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Abstract 

Arterial Spin Labelling (ASL) MRI is the only truly non-invasive method for 

measuring perfusion using arterial blood water as an endogenous tracer. The settings 

for ASL MRI acquisitions and analyses have been well developed. However, there 

are still challenges for conducting research of ASL images. 

One challenge is that, due to the relative low resolution of ASL images, partial 

volume effects could affect the region analysis of ASL images, especially when 

quantifying perfusion for GM, as the perfusion in voxels could be a confounding of 

different types of tissues. Accordingly, the approaches to correct partial volume 

effects have been exploited and applied in prior studies, however, it is absence of the 

evidence of how partial volume effect corrections could make a difference of 

analysis in large cohorts.    

Another challenge that may limit the widespread clinical adoption of ASL is its 

reliance on manual Quality Control (QC) by experts. ASL image assessment is 

traditionally performed by radiologists to ensure data quality for further analysis, a 

process that is both time-consuming and subjective due to the absence of 

standardized QC protocols. 

In this thesis, for the first challenge, partial volume effects correction was applied in 

a large ASL data to explore how it affects the region analysis for GM tissues which 

were intuitively interested in. Apart from the conventional volumetric analysis 

method, surface-based analysis was also developed and applied to the ASL data to 

provide in-depth understanding from a different view.  Secondly, quality control 

metrics were developed specific to ASL images, in this thesis, leveraging existing 

methods and attempting to provide a standardized quality control pipeline for ASL 

images. Furthermore, deep learning provides the advantages of learning features of 

medical images without the human interference, provides a promising method to 

automatically conduct quality control. A deep learning-based method was developed 

in this thesis for automatic quality control of ASL images. 
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1 Introduction 

 

1.1 Background 

The brain is a highly dynamic and metabolically active organ that requires a 

continuous blood supply to maintain its function. This blood supply is referred to as 

perfusion, a critical physiological process that ensures the delivery of oxygen and 

nutrients to brain tissue while removing metabolic waste. Arterial Spin Labelling 

(ASL) MRI is a non-invasive imaging technique to quantitively measure perfusion 

by the cerebral blood flow (CBF) using magnetically labelled blood water as an 

endogenous tracer [1] [2] . ASL has been widely applied in neuroscience research to 

enhance the understanding of brain physiology, assessing cognitive functions, and 

diagnosing conditions such as stroke, Alzheimer's disease, and other 

neurodegenerative disorders [2] [3] . 

Significant advancements have been performed to translate ASL to clinical practice, 

including the development of standardized acquisition protocols, image processing 

and quantification methods that enhance the reliability and reproducibility of ASL 

across multiple centres with different scanners and sequences. Despite these 

improvements, ASL suffers from partial volume effects (PVE), where a single voxel 

may contain a mixture of different tissue types, due to its relatively low spatial 

resolution [4] . These effects could bias CBF measurements for the brain tissue of 

interest, especially in aging populations where structural changes in the brain, such 

as tissue atrophy, are more common. Additionally, ASL is vulnerable to artifacts such 

as motion, distortion, and poor labelling, which can compromise image quality and 

lead to inaccuracies in CBF measurements [5] . These issues may hinder the clinical 

applications of ASL data in routine screening and diagnosis for patients. 

Due to the relatively low spatial resolution of ASL, CBF measurements can be 

significantly affected by PVE, as a single voxel is likely to contain more than one 

type of tissues. This is particularly important in studies involving patients with tissue 

atrophy, where changes in tissue composition within voxels might be mistaken for 

changes in perfusion [6] . Several methods, including the linear regression approach 

[7] and a spatially regularized Bayesian technique [8] have been developed to correct 
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PVE in ASL data. However, practical evidence of the impact of PVE correction is 

still limited, largely due to the small number of studies using these methods and the 

lack of consistency among them. 

Quality control (QC) in ASL MRI is the process of identifying and excluding outliers 

to ensure that genuine perfusion changes are distinguished from artifacts or low-

quality images introduced during acquisition and processing. This step is critical for 

ensuring the reliability of results before any analysis is undertaken. Traditionally, QC 

is performed manually, a process that is labor-intensive, subjective, and highly 

dependent on the expertise of the raters, which is impractical for emerging large-

scale datasets [9] . Consequently, there is a growing demand for automated QC tools 

that can reduce the burden of manual QC, minimize subjectivity, and enhance 

consistency across large datasets. While many automated pre-processing tools have 

been developed to improve reliability and reproducibility for ASL MRI, standardized 

QC protocols remain lacking across these tools. Moreover, QC is not only important 

during post-processing but also crucial during the ASL acquisition process in clinical 

settings. If outliers can be detected immediately after acquisition, it allows for the 

opportunity to re-acquire the scan, ensuring that the data is of high quality from the 

outset. 

Based on the challenges outlined above, this thesis addresses two key issues: first, it 

aims to fill the gap in the application of PVE correction in a large cohort, exploring 

how correcting for partial volume effects might accommodate potential changes in 

grey matter and influence cerebral blood flow measurements. Second, this thesis 

seeks to standardize QC protocols and develop automated QC tools to detect artifacts 

in ASL data, thereby facilitating the transition of ASL imaging toward broader 

clinical use. 

 

1.2 Thesis Outline 

This thesis is structured as follows: 

Chapter 2 provides the background of this thesis, covering the fundamental 

principles of MRI, with a focus on the specific artifacts that affect ASL imaging. It 

details the process of ASL MRI acquisition and pre-processing, highlighting the steps 
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where quality can be compromised. Furthermore, this chapter reviews existing QC 

protocols in MRI, with a particular emphasis on metrics relevant to ASL MRI. The 

potential of machine learning and deep learning techniques used for QC processes 

are also introduced, setting the stage for the advanced methods developed in later 

chapters. 

Chapter 3 investigates the CBF decline in normal aging by applying partial volume 

effects correction. Brain atrophy, which could lead to increased PVEs, is a possible 

factor contributing to the observed decline in CBF, as cortical thinning can result in 

the contamination of grey matter voxels by other tissue types. This chapter examines 

how correcting for PVEs, which accounts for changes in grey matter, might affect the 

understanding of CBF decline in aging populations. 

Chapter 4 focuses on developing standardized QC protocols specific to ASL MRI. In 

this chapter, signal-related metrics, perfusion-related metrics, and registration quality 

metrics are extracted and evaluated for their effectiveness in identifying artifacts in 

ASL images. In addition, interactive QC reports were generated using these QC 

metrics to facilitate the manual screening. Furthermore, machine learning techniques, 

particularly Support Vector Machines (SVMs), are employed to assess these metrics 

for identifying outliers, with the goal of developing an automated QC tool for ASL. 

Chapter 5 introduces advanced deep learning techniques, specifically a Variational 

Autoencoder-Generative Adversarial Network (VAE-GAN), which enhances the 

capabilities of vanilla VAE. This method is employed to detect outliers in ASL MRI 

data using a deviation-based approach, offering improved performance in identifying 

anomalies compared to the traditional machine learning method in the former 

chapter.  

Chapter 6 presents the conclusion of the thesis and outlines potential directions for 

future work. 
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2 Background 

 

2.1 Magnetic Resonance Imaging  

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which atomic 

nuclei with magnetic properties respond to an external magnetic field. When placed 

in a strong static magnetic field, these nuclei align with the field. If a weak 

oscillating magnetic field is applied, at a frequency matching the nuclei’s natural 

resonance frequency, they absorb and re-emit electromagnetic radiation. This 

interaction provides detailed information about the local environment of the nuclei, 

including their chemical surroundings and the strength of the magnetic field they 

experience. This effect was firstly independently discovered in 1946 by Bloch at 

Stanford and by Purcell at Harvard [10] , and had since been widely used in 

chemistry to analyse the composition and structure of molecules.  

Over time, advancements in NMR technology led to its adaptation for medical 

imaging, giving rise to Magnetic Resonance Imaging (MRI). Unlike NMR 

spectroscopy, which focuses on molecular identification, MRI applies spatial 

encoding techniques to generate detailed anatomical images of the human body. By 

exploiting differences in proton density, relaxation times, and tissue composition, 

MRI enables non-invasive visualisation of soft tissues with exceptional contrast. This 

transition from NMR to MRI has revolutionised diagnostic imaging, and now it has 

become more and more prevalent in clinical practice, providing clinicians with a 

powerful tool for disease detection, diagnosis, and treatment monitoring without 

ionising radiation.  

 

2.1.1 Principles of MRI 

All atomic nuclei are composed of fundamental particles known as protons and 

neutrons, each possessing an intrinsic property called spin. Atomic nuclei with an 

even number of both protons and neutrons have a total spin of zero, whereas those 

with an odd number of either protons or neutrons exhibit a non-zero spin. These 

nuclei with a non-zero spin have a magnetic moment, which characterizes the 
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magnetic field surrounding the nucleus with north and south poles, analogous to a 

bar magnet [10] [11] (see Figure 2.1.1). 

 

Figure 2.1.1 The magnetic field generated by a nuclear spin. 

 (a) that is analogous to a bar magnet with north and south poles (b) aligning along its axis of 

rotation. 

 

NMR can observe the spins of a variety of nuclei (e.g. 1H, 13C, and 31P) depending on 

the material being studied, while NMR is sensitive to the nuclei’s chemical 

environment [12] . MRI primarily focuses on the spins of hydrogen nuclei (1H) 

within water molecules to generate contrast, as they are abundant in the tissues of the 

human body.  

In the absence of an external magnetic field, hydrogen nuclei are randomly oriented, 

leading to no overall orientation when their individual contributions are summed, and 

thus no detectable signal [13] . However, when a strong external magnetic field (B0) 

is applied, hydrogen nuclei experience a torque force, causing their magnetic 

moments to align parallel to the direction of this field. Consequently, this cause 

nuclear spins precess about B0 axis with an angle (see Figure 2.1.2) at a specific 

frequency, known as the Larmor frequency, which is proportional to the strength of 

the magnetic field [10] . Notably, when the applied magnetic field is not uniform or 

there are slight variations in the field across the imaging region, the resonance 

frequencies of protons may differ slightly, causing off-resonance effects [14] , which 

may lead to problems in acquisitions, e.g. signal loss or distortion. 
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Figure 2.1.2 Nucleus precessing around an external magnetic field (B0). 

After the external magnetic field (B0) applied, magnetic moments of hydrogen nuclei were aligned, 

parallel to the direction of this field. The transverse component remains zero due to the random phase 

of the magnetic moments. 

 

The longitudinal magnetic moment of spins can only be either parallel (spin-up) or 

antiparallel (spin-down) with B0, corresponding to a low-energy state and a high-

energy state, respectively. A dynamic balance between the magnetic field and 

temperature determines the two basic energy states. Spins in the low-energy state can 

absorb energy from an external source and transition to the high-energy state, while 

spins in the high-energy state can release the same amount of energy and return to 

the low-energy state [13] . This process is also known as radiofrequency (RF) 

excitation. Nuclei reach thermal equilibrium when the number of transitions between 

the lower and upper states is equal in both directions. The resulting magnetization at 

this point is known as equilibrium magnetization (M0). 

MR signals can only be detected when transverse magnetisation, oriented 

perpendicular to B₀, is produced. This is achieved by applying another RF field (B1) 

rotating in sync with the precessing spins (perpendicular to B₀) to tip the spins away 

from the longitudinal axis and into the transverse plane. The degree of this tip, or flip 

angle, is determined by the duration and amplitude of the RF pulse: a 90° RF pulse 

rotates the entire net magnetisation into the transverse plane, while a 180° RF pulse 

inverts it to the opposite direction along the longitudinal axis [13] . 

The MR signal is generated by the induced voltage change caused by the refocused 

transverse magnetization, known as the echo. An MR pulse sequence comprises a 

series of RF pulses and gradients that are precisely timed to produce the desired 

echo. After an initial 90° RF pulse is applied, the longitudinal spins are tipped into 
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the transverse plane, as shown in Figure 2.1.3. This induces an oscillating voltage in 

a receiver coil according to Faraday’s law of induction [10] , producing the free-

induction decay (FID) signal. Following this, if a 180° pulse is applied after a certain 

time duration, the phase of the spins is reversed, refocusing the transverse 

magnetization after the same time duration. The resulting signal is known as the spin 

echo (SE) [15] , while another commonly used pulse sequence, the gradient-echo 

(GRE) [16] , employs a refocusing gradient RF pulse instead of a 90° RF pulse. The 

time between the excitation pulse and the peak of the echo is the echo time (TE), 

while the time between consecutive excitation pulses is the repetition time (TR). TE 

and TR are key parameters in an MR pulse sequence, as they govern the extent of 

relaxation in the transverse and longitudinal directions, respectively. In contrast, the 

longitudinal magnetization in thermal equilibrium remains static and does not 

generate a signal.  

