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Abstract

Functional Magnetic Resonance Imaging (fMRI) is a widely-used tool in
neuroscience research. While there is general agreement on what imaging
sequences and methods work best overall, there is much less agreement and
consistency on how particular parameter choices are made. These parame-
ter choices can have an effect on data quality, which can negatively affect
analysis of this data. It is therefore important to characterise this effect.
The thesis investigates the impact of image acceleration techniques on fMRI
data quality, quantified using temporal Signal-to-Noise Ratio (tSNR), and
explores how these effects vary across different brain regions. The thesis then
investigates the impact of higher levels of Gaussian noise and head motion
on an important and widely adopted analysis method: population Receptive
Field (pRF) analysis. Assessment of the effects of applying image denoising
to fMRI data are also investigated throughout.

Chapter 3 presents development and use of the fMRI ROI Analysis Tool
(fRAT), software designed to provide a comprehensive Region-of-Interest
(ROI) analysis toolset for fMRI data. fRAT addresses the lack of existing
fMRI tools making it easy to analyse multiple ROIs with data quality met-
rics. This tool enables researchers to easily study spatial variations in the
relationship between scanning parameters and data quality. The software’s
features, including statistical analysis and data visualisation capabilities are

detailed, and current and potential future applications are highlighted.

Chapter 4 uses fRAT to characterise the effect of hardware (3T Philips
Achieva and 3T Philips Ingenia), image acceleration (in-plane SENSE factor

and through-plane Multiband factor) and a post-hoc denoising technique
(using NOise reduction with DIstribution Corrected [NORDIC] PCA) on



data quality across a selection of regions of interest: the Frontal Pole, the
posterior Inferior Temporal Gyrus and the Occipital Pole. The relationship
between these variables was found to vary between these regions, supporting
the idea that region-wise data quality (tSNR) reporting provides important

information.

Chapter 5 evaluates the robustness of pRF analysis in the visual domain to
decreased levels of tSNR and increased levels of participant motion through
adding simulated thermal noise and head motion to a pre-existing pRF
dataset collected in stroke patients (Beh et al., 2021). Work in this chapter
also makes use of fRAT to first quantify noise levels and then provide a con-
venient way to manipulate the data before pRF analysis. It is shown that
in general, pRF analysis is more robust to the addition of head motion than
to noise, with the polar angle of the pRF estimates being the property most
consistently affected by these factors.

Overall, this thesis provides a detailed analysis of the spatially dependent
effects of image acceleration on fMRI data quality and underscores the prac-
tical consequences of changes in the level of data quality and motion in pRF
analysis. The findings aim to inform best practices when conducting fMRI
research, and importantly, the software developed within this thesis has been
made open-source with usage tutorials to enable it to be used across a wide

range of applications in future research.
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Chapter 1

Introduction



1.1. Overview of Thesis

1.1 Overview of Thesis

The two main causes of discomfort in magnetic resonance imaging (MRI)
scanning sessions are the level of acoustic noise and remaining still for the
duration of the scanning session (Chou et al., 2014; Heilmaier et al., 2011).
For patients and other vulnerable groups, such as younger participants, these
factors can be particularly problematic aggravating issues such as participant
motion, which is much more likely to occur in clinical groups and younger
children (Pardoe et al., 2016). This can make scanning of such subjects
difficult and in extreme examples of subject motion or sensitivity to scanner

noise, can lead to unusable data or aborted scan sessions.

Image acceleration techniques can be used to speed up acquisitions, collecting
an fMRI volume in a shorter acquisition time, and can be used to reduce
scanner noise, but care must be taken as such methods can also negatively
affect data quality (Demetriou et al., 2018; Molloy et al., 2014; Todd et
al., 2016). Therefore there is a tradeoff between increasing subject comfort
and limiting reduction in data quality, which for fMRI data is often assessed
through measuring the temporal Signal-to-Noise Ratio (tSNR). This thesis
aims to quantify the effect of image acceleration techniques on fMRI data
and investigate how this relationship changes across brain regions. Further,
this thesis also aims to investigate the impact of additional noise and subject

motion on pRF analysis.

In Chapter 2, key concepts underlying the work in this thesis are laid out.
First, the basis of the MR signal is discussed, followed by how data is spa-
tially encoded to generate an MR image and the use of acceleration tech-
niques to speed up acquisitions. This is followed by an outline of fMRI,
including the nature of the Blood Oxygenation Level Dependent (BOLD)
signal and the Haemodynamic Response Function (HRF). Following this, a
summary of visual field mapping and population Receptive Field (pRF) anal-
ysis is presented — this is an influential and widely used method for analysing
fMRI data, particularly in brain areas relating to sensation and perception
of vision, touch, and sound. Finally, key concepts relating to data quality
are described, including tSNR, assessment of g-factor for fMRI, and princi-

pal component analysis (PCA) methods that can be used to denoise fMRI
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data, with particular emphasis on the NOise Reduction with DIstribution
Corrected (NORDIC) method.

Chapter 3 presents the development and use cases of a Python-based tool to
conduct Region-of-Interest (ROI) analysis on fMRI data, termed the fMRI
ROI Analysis Tool (fRAT) which has been made available to users on the
Python Package Index (PyPi) and is published in the Journal of Open Sci-
ence Software (Howley et al., 2023). The development of this software be-
came an aim, as there was no current, easy-to-use software available to
conduct analysis on multiple ROIs with data quality metrics. The software
allows researchers to assess the relationship between scanning parameters
(such as SENSE and Multiband [MB] acceleration factors) and data quality
metrics (such as tSNR), and how it changes spatially. In this chapter, the
design goals of this software are first presented, such as providing a com-
prehensive Region-of-Interest (ROI) analysis toolset. The functionality of
this software is then described, including the ability to conduct inferential
statistics with, and create visualisations of the data. Additional use-cases
are then outlined. This includes using fRAT to conduct atlas-based power
analyses, which avoids the common issue in fMRI research of circular anal-
ysis when the effect size statistic and selection criteria are not independent
(Kriegeskorte et al., 2010). The fRAT software is freely available, and one
of the efforts in the work for this chapter was to also develop guides for a
robust software installation experience, and a usage tutorial together with a

sample data set (fmri-roi-analysis-tool.readthedocs.io).

Chapter 4 explores the effect of hardware by comparing two MRI scanners
and image acquisition parameters (IAPs) on data quality (as measured us-
ing tSNR) and acoustic noise using fRAT. The fRAT software developed in
Chapter 3 is used to analyse, summarise and report this data. Specifically,
work in this chapter varies image acceleration factors (SENSE and MB),
and compares results across 3T scanner models (a Philips 60-cm Achieva
scanner and a Philips 70-cm wide bore scanner with dStream technology).
Additionally, the benefits provided by NORDIC denoising for each image ac-
celeration factor and scanning hardware is also assessed. This chapter uses
fRAT to analyse the differing effect of these variables across cortical areas as

a whole, as well as for specific regions: the Frontal Pole (FP), the Occipital
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Pole (OP) and the posterior Inferior Temporal Gyrus (pITG). The chapter
concludes with an assessment of these differences between ROIs and how

future research could further explore this topic.

Chapter 5 examines the practical effect of different tSNR and participant
motion levels on population Receptive Field (pRF) analysis of visual data.
To achieve this, functions provided by fRAT were used to estimate the ground
truth noise and motion, and add simulated thermal noise and motion to the
fMRI data in a participant dependent manner. This chapter demonstrates

how robust pRF analysis is to thermal noise and subject motion.

Chapter 6 concludes with the main findings of this work to quantify the spa-
tially dependent effect of image acceleration techniques on data quality, and
the practical effect of various data quality and motion levels on a real-world
data analysis application: pRF analysis. It is hoped that this research can
be used to guide best practices when collecting fMRI data, to retain opti-
mal image quality whilst minimising acoustics to reduce subject discomfort.
Additionally, the open-source software developed within this thesis can be
used by other researchers in a wide variety of research applications, for ex-
ample, when planning studies it can ensure the optimal image acquisition
parameters are used for the ROIs and experimental paradigm for a given

study.

1.2 COVID Statement

This PhD was undertaken during the COVID-19 pandemic. Some aspects of
my thesis work were heavily impacted by the COVID-19 pandemic, causing
changes to the initial plans for my thesis. In particular, access to scan fa-
cilities was not possible for an extended period of time, therefore additional
emphasis in my work was placed on the development of software (Chapter 3).
Further, due to university restrictions on MR research scanning of vulnera-
ble subjects during and following the COVID-19 pandemic, a planned study
could not be completed. Therefore instead, a dataset which had been col-
lected in stroke patients prior to the pandemic was used for Chapter 5. The
data set employed was that published in Beh et al. (2021).

4



Chapter 2

Background



2.1. Functional Magnetic Resonance Imaging (fMRI)

2.1 Functional Magnetic Resonance Imaging (fMRI)

2.1.1 The MRI signal

The basis of Magnetic Resonance Imaging (MRI) is that certain atomic nuclei
when exposed to a strong external magnetic field (B,), are able to selectively
absorb and re-emit radio-frequency (RF) waves. This phenomenon is known
as Nuclear Magnetic Resonance (NMR). Atomic nuclei possess an intrinsic
fundamental property called nuclear spin (/), which describes the angular
momentum of a particle. [ is dictated by the ratio of protons to neutrons in
an atom, such that an atom with an equal number of protons and neurons
have I = 0. The criteria for atomic nuclei to be able to undergo NMR is
to have a non-zero I, therefore atoms require an uneven number of protons
and neutrons to undergo NMR. The most common nucleus for MRI is that
of hydrogen ('H), which comprises only a single proton and no neutrons,
and so has a [ = % Since a significant proportion of the human body
contains hydrogen atoms, primarily due to water (H,O) but also from other
molecules, hydrogen is the most commonly used atomic nucleus for MRI
(Huettel et al., 2014).

The I of protons, creates a magnetic moment, g. This magnetic moment
allows for the interaction between protons and the strong external magnetic
field (B,). The number of possible spin states that a nucleus can have is given
by 21 + 1. Therefore, as protons have [ = %, they have two observable spin
states, either parallel or anti-parallel to B,. Magnetic moments preferentially
align (are parallel) with B, as this is the lowest energy state. However the
proportion of protons that are in the parallel or anti-parallel spin state is
a function of the field strength B, and temperature 1T', as described by the
Boltzmann distribution (Huettel et al., 2014), such that an increase in field
strength or a decrease in temperature increases the net number of protons
in the parallel spin state. On average, there is slightly more protons in
the parallel spin state than the anti-parallel state, and this creates a net

magnetisation vector (M) aligned parallel to B,.

When protons are placed in the external B, field, their spin states also begin
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to undergo precession (with random phase) on an axis around B,. The
frequency of this precession is known as the Larmor (or resonant) frequency.
This is directly proportional to the strength of B, (T) and the gyromagnetic
ratio (7y) of the atomic nuclei (which for protons is 42.58 MHz/Tesla) and is
given by:

w=nB (2.1)

with the Larmor frequency in MHz which is in the radiofrequency (RF)

range.

The application of an RF (B;) field at the Larmor frequency applied or-
thogonal to B, can be used to rotate the orientation of the spin states and
thus cause M, to rotate by a given flip angle dependent on the duration
and amplitude of the B, field. For example, the application of a 90° (also
termed excitation) RF pulse will tip the M, magnetisation which is aligned
along z into the transverse (xy-) plane. This will also cause spins that before
were preferentially aligned with B, to come into phase, leading to phase
coherence. The net magnetisation then precesses in the transverse plane,
inducing a current in the receiver coils at the Larmor frequency. At this
point immediately after the 90° RF pulse there is transverse (M,,) but not
longitudinal (M) magnetisation. After the B, pulse ends, two processes
then occur, the spins begin to relax back into the parallel state causing an
exponential increase in longitudinal magnetisation, and the spins experience
a scrambling of their phase leading to an exponential decrease in transverse
magnetisation. The time it takes for 63% of the longitudinal magnetisation
to recover is known as the 7} time, whilst the time for the transverse mag-
netisation to decay is known as the 75, time. T} and 7T, relaxation times are
intrinsic properties that vary between tissue types. By choosing appropriate
imaging sequences, scans can be weighted to highlight the difference in 7} or
T, values between tissues, creating MRI contrast in structural imaging. For
example, if a short time between repetitions (TR) of successive B; pulses
is used, the longitudinal magnetisation is not able to fully recover between
TRs. Thus the signal is dependent on the varying longitudinal magnetisation

recovery time (7)) between tissues, creating a T}-weighted image. This type
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of image is commonly used for standard brain imaging, as it clearly depicts

grey matter, white matter, and cerebrospinal fluid.

2.1.2 Spatial encoding of the data

The signal generated after a 90° RF pulse represents the sum of the signals
from over the entire imaged object and is called the Free Induction Decay
(FID), this signal needs to be spatially encoded to allow for the accurate
localization of signal intensities. To do this, in addition to the static strong
magnetic field, time varying magnetic fields generated using gradient coils
can be switched on to create a linearly changing magnetic field along a
chosen axis. As w is dependent on field strength B, the spatially varying
magnetic fields caused by the gradient coils causes an additional spatially-
dependent modulation of the precession frequency of the protons. If the
carrier frequency and bandwidth of the B, pulse is tuned, then applying a
RF pulse with a slice gradient gives a slice-selective excitation, typically this
is termed to be applied in the z-axis. As this B, pulse only tips the spins
from a single slice into the transverse plane, these are the only spins that
will induce a current in the RF receivers. After slice-excitation, a spatially
varying magnetic field in the x and y-axis is also induced by the gradient
coils, to create a varying precession frequency within these planes. The
variation of w in this slice frequency-encodes the location of the protons in
this axis. A linearly changing magnetic field is also induced in the other
orthogonal axis, causing a cumulative phase shift for the protons depending
on the strength of the gradient. This induces phase decoherence in the slice

and phase-encodes the location of the protons in this final plane.

Through the combination of the slice-selective pulse, the frequency-encoding
gradient, and the phase-encoding gradient, the location of protons are spa-
tially encoded along each axis. This spatial frequency information is repre-
sented by k-space (Figure 2.1). A 2D inverse Fourier Transform is then used
to convert this k-space data into the final image space. For a given field-
of-view, increasing the k-space matrix size increases the spatial resolution
of the image. While each sample of data in the frequency-encoded direc-

tion is collected continuously during the data readout, sampling of data in
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Figure 2.1

Example visualisation of k-space

Note. (A) shows a brain in image space, whereas (B) shows the k-space representa-
tion. For (B), each row in k, represents a different application of a phase-encoding
gradient, whereas each column in k, represents the linearly varying frequency-
encoding gradient.

the phase-encoded direction requires the application of a different gradient
magnetic field. Each application of the phase-encoding gradient is repeated
every TR, with a different phase-encoding gradient strength used in each
repetition. Therefore, imaging time is highly dependent on the number of
data samples (and thus the spatial resolution) in the phase-encoding axis,
whereas increased resolution in the frequency-encoded axis only requires an

increased sampling rate.

A high resolution structural image can be generated by collecting a single
line of k-space per excitation pulse, known as a spin-warp acquisition scheme.
However when performing fMRI, rapid image acquisition is crucial. There-
fore for fMRI an Echo-Planar-Imaging (EPI) scheme is used, which collects
the entire k-space in a single shot following one excitation pulse. This is

demonstrated in Figure 2.2.

2.1.3 Image acceleration techniques

The possibility of accelerating imaging through methods such as the simulta-

neous excitation of multiple slices was explored early in MRI’s development
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Figure 2.2

Comparison between k-space acquisition techniques

Note. (A) shows k-space acquisition with a spin warp acquisition scheme. The
orange and yellow lines in k-space show data collected during separate applica-
tions of the phase-encoding gradient and RF-excitation pulse. (B) shows k-space
acquisition with a Echo-Planar-Imaging acquisition scheme. k-space data is col-
lected here during a single RF-excitation pulse with a zig-zag traversal pattern of
k-space.

(Maudsley, 1981). Early methods of multislice excitation, such as Phase-
offset multiplanar (POMP) volume imaging (Glover, 1991), increased signal
sensitivity compared to standard sequential data collection. However, there
was no reduction in acquisition time (Barth et al., 2016). Early methods
of multislice excitation were limited by coil design, primarily due to the
prevalent use of single-channel RF coils at the time. However, with the de-
velopment of multi-channel RF coils (for example 32-channel head coils as
used for work in this thesis), the spatially varying placement and sensitiv-
ities of RF receiver coils could be utilised to achieve more precise spatial
localisation of the MR signal. This technique, known as parallel imaging,

has enabled the development of several methods to accelerate scanning.

SENSitivity Encoding (SENSE) image reconstruction (Pruessmann et al.,
1999) is one method that was enabled with the development of parallel
imaging, and is widely used today and for the imaging collected in this
thesis. With this method, individual images are first reconstructed for each
of the coil channels. These images are then combined, with each image

weighted according to its coil’s spatial sensitivity map. In standard Fourier

10
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Figure 2.3

Example of k-space undersampling
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Note. Each point on k-space represents a sample. (B) shows k-space undersam-
pling relative to (A) through increased k-space data spacing in both the frequency-
encoding and phase-encoding direction.

imaging, reducing the sampling density of phase-encoding steps results in
the reduction of the FOV (Pruessmann et al., 1999). This phase undersam-
pling reduces imaging time but results in gaps in the k-space data, which
translates into image space as overlapping or aliased signals in the direction
of the phase encoding. However, SENSE combines and unwraps these par-
tial FOV images into full FOV images. Thus, SENSE allows the possibility
of reducing the number of phase-encoding steps without a loss in spatial
resolution. For example, using an acceleration factor (R) of 2, half of the
phase-encoding steps are collected, and a 2FOV image will be created for
each coil. These are then combined and unwrapped into full FOV images.
The advantage of reducing the number of phase encoding steps is that this
shortens the acquisition time linearly, with R = 2 reducing acquisition time

by half. Figure 2.3 shows an example of k-space undersampling.

The development of multi-channel RF coils also allowed the development
of multiband (MB) imaging (Larkman et al., 2001) as termed on Philips
scanners, also known as Simultaneous MultiSlice (SMS) on other manufac-
turer platforms. Similar to in-plane SENSE parallel imaging methods, MB
imaging uses coil sensitivity profiles, but here this is used to separate simul-
taneously acquired slices. MB first uses a shaped MB RF pulse to excite
multiple slices (MB factor). While these RF pulses can be designed in sev-

11
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Figure 2.4

Comparison of single-band and Multiband MRI image acquisition

Note. (A) shows a standard single-band acquisition where each blue line represents
a separate slice acquisition. (B) shows a multiband acquisition with an accelera-
tion factor of two, where blue and yellow lines represent slices assigned to different
bands. Two slices are acquired simultaneously, with each blue slice paired with
a corresponding yellow slice, e.g., the lowest blue slice is acquired simultaneously
with the lowest yellow slice.

eral ways, the most straightforward method is to sum several standard RF
pulse shapes in the time domain. To aid signal separation, these RF pulses
are given different phase offsets (Barth et al., 2016). The acquisition time re-
duction achieved with MB is equal to the number of simultaneously acquired
slices (Figure 2.4). MB factors of 2 up to 6 can be collected, however there
is a trade-off between image acquisition acceleration, and the resulting slice
coupling and reduction in signal-to-noise ratio, as will be discussed later in
this thesis.

The reduction in EPI readout duration achievable using SENSE and the re-
duction in the time to collect an fMRI volume using MB imaging, can both
benefit fMRI. For example, reducing the readout duration with SENSE will
reduce magnetic susceptibility related artefacts (Weiger et al., 2002), and
allows the use of lower echo times (Jaermann et al., 2006). Further, reduc-
ing acquisition time with SENSE and collecting multiple slices using MB
can be used to increase the temporal resolution of scanning and increase
the sampling frequency of the haemodynamic response function (see subsec-
tion 2.3.2). There are further possible benefits possible using these methods.
If acquisition time is not reduced while using higher MB or SENSE acceler-

12
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ation factors, there is the benefit of reduced acoustic noise generation due
to a reduced density of gradients (de Zwart et al., 2002). Further, MB can
also be combined with SENSE (Barth et al., 2016; Preibisch et al., 2015) to
further reduce scan time or noise. Therefore, these methods provide ways
of increasing scan subject comfort through reducing scan length or acoustic
scanner noise, however the effect on data quality when using these methods

must also be considered.

In SENSE images, the signal-to-noise ratio (SNR) has an upper bound dic-
tated by the square root of the sampling reduction factor (Pruessmann et
al., 1999). In essence, SNR is bound by acquisition time, with faster acquisi-
tion times leading to a lower, upper bound for SNR. The impact of aliasing
also persists after unwrapping the images, leading to a spatially varying
noise amplification factor (see subsection 2.3.3). As with SENSE, there is
potential issues regarding aliasing with MB imaging. Low coil sensitivity
variation between each slice can result in aliasing between slices (Blaimer et
al., 2013). Therefore early MB imaging used relatively wide slice separation
to increase coil sensitivity variation and reduce aliasing. However there have
since been methodological and hardware improvements which reduce this
issue. While techniques such as CAIPIRINHA (Breuer et al., 2005) reduce
the dependence of aliasing in MB imaging on the coil geometry, improve-
ments in coil design also increased coil sensitivity variation along the slice
direction. Therefore modern MB imaging is able to use much more closely
spaced slices. Further discussions about data quality can be found in sec-
tion 2.3. It is important to note that there are also a number of additional
image acceleration methods, such as GRAPPA image reconstruction (Gris-
wold et al., 2002), Compressed SENSE (Zong et al., 2014) and partial fourier
reconstruction methods (McGibney et al., 1993). However these methods are

outside the scope of this thesis.

2.1.4 Blood Oxygenation Level Dependent (BOLD) contrast

As neurons fire, their metabolic requirements increase, necessitating an in-
crease in oxygenated blood flow to the active area to support aerobic res-

piration. The cerebral blood flow (CBF) and cerebral blood volume (CBV)

13
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Figure 2.5

The effect of oxyhaemoglobin and deoxyhaemoglobin in red blood cells on the main
magnetic field

Note. (A) Oxyhaemoglobin (O) is diamagnetic so does not cause local field dis-
tortions. (B) Deoxyhaemoglobin (D) is paramagnetic and so causes local field
distortions, leading to faster spin dephasing and a shorter 73 time.

in response to neuronal activity increases to a level higher than the cerebral
metabolic rate for oxygen (CMRO,), leading to an increase in the amount of
oxygen-carrying hemoglobin (oxyhemoglobin) and a decrease in the amount
of non-oxygen-carrying hemoglobin (deoxyhemoglobin). These two forms of
haemoglobin differ in their magnetic properties, with oxyhaemoglobin being
diamagnetic, and deoxyhaemoglobin being paramagnetic. Deoxyhemoglobin,
being paramagnetic, has a greater tendency to induce local magnetic field
inhomogeneities due to its interaction with the external magnetic field (Fig-
ure 2.5). This causes local dephasing of protons and thus an increase in
the transverse magnetisation decay rate (shorter transverse T} relaxation
time). Therefore, when brain regions are active, the relative increase in oxy-
haemoglobin compared to deoxyhaemoglobin leads to a decrease in the local
magnetic susceptibility, and a larger signal. The signal strength in functional
MRI (fMRI) is therefore dependent on the relative ratio of oxyhaemoglobin
and deoxyhaemoglobin, and this signal is known as the Blood Oxygenation
Level Dependent (BOLD) signal.

In fMRI, the repetition time (volume TR) indicates the time between succes-
sive slice-selective pulses applied to a given slice, while the echo time (TE)
refers to the time between the slice-selective RF pulse and the collection of

the signal or “echo” of the protons at the centre of k-space, typically using
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a gradient echo EPI scheme. Note that T}-weighted images aim to produce
contrast by highlighting the inherent differences in 7T relaxation times be-
tween tissues. It does this by using short TRs (~500ms) which, for typical
T, values in the brain, do not allow the longitudinal magnetisation to fully
recover between successive RF pulses, and short TEs (~14ms) which do not
allow for significant spin dephasing and transverse magnetisation to occur.
Thus the contribution of longitudinal magnetisation to the signal is increased,
and the influence of transverse decay to the signal is minimised. In contrast,
when performing fMRI this uses a long TR (volume TR ~2000ms) between
RF pulses of a given slice allowing spins to fully relax back into the longitu-
dinal plane, and a TE (~30ms) that allows transverse magnetisation decay,
with the optimal TE for fMRI being equal to the grey matter 7. By al-
lowing proton dephasing to develop, fMRI creates signal change in time due
to contrast between regions with high oxyhaemoglobin levels on activation
compared to deoxyhaemoglobin levels at rest, thus enabling the detection of
those brain regions with neural activity through the BOLD signal. Images
produced by maximising the contrast caused by transverse magnetisation

decay are known as 7. -weighted images.

2.1.5 Haemodynamic Response Function (HRF)

fMRI aims to measure the change in BOLD signal over time. The typical
BOLD response to a single impulse stimulus is characterised by the Haemo-
dynamic Response Function (HRF). The HRF is composed of a number of
components (Figure 2.6): an initial dip, a peak after roughly 5-7 seconds,
a post-stimulus undershoot and then a return to baseline. In response to
repeated stimulus presentation, the HRF also exhibits a plateau phase after
the peak. As seen in Figure 2.6 however, the HRF takes ~30 seconds to
return to baseline after a single impulse stimulus. This sluggish nature of
the HRF heavily limits the temporal resolution of fMRI.

While the peak and plateau are consistently measured effects, measurement
of the initial dip (Silva et al., 2000) and post-stimulus undershoot (Mildner
et al., 2001) are variable. As a result the BOLD response is typically approx-

imated by a Gamma distribution, with parameters chosen to best fit the
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Figure 2.6

BOLD haemodynamic response functions following stimulus presentation
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Note. Left panel shows the HRF response to a single stimulus presentation. Right
panel shows the HRF response to the presentation of multiple stimuli. Adapted
from MRIquestions.com, courtesy of Elster, A. D.

typically observed BOLD response defined as the canonical HRF. However,
the actual HRF can exhibit significant variability due to individual differ-
ences or the brain region under investigation. Therefore, the shape of the
canonical HRF can be adjusted to improve its accuracy and even produce
subject-specific HRFs. The chosen HRF is then convolved with a model of
the stimuli presented to the participant to create a predicted time course.
This predicted time course can then be compared with each voxel’s actual

time course to identify which voxels are likely to be responding to the stimuli.

Within this thesis the visual cortex is investigated in Chapter 5. Therefore,

the following sections outline methods to study visual responses.

