

where 𝑓 is the Fock operator (which includes the aforementioned electronic 

interaction terms), 𝜓𝑖  is the molecular orbital and 𝜀𝑖 is the orbital energy. This gives 

the energy and molecular orbital for each electron in the system. Of the interaction 

terms included in the Fock operator, the two-electron Coulomb and Exchange 

integrals are the most time computationally expensive, with the time taken scaling 

with the number of basis functions included in the atomic orbitals to the power of 4: 

 𝑇𝐻𝐹 = 𝑁𝑏4 (2.13) 

due to the evaluation of the four-centre two-electron integrals. In these integrals, 

each electron is described by a linear combination of basis functions centred over 

multiple atoms, giving 𝑁𝑏4 scaling. 

2.1.3 Semi-empirical Methods 

When performing calculations on very large systems such as proteins, the cost of ab-

initio methods such as Hartree-Fock becomes impractical. Therefore, further 

simplification of the most costly elements of these calculations is required to make 

simulation of large systems tractable. In semi-empirical computational methods, 

explicit calculation of the two-electron integrals is avoided and replaced with 

tabulated values based on either experimental or previously calculated 

computational data. There are a number of different semi-empirical methods, each 

with different approximations and parameterisations. One of the most common 

methods is the Austin-Model 1 (AM1)164 which utilises the neglect of differential 
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diatomic overlap (NDDO) approximation165 to avoid the calculation of the electron-

electron repulsion terms and parameterisation of integrals based on experimental 

measurement of dipole moments and ionisation potentials. Another popular method 

is the parametric method 7 (PM7)166 which is parameterised based on high-level ab-

initio calculation in order to reduce the error compared to these more expensive 

methods, increasing confidence in the output. In later chapters both semi-empirical 

methods were screened against predicting regioselectivity in our reaction of interest. 

AM1 had greater predictive performance than PM7 when compared to experiment 

and so it was chosen for subsequent calculations in the automation workflow 

described in later chapters. 

2.1.4 Density Functional Theory 

While Hartree-Fock is shown to be more accurate than other simpler approximations 

such as semi-empirical methods, it does not completely account for all the 

interactions that can occur between two electrons. Thus, electrons are typically 

placed too close together, raising the overall energy of the system compared to the 

ground truth. This error in Hartree-Fock is known as the correlation energy: 

 𝐸𝐶 = 𝐸𝑒𝑥𝑎𝑐𝑡 − 𝐸𝐻𝐹  (2.14) 

where 𝐸𝐶  is the correlation energy, 𝐸𝑒𝑥𝑎𝑐𝑡 is the exact energy for a given basis set 

and 𝐸𝐻𝐹 is the Hartree-Fock Energy. The correlation energy is due to two distinct 

electronic effects, the dynamical correlation which arises from the poor description 

of short-range instantaneous interactions between electrons, and static correlation, 
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which describes the long-range interactions between electrons not fully described by 

the Slater determinant used in Hartree-Fock. Some more expensive methods such as 

coupled cluster theory account for this correlation energy through perturbation of 

the Hartree-Fock wavefunction, generating determinants for different excitation 

levels for each electron and factoring the effects of these excited electron 

interactions into the energy. A common coupled cluster theory utilised is CCSD,167 

which accounts for singly and doubly excited electron interactions. This method is 

very accurate but is much more costly: 

 𝑇𝐶𝐶𝑆𝐷 = 𝑁𝑏6 (2.15) 

due to the iterative process required to initially calculate the Hartree-Fock two-

electron integrals plus the energies of electrons in the excited Slater determinant. 

Another method used to include these correlation effects is Møller-Plesset 2 

(MP2).168 In this method, a perturbation is applied to the Hartree-Fock Hamiltonian 

to model the shifts in energy levels of the electrons caused by correlation effects. In 

MP2 theory, the 2 signifies a second order correction to the Hartree-Fock energy to 

include these correlation effects. However, this method can still be deemed too 

costly for many-electron systems: 

 𝑇𝑀𝑃2 = 𝑁𝑏5 (2.16) 

where the second order correction adds another layer of expense to the 𝑁𝑏4 scaling 

of Hartree-Fock. To circumvent this problem, an alternative approach was developed 

that accounted for correlation energy at a similar base computational cost to 

Hartree-Fock. Density Functional theory169 proposed that instead of studying the 
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many-electron wavefunction which depends on 3N coordinates, the electron density 

of the system is used which only relies on 3 coordinates regardless of the system size: 

 
𝜌(𝑟1) = 𝑁 ∫|𝛹(𝑥1, 𝑥2 …𝑥𝑁)|2𝑑𝜔1𝑑𝑥2 …𝑑𝑥𝑁 (2.17) 

where 𝜌(𝑟1) is the electron density of electron 1, 𝑁 is the number of electrons in the 

system, |Ψ(𝑥1, 𝑥2 …𝑥𝑁)|2 is the probability density for the wavefunction over all 

coordinates except for 𝑑𝜔1𝑑𝑥2 …𝑑𝑥𝑁, the spatial coordinates for electron 1. This 

expression describes the probability of finding any electrons in the volume element 

𝑑𝑟1.  

In density functional theory the nuclear attraction term on the electronic 

Hamiltonian is referred to as the external potential. Two theorems established by 

Hohenberg and Kohn provided a foundation for the field of electron density study. 

The first theorem is that the electron density determines the external potential of 

the system170. Therefore, from the electron density, we can determine the full 

Hamiltonian, the wavefunction of the system (via the Schrödinger equation) and all 

ground state properties of the system. The ground state energy can be written as a 

functional of the density: 

 
𝐸[𝜌] =  𝐸𝑁𝐸[𝜌] + 𝑇[𝜌] + 𝑊[𝜌] =  ∫𝜌(𝑟)𝑉(𝑟)𝑑𝑟 + 𝐹[𝜌] (2.18) 

 𝐹[𝜌] =  𝑇[𝜌] +  𝑊[𝜌] (2.19) 

where 𝐸𝑁𝐸[𝜌] is the nuclear-electron attraction given by the density,  𝑇[𝜌] is the 

electron kinetic energy term and 𝑊[𝜌] is the electron-electron repulsion term. 𝐹[𝜌] 

is the universal density functional and includes the electron kinetic energy and 
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repulsion terms. The second theorem is that any approximate electron density gives 

an energy greater than or equal to the actual energy. While the density could be 

obtained from the physical system where all electrons interact with one another, this 

approach would require the many-electron wavefunction which is trying to be 

avoided. Instead, Kohn and Sham proposed generating an initial electron density 

from a system of non-interacting particles, which can be obtained from a single Slater 

determinant similar to Hartree-Fock. In doing so we could obtain the exact energy of 

the system using electron density: 

 𝐸[𝜌] =  𝐸𝑁𝐸[𝜌] + 𝑇𝑠[𝜌] + 𝐽[𝜌] + (𝑇[𝜌] − 𝑇𝑠[𝜌] + 𝑊[𝜌] −  𝐽[𝜌]) (2.20) 

where 𝑇𝑠[𝜌] is the kinetic energy functional for the non-interacting system, 𝐽[𝜌] is 

the Coulomb energy, 𝑇[𝜌] − 𝑇𝑠[𝜌] are the terms describing the difference in kinetic 

energy between the interacting and non-interacting system and 𝑊[𝜌] is the electron-

electron repulsion functional. The final four terms are collectively known as the 

exchange-correlation functional and account for the difference between the single 

Slater determinant derived non-interacting electron terms and the true interacting 

system: 

 𝐸[𝜌] =  𝐸𝑁𝐸[𝜌] + 𝑇𝑠[𝜌] + 𝐽[𝜌] + 𝐸𝑋𝐶[𝜌] (2.21) 

Since this exchange-correlation functional cannot be known exactly, it is 

approximated via a variety of different functionals with varying levels of complexity. 

This is known as the Jacob’s ladder of functionals (Figure 2.1).171 The simplest and 

lowest “rung on the ladder” is the local density approximation (LDA) class of 

functionals,170 which assumes the electron density across the molecule is uniform 
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and so the counterbalancing positive charge of the nuclei is spread evenly across the 

system. This was not an accurate representation of the charge distribution seen in a 

molecule and so the next “rung on the ladder” attempted to solve this. The first 

functional showing promising applications in describing experiment was the 

generalised gradient approximation (GGA),172 which applies the positive charge of 

the system to the electron density based on the gradient of electron density to 

account for the ununiform electron density present in a molecule. The next most 

sophisticated class of functionals is known as the meta-GGA (mGGA) functionals 

which attempt to improve upon the GGA class by including more non-local 

information in the charge distribution through the use of the second derivative of the 

electron density known as the Laplacian.173 This was built upon substantially on the 

final “rung” to be discussed with the development of hybrid functionals which added 

a fraction of the Hartree-Fock orbital dependent exchange to the GGA energy.174 

Today, the most commonly used functionals in chemistry are hybrid functionals, 

namely B3LYP175,176 and the Minnesota class of functionals such as M06-2x.177  
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Figure 2.1 Jacob’s ladder approach for the systematic improvement of DFT functionals. Figure reproduced from 
reference.178 

2.1.5 Atom-centred charges and Fukui Indices 

One calculated property of interest to the task of regioselectivity prediction is the 

calculation of atom-centred charges. In this area of study, the charge of each nuclei 

is partitioned based on the surrounding electron density, and a compound’s 

regioselectivity can be measured from this distribution of atomic charge. A 

commonly used example of atom-centred charge calculations is Mulliken charges,179 

which calculates the partial atomic charge of an atom and its contribution to the 

overall charge of the molecule, based upon the linear combination of atomic orbitals. 

One of the charge methods used in this work is Hirshfeld charges,180 which defines 

the charge contribution q of atom X as: 

 
qX = ZX − ∫

ρ0
X
(r)

ΣYρ0
Y
(r)

ρ(r)d𝐫 (2.22) 
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where 𝑍𝑋 is the atomic number of the element 𝑋, 𝜌 is the molecular density 

and 𝜌0
𝑋

 is density of 𝑋 as an isolated atom. This approach to the partitioning of 

atomic charge is less dependent on the choice of basis set compared with Mulliken 

charges.  Another charge method used in this work is the atomic dipole-corrected 

Hirshfeld charge (ADCH),181 which account for the deficiencies of Hirshfeld charges 

by including the atomic dipole moment of each atom in the calculation. 

Another calculated property of interest to this work are Fukui indices. These Fukui 

indices are based on the Fukui function182 which describes the change in electron 

density at a given position when the number of electrons has been altered: 

 
𝑓(𝑟) =  

𝜕𝜌(𝒓)

𝜕𝑁
 (2.23) 

where 𝜌 is the electron density and 𝑁 is the number of electrons in the system. This 

corresponds to the change in reactivity of the molecule at a point in space due to 

alteration of the frontier orbitals, namely the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO). Since the focus of 

predicting site selectivity is investigating the difference in reactivity on an atom-by-

atom basis, the condensed Fukui function describes the change in electron density 

around each atom and their contributions to the change in overall electron density. 

The charge scheme used for this calculation is known as the finite difference method, 

where the electron density of the system is calculated upon addition and removal of 

an electron and the change in each atomic charge to balance the system is given by 

the following: 
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 𝑓𝜈,𝑁
+,𝛼 = 𝜌𝜈,𝑁+1

(𝛼)
− 𝜌𝜈,𝑁

(𝛼)
 (2.24) 

 𝑓𝜈,𝑁
−,𝛼 = 𝜌𝜈,𝑁

(𝛼)
− 𝜌𝜈,𝑁−1

(𝛼)
 (2.25) 

 
𝑓𝜈,𝑁

0,𝛼 = 
1

2
(𝜌𝜈,𝑁+1

(𝛼)
− 𝜌𝜈,𝑁−1

(𝛼)
) (2.26) 

where 𝜌𝛼 describes the electron density around atom 𝛼 and 𝑓𝜈,𝑁
+,𝛼, 𝑓𝜈,𝑁

−,𝛼, and 𝑓𝜈,𝑁
0,𝛼 

correspond to the atom’s susceptibility to nucleophilic, electrophilic and radical 

attack respectively. This atom-centred property could prove useful in the prediction 

of regioselectivity. While studies have shown varying success in the prediction of site-

specific reactivity depending on the division of electron density throughout the 

molecule,183 its’ efficacy will be considered in this investigation.  

2.1.6 Transition State and Frequency Calculation Procedure 

The above methods describe the calculation of the energy of the system based on 

the construction of the molecule and consideration of the interaction terms that 

contribute to the overall energy. In order to locate either the optimised geometry or 

a transition state, the energy is computed for a given conformation and the force is 

calculated: 

 𝐹 = −
𝑑𝐸

𝑑𝑹
   (2.27) 

where 𝑅 is the interatomic distance for each atom in the molecule. This force 

describes the nature of the potential energy surface (PES), the multi-dimensional 

relationship between bond lengths and angles and the corresponding energy. The 

number of dimensions of the potential energy surface is 3𝑁 − 6 where 𝑁 is the 
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number of nuclei. This corresponds to all of the vibrational modes the molecule 

possesses. The force gives the gradient of the slope at a particular point on the PES 

and informs the QM software package of the alterations in geometry required to 

locate a stationary point on the surface, where 𝐹 = 0. This procedure is followed for 

the location of both minimum energy conformations as well as transition states. 