 

 

Figure 2.1.3 The generation of the transverse magnetization. 

Longitudinal magnetization is tipped into the transverse plane by a B1 magnetic field from an RF 

pulse. For effective tipping, the B1 field must rotate in sync with the precessing transverse 

magnetization, achieved by a circularly polarized RF pulse at the Larmor frequency. A sufficiently 

strong and prolonged RF pulse can tip all the longitudinal magnetization by 90 degrees into the 

transverse plane. 

 

Relaxation refers to the process by which nuclear spins return to thermal equilibrium 

after absorbing RF energy. There are two types: longitudinal and transverse 

relaxation, characterized by the time constants T1 and T2 [17] , respectively.  

During RF stimulation, nuclei absorb energy and move to an excited state, returning 

to the ground state by dissipating this energy to their surroundings, known as the 

lattice. T1 relaxation, or spin-lattice relaxation, describes the recovery of longitudinal 

magnetization toward equilibrium. The T1 time varies depending on the main 
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magnetic field strength according to the Larmor frequency, representing the time it 

takes for transverse magnetization to recover to 63% of its original value [13] . In the 

meantime, transverse magnetization decays as the magnetic moments lose phase 

coherence due to mutual interactions. This is because the hydrogen nuclei could be in 

slightly different local environments (e.g. based on the proximity to other 

molecules), and they could have different resonant frequencies, leading to the 

transverse net magnetization disappearing over time, as the faster ones start to cancel 

out the slower ones, which is known as dephasing. Any changes in magnetic field 

strength (e.g. B0 inhomogeneity) affect the frequency of precession could cause 

dephasing and a reduction in transverse magnetization. This process, known as T2 

relaxation, which varies across different tissues, indicates how quickly transverse 

magnetization diminishes, and corresponds to the time it takes for the 

transverse magnetization to retain 37% of its original value [17] . Dephasing of spins 

caused by B0 field inhomogeneities may lead to a faster T2∗ decay when using GRE, 

as smaller flip angle (<90°) leads to some retention of longitudinal magnetisation. As 

a result, the build-up time for longitudinal magnetisation is reduced. The difference 

between T2∗ and T2 can be compensated for using SE that is applied halfway of TE 

to flip the transverse net magnetization by 180°, and the phase of tipped spins will be 

refocused at TE. T2 decay is generally 5-10 times slower than T1 decay [31] . Since 

T1 and T2 relaxation times are tissue-specific (as illustrated in Figure 2.1.4), varying 

the combinations of TE and TR allows for the manipulation of contrast in T1-

weighted, T2-weighted, and proton-density (PD) weighted MR images (Figure 

2.1.5).  

 

Figure 2.1.4 T1 and T2 relaxations in different types of tissues. 

Left: T1 recovery in fat (blue line) and water (red line) illustrates that a short T1 value, as seen in fat, 

results in rapid restoration of longitudinal magnetization, while a longer T1 value, as in water, 
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indicates slower recovery of magnetization. Right: T2 relaxation in fat (blue line) and water (red line). 

A shorter T2 value indicates that transverse magnetization decays quickly, while a longer T2 value 

signifies slower recovery of the magnetization. 

 

Figure 2.1.5 Different settings of T1 and T2 provides different contrast images from [31] . 

(a) Short T1 and short T2 generate T1-weighted image. (b) Long T1 and long T2 generate T2-

weighted image. (c) Long T1 and short T2 generate PD-weighted image, where the MR signal 

depends predominantly on the density of the protons, instead of T1 and T2 contrast between tissues. 

 

As mentioned earlier, the resonance frequency of nuclear spins is linked to the 

strength of the external magnetic field. To localize the MR signal within different 

areas of tissue, magnetic field gradients are required. These gradients create spatially 

linear variations in the static field strength and can be applied in any of the three 

orthogonal directions using the gradient coils in the MR system. Variations in 

precession speed are detected as higher or lower MR signals, allowing frequency 

measurements to differentiate MR signals from different spatial locations and 

enabling 3D image reconstruction. This process is known as spatial encoding [13] . 

The first step in spatial encoding is slice selection. By applying a gradient along the 

main magnetic field (B0), the magnetic field strength will vary linearly along that 

direction. When a specific RF pulse is applied, only the nuclei in a slice where the 

magnetic field strength matches the frequency of the RF pulse will resonate and 

produce a signal. This way, the MRI system can select a specific slice of the body to 

image. After selecting a slice, the MRI needs to encode information within that slice. 

This is done through frequency encoding: another gradient (known as readout 

gradient) applied by a 180° refocusing pulse along, for example, x-axis within the 

slice during the acquisition of the MR signal. This causes the precession frequency of 

the hydrogen nuclei to vary linearly across the slice. As a result, nuclei at different 
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locations along x-axis resonate at different frequencies. To encode the second spatial 

dimension within the slice (i.e., the y-axis), the MRI uses phase encoding. This 

process involves applying a gradient along the y-axis for a short duration before 

signal acquisition. Phase encoding consists of multiple steps, each introducing a 

phase shift between adjacent spins. At the edges of the phase encoding gradient, 

spins undergo a 180° phase shift from the previous step, while those near the 

isocenter experience a smaller phase shift. This temporarily modifies the phase of 

spinning nuclei at different y-axis locations. Once the gradient is turned off, all 

nuclei resume precessing at the same frequency, but their phase differences remain, 

depending on their y-coordinates.  

The signals collected by the MRI, which now contain spatial information encoded 

through these gradients, are stored in a data matrix called k-space [30] (see Figure 

2.1.7). The number of rows in k-space corresponds to the number of phase encoding 

steps, while the number of columns represents the sampling points along the 

frequency encoding direction. Thus, the total scan time is proportional to the TR and 

the number of phase encoding steps used. Data with lower phase encoding gradient 

amplitudes populate the central rows of k-space, which primarily contain information 

about the overall structure and contrast of the image. In contrast, the outer regions 

store high-frequency data, contributing to edge definition and fine details (see Figure 

2.1.6) [30] . Once k-space is fully sampled, the data can be transformed into the 

spatial domain to produce an image of the scanned tissue or organ via Fourier 

Transform [18] . 

 

Figure 2.1.6 The k-space and corresponding image data from [31] . 
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ky is the phase encoding direction used to localize signals along the vertical direction. kx is the 

readout or frequency encoding direction summed to localize signals along the horizontal direction. 

 

2.1.2 Structural MRI 

In neuroimaging, structural MR images are typically used to show the gross anatomy 

of the brain: that is, mainly grey matter (GM) white matter (WM), and CSF. In a 

clinical setting these are the most commonly used images, and a radiologist typically 

inspects them visually, looking for tumors, pathological lesions, and anatomical 

deformations [19] .  

The reason for having multiple types of structural images in common usage is that 

each type highlights different aspects of the tissues present, thus providing a valuable 

way of investigating the anatomy in vivo. T1-weighted and T2-weighted images are 

most common varieties of structural image [17] (see Figure 2.1.6). T1-weighted 

images highlight fat and subacute hemorrhage, offering excellent anatomical details. 

They are particularly useful for visualizing the brain structure, where they can 

distinguish between grey matter and white matter; T2-weighted images highlight 

fluid and edema, making them useful for detecting lesions, tumors, and areas of 

inflammation [29] . 

Artifacts in structural MRI 

MRI artifacts originate from numerous sources, such as MR hardware, room 

shielding, patient motion, tissue heterogeneity, foreign bodies, sampling resolution, 

and errors in k-space [32] . In structural imaging the most common artifacts (in 

Figure 2.1.7) are motion-induced artifacts, bias field or radio frequency 

inhomogeneity, ghosting, gradient nonlinearity distortion, and wrap around.  
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Figure 2.1.7 Typical artifacts from structural MRI images from [33] . 

The top row shows motion-induced artifacts, characterized by the appearance of additional edges or 

ripples. The middle row illustrates ghosting, where a shifted and wrapped version of the image is 

superimposed on the original, alongside gradient nonlinearity distortion, which causes the neck to 

appear compressed horizontally towards the bottom of the image compared to an undistorted image. 

The bottom row depicts wrap-around artifacts, where the back of the head appears at the front, 

causing the signal of scalp to overlap with brain tissue, and bias field (or RF inhomogeneity), marked 

by a darkening at the top and bottom of the brain. 

 

2.1.3 Functional MRI 

Functional MRI assesses and maps brain activities by detecting changes in blood 

flow related to neural activity [38] . Specifically, it is sensitive to the hemoglobin, a 

blood component that behaves differently in its oxygenated and deoxygenated forms 

due to their distinct magnetic properties. This difference affects the local magnetic 

fields, primarily influenced by the levels of deoxygenated hemoglobin. These 

alterations create small, yet measurable changes in the MRI signal [33] .  

When a brain region is more active, it consumes more oxygen, and the local cerebral 

blood flow increases, a relationship known as neurovascular coupling. fMRI 
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leverages this by measuring changes in the blood-oxygen-level-dependent (BOLD) 

effect (see Figure 2.1.8). 

 

Figure 2.1.8 Illustration of the BOLD effect from [34] . 

 When local neuronal activity increases (transitioning from the baseline state on the left to the 

activated state on the right), cerebral blood flow (CBF) and cerebral blood volume (CBV) rise 

significantly. Oxygen consumption (CMRO2) also increases, but to a less extent, leading to a relative 

increase in oxygenated hemoglobin (Hb) compared to deoxygenated hemoglobin (dHb). This shift 

reduces the concentration of deoxyhemoglobin, which in turn decreases the magnetic field 

inhomogeneities it causes, resulting in an enhanced MRI signal. 

 

There are two types of functional experiments, one involving stimuli and tasks, 

known generally as task fMRI, and the other conducted without explicit stimuli, 

known generally as resting-state fMRI. Task-based experiments are used to study the 

nature and location of specific processes in the brain, whereas resting experiments 

are primarily used to study functional connectivity between different regions of the 

brain. 

Artifacts in functional MRI 

As mentioned before, fast imaging is necessary for fMRI but brings with it several 

trade-offs, such as limited spatial resolution, low tissue contrast, geometric 

distortion, and signal loss [38] . These come in addition to the artifacts that can occur 

for structural MRI, especially motion, which may cause substantial signal changes. 

In fact, this is a major confound in fMRI, and specialized motion correction methods 

exist both in preprocessing and in the subsequent statistical analysis methods that 

aim to compensate for it as much as possible. Thus, methods for correcting the 

remaining geometric distortions and for compensating for the signal loss (both due to 

B0 inhomogeneities) are required to be applied in the analysis of fMRI.  
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Due to the limited resolution and tissue contrast in these functional images, it is often 

difficult to identify in them detailed anatomical structures directly. It is even harder 

to align or register together with precision functional images that come from different 

subjects with different anatomies. For this reason, it is important to acquire a 

structural image for each subject, as this allows for greater precision in locating 

anatomical regions or borders as well as for greatly improved registration accuracy 

between subjects, which is important for having good statistical power in a group 

analysis. 

 

2.2 Perfusion imaging using Arterial Spin Labelling MRI  

2.2.1 Quantification of perfusion 

Perfusion [39]  [40] is the process by which blood delivers nutrients to tissues and 

removes wastes from tissues. Cerebral blood flow (CBF) is a quantitative measure of 

perfusion in the brain in unit of ml of blood per 100g of tissue per minute. In the 

brain, typical values of CBF are 60 ml/100g/min and 20 ml/100g/min for grey matter 

and white matter respectively [34] . There are two main reasons to measure 

perfusion. First is to measure the CBF in the resting state and associated parameters 

of blood flow. Abnormal values or changes of CBF could imply that the brain is 

experiencing some diseases. Second is to study and investigate the perfusion changes 

related to neuronal activities, which is also associated with the hemodynamics but 

from different views like cellular metabolism or electrical activity. 