2.2 Visual field mapping

Spatial arrangement is the most important element of a visual image (Wan-
dell et al., 2007). The importance of this property to visual processing is
reflected in the retinotopic organisation of early visual areas and in many
other visual areas to some degree (Wandell et al., 2007). This cortical retino-

topic map roughly follows a polar coordinate system (Horton & Hoyt, 1991),
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meaning that relative to the central point of the visual field, a polar angle
difference in the visual field has a corresponding polar angle difference in
the cortical representation. Due to cortical magnification, eccentricity dif-
ferences in the visual field are mapped non-linearly onto the cortical surface.
The relationship between eccentricity in the visual field and distances on
the cortical surface in V1 can be approximated by an exponential function
(Engel et al., 1997). This means that less eccentric visual areas (those closer
to fixation) in the fovea are represented in a larger fraction of visual cortex

than the peripheral visual field.

The polar angle property of retinotopic maps can be used to delineate bor-
ders in the visual cortex (Engel et al., 1997). This is a fundamental idea
underlying the definition of functional regions-of-interest, used for analysing
specific visual areas. In addition, delineation of visual areas allows for easier
comparison between participants and gives a baseline for typical visual map
organisation (Wandell et al., 2007). Other than the retinotopic organisation
of visual areas, another property of these areas that can be extracted with
the appropriate methodology is the receptive field size of neuronal popula-
tions (Dumoulin & Wandell, 2008). Measurements of receptive field sizes
are important as they can aid in the understanding of visual processing af-
ter injury, with these measurements also potentially serving as a guide for

targeted rehabilitation treatment (Papanikolaou et al., 2014).

2.2.1 Travelling-wave retinotopic mapping

The introduction of the travelling-wave retinotopic analysis technique (Engel
et al., 1994) made it possible to produce retinotopic maps of multiple areas
with high anatomical precision (Engel et al., 1997), using simple visual stim-
uli and non-invasive fMRI. For travelling-wave analysis, the stimuli consist
of cyclical rotating wedges and expanding or contracting rings (Figure 2.7),
with a contrast-reversing checkerboard pattern used to increase neural acti-
vation. These stimuli are shown to a participant while they undergo a fMRI
scan. The travelling-wave analysis leverages the phase-encoded nature of the
stimuli to map stimulus locations in the visual field to neuronal activity. This

is achieved by determining which phase of the stimulus best corresponds to

17



2.2. Visual field mapping

Figure 2.7

Typical stimuli used for pRF analysis

Note. (A) showns moving bar stimuli, (B) shows rotating wedge stimuli, and (C)
shows extending/contracting ring stimuli.

each voxel’s time-series data, giving the location of the visual field location
which provides the highest stimulus driven activity. The wedge and ring
stimuli provide polar angle and eccentricity visual field maps respectively,
with both visual field maps together providing the polar coordinates for the

visual field location which a voxel produces the largest BOLD response to.

2.2.2 Population receptive field mapping

Population receptive field (pRF) analysis, first developed by Dumoulin &
Wandell (2008), is an fMRI technique which builds on previous visual field
mapping techniques (Engel et al., 1994, 1997). By using the wedge and ring
stimuli from the travelling-wave technique as well as a bar stimulus of varying
motion and orientation (Figure 2.7), pRF techniques can produce additional
visual field map information. While the travelling-wave analysis technique
gives estimates for the visual field location which produces the highest cor-
tical activation for each voxel, the pRF technique additionally provides an
estimate of a neuronal population’s receptive field size. There are two main
differences between the procedure of the travelling-wave method and the
direct-fit pRF technique that allows the additional pRF size information to

be extracted.

Firstly, the pRF method links the exact stimulus location at each point in

time as it moves around the visual field with the measured fMRI response.
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This means that a cyclical stimulus (such as the wedge or ring stimuli) is
no longer required and more complex stimuli is able to be used, such as the
moving bar stimulus. However, wedge and ring stimuli are still used com-
monly with the pRF method, as there are regional activation differences in
response to these stimuli. For example, the striate cortex has a higher overall
response to presented wedge stimuli than the lateral occipital (Dumoulin &
Wandell, 2008). Therefore, having a broad range of stimulus types for pRF

analysis can be beneficial.

Secondly, the process for analysing the data for the pRF method is different
to the travelling-wave technique (Figure 2.8). An initial pRF model is as-
signed to each voxel. Using this initial estimate, the assumed HRF, and the
location of the visual stimulus over time, a predicted model time course of
fMRI responses is generated. This model time course is then compared to
the actual time course, and the pRF parameters are iteratively adjusted to
best fit the observed responses, resulting in a detailed map of receptive fields
across the visual cortex. This is calculated separately for each voxel, with
the pRF estimate usually being an isotropic Gaussian shape (Figure 2.9)
with 3 parameters: the x and y coordinates of the centre of the receptive

field; and the receptive field size (standard deviation of the Gaussian).

This approach provides more accurate visual field maps than the conven-
tional travelling-wave approach, especially in regards to measurements of
eccentricity (Dumoulin & Wandell, 2008). Additionally, through giving mea-
surements of the receptive field of neuronal populations, additional conclu-
sions can be drawn. For example, receptive field size was found to be 5 times
larger in the lateral and ventral occipital versus early visual areas, and re-
ceptive field size increases as a function of eccentricity in early visual areas.
pRF analysis provides a moderately reliable measure of pRF size (van Dijk
et al., 2016) that in some cases has found to on average account for 60%
of the variance in the data (Dumoulin & Wandell, 2008). The advantage
provided by the pRF method of allowing a measurement of receptive field
size has also allowed it to be a useful technique for research into other areas
of the brain. For example, it has been used in the somatosensory cortex to

create topographic maps of hand representations (Asghar et al., 2023).
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Figure 2.8

Flow chart describing the pRF linear model estimation procedure
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Note. The pRF linear model is calculated for every voxel independently. Adapted
from Dumoulin & Wandell (2008).
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Figure 2.9

Visualisation of a population receptive field model in visual space

Note. Data is shown for a single voxel.

2.3 Data quality measures

2.3.1 Measuring image quality: image SNR

Signal-to-noise ratio (SNR) is a scientific and engineering metric that quan-
tifies the magnitude of a desired signal compared to the magnitude of back-
ground noise. SNR is defined as a ratio where a value higher than 1 indicates
that there is more signal than noise. For MRI, the choice of image acquisi-
tion protocol and the hardware used significantly contribute to the SNR of
the images. For example, image SNR (iSNR) in biological tissue has been
found to be approximately proportional to the scanner field strength (Taka-
hashi et al., 2003) and iSNR scales directly with the voxel volume (Parker
& Gullberg, 1990). Thus for MRI, the quantification of iSNR allows for the
comparison between imaging protocols, imaging hardware, as well as data

preprocessing techniques.

A common method for calculating iISNR involves comparing the signal of
the imaged object to the background noise of the image (Edelstein et al.,
1986). Where S represents the signal intensity, calculated as the mean signal
within the imaged object, and o represents the background noise, calculated

as the standard deviation of a region outside the imaged object, iSNR can
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Figure 2.10

Background noise distributions for complex and magnitude MR images

Gaussian Noise Rayleigh Noise

Note. Noise in a complex MR image has a Gaussian distribution with zero mean
and standard deviation o. Noise in magnitude images however follow the Rayleigh
distribution, with non-zero mean and a lower standard deviation than for complex
images. Adapted from Reeder (2007).

be calculated as:

iSNR = 2 (2.2)
o

Alternatively, instead of selecting a region outside the imaged object to cal-
culate background noise, if the noise distribution is known, for example by
collecting a noise scan, the standard deviation of this distribution can be
taken as a measure of background noise. A noise scan is collected by acquir-
ing data while radiofrequency pulses and gradient fields are turned off, to
provide a measure of the noise distribution in the entire image which also

accounts for parallel imaging effects on the noise distribution.

Most research MR images are presented as magnitude images, which alters
the behaviour of the background noise as absolute values are used. In regions
where only noise is present, such as outside the imaged object, the noise
follows a Rayleigh distribution (Gudbjartsson & Patz, 1995). This can be
seen in Figure 2.10, where taking the magnitude of the data gives a non-zero

mean to the background noise and leads to a lower apparent o.

As seen in Figure 2.11, this effect of the noise following a Rayleigh distribu-
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Figure 2.11

Background noise distributions for complex and magnitude MR images

Complex Image Magnitude Image

- M

Note. Noise changes from a Gaussian to a Rayleigh distribution when taking the
magnitude of a complex image. This reduces the apparent background noise level,
whereas noise within regions with high SNR remains unaffected. Adapted from
Reeder (2007).

=

tion varies dependent on SNR. In regions with high SNR, such as regions
inside the imaged object, noise is unaffected by the Rayleigh distribution.
Therefore, to correct for this underestimation of ¢ when using magnitude
images, a correction factor needs to be applied. In the case of magnitude
images collected using four or more coils, the magnitude correction factor is

approximately 0.7 (Constantinides et al., 1997). Thus Equation 2.2 becomes:

SNR = 0.7 2 (2.3)
g

2.3.2 Measuring time course stability: temporal SNR

The goal of fMRI is to detect small activation-related changes in the signal
across time. However, the fMRI signal also contains noise from various
sources that can fluctuate over time. The SNR measure used for fMRI
should therefore reflect the temporal stability of the signal, and thus the
ability to detect activation-related changes. Therefore, while image SNR is

valuable for comparing image acquisition parameters, it does not adequately

address the needs of {MRI.
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There are a number of different SNR definitions used throughout the fMRI
literature, with most simulation studies labelling both contrast-to-noise ra-
tio (CNR) and temporal SNR (tSNR) measures as simply “SNR” (Welvaert
& Rosseel, 2013). Further there is significant differences in how CNR is
measured across the literature. However, all CNR definitions attempt to
provide a measure of noise in the signal, while also providing a measurement
of activation signal strength. tSNR in contrast does not provide a measure-
ment of the activation signal strength but instead provides a measurement
of the temporal stability of the signal. Additionally, tSNR specifically is
affected by many factors such as the degree of image acceleration (Molloy
et al., 2014; Todd et al., 2016) or the hardware used to collect data (Petri-
dou et al., 2013). As tSNR plays an important moderating role for BOLD
sensitivity, it is widely used as a metric to compare the effect of imaging
hardware or acquisition parameters on data quality (Demetriou et al., 2018;
Hutton et al., 2011; Todd et al., 2016).

tSNR is not spatially uniform, with regions that have similar anatomy and/or
function likely to have similar tSNR values (Welvaert & Rosseel, 2013); there-
fore tSNR is calculated separately for each voxel. As demonstrated by Wel-
vaert & Rosseel (2013), tSNR can be calculated as:

i

On

tSNR = (2.4)

where S represents the signal level for that voxel and is calculated as the
mean of the timeseries, whereas o, represents the noise for that voxel and
is calculated as the standard deviation of the timeseries. S contains con-
tributions from both the baseline signal and the possible fluctuations in
the signal due to the experimental task, whereas oy is comprised of sev-
eral noise sources such as thermal noise, physiological noise and task-related
noise. BOLD signal fluctuations are typically small, ranging from approx-
imately 1% to 3% for data collected at 3T (Tjandra et al., 2005). Thus
while S does contain contributions from task-related BOLD signal changes,
tSNR is a measure of data quality and is not informative regarding the task-

related activation signal strength. The various CNR measures outlined by
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Welvaert & Rosseel (2013) do however include a measurement of the acti-
vation signal strength. Due to this, Welvaert & Rosseel (2013) argue that
tSNR is only suitable for resting state fMRI, not task-related fMRI with the
opposite being true for CNR.

The relationship between BOLD sensitivity and tSNR for task-related fMRI
was illustrated by Murphy et al. (2007). In their study, they presented an
equation aimed at determining the number of time points (IV,) theoretically
necessary to detect an activation, given a set tSNR value, effect size (eff) and
a level. When using a block design with a stimulus being shown for 50% of

the timepoints, IV, can be calculated as:

2

erfc ' ()
%= o) >

' is the inverse complementary error function. This equation

where erfc”
can then be generalised to designs where the stimulus is not shown for 50%
of timepoints, where R represents the ratio of the timepoints where the
stimulus is shown versus the total number of timepoints, this equation can

be expressed as:

2

B 2 erfc ()
N=ra-R <(tSNR)(eH)> (2:6)

where R is constrained to values between 0 and 1.

With these equations it can be calculated that given a timeseries with a
tSNR of 75, to detect activation with an effect size of 0.5% at an « level
of 0.05, ~110 time points are required. This increases to ~250 time points
if tSNR decreases to 50. With a TR of 2s, this means that roughly, scan
length would need to be 3.5 minutes for the first instance, but decreasing
tSNR by 20% would increase scan time by over 100% to roughly 8 minutes.
However, this is the case with the liberal « level of 0.05. If the required
a level is reduced to 0.001, in the case of a timeseries with a tSNR of 75,
~310 time points (a ~10 minute scan) would be needed, whereas in the case
of 50 tSNR, ~690 time points (a ~23 minute scan) would be needed. Using

25



2.3. Data quality measures

simulations, Murphy et al. (2007) also derived the equation to calculate the

number of timepoints needed to guarantee activation detection (IV,):

N, =38 l1.5 (14 ler0/2) (&%)r (2.7)

The above equation indicates that for a given effect size, o and tSNR, NV,
will be much higher than NV,. For example, with a tSNR of 75, at an « level
of 0.05 and for an effect size of 0.5%, N, = ~110 timepoints whereas N, =
~550 timepoints, or roughly a 3.5 minute or a 18 minute scan respectively
with a TR of 2s. However the difference between N, and N, decreases as o
decreases. Further, while detection of an effect is possible using shorter scan

durations than calculated N, it is not guaranteed.

Given a set effect size, « level, and statistical power, a power analysis can
calculate the sample size necessary to detect an effect in a study. Similarly,
given a set effect size, o level, and tSNR, the equations above can be used
to calculate either the number of timepoints necessary to detect activation,
or the number of timepoints necessary to guarantee detection. Thus as
statistical power or tSNR increases, the chance of finding an effect increases.
In this way, tSNR is an important data quality metric for fMRI as it can act
as a proxy for statistical power. Due to the dependence of BOLD sensitivity
on effect size, this means the effect of tSNR is also paradigm dependent, with
experimental designs that have lower expected effect sizes requiring a higher
tSNR in order to have the same BOLD sensitivity.

In addition to the factors stated above, tSNR is also dependent on factors
such as resolution, with tSNR having a very strong negative correlation
with spatial resolution (R* = 0.97), increasing asymptotically as voxel size
increases (Yoo et al., 2018). As image acquisition is accelerated using meth-
ods such as MB or SENSE, increases in spatial and/or temporal resolution
are possible. However, these resolution increases cause reduced net magneti-
sation and T; relaxation effects, leading to a decrease in tSNR, (Yoo et al.,
2018).

According to the equations derived by Murphy et al. (2007), this suggests
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that resolution increases would also lead to an attenuation of BOLD sensi-
tivity. Demetriou et al. (2018) investigated the effect of increased temporal
resolution (with temporal resolution increasing as MB acceleration factor
increased) on BOLD sensitivity. They found that increased temporal resolu-
tion and MB acceleration factor did attenuate tSNR at higher acceleration
factors, and this higher temporal resolution did not provide a consistent bene-
fit for task-based data using conventional GLM analysis. However, even with
tSNR being attenuated, resting-state data did benefit from a higher tempo-
ral resolution. In contrast, Yoo et al. (2018) showed that a high temporal
resolution can compensate for the effect of reduced tSNR on BOLD sensitiv-
ity for task-based data, but only at high spatial resolutions where there is
minimal physiological noise and thermal noise dominates. These contrasting
results may be a result of the spatial resolutions used in each study. Yoo
et al. (2018) only found benefits to increasing temporal resolution at spa-
tial resolutions of 1.5mm isotropic, but not at 2mm isotropic; however, the
spatial resolution used by Demetriou et al. (2018) was even lower than this

value, at 3mm isotropic.

Therefore, while the equations presented by Murphy et al. (2007), are useful
in highlighting the link between tSNR and BOLD sensitivity, they suggest
that lower tSNR results in decreased BOLD sensitivity, given a certain «
and effect size. However, this is not necessarily the case. Increasing spatial
and temporal resolution typically results in lower tSNR but can, in certain
scenarios, yield higher BOLD sensitivity (Yoo et al., 2018). Moreover, the
benefits of enhanced temporal resolution are moderated by various factors,
including experimental design, statistical outcome measures, and analysis
methods (Demetriou et al., 2018), adding further complexity to this rela-
tionship.

2.3.3 Noise amplification due to parallel imaging (g-factor)

While parallel imaging reduces imaging time, the tradeoff is that the SNR
of parallel imaging accelerated sequences is always lower than that of non-
accelerated sequences. In addition to the factors affecting SNR noted in
subsection 2.3.1 & subsection 2.3.2, the SNR level of the reconstructed im-
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age in parallel imaging accelerated sequences, are further reduced in two
additional ways (Reeder, 2007). Firstly, image acceleration through parallel

imaging decreases the sampling of the data:

SNR,

VR

where R is the parallel imaging acceleration factor used in image acquisition,

and SNR, is the SNR of the equivalent un-accelerated image.

As noted in subsection 2.1.3, undersampling of the k-space data leads to
aliasing in image space. Therefore the second cause of lower SNR levels
when using parallel imaging, is noise amplification relating to the ability of
the coil configuration to unwrap aliased pixels (Pruessmann et al., 1999).
This noise amplification is highly dependent on coil geometry, and therefore

is quantified by the geometry or g-factor:

SNR,

SNRy = (2.9)
R g\/ﬁ
This equation can be rearranged as:
SNR,
S 2.10
9= SNRVE (2.10)

with the g-factor always having a value of one or more. The g-factor is
typically non-uniform across the image, with a higher g-factor representing
a local increase in noise, not a decrease in signal. Areas furthest from coil
elements and near the center of the imaging FOV typically have the highest
g-factors. This can be seen in Figure 2.12, which shows the spatial depen-
dence of the g-factor and greater noise amplification towards the center of
the image. It is important to note however, that due to the aliasing re-
sulting from undersampling when using parallel imaging acceleration, local
noise amplification primarily affects parallel imaging methods. However, MB
acceleration can also be affected by this spatially dependent noise amplifica-

tion factor if there is not enough variation in coil sensitivity along the slice
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Figure 2.12

Visualisation of the effect of parallel imaging acceleration factor on noise

Note. (A) No acceleration. (B) Acceleration factor R = 3. (C) Acceleration factor
R = 6. Adapted from MRIquestions.com, courtesy of Elster, A. D.

direction (Blaimer et al., 2013; Risk et al., 2021).

2.3.4 PCA denoising

In many cases, MRI data suffers from low SNR, such as in high resolution
fMRI or when high image acceleration factors are used. As outlined in sub-
section 2.3.2, this in many cases leads to lower BOLD sensitivity, reducing
the ability to reliably find activation during functional scanning. Thus noise
reduction strategies, are commonly employed during data preprocessing to
increase tSNR to improve signal sensitivity (Moeller et al., 2021), an example
of which being spatial smoothing (Triantafyllou et al., 2006). Spatial smooth-
ing acts as a low-pass filter, averaging signal intensity across neighbouring
voxels. This process reduces the contribution of high-frequency sources, such
as thermal noise, while preserving the contribution of low-frequency compo-
nents, such as task-based signal changes (Worsley et al., 2002). While spatial
smoothing is a commonly used approach to improve tSNR, it inherently lim-
its the spatial specificity within the data. To get around this limitation,
more targeted denoising methods using principal component analysis (PCA)

have been developed.

A principal component analysis of MR data shows that the majority of signal-
related variance is contained in a few principal components, whereas noise is

spread over a much larger number of components (Veraart, Novikov, et al.,
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2016). Therefore, PCA can be used for the identification and subsequent re-
moval of noise. The Marchenko-Pastur Principal Component Analysis (MP-
PCA) approach (Veraart, Novikov, et al., 2016) is a commonly used noise
suppression method for diffusion MRI (Moeller et al., 2021). However as
the MPPCA approach relies on a certain level of information redundancy
in order to properly distinguish between signal-only and noise-only principal
components, given enough redundant information, this method is also able
to work with other imaging modalities, such as fMRI (Veraart, Fieremans,
et al., 2016). As the Marchenko-Pastur distribution (Marcenko & Pastur,
1967) characterises the expected distribution of eigenvalues for random ma-
trices, the principal components that follow this distribution are considered
to be noise (Veraart, Novikov, et al., 2016). In this context, eigenvalues
indicate the amount of variance explained by each principal component, and
singular values are their square roots. Thus, the MPPCA approach uses the
largest singular value according to the Marchenko-Pastur distribution, to set

a threshold to remove noise-only principal components.

There are however a number of noise distribution assumptions made by the
Marchenko-Pastur distribution that are often violated. For example, the
Marchenko-Pastur distribution assumes uniformity of noise across the image,
however as discussed in subsection 2.3.3, the application of parallel imaging
techniques such as SENSE introduces spatially non-uniform noise. Further,
there is an assumption that the noise will have a zero-mean, however as de-
tailed in subsection 2.3.1, MRI data often exhibits a non-zero-mean Rayleigh

distribution when only the magnitude information of MRI data is used.

The NOise Reduction with DIstribution Corrected (NORDIC) method
introduced by Moeller et al. (2021), attempts to overcome the problems en-
countered with MPPCA due to violations of these noise distribution assump-
tions. As both the magnitude and phase information is used for NORDIC,
the data follows a zero-mean Gaussian distribution. Further, the noise in
the image is transformed from spatially variant to spatially uniform by: 1)
quantifying g-factor across the image, and 2) using g-factor as a normalisa-
tion factor for the signal. A Monte-Carlo simulation using a noise image
(where no radiofrequency excitation is applied), is used to find the mean

largest singular value across the sample. As with MPPCA this value is now
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used as a noise threshold, however here, as the noise image quantifies the
Gaussian-distributed thermal noise, this threshold represents the point at
which components cannot be distinguished from Gaussian noise. As only
components that cannot be distinguished from Gaussian noise are removed,
the impact on the real MR signal is negligible. As NORDIC removes prin-
cipal components that are indistinguishable from Gaussian noise, NORDIC
can be expected to provide the largest improvement to data in protocols
where the Gaussian-distributed thermal noise dominates other noise sources
such as physiological noise. For example, thermal noise becomes the most

common noise source as voxel volume decreases (Liu, 2016).

Both MPPCA and NORDIC can be effective in recovering underlying sig-
nal, however as SNR decreases, the MPPCA approach becomes a less ef-
fective de-noising method than NORDIC, potentially removing too many
signal components if the transition between signal-only and noise-only com-
ponents isn’t sharp (Moeller et al., 2021). Regardless, while the compo-
nents removed using the MPPCA approach are difficult to identify, both
the NORDIC and MPPCA methods lead to increased SNR (Moeller et al.,
2021; Veraart, Novikov, et al., 2016). However, in comparison to MPPCA,
the requirements for NORDIC are less demanding, making it easier to im-
plement. Specifically, while NORDIC necessitates a noise image and the
acquisition of complex rather than magnitude data, both of these options
can be easily implemented on scanner hardware, with the time penalty to
collect a noise volume only being a few seconds. On the other hand, MPPCA
relies on data redundancy to effectively distinguish between noise and signal
during PCA analysis, which for some imaging modalities such as fMRI, can

incur considerable time costs.

The effect of spatial smoothing, NORDIC and MPPCA were investigated
across a range of fMRI acquisition parameters, with it being found that all
three of these strategies increased BOLD sensitivity (Dowdle et al., 2023).
Additionally, NORDIC and spatial smoothing were found to provide similar
levels of BOLD sensitivity (Dowdle et al., 2023). While NORDIC did cause
some degree of spatial smoothing (5.1% on average), this was found to be
at a level significantly lower than all other data processing methods (8.0%
for MPPCA, 52.7% for 1 voxel of smoothing, and 142.8% for 1.5 voxels of
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smoothing). Thus while NORDIC was originally demonstrated using dif-
fusion MRI data, this study demonstrates the benefits that NORDIC can
provide to other imaging modalities such as fMRI, especially for thermal

noise dominated acquisition protocols.

In this thesis, the NORDIC denoising method is explored in Chapter 4 and
Chapter 5.
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Chapter 3

Development of fMRI
Region-of-Interest Analysis
Tool (fRAT)

The software described in this chapter has been published in the Journal of Open Source
Software as:

Howley, E., Francis, S., & Schluppeck, D. (2023). fRAT: an interactive, Python-based
tool for region-of-interest summaries of functional imaging data. Journal of Open Source
Software, 8(85), 5200. https://doi.org/10.21105/j0ss.05200.
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3.1 Introduction

Functional magnetic resonance imaging (fMRI) is widely used to address
basic cognitive as well as clinical neuroscience questions. There are numer-
ous parameters that can be changed when collecting fMRI images, with the
specific choice of image acquisition and sequence parameters used having a
marked effect on the acquired data. The optimal parameter selection may
vary across the brain, for example the optimal echo time to image a voxel
is equal to the T of grey matter in that voxel, and since 7} varies across
the brain (Clare et al., 2001) so does the optimal echo time. Many imaging
parameters however do not have a singular optimal value, and the optimal
parameter choice has to be considered against trade-offs. For example, in-
creasing the in-plane SENSE parallel acceleration and the through-plane
Multiband (MB) acceleration factor can significantly reduce the volume ac-
quisition time (volume TR), however accelerating the image acquisition in
this way also leads to spatially dependent noise amplification as quantified
by the g-factor (Reeder, 2007).

Investigating the effect of these parameters on data quality across the brain
is crucial to ensure scans can provide informative insights. Data quality met-
rics, in particular temporal signal-to-noise ratio (tSNR) of the fMRI scan,
can be used to optimise fMRI scan parameters for a chosen set of regions-of-
interest (ROI) relevant to the task under investigation. While ROI analysis
is possible with current tools (Poldrack, 2007), reporting of data quality met-
rics such as tSNR and image SNR (iSNR) is typically performed over the
whole brain or for a small number of manually defined voxels. Importantly,
this approach can obscure important inter-regional differences in data qual-
ity metrics. This is because while the numerous neuroimaging libraries offer
a wide range of functionality, no neuroimaging library exists that provides
a comprehensive solution for ROI-based investigations. In response to this
need, I developed the fMRI ROI Analysis Tool (Howley et al. (2023); fRAT),
a Python-based dedicated software solution designed to streamline the as-
sessment of data quality metrics and simplify ROI analysis in neuroimaging
studies. This tool addresses the challenges that arise when attempting to ex-

tract meaningful insights from specific brain regions by facilitating summary
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and multivariate analysis of data quality metrics and functional statistical

measures (such as beta maps) simultaneously across multiple ROIs.

