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ABSTRACT  

 

Roads are vital assets and the backbone for any transportation system and support societal 

development by providing the foundation for constant mobility of goods and people. 

However, pavements are experiencing accelerated deterioration in most developed countries 

due to increased traffic volume and load, combined with rapidly changing climate. The 

existing reactive road asset management approach cannot keep up with the rate of pavement 

degradation, due to lack of condition data from infrequent inspection surveys and simple 

models that do not consider the factors influencing pavement performance holistically. 

 

Digital twins have been popularly utilised in recent years enabled by the increasing capacity 

in data collection using intelligent sensors, digital innovations with technologies such as 

internet of things, cloud computing, big data analytics with machine learning, as well as 

artificial intelligence. Despite the growing interest in applications of digital twins in the built 

environment such as bridges and buildings, current digital twin research related to roads is 

still at an early stage.  

 

To this end, this study investigates the development of digital twins for the road sector. Based 

on the literature, a digital twin-based decision-making support theoretical framework for road 

lifecycle is presented and discussed. In particular, two case studies, as applications of this 

framework, are conducted to demonstrate the impact of predictive digital twins on roads in 

the areas of pavement performance and data collection. As part of the road digital twin 

framework, it is found that integrating physics-based simulation with machine learning, 

decreased the root mean squared error by at least 25% compared to traditional machine 

learning in one year prediction, and reduced the 90th percentile range in multi-year 

predictions by as much as over 30%. In addition, this research also identifies that a 
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substantial amount (approx. over 95%) of sensor data collected could be reduced while 

achieving acceptable prediction accuracy, thereby minimising the data related costs within 

the same framework. The findings are useful for the understanding and consideration of the 

on-going road digital twin development. 

 

Keywords:  

Digital Twins, Sensor Data, Data Collection Frequency, Machine Learning, Physics 

Enhanced Machine Learning, Physics-based Simulation, Road Asset Management, Pavement 

Performance Prediction, Uncertainty Quantification 
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1 INTRODUCTION  

Roads are one of the biggest and most valued physical infrastructures of any country, playing 

a pivotal role in supporting the economy and enabling societal development and productivity 

(Zhang and Cheng, 2023). However, roads experience continuous deterioration under traffic 

loads and being exposed to the natural world. Road condition has worsened in recent years in 

the 21st century due to the increasing demand on highways with rising traffic volume and 

average vehicle weights as well as more frequent extreme weather events (Gössling et al., 

2023). Therefore, for transportation agencies and road management authorities, there is an 

urgent need to efficiently maintain the road assets to ensure their level of serviceability. 

Road asset management (RAM) system has been adopted to help mitigate this problem. 

According to American Association of State Highway and Transportation Officials (2002), 

RAM is the systematic and strategic approach of managing and maintaining road 

infrastructure in order to maximize its value and life span. It includes a range of components 

and activities such as inventory, condition inspection by collecting data with a pre-defined 

frequency and condition prediction of road assets; maintenance and rehabilitation strategy 

prioritisations; budgeting and resource allocations; as well as monitoring and evaluation of 

performance to support the decision-making process (Zakir et al., 2024). RAM can be applied 

at both the network level and the project level. Network level activities include long-term 

planning, develop the optimum strategy for allocating pavement rehabilitation and 

maintenance funds over the entire network whereas project level activities focus on detailed 

planning and technical methods for the construction or maintenance of a particular roadway 

section (De La Garza et al., 2011).  

Due to the limited budget available, it has been a challenging task to make the best use of the 

allocated funds to achieve the maintenance goals within RAM. The current approach when it 
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comes to road maintenance is still mostly reactive, and according to UK Annual Local 

Authority Road Maintenance report in 2024 (Asphalt Industry Alliance, 2024), both 

structural condition and the surface condition of UK local roads continue to decline, reflected 

by the cost of £16.3 billion to tackle the carriageway repairs backlog, and the fact that 2 

million potholes were filled over the last year, up from 1.4 million, 16% and 40% increases 

since the previous year respectively. The constant degradation of roads and soaring 

maintenance expenses indicate an ineffective RAM approach that is not economically viable, 

and hence a more proactive approach is required to enable the maintenance prioritisations. 

Proactive maintenance is the opposite to reactive with a focus on averting failure and 

performance decrease, and it refers to any form of maintenance activity that is done before 

any significant defects occur, especially considering of different factors such as traffic, 

materials, environmental and climatic impacts. All of these contribute to the decision-making 

of maintenance strategies prioritisation under a proactive approach (Fitch, 2013). It includes 

preventive maintenance (Abdulmohsen et al., 2013) and predictive maintenance (Patiño-

Rodriguez and Carazas, 2019).  

A proactive maintenance approach enables a reduction in the whole life cycle cost of the 

asset, as well as eliminates the associated risks posed by defects or failure due to the lack of 

timely maintenance. For instance, Tran et al. (2024) proposed a risk-based proactive asset 

management approach leveraging a failure assessment model for urban stormwater pipes, 

resulting in extended service life and significant cost savings over the whole life cycle. 

Similarly, Liu et al. (2020) suggested a risk-informed framework integrated with cost-benefit 

analysis to determine proactive maintenance actions for service life extension of ships leads 

to financially feasible strategies. 
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However, there are two main reasons that still hinder the adoption of a proactive approach to 

manage and maintain road assets. First of all, an infrequent condition inspection results in 

insufficient condition data to monitor the road deterioration process, and in addition there is a 

lack of an accurate, reliable condition predictive model that considers the whole picture 

around the pavement with as many factors as possible that could have an impact on pavement 

performance from a holistic point of view (Chen et al., 2022).  

Pavement performance can be classified mainly into two types, namely Functional 

Performance and Structural Performance. Functional pavement performance assesses how 

well a pavement serves the public travelling, such as its availability and level of comfort. It is 

mostly measured by roughness index (Hussam et al., 2018). Whereas structural pavement 

performance is how well a pavement can carry traffic loading overtime considering various 

impacting factors such as structural parameters, environmental conditions and maintenance 

(Bhandari et al., 2023). This research intends to focus on the structural pavement 

performance modelling.  

1.1 Digitalisation and Digital Twins  

The advancement of digital technologies may help addressing this issue by enabling 

continuous monitoring of road condition, as well as accurate predictive modelling using the 

large amount of data available. Looking broadly, entering the industry 4.0 era triggered by 

the wave of digitalisation with technologies such as Internet of Things (IoT), Big Data 

Analytics, Sensor technologies, Machine Learning (ML) or Deep Learning, and Artificial 

Intelligence (AI), transformational impacts have been brought into the operation of various 

industries such as manufacturing (Felsberger et al., 2022), healthcare (Ricciardi, 2019), 

supply chain (Aarasse and Idelhakkar, 2023), automotive (Viale and Zouari, 2020), logistics 

and transportation (Loske and Klumpp, 2022; Muntaka et al., 2023). The generalised benefits 
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that come with it can be summarised as faster outcomes through automated processes, 

reduced costs, improved operational efficiency and productivity (Arsić, 2020; Fähndrich, 

2023). 

There has also been a great effort in digitalisation when it comes to the construction industry, 

despite it being one of the oldest industries and often known as very conservative in facing 

changes and technology innovations. In the pavement domain, there has been an increasing 

amount of attention to resolve pavement engineering problems by researchers (Karimzadeh, 

2020). Among both academics and practitioners in industry, pavement engineers have 

recognised that a large amount of data from sensor networks can provide continuous and 

useful information on pavement behaviour and performance and is able to provide a more 

comprehensive understanding of the pavement status if combined well with visualisation on 

the sensor data. For example, a Smart Winter project in Kent demonstrated the benefits of 

installing real-time surface temperature sensors to allow operational managers to see how 

their roads fluctuate in temperature enabling an immediate improvement in gritting schedules 

(Trousdale, 2019). Similarly, pavement temperature sensor data can be analysed in 

combination with material sensors to understand the effects of sudden environmental changes 

on the behaviour and performance expected from the pavement structure (Steyn, 2020).  

In addition, it provides the opportunity to identify the optimised data collection frequency 

when it comes to sensor instrumentations and configurations. Specifically, with the growing 

amount of real-time or sensor data from various sources, data analytics approaches have been 

leveraged to perform improved asset deterioration modelling and to enable prediction with 

high accuracy for the performance of road assets (Piryonesi, 2019). With regards to pavement 

performance prediction, multiple different ML, neural network (NN) and deep learning 
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architectures as well as algorithms have been explored to predict pavement performance 

based on a data-driven approach (Amirhossein Hosseini, 2020; Choi and Do, 2020).  

As a result of the evolution of these digital technologies, one novel concept in particular, 

Digital Twin (DT), has recently become a popular research area for architecture, engineering 

and construction management and has shown a great potential to support intelligent and 

automated decision-making as a tool for asset whole lifecycle management and therefore 

optimising the operation and maintenance strategies (Macchi et al., 2018).  

Initially, the DT concept was first introduced by Professor Michael Grieves in 2002 who later 

published a white paper, providing a formal definition that a digital twin mainly comprises of 

three parts: 1) physical entities in real space; 2) virtual models in virtual space; 3) data that 

connects physical entities and virtual models together (Grieves, 2014). Then different 

organisations within various industries started to produce their own definitions and 

interpretations on DT concept based on domain-specific functions and characteristics due to 

the broad applicability of DTs (Kritzinger et al., 2018). However, a common understanding 

and study of DTs done by Kritzinger et al. (2018) has classified it into three categories 

depending on the level of integration between the physical and virtual entities, namely Digital 

Moel, Digital Shadow, and the fully integrated Digital Twin. In addition, multiple research 

projects have described different levels of DT maturity including 1) descriptive twin; 2) 

informative or diagnostic twin; 3) predictive twin; 4) prescriptive twin (Madni et al., 2019; 

Babanagar et al., 2025). More details on DTs are provided in the Literature Review chapter.  

DT can provide an array of benefits for infrastructure lifecycle management such as real-time 

data monitoring and diagnostics, proactive maintenance, maintenance prioritisation as well as 

automation and optimisation (Arisekola and Madson, 2023). Given all infrastructure 

deteriorates over time, a DT that incorporates data from various factors that would have an 
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impact on the deterioration, such as climate, ambient environment, material, underlying 

science, available budget, potential risks, and stakeholders involved, can contribute to a better 

understanding of the degradation and the decision-making process of maintenance 

prioritisation leveraging data analytics, optimisation algorithms and visualisation capabilities 

enabled by ML, AI and 3-dimensional (3D) modelling and simulation techniques as part of 

realising a proactive maintenance approach (Waqar, 2024). 

Within the construction industry, the application of DTs across different infrastructure assets 

have been researched across multiple levels, for example, at city and building level (Lu et al., 

2020), bridge level (Ye et al., 2019) and tunnel level (Yu et al., 2020). All these studies 

focused on the adoption of DTs for an enhanced operation and management phase of the 

lifecycle of the underlying physical assets. However, limited amount of previous doctoral 

research thoroughly explored the potential enabling methods for a DT at the road level asset 

management, and hence this doctoral research project addresses this significant shortfall by 

investigating and evaluating different aspects that would enable a DT for modelling pavement 

performance as well as the road management overall. 

1.2 Aim and Objectives   

The aim of the research is to demonstrate the potential enabling methods for a predictive road 

DT (RDT), in the areas of pavement performance prediction and data collection. To achieve 

this, the research has the following key objectives:    

1. Develop a DT-based decision-making support framework for road lifecycle which 

includes the key DT layers, (sub)components, their interactions and technologies. 

2. Implement and assess the performance of an RDT-based predictive model in 

comparison to that of traditional ML models on road condition using historical data. 
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3. Investigate data collection frequency optimisation as part of an RDT leveraging real 

time sensor data. 

4. Discuss the perspectives and provide recommendations for the use of an RDT.  

1.3 Research Scope and Limitations  

This research produces a DT-based decision-making support theoretical framework for road 

lifecycle described in Chapter 3 with five layers, and part of the framework is then applied to 

demonstrate the enabling methods and optimisation for a predictive DT for roads through two 

case studies. The other parts which were not directly implemented are not in the scope of this 

study and therefore are included as limitations of the research. The scope and limitations of 

this study can be described as follows: 

• Only the methods for a predictive DT on pavement performance modelling is 

concretely evaluated through case studies using historical and real-time data. The 

maintenance prioritisation and decision-making process based on the predictive DT 

outputs will only be discussed.  

• Only a limited discussion will be provided on the use of RDT on other stages of the 

road management life cycle such as design, construction and operation phases. 

• The focus of the research is on the analysis and the predictability of a DT with the 

elements such as data and predictive modelling, rather than a full-scale of a DT such 

as the generation of digital 3D model visualisations. 

1.4 Contribution of the Thesis  

This study will contribute to current research as follows: 

1. Provide a DT-based decision-making support theoretical framework for assessing the 

enabling methods for an DT in road lifecycle management across their design, 
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construction, operation and maintenance. Such a framework that integrates key 

components of DTs with RAM was not found elsewhere in the existing literature. 

2. Advance the pavement performance modelling research area by moving the state of 

the art on this research topic further from a pure data driven approach such as ML 

modelling for pavement defects to combining physics with ML such as physics-

enhanced ML to improve the model’s stability, rationality and reliability.  

3. Assess the physics-enhanced ML modelling performance compared to that of ML 

only as part of a predictive RDT. 

4. Continuously monitor a pavement through an experiment with sensor instrumentation. 

5. Optimise sensor data collection frequency as part of a predictive RDT consideration. 

1.5 Structure of the Thesis  

To achieve the objectives laid out above, this thesis is structured as follows: 

1. The introduction in Chapter 1 describes the problem statement and contextual 

background of the research topic. The research aims and objectives are clearly 

defined. The scope, limitation, and contribution of the thesis is presented.  

2. Chapter 2 reviews the concept, components, applications and benefits of DT 

technology as well as RAM. This chapter also provides a thorough review on existing 

pavement performance models which could be an essential part of a DT. 

3. Chapter 3 describes the developed DT-based decision-making support theoretical 

framework for road lifecycle informed by the literature review outcome. In addition, 

the chapter presents a methodological approach on pavement performance modelling 

based on the RDT framework, especially combining ML, physics-based modelling as 

well as uncertainty quantification.  
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4. Chapter 4 presents the results of two case studies on the application of the DT-based 

decision-making support theoretical framework using both historical data for road 

rutting and roughness prediction, and real-time sensor data for the investigation and 

discussion on data collection frequency optimisation. The enabling methods for a 

predictive DT on the pavement performance modelling are clearly presented and 

discussed. Its use on the whole pavement lifecycle including pavement design, 

construction, operation and maintenance is also discussed.  

5. Chapter 5 summarises the results from Chapter 4 and draws conclusions about the 

value of this research and presents the potential future works on the continuing 

developments and applications of the theoretical RDT framework.  
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2 LITERATURE REVIEW  

This chapter provides a critical review of the literature base in relevance to the following 

areas: 1) Road pavement management; 2) Road deterioration mechanisms and defects; 3) 

Various types of pavement performance models; 4) DT and its impact on roads. Details are 

provided in Section 2.1 on road pavement management and Section 2.2 on DTs. 

2.1 Road Pavement Management and Maintenance  

2.1.1 Introduction   

Road transport systems are seen by most countries as the essential foundations for general 

economic and social development, in facilitating trade both nationally and internationally. 

According to Robinson et al. (1998), a small improvement in the costs of operating and 

maintaining the physical infrastructure can result in huge economic benefits. On average, it 

has been calculated as three times savings return for investment on maintenance expenditure 

(Heggie, 1995). Burningham and Stankevich (2005) also emphasised the need for and the 

importance of road maintenance in every nation with regards to its position to sustain national 

transportation, due to the large amount of direct and indirect costs when it is not done 

appropriately. Therefore, given the value roads provide, a significant number of resources 

and budgets have been devoted to managing roads as an asset effectively, to achieve the 

optimal road pavement management.  

Kulkarni and Miller (2003) described eight key elements of pavement management systems: 

1. Functions or Scopes, 2. Data collection and management, 3. Pavement performance 

prediction, 4. Economic analysis, 5. Priority evaluation, 6. Optimization, 7. Institutional 

issues, 8. Information technology. Among the components, at the centre of RAM lies 

information collection and management. According to Hosseini and Smadi (2021), the 

performance predictive capability of road network deterioration has a direct impact on 
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subsequent activities within a management system such as maintenance prioritisation and 

economical optimisation as well as decision making.  

Thus, this chapter provides a review of different pavement performance approaches and 

models, and various pavement condition data that are available for model development, as 

well as potential pavement management practices in the future. Section 2.1.2 introduces the 

pavement performance prediction and modelling concept, which is followed by available data 

sources for pavement deterioration modelling in Section 2.1.3. Section 2.1.4 describes road 

pavement deterioration mechanisms, factors impacting the deterioration and different 

pavement defects and their mechanisms. Section 2.1.5 provides a comprehensive summary on 

multiple types of pavement degradation models ranging from traditional types to the most 

recent developments in the pavement performance modelling area. 

2.1.1.1 Pavement Management System  

One key component of RAM is the pavement management system (PMS). PMS was 

introduced as a result of increasingly large road networks since the 1960s which require 

preservation, management of limited budgets, awareness of road user cost and more capacity 

to monitor the road condition, as well as the availability of information technology systems 

(OECD, 1987). Since then, the process of pavement management has been applied in national 

and local transportation agencies worldwide.  

There have been continuous improvement needs, technical advancements and innovations 

over time in pavement management. More recent developments in this area have been 

reviewed by Pérez-Acebo et al. (2018), including technical implementation of automated data 

collection methods such as crack classification, multi-objective optimisation models with 

generic algorithms, pavement performance modelling and its adaptations. Parida et al. (2005) 

and Nodrat and Kang (2017) enhanced the PMS with the integration of a geographic 
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information system (GIS) to help with decision making support. This was done by leveraging 

its spatial analysis capabilities which enables PMS to provide features such as graphical 

display of the pavement condition, which could be of help in visualising decision-making and 

budget allocation. It is worth mentioning that the advantages GIS-integrated PMS has over 

the traditional PMS is not quantified concretely but it does provide a user-friendly graphic 

interface. Apart from the GIS system, given the development of digitalisation technologies, 

the use of Building Information Modelling (BIM) has been increasingly pervasive within the 

construction industry across the globe (Singh, 2019; Tang et al., 2019). There have also been 

attempts in combining PMSs with the BIM approach as discussed in Biancardo et al. (2023) 

and Oreto et al. (2023). The combined PMS-BIM acts as a tool to support an improvised 

pavement management and optimisation for maintenance with integration of road design and 

pavement analysis. It uses the BIM approach by modelling a digital road network, connecting 

and representing material models from external databases based on shared parameters, to 

apply selection ranking algorithms to evaluate the durability of the pavement materials to 

help prioritise the needs of maintenance. However, the authors did not mention how this 

approach would be more beneficial concretely compared to the existing prioritisation 

functions within PMS apart from visualisation, and therefore the quantified benefits BIM 

provides for PMS functionalities are still yet to be understood. 

2.1.1.2 Maintenance Strategy Decision-Making Element within PMS  

Data collection and pavement prediction models are essential elements of any PMS, which 

have a direct impact on maintenance scheme prioritisation and strategy decision-making 

(Haider et al., 2011), which is another important element within the PMS. This section 

succinctly presents this function. According to Lazic (2003), an effective road maintenance 

scheme helps to allocate the limited amount of funding to the roads that provides maximum 
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return on investment, and minimizes cost spent on preserving the road conditions on a long-

term basis. Specifically, based on the research conducted by Hosseini and Smadi (2021) there 

is a strong correlation between the accuracy of pavement prediction models and their 

associated cost for maintenance and rehabilitation activities. Therefore, support tools or 

methods for prioritization and optimization of pavement maintenance activities decision-

making take into consideration pavement distress level, budget constraints, and predicted 

pavement performance, and this has been another focused research area in pavement 

management and engineering (Peraka and Biligiri, 2020). Table 2.1 shows optimization 

techniques researched for pavement maintenance strategy decision-making. 

Table 2.1. Optimization techniques for pavement maintenance decision-making 

Author(s) Optimization 

technique 

Category Advantage Disadvantage 

(Hajek and 

Phang, 

1988) 

Linear 

programming 

Mathematical 

programming 

Able to achieve 

optimum benefits 

Require domain 

expert knowledge 

(Ibraheem 

and Atia, 

2016) 

analytic hierarchy 

process model 

Mathematical 

programming 

Able to rank a list 

of decision 

options 

Not mentioned 

(Flintsch et 

al., 1996) 

(Fwa et al., 

1998) 

(Taha and 

Hanna, 

1995) 

Artificial Neural 

Network & 

Genetic 

algorithms 

AI Enable 

automation of 

selection process 

of optimum 

maintenance 

strategy 

Only focus on 

single treatment 

(Yao et al., 

2020) 

Reinforcement 

learning 

ML ML-based trial 

and error to 

identify the best 

action to for the 

best outcome 

New approach to 

the field, more 

research effort 

needed 

 

Various optimization techniques have been employed and explored in the road sector to assist 

roadway agencies. These techniques include dynamic programming, linear and nonlinear 

programming, integer programming, optimal control theory, heuristic methods, Markovian 

and semi-Markovian methods (Berthelot, 2020). Hajek and Phang (1988) found that the 
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linear programming technique is helpful when allocating pavement investment strategies to 

achieve optimum technical benefits for the entire pavement network given a limited budget. 

However, the action plans as part of the strategies are produced manually by experienced 

regional staff whereas several other methods have been adopted to identify the right 

maintenance treatment types and timing. For example, Ibraheem and Atia (2016) have 

conducted a case study to understand the efficiency of the analytic hierarchy process model 

and concluded the benefit of this technique is its capability to rank choices of treatment types 

in the order of their effectiveness and hence decide the best treatment for pavement damage.  

Since the late 1980s, AI techniques have been developed to support the pavement 

maintenance decision making process and they include expert systems, artificial neural 

network (ANN), genetic algorithms, and hybrid approaches (Sundin and Braban‐Ledoux, 

2001). In particular, Flintsch et al. (1996) have used ANN to automate the selection process 

of roadway sections recommended for pavement preservation. Genetic algorithms were used 

by Fwa et al. (1998) to solve maintenance planning at the network level considering the 

maintenance time and type, and in addition, Taha and Hanna (1995) have combined both 

ANN and genetic algorithms for an optimum maintenance strategy selection for flexible 

pavements. However, these aforementioned maintenance strategies mostly focused on the 

effectiveness and cost of one single treatment and the mathematical programming methods 

make the solution space grow exponentially (Yao et al., 2020). Hence more recently, studies 

have been carried out by researchers to explore data analytics, and deep learning (Roberts et 

al., 2021) to support pavement maintenance decisions making and especially, one type of 

deep learning called reinforcement learning (RL), in order to better learn maintenance 

strategies (Yao et al., 2020). These authors concluded that the model could learn an 

appropriate strategy for 15-year maintenance planning. As it is one of the first deep RL 
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algorithms for pavement maintenance decision-making, further areas could be explored and 

included into the algorithm such as budget constraints and more advanced machine learning 

pavement performance prediction models for future research.  

2.1.2 Pavement Performance Prediction and Modelling Concepts  

Pavement performance prediction and modelling is an integral part of pavement maintenance 

management at both the network and project level (Anyala, 2011). At the network level, 

pavement performance modelling is used to provide long-term maintenance forecasts, 

development needs for the whole road network within different economical scenarios, and the 

prioritisation of road sections which need maintenance under budget constraints (Haas and 

Hudson, 1987; Robinson et al., 1998). Meanwhile at the project level, pavement performance 

predictions can be used to choose the best rehabilitation strategy amongst a list of alternatives 

(Kerali, 2001). Therefore, pavement performance modelling is arguably one of the most 

important elements to be able to manage the pavement efficiently and holistically. It also has 

been demonstrated that its accuracy has a direct impact on the maintenance decision-making 

process in terms of cost (Hosseini and Smadi, 2021). 

In essence, the problem being discussed here is “when” and “what”, that is to identify when 

the best time is to maintain a road and what is the best maintenance type. To be able to find 

the solution, it is vital if the future condition of pavements could be predicted given the 

information collected about the road. Figure 2.1 illustrates the standard pavement 

deterioration curve and the concept of pavement performance prediction with maintenance 

decision making (Haas et al., 1994).  
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Figure 2.1. Concepts of pavement performance prediction (After Haas et al., 1994) 

From Figure 2.1, the past deterioration trend which is determined based on existing inventory 

and collected condition data, is followed by a dotted curve showing the future predicted 

values made by pavement performance models within a pavement management decision-

support tool. Upon the prediction, different maintenance options could be considered. The 

choice of a proper strategy for maintenance can lead to roads being kept in a good condition 

for a long period of time, ensuring the serviceability of the road networks (Robinson et al., 

1998).  

2.1.3 Data Used for Pavement Deterioration Modelling  

Before any modelling work for pavement deterioration, it is necessary to collect relevant 

pavement data. They can be typically put into following categories: 1) Pavement inventory 

data (road geometrics, pavement sections, drainage and other amenities, if any); 2) Pavement 

structural data (number of layers, thickness of the layers); 3) Pavement material data 



17 

 

 

(material properties); 4) Pavement condition data (road defects from inspections, roughness, 

deflection); 5) Traffic volume data (annual average daily traffic, axle load distribution); 6) 

Environmental data (temperature, precipitation, and humidity) and 7) Historical maintenance 

records (Peraka and Biligiri, 2020). The following sub-sections describe different data 

sources and types in detail.  

2.1.3.1 Data from Existing Databases  

Existing pavement data providing information about the pavement inventory, structure, 

material and condition is accessible mostly from public databases such as open-source 

datasets created for research or commercial purposes, and transportation agencies’ data 

management tools as well as the specialised databases (e.g., the US Long Term Pavement 

Performance (LTPP)). Such data is categorised as historical data throughout the years 

collected by various equipment and road pavement condition survey vehicles with a fixed 

frequency, e.g., annually or twice a year or every two years. Apart from data holding 

numerical values, multiple pavement distress image data is also collected using specialised 

vehicles equipped with high-resolution cameras and subsequently the data is stored in such 

traditional databases, providing annotated images with different types of pavement distresses 

like cracks, potholes, and fatigue cracks (Kheradmandi and Mehranfar, 2022). From a 

research point of view, many research effort have utilised the data that is publicly available in 

the US LTPP database to model the progression of defects (Abdelaziz et al. 2018; Fathi et al. 

2019; Gong et al. 2018; Marcelino et al. 2019; Ziari et al. 2015, 2016). In addition to this 

database, researchers have also been able to use data stored in governmental or local 

transportation agencies’ PMS across the globe such as the California Department of 

Transportation in the US (Shu et al., 2022), National Highways in the UK (Corker et al., 

2023), Austroads in Australia (Martin and Choummanivong, 2016), State Highways in New 
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Zealand (Stevens et al., 2009), Road Administration Bureau of Shanghai (Wang et al., 2020) 

to understand road deterioration and model pavement condition.  

2.1.3.2 Data from Sensors and Maps  

More recently after entering the industry 4.0 era where a large amount of data is available due 

to the advancement in technologies such as Industrial Internet of Thing networks, Big Data, 

Robotics, Automation and AI, it has been suggested that the abundance of data from sensor 

networks can provide continuous information on the performance and behaviour of the 

physical infrastructure, which should be adopted in the pavement realm to ensure a more 

efficient and effective transportation system (Steyn, 2020). Pavement practitioners have 

started leveraging from multiple different sensors available to collect pavement condition 

data and to evaluate the potential benefits. For example, making use of mobile phones, Wang 

(2019) and Souza et al. (2018) demonstrated that the data generated from accelerometers in 

smartphone devices can be used to measure road roughness with an average error of less than 

± 0.3 m/km, and predict the International Roughness Index (IRI) accurately using random 

forest (RF) algorithm with the accuracy of 97.3% in terms of Coefficient of Determination 

(R2), thereby classifying the condition of roads. 

In addition to data generated from smartphones, low-cost monitoring sensors installed on the 

pavement surface or within its structure are going to become another data source that helps 

road authorities to acquire real-world and real-time data, enabling the continuous monitoring 

of roads. This is aimed to achieve a better understanding of road structural health and 

essentially a superior pavement management, which has been demonstrated in field trials (Ye 

et al., 2024). For instance, the flexible pavement research at the Virginia Smart Road 

instrumented environmental sensors such as thermocouples to measure temperature, time 

domain reflectometry probes for moisture content in the base layer and resistivity probes, to 
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measure frost penetration as well as dynamic sensors to evaluate stress and strain across 

different layers under truck loading (Loulizi et al., 2001). Moreover, Karimi and Mallick 

(2023) provided a comprehensive state-of-the-art review on the instrumentation of flexible 

pavements where various sensors such as strain gauges, earth pressure cells, linear variable 

differential transformers and their applications in pavement have been presented. Similarly, a 

review of the application of fibre optics sensors in asphalt pavement monitoring systems 

worldwide has also been provided by Kara De Maeijer et al. (2019). 

Additionally, imagery and point cloud are among the sources of pavement geometric data for 

creating digital presentation of the pavement. Geospatial point cloud data sets are generated 

by sensors such as 3D scanner, Light detection and ranging (LiDAR), and Photogrammetry 

software that can provide a detailed surface topography, which can also be integrated with 

existing GIS software (Inzerillo et al., 2018). The recent work from Marie d’Avigneau et al. 

(2025), introduced the CAMHighways - Cambridge Highways dataset, where a versatile and 

comprehensive dataset is provided using the mobile mapping data surveyed over 40 km of 

UK Highways. The dataset has been prepared and automated to produce segmented and 

classified point clouds, annotations, labelling and georeferenced for the development of 

geometrical road digital twins. Instead of data collected from the field, various forms of map 

data on the public online platforms can also be retrieved, such as aerial photography, high-

resolution imagery, digital surface and elevation models as well as from different kinds of 

map downloading platforms and software. Take a recent work from Jiang et al. (2022) as an 

example, a systematic approach was proposed and tested to make a highway digital twin 

based on map data using Digimap (https://digimap.edina.ac.uk/) in the UK.  
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2.1.3.3 Data Collection Frequency  

Pavement surface condition data plays a pivotal role in pavement management and 

performance modelling. Transportation agencies around the globe collect pavement condition 

data on a regular basis but not at a very frequent rate and at the same time it varies between 

different countries or states. Some authorities collect condition data only once a year, or twice 

in a year whereas others may only collect data once in two, or sometimes three years. The 

frequency of road condition data collection plays a very important role in pavement 

management and performance prediction. As reported by multiple studies (Haider et al., 

2010; Xu et al., 2018; Hosseini and Smadi, 2021), the frequency of monitoring the road 

condition will have a significant impact on model performance prediction, cost planning and 

maintenance strategy planning. Furthermore, it has been recommended by Wang et al. (2020) 

that agencies should understand how the differences in data collection frequencies might 

impact their pavement performance models. With this knowledge, agencies can optimize the 

data collection plans. Therefore, they will be able to reduce the frequency without 

compromising the precision and accuracy of analysis.  

With the fast development of IoT technology, its applications in road management have 

gained attention and momentum. These sensors enable a constant real-time monitoring of the 

pavement functional and structural health measured by a range parameters such as deflection, 

stress, strain, vibrations, pressure, as well as temperature and humidity. This in turn helps to 

analyse pavement behaviour, causes of pavement deformation and different road defects. 

However, instrumentation in pavement also poses multiple challenges. Firstly, such sensors 

are often integrated with data collection devices for large amount of data which has high 

energy demands and can hardly possess the collected data in real-time. Another challenge 

when applying IoT to road structural health monitoring is the redundancy in the large number 
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of real-time sensor data, thereby generating a substantial amount of unnecessary energy and 

cost (Ye et al., 2024). Therefore, there is a need to acquire this knowledge on the optimal 

frequency prior to the actual data collection.   

2.1.3.4 Accuracy and Uncertainty 

For transportation agencies, various pavement condition data is collected, and then used for 

model development that facilitates pavement management. However, there is inevitable level 

of inaccuracy and uncertainty associated with the collected data and the built models, which 

in turn would impact the decision-making process. This sub-section reviews the sources of 

these uncertainties and the techniques to tackle them. For pavement data, they can be largely 

categorised into two groups: 1) Pavement surface distress such as cracking and patching, 

which is measured using images, videos or manual observations; 2) Defects measured using 

vehicle sensors such as rutting, roughness and faulting. More recently, real-time data from 

embedded sensors has also been collected in laboratory and field applications. Regardless of 

the data collected using condition inspection survey vehicles or instrumented sensors, it is 

unavoidable that there is error or uncertainty in the accuracy of the measurement data 

obtained. This has been seen as a general issue in pavement data collection (Barbedo, 2019). 

For example, according to the US federal highway administration guideline (Visintine et al., 

2018), a scenario was illustrated where the pavement rutting condition may not deteriorate at 

all or even improve itself based on the data collected in the absence of any maintenance or 

rehabilitation because of measurement error. This may not reflect the reality of the pavement 

deterioration, as demonstrated in Figure 2.2.  
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Figure 2.2. Potential measurement of rutting growth over time (After Visintine et al., 

2018) 

Therefore, the inconsistency between the predicted pavement performance and the observed 

field performance is a function of the prediction model and the inherent uncertainty in the 

measured pavement distresses. There are multiple different sources of uncertainty in 

pavement data (Wu et al., 2023). It can often be due to factors such as inherent variations in 

the physical quantity or material properties (e.g., aggregation sizes, inconsistent binder 

properties and variations in subgrade soil), and inaccurate measurements due to human error 

or sensor reading errors from improper equipment, as well as the pavement spatial variability 

such as sampling and data collection frequency and the changing traffic as well as ambient 

climatic environment (Noshadravan et al., 2013). This aspect of uncertainty stemming from 

data has also been highlighted by several studies (Amin & Amador-Jiménez, 2017; Gogoi et 
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al., 2020; Luo et al., 2022; McNeil & Humplick, 1991) and should be accounted for when it 

comes to pavement performance modelling.  

Data pre-processing is a key step to address the inherent data quality issues, and the 

uncertainties associated with the collected data. Several key pre-processing techniques for 

traditional pavement condition data include: 1) dynamic segmentation for spatial variability; 

2) outlier removal for measurement errors or unreasonable data; 3) smoothing / moving 

average for noises in the data and temporal variability; and 4) Interpolation and bootstrapping 

for missing data (Kargah-Ostadi et al., 2019). Different techniques are also applied in 

addressing similar issues in big data such as data from sensors. Khoei & Singh (2024) 

summarised these methods into two categories: data transformation and data cleaning with 

techniques such as normalisation aggregation, discretisation, imputation, outlier detection and 

removal that could help streamline the analysis of large and complex datasets (Hancock et al., 

2024). 

Another critical and influential source of uncertainty for pavement deterioration modelling 

process is the inherent errors to the model itself, due to the complexity and large-scale sizes 

for pavement structures (Song et al., 2020). The errors may arise from the simplifications 

made in representing the real-world processes, and the inaccurate assumptions made during 

model’s development on the underlying system. In addition, missing key factors or the 

unknown functional relationships between variables may also result in model errors 

(Refsgaard et al., 2006; Simmonds et al., 2022). Moreover, it can be attributed to the 

limitations in estimating model parameters and the corresponding values (Zhang et al., 2024).  

There are multiple different strategies to mitigate model inherent errors. For numerical 

models, process of validation and calibration, mesh refinement that improves discretisation, 

and the use of more complex numerical representation are among the common approaches to 
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reduce the errors in the predictions (Freitas, 2002; Eça and Hoekstra, 2014). For empirical, 

statistical and machine learning models, the most frequently used techniques include cross-

validation, regularisation, model parameter sensitivity analysis as well as uncertainty 

quantification such as producing confidence intervals to reflect the level of uncertainty (De 

Muth, 2019; Berber and Srećković, 2024).  

For pavement management decision making, it is of paramount importance to incorporate 

uncertainty into the process (Gregory et al., 2017). The uncertainties derived from data and 

model errors can be dealt by adopting several methods, especially by the validation of data 

quality and the use of probabilistic pavement performance models (Karanam et al., 2023). For 

example, Chang et al. (2024) introduced a systematic statistical method with quality control 

procedures to analyse the reliability of pavement condition data from field surveys to enhance 

pavement management decision-making. In addition, different probabilistic pavement 

deterioration models can be used to help support decision-making, such as Bayesian network, 

Markov chain and Monte Carlo. Bayesian probabilistic models produce predicted 

probabilities and multiple deterioration scenarios under different factors influencing road 

degradation, based on which decision-makers can choose the most appropriate maintenance 

strategy (Cui and Wang, 2024; Philip and AlJassmi, 2024). Markov chain models also 

provide probabilities for future road condition predictions, allowing decision-makers to 

understand the risk associated with the maintenance schemes. However, unlike Bayesian 

models, it only takes the current condition state into consideration to predict the next state 

through transition matrix (Sati et al., 2020; Seites-Rundlett et al., 2022; Wasiq and Golroo, 

2024). Another method to deal with uncertainty in decision-making process is to use Monte 

Carlo simulations. It incorporates probability distributions to represent the inherent variability 

in the input variables that impact road deterioration. Then the most cost-effective 
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maintenance type and timing can be identified (Guo et al., 2020; Heidari et al., 2020; 

Vagdatli & Petroutsatou, 2022).  More details on pavement probabilistic predictive models 

can be found in Section 2.1.5.2. 