The gold standard of brain perfusion imaging is 15O positron emission tomography 

(PET) [41] , which is performed by intravenous injection of H2
15O or inhalation of 

C15O2. However, the use of ionising radiation, the required access to on-site 

cyclotrons, and the expense of radiopharmaceuticals raise health and economic 

concerns for patients. As an alternative, the methods of CBF measurement using 

MRI generally includes the injection of an exogenous contrast agent, as in Dynamic 

Susceptibility Contrast-enhanced (DSC) MRI [42] and Dynamic Contrast-Enhanced 

(DCE) MRI [43] , or using an endogenous tracer, such as blood water in Arterial 

Spin Labelling (ASL) [54] . Specifically, ASL quantitatively measures cerebral 

perfusion, by taking advantage of using the magnetically labelled blood itself as an 



 

15 

 

endogenous tracer. Therefore, ASL has been extensively performed in the research 

area, and sporadically applied in clinic [44] .  

 

2.2.2 Principles of Arterial Spin Labelling  

Arterial Spin Labelling is unique in that it provides the only truly non-invasive 

method for measuring perfusion using blood water as the tracer [1] [34]. This 

uniqueness arises from the way the tracer is produced: radiofrequency fields are 

primarily used to invert the magnetic state of hydrogen nuclei into the opposite 

direction, typically at the neck as the blood flows into the brain. An ASL signal 

image typically involves acquiring a pair of images: a "label" image and a "control" 

image. Each image consists of a labelling stage, a waiting stage, and a readout stage. 

By introducing a delay (Post-Labelling Delay(PLD)) between the labelling and 

image acquisition, labelled blood is allowed to reach the capillaries, where it 

generates a perfusion signal and the image can be acquired which are called 

“labelled” image. In addition to labelled images, the separate “control” image is 

acquired without labelling arterial blood. The difference in signal between the control 

and labelled images quantifies the amount of labelled blood delivered to the tissue by 

perfusion. The difference between label and control images is typically around 1-2% 

compared to the signal, since the volume of labelled water delivered to the tissue is 

much smaller than the total amount of water in the tissue [1] . Therefore, it is 

common to use a low resolution, i.e., around 3 mm (to accumulate more signals from 

protons), and average multiple repeated volumes to achieve a better overall SNR 

which in turn trades the time of acquisition.  

 

2.2.3 General principle of Arterial Spin Labelling 

A basic ASL experiment generally consists of three steps: labelling, waiting, and 

imaging. This section tends to provide the mechanism of ASL with key concepts. 
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2.2.3.1 Labelling  

As mentioned before, ASL labels blood-water as an endogenous tracer. To create the 

label, the magnetic properties of the hydrogen nuclei in the water are focused on. The 

hydrogen nuclei have their own magnetization including the magnitudes and the 

directions. When a strong magnetic field is placed, the directions of them can be 

aligned to the applied field. Therefore, hydrogen nuclei with the inversion of 

directions are created as a label. Three main labelling techniques commonly used for 

ASL are continuous Arterial Spin Labelling (cASL), pulsed Arterial Spin Labelling 

(pASL) and pseudo continuous Arterial Spin Labelling (pCASL) [34] [52] [54] . A 

simple process shown in Figure 2.2.1 includes these basic steps and the details are 

explained in following sections. 

 

Figure 2.2.1 The process of ASL perfusion image acquisition. 

The process requires a pair of images: one with labelling blood water (label) and the other without 

labelling (control). Only blood water in label images were labelled. 

cASL 

Continuous ASL (cASL) employs a continuous labelling scheme to magnetically 

invert arterial blood water spins. This is achieved by applying a continuous 

radiofrequency (RF) field in the presence of a magnetic field gradient (to induce 

flow-driven adiabatic inversions of blood spins [55] ) across a proximal slice of the 

brain-feeding arteries, and the slice is known as the labelling plane. 

As blood flows from below the neck toward the labelling plane, the magnetic field 

gradient causes the spins to become progressively less off-resonant with the RF 

pulse. When the spins reach the labelling plane and their off-resonance drops to zero 

due to the field gradient, the RF pulse would invert the magnetization of blood water. 
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This creates a continuous supply of labelled blood water flowing into the brain (see 

Figure 2.2.2).  

cASL provides a consistent and predictable labelling pattern over time, and can 

achieve labelling efficiencies exceeding 90%, making it highly effective for 

perfusion imaging. However, the continuous application of RF pulses and magnetic 

field gradients requires specialized hardware, which is not typically available 

on commercial MRI scanners [54] . This limits the widespread adoption of cASL in 

clinical settings. Furthermore, the labelling efficiency of cASL is highly dependent 

on local blood velocity [53] . Because the labelling duration is finite, variations in 

blood flow speed (e.g., due to vascular disease or cardiac pulsation) can lead to 

inconsistent inversion of spins, reducing labelling efficiency and perfusion signal 

quality. 

 

Figure 2.2.2 The typical processes for cASL, pASL, and pCASL acquisitions.  

Different phases of ASL image acquisition were indicated with different colours in the middle timeline: 

before labelling (green), label duration (blue), saturation pulse (purple), post labelling delay (grey), 

and acquisition (orange). 

pASL 

Pulsed ASL (pASL) inverts the magnetization of blood water across a thicker region 

of space, which contains the brain-feeding arteries (see Figure 2.2.2). However, a 
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difference compared to cASL is that the labelling is nearly instantaneous (around 10 

ms). In this case, labelling duration is unknown since it depends on the velocity of 

blood in the arteries within the specified region. Longer labelling durations require a 

larger spatial region for tagging, but this can reduce inversion efficiency for blood 

further from the center of the imaging slab due to the decreasing strength of the RF 

pulse with distance. In practice, it is hard to remain label durations for 1 s more. To 

achieve a constant time of labelling for pASL, methods such as QUIPSS I and 

QUIPSS II [56]  with Q2TIPS [57] were commonly applied. QUIPSS I applies a 

saturation pulse to the imaging slice at time TI1 after the inversion of the tagging 

region, creating a well-defined leading edge of the labelled slab. After a delay of 

ΔTI, blood starts to perfuse into the imaging slice, and the labelled image is acquired 

at TI2 = TI1 + ΔTI. QUIPSS II, on the other hand, applies a saturation pulse to the 

labelling slice at the time TI1, just as tagged blood exits the labelling region, 

producing a sharply defined bolus with time width TI1 (see Figure 2.2.2). The 

Q2TIPS method improves on this by replacing the saturation pulse with a series of 

thin-slice periodic saturations at the distal end of the labelling region to reduce 

sensitivity to B1 inhomogeneity and enhance the slice profile. 

In contrast to cASL, pASL is much easier to implement with existing MRI hardware, 

as it does not require continuous RF pulses or field gradients, minimizing power 

deposition in tissue [34] . The short labelling duration also makes pASL relatively 

insensitive to magnetization transfer effects. However, the signal from more 

proximal regions of the imaging slab diminishes due to longer ATT and T1 

relaxation, limiting the SNR of the pASL method. 

 

pCASL 

Pseudo-continuous ASL (pCASL) is also known as pulsed-continuous ASL which 

has a degree of similarity with cASL and can be interpreted in a similar way. It is 

currently the recommended method for clinical applications according to the ASL 

White Paper. pCASL resembles cASL in that it uses a constant labelling plane to 

invert the flowing spins as they pass through (Figure 2.2.2). However, in this case, 

the long label duration of cASL radiofrequency pulse and gradient are broken up into 

a series of repeating short radiofrequency pulses and associated gradients of pCASL, 
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which allows standard clinical scanners to create the labelling. The short RF pulses 

that can be controlled as identical ones and be synchronized to maintain balance in 

the labelling process. It is found that pCASL provides a 50% increase in SNR 

compared to pASL, and 18% higher in labelling efficiency compared to cASL [58] . 

 

2.2.3.2 Waiting 

After blood water is labelled, it requires some time to reach the brain tissue before 

the perfusion signal can be acquired. This waiting time varies slightly depending on 

the ASL method used (as shown in Figure 2.2.2). A fixed period of labelling duration 

of 1500–2000 ms is commonly applied for cASL and pCASL while blood has been 

labelled and started to flow toward the tissues [34] . In pASL, the inversion time (TI) 

is the period from the start of labelling to labelled blood reach the tissues. If a 

saturation pulse like QUIPSSII is applied, the time between the initial labelling and it 

is applied is known as TI1, which is analogous to the labelling duration of 

cASL/pCASL. The PLD in pCASL is analogous to the quantity (TI-TI1). 

There are two main acquisition strategies based on how PLD is handled: single-PLD 

and multi-PLD. In a single-PLD protocol, a single fixed waiting time is used for all 

measurements, after all labelled blood reach tissues, and Arterial Transit Time (ATT) 

is the physiological parameter to represent the time taken for the labelled spins to 

reach the brain region of interest. This means the same delay between labelling and 

imaging is applied across all acquisitions, providing perfusion images that reflect the 

blood flow at that specific time point. However, to accommodate the longest ATT 

expected in a given group of subjects, a longer PLD must be chosen to ensure 

complete blood arrival in the tissue. This longer PLD reduces the ASL signal 

strength. While single-PLD is simpler to implement and less computationally 

intensive, it provides limited insight into the dynamic changes in blood flow over 

time. Additionally, it assumes that all blood arrives at the tissue simultaneously, 

which can lead to either under- or over-estimation of CBF, especially in regions with 

delayed or prolonged ATT [34] . In contrast, multi-PLD involves acquiring multiple 

images with varying post-labelling delays. By using different waiting times, this 

approach captures the dynamic evolution of blood flow at different time points, 

offering a more comprehensive view of perfusion. Multi-PLD enhances the accuracy 
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of CBF quantification by enabling more complex kinetic modelling of blood flow 

and tissue perfusion. It is less sensitive to differences in ATT across tissues and 

subjects compared to the single-PLD protocol. However, this technique requires 

longer scan times and more complex data analysis [24] . 

 

2.2.3.3 Readout 

After it is ensured that all labelled blood-water reach the tissue in the brain, fast 

imaging techniques are used to image the brain acquisition (known as readout).  

Various fast imaging techniques are available, such as Echo-planar imaging (EPI) 

[61] and Spiral [62] .  

 

Figure 2.2.3 Examples of k-space trajectories. Left: rectilinear; Right:Spiral from [65] . 

The EPI sequence scans k-space in a rectilinear (zigzag) pattern (see Figure 2.2.3), 

and its set of excitation pulses allows for rapid acquisition of each brain slice, 

typically within 50 ms. As a result, multiple lines or even the entire k-space can be 

sampled within a single TR, which is referred to as multi-shot EPI or single-shot EPI, 

respectively. A sequence of oscillating readout gradients follows, each accompanied 

by a brief, low-amplitude "blipped" phase encoding gradient (Figure 2.2.4). 

However, EPI suffers from signal dropout and distortion artifacts in regions with 

poor magnetic field homogeneity.  
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Figure 2.2.4 The Echo Planar Imaging (EPI) sequence diagram from [31] :(a) Spin-echo EPI – A 90° 

flip angle is applied, followed by a 180° refocusing pulse. (b) Gradient-echo EPI – The flip angle is 

variable (less than 90°). 

 

3D Gradient and Spin Echo (GRASE) [63] combines elements of both gradient echo 

and spin echo techniques. This hybrid approach provides minimal signal dropout 

with reduced susceptibility artifacts compared to pure gradient echo methods. It 

offers a compromise between image quality and acquisition speed, making it suitable 

for a broader range of clinical applications.  

Spiral imaging, on the other hand, employs rotating gradients to trace a spiral 

trajectory across k-space (Figure 2.2.3), moving from the center outward. Spiral 

readout techniques typically achieve a shorter minimum TE than EPI, which reduces 

susceptibility to motion artifacts. However, spiral imaging is traversed continuously 

without refocusing gradients, and thus off-resonance could accumulate due to 

prolonged readout, potentially leading to image blurring. 3D rapid acquisition 

relaxation enhanced (RARE) Stack of Spirals offers better efficiency by 

oversampling at the center of k-space, thus provides shorter TE and minimal signal 

dropout, and exhibits less sensitivity to motion artifacts compared to GRASE [66] , 

but it could introduce in-plane blurring due to longer readout times.  