When determining the nature of the stationary point, the vibrational frequencies ν𝑘 

and vibrational modes 𝜼𝑘 are given by the eigenvalue equation: 

 �̃�𝜼𝑘 = λ𝑘𝜼𝑘   (2.28) 

where �̃� is the mass-weighted Hessian: 

 

�̃�𝐼𝐽 =
𝟏

√𝒎𝑰𝒎𝑱
∇2𝐸(𝑹∗) =  

[
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   (2.29) 

where 𝑛 corresponds to each of the nuclear coordinates. The eigenvalues of the 

molecular Hessian are then directly related to the vibrational frequencies through 

the below: 

 

ν𝑘 = 
𝜆𝑘

1
2

2𝜋
   (2.30) 

where 𝜆𝑘 represents a given eigenvalue in the matrix. In order to determine the 

nature of the stationary point the inertia of the matrix can be used: 

 
In(𝑴) =  [𝜋(𝑴), 𝜈(𝑴), 𝛿(𝑴)]   (2.31) 
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where matrix 𝑴 is equal to a list of the number of positive eigenvalues 𝜋, the number 

of negative eigenvalues 𝜈 and the number of zero eigenvalues 𝛿. For 𝑛 vibrational 

modes, a minimum on the PES has an inertia of [𝑛, 0, 0], meaning zero negative and 

zero eigenvalues. For a maximum on the PES, the inertia is [𝑛 − 𝑘, 𝑘, 0] where 𝑘 is 

the 𝑘𝑡ℎ order saddle point. For a transition state where the surface is negative in one 

direction (the direction corresponding to the reaction coordinate) and positive in all 

other directions and so 𝑘 = 1. The single negative eigenvalue gives an imaginary 

frequency and so the presence of this frequency in the calculation output can be used 

to determine whether the optimisation has converged to a TS. 

2.1.7 Solvent Models and Other QM Calculation Techniques 

When modelling experiment, the choice of solvent may have a large impact on the 

favoured reaction pathway. Since these solvents interact with the substrate, they 

may redistribute electron density across the molecule leading to a difference in the 

prediction of the most favourable product when compared to the calculation of the 

substrate in a vacuum. This can be accounted for in QM calculation through the 

addition of solvation models. There are two types of solvation models, implicit and 

explicit. In explicit solvation models, solvent molecules are directly added into the 

system being calculated and are allowed to interact with the substrate. These models 

are more accurate than implicit methods but come at the cost of increased 

computational expense and as such are typically reserved for less intensive QM 

methods such as molecular dynamics and molecular mechanics. Implicit solvent 

models aim to approximate the interactions between solvent and the molecule of 
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interest by applying a correction to the energy by adding a continuously polarisable 

medium of a given dielectric constant to represent the interactions between solvent 

and solute.184 One such example of an implicit solvation model is the solvation model 

based on density (SMD) method. In this model, the interaction between the dielectric 

constant of the solvent and the full electron density of the solute is measured to 

calculate the solvation energy of the system.185 

There are other processes used in QM methods that are used to refine the energy 

calculation procedure. When performing a geometry optimisation or transition state 

search, it is common practice to use a smaller basis set to perform the optimisation 

procedure followed by the calculation of the energy of the system using a larger basis 

set. This method reduces the computational expense compared with full 

optimisation with the larger basis set (considering the large number of SCF cycles 

typically required to perform the optimisation) and it is assumed that the difference 

in optimised conformation between basis sets is negligible. The subsequent larger 

basis set energy calculation then more accurately represents the total energy of the 

system. If this process is used, it is denoted by a “//” between the methods used, 

with the optimisation level of theory preceding the dashes and the energy calculation 

level of theory appearing after. 
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2.2 Machine Learning 

 

In this section, we discuss the various machine learning techniques employed in this 

work and some of the descriptor sets used in the generation of these models.  

2.2.1 Classical QSAR Modelling Methods 

The first applications of machine learning in chemistry attempted to predict 

molecular properties through the relationship between the compound’s structure 

and its activity, known as quantitative structure-activity relationship (QSAR).186 This 

approach is prevalent in drug discovery since in this area a drug is typically designed 

around its conformation and therefore its binding ability to the target receptor. 

Therefore, information garnered about the molecule’s shape, size and varying local 

environments provide insight into its interaction with the receptor. QSAR models 

attempt to either predict a quantitative property (such as binding affinity) in a 

regression-based task or categorial value (such as site-specific metabolism) in a 

classification-based model. Model training utilises datasets split into training, 

validation and test sets. In the training set, the predicted variable is shown to the 

model so that the relationship between it and the molecular properties can be 

learned. In the validation set, the parameters of the model are tuned to predict the 

output variable on a different set of compounds, improving generalisability. In the 

test set, the real output variable value is withheld, and the model must give a 

prediction on the compounds in the set. The prediction accuracy is then measured 

against the real output value to assess the model performance. There are a variety 



43 

 

of different methods used to identify the relationship between structural properties 

and activity, some of which are outlined below. 

Linear Regression 

Regression modelling estimates the linear relationship between the dependent 

variable and independent variable by finding a suitable fit between the data points 

(Figure 2.2)187. 

 

Figure 2.2 The relationship between the dependent variable (y) and the independent variable (x). The 
deviations of the data points (red) to the fit are due to other factors influencing the dependent variable not 

captured in x. Figure reproduced from reference.188 

 

If 𝑦 is the experimentally observed dependent variable and 𝑥 is the descriptor, then 

the equation of the straight line relating these two variables is: 

 𝑦 = 𝑏 + 𝑎𝑥 +  𝜖 (2.32) 
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where 𝑏 is the intercept, 𝑎 is the slope of the regressor gradient and 𝜖 is the error 

term known as the residuals. The slope and intercept are evaluated to minimise the 

error term which is the difference between the regressor prediction and the actual 

datapoint. The values of 𝑎, 𝑏 and  𝜖 are given by the following: 

 
𝑎 =  

∑ (𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦𝑁
𝑖=1 )

∑ (𝑥𝑖 − 𝑥)2𝑁
𝑖=1

 (2.33) 

 𝑏 = 𝑦 − 𝑎𝑥 (2.34) 

 𝜖 = y − �̂� (2.35) 

where 𝑁 is the number of data points, x and y represent the means of the 

independent and dependent variables and �̂� is the predicted value of y. This 

modelling technique is known as simple linear regression and only accepts one 

descriptor as a possible dependent variable. In the case of QSAR modelling, multiple 

linear regression is employed by including the many different descriptor categories 

found in chemistry to estimate the weighted contributions of these independent 

variables to the dependent variable: 

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯+ 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖  (2.36) 

where 𝛽0 represents the intercept of the regressor, 𝜀𝑖 describes the disturbance 

term, a variable which captures all factors influencing the dependent variable 𝑌𝑖 

other than 𝑋𝑖p; 𝛽1 … 𝛽p describe the regression coefficients for 𝑝 datapoints where 

𝑖 = 1…𝑝. Therefore, 𝑌𝑖 is the contribution of data points 𝑖 to the regressor’s fit. 

Linear regression modelling is one of the simplest forms of machine learning 

techniques and is typically used as a benchmark for other methods to improve since 
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other methods can gain a greater understanding of the commonly non-linear 

relationships seen between descriptor and output. 

Random Forests 

Random forests modelling189–191 is an ensemble technique that constructs a number 

of decision trees and aggregates the results of these trees in either a regression or 

classification task. Ensemble techniques are a powerful tool in machine learning 

where a number of “weak” models are trained on the same predictive task. These 

weak models may each have poor predictive ability through underfitting to the 

training data (known as bias) or a poor generalisability to unseen data through 

overfitting (known as variance). The aggregation and blending of each of these 

models’ outputs aims to properly fit the training data to improve predictive accuracy 

and improve model generalisability by balancing bias and variance. This can be done 

through a technique known as bagging or bootstrap aggregating, whereby the 

random selection of features used to train each weak model can identify the subtle 

relationship between some features and the output. This singular model in isolation 

would give poor model performance, however, the aggregation of the patterns these 

models identify can be used to learn the full relationship between all input features 

and the output value. In Random forests modelling the weak models used are 

decision trees. Decision trees192,193 consist of a series of junctions where a descriptor 

value is used to learn the relationship between it and the output variable. For 

example, if an input descriptor is the compound’s Log P, the junction or node in the 

tree may consist of a specific Log P value. Therefore, when training the tree, the 
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compound’s properties are probed at each junction and then related to the output 

variable. An example decision at a particular junction may be “all compounds that 

are active have a Log P value of greater than 5”. Different descriptors are employed 

at different decision points throughout the tree and the model is considered trained 

when the values used at each decision point accurately predict the output variable 

within a certain threshold. Random forests generate a number of decision trees with 

a subset of randomly chosen descriptors used at each decision point and combine 

the predictive output to assess the majority vote. Doing so removes the possibility of 

overtraining, a problem whereby the model training set performance improves at the 

expense of generalisability to the test set.194–196 In regression tasks, the mean 

predicted value of the decision trees is given as the random forest output. In 

classification tasks, the class selected by the greatest number of trees is the random 

forests predicted class. This method is still commonly used today, with its 

performance across different datasets and tasks being benchmarked against other 

machine learning methods. 

XGBoost 

Gradient boosting is a machine learning technique which utilises “weak” learners 

such as decision trees and an additive model which combines the results of the weak 

learner models to minimise a loss function and inform the shape and size of the next 

weak learner in an iterative process. This approach is known as functional gradient 

descent and acts to maximise single model performance rather than employ an 

ensemble approach of randomly generated “weak” models such as random forests.  
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In the case of XGBoost,197 decision trees are used as the “weak” learner and the first 

step is an initial prediction of tree shape/depth. At the end of the tree (known as the 

leaves), the similarity between compounds in the same leaf is calculated. The second 

tree builds upon this result by altering the descriptors and threshold values at each 

node of the tree. This new tree then has similarity calculated at each leaf and the 

gain in similarity from the previous tree is assessed. This process is repeated until the 

algorithm converges on an optimal decision tree structure where no additional gains 

in performance can be obtained. XGBoost has techniques built within the algorithm 

to avoid overfitting to the training data, such as pruning a “branch” of the tree where 

the gain in similarity between compounds is too small to reach a certain threshold 

(known as tree complexity parameter or gamma).  

XGBoost is often regarded as an improvement on random forests modelling since it 

takes a non-random and repeatable approach to generating the best tree structure 

and node features. When making predictions, this method uses weighted 

contributions of each tree's predicted value based on its performance, rather than 

the average predicted value given by random forests. 

Gaussian Processes 

Gaussian processes (GP) use a Bayesian probabilistic approach to inference whereby 

a prior probability distribution of an unknown function is assumed and then this 

distribution is updated (Figure 2.3) to generate a posterior distribution for functions 

that fit the observed data for the training points. 
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Figure 2.3: Random samples from (a) prior distribution of functions and (b) posterior distribution of functions in 
a one-dimensional example. Functions from the posterior distribution are conditioned to pass through the 

training points shown by crosses. 

 

Gaussian process modelling places a distribution (known as a prior) over the function 

that fits the training points. If the descriptors are seen as a set of vectors, then the 

prior for the function that fits them is a multidimensional distribution with zero mean 

and covariance matrix Q that depends on these descriptor vectors (i.e. each 

descriptor pair has a covariance). The components of this matrix Q are given by the 

Gaussian covariance function 𝐶(𝑥𝑛𝑥𝑚), which is used to define the distance between 

each element in the input (i.e. the similarity between molecules). An example of a 

covariance function is given below: 

 

𝐶(𝑥𝑛𝑥𝑚) =  𝜃1𝑒𝑥𝑝 [−
1

2
∑(𝑥𝑛𝑖 − 𝑥𝑚𝑖)

2

𝐾

𝑖=1

𝑟𝑖
2⁄ ] + 𝜃2 (2.37) 

 

where 𝑥𝑛 and  𝑥𝑚 are different points in the training data, 𝜃1, 𝜃2, 𝑟𝑖 and  

𝑖 = 1…𝐾 are hyperparameters. 𝑟𝑖 is a set of length scale parameters; one for each 
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descriptor. If 𝑟𝑖 is small, it represents a descriptor that has a strong influence on the 

observed property. The covariance function serves to determine the relationship 

between each descriptor and the output variable. Different covariance functions 

(also referred to as a kernel) may be applied to different data types to determine the 

shape of the prior and posterior distributions and hence can be altered to influence 

predictive performance. This method means that when trained, a new input 

compound 𝑦′ with a new descriptor vector 𝑥′ is presented to the model (𝑦′ = 𝑦(𝑥′)), 

prediction confidence can be obtained in the form of a Gaussian distribution with 

mean (2.38) and variance (2.39): 

 𝜇 =  𝑘𝑇(𝑄 + 𝜃3𝐼)
−1𝑌 (2.38) 

 𝜎2 =  𝜅 − 𝑘𝑇(𝑄 + 𝜃3𝐼)
−1𝑘 (2.39) 

 

where the vector 𝑘 with components 𝑘𝑛 =  𝐶(𝑥𝑛𝑥𝑚)describes the similarity of new 

molecules to that of the training set, 𝜅 =  𝐶(𝑥′, 𝑥′) and 𝜃3 represent the variance in 

the assumed noise in the data and Y is the property output value. The mean of the 

Gaussian distribution is taken as the predicted property for the new molecule 𝜇. The 

standard deviation 𝜎 of this distribution is a measure of the uncertainty in the 

predicted value and can be used as an indicator of how different the new molecule 

𝜇 is in descriptor space from the training data. If 𝜎 is large it shows the new molecule 

is well outside the descriptor space of the training data and hence the uncertainty is 

greater. 
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Each of the hyperparameters 𝛩 (2.40) are learned from the training data. To ensure 

the function is smooth, the most probable set of hyperparameters is chosen, by 

finding the maximum of the log marginal likelihood. This also ensures that the model 

is not over-trained as a compromise between curvature and level of fitting is 

achieved. Gaussian processes modelling is known for having a greater extrapolation 

ability compared to random forests methods due to its smoothing of the fitting 

between training points. 