In the following section, I will describe the tools and techniques available for
fMRI analysis, many of which are used within fRAT.

3.1.1 Overview of fIMRI software

With over 30 years of continued research and development, the field of fMRI
analysis has expanded significantly, offering a diverse array of approaches to
analyse neuroimaging data. This wealth of toolsets serve as a foundation
from which it is possible to answer important questions about the human
brain. Several general-purpose neuroimaging libraries and analysis toolboxes
are available, including AFNI (Analysis of Functional Neurolmages) (Cox,
1996), SPM (Statistical Parametric Mapping) (Penny et al., 2011) and FSL
(FMRIB Software Library) (Jenkinson et al., 2012). These libraries support
different neuroimaging modalities, for instance, FSL and AFNI have built-
in functionality for diffusion-weighted imaging analysis. Their fMRI tools
also share common features, such as the ability to preprocess and conduct
statistical analysis of fMRI data. Although the fMRI toolset offered by
these libraries shares many similarities, there are differences in how data

preprocessing and analysis is implemented.

Bowring et al. (2019) examined the cross-software variability of these
libraries across multiple datasets, finding significant variation between
libraries. For example, while large effects were found to be robust across
libraries, with smaller effects there was inconsistency across libraries.
Bowring et al. (2022) examined the source of this variability between
packages, finding that it is dependent on factors such as task paradigm,
with event related-designs more susceptible to factors such as the assumed
haemodynamic response model or the orthogonalisation procedure of
regressors. While these studies examined the differences and the source
of the variability between these packages, they did not examine which
package provides the most accurate results. As preprocessing and statistical

modelling are multistage processes, the accuracy of each step within the
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Figure 3.1

Projects maintained by the NiPreps community
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analysis pipeline contributes to the total accuracy of the end result. For
example, when using the linear registration tools of SPM and FSL with
default settings to register participant fMRI data sets to the MNI152
template brain (MNI152 is the Montreal Neurosciences Institute averaging
of 3DT1 data sets from 152 different participants), SPM has been shown
to have a registration failure rate of 31% compared to FSL which has a
11% failure rate. Further, SPM registration failure was associated with low
image Signal-to-Noise Ratio (iSNR) (Dadar et al., 2018).

Many specialized tools have also been developed, with some offering fea-
tures not found in general-purpose neuroimaging libraries, while others can
serve as substitutes for certain functions. For example, optiBET is a spe-
cialised brain extraction tool that can be used in place of the brain extrac-

tion tools provided by general-use libraries (e.g. BET in FSL). optiBET pro-
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duces higher quality brain extraction results than the tools provided by these
general-purpose neuroimaging libraries, particularly in cases where data con-

tains severe pathologies that affect brain shape (Lutkenhoff et al., 2014).

There are also broader neuroimaging projects which aim to create neuroimag-
ing tools with a shared design philosophy. One example is the NiPreps
(NiPreps, n.d.) project which encompasses a variety of specialised Python li-
braries for working with neuroimaging data. The aim of the NiPreps project
is for researchers to be able to produce transparent and reproducible work-
flows. As seen in Figure 3.1, Nipreps libraries encompass a diverse range of
tasks useful for fMRI analysis, from tools such as using Nibabel that provide
low-level interfaces to read and write to/from commonly used neuroimaging
file formats, to end-user applications such as MRIQC which provides im-
age quality metrics for fMRI data. The Nipreps software infrastructure tool
Nipype (Gorgolewski et al., 2011) is used in many other Nipreps libraries, as
it provides a universal interface to existing neuroimaging software such as
FreeSurfer (Fischl, 2012), FSL (Jenkinson et al., 2012), SPM(Penny et al.,
2011) and AFNI (Cox, 1996). This allows multiple software packages to be
combined in the same workflow, allowing the user to leverage the advantages
of each tool. Example code to combine tools from multiple libraries can be
seen in Figure 3.2. MRIQC (Esteban et al., 2017) and fMRIPrep (Esteban
et al., 2019) are two Nipreps libraries which use the Nipype workflow engine
to combine the tools from multiple neuroimaging software, which in the case
of fmriPrep helps it to achieve higher spatial accuracy in its preprocessing
pipeline than that of FSL’s FEAT preprocessing (Esteban et al., 2019).

There are several tools that provide functionality to report ROI wise sum-
maries, including the widely used Freesurfer infrastructure (Fischl, 2012) and
packages built on top of this. For example, the R packages ggseg and ggseg3d
(Mowinckel & Vidal-Pifieiro, 2020) can be used to show aggregated data
such as cortical thickness in atlas-derived regions of interest. However, these
packages are designed primarily for use with anatomical datasets and would
require some additional coding for use with fMRI data quality and statisti-
cal metrics. Several tools do provide data quality metrics for fMRI datasets,
such as MRIQC (Esteban et al., 2017), which provides important metrics
such as Signal-to-Noise Ratio (SNR), Contrast-to-Noise Ratio (CNR), and

37



3.1. Introduction

Figure 3.2

Python code showing how to connect FSL's BET and AFNI's Despike tools

# Import necessary Nipype modules
from nipype import Node, Workflow

3 from nipype.interfaces import fsl, afni

# Create a workflow
workflow = Workflow(name="preprocessing_workflow")

# Set up neuroimaging functions as nodes and pass in arguments
bet = Node(fsl.BET(frac=0.5), name="brain_extraction")
despike = Node(afni.Despike(), name="despike")

# Connect output of BET to input of Despike

3 workflow.connect(bet, "out_file", despike, "in_file")

participant movement during scanning. These tools are primarily used to
identify problematic scans that may need additional preprocessing or re-
moval from the dataset. However, these tools either report voxel wise maps

or aggregate metrics over the entire brain.

Welvaert & Rosseel (2013) investigated the reporting of various SNR and
CNR metrics in fMRI literature, finding that a third of simulation studies
do not report any SNR/CNR metrics, with tSNR only reported in about 4%
of simulation studies. This may be because while many SNR equations are
relatively simple (e.g. Equation 3.7), analysis tools to calculate SNR are not
widely available, thus they are not reported as standard (Welvaert & Rosseel,
2013). For example, in the case of calculating tSNR for fMRI images, as it is
only a useful measure in regards to grey matter voxels (Welvaert & Rosseel,
2013), the process of accurate calculation of tSNR mandates the segmen-
tation of tissue types to exclude white matter and cerebrospinal fluid from
this calculation. In addition to the difficulty of producing accurate SNR mea-
sures, the lack of support in existing tools for ROI-wise summaries of fMRI
data quality metrics further increases the difficulty in reporting meaningful
SNR metrics, as aggregating these metrics over the brain can obscure im-
portant inter-regional differences, which may be particularly informative for

the optimisation of scanning parameters when planning fMRI experiments.

The goal of the fMRI ROI Analysis Tool (fRAT) presented here is to provide
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an end-user toolset to address this gap, to deliver a straightforward method

for conducting multivariate ROI wise analyses of fMRI metrics.

3.2 Design goals

fRAT, an open-source application built in Python (version 3.10), is compat-
ible with Mac, Linux, and Windows (using Windows Subsystem for Linux).
Its primary focus is to offer a comprehensive solution for ROI wise analysis
of fMRI data. fRAT achieves this by providing a user-friendly and flexible
pipeline for converting voxel wise data into ROI wise data. When designing

fRAT several goals were set out:

To abide by open-source software standards

Ease of installation and use

Minimally preprocessed data

Comprehensive ROI analysis toolset

3.2.1 Open-source software standards

To abide by open-source software standards, code for fRAT is publicly avail-
able via GitHub (https://github.com/elliohow/fMRI_ROI _Analysis_ Tool)
which allows full transparency into the development process. Further, the
code is under the open source initiative approved Apache 2.0 license. Fi-
nally, guidelines for contributing to the software and a contributor code of
conduct are available on GitHub to facilitate collaboration and ensure a wel-
coming environment for all contributors. The publication of fRAT in the
Journal of Open Source Software (Howley et al., 2023) shows its adherence

to open-source software standards.

3.2.2 Ease of installation and use

There are a number of software tools used in fRAT as described in subsec-

tion 3.1.1, including many FSL and Nipreps tools. FSL was chosen to provide
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many of the neuroimaging tools for fRAT due to the varied toolset it pro-
vides along with anatomical atlases, which are used to define the template
used for the ROI analysis. The Nipype framework engine is used extensively
throughout to interface and create a processing pipeline using FSL’s various
tools. While Nipype has the capability to create a workflow combining the
tools of multiple neuroimaging libraries, to limit the external dependencies
and thus the difficulty of installation, the only necessary external depen-
dency for fRAT is FSL. Originally, Freesurfer was also an essential external
dependency due to its segmentation functionality. However, due to the sig-
nificant computational time required for Freesurfer’s segmentation procedure
and the marginal improvements it provides over FSL’s FAST tool (Zhang et
al., 2001), it was instead replaced by FSL FAST.

To meet the user’s research needs, the settings of fRAT are customisable
through a user-friendly graphical user interface (GUI; Figure 3.3). Fur-
ther, to aid in ease of installation and use, a website (fmri-roi-analysis-tool.
readthedocs.io) was created to provide information on usage of fRAT. This
website contains installation instructions as well as a detailed tutorial on
how to use fRAT to run an ROI analysis. A sample of the tutorial page
can be seen in Appendix 7.1. Finally, an example dataset has been pro-
vided (osf.io/pbm3d/) to allow users to run a test analysis to verify their

installation.

3.2.3 Minimally preprocessed data
Users are recommended to use optiBET to brain extract anatomical data
before running fRAT. In most cases, no other preprocessing is necessary for

data collected at 3T (and below), however additional preprocessing may be

necessary for data collected at 7T (and above).

3.2.4 Comprehensive ROI analysis toolset

There are several use-cases that researchers have published for ROI wise

summaries of data quality metrics, from producing ROI wise data quality
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Figure 3.3

A screenshot of fRAT's graphical user interface
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summaries for a given dataset, to conducting multivariate analysis to investi-
gate the relationship between scanning parameters and data quality to plan
studies. The aim of fRAT was to be able to accommodate any of these use-
cases. This was achieved by producing a modular toolset allowing users to
choose whichever fRAT tools are needed or to change the analysis settings
to accommodate their dataset. The functionality of fRAT is discussed in
greater detail in section 3.3. With the tools available within fRAT, users
are able to take raw data through to the statistical analysis stage without
use of additional software. While other tools such as MRIQC can be used
to compute tSNR, to further limit the need for additional software, image
Signal-to-Noise Ratio (iISNR) and temporal Signal-to-Noise Ratio (tSNR)
maps can be created by fRAT, to be used during the ROI analysis. But
importantly, fRAT has also been designed to be used with any voxel wise
maps, with there being a number of other potential uses of fRAT’s ROI anal-
ysis. For example, calculating maps of the mean 77 of each ROI to optimise
echo time for the areas of interest in an fMRI study, reducing the effect of
susceptibility artifacts in difficult to image areas. Given the maps are in the
same space as their respective fMRI volumes, any pre-computed voxel wise

statistical or functional map can be used as an input for the ROI analysis.

One difficulty faced when handling ROI wise data compared to a whole brain
aggregate measure, is the size of the resulting data. This is because for a
whole brain aggregate measure, a single result is produced across the whole
brain, whereas a separate result for each defined region must be produced
for an ROI wise analysis. In the case of the Harvard-Oxford atlas of cortical
structures (Desikan et al., 2006), there are 48 distinct regions, which will each
produce a separate result. Data complexity also increases significantly as the
number of statistics calculated increases. To address this, fRAT provides
several options for displaying and interacting with the analysis results. For
example, an interactive “dash” table is available for the ROI analysis results,
and these results can also be printed to the terminal. Alternatively, if users
wish to explore the data in a different way, the data is also available in the

widely used “json” file format.
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3.3 Functionality

fRAT contains an array of functionality with the main focus being the Com-
plex Analysis Pipeline (CAP). The CAP is able to use a number of different
FSL supplied atlases to convert voxel wise data into ROI-wise data. fRAT
also contains the “maps” functions to create voxel wise data quality maps,
and the Handy Optional Utilities for Scan Editing (HOUSE) function which

contains utilities to edit functional volumes.

3.3.1 The Complex Analysis Pipeline (CAP)

The overall aim of the Complex Analysis Pipeline (CAP) is to combine the
numerical information from a voxel wise map with the spatial information
of an atlas (Figure 3.5), allowing summaries of that voxel wise map for each
ROI. fRAT is able to analyse datasets that contain multiple participants,
and if using a multiple participant dataset, these per-ROI summaries will
be combined across participants. For the ROI analysis step in CAP, the
necessary inputs for each participant include: an anatomical volume, voxel
wise statistic maps (e.g., tSNR maps), and the corresponding functional
volumes used to generate the voxel wise maps. The processing pipeline for
converting voxel wise into ROI wise maps is illustrated in Figure 3.4. The
CAP also contains two optional steps: visualisation and statistics. The ROI
analysis step of CAP serves to produce descriptive statistics for each ROL.
In contrast, the statistics step serves as a valuable tool when a user intends
to produce inferential statistics on their dataset. The statistics step also
supports multivariate analysis as seen in Chapter 4. Finally, the visualisation
step is used to produce figures from the results of the ROI analysis step, and

contains a wide range of options to highlight different aspects of these results.

3.3.1.1 ROI analysis

The first step of the ROI analysis is to convert the chosen atlas into a par-

ticipant’s native space. As FSL’s atlases are in the MNI152 standard space,
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Figure 3.4

Flowchart showing fRAT s processing pipeline
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Figure 3.5

Representation CAP’s ROl wise map creation process

Note. Data from a single participant is shown here. All figures are in native space
apart from (D), which is in standard space. (A) Original functional volume. (B)
Voxel wise temporal signal-to-noise ratio (tSNR) map (brighter colours, higher
tSNR values). (C) Harvard-Oxford Cortical atlas regions assigned to participant
anatomy. (D) Combination of (B) and (C) to produce final ROI wise tSNR map.

if the linear transform can be found between the native space of a partici-
pant’s functional volumes and the MNI152 standard space, then the inverse
transform can be applied to FSL’s atlases to convert them from standard to
native space. Once each functional volume has an associated atlas volume
in the same space, each voxel in the voxel wise map (which is in the same
space) can be assigned to an ROI from the atlas. After this process has been
repeated for each participant, the ROI information from each participant

can be combined.

As seen in Figure 3.6 and Figure 3.7, a number of changes have been made
to the ROI analysis phase of CAP compared to its initial inception. These
changes have been made to improve the accuracy of linear registration be-
tween the standard and functional spaces, and to remove the influence of
“noise voxels”. The first major change to the initial pipeline was that an
anatomical volume needed to be provided for each participant. Due to the
lower resolution of functional volumes, registration accuracy is lower when
directly aligning functional volumes to standard space, compared to when
anatomical volumes are used as an intermediary registration step. While
requiring anatomical files to be provided slightly limits the datasets fRAT
CAP can be used with, due to the importance of accurate registration to
provide proper estimation of ROIs, it was decided that the provision of an

anatomical file should be a requirement.
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Figure 3.6

Flowchart showing original fRAT CAP process for conducting analysis on a single participant
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Figure 3.7
Flowchart showing new fRAT CAP process for conducting analysis on a single participant
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Precise spatial normalisation is an essential step in fRAT (Figure 3.4), and
as brain extraction leads to more accurate registration to MNI templates
(Fischmeister et al., 2013) and aids in segmentation (Fatima et al., 2020),
accurate brain extraction is also essential. BET (Smith, 2002) was part of
the original analysis pipeline (Figure 3.6), however one issue encountered was
the optimisation of BET parameters for a given volume, due to the default
BET options producing unsatisfactory results in many cases. In particu-
lar; differences in the scanning protocols used such as the number of slices
present to cover the neck, or the amount of spatial intensity inhomogeneity
across the volume can contribute to the performance of BET (Popescu et
al., 2012). Popescu et al. (2012) investigated how to optimise BET param-
eters to produce the best results for a wide range of acquisition protocols.
They found that by using the bias field correction and neck cleanup (option
“B” for BET) alongside setting the fractional intensity threshold at 0.1 (pa-
rameter “f”), a substantial improvement in performance was seen across all
scanning protocols. Lutkenhoff et al. (2014) assessed several brain extrac-
tion toolsets, including BET with the parameters suggested by Popescu et al.
(2012), finding that optiBET performed better than all other brain extrac-
tion tools. Typically, lesions within the brain can pose a significant challenge
for skull-stripping algorithms (Lutkenhoff et al., 2014), however these tools
were compared using a dataset presenting gross brain pathologies, suggest-
ing that optiBET outperforms other brain extraction algorithms in even the
most challenging of datasets. As illustrated in Figure 3.8, this was also re-
flected in the current data with brain extraction performance on healthy
brains varying between optiBET and BET. It was found that BET in many
cases either removed small sections of grey matter or retained large sections
of non-brain matter. In the case of lesioned brains, the difference between
brain extraction performance was even more stark. As seen in Figure 3.9,
BET struggled with lesioned brains and in particular, struggled to identify
brain tissue close to lesion sites, whereas optiBET performed substantially
better.

While optiBET significantly outperforms BET, this increase in skull strip-
ping performance comes at the expense of significantly increased compu-

tation time. Brain extraction using BET with the default options takes
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Figure 3.8

Extraction accuracy of BET and optiBET for a healthy brain

Note. (A) BET extraction overlaid on top of original anatomical volume. (B)
optiBET extraction overlaid on top of original anatomical volume. (C) Overlay
of both BET and optiBET extractions on top of original anatomical volume.
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roughly 3 seconds whereas using the optimal BET settings as determined by
Lutkenhoff et al. (2014) takes roughly 9 minutes. optiBET’s brain extrac-
tion algorithm however almost doubles that number, taking approximately
17 minutes to run (Lutkenhoff et al., 2014). This increased computation
time for optiBET is a relatively small drawback compared to the accuracy
advantages provided by optiBET. Therefore it is the recommended brain
extraction toolset to use. However, it may still encounter challenges and fail
with certain datasets. Due to the reliance of subsequent ROI analysis steps
on accurate brain extraction of the anatomical volume, brain extraction has
been removed from the analysis pipeline altogether, with users instead in-
structed to manually run (and check the results of) the brain extraction on
their dataset.

There are many atlases to choose from in FSL, from atlases that focus on
cortical or subcortical regions such as the Harvard-Oxford cortical and sub-
cortical structural atlases, or atlases that are more specific in their region
definitions, such as the Oxford thalamic connectivity atlas that focuses on
7 sub-thalamic regions. Within each atlas, multiple thresholded variants
exist, corresponding to the level of support from segmentations for each re-
gion label. For instance, the Harvard-Oxford cortical atlas provides three
threshold variants: 0%, 25%, and 50%. A 0% threshold signifies that at least
one segmentation supports the region label, while the 25% variant indicates
agreement with the region label in 25% of segmentations. Higher threshold
values denote increased certainty regarding a voxel’s inclusion in a region.
However, as illustrated in Figure 3.10, opting for higher thresholds results in
reduced sizes for every region label. In this context, the decision was made
to prioritize 0% threshold maps. This choice facilitates exploratory analysis
by capturing a broader spectrum of structures, which might be overlooked

with more conservative threshold maps employing higher thresholds.

However, the use of this threshold level necessitated further clean-up depen-
dent on the atlas chosen, due to a high number of extracranial voxels being
included in cortical ROI definitions when using the 0% threshold level. The
use of the FSL FAST segmentation to restrict analysis to grey matter voxels
typically removes most extracranial voxels, with higher threshold levels set

in fRAT providing more conservative grey matter estimates. There are also
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Figure 3.9

Extraction accuracy of BET and optiBET for a lesioned brain

Note. The lesioned area of the brain is indicated by arrows. (A) BET extraction
overlaid on top of original anatomical volume. (B) optiBET extraction overlaid
on top of original anatomical volume. (C) Overlay of both BET and optiBET
extractions on top of original anatomical volume.
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Figure 3.10

Harvard-Oxford Cortical atlas threshold map comparison overlaid on MNI template

Note. Rows differ in terms of the minimum probability threshold necessary to
include a voxel in a region-of-interest. (A) Minimum probability threshold of 0%.
(B) Minimum probability threshold of 25%. Note the inclusion of extracranial
voxels in (A).
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Figure 3.11

Example of Harvard-Oxford Cortical atlas cleanup

Note. (A) Breakdown of atlas clean up steps. In order: red voxels correspond
to voxels that were not originally assigned to a region; blue voxels have been
determined as non-grey matter using the FSL fast segmentation; green voxels
have a value below the mean value outside of the brain; & yellow voxels were
determined as outliers after fitting a gaussian to the data. (B) Harvard-Oxford
Cortical atlas applied to subject brain without any cleanup. (C) Harvard-Oxford
Cortical atlas applied to subject brain after cleanup.

several post-analysis de-noising options available as an alternative method
to clean-up the final ROI definitions. The first de-noising option calculates
the average value of the statistic of interest for extracranial voxels, removing
any values below this value. The second de-noising option involves using
the unsupervised elliptic envelope machine learning technique, which can be
used to detect outliers in a Gaussian distributed dataset. In cases where the
FSL FAST segmentation fails in one or more anatomical volumes, these ad-
ditional de-noising options are available to remove extracranial voxels from
regions. The effect of atlas mask clean-up on the final ROI definitions can
be seen in Figure 3.11. To remedy potential holes in the atlas mask created
by de-noising, after running post-analysis de-noising, holes were filled in the
atlas mask using the FSL maths “fillh” option. The ROI analysis is repeated
with this new atlas mask to assign an ROI to each voxel. As seen in Fig-
ure 3.4, the final step of the ROI analysis, is to generate the final results
by combining the information from each volume, aggregating based on the
independent variables used to collect each volume. For example, if MB was
the only independent variable, information would be aggregated for each MB

level.
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3.3.1.2 Statistics

The statistical framework of CAP was designed to analyse the dataset used
in Chapter 4. As the primary goal of Chapter 4 was to develop a set of
predictive models, regression analysis was the most suitable choice. This is
because regression analysis produces beta coefficients that quantify the rela-
tionship between predictors and outcomes, making it suitable for predictive
modelling. However, applying standard linear regression to non-independent
data can lead to significant bias in statistical estimates (Kenny & Judd,
1986). Therefore, a core assumption of linear regressions is the indepen-
dence of observations. The dataset used in Chapter 4, however, contained
a number of within-subject factors, which would violate this core assump-
tion of linear regressions. To produce predictive models that account for
non-independence of observations, alternative regression approaches such as
repeated-measures regression or linear mixed models (LMMs) can instead

be used.

Repeated-measures regression is a form of Analysis of covariance (ANCOVA)
which controls for between-participants variance (Bakdash & Marusich,
2017). In contrast, LMMs explicitly model between-participant variance
as a random effect. There are several advantages to LMMs over repeated-
measures regression. The ability of LMMs to use partial pooling allows
extreme estimates to be “shrunk” towards an overall average providing
regularized model estimates, however repeated-measures regressions do not
have this partial pooling mechanism. For subjects with fewer numbers of
observations, such as in the case of missing data, due to this lack of partial
pooling, parameter estimates with repeated-measures regressions can be
much more extreme than if using LMMs. Thus partial pooling allows
LMMs to accommodate missing and unbalanced data more effectively than
repeated-measures regressions. Another advantage of LMMs is they are
largely robust to violations of model assumptions, with both fixed and
random effect estimates being relatively unbiased even in severe cases
of model assumption violations (Schielzeth et al., 2020). On the other
hand, in cases where the restricted estimate maximum likelihood (REML)

algorithms used by LMMs fail to converge, the model fitting process will
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not succeed. While there are alternative algorithms that can be used with
LMMs if REML model fitting fails (Misztal, 2008), convergence failure is

generally not an issue for repeated-measures regression.

Given the benefits provided by LMMs, the statistical phase of fRAT employs
LMDMs for predictive modeling instead of repeated-measures regressions. As
variance estimates are biased when using maximum likelihood (Pinheiro &
Bates, 2006), restricted estimate maximum likelihood is generally considered
to be better to fit models. On the other hand, when calculating information
criteria to compare two models, the likelihoods of two restricted estimate
maximum likelihood fit models will not be directly comparable (Faraway,
2016) therefore maximum likelihood is preferred. Thus when calculating
LMMs for fRAT, maximum likelihood is used to fit models when using infor-
mation criteria for model comparison, whereas restricted estimate maximum
likelihood is used to fit the final model. Independent & paired sample t-tests

can be used to calculate post-hoc contrasts over each level of the factors.

R? is a statistical measure for regressions used to quantify the goodness-
of-fit of a model. The definition of R? is intuitive, being the proportion
of variance explained by the model Additionally, R? is also a standardised
measure of effect size, thus it can be used to compare statistical models
within and between studies. These reasons make R* a useful and popular
model summary statistic. The addition of random effects and the potential
hierarchical nature of LMMs make R?, as calculated for fixed-effect only
regression models, unsuitable. Due to the relatively recent development of
linear-mixed models, there is no current consensus on alternative goodness-
of-fit measures, with many “explained variance” measures being proposed
(LaHuis et al., 2014). Likely due to lack of consensus on how to R? for LMMs,
while R packages such as ‘lmej’ (Bates et al., 2015) can be used to calculate
effect size statistics for LMMs, there is not currently any statistical package
within Python that has this capability. However, due to the usefulness of
this statistic, a previously proposed R? measure was manually implemented
into fRAT.