A higher SNR can be achieved using 3D MRI with a thick volume selectively excited 

by the RF pulse [1] , as the 3D imaging methods using a thicker bandwidth, instead 

of exciting thin slices, could mitigate the off-resonance effects by averaging more 
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local spins over more contiguous slices and shorten the time for off-resonance shifts 

accumulation [14] . Thus, 3D readout techniques are recommended for ASL [1] as 

they acquire the entire image volume in a single TR, providing an optimal SNR 

while incorporating background suppression (BS) [57] [60] . These methods enhance 

ASL signal measurement and are relatively insensitive to field inhomogeneity. 

Background suppression further improves SNR by minimizing static tissue signal 

during readout, increasing the contrast between labelled blood and surrounding 

tissue. This, in turn, enhances perfusion detectability and overall image quality. 

 

2.3 ASL MRI Processing   

2.3.1 Motion correction  

During the process of collecting a series of 3D volumes, it is necessary to 

compensate for any subject motion which occurs between acquisitions. This kind of 

motion is likely to occur in acquisitions of functional and diffusion images which 

requires fast or continuous acquisitions of hundreds 3D volumes, but it may also take 

place in the acquisition of multiple repeats for a structural sequence [63] . 

ASL is also susceptible to motion, as the label and control images are acquired 

multiple times. Subtle head motion can lead to significant voxel difference when 

calculating the subtraction between label-control images, which is especially visible 

in voxels around the edge of brain due to the substantial contrast between brain and 

air [34] . Thus, it is required to apply motion correction before the subtraction of 

label-control images. The main method to correct head motion is to apply the rigid-

body registration between individual volumes with a consistent reference image, 

which can be the first, middle, or an average image in the series. However, a 

drawback of motion correction is that subtraction artifacts can be induced due to the 

interpolation from registration-based motion correction [64] .  

 

2.3.2 Distortion correction  

ASL data acquired using EPI-based techniques will commonly suffer from 

distortions [34] ,[67] . EPI acquisitions are particularly sensitive to imperfections in 
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the B0 field, leading to significant geometric distortions and localized signal loss (or 

dropout). Additionally, EPI images tend to have lower spatial resolution and may 

suffer from poor tissue contrast. As a result, accurately aligning them with structural 

images, even when the same anatomy is present, can be challenging. The most 

problematic distortion is the geometric one caused by B0 field inhomogeneities, 

which are primarily due to air-filled sinuses and cavities in the skull. This issue is 

especially problematic because it results in localized changes in the brain, often 

accompanied by signal loss. To correct these distortions, two main approaches can be 

used to obtain information about B0 inhomogeneities [34] .  

One involves acquiring two undistorted gradient-echo images (like a structural MRI 

sequence, so it is undistorted) with different echo times (so signal is sensitive to B0 

inhomogeneities) and phase information can be calculated for the B0 field at each 

voxel, as the difference in phase can give a rate of change of phase that divided by 

the difference in echo times is equal to the value of B0 field; this is known as the 

gradient-echo field map. Once the geometric distortion is calculated, it could be 

incorporated, as a spatial transformation, into a rigid-body registration (with EPI 

images) for distortion correction.  

The other one involves acquiring two distorted images using spin-echo EPI with 

opposite phase-encode directions, a technique often referred to as blip-up-blip-down 

acquisition or phase-encode reversed acquisition. The distortion in the two images 

can be calculated because the direction of the distortion is reversed in the two 

images. The "halfway" image, representing the undistorted state, can then be derived 

by registering the two distorted images. Thus, the calculated spatial transformation 

can be used to correct distortion as a separate step in the preprocessing pipeline 

before registration. 

 

2.3.3 Registration 

In MRI, the primary goal of registration is to align anatomical structures between 

different images, especially for group studies. Linear transformations [68] are 

commonly used when the brain anatomy remains unchanged. For example, if the 

head moves during an ASL scan, only translations (shifts) and rotations are required. 



 

24 

 

These transformations are captured by rigid-body registration, which involves 6 

degrees of freedom (DOF)—three for rotations and three for translations. 

Another common linear transformation is the affine transformation, which has 12 

DOF (six from rigid-body transformations, plus three for scaling and three for 

shearing). While affine transformations can change the shape and the size of an 

image, they do not represent realistic brain motion. However, they are helpful for 

eddy-current distortion correction and initializing nonlinear transformations. 

When there is a significant anatomical difference or local geometric changes, linear 

transformations are insufficient. In such cases, nonlinear transformations are 

necessary to align images accurately. Nonlinear transformations [69] , often referred 

to as warps, involve more than 12 DOF and can range from thousands to millions of 

DOF. These transformations describe local changes in geometry, such as 

displacements at specific grid points, which account for how that point and its 

surrounding regions are shifted [71] . 

Like many other fMRI data, it is often required to convert low resolution ASL data 

from a subject to different resolutions and orientation. A typical example is the need 

to convert a group of MRI images into a common space, such as MNI152 standard 

space [70] , for group analysis. The conventional processes of reasonable 

registrations for ASL data involve: rigid registration from ASL native space to the 

structural space, and non-rigid registration from the structural space to the standard 

space (see Figure 2.3.1). 

 

Figure 2.3.1 The process of transforming a CBF map to structural space and then to standard space. 

𝑇𝑠 is the transformation of linear rigid-body registration which align the CBF map to the T1-weighted 

structural image in the same subject. 𝑇𝑡   is nonlinear registration to estimate the transformation from 

T1-weighted structural image to the standard space (the MNI152 space in this case). Interpolation is 

used in these transformations to obtain the perfusion images in the same resolution with the structural 

image or template image.  
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2.3.4 Quantification 

To obtain quantitative measurements of perfusion using ASL, a comprehensive 

analysis process is required, which typically involves three key components: 

subtraction, kinetic modelling, and calibration. 

The label and control images include contributions from static tissue water, but only 

the label image contains the inverted signal from labelled blood water, resulting in 

a negative contribution to the perfusion signal. The subtraction is to isolate the signal 

of labelled blood water in the tissue, which is achieved through the pairwise 

subtraction between the label image and the control image. Therefore, the static 

tissue signal is effectively removed, leaving behind a perfusion-weighted image that 

exclusively reflects the signal from labelled blood water. Assuming the blood water 

magnetisation is completely relaxed within the control image (𝑀0a), the ASL signal 

difference (∆𝑀) between the longitudinal magnetization of the label and control 

images by local perfusion (𝑓) during time delay (𝑇𝐼) can be expressed in Equation 

2.3.1. 

∆𝑀 = 𝑀control −𝑀label   =  2𝑀0a⊗𝑓⊗ 𝑇𝐼                       Equation 2.3.1 

Where ⊗ indicates the convolution operation, since the perfusion-weighted signal 

reflects the amount of labelled blood water that has accumulated in the tissue during 

PLD. To translate the perfusion-weighted signal into quantitative perfusion values, 

a tracer kinetic model is needed be applied. A widely used model for ASL is 

the general kinetic model proposed by Buxton et al. [72] , which has become a 

standard for single-PLD ASL data. This model is based on three key assumptions: 

• The arrival of labelled blood at a specific voxel is assumed to follow a 

uniform plug flow. This means that before the initial transit delay ∆𝑡, no 

labelled blood reaches the voxel. Between time 𝑡 = ∆𝑡 and 𝑡 = 𝜏 + ∆𝑡 the 

blood arriving is uniformly labelled, with that 𝜏 is the label duration. After 

t ≥ 𝜏 + ∆𝑡, the arriving blood is again unlabelled. For pCASL, this requires 

PLD > ATT, and for QUIPSS II pASL, it needs (TI−TI1)>ATT. This ensures 

sufficient time for bolus arrival. Notably, this simplification neglects 

dispersion, a phenomenon arising from physiological factors such as transit 
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through progressively narrower vessels, flow through the branching vascular 

network, and cardiac pulsation. The effect could collectively smooth the AIF, 

deviating from the idealized sharp arrival assumed in the plug-flow model. 

• The kinetics of water exchange between blood and tissue are assumed to be 

modelled using a single-compartment model. This approach assumes that 

even if sub-compartments exist within the tissue, water molecules exchange 

between them so rapidly that their concentration ratios remain constant over 

time and equal to the brain/blood water partition coefficient λ, despite 

changes in the total tissue concentration, which leads to the “well-mixed” 

assumption, i.e. the label concentration in capillary blood and tissue 

equilibrates sufficiently rapidly in the voxel. Consequently, the concentration 

at the venous end of the capillary bed will match the label concentration 

distributed throughout the voxel. Under the assumption, the dominant 

mechanism for signal loss is T1-relaxation (the decay of magnetization due to 

longitudinal relaxation), rather than physiological processes such as vascular 

outflow. 

• After the inversion pulse, relaxation is assumed to be governed by blood T1 

relaxation (T1b), and after labelled blood, the magnetization decreases with 

tissue T1 relaxation (T1t). This assumption implies that water is instantly 

extracted from the vascular space upon reaching the voxel. However, in fact 

the labelled water may remain in the blood vessels for some time after arrival, 

as the tagged blood continues to flow through the vascular network toward 

the capillary bed. 

These assumptions simplify the kinetic model, making it computationally tractable 

while still providing accurate estimates of CBF in most physiological scenarios. This 

model explicitly accounts for the three physiological processes governing the 

behaviour of labelled blood water in tissue: arterial input function (AIF), residue 

function, and magnetization relaxation function. The AIF 𝑎(𝑡) quantifies the 

concentration of labelled spins arriving in the voxel via arterial blood at time 𝑡. 

However, once delivered, a fraction of these spins is removed from the voxel 

through venous clearance or further perfusion. The residue function 𝑟(𝑡) describes 

the proportion of labelled spins remaining in the voxel at time 𝑡 after their initial 
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delivery. Concurrently, the inverted magnetization of labelled blood water 

undergoes longitudinal relaxation at a rate determined by the T1 of arterial blood. 

The magnetization relaxation function 𝑚(𝑡) accounts for the decay of residual 

magnetization over time 𝑡, reflecting the progressive loss of signal due to T1 

relaxation. Under the assumption that off-resonance effects and magnetization 

transfer [245] are identical in both label and control images, the time-dependent ASL 

signal difference ∆𝑀(𝑡) becomes directly proportional to the change of perfusion 

magnetization. According to ∆𝑀 = 𝑀control −𝑀label   =  2𝑀0a⊗𝑓⊗𝑇𝐼                       

Equation 2.3.1, this can be expressed as:  

∆M(t) = 2M0a𝑓{a(t)⊗ [r(t)m(t)]}                  Equation 2.3.2 

where 𝑀0𝑎 represents the equilibrium magnetisation of arterial blood, 𝑓 is the 

perfusion in ml/g/s.  

To be detailed, the AIF describes the time course of delivery of the labelled blood 

water to the part of the brain being imaged, is mathematically described as: 

a(t) = {

0                                                t < ∆t                 
2M0ae

−t/T1b      (pASL)     ∆t ≤ t < τ + ∆t

2M0ae
−∆t/T1b    (pCASL)                                 

0                                               t ≥ τ + ∆t           

     Equation 2.3.3 

where 𝑀0𝑎 is the magnetization of the labelled arterial blood at the neck, 𝑇1𝑏   is the 

T1 of the arterial blood, τ is the label duration, and ∆𝑡 refers to the ATT.  

Once the labelled blood water reaches the tissue through the vasculature, it remains 

there for a period determined by either the time it takes for the labelled water to leave 

the voxel or the rate at which the label decays due to T1 relaxation. The residue 

function, as shown in Equation 2.3.4, quantifies the proportion of labelled blood-

water still present in each voxel at a given time point. 