 𝛩 = {𝜃1, 𝜃2, 𝜃3, 𝑟𝑖, 𝑖 = 1…𝐾} (2.40) 

   

2.2.2 Graph Neural Networks 

In this section, we discuss the more recent advances of machine learning in chemistry 

centred around graph neural networks. This approach is distinctly different from 

other methods previously mentioned and the graph representations of compounds 

used appear to be readily applicable to the structures seen in chemistry. 

Instead of using descriptor values to encode a particular compound as seen in 

previous modelling methods described, graph neural networks take the molecule 

structure itself as a direct input (Figure 2.4).  
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Figure 2.4: Graph representation example of methylbenzene. Figure reproduced from reference.198 

 

Since graphs are built upon nodes and edges this is readily translated to molecules 

where atoms are represented as nodes and bonds are represented as edges. This 

structural representation allows a greater understanding of the relationship between 

the predicted value of interest and the structural connectivity that gives rise to the 

observed value. 

Neural network architecture is inspired by the interconnectivity of the human brain 

(Figure 2.5) and is designed to gain an understanding of the interconnectivity 

between different features and the output value. The nodes or “neurons” in the 

network are typically split into layers, an input layer where the raw feature data is 

loaded into the network; hidden layers where a number of mathematical operations 

may be performed on the data to transform it and learn the non-linear relationships 

between features; and the output layer where the learned relationship is utilised to 

give the output value. During training, the weights and connectivity of each node in 

the hidden layers are altered to minimise a loss function. Seminal work on the neural 

network architecture by Hopfield in 1982 led to the development of the Hopfield 
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Network, a form of recurrent network with the ability to store and recall patterns in 

data. This was initially applied in image recognition tasks and its’ memory retrieval 

abilities mimic the structure of the human brain.199 This led to the award of the 2024 

Nobel Prize in Physics for the foundational work that led to the advancements in the 

application of neural networks in machine learning. 

 

Figure 2.5: Basic neural network architecture. 

 

Recent advances in neural networks200 utilise a concatenation of different neural 

network architectures to provide greater predictive performance in the chemistry 

field, namely chemical property prediction. Alongside the use of a graph 

representation of each compound in the input, the graphs can be featurised further 

with QM descriptors that provide more information on the properties of each node 

in order to gain a greater understanding of the compound’s activity. The use of a 

directed message parsing neural network in the ChemProp200 modelling package 

serves to pass information about the atom/bond’s local environment to generate 

local embeddings, giving the model a greater understanding of the other factors 
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influencing a particular atom’s reactivity. These local embeddings are then combined 

to generate a molecular embedding where all these atom-bond relationships are 

used to infer the output variable (Figure 2.6). This neural network approach has 

shown great promise in molecular property prediction tasks given a large enough 

dataset size. Published applications of the use of this model architecture include the 

development of a novel family of antibiotic structures. In this work, structures of 

known antibiotic compounds were given to the model and trained upon these 

compounds' ability to inhibit the growth of Staphylococcus aureus, a key contributor 

to the concerns of antibiotic resistance, namely methicillin-resistant S. 

aureus (MRSA), as well as vancomycin-resistant Enterococcus.201 This model was then 

used to predict the likelihood of inhibition of these bacteria on 283 novel 

compounds. Of these 283 compounds, one was found to show highly promising 

antibiotic activity across both of these strains of bacteria while avoiding resistance in 

in-vitro experiments. Another group used ChemProp to predict antibiotic activity 

against an array of different bacterial strains and found that one compound, halicin, 

was structurally divergent from other commercially used antibiotics and had activity 

against Mycobacterium tuberculosis and carbapenem-resistant 

Enterobacteriaceae.202 Lastly, another group has successfully trained ChemProp on 

41 different ADMET datasets to predict these important pharmacological metrics 
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faster and more accurately than any other tool previously developed, with one 

million compounds predicted in just 3.1 hours.203  

 

Figure 2.6: ChemProp neural network architecture. Figure reproduced from reference.200 

 

2.3 Related Work in Prediction of C-H Functionalisation 

Regiochemistry 

 

Some exploratory work has been published on understanding and modelling this 

reaction in the past. Duan et al. recently published a paper detailing the behaviours 

of some of the carbon radical species typically found in this reaction, where the 

primarily used ·CF3 radical was said to display electrophilic properties, while the 

second most common ·CF2H radical was found to display nucleophilic behaviour on 

select examples tested with both computational and experimental methods.204 Since 

the differences in electrophilicity are subtle, atom-centred charges are insufficient to 

predict the correct site of reaction for a given substrate consistently and accurately. 

Instead, the interactions between the radical singly occupied molecular orbital and 

the substrate’s highest occupied and lowest unoccupied molecular orbitals were 
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used, requiring a high level of computational cost (M06-2X/6-311+G(d,p)//SMD-

M06-2X/def2-QZVPP). Since the level of computational cost is high for these 

calculations, especially on complex aromatic drug-like species, other methods of 

prediction warrant investigation.  

Li et al. employed machine learning to predict the regiochemistry of this reaction,119 

focusing on relatively simple substituted heteroarenes. A random forest was trained 

on molecules represented by descriptors with a physical organic basis, such as bond 

orders, partial atomic charges and buried volume, computed from B3LYP/6-

311+G(2d, p) calculations. The regioselectivities predicted by the random forest were 

compared to those computed from DFT free energy barriers (calculated at the M06-

2x/def2-TZVP level) of the competing radical additions, with encouraging results; a 

site accuracy of 94% and a selectivity accuracy of 90% were achieved on out-of-

sample test data. Nippa et al. employed a combination of automated nanomolar 

high-throughput experimentation, literature data and graph neural networks to 

predict Minisci-type chemistry.205 This machine learning approach was used 

to explore the substrate landscape and led ultimately to the synthesis of 30 novel, 

functionally modified molecules. Hyek et al. utilised a graph neural network 

featurised with Fukui indices206 and supplementing node featurisation with transfer 

learning from 13C NMR shifts.207 They saw promising results with an accuracy of 96% 

and an area under the receiver operator curve (AUROC) of 0.75. However, the task 

was predicting the atom-wise probability of functionalisation and labelling groups of 

sites as potentially labile rather than the prediction of the most reactive site. 
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In cases where there are insufficient experimental data and/or empirical sampling is 

prohibitively expensive, quantum chemical calculation, at an appropriate level of 

theory, offers a means of data generation in a rapid and cost-effective manner. 

Automated procedures for locating transition states enable calculations at a scale 

and with a generality which has not previously been readily achievable. One example 

is the program, autodE, which is an open-source tool that can locate transition states 

and minima, in order to provide a full reaction energy profile with minimal human 

intervention.208 This is done by generating molecular graphs of each of the reactant 

and product structures and then finding the active bonds (or edges in the graph) that 

are changed between each structure. Then a series of constrained optimisations are 

performed along the path between reactants and products to locate the saddle point 

region, generating the transition state guess. This guess is fed into an unconstrained 

transition state search, using the optimisation algorithms in the quantum chemistry 

package of choice selected by the user. Another example, from Friesner et al., utilised 

a similar workflow to automate transition state searches given known structures of 

separated reactants and products.209 The combination of machine learning 

approaches and databases derived from quantum chemical calculations is proving to 

be powerful. For example, machine learning models have been used to predict the 

electronic energy and the free energy of small organic molecules, with a mean 

absolute error of 1.2 kcal mol−1.210 
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2.4 Application of Theory in this Work 

 

In this research, we will utilise quantum chemical calculation at varying levels of 

theory to find a relationship between calculated properties and the experimentally 

observed regioselectivity for this C-H functionalisation reaction. With the chosen 

calculated property, we will then generate an artificial dataset of calculated 

regioselectivities for a wide array of compounds that will be used to build machine 

learning models to predict this regiochemistry on unseen examples. 
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Chapter 3  -  Regioselectivity 

Prediction 

 

3.1  Introduction and Methods 

 

In this chapter, we explore the different methods attempted for predicting 

regioselectivity. One approach is to investigate whether there are inherent features 

of the site of reaction that make it more susceptible to radical attack. This can be 

probed with the calculation of atom-centred charges on the substrate. In this 

method, a potential site of reaction may be more electron-rich or electron-deficient 

that other possible sites within the molecule, making it more susceptible to 

electrophilic/nucleophilic attack in its neutral state. Another possible method of 

study in this domain previously discussed is the analysis of the condensed Fukui 

function for the molecule through calculation of the Fukui indices at each potential 

site of reaction. In this method the site’s propensity to gain/lose an electron is 

assessed rather than directly measuring the charge state of the nuclei alone.  For the 

initial investigation, atom-centred charges were calculated for each compound in a 

benchmark set with experimentally validated regioselectivity information to 

understand whether there was an observable trend between the most likely site of 

reaction and that site’s atomic charge. 
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Another approach is to understand the electronic and steric features of the transition 

state at each potential site of reaction that makes a particular site more conducive 

to radical attack. Examples of these features may be the diffuseness of the molecular 

orbitals of the substrate; understanding the susceptibility of a molecule’s HOMO or 

LUMO orbitals to electrophilic/nucleophilic attack at a given site; or the 

conformational reorganisation needed to expose a particular site to radical attack. 

This can be probed by the location of the transition state and subsequent calculation 

of the activation energy of the addition of the carbon-centred radical to each 

potential site of the reaction. This method has been previously used to predict 

behaviour for a number of different reaction classes including nucleophilic aromatic 

photosubstitution.211 Since the rate-limiting step for this C-H functionalisation is the 

addition of the carbon-centred radical to the heterocycle, the activation energy for 

this addition is calculated using quantum chemistry methods and the lowest 

activation energy site is compared with the experimentally observed site of reaction. 

The difference in activation energy between transition states at each potential site 

of reaction can then be used to estimate the regioisomeric ratio of products  

(Figure 3.1).  
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Figure 3.1: Site selectivity is determined by activation energy. 

 

 

 

 

 

 

 



61 

 

3.2 Results and Discussion 

Below we explore the results of the investigations into these approaches applied to 

the sulfinate-mediated C-H functionalisation reaction of interest.  

3.2.1 Atom-Centred Charges 

The first approach attempted was calculating the atom-centred charges on one of 

the ten fragments (Figure 3.2) using the Gaussian 16 software package.212 These 

compounds were gathered from a single source in literature119 and were selected 

due to the increased confidence in experimental validity and their small size, enabling 

rapid calculation of these properties. In these calculations the geometry of the 

fragment was obtained from a M06-2X/def2-TZVP optimisation and single-point 

calculation of the structure. The predictive capabilities of two different methods 

were assessed, Hirshfeld charges and ADCH, which account for the deficiencies of 

Hirshfeld charges by including the atomic dipole moment of each atom in the 

calculation.181 In the first experiment, both Hirshfeld charges and ADCH showed that 

the most electrophilic carbon atom (most positive carbon) was the site that was 

attacked by the radical in experiment. This result led to the calculation of the charges 

on the rest of the ten compounds in the set.  
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Figure 3.2 Set of 10 compounds used for the initial regioselectivity investigation. 

 

The preferred site of reaction was predicted based on the most positively charged 

carbon atom, using the Hirshfeld charges, and in an independent prediction, using 

ADCH charges. Both Hirshfeld charges and ADCH were able to predict the preferred 

site of reaction in the set, with ADCH predicting ten out of ten compounds correctly 

and nine out of ten predicted by Hirshfeld charges. The promising results of this 

preliminary investigation suggested that the charge descriptor should be tested 

further on drug-like compounds. To reduce the cost of the generation of these 

charges further, the geometry used to calculate the atom-centred charges was also 

optimised using Hartree-Fock with an M06-2X/def2-TZVP single point calculation, 

probing the dependency of the prediction on input geometry. 
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A set of 16 compounds (Figure 3.3) was taken from experimental papers213 and the 

compounds were chosen based on a few criteria; the compound must have more 

than one possible site of reaction and the experimentally observed site must be 

known exactly (some compounds show substitution is isolated to a ring and not a 

particular site which is undesirable in this test). The results of this investigation firstly 

showed that the qualitative predicted site was invariant to HF/6-31G* and M06-

2X/def2-TZVP input geometries. Secondly, ADCH did not predict the correct site of 

reaction in drug-like molecules accurately. The observed site was commonly far from 

the most positively charged carbon in the compound and it seemed to represent the 

aromatic heterocycles present in these molecules as significantly polarised. 