Nakagawa & Schielzeth (2013) proposed a simple R* measure that fulfills

most properties of traditional R? measures. This measure of R* has been
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found to have similar levels of bias and efficiency compared to other R?
measures (LaHuis et al., 2014), however the advantage of using this measure,
is the ability to partition the explained variance into variance explained by
the fixed effects only (marginal R?), and variance explained using both the
fixed & random effects (conditional R?). While this method extends to
both LMMs and generalised LMMs, in the case of a LMM with an assumed
Gaussian distribution of noise and a single random effect, marginal and

conditional R* can be calculated respectively as:

2
S S— (3.1)
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Figure 3.12

Python code showing marginal and conditional R? calculation

# Find variance for residuals, random and fixed effects

var_resid = result.scale
var_random_effect = float(result.cov_re.iloc[0])
var_fixed_effect = result.predict(current_df).var()

# Calculate total variance
total_var = var_fixed_effect + var_random_effect + var_resid

# Calculate marginal and conditional r2

marginal _r2 = var_fixed_effect / total_var

conditional _r2 = (var_fixed_effect + var_random_effect) /
total_var

where U; is the variance calculated from the fixed effect components, o2 is the
variance calculated from the random effect component and o7 is the residual
variance. In fRAT, this was implemented as demonstrated in Figure 3.12,
where result is the a statsmodels class of type MixedLMResults, and
current df is a Pandas dataframe containing the predictor and outcome
variables. J]% is calculated in this way as it can be estimated by predicting
fitted values based on the fixed effects alone and then calculating the variance

of these fitted values. As R? increases with every new predictor added into
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the model, relying solely on R? as a measure of goodness-of-fit for a model
can lead to model overfitting. Thus R, is an extension of R* that adjusts
for the number of terms in the model, only increasing when a new term

improves the model more than by chance:

1= B(n — 1)
RQ.:1—<
oy n—k

(3.3)

where n is the number of observations and £ is the number of terms in the
model (including the intercept). While it is possible for R , and Rf, to
decrease with new terms added into the model, it is unlikely as JJ% tends to
increase when predictors are added into the model. The potential issue of
overfitting a model then, applies to R & R as with R*. Thus Equa-

tion 3.3 was used in fRAT to calculate R, & R?

adim aaqc s seen in Figure 3.13.

Figure 3.13

Python code showing adjusted marginal and conditional R? calculation.

adj_marginal_r2 = 1 - ((1 - marginal_r2) * (result.nobs - 1) / (
result.nobs - len(result.params)))

3 adj_conditional _r2 = 1 - ((1 - conditiomnal_r2) * (result.nobs -

1) / (result.nobs - len(result.params)))

3.3.1.3 Visualisation

fRAT contains several figure creation options to visualise different aspects of
the data. These figures have built-in capability to compare multiple levels

of (up to) two independent variables.

The first option, histograms, are created separately for each ROI, and aim
to highlight the distribution of values within that ROI. These are useful to
identify cases where fRAT’s ROI analysis settings need to be modified to
improve analysis of a voxel wise map. In the case of tSNR, visualising the
data using histograms highlighted that ROI’s commonly had a large tSNR
spike at ~ 5 which did not fit the Gaussian distribution of the data other-

wise. This spike was removed by using the de-noising options as described in
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subsubsection 3.3.1.1. The option to plot the mean and/or median as mea-
sures of central tendency for the data is available. The ability to compare
multiple levels of independent variables allows users to examine the changing
distribution in response to each level. While histograms in fRAT are used to
visualise the distribution of values within an ROI, the joint box & violin plots
are instead used to examine the mean values for each ROI. These plots allow
the user to compare the overall effect of each independent variable across
all ROIs, with the box plots representing the central tendency and spread
of the data, and the violin plots representing the probability distribution of

the data. An example is shown in Figure 3.14.

The previous two figure types can be used to summarise any data, however
both bar charts and brain grids can be used here only when the dataset
includes at least one independent variable with two distinct levels. Bar
charts are created separately for each ROI, with them displaying both the
mean and confidence interval summary statistics for the data at each level of
the independent variable, to examine the effect of the independent variable
on that ROI. On the other hand the brain grids plot the results for each ROI
in standard space, and are used to examine the spatial effect of each level
of the independent variables, such as seeing if different levels affect anterior
or posterior regions more. An example of the brain grid figure for tSNR is

shown in Figure 3.15.
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Figure 3.14

Example of a joint box & violin and plot created by fRAT
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Figure 3.15

Example of a brain grid created fRAT
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3.3.2 Maps

The aim of the ‘Maps’ functions are to create voxel wise maps that are
able to used with fRAT CAP to provide per-ROI summaries. Currently
two types of data quality maps can be created by “maps”: image Signal-
to-Noise Ratio (iISNR) and temporal Signal-to-Noise Ratio (tSNR), however
there are several preprocessing options available to clean the functional files
before creating these maps. The first is the option to use temporal filtering
to use a high pass filter which removes low frequency drift. A default high
pass filter cutoff frequency is set to 0.01 Hz, although the user can change
this value. This cutoff frequency is converted to sigma in volumes using the

formulas:

1

O= 3 FIR (34

where f represents the cutoff frequency and TR represents the repetition
time of the data (Webster, 2017). There are also two preprocessing
options concerned with motion available. The first uses the FSL tool
“fsl_motion__outliers” to detect timepoints that have been corrupted by
large motion, with these timepoints then removed from the timeseries. The
second motion preprocessing option employs FSL’s MCFLIRT (Jenkinson
et al., 2002) to motion correct each time series using linear registration.
In addition to using them for the calculation of the voxel wise maps, the
output of these motion preprocessing steps are then retained to be used
during fRAT CAP’s ROI analysis step to improve registration performance.
The final preprocessing option spatially smooths data using FSL’s SUSAN
(Smith & Brady, 1997). While spatial smoothing is available using the “s”
option of fslmaths, the advantage of using SUSAN for spatial smoothing is
only local voxels which have a similar intensity are averaged, preserving the
underlying structure of data. The user is able set both the spatial extent of
the Gaussian kernel (in mm) as well as the brightness threshold to be used
by SUSAN.

After running these preprocessing steps, the voxel wise maps are created.

One available option is the creation of iSNR maps. A common equation for
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calculating iSNR involves dividing the voxel wise average signal (S) by the

standard deviation of the background noise (o):

isp = 2 (3:5)
o

As the calculation of ¢ is necessary for the iSNR equation, two options are
given within fRAT. The first option allows a user to manually define a noise
value for each functional volume. In this case, it is typical to calculate o
as the standard deviation of a number of voxels outside of the brain. The
second option is to specify that each time series contains a “noise volume”. A
noise volume being a single time point collected at the end of the time series,
that contains data collected without using a radiofrequency pulse or gradi-
ents. This allows for the characterisation of the background noise present
in the imaging system. o is then calculated as the standard deviation over
the entire noise volume. While background noise in a complex MR image
has a Gaussian distribution with zero mean, the background noise within a
magnitude image (as is commonly used in MR imaging) follows a Rayleigh
distribution with a non-zero mean, and the ¢ is under-estimated (Reeder,
2007). Voxels with sufficiently high SNR and high signal however (such as
within the brain) are unaffected by this conversion. Thus, when using a mag-
nitude image to measure o, iSNR will be overestimated. To correct for this
underestimation of o, a correction factor can be applied. In the case of mag-
nitude images collected using four or more coils, the magnitude correction
factor is approximately 0.7 (Constantinides et al., 1997), and Equation 3.5

therefore becomes:

iSNR = 0.7 - § (3.6)

o
Thus when creating iSNR maps, the option to enable this correction factor
is given. The next map option is the calculation of tSNR maps. This is
calculated similarly to iSNR with the tSNR calculation with the numerator
referring to the voxel wise average signal (S) and the denominator referring

to the noise (o0):
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{SNR = 2 (3.7)
o
However, in this case, instead of o being calculated as the standard deviation
of the background noise, for tSNR o is calculated as the voxel wise standard
deviation of the signal over time. Thus tSNR, is a measure of the time course
stability.

3.3.3 HOUSE

The Handy Optional Utilities for Scan Editing (HOUSE) functions provide
options for altering pre-existing functional volumes. Currently, two HOUSE
functions have been incorporated into fRAT: one for introducing motion and
another for adding thermal noise to the data, with both of these functions
used in Chapter 5. These two functions both base the addition of simulated
head motion/thermal noise on the actual head motion/thermal noise seen
for each participant, with a multiplier setting able to be changed which
specifies how much head motion/thermal noise is added to each file. The
“add motion” function aims to simulate additional motion during scanning
by applying affine transformations to each file, based on each participant’s
actual motion during scanning. To do this, FSL’s MCFLIRT (Jenkinson et
al., 2002) is first used to calculate the mean angles of rotation and translation
about the x, y and z axes for each participant. For each timepoint of a file,
a value for each rotation and translation parameter is randomly drawn from

a normal distribution (X'), which is parameterised as:

X ~ N(0, (p-m)?). (3.8)

where p represents the calculated participant’s mean for that parameter and
m represents the multiplier. The final transformation matrix for that time-
point is then formed as a composite transformation of translation and rota-

tion matrices:
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100 AL 0 0 0f |cosf, 0 —sinf, 0| | cosf, sind. 0 O

e 010 A,l|0 cosf, sinf, 0 0 1 0 0| |—sin#, cos@, 0 0O (39)
001 A, |0 —sinf, cosf, 0| [sinf, 0 cosf, O 0 0 10
000 1]1|0 0 0 1 0 0 0 1 0 0 01

where A is the final transformation matrix, the first matrix represents the
translation, and the next three matrices represent rotation about the x, y and

¢

z axes respectively. Finally, FSL’s “applyzfm4D” function is used to apply
each created timepoint’s transformation matrix (A) to the data. The “add
noise” function works similarly to the previous function in that a noise value
is generated for each element of the original 4D matrix from the distribution
Equation 3.8. However here, p represents the noise level for each participant
as calculated by the fRAT user. The original 4D matrix (O) can then be
combined with the 4D matrix representing the generated noise values (V)
using element-wise matrix addition to create the final matrix (F'), with the
minimum value of each value being thresholded to 0. This can be expressed

as:

F =maz(O + N, 0) (3.10)

During scanning, thermal fluctuations of the system, either within the sub-
ject or the receiver electronics within the MRI, create Gaussian-distributed
additive noise (Wald & Polimeni, 2017), with thermal noise becoming the
most common form of noise within the MRI signal as voxel volume decreases
(Liu, 2016). Thus, for high spatial resolutions, the noise in the data appears
Gaussian (Murphy et al., 2007). The “add noise” function aims to serve as
an analog for this common noise source by adding gaussian distributed noise
to the data, simulating increased thermal noise in the system. Whereas the
“add motion” function calculates actual participant motion during program
runtime, the calculation of actual participant noise must be performed by
the user before initiating the “add noise” function. In order to calculate
voxel wise tSNR as in Equation 3.7, the tSNR function of fRAT map first
calculates the voxel wise mean signal over time (S) and the voxel wise stan-

dard deviation of the signal over time (o). The o map can then serve as the
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input for the fRAT CAP to derive the mean o () across the brain. This
enables the “add noise” function to utilize the o value across the whole brain,

or for a specific ROI.

3.4 Usage

fRAT was originally designed with the aim of determining the ROI depen-
dent effect of different MRI parameters on tSNR, as tSNR provides a rough
estimate of activation detection power in fMRI studies (Murphy et al., 2007;
Welvaert & Rosseel, 2013). Calculating this metric for multiple ROIs is par-
ticularly useful for planning studies aimed at specific brain regions. One
example use-case of this is using the tools provided by fRAT to enable imag-
ing sites to provide guidance on the optimal fMRI parameters, such as the
MB factor (Risk et al., 2021), parallel imaging (SENSE) acceleration factor
(Schmidt et al., 2005), and echo time (Clare et al., 2001), taking into ac-
count different experimental requirements and the regions of the brain being
investigated. This is beneficial as the effect of fMRI sequence and hardware
on data quality metrics can vary spatially over the brain in a way that is
difficult to understand without pilot data. Another potential application
is for the interrogation of data sets that require aggregation within ROIs,
such as statistical maps for a power analysis (Geuter et al., 2018). Effect
size estimations based on statistical maps from functionally derived ROIs
are common in fMRI analysis but can lead to inflated estimates if the selec-
tion criteria are not independent from the effect statistic (Kriegeskorte et al.,
2010). Defining ROIs based on atlases, as is performed with fRAT, prevents
a circular analysis and leads to more accurate effect size estimations. The
flexibility offered by fRAT CAP to be able to use any voxel wise maps as an
input allows researchers to optimise the sensitivity of their scanning param-
eters for an ROI, from a range of statistic or data quality maps, regardless
of if they were created by fRAT maps, which can aid in planning studies. In
particular, as the values of these maps are then summarised for each region

across participants, fRAT is also useful for larger, multi-participant datasets.

The statistics and visualisation options provided by fRAT also allow for
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quantitative comparisons of the effect of different fMRI sequences or hard-
ware on data quality. This may make it particularly useful for experimental
studies as seen in Chapter 4 or for comparisons across datasets obtained
at different imaging sites. As seen in Chapter 5, the current options avail-
able within fRAT HOUSE allows researchers to experimentally investigate
the characterise the effect of statistical noise and participant motion on an

experimental paradigm.

3.5 Discussion and future directions

This chapter has outlined the development of the fMRI ROI Analysis Tool
(fRAT) which has been published in the Journal of Open Source Software
(Howley et al. (2023)).

There are a number of features that are planned for fRAT in future versions
that would add additional functionality and enhance overall user experience.
Future developments aim to extend both the ‘Maps’ and ‘HOUSE’ functions
with additional functionality. An example of a potential expansion for ‘ Maps’
is the incorporation of multi-echo functional data processing capability to
calculate voxel wise T, maps. Maximum BOLD contrast is achieved with an
echo time that equals the local 77 (Bandettini et al., 1994) and as 7. varies
between brain regions (Halai et al., 2014), single echo sampling leads to a
decrease in overall sensitivity across the brain. Assuming a mono-exponential
decay, multi-echo sampling can be used to calculate per voxel T} (Posse et
al., 2003). Created voxel wise 71, maps can then be used as an input to the
fRAT CAP function to calculate average T3 per ROI. This would allow a user
to adjust the echo time to optimise sensitivity for a given ROI. This may be
particularly beneficial in areas that can be difficult to image due to strong
local susceptibility gradients, such as the lateral inferior temporal cortex
caused by air-tissue interfaces (Olman et al., 2009), with past research finding
that a shorter echo time can help when imaging areas that are vulnerable
to susceptibility artefacts (Stocker et al., 2006). Although software that can
use multi-echo data to calculate T maps already exists (DuPre et al., 2021),

integrating this capability into fRAT can simplify the pipeline for ROI wise
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analysis of this data, given the versatility of fRAT CAP to use any voxel

wise maps.

Other planned features include improving the overall usability of fRAT, such
as allowing multiple configuration files to be saved, as currently only one con-
figuration file may be saved. Any changes made by the user to the settings
thus override the previous settings. This can make it hard to analyse multi-
ple datasets where different configuration settings need to be used, as these
settings must currently be manually changed each time a different dataset is
analysed. To solve this issue, one planned feature is the ability to save mul-
tiple, named configuration files for conducting ‘CAP’, ‘Maps’, or ‘HOUSE’,
in the user’s documents. One advantage of this feature would be the ability
to designate a specific analysis pipeline for different voxel wise map types.
For example, while the unsupervised elliptic envelope technique can be used
for de-noising tSNR maps, this denoising technique will not be suitable for
voxel wise maps where the values do not follow a gaussian distribution. In
this case, users can then create configuration files with different denoising
options to use unique analysis pipelines when analysing the voxel wise tSNR
maps compared to other voxel wise maps. As this would also make it easier
to import new configuration files into fRAT, users could also more easily
share configuration files, potentially facilitating collaboration to optimise

fRAT analysis pipelines.

Currently, 0% threshold variants of atlases are used to define ROI in fRAT.
As stated in subsubsection 3.3.1.1, the benefits of this threshold is that the
more liberal threshold can allow for a broader range of voxels to be assigned
to ROIs. One disadvantage of this approach is that extracranial voxel can
be included in ROIs. While fRAT’s current de-noising options can remove
most of the extracranial voxels from ROIs (Figure 3.11), this approach may
not be suitable for all types of voxel wise maps. For example, the elliptic
envelope method would not be effective to remove extracranial voxels in
cases where the distribution of the values in the voxel wise map is non-
normal. Therefore, in the future, options will be added to allow users to
use the higher threshold variants of atlases. This would also be beneficial in

cases where more conservative estimates of ROIs are necessary.
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In the next chapter, fRAT will be used to assess the effect of increasing MB
and SENSE acceleration factors on the tSNR of fMRI scans.
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Chapter 4

Effect of hardware and image
acquisition parameters (IAPs)

on tSNR and acoustic noise
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4.1 Introduction

Subject comfort during scanning is an important consideration as many par-
ticipants suffer from MRI related stress. Murphy & Brunberg (1997) found
that in clinical MRI scanning, 14.3% of subjects required sedation to tolerate
scanning, with 66.4% of these sedated subjects undergoing brain MRI. Fur-
ther, they estimated that 3-5% of clinical scan subjects terminate scanning
early due to these stresses. Tackling issues that cause subject discomfort dur-
ing MR scans is important as it may reduce costs associated with early scan
termination or sedation, while also making subjects more likely to consent

to repeated scans.

While increasing scan times can improve the reliability of results (Birn et al.,
2013) or improve the statistical detection of effects (Murphy et al., 2007),
the length of scans is one of the main determining factors of subject discom-
fort (Heilmaier et al., 2011). Further, increased scan time can also increase
the likelihood of motion artefacts, which can cause false positive activation
even after motion correction (Yakupov et al., 2017). Therefore, scan du-
ration is limited by subject motion (Maclaren et al., 2013) and discomfort.
This may be particularly problematic in certain vulnerable groups, as sub-
ject motion is more likely to occur in clinical groups and younger children
(Pardoe et al., 2016). Therefore, when scanning vulnerable subjects, length
of scans may need to be limited further than is necessary for non-vulnerable
groups. Another common cause of subject discomfort is acoustic scanner
noise (Chou et al., 2014), with less than 5 seconds of unprotected expo-
sure to scanner acoustic noise exceeding the maximum dosage acceptable
according to the UK industry guidelines (Foster et al., 2000). While hearing
protective devices reduce sound pressure levels, many participants still view
scans as uncomfortably noisy (Chou et al., 2014). Further, the presence of
acoustic noise during scans can not only interfere with stimulus presentation
(De Martino et al., 2015), but can also change the BOLD response during
auditory (Amaro Jr. et al., 2002), working memory (Tomasi et al., 2005) or
visual (Zhang et al., 2005) studies.

There are a number of methods that can be employed to reduce acoustic

noise/scan duration such as in-plane acceleration or multiband (MB) imag-
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ing. One commonly used method of in-plane acceleration is sensitivity en-
coding (SENSE; Pruessmann et al. (1999)). SENSE undersamples k-space
(usually in the phase encoding direction) and while this initially results in
partial field-of-view images and wraparound aliasing, each surface coil has
its sensitivity map combined with its partial field-of-view image in order to
“unwrap” and combine the images into a full field-of-view image. Simulta-
neous multislice (SMS) or MB is the excitation and collection of data from
multiple slices simultaneously (Barth et al., 2016), as outlined in subsec-
tion 2.1.3. MB and SENSE can be used to lower scan time (Barth et al.,
2016), with the in-plane acceleration provided by SENSE speeding up acqui-
sition of each slice, while MB lowers the amount of time necessary to acquire
a full volume. The scan time reduction factor when using either in-plane ac-
celeration or MB are equal to the acceleration factor of the method used
(Barth et al., 2016). In the context of fMRI, increasing acquisition speed
allows an increased sampling rate of the BOLD signal. However, whether
this provides statistical benefits depends on a number of factors such as task
type (Demetriou et al., 2018). Instead, if temporal resolution is held con-
stant, usage of MB allows acoustic noise reduction due to reduced density
of radiofrequency pulses, with a similar effect seen when using SENSE (de
Zwart et al., 2002). Additionally, combining MB with SENSE (Barth et al.,
2016; Preibisch et al., 2015) can further decrease both scan time and noise.
However, while these methods enhance subject comfort by shortening scan
duration or reducing acoustic noise, it is essential to consider their impact

on data quality.

The quantification of data quality through measuring signal-to-noise ratio
(SNR) allows for comparisons between imaging hardware and acquisition
sequences (Parrish et al., 2000) with there currently being several methods
of calculating SNR (Dietrich et al., 2007). In fMRI, the signal is a result
of fluctuations due to the haemodynamic response to a task (Welvaert &
Rosseel, 2013). In comparison, noise is a result of sources such as: system
noise, physiological noise and task-related noise (Welvaert & Rosseel, 2013).
As some sources of signal/noise in functional imaging are time dependent,
such as low frequency drift (Smith et al., 1999) or the task-related signal, it
is the stability of the signal over time which is central for fMRI (Welvaert &
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Rosseel, 2013). Therefore, temporal Signal-to-Noise Ratio (tSNR) is a more
informative measure for assessing the quality of an fMRI time series than
image SNR (Wald, 2012).

As brain activations cause small signal changes, large tSNR is critical in mea-
surement of brain activations (Welvaert & Rosseel, 2013). Indeed it has been
found that there is a minimum tSNR necessary to reliably measure brain ac-
tivations at a given statistical confidence level, and that higher tSNR allows
scan times to be shorter while still being able to reliably measure brain acti-
vation (Murphy et al., 2007). Previous research has investigated the effect of
MB and SENSE on tSNR, finding that higher MB (Demetriou et al., 2018;
Todd et al., 2016) and SENSE factors (Molloy et al., 2014) result in lower
tSNR. Additionally, regions that have similar anatomy and/or function are
likely to have similar SNR values (Welvaert & Rosseel, 2013). Therefore
prior knowledge of the tSNR of a particular acquisition sequence with given
imaging hardware can potentially be used to guide the maximum MB and
SENSE acceleration factor that should be used for a given ROI, allowing
lower scan times/acoustic noise and increasing scan subject comfort while
limiting tSNR reduction. However, in research where tSNR. is reported, it
is usually reported as a single value calculated across the whole brain or
for a small cluster of voxels. As the use of both MB and SENSE accelera-
tion are subject to spatially dependent noise amplification, (Blaimer et al.,
2013; Risk et al., 2021), regions with higher noise amplification levels, char-
acterised by g-factor (Pruessmann et al., 1999), have an intrinsically lower
tSNR. Reporting a single tSNR value over the entire brain thus obscures
potential inter-regional differences, and prevents the optimisation of tSNR
according to ROL.

One method of increasing tSNR is to use NORDIC PCA denoising (Moeller
et al., 2021). As NORDIC is designed to identify and remove Gaussian-
distributed noise, it is particularly useful in scan sequences in which the
data is dominated by thermal noise. fMRI at spatial resolutions of 1.5mm is
approximately where thermal noise is the dominant noise source (Liu, 2016;
Yoo et al., 2018), and where prior fMRI studies have applied NORDIC de-
noising (Dowdle et al., 2023). However, it is also beneficial to characterise
the expected benefits of NORDIC PCA denoising in the non-thermal domi-
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nated scan.

In this chapter, the fRAT software, as described in Chapter 3 (Howley et
al., 2023), is used to investigate how imaging hardware (3T Philips Achieva
or Ingenia MRI scanner) and image acquisition parameters affect regional
differences in tSNR. The effect of NORDIC denoising will also be assessed
due to its potential to mitigate lower tSNR levels resulting from higher ac-
celeration factors. Additionally, the benefits of NORDIC to a non-thermal
noise dominated scan (with a spatial resolution of 3mm isotropic tested here)
is investigated. Finally, the acoustic noise reduction benefits of increasing

MB and SENSE acceleration factor are also investigated.

4.2  Methods

4.2.1 Study Design

To assess the effect of imaging hardware and image acquisition parameters
(IAPs) on tSNR across brain regions, tSNR was measured in a series of scans
collected on two 3T Philips MR scanner platforms, obtained with 16 different
IAP combinations. There were 16 participants in total, with each participant
scanned using only one scanner platform. Therefore, 8 participants were
scanned on each platform, and each participant was scanned with all 16
parameter combinations. Additionally, the effect of NORDIC denoising on

tSNR was examined for this dataset.

In this study, a mixed-design using four independent variables - three within-
subjects variables and one between-subjects variable - was employed. Two
within-subjects variables focused on varying the image acquisition parame-
ters: SENSE acceleration factor and MB acceleration factor, with each of
these being tested at four different levels as shown in Table 4.1. The third
within-subjects variable involved the data preprocessing, specifically whether
NORDIC PCA denoising was applied to the data.
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Table 4.1

Table showing number of slices for each image acceleration parameter combination

Multiband
SENSE 1 2 3 4
1.0 24 36 36 36
1.5 30 30 36 36
2.0 30%* 36 36 36
2.5 28 36 36 36

Note. The same parameters were used for data collected on the 3T Philips
Achieva and 3T Philips Ingenia. 16 participants were included in the study,
with 8 scanned on each scanner platform. Each participant was scanned us-
ing all 16 parameter combinations, except for one participant on the Ingenia,
where data for one parameter combination was not collected. This missing
parameter combination is represented with an asterisk, meaning data for this
combination is available for only 7 participants on the Ingenia.

To examine the effect of imaging hardware on tSNR, scans were collected on
both 3T Philips Achieva and 3T Philips Ingenia 3T MR scanners, which will
be referred to as ‘Achieva’ and ‘Ingenia’ respectively. As participants were

only scanned on one scanner, MRI scanner was a between-subjects variable.

The dependent variable is tSNR, which was calculated using fRAT for each
ROI defined by the Harvard-Oxford atlas of cortical structures (Desikan et
al., 2006) and consisted of 48 cortical regions. The frontal pole (FP) and
occipital pole (OP) were selected as specific regions to be studied in this
chapter due to their spatial separation, and their significance in decision
making and visual experiments respectively. The posterior inferior temporal
gyrus (pITG) was also selected for analysis due to susceptibility artifacts
being common in lateral regions of the inferior temporal cortex caused by
air-tissue interfaces (Olman et al., 2009), which methods such as SENSE
can help to reduce (Yang et al., 2004). Figure 4.1 displays the location of
these regions. Finally, the effect of image acquisition parameters across all
regions defined by the Harvard-Oxford cortical atlas, including those previ-

ously mentioned, will also be reported.

The order of the image acquisition parameters were randomised for each

participant to minimise potential confounding factors in the data and lessen
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Figure 4.1

Coronal and axial images showing location of studied regions

Note. Frontal Pole is shown in red, Occipital Pole is shown in blue and the
posterior Inferior Temporal Gyrus is shown in green.

any potential systematic biases in participant movement, such as increased

movement towards the end of a scanning session due to fatigue.

4.2.2 Participants

16 participants took part in this study, with 8 participants scanned on the
Achieva and a different set of 8 participants scanned on the Ingenia. The
average age across the participants was 27.3 (SD = 5.8) years, and 68.75%
of the participants identified as female. One participant’s scan session from
the Ingenia did not include the collection of a noise volume at the end of their

functional scans, and so NORDIC denoising was applied to 15 participants.

4.2.3 Scan parameters

Scans on both the 3T Achieva and 3T Ingenia were collected using a 32-
channel head RF coil. The 3T Ingenia used the upgraded Philips dStream
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technology. dStream digitizes the signal in the coil, reducing noise influences
typical of analog pathways, to capture the MR signal without pre-distortion
or compression. A fibre-optic connection from the coil to the image recon-
structor then enables lossless broadband data transmission. Imaging data

for each participant was collected in a single scan session.