𝑅(𝑡) = 𝑟(𝑡)𝑚(𝑡)       Equation 2.3.4  

with 𝑟(𝑡) = 𝑒−𝑡𝑓/λ represents the outflow effect, and by assuming a constant 

concentration ratio between tissue and venous areas, λ of 0.9 is the partition 

coefficient of tissue/blood water. 𝑚(𝑡) = 𝑒−𝑡/T1𝑡 capturing the magnetization decay, 

where T1𝑡 is the T1 of the tissue in the voxel.  
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The kinetic model for the signal difference in magnetization between label and 

control conditions can be formulated: 

for pCASL/cASL 

∆𝑀(𝑡) =

{

0                                                                                                           𝑡 < ∆𝑡                 
2𝑀0𝑎𝑓𝑇1𝑎𝑝𝑝𝑒

−∆𝑡/𝑇1𝑏(1− 𝑒−(𝑡−∆𝑡)/𝑇1𝑎𝑝𝑝)                                 ∆𝑡 ≤ 𝑡 < ∆𝑡 + 𝜏

2𝑀0𝑎𝑓𝑇1𝑎𝑝𝑝𝑒
−∆𝑡/𝑇1𝑏𝑒−(𝑡−∆𝑡−𝜏)/𝑇1𝑎𝑝𝑝(1− 𝑒−𝜏/𝑇1𝑎𝑝𝑝)            ∆𝑡 + 𝜏 ≤ 𝑡           

    

 Equation 2.3.5 

and for pASL 

∆𝑀(𝑡) =

{
 

 
0                                                                   𝑡 < ∆𝑡                 

2𝑀0𝑎𝑓e
−t/T1b

eRt(e−R∆t−e−Rt)

𝑅
           ∆𝑡 ≤ 𝑡 < ∆𝑡 + 𝜏

2𝑀0𝑎𝑓e
−t/T1b

eRt(e−R∆t−e−R(∆t+τ))

𝑅
    ∆t + τ ≤ t           

     

Equation 2.3.6 

Where  T1app is the apparent tissue relaxation time, associated with the decrease of 

longitudinal magnetisation additionally caused by labelled blood flow, whose 

magnitude depends on the relaxation time of tissue (𝑇1t) and blood flow :  
1

𝑇1𝑎𝑝𝑝
=

1

𝑇1t
+

𝑓

λ
 , and 𝑅 =

1

𝑇1b
−

1

𝑇1𝑎𝑝𝑝
.   

Thus, a kinetic model curve of ASL signal difference ∆M(t) can be expressed in 

Figure 2.3.2.  

 

Figure 2.3.2 An example of the general kinetic model curve in a voxel for pASL and pCASL. 
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The parameters for pcASL and pASL uses the recommendations in the consensus paper: a bolus 

duration of 1.8 s for pcASL and 0.8 s for pASL;PLD of 1.8s for pCASL and TI of 1.8s for pASL. 

ATT=Arterial Transit Time, the time required for labelled blood to traverse arteries and reach 

capillaries. 

 

To quantify the tracer concentration in the unit of CBF, the signal intensities, which 

typically vary across individuals, as well as MRI-related factors such as the main 

magnetic field, need to be scaled [34] . This process is known as calibration. There 

are two main opinions on how to determine the value: one is the voxel-wise approach 

and the other one is reference region approach. 

In voxel-wise approach, the values for each voxel are estimated based on a separately 

acquired PD-weighted image. The rationale behind this method is that it can 

automatically correct for voxel-wise variations in intensity, such as coil sensitivity, 

and typically involves simpler calculations. The PD-weighted image is typically 

obtained from a separate calibration scan acquired with a long TR to ensure proton 

density weighting. The other approach involves taking the mean value over a 

reference region as a single global value. The argument for the reference region 

approach is that different values in each voxel is not acceptable since it is expected to 

have a single value of magnetization for the arterial blood as it is passing through the 

labelling plane.   

In the consensus paper, the voxel-wise approach is recommended in the consensus 

paper [1] for general purpose calibration. Furthermore, the general kinetic model was 

further simplified from the general kinetic model by assuming that the T1 of tissue 

(𝑇1𝑡) is equivalent to the T1 of blood (𝑇1𝑏), and no outflow condition due to large 

water pool, and. As a result, the absolute quantification of CBF can be derived using 

a set of label-control paired ASL images along with a PD weighted image, as 

described by the following Equation 2.3.7 and Equation 2.3.8: 

 using pCASL/cASL: 

𝐶𝐵𝐹 =
6000𝜆(𝑆𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑆𝑙𝑎𝑏𝑒𝑙)𝑒

𝑃𝐿𝐷
𝑇1𝑏

2𝛼𝑇1𝑏𝑆𝑃𝐷(1−𝑒
−

𝜏
𝑇1𝑏)

 (ml/100g/min)   Equation 2.3.7 

and using QUIPSS II pASL: 
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𝐶𝐵𝐹 =
6000𝜆(𝑆𝑐𝑜𝑛𝑡𝑟𝑜𝑙−𝑆𝑙𝑎𝑏𝑒𝑙)𝑒

𝑇𝐼
𝑇1𝑏

2𝛼𝑇𝐼1𝑆𝑃𝐷
 (ml/100g/min)  Equation 2.3.8 

Where Scontrol and Slabel are the time-averaged signal intensities of the control and 

label images, respectively. SIPD refers to the signal intensity of a proton density-

weighted image. α is the labelling efficiency of 0.98 for pASL and 0.85 for pCASL. 

𝑇1 𝑏 decay is time constant of 1.65 s. 𝑇𝐼 is the inversion time, and 𝑇𝐼1 is the time 

intervals for the QUIPSS II tagging pulse of 800 ms. 𝑃𝐿𝐷 is the post-labelling delay 

of 1800 ms. The factor of 6000 converts the units from ml/g/s of perfusion to the 

customary physiological units of ml/100g/min.  

The general kinetic model uses a single-PLD, chosen to allow labelled blood 

sufficient time to reach the tissue. While simple and fast, it risks underestimating 

CBF in regions with delayed ATT (Figure 2.3.3).  

 

Figure 2.3.3  Variation in the ASL signal at a voxel in the brain, in response to changes in ATT, as well 

as for both pcASL and pASL from [34] .When ATT is 0.9 or 1.1 (>PLD), labelled water is not 

completely reach tissue. 

 

To mitigate this, consensus PLDs are set conservatively long, or flow suppression 

techniques [60] are applied to suppress signals from fast-moving arterial blood. On 

the other hand, the multi-PLD method samples the kinetic curve at multiple delays 

(Figure 2.3.4), enabling simultaneous estimation of CBF, ATT, and aBV (arterial 

blood volume).  
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Figure 2.3.4 An example of the label-control difference images at various PLD values (in seconds), 

after averaging the repeated measurements for each PLD from [34] . 

 

By varying the PLD, multi-PLD ASL acquires a series of images that capture 

different stages of the arrival and washout of labelled blood water in the tissue. 

Tracking the arrival of labelled blood at different tissues over time enables the 

estimation of ATT. Furthermore, multi-PLD ASL data allow for distinguishing the 

contribution of aBV from tissue perfusion. aBV represents the amount of labelled 

blood within the arterial compartment of a voxel, and its influence is most prominent 

in areas with high vascular density, such as inferior brain regions near major arteries. 

Additionally, the aBV map derived from multi-PLD data highlights vascular 

structures, like the middle cerebral arteries, and can aid in differentiating arterial 

contamination from true perfusion signals [24] . 

 

2.4 Partial volume effects  

Partial volume effects (PVE) are a common issue in MRI imaging, leading to voxels 

containing a mixture of different tissue types, which can obscure the true 

representation of any single component and the sampling of continuous anatomical 

structures. This would affect the precise measurement of a specific type of tissue of 

interest. To ensure accurate quantification of MRI signals, it is essential to 

understand the implications of PVE and apply appropriate correction methods for 

this source of error. 

 

2.4.1 Partial volume effects in ASL MRI 

Partial volume (PV) effects can significantly impact the quantification of perfusion in 

ASL MRI [73] ]. The ASL signal derived from the brain typically contains three 
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primary sources: grey matter, white matter, and cerebrospinal fluid. Ideally, the ASL 

signal from CSF should be negligible, as labelled blood water is not expected to 

reach the CSF [74] [75] . Within the context of perfusion MRI, GM is the main 

interest due to its critical functions in the central nervous system and the observed 

subtle variations in GM CBF associated with various diseases, for example, dementia 

[76] . However, the spatial resolution of ASL data is relatively low, typically between 

3–5 mm, which often does not match the 2–4 mm thickness of GM in cortical areas 

[77] , thereby exacerbating partial volume effects (PVE). While all MRI modalities 

used in brain imaging are susceptible to PVE, these effects are particularly 

pronounced in perfusion imaging due to the significantly different perfusion 

characteristics of GM compared to WM, where a perfusion ratio of 3:1 is frequently 

assumed [34] . While this may not be problematic when visually assessing areas of 

hyper- or hypo-perfusion (e.g., in brain tumors or stroke), PVE can distort 

quantitative CBF measurements, especially when comparing individuals or detecting 

subtle changes. This is particularly pertinent in research involving patients with 

tissue atrophy [73]  or neurodegenerative diseases, such as Parkinson's disease, 

where alterations in voxel tissue content might be mistaken for perfusion changes or 

masked by CBF differences between adjacent anatomical voxels. 

2.4.2 Partial volume effects correction 

It is becoming more widely acknowledged that addressing PVE is crucial for 

accurately quantifying grey matter CBF without interference from the partial volume 

of WM or CSF.  Several partial volume effects correction (PVEc) methods have been 

developed to address partial volume effects in perfusion estimation from ASL data. 

These methods include the linear regression (LR) technique [7]  and a spatially 

regularized approach that incorporates spatial priors within a bayesian inference 

framework for perfusion quantification [8] . 

A general formulation of the ASL signal, accounting for contributions from both GM 

and WM, can be expressed as: 

∆𝑀(𝑡) = 𝑃𝐺𝑀 ∙ ∆𝑀𝐺𝑀(𝑡) + 𝑃𝑊𝑀 ∙ ∆𝑀𝑊𝑀(𝑡)                              Equation 2.4.1  

In this formulation, ΔM represents the difference in longitudinal magnetization 

between the ASL label and control images, 𝑃 denotes the partial volume estimates 

for each tissue type, and 𝑡 indicates the time elapsed since the start of the RF 
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inversion. It is assumed that the contribution from cerebrospinal fluid (CSF) is 

negligible, as no significant ASL difference magnetization is expected in the CSF. 

This approach is applicable to both single and multi-PLD ASL data. 

Estimating the magnetization of either grey or white matter independently within a 

voxel is challenging due to the availability of only a single measurement of 

magnetization (ΔM). PVEc methods address this issue by incorporating information 

from neighboring voxels, with different strategies used to integrate this data into the 

estimation process.  

The linear regression approach for PVE correction in ASL assumes that CBF in both 

GM and WM can be considered constant within a 2D regression kernel of size n × n, 

centered on the voxel where GM and WM values are required. Under this 

assumption, where GM and WM CBF values are constant across voxels within the 

kernel, the ASL difference signal in the voxels can be expressed in matrix form based 

on Equation (2.5.2).  

∆𝑀 = 𝑃∆�̅�                          Equation 2.4.2 

Where ∆𝑀 is a vector of length n2 containing all the ASL difference values, P is n2 x 

2 matrix of GM and WM PV estimates and ∆�̅� is a vector with two entries 

representing the grey and white matter perfusion within the kernel. The numerical 

solution can be found using the following Equation 2.4.3, which minimizes the 

squared error and is mathematically equivalent to linear regression: 

∆�̅� = (𝑃𝑇 ∙ 𝑃)−1 ∙ 𝑃𝑇 ∙ ∆𝑀                      Equation 2.4.3 

where (𝑃𝑇 ∙ 𝑃)−1 is the pseudo-inverse matrix of P. This process is repeated for each 

voxel in the brain to generate a map of PV-corrected GM and WM ASL difference 

signals. The method can also be applied to the final quantified perfusion images 

[175] ], and in principle, it can accommodate various kernel shapes, as long as they 

are defined in terms of whole voxels. 

An alternative spatially regularized approach proposed by [8] uses the formulation in 

Equation 2.4.1 but incorporates spatial priors for both GM and WM within a 

variational bayesian inference framework. This method is based on the same 

principle as the linear regression approach but improves upon it by allowing spatial 

regularization to be adaptively guided by the data, rather than relying on a fixed 
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kernel size. The algorithm estimates both GM and WM contributions in each voxel, 

with each contribution influenced by a prior distribution derived from the 

neighboring voxels, referred to as the spatial prior [80] ,[81] . This process is 

iterative, with voxel values being updated in tandem with the spatial prior and 

repeated in cycles. By applying Bayes’ theorem, the voxel estimates are informed by 

both the measured data and the prior, with the balance automatically adjusted, 

allowing the spatial regularization to adapt to the data. While initially demonstrated 

with multi-PLD ASL data, this approach is also applicable to single-PLD ASL. 