2.1.4 Mechanism of Pavement Deterioration  

2.1.4.1 Factors Affecting Pavement Deterioration  

As soon as a pavement section has been constructed and opened for traffic flow, the process 

of deterioration starts (Jafari Ahangari, 2014). There are multiple different factors that could 

have an impact on this. According to Haas et al. (2001), the road pavement’s performance 

deterioration is influenced by the interactions between construction quality, traffic volume, 

road structure, surrounding environment, vehicle speeds, load axle configuration, types of 

tyres and pressure as well as the maintenance policy.  

Similarly, in a study investigating the pavement structural behaviour, Salour & Erlingsson 

(2013) also concluded that the factors that are affecting pavement condition can be pavement 

age, traffic, environment, pavement thickness, materials, as well as the strength and the 

mechanical properties of the pavement. Knowledge about the factors affecting pavement 

performance would help in understanding the mechanism and the prediction of the pavement 

future state. The next sub-sections summarise the potential defects comprising deterioration. 

2.1.4.2 Modes of Pavement Deterioration   

As the pavement deteriorates, various forms of distresses would occur in asphalt pavements, 

each due to a unique reason, such as poor mix design, construction, or environmental 

conditions, traffic and/or a combination of each. Mallick and El-Korchi (2013) have 

summarised a list of common distresses in asphalt pavements. 

• Bleeding: Shiny asphalt surface on the road caused by upward asphalt movement. 
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• Block cracking: Interconnected cracks dividing pavement into rectangular pieces. 

• Delamination: The separation of asphalt layers due to loosened bond. 

• Edge crack: Long cracks along the edges of asphalt. 

• Fatigue crack: Interconnected cracks caused by fatigue failure of the asphalt surface 

layer due to repeated traffic loading. 

• Longitudinal crack: cracking occurring in parallel to the centreline of the pavement. 

• Polished aggregate: Worn down aggregate particles and binder due to traffic over 

time. 

• Pothole: Bowl-shaped depressions in the pavement surface. 

• Ravelling: Disintegration of an asphalt road surface due to the dislodgment of 

aggregate materials (gravel, sand, and crushed stone). 

• Reflective cracking: Cracks in a flexible overlay layer that match existing cracks in 

the underlying pavement. 

• Slippage crack: Crescent- or half-moon-shaped cracks having two ends pointed away 

from the direction of traffic. 

• Thermal cracking: Cracks caused by the thermal stress within the pavement material 

due to fluctuating temperatures. 

• Rutting: A longitudinal surface deformation usually on the wheel path. 

A typical pattern of deterioration in asphalt pavements is rutting, which is also the most basic 

form of pavement distress (Thom, 2024). It initiates and progresses rapidly during the first 

few years since initiation, but then slows down to a lower rate (Huang, 2004). Rutting is of 

great significance for road management. A study of the mechanisms of deterioration on trunk 

roads in Europe compared several modes of pavement distress as shown in Figure 2.3 and 
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concluded that rutting occurring in the asphalt layer of pavements is the most important mode 

(Atkinson et al., 2006).  

 

Figure 2.3. Importance of perceived modes of deterioration in fully flexible pavements 

(After Atkinson et al., 2006) 

In addition, the fourth important mode in the same list, longitudinal unevenness or roughness, 

has also been regarded as a key indicator for road condition to trigger road maintenance. 

Reported as IRI, it is used to measure ride quality, comfort level for road users and users 

operating costs (Sayers et al., 1986). Therefore, this study focuses on these two pavement 

deterioration modes: rutting and roughness.  

2.1.4.3 Mechanism of Road Rutting Formation   

Pavement deterioration can be put into two categories: 1) surface deterioration 2) structural 

deterioration, both of which can cause the rutting defect phenomenon to appear (Mehdi et al., 

2022). Surface rutting is described as a result of excessive stress induced by traffic load 

which is beyond the shear strength of the material (Paterson, 1987). The main scenarios that 

would cause the development and growth of surface rutting have been stated by TRL (1993) 

and are listed below: 

• Very heavy axle loads; 
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• High maximum temperatures; 

• Channelised traffic; 

• Stopping or slow-moving traffic. 

Structural rutting, on the other hand, mostly stems from the permanent vertical deformation 

of the underlying pavement structure under repeated traffic loads. For example, it could be a 

reflection of the permanent deformation within the subgrade layer (Albayati, 2023).  

2.1.4.4 Mechanism of Road Roughness Formation  

Traditionally, roughness is used as a metric for road pavement quality evaluation 

(Tamagusko and Ferreira, 2023) and therefore used by road agencies to identify which 

highway networks require maintenance and rehabilitation and the allocation of budgets 

(Damirchilo et al., 2021). Roughness is measured by the IRI which is one of the few 

pavement condition measures that have international acceptance. It is defined by the 

amplitude of motion of a standard vehicle suspension system as it travels along the road, 

measured in metres of the suspension system movement per kilometre of travel cumulatively 

(m/km or mm/m) (Thom, 2024). Bump integrators measure the IRI when driving on the 

highways with average traffic speed. The idea is illustrated in Figure 2.4 (Thom, 2024). 
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Figure 2.4. Bump integrators and the IRI (After Thom, 2024) 

Roughness can be caused by either longitudinal or transverse distortions in the roadway, 

where the former could be a result of consolidation of the foundation material of the 

pavement, and the latter could be a result of rutting or settlement within the road (Mallick and 

El-Korchi, 2008). A summary of the factors affecting roughness progression has been 

presented by Hunt and Bunker (2002) and listed as follows: 

• Construction quality: Strength/Moduli of pavement, dependent on type of soil, rock, 

gravel, asphalt and compaction. 

• Environmental impact: Precipitation and temperature variances causing the drying, 

evaporation and oxidation of bitumen. 

• Pavement ageing: strength of pavement across all layers. 

• Traffic loading: a mixture of vehicles loads. 

• Pavement drainage conditions: Permeability varies by type of cross sections and long 

sections. 
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The mechanisms of rutting and roughness discussed in this section help to understand and 

identify key variables which are of importance for the prediction model development. The 

next section reviews the state-of-the-art on the different types of existing deterioration 

models. 

2.1.5 Pavement Deterioration Models    

Pavement deterioration models are important in predicting the degradation of pavement and 

the progression of different defects. The models reviewed in this section are discussed under 

the following headings: Deterministic models; Probabilistic models; and ML models. 

Within road pavement management, one of the most important components is the prediction 

model for pavement performance deterioration, as it aims to forecast the future conditions of 

the pavement accurately. It serves as a fundamental input to design and plan maintenance 

activities, to prioritise scheme selections and to complete associated treatments to distresses, 

which supports the final decision-making. Figure 2.5 describes the development of these 

models and their relevant characteristics. 

 
Figure 2.5. Pavement performance prediction models developments and characteristics 

 

Deterministic

• Strengths:

• mathematical 
correlation

• easy to understand

• low complexity

• Weaknesses:

• limited variables

• lack of data

• subjective assumption

Probablistic

• Strengths

• consider possible 
conditions and risks

• some can be used 
when lack of data

• Weaknesses

• inaccurate outcomes

• some still suffer when 
lack of data

Machine Learning

• Strengths

• higher accuracy over 
deterministic & 
probablistic models

• fast and constant 
advancements in ML 
algorithms

• Weaknesses

• model overfit

• require expertise on 
model tuning
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Deterministic models are composed of a series of mathematical functions, and probabilistic 

models predict a range of probability of a particular condition based on the distributions of 

probability in the future, whereas machine learning models use AI techniques to identify 

correlations between variables and predict the pavement future condition based on a learning 

process using historical data (Anyala et al., 2014; Sanabria et al., 2017; Wang et al., 2017). 

2.1.5.1 Deterministic Models  

The deterministic models typically encompass four key components: primary response, 

structural performance, functional performance and damage models (George et al., 1989). 

The preceding models can be categorised into mechanistic models (stem from physical 

properties and interactions), empirical models (developed from regression analysis, which 

usually have specific formulas) and mechanistic-empirical models. Theoretically, the 

mechanistic models are drawn based on the relationship between response parameters such as 

stress, strain, and deflection (Li et al., 1996). The mechanistic-empirical models draw the 

relationship between road defects and the loading of the traffic whereas the empirical models 

provide the correlations between a performance indicator (e.g., IRI) and a series of predicting 

parameters such as pavement number of layers and thickness, structural number, material 

properties, pavement age and traffic loading (Shohel and Amin, 2015). A general function of 

a deterministic pavement performance model can be expressed by Eq. 2-1 proposed by Li et 

al. (1996).  

PCSt = F (P0, ESALst, He or SN, MR, C, W, I)                                                               Eq. 2-1 

Where the PCSt represents the generalised pavement condition state at a given year t, P0 is the 

initial pavement condition state, ESALst means the equivalent single axle loads (ESALs) 

accumulated at age t, He is the total granular pavement structure thickness, SN is the 

structural number index of the total pavement, also known as the pavement strength, MR is 
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the subgrade soil resilient modulus, C means construction effects to be considered, W 

accounts for a set of climatic or environmental effects, and I is the interactions effects.  

Based on this, the American Association State Highway and Transportation Officials 

developed the equation for the present serviceability index (PSI) of the flexible pavement 

where 18-kip ESALs, material properties, drainage and environmental conditions are 

considered as main factors, as presented in Eq. 2-2 (Abaza et al., 2001). 

Log10 (ESALs) = ZR × S0 + 9.36 × log10 (SN + 1) – 0.2 + 
log10 [

∆𝑃𝑆𝐼

4.2−1.5
]

0.4+ 
1094

(𝑆𝑁+1)5.19

 + 2.32 × log10 (MR) – 

8.27                                                                                                                                   Eq. 2-2 

Where ∆PSI is the difference between the initial design serviceability index and the 

serviceability index at the year t, ZR is the standard normal deviate, and S0 is the combined 

standard error of the traffic and performance prediction. 

Similarly, developed a mechanistic roughness model relating the roughness with the number 

of load repetitions, axle load, and the thickness of asphalt layer. The statistical relationship is 

depicted in Eq. 2-3 where IRI0 is the initial roughness which is the most significant factor that 

affects roughness in road deterioration, and other factors are axle load expressed as P, asphalt 

thickness as T, and the number of load repetitions as ESALs.  

IRI = -1.415 + 2.923 × √IRI0 + 0.00129 × √ESALs + 0.000113 × T – 5.485 × 10-10 × P4 – 10-3 

× T × √ESALs + 5.777 × 10-12 × P4 × √ESALs           Eq. 2-3 

At present, deterministic models are largely implemented by regional or local PMSs in most 

transportation agencies across the globe (Hicks and Groeger, 2001; Ferreira et al., 2010). For 

example, Highway Development and Management (HDM) model four, they provide a 

mathematical correlation between the condition and the variables that impact pavement 

deterioration, which is easy to understand and has low level of complexity to use 

(Karimzadeh, 2020). However, these models only cover a limited number of variables that 
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contribute to the pavement degradation because of lack of available data and deterioration 

knowledge, which limits the models’ applicability and flexibility. In addition, the extensive 

use of expert-based subjective assessment with relevant assumptions as well as simplification 

cause challenges to the accuracies of the models in general (Karimzadeh, 2020). Furthermore, 

deterministic models often would require calibration and structural data, which puts a huge 

challenge on its development and application (Anyala et al., 2014).  

2.1.5.2 Probabilistic Models  

Given the stochastic nature of the pavement deterioration process, its nonlinear behaviour, as 

well as the influence of unexplained variables, it was suggested that more complex models 

are required to capture this deterioration process (Justo-Silva et al., 2021). Therefore, 

probabilistic models were developed by taking into consideration a range of possible 

conditions leveraging risks and its associated probability. They have been adopted 

prevalently in the US and Europe. Probabilistic models are purely empirical and are defined 

by transition probability matrices with probabilities of transition between quality states of the 

pavement with or without application of maintenance and rehabilitation actions.  

One of the other common probabilistic modelling approaches is Bayesian methodology or 

Bayesian models, which works differently to Markov chain. Specifically, it uses a probability 

distribution for prediction by considering a variety of factors. As a result, these models also 

are impacted by insufficient data in most cases, but they use probability distributions by 

simplification applied to mitigate these issues caused by the lack of information. As a result, 

they could help forecasting the pavement future condition. Nonetheless, these distribution 

models might not be able to provide an exact fit on the actual performance observations and 

consequently lead to inaccurate results (Karimzadeh, 2020). Markov chain and Monte Carlo 

methods have been recognised to facilitate this analysis (Lunn et al., 2000).  
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Markov chain is a typical representative of the probabilistic models. It can predict the next 

state of the pavement based on the knowledge of the previous or current state of pavement 

(George et al., 1989). The main challenge for Markov chain process is the development of the 

transition probability matrices. Several pavement degradation functions by means of Markov 

process modelling were developed for PMS of Arizona Department of Transportation (Eq. 2-

4) using observed historical pavement performance data and Waterloo (Ontario) regional 

road network (Eq. 2-5) based on pavement age. 

𝑃𝑖𝑗
𝑛 = ∑ 𝑃𝑘𝑗

1𝑀
𝑘=0 𝑃𝑘𝑗

(𝑛−1)
∀𝑛 ≤ 𝑣  and 𝑃𝑖𝑗

𝑛 = ∑ ∑ (𝑃𝑖𝑘
(𝑣)

× 𝑃𝑘𝑙
(1)𝑎)𝑀

𝑘=0
𝑀
𝑖=0 𝑃𝑙𝑗

(𝑛−𝑣−1)
∀𝑛 > 𝑣            Eq. 2-4 

Where 𝑃𝑖𝑗
𝑛 is the n-step transition probability from the condition state i to j for the entire 

period (N), M + 1 is the total number of pavement condition states, v is the period within 

which the rehabilitation is applied; 𝑃𝑖𝑘
(𝑣)

 is the v-step probability of transition from condition i 

to k under the routine maintenance; 𝑃𝑘𝑙
(1)𝑎

is the one-step transition probability from the 

condition k to l at period v; and 𝑃𝑙𝑗
(𝑛−𝑣−1)

 is the (n-v-1) step transition probability from the 

condition l to j under the same routine maintenance (Wang et al., 1994). 

V (n) = V (0) × Mn                Eq. 2-5 

Where V(n) is the predicted condition state matrix at year n, V (0) represents the initial 

condition state matrix at year 0, and M is the 1-step transition probability matrix (Karan, 

1978; Wang et al., 1994).  

One of its benefits is that this method does not consider the actual factors that contribute to 

road deterioration, and that it can be useful especially when there is not enough data for all 

variables and factors (Jin and Mukherjee, 2014). However, one of the assumptions of such 

models is to assume all transition probabilities are constant which would cause inaccurate 

outcomes. Even with some variants of these models which do use flexible transition 

probabilities, the imprecision is still found to be high and therefore inaccurate results are 
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produced (Chen and Mastin, 2016). When Markov chain models are combined with Monte 

Carlo simulations, the model could reflect the stochastic transition of the pavement condition 

over time and such models can be developed without the need of a large historical database. 

Probabilistic pavement deterioration model’s parameters can also be derived using Monte 

Carlo simulations for estimating the uncertainty band of the parameters and the model 

predictions (Karanam et al., 2023).  

2.1.5.3 Machine Learning Models  

Starting with a basic understanding, unlike the mathematical or statistical models introduced 

in previous sections, ML is a branch of AI, which is driven by data and learns patterns 

directly from the data without relying on explicit, pre-defined assumptions. ML can be 

categorised into classification or regression problems. Classification algorithms are used to 

classify or predict the classification of certain values such as true or false, spam or not spam 

etc. However, regression algorithms are used to predict continuous values such as condition 

index, age, and salaries. ML algorithms are used to fit the data to understand the relationship 

between input(s) and outputs. For example, given a very simple dataset (𝑥, 𝑦) = {(𝑥1, 𝑦1), (𝑥2, 

𝑦2), (𝑥3, 𝑦3) .. (𝑥𝑛, 𝑦𝑛)}, where (𝑥𝑖, 𝑦𝑖) is a pair of data input and output. It is defined that for 

point 𝑥𝑖, there is a corresponding output value 𝑦𝑖. From a mathematical point of view, a model 

needs to be built to identify the relationship; this is where a ML algorithm can be applied 

(Badillo et al., 2020). 

In more recent years, according to Morales et al. (2017), ML has become a popular approach 

adopted by researchers and practitioners in the prediction of future pavement performance. 

Based on the review conducted by Sundin and Braban‐Ledoux (2001), as well as the proposal 

from Efe and Shokouhian (2020), ML techniques such as ANNs are able to serve as an 

alternative way to perform prediction modelling for pavement management systems. Multiple 
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machine learning algorithms and techniques have been researched and implemented for 

pavement performance prediction. For example, Hamdi et al. (2017) used ANN to predict 

surface distress index with a high correlation factor (R2 = 99.6%) using data from an 

integrated pavement management system following a data-driven approach. In addition, ANN 

have been proven by various researchers regarding its prediction accuracy over previous 

traditional model types. For instance, Sanabria et al. (2017) conducted a comparative analysis 

between the prediction performance on distress rate using ANN and ordered-probit which is 

one of probabilistic models utilising the same traffic data, and the study suggested that ANN 

produces higher prediction capacities over ordered-probit. Similar studies have been carried 

out by Yang et al. (2003) and Saghafi et al. (2009) who concluded that the ANN models 

resulted in more prediction accuracy in comparison to traditional regression models. As the 

field of computer science and machine learning continues to develop, multiple improved and 

advanced versions of ANN as well as other types of NN have also been produced and 

subsequently researched for investigating their suitability in pavement performance 

prediction. One significant factor that impacts the performance of ANNs is the implemented 

backpropagation neural network algorithm (Leung and Haykin, 1991), and several research 

studies have been conducted with a focus on the use of back propagation neural network to 

establish prediction modelling. According to the study done by Amin and Amador-Jiménez 

(2017), Back Propagation Neural Networks with a generalised delta rule learning algorithm 

reduce the measurement errors experienced in most deterministic and stochastic models. The 

same algorithm has also been proven to produce highly accurate prediction of rutting 

progression in bituminous pavements and to define the error percentage contributed by input 

factors (Ajakaiye and Amin, 2020). More recently, given that pavement maintenance data is 

time-series based, an increasing amount of research has been focused on the use of another 
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type of NN called Recurrent Neural Network (RNN) which is essentially ANN with recurrent 

connections, and such a network is capable of modelling sequential time to learn features and 

long-term dependencies for sequence recognition and prediction (Salehinejad et al., 2017). 

Amirhossein Hosseini (2020) and Choi and Do (2020) also explored the usage of RNN to 

predict cracking, rut depth and the IRI based on 10-year historical data from the Korean 

National Highway PMS, taking into consideration data on pavement type, traffic, and 

environmental factors, as well as hyperparameter configurations. In addition to NNs, methods 

such as support vector machine (SVM) and ensemble algorithms such as RF and gradient 

boosting regressor as well as k-nearest neighbours (KNN) have also been applied in 

predicting pavement performance and achieving promising results (Marcelino et al., 2021; 

Shtayat et al., 2022; Chen, 2023). Despite the achievements of these studies adopting various 

ML techniques in predicting road defects and performance, there is a common limitation and 

problem faced by ML which is explained in the following sub-sections. 

2.1.5.4 ML Limitations on Rutting Prediction  

As for pavement performance modelling, including rutting and IRI deterioration modelling, 

remarkable developments in the application of different types of ML algorithms, have been 

observed such as NNs, Decision Trees, SVM, combinations of them and other advanced ML 

algorithms. However, despite using these encouraging ML techniques, the same drawback 

applies when using “black-box” ML models that are agnostic to the existing underlying 

physics. This issue has been acknowledged by researchers in the field, e.g., (Deng et al., 

2024). For instance, in a study conducted by Alnaqbi et al. (2023), the authors collected 1584 

records from the US LTPP database and compared the ML modelling performances across 

ANN, SVM, decision trees and Gaussian Process Regression (GPR) with the results showing 

GPR achieving the highest accuracy (R2 of 0.989). Despite the promising result, the authors 
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also acknowledged the need for combining the ML approach with domain specific knowledge 

to yield more interpretable predictions. Similar suggestions have also been made by Haddad 

et al. (2022), in which a fully connected three-layered feedforward deep neural network (128-

32-8) was developed and obtained R2 of 0.82. However, the authors admitted the black-box 

nature without any direct explanation on how NNs produced a certain output, indicating the 

need for the model’s interpretability and the integration of physical domain knowledge. Some 

progress has been made in this regard in pavement modelling. For example, the SHapley 

Additive exPlanations (SHAP) approach for the interpretation on models’ rutting predictions 

has been adopted by Yao et al. (2021) and Guo et al. (2022) with Bayesian Neural Network 

and Gradient Boosting Decision Tree. While this approach has led to further enhancing of the 

ML model’s capacity compared to traditional ML techniques as well as the ability to 

understand the model’s prediction output on pavement performance, the SHAP value is a 

model-agnostic tool to explain the individual prediction output which only happens after the 

model development rather than considering physical characteristics (Chen et al., 2023). This 

study therefore addresses the gap regarding the integration of domain knowledge based on 

physics into the ML modelling process for pavement rutting prediction.  

2.1.5.5 ML Limitations on IRI Prediction  

Similarly, various attempts have been made in recent years to predict IRI applying different 

types of ML algorithms with promising results. For example, Ziari et al. (2015) used an ANN 

to predict IRI in the short and long term, with an average prediction accuracy, R2, above 90%, 

with various network architectures. Despite the high accuracy, the ANN model was largely 

dependent on and optimised by the homogeneous data used, which is not the case in practice. 

Similarly, the findings of Kargah-Ostadi et al. (2010) demonstrated that the successful 

forecasting capacity of ANN with R2 of 95.8% on the test data set makes it helpful in 
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network-level pavement management system decision making but it had the same data 

limitation where the data used for modelling was homogeneous. Several researchers have 

performed comparative studies revealing the superiority of ANN model performance on the 

same datasets from either the commonly used US LTPP database or unique state local agency 

databases (e.g., low volume road pavement sections in India) over traditional methods such as 

linear regression models and the HDM-4 model (DT Thube, 2012; Abdelaziz et al., 2018). 

Apart from ANN, the RF algorithm has also been suggested as a powerful ML algorithm 

resulting in relatively high long-term IRI prediction accuracy on test data (e.g., approx. R2 

98% for 5-year prediction, and R2 93% for 10-year prediction) while dealing well with both 

overfitting issues and generalisation ability (Gong et al., 2018; Bashar and Torres-Machi, 

2021; Marcelino et al., 2021). However, the lack of consideration of the physical 

deterioration mechanism over the years and the fact that the multi-year predictions were only 

based on data, reduce the reliability and accountability of the model. In addition, SVM is 

another well-known method that has been widely used for predicting the IRI. For instance, 

Ziari et al. (2016) have formed and analysed five SVM algorithm kernel types and identified 

Pearson VII Universal kernel being the one producing the most accurate results with R2 over 

92%. In another study using SVM regression for IRI forecast with a different data source 

(experimental pavement roughness data collected annually for seven years for a high-volume 

motorway), radial basis function kernel was found to yield the highest prediction 

performance with R2 over 90% in training data and Mean Absolute Error (MAE) less than 

8% in the testing data (Georgiou et al., 2018). These research outputs denote the performance 

variability of ML algorithms which is fundamentally bound by the characteristics of the data 

collected itself. More recent efforts have also been made to investigate other advanced and 

novel ML algorithms indicating even further improvement in prediction such as gradient 
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boosting or extreme gradient boosting (Damirchilo et al., 2021), TrAdaboosting (Marcelino et 

al., 2019) as well as CatBooster (Bral et al., 2024). For example, Bral et al. (2024) presented 

the superior performance of CatBooster over both RF and ANN by 119% and 129% for the 

training data, 5.2% and 3.4% for the test data. However, the training data having over 99% R2 

accuracy and the fact that it was significantly higher than that of test data seems to indicate an 

overfitting issue during the development of the model.  

According to Karpatne et al. (2017) and Deng et al. (2024), the common issues of black box 

ML models can be summarised as follows: 

1. Potential imbalance between the utilized data and the structure of the model, causing 

overfitting and a lack of model interpretability. 

2. Heavy reliance on the quality and quantity of the utilized data, leading to unreliable 

predictions with input variables with different data distributions, reduced stability. 

3. Tendency to produce scientifically inconsistent results that are not aligned with existing 

scientific theories and understanding as well as their inability to provide a mechanistic 

understanding of discovered patterns and relationship from data. This shows the need to 

introduce scientific consistency as an essential component for learning generalisable ML 

models in pavement performance prediction problems.  

2.1.5.6 Integrate Physics with ML 

In recent years, a new paradigm in the AI research area, integrating the aspect of existing 

known physics with ML have demonstrated potential capacity in various disciplines to 

account for some of the common ML issues and limitations such as uncertainties and 

imprecision (Willard et al., 2022). This fusion has been referred to using the term “physics-

enhanced machine learning (PEML)” (Cicirello, 2024), which is adopted herein the thesis. 

This is achieved by denoting that prior physics knowledge is embedded, in some form, to the 
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learner, and guiding the ML or neural network training process through the incorporation of 

existing first principles or laws of physics before producing an output (He et al., 2020; 

Robinson et al., 2022). Therefore, it could generate a more consistent result and thereby 

improving model’s stability and generalisability. This technique has already been applied 

across diverse disciplines such as climate science (Faghmous and Kumar, 2014), earth 

systems (Reichstein et al., 2019), engineering and environmental systems (Raymond and 

Camarillo, 2021; Daw et al., 2022), and structural engineering (Gu et al., 2022). Within 

structural mechanics, Haywood-Alexander et al. (2024) has focused on the application of 

PEML in this domain and proposed a two-dimensional spectrum contextualising the different 

model types of combinations driven by both the amount of data available, and the level of 

physics constraints that are applied.  

Willard et al. (2020) and Haywood-Alexander et al. (2024) conducted detailed surveys on the 

overview of multiple PEML schemes as well as enabling methods. Based on a combination of 

the reliance on the physics model prescription and physics embedding methods, PEML 

techniques can be categorised as 1) physics-guided ML techniques; 2) physics-informed ML 

methods; and 3) physics-encoded ML schemes. Technique 1) can be achieved by hybrid 

physics-ML modelling and residual modelling methods; Technique 2) could be realised by 

using dictionary and physics-informed loss function methods whereas technique 3) can be 

approached using constrained Gaussian processes. physics-encoded initialisation and physics-

encoded design of architecture. Figure 2.6 provides a diagram summarising the PEML schemes, 

techniques and implementation methods. The following subsections also review these in detail.  
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Figure 2.6. PEML Techniques and Methods 

Physics-guided ML (PGML) techniques  

This is the technique where the physics model prescriptions are embedded as proposed 

solutions, and act in parallel to the data-driven learner in the full PEML model architecture. It 

steers the ML learner by the high degree of strictness in the prescribing physical models. Two 

approaches have been used to implement them. 

A. Hybrid physics-ML modelling 

One straightforward method to ingest physics with ML is fusing the output of a physics-based 

model as an extra input to an ML model. For example, Daw et al. (2022) presented a framework 

for lake temperature modelling using PGML where the outputs from the physics-based model 

were used as an additional input, reducing the Root Mean Squared Error (RMSE) from 1.18 to 

0.73 °C. Duran et al. (2022) used a similar approach where the physics-based simulation was 

adopted as an extra input for ANN to predict the mechanical properties of high carbon pearlitic 

steel and steel connection stiffness, which yielded a 38.5% accuracy improvement in RMSE. 

This method can also be seen as creating extra data to enlarge the training set, especially useful 
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in a controlled environment. Data generated by physical simulations has been also used as 

synthetic data for learning tasks such as autonomous driving (Dosovitskiy et al., 2017) and 

adversarial test generation (Tuncali et al., 2018). 

B. Residual modelling 

This approach differs from the previous one in that both ML and physics-based models operate 

simultaneously instead of one after another. Residual modelling is one of the most common 

scientific approaches to address the imperfections of physics-based models, where ML learns 

to predict the errors or residuals made by a physics-based model. This then can be used to 

correct the physical models’ predictions. One key area where this approach has been applied is 

in reduced order models of engineering systems. For example, neural networks that were used 

to model the error in models due to reduction, demonstrated sharp error reduction when applied 

to known differential equations (San and Maulik, 2017, 2018) as well as in prediction of 

extreme weather events compared to observational data (Wan et al., 2018).  

Physics-informed ML (PIML) techniques 

This technique corresponds to a heavier reliance on data, but at the same time, retains still a 

moderate level of dependence on the physics. Physics information is embedded as prior 

information from which a loss function is constructed, which prompts the learning process. 

Two such approaches are reviewed and discussed.  

A. Dictionary method 

This method selects a suitably sparse representation of the physics model via linear 

superposition from a dictionary of candidate functions or atoms by extracting key features from 
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the data based on the underlying physical principles. This enables to more efficient and accurate 

predictions (Zemouri et al., 2023). 

B. Physics-informed loss function method 

This method is aimed to guide the neural network training process so that the training is guided 

by known underlying physics (Tianren Zhang et al., 2024). Most of the work reported under 

physics-informed neural network (PINN) have adopted this approach especially for solving 

engineering and scientific problems because of its ability to handle complex relationships 

between many physical variables across time and space. Physical knowledge has been 

incorporated into loss functions to help develop ML models that can capture dynamic patterns 

consistent with established physical models or laws. Thereby, increasing the capacity of models’ 

generalisation when facing scenarios not seen in training data. One common technique to 

realise this is to add physics constraints into the ML loss function using Eq. 2-6 (Karpatne et 

al., 2017). 

Loss = LossTRN (Ytrue, Ypred) + λR(W) + γLossPHY(Ypred)                                 Eq. 2-6 

where the LossTRN is the training loss that measures a supervised data error based on RMSE 

or cross-entropy between the predictions Ypred and actual values Ytrue. λ is a hyperparameter 

that controls the weight of the model complexity loss expressed as R(W). The additional loss 

function LossPHY is physics-based that measures the consistency between the predictions Ypred 

and physical laws, which is then weighted by a hyperparameter γ. 

Daw et al. (2022) in the case of predicting lake temperature, in addition to leveraging hybrid 

physics-ML modelling approach, also modified the loss function based on existing knowledge 

of physics with the known physical monotonic relationship between temperature, density, and 
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the depth of water. This was done to inform the training of the ANN to be physically consistent 

(predictions of denser water are at lower depths than predictions of less dense water). This has 

resulted in a substantial decrease in reducing the physical inconsistency, expressed as the 

violation of a density and depth relationship equation, to nearly zero while improving RMSE. 

In addition to this, if the underlying physics of the system being modelled is known or can be 

estimated in the form of ordinary or partial differential equations, then this can also be 

embedded into the loss function to inform the ML training process (Haywood-Alexander et al., 

2024). Wang and Yu (2021) proposed a PIML model that included an extra divergence-free 

regularizer during training that ensures consistency with physical laws, to perform the task of 

forecasting 2D raw velocity fields of an incompressible turbulent flow. In the case of governing 

PDEs not being available or being computationally expensive, Raymond and Camarillo (2021) 

introduced a simpler loss-function approach by utilising only simple but universally applicable 

laws (conservation of energy) as the informing principle in the error function. This was used 

to build a neural network to predict the motion of a pendulum, which achieved better 

performance when compared with traditional, data-only approaches. Several similar studies 

adopted this method and produced both physically meaningful results as well as improved 

model generalizability (Li et al., 2021; Elhamod et al., 2022; de N Santos et al., 2023; Faroughi 

et al., 2024).  

Physics-encoded ML techniques 

Physics-encoded techniques directly integrate the imposed physics with the architecture of the 

learner, via selection of operators, kernels, or transforms. Such techniques rely less on the form 

of the model, but they heavily rely on the physics model it’s adhered to. Three examples of 

physics-encoded learners are described.  
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A. Constrained Gaussian processes method 

Physics information can be embedded in multiple levels into the Gaussian process modelling 

by incorporating a variety of kernels to enable more accurate and reliable predictions, 

especially when data is limited and noisy (Chang and Zeng, 2023). Petersen et al. (2022) 

applied a novel physics-informed GP method to a bridge problem, but with the aim of 

estimating wind load from acceleration data. In their work, they developed a novel infusion of 

gaussian process latent-force model with a Kalman filter-based approach. This inclusion 

allowed for characterization of the evolution of the wind-load, and this is enriched with prior 

physical knowledge in the form of stochastic information on wind-loads taken from wind-

tunnel tests. This work provides an excellent demonstration of how physics information can be 

embedded to allow the transfer of information from scaled structures. 

B. Physics-encoded initialisation method 

Physical knowledge can also be leveraged when generating the initial values of ML model 

parameters before training (Bousmalis et al., 2018). This approach can accelerate or improve 

the model training process as the initialisation of the weights is informed by contextual physical 

knowledge rather than a random distribution which would result in local minima issue (Jia et 

al., 2021). A specific ML technique known as transfer learning can be used to pre-train a model 

based on physics-based model’s simulated data and then refine the model with observed data 

(Tajbakhsh et al., 2016). For example, Jia et al. (2018) used this strategy to model lake 

temperature by pre-training a physics encoded recurrent neural network on data from physics-

based model and fine-tuned the model with actual data. Read et al. (2019) also demonstrated a 

better generalisability of such models on unseen scenarios compared to pure physics-based 

models.  
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C. Physics-encoded design of architecture method 

Different from the physics-informed loss function and the weight initialisation, this method 

looks at ways to encode physical consistency or physical properties into the ML architecture 

(e.g., ANN architecture) otherwise often has been seen as a black box (Hassija et al., 2024). 

Domain knowledge or physics information can be used to specify node connections that capture 

physics-based dependencies among variables, thereby producing more interpretable results 

(Sun et al., 2020). The techniques to achieve this can be ascribing physical meaning for certain 

neuron in the neural network (Daw et al., 2019; Muralidhar et al., 2020). In this method one or 

more weights are fixed within during neural network forward propagation process according 

to known physical governing equations (Sun et al., 2020), as well as incorporating symmetries 

and novel architectures into the ANNs (Ling et al., 2016; Anderson et al., 2019; Wang et al., 

2020).  

Within the pavement engineering domain, although there exists an abundant amount of existing 

physical understanding and knowledge on roads, limited research effort has been made to 

integrate them into the ML modelling process to enhance its overall performance. The 

following sub-section reviews existing research in pavement engineering leveraging the 

relevant PEML approach.  

Relevant PEML Research Effort in Pavement Engineering 

With regards to pavement management, various studies highlighted the limitations and the 

issues of both traditional and novel ML techniques including the lack of physics information. 

It has been indicated that more research is required to integrate pavement engineering domain 

knowledge into the ML process to enhance model’s prediction stability, reliability and 

generalisability (Yao et al., 2021; Song et al., 2022). For instance, Kargah-Ostadi et al. (2024) 
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has advocated for and discussed several potential applications of PEML to enhance pavement 

engineering practices, in the areas of pavement analysis and design, pavement condition 

evaluation and performance prediction. Several studies have attempted to combine physics 

information with ML to model pavement performance leveraging one or more of the previously 

mentioned five classes of methodologies.  

For example, Chen et al. (2024) used a simple hybrid physics-ML model approach where the 

output of the pavement responses under load from a physics-based finite element (FE) model 

was augmented as an extra input for a RF model to predict road rutting using data collected 

from 99 sections in LTPP database. This approach has demonstrated both one-year prediction 

improvement by 4.4% and the reduction of prediction uncertainty by 6.76% for multiple years’ 

rutting forecast, indicating an improved model stability and reliability. In addition, several 

research also focused on developing physics-guided loss function to constraint the training of 

ANN by obeying pre-defined pavement behaviour rules so that it enables the model’s 

predictions to be more consistent with the theoretical understanding of pavement mechanics.  

For instance, for predicting rutting Deng et al. (2024) incorporated existing physical knowledge 

by following two steps: 1) Generation of synthetic input vectors for the model inputs (number 

of wheel passes, temperature) which both are known to the accumulation of rutting in asphalt 

mixture, 2) by sorting each one of the two inputs in an ascending order while keeping the rest 

of inputs constant at their mean values. This allows for the examination of the individual effects 

of the monotonic increase of these two model inputs on rutting development. The findings 

showed that while PINN reduced the accuracy by less than 3%, the model stability measured 

by averaged cosine similarity, improved from 0.977 to 0.999, and the average coefficient of 

variation based on repeatedly constructed models reduced by 79% from 0.272 to 0.056. 
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Narrower confidence intervals demonstrated model’s rationality improvement by reducing 

unreasonable rutting trends with respect to corresponding model inputs.  