Therefore, we do not consider ADCH further. However, Hirshfeld charges proved to 

be accurate in their prediction of site of reaction, with seven of the 16 compounds 

correctly predicted by this charge method. Of the remaining nine compounds, 

Hirshfeld charges predicted four sites that were only very slightly more positively 

charged than the experimental site which was the second most positive.  

Incorrect predictions in this set can be separated into two categories, predicting a 

site within a different ring system to the experimental site and predicting a different 

site within the correct ring in the compound. Examples of the first error include 

compounds 12, 17 and 19 and the second error is compound 20. Charge predicted 

sites seem to be focused on the most nitrogen-rich heteroarenes and the preferred 

site is directly adjacent to a nitrogen atom in the ring. This behaviour is predictive of 

experiment in compounds with one heteroarene and one other aromatic ring in the 

system. However, it may fall short in compounds where two heteroarenes are found. 
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More testing was needed to probe whether charge predictions favour 5-membered 

or 6-membered heteroarenes when both instances are seen in a molecule and fully 

assess whether this charge method was predictive across a wide chemical space. 

However, considering this set of compounds contained a more diverse array of 

structures (compound 26), and some structures contained multiple heteroarenes 

(compound 12) with multiple viable sites of reaction, the results of this investigation 

were promising although this needed further evaluation on more drug-like 

compounds.  

The applicability of Hirshfeld charge as a descriptor of regioselectivity prediction was 

also probed further by testing on a wider variety of compounds. To generate this new 

set of compounds, the review by Njardarson and co-workers214 provided a list of the 

most used 5-membered and 6-membered nitrogen-containing heterocycles in drugs 

on the market. The compounds in this next set displayed atypical regioselective 

behaviour compared to the other compounds previously tested and therefore were 

used to assess the capability of Hirshfeld charges to predict the correct site of 

reaction in these more unusual cases.  
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Figure 3.3 Set of 16 drug-like compounds (a-p) used to evaluate Hirshfeld charge as a predictor of 
regioselectivity. Colour-coded sites are the positions where substitution occurs in experiment. Green sites are 

where the most electrophilic carbon atoms are the experimental sites of reaction, yellow is when the 
experimental site is the second most positive and red is when the experimental site is third most positive or 

lower. Sites in bold are the most positively charged sites and therefore the charge-predicted sites. 

 



66 

 

As shown in Figure 3.4, Hirshfeld charge was a poor descriptor for prediction of 

regioselectivity of this benchmark set. In many of these compounds, substitution 

does not occur at the position ortho to an aromatic nitrogen atom, unlike previous 

examples in other compound sets. Therefore, the atom-centred charge predictions 

which typically favour these ortho sites do not accurately predict experiment when 

other substitution patterns are observed. For example, 32 shows that when a carbon 

atom ortho to an aromatic nitrogen atom is available, Hirshfeld charges predict that 

substitution will occur in this position. However, experiment shows that substitution 

occurs in a different ring in this bicyclic system. Another example is compounds 35 

and 36, where Hirshfeld charge has a high level of confidence in its prediction that 

substitution occurs ortho to the nitrogen in the ring when experiment shows the site 

of reaction is adjacent to the carbonyl. Compound 37 shows other typical Hirshfeld 

prediction patterns that do not apply to this set. Other experimental sets show that 

when an aromatic carbon atom is available between two aromatic nitrogen atoms 

substitution occurs at this position. Hirshfeld charge depicts this site as noticeably 

more positively charged and so is the predicted site of reaction. However, in this 

example, we see that substitution does not occur between these two nitrogen atoms, 

nor ortho to the other nitrogen atom in the five-membered ring, but meta to the 

nitrogen atom in the 5-membered heterocycle. This means that both the most 

positively charged and second most positively charged sites in the compound were 

not the experimentally observed site of reaction which indicates that atom-centred 

charges in a compound are not the only contributing factor to the selectivity of this 

reaction. Another method of regioselectivity prediction was required, sensitive to 
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both typical ortho to aromatic nitrogen and atypical regioselective behaviours seen 

in experiment. 

 

Figure 3.4 Benchmark set of 18 compounds (a-r) used to evaluate Hirshfeld charge’s regioselective predictions. 
The structures give the experimentally observed site of reaction and the charge predicted site is given by the 
position of the charge (e) on the compound. The number corresponds to the difference in charge between the 
first and second most positive sites, with colour coding indicating confidence. Green represents a difference of 
0.1 or greater, yellow between 0.01 and 0.09 and red is 0.009 or below, showing very little confidence. The blue 
circle then represents the second most positively charged site in the compound. 
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3.2.2 Activation Energy 

Since it was apparent that more information about the site environment need be 

captured than the pure electronic information contained within atom-centred 

charges, the use of calculated activation energy as a descriptor to predict 

regioselectivity was evaluated. This descriptor focuses particularly on the rate-

limiting step of the reaction and accounts for both the electronic environment of the 

site of interest but also the sterics of the surroundings and any conformational 

changes that may need to occur for the site of reaction to be sufficiently exposed to 

radical attack. This additional information may allow activation energy to be more 

capable of predicting other substitution patterns and more accurately replicate the 

experimental behaviour of this reaction compared to Hirshfeld charges.  

We began with an assessment of the quantum chemical method that offers the best 

balance of accuracy and cost for our purposes, using a preliminary dataset, collated 

from the literature, for which there are experimental data on the position of 

substitution by one of three carbon radical species, ·CF3, ·CF2H and ·CF2Me. The 

dataset comprised 10 relatively small compounds and 26 sites of reaction  

(Figure 3.5). Activation energies were computed with the NWChem software 

package215 at the AM1, Hartree-Fock (HF) and DFT (M06-2x/def2-TZVP) levels. These 

energies were used to calculate regioselectivity ratios and compared with 

experimentally observed regioselectivity. The functional and basis set for the DFT 

calculations were selected based on the findings of St. John et al.,216
 where the 

performance of many different functional and basis set combinations was assessed 
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in the energy calculations of radical organic species. In this study M06-2x/def2-TZVP 

was shown to give the smallest error with the least computational cost of many 

functional/basis set pairings when compared to much more costly coupled cluster 

calculations in the simulation of homolytic carbon bond formation, and so this 

functional/basis set was selected for our investigative work. 

Figure 3.5 shows the predictions of each method on the 10 compounds. AM1 shows 

poor predictive ability especially on protonated pyridine and pyrimidine species, with 

the difference between the lowest activation energy site and experimental site 

commonly being greater than 2 kcal mol-1. Hartree-Fock showed promising results in 

regioselectivity prediction, with eight out of the ten compounds correctly predicted. 

Of the two incorrect predictions, compound 52 was incorrect by 0.4 kcal mol-1 

between the lowest energy site and experimental observation. This prediction, based 

on a ratio close to 1:1 for the lowest activation energy site and second lowest site, is 

understandable, as multiple products are observed in experiment. The other 

incorrect prediction of compound 54 occurs for a moiety which is an outlier in the 

set. However, more testing was needed to understand whether this prediction was 

anomalous or whether Hartree-Fock was unable to predict these bicyclic 

heteroarene systems. 
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Figure 3.5 Activation energies (kcal mol-1) for each site in the preliminary set of ten compounds. Experimental 
regioselectivities are given by grey dots on the structure. Colour coding corresponds to how well the method 
agrees with experimental observation (given by the Obs column), where green boxes show the method agrees 
with experimentally observed major product, yellow boxes are when the experimentally observed major product 
is within 1 kcal mol-1 of the lowest activation energy for that method. Red boxes are when the prediction is more 
than 1 kcal mol-1 different from the observed major product. 

 

DFT (M06-2x/def2-TZVP) showed the greatest accuracy in the prediction of 

regioselectivity of the C–H functionalisation reaction, with nine out of ten 

compounds correctly predicted. However, the computational cost of this approach is 

considerable, due to the multiple rounds of transition state searches required to 

obtain the transition state geometry. While convergence was slightly faster in the 

substituted pyrroles in Figure 3.5, the cost was still much greater than Hartree-Fock 

and the latter also gave the same correct qualitative prediction. In the M06-2x 

functional, the Hartree-Fock energy makes up 54% of the exchange energy.217 This 
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explains the similarity in predictive performance between the DFT and Hartree-Fock 

methods and the slight boost in performance over the already successful HF 

predictions, albeit at a significantly increased expense. 

After this preliminary investigation, our assessment of the performance of HF/6-

31G* was expanded to a larger set of more drug-like compounds, since these are the 

target for a final model. The compounds gathered from literature experimental data 

had greater complexity than those previously tested with more diverse steric and 

electronic properties around each potential site of reaction. Figure 3.6 shows the 

HF/6-31G* predicted regioselectivity well, agreeing with the literature reported 

qualitative site of reaction. Importantly, we see that compound 64 has a greater 

selectivity than compound 63, implying that the steric information on site availability 

is captured in this calculation. This is due to the additional steric hindrance at site 7 

in compound 64 provided by the adjacent N-methyl group compared to the N-H 

group adjacent to site 5 in compound 63. 
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Figure 3.6 Activation energies (kcal mol-1) for each potential site of reaction in the benchmark set and the 
experimentally observed ratios of each product. Green boxes indicate an agreement with experiment, yellow 
indicates a disagreement between activation energy and experiment but the difference between the lowest 
activation energy and correct site is within 1 kcal mol-1 and red when the difference between the lowest activation 
energy and experimentally observed product is greater than 1 kcal mol-1. Regioisomeric ratio calculated from the 
difference in activation energy between sites is also given. 

 

When extended further to a larger set of drug-like compounds, HF/6-31G* 

calculations proved to be predictive of experiment, achieving a 96% correct 

classification of the most likely site prediction for 23 drug-like compounds comprising 

68 sites. However, this level of accuracy was only achieved after re-performing some 

of the original syntheses in-house, for cases which initially appeared to be outliers, 
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using a consistent set of reaction conditions, as employed by Baran and co-

workers.140 

Important aspects of the literature experimental data include the conditions, e.g., 

solvent selection, reagent concentration, temperature, and pH, under which the 

reactions were performed, and the method used to determine the regioisomeric 

ratio. An acidic environment may alter the protonation state of the substrate. Since 

there are multiple sites of protonation, particularly in drug-like molecules, pH can 

influence the regioselectivity. Differences in solvent may change the nature of 

interactions between solvent and substrate, leading to increased or decreased 

lability of a particular site. In our experimental work, the ratio of regioisomers was 

determined using quantitative 19F NMR yields on the crude mixture and, where no 

literature spectroscopic data were available for a given regioisomer, purification via 

silica gel column chromatography was carried out to assign each isomer to the 

corresponding 19F NMR signal. 

To evaluate the efficacy of activation energy as a means of predicting experiment, it 

is imperative that good quality data is used and is even more critical when using this 

data to train a machine learning model. Thus, synthetic work was carried out on the 

outlier compounds (see section 7.2 for details) in the previous set to understand 

whether the (few) disagreements between our HF/6-31G* calculations and reported 

experimental data were due to a failure in the predictive ability of the activation 

energy method or due to one of the other factors mentioned above. Reaction 

conditions for the study were based on the original Baran papers,142 though since 
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mono-substitution is the focus of this research a second portion of the zinc sulfinate 

salt was not added if starting material remained after 24h. This removed the 

possibility of di- or poly-substitution, which would have otherwise precluded the 

ability to probe the innate regioselectivity of the unsubstituted compound.  

The first experiment was conducted on compound 72 following the above procedure 

rather than the acidic conditions used in previous literature. 73 shows that while 

previously substitution was reported to occur solely at site 5, under standard 

conditions it occurs at site 3. While the quantitative ratio prediction is not correct the 

qualitative depiction of the preferred site of reaction now agrees with calculation. 

This continues in 74, where previous literature reports functionalisation at site 7, 

whereas calculation predicts regioselectivity for the reaction at site 6 then site 9 

followed by site 7. After performing this reaction under standard conditions, we see 

agreement between experiment and calculation, where not only was the preferred 

site predicted correctly, but the next most favourable site was also predicted with 

trace amounts of 9-functionalised product seen in the crude mixture. Since this 

reaction shows strong dependence on reaction conditions, any machine learning 

models generated would predict a compound’s selectivity rather than reactivity with 

an understanding that the regioselectivity prediction is valid when performing the 

reaction under standard conditions. 
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Figure 3.7 Experimental regioselectivities of compounds that previously disagreed with calculation. The 
calculated activation energies and regioisomeric ratio are shown alongside the new experimentally derived ratio 
of regioisomers. The green shading indicates an agreement between experimentally observed and calculated 
ratio of products. 
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3.3 Activation Energy Calculations on other Drug-like 

Compounds 

 

 

Figure 3.8 Other drug-like compounds where activation energy was compared with experiment. 