 

2.5 Artifacts in ASL MRI 

Artifacts are distortions or anomalies in an image that do not accurately represent the 

tissue or organ being scanned. In ASL MRI, artifacts can occur at different stages of 

sequence acquisition [82] , including during the tagging phase (magnetic labelling), 

the transit phase (the time between labelling and image acquisition), or the readout 

phase (image acquisition itself). Additionally, various physiological changes can also 

introduce artifacts, which radiologists must be mindful of when interpreting ASL 

images. This section provides an overview of common artifacts encountered in ASL 

MRI. 

 

2.5.1 Artifacts arising during labelling 

Ineffective labelling  

To ensure that the distribution of ASL signal within brain tissue accurately interprets 

the pattern of cerebral blood flow, protons in arterial blood close to the imaging plane 

must be labelled efficiently and uniformly. There are two factors can influence the 

process: vessel tortuosity and susceptibility variation within the labelling region. 

Inefficient labelling, resulting from these factors, can lead to ASL signal loss in the 

impacted vascular area. If the orientation of a target artery is not perpendicular to the 

labelling plane, it can reduce the efficiency of the inversion process by slowing down 

the blood flow. This reduced inversion efficiency may result in a weaker labelling of 

the arterial blood, ultimately diminishing the ASL signal. Additionally, severe vessel 
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tortuosity, where the artery crosses the labelling plane multiple times, can lead to 

multiple inversions of the intraluminal blood, thereby diminishing labelling 

efficiency, as shown in Figure 2.5.1. In fact, although tortuosity of the cervical 

internal carotid artery occurs frequently, it seldom results in labelling failure. 

 

Figure 2.5.1 Poor labelling caused by vessel tortuosity from [82] .  

On the ASL CBF maps (a), there is a noticeable absence of signal in the left internal carotid artery 

(ICA) territory. However, collapsed 3D time-of-flight MR angiography (TOF MRA) (b) reveals normal 

flow signal in the left ICA, and the DWI image (c) shows no acute infarction in the brain. (d) The 

distal ICA is visible on coronal post-contrast T1-weighted images. The right ICA (arrowed) shows 

significant tortuosity as it passes through the labelling plane (white line) twice, leading to multiple 

inversions and reduced labelling efficiency. This results in decreased signal in the right parietal lobe 

on the ASL CBF maps. 

Susceptibility variations within the labelling plane can cause dephasing of arterial 

blood protons, disrupting the conditions needed for pseudo-continuous inversion and 

resulting in poor or absent labelling, as illustrated in Figure 2.5.2. Various factors can 

contribute to susceptibility variations, including metallic surgical hardware, dental 

fixtures, calcification, and air–tissue interfaces caused by the pneumatization of skull 

base and facial bones. Although these factors are common, the impact on labelling 

efficiency due to susceptibility effects is relatively rare. This is likely because the 

susceptibility gradients generated by these materials are generally too weak or distant 

to significantly change the magnetic flux density in the internal carotid and vertebral 

arteries.  
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Figure 2.5.2 Poor labelling due to susceptibility variations in the labelling plane from [82] .  

The ASL CBF maps (a) show a decreased signal in the left ICA territory, suggesting potential 

perfusion issues. However, the relative CBF maps (b) generated from DSC perfusion imaging in the 

same session shows the interhemispheric symmetry of blood flow, which is inconsistent with the ASL 

findings. Additionally, there is no steno-occlusive disease observed in the left ICA from TOF MRA(c). 

An axial T2-weighted gradient-echo image (d) at the level of the maxillary antra reveals an extensive 

area of signal loss (red arrowheads), indicating intravoxel dephasing due to susceptibility variations. 

A prior CT scout image (e) identifies the causative factor as dental hardware, specifically on the left 

side. 

Cerebrospinal Fluid Labelling 

Artifacts can also occur during the labelling period due to the inversion of water 

molecules located outside the intraarterial compartment. If these labelled nonarterial 

water molecules subsequently move into the imaging plane, they can contribute to 

artifacts. For example, water molecules in the cerebrospinal fluid can be tagged 

during the labelling phase and then migrate into the imaging plane, driven by 

pulsatile flow—particularly under conditions of hyperdynamic CSF flow (as shown 

in Figure 2.5.3). This migration often results in a distinctive high signal around the 

medulla, creating what is commonly referred to as a "ring-of-fire" appearance. 
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Figure 2.5.3 CSF labelling artifacts  from [82] .  

A high signal is observed anterior to the medulla and at the junction of the medulla and upper 

cervical spinal cord on ASL maps (a). (b) Fast spin-echo FLAIR imaging and (c) T2-weighted imaging 

show no extra-axial lesion in this area, indicating that the signal originates within the CSF space. 

 

2.5.2 Artifacts arising during transit of labelled spins 

Loss of spin label 

As labelled spins travel from the labelling plane to the imaging volume, they 

experience decay according to the blood T1 relaxation time, typically ranging from 1 

to 2 seconds. Any factor that reduces the T1 relaxation time of blood can cause loss 

of the labelled spins. In clinical settings, the administration of gadolinium-based 

contrast agents is the most significant factor that reduces the T1 of intraarterial blood 

to approximately 100 ms. This rapid reduction causes labelled spins to revert to their 

equilibrium state before they reach the imaging volume, resulting in CBF maps 

devoid of signal, as illustrated in Figure 2.5.4. Gadolinium-based contrast agents 

significantly shorten the blood T1 relaxation time, causing labelled spins to rapidly 

return to their equilibrium magnetization state before they can reach the imaging 

volume, resulting in a loss of ASL signal. Consequently, it is crucial to conduct ASL 
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prior to the administration of contrast agents. If CBF maps display this specific 

signal absence, it is advisable to review the imaging protocol to confirm whether 

contrast was given before the ASL procedure, possibly during an earlier, separate 

session. 

 

Figure 2.5.4 Signal loss due to the gadolinium-based contrast agents from [82] . 

 Before using contrast agent, the acquired ASL images (a)display a normal signal pattern. However, 

after contrast administration and ASL images (b) acquired, there is a complete absence of signal.  

 

Arterial Transit artifact 

The arterial transit time can be delayed due to conditions, such as reduced cardiac 

output, or arterial steno-occlusive disease, leading to artifacts for ASL. If the transit 

time of arterial blood surpasses the combined duration of the label time and PLD, 

imaging could occur prematurely, failing to capture parenchymal blood flow. In such 

cases, labelled spins remain within the intraarterial compartment and manifest as 

linear and serpiginous areas of high ASL signal in the CSF cisterns and cortical sulci, 

a phenomenon known as "arterial transit artifact" (ATA) (see Figure 2.5.5). 

Consequently, the parenchymal CBF distal to the ATA appears artifactually low 

because the labelled blood has not yet reached the parenchymal capillary bed for 

tissue exchange. This results in inaccurate measurements of parenchymal CBF, 
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particularly in conditions with extended transit times due to arterial narrowing or 

occlusion, posing a significant challenge to the use of ASL in determining tissue-at-

risk using CBF thresholds in scenarios like acute stroke and chronic steno-occlusive 

disease. It is important to note that ATA may also occur in patients with normal 

cardiac output and unobstructed intracranial arteries if a short PLD (less than 1500 

ms) is employed. 

 

Figure 2.5.5 ATA and "ASL borderzone sign" in a patient with reduced cardiac output caused by 

cardiac failure from [82] .  

ASL images (a, b) reveal the high signal intensity in the anterior, middle, and posterior cerebral 

arteries (arrowheads), indicative of the intraarterial retention of labelled spins, characteristic of ATA. 

Notably, there is a diminished signal in the brain parenchyma, especially within the parietal and 

occipital lobes, referred to as the "borderzone sign." DSC relative CBF maps (c, d) show no reduction 

in parieto-occipital blood flow, corroborating that the apparent perfusion deficit observed on ASL is 

an artifact resulting from the delayed transit of labelled spins into the parenchyma, rather than a true 

reduction in cerebral blood flow. 

 

2.5.3 Artifacts arising during read-out 

Several artifacts arise during the readout period, with their appearance influenced by 

factors such as motion and susceptibility gradients, which can vary to the readout 

technique employed. 

Motion 
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Patient movement between control and tagging sequences in ASL often results in the 

appearance of a halo around the area of interest. In brain ASL, this artifact typically 

manifests as visualization of the scalp (see Figure 2.5.6). Additionally, movement can 

cause slice-to-slice variations in brightness. To reduce these effects, post-processing 

motion correction is frequently applied to align the paired images and minimize the 

impact of significant patient movement. Slices with substantial position changes can 

also be discarded with minimal effect on SNR, further enhancing the quality of the 

ASL data. 

  

Figure 2.5.6 An example of axial CBF slice with motion artifact from [82] . 

This was caused by varying contrast of ASL slices presented as bright halo at edge of images. 

 

2.6 Quality Control  

Quality assessment (QA) and quality control (QC) of MRI are crucial at various 

stages of the processing and analysis workflow to ensure the reliability of results. QA 

aims to avoid the occurrence of problems and to guarantee that the research 

workflow generates good quality data. Conversely, QC is to exclude poor-quality 

data from the dataset to ensure that such data will not be processed by subsequent 

analysis, thus potential bias in results can be prevented.  

Most QC in MRI is conducted manually by trained technicians and radiologists 

(referred to “raters”), who strictly inspect the images to identify artifacts and other 

quality issues. This manual approach, while necessary, is heavily dependent on 

personal expertise, labor-intensive and subjective, leading to potential 

inconsistencies, inefficiencies and oversights in ensuring data quality. Thus, QC tools 

are developed to either reduce the time required for visual inspection or to 
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automatically evaluate the quality of MRI data. For this purpose, various image 

quality metrics (IQMs) are proposed to quantify MRI images from different 

perspectives, which serve as the primary input for QC tools. In the following section, 

prior research on MRI QC protocols and typical automated QC tools for various MRI 

modalities (MRIQC [83] for structural images, AFNI [84] for fMRI, and 

ExploreASL [85] as well as ASLPrep [86] for ASL MRI) will be introduced. 

 

2.6.1 Quality Control Protocols 

Many studies have proposed and applied various QC protocols to assist the screening 

and evaluate the image quality, aiming for automated QC for MRI data.  For 

structural images, Woodard and Carley-Spencer [87] defined 239 no-reference IQMs 

based on Natural Scene Statistics or JPEG consortium to detect distortions and noise. 

Mortamet et al. [88] proposed QC protocols mainly focused on detecting specific 

artifacts (such as motion, blurring, and ghosting) in T1w images from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset [89] , by characterizing 

magnetization of the air background. This is based on the principle that most artifact 

signals propagate over the image and into the background. A study by Pizarro et al. 

[90]  proposed three volumetric features (the normalized histogram, tissue-wise 

histogram, and the GM/WM mode ratio) and three artifact-specific features (eye 

motion spillover, head-motion spillover for ringing artifact, and wrap-around for 

aliasing artifact) for 1457 structural images. Furthermore, UK biobank study [171]  

combined imaging-derived phenotypes (IDPs) for T1w images, initially introduced 

as biomarkers to predict diseases, and additional QC-specific metrics (such as 

asymmetry between subcortical tissues, normalised intensity of each subcortical 

tissue, and pass/fail registration). Then an ensemble machine learning model 

combining three classifiers were trained with above QC metrics, and the voting 

system took the posteriori probabilities of these classifiers into account, following 

the “Minimum Probability” combination rule [91] [92] . 

Recent studies also proposed QC protocols to incorporate fMRI images [93] [95] . In 

the study by [96] proposed Quality Assessment Protocol to measure the quality of 

both fMRI and structural images based on several quality metrics in the literature. 