T;-weighted gradient-echo echo planar imaging (GE-EPI) sequence scans
collected functional data at baseline. To reduce discomfort related move-
ment, short functional scans were used with each functional scan lasting for
just over one minute (dynamics=31). MB and SENSE factors were varied
for each functional scan (subsection 4.2.1). The number of slices in a vol-
ume was set to 36 slices (a number allowing a MB factor of 1,2,3, and 4
to be used), but if this was not possible for the lower MB factors due to
not fitting within the TR then the slice number was lowered with the cen-
tral slice matched. Slice numbers for each TAP combination is shown in
Table 4.1. Other scan parameters were constant between scanners (voxel
size=3mm isotropic; TR=2000ms; TE=30ms; FA=80°; matrix size=80x80)
with the bandwidth in the EPI frequency direction matched as closely as
possible given the integer limit of the water fat shift (WFS), resulting in
a bandwidth of 1570 £ 50 Hz for the Ingenia and 1700 4+ 60 Hz for the
Achieva (due to the difference in gradient hardware between the systems).
For the final dynamic of each scan, the radiofrequency pulses and gradient

fields were not applied to allow collection of a thermal noise scan.

To examine the impact of IAPs on acoustic noise the estimated acoustic
noise for each scan, reported by the scanners using the A-weighted root
mean square sound pressure level (SPL), was recorded. To calculate the
change in perceived volume from the perspective of the scanned subject, the
relative difference between the SPL of each IAP combination was compared
to the SPL for the IAP which should theoretically have the highest acoustic
noise level: the MB 1 SENSE 1 condition. Where x represents the perceived

loudness difference, this can be calculated as:

= 2(4) (4.1)
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This therefore means that a 10dB difference between the two SPLs equates

to a loudness difference of 2:1.

Anatomical images were also collected on both scanners using a T)-weighted
MPRAGE sequence. This sequence used Compressed SENSE (CS) on the
Ingenia (scan parameters: voxel size=1mm isotropic, TR=8.4ms, TE=3.9ms
FA=8° matrix 256x256x162) but no CS was available on the Achieva (scan
parameters: voxel size=1mm isotropic, TR=8.3ms, TE=4.6ms FA=8°  ma-
trix size=180x256x256).

4.2.4 Data preprocessing

fRAT (version 1.6.4) and FSL (version 6.0.6.2) commands were used for data
preprocessing. The fRAT Maps functions were used to create tSNR maps for
each participant, while fRAT’s Complex Analysis Pipeline (CAP) was used
to conduct the ROI analysis. Before creating the tSNR maps, a temporal
high pass filter of 0.01 Hz was used to remove low frequency drift from the
signal. Motion correction was also applied to reduce the effect of subject
motion on tSNR. Prior to running fRAT CAP’, optiBET* (Lutkenhoff et
al.; 2014) was used for brain extraction of the anatomical files. During
fRAT CAP, a segmentation created by FSL FAST was used to limit analysis
to grey matter voxels, with a 10% threshold used as the minimum grey
matter probability necessary to be included in the analysis. Noise cutoff
and gaussian outlier detection were used to remove extracranial voxels. The
settings used for fRAT Maps and the CAP analysis are provided in Appendix
7.2 and Appendix 7.3.

An additional NORDIC denoised functional scan was created before using
fRAT using the default NORDIC settings provided on GitHub (github.com/
SteenMoeller/NORDIC Raw).

4.2.5 Statistical analysis

Statistical analysis was conducted using fRAT CAP with an example of the

settings used found in Appendix 7.4. Linear mixed models with random in-
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4.3. Results

tercepts were employed to assess the impact of image acquisition parameters
on tSNR. In this analysis, subjects were treated as random effects, while the
predictors such as MB and SENSE were considered fixed effects. Due to
the large number of comparisons made, the Benjamini-Hochberg procedure
for controlling the False Discovery Rate (Benjamini & Hochberg, 1995) will
be used to adjust p-values. Benjamini-Hochberg adjusted p-values will be

reported as g-values.

Marginal R* (Rj,,,,44) describes the proportion of variance explained by
the fixed factors, whereas conditional R? (R?,,,,4,,) describes the variance ac-
counted for with both the fixed and random factors (Nakagawa & Schielzeth,
2013). Model selection will involve a comparison of models with solely main
effects against those incorporating both main and interaction effects, and
those incorporating only interaction effects. Selection will depend on a dual
criterion considering both the RZ, ., 4 and the significance of fixed effects
within the model. Additionally, simpler models with fewer regressors will be

considered if more complex models are found to be nonsignificant.

For each functional volume, the voxel count of each region was evaluated.
Regions with voxel counts < 200 were excluded from the linear mixed model
analysis, as low voxel counts may indicate poor fitting. The number of

observations excluded for each region is provided in Appendix 7.5.

Multiple regressions were also conducted to investigate the effect of MB and

SENSE acceleration factors on SPL (dB).

4.3  Results

Linear mixed models were employed to investigate the relationship between
image acquisition parameters (MB & SENSE) and MRI scanner model on
tSNR, across all cortical areas collectively to provide an overall metric, and
specific brain regions (Occipital Pole, Frontal Pole, and posterior Inferior
Frontal Gyrus). For this analysis, NORDIC denoised data was not used.
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4.3.1 Effect of IAP on the overall brain tSNR

The mean and standard deviation of tSNR, across all cortical regions are
shown in Figure 4.2 and Figure 4.3, with supplementary figures provided
in 7.8. For both the Ingenia and Achieva, across all cortical regions, the
model incorporating both MB and SENSE as fixed effects, provided the best
predictive model (Ingenia: M group size = 16.1, n = 129; Achieva: M group
size = 16, n = 128).

For the Ingenia, both MB (z = -8.85, ¢ = .001, B = -8.57, 95% CI [-10.47,
-6.67]) and SENSE (z = -8.47, ¢ = .001, B = -16.50, 95% CI [-20.32, -12.68])
added significantly to the model predicting tSNR. For the Achieva, both MB
(z =-20.061, ¢ = .001, B =-10.96, 95% CI [-12.03, -9.89]) and SENSE (z =
-15.075, ¢ = .001, B = -16.47, 95% CI [-18.617, -14.333]) also significantly
added to the model and had similarly large effects on tSNR as for the Ingenia.
This can be seen in Figure 4.4, where for both the Ingenia and the Achieva,
there is a clear decrease in tSNR as both MB and SENSE factor increases.

Without considering subject variance, there was a medium sized effect of
MB and SENSE on tSNR for the Ingenia (R3,,,, ., = 0.33) and a large
effect for the Achieva (R, 1, = 0.74). When the participant variance
(Ingenia: S = 13.61; Achieva: S = 5.53) is taken into account, the variance
explained by the model more than doubles for the Ingenia (R, 4, = 0.70)
and increases to RZ,, 4, = 0.84 for the Achieva. These large I}, .4
and R, 4, values reflect the high dependence that tSNR has on MB and
SENSE for both the Ingenia and Achieva. However, these values also show
that tSNR has a greater dependence on these image acquisition parameters

for the Achieva than for the Ingenia.

When examining the standardised coefficients, for the Ingenia, the difference
in effect size between MB (8 = -.44 95% CI [-.53 -.34]) and SENSE (8 =
-42 95% CI [-.51 -.32]) was found to be very small. On the other hand, for
the Achieva, the difference between (3 values for MB (8 = -.70, 95% CI [-.77,
-.63]) and SENSE (8 = -.52, 95% CI [-.59, -.46]) was much larger. Further,
the effect of MB in particular was much larger for the Achieva than for the

Ingenia.
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Figure 4.4
Barchart showing effect of multiband and SENSE factor on tSNR across all cortical regions
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Note. Top row shows data from the Ingenia, whereas bottom row shows data
from the Achieva. Error bars show 95% confidence intervals. While increasing
Multiband and SENSE acceleration decreases tSNR, for both the Ingenia and the
Achieva, the overall reduction in tSNR is slightly greater at higher acceleration
factors for the Achieva.
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The final predictive models across all cortical regions for the Ingenia and

Achieva are:

tSNR = 155.85 — 8.57Z 5 — 16.50Zgmnss (Ingenia)  (4.2)
tSNR = 146.05 — 10.962 5 — 16.482gonss  (Achieva) — (4.3)

As seen in Table 4.2, within the studied regions, the relationship between
image acquisition parameters and tSNR varies dramatically by region. Fur-
ther, as seen in Figure 4.5 and Figure 4.6, MB and SENSE both have an
effect across the brain, with only a few regions (such as occipital pole and
frontal pole) not meeting the p < .001 threshold for SENSE. Central regions
also seem to have a higher baseline tSNR compared to more posterior and
anterior regions. Further, the effect of SENSE on tSNR seems to vary to a
greater degree than MB.

When the scanner type was added as a fixed effect, the model which con-
tained only main effects for the factors: scanner type, MB, and SENSE,
provided the best predictive value (R}, 1 = -96, B¢ 00y = 78, Par-
ticipant S = 10.39, M group size = 16.1, n = 257). Scanner type was
represented as a dummy-coded categorical variable, indicating whether the

data was collected from the Ingenia (1 = Ingenia).

MB (z = -17.41, ¢ = .001, B = -.51, B = -9.76, 95% CI [-10.86, -8.66]),
SENSE (z = -14.66, ¢ = .001, 8 = -.43, B =-16.48, 95% CI [-18.68, -14.28])
and the scanner used (z = 2.94, ¢ = .003) all added significantly to the
model, with scans on the Ingenia increasing the overall tSNR by B = 15.72
(95% CI [5.24, 26.20], 8 = .73). The final predictive model is:

tSNR — 14305 + 15'72d1ngenia - 17.41331\/[]3 - 14'66xSENSE (44)

The Ingenia provided an average increase in tSNR of ~16 over all cortical
regions compared to the Achieva, and as indicated by the higher [, had
a larger effect on tSNR than both MB and SENSE. Figure 4.7 shows that
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4.3. Results

Figure 4.5

Coefficient variability across the brain for the Ingenia

Unstandardised Coefficients Standardised Coefficients

12.76 0.63

Multiband

Multiband

6.38 0.31

0.00 0.00

-6.38 -0.31

-12.76 -0.63

27.43 0.63

SENSE

13.71 0.31

0.00 0.00

-13.71 -0.31

-27.43 -0.63

201.35

100.67

0.00

-100.67

-201.35

Note. Figure reflects the results from linear mixed models including both multi-
band and SENSE as fixed effects, with only main effects included in the model.
Regions with a p < .001 are shaded. Overall, there are large differences in coeffi-
cients across the brain.
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Figure 4.6

Coefficient variability across the brain for the Achieva

Unstandardised Coeflicients Standardised Coeflicients

13.68 .77

Multiband

Multiband

6.84 0.38

0.00 0.00

-6.84 -0.38

-13.68 0.77

33.60 0.77

SENSE SENSE

16.80 0.38

0.00 0.00

-16.80 -0.38

-33.60 -0.77
198.55
Intercept
99.28

0.00

-99.28

-198.55

Note. Figure reflects the results from linear mixed models including both multi-
band and SENSE as fixed effects, with only main effects included in the model.
Regions with a p < .001 are shaded. Overall, there are large differences in coeffi-
cients across the brain.
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there are a number of brain regions where the difference between scanners
did not match the p<.001 threshold which was commonly met by both MB
and SENSE (Figure 4.5 & Figure 4.6).

4.3.2 Effect of IAP on the Occipital Pole (OP) tSNR

For data collected on the Ingenia in the OP, the model including only MB as
a fixed effect was the best model for predicting tSNR (M group size = 16.1,
n = 129). This can be seen in Figure 4.8 where increasing SENSE factor had
only a marginal effect, if any, on tSNR. While there was a significant effect
of MB on tSNR (z = -3.90, ¢ = .001, § = -.22, B = -4.41, 95% CI [-6.63,
-2.19]), the variance explained when accounting for only this fixed effect was
very small (R, ., = -029). When also accounting for the random effect
of subject (S = 17) in the model, a much larger percentage of variance of
tSNR was explained (17, 44 = -62).

Similar to the Ingenia, for the Achieva, the model containing only MB as
a predictor provided the best model (M group size = 16, n = 128). There
was a statistically significant main effect of MB on tSNR (z = -8.51, ¢ =
001, B =-48, B=-8.12, 95% CI [-9.99, -6.25]), with a moderate amount of
variance explained by the fixed effect of MB alone R3,, ,, = -20. With the
inclusion of the random effect of subject in the model (S = 12.45), a large

amount of variance is explained by the model R?, ., 4 = 6L

The final prediction models for the Ingenia and Achieva are:

tSNR = 94.84 — 4.41x\p (Ingenia) (4.5)
tSNR = 92.10 — 8.12xp (Achieva) (4.6)
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Figure 4.7

Coefficient variability across the brain for the Ingenia and Achieva.

Unstandardised Coeflicients Standardised Coeflicients

13.13 108

Multiband

Multiband

6.56 0.54

0.00 0.00

-6.56 -0.54

-13.13 -1.08

30.38 108
SENSE

15.19 " 0.54

0.00 | 0.00

-15.19 4 -0.54

SENSE

-30.38 -1.08

26.87 1.08

13.43 0.54
0.00 0.00

-0.54

-13.43

-26.87 -1.08

Intercept 18963

0.00

-94.83

-189.65

Note. The figure reflects the results from a linear mixed model which included
scanner (dummy-coded where 1 = Ingenia), multiband, and SENSE as fixed effects,
with only main effects included in the model. Regions with a p < .001 are shaded.
While overall, there are large differences in coefficients across the brain, there are
a number of regions that do not significantly vary between scanner platform.
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4.3. Results

Figure 4.8
Barchart showing effect of multiband and SENSE factor on tSNR for the Occipital Pole

150 SENSE factor
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Note. Top row shows data from the Ingenia, whereas bottom row shows data from
the Achieva. Error bars show 95% confidence intervals. Increasing the Multiband
acceleration factor produces a small decrease in tSNR, however SENSE accelera-
tion factor does not have a significant impact on tSNR.
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4.3.3 Effect of IAP on the Frontal Pole (FP) tSNR

For data collected on the Ingenia, the model containing both MB and SENSE
as fixed effects without the inclusion of interaction effects, provided the best
predictive model for the FP (M group size = 16.1, n = 129). There were
significant effects of both MB (z = -7.52, ¢ = .001, 8 = -.35, B = -8.65, 95%
CI [-10.90, -6.39]) and SENSE (z = -3.75, ¢ = .001, 8 = -.17, B = -8.68,
95% CI [-13.21, -4.15]) on tSNR (as shown in Figure 4.9), however as with
the OP, the inclusion of the random effect of subject (S = 22.46) increased
the explained variance by a large amount, from R}, . = 0.12 to R, .4

= .74.

In contrast, for data collected on the Achieva, the model containing only
MB provided the best model (M group size = 16, n = 128). There was a
statistically significant main effect of MB on tSNR (2 = -12.98, ¢ = .001,
B = -.55, B =-10.14, 95% CI [-11.67, -8.61]), with a moderate amount of
variance explained by the fixed effect of MB alone R}, ., = -28. With
the inclusion of the random effect of subject in the model (S = 14.93), a
large amount of variance is explained by the model R?,  ,, 4 = -78. The

final prediction models for the Ingenia and Achieva are:

tSNR = 94.44 — 10.14x\p (Achieva) (4.8)

4.3.4 Effect of IAP on the Posterior Inferior Temporal Gyrus
(pITG) tSNR

For data collected on the Ingenia, the model containing main effects for both
MB and SENSE provided the best predictive value for the pITG (M group
size = 13.9, n = 97), with the main effects for both MB (z = -5.30, ¢ =
001, B =-.21, B=-6.55, 95% CI [-6.88, -3.71]) and SENSE (z = -7.91, ¢ =
001, B =-.27, B =-5.22, 95% CI [-10.88, -4.94]) added significantly to the
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Figure 4.9
Barchart showing effect of multiband and SENSE factor on tSNR for the Frontal Pole
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Note. Top row shows data from the Ingenia, whereas bottom row shows data
from the Achieva. Error bars show 95% confidence intervals. Both Multiband and
SENSE acceleration modulates tSNR for the Ingenia, however only Multiband
acceleration produced a significant impact on tSNR for the Achieva.
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model. When taking into account the subject variance (S = 20.84), a very

large proportion of variance was explained by the model (3, 4, = 0.061,

RzCondAdj - -87)-

For data collected on the Achieva, the model which contained only the in-
teraction effect between MB and SENSE provided the best predictive value
for the pITG (M group size = 13.4, n = 107), with there being a significant
interaction effect between MB and SENSE on tSNR (z = -12.49, ¢ = .001,
B =-22, B=-3.13,95% CI [-3.62, -2.64]). A moderate amount of variance
was explained by this interaction effect alone R}, ., = 0.38. However as
shown in Figure 4.10, this result is likely primarily driven by very high level
of tSNR for the MB1S1 condition. When taking into account the partici-
pant variance (S = 7.16), a large proportion of variance was explained by
the model (RZ,,, 4 = -74). The final predictive models for the Ingenia and

Achieva are:

tSNR = 74.92 — 5.30xys — 7.91TspnsE (Ingenia) (4.9)
tSNR, - 6241 - 3‘13'1:MBXSENSE (AChieva) (410)

4.3.5 Effect of NORDIC denoising on tSNR

The effect of NORDIC on tSNR was also compared between the Ingenia
and Achieva. For these analyses, data that was both not denoised and that
which had been through the NORDIC denoising pipeline were included in
the dataset. The NORDIC predictor was represented as a dummy-coded
categorical variable, indicating whether the data was NORDIC denoised (1
= NORDIC denoised). The mean and standard deviation of tSNR across all
cortical regions are shown in Figure 4.11 and Figure 4.12, with supplementary
figures provided in 7.8. For the Ingenia, across all cortical regions, including
both MB and SENSE as fixed effects without the inclusion of interaction
effects, provided the best predictive model (R? = .31, R? = .64,

MargAdj CondAdj

Participant S = 14.26, M group size = 30.2, n = 242). MB (z = -10.25, ¢ =
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Figure 4.10

Barchart showing effect of multiband and SENSE factor on tSNR for the posterior Inferior
Temporal Gyrus
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Note. Top row shows data from the Ingenia, whereas bottom row shows data
from the Achieva. Error bars show 95% confidence intervals. Both Multiband and
SENSE acceleration factor significantly impacted tSNR for the Ingenia. However
for the Achieva, only the interaction effect between these two predictors was found
to be significant. This may be driven by the large spike in tSNR seen in the MB1S1
condition, however this may be the result of poor ROI fitting of this region, due
to its relatively small size.

93



4.3. Results

001, B =-.40, B =-8.67, 95% CI [-10.32, -7.01]), SENSE (> = -8.37, ¢ = .001,
B =-.33, B=-14.25,95% CI [-17.59, -10.91]) and NORDIC denoising (z =
6.60, ¢ = .001) added significantly to the model, with NORDIC denoising
increasing the overall tSNR by B = 12.93 (95% CI [9.09, 16.77], 8 = .53).

For the Achieva across all cortical regions, as with the Ingenia, including
both MB and SENSE as fixed effects without the inclusion of interaction
effects, provided the best predictive model (13, 40 = - 74, Repnaag = -84,
Participant S = 5.75, M group size = 32, n = 256). MB (z = -27.16, ¢ =
001, B =-.68, B=-10.98, 95% CI [-11.78, -10.19]), SENSE (z = -19.96, ¢ =
001, B =-.50, B =-16.14, 95% CI [-17.73, -14.56]) and NORDIC denoising
(z = 8.15, ¢ = .001) added significantly to the model. NORDIC denoising

increased the overall tSNR by B = 7.37 (95% CI [5.59, 9.14], 8 = .41).

As seen in Figure 4.13 & Figure 4.14, NORDIC denoising had a larger impact
on tSNR in regions such as the Occipital and Frontal Poles for the Achieva.
As indicated by the 3 values however, NORDIC denoising had a larger over-
all effect for scans collected on the Ingenia than on those collected on the

Achieva. The predictive equations for both the Ingenia and Achieva are:

tSNR = 152.16 — 8.67xyz — 14.2525pnse + 12.93dxorbic on (Ingenia)
(4.11)

tSNR = 145.52 — 1098:171\/[]3 - 16'14$SENSE -+ 7'37dNORDIC OII(AChieV&)
(4.12)

4.3.6 Impact of Multiband (MB) and SENSE on acoustic noise

levels

While the overall SPLs of the Ingenia (Table 4.3) and Achieva (Table 4.4)
were similar, the relationship between MB and SENSE on SPL slightly was
different between the scanners (see Figure 7.1 in 7.8 for the supplementary
figure). Generally on the Ingenia, the SPL decreased as MB and SENSE

factors increase. It should be noted that at MB1 a lower number of slices
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4.3. Results

Figure 4.13

Effect of NORDIC on coefficient variability across the brain for the Ingenia

Unstandardised Coefficients Standardised Coefficients

14.00 0.70

Multiband Multiband

7.00 0.35

0.00 0.00

-7.00 -0.35

-14.00 -0.70

25.67
12.83
0.00
-12.83
-25.67

0.70
SENSE
0.35

0.00

-0.35

-0.70

17.39 0.70

*NORDIC
8.69 0.35
0.00

-0.35

-0.70

Intercept

99.23
0.00

-99.23

-198.46

Note. The figure reflects the results from a linear mixed model which included
NORDIC denoising (dummy-coded where 1 = NORDIC denoised), multiband,
and SENSE as fixed effects, with only main effects included in the model. Regions
with a p < .001 are shaded. Of note is that, NORDIC on the Ingenia produces a
significantly beneficial (and consistent) impact to tSNR across the entire brain.
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Figure 4.14

Effect of NORDIC on coefficient variability across the brain for the Achieva

Unstandardised Coeflicients Standardised Coeflicients

13.68 0.86

Multiband Multiband

6.84 0.43

0.00 0.00

-6.84 -0.43

-13.68 -0.86

33.56 0.86

SENSE SENSE

16.78 0.43

0.00 0.00

-16.78 0.43

-33.56 -0.86
11.58 0.86
*NORDIC *NORDIC
5.79 0.43
;:-'::_.\. : 0.00 6 i ) r. .‘ 0.00
j-—" N -5.79 j -0.43
. -11.58 -0.86

198.09
Intercept
99.04

0.00

-99.04

-198.09

Note. The figure reflects the results from a linear mixed model which included
NORDIC denoising (dummy-coded where 1 = NORDIC denoised), multiband,
and SENSE as fixed effects, with only main effects included in the model. Re-
gions with a p < .001 are shaded. For NORDIC on the Achieva, there is not a
consistent beneficial impact of NORDIC on tSNR, with regions such as the Occip-
ital and Frontal Poles benefitting more greatly from NORDICS application than
more central regions.
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are collected in some cases, which lowers the SPL. For the Achieva, at every
MB factor, SENSE 1 produced lower SPL than higher SENSE factors, likely
because of the change in bandwidth in the EPI frequency direction on this
scanner based on the gradient model. Also note a reduction in SPL for MB1
SENSE 2 on both scanners. This was due to an error in setting the water fat
shift, resulting in a low EPI bandwidth on both scanners, with the Achieva

having a relatively lower bandwidth.
Table 4.3

Table of sound pressure levels (dB) and relative loudness (in brackets) for Philips Ingenia 3T

Multiband
SENSE 1 2 3 4
1.0 119.7 (1.0) 117.9 (0.88) 116.9 (0.82) 116.1 (0.78)
1.5 119.5 (0.99) 116.5 (0.8) 115.4 (0.74) 114.8 (0.71)
2.0 117.8 (0.88) 116.6 (0.81) 114.7 (0.71) 114.1 (0.68)
2.5 118.3 (0.91) 116.3 (0.79) 114.4 (0.69) 113.6 (0.66)

Note. Relative loudness is calculated using the equation z = 2055 and is

relative to the sound pressure level for the multiband 1 SENSE 1 condition.
Of note is there is a consistent decrease of sound pressure levels seen, as
Multiband and SENSE acceleration is increased.

A multiple regression was run to predict SPL from MB and SENSE ac-
celeration factor. For the Ingenia, these variables statistically significantly
predicted SPL, F(2, 13) = 78.8, p < .001, R?,, = .91. Both MB (¢ = -11.30,
p < .001) and SENSE (t = -5.452, p < .001) acceleration factor added sta-
tistically significantly to the prediction of SPL, with the increase of MB (3
=-.86, B=-1.4, 95% CI [-1.67, -1.13]) acceleration factor having a stronger
impact on SPL than increasing SENSE (5 = -.42, B = -1.35 95% CI [-1.89,
-0.82]). Therefore the final prediction model for SPL for the Ingenia is:

SPL — 122.27 - 1‘4$MB - 1.35$SENSE (413)
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Table 4.4

Table of sound pressure levels (dB) and relative loudness (in brackets) for Philips Achieva 3T

Multiband
SENSE 1 2 3 4
1.0 119.0 (1.0) 117.3 (0.89) 115.5 (0.78) 114.3 (0.72)
1.5 120.5 (1.11) 119.1 (1.01) 118.2 (0.95) 117.0 (0.87)
2.0 114.4 (0.73) 1184 (0.96) 116.8 (0.86) 115.7 (0.8)
2.5 117.1 (0.88) 117.2 (0.88) 115.7 (0.8) 114.6 (0.74)

Note. Relative loudness is calculated using the equation z = 2(55%) and is
relative to the sound pressure level for the multiband 1 SENSE 1 condition.
While overall the trend is for sound pressure levels to decrease as Multiband
and SENSE factor increases, this relationship is much less consistent than seen
on the Ingenia, with MB2 S1.5 having a higher relative loudness than MB1S1.

For the Achieva, the model that contained both the MB and SENSE factor
was not significant F(2, 13) = 3.36, p = .067, R’ ; = .24, with MB (¢ = -2.40,
p = .032) but not SENSE factor (¢ = -0.99, p = .34) adding statistically sig-
nificantly to the model. As SENSE factor had the least significant regressor,
it was removed from the model for the Achieva. However, the model only
containing MB also did not statistically significantly predict SPL, with the
predictive value of this model being smaller than for the Ingenia (F(1, 14)
= 5.7, p = .031, Ridj = .24), as MB factor had a smaller effect on SPL for
the Achieva (¢t = -2.40, p = .031, 8 = -.54, B =-0.85, 95% CI [-1.61, -0.09])

than for the Ingenia.