 

When investigating the viability of activation energy as a predictor of regioselectivity 

on a series of drug-like compounds, there were other compounds tested that QM-

derived activation energies did not correctly predict. Figure 3.8 lists the compounds 

that did not agree with calculation. The reasons for the disagreements between 

calculation and experiment will be explained below. 
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Compound 75 failed to converge to a transition state on multiple attempts on each 

site of reaction. Compound 76 according to the literature was performed with 

sodium trifluoromethanesulfinate rather than zinc trifluoromethanesulfinate. The 

solvent system selected was also dimethylformamide rather than the biphasic 

mixture of dichloromethane and water used in the original discovery reaction 

methodology. Lastly, instead of TBHP, hydrogen peroxide was used in conjunction 

with FeSO4.7H2O. These conditions are noticeably varied from the original reaction 

scheme and any number of these changes could have a marked effect on 

regioselectivity prediction. Compound 77 was also performed using the sodium 

trifluoromethanesulfinate salt. This altered counterion could stabilise the 

intermediate of a different site of reaction and so give a different functionalised 

product compared to calculation. Compound 78 was performed using 

dichloroethane, water and dimethylsulfoxide alongside the use of the sodium 

derivative of the sulfinate salt. The solvent conditions in particular are crucially 

important in predicting regioselectivity with HF/6-31G* transition states. In 

compound 79, the reaction was performed with the addition of trifluoroacetic acid. 

Since there are many protonation sites within the molecule and it is difficult to 

deduce the correct site of protonation in the reaction, this protonation was not 

accounted for in the calculation. As such, regioselectivity prediction differed from 

experiment as it was proven that this dramatically affects regiochemistry. Compound 

80 was performed using the difluoromethanesulfinate salt rather than the 

trifluoromethanesulfinate diversinate typically used in other calculations. This 

change in the structure of the radical species in the rate-determining step can 
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dramatically influence the regiochemistry of the reaction. In this example, the 

modification of the CF3 group to the CF2H group means the radical is now more 

nucleophilic and so the preferred site of reaction is different to the more electrophilic 

·CF3 radical. Similarly, 81 was also performed with the difluoromethanesulfinate salt 

rather than the trifluoromethanesulfinate. This was not the radical species that was 

used in the calculation so regioselectivity predictions will differ from experiment. 

Lastly, compound 82 was also performed using the Zn(SO2CF2H)2 salt and so 

regiochemical behaviour was different to the predicted output of the calculation 

where the ·CF3 radical was used. In future, the validity of activation energy may be 

assessed on these compounds with differing reaction conditions with the use of 

solvent correction models in the calculation. This may allow for a greater 

understanding of the regioselective behaviour of substrates in different solvent 

conditions through a site’s interaction with the solvent, making that site more or less 

labile when compared to standard conditions. 

 

3.4 Conclusions 

The results of this investigation show that activation energies are more predictive 

than Hirshfeld charges. Most of the benchmark set compounds’ experimentally 

observed sites are the sites with the lowest activation energy, including those with 

atypical substitution patterns. This motivated efforts to build a machine learning 

model to predict regioselectivity using activation energy as the predictive method of 
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choice. Since the volume of experimental data is insufficient and the quality of data 

is too poor to use for machine learning, an artificial dataset must be generated. 

However, since the activation energy calculations for the above drug-like compounds 

manually took in excess of two weeks, an automation workflow was built to 

efficiently generate a dataset of sufficient size for modelling. 
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Chapter 4  -  Automation & Software 

Development 

In order to efficiently perform the many thousands of transition state calculations 

required for the artificial dataset, a workflow was developed to handle and monitor 

these calculations running simultaneously on high-performance compute (HPC) 

facilities. The program known as Rega was created to utilise well-known quantum 

chemistry software packages to perform and monitor the transition state 

calculations required at scale in an autonomous fashion. This dramatically reduces 

the manual intervention required by the user and reduces the labour of the 

generation of activation energy-based datasets substantially. In this chapter, we 

discuss the steps employed by the Rega program in detail, outlining the procedures 

for the creation of pseudo-transition state geometries, their feeding into quantum 

chemistry packages for transition state search calculations and the monitoring of said 

calculations at scale. 

4.1 Local Semi-empirical Calculations 

In this section of the chapter, we will discuss the steps required to perform the initial 

local semi-empirical calculations that give a large reduction in cost in locating the 

final HF/6-31G* transition states. While the regioselectivity predictions made by AM1 

were previously shown to not be reflective of experiment in chapter 3, the dramatic 
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reduction in computational cost compared to ab-initio methods was attractive for 

the generation of transition state conformations close to the more accurate Hartree-

Fock calculations. Therefore, semi-empirical calculations were utilised to perform the 

initial transition state search before being fed into the HF/6-31G* calculations. This 

serves to reduce the number of SCF cycles required by the more costly calculation 

methods, increasing computational efficiency. The flow diagram shown in Figure 4.1 

outlines the main workflow of the software developed known as Rega which of which 

the first half will be explained in this section. 

 

Figure 4.1 A flow diagram outlining the full functionality of Rega. 
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4.1.1 Transition State Templates  

In order to calculate HF/6-31G* transition states rapidly for the prediction of 

regioselectivity, a variety of methods must be employed. Firstly, since the rate-

limiting step of the reaction is known and the radical species is conserved, a pseudo-

transition state can be constructed from a template and used for primary transition 

state searches. The user can specify which radical species they want to add to the 

program input, where a different pseudo-transition state will be built depending on 

the reaction being studied. The current groups that can be added are the ·CF3, ·CF2H 

and ·iPr radicals. Once this radical is selected the pseudo transition state is built. 

To start, Open Babel218 is used to generate a three-dimensional geometry of the 

substrate of interest in the form of Cartesian coordinates, where each atom’s 

position is given in three-dimensional space. Since this initial output structure may 

have an irregular conformation, a cheap molecular mechanics optimisation 

(MMFF94)219 is performed on the structure to find a lower energy conformation with 

which to start the pseudo transition state template-building process. To add the 

radical species close to the site of interest, the atom number must be found. To do 

this, the RDKit220 package was used with SMARTS pattern recognition221 to identify 

the aromatic carbon atoms that have only hydrogen as the other group connected to 

it. From this, a list of site numbers is generated with which to use for transition state 

calculations on each possible site of reaction. With this list and optimised structure, 

the radical species must be added to the system in a position close to the site of 

interest. Firstly, a directory is created for each potential site of reaction and the 
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Cartesian Coordinate .xyz file for the MMFF94 optimised reagent is copied into it to 

use as a starting point for the building of the pseudo transition state geometry. The 

Cartesian coordinate representation of the substrate geometry must be converted 

into a z-matrix, a representation where an atom’s position in space is defined by its’ 

distance, angle and dihedral angle to another atom in the system (see Chapter 7.4 

for more detail). This conversion is completed using Open Babel and the atom 

number assignment is conserved between Cartesian and z-matrix representations. 

There are many possible forms that the z-matrix can take. The atoms chosen to relate 

the position of the newly added atom drastically impact the stability of the 

subsequent semi-empirical calculation. Therefore, the z-matrix form must be chosen 

carefully particularly when manually adding atoms to previously generated z-

matrices. To add the new radical species to the system close to the site of interest in 

a stable manner, a connection table must be generated that relates each heavy atom 

in the carbon backbone to one another, and the other functional groups in the 

compound’s position related to the atom bonded to it. This gives a more chemically 

relevant representation of the molecule as the position in space of a newly added 

atom is not associated with an atom many bond lengths away. The generation of this 

connection table was done using the ChemCoord Python package,222 which was 

unique among other packages screened in testing where the carbon backbone was 

properly defined rather than each atom’s position related to the first. Since 

ChemCoord takes the RDKit Cartesian Coordinate geometry as an input, atom 

number assignment is conserved in the connection table. This table was used to 

locate the site of interest and the surrounding atoms with which to relate the angle 
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and dihedral angle of the radical species. Importantly, the atoms surrounding the site 

of interest were chosen to be the heavy atoms in the backbone of the compound 

rather than the other substituents connected to the site of interest, namely the 

hydrogen present on the site of interest for the “angle atom”. The other heavy atoms 

two bond lengths away from the site of interest are used for the “dihedral atom”. 

Once these bond, angle and dihedral angle atom numbers have been defined the 

radical species is added to the z-matrix using predefined distances and angles taken 

from preliminary manual transition state searches from previous investigations. 

Once this modified z-matrix is generated it is then checked for any clashes between 

the newly added radical and any other atoms in the substrate. This is done by 

converting the newly generated z-matrix into a Cartesian Coordinate .xyz file using 

RDKit and the distance between each atom in space is calculated using 3D 

Pythagoras. If any of the radical atoms are within 1 Å from any other atom in the 

system, then the dihedral angle of the radical species is rotated 5° before checking 

again.  This threshold of 1 Å was chosen since the subsequent semi-empirical 

calculations can adjust the conformation of the compound to accommodate this new 

radical species at this distance. If the added radical was closer to the substrate, it 

would cause the calculation to fail.  

4.1.2 Semi-empirical Calculations  

These new pseudo-transition state geometries are now used as input for a variety of 

calculations. All semi-empirical calculations were performed using the 
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MOPAC2016223 software package and the AM1 method. Firstly, one site is selected 

to use an alternative template for reagent optimisation. The pseudo transition state 

geometry for this site is copied into a “reagent” directory before modification for the 

calculation of ground-state energy. In this “reagent” template all angles and dihedral 

angles are conserved but the “forming” C-C bond length between the attacking 

radical and the site of reaction is extended to 12 Å and the system is then allowed to 

relax using a geometry optimisation. Each reagent optimisation is then checked to 

see whether the calculation is completed successfully before moving on to the 

transition state searches. If the first reactant optimisation is not successful, another 

site of reaction is chosen to calculate the ground-state energy from. 

Each potential site of reaction first undergoes an unconstrained transition state 

search using the pseudo transition state template built earlier. The result of that 

calculation is checked for completion and if finished, the resultant geometry 

undergoes distance checks to ensure the forming C-C bond is between an expected 

range that is typical for the AM1 transition state on these systems.  

If the unconstrained first transition state search is unsuccessful, a constrained 

optimisation is performed with the site of reaction and carbon radical’s position 

fixed. This allows the rest of the substrate to alter its conformation to expose the site 

of reaction and make it more favourable to radical attack. This resultant geometry is 

checked and sent into an unconstrained transition state search. Any transition state 

searches that finish and pass the distance check function are then fed into a 

frequency calculation to ensure the true saddle point on the potential energy surface 
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has been located. If there is a single imaginary frequency within an expected 

wavenumber range the transition state search is deemed successful and Rega moves 

on to the next site in the substrate. If there is more than one imaginary frequency 

but the first mode is within the typical range, a second transition state search is 

performed on this resultant geometry with tightened convergence criteria to remove 

spurious frequencies and converge on the true saddle point. The new semi-empirical 

transition state geometry is converted to a Cartesian Coordinate .xyz file for use in 

the subsequent Hartree-Fock calculations on the High-Performance Compute (HPC) 

facility. The semi-empirical (AM1) calculation workflow is summarised in Figure 4.2. 
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Figure 4.2 Workflow for the semi-empirical calculation portion of Rega. 

 

 

4.2 HPC Calculation 

 In this section we discuss the workflow to take the pre-calculated AM1 transition 

states as the starting point for the more costly HF/6-31G* calculation using the High-

performance compute (HPC) service of choice. The workflow for this portion of the 

Rega program is summarised in Figure 4.3. 
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Figure 4.3 HPC workflow of Rega. 

 

4.2.1 Modification of AM1 transition state 

Since the semi-empirical transition state geometry systematically underestimates 

the carbon-carbon bond length of the attacking radical species, some modification of 

the output geometry must be done to make it suitable as a starting point for HF/6-

31G* calculation. Although this bond length needs to be modified, the conformation 

of the rest of the substrate is suitable for low-level calculation. The use of the 

modified semi-empirical transition state structure as a starting point for HF 

calculation serves to reduce the number of SCF cycles required to find the transition 

state in this more expensive method. Firstly, much like the generation of the pseudo 
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transition state template, the AM1 output geometry is converted to a z-matrix and 

with conserved atom mappings, the bond length of the added radical species is 

elongated from the typical 1.9-2.0 Å range seen in AM1 to 2.12 Å. This elongated 

bond is more typical of the bond lengths seen in the HF/6-31G* transition states and 

the modification of the AM1 geometry ensures the first Hartree-Fock (HF) transition 

state search does not simply converge to the “product minima” on the potential 

energy surface. 

4.2.2 Generation of HPC input file and HPC resource allocation 

The newly modified z-matrix is then converted back into Cartesian coordinates for 

use in the QM HPC calculation. Then, depending on the toggle switch chosen by the 

user in Rega, an input file is generated for either NWChem215 or Gaussian16224 with 

suitable keywords for the first HF transition state search. As part of this input file, the 

appropriate computational resource is required to be specified. To do this, the size 

of the system being calculated is noted by the number of heavy atoms. This number 

is then binned into one of seven core count groups, ranging from 8 to 32 cores per 

calculation. This is done to maximise computational efficiency, giving greater core 

allocation to larger systems that benefit from more computational resources per SCF 

cycle and smaller core counts to smaller systems that can see a reduction in efficiency 

when too many cores are given to a calculation. It is assumed that the reduction in 

efficiency in these cases is due to the communication between cores required to 
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complete the SCF cycle taking longer than the actual integrals that need to be 

calculated. 

Each core allocation is also paired with a total memory allocation that is dependent 

on the number of cores. Memory per core is conserved between system size since 

we do not see a reduction in performance if not all memory allocated is used but 

larger core counts require more total memory to prevent crashing. Once these input 

files are generated, they are uploaded to the HPC ready for calculation. Semi-

empirical calculation and subsequent input file generation is typically completed 

within one minute for each compound. 