The IQMs for structural images involve CNR, SNR, entropy focus criterion [97] , 
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foreground-to-background energy ratio (FBER), voxel smoothness [98] , percentage 

of artifact voxels [88] . Regarding fMRI, spatial quality metrics were applied to the 

average image and temporal quality metrics were applied to fMRI data, these 

temporal quality metrics included the standardized root mean squared change in 

fMRI signal between volumes (DVARS) [99] , mean root mean square deviation 

(MeanFD) , the percentage of voxels with meanFD > 0.2 (Percent FD) [100] , the 

temporal mean of AFNI’s 3dTqual metric (1 minus the Spearman correlation 

between each fMRI volume and the median volume) [95] and the average fraction of 

outliers found in each volume using AFNI’s 3dTout command. Furthermore, the 

distributions of metrics were built, using the Autism Brain Imaging Data Exchange 

(ABIDE) [101]  and the Consortium for Reliability and Reproducibility (CoRR) data 

[102] , to validate their reliability and reproducibility. A prior study [93]  provided a 

visual assessment checklist using 129 resting-state fMRI data processed by Analysis 

of Functional Neuroimages (AFNI) to exclude outliers, which could be used to guide 

the training of new raters. In study [103] , resting-state and task fMRI data with 

various artifacts from public sources were used to conduct QC based on the visual 

assessment reports generated by MRIQC [83] and fMRIPrep [211] . Specifically, 

exclusion criteria were designed and applied for unprocessed fMRI data as well as 

T1w images based MRIQC visual report, and preprocessed fMRI data based on 

fMRIPrep visual report.  

For ASL data, the consensus paper [1] outlined a manual approach for visual QC of 

ASL images, focusing on specific issues such as low labelling efficiency, global grey 

matter CBF values, and various artifacts. A later study [104] proposed a visual 

scoring system for ASL data involving two parts: contrast-based QC and artifact-

based QC, which highlight the visual contrast between anatomical structures, and 

evaluate commonly occurred artifacts, respectively. Furthermore, apart from CBF 

maps, the scoring system also considers their ancillary parametric maps, if present, 

i.e. R1, aBV, and ATT maps. The detailed QC criteria are presented in Figure 2.6.1. 

The scoring system rates each item from the QC criteria according to its severity 

(higher scores mean better quality), with examples of artifacts at various degrees of 

severity provided as guides. This work provided relatively comprehensive QC 

protocols to measure the quality ASL data of various conditions, although it still 

requires manual inspection for individuals. Furthermore, ASL QC tools have been 
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developed, such as ExploreASL [85] and ASLPrep [86] . Both tools rely on their own 

processing pipelines, utilizing various image quality metrics derived from different 

stages of their processing to quantify the quality of ASL data. 

 

 

Figure 2.6.1 The QC criteria to evaluate CBF maps and ancillary images from [104] . R1: T1 

relaxation rate; aBV: arterial blood volume; ATT: arterial transit time 

 

2.6.2 Quality Control tools in MRI 

2.6.2.1 MRIQC 

MRIQC [83] , a quality control tool for structural MRI images, can detect outliers 

using a binary (accept/exclude) machine learning classifier trained with extracted 

IQMs. A minimal processing processing pipeline is provided to derive essential 
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corrected images required for IQM computation. Consequently, 64 metrics are 

extracted based on 14 IQMs of four families that measure noise, spatial distribution, 

particular artifacts, and other factors respectively, presented in Figure 2.6.2.   

Furthermore, QC reports are provided by MRIQC: the individual anatomical report 

aims to facilitate the screening process and includes the image parameters, and 

visualization of cutting planes from structural images with mosaic views, contour of 

brain segmentation, and noise distribution on the air mask; the group report provides 

scatter plots that display the distribution of each IQM, aiding in the identification of 

outliers. These scatter plots are interactive, allowing users to open the corresponding 

individual report by clicking on the points within the plots. 
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Figure 2.6.2 IQMs from MRIQC [83] . 

 

2.6.2.2 AFNI  

AFNI (Analysis of Functional NeuroImages) [84]  is a comprehensive software suite 

used for the analysis and visualization of fMRI data. AFNI provides a comprehensive 

set of quality control (QC) procedures for fMRI subjects [95] . The initial stage of 

QC, known as "getting to know your data" (GTKYD), occurs before any formal 

processing of datasets begins. Although not part of the inclusion/exclusion criteria, 

GTKYD presents and evaluates the consistency in acquisition parameters and data 

properties. Subsequently, systematic quantitative and qualitative stages are integrated 

directly within the afni_proc.py processing pipeline and QC HTML reports, labelled 

as APQUANT and APQUAL, respectively. For task-based fMRI, the STIM stage 

examines the stimulus event and timing information. Additionally, the graphical user 

interface (GUI) stage should be utilized for a subset of subjects in any study to 

thoroughly verify dataset properties and investigate any unknown features that may 

emerge during other QC stages.  

 

2.6.2.3 ExploreASL 

ExploreASL [85] is a software package for ASL image processing, that is developed 

using MATLAB based on Statistical Parameter Mapping (SPM). The quality control 

module is the final part of its processing pipeline, which considers both structural 

and ASL images. For structural images, QC parameters are adapted from 

Preprocessed Connectome Project Quality Assurance Protocol (QAP) [96] , 

presented in Table 2.6.1 from [85] . Specifically, a small WM region was used as the 

noise region instead of the background that out of the brain. On the other hand, for 

ASL images, QC parameters are adapted from SPM fMRI QC parameters [105] , 

presented in Table 2.6.2 from the supplementary material of [60]. Moreover, there are 

also QC parameters produced by comparing ASL images (after smoothing) with a 

group average (template) image (Table 2.6.3). The images with a large difference (> 

2-3 SD) in QC parameters are suggested to be visually checked. These QC 

parameters as well as both T1w and ASL images (including intermediate and final 

images) were presented in a JSON file on individual level for visual QC. 
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Table 2.6.1 Structural QC parameters from ExploreASL [85] . 

Structural QC parameters  Brief explanation 

CNR_GM_WM_Ratio abs(Mean GM - Mean WM)/(SD WMref)2 (higher = better)  

 

EFC_bits(bits) Shannon entropy of voxel intensities proportional to 

maximum possible entropy for similarly sized image, 

indicating ghosting and head motion induced blurring (lower 

= better)  

FBER_WMref_Ratio (SD WholeBrain)2 / (SD WMref)2 (higher = better) 

 

Mean_AI_Perc(%) Mean of voxel-wise asymmetry index (AI), where AI = (L-

R)/(0.5*[L+R]) (Kurth et al., 2015) (lower = better) 

 

SD_AI_Perc(%) Distribution of voxel-wise asymmetry index (AI), where AI = 

(L R)/(0.5*[L+R]) (lower = better) 

 

SD_WMref(ml/100g/min) SD in the WMref region 

 

SNR_GM_Ratio Mean GM / SD_WMref(higher = better)  

 

WMref_vol_mL(mL) Volume of noise reference region within the WM (WMref) 

 

WMref_vol_Perc(%) Percentage of WMref volume to the total WM volume 

CNR=contrast-to-noise ratio, SD=standard deviation, EFC=entropy focus criterion, 

FBER=foreground to background energy ratio, AI=asymmetry index, 

Perc=Percentage, ref= reference, vol=Volume, L=left, R=right. 

 

Table 2.6.2  ASL QC parameters from ExploreASL [85] . 

ASL QC parameters  Brief explanation 

tSNR_CSF_Ratio Mean / temporal standard deviation (SD) within total 

CSF 

 

tSNR_GM_Ratio Mean / temporal SD within total GM 
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tSNR_GMWM_Ratio Mean / temporal SD within the parenchyma (GM+WM)  

 

tSNR_GMWM_WMref_Ratio Mean within parenchyma / tSD within reference WM 

(WMref)  

 

tSNR_Physio2Thermal_Ratio tSNR_GMWM / tSNR_GMWM_WMref  

 

tSNR_Slope_Corr Slope of temporal SNR as function of GM partial volume  

 

tSNR_WM_Ratio Mean / temporal SD within total WM   

 

tSNR_WMref_Ratio Mean / temporal SD within WMref  

 

 

Table 2.6.3 ASL difference QC parameters from ExploreASL [85] . 

Difference QC parameters  Brief explanation 

AI_Perc(%) Mean voxel-wise asymmetry index (AI), computed as (L-

R)/(0.5*[L+R]) (lower = better)  

 

Mean_SSIM_Perc(%) Mean voxel-wise structural similarity index (SSIM) (higher 

= better)  

 

nRMSE_Perc(%) Normalized Root-mean-square error (nRMSE) with ASL 

template (lower = better) 

 

PeakSNR_Ratio Assuming an individual ASL image can be interpreted as a 

noisy version of an ASL template, this parameter is the 

dynamic range compared to the mean squared difference of 

the individual and template ASL images. Dynamic range is 

calculated here as MaxIntensity-MinIntensity (higher = 

better)  

 

RMSE_Perc(%) Root-mean-square error (RMSE) with ASL template (lower 

= better) 
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2.6.2.4 ASLprep 

ASLPrep [86] is a software workflow for ASL MRI data processing that is developed 

using python package Nipype. In ASLPrep, both importing metadata and storing 

processed data conform to the Brain Imaging Data Structure (BIDS) specification 

[106] for ASL.  

In QC workflow, ASLPrep measures quality of registrations of ASL to T1w image as 

well as T1w image to the standard template for each step during registration, theses 

metrics include the mask overlaps, spatial correlation, Dice coefficient and Jaccard 

index. Furthermore, ASLPrep also provides quality measures for ASL timeseries 

which are the mean frame-wise displacement, the root mean square variance of 

temporal derivative of CBF time courses, CBF ratio between GM and WM, and the 

CBF quality evaluation index (QEI). QEI measures the quality of CBF map using its 

similarity with structural tissues, CBF spatial variabilities in GM and WM, and the 

percentage of negative CBF within the GM mask.  

Furthermore, a descriptive HTML report is generated on individual level. Specially, 

the report includes the visualization of data before and after key processing steps 

(normalization, registration, distortion correction) as well as CBF maps (SCORE-

corrected CBF [107] , SCRUB-corrected CBF[108] , BASIL [109] CBF, and PVEc 

CBF), aforementioned quality control metrics, and the description of all 

methods/tools used for preprocessing with citations. 

 

2.7 Automated Quality Control Techniques  

Conventional methods are widely used for QC in MRI data and play a crucial role in 

ensuring data integrity. One common approach is the application of z-score 

thresholds to identify outliers by measuring the deviation of individual data points 

from the mean [110] . This statistical method effectively highlights anomalies that 

could indicate potential issues in the MRI data. Another traditional technique 

involves the use of boxplots, which visually represent the distribution of data and 

identify outliers [111] . By depicting the spread and central tendency of the data, 

boxplots offer a straightforward means of detecting anomalies that might 

compromise image quality. Additionally, methods based on Principal Components 
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Analysis (PCA) are employed to facilitate anomaly detection in MRI [112] ,[113] . 

PCA reduces the dimensionality of the data, helping to identify patterns and 

variances that may indicate anomalies. This approach is particularly useful in 

isolating noise and artifacts that can adversely affect MRI image quality. 

While these conventional methods are valuable, they often require significant manual 

intervention and may not always capture complex patterns in the data. This limitation 

has motivated the use of machine learning and deep learning techniques [114] [117]  

for quality control in MRI. Machine learning is particularly effective in selecting the 

most useful features, optimizing the process by automatically identifying and 

prioritizing relevant metrics that contribute to data quality and making it more 

efficient and less prone to human error. In addition, deep learning takes this a step 

further by automatically learning patterns directly from the image data. These models 

can identify subtle anomalies that traditional methods might miss, thanks to their 

ability to process large amounts of data and discern intricate relationships within it. 

This makes deep learning particularly powerful in the context of MRI, where 

detecting slight irregularities can be crucial. 

In deep learning, the process of QC in MRI images is often referred to as anomaly 

detection or out-of-distribution (OOD) detection. Anomaly detection in MRI images 

is typically conducted using convolutional neural network [118]  (CNN)-based 

feature extractors followed by classifiers. CNNs excel at identifying spatial 

hierarchies in images, making them particularly suited for detecting irregularities in 

MRI scans. Additionally, deviation-based models such as variational autoencoders 

(VAEs) [119] and generative adversarial networks (GANs) [120]  are also employed. 

These models can generate synthetic data that closely resembles the training data, 

enabling them to identify deviations that indicate anomalies. By leveraging these 

advanced techniques, MRI QC can become more automated, accurate, and capable of 

handling the complexities inherent in medical imaging. 