4.4 Discussion

4.4.1 Influence of Multiband (MB) and SENSE acceleration
on tSNR

As expected, a strong relationship was found between tSNR and both MB
and SENSE acceleration factor. This relationship was found to explain 70%
of the variance of the data for the Ingenia and 84% for the Achieva. No-

tably, cortical regions exhibited distinct differences in this relationship (see
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Table 4.2 for predictive equations). For instance, the Frontal Pole had the
highest base tSNR level, but suffered a greater tSNR penalty when increasing
MB and SENSE acceleration factor.

Furthermore, the association between image acceleration parameters (IAP)
and tSNR explained a substantial proportion of the data variance only
when considering inter-subject variability. This is evident from the obser-
vation that RZ., 444 MargAdi
instances. Consequently, employing statistical tests capable of modeling

values significantly exceeded R values in many
between-subject variance, such as linear mixed models, is essential for this
dataset. Additionally, scanner choice was found to have a strong effect on
tSNR. level, with this effect being larger than that of MB or SENSE accel-
eration factor. Finally, it was found that the NORDIC denoising method
increased tSNR for both the Ingenia and Achieva.

4.4.2 Influence of imaging hardware on tSNR

It was found that overall, scanner choice (Achieva or Ingenia) had a larger
effect on tSNR than both MB and SENSE factor with, as expected, the
Ingenia platform having a significantly higher tSNR than the Achieva. This
difference is likely in large part driven by the integration of the dStream
technology on the Ingenia platform. It should be noted however, that while
it is possible to upgrade Achieva scanners to use dStream, the scanner used in
this study did not use this technology. In the electronics architecture for the
Achieva, analog-to-digital conversion (ADC) is the last step in the electronics
chain before reconstruction, meaning that the data is transmitted as an
analog signal through most of the processing chain before being digitised. In
contrast, the Philips dStream technology positions the ADC electronics at
each coil element, allowing the MR signal to be digitised from the source of

the signal (Possanzini, Ham, et al., 2011).

The ability to digitise the data at the source of the signal provides a number
of benefits over the older analog architecture. With the analog radiofre-
quency architecture, signals are transmitted over long distances in bundles

of cables before being digitised. This causes crosstalk, or the electromag-
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netic coupling between the cables, increasing the amount of noise in the
signal. With higher numbers of coil elements also requiring more cables to
transmit this data, this crosstalk becomes increasingly worse as the number
of coil elements are increased. For the digital radiofrequency architecture
this is not the case, as there only one cable is required for the coil regardless
of the number of channels in the coil (Possanzini, van Liere, et al., 2011).
Additionally, as analog signals are continuous, noise introduced to the signal
from external factors can more readily lead to a degredation of the signal’s
fidelity. In contrast, the discrete nature of digital signals means that the
signal can withstand a certain level of noise without significantly impacting
the data quality. Therefore, analog signals are more prone to interference

from noise than digital signals.

A further consideration that may contribute to increased noise is the dynamic
range of the ADCs for the Achieva and Ingenia platforms. Ideally, the ADCs
should be able to digitise the full range of signals from the maximum at the
central k-space point to the thermal noise level of the receiver (Behin et
al., 2005). For example, a 7T whole body mouse scan at a resolution of
75um requires 20-bits of dynamic range in order to fully digitise the MR
signal (Behin et al., 2005). A dynamic range that is too narrow increases
the likelihood of quantization errors, where small signal variations are lost
in the noise floor of the ADC, degrading the quality of the digitized signal
and reducing SNR. Analog systems such as the Achieva typically have 16-
bits of dynamic range, whereas the dStream architecture allows a dynamic
range between 22- and 26-bits (Possanzini, Ham, et al., 2011). It is unclear
however whether 16-bits of dynamic range is a limitation in this study, as

required dynamic range is dependent on factors such as spatial resolution.

4.4.3 Influence of Multiband (MB) and SENSE acceleration
factors on sound pressure level (SPL)

While our study primarily focused on examining the relationship between

IAPs and tSNR, the relationship between IAPs and sound pressure level

(SPL) was also studied. The main source of acoustic noise in an MR scanner
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comes from the rapid switching of magnetic field gradients during image ac-
quisition (McJury, 2022). Increasing MB acceleration factor while holding
constant the TR reduces the time for which the readout gradient is applied,
as fewer excitations are needed to cover the same volume compared to con-
ventional single-band imaging. This reduces the number of gradient switches
per unit time and consequently also reduces the overall acoustic noise level.
Similarly, parallel imaging methods such as SENSE reduce the amount of
time needed to collect an image, which reduces the time required for gradient
switching. This reduction in acquisition time has previously been used to al-
low silent periods during functional scanning to present auditory stimuli (De
Martino et al., 2015). As acoustic noise was measured here as the root mean
square SPL, it was expected that increasing MB and SENSE acceleration
would reduce the SPL.

This was seen for the Ingenia, with a very strong negative relationship be-
ing found between SPL and both MB and SENSE acceleration factor for
the Ingenia, with the model shown in Equation 4.13 accounting for 91%
if the variance in the data. However, no such relationship was found for
the Achieva. On closer examination, it was found that the MB1 SENSE
2 acquisition on both scanners was not matched for bandwidth in the EPI
frequency direction. Further, on the Achieva, since the water fat shift was
not adjusted when the exam card was moved across, EPI bandwidth was not
matched for MB1 data collected across SENSE factors. Since the scanner
hardware (including gradient characteristics) are different, acoustic perfor-
mance also differs. Additionally it should be noted that in this study, slice
number had to be reduced for MB1 in some cases to fit within the TR of
the volume without the acquisition being split into two packages. However

the collection of fewer slices also dampens the SPL of the sequence.

4.4.4 Effect of NORDIC PCA denoising

As the Achieva was found to have lower tSNR levels than the Ingenia, it
would also be expected that NORDIC denoising would have a larger effect
on the Achieva. In fact, the opposite was found to be true, with NORDIC

being found to have a larger effect for the Ingenia. One possible explanation
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for this might be the distribution of the additional noise present on the
Achieva. NORDIC is designed to identify and remove Gaussian-distributed
noise (Moeller et al., 2021); therefore this may indicate that the additional
noise on the Achieva does not follow this distribution, and thus is unable to
be removed using NORDIC. As seen in Figure 4.13 & Figure 4.14, another
factor that may contribute to this result is that the variance of B values
across cortical ROIs is higher for the Achieva than the Ingenia. While it is
at resolutions of approximately 1.5mm isotropic that Gaussian-distributed
thermal noise begins to dominate the noise in the data (Yoo et al., 2018),
as seen here, even with a resolution of 3mm isotropic for functional volumes,
NORDIC still provided a large benefit to tSNR level for both the Ingenia
and the Achieva. This indicates that with the relatively low requirement
to run NORDIC, that being outputting the phase data in additional to the
magnitude data as well as collecting a single noise scan, researchers should
strongly consider running NORDIC on data to improve BOLD sensitivity,

even in non-thermal noise dominated scans.

4.4.5 Summary

Overall, these findings contribute to existing literature indicating the sub-
stantial effect of image acceleration techniques on tSNR. However, they also
underscore that this association varies across brain regions. For instance,
the Occipital Pole exhibited lower baseline tSNR than the Frontal Pole but
also had a less pronounced response to increased acceleration factors than the
Frontal Pole. Thus these results highlight the limitations of traditional tSNR
calculation and reporting methods that do not take into account variance
between regions. One significant factor contributing to the spatially variant
effect of image acceleration methods on tSNR, is the g-factor of the image.
Parallel imaging methods such as SENSE aim to speed up in-plane data
acquisition by reducing the number of phase encoding steps. However this
undersampling leads to aliasing within the image (Deshmane et al., 2012).
g-factor is the characterisation of the ability of the current coil configuration
to separate pixels superimposed by this aliasing (Pruessmann et al., 1999),

akin to a “noise amplification” factor. As the g-factor is contingent upon the
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coil geometry, it exhibits spatial variability. As seen in the below equation,
apparent SNR is a function of both the reduction of scan time due to parallel

imaging (R), and ¢ factor:

SNR
gVR

Since the g-factor has been identified as a significant contributor to the SNR
variance across the image in both SENSE (Pruessmann et al., 1999) and MB
(Todd et al., 2017), it is likely that this factor largely accounts for the reliance
on MB and SENSE for temporal SNR observed here. Therefore even on the

same scanning platform, it is probable that the difference between head coils

SNRparallcl - (414)

with differing coil geometries on the spatial non-uniformity of tSNR would

be significant.

Past research has also found a spatially varying relationship between im-
age acceleration methods and tSNR (Demetriou et al., 2018; Todd et al.,
2017). However, the current study demonstrates a novel analysis pipeline
using fRAT (Howley et al., 2023) which enables the investigation of differ-
ences between ROIs in the relationship between image acceleration methods
and tSNR. This approach utilises atlas-defined ROIs to be able to analyse
many regions simulatenously, with minimal data preprocessing requirements.
Here, the only preprocessing step was skull stripping of the anatomical vol-
umes using optiBET (Lutkenhoff et al., 2014). This pipeline could also be
extended to convert other voxelwise maps into ROI-wise maps. This could
be useful in the future to conduct ROI-wise analyses of both g-factor and
tSNR maps, which could be used to determine how much of the spatial dif-
ferences seen in this study were driven by non-uniformity in g-factor across

the image.

Due to uniformity of coil sensitivity in the center of the brain, g-factor in sub-
cortical areas is typically higher than in cortical areas, which consequently
causes a large decrease in tSNR (Todd et al., 2017). Therefore, future re-
search could also use fRAT to investigate the tSNR differences between sub-
cortical and cortical areas within the brain. While it would be expected that

subcortical areas have a lower base tSNR and a steeper decline in data quality
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in response to higher acceleration factors compared to cortical regions, the
variance between regions may be much lower for subcortical regions due to
their small size relative to many cortical areas. Another factor that affects
tSNR is the distance from head coil elements and magnetic susceptibility,
with lower tSNR values seen in regions further from coil elements or with

high magnetic susceptibility (Demetriou et al., 2018).

Unusually, an interaction effect between MB and SENSE was found for the
pITG on the Achieva, with no interaction effects being found for any other
condition. In Figure 4.10 it can be seen there is a large spike in tSNR for
the MB1S1 condition, which is likely the cause of this interaction effect. As
reported by fRAT, the average number of voxels per session (M,,,) for the
MB1S1 condition on the Achieva was 91.57 while the overall M,,,was409.52
(SD,.,., = 148.92). In contrast, it is possible that the timing limitations
imposed by the MB1S1 condition caused this effect, with this being the only
condition limited to 24 slices. Thus part of the pITG may reside outside
the scan FOV, reducing the total number of voxels. However this is unlikely
to be the case, as the scans collected on the Ingenia used the same imaging
parameters as those collected on the Achieva, but the MB1S1 condition for
the pITG had a similar M,,, value (228.17) to the rest of the conditions
(M,,, = 378.16, SD,,, = 88.40). Instead the MB1S1 on the Achieva may
have suffered from poor fitting in some scan sessions. A threshold of 200
voxels was set as the minimum voxel count necessary for a datapoint to be
included in the linear mixed model, in total removing 16.41% of data points
for the pITG (21/128), therefore some of these potentially problematic tSNR
measurements would have been removed. However this interaction effect still
remained. This result makes it clear that fRAT’s default options may need
to be optimised to reduce the chance of poor fitting in small areas (such as
the pITG), or to remove the effect of poor fitting on the statistics step of
fRAT CAP.

In conclusion, these results clearly show distinct differences between the
tSNR of the measured cortical ROIs, with each region having a different re-
lationship between image acquisition parameters and tSNR. The typically re-
ported whole-brain measures of tSNR obscures the difference between ROIs,

but more seriously, the tSNR for both cortical and subcortical regions are
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combined, either over- or under- reporting tSNR depending on the location
of the region being investigated. tSNR can also be reported for an ROI as lo-
calised by functional activity, however this leads to a circular analysis where
the selection criteria for the region is not independent from the test statis-
tic (Kriegeskorte et al., 2010). Therefore it is suggested that whole-brain
measures of tSNR are replaced by ROI-wise measures of tSNR, with ROIs
defined by anatomical atlases. The extent to which the findings from this
study apply to other imaging centers is determined by the hardware avail-
able at those sites. Nevertheless, the outcomes presented here can offer a
broad understanding of how both MB and SENSE techniques influence tSNR
across the brain and highlight the importance of optimising image acquisi-
tion parameters for a given study. Additionally, since fRAT only necessitates
anatomical and functional volumes without the need for non-standard scans,
researchers can employ the same analysis pipeline outlined in this study to
conduct pilot investigations, allowing them to optimise scanning parameters
according to the regions being investigated. Employing an equation such as
that proposed by Murphy et al. (2007) can then be used to estimate the

number of time points necessary to reliably find activation.

While this chapter investigated the expected tSNR at different acceleration
factors, the next chapter will investigate the impact of various tSNR levels

in a population receptive field experiment through adding simulated noise.
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Chapter 5

Examining the effect of
simulated noise and motion on
a population Receptive Field

analysis

The work described in this chapter has been presented as a poster at the European

Conference of Visual Perception:

Howley, E., Francis, S., & Schluppeck, D. (2023, August). The effect of reduced tempo-
ral signal-to-noise ratio and participant motion on a population receptive field analysis.
Poster session presented at the European Conference on Visual Perception 2023, Paphos,
Cyprus. Retrieved from URL: https://journals.sagepub.com/page/pec/collections/ecvp-
abstracts/index/ecvp-2023
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5.1 Introduction

Early visual areas are organised retinotopically (Engel et al., 1997). The
delineation and identification of borders between these visual areas is pos-
sible by creating visual field maps (Wandell et al., 2007) on which region-
of-interest (ROI) analysis can be ran (Wandell et al., 2007). The ability to
produce accurate visual field maps is therefore essential for many aspects
of vision research. Population Receptive Field (pRF) analysis, as first per-
formed by Dumoulin & Wandell (2008), uses fMRI to characterise the spa-
tial receptive fields of neuronal populations in the visual cortex (Figure 5.1).
While there have been a number of alternative methods proposed to produce
visual field maps (Greene et al., 2014; Lee et al., 2013; Merkel et al., 2018),
the pRF method is still widely used.

Visual field maps can help to identify residual visual activity which would
not be captured by standard clinical tests such as static perimetry (Beh et
al., 2021; Papanikolaou et al., 2014). Thus pRF analysis is increasingly being
used to study visual disorders (Beh et al., 2021; Dumoulin & Knapen, 2018)
to aid rehabilitation for which the ability to produce accurate and reliable
pRF estimates is critical. pRF estimates of size, eccentricity and polar angle
have been shown to be very reliable within a single scan session (van Dijk
et al., 2016). However, the reliability and accuracy of pRF estimates can be
compromised by the various sources of noise which can affect data quality,
such as thermal noise, scanner artifacts such as gradient instability and RF

noise, as well as subject head motion.

Temporal Signal-to-Noise Ratio (tSNR) is commonly used to measure the
data quality in fMRI research and is affected by factors including the imaging
hardware and acquisition parameters (Demetriou et al., 2018; Hutton et al.,
2011; Todd et al., 2016) as well as subject motion and physiological noise.
Additionally, it has been shown that acquisition parameters impact the tSNR
in a spatially varying manner (Chapter 4). As the measure of tSNR serves as
a proxy for BOLD sensitivity (Murphy et al., 2007), measuring tSNR level
is crucial for determining whether a dataset is likely to have false-negative

errors.

109



5.1. Introduction

Figure 5.1

Example visual field maps derived from a population Receptive Field analysis

Note. Polar angle (A) and eccentricity (B) maps of receptive field centers are
shown overlaid on a flattened map of the right visual cortex. The visual regions
V1 through V4 are labeled, with V2 and V3 further divided into dorsal (e.g. V2d)
and ventral (e.g. V2v) regions. A minimum R? threshold of 20% is used to display
data.
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One common method of increasing the reliability of activation detection is
by increasing the number of time points in each fMRI scan (Murphy et al.,
2007), as combining data across multiple scans increases tSNR to allow re-
liable activation detection in voxels that would otherwise have low levels of
tSNR (Saad et al., 2003). However one of the main causes of MRI subject
discomfort is the length of scans (Chou et al., 2014; Heilmaier et al., 2011),
therefore the scan time of the given fMRI run is necessarily restricted. Scan
time is also limited by subject motion (Maclaren et al., 2013) which has
been suggested to be the second biggest determinant of test-retest reliabil-
ity (Gorgolewski et al., 2013). Further, as longer scan times increase the
chance of subject movement, this can mean that the theoretical increase in
activation detection at longer scan times is not realised. This is especially
the case as some visual disorders are associated with movement disorders,
affecting their ability to tolerate longer scanning sessions. Recent advances
in data preprocessing methods such as NOise Reduction with DIstribution
Corrected (NORDIC) PCA denoising (Moeller et al., 2021) have also been
developed (see subsection 2.3.4 for details). NORDIC PCA denoising sup-
presses Gaussian distributed thermal noise contributions in images, resulting
in a reduction in noise without the requirement for increased scan time. How-
ever, the extent to which NORDIC PCA denoising improves pRF maps is

so far unclear.

While NORDIC PCA denoising is available to reduce thermal noise (and
consequently increase tSNR), the tSNR necessary to have adequate BOLD
sensitivity is task dependent (Murphy et al., 2007), with tasks that elicit
smaller task-related BOLD changes requiring higher levels of tSNR to reli-
ably detect. To date, there has been little research to investigate the effect
of tSNR on the results of pRF analysis. To address this gap in the literature,
this chapter aims to characterise the impact of thermal noise on a pRF ex-
periment, by parametrically varying added noise. Through investigating the
sensitivity of pRF analyses to changes in tSNR levels, the necessary tSNR to
produce accurate visual field maps is estimated. Additionally, the impact of
simulated head motion on a pRF experiment is investigated, due to its signif-
icant impact in fMRI studies (Gorgolewski et al., 2013). By systematically

manipulating tSNR levels and introducing controlled motion artifacts, the
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extent to which these factors degrade the accuracy of pRF estimates is quan-
tified. Importantly, this study aims to investigate the relative contributions
of these factors to overall measurement variability of pRF analysis. Fur-
ther, NORDIC PCA denoising will be used to investigate whether increased
tSNR translates to an increase in pRF estimates accuracy. This study aims

to advance the understanding of the noise-related challenges inherent in pRF

mapping.

5.2  Methods

5.2.1 MRI Dataset

The data for this study came from a pre-existing pRF dataset (Beh et al.,
2021) which was collected at the University of Nottingham under ethics
code F944 /F1055R. This comprised datasets from 4 stroke survivors (Partic-
ipants 13978, 14326, 11773 and 14196) with unilateral brain lesions result-
ing in homonymous visual field loss. To ensure the visual field maps were
as accurate as possible, only participants with high fixation stability were
used in this study. In Beh et al. (2021), fixation stability of participants
was measured during microperimetry using the Bivariate Contour Ellipse
Area measure (Steinman, 1965) which contained 63% of fixations. This is
a widely used method to determine of fixation stability (Crossland et al.,
2004). As Participants 14326, 11773 and 14196 had relatively small BCEA
values (ranging from 0.4°% to 1.7°%) these participants were used for the study
in this chapter, whilst Participant 13978 was excluded due to low fixation
stability (BCEA values ranging from 17.9°% to 26.9°%).

To derive information about the visual field maps, Beh et al. (2021) inte-
grated information from a variety of stimuli types, including expanding/-
contracting rings and rotating wedges typically seen in the travelling-wave
method of retinotopy mapping (Engel et al., 1997; Wandell et al., 2007), as
well as moving bars as introduced by the pRF method (Dumoulin & Wan-
dell, 2008). Imaging data was acquired on a 3T Philips Achieva using a

32-channel head coil. This comprised an anatomical scan, functional scans,
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a T2-weighted scan and a diffusion weighted scan, however the latter two
scan types were not used here. Anatomical scans were acquired using a lmm
isotropic T1-weighted 3D MPRAGE sequence (SENSE factor 3, TE = 3.7
ms, TR = 8.13 ms, FA = 8°, TI = 960 ms, FOV 160 x 256 x 256 mm?®).
Functional MRI data were acquired using a 2D gradient echo EPI scheme
(24 slices at 3mm isotropic resolution, SENSE factor 2, TE = 35 ms, TR =
1500 ms, flip angle = 75°) in a close to axial slice prescription covering most
of the head from frontal to occipital cortex. Participants 14326, 11773 and
14196 were presented with expanding/contracting ring and rotating wedge
stimuli. Additionally, Participants 14326 and 14196 were presented with

moving bar stimuli.

See Beh et al. (2021) for further details on the MRI scan parameters used

and stimuli presentation.

5.2.2  Study Design

To assess the effect of noise and motion on pRF analysis, a pRF analysis
was first conducted on the original dataset to get voxel wise pRF estimates.
Next, we independently varied the tSNR of the data in two ways: by adding
Gaussian noise and by introducing a Gaussian-distributed motion artefact,
ensuring both methods had a similar impact on tSNR. Additionally, tSNR
was varied by using the NORDIC PCA denoising method (Moeller et al.,
2021). We then performed a pRF analysis on these modified datasets and

compared the results to the original data.

The independent variable was the data modification technique used, with
there being 8 levels of this variable: unmodified data, de-noised data, 3
levels of added simulated thermal noise and 3 levels of added head motion.
Both the simulated thermal noise and head motion was Gaussian-distributed
with mean (u) equal to zero and standard deviation (o) equal to 1x, 2x, or
5x the values in the original data. As thermal noise is Gaussian distributed
(Wald & Polimeni, 2017) this addition of noise simulates increased thermal

noise.

Analyses were conducted on each participant independently, with the level
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of ground truth thermal noise and head motion first calculated for each
participant, resulting in the simulated absolute level of thermal noise and
head motion o being different for each participant. When adding simulated
head motion, translations and rotations along the x, y, and z axes were

separately calculated and integrated into the scans.

Three dependent variables were compared between the 8 levels: R?, which
represents the variance in the signal that the final pRF model can explain,
the pRF parameter estimates for receptive field half-width and the pRF
parameter estimates for receptive field centre location. As the receptive field
centre location is two-dimensional, the distance between the receptive field

centres was calculated as the one-dimensional euclidean distance (d):

d= \/(332 —z1)* + (Y2 — %)’ (5.1)

where x, and y, are the coordinates of one pRF centre, and x, and ¥, are

the coordinates of the other.

5.2.3 Defining visual area Regions of Interest

There is a strong link between the structure and function of the visual cortex,
with anatomy scans able to be used to predict the retinotopic organisation
of the striate cortex with accuracy equivalent to 10-25 minutes of functional
mapping (Benson et al., 2012). Therefore anatomical templates such as the
Wang Probability Atlas (Wang et al., 2015) are widely used when defining
visual area ROIs (Himmelberg et al., 2021). The Beh et al. (2021) study
used ROIs defined using the Wang Maximum Probability Atlas (Figure 5.2)
to also account for the fact that stroke damage in the cortex can make it
impossible to define ROIs using cortical surfaces and flat maps. Therefore,
relying on voxel-based template atlases may be the only approach possible.
Anatomical atlases tend to be more accurate when defining early visual areas,
as early visual areas have less inter-subject variability than higher-order areas
(Benson et al., 2012; Himmelberg et al., 2021; Wang et al., 2015). Thus
in this study, we focus on the early visual areas of V1, V2 and V3. As
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Figure 5.2

Sagittal and axial images showing visual regions defined by the Wang Maximum Probability
Atlas

participants had unilateral brain lesions, analyses were only conducted in

the early visual areas of the un-lesioned hemisphere.

5.2.4 Adding simulated thermal noise and head motion

To tailor the simulated thermal noise and motion levels to match those ob-
served in participants, we initially determined the thermal noise and head
motion levels present in the ground-truth data, using the analysis steps out-

lined below, for each participant.

The first step was the creation of tSNR maps using fRAT Maps (Howley et
al., 2023). Prior to creating these maps, a temporal highpass filter of 0.01 Hz
was used to remove low frequency drift from the signal. Motion correction
was also applied to reduce the effect of subject motion on tSNR in this
“ground-truth” data set. The settings used with fRAT to create these maps
are the same as those in subsection 4.2.4 which are provided in Appendix 7.2.
As seen in Equation 3.7, a measure of voxelwise noise (o) must be calculated

before creating the tSNR maps.

As fRAT Maps also output the o maps when creating the tSNR maps, the
next step was to run fRAT CAP’s analysis step on these o maps (see Ap-
pendix 7.6 for the settings used) to provide an ROI-wise measurement of
0. The shell script optiBET (Lutkenhoff et al. (2014); montilab.psych.ucla.
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edu/fmri-wiki/optibet/) was used for brain extraction of the anatomical im-
ages. The choice of optiBET was crucial, as fRAT requires a high degree
of accuracy for brain extraction if, as is the case here here, the analysis is
restricted to only grey matter voxels. Restricting analysis to grey matter
here was helpful in avoiding the inclusion of lesioned regions in the analy-
sis. Further, typical brain extraction tools can struggle in cases where the
data contains severe pathologies (Lutkenhoff et al., 2014) as is the case in
the current dataset. ROIs for use with fRAT CAP were defined using the

Harvard-Oxford atlas of cortical structures (Desikan et al., 2006).

This analysis created ROI-wise summary statistics for o across the brain.
The mean o value for the region closest to the voxels being investigated
in the occipital pole was then used as the starting thermal noise level for
the noise addition manipulation. Further, the fRAT reported translations
(x, v, and z) and rotations (yaw, pitch and roll) of head motion during
scanning which were used as the ground-truth motion levels. These measures
of ground-truth thermal noise and head motion were used with fRAT HOUSE
to add simulated thermal noise and head motion to the data after motion
correction using mrTools. The equations used to generate the simulated
thermal noise and head motion values are shown in subsection 3.3.3. tSNR
across the Occipital Pole for each data type was then calculated using fRAT
(see Appendix 7.7 for the settings used).