Pasupunuri et al. (2024) used an IRI equation from the Mechanistic-Empirical Pavement 

Design Guide (Titus-Glover and Darter, 2001) to inform the loss function in addition to the 

standard data loss in predicting roughness in concrete pavement. The authors have illustrated 

PINN’s capacity in predicting IRI in concrete pavement with producing acceptable results with 

a Mean Absolute Error (MAE) of 0.134 m/km, and a coefficient of determination of 90%. A 

sensitivity analysis was also performed to showcase the reliability and robustness of the 

developed PINN model. However, the authors did not intend to compare the PINN model with 

that of a standard ANN.  

Another research aimed at supplementing infrequent standard survey data for pavement 

roughness/IRI with continuous data crowdsourced from connected vehicles using PINN 

Kargah-Ostadi et al. (2024). The authors chose the physics-guided initialisation (transfer 

learning) and physics-guided design of architecture (fixing parameters of ANN inner layers 

parameters to preserve the knowledge of the suspension behaviour) approaches for reconciling 

two data sources. The model was pre-trained based on quarter-car simulation data and some of 

its parameters were fine-tuned based on actual standard IRI measurements. Similar to the 

findings of Deng et al. (2024), the developed PINN model showed that despite an increase in 

MAE from the physics-based model, the error is still at acceptable range for practical purposes. 

Notably, the model’s stability has improved from 81.82% to 95.18% in the agreement between 

training and testing accuracy.  

To the authors’ best understanding, no prior research has focused on developing a PEML model 

on predicting the defects for asphalt pavement while evaluating and comparing its performance 
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against traditional ML methods. This could provide valuable insights in implementations of 

PEML in the enhancement of pavement engineering and management practices as an enabler 

for future predictive RDT applications.  

2.2 DTs and their Impacts on Roads  

Triggered by the industry 4.0 initiative, digital transformation has been on-going across a 

broad spectrum of industries and as a result, new concepts and technologies start to emerge 

and surface. Amongst many, one of these novel concepts that is gaining an increasing amount 

of attention and momentum is the DT. It is related to creating a virtual entity of the physical 

system, providing a connection between the real and virtual systems to collect, analyse, and 

simulate data in the virtual model to reflect and improve the performance of the real system. 

It has brought considerable values and benefits across different industries over the last 

decades, attracting a significant amount of interest from both research and industry 

communities, and growing in its importance for the years to come (Pires et al., 2019). Hence, 

the origin, the definitions, the implemented applications and the benefits of DTs are reviewed 

in this chapter. In addition, the main DT components and required characteristics have also 

been listed out.  

2.2.1 Concepts and Definitions  

Before the DT term was coined, the idea of a DT was first brought up back in the 1960s at 

National Aeronautics and Space Administration where a living model was created for the 

Apollo 13 mission (Allen, 2021). A network of high-fidelity simulators, represented as a set 

of virtual assets which were supposed to mimic the structure and behaviour of the 

corresponding physical spacecraft was used to test scenarios of failure and to refine 

instructions that are of great importance in critical moments, and eventually bring the 
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astronauts back from space after an explosion happened in the physical craft (Editorial, 

2024).  

The term DT was only then proposed during a presentation at the University of Michigan in 

the early 21st century by Michael Grieves who stated that a DT should be a virtual 

representation of what has been produced, and should contain three components, namely real 

space, a virtual representation of the product, and the connections of the data and information 

in between for optimizing product life-cycle management in manufacturing systems (Grieves, 

2014).  Since it was introduced in manufacturing systems until today, there has been a variety 

of definitions of a DT under different contexts in which it is applied in specific industries and 

fields.  

A relatively generalised and consolidated definition for DT is proposed by VanDerHorn and 

Mahadevan (2021) after systematically reviewing 46 articles where DT definitions have been 

provided. The authors have defined DT as “A virtual representation of a physical system (and 

its associated environment and processes) that is updated through the exchange of 

information between the physical and virtual systems”. Similarly, Singh et al. (2021) also put 

forward a more comprehensive and specific DT definition that can be applied irrespective of 

the industry or its application: “A Digital Twin is a dynamic and self-evolving digital/virtual 

model or simulation of a real-life subject or object (part, machine, process, human, etc.) 

representing the exact state of its physical twin at any given point of time via exchanging the 

real-time data as well as keeping the historical data. It is not just the Digital Twin which 

mimics its physical twin but any changes in the Digital Twin are mimicked by the physical 

twin too”.   

 

Different industries where DT is applied may have varied definitions respectively based on 

their own contextual scenarios. For instance, the DT definition from an official programme as 
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part of the Digital Built Britain refers to DT as “a realistic digital representation of assets, 

processes or systems in the built or natural environment” (Bolton et al., 2018). This is a 

National DT initiative from the UK government to develop DTs for the built environment and 

infrastructure industry as a whole.  

2.2.2 Categorisations and Types  

Given the diverse definitions of DTs and its wide-ranging applications within different 

contexts, this section reviews the common understanding of DTs in terms of the categories of 

DTs defined as well as various DT types that have been reported in the literature.  

According to Kritzinger et al. (2018), the authors classified DTs into three subcategories on 

the basis of the level of data integration: 1) Digital Model; 2) Digital Shadow; 3) Digital 

Twin. The lowest level is Digital Model where there is no self-initiated data interaction 

between the physical and the digital entity. Digital Shadow differs itself from Digital Model 

as the physical object is connected automatically with the virtual representation. Digital Twin 

is fully integrated, providing the highest level of connectivity between both spaces (Trauer et 

al., 2020; Liu et al., 2021). However, most research claimed digital twin despite the actual 

work being digital model or digital shadow (Liu et al., 2021). The communication level 

differences are demonstrated in Figure 2.7.  
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Figure 2.7. Data Flow in a (a) Digital Model; (b) Digital Shadow; (c) Digital Twin 

Depending on the intended purposes of a DT, there has been generally five different types of 

DTs ranging from Descriptive DT, Informative DT which can also be called Reflective DT 

(Babanagar et al., 2025) or Diagnostic DT (Kibira and Shao, 2023), Predictive DT, 

Comprehensive or Prescriptive DT and Autonomous DT as described by Wang et al. (2024). 

Table 2.2 provides a summary on each type of DTs with regards to the definition, benefits 

and the potential use cases.    
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Table 2.2. Details on multiple DT types 

Type Definition Benefits Use Cases References 

Descriptive A virtual representation of a 

detailed and accurate 

description of the physical 

asset. 

▪ Centralised data repository 

▪ Track asset performance 

over time 

▪ 3D Virtual model creation 

▪ BIM 

▪ Performance visualisation 

(Singh et al., 2021) 

Informative A virtual representation of the 

data and information associated 

with a physical asset 

▪ Real time monitoring 

▪ Real time understanding 

and insight of the asset’s 

behaviour and performance 

▪ Track the physical asset’s 

performance over time 

▪ Support predictive 

maintenance and decision-

making 

(Parmar et al., 2020; 

Sacks et al., 2020; 

Bado et al., 2022) 

Predictive A virtual representation of a 

physical asset that is used to 

model and predict its future 

behaviour and performance 

▪ Detect and identify 

potential issues and 

anomalies before they 

occur 

▪ Predictive modelling for the 

physical entity 

(Sahal et al., 2021; 

Tu et al., 2022) 

Comprehensive A virtual representation of a 

physical asset that integrates 

all the data and information 

associated with the asset 

▪ Provide a complete and 

holistic view of the asset 

▪ Prescriptive analytics and 

recommendations for future 

performance 

▪ Recommendations for 

maintenance scheduling 

▪ Recommendation for 

product designs 

(Callcut et al., 2021) 

Autonomous A virtual representation of a 

physical asset that is designed 

to operate and make decisions 

without human intervention 

▪ Automate tasks and 

processes 

▪ Free up time for other 

important human manual 

tasks 

▪ Automate process of 

maintenance activities 

scheduling 

▪ AI-driven decision-making 

using future-based 

simulations 

(Deryabin et al., 

2020) 
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2.2.3 System Architectures  

A DT can be defined as “a formal digital representation of some asset, process or system that 

captures attributes and behaviours of that entity suitable for communication, storage, 

interpretation or processing within a certain context” (Steindl et al., 2020). Various system 

architectures have been proposed for the construction of different DTs. A very basic DT 

system composes three different aspects: the physical space, the virtual space, and the 

connection between them to exchange data and information (Grieves, 2014). As an evolution 

of the initial DT system, the so-called Five-Dimensional DT was then suggested, adding two 

extra aspects namely data and service aspects (Tao et al., 2019). These five dimensions and 

their relations are outlined in Figure 2.8. This can be seen as the foundation of more 

sophisticated DT architectures.  

 

Figure 2.8. Five-Dimensional Digital Twin Architecture 

The details of a DT architecture are dependent on the use case and the purpose of the DT. 

Within the context of Industry 4.0, Aheleroff et al. (2021) proposed a conceptual DT 

reference model consisting of four parts: Physical layer, Digital layer, Cyber layer and 

communication for exchanging data across the three layers. Based on this, the authors further 

expanded the reference model by including an extra application layer as part of the Digital 

Twin layers, agile value life cycle and digital twin’s integration hierarchy.  
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Various DT architectures have been proposed across multiple sectors such as manufacturing 

(Redelinghuys et al., 2019), energy (Steindl et al., 2020), construction (Tuhaise et al., 2023), 

building and city (Lu et al., 2020), as well as underground (Babanagar et al., 2025). Despite 

the differences, the architectures share a high level of similarity. For instance,  Steindl et al. 

(2020) suggested a general digital twin architecture model that consists of five layers namely 

Asset Layer, Integration Layer, Communication Layer, Information Layer and Functional 

Layer. Similarly, in manufacturing domain, a six-layer digital twin architecture was proposed 

and evaluated by Redelinghuys et al. (2019) giving a more specific functionality definition 

within each layer. However, it is largely similar to the five-layer architecture previously 

mentioned, with dividing the Asset Layer into the physical devices layer and the local 

controllers layer separately. Moving onto the construction sector, the authors have mostly 

excluded the physical entities themselves as a separate layer but emphasised the data 

generated and collected from the physical environment can be the first layer. For example, 

both Lu et al. (2020) and Tuhaise et al. (2023) presented a five-layered system for DT model 

in the context of building and city level applied within the construction industry in general. 

The first layer is Data acquisition, followed by Data transmission layer, digital modelling 

layer, data/model integration and fusion layer as well as the service layer. Quite comparably 

to the previous proposals, Babanagar et al. (2025) conceptualised an underground DT 

architecture with six layers that cover comprehensive details especially on the physical 

entities and process layer as well as data management layer and their interactions with other 

layers. The six layers are: Physical Entities and Processes Layer; Sensing and Data 

Acquisition Layer; Communication / Transmission Layer; Data Management Layer; Data 

integration / Modelling Layer; and Application Layer. A detailed description, meaning, 

purpose of each layer and how they are inter-connected are discussed in the next paragraph. 
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Given there is currently not yet a clear DT architecture for road management, the 

underground DT system framework provides valuable insights considering the proximity 

between pavement and underground.  

The Physical Entities and Processes Layer (Layer 1) encapsulates the actual physical entities 

and process involved in different phases from design, construction, operation and end-of-life, 

as well as the contextual environmental information that is available.  

Multiple types of data generated from Layer 1 can be captured by the Sensing and Data 

Acquisition Layer (Layer 2) by utilising different data collection methods utilising various 

sensing equipment. For example, contactless data collection such as Radio-Frequency 

Identification, distributed sensor systems using IoT devices or Quick Response code can be 

used in this layer.  

These data acquired from Layer 2 are then transmitted to the upper layers by the 

Communication / Transmission Layer (Layer 3) enabled by a broad spectrum of 

communication technologies such as short-range coverage access network technologies, and 

3G, 4G, Long-term evolution, 5G, low-power wide-area networks as well as Wi-Fis (Silva et 

al., 2018).  More detailed on the enabling technologies for DTs are provided in Section 2.2.4. 

In the Data Management Layer (Layer 4), collected and transmitted data are stored and 

processed. This layer fuses and processes data from multiple sources, performing preliminary 

analysis. Mostly cloud-based database servers act as information repositories for the large 

amount of data that has been generated. And Layer 4 is closely tied to Data integration / 

Modelling Layer (Layer 5) where virtual models can be created using technologies like BIM, 

and where digital twin data can be processed and analysed using data mining and AI 

techniques that involves a series of machine learning algorithms. Given the importance of 
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data, model, their fusion and integration, more details are provided in Section 2.2.5 on data 

fusion and model updating within DT’s main components and characteristics context.  

The Application Layer (Layer 6) provides a range of actual services and solutions, from 

descriptive applications to more advanced prescriptive phases depending on the DT maturity 

to the users and stakeholders. Common services include data-driven modelling, structural 

health monitoring, early anomaly detection and prediction, optimisation simulations as well 

as automated decision-making.  

2.2.4 Enabling Technologies  

Although most of the time DT technology has been viewed as a single technology, it can be 

more seen as a system of systems, a combination of multiple enabling technologies that 

construct an intelligent virtual representation of a physical entity and support a continuous 

two-way feedback loop between the physical and virtual twins (Mihai et al., 2022). That is to 

say, the popularity of DTs can be largely attributed to the major developments in multiple 

technologies that surround it in parallel. 

In a DT survey conducted by Fuller et al. (2020), it was concluded that the development of 

DT technology is possible with the same growth experienced in AI and IoT domains which 

are highly important key enablers for DTs. Mihai et al. (2022) also highlighted the 

development in IoT or Industrial IoT devices as well as data analytics capacity. The study 

summarised more explicitly six technologies for DT enablement: 1) ML 2) Cloud, Fog, and 

Edge Computing, 3) Internet of Things, 4) Cyber-Physical Systems; 5) Virtual Reality and 

Augmented Reality, and 6) Modelling Methodologies. Qi et al. (2021) formulated the DT 

model into five dimensions which are physical entities, virtual models, services, DT data and 

the connections. On the basis of this, a comprehensive list of enabling technologies was 

presented under each dimension, which is shown in Figure 2.9.  
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Figure 2.9. Framework of enabling technologies for DTs (After Qi et al., 2021) 

In another study, Hu et al. (2021) built on top of the 5-dimension DT model reiterated the DT 

key enabling technologies such as sensor technology, virtual modelling technologies, data 

processing and transmission technologies. At the same time, the paper proposed a 6-

dimension model by integrating the environment factors in the DT model overall. When it 

comes to the construction industry, Zhang (2023) demonstrated that the same 5-dimension 

DT model is feasible within the architecture, engineering and construction industry using the 

formula and provided technical guidance for DT technologies and applications in the 

operation and management stage of the building sector.  

In addition, although there are multiple enabling technologies that build up a DT, arguably 

modelling and twinning methods are of key importance to integrate all different technologies 

in one DT. Therefore, Thelen et al. (2022) provided a comprehensive and focused 

examination on the element of modelling methods for various aspects of a physical system, 
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including geometric modelling, physics-based modelling, data-driven modelling, physics-

enhanced ML, and system modelling. 

2.2.5 Main Components and Characteristics  

It has been emphasised by several studies that data is the key or core of a DT (Kaur et al., 

2020; Zhang et al., 2022). A practical implementation of DT was conducted for bridge 

structure health monitoring by Ye et al. (2019) where the authors summarised the key 

features and capabilities for a bridge DT, which are 1) a digital replica; 2) data; 3) connection 

to the physical bridge; 4) whole life cycle coverage; 5) common data environment for 

storage; 6) a visualisation tool; 7) a simulation tool; 8) learning from real measurement data 

for better future predictions. Regarding data, multiple research projects proposed the full 

usage of both historical data and real-time data (structured, semi-structured and unstructured) 

as part of a DT framework to enable the DT to be reflective, comprehensible, useful, and self-

evolving (Laborie et al., 2019; Zhu et al., 2019). 

Another important component is how the data obtained is going to be used or processed. As 

mentioned by Chakraborty and Adhikari (2021) one key aspect of the DT technology is to 

update the DT using the sensor data collected from the physical system and then use the same 

data for making predictions on the future state. For this, data driven modelling has been 

revealed as an important element when data is safely collected and stored, and the role of data 

mining and ML has become enormous, and their advancement directly enables DT 

development. The same findings have been concluded in another study (Teng et al., 2021) 

where the authors pointed out the significance of data processing and data-driven modelling 

within DTs due to their unparallel advantages in adaptability to uncertainty and changes, 

accuracy, predictivity and simplicity.   



61 

 

 

In addition to data driven modelling which purely looks at the data, in many domains such as 

engineering, aircraft systems, manufacturing processes and robotics where there are existing 

physics-based models with expert knowledge and advanced modelling techniques based on 

physical laws, DTs could also well be developed based on these models which do not require 

any data as input for the model to work (Aivaliotis et al., 2019; Sun and Shi, 2021). For 

example, Yang and Özel (2021) presented a physics-based simulation model that predicted 

the thermal field solution for the development of a DT in the metal additive manufacturing 

industry. The Finite Element Analysis method has been widely used to simulate different 

processes to build DTs for behaviour simulation and prediction purposes (Hinchy et al., 2020; 

Funari et al., 2021; Sisson et al., 2022). Furthermore, a physics-based model DT could help 

simulate the physical entity at different scales such as macro and micro, as well as the 

interactions between objects (Wook Heo et al., 2021; Erdogdu et al., 2022). 

What makes the DT technology unique is the fact that it could combine the best parts of both 

data-driven and physics-based models to enable an improved predictive performance and 

allow robust decision making for asset owners and operators (Gardner et al., 2020). There are 

increasing numbers of studies focusing on embedding ML together with high-fidelity 

physics-based models to improve outcomes within a dynamic DT environment (Kapteyn and 

Willcox, 2020; Ritto and Rochinha, 2021; Gong et al., 2022). To provide an example, 

Srikonda et al. (2020) has demonstrated that physics-based models can be first calibrated to 

field sensor data if there is any and then be used to produce synthetic data for ML model 

training resulting in improved quality results in the engineering, oil and gas industry.  

Establishing the reliability and trust in DTs is vital for their adoption in practice, and 

therefore to address or quantify uncertainty(ies) is another necessary component in a DT 

framework, especially given the fact that it is built based on aforementioned elements such as 
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data, ML model and physics-based models. Each of these has its own potential source of 

errors and hence uncertainties (Kochunas and Huan, 2021). Multiple methods: Bayesian 

Inference, Interval Analysis, Fuzzy Theory and Monte Carlo methods have been applied for 

this task in DTs (Al & Sin, 2021; Lin et al., 2021). 

As indicated from the studies, digital twin data is diverse and coming from multiple sources, 

collected using different types of sensors, resulting in heterogeneous datasets such as 

dynamic time-series data, image data, video data, and static environmental data, mechanical 

as well as geometrical data. Data fusion is therefore a critical component to facilitate the flow 

of information from raw sensory data to high-level understanding and insights within a DT 

system (Tuhaise et al., 2023). As summarised by Boström et al. (2007), the general data 

fusion concept is defined as “the study of efficient methods for automatically or semi-

automatically transforming information from different sources and different points in time 

into a representation that provides effective support for human or automated decision 

making”. Liu et al. (2018) summarised the possible fusion operations in a DT environment 

and their benefits. Table 2.3 and Figure 2.10 demonstrate more details. 

Table 2.3. Fusion operation types and benefit 

No. Type of data fusion operation Benefit 

1 Sensor fusion Better signal quality 

2 Physics-based model fusion Better model performance 

3 Data-driven model fusion Better model performance 

4 Sensor and physics-based model fusion Adaptive physics model 

5 Sensor and data-driven model fusion Robust data-driven model 

6 Physics-based model and data driven model fusion Improved prediction 

7 Sensor, physics-based model, and data-driven model fusion Reliable decision making 
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Figure 2.10. Visualisation of possible fusion operation types in DT ecosystem 

To enable the fusion of different data types, multiple methods have been suggested to process 

the data. Firstly, considering the noises and the potential errors experienced in sensors, 

probabilistic fusion models using Bayesian networks are helpful in dealing with inherent data 

uncertainty, combined with varying levels of confidence to make predictions (Macías et al., 

2024). Secondly, semantic data fusion method is also important when the meaning and 

context behind data are of significance in the case of semantic annotation for meaningful 

extraction and analysis in images and videos (Li et al., 2024). Thirdly, ontologies and 

knowledge graphs methods provide a formal structure for defining different concepts, 

relationship and rules within a domain such as complex infrastructure management (Yu et al., 

2021).  

Model updating is another key aspect within a DT system to enable the constant and real-time 

synchronisation between digital twin models and the corresponding physical objects. It 

results in a continuous refinement and adjustment of the virtual representation of a physical 

system that reflecting accurately the state of the object by incorporating data from sensors in 
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real-time to enable informed prediction, informed decision-making. There have been several 

techniques proposed within the research community on digital twins to achieve this. They are 

summarised in Table 2.4. 
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Table 2.4. DT model updating methods 

Names Characteristics References 

3D Point Cloud 

Reconstruction 

method 

Uses algorithms to update the geometry of different surface types 

for physical counterparts 

(Dawes et al., 2019) 

(Xu et al., 2020) 

Fractal Theory Captures complex geometric structures and handle nonlinear 

relationships 

(Chen et al., 2022) 

(Zheng and Guo, 2024) 

Iterative 

optimisation 

methods 

Compares the difference between DT output and actual output, 

design optimisation algorithm and find optimal model parameters 

through iterations 

(Zhang et al., 2023) 

(Hao et al., 2023) 

Least squares 

method 

Extracts the most important parameters from the DT model and 

searches for the parameters that have a greater impact on the 

model through sensitivity analysis 

(Wang et al., 2023) 

(Coburg et al., 2024) 

Bayesian updating Utilizes time series data to analyse and determine the state of the 

system, updating the DT model with both historical and real-time 

data to ensure its synchronization with the physical entity 

(Kapteyn et al., 2022) 

(Titscher et al., 2023) 

Neural network 

method 

Updates the weight parameters of the neural network model 

through an evolutionary algorithm to keep the synchronisation 

(Yoon et al., 2022) 

(Wang et al., 2024) 
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Additionally, DTs enable the simulation and prediction for the whole lifecycle management 

of physical entities by the digital entities based on different types of data and algorithms. The 

DT can reflect the design, construction, operation, and maintenance of the physical entity, 

e.g., linear infrastructure (Tchana et al., 2019). According to Wang et al. (2022), the 

implementation of a DT that simulates the whole network lifecycle reduced its lifecycle cost 

by minimising repeating operations and avoiding risk points and therefore improving the 

efficiency. The full-lifecycle management can be embedded within ML models to provide 

enhanced predictive maintenance services on complex equipment (Ren et al., 2022). 

Visualisation is equally important in helping to present, and in interpreting the data coming to 

the DT; Technologies such as BIM could have a great potential to present the digital model. 

For instance, in the rail sector, Kaewunruen and Lian (2019) developed a 6D BIM for the 

lifecycle management of a railway turnout system. And this DT was beneficial for thorough 

visualisation purposes, prioritisation of maintenance options, stakeholder collaboration 

promotion and cost estimation. Apart from data visualisation, real-time updates on model 

behaviour are also important. A city and building DT demonstrator of the West Cambridge 

site of the University of Cambridge, UK, has been developed based on a multitier architecture 

to enhance the operation and maintenance of the assets (Lu et al., 2020). Meanwhile, Yu et al. 

(2020) also demonstrated a DT to predict future tunnel performance with three key parts 1) 

data collection module including tunnel highway structure, performance, maintenance 

records as well as vehicle-mounted laser sensors and accelerometers; 2) prediction module 

using integrated learning framework; 3) parametric analysis module leveraging a BIM model 

using the software Autodesk Revit and Dynamo. 
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2.2.6 Applications and Benefits 

DTs have been applied in various industries. To facilitate this section, it was intended to 

provide a review of DT applications amongst various industries according to the lifecycle of 

the physical entity, which are namely design, creation/construction/manufacturing, operation, 

maintenance with decision making. Therefore, this section provides a broad review on DT 

applications and next section will narrow down to review in detail the application of DTs in 

the construction industry and built environment.  

From the perspective of system design and development, DTs are used to simulate, test, and 

refine or optimise new products and processes (Jones et al., 2020). They enable the users to 

digitalise, visualise, and materialise the intangible concepts of complicated systems with 

numerous components and interconnections such as ships, aircraft and factories. In addition, 

the design qualities can be evaluated within a DT without going through expensive physical 

prototypes (Tao et al., 2019). It has been used for the purpose of conceptual design, detailed 

design, design verification, and re-design as well as to increase the virtualisation of the design 

concept (Lo et al., 2021). Guo et al. (2019) and Zhang et al. (2017) demonstrated that a DT 

could enable designers to simulate a whole factory design process considering the layout of 

the factory, the equipment configuration, material handling and buffer capacity. 

During the operation phase, DTs are often used to collect operational data over time. This 

provides data-driven insights into the performance and distribution of the product that can be 

also shared across different disciplines within an organisation, so the same data can be fully 

utilised to make improved decisions (Attaran and Celik, 2023). It also has been used in 

monitoring operational status, diagnosing faults, optimising power plant performance as well 

as energy grid development (Kim et al., 2019), achieving enhanced efficiency through 

automation and a streamlined process as well as reduction in operational cost. In addition, 
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with regards to sustainability, DT results in better resource management and reduced 

environmental impact (Kim et al., 2019; Abadías et al., 2020). 

At the maintenance stage, one of DT’s application is smart asset management (Lu et al., 

2020). Macchi et al. (2018) investigated the role of DTs in asset lifecycle management for 

asset management in general, especially on the maintenance decision-making support based 

on data-driven insights and predictive analytics, producing economic development with 

improved assets supporting economic growth. They presented five use cases where DT 

technology had been applied leveraging its capabilities, for example, sensor data and 

advanced analytics, to achieve performance predictions and informed decision making. 

However, the research did not specify what exact improvement DT technology contributed 

compared to existing systems and technologies, as it only aimed to bring a better 

understanding of benefits brought by the DT. From the perspective of the maintenance phase 

within asset lifecycle management, Errandonea et al. (2020) conducted a comprehensive 

literature review on DTs for maintenance where DT applications of various types of 

maintenance (reactive, preventive, condition-based, predictive and prescriptive) are 

discussed. The authors also concluded that DT for maintenance has been the focus of 

research in recent years and suggested one of the future research areas is to use DT to obtain 

a more reliable maintenance recommendation system based on the progress made in the 

calculation of the maintenance impact and its well-defined process. Broo and Schooling 

(2021) highlighted two key benefits of DTs in general: firstly, their capacity to utilise the 

large amount of data generated in the connected world enabled by IoT devices. In particular, 

DTs convert raw data into useful information which in turn is transformed to valuable 

insights that could lead to better decision-making support. The second benefit is that DTs can 
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be a useful tool for all stages across asset lifecycle that enables the asset owner to understand 

the asset condition and to determine the appropriate intervention. 

With the aforementioned advantages, Enders and Hoßbach (2019) has suggested that DT 

applications can serve primarily three purposes: 1) Monitoring where the current state of the 

physical asset is represented by data; 2) Simulation where behaviour of the physical asset can 

be reproduced, planned, forecasted, and optimised; 3) Control in which DT applications 

influence the decisions taken over the management of the physical assets . Therefore, it can 

be envisaged that the implementations of DTs for roads could demonstrate similar benefits 

for road management practice, integrated with its own contexts, limitations, and challenges. 

2.2.7 DTs in Construction Industry and Built Environment 

As mentioned above, DT technology has become increasingly popular and been applied 

across a large spectrum of industries, ranging from manufacturing, aerospace, automotive, 

urban design, engineering, medicine, medical patient care, sustainability, as well as IT and 

transport (Singh et al., 2022; Javaid et al., 2023; Kanaga Priya and Reethika, 2024; Mythily et 

al., 2024). Given the main aim of the thesis is to investigate DT’s impact on pavement 

performance modelling which falls within the civil engineering domain, this section reviews 

the application of DTs within the built environment to understand its benefits. DTs have 

already been implemented in recent years in the construction sector and the built 

environment. Specifically, there are multiple examples of DT applications for different types 

of assets (buildings, bridges, roads or even a whole city). Firstly, Lu et al. (2019) developed a 

dynamic DT in building levels and demonstrated a use case with a present asset monitoring 

function and a predictive maintenance function which analyses real-time data and forecasts 

the remaining lifecycle of the asset. This research presented a five-layer DT architecture to 

realise the true value of data and the integration models involved, and the authors also 
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suggested that integrating AI supported decision-making and data analysis functions would 

highly improve the whole DT system as it is mainly based on data. In addition, with regard to 

bridge assets, DT approaches have been recently applied as demonstrated in Shim et al. 

(2019), Sofia et al. (2020) and Ye et al. (2019). Shim et al. (2019) proposed a new generation 

of bridge maintenance system by using a DT model concept for more reliable decision-

making, especially by introducing automatic bridge inspection and the computation of a time-

dependent performance indicator for reliability index evaluation and an associated prediction 

model, which successfully helped to avoid duplicated work and data loss compared to the 

traditional methods, and this can be implemented in other similar assets, for instance, road. 

Shim et al. (2019) also addressed the advantage of a DT and its capacity to visualise by 

presenting actual performance data via a live sensor. Ye et al. (2019) discussed an 

exploratory study towards creating a DT of bridges for structural health monitoring purposes, 

which solved the issues experienced in the existing systems, for example lack of storage for 

large and heterogeneous datasets, low efficiency of data query and data source 

incompatibility. Moreover, at the city level, Mohammadi and Taylor (2018) proposed a smart 

city DT paradigm that enables real-time visualisation of spatiotemporal fluctuations of the 

city because of human-infrastructure-technology interactions, which demonstrated its 

capacity to provide predictive insights into the growth and performance of the city. In 

addition, Lu et al. (2020) presented architecture and explored the development of a DT at 

building and city levels through implementing a DT demonstrator based on the proposed 

system architecture. The DT demonstrator offers intelligent anomaly detection, environment 

monitoring, maintenance optimisation and prioritisation services which are provided via IoT 

sensors, data integration, data analytics, and ML algorithms. However, the performance 

analysis and evaluation of the demonstrated DT system were not conducted partly because it 



71 

 

 

was one of the first few exploratory pilot projects of city level DT and the DT technology 

itself was still in its early stage of development. Finally, for road tunnelling assets, Yu et al. 

(2020) improved highway tunnel pavement performance prediction with an accuracy of 

94.90% based on the DT concept, which is an improvement on existing performance 

prediction models.  

Each element of a DT is experiencing unprecedented technological development and could be 

explored to understand where and how they could be used to digitalise and improve the road 

asset management. The next sub-section provides a review on the existing work on road DTs, 

and the current state of road lifecycle management where the DT relevant technologies have 

been applied as well as the impact.  

2.2.8 DT Impacts on Roads 

The research on DTs for roads is still at its beginning, so there has only been a handful 

studies directly related to DT for roads despite the benefits shown in similar linear 

infrastructures. However, it has been suggested by Steyn (2020) that the abundance of data 

generated from sensor networks in this industry 4.0 age should be managed in the pavement 

realm to help pavement engineers understand what would be made possible and potential 

benefits for pavement infrastructure management. The same vision has been shared by 

Kaliske et al. (2021) where the authors have emphasised the need for research and innovation 

for a “road of the future” that is suitable for future mobility. Matchett & Wium (2022) 

reiterated that DTs will have a high potential to support and extend the functionalities within 

the road infrastructure asset management processes. Chen et al. (2022) presented basic Road 

DT requirements after reviewing the requirements for DT developments generally.  
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From late 2021 to 2024, more practical research has been conducted to explore the generation 

of road DTs and demonstrate their benefits and impacts. Generally, Steyn and Broekman 

(2022) presented a case study for a DT development of a local road network where the 

benefits are clearly articulated, such as the continuous data sharing objectively with the 

infrastructure owner to support efficient and timely remedial and maintenance planning as 

well as for improved sustainability and life cycle costs. Moreover, Chen & Brilakis (2024) 

developed a proof-of-concept DT data structure and an integrated cloud architecture for roads 

that could support the application of DT technologies to facilitate road lifecycle management 

and improve decision-making processes. In addition, multiple different computer vision 

technologies and advancements have been used and proposed in converting physical roads 

into a digital entity or geometric road DT, such as Google images or point cloud, 

photogrammetry (Ding and Brilakis, 2023). For example, Jiang et al. (2022) have proposed a 

systematic method for generating a DT for an old highway using existing online map data 

based on road engineering expertise and it has been successfully tested in one section of the 

A1 motorway in the UK to produce a DT model with a relatively good accuracy. Pan et al. 

(2024) also proposed a framework for efficiently and automatically creating a graphical 

representation of highways based on point cloud data, which has shown the potential to 

improve road management processes such as road inspection, maintenance and upgrading, 

reducing the amount of traditional survey work a road agency would normally perform taking 

consideration of labour and time. Based on this work, Davletshina et al. (2024) further 

developed a method to detect and apply geometric changes to road geometric DTs 

automatically.  
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From the road lifecycle perspective, various research studies, though still in their infancy, 

have been carried out to investigate the applications of DT across multiple stages in the 

lifecycle of a roadway infrastructure. For example, during the road design and construction 

phrase, Meža et al. (2021) explored the development of a functioning DT for monitoring road 

construction progress using secondary raw materials. Marai et al. (2020) proposed a 

methodology to create a DT of the roads’ infrastructure for roads in operation, by deploying a 

DT box composed of a 360° camera, GPS device and other IoT devices for sensing 

environmental measurements such as ambient temperature and humidity to provide a better 

understanding of the contextual circumstances on the roads. Similarly, Niaz et al. (2022) 

explored DT technology with different enabling technologies to track and control 

transportation systems of a road in operation online and demonstrated a framework to ensure 

that data can be understood and processed in real time between the real and the virtual world. 

In terms of pavement maintenance, Chen et al. (2022) explored suitable ML approaches for a 

road DT and proposed a DT-based framework for road condition prediction that inputs 

historical and real-time data from the whole road lifecycle into machine learning algorithms 

to predict future road performance. Comparably, Consilvio et al. (2022) presented an 

architecture of a DT-based decision support system for road maintenance, demonstrating its 

application to road pavement condition evaluation. The study revealed that by using this 

system, a 10% decrease in the volume of major interventions and 12% drop in maintenance 

cost is expected, indicating better decision-making, and efficient cost management overall. 

Further research efforts have been made on understanding how DTs can practically be 

implemented in highway maintenance (Yin and Kumar Reja, 2024) as well as developing a 

personalized maintenance alert generation system for road infrastructure management (Luo et 

al., 2024).  
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2.3 Optimisation methods for data collection frequency  

The process of digitalisation across multiple industries is rapidly advancing and as a result, 

large number of sensor data is produced at an unprecedented level. These require increased 

data storage, computing power and resource as well as transmission bandwidth resources to 

manage, process and analyse data with a much higher financial expenditure. In addition, the 

digitalisation requires enormous support from physical infrastructure such as power grid and 

energy supply, which has a negative impact on net zero carbon emissions goals. Therefore, 

there has been a popular research field to investigate data collection frequency optimisation 

methods to identify the use of a smaller amount of training data instead of the whole training 

data that would still be able to produce a ML model that achieves an acceptable prediction 

accuracy (Silva et al., 2024). This section reviews the methods and techniques used for 

optimising sensor data sampling interval. 

For most industrial applications and processes, the use of wireless sensor network enables 

continuous monitoring and analysing. Harb & Makhoul (2017) presented a data collection 

mechanism that allowed sensors to adjust their sampling rates based on the variations of its 

environment by three approaches: 1) analysing data variances via statistical tests; 2) set-

similarity functions; 3) distance functions. The authors demonstrated a reduction of up to 

80% in the number of acquired samples. Comparably, Al-Qurabat & Kadhum Idrees (2017) 

also adapted the data collection frequency based on similarities of the data in the consecutive 

periods by using Euclidean distance in the dynamic modification of the monitored 

environment conditions. In the field of manufacturing process modelling, Lipp et al. (2020) 

also investigated when to collect what using sensors and proposed an optimised data load via 

flexible process-driven methods. An amount of 39% decrease of data load was achieved 

compared to traditional and less flexible monitoring methods. Optimisation of data 
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acquisition strategy is also of paramount importance in environment monitoring, Chen et al. 

(2020) proposed an adaptive genetic algorithm that can dynamically change the frequency to 

collect data with a smaller acquisition frequency, thereby reducing the sensor energy 

consumption. In agriculture, Kar et al. (2020) demonstrated an extensive method for 

optimising data collection frequency using Autoregressive Integrated Moving Average 

modelling by changing the sampling rate of the entire time series data set from 15 to 180 

minutes, thereby achieving the suitable interval of 60 minutes with minimum redundancy and 

randomness in the data.  

Another common approach among existing research to update or decide the sensor data 

capturing cadence is based on models built based on the data collected using adaptive 

sampling rates and evaluating their performance by comparing against a pre-defined 

threshold. This has also been applied in multiple different sectors. For example, Wang et al. 

(2016) proposed an optimised obtaining strategy for acquiring sensor data based on the 

characteristics of the regular changes in sensed data in large-scale monitoring networks 

connected to the IoT, reducing data collection and transmission quantity requirements. 

Specifically, it used a linear regression model for sensor data to regulate acquisition 

frequency adaptively based on whether predictions made from linear regression models are 

within a pre-defined error range. Amongst other IoT applications, Čulić Gambiroža et al. 