Alongside the transition state search calculations and ground-state optimisations 

required for the activation energy descriptor, other atom-specific properties such as 

electron density, electrostatic potential and Fukui indices225 are calculated in a 

separate directory that can be used as other descriptors in the generation of machine 

learning models. 

4.2.3 Job Submission and Monitoring 

In order to submit calculations to an HPC service, users’ jobs must be scheduled 

according to number of jobs and resources requested. This prevents smaller 

requirement jobs from being “stuck” behind more resource-intensive jobs in the 

queue. To do this, Rega coordinates with the HPC’s inbuilt Slurm scheduler to submit 

jobs to the queue. Since Rega has the ability to calculate many sites at once, the most 
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efficient manner to submit these jobs to the HPC is via a Slurm array, where a script 

is submitted that uses a list of names and locations of each calculation and the 

resources required. A Slurm array script is generated for each batch of different 

computational resource requirements and uploaded to the HPC. Rega submits each 

array, and the jobs are scheduled for calculation. 

In order to monitor the progress of the calculation, the directory of the calculation 

must be paired with the JobID assigned by Slurm. As part of the array script, a Slurm 

file is generated in the remote home directory containing the path of the calculation 

associated with that JobID. Rega goes through these files and maps the file path with 

the JobID and notes the calculation status in the Slurm queue as either pending, 

running or not present (therefore completed). Rega periodically checks the Slurm 

queue for the status of each job for overall calculation status but also monitors the 

progress of the transition state search. Firstly, the output file is downloaded 

periodically and parsed to find the most recent output geometry through the course 

of the search. This geometry undergoes similar distance checks as before in the semi-

empirical calculations and determines whether the calculation is still on course for 

finding the HF transition state or if it is converging to a minimum. In the latter case, 

the type of minimum is noted (i.e. if the C-C bond of the added radical is elongating 

then the starting geometry had too great of a reactant geometry character and if the 

C-C bond is too short then there is too great of a product character in the input 

geometry). The job is killed in the Slurm queue, and a modified input geometry is 

generated in response to the nature of the minima convergence seen in the first 

transition state search attempt. 
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This monitoring of calculation progress and early termination of failing transition 

state searches is done to aid calculation efficiency of Rega, since the inbuilt 

optimisation algorithms typically take many SCF cycles before crashing, noting the 

point of failure being convergence to a minimum rather than a maximum. The SCF 

cycles taken for the inbuilt algorithm to crash are better spent working on 

convergence to the true transition state and so these calculations are manually killed 

and restarted by Rega, saving time.  

4.2.4 Resubmission and Data Collation 

Once calculations are completed the frequency output of the final geometry is 

parsed. If a true HF transition state is found, the output file is downloaded and the 

site is noted as completed in Rega. If there are additional imaginary frequencies in 

the first TS state search, the final geometry from this search is resubmitted via a new 

Slurm array for a second TS calculation with tightened convergence criteria. This 

resubmission is conducted only after each calculation in the queue is checked to 

reduce the number of Slurm arrays being submitted, with each array being binned 

for the compute requirements as before. With calculations that were killed due to 

convergence to minima, these “first” transition state search attempts with tweaked 

input geometry are submitted with any calculations that require a second search via 

the same Slurm array. These steps are taken to reduce the manual intervention 

typically required for these calculations and remove the need for detailed knowledge 

of the QM chemistry software, making the generation of machine learning datasets 
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more accessible to the average chemist. In the rare instance that a calculation does 

not converge to a successful transition state after the second, tighter criteria search, 

the site is assigned a “No TS found” tag and Rega moves onto the next compound. 

This is due to the thought that the system resources utilised for calculation on this 

site are better served on performing a TS search on a new compound rather than 

using greater computational expense to find this single failed transition state.  

Once all calculations are completed, a store data function collates all compounds and 

sites of reaction and gathers the transition state energy, reactant energy and 

property calculations and stores them in a nested dictionary. This is output into a 

.json file for the entire batch of compounds and a .csv file is written for each 

compound dictionary. Rega is also robust to the calculation of the same substrate 

with a different carbon radical, as the previous compound dictionary is appended 

with the newly calculated energies.  

 

4.3 Graphical User Interface and Database Management 

 

To improve the ease of use of Rega, a graphical user interface (GUI) was built. This 

enables users with no experience in computer science and command line interface 

navigation to run calculations, increasing the likelihood of wide adoption in an 

industrial setting. An overview of the graphical user interface is given in Figure 4.4. 

Firstly, the user is prompted whether they would like to calculate the regioselectivity 

of a single compound or a list of multiple compounds. If calculating a single 
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compound, the user is provided with a molecular editor in which they can draw the 

compound of interest directly. Once drawn, the SMILES string of the compound is 

generated and the SMILES box in the form below is populated. The user then gives 

the name of the compound and selects which radical they would like to study from a 

drop-down list of ·CF3, ·CF2H and ·iPr. Lastly, the user selects whether they would like 

to calculate energies using the more expensive but accurate HPC calculation 

functions. Once submitted, Rega is started with all required information given. 

If the user requires a batch of multiple substrates to be calculated, a .csv file is 

uploaded to the GUI with instructions provided on screen on the format of the file 

required for the successful submission of these compounds. Once calculations are 

complete, the compound is displayed alongside a table showing the activation 

energies for each labelled site of reaction and the corresponding regioisomeric ratio 

(Figure 4.4) 

In order to further increase calculation efficiency, the database of previously 

calculated compounds is stored locally and allows for easy retrieval of data. If the 

user submits a compound that has already been through the Rega program, its 

activation energy and regioisomeric ratio are gathered from the database and 

displayed to the user instantly, avoiding unnecessary compute time. Also, if the same 

substrate is calculated with a different radical, the database is updated with this new 

information. Users can then download the results to a .json file for easy post-

processing and incorporation into machine learning datasets. 
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Figure 4.4 Graphical user interface for single compound calculation on Rega. 
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4.4 Conclusion 

 

Rega offers a new methodology for the high throughput calculation of large numbers 

of compounds in a robust manner with minimal manual intervention. Rega is 

designed to be easy to use for the non-computational chemist and gives the user the 

ability to locate transition states for a wide variety of substrates in difficult-to-model 

reaction systems with a fraction of the time and resources typically required. The 

template-based workflow allows easy adaptation to different reaction systems and 

simple toggle switches within Rega enable the user to easily specify the 

computational software and HPC service of choice. Rega’s ability to locate previously 

calculated compounds within the database enables instant readout of results where 

the same substrate/radical pair has been generated previously. When the same 

substrate is being calculated with a different radical, the database updates the 

information for that compound ready for easy retrieval upon request.  

The Rega calculation framework enables the generation of a large dataset of 

calculated regioselectivities for the generation of machine learning models. These 

results are presented in the next chapter. 
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Chapter 5  -   Dataset Generation & 

Machine Learning 

5.1 Dataset Generation 

In this section of the chapter, we discuss the steps taken to generate an appropriate 

artificial dataset for the zinc-sulfinate mediated C-H functionalisation reaction. 

 

5.1.1 Dataset Curation 

To generate the necessary dataset for the C-H functionalisation reaction a starting 

database containing a diverse array of drug-like compounds was selected to 

maximise the domain of applicability of the models. The DrugBank database was 

used,226 which contains over 16,500 compounds including 2752 approved small 

molecule drugs, 6723 experimental drugs and 1600 biologics. This dataset was 

sampled ensuring a broad and uniform coverage of chemical space to ensure 

consistent model performance irrespective of training/test set split. From the original 

16,500 compounds, several filters were applied to make the data more 

representative of the classes of structures where this reaction may be considered. 

Firstly, permanently charged species were removed, due to the difficulty in 

prediction of protonated species; the position of protonation is challenging to 
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predict, introducing additional sources of error. Thus, cationic species are beyond the 

scope of our investigation. Also, compounds that appeared as a formulation of 

multiple molecules were removed, since the focus is on the regiochemistry of the 

drug compound and not interactions with other compounds in the formulation. The 

number of heavy atoms in each compound was restricted to 50, recognising that 

drug-like molecules typically have a molecular weight of less than 500.227 Also, since 

this reaction typically acts on nitrogen-containing heteroaromatic rings, any 

compounds with no aromatic nitrogen atoms were removed. Lastly, any compounds 

with less than two potential sites of reaction (in this case, aromatic C–H carbon 

atoms) were removed, as only one potential site of reaction would lead to only a 

single regioisomer. Figure 5.1 shows the number of remaining compounds from the 

DrugBank database remaining after each of the filtering criteria have been met. 

 

Figure 5.1 Funnel plot of the number of compounds remaining after each filtering step. 
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After this filtering, the remaining 3352 compounds were clustered using the 

Tanimoto coefficient228 with a similarity threshold of 0.7, to generate a large number 

of small clusters. These clusters were sampled randomly, to ensure the final dataset 

contains compounds from all areas of chemical space contained in the original set. A 

set of over 500 compounds were selected, containing more than 2800 potential sites 

of reaction. To measure the diversity of the dataset and therefore the potential 

applicability of this set for use in regioselectivity prediction in drug discovery, the 

pairwise diversity was calculated using the Tanimoto coefficient. The calculated 

average pairwise coefficient of 0.59 shows a high diversity across the drug-like space. 

Therefore, modelling the regioselective behaviour of this reaction on this set would 

have a large domain of applicability. 

5.1.2 Large-Scale Calculations and Data Preprocessing 

Once the dataset was collated, AM1 transition states were located with Rega and 

HPC input files were generated. The HPC facility chosen was Sulis, a Tier 2 cluster 

computing service located at the University of Warwick. This system is comprised of 

28,244 high-performance CPU cores with 4 GB of memory allocated per core, making 

it ideally suited to running the large number of transition state calculations required 

to generate this dataset. To circumvent the stricter multi-factor authentication 

criteria employed by the Sulis HPC facility, a pared-down version of Rega was used 

that terminates after the upload and submission of each calculation. This was due to 

the inability of Rega to continue establishing connections with Sulis overnight, 
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preventing the full automation ability of Rega previously used other HPC facilities. 

Sulis was chosen due to the greater computational resources available, and the 

increased SCF cycle speed seen when benchmarking facilities on identical systems. 

Once finished, calculation output files were downloaded using a modified version of 

Rega and then checked for successful completion. When training the model, it is 

imperative that no spurious data points are included in training to maximise the 

probability of finding the correct relationship between site environment and 

activation energy. Any activation energies that gave either a negative value or a large 

value (greater than 100 kcal mol-1) were removed along with any other sites that may 

have a seemingly appropriate activation energy, as this was seen to be a “bad 

compound” removing the possibility of poor data being used in training. Any 

compounds where a single site was not able to be successfully calculated were also 

removed as this was also considered to be a compound needing further attention. 

After this final filtering process, the dataset to be used for modelling comprised 490 

compounds containing 2744 potential sites of reaction. If the full version of Rega was 

allowed access to Sulis, the number of completed compounds would have been 

greater, as its ability to resubmit failing calculations and resubmission of sites that 

finish the first TS search close to the true transition state would greatly increase 

capture rate. However, Sulis access permissions/time pressure would not allow for 

this full implementation. 

Once collated, data was split in an 80:10:10 ratio of training: validation: test sets in 

five separate folds for cross-validation. Data were split by compound rather than by 
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site, meaning all sites within the compound are contained in an individual set and no 

sites are split across training and test, ensuring no data leakage and therefore 

avoiding artificial boosting of model performance. 

5.1.3 Traditional Modelling 

Initial modelling efforts were based on a traditional QSAR regression model 

approach, using descriptors generated by RDKit for each trifluoromethylated product 

SMILES structure, since this structure is the only unique element for each row in the 

set. Using Scikit-learn,229 models were built using principal component analysis to 

identify key descriptors in the relationship between structure and calculated 

activation energy. The primary metric used to assess model performance is the root 

mean squared error (RMSE). Since in experiment, we see multiple regioisomers 

formed in some compounds, it is clear that in order for a model to be deemed 

successful, it must be able to detect the subtle differences in activation energy 

between sites in a compound, some of which have an activation energy difference of 

0.1 kcal mol-1. Therefore, an RMSE of below 1 kcal mol-1 is required. Another measure 

of performance is the coefficient of determination (also known as R2). This measures 

the proportion of variation in the dependent variable that can be attributed to the 

independent variable and values range between zero and one; where 1 represents a 

perfect correlation and 0 indicates no dependency between variables. 

Table 5.1 shows the results of typical QSAR modelling efforts on the artificial 

activation energy dataset. Random forests gave the greatest model performance 
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with an average RMSE of 3.04 kcal mol-1, R2 of 0.06 and variance of 9.3. Individual set 

performance was consistent across the five folds and set four and five RMSE was 

below 3 kcal mol-1, the only examples seen in these modelling efforts. The poorest 

performing method was Gaussian Processes with the constant kernel where we see 

an average RMSE of over 10,000 kcal mol-1, due to the poor result seen in set 4. 

Excluding this result the RMSE exceeded 44 kcal mol-1, making it unsuitable for 

accurate predictions of regioselectivity.  