5.2.5 Population Receptive Field (pRF) analysis

The mrTools neuroimaging analysis package (Gardner et al., 2018) was used
to perform pRF analysis and other standard preprocessing steps such as lin-
ear detrending and motion correction. As multiple scans were collected per
participant, these scans needed to be registered into the same native space.
Therefore within and between-scan alignment (motion correction) was per-
formed on the time average of each original data scan using mrTools. Sim-
ulated thermal noise, simulated head motion, or NORDIC PCA denoising
was then applied to this preprocessed data to create the different modified

datasets.
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The following steps were then performed to the original and all simulated
data sets. Alignment to the anatomical volume was performed using the
mrAlign tool within mrTools. Alignment was calculated between the orig-
inal data and the anatomical volume and this transformation matrix was
then applied to the fMRI data sets. Before the model fitting, the scans for
each data type were concatenated in time, keeping track of the transition
points, to allow for fitting a model to the entire timeseries for each voxel.
Low-frequency drift correction was applied using a highpass filter at 0.01Hz.
Visual regions were delineated using the Wang Maximum Probability Atlas
(Wang et al., 2015) which was registered to the anatomical volume. Finally,
2D Gaussian pRF models were fit using the Nelder-Mead Simplex algorithm
(Nelder & Mead, 1965). pRF analyses was conducted in the early visual

areas (V1-V3) of the participant’s non-lesioned hemisphere.

5.2.6 Statistical analysis

The aim of the analysis was to establish to what extent different aspects of
the pRF estimates were affected by added thermal noise and head motion.
To assess this, voxel wise permutation tests were used with paired t-test
statistics to compare the original data with the modified data. An o = .05
was used as a threshold to determine statistical significance. The maxT
permutation adjustment (van der Laan et al., 2004; Westfall & Young, 1993)
was used in order to control the family-wise error rate, with the reported
p-values being the multiple comparisons corrected values. Statistical tests
were multiple comparison corrected both within and between participants.
The total number of voxels within each participant’s early visual areas (V1-
V3) as defined by the Wang Maximum Probability Atlas (Wang et al., 2015),
were as follows: Participant 11773: 264 voxels; Participant 14196: 435 voxels;
Participant 14326: 493 voxels.

For effect size, mean paired difference was reported as well as the proportion
of voxels exhibiting greater values in each condition. This proportion was
calculated using the expression as pr,,.,, where a value of 0.5 would represent
50% of the values for the modified data are above those of the original data,

and a value of 1 would represent that all values for the modified data are
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above those of the original data. Bootstrapping was conducted to calculate
the 95% confidence intervals for the mean differences. A total of 10,000

samples were used for both bootstrapping and permutation tests.

The following results describe the effect of simulated head motion, simulated
thermal motion and NORDIC PCA denoising on the pRF analysis. For
brevity, some figures are only shown for a representative participant (Par-
ticipant 14196). Data from the other participants are provided in Appendix
7.9.

5.3  Results

5.3.1 Analysis of ground truth head motion and tSNR levels

As shown in Table 5.1, translational movements were minimal and relatively
stable across participants, however there was a large degree of variation
for rotational movement. For example, Participant 11773 exhibited a large
amount of rotational movement across all axes, whereas Participant 14326
exhibited a large degree of rotational movement only in the yaw axis. Par-
ticipant 14196 demonstrated the least rotational movement overall. There
was a large difference in tSNR levels in each participant’s Occipital Pole
(Table 5.2), with Participant 11773 demonstrating a much lower tSNR level
than the other participants. The differences found in the “ground truth”
head motion and thermal noise for each participant highlight the necessity
for scaling the simulated thermal noise and head motion levels according to
a participants original data. An example of how adding simulated thermal
noise or head motion, or applying NORDIC PCA denoising, affects the fMRI

time series is shown in Figure 5.3.
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Table 5.1

Table of average rotational and translational head motion for each subject

Rotation (rad) Translation (mm)
Subj. Roll Pitch Yaw X y A
11773 0.0038 0.0015 0.0022 0.11 0.098 0.091

14196 0.0011 0.00010  0.0026 0.083 0.026 0.042
14326 0.0028 0.0018 0.0022 0.047 0.070 0.10

Note. Stated rotation and translation parameters are the estimated trans-
formation parameters as reported by FSL. Note that the translation values
represent the movement of the center of mass of the imaged object. As a re-
sult, rotational movements can cause translational displacements much larger
than reported here for voxels at the edge of the brain. To retain consistency,
simulated motion is added into the data using FSL’s ”applyxfm4D” function.

Table 5.2

Descriptive statistics of the tSNR for each participant

Participant Mean (SD) Maximum
11773 25.83 (25.85) 117.34
14196 77.73 (42.19) 230.74
14326 59.31 (33.17) 188.11

Note. tSNR data shown is from the Occipital Pole. SD = Standard Deviation.

Table 5.3 illustrates the effect across the 8 modifications on tSNR levels.
As expected, denoising using NORDIC PCA slightly increased the overall
tSNR, with a substantial increase in the maximum voxelwise tSNR compared
to the control data. Conversely, adding simulated thermal noise or head
motion to the data decreased the tSNR levels. Notably, higher relative
thermal noise levels resulted in a greater reduction in tSNR than higher
relative head motion levels. Additionally, the standard deviation relative to
the mean indicates that the variability of tSNR increased more when adding
thermal noise than adding head motion. Overall, these summaries provide

an important reality check for the manipulations evaluated in this chapter.
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Figure 5.3

Example time series illustrating effects of adding head motion and thermal noise, and
applying NORDIC PCA denoising

——— Control (A)

——— Control plus noise
—— Control plus motion

\

\
VAU

Signal intensity (a.u.)

Signal intensity (a.u.)

—— Control
—— Denoised data

0 10 20 30 40 50 60 70 80
Timepoint

Note. The data presented here is from a single, highly stimulus-responsive voxel
in Participant 11773 during a rotating wedge scan. (A) illustrates the effects of
adding thermal noise and head motion to the data at 2x original data, (B) shows
the effect of NORDIC PCA denoising. Notice that random fluctuations are visible
in both the thermal noise and head motion added time series, but the thermal
noise time series is centred about the original data whilst the motion data is not.
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Table 5.3

Descriptive statistics of tSNR level for each data type

Data type Mean (SD) Maximum
Control 54.29 (21.48) 275.61
Denoised 59.95 (25.96) 507.40
Noise level
1 20.48 (14.82) 126.63
2 17.50 (9.06) 65.98
5 7.59 (3.93) 26.76
Motion level
1 32.60 (15.25) 190.36
2 21.83 (7.88) 157.85
5 12.65 (2.66) 112.19

Note. tSNR data shown is from the Occipital Pole. SD = Standard Deviation.

5.3.2 Effect of simulated thermal noise on the pRF analysis

Overall, the pRF estimates for original data consistently exhibited higher
R? values than the noise-added data. This is not surprising as adding noise
increases the amount of variance that is unexplained by the model. Permu-
tation tests showed that this difference was statistically significant across
all noise levels for all participants. For Participant 11773 (Noise level 1:
t =18.22,pr,,., = .011; Noise level 2: t = 17.85, pr,,~, = .038; Noise level
5:t=17.72,pr,~, = .023), 14196 (Noise level 1: t = 20.40, pr,,~, = .15;
Noise level 2: ¢t = 20.11, pr,,~, = .15; Noise level 5: t = 19.27, pr,,~, =
.16), and 14326 (Noise level 1: ¢t = 23.61,pr,,., = .077; Noise level 2:
t = 23.81,pr,.-, = .073; Noise level 5: t = 23.64, pr,,-, = .061) the per-
mutation tests all yielded p values of 0 after multiple comparison correction.
This indicates that none of the permuted samples produced a t-statistic as

extreme or more extreme than these ¢-statistics.
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Table 5.4

R? values for various noise levels

Data type Mean R* Mean paired R’ difference
Participant 11773
Control .26 -
Noise level
1 .03 -.22
2 .02 -.24
5 .01 -.25
Participant 14196
Control 21 -
Noise level
1 11 -.10
2 .05 -.15
5 .02 -.18
Participant 14326
Control 21 -
Noise level
1 .09 -.12
2 .04 =17
5 .02 -.19

As expected, it was found that the R? values were noticeably higher for
the original data compared to the noise-added data for every participant
(Table 5.4). As shown in Table 7.1 and 7.3, Participant 11773 experienced a
substantial deterioration to R* values even at noise level 1. For the original
data, the number of voxels exceeding an R? threshold of 0.1 decreased by
35% from 265 to 171 voxels, however for noise level 1 this instead reduced to
18, a decrease of 93%. At relative noise levels of 2x and 5x, this participant

had no surviving pRF estimates at this threshold.

In contrast, the data for Participants 14196 and 14326 were much more
resistant to the addition of thermal noise. For Participant 14196 (Table 5.7
and 5.8), at an R? threshold of 0.1, the number of voxels for the original and
noise level 1 data that exceeded this threshold decreased from 436 to 232 (a
47% decrease) and 157 (a 64% decrease) respectively. At an R? threshold
of 0.2, it decreased further to 179 (a 59% decrease) and 77 (a 82% decrease)
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respectively. Similarly, for Participant 14326 (Table 7.2 and 7.4) the voxels
that exceeded an R? threshold of 0.1 for the original data was 299, down
from 494 (a 39% decrease), dropping further to 214 (a 57% decrease) at a
threshold of 0.2. For the noise level 1 data the voxel count at thresholds of
0.1 and 0.2 was 167 (a 66% decrease) and 63 (a 87% decrease) respectively.

As seen in Table 5.5, Participants 14196 and 14326 have similar distributions
of euclidean distances, pRF size differences and R? values with each level of
thermal noise decreasing the maximum R? value and seeming to increase the
euclidean distance. Participant 11773’s R* values however are much closer
to 0 for all noise levels. There also does not seem to be a bias towards larger
or smaller receptive field sizes for any of the participants for the original data
compared to the noise-added data. This was true for noise level 1 and 2 for
which there was no significant differences found between the original data and
these noise levels for any participants (noise level 1 maximum ¢ statistic: ¢ =
2.24,p = .67; noise level 2 maximum ¢ statistic: ¢ = 2.93,p = .1). However
PRF sizes for noise level 5 were found to be significantly smaller than the
original data in Participant 11773 (t = 5.28,p < .001,pr,,», = .2, MD =
—5.45), Participant 14196 (t = 3.21,p = .037, pr,,~, = .35, MD = —0.50),
and Participant 14326 (t = 7.0,p < .001, pr,,-, = .26, MD = —1.13).

As shown in Table 5.6, as with euclidean distance polar angle difference sys-
tematically increases as thermal noise level increases, whereas this is not the
case with eccentricity. This is reflected by there being inconsistent statisti-
cal significance for eccentricity, with no statistically significant differences
between the original data and any level of noise-added data for eccentric-
ity at noise level 1 (maximum ¢ statistic: ¢ = 1.52, p = 1, pro., =
A48) or noise level 2 (maximum ¢-statistic: ¢ = 1.76,p = .99). How-
ever at a relative thermal noise level of 5x, the pRF estimates had sig-
nificantly lower eccentricity than the original data for Participant 11773
(t = 3.61, p = .009, pr,.~, = .54, MD = —32.65) and Participant 14196
(t = 3.15, p = .046, pr,,., = .64, MD = 3.57), but this was not the case
for Participant 14326 (t = 1.87, p = .96, pr,,., = .61, MD = 1.93).
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Table 5.6

Polar angle and eccentricity differences for noise-added data

. Polar angle differences Eccentricity differences
Participant
oot Noise level:
: —_—1 0.007 -
—_—2
0.012 - — 5 0.006 -
11773 0010+ 0.005 -
2 2
& 0.008 - B J
E g 0.004
5 5
[=) (=]
0.006 - 0.003 -
0.004 - R
0.002 Noise level:
_—1
0.002 - 0.001 - — 2
—_—5
0.000 - 0 ' ' ' ' ' ' ' ' 0.000 -
0.0175 - Noise level: Noise level:
0.040 - —1
_—2
0.0150 0.035 - — 5
0.0125 - 0.030 -
].4196 ?0.0100 20.025'
Z Z
2 2
0.020 -
e 0.0075 (=]
0.015 -
0.0050
0.010 -
0.0025 0,005 -
0.0000 - 0 ' f ' f 0 . O . 0.000 -
0.025 - Noise level: Noise level:
0.04 - — 1
_—2
— 5
0.020 -
20015
0
a
[
o
0.010
0.005 -
0.000 - 0 ' ' ' ' ' ' ' |
0 20 40 60 80 100 120 140 160 180

Polar angle difference (degrees) Eccentricity difference (degrees)
Note. Polar angle difference represents the minimum angular separation between
the paired polar angles. Polar angle difference systematically increased as ther-
mal noise level increases, whereas this is not the case for eccentricity. case with
eccentricity
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5.3. Results

5.3.3 Effect of simulated head motion on the pRF analysis

As with the noise-added data, the pRF estimates for the original data consis-
tently yielded higher R? values than for the motion-added data. Permutation
tests showed that this difference was also statistically significant across all
motion levels for all participants, with the permutation tests yielding a p
value of 0 for Participant 11773 (Motion level 1: ¢t = 5.59, pr,.», = .36; Mo-
tion level 2: t = 12.82, pr,,~, = .068; Motion level 5: t = 12.56, pr,,~, =
.084), Participant 14196 (Motion level 1: ¢ = 14.61, pr,,., = .22; Motion
level 2: t = 16.96, pr,,-, = .20; Motion level 5: t = 18.16, pr,,., = .22)
and Participant 14326 (Motion level 1: ¢ = 16.23, pr,,-, = .15; Motion level
2: t=19.91, pr,,., = .0.087; Motion level 5: t = 23.23, pr,,., = .061).

Table 5.9

R? values for various motion levels

Data type Mean R* Mean paired R* difference
Participant 11773
Control .26 -
Motion level
1 .22 -.01
2 18 -.07
5 .09 -.15
Participant 14196
Control 21 -
Motion level
1 13 -.07
2 .09 -.12
5 .04 -.17
Participant 14326
Control 21 -
Motion level
1 13 -.08
2 .08 -.13
5 .04 -.18

While the impact of adding head motion to the data varies among partici-

pants, the degree of difference compared to adding thermal noise is consider-
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ably smaller. As shown in Table 5.9 and Table 5.10, as with the noise-added
data, the impact of head motion on the data for Participants 14196 and 14326
is notably similar, with comparable effects on both R? values and pRF pa-
rameters. In contrast, data from Participant 11773 was more resilient to the
addition of simulated head motion than the two other participants. This
is despite their dataset having a higher relative amount of simulated rota-
tional head motion added to their data as they exhibited more rotational

head movement in the “ground truth” data across all axes (Table 5.1).

In regards to pRF parameters, no significant difference was found for pRF
size between the original data and the motion level 1 data (maximum t-
statistic: ¢ = 2.38, p = .5), however a significantly lower pRF size was
found for Participant 14326 for motion level 2 (¢ = 7.88, p < .001, pr,.-, =
.36, MD = —0.85) and motion level 5 data (t = 9.61, p < .001, pr,,., =
32, MD = —1.13). This was not the case for Participant 11773 (Motion
level 2: t = 0.63, p = 1, pr,,~, = .56, MD = 0.77; Motion level 5: t =
0.64, p = 1, pris, = .38, MD = —1.14) or Participant 14196 (Motion
level 2: t = 1.14, p = 1, pr,,», = .46, MD = 0.25; Motion level 5: t =
1.92, p= .94, pr,.~, = .44, MD = 0.61).

Similar to the thermal noise-added data, polar angle difference systemat-
ically increased as head motion level increased (Table 5.11), whereas this
was not seen with eccentricity. As with the noise-added data this is also
reflected in statistical tests, with no significant differences being found be-
tween eccentricity parameters for the original and the motion-added data
for either Participant 11773 (maximum t-statistic: ¢ = 0.70, p = 1) or
Participant 14326 (maximum t-statistic: ¢ = 1.86, p = .96). However, for
Participant 14196 while no significant difference was found for motion level
2 (t = 247, p = .41), a significant increase in eccentricity was found for
motion level 1 (t = 3.36, p = .02, pr,,», = .55, MD = 3.65) and level 5
(t =3.87, p=.004, pr,.-, = 0.003, MD = 10.67).

Overall, while there were significant decreases between the R* for the pRF
estimates from the original data compared to the motion-added data, the
pRF analysis seemed to be much more resilient to adding head motion to
the data (Table 7.5 - 7.8). For Participant 11773 there was a reduction of
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93% in the number of voxels that exceeded an R? threshold of 0.1 with noise
level 1, whilst there was only a 46% decrease for motion level 1 (from 164
to 89 voxels). At motion level 1, there was a larger drop of 60% (from 436
to 175 voxels) and 59% (from 494 to 204 voxels) for Participants 14196 and
14326 respectively.

5.3.4 Effect of NORDIC PCA denoising data on the pRF anal-

ysis

R? values for the denoised data were consistently higher than those for the
original data, with 89%, 93% and 98% of the R? values for the denoised
data being higher than their paired voxel equivalent from the original data
set (for Participant 11773, 14196 and 14326 respectively). This effect was
also significant for all 3 participants (11773: ¢ = 18.12, p < .001; 14196:
t = 21.64, p < .001; 14326: t = 15.91, p < .001). However this effect,
while consistent, was also relatively small (Table 5.14), as can be seen when
examining the number of voxels that exceed the R* thresholds of 0.1 and
0.2.

Table 5.14

R? values for denoised data

Data type Mean R* Mean paired R’ difference
Participant 11773

Control .26 -

Denoised 28 .02
Participant 14196

Control 21 -

Denoised 27 .06
Participant 14326

Control 21 -

Denoised 23 .02

For Participant 11773, at an R* threshold of 0.1, the number of surviving
voxels decreased by 35% in the original dataset and 32% in the denoised
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Table 5.11

Polar angle and eccentricity differences for motion-added data

L. Polar angle differences FEccentricity differences
Participant
Motion level: 0.007 4
—1
0.04 - —2 0.006 -
— 5
0.005 -
11 773 0.03 -
z 20.004 -
@ @
c c
o o
0 0,02 - O 0.003 -
0.002 -
0.01 Motion level:
—1
0.001 - 5
— 5
0.00 ~ . . g : : T : : ] 0.000 -
0.0200 - -
Motion level: 0.05 - Motion level:
—1 —1
0.0175 - 2 2
5 — 5
0.0150 - 0.04 -
141 96 0.0125 -
2
2 0.0100 -
1]
a
0.0075 -
0.0050 -
0.0025 -
0.0000 -
- Motion level: Motion level:
0.025 —) 0.07 - —1
—2 —2
— 5 i — 5
0.020 - 0.06
20.015-
@
2
@
a
0.010-
0.005 -
0.000 - . . . J ; ‘ ] . . g . . \ :
0 20 40 60 80 100 120 140 160 180 -40 -20 0 20 40
Polar angle difference (degrees) Eccentricity difference (degrees)

Note. Polar angle difference represents the minimum angular separation between
the paired polar angles. Similar to the thermal noise-added data, polar angle
difference systematically increased as head motion level increased, whereas this
was not the case for eccentricity.
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dataset; at an R? threshold of 0.2, the decreases were 51% and 48%, re-
spectively. Similarly, for Participant 14326 the decrease in the number of
surviving voxels at an R* threshold of 0.1 was 39% for the original dataset
and 37% for the denoised dataset, and at an R* threshold of 0.2, the de-
creases were 57% and 54%, respectively. The benefits to R* were slightly
more pronounced for Participant 14196 though, with the original dataset
showing a decrease of 47% at the 0.1 threshold and 59% at the 0.2 threshold,
while the denoised dataset exhibited decreases of 40% and 50% respectively.

Compared to the thermal noise-added and head motion-added scans, paired
euclidean distance between the denoised and the original data was also much
smaller (Table 5.15). This can also be seen in the pRF size differences for the
denoised data (Table 7.9 - 7.10) compared to those in previous sections. On
the other hand, the pRF size differences were similar to noise and motion-
added data, with the RFs for Participant 11773 having larger size differences
than the other two participants. Additionally as shown in Table 5.16, eccen-
tricity differences for Participant 11773 were also much higher than for the
other participants. However, there was no significant difference between the
original data and the denoised data for any of the participants for either pRF
eccentricity (maximum ¢-statistic: ¢ = 1.83, p = .97) or pRF size (maxi-
mum t-statistic: ¢ = 1.65, p = 1). Additionally polar angle differences

closely mirror euclidean distance (Table 5.16).

5.4  Discussion

The results here show pRF estimates are more resistant to the addition of
relative head motion than to the addition of relative thermal noise. Further-
more, while higher levels of head motion and thermal noise resulted in both
lower R? levels and greater differences in pRF centre locations, the differ-
ences in pRF size and eccentricity were inconsistent. On the other hand,
polar angle differences systematically increased as thermal noise and head
motion values increased. Therefore, polar angle differences are likely to be
the main driving force behind both the pRF centre and R? differences seen
here. NORDIC PCA denoising (Moeller et al., 2021) was also shown to pro-
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Table 5.16

Polar angle and eccentricity differences for denoised data

. Polar angle differences Eccentricity differences
Participant
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Note. Polar angle difference represents the minimum angular separation between
the paired polar angles. As with receptive field size, Participants 14196 and 14326
showed only small eccentricity differences between the original and NORDIC de-
noised data, whereas for Participant 11773 this difference was much higher.
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5.4. Discussion

vided a small but consistent benefit to the pRF analysis, with between 89

and 98% of the voxels shown to have a higher R?* value after denoising.

When comparing the “ground truth” data to the simulated thermal noise
data, the R? of the pRF estimates for Participant 11773 declined much faster
than for Participant 14196 and 14326 at higher noise levels. In contrast, the
pRF estimates for Participant 11773 were more resistant to higher simulated
motion levels than for Participant 14196 and 14326. The decline in R? values
for Participant 11773 may be due to the higher noise level for this participant
relative to the other participants (which is reflected in this participant having
the lowest tSNR Table 5.2). However while all participants had similar
levels of translational motion, Participant 11773 had higher overall rotational
motion than the other participants. It would thus be expected that the
higher resulting relative simulated motion levels for this participant would
cause faster degradation of the pRF estimate’s R? values which was not the

case here.

It should be noted that while Participant 14196 and 14326 had similar results
throughout, Participant 11773 typically exhibited higher eccentricity and
PRF size differences, as well as a smaller distinction between head motion and
thermal noise levels for Euclidean distance. All participants showed a similar
distribution of R? values for the original data and similar movement values
(Table 5.1), however Participant 11773 had fewer defined voxels (256 voxels
compared to 436 and 496 voxels) and larger pRF sizes (6.26 degrees compared
to 1.54 and 2.30 degrees) with significantly higher mean eccentricity values
(39.084 degrees compared to 6.86 and 8.03 degrees). Further, mean pRF
size and eccentricity for voxels exceeding an R? threshold of 0.1 were still
higher than those of the other participants (5.93 degrees and 32.54 degrees,

respectively).

It may be the case that voxels from higher order regions, such as the lateral
occipital area and V4 may have been included in this participant’s data, as
these regions are known for larger pRF sizes compared to early visual areas
(Dumoulin & Wandell, 2008; Gattass et al., 1988). On the other hand, as
early visual area locations are very consistent between participants (Benson
et al., 2012; Himmelberg et al., 2021; Wang et al., 2015), it is unlikely that a
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significant proportion of higher visual order areas has been included in this
participant’s data. Moreover, this does not account for why the mean pRF
eccentricity is significantly beyond the stimulus space, with the maximum

eccentricity of the stimuli being 9.39 degrees.

The most likely explanation for Participant 11773’s inconsistent results is
the minimization algorithm used here fitting pRFs models, the Nelder-Mead
Simplex algorithm (Nelder & Mead, 1965). This algorithm is used as the
default in mrTools, however an alternative, the Levenberg-Marquardt algo-
rithm (Levenberg, 1944; Marquardt, 1963), is also available. Because the
Nelder-Mead Simplex algorithm is an unconstrained algorithm, it is possi-
ble for pRF models with biologically implausible parameters to be fit. In
contrast, the implementation of the Levenberg-Marquardt algorithm in mr-
Tools allows for the use of constraints to ensure that the fitted parameters
remain biologically plausible. However as noted in the mrTools documenta-
tion, the Nelder-Mead algorithm is less likely to get stuck in a local minimum

compared to the Levenberg-Marquardt algorithm.

A potential explanation for why this limitation of the Nelder-Mead algo-
rithm has affected this participant’s data and not the others is the stimuli
presented to this participant. During data acquisition, Participant 11773 was
only presented expanding/contracting ring and rotating wedges, whereas the
other two participants were presented these stimuli as well as moving bar
stimuli. These ring and wedge stimuli are “phase-encoded” stimuli as their
movement during a scan is repeated and predictable over time. In contrast
the moving bar stimuli are not “phase-encoded” as the bars change direc-
tion and orientation within a scan (Dumoulin & Wandell, 2008). As wedge
and ring stimuli tend to bias towards lower pRF eccentricity and size than
bar stimuli (Linhardt et al., 2021), this discrepancy might result from a
combination of the Nelder-Mead algorithm and phase-encoded stimuli. The
algorithm might have found it easier to fit large pRF estimates far outside the
stimulus space to the predictable “phase-encoded” stimuli compared to the
moving bar stimuli, explaining why Participant 11773 was uniquely affected.
This highlights the importance of considering the impact algorithm choice
may have on pRF models and how this may interact with the stimuli used.

Furthermore, due to the significant influence the pRF fitting algorithm can
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have, it is essential that research clearly states the algorithm used to ensure

transparency and reproducibility.

Comparing the effects of thermal noise and head motion in Participant 14196
and 14326, to the levels used in this study, pRF analysis was more sensitive
to the addition of thermal noise than head motion, with many more pRF
models exceeding an R* threshold of 0.2 in the motion level 5 condition than
the noise level 5 condition. However, head motion levels were relatively low
across participants (Table 5.1). While this was the case, simulated head
motion did produce a similar effect on tSNR to simulated thermal noise
(Table 5.3). Therefore, the levels of simulated head motion and thermal noise
here can be seen as roughly comparable. It should be noted that the effect
of motion on pRF estimates is normally actively reduced by using motion
correction as a standard pre-processing step, whereas here motion correction
was only applied prior to the creation of the modified data. However, gross
motion artifacts are often hard to remove and may lead to situations where

data cannot be included in an analysis, even after motion correction.

One potential method for decreasing noise, is spatially smoothing the data
(Dumoulin & Wandell, 2008), a common technique in experimental fMRI
designs. While this produces a reliable increase in tSNR by removing high
frequency spatial noise, this comes with the drawback of lowering the spa-
tial resolution. This can make visual area delineation using retinotopic maps
less accurate, although this can be somewhat mitigated using spatial inter-
polation (Dumoulin & Wandell, 2008). On the other hand, NORDIC PCA
denoising produces similar levels of BOLD sensitivity to spatial smoothing,
while producing minimal increases in overall smoothness of the image (Dow-
dle et al., 2023). Thus, NORDIC PCA denoising can be used as an alter-
native to conventional spatial smoothing, offering an approach to enhance
tSNR without significantly compromising spatial resolution, ensuring robust
and accurate visual area delineation. Here, NORDIC PCA denoising only
provided a small, but consistent, benefit to pRF modelling, potentially re-
flecting the fact that the scanning parameters used here were such that
thermal noise was not an issue. For measurements with much smaller voxels
and higher levels of thermal noise, NORDIC would be expected to provide a
clear benefit. However it should also be noted that NORDIC PCA denoising

141



5.4. Discussion

was used here with magnitude data, without the use of the phase component
of the functional data or a noise scan (for image SNR estimation), which can

enhance the denoising results (Moeller et al., 2021).