(2022) stated that the majority of IoT sensors would collect data in short equally spaced 

periods resulting with large amount of redundant or irrelevant data and developed a dynamic 

monitoring frequency algorithm that ensures a sensor only collects data when a change in 

monitored phenomenon value exceeds a predefined threshold. In addition, in a smart building 

study conducted by Haidar et al. (2019), the authors developed a building occupancy 

prediction model with satisfying accuracy using data from multiple sensors, and they used the 
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RF algorithm and compared the models’ performance under a range of data collection 

frequencies, ranging from 1 minute to 60 minutes. The research concluded that an interval of 

15 minutes and 20 minutes produced the satisfying accuracy of at least 90% in R2 which was 

set up as the threshold, instead of every 1 minute. Van Wyk et al. (2017) took a similar 

approach in the medical industry where different ML classification models were tested with 

different sampling rates and their performance accuracies were compared. It was found that 

despite an initial sharp decrease in classification accuracy when changing the data collection 

frequency from 1 minute to 10 minutes, the accuracy decreased only marginally when the 

data collection interval was set to between 15 to 60 minutes, thereby providing insights that 

would lead to the optimal data collection frequency as well as the design of data acquisition 

systems at hospitals. In fuel consumption prediction, Almér (2015) also tested and compared 

two different collection frequencies by assessing the accuracies of several ML models.  

For civil infrastructure management, there has recently been large amount of research on 

instrumenting sensors in the infrastructure for detecting defects and structural health 

monitoring (Bhatta and Dang, 2024). For example, various types of IoT sensors and devices 

have been used in buildings to obtain data and achieve multiple monitoring purposes such as 

building vibration (Ibrahim et al., 2019), safety (Lin et al., 2021), earthquake warning (Won 

et al., 2020), ground shaking (Duggal et al., 2022), and crack width prediction (Lee and Lee, 

2017) as well as structural discontinuities (Zabielski and Srokosz, 2020). For bridges as well, 

research on structural health monitoring by embedding sensors have been prevalent. They can 

be used extensively to monitor real-time strain distribution under load (Mohapatra et al., 

2022), monitor bridge displacement (Hou and Wu, 2019; Shrestha et al., 2020), and classify 

bridge vibration (Shrestha and Dang, 2020), The similar work has also been increasingly 

conducted in the pavement domain for pavement health monitoring (Ye et al., 2022, 2024; 
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Al-Sabaeei et al., 2024). However, to the author’s best understanding, as also acknowledged 

by Sun et al. (2024) and Yang et al. (2015), there is generally a lack of research on sensor 

data collection frequency to infer the appropriate sampling rate that ensures optimal data 

amount for relevant data storage and processing, especially within the context of a road 

digital twin. 

2.4 Summary of the Research Gaps 

The gaps identified as part of the literature review process, which this study will address, can 

be summarised below.  

1. Research on RDTs is still at its beginning stage and most recent work primarily focused 

on the generation of a descriptive and informative RDT based on images and point cloud 

data, a holistic RDT-based decision-making support theoretical framework with layered 

structure illustrating main components for various types of RDTs and their inter-

connections does not yet exist.  

2. Regarding the pavement performance modelling research area, the state-of-the-art has 

been developing prediction models using ML approaches. There is a huge research gap in 

integrating the existing pavement knowledge domain expressed by physics with ML to 

overcome the limitations and drawbacks of ML models.  

3. Current research on RDTs has focused on the aspect of the automatic generation of 

geometric RDT and road maintenance using image data, point cloud data and 

maintenance text log data. Limited study has investigated predictive RDT with the use of 

numerical road condition data for performance modelling and identification of suitable 

data collection frequency. 
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3 METHODOLOGY 

3.1 Introduction  

As the literature review chapter revealed that there has been insufficient research to 

investigate DTs on improving RAM. There are also gaps in DT’s capability in pavement 

performance predictions as well as the appropriate RDT data collection frequency with the 

provision of historical and real-time data. There is no definitive piece of research that defines 

a DT-based decision-making support theoretical framework that could be used for road 

lifecycle application developments. To address these gaps, this chapter presents the research 

methodology developed to establish a DT-based decision-making support theoretical 

framework for roads. Its key components and their inter-connections are also described. This 

chapter is composed of three discrete parts:  

(1) Research methodology (Section 3.2) which entails the end-to-end methodology used to 

conduct this piece of research;  

(2) DT-based decision-making support theoretical framework (Section 3.3) explaining the 

key layers, components for the development of an RDT and their expected interactions as 

well as applications; 

(3) Application of the DT-based decision-making support theoretical framework (Section 3.6) 

which illustrates the methods or processes used to apply the developed framework in two 

case studies. 

3.2 Research Methodology  

First, the research aims and objectives were identified, initially, to develop a generalised 

methodological approach for the research. Next, a comprehensive literature review was 

carried out to; i) explore and understand the definitions, concepts, applications of DTs across 
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different industries and how they could be implemented in the domain of RAM; and ii) to 

improve the existing approaches in pavement performance prediction and to identify the 

optimal data collection for different future prediction ranges with the use of sensor data (both 

described in Chapter 2). According to the findings from the literature, a DT-based decision-

making support theoretical framework for road lifecycle was then developed. The framework 

is described in detail below in this chapter. Based on this framework, two case studies were 

conducted as specific applications of the proposed framework to test its practicality and 

suitability. 

The first case study was used to evaluate the performance of the developed framework using 

historical data from a US public database. In particular, the performance of a DT-based 

pavement performance prediction model was assessed and compared against the existing ML 

approaches. The details are described in this chapter, and the results are presented in Chapter 

4. 

The second case study was to investigate the aspect of sensor data and the optimisation of the 

data collection frequency within the RDT framework. This is achieved by utilising data 

generated from a laboratory experiment instrumented with sensors at the University of 

Birmingham National Buried Infrastructure Facility (NBIF). Details are shown in this chapter 

while the results are provided in Chapter 4. An overview of the research methodology is 

presented in Figure 3.1. 
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Figure 3.1. Research methodology 

3.3 A DT-based decision-making support theoretical Framework for road lifecycle 

Following the extensive review of literature on DTs and RAM in Sections 2.1 and 2.2, a few 

established DT architecture and framework were identified (Lu et al., 2020; Tuhaise et al., 

2023; Babanagar et al., 2025), and based on which, a DT-based decision-making support 

theoretical framework for road whole lifecycle was produced as demonstrated in Figure 3.2.  
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Figure 3.2. DT architecture-based decision-making support theoretical framework for road lifecycle                
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The developed decision-making support framework for the whole lifecycle of roads is based 

on various DT architectures reviewed in Section 2.2.3. This framework covers six 

architectural layers 1) Physical Entities & Processes Layer; 2) Data Acquisition Layer; 3) 

Communication & Transmission Layer; 4) Data Management Layer; 5) Data Integration or 

Modelling Layer; 6) Application Layer, with key tasks and enabled technologies, as 

described below:  

1) A physical layer that captures various entities and processes integral to the whole 

lifecycle of a road is a necessity for creating an RDT. It can include a variety of 

information such as (i) road site geometries, and geologies, as well as the surrounding 

environment of the road site, and the inter-dependent assets such as ground, tunnel and 

pipes; (ii) Information about traffic, climate and weather of the site; (iii) Maintenance 

records and various costs in utilities and services.  

2) Data Acquisition Layer captures the data from the physical layer, with various resources. 

Data sources are the inputs to an RDT, which can be generally categorised into two 

components: historical data stored in databases and real-time data from various sensing 

equipment. Both data types can be used to start the development of the RDT. Historical 

data includes data on road inventory, condition of the defects, traffic information as well 

as weather and climate. Real-time data could be generated from mobile phones, IoT 

applications, sensors embedded in vehicles, as well as 3D scanning, GPS, LiDAR and 

cameras. A majority of pavement performance studies have used historical data available 

from a public repository or transportation agencies. For a DT, multiple types of data 

would be expected, such as numerical, categorical, time series, images, videos and other 

variations (Dihan et al., 2024).  
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3) The Communication & Transmission Layer is aimed at transferring the acquired data to 

the higher layers for management, analysis, especially for modelling and simulation. As 

presented in the framework, various communication technologies could be used in this 

layer, such as short-range coverage access network technologies such as Wi-Fi, Zigbee 

amongst devices and wider coverage technologies with 3G, 4G, Long-term evolution, 5G 

as examples. In addition, hypertext transfer protocol is commonly used to connect to the 

web server where data storage and analysis take place. 

4) The Data Management Layer plays a pivotal role in the proposed framework as it’s a 

place where all data is stored. In this layer, due to the complex and massive amount and 

varieties of data collected, effective and hierarchical data storing are needed. Multiple 

asset management local databases as well as cloud-based databases can be used to 

achieve this. Also, this common data environment should be closely accessed and updated 

by BIM or a 3D Revit model and different data visualisation software to enable graphic 

user interface portal of a road digital twin to demonstrate the virtual representation of the 

physical road. It can act as the control panel for the road management system. 

5) The Data Integration or Modelling layer aims at integrating all the data resources and 

different models that are available. In this modelling stage, which is the main “brain” of 

an RDT to provide various functions on the data received from multiple sources and to 

develop models. Key components such as data-driven modelling, physics-based 

modelling as well as uncertainty and probability consideration are utilised to ensure the 

most accurate predictions. Data-driven modelling can be composed of a standard machine 

learning model development pipeline including data pre-processing, data cleaning, and 

selection of a ML algorithm, meanwhile it can also be RL models to identify the optimal 

choice in a maintenance decision-making context. Physics-based modelling on the other 
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hand, simulates the physical behaviour of the pavement condition by considering the 

material of the pavement layers, the surrounding environment conditions and the 

interactions with other assets. Both can be categorised into inter-dependency modelling 

(Setola and Theocharidou, 2016) as they use data from various sources that may have 

causal effect in the physical layer at the logical level. Uncertainty and probability 

quantification is another aspect to consider as part of this layer to incorporate the errors 

and uncertainties experienced in data collection, as well as the modelling process.  

a. After collecting data, it is necessary to go through a process of data cleaning and pre-

processing, followed by filtering the most relevant features for model learning and 

development. Depending on the essence of the task, a wide range of data pre-

processing and feature selection techniques could be applied. The end goal of this 

exercise is to produce a complete and high-quality dataset suitable for the ML model 

training and testing stage (Marcelino et al., 2021).  

b. As mentioned by Carter et al. (2023), data pre-processing is an extra layer to ensure 

data quality within a DT environment. In summary, common data issues are 1) data 

duplicates; 2) missing values; 3) data outliers; 4) noise in the data; 5) illogical data 

according to domain knowledge. The corresponding data pre-processing techniques to 

address these data problems are 1) Duplicates removal; 2) Outlier detection and 

removal; 3) Fit and interpolation of missing values 4) Noise reduction through data 

smoothing. 

c. Once the dataset is pre-processed, and relevant variables have been chosen, the next 

step would be to apply the ML methods and/or RL algorithms to develop data-driven 

models. Within a DT context, a virtual representation means a data-driven model 

and/or a physics-based computational model. Data-driven models are created based 
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on data with the help of computational intelligence and ML methods (Solomatine et 

al., 2009).  

d. Physics-based models are models which are created to represent the system based on 

existing knowledge and known physics. In comparison to purely data-driven models, 

physics-based models offer a higher level of interpretability, reliability and rationality 

in the prediction capacity. Ritto & Rochinha (2021) provided the following summary 

of the characteristics of a physics-based model: 

• They are constructed based on physical principles or laws that govern the 

behaviour of the physical system, such as Newton’s second law and 

constitutive models. 

• Every parameter of the model has a clear physical meaning. 

• They can be high fidelity time consuming computational models of complex 

engineering systems (Farhat et al., 2003). 

• There is an option to calibrate the model at a given operational condition and 

use it for analysis in different scenarios.  

6) The Application Layer is the tope and implementation layer of the decision-making 

support framework that presents the actual potential applications that DT could provide 

for the life-cycle management of linear infrastructure such as roads. It is worth 

mentioning that different applications can be achieved by different types of DTs 

mentioned in Table 2.2, namely Descriptive, Informative, Predictive, Comprehensive, and 

Autonomous. For design phase, such critical tasks such as route selection, pavement 

design and budgeting can be solved in specific applications such as urban road network 

planning and geometric highway design enabled by engineering data and enabling 

technologies or models adopting a comprehensive DT. During construction, resource 
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allocation, material management, schedule coordination, and quality assurance can be 

achieved by functions as site real time monitoring, which can be provided by a 

Descriptive and Informative DT. For example, Meža et al. (2021) integrated BIM with 

sensor data to leverage dynamic data querying when employing secondary raw materials 

for road construction. For road operation stage and maintenance stage, functions or 

services provided as part of the Predictive, Comprehensive and Autonomous DT can help 

addressing tasks such as field pavement condition inspection, real-time defect monitoring 

and prediction, as well as optimised maintenance treatment strategy scheduling and 

decision-making prioritisation.  

3.4 Scope of the Study 

The scope of the research mainly focuses on the enabling methods for a predictive RDT, 

leveraging different data sources within the Data Acquisition Layer and modelling techniques 

in the Data Integration or Modelling Layer based on the developed decision-making support 

framework to achieve pavement performance modelling or predictive maintenance and the 

optimal sampling rate services in the Application Layer. It starts with historical data 

collection, while integrating data-driven ML modelling process, with the physics-based 

simulation as well as the consideration of uncertainty quantification. The research then also 

investigates the suitability of sensor data collection frequency using the modelling 

methodology presented in Figure 3.3 leveraging sensor data collected from an instrumented 

pavement in NBIF lab environment. Although both functions addressed in this research work 

are falling primarily within the maintenance phase of road lifecycle for a predictive DT, and 

no specific case studies have been conducted for assessing other DT layers (e.g., data 

management Layer, or data communication & transmission layer) and for other stages of the 

road lifecycle (e.g., design, construction and operation) as part of the decision-making 
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support framework, a thorough discussion is provided in each case study to estimate their 

potential impacts on them. 

3.5 RDT Framework’s Modelling Methodology  

To achieve the defined Objectives 2 and 3 (in Section 1.2), a novel DT-based modelling 

approach was implemented. Based on the main components from the developed decision-

making support theoretical framework while integrating physics with the ML model, two 

different approaches were used to predict road rutting and IRI for multiple road sections in 

the short term (1 year) and long term (2 to 13 years). The approach used two primary data 

sources: historical road condition data and physics-based finite element (FE) simulation data 

to ingest specific physical domain knowledge into the ML development process for the 

modelling of the pavement rutting and IRI. This study then compares the performance of 

different models, considering ML’s inherent uncertainty expressed in the form of variance, 

developed based on these sources of data. A step-by-step process flow is illustrated in Figure 

3.3 to describe the methods used in the modelling part within the framework. The developed 

framework and modelling methodology have then been applied to two case studies: one uses 

historical data from a public long term pavement performance database, and the other utilises 

real-time data produced from instrumented sensors for predicting future pavement 

performance and identifying optimal data collection frequency in different prediction ranges.  
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Figure 3.3. Key steps taken to conduct the research. The black lines represent the steps 

taken for pure data-driven ML model development. The box dotted in red is related to 

the physics-based model, and the coloured lines in red and blue show two different 

approaches to interact the physics-based model with the data-driven model 

In summary, the adopted methodology consists of the following steps (Figure 3.3): 1) Data 

collection; 2) Data preparation (e.g., pre-process, clean the data and variable selection); 3) 

ML model development based on processed data considering choice of the model and 

hyperparameter configuration; 4) Evaluation of model performance through k-fold cross 

validation techniques on training data, and testing model performance on unseen data; 5) ML 

model variability quantification;  6) Making multi-year 90th percentile range predictions 

based on the variability of the ML model quantified from Step 5.  

It is worth clarifying that Step 5 quantifies the ML model’s predictive variances which come 

directly from different training data, as a reflection of the level of ML model’s prediction 

uncertainty. Essentially Step 5 produces an interval that indicates how much fluctuations in 

the model’s predictions for a given input after training the model multiple times. This is a 

commonly used approach for ML uncertainty quantification (Varley et al., 2016; Zhou et al., 

2021; Eghrari et al., 2023; Blasco et al., 2024). Based on the interval, a 90th percentile range 
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can be produced for predictions each year to enable a probabilistic multi-year prediction 

approach in Step 6. 

3.5.1 Introduction to common ML models in pavement performance modelling  

As indicated by the literature, popular ML models that have been well adopted in modelling 

pavement performance research are ANN, RF, KNN and SVM (Justo-Silva et al., 2021; 

Marcelino et al., 2021; Jaya et al., 2023). This section provides a brief introduction to these 

ML models.  

3.5.1.1 RF Model  

RF is a supervised ML algorithm that is used widely in classification and regression problems 

because of its high prediction accuracy (Gong et al., 2018; Han et al., 2020; Yu et al., 2021). 

It is one of the decision tree algorithms where RF builds multiple decision trees and combines 

the results from each tree together to get a more generalised and accurate result. 

RF regression was used to construct models to predict the value of rutting in the next year 

given the defined inputs. RF uses Bootstrap and Bagging Aggregation ML techniques (Lee et 

al., 2020). Its foremost advantage is the fact that it effectively deals with overfitting issues by 

joining multiple sub-datasets, while it requires less time for processing data when compared 

with other methods (Saikiran et al., 2021). The following steps were taken to utilise the RF 

regressor algorithm: 

▪ Step 1) The whole dataset was used to build decision trees based on the number of 

defined estimators.  

▪ Step 2) Individual decision trees were constructed.  

▪ Step 3) Each decision tree generated an output. 

▪ Step 4) The final output was considered based on averaging for regression. 
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3.5.1.2 ANN Model 

An ANN is an AI deep learning method to process information based loosely upon the 

structure of biological nervous systems such as human brains (Haykin, 1999). ANN models 

are composed of three main elements: nodes representing neurons, connections between the 

nodes and weights (Mehrotra et al., 1997). The neurons are constructed into three or more 

different layers including input layer, output layer, and one or more intermediate layers which 

are also called hidden layers. The input layer takes the initial data fed into the network 

whereas the output layer produces the final regression or classification output for the given 

inputs. The hidden layers are where all the computational processing is performed 

(Agatonovic-Kustrin and Beresford, 2000). Most ANNs are of a simple form, that of a fully 

connected feed-forward network, and its structure is presented in Figure 3.4.  

 
Figure 3.4. Common ANN structure with two hidden layers 

Each neuron in the hidden and output layers calculates a sum based on the input values and 

the weights. This output is further modified using the activation function which contains bias 

in each neuron to introduce non-linearity (Dongare et al., 2012). The common activation 

functions are sigmoid, rectified linear unit (ReLU) and tanh (Szandała, 2021).The output of 
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the output layer is the outcome whereas the outputs from hidden layers are fed into next layer 

of neurons as inputs (Shanmuganathan, 2016).  

The training process of an ANN updates the weights and bias in each iteration based on the 

loss function calculated by comparing the model’s prediction output with the actual data. The 

goal of the whole ANN training is to minimize the error produced from the loss function. The 

typical function used to measure the performance is the mean sum of the squares of the 

residuals between the predicted and real values (Dongare et al., 2012).  

3.5.1.3 KNN Model 

KNN is a non-parametric model according to a simple voting decision rule where the target of 

a given point is predicted by averaging the targets of neighbouring samples (Nader et al., 2022). 

It is a supervised learning algorithm that makes predictions or classifications by finding the 

“neighbours” of a new data point based on the proximity to other data points. The “k” in KNN 

means the amount of data points considered that are nearest. Based on their Euclidean distance 

from the target data point, these neighbours are selected. The KNN algorithm works following 

below steps (Chen and Shah, 2018): 

1) Select the value of k: the number of neighbours to consider when making predictions.  

2) Calculate distance: For each new data point, KNN calculates the distance between this 

point and every other point in the dataset. Mostly Euclidean distance is used. 

3) Find the k nearest neighbours: Once distances are calculated, the algorithm identifies the k 

closest data points to the new point. 

4) Classify the new point: In regression, it predicts a value based on the average or median of 

the k neighbours. 
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3.5.1.4 SVM Model 

The SVM is a supervised learning method used for classification and regression problems. 

The original idea of the SVM is to find a hyperplane that has the largest margin to the two 

categories (Jakkula, 2006). It involves following elements: 

1) SVMs find a hyperplane separating classes in a multi-dimensional space  

2) The hyperplane is the optimal plane that maximizes the distance between classes  

3) The algorithm uses a kernel to transform data and find the boundary between outputs  

3.6 Introduction to the Case Studies 

Two case studies were conducted using different data sources to demonstrate the modelling 

methodology based on the developed framework, to investigate the enabling methods for a 

predictive DT for roads. One case study was performed to show DT’s impact and 

advancement for pavement performance prediction using historical data from a public 

database. The other case study leveraged real-time sensor data from a controlled environment 

(lab experiment at NBIF) to explore how a DT could help planning for future scenarios where 

the proliferation of data is given and then identify the appropriate frequency of sensor data 

collection to ensure the predictability of pavement performance. 

3.6.1 Case Study I – Pavement Performance Modelling with Historical Data 

3.6.1.1 Data Collection  

The condition data used in this case study was collected from the US LTPP database 

(www.infopave.com) as it is an open access source. Ninety-nine asphalt pavement sections 

across 20 US states with data available over many consecutive years were selected, providing 

data ranging from the year 1995 to 2007, totalling 1287 records. Data from the years after 

2007 were not used because firstly some of the sections only collected data until 2007 which 

means no further data after this point, and secondly, there were multiple sections where data 
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was only reported 5 or 6 years after 2007, resulting in a huge gap in data, which reduced the 

feasibility for deterioration modelling. The LTPP database provides data in various categories 

such as traffic, pavement distress condition, pavement structure, material, as well as ambient 

environmental conditions.  

3.6.1.2 Maintenance Assumptions and Data Pre-processing 

This case study focuses on asphalt pavement as the most common surface type with survey 

condition data available for as many consecutive years as possible. Rutting and IRI data were 

collected as the parameters of interest for prediction. The age of the pavements ranges from 

newly constructed to 55-year-old pavements. The geographical locations of the sections are 

diverse across the whole US. Figure 3.5 presents details of the geographical locations of the 

pavement sections and the number of sections in each state. 

 
Figure 3.5. Locations and number of selected road sections from the US LTPP database 

Given the LTPP database provides detailed information on the maintenance history for each 

pavement section, the years with relevant maintenance records were removed and it was 

assumed that the road condition after a maintenance treatment such as ‘Overlay’ or ‘Surface 

Treatment’ would be restored to that of a newly constructed pavement. After examination of 

the data, the assumptions made for rutting and IRI values are summarised below:  
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1) Rutting was set to 0 mm in the year following the relevant maintenance activity when 

either Overlay or Surface Treatment was applied.  

2) IRI was set to 0.7 m/km (assuming it represents the construction condition) when an 

Overlay treatment was applied.  

3) IRI was reduced 60% of the way to the perfect condition (0.7 m/km) value when a 

Surface Treatment was applied. The equation to calculate the IRI post maintenance is 

shown in Eq. 3-1 where IRIp is IRI after the treatment whereas IRIb is the IRI value 

prior to the treatment. 

IRIp = IRIb – ((IRIb – 0.7) * 0.6)                                                                           Eq. 3-1 

Afterwards, to further prepare the data for the model development stage, it was reformatted to 

obtain the Rutting and IRI value for the next year as a separate column to serve as the output 

to be fed into the ML process. A total of 1,152 pavement annual data records were extracted. 

Once the data for selected variables was obtained, initial assessment and evaluation of the 

data was performed to improve its quality. Despite the completeness and comprehensiveness 

of the collected data, the raw data for all 99 sections from the LTPP database still suffered 

from several data quality issues such as missing values for certain years, duplicates, general 

noise, and anomalies with unreasonable data fluctuations, potentially due to measurement and 

human errors. For example, rutting condition sometimes slightly improves, e.g., by 1 mm, 

over time for some road sections without any reported relevant maintenance activities. To 

address these issues, multiple data pre-processing techniques, recommended by (Kargah-

Ostadi et al., 2019), were performed and a Python script was written for automatic data pre-

processing and cleaning (see Appendix A). The issues considered and corresponding 

techniques are described in more detail in Table 3.1. 
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Table 3.1. Data issues and applied pre-processing techniques 

Data issues Impacted variables Pre-processing technique 

used 

Multiple entries for 

the same year 

Rutting, All types of cracking 

(Longitudinal, Transverse, Fatigue) 

Mean value 

Missing data for 

some years 

Rutting, All types of cracking 

(Longitudinal, Transverse, Fatigue), 

AADT (ESALs) 

Moving average 

Curve fitting using the 

least-squares method 

Spline interpolation 

method 

 

Unreasonable data Rutting, All types of cracking 

(Longitudinal, Transverse, Fatigue), 

AADT (ESALs) 

Outlier detection based on 

mean and standard 

deviation 

Moving average 

Curve fitting using the 

least-squares method 

Spline interpolation 

method 

General data noise Rutting, All types of cracking 

(Longitudinal, Transverse, Fatigue), 

AADT (ESALs) 

Moving average 

Curve fitting using the 

least-squares method 

 

Various data processing techniques were used in this study with different purposes. Moving 

average and curve fitting, using the least-squares method, were used to reduce the noise in the 

data and mitigate the potential measurement errors in the collected data (Dayananda et al., 

2023). In addition, the spline interpolation method was used to ensure the completeness and 

the smoothness of the whole dataset (Taavitsainen, 2009). Data was stored and processed in 

the DataFrame which is a 2-dimensional data structure provided by Pandas data analysis 

library (McKinney et al, 2010). A detailed data pre-processing step flowchart, with rutting 

variable condition data as an example, is described in Figure 3.6.  
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Figure 3.6. Data pre-processing procedures on rutting condition data 

It is worth reiterating that, as shown in Figure 3.6, it was assumed that road condition after a 

relevant maintenance treatment such as “Overlay” or “Surface Treatment” would be restored 

to the same service level as a newly constructed pavement in its first year in service. In other 

words, it has been considered that a full restoration of road defects such as rutting and 

longitudinal cracking occurred from the year when there is a relevant maintenance treatment. 

3.6.1.3 Cleaned Data Description  

The data collected provides information in the following categories: road condition, road 

structure, ambient climate, traffic, road material, as well as relevant maintenance activities. 

Table 3.2 lists the details of the features in each category. 
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Table 3.2. Descriptions of the features collected in this case study 

Category Feature (Unit) Details 

Range Mean Median Standard 

deviation 

Condition Years from construction 0 - 55 27.2 30 10.07 

IRI (t) (m/km) * 0.4 - 4.7 1.1 1.0 0.5 

Rutting (t) (mm) *  0 - 17 4.2 3.8 2.6 

Longitudinal cracking length (m/section length) 0 - 123.2 5.05 0 14.5 

Transverse Cracking (Count) 0 - 220 21 8 32 

Fatigue Cracking (m2) 0 - 816.6 26.7 0 80.6 

IRI (t+1) (m/km) * 0.4 - 5.3 1.2 1 0.6 

Rutting (t+1) (m/km) * 0.5 - 17.2 4.5 4 2.6 

Structure 

 

Unbound foundation thickness (mm) 0 - 942.3 369.2 365.8 260.6 

Foundation + Asphalt thickness (mm) 185.4 - 

1282.7 

714.7 744.2 261.7 

Total asphalt thickness (mm) 0 - 505.5 151.2 147.3 76.3 

Dense graded asphalt thickness (mm)  0 - 502.9 131.6 119.4 73.9 

Open graded asphalt thickness (mm) 0 - 33 1.06 0 4.7 

Recycled asphalt thickness (mm) 0 - 167.6 15.8 0 38.1 

Emulsion-based sealing thickness (mm) 0 - 55.9 2.0 0 7.4 

Total foundation thickness (mm) 121.9 - 

1135.4 

563.4 602 256.8 

Bound foundation thickness (mm) 0 - 726.4 194.2 149.9 168.2 

Number of foundation layers 1 - 4 2 2 1 

Number of asphalt layers 1 - 11 4 4 2 

Climate Annual average ambient temperature (˚C) 4.8 - 24 13.9 12.6 5.9 

Annual average precipitation (mm) 11.5 - 

2070.4 

797.9 845.1 500.5 
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Annual average humidity (%) 51 - 78 % 65.4 66.5 6.0 

Traffic Annual Average Daily Traffic (Equivalent Single Axle 

Load) - AADT (ESALs) 

9 - 2405 585 405 531 

Material Contains geotextile (yes or no) 52 records in 4 sections with geotextile used 

Relevant 

Maintenance records 

Overlay Applied 40 times across 99 sections from 1995 to 2007 

Surface treatment Applied 13 times across 99 sections from 1995 to 2007 

* t refers to the year the data was collected; t+1 means the following year after the year the data was collected 
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3.6.1.4 Feature Selection 

Feature election was necessary to identify the optimal subset of input features from the initial 

list of model inputs presented in Table 3.2. There are three main approaches in conducting 

variable selection, namely: wrapper, filter, and embedded methods (Thenmozhi and Helen, 

2022). In this case study, an exhaustive variable selection method was adopted since it allows 

for an unambiguous understanding of the effectiveness of every single included variable and 

it concentrates on retrieving all possible combinations of the model inputs and gives priority 

to create a subset of inputs based on the performance quality of an algorithm (Deeba et al., 

2018), linear regression in this case which requires the least time and computing resources. 

Despite being a computationally expensive method, considering the relatively small total 

number of variables, and the fact that there is a much stronger emphasis and need to 

understand the optimal variables as model inputs, the wrapper method was selected. This is to 

ensure better comprehension and interpretation of the factors impacting pavement rutting 

development.  

All combinations of 21 initial variables available from Table 3.2 were tested as part of the 

exhaustive variable selection method. Maintenance treatment was not selected as a variable, 

i.e., input, because roads after relevant maintenance treatment were treated as new sections. 

Mlxtend library (Raschka, 2018) was implemented to perform exhaustive feature selection 

that included all possible combinations of the 21 model input interactions with input number 

ranging from 1 to 21, to build a linear regression model and then compare the models’ 

performances to select the one that results in the best performance (e.g., the least mean 

squared error). In this study, the number of input variables is 21 which results in 2097151 

(221 − 1) numbers of combinations, which means 2097151 linear regression models have 

been built as part of the variable selection process. Python code is provided in Appendix B. 
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Each of the 2097151 linear models has been evaluated through a 10-fold cross validation 

approach which calculated the average mean squared error of the model’s performance from 

all iterations. Table 3.3 and 3.4 reports the best five variable combinations that yielded the 

least average mean squared error across the 10 cross validations when modelling Rutting 

(t+1) and IRI (t+1). The negated mean squared error is simply the negated value of the mean 

squared error, and this is due to a convention in the Scikit-learn ML software package 

(Pedregosa et al., 2011) where higher return values are better than lower return values. 

Table 3.3. Top five exhaustive variable selection results for Rutting (t+1) 

Rank Common Variables   Extra variables 

specific to a 

particular 

model 

Average 

negated 

mean 

squared 

error score 

1 Rutting (t) (mm); Unbound foundation 

thickness (mm); Contains geotextile (yes or 

no); Longitudinal cracking length (m); 

Annual average humidity (%); Number of 

asphalt layers; Emulsion-based sealing 

thickness (mm); Number of foundation layers. 

 

N/A -0.56826 

2 Fatigue (m2) -0.568703 

3 Annual average 

ambient 

temperature (°C) 

-0.568832 

4 Annual average 

precipitation 

(mm) 

-0.569025 

5 Annual average 

precipitation 

(mm); Fatigue 

(m2) 

-0.569451 

 

Table 3.4. Top five exhaustive variable selection results for IRI (t+1) 

Rank Common Variables   Extra 

variables 

specific to a 

particular 

model 

Average 

negated 

mean 

squared 

error score 

1 Annual Average Daily Traffic (Equivalent 

Single Axle Load) - AADT (ESALs); Annual 

average ambient temperature (°C); Annual 

average precipitation (mm); Years from 

construction; Transverse Cracking (Count); 

N/A -0.0168609 

2 Fatigue (m2) -0.0168669 

3 Annual average 

ambient 

-0.0168673 
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Fatigue (m2); IRI (t); Recycled asphalt 

thickness (mm); Emulsion-based sealing 

thickness (mm); Bound foundation thickness 

(mm) 

 

temperature 

(°C) 

4 Annual average 

precipitation 

(mm) 

-0.0168673 

5 Annual average 

precipitation 

(mm); Fatigue 

(m2) 

-0.0168701 

 

In Table 3.3, the results after exhaustive variable selection did not include any traffic volume 

or load which have been commonly considered as direct causes of rutting; the reason could 

be that the traffic is heavily related to the road design with the number of foundation and 

asphalt layers, thicknesses, and the quality of the materials used. Regarding environmental 

factors, the results may indicate that the impact of ambient temperature and precipitation 

could be covered by humidity.  

The first results with the combination of variables that produced the highest negated mean 

squared error (i.e., the least mean squared error) from each table were selected to give the 

variables for ML model development for Rutting and IRI.  

3.6.1.5 Data from FE Physics-Based Models 

Extra data was obtained using a physics-based model. For each pavement section, a two-

dimensional multi-layer linear elastic FE model was developed using the data provided in the 

LTPP database together with assumed material properties of the layers based on various 

sources including engineers’ experience. The FE numerical model was built using the 

software Abaqus. It is a commonly used engineering simulation software suite based on finite 

element method, it possesses robust computing function and extensive simulated 

performance, as well as providing a huge number of multiple element models, material 

models and analytic processes (Kong and Yuan, 2010). 
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a. Finite Element (Abaqus) Pavement Model 

Modelling was performed on the following modules in Abaqus: Part, Property, Assembly, 

Step, Interaction, Load, Mesh, Job, Visualization, Sketch. Meshing is an important process in 

which the Abaqus model solves the differential equations of the system models, by 

discretising the model to smaller nodes and elements (Smith, 2009) to avoid huge 

computational time and resource. Young’s modulus and Poisson’s ratio have been defined as 

the elastic properties of the materials in different layers in this study. 

Ninety-nine Abaqus models, corresponding to the number of considered road sections, were 

created according to the specific pavement structures in the relevant test section. The cross 

section of each pavement test section has been modelled with a 3.66 meters width. The 

pavement model structure for Section 12-0566 is shown in Figure 3.7 (a) as an example. 

Boundary conditions and mesh techniques were consistent across all sections. Vertical 

displacements are the results produced from the models. Figure 3.7 (b). displays a) loading 

area and boundary conditions, b) meshing of layers and c) results of the vertical displacement 

from the finite element model for Section 12-0566. All material properties (i.e., Young’s 

Modulus and Poisson’s Ratio) have been defined in Table 3.5 based on pavement engineering 

expert opinion. 
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Figure 3.7. a) Pavement model and b) Its structural layers 

b. Material Codes and Characteristics in US LTPP Database 

Table 3.5 presents the estimated Young’s modulus and Poisson’s ratio values assigned to 

each material property types based on the description from the LTPP database.  