Set 
Linear 

Regression 
Random 
Forests 

XGBoost 
GP_White 

Kernel 
GP_ 

Matern 
GP_Rational 

Quadratic 

GP_ 
Constant 

Kernel 
GP_RBF 

1 
3.15 

(0.06) 
3.01 

(0.10) 
3.20 

(0.07) 
3.15  

(0.06) 
7.52  

(0.001) 
3.05  

(0.08) 
135.00 
(0.01) 

7.62 
(0.0005) 

2 
3.59 

(0.04) 
3.22 

(0.06) 
3.38 

(0.04) 
3.50 

(0.04) 
4.41 

(0.001) 
3.30 

(0.02) 
14.36 
(0.01) 

6.77 
(0.02) 

3 
3.04 

(0.08) 
3.03 

(0.06) 
3.37 

(0.01) 
3.07 

(0.05) 
5.53 

(0.003) 
3.03 

(0.04) 
12.39 
(0.01) 

7.87 
(0.01) 

4 4.01 
(0.0005) 

2.98 
(0.01) 

3.19 
(0.03) 

6113.44 
(0.08) 

3.54 
(0.0001) 

3.09 
(0.04) 

>10000 
(0.08) 

4.25 
(0.005) 

5 3.58 
(0.001) 

2.97 
(0.02) 

3.20 
(0.01) 

3.38 
(0.003) 

5.30 
(0.02) 

2.94 
(0.03) 

15.07 
(0.02) 

7.70 
(N/A) 

Average 
3.48  

(0.02) 
{12.3} 

3.04 
(0.06) 
{9.3} 

3.27 
(0.03) 
{10.7} 

1225.31 
(0.01) 

{74143} 

5.26 
(0.002) 
{17.6} 

3.08 
(0.04)    
{9.5} 

>10000 
(0.01) 
{7.6  

E+18} 

6.84 
(0.002) 
{16.5} 

Table 5.1: RMSE (R2) {Variance} of traditional QSAR models across five-fold cross-validation. 

  

Looking at the predictive behaviour of each modelling method on the test set, there 

appears to be no consistent pattern in the site environment assigned the lowest 
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activation energy. Figure 5.2 shows that calculated activation energies agree with 

regioselective behaviour seen in other literature examples, where sites proximal to 

heteroaromatic nitrogens are favoured. XGBoost does not detect this behaviour and 

instead assigns two sites with very different calculated labilities the same activation 

energy. This shows that the characteristics of the literature and calculated preferred 

site of reaction have not been captured in modelling. This example is consistent 

across different traditional modelling methods and may be due to a number of 

factors. Firstly, the features generated from RDKit may not be sufficient to capture 

the differences in site environment correctly. Secondly, while the dataset used for 

calculation is more broadly described as the drug-like chemical space, it may be that 

the variety of compounds in this drug space is too diverse for the model to effectively 

capture the steric and electronic properties of each potential site of reaction that 

give rise to the regioselective behaviours seen in calculations. 

 

Figure 5.2 Example prediction vs calculation for gradient boosting (XGBoost) method. 
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5.2 ChemProp Modelling 

Following the poor performance of previous modelling efforts, graph neural 

networks were employed to understand if the graphical representation of each 

structure would enable better chemical intuition and therefore gain a greater 

understanding of the site environment’s reactivity. 

5.2.1 Chemprop Regression Models 

For ChemProp modelling, each activation energy is paired with the associated 

reaction taking place, with the substrate and product SMILES joined by the “>>” 

symbol. This “reaction SMILES” representation attempts to assign the activation 

energy for the direct chemical transformation taking place at each site and graphs 

the chemical connections/disconnections taking place. The data were again split 

molecule by molecule to avoid any data leakage of some sites of a particular molecule 

appearing in the training set and other sites of the same molecule appearing in the 

test set. Data were split in an 80:10:10 ratio of training:validation:test sets 

corresponding to an average number of 2165 sites in the training set, 273 in the 

validation set and 268 sites in the test set. Datasets were loaded into ChemProp and 

additional RDKit features were generated to complement the graph representation. 
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Set Reaction SMILES Mapped 
Reaction 
SMILES 

Mapped + 
Morgan 

Fingerprints 

1 2.97 2.86 2.98 

2 3.01 3.17 3.22 

3 3.08 3.01 3.07 

4 3.05 2.94 2.92 

5 2.88 2.87 2.84 

Average 2.99  
(0.086) 

2.97  
(0.029) 

3.00  
(0.011) 

Table 5.2 ChemProp Regression RMSE results for both typical reaction SMILES and atom-mapped reaction 
SMILES. 

The results of the first regression modelling attempt are shown in Table 5.2. While 

we do see an improvement in RMSE over other previous modelling attempts, falling 

below 3 kcal mol-1, we do not see a substantial enough increase in performance to 

consider the prediction outputs reliable for deployment. Another modification 

attempted on the dataset was the utilisation of atom-mapped reaction SMILES. 

These SMILES strings contain atom number assignments within the string of both 

reactant and product structures. The aim was to investigate whether providing more 

explicit information on the atom number of the substrate taking part in the reaction 

would help boost model performance. Table 5.2 shows that while we did see an 

improvement in RMSE for cross-validation sets 1,3,4 and 5, these gains were not 

substantial enough to warrant the model effective in providing an accurate 

prediction of regioselectivity. This is illustrated further in Figure 5.3a where we see 

an R2 correlation of 0.086 for the typical reaction SMILES representation and 0.029 
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for atom-mapped reaction SMILES. The addition of Morgan fingerprints230 in the 

feature set improved sets 4 and 5 RMSE but sets 1 and 2 performances increased the 

average RMSE over other methods attempted.  

Other approaches were attempted to boost model performance. One such attempt 

was the splitting of the dataset randomly rather than by compound to see if there 

was any improvement, which was unfortunately also unsuccessful. Another method 

attempted was the removal of the GNN component of ChemProp and the direct 

feeding of reactant and product features into the feed-forward network (FFN) layer. 

This modification did not yield any improvement in performance above the baseline 

models discussed earlier. Lastly, the addition of a range of QM descriptors such as 

Fukui indices and Mulliken charges as well as site-specific electron density and 

electrostatic potential saw slight improvements in model performance across certain 

cross-validation splits but reduction in others. This led to no overall improvement in 

model performance over the classic implementation of ChemProp previously 

attempted.  
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Figure 5.3: Calculated vs predicted activation energies for the ChemProp regression model using typical 
reaction SMILES. 

a

) 

b) 
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5.2.2 ChemProp Classification Models 

Since the task of regression on this data appeared to be too difficult to make accurate 

predictions of activation energy, the task was converted to a classification problem. 

This new dataset representation used a binary classification of whether the site 

underwent functionalisation. For each compound, the lowest activation energy site 

was assigned a 1 and the other sites of reaction were assigned a 0. Each input row is 

the compound in question and the predicted output is an array of length n, where n 

represents the number of potential sites of reaction, with 1 assigned to the most 

likely site of reaction and all other array entries assigned 0.  Top-k accuracy (a metric 

for scoring model accuracy based on correct classification after k predictions) was 

measured for the binary classification model (Table 5.3). Top-1 and top-2 accuracies 

were only 31.8% and 59.3% respectively, not accurate enough to be considered a 

viable model.  

Top -k Accuracy (%) 

1 31.8 

2 59.3 

3 71.2 

4 78.4 

5 79.7 

Table 5.3: Top-K accuracy for the binary classification ChemProp model. 
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ChemProp modelling has shown that even the most viable models do not meet the 

accuracy requirements for deployment as a useful model for predicting 

regioselectivity. It appears that the dataset generated from Drugbank was too 

diverse to sufficiently learn the relationship between site environment and site 

lability for this C-H functionalisation reaction. While the compounds included in the 

dataset are all from the ‘drug-like’ chemical space, it seems the sampling of only a 

few compounds from each cluster was not enough to fully capture the features of 

these similar structures and the effects of these on activation energy. Also, the 

similarity between the structures in different clusters was overestimated, and so any 

learned relationship between structure and site lability for a given structure could 

not be effectively extrapolated to compounds in other clusters. This means that while 

there may be a small signal obtained from compounds within a single cluster, the 

amount of information gathered was not sufficient to understand the real 

relationship between a site’s steric/electronic environment and its lability in this 

reaction for more diverse species in different clusters. Figure 5.4 shows the wide 

array of chemical space covered by the DrugBank database. We do not see any 

distinct grouping of compounds in any given region of chemical space, making 

effective sampling from this dataset challenging. Due to this diversity, in future, 

sampling should be carried out on a smaller region of this chemical space in larger 

quantities in order to gain a greater understanding of the relationship between those 

structures and regioselective behaviour before expanding into new regions of 

chemical space. 
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Figure 5.4 t-SNE plot of the clustered DrugBank dataset. 
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Chapter 6  -  Conclusions & Outlook 

 

In conclusion, the prediction of C-H functionalisation regiochemistry is a challenge 

preventing deployment in industrial applications, particularly those reactions 

involving complex reaction pathways with reactive intermediates. While there have 

been many different approaches to predicting these reactions’ regioselectivity, both 

data scarcity and reaction condition variation make the understanding of a 

substrate’s properties that contribute to its regioselective behaviour challenging. 

Two distinctly different methods were trialled in the prediction of the sulfinate-

mediated class of C-H functionalisation reactions in this work, the electronic 

population on each potential site of reaction of the ground state compound, and the 

nature of each transition state. While preliminary investigations saw promise in the 

atom-centred charges methodology, its application to larger more drug-like 

structures indicative of those typically used in industry showed its shortcomings. This 

was due to the lack of any steric contribution to regioselectivity in this method which 

plays a key role in the determination of site lability. Activation energy on the other 

hand showed great promise in the prediction of regiochemistry for both simple 

substituted heteroarenes and more complex substrates containing multiple 

heteroaromatic moieties. This approach accounts for both electronic and steric 

factors that affect a site’s susceptibility to radical attack and maps the reaction 

pathway, allowing for accurate determination of these kinetically controlled 

reactions. Since this methodology poses a challenge of significant computational 
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expense, QM calculation screening was conducted to evaluate the method with the 

greatest balance of accuracy at the lowest cost. The result of this investigation led to 

the use of the HF/6-31G* method as the theory of choice which showed great 

regioselectivity predictive performance in a fraction of the time of the more 

expensive DFT methods.  

Once HF/6-31G* was validated, it was decided that in an effort to avoid the 

computational cost for the end-user, machine learning should be employed to 

predict this reaction’s regioselectivity through the prediction of a site’s activation 

energy. To do this, an artificial dataset was curated since the volume of high-quality 

experimental data was insufficient for any machine learning technique to accurately 

predict these energies. To increase computational efficiency further, an automated 

high-throughput transition state location program known as Rega was developed to 

generate this large dataset of calculated regioselectivities for a wide array of 

different drug-like compounds. This Rega workflow is unique in its ability to schedule 

and monitor hundreds of calculations simultaneously on remote HPC clusters and 

correct any transition state searches that are converging to a minimum on the PES or 

have not found the true saddle point. The modularity of the Rega program allows for 

simple adaptation to different HPC clusters and new reaction schemes, enabling 

broader applications to new areas of chemistry where the prediction of 

regioselectivity is a challenge. The easy-to-use graphical user interface further 

removes the barrier to entry for this program and enables laboratory chemists with 

little to no knowledge of computational chemistry to make these regioselectivity 

predictions by drawing their compound of interest and allowing Rega to perform 
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these complex calculations in the background. The user’s ability to save these 

calculations in an easily digestible format allows for easy incorporation into machine 

learning datasets and the constantly updating database of successful calculations 

enables instant retrieval of data for any compounds previously run through Rega, 

saving time. 

With this dataset of over 480 complex drug-like compounds successfully calculated, 

it was then used to build both classical machine learning models and graph neural 

networks to attempt to predict this regioselectivity in both regression and 

classification tasks. While model performance was not adequate to release a suitably 

useable model, the Rega program allows for further work to be done in future to 

solve this problem. 

It was proposed that should further work be done to model activation energy for this 

C-H functionalisation reaction, more data should be obtained from a smaller region 

of chemical space. When performing clustering using the Tanimoto coefficient of 

molecular similarity as described in 5.1.1, instead of sampling a small collection of a 

few compounds from many clusters in the drug-like space, all structures from a single 

cluster should be calculated and a model trained on this subsection of chemical 

space. Doing so would greatly increase the understanding of the structure/function 

relationship between potential sites of reaction in this region of chemical space and 

maximise the possibility of generating an effective activation energy prediction 

model. From that new model, additional data on full clusters of compounds can 

added using Rega and the model retrained, giving a higher chance of the signal 
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obtained in the training on the first cluster to be applicable to the next cluster of 

compounds. This chemical space expansion approach yields the best chance of 

producing an effective model to accurately predict regioselectivity in the vast drug-

like space.  

The potential to incorporate active learning into the model is another exciting avenue 

for exploration. In this work, a finalised model would include an uncertainty metric 

in the output of its prediction. From this, if a compound has a low certainty of 

correctly predicting the regioselectivity (if the compound is too dissimilar to the 

compounds the model has been trained upon), then the user would be prompted to 

calculate the activation energy for that specific input compound using the Rega 

automated transition state search program. With that new data point generated, the 

model would then retrain, gaining new information about regioselective patterns in 

that new region of chemical space. In short, the model would improve over time as 

more people used the tool.  