Due to the retinotopic organisation of many visual areas, the pRF properties
can be used to identify delineate these visual areas. Visual area delineation is
commonly performed using the polar angle properties of pRFs, as the bound-
aries of these areas are defined by a reversal in the polar angle property of the
RFs (Engel et al., 1997). Here, polar angle differences consistently increased
as head motion and thermal noise level increased; on the other hand, eccen-
tricity and pRF size differences were inconsistent as thermal noise and head
motion level increased. This indicates that it will be increasingly difficult to
delimit visual areas as thermal noise or head motion level increases due to
increased polar angle pRF estimation error using this method of visual area
identification. On the other hand, anatomical atlases can reliably identify
visual areas without relying on pRF properties for visual area delineation
(Wang et al., 2015). Thus, these results imply that in cases of high thermal
noise or head motion, anatomical atlases may provide more accurate visual
area identification than methods than rely on pRF parameters; particularly
in lower visual areas which have lower anatomical variability between sub-

jects than higher order areas (Himmelberg et al., 2021).

In conclusion, this chapter demonstrates the deleterious effect of both head
motion and thermal noise on pRF analyses, while also showing that the pRF
analysis was more resilient to the addition of simulated head motion than
thermal noise. While the effect of retrospective motion correction software
tools are broadly similar (Oakes et al., 2005), prospective motion correction
can provide a significant benefit to image quality over retrospective motion
correction (Slipsager et al., 2022), therefore further research can investigate
the benefits provided by using one motion correction technique over the other

in the presence of heavily motion corrupted data for pRF analyses.

Additionally, mitigation strategies for thermal noise, such as NORDIC PCA
denoising and spatial smoothing can also be compared at 3T (Dowdle et al.,
2023). As this dataset did not contain the phase and noise scan information

that NORDIC PCA denoising can use to provide more accurate denoising,
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it is also worth future research investigating the additional benefit of this to
pRF analysis. The difference between results for Participant 11773 compared
to Participants 14196 and 14326 may potentially be the result of an interac-
tion between the unconstrained minimization algorithm used here and the
“travelling wave” stimuli used for Participant 11773. Further research is nec-
essary to determine whether unconstrained algorithms may be more suitable
for certain stimuli choices. Despite this, the results for Participant 14196 and
14326 contribute valuable insights into the resiliency of pRF parameters to

head motion and thermal noise.
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Chapter 6

General discussion
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This thesis explores the effects of different MRI image acquisition parame-
ters (IAPs) on the key data quality metric of temporal signal-to-noise ratio
(tSNR), which is a major determinant for how well given MRI parameters
optimally detect functional MRI (fMRI) signals. The subsequent impact
of varying tSNR levels on the population Receptive Field (pRF) analysis
method, widely used in sensory neuroscience, is then examined. This chap-
ter summarises the main findings and implications of the work outlined in
this thesis.

The first aim of this thesis was to develop a tool to determine how different
MRI acquisition parameters systematically influence tSNR across different
brain regions. Because currently available software for fMRI data lacked
easy-to-use support for region-wise analysis of data quality metrics, I devel-
oped software to facilitate such region-wise summaries of data quality maps
(Chapter 3). Rather than developing a one-off solution for use solely in
my work, I developed and published an open-source software solution that
provides a comprehensive region-of-interest (ROI) analysis toolset allowing

assessment of data quality metrics in standard template space, this is termed
the fMRI ROI Analysis Tool (fRAT).

As tSNR plays an important role in modulating BOLD sensitivity (subsec-
tion 2.3.2), measuring tSNR is beneficial as it allows the determination of
whether non-significant results may be the result of poor BOLD sensitiv-
ity caused by low tSNR, or whether other factors, such as differences in
study populations or other confounders may be the cause. However, tSNR
is not standardly reported (Welvaert & Rosseel, 2013), and where tSNR has
been reported, it is usually reported as a single figure representing the mean
value over the whole brain, thus obscuring inter-regional differences which
are important when planning fMRI studies. One likely reason for this lack
of methods to assess fMRI data quality metrics is that tSNR in fMRI is only
an informative measure for grey matter, so an accurate brain segmentation
first needs to be performed to separate tissue types. Additionally, to produce
an ROI wise measure of tSNR, matrix transformations between functional
and standard template space must be performed, adding to the complexity
of the analysis. Using the analysis tools of fRAT, region-wise summaries of

data quality metrics (such as tSNR) over a single or multi-user dataset can
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be easily produced in a given template space. It is hoped that fRAT can be
used by other researchers in the future to increase the reporting of important
metrics such as tSNR in research, as this would allow other researchers to

assess the results in the context of the data quality.

To increase the general applicability of fRAT, while it was designed with data
quality statistics (such as tSNR and image SNR [iSNR]) in mind, it can be
used to convert any voxelwise statistical map into region-wise summaries. In
addition, a number of analysis options were later added to fRAT to tailor
its use to the needs of different researchers and projects. The flexibility of
fRAT allows for a number of use-cases, some of which are discussed in this
thesis. The statistics and figure creation options available within fRAT also
allow multivariate ROI analyses. One example of this may be seen in the
examination of the effect of multiple MR image acquisition parameters on
a statistic of interest as seen in Chapter 4. Thus fRAT facilitates research
into the optimisation of MRI parameters (or other variables) based on a
chosen ROI. fRAT can also be used when planning studies to determine the
influence image acquisition parameters such as acceleration factor have on

data, to ensure suitable factors are used for the areas of interest in a study.

Given the numerous fMRI research applications that benefit from regional
aggregation, fRAT was designed to be compatible with other voxel wise sta-
tistical maps. Specifically, in some research applications, atlas-derived ROIs
provide advantages over functionally derived ROIs. For instance, for power
analyses, aggregating statistical maps using atlas-defined ROIs can prevent
inflated statistical power estimates. Such inflation can occur particularly if
functionally derived ROIs which are not independent of the effect statistic
are used, leading to biased results (Kriegeskorte et al., 2010). Atlas-defined
ROIs, on the other hand, resolve this issue by maintaining independence
between the ROI definition and the effect statistic. This flexibility of fRAT
allows it to be used in a wide range of research applications beyond those

presented in this thesis.

Chapter 4 then utilised fRAT to investigate a specific question about the re-
lationship between image acquisition parameters and tSNR and how it varies

across different regions of the brain. The common method of reporting a sin-
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gle tSNR value across the whole brain, by necessity, obscures inter-regional
differences, providing an average value that will not correctly represent many
of the brain regions. Consequently, it is useful if researchers provide more
specific tSNR, measurements, such as is possible with the fRAT software.
Furthermore, the results of Chapter 4 demonstrate that the regional effect
of MRI parameters on tSNR is heavily dependent on the hardware used (here
a Philips 3T Achieva or Ingenia MR scanner). Therefore, researchers may
benefit from using fRAT to conduct pilot studies to optimize MRI parameter
settings according to their chosen ROI and available MR scanner hardware,

aiming for a specific tSNR level.

The importance of tSNR level was then explored in Chapter 5, which ex-
amined the effect of artificially inflated thermal noise and head motion on
pRF analysis. It was found that additional relative thermal noise had a
much larger effect on pRF estimates than additional relative head motion.
This chapter also showed the potential interaction between pRF fitting algo-
rithms and stimuli, showing that unconstrained fitting algorithms might be
better suited to the use of moving bar stimuli (Dumoulin & Wandell, 2008).
Finally, it was found that the addition of noise and motion had a more
consistent effect on the polar angle of the pRF estimates, rather than the
eccentricity or receptive field size. The results of Chapter 4 showed that the
Occipital Pole had a significantly lower baseline tSNR level than the tSNR
over all cortical regions (a tSNR level of ~90 versus ~130 on the Ingenia).
In contrast, Multiband (MB) acceleration was found to have a much smaller
effect in the Occipital Pole than for other regions, and SENSE was not found
to significantly influence tSNR level in our measurements. Therefore, while
Chapter 5 indicates that pRF estimates are sensitive to high noise levels,
Chapter 4 shows that researchers may be able to use moderate levels of both

MB and SENSE image acceleration without a large effect on pRF analysis.

6.1 Limitations and future directions

As the aim of Chapter 4 was to characterise the effect of image acceleration

methods on tSNR, with a particular emphasis on their potential to reduce
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acoustic noise. To match conditions closely across repeated scans, only the
number of slices collected was varied between scans, although there is of

course a much larger space of image acquisition parameters.

The data quality of the fMRI time series’ in Chapter 4 was quantified us-
ing tSNR. However additional considerations beyond tSNR should be made
when evaluating the impact of image acceleration methods on data. For in-
stance, the undersampling of k-space with SENSE also produces a directly
proportional decrease in the time required to obtain each image, which can
provide a number of benefits. One benefit is this reduction in image acqui-
sition time also lowers sensitivity to susceptibility related signal dephasing,
with SENSE factor 2 producing a reduction in susceptibility related distor-
tions by a factor of two (Schmidt et al., 2005). This results in higher quality
images more closely matching the actual anatomy. Assessing the implica-

tions of these effects was however beyond the scope of this thesis.

Furthermore, increasing MB acceleration allows for a directly proportional
increase in temporal resolution through reduction of the TR. As a more ac-
curate characterisation of the haemodynamic response function is achieved
with a higher sampling rate (Dilharreguy et al., 2003), an improvement in
BOLD sensitivity may be possible with higher MB acceleration factors if
temporal resolution is also increased. This can be the case even in the pres-
ence of lower tSNR levels that result from higher MB acceleration (as seen
in Chapter 4). Increased sampling rate has been shown to be beneficial to
BOLD sensitivity, in some cases, for both resting-state (Risk et al., 2021) and
task-based fMRI (Todd et al., 2016). However, the benefits that increasing
sampling rate can achieve vary according to factors such as task (Bhandari
et al., 2020; Demetriou et al., 2018) and ROI (Todd et al., 2016). On the
other hand, MB acceleration factors above 4 can lead to significant noise
amplification (Risk et al., 2021), with areas that have higher g-factors being
negatively affected by higher acceleration factors (Todd et al., 2017). This
indicates that selecting acquisition parameters involves complex trade-offs

and necessitates careful consideration based on the application.

There are also complex interactions between MB and the reconstruction
method used. With a combination of MB acceleration factor 4 and SENSE
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factor 2, increased BOLD sensitivity was achieved due to higher sampling
rate without finding slice leakage artefacts (Bhandari et al., 2020). How-
ever, MB factor 4 paired with in-plane Slice-GRAPPA acceleration lead to
a high number of signal leakage artefacts between simultaneously excited
slices, with the number of artefacts being reduced significantly when the
Split Slice-GRAPPA method is used (Todd et al., 2016).

Thus the results of Chapter 4 show the effect of MB and SENSE on tSNR,
and how this relationship changes over the brain, without considering the
temporal advantages these methods can provide. On the other hand, the
methodology showed in Chapter 4 could be used in future research, to
streamline the characterisation of the spatially variant effect of acceleration
methods on BOLD sensitivity, while considering their provided benefits to

temporal resolution.

There are other acceleration methods that can be used in addition to SENSE.
For example, the field of compressed sensing has shown that data can be ac-
quired with even fewer samples than normally collected using SENSE. This
provides a larger reduction in image acquisition time (Liang et al., 2009),
without reducing image quality (Vranic et al., 2019). However, the noise char-
acteristics when using compressed sensing are different than that of SENSE
and are not well understood (Akcakaya et al., 2014; Jaspan et al., 2015).
Further, compressed sensing also introduces unique artefacts into the image
(Sartoretti et al., 2018). Future research could therefore compare the spatial
characteristics of noise in SENSE and compressed sensing, similar to the
study in Chapter 4.

Chapter 5 explores the impact of tSNR levels and additional participant mo-
tion on pRF analysis. The addition of simulated noise as added by fRAT was
modelled as Gaussian-distributed noise which simulates additional thermal
noise (Wald & Polimeni, 2017). This provides an accurate simulation of ad-
ditional noise, as thermal noise becomes the dominant form of noise as voxel
volume decreases (Liu, 2016). On the other hand, as previously discussed,
there are additional effects of image acceleration that cannot be modelled
with this simple addition of noise. Therefore, these results effectively isolate

the influence of increased noise and corresponding tSNR reduction on a pRF
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analysis, but do not fully simulate the effects of image acceleration.

It is worth noting that in addition to acoustic noise, how long participants
have to stay in the scanner is a significant contributing factor in participant
discomfort (Heilmaier et al., 2011). Given the wide range of applications for
pRF analysis, such as characterising stroke damage to visual areas (Beh et
al., 2021); examining how receptive fields develop with age (Gomez et al.,
2018); and creating topographic maps of hand representations (Asghar et al.,
2023), it is crucial to ensure the scan experience is as comfortable as possible
for vulnerable groups who may struggle to remain still for extended periods
during pRF analysis. While reducing scan length would reduce the accuracy
of pRF estimates, as the length of scan necessary to find an effect of a given
size is dependent on the tSNR of the data (subsection 2.3.2). Therefore it is
worth investigating whether pRF scan length can be significantly reduced, if
tSNR is increased.

One approach to reducing thermal noise in imaging data is NORDIC PCA de-
noising (Moeller et al., 2021). This was shown here to provide a noticeable in-
crease in tSNR when additional information is used in denoising (Chapter 4),
and a small but consistent increase when it is not (Chapter 5). Therefore,
NORDIC can potentially be used to allow higher image acceleration factors,
either for reduced acoustic noise or higher temporal resolution, while limiting
the tSNR penalty. However there are other methods of increasing tSNR not
investigated in this thesis. For example, the sampling of multiple echoes dur-
ing functional scanning has been shown to increase data quality compared
to sampling a single-echo (Puckett et al., 2018) and increase BOLD sensitiv-
ity (Posse et al., 1999). Further, sampling of multiple echoes is particularly
beneficial when functional measurements are collected from multiple regions.
This can be used to assess regional variation in 73", which can then be used to
optimise the sampling time of single-echo fMRI for multiple regions (Puckett
et al., 2018). Future research will aim to investigate whether methods such
as double-echo sequences or the use of post-hoc denoising techniques such as
NORDIC (which only requires small changes to scanning protocol covered
by changing two scan control parameters and adding a ‘noRFGR’ noise scan)
can provide substantial tSNR level increases to be able to reduce the pRF

scan length.
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It should also be noted however, that there are diminishing returns when
increasing tSNR, with higher tSNR levels not translating into higher BOLD
sensitivity above a certain point (Jamil et al., 2021). Therefore as Chapter 5
investigated the detrimental effect of lower tSNR levels on pRF analysis,
future research can examine the point at which increasing tSNR stops ben-
efitting pRF analysis. Finally, as compared to retrospective motion correc-
tion techniques, the use of prospective motion correction, i.e. dealing with
participant motion at the point of data acquisition, allows for increased acti-
vation sensitivity in the presence of substantial motion (Zaitsev et al., 2017).
Therefore, future research could also characterise the resilience of pRF anal-
ysis using prospective motion correction in participants who struggle with
involuntary movements, such as post-stroke chorea or tremor patients, as an

alternative to reducing scan lengths.

6.2 Concluding remarks

The work presented in this thesis introduces the useful, documented and
open-access software fRAT which for example enables researchers to more
easily examine the effect of image acquisition parameters on data quality
metrics. fRAT was employed to characterise the impact of image acceleration
methods on image data quality for functional MRI (using tSNR), as well as
the influence of tSNR and motion on pRF analysis.

Ultimately, the findings presented in this thesis provide researchers with the
tools to enhance scanning protocols and analysis methodologies by making
empirically informed decisions regarding the impact of these choices on data

quality.
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7.1. Sample of tutorial page on the fRAT website

7.1 Sample of tutorial page on the fRAT website

# / Tutorials / Basic ROI analysis () Edit on GitHub

Basic ROI analysis

« File setup

+ Voxel-wise tSNR map creation
+ Running the ROI analysis

» Exploring ROI analysis output

B Tutorials This page will give instructions on how to use the fRAT to:

B Basic ROI lysi
e analysis 1. Create a voxel-wise tSNR map
File setup 2. Convert this voxel-wise map into an ROI based map
Voxel-wise tSNR map creation 3. Understand the basics of the ROl analysis output

Running the ROI analysis

Troubleshooting This tutorial will focus on how to use the GUI version of the fRAT, as while many settings and

Future upda functions can be accessed without the GUI, it is suggested that the GUI is used where possible
until you already have familiarity with fRAT.

File setup

In the GUI, settings that will most often need changing are bold. Additionally, most settings have
a tooltip giving an explanation of what the setting changes, and if relevant, how the format the
setting expects.

Before being able to run the ROI analysis, a few initial setup steps need to be taken. Firstly, the
base folder should be structured with functional files organised into folders named using the format

sub-{number} (e.g. sub-42 ):

v sub-01
@ P1_MB3_S2_matchBW.json

& Read the Docs
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7.2. fRAT tSNR map creation log

; multicore_processing =

7.2 fRAT tSNR map creation log

# General information

1.6.4

config file_used =

version =

statistical_map_created =

# Statistical_maps

## General settings

verbose = true

true

max_core_usage = 'max

5 base_folder = "'

input_folder_name =

output_folder_name = 'DEFAULT'

## High pass filtering

temporal_filter = true
highpass_filter_cutoff = 0.01
## Motion correction
remove_motion_outliers = false

motion_correction = true

'func_volumes'
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7.3. fRAT CAP analysis log

7.3 fRAT CAP analysis log

# General information

version = 1.6.4

config file_used = 'fRAT_config.toml'
# General
run_analysis = true

run_statistics = false

run_plotting = false

verbose = true

; verbose_cmd_line_args = false
multicore_processing = true

5 max_core_usage = 'max'

brain_file_loc = ''

report_output_folder

averaging_type = 'Participant averaged'
parameter_file = 'paramValues.csv'
file_cleanup = 'move'

## Installation testing

delete_test_folder = 'If completed without error'
verbose_errors = true
# Analysis
atlas_number = 'HarvardOxford-cort'
input_folder_name = 'func_volumes_preprocessed'
output_folder = 'DEFAULT'
dof = 12
anat_align_cost_function = 'BBR'
grey_matter_segment = true

5 run_fsl_fast = 'Run if files not found'

fslfast_min_prob = 0.1

stat_map_folder = 'temporalSNR_report'
stat_map_suffix = '_tSNR.nii.gz'
conf_level _number = '95%, 1.96'
binary_params = ['Nordic'l]

155



7.3.

fRAT CAP analysis log

## Outlier detection

7 gaussian_outlier_location

# Parsing

parameter_dictl = ['MB',

noise_cutoff = true
5 gaussian_outlier_detection = true
gaussian_outlier_contamination = 0.1

= 'below gaussian'

'SENSE', 'Nordic',

parameter_dict2 = ['mb', 's', 'mordic', '']
make_folder_structure = true
parsing_folder = 'func'
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7.4. fRAT CAP statistics log

7.4 tRAT CAP statistics log

# General information

version = 1.6.4
config file_used = 'fRAT_config.toml'
data_used_for_statistics = "participant_averaged"

# Statistics

automatically_create_statistics_options_file = true
statistics_subfolder_name = 'brainimg_Ingenia_nordicOff'
print_result = true

; minimum_voxels = 200

bootstrap_samples = 1000

5 bootstrap_confidence_interval = 99.9
regional_stats_rois = ['all']
include_as_variable = ['MB', 'Multiband', 'SENSE']
exclude_data = ['', '', 'On', 'Achieva'l

brain_map_p_thresh = 0.001

## T-tests

s run_t_tests = true
IV_type = ['Within-subjects', 'Within-subjects', 'Within-
subjects', 'Between-subjects']

## Linear mixed models

run_linear _mixed_models = true
categorical_variables = ['Nordic', 'Scanner']
main_effects = true
main_and_interaction_effects = true
interaction_effects = false

## R2 vs voxel count LMM

max_below_thresh = 20
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N

w

7.5. Number of observations excluded in each region according to exclusion
criteria

7.5 Number of observations excluded in each region ac-

cording to exclusion criteria,

Temporal Pole: 36/498 (7.23%)

Superior Temporal Gyrus, anterior division: 83/498 (16.67%)
Middle Temporal Gyrus, anterior division: 154/498 (30.92%)
Middle Temporal Gyrus, posterior division: 6/498 (1.20%)
Middle Temporal Gyrus, temporooccipital part: 2/498 (0.40%)
Inferior Temporal Gyrus, anterior division: 458/498 (91.97%)
Inferior Temporal Gyrus, posterior division: 127/498 (25.50%)
Inferior Temporal Gyrus, temporooccipital part: 40/498 (8.03%)
Superior Parietal Lobule: 2/498 (0.40%)

Lateral Occipital Cortex, inferior division: 2/498 (0.40%)
Intracalcarine Cortex: 2/498 (0.40%)

; Frontal Medial Cortex: 388/498 (77.91%)

Subcallosal Cortex: 74/498 (14.86Y%)

5 Frontal Orbital Cortex: 10/498 (2.01%)

Parahippocampal Gyrus, anterior division: 79/498 (15.86%)
Parahippocampal Gyrus, posterior division: 26/498 (5.22%)
Lingual Gyrus: 4/498 (0.80%)

Temporal Fusiform Cortex, anterior division: 494/498 (99.20%)
Temporal Fusiform Cortex, posterior division: 79/498 (15.86%)
Temporal Occipital Fusiform Cortex: 39/498 (7.83%)

Occipital Fusiform Gyrus: 31/498 (6.22%)

23 Frontal Operculum Cortex: 83/498 (16.67%)

Planum Polare: 41/498 (8.23%)
Heschl's Gyrus (includes H1 and H2): 245/498 (49.20%)
Supracalcarine Cortex: 498/498 (100.00%)
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7.6. fRAT CAP settings used to calculate noise levels for the Occipital Pole

7.6 fRAT CAP settings used to calculate noise levels

for the Occipital Pole

# General information
version = 1.6.4

config file_used = 'fRAT_config.toml'

# General
run_analysis = true
run_statistics = false

run_plotting = false

verbose = true
verbose_cmd_line_args = false
multicore_processing = true

max_core_usage = max

brain_file_loc

5 report_output_folder = ''

averaging_type = 'Participant averaged'
7 parameter_file = 'paramValues.csv'
file_cleanup = 'move'

## Installation testing

delete_test_folder = 'If completed without
verbose_errors = true

# Analysis

atlas_number = 'HarvardOxford-cort'
input_folder_name = 'int_preprocessed'
output_folder = 'tStd'

dof = 12

anat_align_cost_function = 'BBR'
grey_matter_segment = true

run_fsl _fast = 'Run if files not found'

> fslfast_min_prob = 0.1

stat_map_folder

stat_map_suffix
conf_level _number = '95%, 1.96'

binary_params = ['Nordic', 'coding']

'_tStd.nii.gz'

## Outlier detection
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7.6. fRAT CAP settings used to calculate noise levels for the Occipital Pole

noise_cutoff = true
gaussian_outlier_detection = true
gaussian_outlier_contamination = 0.1
gaussian_outlier_location = 'below gaussian'

# Parsing

5 parameter_dictl = ['coding']
parameter_dict2 = ['code'l]
make_folder_structure = false
parsing_folder = 'func'
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7.7. fRAT CAP settings used to calculate tSNR levels for the Occipital

Pole

7.7 fRAT CAP settings used to calculate tSNR levels

for the Occipital Pole

# General information
version = 1.6.4

config file_used = 'fRAT_config.toml'

# General
run_analysis = true
run_statistics = false

run_plotting = false

verbose = true
verbose_cmd_line_args = false
multicore_processing = true

max_core_usage = max

brain_file_loc

5 report_output_folder = ''

averaging_type = 'Participant averaged'
7 parameter_file = 'paramValues.csv'
file_cleanup = 'move'

## Installation testing

delete_test_folder = 'If completed without error'
verbose_errors = true

# Analysis

atlas_number = 'HarvardOxford-cort'
input_folder_name = 'int_preprocessed'
output_folder = 'tSNR'

dof = 12

anat_align_cost_function = 'BBR'
grey_matter_segment = true

run_fsl _fast = 'Run if files not found'

> fslfast_min_prob = 0.1

stat_map_folder

stat_map_suffix ' _tSNR.nii.gz'
conf_level _number = '95%, 1.96'

binary_params = ['Nordic', 'coding']

## Outlier detection
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7.7. fRAT CAP settings used to calculate tSNR levels for the Occipital

Pole

noise_cutoff = true
gaussian_outlier_detection = true
gaussian_outlier_contamination = 0.1
gaussian_outlier_location = 'below gaussian'

# Parsing

5 parameter_dictl = ['coding']
parameter_dict2 = ['code'l]
make_folder_structure = false
parsing_folder = 'func'
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7.8. Supplementary Figures for Chapter 4

7.8 Supplementary Figures for Chapter 4

Figure 7.1

Barchart showing effect of multiband and SENSE factor on sound pressure level (dB)

Ingenia Achieva
RS SENSE factor
1
15

| E
120 s

117.5

- I I . . ‘ I I .
1 3 4 1 2 3 4

2
Multiband factor

Sound pressure level (dB)
"
I

Multiband factor

Note. An error was made when setting the water fat shift for MB 1 SENSE 2,
resulting in a low EPI bandwidth on both scanners.
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7.8. Supplementary Figures for Chapter 4
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7.8. Supplementary Figures for Chapter 4
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7.8. Supplementary Figures for Chapter 4
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7.9. Supplementary Figures for Chapter 5

7.9 Supplementary Figures for Chapter 5
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7.9. Supplementary Figures for Chapter 5
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7.9. Supplementary Figures for Chapter 5

Table 7.6

Receptive field maps at various motion levels for Participant 14326

Data type

RZ

Motion level 1 Motion level 2 Motion level 5

Original data

threshold

e}

o

(saa1b3p) A

x (degrees)

X (degrees)

X (degrees)

X (degrees)

n
i -
|

n o n n o n

7
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e} e}

Note. The transparency of the receptive fields represent the R? value.
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