Table 3.5. Material codes and characteristics 

Mate

rial 

code 

Material Code Description Young's 

modulus 

(GPa) 

Poisson'

s ratio 

1 1-Hot Mixed, Hot Laid AC, Dense Graded 5 0.3 

2 2-Hot Mixed, Hot Laid AC, Open Graded 3.5 0.3 

4 4-Portland Cement Concrete (Jointed Plain Concrete 

Pavement) 

41 0.2 

5 5-Portland Cement Concrete (Jointed Reinforced 

Concrete Pavement) 

41 0.2 

6 6-Portland Cement Concrete (Continuously 

Reinforced Concrete Pavement) 

41 0.2 

  
(a)                                                                  (b) 
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9 9-Plant Mix (Emulsified Asphalt) Material, Cold 

Laid 

2.5 0.3 

13 13-Recycled AC, Hot Laid, Central Plant Mix 3.5 0.3 

14 14-Recycled AC, Cold Laid, Central Plant Mix 3 0.3 

20 20-Other 3.5 0.3 

71 71-Chip Seal Same properties as the 

layer below it 
72 72-Slurry Seal 

73 73-Fog Seal 

74 74-Woven Geotextile 

75 75-Nonwoven Geotextile 

77 77-Stress Absorbing Membrane Interlayer 1 0.35 

81 81-Chip Seal with Modified Binder Same properties as the 

layer below it 
82 82-Sand Seal 

83 83-Asphalt-Rubber Seal Coat 

102 102-Fine-Grained Soils: Lean Inorganic Clay 0.2 0.3 

108 108-Fine-Grained Soils: Lean Clay with Sand 0.1 0.2 

109 109-Fine-Grained Soils: Fat Clay with Sand 0.2 0.2 

111 111-Fine-Grained Soils: Gravelly Lean Clay 0.13 0.2 

114 114-Fine-Grained Soils: Sandy Lean Clay 0.2 0.3 

117 117-Fine-Grained Soils: Gravelly Lean Clay with 

Sand 

0.11 0.3 

131 131-Fine-Grained Soils: Silty Clay 0.1 0.3 

135 135-Fine-Grained Soils: Sandy Silty Clay 0.2 0.3 

141 141-Fine-Grained Soils: Silt 0.2 0.3 

142 142-Fine-Grained Soils: Silt with Gravel 0.2 0.2 

144 144-Fine-Grained Soils: Gravelly Silt 0.2 0.2 

145 145-Fine-Grained Soils: Sandy Silt 0.2 0.2 

201 201-Coarse-Grained Soils: Sand 0.13 0.3 

202 202-Coarse-Grained Soils: Poorly Graded Sand 0.12 0.45 

204 204-Coarse-Grained Soils: Poorly Graded Sand with 

Silt 

0.2 0.3 
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211 211-Coarse-Grained Soils: Well-Graded Sand with 

Silt and Gravel 

0.2 0.25 

214 214-Coarse-Grained Soil: Silty Sand 0.15 0.42 

215 215-Coarse-Grained Soil: Silty Sand with Gravel 0.2 0.4 

216 216-Coarse-Grained Soil: Clayey Sand 0.2 0.3 

217 217-Coarse-Grained Soil: Clayey Sand with Gravel 0.2 0.15 

265 265-Coarse-Grained Soil: Silty Gravel with Sand 0.2 0.4 

266 266-Coarse-Grained Soil: Clayey Gravel 0.2 0.3 

267 267-Coarse-Grained Soil: Clayey Gravel with Sand 0.2 0.35 

302 302-Gravel (Uncrushed) 0.25 0.35 

303 303-Crushed Stone 0.25 0.35 

304 304-Crushed Gravel 0.25 0.35 

306 306-Sand 0.08 0.2 

307 307-Soil-Aggregate Mixture (Predominantly Fine-

Grained) 

0.2 0.35 

308 308-Soil-Aggregate Mixture (Predominantly Coarse-

Grained) 

0.2 0.35 

309 309-Fine-Grained Soils 0.2 0.2 

310 310-Other (Specify, if Possible) 0.2 0.3 

319 319-HMAC 5 0.3 

320 320-Sand Asphalt 2 0.3 

321 321-Asphalt Treated Mixture 2 0.3 

325 325-Open Graded, Hot Laid, Central Plant Mix 3.5 0.3 

331 331-Cement Aggregate Mixture 20 0.1 

338 338-Lime-Treated Soil 0.2 0.13 

339 339-Soil Cement 1 0.13 

 

The simulation across each section generated an elastic surface deflection under 40 kN load 

per meter traffic loading as additional data. The elastic deflection result represents the 

physical stiffness of the pavement – a property which would be expected to influence the 

development of Rutting and IRI. Deflection has been considered as one of the variables that 
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would affect rut depth and therefore used as part of rutting prediction in multiple existing 

highway management tools and pavement research. For example, in HDM-4 manual (Kerali 

and Odoki, 2006), Benkelman beam deflection is one of the input variables for rutting 

calculation due to initial densification. In addition, rutting models developed based on data 

from AASHO Road Test also include deflection as one of the inputs (Suh and Cho, 2014). 

The equations for both are presented Eq. 3-2 and Eq. 3-3.  

 RDO = 𝐾𝑟𝑖𝑑[𝑎0(𝑌𝐸4 ∗ 106)(𝑎1+𝑎2𝐷𝐸𝐹)𝑆𝑁𝑃𝑎3𝐶𝑂𝑀𝑃𝑎4]                                             Eq. 3-2 

Where RDO is the rutting due to initial densification, YE4 is the annual number of traffic, 

DEF is the average annual Benkelman beam deflection, SNP is the average annual adjusted 

structural number of the pavement, COMP is the relative compaction and Krid is the 

calibration factor for initial densification. 

𝑙𝑜𝑔𝑅𝑃 = −5.617 + 4.343𝑙𝑜𝑔𝑑 − 0.167 log(𝑁18) − 1.118𝑙𝑜𝑔𝜎𝑐                              Eq. 3-3 

Where RP is the rutting rate per axle repetition, 𝑑 is the surface deflection under a load of 40-

kN, 𝜎𝑐 is the vertical compressive stress at the asphalt-based interface, and 𝑁18 is the 

number of 80-kN single axle repetitions. 

Furthermore, other studies which used accelerated load test, low-volume roads, as well as in-

service flexible pavements have also developed rutting prediction models, highlighting the 

strong correlation between deflection and rutting (Bae et al., 2000; Wiman, 2008; Alaswadko 

and Hassan, 2018).  

At the same time, according to two generalised roughness progression model in flexible 

pavements developed by HDM-III (Paterson and Attoh-Okine, 1992) where the standard 

deviation of rut depths has been used as a function of IRI calculation. In addition, multiple 

studies have demonstrated that IRI has significant relationship between the pavement 
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distresses and especially rutting (Mubaraki, 2016; Kırbaş, 2018; Joni et al., 2020) . Hence, the 

simulated deflection has been used as an extra data source for the prediction model 

development for rutting and IRI in following sections.  

In this study, the numerical models were created using identical procedures in each case, 

including the loading area, and the mesh generation mechanism. Table 3.6 describes the 

assumptions made in the creation of these physics-based models.  

Table 3.6. Assumptions made in the creation of Abaqus models 

No. Assumptions 

1 The load applied is 40kN per meter in the third dimension 

2 The thickness of the subgrade layer is 200mm 

3 Material proprieties stay constant over the years 

 

3.6.1.6 Model Selection and Preparation 

In this case study, apart from the standard purely data-driven ML modelling, two different 

approaches were used to combine the physics-based FE simulation output with ML 

development process.  

For rutting prediction, the output from the physics-based model was used as an extra input in 

the ML process whereas in IRI prediction, not only was the FE simulation output added as an 

additional input to ML, but it was also used to define a physics-informed loss function to 

guide the training process of the ML algorithm. More details are provided in following sub-

sections.  

To select a suitable ML algorithm for rutting prediction, an initial assessment on the 

performance of the ML models introduced in Section 3.5.1 was performed on the collected 

data. The whole dataset was split as (70%, 15%, 15%) for train, validation and test sets, 
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respectively (Li and Chan, 2017; Salehi et al., 2020; Liu et al., 2021) based on the R2 and 

RMSE shown in Eq. 3-4, and Eq. 3-5 respectively. 

𝑅2 =  1 − 
∑ (𝑦𝑖̂−𝑦𝑖)2

𝑖=1

∑ (𝑦𝑖̂−𝑦𝑖̅)2
𝑖=1

                                                                                                     Eq. 3-4 

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖̂−𝑦𝑖)2𝑛

𝑖=1

𝑛
                                                                                                   Eq. 3-5 

where 𝑦𝑖̂ is the predicted value from the ML model, 𝑦𝑖 is the actual observed value, 𝑛 is the 

total number of observations, and 𝑦𝑖̅ is the average of the measured values. 

The ML algorithms attempted were RF, ANN, KNN and SVM with suggested 

hyperparameters as recommended by (Bashar and Torres-Machi, 2021; Marcelino et al., 

2021; Cano-Ortiz et al., 2022; Xu and Zhang, 2022). Table 3.7 shows the results for each ML 

technique on various data sets. 

Table 3.7. Results for multiple ML algorithms 

ML Algorithms Training set (70%) Validation set (15%) Testing set (15%) 

ANN R2 = 97.3% 

RMSE = 0.440 

R2 = 93.8% 

RMSE = 0.707 

R2 = 86.4% 

RMSE = 0.824 

SVM R2 = 81.6% 

RMSE = 1.147 

R2 = 75.6% 

RMSE = 1.403 

R2 = 45.7% 

RMSE = 1.647 

KNN R2 = 82.7% 

RMSE = 1.115 

R2 = 81% 

RMSE = 1.236 

R2 = 68.2% 

RMSE = 1.261 

RF R2 = 99.1% 

RMSE = 0.255 

R2 = 93.9% 

RMSE = 0.704 

R2 = 89.7% 

RMSE = 0.717 

 

Therefore, RF was selected because of its superior in prediction accuracy to predict rutting.  

For the case of IRI, ANN was preferred due to not only its capacity where one can tune the 

network architecture to fit the corresponding data (Haber and Ruthotto, 2017) but also the 

customised loss function can be defined to especially facilitate the integration of physics into 

ML training process, which also has been identified to be the most suitable ML approach for 

a road digital twin according to a systematic literature review reported by Chen et al. (2022). 

The following describes the details the model preparation combining physics with ML.  
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Physics-Enhanced Neural Network (PENN) 

There are two steps in the proposed PENN framework: 1) create hybrid combinations of 

physics-based models and NNs where the physics-based model output is used as an extra 

input feeding into the NN. This has also been termed a hybrid physics data (HPD) model 

(Daw et al., 2022); (2) integrate existing scientific knowledge to customise and constrain the 

loss function in the NN during the learning process (Raymond and Camarillo, 2021; Gallup et 

al., 2023).  

1. Building HPD Models  

After the feature selection process, a NN model could be trained using the list of selected 

features. This approach is purely data driven despite the target feature being physically 

related to the input features. At the same time, physics-based simulation models could be 

used to obtain a simulated value of the target feature given the input information.  

In this study, physics-based models were developed to simulate the deflection under a 

constant load for all sections to understand the stiffness of the pavement sections. The 

correlation between a pavement’s IRI and its deflection has been made evident from 

empirical studies, for example a correlation has been considered in the HDM-4 model (Kerali 

and Odoki, 2006). However, the calculation of a physics-based model tends to be time-

consuming, and it may not reflect the complete physics of the problem given the limitation of 

simulating the effect of all the input parameters. Therefore, in this step, two models (the NN 

model and the physics-based model) were combined to complement each other to leverage 

the information from both data and physics. In particular, the deflection output from the 

physics-based FE simulation model was added into the training process of the NN as an extra 

input. This enables the modelling process to extract information from existing input features 

and to overcome any systematic bias experienced in the simulation models.     
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2. Using Physics-Informed Loss Functions  

As previously stated, the standard training process of an ANN involves the calculation of a 

loss function which is the error between the model’s predicted output and the actual observed 

value. The aim of training during the backpropagation process is to reduce this error (the 

closer to zero the better). When it comes to a physics-informed loss function, if there are 

existing theories or theoretical governing equations between the inputs and the output 

available, then in addition to the data-based loss function, an extra loss function which 

describes this physical relationship could be added to constrain the prediction so that it obeys 

certain constitutive equations or partial differential equations (Cuomo et al., 2022).   

However, given the complexities of pavement structure, material types and climate, it is 

challenging to establish any explicit relationship between the input and output features for a 

road section, especially when considering the lack of accepted theories as well as the number 

of factors that could have effect at different levels. Therefore, instead of using partial 

differential equations to constrain the range of prediction output given a set of inputs, a 

different approach, similar to Deng et al. (2024) was adopted to integrate physical 

information based on relationships between input and output features. The process includes 

the follow steps: 

• Step 1: Traditional ANN training on the original data collected 

• Step 2: Generation of up-sampled data that expressing an explicit monotonic 

relationship between one input and the output 

• Step 3: Further training the ANN model on the up-sampled data with a customised loss 

function based on physics to constrain the model’s prediction 

In Step 2, given that the data was collected from multiple geographical locations with different 

climates and materials, it was not realistic to identify a clear input that would have a monotonic 
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influence on the output. However, once the simulated deflection for each pavement section has 

been obtained, a generic physical understanding of the level of stiffness for each section is 

achieved. This could be used to form a monotonic relationship. As illustrated in Table 3.8 the 

key difference is that the up-sampled data input vector with simulated deflection value has been 

created by sorting the original values in an ascending order while the other columns were kept 

constant at their mean values, (except the columns representing features used in the simulation, 

e.g., number of pavement layers and layer thickness). The up-sampled data input vector allows 

for the examination of the isolated effect of the monotonic increase of the level of stiffness on 

IRI across multiple sections.  

Table 3.8. Up-sampled data generation process, blue shade represents the original data, 

and the grey shade shows the generated additional up-sampled data 

Original 

data 

IRI 

(t+1) 

Input 1 Input 2 Input 3 … Input N Simulated 

deflection 

… … … … … … … 

… … … … … … … 

… … … … … … … 

Up-

sampled 

data 

IRI 

(t+1) 

Input 1 Input 2 Input 3 … Input N Simulated 

deflection 

(sorted) 

low 

Averag

ed 
Averaged Averaged Averaged  Averaged* 

   low  

  

  

high    high 

* Average not applied if this column is a parameter used in the physics-based simulation 

In Step 3 after the preparation of the up-sampled data, the trained model from Step 1 is re-

trained on the generated up-sampled data with the usage of a customised physics-informed 

loss function, which was defined using a rectified linear unit activation function in this study 

to ensure a physically consistent prediction outputs that also meet the condition of being in an 

ascending order, as shown in Eq. 3-6. Thus, the overall loss function including data loss and 

physics-informed loss was updated as in Eq. 3-7. 

ℒ𝑃,𝑆𝐷 =  ∑ (max (0, −Δ𝑦𝑖̃))2𝐾
𝑖=1                                                                                        Eq. 3-6                                                                    
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ℒ𝑇𝑜𝑡𝑎𝑙 =  ℒ𝐷 +  ℷ (ℒ𝑃,𝑆𝐷)                                                                                                 Eq. 3-7 

ℒ𝐷 =  
1

𝐾
 ∑ |(𝑦𝑖 − 𝑦̃𝑖)|𝐾

1                                                                                                       Eq. 3-8 

where 𝑦̃𝑖  is the predicted output vector and 𝑦𝑖 is the actual/measured output; K is the number 

of samples; ℒ𝐷 expressed in Eq. 8 is the data-based loss function, MAE that is mean absolute 

error, measuring the paired error between actual and predicted values; ℒ𝑃,𝑆𝐷 is the physics-

informed loss leveraging the simulated deflection output; 𝜆 is a tuning parameter to decide 

the relative weight of importance between data loss and physics loss. ℒ𝑇𝑜𝑡𝑎𝑙 is simply the 

addition of data-based loss and physics-informed loss.   

As shown in Table 3.8, given the input simulated deflection in the up-sampled data has been 

sorted from low to high, it is expected that the predicted output vector - IRI (t+1) should be 

also in the same ascending order when the model is re-trained in Step 3. Any portion in the 

prediction that does not obey this constraint is handled as an error and penalised during the 

model training process. 

To clearly compare the model’s performances, different scenarios leveraging different methods 

to combine physics-based model with ML have been summarised in Table 3.9 with the 

corresponding ML algorithm and model outputs. 

Table 3.9. Scenarios considered in this study for predictions 

Scenario Description RF 

Prediction 

for Rutting 

ANN 

Prediction 

for IRI 

1 ML based on input data from 

feature selection result 

√ √ 

2 Simulated deflection integrated 

as an extra input for ML 

√ √ 

3 Simulated deflection integrated 

as an extra input for ML + the 

use of up sampled data with a 

physics-informed loss function 

 √ 

These three scenarios were then defined for model development and evaluation. 

https://www.sciencedirect.com/science/article/pii/S0893608023007463#fd5


113 

 

 

3.6.1.7 Model Development and Evaluation on Short-term Predictions 

The Scikit-learn ML package (Pedregosa et al., 2011)was used for developing RF regression 

models to predict Rutting. The Grid Search method (Liu et al., 2020) was used for tuning the 

hyperparameters (see Appendix C) used for the RF regression model for both scenarios 

considering its exhaustive searching method that could find the optimal hyper-parameter 

values by checking all parameter combinations. The RF hyperparameter space was defined 

and the final configurations are summarised in Table 3.10.  

Table 3.10. RF hyperparameter space and tuning results 

Hyperparameters Space Default  Tuning results 

(Scenario 1) 

Tuning results 

(Scenario 2) 

n_estimators [50, 100, 150, …, 450] 100 100 50 

max_depth [3, 4, 5, …, 49] None 5 38 

min_samples_split [2, 4, 6, 8, …, 28] 2 12 18 

min_samples_leaf [1, 2, 5, 10, 50, 100] 1 5 2 

 

To assess the one-year prediction performance of each model, metrics such as R2 and RMSE 

were used. 

To ensure the model generalisation capacity, out of the 99 road sections 15 sections 

(approx..15% of the total) were randomly selected and used for the final test of model 

performance based on suggestions made by Ardila et al. (2019) and Sun et al. (2020). The 

remaining 84 sections were used to train and validate the model. To avoid overfitting, which 

is a common issue for ML algorithms (Badillo et al., 2020), a cross-validation technique was 

applied on the 84 sections with a 10-fold configuration, which is the common configuration 

practice for cross-validation (Kohavi, 1995). Additionally, during the random selection of 

training and testing sections, basic statistical analysis, such as mean and standard deviation, 

on each model variable was performed to ensure the validity of the model by checking the 

distribution similarity between training and testing data. The model evaluation outcome is the 
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median value out of the results from 10 cross-validations. Once the model was evaluated, all 

data from 84 sections were trained to build a model which was tested against the 15 sections 

to understand the performance of the model. To further reduce the bias and randomness 

during the selection of the sections used for model training and testing, the whole process was 

repeated 30 times for both scenarios, each with a different set of 15 test sections, and this was 

used to provide an indication of the model’s generalisation performance capacity. 

The number of times the model was run was chosen to be 30 following the recommendation 

made in other studies with the similar approach (Menzies et al., 2005; Su et al., 2015; El-

Gawady et al., 2022) in order to gain enough statistical information on the variance to 

understand the model uncertainties. Figure 3.8 shows the whole process of the RF model 

training, cross-validation evaluation, and test. 

 
Figure 3.8. RF model training, evaluation, and test iteration process 

For ANN modelling for IRI prediction, a similar approach was followed despite the 

differences in the usage of different ML and hyperparameter optimisation packages.  
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TensorFlow (Abadi et al., 2016), and Keras ML libraries (Chollet, 2018) were used in Jupyter 

notebooks for implementing the ANN regression models (see Appendix D). The KerasTuner 

hyperparameter tuning framework was used with a Bayesian optimization algorithm 

(O’Malley et al., 2019) for searching the optimal hyperparameters for the ANN model. The 

ANN hyperparameter space is defined and summarised in Table 3.11. 

Table 3.11. ANN hyperparameter space and tuning results 

Hyperparameters Space 

Number of layers [1-10] 

Number of neurons each layer [32-512] 

Activation function ReLU, Linear 

Learning rate [0.01, 0.001, 0.0001] 

Loss function MAE 

Optimiser Adam 

 

To assess the one-year prediction performance of each model, standard statistical measures 

such as R2 and RMSE were used. The model development flow is described in Figure 3.9, 

noting that the process is repeated 50 times. This number was chosen as it has been 

recommended in other studies with a similar approach (Menzies et al., 2005; Su et al., 2015; 

El-Gawady et al., 2022). The 50 times iteration was selected to ensure sufficient statistical 

information to quantify the model uncertainty expressed in the form of variance, for the 

evaluation of the model’s generalisation capacity. It is also worth pointing out that during 

each cycle of the training and testing data split, it was ensured that the testing data range stays 

within the range of the data used to train the model to mitigate overfitting issues (Alzabeebee 

et al., 2018, 2021). The selection of 15 test sections for the development of both ML 

algorithms, was made based following the procedure described in Figure 3.10 for each 

iteration to ensure the optimum ML learning experience.  
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Figure 3.9. Process flow for ANN model training and evaluation 

 

 
Figure 3.10. Selection process of the 15 test sections 
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3.6.1.8 Model Uncertainty Quantification  

Prediction intervals offer a method to quantify and communicate the probability for a single 

prediction point which is an estimation or approximation with some level of uncertainty. 

Prediction intervals can reveal the level of accuracy and confidence of model prediction. The 

uncertainties and potential errors in general come from two main sources: 1) ineffectiveness 

and error of the model itself, and 2) the noise contained in the initial measurement data before 

or even after the data cleaning process. In this study, the uncertainty is expressed through the 

variance of the ML model due to different sampling of the training and testing data. Common 

model evaluation methods such as R2 and RMSE fail to address the prediction confidence for 

individual instances (Tavazza et al., 2021). In such cases the point estimation is insufficient 

for the forecasting of the prediction uncertainties. Therefore, prediction intervals were 

generated in this study to understand the precision and accuracy of the model prediction. 

Prediction intervals were calculated to understand the model performance accuracy based on 

ML model results after 30 repetitions for rutting prediction, and 50 repetitions for IRI. 

Following the process described in Figures 3.8 and 3.9, a list of predictions from both RF and 

ANN model results were obtained and compared against the actual results to understand 

prediction distributions by generating prediction intervals. The generated prediction intervals 

quantified the uncertainty for one prediction point value by identifying a range of prediction 

with a certain likelihood. This was done through calculating a linear regression fit of the 

predicted values and the actual values and the standard deviations of the residuals between 

linear fit line and the model’s predicted values (Kirkwood and Sterne, 2010). A Python script 

was written for this purpose, see Appendix E. 
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3.6.1.9 Model Evaluation on Long Term (Multi-year) Predictions  

The multi-year predictions were generated by leveraging bootstrapped residuals based on the 

collection of errors already experienced in the model results for rutting and IRI. This method 

assumes the future predicted errors would be similar to the existing ones (Tibshirani, 1996; 

Khosravi et al., 2011). By taking a uniformly distributed sample from the collection of 

existing sorted residuals following a cumulative distribution function and appending to the 

model’s predicted results, different prediction outcomes were produced. Through doing this 

2000 times, a collection of slightly different one-year predictions was generated. By building 

model inputs based on the predicted output from the previous year, multi-year predictions 

were then created according to the same process. A Python script was run for 2000 times to 

generate the ranges with lower and upper bound for multi-year predictions (see Appendix F). 

The 90% probability prediction intervals for the 2000 results for any single year were then 

computed to understand the 90th percentile range predictions for that particular year. The 

results for the 12th year 90% probability prediction intervals, as an example, based on this 

approach are presented in Chapter 4. 

3.6.2 Case Study II – Experiment at UK National Buried Infrastructure Facility (NBIF) 

Using Sensor Data 

During the PhD study, an opportunity arose to collect real-time sensor data through an 

instrumented experiment conducted at NBIF to simulate an environment where a large 

amount of data is available and subsequently explore the optimisation of sensor data 

collection frequency according to the prediction accuracy of the model. This section 

describes the case study that forms this analysis. The experiment details and produced data 

are described in the following sections.  
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3.6.2.1 Set up, Equipment and Sensors  

The experiment consisted of a three-layer pavement structure with an actuator on top, to 

simulate cyclic loading. The simulated pavement consists of a subgrade layer with sand, an 

unbound subbase layer with UK Type 1 crushed rock as well as a cold-mix asphalt surface. 

At the middle of the pavement subgrade layer, a 96-cm long pipe was laid to simulate a 

buried pipe condition. Figures 3.11 - 3.13 show the experiment set up, data collection 

configuration and the test running in progress, respectively.  

 

Figure 3.11. NBIF experiment set up 

 

Figure 3.12. NBIF data collection 
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Figure 3.13. NBIF experiment test in progress 

In terms of sensors, Linear Variable Differential Transformers (LVDTs), Strain Gauges 

(SGs), Pressure Cells (PCs) and Temperature sensor probes (Ts) were instrumented inside 

and outside the pavement. A sketch of the experiment including the actuator and the 

pavement structure, materials as well as the sensor locations are illustrated in Figure 3.14.  
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Figure 3.14. A sketch of the actuator, pavement and sensors, including 2 LVDTs on the 

actuator (LVDT3 & 4) as well as 1 LVDT on the pavement surface (LVDT1) and a PC 

in the corner (PC-C) and one in the middle (PC-M), six temperature probes (T1-T6), 

and three SGs on top of the buried pipe 

LVDT2 and T7 are not included in the sketch as LVDT2 was located outside the container 

against the container wall, and T7 was located outside the container to measure laboratory 

ambient temperature. More details about the sensors the associated measured data, and their 

frequencies are described in Table 3.12. 
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Table 3.12. Sensor details and frequencies 

Sensor Equipment/sensor name Details and Frequencies 

Actuator Cyclic loading actuator • Applies 20 kN loading with a frequency of 

5Hz 

LVDT1-4 

& SGs 

Linear Variable 

Differential Transformer 

& Strain Gauges 

• LVDT measures the displacement and can 

be used to obtain the surface permanent 

settlement due to the cyclic loading. 

• SG measures the strain on the pipe due to 

cyclic loading. 3 SGs were placed in 

different directions on the pipe (vertical, 

horizontal, and 45 degree) 

• Both LVDTs and SGs collect data at a 

frequency of 1613Hz 

PC-M & 

PC-C  

Pressure Cells • Two PCs measure the stress distribution 

caused by the cyclic loading. Both PCs 

also embed a temperature sensor that 

measures the soil temperature 

• PC-M was located at the central bottom of 

the container 

• PC-C was located at the corner bottom of 

the container  

• PCs collect data at a frequency of 20Hz 

T1-7 Temperature sensors 

(Thermometers) 
• Thermometers measure the soil 

temperature within the pavement 

• Temperature sensors 1 – 6 are depicted in 

the sketch. Temperature sensor 7 was 

physically located in the laboratory to 

measure ambient temperature 

• Temperature sensors collect data with 1 

record per minute 

 

3.6.2.2 Experiment and Data Preparation Details 

In this case study, the same experiment with the above set up was conducted twice to ensure 

data generalisability. At least 1 million cycles of loading were applied for each experiment. 

The details of these two experiments are presented in Table 3.13.  

Table 3.13. Experiment details 

Experiment Number Test Date Duration 

Experiment 1 5th Feb 2024 4 hours 

6th Feb 2024 6.5 hours 

7th Feb 8 hours 
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8th Feb 7.5 hours 

9th Feb 7 hours 

12th Feb 7 hours 

13th Feb 7 hours 

14th Feb 7.5 hours 

Total 54.5 hours 

Experiment 2 11th March 2 hours 

12th March 7.5 hours 

13th March 6 hours 

14th March 7.5 hours 

15th March 5 hours 

18th March 6 hours 

Total 34 hours 

 

Both experiments provided data on loading, elastic and permanent surface displacement, 

structural stress and strain, pressure at the bottom of the container, pressure at the middle of 

the container, temperature within the pavement structure and container, as well as the 

ambient temperature, based on the sensor configurations. Due to technical issues encountered 

during both experiments, the strain gauge (vertical direction) became faulty and therefore was 

not able to produce reliable results. Nevertheless, all the other sensors described in Table 3.12 

functioned properly, and data was generated and stored in a shared server on a cloud 

computing platform – BlueBear facility at the University of Birmingham. As a result, a huge 

volume of data, around 70 giga byte was produced from different sources and stored for 

analysis. Python scripts for NBIF data analysis can be found in Appendix G. 

Sensor Data Fusion and Explanation 

a. In order to fuse the data generated from different sensors to have the same number of 

readings, given the temperature probe has the least collection frequency amongst all 

sensors (1 record per minute), a sampling rate aligned with its frequency (every 1 minute) 

was applied to obtain a subset of data from other sensors’ readings. In other words, only 

the data collected from LVDTs, SGs and PCs within one second period after each minute 
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was collected for further processing, meaning the data produced within each minute was 

overlooked as part of this sampling process.  

b. Given the high frequency of LVDT and SG samplings, as well as the pressure cells, 1613 

and 20 records were generated within one second respectively, with the actuator running 

with a frequency of 5 Hz, applying a cyclic load. Figure 3.15 (a) visualises how the 

sensor readings (strain gauge at 45 degrees) under the load appear within a one-second 

period where 5 cyclic loading was done as shown. Figure 3.15 (b) then presents the 

sensor readings only within one loading cycle, with arrows showing the specific points of 

interest. The relevance and purpose of these values are explained in following steps.  

             
                                     (a)                                                                      (b) 

Figure 3.15. SG readings within a) one second and b) one loading cycle 

c. Following step b, three distinct values were further extracted from different sensor 

readings under one loading cycle: 1) the maximum; 2) the minimum; and 3) the 

maximum - minimum to align and fuse with the data from temperature probe. These were 

used as parameters for model development. These values for LVDTs, SGs and PCs within 

one second were also used to determine the elastic and plastic displacement and strain on 

the pipe, respectively, while the overall aim was to measure the permanent deformation 

on the pavement surface. A detailed interpretation for each sensor reading after the data 

fusion process is described in Table 3.14. 
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Table 3.14. Sensor data and meanings 

Sensor readings Meaning 

Minimum LVDTs  Minimum elastic linear displacement/deformation which provides 

the value for permanent deformation at the end of the experiment 

Maximum LVDTs Maximum elastic linear displacement/deformation 

Maximum LVDTs - 

Minimum LVDTs 

Transient displacement or Elastic recoverable deformation 

Minimum SGs Minimum elastic strain which is the value for permanent strain at the 

end of the experiment 

Maximum SGs Maximum elastic strain 

Maximum SGs - 

Minimum SGs 

Transient strain or Elastic recoverable strain 

Minimum PCs Minimum total pressure 

Maximum PCs Maximum total pressure 

Maximum PCs - 

Minimum PCs 

Transient total stress or Elastic recoverable total pressure 

PCs Temperature Temperature in the soil 

T1-T6 Temperature in the soil 

T7 Ambient temperature 

 

To ensure consistency with the first case study (Case study I) in which rutting was predicted, 

the minimum LVDT3, indicating the pavement permanent deformation was selected as the 

parameter of interest to be prepared as the output for ML model training. The other data 

sources were prepared as inputs for model development. Given the similarity in data 

produced from LVDT3 and LVDT4, the LVDT4 related features were not used as part of the 

model inputs. In addition, maximum LVDT3 and ‘maximum LVDT3 – minimum LVDT3’ were 

also not included in the analysis to avoid (due to their potentially) similar data trends.  

3.6.2.3 Optimisation of Data Collection Frequency 

With the availability of a large amount of data generated with different but high frequencies 

from multiple sensors in NBIF experiment, this case study aimed to identify a relatively 

suitable and efficient sampling rate across the sensors that would produce a model with an 

acceptable prediction accuracy given all the data generated. From a road management 

perspective, the importance of the prediction accuracy is for the associated cost reduction 
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considering normally limited available budgets (Hosseini and Smadi, 2021). Within this 

context, the optimisation of the data collection frequency was also to balance the amount of 

data needed (data collection interval) and the potential reductions in model’s prediction 

accuracy, considering a range of factors such as the cost of data acquisition systems, and data 

storage, data processing as well as the power and electricity required for big data cloud-based 

systems. Essentially, the following research questions were investigated:  

1. If we are generating thousands of data records per second, how much data do we need 

in such a big data environment?  

2. To what extent can the data be reduced while producing a sufficiently accurate 

predictive model?  

This case study implemented a ML-based method for optimising data collection frequency. 

To achieve this, machine learning models are repeatedly trained and evaluated based on the 

amount of sensor readings. A process flowchart is proposed to demonstrate how to identify 

the optimal sampling rate within a predictive road digital twin context as shown in Figure 

3.16. A detailed discussion for each step is provided afterwards.  
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Figure 3.16. Process flowchart for selecting sensor data collection frequency 

Step 1: To start with, a list of frequencies of different sensors is identified and so that it is 

ready for sensor data fusion. Table 3.12 details the frequency of each sensor used in NBIF 

experiment. 

Step 2: According to the data collection frequency of sensors identified from the previous 

step, data from sensors needs to be fused. In NBIF case study, it was decided to sample the 

data at a frequency that was the lowest among the sensors to ensure the same number of 

readings across all the sensors for data integration. As a result, a sampling rate of one record 

every 1 minute was used as a minimum starting point, which is aligned with the temperature 

probe data sampling frequency. 

Step 3: A sampling rate range is defined in this step, which means the maximum frequency 

can be arranged here. This frequency range varies depending on the use case and different 

scenarios. A larger sampling range would result in a lower number of sensor data. In the 

NBIF case study, every 20 minute was selected as the highest frequency after a thoughtful 
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consideration given the time taken to conduct each experiment, with an aim to ensure that 

enough data can be available to capture the trends and variations in the data.  

Step 4: From this step onwards, an iterative process was formulated to identify the minimal 

amount of data or the least data sampling rate required to achieve the same or even better 

prediction accuracy that is obtained using more data points with a higher frequency. This 

process in this case study shares common parts of the ML modelling methodology presented 

in Section 3.5 but adds the element of iteration with different sampling sizes. 

Step 5: In this step, the datasets based on Step 4 were pre-processed for ML modelling 

purposes. In addition, the inputs and the output were prepared accordingly for model 

developments and evaluation to achieve this. Different prediction ranges are also defined in 

this step in relevance to the defined data collection frequency.  

Step 6: In this step, a machine learning model option is selected and built. 

Step 7-8: From Step 7 onwards, the ML model performance is evaluated to decide whether to 

continue the iterative process of selecting the sampling rate. As shown in Step 8, the model 

performances such as R2 and RMSE are checked against an existing threshold. This threshold 

can be based on expert knowledge or other sources. In this project, considering the overall 

road digital twin context, the threshold was set based on the prediction accuracy achieved in 

the short-term rutting predictions using historical data demonstrated in Case Study I (Section 

4.1.1), assuming the prediction capacity using real-time sensor data should be more accurate 

than using historical data. Specifically, the expected model prediction accuracy thresholds are 

defined as (R2 ≥ 90% or RMSE ≤ 0.79). Afterwards, if the model performance meets the 

threshold, then it proceeds to Step 9, if not, the user would have an option to choose either to 
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stop the iterative process and use the latest sampling rate or continue the trial-and-error 

procedure to check the frequencies in the sampling range, indicated by the dotted line.  

Step 9-10: Step 9 reduces the sampling rate (e.g., from every minute to every other minute) 

and Step 10 checks if it exceeds the sampling rate range defined at Step 3. The iterative 

process continues if it is still within the range and stops otherwise.  

Key steps (from step 4 onwards) of the iterative modelling process are presented in pseudo 

code (Box 3.1) for a better understanding.  

Box 3.1. Pseudo Code for Iterative Modelling Process 

PSEUDO CODE: ITERATIVE PROCESS FOR DATA COLLECTION FREQUENCY OPTIMISATION 

While sampling rate (s) is less than every 20 minutes 

1. Sample the data according to defined s (start with 1 minute) 

2. Prepare data as model inputs and output for multiple prediction ranges: predict 

simultaneously, as well as next 20, 40, 60 minutes in future 

3. Perform feature selection to select most relevant features based on the dataset 

4. ML model development based on standard 80/20 split with training and test data 

5. Model performance evaluation using R2, RMSE and MAE 

6. Save the results 

7. Check model performance against existing prediction accuracy threshold 

8. Increase s by 1 minute 

 

A semi-automated iterative process was conducted to compare ML model performances 

under several selected sampling rates instead of all different sampling rates. A customised list 

of sampling rate: every 1, 2, 4, 5, 10, 20 minute and a list of prediction ranges 

(simultaneously, next 20 minutes, next 40 minutes and next 60 minutes) were thoughtfully 

observed. The frequency of data collection (F) and the range of predictions (R) can be 

denoted as F = {1, 2, 4, 5, 10, 20} and R = {0, 20, 40, 60}, respectively. These intervals were 

selected considering the average duration of the experiment each day as well as the feasibility 

of the data pre-processing and preparation.  
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In summary, the modelling process described previously was repeated 24 times to produce 

different scenarios with different sampling rates (F). The prediction accuracies were obtained 

with multiple different prediction horizons (R) to understand the sensitivity of the predictive 

model in identifying a relatively optimal data capturing interval that could achieve satisfying 

prediction accuracies to demonstrate the proposed approach to identify an optimised data 

collection frequency. The following sub-sections a to c, illustrate NBIF case study data and 

modelling details for from Step 5-7, such as description of prepared data, feature selection 

and model development and evaluation according to the proposed methodology with a 

baseline data collection frequency that was defined, 1 record per minute.  

a. Data Description 

After the data preparation stage, a statistical description of the data including inputs and 

output was conducted to understand the statistics of the sensor data produced. Table 3.15 

presents the details of each feature based on sensor readings.  