Another potential direction of research is the deployment of the Rega platform on 

new reaction systems. Given the modular nature of the program, this facilitates 

the modification of transition state templates and checking criteria to different 

reaction schemes to tackle new regioselectivity problems in organic chemistry. It is 

hoped that in future this work will be continued to advance the field of machine 

learning-derived regioselectivity prediction further. 
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Chapter 7  -  Appendix 

 

 

7.1 General Experimental Information 

 

All chemicals were purchased from Sigma Aldrich, Alfa Aesar, Fisher Scientific, 

Fluorochem or Manchester Organics.   

Analytical thin-layer chromatography was carried out on glass or aluminium-backed 

plates coated with Merck Kieselgel 60 GF254 purchased from Merck.   

  

NMR spectra were recorded at 298 K using Bruker AV(III)400, AV400 (400 MHz 1H 

frequency, 100 MHz 13C frequency) or Bruker AV(III)500 (AV400 (400 MHz 1H 

frequency, 100 MHz 13C frequency, equipped with a cryoprobe). Chemical shifts are 

quoted in parts per million (ppm), referenced to residual chloroform (7.26 ppm for 

1H NMR, 77.16 ppm for 13C NMR), dimethylsulfoxide (2.50 ppm for 1H NMR, 39.51 

ppm for 13C NMR), and methanol (3.31 ppm for 1H NMR, 49.00 ppm for 13C NMR) as 

internal standards and coupling constants, J, are quoted in Hz. Multiplicities are as 

follows: s – singlet, br s – broad singlet, m – multiplet, d – doublet, dd – doublet of 

doublets, ddd – doublet of doublet of doublets, dt – doublet of triplets, t – triplet, q 

– quartet.  
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Under reduced pressure refers to the use of a Vaccubrand CVC 3000 vacuum pump 

to remove solvent under reduced pressure on a Büchi Rotavapor R-3000 or Heidolph 

Vei-Vap Value G3 apparatus, with a water bath at 40 ºC.   

TLC plates were visualised under UV light (254 or 365 nm) and/ or stained with the 

appropriate staining solution. The staining solution is reported when used: either 

basic aqueous potassium permanganate or ethanolic cerium phosphomolybdate.   

Column chromatography was carried out using Interchim Puriflash pre-packed silica 

gel columns, eluting with the aid of an Asynt chromatography pump or Biotage SP1 

chromatography system.  

Melting points were measured on a Stuart SMP20 digital melting point apparatus 

and are reported to the nearest degree, uncorrected.  

Mass Spectrometric analyses at the School of Chemistry, GlaxoSmithKline Carbon 

Neutral Laboratories, University of Nottingham were recorded on a Bruker MicroTOF 

61 mass spectrometer using electrospray ionization (ESI). m/z values are reported in 

Daltons.  For GCMS analysis the JEOL AccuTOF GCX mass spectrometer was used 

using electron ionisation. 

Infrared spectra were recorded using a Bruker Alpha Platinum ATR single reflection 

diamond module spectrometer over the range of 4000 – 600 cm cm-1.   
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7.2 Synthesis of Trifluoromethylated Literature 

Compounds 

 

6-chloro-3-(trifluoromethyl)pyridin-2-amine 

 

To a mixture of dichloromethane (35 mL) and water (15 mL) was added zinc 

trifluoromethanesulfinate (2.6 g, 7.8 mmol) and 6-chloropyridin-2-amine (0.5 g, 3.9 

mmol). The mixture was cooled and tert-Butyl hydroperoxide (1.3 mL, 11.7 mmol) 

was added dropwise over the course of 5 minutes and the reaction mixture was 

heated at 50 °C for 48 hours. After this time, the reaction mixture was quenched with 

EDTA:sodium hydrogen carbonate (1:1 mixture of a 4 M aqueous solution and a 

saturated aqueous solution) (50 mL) and the organic layer dried over MgSO4, filtered 

and evaporated under reduced pressure. The residue was diluted with 

dichloromethane and adsorbed onto silica gel. Purification by silica gel 

chromatography, eluting with ethyl acetate, toluene and pentane (4.85:0.15:95), 

provided the title compound (226 mg, 31%) as a yellow solid: mp. 109-110 °C; Rf 0.43 

(10% EtOAc:90% Pentane); FT-ATR vmax 3519, 3307, 3179, 1663, 1592, 1567, 1462, 

1310, 1267, 1209, 1157, 1093, 1065, 1016, 960, 932, 806, 769, 757; 1H NMR (400 

MHz, CDCl3) δ 7.66 (d, J = 8.0 Hz, 1H), 6.75 (dd, J = 8.0, 0.9 Hz, 1H), 5.18 (s, 2H); 13C 

NMR (126 MHz, CDCl3) δ 155.4, 153.1, 129.0, 128.2, 125.3, 124.0 (q, J = 271.2 Hz); 19F 
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NMR (376 MHz, CDCl3) δ -63.61; MS m/z (EI) calcd for C6H4ClF3N2 [M+] requires 

196.0015, found 196.0004. 
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6-chloro-3,5-bis(trifluoromethyl)pyridin-2-amine 

 

 

To a mixture of dichloromethane (35 mL) and water (15 mL) was added zinc 

trifluoromethanesulfinate (2.6 g, 7.8 mmol) and 6-chloropyridin-2-amine (0.5 g, 3.9 

mmol). The mixture was cooled and tert-Butyl hydroperoxide (1.3 mL, 12 mmol) was 

added dropwise over the course of 5 minutes and the reaction mixture was heated 

at 50 °C for 48 hours. After this time, the reaction mixture was quenched with 

EDTA:sodium hydrogen carbonate (1:1 mixture of a 4 M aqueous solution and a 

saturated aqueous solution) (50 mL) and the organic layer dried over MgSO4, filtered 

and evaporated under reduced pressure. The residue was diluted with 

dichloromethane and adsorbed onto silica gel. Purification by silica gel 

chromatography, eluting with ethyl acetate, toluene and pentane (4.85:0.15:95), 

provided the title compound (26 mg, 2.5%) as a yellow solid: mp. 106-107 °C; Rf 
 0.31 

(10% EtOAc:90% Pentane); FT-ATR vmax 3509, 3324, 3197, 1640, 1613, 1560, 1494, 

1412, 1356, 1296, 1260, 1166, 1114, 1038, 965, 943, 778;1H NMR (500 MHz, CDCl3) 

δ 7.97 (s, 1H), 5.56 (s, 2H); 13C NMR (126 MHz, CDCl3) δ 155.9, 151.4, 136.4 (hept, J = 

4.7 Hz) (m), 123.2 (q, J = 271.6 Hz), 122.3 (q, J = 271.1 Hz), 114.1 (q, J = 34.4 Hz), 106.1 

(q, J = 33.7 Hz); 19F NMR (376 MHz, CDCl3) δ -61.81, -63.81; HRMS m/z (ESI)- calcd for 

C7H2ClF6N2 [M-H]- requires 262.9816, found 262.9823. 
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4-chloro-6-(trifluoromethyl)-7H-pyrrolo[2,3-d]pyrimidine 

 

 

To a solution of dichloromethane (14 mL) and water (6 mL) was added zinc 

trifluoromethanesulfinate (945.2 mg, 2.6 mmol) and 6-chloropyridin-2-amine (200.0 

mg, 1.3 mmol). The mixture was cooled and tert-Butyl hydroperoxide (378 µL, 1.2 

mmol) was added dropwise before heating to 50 °C and left to stir for 48 h. Following 

this time, the reaction mixture was quenched with EDTA:sodium hydrogen carbonate 

(1:1 mixture of a 4 M aqueous solution and a saturated aqueous solution) (30 mL) 

and the organic layer dried over MgSO4, filtered and evaporated under reduced 

pressure. The residue was diluted with dichloromethane and adsorbed onto silica gel. 

Purification by silica gel chromatography, eluting with ethyl acetate and pentane 

(5:95 to 10:90), provided the title compound (110 mg, 38%): mp. 187-189°C; Rf 0.22 

(10% EtOAc:90% Pentane); FT-ATR vmax 3092, 2757, 1610, 1573, 1422, 1363, 1307, 

1241, 1217, 1178, 1121, 985, 938, 830, 775, 751; 1H NMR (500 MHz, CDCl3) δ 12.97 

(s, 1H), 8.80 (s, 1H), 7.07 (d, J = 1.3 Hz, 1H); 13C NMR (126 MHz, CDCl3) δ 155.0, 152.4, 

151.6, 128.06 (q, J = 40.4 Hz), 120.2 (q, J = 268.8 Hz), 116.9, 101.3 (q, J = 3.7 Hz); 19F 

NMR (376 MHz, CDCl3) δ -61.71; HRMS m/z (ESI)- calcd for C7H2ClF3N3 [M-H]- requires 

219.9895, found 219.9899. 
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7.3 Activation Energy Calculation Data 

 

Calculated activation energies for experimentally observed compounds gathered 

from the literature.140 

Compound Site 
Experimentally 

Observed Products 
HF Activation Energy 

(kcal mol-1) 

 

9 Major 8.8 

10 Minor 9.1 

11  9.0 

 

4  7.1 

5  6.3 

8 Major 3.9 

17  5.4 

 

5 Major 12.0 

6 Major 11.4 

 

6  9.2 

8 Major 8.5 

9  9.4 

 

3  9.9 

8 Major 9.6 

10 Minor 9.8 
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Compound Site 
Experimentally Observed 

Products 
HF Activation Energy  

(kcal mol-1) 

 

4 Minor 7.7 

5 Major 6.9 

7  7.5 

 

5  7.3 

6  8.3 

7  8.1 

8  7.3 

11  8.1 

 

5 Major 6.3 

6 Minor 7.1 

 

5  10.9 

6 Major 10.9 

 

7  10.9 

8 Major 10.7 



132 

 

Compound Site 
Experimentally Observed 

Products 
HF Activation Energy  

(kcal mol-1) 

 

6 Major 8.6 

7  12.4 

9  11.0 

 

3 Major 10.5 

4  12.1 

 

4  17.9 

8 Major 15.1 

 

6  10.6 

7 Major 9.9 

11  10.2 

 

4 Major 9.0 

8  10.0 

 

9  13.2 

10  10.7 

11 Major 10.4 
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Compound Site 
Experimentally 

Observed Products 

HF Activation 
Energy (kcal mol-

1) 

 

4 Major 8.4 

6  9.3 

 

3  10.0 

4  10.2 

5 Major 8.2 

 

9  N/A 

11 Major N/A 

23  N/A 

24  N/A 

35  N/A 

36  N/A 

 

2  14.8 

3  9.6 

4  9.7 

5  10.1 

12 Major 10.0 

22  12.0 

23  9.0 



134 

 

 

Compound Site 
Experimentally 

Observed Products 
HF Activation 

Energy (kcal mol-1) 

 

4 Major 20.2 

19  10.5 

20  10.8 

21  9.6 

25  15.0 

26  21.1 

 

8  10.0 

9  9.4 

10  9.5 

15 Major 10.9 

18  10.5 

 

7 Major 11.9 

8  13.0 

9  10.4 

 

 

 

 



135 

 

Compound Site 
Experimentally 

Observed Products 
HF Activation Energy 

(kcal mol-1) 

 

4  9.6 

7  22.4 

8  10.9 

11 Major 11.6 

13  10.7 

14  9.4 

 

3 Major 10.4 

4  10.7 

6 Major 11.0 

17  13.1 

18  17.6 

30  9.6 

31  11.6 

 

4 Major 10.8 

13  13.7 

16  7.4 

23  10.3 
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Compound Site 
Experimentally 

Observed Products 
HF Activation Energy  

(kcal mol-1) 

 

1 Major 9.8 

2  10.0 

 

2  11.2 

3  11.3 

4  10.0 

11 Major 10.0 

21  10.8 

22  11.1 

 

15  10.9 

17  10.3 

23 Major 9.1 

33  9.2 

34  9.9 

35  9.6 

 

4  12.5 

7 Major 10.7 
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Compound Site 
Experimentally 

Observed Products 
HF Activation Energy  

(kcal mol-1) 

 

1  13.5 

12 Major 7.8 

21  10.6 

22  9.1 

 

3  10.3 

4 Major 10.6 

13  17.2 

 

11  14.3 

12  16.6 

13 Major 11.0 

 

4  13.1 

8 Major 12.7 
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7.4 Computational Workflow Details 

7.4.1 Explanation on Z-matrices 

Z matrices are a form of atom system representation whereby atom’s positions are 

defined by their relationship to one other rather than points in Cartesian space. In 

this representation, the first atom is given position 0,0,0 and the second atom in the 

system has its position related to the first by bond length, bond angle and dihedral 

angle. For example, if the bond length between atom 1 and atom 2 is 1.8 Å the z-

matrix for atom 2 is 1.8,0,0 1,0,0 where the first matrix gives the distances and angles 

and the second matrix is the atom number that the measurement is related to. Since 

there are not enough atoms in the above example to give the angle (matrix 1 position 

2) and dihedral angle (matrix 1 position 3) these are left as 0 in both matrix elements 

1 and 2. 
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