Table 3.15. Descriptions of the sensor data collected in this case study 

Sensor readings Details 

Range 

(min - max) 

Mean Median Standard 

deviation 

Min LVDT1 (mm) (-0.0017 –

5.0031) 

3.0547 2.7268 1.1617 

LVDT2 (mm) (-0.0017 – 

2.5240) 

0.0290 -0.0016 0.2697 

LVDT3 (mm) (-0.0048 – 

9.1421) 

6.0024 5.7250 1.9142 

SG-45 (μ) (-183.97 – 

901.60) 

557.66 544.10 217.05 

SG-h (μ) (-299.83 – 

907.00) 

652.76 720.00 194.97 

PC-M (kN/m2) (-0.4051 – 

5.8684) 

2.0371 2.0941 1.7535 

PC-C (kN/m2) (-2.0804 – 

2.5363) 

-0.0385 0.4741 1.1712 

PC-M-T (°C) (12.563 – 

16.262) 

14.523 14.620 0.8865 
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PC-C-T (°C) (12.452 – 

16.239) 

14.482 14.574 0.9103 

Max LVDT1 (mm) (-0.0014 – 

5.0030) 

3.3003 3.1776 0.9953 

LVDT2 (mm) (-0.0015 – 

2.5253) 

0.0291 -0.0014 0.2699 

SG-45 (μ) (7.0806 – 

1201.6) 

783.33 774.60 223.86 

SG-h (μ) (19.000 – 

975.00) 

688.07 751.00 189.75 

PC-M (kN/m2) (-0.2554 – 

8.5554) 

4.6880 4.7961 2.3089 

PC-C (kN/m2) (-1.0846 – 

3.7852) 

1.3535 1.7889 1.3537 

PC-M-T (°C) (12.563 – 

16.262) 

14.523 14.620 0.8865 

PC-C-T (°C) (12.452 – 

16.239) 

14.482 14.574 0.9103 

Max - 

Min 

LVDT1 (mm) (0.0000 – 

0.5642) 

0.2456 0.4056 0.2086 

LVDT2 (mm) (0.0000 – 

0.0020) 

0.0002 0.0002 0.0001 

SG-45 (μ) (3.0000 – 

1116.0) 

225.67 235.00 67.994 

SG-h (μ) (4.0000 – 

1059.0) 

35.309 30.000 60.106 

PC-M (kN/m2) (0.0002 – 

4.0397) 

2.6509 2.6604 0.6477 

PC-C (kN/m2) (0.0006 – 

3.7750) 

1.3921 1.3696 0.2921 

T1 (°C) (13.040 – 

16.160) 

14.498 14.520 0.7932 

T2 (°C) (12.490 – 

16.300) 

14.517 14.610 0.9371 

T3 (°C) (12.900 – 

16.290) 

14.612 14.620 0.8541 

T4 (°C) (13.580 – 

16.900) 

15.050 15.080 0.9391 

T5 (°C) (13.610 – 

16.510) 

15.050 15.010 0.7279 

T6 (°C) (13.670 – 

16.630) 

15.115 15.110 0.7881 

T7 (°C) (7.5320 – 

16.740) 

13.034 13.680 2.0454 
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b. Feature Selection 

This section identifies the most relevant features to serve as model inputs considering various 

input options. The importance and types of feature selection methods have been mentioned in 

Section 3.6.1.4. In short, irrelevant features, if not filtered out, can confuse the model and 

reduce the quality and accuracy. For simplicity purposes, this case study directly utilised an 

existing library provided by scikit-learn, namely SelectKBest (Pedregosa et al., 2011). This 

function returns the best k number of features based on p-value, where the lower p-value 

represents the more statistically significant correlation. Table 3.16 shows the Pearson 

correlation coefficient and the corresponding p-value results for all the features.  

Table 3.16. Input and output features and results for their correlation coefficient and p-

value, with selected features being highlighted in Green 

 Features 

(Use the name from 

Table 3.14) 

Pearson correlation 

coefficient (sorted) 

p-value 

Output Min LVDT3 1.0000 n/a 

Inputs Max SG-45 0.8456 Close to 0 

Max PC-M 0.8386 Close to 0 

Min PC-M 0.8363 Close to 0 

Min SG-45 0.8190 Close to 0 

Max-Min PC-M 0.7256 Close to 0 

Max-Min LVDT1 0.3761 6.6007 * e-179 

Max SG-h 0.2639 1.0123 * e-85 

Min SG-h 0.2462 1.6218 * e-74 

Max-Min SG-45 0.1697 8.9266 * e-36 

Max-Min LVDT2 0.0980 7.1967 * e-13 

Max LVDT1 0.0959 2.2547 * e-12 

Max LVDT2 0.0836 9.5385 * e-10 

Min LVDT2 0.0836 9.5780 * e-10 

Max-Min SG-h 0.0344 0.0120 

Min LVDT1 0.0146 0.2859 

T7 -0.3025 2.3872 e-113 

Max-Min PC-C -0.4380 4.3382 * e-249 

Max PC-C-T -0.5219 Close to 0 

Min PC-C-T -0.5219 Close to 0 

Max PC-M-T -0.5268 Close to 0 

Min PC-M-T -0.5268 Close to 0 
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T2 -0.5507 Close to 0 

T1 -0.5620 Close to 0 

T5 -0.5642 Close to 0 

T3 -0.5669 Close to 0 

T6 -0.5879 Close to 0 

T4 -0.6109 Close to 0 

Max PC-C -0.7980 Close to 0 

Min PC-C -0.8130 Close to 0 

  

In this case study, the parameter k was set to 10 (Al Alawi et al., 2024; Vengadeswaran et al., 

2024). The feature selection process produced the 10 most suitable features according to their 

p-values. The results of the features are presented in Table 3.17. They are also highlighted in 

green colour in Table 3.16. 

Table 3.17. Features after the feature selection process 

 Selected Features 

Output Min LVDT3 

Inputs Max SG-45 

Max PC-M 

Min PC-M 

Min SG-45 

Max-Min PC-M 

T3 

T6 

T4 

Max PC-C 

Min PC-C 

 

c. ML Model Development and Evaluation  

In this case study, RF is selected to be used because of its high performance in Case study I 

on historical data, and the fact that it takes a relatively low level of computing power and 

time. In addition, it gives reasonably stable and good performance even without 

hyperparameter tuning based on the observation experienced in Case study I. With the data 

prepared after the feature selection in the previous section, the data was split into two parts - 
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training data (80%) on which the model was trained, and testing data (20%) that was used to 

evaluate the model performance. Default hyperparameters were used for RF model 

development. The model performance metrics used are R2, RMSE and MAE. The model 

evaluation results for all scenarios are provided and discussed in Chapter 4.  

3.7 Summary of the Methodology 

In order to achieve the aim and objectives set out in this study, first of all a DT-based 

decision-making support theoretical framework for road life cycle (Figure 3.2) was 

developed. The model was based on the comprehensive literature review on road 

management as well as the concept, characteristics, components and applications of DTs. 

This contributes to the whole body of knowledge on road DTs as there is limited research in 

this area. Then the study looked specifically into the modelling part in the Data Integration or 

Modelling Layer of the theoretical framework by presenting a DT-based ML modelling 

methodology (Figure 3.3). Two case studies leveraging the usage of historical and real-time 

data have been conducted to demonstrate the applications of the proposed theoretical 

framework in the Application Layer and the modelling methodology.  

Case study I built a DT-based pavement performance model using historical data. The 

novelty of the DT-based model is the combination of ML with physics-based simulation 

models using two different approaches. In addition, ML uncertainty has been taken into 

consideration in the form of ML model variability. This case study addressed the research 

gap revealed in the literature review about pavement performance modelling where 

integrating existing domain knowledge into the ML modelling process is still in its early 

stage.  

Case study II demonstrated the use of real-time sensor data as part of the theoretical 

framework, especially the application of optimising data collection frequency with acceptable 



135 

 

 

accuracy. Utilising the sensor data available as part of an NBIF experiment, by following the 

iterative modelling process, the amount of data that can be reduced to still enable a 

satisfactory modelling prediction accuracy were quantified. This analysis is useful for future 

data collection considerations and practices as part of the application layer within an RDT.  

3.8 Utilised Software and Packages 

The end-to-end research steps for both case studies during the modelling process have been 

enabled by making use of multiple open-source software, computing platforms, data science 

libraries and packages, as well as available hardware, as presented in Table 3.18. 

Table 3.18. Utilised software and packages 

Software and 

Packages 

Description Reference  

Programming 

language 

Python 3.9.2 (Van Rossum and Drake, 1995) 

Computing 

platform 

Jupyter notebook 6.1.4 (Kluyver et al., 2016) 

Software 

library 

Pandas 1.1.0 (Data 

analysis library) 

NumPy 1.19.5 (Library 

used for working with 

arrays) 

SciPy 1.5.4 (Library used 

for scientific computing) 

Matplotlib 3.3.2 and 

Seaborn 0.11.0 (Statistical 

data visualisation library) 

Scikit-learn 0.23.1 

(Machine Learning library) 

Mlxtend 0.18.0 (Machine 

leaning extension library 

for data science tasks) 

(Hunter, 2007; McKinney et al., 2010; 

Pedregosa et al., 2011; Waskom et al., 

2017; Raschka, 2018; Harris et al., 2020; 

Virtanen et al., 2020) 

Software suite Abaqus Finite Element 

analysis 

(Smith, 2009) 
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4 RESULTS AND DISCUSSIONS 

In this chapter, the results of the two case studies implementing the decision-making support 

theoretical framework as well as the modelling methodology described in Chapter 3 are 

presented. Individual discussions are provided for each case study, an overall discussion is 

also given in the context of the RDT.  

The two case studies respectively achieved the objectives proposed in Chapter 1. This chapter 

is organised as follows to present the results for rutting predictions (Section 4.1), IRI 

predictions (Section 4.2), and the suitable data collection frequency using NBIF sensor data 

(Section 4.3).  

4.1 Predictions on Rutting 

This section presents the rutting prediction results for the two scenarios defined in Table 3.9. 

The results entail short-term predictions (1-year) and prediction intervals quantifying ML 

prediction uncertainty, as well as long-term 90th percentile range predictions (2nd -12th year) 

for both scenarios. Afterwards, an analysis and discussion of the performance of the 

predictions are presented.  

4.1.1 Short-Term Predictions  

For each model generation, applying iteration according to the process defined in Figure 3.8, 

results of model evaluation using 10-fold cross-validation on 84 randomly selected sections 

and the result of the model performance on 15 randomly selected unseen test sections were 

acquired. Without considering the uncertainty in the ML model caused by different training 

datasets, the model’s performance results are summarised in Table 4.1, and model’s one-year 

prediction performances on the testing datasets are shown in Figure 4.1. 
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Table 4.1. Model performance for rutting one-year prediction 

One-Year prediction Results from 10-fold cross-

validation on Training and 

Validation datasets (R2) 

Results from Testing 

dataset (R2) 

Scenario 1 (ML with LTPP 

data) 

Median: 93.1% 

Max: 95.5% 

Min: 88.3% 

90.3% 

Scenario 2 (ML with LTPP 

+ physics-based simulated 

deflection data) 

Median: 93.6% 

Max: 94.6% 

Min: 83.1% 

94.2% 
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            (a) 

      
            (b) 

Figure 4.1. One-year model deterministic prediction results of test sections using a) 

LTPP data only and b) LTPP + physics-based simulated deflection data             

For one-year prediction, Figure 4.1 shows that Scenario 2 improves the performance 

compared to Scenario 1 from R2 90.3% to 94.2%. Meanwhile, the RMSE decreased by 

25.3%, from 0.79 to 0.59. This implies a model accuracy enhancement for one-year 

projection with data from physics-based FE simulations. This finding is in consistency with 

other studies in which similar approach was adopted in the prediction of steel connection 

stiffness (Duran et al., 2022; Cabrera et al., 2023) and lake temperature (Daw et al., 2022). 
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4.1.2 Prediction Intervals 

In order to quantify the uncertainty of the ML model, prediction intervals with a 90% 

confidence level were obtained. For visualisation purposes, the model development process 

was repeated five times to clearly show distinct model performances as a result of multiple 

runs with different training data each time. Figure 4.2 shows the prediction intervals for both 

scenarios, and Figure 4.3 provides the visualisation of model performance on testing sets 

after five runs. The results illustrate that the one-year prediction interval decreased for 

Scenario 2 in comparison to Scenario 1 from a range of the fitted regression results of ± 1.056 

mm to ± 0.980 mm. This means the predictions produced by the ML model increased their 

precision. This indicates that Scenario 2, with additional deflection data generated by 

physics-based FE simulations, has contributed to a decrease of 7.2% in the model’s one-year 

prediction interval range, thus reducing the uncertainty. 
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(a) 

 
 (b) 

Figure 4.2. Prediction intervals with 90% confidence level on test sections for a) 

Scenario 1 and b) Scenario 2 
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(a) 

 

    (b) 

Figure 4.3. Visualisation of prediction intervals with 90% confidence level on test 

sections for a) Scenario 1 and b) Scenario 2 after five runs of the model development 

process with different training data each time. Each colour represents the result of one 

run. 

The visualisation shows that the ML model generalisation predictive capacity could yield 

stable results for both scenarios under varied training data. This ensures the robustness of the 

model performance with data from pavement sections with completely different internal and 

external characteristics. The reduction in the prediction interval with 90% confidence level 

also provides reassurance that having additional FE data improves the ML model’s prediction 



142 

 

 

accuracy. This inherent ML model uncertainty, after being quantified, can be used to enable 

the model to make year by year 90th percentile range predictions, which are presented in the 

next section.  

4.1.3 Multi-Year 90th Percentile Range Predictions 

To achieve multi-year predictions while taking account of the ML’s underlying uncertainties, 

an alternative method based on residual bootstrap was used to calculate the prediction 

intervals, thus generating 90% percentile simulation ranges for each year. A standard 

exemplary use case, Road Section 12-0566 from the LTPP database, was selected for 

demonstration purpose following this approach primarily because the rutting condition data 

observed for this pavement test section started from 0mm following a major maintenance, 

and it also followed a pattern similar to the typical pavement deterioration curve over the 

years (Zimmerman and Peshkin, 2003; Amarh, 2017). Two thousand predictions were 

generated for each year. This number was determined based on the standard error results 

calculated using the equation expressed in Eq. 4-1 from these sample predictions. Between 

2000 and 5000 runs, a low and stabilised standard error was observed, as shown in Figure 

4.4, indicating that this number of sample predictions is enough to represent the whole 

population of the predictions (Sisodia and Sisodia, 2022).   

𝑆𝐸 =
𝛔

√𝑛
                                                                                                                            Eq. 4-1 

where 𝑆𝐸 is the standard error of the sample predictions; 𝜎 is the sample predictions standard 

deviation; and 𝑛 is the number of sample predictions. 
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Figure 4.4. Standard error vs. number of runs 

Figure 4.5 presents the results for both scenarios with the multi-year prediction ranges and 

the actual values throughout the years using one of the 30 developed models for this section 

as an example using the bootstrapped residuals method. 

Considering the collection of uncertainties made from 30 different models trained on 

different training data, the multi-year predictions were also run 30 times to ensure 30 

different models with different training sections were used to compare between both 

scenarios for evaluating the validation of the model’s general predictability. Table 4.2 

displays all the results based on all 30 models. It shows that for the majority of the 30 

different models, Scenario 2 (the inclusion of extra simulated deflection data according to 

physical principles) improved the long-term (the 12th year) prediction precision by between 

1.52% and 16% regarding the 90th percentile range of the predicted values. It should be 

acknowledged that two model results showed the potential risk of decreasing the model 

performance and four model results showed no improvement. But on average, Table 4.2 

indicates the 90th percentile range predictions have been narrowed down by 6.76% from 

Scenario 1 to Scenario 2, showing an improvement in the prediction certainty for the 12th 

year. 
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(a) 

 
(b) 

Figure 4.5. Multi-year predictions of one model for Section 12-0566: a) Scenario 1 and 

b) Scenario 2 considering ML uncertainties 

The example presented in Figure 4.5 shows the 90th percentile range of the model’s 

predictions increases over the years for both scenarios, and looking into the predictions for 

the 12th year, Scenario 2 improved the whole prediction compared to Scenario 1 by reducing 

the rutting prediction ranges from 7.2 mm to 6.8 mm.  

It can also be observed that the actual values in Figure 4.5 are quite distant from the centre of 

the confidence intervals in the predictions. This can be explained in that the actual values (the 

blue line) are from one particular section and the predictions (green lines) were generated 

based on the ML model and its associated uncertainties in the modelling process using data 

from different training sections. The uncertainty includes multiple sources such as 

measurement errors in the data collection process, as well as the ML modelling uncertainties 

due to the selection of training data during repetitions and the variety of road sections from 
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which the data has been collected. Hence, Figure 4.5 demonstrates the successful reduction of 

uncertainties in the multiple-year prediction ranges through the supplement of physics-based 

numerical modelling deflection data into the ML model development procedures. 

Table 4.2. The 12th year rutting prediction details with 30 models for both scenarios 

Scenario 1 

(ML) 

Scenario 2 

(Hybrid) 

% of Range 

Reduction from 

Scenario 1 to 2 

Scenario 1 

(ML) 

Scenario 2 

(Hybrid) 

% of Range 

Reduction from 

Scenario 1 to 2 

1 – 15 Model Results (90th Percentile Range) 16 – 30 Model Results (90th Percentile 

Range) 

7.2 6.8 5.56% 7.1 6.3 11.27% 

7.1 6.2 12.68% 7 6.1 12.86% 

6.7 6.7 0.00% 7.5 6.8 9.33% 

7.5 6.6 12.00% 7 6.3 10.00% 

6.8 6.8 0.00% 6.9 6.6 4.35% 

7.2 6.6 8.33% 7.1 6.8 4.23% 

6.9 6.9 0.00% 7.5 6.3 16.00% 

7.3 6.5 10.96% 7.5 7.3 2.67% 

7.1 6.2 12.68% 7.5 6.8 9.33% 

7.2 6.6 8.33% 7.5 6.5 13.33% 

7 6.8 2.86% 7.2 6.7 6.94% 

6.6 6.5 1.52% 7 6.5 7.14% 

7.3 6.4 12.33% 7.6 7.8 -2.63% 

7.2 6.7 6.94% 7.4 6.8 8.11% 

7.4 7.4 0.00% 6.8 7.1 -4.41% 

Average % 

of Range 

Reduction 

from 

Scenario 1 to 

2 

6.76% 
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Both results presented in Table 4.2 demonstrate that Scenario 2 in which ML is supplemented 

with physics-based FE simulation data in general has made a notable improvement in the 

accuracy and reliability of the model for multi-year predictions. This slightly limited 

advancement could have been because of the simplistic physics-based FE models which may 

not fully reflect the complete realistic physics being modelled and plus various assumptions 

that had to be made in the FE simulation modelling process. The assumptions include 

material properties, which vary with different construction methods, the age of material and 

subgrade properties. More advanced simulation could potentially improve the outcome of this 

framework, and this is included as one of the future works.  

4.1.4 Key Findings of Rutting Predictions 

The results shown for rutting prediction suggest that this combined approach of enriching the 

dataset from the public LTPP database with physics-based FE simulations based on the 

information available could produce 1) an increase in the ML model’s short-term prediction 

accuracy; as well as 2) a decrease in the uncertainty in the ML model’s prediction ranges 

(both short-term and long-term).  

Especially for multi-year predictions, the addition of physics-based FE simulation data has 

helped the ML model to decrease the prediction ranges almost every single year especially 

when the range becomes larger. From an asset owner’s perspective, this increase in prediction 

confidence could result in a more efficient long-term maintenance strategy plan with reduced 

maintenance spend, traffic delay and congestion and more accurate financial forecasting for 

multi-year investment periods without necessarily requiring additional data collection in 

between. 

While various ML algorithms have shown a decent pavement performance prediction 

accuracy in previous research, the lack of data and data quality has prevented the pavement 
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community from fully unlocking ML capacity.  These results are encouraging, partially 

overcoming this issue by generating synthetic data using physics-based FE simulations. The 

same approach could be used to model other meaningful pavement performance indexes or 

defects, giving the potential to enhance ML model prediction accuracy. 

The study has also opened a new research direction where ML models are integrated with 

simulations for pavement performance prediction. While this integration was only at the data 

level in this research, future studies on rutting modelling can explore advanced combinations 

such as PEML to enhance a model’s performance further as well as its interpretability. 

4.2 Predictions on IRI 

This section presents the prediction results on IRI for all three scenarios defined in Table 3.9. 

The results include short-term predictions (1-year) and prediction intervals quantifying ML 

prediction uncertainty, as well as long-term 90th percentile range predictions (2nd - 12th years) 

for all scenarios. Afterwards, an insightful comparative analysis and discussion of the model 

performances are presented.  

4.2.1 Short-Term Predictions 

For IRI prediction, the training and testing sections were fixed to clearly understand and 

compare the one-year prediction of model performances between the different scenarios, as 

shown in Figure 4.6. 
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                                  (a)                                                                             (b)                                                                        (c) 

Figure 4.6. One-year model deterministic prediction results on test sections for three scenarios a) Scenario 1 b) Scenario 2 c) Scenario 3
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The results in Figure 4.6 show that, in this case, the integration of the physics-based model 

into ML (Scenario 2) has improved the model performance by 5.8% in terms of R2 from 

89.4% to 94.6% and reduced the RMSE by 28.6% from 0.196 m/km to 0.140 m/km. In 

Scenario 3, the R2 increased further from 94.6% to 94.9% and RMSE decreased more by 

2.9% to 0.136 when incorporating a physics-informed loss function. This finding is in 

consistency with the rutting predictions presented in Section 4.1. The further improvement in 

Scenario 3 compared to Scenario 2 demonstrated the effect of using physics-informed loss 

function with the extra up sampled data. However, as ML builds upon data so the increased 

accuracy could be attributed to the additional data itself rather than the updated loss function. 

The performance of the model’s prediction was further evaluated by training a new set of 

data using a traditional loss function and a physics-informed loss function within Scenario 3. 

The next sub-section presents the results. 

4.2.1.1 Performance comparison between traditional and physics-informed loss function 

In order to evaluate further the impact of physics-informed loss function in Scenario 3 and 

show the improvement more distinctively, another run was conducted where the training and 

testing sections were the same. Figure 4.7 provides the detailed results. 
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                                (a)                                                                         (b)                                                                        (c) 

Figure 4.7. One-year model deterministic prediction results on different test sections for three scenarios a) Scenario 1 b) Scenario 3 

(traditional loss function) c) Scenario 3 (physics-informed loss function) 
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4.2.2 Prediction Intervals 

Similar to the rutting predictions, this section also presents the 90% prediction interval based 

on the methodology explained in Chapter 3 for all three scenarios. 

Visualisation as a result of the 5 times repetitive model development process was produced to 

show the distinct model performances with different training data across all scenarios. Figure 

4.8 presents the prediction interval results.
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                                       (a)                                                                         (b)                                                                          (c) 

Figure 4.8. 90% prediction intervals on sections for three scenarios a) Scenario 1 b) Scenario 2 c) Scenario 3 

Despite the similarity in the results among the three scenarios, the prediction interval became relatively smaller from ± 0.274 to ± 0.264 (3.7% 

improvement) in Scenario 2, and it was further reduced by 1.5% from ± 0.264 to ±0.260 in Scenario 3. This indicates a modest enhancement of 

prediction accuracy with additional physics-based elements. 

The results show the ML model’s good general prediction capability with different training data, proving the robustness of the model taking data 

from multiple pavement sections with various internal and external characteristics.
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4.2.3 Multi-Year 90th Percentile Range Predictions 

As described in Chapter 3, the residual bootstrapping approach was used to measure the 

uncertainty in the model’s yearly predictions. The approach was then repeated 2000 times to 

acquire an estimated 90th percentile range predictions for each year. This section displays the 

results for a selected road section. Based on the 2000 predictions each year, the mean value of 

the predictions from the 2nd year onwards and in the last year (the 12th year), as well as the 

90th percentile range predictions for the last year have been calculated to measure and 

quantify the uncertainty for long-term predictions for all scenarios. Road Section 46-0608, 

from the US LTPP database, was chosen as a test section as this section shows a steady 

increase in the IRI value over the years, expected due to the physical deterioration behaviour 

of a road under normal conditions (Zeiada et al., 2019). Figure 4.9 provides an example of the 

multiple year 90th percentile range predictions for this section over the years and how it 

differs among the three scenarios. 
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(a)  

 

(b)  

 

     (c) 

Figure 4.9. Multi-year 90th percentile range predictions of one model for Section 46-

0608 for all scenarios a) Scenario 1 b) Scenario 2 c) Scenario 3 

The multi-year predictions were run 10 times (Vabalas et al., 2019; Wan et al., 2021) to 

evaluate performances on 10 models with different training data to ensure the model’s 

generalisation ability. For all scenarios, a comparison was performed on the average 90th 

percentile range predictions for the last year, and the corresponding average RMSE for the 

predictive values from the 2nd year onwards, as well as the corresponding average RMSE for 

the prediction for the last year. The results are presented in Figure 4.10. 
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The 10 runs are sorted in an ascending order based on the results. A detailed performance summary for all scenarios is provided in Table 4.3. 

   

                                  (a)                                                                         (b)                                                                       (c) 

Figure 4.10. Performance comparisons for 10 times of run across all scenarios a) 90th percentile range prediction for the 12th year b) 

RMSE from the 2nd year onwards c) RMSE for the 12th year 
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Table 4.3. Performance evaluation of different scenarios 

Scenarios One-Year Prediction Multi-Year Predictions 

 R2 RMSE 90% 

Prediction 

Interval 

after 

multiple 

time of 

runs 

Average 

90th 

percentile 

range 

prediction 

for the 12th 

year  

Average 

total 

prediction 

RMSE 

from the 

2nd year 

onwards 

Average 

prediction 

RMSE for 

the 12th year 

Scenario 1 89.4% 0.196 0.274 1.865 0.349 0.549 

Scenario 2 94.6% 0.140 0.264 1.452 0.386 0.556 

Scenario 3 94.9% 0.136 0.260 1.228 0.276 0.406 

 

For IRI prediction results, a prediction improvement can be observed for one-year prediction 

especially in the RMSE showing a decrease of 30.6% comparing Scenario 3 against Scenario 

1. A more significant improvement in model stability can be seen for multi-year predictions 

where the RMSEs for the 12th year’s prediction as well as over the years dropped by 26.0%, 

and 20.9%, for the two scenarios respectively. The 90th percentile range prediction for the 

12th year reduced by 34.2% from Scenario 1 to Scenario 3. Scenario 2 produced a similar 

improvement to Scenario 3 for one-year prediction, but a slight increase in RMSE for multi-

year predictions by 9.6% over the years and 1.3% for the last year. Nevertheless, it should be 

noted that Scenario 2 yielded more stable predictions as indicated by the narrower 90th 

percentile range prediction for the last year, a noticeable 22.1% decrease compared with 

Scenario 1. 

The IRI prediction results in this case study demonstrated an improved accuracy as well as an 

enhanced reliability and generalisation capacity of this hybrid approach. The outcomes are 

consistent with findings in rutting prediction in this study. In addition, it showed the potential 

in solving mechanics problems (Raymond and Camarillo, 2021) by showing a significant 

improvement when incorporating simple physics models into the loss function during the ML 

model training process. In addition, the findings in Scenario 2 also align with existing works 
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utilising physics enhanced ML in the application of pavement management where the 

inclusion of physics in the ML modelling process has succeeding in improving the model’s 

stability but at the cost of prediction accuracy reduction. For example, the R2 values 

decreased by 3% in the study conducted by Deng et al. (2024) and similar results have been 

reported by Kargah-Ostadi et al. (2024) where the physics enhanced NN produced an 

increased MAE and standard error while achieving greater generalisation capacity. However, 

the results from this case study also provide new perspectives, especially on the results from 

Scenario 3, where the model demonstrated an improved stability by narrowing down the 

average 90th percentile range predictions for the 12th year without weakening the prediction 

capability but rather enhancing it even further by reducing the prediction errors accumulated 

over the years. 

4.2.4 Key Findings of IRI Predictions 

The results show a balanced improvement in the accuracy of prediction as well as 

generalisability when integrating physics into the ML modelling for pavement performance 

prediction in both short term and long term.  

For one-year predictions for IRI, the two approaches of combining the output from the 

physics-based FE model with ML both further improved the performance of the ML model, 

which on its own could already reach almost 90% accuracy in terms of the R2, thereby 

demonstrating the potential of hybrid models. 

The uncertainties taken into consideration include various sources of potential error, such as 

measurement errors during the process of data collection, and inherent uncertainty as part of 

the ML modelling process because of the selection of different training data as well as the 

diversity of pavement sections where the data was collected. The results show that the 

quantified uncertainty, expressed either as a 90% prediction interval for one-year prediction 



158 

 

 

or a 90th percentile range of multi-year predictions, reduces when extra data generated based 

on domain physical principles is added. 

In addition to the advancement in prediction accuracy, the approach of assimilating domain 

knowledge while building an ML model has improved the model’s reliability and rationality 

to some extent, indicated by the model’s stable predictions across multiple runs with different 

training data. 

Considering simplicity and practicality from a transportation administrative perspective, the 

findings of the study would increase the confidence in the model’s predictions, especially 

when applied at a network level with predictions needing to be performed across different 

sections. This could result in a better optimised maintenance strategy, more informed 

decision support especially on prioritisation, as well as more accurate financial forecasting 

for multi-year investment periods. 

4.3 Optimisation of Data Collection Frequency Using NBIF Sensor Data 

This section discusses the results of data collection frequency optimisation from the NBIF 

experiment according to the methodology described in Section 3.6.2. Selected values were 

predefined in the list of data collection frequencies (F) and prediction ranges (P) in Section 

3.6.2.3. In total, twenty-four models were built accordingly with their corresponding 

predictive results on the test data following the standard 80-20 data training and validation 

split. According to the pseudo code described in Box 3.1, twenty-four prediction results were 

obtained for different combinations of F and P. Figure 4.11 shows different sizes of datasets 

when sampled with every 1, 2, 4, 5, 10, and 20 minute for readings from LVDT3 sensor in 

Experiment 5 as an example. As it can be observed from the figure that downsampling would 

result in a reduction of total number of readings in one experiment that is used for ML model 

training and evaluation.  
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Figure 4.11. Downsampled plots with different sampling rates 

Table 4.4 demonstrates the performance metrics of the built models using data sampled with 

different rates, tested across all selected prediction ranges. The results show that despite the 

variety in data collection frequencies and different future forecast horizons, the RF model’s 

prediction accuracy remained well above the accuracy threshold defined in Section 3.6.2.3 

across most of the combinations. The only one time when the prediction accuracy, i.e., R2, 

dropped slightly below the 90% threshold was for the 20 minutes frequency to predict the 

next 20 minutes (Figure 4.12). Having said that, RMSE in the same scenario (0.728mm) was 

still better than the 0.790mm threshold value, meaning a satisfactory prediction. An outlier 

can be observed in Figure 4.12, negatively impacting the accuracy. This means the drop in 

prediction accuracy is largely attributed to possible outliers in the data, rather than the 
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decrease in the frequency itself by which the data is collected. Given the noises experienced 

in sensor data, the outliners are also expected due to the data pre-processing leaving a few 

incorrect datapoints which ML could not learn during the training, hence resulting in data 

errors. Overall, the rest of the predictions for this data collection interval are above the 

thresholds.  

 

Figure 4.12. Performance metrics on test data when sampling every 20 minutes to 

predict the next 20 minutes 
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Table 4.4. Performance metrics with different sampling rates across multiple prediction ranges 

Sampling rates 

Prediction Ranges 

Concurrent Next 20 mins Next 40 mins Next 60 mins 

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE 

Every 1 min 99.09% 0.1843 0.0265 98.87% 0.1988 0.0295 99.37% 0.1455 0.0245 99.30% 0.1486 0.0271 

Every 2 min 98.54% 0.2514 0.0395 96.80% 0.3608 0.0608 96.77% 0.3558 0.0631 98.67% 0.2260 0.0454 

Every 4 min 99.37% 0.1460 0.0360 96.03% 0.3745 0.0576 99.63% 0.1098 0.0360 99.10% 0.1555 0.0526 

Every 5 min 98.76% 0.2205 0.0707 98.91% 0.1987 0.0667 99.77% 0.0886 0.0407 99.69% 0.0970 0.0416 

Every 10 min 99.55% 0.1268 0.0612 98.19% 0.2637 0.0989 99.02% 0.1951 0.0722 98.19% 0.2659 0.1136 

Every 20 min 95.57% 0.3896 0.2006 85.98% 0.7284 0.2896 96.46% 0.3470 0.1533 97.18% 0.2962 0.1518 
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In addition, the results from Table 4.4 demonstrate that the model’s prediction accuracy 

decreases slightly for most scenarios as the data collection interval increases. Figure 4.13 

illustrates the performances measured by three different metrics.  

 

(a) 

 

(b) 

 

(c) 

Figure 4.13. Prediction performance with different ranges in different sampling rates 

measured by a) R2 b) RMSE c) MAE 
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It is expected that the prediction accuracy drops gradually as the data collection frequency 

becomes lower. However, as the results showed, the accuracies did not change significantly 

between data collected every 1 minute and every 5 or even 10 minutes. After 10 minutes the 

accuracies decreased comparatively more significantly for most of the scenarios. It is worth 

noting that the accuracies fluctuated over the course of interval increments from 1 to 10 

minutes rather than being a linear decrease. The results show that a lower data collection 

frequency improved the prediction accuracy. This is expected and could have resulted from 

the data collection frequencies being close and the following sources of uncertainties: 

- Fluctuations in the sensor data,  

- ML model’s uncertainty due to the random sampled training data, as well as  

- The instability and uncertainty in the data transmission system during the test despite 

being in a controlled environment.  

The variations in the predictions again demonstrate the need to quantify the uncertainties in 

the RDT environment to incorporate various sources of error by following a probabilistic 

approach.  

Figure 4.14 presents the prediction accuracies for each sampling rate to predict different 

future ranges. Similarly, the results do not vary significantly as the prediction horizons grows. 

Most scenarios also present a decrease in prediction performance when predicting the value 

for the next 20 minutes, then followed by an increase in prediction accuracy when predicting 

the next 40 minutes, which could also be due to uncertainty in data. 
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(a) 

 

(b) 

 

(c) 

Figure 4.14. Performance of predictions using different sampling rates across different 

ranges, measured by a) R2 b) RMSE c) MAE 
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As presented in Figures 4.13 and 4.14, the prediction accuracy showed a decreasing trend as 

the data collection interval increases from 1 minute to 20 minutes. However, the prediction 

accuracies remained acceptable given the pre-defined thresholds (Section 3.6.2.3). Taking the 

RMSE as the criterion, it increased from a minimum error of 0.146mm for a frequency of 

every 1 minute, to a maximum error of 0.728mm for a frequency of every 20 minutes across 

the prediction ranges, still within the 0.790mm threshold.  

To balance the accuracy and data collection frequency, it can be said that for this case study, 

collecting sensor data at a rate of every 20 minutes would produce predictive models with 

sufficient accuracy instead of every minute. However, this sampling rate is not a 

recommendation but a demonstration of the proposed ML-based trial-and-error approach to 

better inform data collection practice and strategy as part of a predictive RDT with the 

consideration of reduced need for data storage, processing power, and less energy 

consumption overall. 

This 95% reduction in data collection interval, would result in less quantity of data required 

to be generated by sensors or to be stored somewhere. In this NBIF experiment, just for the 

strain gauge sensor itself which produces 1613 records per second, a frequency of collecting 

data every 20 minutes compared to every minute would save 19 minutes’ data with the 

continuous monitoring, that is in total 19*60*1613 = 1838843 data records in one cycle of 

data collection, equivalent to 229 megabytes in storage. Considering the total hours of two 

experiments, it can be quantified that approximately 60 gigabytes of data were saved with the 

identified frequency.  

In addition, to measure the strain, the only meaningful value to obtain is the maximum and 

minimum strain during one loading cycle (see Figure 3.15(b)), this indicates a constant 

measurement might not be required, and even more proportion of data could be saved. This 
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would significantly decrease the volume of redundant data, and all the associated costs. For 

example, the costs of collecting, processing, storing and handling data, and their integration 

with different software and platforms could be reduced, as well as the on-going operational 

costs on the sensor network. As a result, a more efficient data acquisition system considering 

different technology management options can be configured and set up. In addition, it would 

help reducing the required power and thereby potentially reducing carbon dioxide emissions 

to ensure a sustainable digital development.  

As mentioned previously, a sampling rate of every 4 minutes achieved better overall accuracy 

across different metrics compared to that of every minute. And sampling the data every 5 

minutes has also obtained a comparable prediction accuracy to every minute. In fact, the 

highest R2 and the lowest RMSE were both obtained when sampling the data every 5 minutes 

and predicting the reading for the next 40 minutes. Hence, the data collection frequency could 

be adjusted to every 5 minutes if the highest prediction accuracy was required. Therefore, the 

optimum choice of the sampling rate could be dynamic and based on the users’ needs and 

expectations. In a real-world scenario, the thresholds could be levelled up if the prediction 

accuracy was the priority of the DT application.  

The findings of this case study align with existing studies which attempted to optimise 

sampling rate based on the time-series sensor data in terms of efficient management of data 

storage, processing, energy cost (Van Wyk et al., 2017; Haidar et al., 2019; Čulić Gambiroža 

et al., 2022). Especially considering the on-going pavement digitalisation and future road DT 

environment where roads are embedded with sensors and technologies that collect and 

transmit real-time monitoring data, this study provides a useful reference and demonstration 

on the initial and long-term economic benefits of leveraging sampling optimisation strategy 

on the time-series sensor data for the efficient and sustainable data management.  
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As mentioned by Waqar Haider et al. (2010), the data collection frequency has a direct 

impact on performance prediction with historical data. The findings in this case study using 

sensor data could also provide insights and analysis when translating to a real-world road 

scenario considering data collection. In this case study, a data collection frequency of 20 

minutes was found acceptable in achieving the required prediction accuracy mentioned in 

Section 3.6.2.3. By considering the total amount of time taken in one experiment (e.g., 

around 54.5 hours in Experiment 1), 164 data records were produced with the chosen 

frequency. Given a road is estimated to last for around 40 years (Nunn and Ferne, 2001), the 

result is equivalent to having a reading around four or five times each year for the same 

features. With this analysis, sensors could be installed and configured to capture readings at 

such a relatively low frequency instead of generating readings all the time, which would 

result in reduced energy consumption, and thereby decreasing cost in sensor management, 

data transmission and storage. In addition, from the pavement whole lifecycle management 

perspective, this could serve as a replacement for current road surveys practices with manual 

inspections or automated vehicles which are labour intensive and expensive while improving 

the accuracy of monitoring and predictions (Coenen and Golroo, 2017). However, the 

differences between a network of sensors, and the associated point-based condition data, and 

the data collected over the length of a road network using the current road surveys should be 

noted.  

It is also worth acknowledging that there are multiple differences between the NBIF 

experiment and real-world roads. For instance, the simulated traffic load using an actuator 

does not have the same effect as the vehicles on the roads. Secondly, the ambient temperature 

was approximately constant as the test was conducted in a controlled lab environment 
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whereas on the real road, the temperature during the day and night would be quite different. 

These factors limit the generalisation of the NBIF case study.  

4.4 Overall Discussions  

This thesis has described the key components of an RDT framework that can be used as a 

reference for building RDTs and their interactions. The focus of the RDT framework in this 

thesis has been centred around data and modelling across different layers. This section 

provides a general discussion on the RDT for pavement management, and its development 

based on the results obtained in this study. In addition, a summary of the research and its 

value is provided.  

4.4.1 RDT for Future PMS 

An RDT could be used as a PMS to manage the condition monitoring and maintenance 

management of roads in the future. In the first case study of this research, a hybrid modelling 

approach was developed to probabilistically predict long term future road condition applying 

the RDT framework. This has demonstrated that an RDT has the capacity to produce 

pavement performance models that can make highly reliable and accurate predictions given 

the data being fed to it. Uncertainty quantification as part of the RDT modelling has taken 

consideration of errors and low quality in data, and in manually or automatically collected 

sensor data. Its performance is better than purely data-driven ML algorithms as revealed in 

this case study. Therefore, it is logical to expect that an RDT would significantly improve the 

predictive capability of a future PMS, considering that multiple studies (DT Thube, 2012; 

Sanabria et al., 2017; Abdelaziz et al., 2018) have reported the superior performance that a 

ML model has over traditional methods such as predictions using HDM-4 distress models. 

An advantage of RDT-based models is that they can be directly built using the data that is 

available from the road, rather than going through sophisticated local calibrations required for 
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traditional models. An RDT-based road condition prediction architecture has already been 

proposed in a review study conducted by Chen et al. (2022), while highlighting the potential 

adoption of RDTs for future pavement management across the whole pavement lifecycle at 

the same time.  

As briefly mentioned in Chapter 2 where eight key elements of pavement management 

systems have been described, different functionalities apart from pavement performance 

prediction, could be potentially integrated into an RDT to supply the corresponding functions 

that would achieve the same goal. For instance, to perform economic analysis, priority 

evaluation, and optimization related tasks, an RDT can leverage deep learning or RL 

algorithms to generate and analyse ‘what-if’ scenarios on maintenance planning, based on the 

available data from maintenance activities, the history of construction and asset owner policy, 

from finance, and user cost. As a result, this will enhance asset maintenance prioritisation at 

both network and project level, by achieving maintenance optimisation through considering 

the associated social and economic factors (Yao et al., 2020).  

Maintenance optimisation could be achieved by determining the appropriate schedule to 

perform the most cost-effective maintenance treatment at the right location(s) of the road 

network and sections with the highest priorities. In terms of the data and information it 

produces, while traditional PMS uses static data, and therefore limited information, an RDT 

will incorporate data with the Big Data properties described as 3V’s (high volume, high 

variety and high velocity) from multiple sources and create insights. For example, an RDT 

could have a function of pavement health monitoring, making use of data from a variety of 

sensors such as pressure cells, deflectometers, strain gauges, thermocouples, moisture 

sensors, fibre-optic sensors, cameras, non-destructive testing surveys or other IoT devices 

with varying frequencies, to enable a constant monitoring of the pavement. This in turn 
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enables detection and classification of the formation of road distresses such as reflective 

cracks (Di Graziano et al., 2020; Majidifard et al., 2020; Alzraiee et al., 2021) depending on 

the algorithms embedded in the RDT.  

An RDT is a 3D visualisation of the physical road. The data collected, the monitoring and the 

outputs based on the internal AI will also be represented visually for management purposes. 

Given there are already multiple efforts in developing GIS-based and BIM-based PMS, 

whereas at the same time, GIS and BIM are seen as the basis for building a DT (Meschini et 

al., 2022; Shi et al., 2023). Hence, an RDT is the natural progression of a platform that 

incorporates all different elements to enable a visual-aid advanced PMS. Moreover, in recent 

years new data and technologies have been used in the civil engineering domain, e.g., GPS 

data (Shahandashti et al., 2011; Im et al., 2013) and laser scanned LiDAR point cloud data 

(Laefer, 2020), therefore, a 3D model of road conditions can be developed. The model can 

help achieve real-time monitoring and display of the road condition and its surrounding 

environment. An RDT integrates the 3D visual information of all the roads, with other 

functions such as condition data collection, processing, and ML modelling embedded into the 

same platform, thereby producing a holistic 3D decision-making support tool for road 

authorities and transportation agencies (Dong et al., 2021).  

As data is at the core of any DT (Zhang et al., 2022), the success of an RDT would also rely 

on having good data. The sharing of multiple data across different departments and even 

organisations would be the main challenge due to data privacy and data security issues (Marai 

et al., 2020). The technical integration of data from different sources also poses a challenge 

for an RDT (Botín-Sanabria et al., 2022). In addition, a heavy reliance on the data might 

incur unnecessary costs such as data storage, network bandwidth and processing power, and 

complexity as well as risks (Hu et al., 2014). 
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4.4.2 Development of RDT 

Although this study did not directly address the development of an RDT, the RDT framework 

proposed in Chapter 3 provides a blueprint for an RDT creation. As applications of the RDT 

framework, the results and outputs produced in the two case studies would help to contribute 

to knowledge and understanding when considering building an RDT. As DTs can be created 

for different purposes at multiple stages of a physical asset, this section focuses on discussing 

how to develop an RDT for an improved management practice in the maintenance phase. 

There are many factors to consider when trying to create an RDT such as 1) existing available 

data 2) the purpose of the RDT 3) targeted user of the RDT 4) connectivity between data and 

RDT 5) additional data capturing and storage 6) data processing and computing 7) 

technologies involved such as AI, ML algorithms, as well as platform and applications 8) 

visualisation.  

From the data perspective, to develop an RDT, the process should start with data. For the 

road sector, which is not traditionally data rich, one can start with limited historical data 

when real-time data is not yet available. Adopting this RDT framework with existing 

available data, the purpose and functionality of the RDT can be defined, as well as its target 

users. Taking the first case study as an example, if historical pavement condition data were 

available, a simple DT-based pavement performance model could be produced. Even when 

historical data was not sufficient, the publicly available data such as LTPP used in this study 

could be used to make initial predictions given the similar attributes of the roads and their 

surrounding environments. The model could be used by road asset owners, transportation 

agencies and/or local authorities that oversee managing the roads. Such models are 

essentially AI-based and supported by the most suitable ML algorithm. The selection of the 

algorithm can be done automatically depending on the input data, and there are multiple 
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open-source packages that provide this capability such as Auto-Sklearn (Feurer et al., 2022), 

and PyCaret (https://pycaret.org). The chosen model can ideally be then integrated at an 

appropriate level (depending on the algorithm) with the road’s corresponding physics-based 

model where existing pavement expert knowledge could be leveraged. The developed ML 

model accuracy achieved could be used as a baseline to inform the design and planning of 

sensor data collection frequency when it comes to real-time sensor data considering costs. 

Apart from two methods introduced in this study to combine ML with physics, other physics-

informed ML techniques could also be used to fully realise the potential of the hybrid model 

utilising both the data and the existing knowledge (Willard et al., 2020). Moreover, according 

to the RDT framework, existing pavement knowledge could be integrated with the ML 

modelling process in the form of numerical models. Various traditional simulation software 

could be used such as Abaqus and KENPAVE, which are common tools used for pavement 

analysis, making it easy to implement. Embedding such a model in an RDT platform would 

produce not only a higher accuracy in prediction but also an increased interpretability and 

reliability because of the pavement physical elements involved (Wu et al., 2024). With this 

novel approach applied in road management, it would help the pavement community improve 

the existing understanding of the pavement structure deterioration mechanism and potentially 

identify the cause of defects as the data size increases (Rizvi and Abbas, 2023).  

Real-time data can be separately added to the RDT when it is available. The prediction model 

can be trained first on the historical data and then refined using real-time data. When it comes 

to real-time data, the associated costs for data capturing, storage and processing, and 

computational power are often concerns when developing a DT, while considering limited 

budgets. The prevailing industry view on RDT currently is that its associated costs outweigh 

its benefits (Davletshina and Brilakis, 2024). However, this research, especially the insights 
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from Case study II helps to understand and potentially decrease the amount of data needed 

for building an RDT to avoid unnecessary cost while still taking the advantages brought by 

the DT technology. Case study II indicates that a low frequency sensor data or data with a 

relatively low sampling rate for road assets, in a normal scenario, would be sufficient to train 

a ML model with acceptable prediction accuracy. In addition, considering the modelling 

capacity demonstrated in Case study I, this accuracy could be improved by the integration 

with physics within an RDT. Therefore, such data collection strategy for realising RDT can 

resolve the issue of data redundancy and the direct cost for the data storage, processing and 

computing. In addition, this would potentially reduce the indirect cost of energy 

consumption, CO2 emission and fossil fuel consumption produced by sensor network 

installation, configuration as well as data clusters.  

More capital investment can be made on selecting the optimal software and platforms to 

generate the 3D model and integrate different data formats and technologies into one RDT for 

scenario analysis and visualisation. This sensor data collection frequency may increase if the 

road has a high criticality, and it is deteriorating faster than expected. This would mean a 

more accurate predictive model is needed. In this case, higher frequency with higher cost 

would be inevitable.  

4.4.3 Summary of the Research 

The research carried out in this project addressed the defined aim and objectives in Section 

1.2 and they can be summarised as follows: 

1. The development and application of a DT-based decision-making support 

theoretical framework for road lifecycle 

Based on the literature review in Chapter 2 on road management and DTs, a decision-making 

support theoretical framework was developed to investigate the enabling methods for a 
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predictive DTs on roads, especially with a focus on road condition modelling as well as the 

frequency of data collection. This framework was then applied to two case studies.  

2. Assessment on the performance of the modelling capacity of RDT compared to ML 

Based on the literature review in Chapter 2 on different techniques for modelling pavement 

performance, a research gap was identified to overcome the limitations of current ML models 

and approaches in predicting the road condition, and to incorporate domain knowledge into 

the ML process. According to the theoretical framework, an RDT modelling methodology 

(Section 3.5) with two approaches to combine ML with physics-based simulations as well as 

uncertainty quantification was proposed to investigate the potential improvement over the 

pure ML method. This was tested using the publicly available US LTPP database.  

3. Optimised data collection frequency using experiment sensor data in NBIF 

As the literature review (Section 2.2.6) revealed that most data used for RDT research has 

been image data, or 3D point cloud data or text-based log data, while very limited study has 

investigated the numerical condition data. There was a need to optimise the data collection 

frequency in the context of RDT development. With the data produced by the sensors 

instrumented in an experiment in NBIF, a large amount of sensor data was generated and 

used for analysing the balance between prediction accuracy and the data sampling rate. An 

iterative modelling approach (Section 3.6.2.3) was developed and identified that a data 

collection frequency of every 20 minutes would be sufficient to achieve an acceptable 

predictive capacity, resulting in a 95% reduction data that is required. For strain gauge alone 

in this experiment, approximately 60 gigabytes out of 64.8 gigabytes of data were saved.  
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4.4.4 Value of the Research 

When it comes to road pavement management, there is a continuous need to improve the 

pavement performance modelling and accuracy in order to make optimal decisions for road 

maintenance strategy in terms of maintenance type and timing. Therefore, the DT-based 

modelling approach as demonstrated by Case study I shows a great potential to provide a 

road condition prediction tool that is of the highest accuracy, reliability and sustainability. In 

addition, this piece of research also investigates how DT concepts could be used to design 

data collection frequency in the context of sensor data. Given the increasing popularity and 

benefits shown in sensing and instrumented pavements, a large amount and variety of data 

from pavements are expected. As presented in Case study II, a DT capability would help 

addressing common questions such as 1) how much data is needed to be collected, 2) how 

often sensors should collect data, by making use of the data and identifying a suitable 

frequency for collecting data from sensors considering their availabilities, wireless network 

connectivity and power resources. The NBIF experiment demonstrated that with the selected 

data collection interval, it saved roughly 60 gigabytes of data just for one strain gauge sensor. 

This can lead to a remarkable decrease in the amount of data required when considering the 

whole road network with sensors installed in multiple places, thereby reducing their costs. 

This study would encourage more studies to understand how DT could be used in innovating 

and improving current practices across different stages as part of road lifecycle management. 

In terms of contribution to knowledge, the research advances the general science on the usage 

of DTs in pavement engineering. Especially, with the latest developments in pavement 

performance modelling being purely ML based approaches, this study, by investigating the 

enabling methods for predictive DT for roads, progresses this field to integrate physics into 

the ML predictive modelling process to enable more precise, realistic predictions. More 
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specifically, the innovation in ML is that most ML models have the limitation of being a 

black box, which makes it difficult to interpret how a ML algorithm such as a neural network 

produces the output. Hence, with the help of a DT which combines the physical deterioration 

process with ML, it may be possible to produce outputs that are more interpretable. This 

would help to understand the causality between model inputs and outputs by iteratively re-

configuring physics-based simulation models based on ML model prediction results. 

Conclusions from the research as well as recommendations for future works are presented in 

the following chapter.  
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5 CONCLUSION AND FUTURE WORKS 

This thesis has investigated the supporting techniques for predictive DTs and their potential 

applications on different aspects of road management. As a result, a decision-making support 

theoretical framework was developed using the literature for road asset. This study focused 

on the functions of modelling pavement performance and data collection (sampling 

interval optimisation) using the developed framework. The details of the findings and the 

main conclusions are provided in this chapter, as well as recommendations for future works.  

5.1 Accomplished Work and Main Findings 

As discussed in the previous chapters, this research has demonstrated the objectives outlined 

in Chapter 1 by: 

1) Developing a DT-based decision-making support theoretical framework for road lifecycle 

after identifying the key components, elements and characteristics of DTs based on the 

literature review in Chapter 2. 

2) Evaluating the modelling capacity of a predictive RDT through a case study using the US 

LTPP database as an application of the framework in Chapters 3 and 4. 

3) Investigating the optimal data collection frequency through a second case study using 

experimental sensor data from instrumented pavement tests in Chapters 3 and 4.  

4) Discussing the perspectives and recommendations for the use and development of an 

RDT for pavement management.  
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The detailed findings and conclusions in this thesis are as follows: 

a. Pavement performance modelling perspective 

• Various ML algorithms were used and tested on pavement condition data and 

achieved promising results, suggesting a superior performance compared to traditional 

methods according to literature.  

• To predict rutting, this study presented a novel ML-based approach integrated with 

domain physical knowledge considering ML inherent uncertainties. A RF algorithm 

was used with hyperparameter tuning.  

• Integration was achieved through fusion of a comprehensive dataset collected from a 

public database and outputs (pavement surface deflection) from physics-based FE 

simulations to serve as model inputs for the RF. 

• RF model performances were compared in two scenarios 1) without the extra FE 

simulation data based on physics 2) with the extra FE simulation data based on 

physics. The results from Case study I show an improvement in R2 (90.3% → 94.2%) 

with the additional FE simulation data, and a reduction in the uncertainty by 6.76% 

considering the 90% probability prediction range for the 12th year prediction.  

• To predict IRI, two different approaches were used to integrate physics with ML 

using an ANN: 1) adding the output of the physics-based FE simulation as an extra 

input to the ANN, and by 2) customising the ANN loss function to constraint the 

ANN training process on the up sampled data based on the FE simulation results. This 

resulted in more accurate and reliable predictions. 
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b. Data collection perspective 

• Data collection is an important element for building an RDT. It was found that a 

lower data collection frequency does not necessarily reduce the model’s prediction 

accuracy much as evidenced by the Case study II in Chapter 4. This resulted in a 95% 

reduction in the amount of data that would need to be collected. The results from this 

case study also suggested a continuous monitoring might not be needed which could 

lead to a very considerable reduction in data requirements.   

• A low data collection interval (e.g., 4 or 5 times a year) in real-world is recommended 

for an RDT for a road carrying average traffic which deteriorates at an average rate. 

This minimises all the relevant costs for data storage, processing and computing 

power while still producing sufficient predictability due to the modelling capability as 

part of the proposed RDT framework. 

 

c. Digital twin perspective 

• RDT research is still at an early stage with existing studies focusing on the generation 

of automatic geometric RDT which is descriptive and informative based on geospatial 

pavement and surrounding data as per the literature review.  

• A predictive RDT can improve the current practice of road asset management with the 

advancement of data, and enabling approaches such as AI and ML.  

• This developed predictive DT framework including key components and elements can 

be implemented for different purposes given the context. For example, it can be used 

for predicting pavement defects (rutting and roughness) and optimising the data 

collection interval in this study but also for other scenarios such as defect labelling or 

classification and maintenance planning and prioritisation.  
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• A predictive RDT provides an advanced modelling approach for pavement 

performance bringing pavement engineering knowledge into the ML process, as 

described in the RDT modelling methodology presented in Chapter 3. The 

performances of an RDT model and a ML model have been evaluated and compared 

via a case study in Chapter 4, and it was found that the RDT model enhanced not only 

the prediction accuracy but also the rationality and reliability of the model to predict 

road rutting and roughness. 

5.2 Recommendations for Further Research 

While the results from Chapter 4 have demonstrated the feasibility of the RDT framework via 

the case studies, the research presented in this thesis is an early attempt to understand how 

DTs can contribute to the development and improvement of pavement management. Future 

work related to the thesis could include the following considerations: 

a. DT-based Decision-Making Support Theoretical Framework for Roads 

As the science of DT itself and its enabling technologies are evolving at a fast pace, the 

framework could be improved and expanded to consider more components and elements 

suitable for road asset management. In particular, the aspect of technical interfaces that 

enable the links between different data sources, types, formats, software and technologies 

could be added. In addition, the user that interacts with the RDT should also be taken into 

account as part of the framework showing how the users can access, evaluate and modify the 

RDT around their specific needs and expectations. 

b. Data Sources 

From a historical data perspective, more databases could be explored in addition to the US 

LTPP database. It would be worthwhile to incorporate other real-world data sources such as 
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transportation agencies’ PMS databases, road defect image datasets, as well as non-

destructive surveys such as ground penetrating radar. 

From the real time data perspective, this study used data from instrumented pavement 

experiments at NBIF. Further work could be to conduct field trials to embed sensors to obtain 

readings on actual road sections and develop a living lab using various types and sources of 

data in the real world such as traffic, temperature, and climate, with a high granularity. A cost 

benefit analysis can be studied in collaboration with civil infrastructure asset owners on the 

trade-off between prediction accuracies and different sensor data collection frequencies as 

well as their associated cost to demonstrate RDT’s capacity and benefit in lifecycle 

management of road maintenance. Furthermore, existing road condition data from connected 

vehicles could be another good option for data collection.  

c. Modelling and Simulation 

Regarding the actual “brain” of any DT where the data is turned into insights and knowledge, 

multiple future works can be carried out in this domain to increase the DT intelligence level. 

Firstly, more novel ML techniques could be used as the algorithm to model the data. 

Similarly, more numerical simulation tools could be adopted in a DT environment for road 

structural behaviour analysis. A more sophisticated and realistic physics-based model 

representing full pavement physics and characteristics with variations of different layers and 

its interactions with other assets could likely make a more significant improvement.  

Secondly, while this study proposed two ways to integrate physics-based simulation into ML, 

further research is required to explore the interactions between different innovative ML 

methods and physics-based models to fully unlock the limitations of ML, as well as 

leveraging the existing engineering knowledge in pavement assets and materials. This could 



182 

 

 

lead to further scientific development in combining domain knowledge with ML in general. 

Finally, for RDT-based applications, different interdisciplinary approaches or collaborations 

would lead to more robust and innovative research outcomes.  

In addition, given there are existing traditional tools that have been used in highways 

management for many years, such as HDM-4, a study could be conducted to compare the 

development and performance of RDT-based models vs. HDM-4 models, demonstrating the 

advantages and disadvantages of each model.  

d. RDT Portal - 3D modelling 

From a visualisation perspective, future works could include the generation of RDTs from not 

only point cloud data but also the geospatial data to enable it to be a maintenance planning 

decision-making support tool for road authorities. For example, the creation of a holistic 

management simulation of the road can be visualised by including traffic, pedestrian flows, 

pavement deterioration, climate, maintenance and economic cost. Using the visualisation 

tools, “what-if” scenarios can be developed to include cost benefit analysis on understanding 

the effect of road closures due to certain types of repairs needed. Moreover, further research 

could be done on 3D modelling at the defect level such as rutting or cracking to understand 

the root causes of defects and to predict their progression, enabled by real-time data and 

numerical models. 

e. Road Lifecycle Management 

Future studies could investigate how to make use of the RDT predictions to make more 

informed maintenance planning and prioritisation decisions for maintenance during an asset 

lifecycle, making use of the RDT-based model presented in this thesis. Maintenance 

treatment selections can be done based on the 90th percentile range prediction outcomes with 
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a specific confidence interval. In addition, while this study did not use maintenance data as 

part of the modelling process, the maintenance history could be used to validate and make 

adjusted multi-year 90th percentile range predictions when used as inputs to train the model to 

understand the effects of the selected maintenance repair.  

Apart from the maintenance, to implement the RDT framework, future research could 

investigate the possibilities of developing an RDT for other stages of a road lifecycle such as 

design, construction and operation to incorporate the scientific advancement in these areas 

brought by the RDT and identify the benefits and improvements in comparison to existing 

practices and approaches.  
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Appendix A: Data Pre-processing and Cleaning Python Script  

 

The script was written in Python Jupyter Notebook to perform data pre-processing and 

cleaning on all the data collected, following similar procedures. Herein, an exemplary code 

snippet for data pre-processing on Rutting data is presented. 

def get_rutting_values(filenames, dataset): 
        dfs_rutting = [] 
        for file in filenames: 
            dfs_rutting.append(pd.read_excel(file, sheet_name='Distress ACP & CRCP', skiprows=2, 

header=None)) 

        ### Read rutting data for each road section 
        def create_dataframe_for_each_section(df):  
            ### Rename the dataframe columns 
            df.columns=["Year", "CN Event Description", "Fatigue", "Longitudinal Cracking", 

"Transverse Cracking", "Rutting", "Punchouts", "Longitudinal Cracking", "Transverse Cracking", 

"Spalling of Long. Joints"] 
            df = df.drop(columns=["Fatigue", "Longitudinal Cracking", "Transverse 

Cracking","Punchouts", "Longitudinal Cracking", "Transverse Cracking", "Spalling of Long. Joints"]) 
            ### Outlier detection and removal function 
            def outlierDetectionAndRemoval(df): 
                ### Get the outliers 
                rutting = df['Rutting'] 
                rutting_dropna = df['Rutting'].dropna().tolist() 
                mean = np.mean(rutting_dropna) 
                std = np.std(rutting_dropna) 
                threshold = 2 ### set up a threshold 
                outlier = [] 
                for i in rutting_dropna: 
                    if (i == 0): 
                        continue 
                    if std != 0: 
                        z = (i-mean)/std 
                        if z > threshold: 
                            outlier.append(i) 
                print('Outlier in the dataset is:', outlier) 
                ### Set outliers to NaN 
                for i in rutting: 
                    if i in outlier: 
                        index = rutting[rutting == i].index[0] 
                        rutting = rutting.drop(index) 
                ### df.drop(columns=['Rutting']) 
                df['Rutting']=rutting 
                return df 
 
            def objective(x,a,b): 
                return a * x + b 
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### 1. Check if the dataframe needs to be separated into multiple sub-dataframes 
            maintenance_type_1 = "Overlay" 
            maintenance_type_2 = "Surface Treatment" 
            for i in range(0,len(df)): 
                if (type(df.iloc[i,1]) != float and ((maintenance_type_1 in df.iloc[i,1]) or 

(maintenance_type_2 in df.iloc[i,1]))): 
                    df.iloc[i,2] = 0 
### 2. Drop all the NaNs in the DataFrame 
            df = df[df['Rutting'].notna()] 
            df = df.reset_index(inplace = False, drop = True) 
### 3. Address values for duplicate years 
            years_temp = [] 
            years_temp = pd.to_datetime(df['Year']).dt.year.tolist() 
            df = df.assign(Year=years_temp) 
  
    ### 3.1. If it is the year with 0, keep the year with 0. Other years, getting an average. 
            year_with_maintenance = list(df[df['Year'].map(df.groupby('Year').apply(lambda x: 

x['Rutting'].eq(0).any()))]['Year']) 
            year_with_maintenance = list(dict.fromkeys(year_with_maintenance)) 
            for year in year_with_maintenance: 
                indexNames = df[df['Year'] == year].index 
                ### Delete these row indexes from dataFrame = the ones with value 0 
                df.drop(indexNames,inplace=True) 
            df = df.groupby('Year').mean().reset_index() 
            for year in year_with_maintenance: 
                df_to_add = pd.DataFrame([[year, 0]], columns=['Year', 'Rutting']) 
                df = df.append(df_to_add, ignore_index=True) 
                df.sort_values(by=['Year'], inplace=True) 
                df = df.reset_index(inplace = False, drop = True) 
### 4. Separate dataframe into multiple sub-dataframes if needed 
            index_for_separation = df[df['Rutting'] == 0].index.tolist() 
            dataframes = [] 
            if (len(index_for_separation) == 0): 
                dataframes.append(df) 
            if (len(index_for_separation) != 0): 
                length = len(index_for_separation) 
                if (length == 1): 
                    dataframes.append(df.iloc[0:index_for_separation[0],:]) 
                    dataframes.append(df.iloc[index_for_separation[0]:,:]) 
                else: 
                    dataframes.append(df.iloc[0:index_for_separation[0],:]) 
                    for i in range(0, length-1): 
                        dataframes.append(df.iloc[index_for_separation[i]:index_for_separation[i+1],:]) 
                    dataframes.append(df.iloc[index_for_separation[length-1]:,:]) 
            for element in dataframes: 
                if element.empty: 
                    dataframes.remove(element) 
            df_full = [] 
            combined_dataframe = [] 
  
            ### Operations within each sub-dataframes: 
            for subset in dataframes: 
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                ### 4.1. Detect outlier and remove outliers 
                outlierDetectionAndRemoval(subset) 
                ### 4.2. Remove NaNs 
                subset_dropna = subset[subset['Rutting'].notna()] 
                subset = subset_dropna.reset_index(inplace = False, drop = True) 
                ### 4.3 Address missing years 
                year_s = pd.Series(np.arange(subset['Year'].min(), subset['Year'].max()+1)) 
                years_df = pd.DataFrame(year_s, columns =['Year']) 
                dict1 = subset.set_index('Year').to_dict() 
                rutting_dict = dict1['Rutting'] 
                rutting_full = [] 
                full_years = years_df['Year'].tolist() 
                for item in full_years: 
                    if item in rutting_dict: 
                        rutting_full.append(rutting_dict[item]) 
                    else: 
                        rutting_full.append(np.nan) 
                years_df['Rutting'] = rutting_full 
                modified_rutting = [] 

                ### Interpolation happens based on moving average for each subset 
                for j in range(0, len(years_df)):  
                    if(years_df['Rutting'].iloc[j] == 0): 
                        modified_rutting.append(0) 
                    elif (j == 0): ### First record 
                        modified_rutting.append(years_df['Rutting'].iloc[j:j+2].mean()) 
                    elif (j == len(years_df)-1): ### Last record 
                        modified_rutting.append(years_df['Rutting'].iloc[j-1:j+1].mean()) 
                    else: ### Records in between 
                        modified_rutting.append(years_df['Rutting'].iloc[j-1:j+2].mean()) # it was 2 before    
                years_df['Rutting_averaged'] = modified_rutting 
                years_df['Rutting_averaged'] = years_df['Rutting_averaged'].interpolate(method='spline', 

limit_direction ='both', order = 1) # interpolate any NaN 
                df_full.append(years_df) 
            ### 5. Combine separate dataframes back to one 
            years_df_all = df_full[0] 
            for k in range(1, len(df_full)): 
                years_df_all = years_df_all.append(df_full[k],ignore_index = True) 
            ### 6. Fill missing years in between after combining multiple sub-DataFrames 
            year_s = pd.Series(np.arange(years_df_all['Year'].min(), years_df_all['Year'].max()+1)) 
            years_df = pd.DataFrame(year_s, columns =['Year']) 
            dict1 = years_df_all.set_index('Year').to_dict() 
            rutting_dict = dict1['Rutting_averaged'] 
            rutting_full = [] 
            full_years = years_df['Year'].tolist() 
            for item in full_years: 
                if item in rutting_dict: 
                    rutting_full.append(rutting_dict[item]) 
                else: 
                    rutting_full.append(np.nan) 
            years_df['Rutting_averaged'] = rutting_full 
            ### 6.1. Logic to interpolate the missing values 
            modified_rutting_all = [] 
            count = 0 
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            for j in range(0, len(years_df)): ### Use the best fit line equation to interpolate 
                if (pd.isnull(years_df['Rutting_averaged'].iloc[j])): 
                    if (years_df['Year'].iloc[j] >= 1995 and years_df['Year'].iloc[j] <= 2007): 
                        ### calculate the equation and interpolate the missing year 
                        index = 0 
                        if (len(years_df.iloc[:j-count].index[years_df.iloc[:j-count]['Rutting_averaged'] == 

0].tolist())>0): 
                            index = years_df.iloc[:j-count].index[years_df.iloc[:j-count]['Rutting_averaged'] == 

0].tolist()[-1] 
                        x = years_df.iloc[index:(j-count)]['Year'] 
                        y = years_df.iloc[index:(j-count)]['Rutting_averaged'] 
                        popt, _ = curve_fit(objective, x, y) 
                        a, b = popt 
                        newValue = objective(years_df['Year'].iloc[j],a,b)  
                        modified_rutting_all.append(newValue) 
                        count += 1                    
                    else: 
                        count += 1 
                        previousValue = years_df['Rutting_averaged'].iloc[j-count] 
                        presentValue = previousValue + 1*count 
                        modified_rutting_all.append(presentValue) 
                else: 
                    count = 0 
                    modified_rutting_all.append(years_df['Rutting_averaged'].iloc[j]) 
  
            ### 6.1. Logic to interpolate the missing values  
            years_df['Rutting (mm)'] = modified_rutting_all 

 
            ### 7. Final checks on missing years between 1995 and 2007 
            df = years_df 
            ### Remove the rows before the year of 1995 
            df = df[df['Year'] >= 1995] 
            ### Remove the rows after the year of 2007 
            df = df[df['Year'] < 2008] 
            ### Resetting index 
            df = df.reset_index(inplace = False, drop = True) 
            years = pd.Series(np.arange(1995, 2008)) 
            years_df = pd.DataFrame(years, columns =['Year']) 
            dict_final = df.set_index('Year').to_dict() 
            rutting_dict = dict_final['Rutting (mm)'] 
            rutting_final = [] 
            full_years = years_df['Year'].tolist() 
            for item in full_years: 
                if item in rutting_dict: 
                    rutting_final.append(rutting_dict[item]) 
                else: 
                    rutting_final.append(np.nan) 
            years_df['Rutting (mm)'] = rutting_final 
 
            ### 7.1 Address missing values from top, or at the bottom 
            years_df['Rutting (mm)'] = years_df['Rutting (mm)'].interpolate(method ='spline', 

limit_direction ='both', order = 1) 
            for k in range(0, len(years_df)): 
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                if (years_df['Rutting (mm)'].iloc[k] == 0 and years_df['Rutting (mm)'].iloc[k+1] == 0): 
                    years_df['Rutting (mm)'].iloc[k+1] = (years_df['Rutting (mm)'].iloc[k] + 

years_df['Rutting (mm)'].iloc[k+2])/2 
            return years_df 
        clean_df = [] 
        for i in range(0, len(dfs_rutting)): 
            clean_df.append(create_dataframe_for_each_section(dfs_rutting[i])) 
        whole_data_rutting = pd.concat(clean_df)  
        dataset['Rutting (mm)'] = whole_data_rutting['Rutting (mm)'].tolist() 

 

Appendix B: Exhaustive Feature Selection for Rutting and IRI 

 

The feature selection process used the mlxtend (machine learning extensions). It is a Python 

library of useful tools for data science tasks. 

 

### exhaustive feature selection process 
from sklearn.linear_model import LinearRegression 
from mlxtend.feature_selection import ExhaustiveFeatureSelector as EFS 
  
X = dataset_for_ml_shifted[dataset_for_ml_shifted.columns[1:].tolist()] 
y = dataset_for_ml_shifted[['IRI (t+1)']] 
  
lr = LinearRegression() 
  
efs = EFS(lr, 
          min_features=5, 
          max_features=22, ### adjustable depending on predicting IRI or Rutting 
          scoring='neg_mean_squared_error',  
          cv=10) 
  
efs.fit(X, y.values.ravel()) 
  
print('Best MSE score: %.2f' % efs.best_score_ * (-1)) 
print('Best subset:', efs.best_idx_) 
  
df = pd.DataFrame.from_dict(efs.get_metric_dict()).T 
df.sort_values('avg_score', inplace=True, ascending=False) 
df.head(10) 
 

Appendix C: RF Model Development Including Hyperparameter Tuning 
 

After defining the hyperparameter space, grid search method was used to identify the best set 

of hyperparameters which were used as values for the model attributes. Grid search is one of 

the most common methods for hyperparameter tuning. It exhaustively tries every 

combination of the provided hyper-parameter values to find the best model. 
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from sklearn.model_selection import RandomizedSearchCV 
from sklearn.model_selection import GridSearchCV 
### Number of trees in random forest 
n_estimators = [int(x) for x in range(50,500,50)] 
### Number of features to consider at every split 
### max_features = ['auto', 'sqrt' , 'log2', 1.0]  
### Maximum number of levels in tree 
max_depth = [int(x) for x in range(3,50,1)] 
max_depth.append(None) 
### Minimum number of samples required to split a node 
min_samples_split = [int(x) for x in range(2,30,2)] 
### Minimum number of samples required at each leaf node 
min_samples_leaf = [1,2,5,10,50,100] # 3 papers justify the choices made here. 
### Method of selecting samples for training each tree 
###bootstrap = [True, False]  
### Create the random grid 
random_grid = {'n_estimators': n_estimators, 
               #'max_features': max_features, 
               'max_depth': max_depth, 
               'min_samples_split': min_samples_split, 
               'min_samples_leaf': min_samples_leaf}} 
pprint(random_grid) 
### Use the grid search to search for best hyperparameters 

### First create the base model to tune 

rf = RandomForestRegressor() 

### Random search of parameters, using 3-fold cross validation, 

### search across 100 different combinations, and use all available cores 

rf_grid = GridSearchCV(estimator = rf, param_grid = random_grid, cv = 5, verbose=2, n_jobs = -1) 

### Fit the random search model 

random_forest_reg_model = RandomForestRegressor(n_estimators = 100, min_samples_split = 12, 

min_samples_leaf = 5, max_depth = 5) 
random_forest_reg_model.fit(x,y) 
cv = RepeatedKFold(n_splits=10, n_repeats=1) 
n_scores = cross_validate(random_forest_reg_model, x, y, scoring='r2', cv=cv, n_jobs=-1, 

error_score='raise', return_estimator=True)   
 

 

Appendix D: ANN Model Development Including Hyperparameter Tuning  
 

The Bayesian Optimisation method was used for identifying the best parameters for the 

ANN. It is a global optimization method for noisy black box functions, build a probability 

model of the objective function and use it to select the most promising hyperparameters to 

evaluate in the true objective function. 

 

def build_model(hp): 
    model = keras.Sequential() 
    for i in range(hp.Int('num_layers', 1, 10)): 
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        model.add(layers.Dense(units=hp.Int('units_' + str(i), 
                                            min_value=32, 
                                            max_value=512, 
                                            step=32), 
                               activation='relu')) 
    model.add(layers.Dense(1, activation='linear')) 
    model.compile( 
        optimizer=keras.optimizers.Adam( 
            hp.Choice('learning_rate', [1e-2, 1e-3, 1e-4])), 
        loss='mean_absolute_error', 
        metrics=['mean_absolute_error']) 
    return model 
  
tuner = BayesianOptimization( 
        build_model, 
        objective='val_mean_absolute_error', 
        max_trials=50) 
 tuner.search(x,y,epochs=300,validation_split = 0.1,shuffle = True) 
 models = tuner.get_best_models(num_models=2) 
 mlp_reg_model = models[0] 
 print("[INFO] training the best model...") 
 mlp_reg_model.fit(x, y, epochs=300) 
 print("[INFO] training the best model...COMPLETED") 
 y_pred = mlp_reg_model.predict(x) 
 y_pred = round(y_pred[0][0],3) 
 

Appendix E: Script to Generate Prediction Intervals Based on a List of Actual and 

Predicted Values Produced by Models  

 

from matplotlib import pyplot 
### Read results saved in excel files  

df_ml = pd.read_excel(filepath, sheet_name='ML', skiprows=0, header=None) 
df_ml.columns = ["ML_Actual Rutting","ML_Predicted Rutting"] 
  
### Save results into Pandas DataFrames for both actual and prediction values 
df_ml_actual = df_ml["ML_Actual Rutting"] 
df_ml_prediction = df_ml["ML_Predicted Rutting"] 
  
x = df_ml_actual 
y = df_ml_prediction 
pyplot.scatter(x, y) 
xpoints = ypoints = plt.xlim(0,16) 
xpoints = ypoints = plt.ylim(0,16) 
pyplot.plot(xpoints, ypoints, linestyle='--', color='b', lw=1.5) 
pyplot.show() 
  
### simple linear regression model 
from numpy.random import randn 
from numpy.random import seed 
from scipy.stats import linregress 
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from matplotlib import pyplot 
from numpy import sum as arraysum 
  
### fit linear regression model 
b1, b0, r_value, p_value, std_err = linregress(x, y) 
print('b0=%.3f, b1=%.3f' % (b0, b1)) 
 

### make prediction 
yhat = b1 * x + b0 
 

### plot data and predictions 
pyplot.scatter(x, y) 
xpoints = ypoints = plt.xlim(0,16) 
xpoints = ypoints = plt.ylim(0,16) 
pyplot.plot(xpoints, ypoints, linestyle='--', color='b', lw=1.5) 
pyplot.plot(x, yhat, color='r') 
pyplot.show() 
  
### define new input, expected value and prediction 
x_in = x[0] 
y_out = y[0] 
yhat_out = yhat[0] 
  
### estimate stdev of yhat 
print (y-yhat) 
  
### pyplot.scatter(y-yhat) 
  
  
sum_errs = arraysum((y - yhat)**2) 
stdev = sqrt(1/(len(y)-2) * sum_errs) 
  
### calculate prediction interval 
interval = 1.645 * stdev 
print('Prediction Interval: %.3f' % interval) 
lower, upper = yhat_out - interval, yhat_out + interval 
print('90%% likelihood of the prediction value is between %.3f and %.3f' % (lower, upper)) 
print('The actual value: %.3f' % x_in) 
print('The prediction value: %.3f' % y_out) 
print('The prediction fitting line value: %.3f' % yhat_out) 
### plot dataset and prediction with interval 

### Prediction interval is displayed in the plot. 
pyplot.scatter(x, y) 
xpoints = ypoints = plt.xlim(0,16) 
xpoints = ypoints = plt.ylim(0,16) 
pyplot.plot(xpoints, ypoints, linestyle='--', color='b', lw=1.5) 
pyplot.plot(x, yhat, color='red') 
pyplot.plot(x, yhat+interval, '--', color='yellow', label="Upper") 
pyplot.plot(x, yhat-interval, '--', color='black', label = "Lower") 
pyplot.xlabel("Actual") 
pyplot.ylabel("Prediction") 
pyplot.errorbar(x_in, yhat_out, yerr=interval, color='green', fmt='o') 
pyplot.legend(['45 degree line','Goodness of fit line', 'Upper bound', 'Lower bound'], loc=0) 
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pyplot.show() 
  
import random 
errors = y - x 
errors_new = errors.sort_values().reset_index(drop=True) 
errors_new.index += 1 
numerical_probability = [] 
for i in range(1,len(errors_new)+1): 
    numerical_probability.append((i-0.5)/len(errors_new)) 
df_ml_errors = pd.DataFrame(list(zip(numerical_probability, errors_new)),columns =['numerical 

probability', 'errors']) 

 

The variable df_ml_errors are the residuals accumulated from repetitive runs with different 

training and testing data each run. It shows the trend like the Figure E.1 below. Figure E.2. 

shows the residuals CDF. Based on this, a uniform selection along the curve was done to 

select the residual to further modify the prediction to enable a probabilistic approach. 

 

 
                   Figure E.1. Residuals distribution 

### Script for obtaining Cumulative Distribution Function (CDF) 
data = df_ml_errors["errors"] 
### sort data 
x = np.sort(data) 
### calculate CDF values 
y = 1. * np.arange(len(data)) / (len(data) - 1 
### plot CDF 
plt.plot(x, y) 
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          Figure E.2. Residuals and their probability 

dict_error_vs_cdf = {} 
for A, B in zip(y, x): 
    dict_error_vs_cdf[A] = B 
### dict_error_vs_cdf 
dict_error_vs_cdf[np.random.choice(cdf_probability, 1)[0]] 
 

Appendix F: Uncertainty Quantification with 90th percentile range predictions 

 

Give the CDF, for 90th percentile range predictions, each year’s single value prediction can 

be modified by a residual uniformly sampled from the CDF (Figure E.2). By repeating this 

process 2000 times, a 90th percentile range in predictions is achieved. A Python code snippet 

showing how the prediction is modified is presented below. 

y_pred = mlp_reg_model.predict(x) 
while True: 
    error_generated = dict_error_vs_cdf[np.random.choice(cdf_probability, 1)[0]] 
    y_pred = y_pred - error_generated 
    y_pred = np.round(y_pred[0],3) 
    if y_pred > 0: 
        break 
    else: 
         y_pred = mlp_reg_model.predict(x) 

 

Appendix G: Python Scripts for NBIF Data Analysis 

 

In this Appendix, the data analysis and RF model development done using Python scripts 

have been presented, with the example of sampling rate every 20 minutes for Experiment 1 

including following processes: 1) Reading sensor data; 2) Data fusion; 3) Data arrangement 
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for different prediction horizons; 4) Feature Selection; 5) RF model training and testing with 

visualisation. 

G.1 Reading Sensor Data 

 

### Read Strain Gauges & LVDTs data 
import pandas as pd 

sampling_rate = 20 

sg_no_lines_to_skip = 23 

sg_frequency = 1613 

sg_no_of_records_per_cycle = 323 

multiplier_sg = 1000000 

multiplier_lvdt_1_2 = 2.5 

multiplier_lvdt_1_2_base = 12.5 

multiplier_lvdt_3_4 = 7.5 

multiplier_lvdt_3_4_base = 37.5 

df_variables = {} 

### Columns to drop 

columns_to_drop = ['Maximum SG_v_1','Minimum SG_v_1','SG_v_1 (Max - Min)', 

                                 'Maximum SG_v_2', 'Minimum SG_v_2', 'SG_v_2 (Max - Min)', 

                                 'Maximum SG_45_2', 'Minimum SG_45_2', 'SG_45_2 (Max - Min)', 

                                 'Maximum SG_h_2', 'Minimum SG_h_2', 'SG_h_2 (Max - Min)'] 

### Every 20 minute 

for location_of_file in range(len(sg_files_e1)): 

    for index in range(len(sg_files_e1[location_of_file:location_of_file+1])): 

        with open(sg_files_e1[location_of_file:location_of_file+1][index]) as f: 

            content = f.readlines() 

        index_four_mins = [] 

        every_four_minute = [] 

        for i in range(len(content)): 

            if (i % (sg_frequency*60*sampling_rate-sg_no_lines_to_skip) == sg_no_lines_to_skip+1): 

                index_four_mins.append(i) 

        for j in index_four_mins: 

            every_four_minute.append(content[j:j+323]) 

        minimum_x_value, maximum_lvdt3, minimum_lvdt3, permanent_surface_displacement_3 = [], 

[], [], [] 

        maximum_lvdt1, minimum_lvdt1, permanent_surface_displacement_1 = [], [], [] 

        maximum_lvdt2, minimum_lvdt2, permanent_surface_displacement_2 = [], [], [] 

        maximum_lvdt4, minimum_lvdt4, permanent_surface_displacement_4 = [], [], [] 

        maximum_sg1_v, minimum_sg1_v, sg1_v_max_min = [], [], [] 

        maximum_sg1_45, minimum_sg1_45, sg1_45_max_min = [], [], [] 

        maximum_sg1_h, minimum_sg1_h, sg1_h_max_min = [], [], [] 

        maximum_sg2_v, minimum_sg2_v, sg2_v_max_min = [], [], [] 

        maximum_sg2_45, minimum_sg2_45, sg2_45_max_min = [], [], [] 

        maximum_sg2_h, minimum_sg2_h, sg2_h_max_min = [], [], [] 

  

        for interval in every_four_minute: 

            x_value, lvdt1, lvdt2, lvdt3, lvdt4, sg1_v, sg1_45, sg1_h, sg2_v, sg2_45, sg2_h = 

[],[],[],[],[],[],[],[],[],[],[] 

            for each_line in interval: 

                x_value.append(float(each_line.split('\t')[0])) 
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                lvdt1.append((float(each_line.split('\t')[1])/multiplier_lvdt_1_2_base)*multiplier_lvdt_1_2+

multiplier_lvdt_1_2) 

                lvdt2.append((float(each_line.split('\t')[2])/multiplier_lvdt_1_2_base)*multiplier_lvdt_1_2+

multiplier_lvdt_1_2) 

                lvdt3.append((float(each_line.split('\t')[3])/multiplier_lvdt_3_4_base)*multiplier_lvdt_3_4+

multiplier_lvdt_3_4) 

                lvdt4.append((float(each_line.split('\t')[4])/multiplier_lvdt_3_4_base)*multiplier_lvdt_3_4+

multiplier_lvdt_3_4) 

                sg1_v.append(-float(each_line.split('\t')[5])*multiplier_sg) 

                sg1_45.append(-float(each_line.split('\t')[6])*multiplier_sg) 

                sg1_h.append(-float(each_line.split('\t')[7])*multiplier_sg) 

                sg2_v.append(-float(each_line.split('\t')[8])*multiplier_sg) 

                sg2_45.append(-float(each_line.split('\t')[9])*multiplier_sg) 

                sg2_h.append(-float(each_line.split('\t')[10])*multiplier_sg) 

            minimum_x_value.append(min(x_value)) 

            maximum_lvdt1.append(max(lvdt1)) 

            minimum_lvdt1.append(min(lvdt1)) 

            permanent_surface_displacement_1.append(max(lvdt1)-min(lvdt1)) 

            maximum_lvdt2.append(max(lvdt2)) 

            minimum_lvdt2.append(min(lvdt2)) 

            permanent_surface_displacement_2.append(max(lvdt2)-min(lvdt2)) 

            maximum_lvdt3.append(max(lvdt3)) 

            minimum_lvdt3.append(min(lvdt3)) 

            permanent_surface_displacement_3.append(max(lvdt3)-min(lvdt3)) 

            maximum_lvdt4.append(max(lvdt4)) 

            minimum_lvdt4.append(min(lvdt4)) 

            permanent_surface_displacement_4.append(max(lvdt4)-min(lvdt4)) 

  

            maximum_sg1_v.append(max(sg1_v)) 

            minimum_sg1_v.append(min(sg1_v)) 

            sg1_v_max_min.append(max(sg1_v)-min(sg1_v)) 

            maximum_sg1_45.append(max(sg1_45)) 

            minimum_sg1_45.append(min(sg1_45)) 

            sg1_45_max_min.append(max(sg1_45)-min(sg1_45)) 

            maximum_sg1_h.append(max(sg1_h)) 

            minimum_sg1_h.append(min(sg1_h)) 

            sg1_h_max_min.append(max(sg1_h)-min(sg1_h)) 

            maximum_sg2_v.append(max(sg2_v)) 

            minimum_sg2_v.append(min(sg2_v)) 

            sg2_v_max_min.append(max(sg2_v)-min(sg2_v)) 

            maximum_sg2_45.append(max(sg2_45)) 

            minimum_sg2_45.append(min(sg2_45)) 

            sg2_45_max_min.append(max(sg2_45)-min(sg2_45)) 

            maximum_sg2_h.append(max(sg2_h)) 

            minimum_sg2_h.append(min(sg2_h)) 

            sg2_h_max_min.append(max(sg2_h)-min(sg2_h)) 

  

        value = pd.DataFrame(list(zip(minimum_x_value, minimum_lvdt1, 

permanent_surface_displacement_1, maximum_lvdt1, 

                                  minimum_lvdt2, permanent_surface_displacement_2, maximum_lvdt2, 

                                  minimum_lvdt3, permanent_surface_displacement_3, maximum_lvdt3, 

                                  minimum_lvdt4, permanent_surface_displacement_4, maximum_lvdt4, 

                                  maximum_sg1_v, minimum_sg1_v, sg1_v_max_min, 
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                                  maximum_sg1_45, minimum_sg1_45, sg1_45_max_min, 

                                  maximum_sg1_h, minimum_sg1_h, sg1_h_max_min, 

                                  maximum_sg2_v, minimum_sg2_v, sg2_v_max_min, 

                                  maximum_sg2_45, minimum_sg2_45, sg2_45_max_min, 

                                  maximum_sg2_h, minimum_sg2_h, sg2_h_max_min)), columns =['Time', 

'Minimum LVDT_1', 'Permanent Surface Displacement from LVDT_1', 'Maximum LVDT_1', 

                                                                                          'Minimum LVDT_2', 'Permanent Surface 

Displacement from LVDT_2', 'Maximum LVDT_2', 

                                                                                          'Minimum LVDT_3', 'Permanent Surface 

Displacement from LVDT_3', 'Maximum LVDT_3', 

                                                                                          'Minimum LVDT_4', 'Permanent Surface 

Displacement from LVDT_4', 'Maximum LVDT_4', 

                                                                                          'Maximum SG_v_1', 'Minimum SG_v_1', 

'SG_v_1 (Max - Min)', 

                                                                                          'Maximum SG_45_1', 'Minimum SG_45_1', 

'SG_45_1 (Max - Min)', 

                                                                                          'Maximum SG_h_1', 'Minimum SG_h_1', 

'SG_h_1 (Max - Min)', 

                                                                                          'Maximum SG_v_2', 'Minimum SG_v_2', 

'SG_v_2 (Max - Min)', 

                                                                                          'Maximum SG_45_2', 'Minimum SG_45_2', 

'SG_45_2 (Max - Min)', 

                                                                                          'Maximum SG_h_2', 'Minimum SG_h_2', 

'SG_h_2 (Max - Min)']) 

        value_dropped = value.drop(columns=columns_to_drop) 

    df_variables["df{0}".format(location_of_file+1)] = value_dropped 

  

df_combined_e1_full_s20 = pd.concat([df_variables["df1"],df_variables["df2"], 

df_variables["df3"],df_variables["df4"], 

                        df_variables["df5"],df_variables["df6"], df_variables["df7"],df_variables["df8"], 

                        df_variables["df9"],df_variables["df10"], df_variables["df11"],df_variables["df12"], 

                        df_variables["df13"],df_variables["df14"], df_variables["df15"],df_variables["df16"], 

                        df_variables["df17"],df_variables["df18"],df_variables["df19"],df_variables["df20"], 

                        df_variables["df21"],df_variables["df22"],df_variables["df23"],df_variables["df24"], 

                         df_variables["df25"],df_variables["df26"], df_variables["df27"]], axis=0) 

df_combined_e1_full_s20 = df_combined_e1_full_s20.reset_index().drop(columns=['index']) 

 

### Read Pressure Cell data 
with open(pc_file_path_e5) as f: 
    pc_all_test_e5 = f.readlines() # Pressure cell readings 
  
multiplier_sg = 1000000 
multiplier_lvdt = 10 
pc_no_lines_to_skip = 4 
pc_frequency = 20 
pc_no_of_records_per_cycle = 4 
  
index_four_mins = [] 
every_four_minute = [] 
  
for i in range(len(pc_all_test_e5)): 
    if (i % (pc_frequency*60*sampling_rate-pc_no_lines_to_skip) == pc_no_lines_to_skip+1):  
        index_four_mins.append(i) 
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for j in index_four_mins: 
    every_four_minute.append(pc_all_test_e5[j:j+pc_no_of_records_per_cycle]) 
  
pc1_frequency = 3088.369 
pc2_frequency = 3113.477 
initial_temp1 = 15.28195 
initial_temp2 = 15.2627 
    
## Pressure Cell 1 
pc1_a= -6.18796E-7 
pc1_b= -8.71533E-2 
pc1_c= -pc1_a*(pc1_frequency)**2 - pc1_b*(pc1_frequency) 
pc1_t= 2.83717E-1 
  
## Pressure Cell 2 
pc2_a= -2.46989E-7 
pc2_b= -9.31967E-2 
pc2_c= -pc2_a*(pc2_frequency)**2 - pc2_b*(pc2_frequency) 
pc2_t= 3.30021E-1 
  
minimum_timestamp, min_no_of_records = [], [] 
maximum_converted_load_middle, minimum_converted_load_middle, 

permanent_converted_load_middle_max_min = [],[],[] 
maximum_load_middle, minimum_load_middle, permanent_load_middle_max_min = [],[],[] 
maximum_load_corner, minimum_load_corner, permanent_load_corner_max_min = [],[],[] 
maximum_pc_temp_middle, minimum_pc_temp_middle, permanent_pc_temp_middle_max_min = 

[],[],[] 
maximum_pc_temp_corner, minimum_pc_temp_corner, permanent_pc_temp_corner_max_min = 

[],[],[] 
maximum_converted_load_corner, minimum_converted_load_corner, 

permanent_converted_load_corner_max_min = [],[],[] 
  
for interval in every_four_minute: 
    timestamp, no_of_records, load_middle, load_corner, pc_temp_middle, pc_temp_corner, 

converted_load_middle, converted_load_corner = [],[],[],[],[],[],[],[] 
  
    for each_line in interval: 
        timestamp.append(str(each_line.split('\t')[0])) 
        no_of_records.append(int(each_line.split(',')[1])) 
        load_middle.append(float(each_line.split(',')[2])) 
        load_corner.append(float(each_line.split(',')[3])) 
        pc_temp_middle.append(float(each_line.split(',')[10])) 
        pc_temp_corner.append(float(each_line.split(',')[11])) 
        converted_load_middle.append((pc1_a * ((float(each_line.split(",")[2]))**2)+ 

pc1_b*(float(each_line.split(",")[2]))+ pc1_c + pc1_t * (float(each_line.split(",")[10])-initial_temp1))) 
        converted_load_corner.append((pc2_a * ((float(each_line.split(",")[3]))**2)+ 

pc2_b*(float(each_line.split(",")[3]))+ pc2_c + pc2_t * (float(each_line.split(",")[11])-initial_temp2))) 
    
    minimum_timestamp.append(min(timestamp)) 
    min_no_of_records.append(min(no_of_records)) 
    maximum_converted_load_middle.append(max(converted_load_middle)) 
    minimum_converted_load_middle.append(min(converted_load_middle)) 
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    permanent_converted_load_middle_max_min.append(max(converted_load_middle)-

min(converted_load_middle)) 
    maximum_converted_load_corner.append(max(converted_load_corner)) 
    minimum_converted_load_corner.append(min(converted_load_corner)) 
    permanent_converted_load_corner_max_min.append(max(converted_load_corner)-

min(converted_load_corner)) 
    maximum_load_middle.append(max(load_middle)) 
    minimum_load_middle.append(min(load_middle)) 
    permanent_load_middle_max_min.append(max(load_middle)-min(load_middle)) 
    maximum_load_corner.append(max(load_corner)) 
    minimum_load_corner.append(min(load_corner)) 
    permanent_load_corner_max_min.append(max(load_corner)-min(load_corner)) 
    maximum_pc_temp_middle.append(max(pc_temp_middle)) 
    minimum_pc_temp_middle.append(min(pc_temp_middle)) 
    permanent_pc_temp_middle_max_min.append(max(pc_temp_middle)-min(pc_temp_middle)) 
    maximum_pc_temp_corner.append(max(pc_temp_corner)) 
    minimum_pc_temp_corner.append(min(pc_temp_corner)) 
    permanent_pc_temp_corner_max_min.append(max(pc_temp_corner)-min(pc_temp_corner)) 
  
df_pc_e5_s20 = pd.DataFrame(list(zip(minimum_timestamp, min_no_of_records, 
                              maximum_converted_load_middle, minimum_converted_load_middle, 

permanent_converted_load_middle_max_min, 
                              maximum_converted_load_corner, minimum_converted_load_corner, 

permanent_converted_load_corner_max_min, 
                              maximum_load_middle, minimum_load_middle, 

permanent_load_middle_max_min, 
                              maximum_load_corner, minimum_load_corner, permanent_load_corner_max_min, 
                              maximum_pc_temp_middle, minimum_pc_temp_middle, 

permanent_pc_temp_middle_max_min, 
                              maximum_pc_temp_corner, minimum_pc_temp_corner, 

permanent_pc_temp_corner_max_min 
                             )), columns =['Time', 'No. of Records', 
                                           'Converted Load (Middle) (Max)', 'Converted Load (Middle) (Min)', 

'Converted Load (Middle) (Max - Min)', 
                                           'Converted Load (Corner) (Max)', 'Converted Load (Corner) (Min)', 

'Converted Load (Corner) (Max - Min)', 
                                           'Load (Middle) (Max)', 'Load (Middle) (Min)', 'Load (Middle) (Max - 

Min)', 
                                           'Load (Corner) (Max)', 'Load (Corner) (Min)', 'Load (Corner) (Max - Min)', 
                                           'PC Temperature (Middle) (Max)', 'PC Temperature (Middle) (Min)', 'PC 

Temperature (Middle) (Max - Min)', 
                                           'PC Temperature (Corner) (Max)', 'PC Temperature (Corner) (Min)', 'PC 

Temperature (Corner) (Max - Min)']) 

 

### Read Temperature probes data 

 
with open(temperature_file_path_e5) as f: 
    temp_all_test = f.readlines() # Temperature readings 
temp_no_lines_to_skip = 7 
temp_every_four_minute = [] 
temp_all_test_filtered = temp_all_test[temp_no_lines_to_skip:len(temp_all_test)-2] 
for i in range(0,len(temp_all_test_filtered),sampling_rate): 
    temp_every_four_minute.append(temp_all_test_filtered[i])  
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timestamp, no_of_records, t1, t2, t3, t4, t5, t6, t7 = [],[],[],[],[],[],[],[],[] 
for each_line in temp_every_four_minute: 
        timestamp.append(str(each_line.split(',')[0])) 
        no_of_records.append(int(each_line.split(',')[1])) 
        t1.append(float(each_line.split(',')[2])) 
        t2.append(float(each_line.split(',')[3])) 
        t3.append(float(each_line.split(',')[4])) 
        t4.append(float(each_line.split(',')[5])) 
        t5.append(float(each_line.split(',')[6])) 
        t6.append(float(each_line.split(',')[7])) 
        t7.append(float(each_line.split(',')[8])) 
df_temp_e5_s20 = pd.DataFrame(list(zip(timestamp, no_of_records, t1,t2,t3,t4,t5,t6,t7)), columns 

=['Time', 'No_of_records', 't1', 't2', 't3', 't4', 't5', 't6', 't7 (ambient temperature)']) 
df_temp_e5_s20 = df_temp_e5_s20.iloc[0:len(df_temp_e5_s20)-2,:] 

 

G.2 Sensor Data Fusion 

 

### Pressure cell 

time_stamp_pc = [] 
for record in df_pc_e5_s20["Time"]: 
    time_stamp_pc.append(record.split(",")[0][1:-1]) 
df_pc_e5_s20["Time_stamp"] = time_stamp_pc 
#df_pc_e5_s20 = df_pc_e5_s20.drop(columns = ["Time"]) 
  
df_pc_e5_s20_1 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-05 12:02:00"] 
df_pc_e5_s20_1 = df_pc_e5_s20_1[df_pc_e5_s20_1["Time_stamp"] <= "2024-02-05 16:02:00"] 
  
df_pc_e5_s20_2 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-06 09:10:00"] 
df_pc_e5_s20_2 = df_pc_e5_s20_2[df_pc_e5_s20_2["Time_stamp"] <= "2024-02-06 15:48:00"] 
  
df_pc_e5_s20_3 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-07 08:28:00"] 
df_pc_e5_s20_3 = df_pc_e5_s20_3[df_pc_e5_s20_3["Time_stamp"] <= "2024-02-07 16:17:00"] 
  
df_pc_e5_s20_4 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-08 08:44:00"] 
df_pc_e5_s20_4 = df_pc_e5_s20_4[df_pc_e5_s20_4["Time_stamp"] <= "2024-02-08 16:00:00"] 
  
df_pc_e5_s20_5 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-09 08:35:00"] 
df_pc_e5_s20_5 = df_pc_e5_s20_5[df_pc_e5_s20_5["Time_stamp"] <= "2024-02-09 15:39:00"] 
  
df_pc_e5_s20_6 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-12 09:00:00"] 
df_pc_e5_s20_6 = df_pc_e5_s20_6[df_pc_e5_s20_6["Time_stamp"] <= "2024-02-12 16:07:00"] 
  
df_pc_e5_s20_7 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-13 08:30:00"] 
df_pc_e5_s20_7 = df_pc_e5_s20_7[df_pc_e5_s20_7["Time_stamp"] <= "2024-02-13 15:46:00"] 
  
df_pc_e5_s20_8 = df_pc_e5_s20[df_pc_e5_s20["Time_stamp"] >= "2024-02-14 08:33:00"] 
df_pc_e5_s20_8 = df_pc_e5_s20_8[df_pc_e5_s20_8["Time_stamp"] <= "2024-02-14 16:13:00"] 
  
df_pc_e5_s20_combined = pd.concat([df_pc_e5_s20_1, df_pc_e5_s20_2, df_pc_e5_s20_3, 

df_pc_e5_s20_4, df_pc_e5_s20_5, 
                            df_pc_e5_s20_6, df_pc_e5_s20_7, df_pc_e5_s20_8], axis=0) 
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df_pc_e5_s20_combined = df_pc_e5_s20_combined.reset_index().drop(columns=['index']) 
  

### Temperature: 
time_stamp_temp = [] 
for record in df_temp_e5_s20["Time"]: 
    time_stamp_temp.append(record.split(",")[0][1:-1]) 
df_temp_e5_s20["Time_stamp"] = time_stamp_temp 
df_temp_e5_s20_1 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-05 12:02:00"] 
df_temp_e5_s20_1 = df_temp_e5_s20_1[df_temp_e5_s20_1["Time_stamp"] <= "2024-02-05 

16:02:00"] 
  
df_temp_e5_s20_2 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-06 09:10:00"] 
df_temp_e5_s20_2 = df_temp_e5_s20_2[df_temp_e5_s20_2["Time_stamp"] <= "2024-02-06 

15:48:00"] 
df_temp_e5_s20_3 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-07 08:28:00"] 
df_temp_e5_s20_3 = df_temp_e5_s20_3[df_temp_e5_s20_3["Time_stamp"] <= "2024-02-07 

16:17:00"] 
df_temp_e5_s20_4 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-08 08:44:00"] 
df_temp_e5_s20_4 = df_temp_e5_s20_4[df_temp_e5_s20_4["Time_stamp"] <= "2024-02-08 

16:00:00"] 
df_temp_e5_s20_5 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-09 08:35:00"] 
df_temp_e5_s20_5 = df_temp_e5_s20_5[df_temp_e5_s20_5["Time_stamp"] <= "2024-02-09 

15:39:00"] 
df_temp_e5_s20_6 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-12 09:00:00"] 
df_temp_e5_s20_6 = df_temp_e5_s20_6[df_temp_e5_s20_6["Time_stamp"] <= "2024-02-12 

16:07:00"] 
df_temp_e5_s20_7 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-13 08:30:00"] 
df_temp_e5_s20_7 = df_temp_e5_s20_7[df_temp_e5_s20_7["Time_stamp"] <= "2024-02-13 

15:46:00"] 
df_temp_e5_s20_8 = df_temp_e5_s20[df_temp_e5_s20["Time_stamp"] >= "2024-02-14 08:33:00"] 
df_temp_e5_s20_8 = df_temp_e5_s20_8[df_temp_e5_s20_8["Time_stamp"] <= "2024-02-14 

16:13:00"] 
df_temp_e5_s20_combined = pd.concat([df_temp_e5_s20_1, df_temp_e5_s20_2, df_temp_e5_s20_3, 

df_temp_e5_s20_4, df_temp_e5_s20_5, df_temp_e5_s20_6, df_temp_e5_s20_7, df_temp_e5_s20_8], 

axis=0) 
df_temp_e5_s20_combined = df_temp_e5_s20_combined.reset_index().drop(columns=['index']) 
df_temp_and_pc_e5_s20_combined = pd.concat([df_temp_e5_s20_combined, 

df_pc_e5_s20_combined], axis=1) 
df_temp_and_pc_e5_s20_combined = 

df_temp_and_pc_e5_s20_combined.reset_index().drop(columns=['index']) 
 

### Strain Gauges & LVDTs 

df_combined_e5_full_s20_1 = df_combined_e5_full_s20.iloc[:12,:] 
df_combined_e5_full_s20_2 = df_combined_e5_full_s20.iloc[12:12+20,:] # 200 
df_combined_e5_full_s20_3 = df_combined_e5_full_s20.iloc[12+20:12+20+23,:] # 235 
df_combined_e5_full_s20_4 = df_combined_e5_full_s20.iloc[12+20+23:12+20+23+22,:] # 218 
df_combined_e5_full_s20_5 = df_combined_e5_full_s20.iloc[12+20+23+22:12+20+23+22+22,:] 
df_combined_e5_full_s20_6 = 

df_combined_e5_full_s20.iloc[12+20+23+22+22:12+20+23+22+22+21,:] # 214 
df_combined_e5_full_s20_7 = 

df_combined_e5_full_s20.iloc[12+20+23+22+22+21:12+20+23+22+22+21+22,:] 
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df_combined_e5_full_s20_8 = 

df_combined_e5_full_s20.iloc[12+20+23+22+22+21+22:12+20+23+22+22+21+22+23,:] 
df_combined_e5_full_s20_combined = pd.concat([df_combined_e5_full_s20_1, 

df_combined_e5_full_s20_2, df_combined_e5_full_s20_3, df_combined_e5_full_s20_4, 

df_combined_e5_full_s20_5, df_combined_e5_full_s20_6, df_combined_e5_full_s20_7, 

df_combined_e5_full_s20_8], axis=0) 
df_combined_e5_full_s20_combined = 

df_combined_e5_full_s20_combined.reset_index().drop(columns=['index']) 
df_combined_e5_s20_all = pd.concat([df_combined_e5_full_s20_combined, 

df_pc_e5_s20_combined, df_temp_e5_s20_combined], axis=1) 
df_combined_e5_s20_all = df_combined_e5_s20_all.reset_index().drop(columns=['index']) 

 

G.3 Data Preparation for Different Prediction Scenarios 

 

df_combined_e5_s20_all = df_combined_e5_s20_all.drop(columns = ["Time", "No. of Records", 

"Time_stamp", "Time", "No_of_records", "Time_stamp", "PC Temperature (Middle) (Max - Min)", 

"PC Temperature (Corner) (Max - Min)"]) 
  
### To predict the permanent strain  
cols_to_move = ['Minimum LVDT_3'] 
 

### move columns to front 
df_combined_e5_s20_all = df_combined_e5_s20_all[cols_to_move + [x for x in 

df_combined_e5_s20_all.columns if x not in cols_to_move]] 
df_combined_e5_s20_all = df_combined_e5_s20_all.drop(columns= ["Maximum LVDT_3", 

"Permanent Surface Displacement from LVDT_3"]) 
df_combined_e5_s20_all = df_combined_e5_s20_all.drop(columns = ["Permanent Surface 

Displacement from LVDT_4"]) 
df_combined_e5_s20_all = df_combined_e5_s20_all.drop(columns = ["Maximum LVDT_4", 

"Minimum LVDT_4"]) 
  
### Prepare to predict next 20, 40, and 60 mins 
df_combined_e5_s20_all_copy_20 = df_combined_e5_s20_all.copy(deep = True) 
df_combined_e5_s20_all_copy_40 = df_combined_e5_s20_all.copy(deep = True) 
df_combined_e5_s20_all_copy_60 = df_combined_e5_s20_all.copy(deep = True) 
  
df_combined_e5_s20_all_copy_20['Minimum LVDT_3'] = 

df_combined_e5_s20_all_copy_20['Minimum LVDT_3'].shift(-1) 
df_combined_e5_s20_all_copy_40['Minimum LVDT_3'] = 

df_combined_e5_s20_all_copy_40['Minimum LVDT_3'].shift(-2) 
df_combined_e5_s20_all_copy_60['Minimum LVDT_3'] = 

df_combined_e5_s20_all_copy_60['Minimum LVDT_3'].shift(-3) 
  
df_combined_e5_s20_all_copy_20 = df_combined_e5_s20_all_copy_20.dropna() 
df_combined_e5_s20_all_copy_40 = df_combined_e5_s20_all_copy_40.dropna() 
df_combined_e5_s20_all_copy_60 = df_combined_e5_s20_all_copy_60.dropna() 

========================================================================

== 

 

The same scripts were written for Experiment 2, then both data was combined together before 

the next step.  
df_combined_e5_e6_s20_all = pd.concat([df_combined_e5_s20_all, df_combined_e6_s20_all], 

axis=0) 
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df_combined_e5_e6_s20_all = df_combined_e5_e6_s20_all.reset_index().drop(columns=['index']) 
df_combined_e5_e6_s20_all_copy_20 = pd.concat([df_combined_e5_s20_all_copy_20, 

df_combined_e6_s20_all_copy_20], axis=0) 
df_combined_e5_e6_s20_all_copy_20 = 

df_combined_e5_e6_s20_all_copy_20.reset_index().drop(columns=['index']) 
df_combined_e5_e6_s20_all_copy_40 = pd.concat([df_combined_e5_s20_all_copy_40, 

df_combined_e6_s20_all_copy_40], axis=0) 
df_combined_e5_e6_s20_all_copy_40 = 

df_combined_e5_e6_s20_all_copy_40.reset_index().drop(columns=['index']) 
df_combined_e5_e6_s20_all_copy_60 = pd.concat([df_combined_e5_s20_all_copy_60, 

df_combined_e6_s20_all_copy_60], axis=0) 
df_combined_e5_e6_s20_all_copy_60 = 

df_combined_e5_e6_s20_all_copy_60.reset_index().drop(columns=['index']) 
 

G.4 Feature Selection 

 

### pearson's correlation feature selection for numeric input and numeric output 
from sklearn.datasets import make_regression 
from sklearn.feature_selection import SelectKBest 
  
X = df_combined_e5_e6_s20_all[df_combined_e5_e6_s20_all.columns[1:].tolist()] 
y = df_combined_e5_e6_s20_all[['Minimum LVDT_3']] 
  
### define feature selection 
fs = SelectKBest(score_func=f_regression, k=10) 
 

### apply feature selection 
X_selected_copy_20 = fs.fit_transform(X, y.values.ravel()) 
print(X_selected_copy_20.shape) 

 

G.5 RF Model Training and Testing on Sensor Data 

 

import numpy as np 

import matplotlib.pyplot as plt 
from pandas import read_csv 
from sklearn.model_selection import train_test_split 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import mean_absolute_error 
from sklearn.metrics import mean_squared_error 
from sklearn.metrics import r2_score 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.neural_network import MLPRegressor 
from sklearn.datasets import make_regression 
 

X = X_selected_copy_20 
y = y 
  
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1) 
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) 
  
### fit the model 
model = RandomForestRegressor(random_state=1).fit(X_train, y_train.values.ravel()) 
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### make predictions 
yhat = model.predict(X_test) 
### evaluate predictions 
mae = mean_absolute_error(y_test, yhat) 
print('MAE: %.4f' % mae) 
r2 = r2_score(y_test, yhat) 
print('R2: %.4f' % r2) 
rmse = mean_squared_error(y_test, yhat, squared = False) 
print('RMSE: %.4f' % rmse) 
### find line of best fit 
a, b = np.polyfit(y_test["Minimum LVDT_3"], yhat, 1) 
  
### add points to plot 
plt.scatter(y_test["Minimum LVDT_3"], yhat) 
  
### Define the data for the x and y axis 
x_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
y_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
  
### Plot the line 
plt.plot(x_values, y_values, linestyle='--', color='gold', label = '45 degree line') 
  
### add line of best fit to plot 
plt.plot(y_test["Minimum LVDT_3"], a*y_test["Minimum LVDT_3"]+b, color = 'r', label = 

'Goodness of fit') 
plt.scatter(y_test, yhat, color = 'b') 
plt.xlim(1, 9.25) 
plt.ylim(1, 9.25) 
plt.xlabel('Actual Permanent Surface Displacement from LVDT_3') 
plt.ylabel('Predicted Permanent Surface Displacement from LVDT_3') 
plt.title('Actual vs Predicted Permanent Surface Displacement from LVDT_3 - (sampling rate every 

20 minute - predict concurrently)') 
plt.legend(loc="upper left") 
plt.show() 