 

2.7.1 Machine Learning  

Machine learning is a branch of artificial intelligence that involves creating 

algorithms and statistical models that allow computers to learn from data and make 

predictions or decisions. It is generally divided into two main categories: supervised 



 

50 

 

learning, where models are trained on labelled data to predict specific outcomes, and 

unsupervised learning, which focuses on discovering hidden patterns or structures in 

unlabelled data. QC of MRI data is to accept normal data and exclude outliers, and 

thus it can be regarded as a binary classification problem in machine learning. 

A machine learning (supervised) task commonly involves several key steps: Initially, 

data collection is undertaken to obtain the dataset comprising input features and their 

corresponding labels. In MRI studies, IQMs are extensively utilized as features for 

machine learning models to assess and ensure the quality of MRI data. The 

corresponding labels for these machine learning tasks are typically provided by 

expert raters. Subsequently, data preprocessing is conducted to clean and prepare the 

data, including handling missing values, normalizing numerical features, and 

encoding categorical variables. Feature selection or engineering follows, aiming to 

identify and create the most relevant features that will improve model performance. 

The next step involves splitting the dataset into training and validation sets, which 

allows for both model training and performance evaluation. The chosen classification 

algorithm is then trained on the training data, learning to map input features to the 

corresponding labels. Hyperparameter tuning is performed to optimize the 

parameters of model, often using techniques such as grid search or cross-validation. 

After training, the performance is evaluated using the validation set, employing 

metrics such as accuracy, precision, recall, and the F1 score. The final step is model 

testing, where model generalization ability is assessed on an independent test set to 

ensure its reliability on unseen data.  

Notably, prevalent challenge in this domain is the inherently imbalanced dataset, 

where the majority of images may fall into the category of acceptable quality, while a 

smaller proportion exhibit significant artifacts or quality issues. This imbalance can 

lead to biased models that perform well on the majority class but poorly on the 

minority class, thereby necessitating careful selection of the model to address this 

challenge. Support Vector Machines (SVMs) [121] are commonly employed in these 

contexts due to their effectiveness and robustness in handling imbalanced data. 

Further details of SVMs are given in the following section.  

 

Support Vector Machine 
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Support vector machines (SVMs) [121] are widely used for classification tasks, 

which is achieved by identifying the optimal hyperplane that separates two classes, 

aiming to maximize the margin between the nearest data points from each (see 

Figure 2.7.1). Although many potential hyperplanes could separate the classes, SVM 

seeks the one that provides the largest margin, thus ensuring the best decision 

boundary. This maximization of the margin helps the model generalize well to new 

data, to achieve accurate classification predictions. The lines adjacent to the optimal 

hyperplane are called support vectors, as they pass through the data points that are 

crucial for defining the margin. This allows the model to maintain sensitivity to the 

minority class (outliers) [122] . 

 

Figure 2.7.1 SVM classifies data by maximizing the margin between the two classes. 

The middle line between the support vectors is the optimal hyperplane and the distance between the 

supports is denoted as maximized margin. 

 

In the binary classification, we suppose there are two classes with labels as +1 and -

1. x denotes the input features and y is the corresponding labels. The hyperplane can 

be expressed as:  

𝑤𝑇𝑥 + 𝑏 = 0  Equation 2.7.1 

The vector w denotes the normal vector that is perpendicular to the hyperplane and 

the parameter b denotes the distance along the vector w to the hyperplane, which can 

be represented as:  

𝑑𝑖 =
𝑤𝑇𝑥𝑖+𝑏

||𝑤||
                          Equation 2.7.2 
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The margin can be further denoted as: 

𝛾𝑖 =
𝑦𝑖(𝑤

𝑇𝑥𝑖+𝑏)

||𝑤||
  Equation 2.7.3 

Where 𝛾𝑖 is the margin and 𝑦𝑖  is the label of an example. In linear hard margin SVM 

classifier, the prediction of an example can be denoted as: 

�̂� = {
 1 ∶ 𝑤𝑇𝑥𝑖 + 𝑏 ≥ 0

−1 ∶ 𝑤𝑇𝑥𝑖 + 𝑏 < 0
                           Equation 2.7.4 

The goal of SVM is to maximize the margin between the two classes: in Equation 

2.7.5,  𝑚𝑖𝑛𝑖|𝑤
𝑇𝑥𝑖 + 𝑏| can be regarded as 1 by changing the scale of vector w, and 

thus 𝑚𝑎𝑥𝑤,𝑏
1

||𝑤||
 can be converted to 𝑚𝑖𝑛||𝑤||, and end up with 𝑚𝑖𝑛

1

2
||𝑤||

2
, which 

can be solved as a convex quadratic programming problem. 

𝑚𝑎𝑥𝑤,𝑏 𝑚𝑖𝑛𝑖
1

||𝑤||
|𝑤𝑇𝑥𝑖 + 𝑏| = 𝑚𝑖𝑛𝑖

1

2
𝑤𝑇𝑤 =  𝑚𝑖𝑛𝑖

1

2
||𝑤||

2
,  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤
𝑇𝑥𝑖 + 𝑏) > 0 𝑓𝑜𝑟 𝑖 = 1,2,3… ,𝑚  Equation 2.7.5 

In many real-world scenarios, data is often not linearly separable in its original 

feature space, presenting a significant challenge for traditional classification 

methods. For instance, extreme high or low values in quality metrics may indicate 

outliers that lie on opposite ends of the data distribution, complicating the separation 

of classes. The kernel trick in Support Vector Machines (SVMs) effectively addresses 

this challenge by implicitly mapping input data into a higher-dimensional feature 

space, where a linear separator can be more easily identified. Instead of explicitly 

computing the coordinates of the data in this higher-dimensional space—a task that 

can be computationally prohibitive—the kernel trick allows SVMs to operate in this 

transformed space by evaluating a kernel function. This function effectively 

computes the inner product of the data points in the high-dimensional space, enabling 

the SVM to find an optimal hyperplane without ever needing to directly perform the 

transformation. Several types of kernel functions are commonly used, including the 

linear, polynomial, radial basis function (RBF), and sigmoid kernels. Each of these 

kernels introduces a different notion of similarity in the transformed space, allowing 

the SVM to adapt to various types of data distributions. 
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By leveraging the kernel trick, SVMs can efficiently handle complex classification 

tasks that involve non-linear decision boundaries. This capability makes SVMs a 

powerful tool in machine learning, particularly in domains where the relationships 

between features are not straightforward or easily captured by linear models. The 

kernel trick, therefore, not only extends the applicability of SVMs but also enhances 

their performance on a broad range of classification problems. 

 

2.7.2 Deep Learning  

Deep learning is a subset of machine learning that focuses on using artificial neural 

networks with many layers, also known as deep neural networks, to model complex 

patterns in data. It is part of a broader family of machine learning methods and is 

particularly effective in tasks that involve large amounts of data and require learning 

hierarchical representations, such as image recognition, natural language processing, 

and speech recognition. Recently, deep learning has emerged as a powerful approach 

for QC in medical images [114] [115] . Unlike classical machine learning techniques 

that often rely on predefined IQMs, deep learning can inherently capture complex 

image-level features, without the need for such predefined QC criteria.  

The training process of neural networks is analogous to machine learning in that it 

involves iteratively adjusting the model parameters to minimize the error in 

predictions. This process begins with the collection and preprocessing of a dataset, 

which is then used to train the network. The data are fed into the neural network in a 

process called forward propagation, where it passes through multiple layers of 

neurons. The accuracy of these predictions is evaluated using a loss function, which 

quantifies the difference between the predicted outputs and the actual targets. 

Through backward propagation, the gradients of the loss function with respect to the 

weights of neurons in each layer are computed sequentially from back to front, 

allowing for the adjustment of weights in the direction that reduces the loss. This 

optimization is typically performed using algorithms like Stochastic Gradient 

Descent [123]  or Adam [124] . Techniques such as data augmentation, 

regularization, and cross-validation in this training phase can enhance the 

generalization of models for unseen data and does not overfit. Techniques like early 
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stopping, learning rate scheduling, and hyperparameter tuning can further refine the 

training process, helping to achieve optimal performance.  

This section provides an overview of these fundamental deep learning concepts, 

which serve as the theoretical basis for QC using deep learning of ASL MRI in 

Chapter 5. 

 

2.7.2.1 Perceptron 

A perceptron [125]  is a basic building block in deep learning, representing the 

simplest form of an artificial neuron or neural network unit. It serves as the 

foundation for more complex neural network architectures, such as multi-layer 

perceptrons (MLPs) [125] and convolutional neural networks (CNNs) [118] . 

 

Figure 2.7.2 Perceptron model.  

 x is the input vector, and w is the corresponding weight vector. y is the output. 

 

A perceptron is a mathematical model of a neuron, designed to simulate the 

behaviour of biological neurons in the brain, presented in Figure 2.7.2. It takes a set 

of input values, applies a linear transformation (through a set of weights), and then 

uses an activation function to produce typically an output of 1 (active) or 0 (inactive). 

𝑦 = {
0         (∑ 𝑤𝑗𝑥𝑗 ≤ 𝜃𝑗 )

1         (∑ 𝑤𝑗𝑥𝑗 > 𝜃𝑗 )
                                Equation 2.7.6 

The perceptron calculates a weighted sum of its inputs, which is then passed through 

an activation function to generate the final output. Perceptrons laid the groundwork 

for the development of deep learning, demonstrating the potential for neural 

networks to learn from data and perform complex tasks. 
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2.7.2.2 Multi-layer Perceptrons 

This simple structure of perceptron allows linear classification, but they struggle with 

non-linear problems. To address this limitation, MLPs (depicted in Figure 2.7.3) 

were developed, incorporating multiple layers of neurons. The MLPs include one 

hidden layer, enabling complex non-linear modelling. Despite their simplicity, MLPs 

serve as the foundation for modern deep learning architectures, such as convolutional 

neural networks (CNNs) and recurrent neural networks (RNNs), which build on 

these concepts to tackle a wide range of complex tasks in machine learning and 

artificial intelligence. 

 

Figure 2.7.3 Multi-Layer Perceptrons including input layer, hidden layer and output layer from left to 

right. 

 

2.7.2.3 Convolutional Neural Network 

In a simple neural network, each node in one layer is connected to every node in the 

next layer, and there is typically only a single hidden layer. In contrast, deep learning 

networks have multiple hidden layers, making them "deep." These additional layers 

allow the network to learn more abstract and complex representations of the input 

data. Although basic neural networks, like feedforward networks, can process images 

as input, they are highly inefficient due to the full connection between all neurons 

across layers. Deep learning architectures, such as Convolutional Neural Networks 

(CNNs) [118] , overcome this limitation by preserving spatial information and 

establishing sparse connections between neurons in different layers, making them 

more efficient and effective for image processing tasks (such as Figure 2.7.4). 
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A characteristic of CNNs is use of convolutional layers, where filters (also known as 

kernels) are applied to input data to extract relevant features or preserve the 

relationship of local areas, such as edges, textures, or patterns. Each convolution 

kernel is a feature extractor, and only one feature is extracted. These filters slide 

across the input, performing element-wise multiplications and summations, 

producing feature maps that highlight important aspects of the data. CNNs also 

incorporate pooling layers, which reduce the dimensionality of the feature maps by 

down-sampling, thus lowering computational complexity while preserving the most 

critical information. The combination of features is the key to determine what the 

original image is, and the absolute position of features is less important while the 

relative positioning between different features plays a more significant role. Using 

the relative position can be more robust to some translation and rotation, control 

overfitting, increase the generalization ability of the model, and greatly reduce the 

model parameters. Another common feature of CNN is the use of non-linear 

activation functions like ReLU (Rectified Linear Unit) [118] , which introduce non-

linearity to the model, allowing it to learn complex patterns. CNNs often conclude 

with fully connected layers, facilitating final decision-making or classification tasks 

[118] . Together, these features make CNNs highly effective for tasks involving 

image processing and computer vision, enabling them to excel in applications like 

image classification, object detection, and semantic segmentation. 

 

Figure 2.7.4 The conventional blocks of a typical CNN for medical image process from [127] . 
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2.7.2.4 U-Net 

The U-net architecture [128] is widely recognized for its efficacy in medical image 

segmentation (Figure 2.7.5). This neural network structure features a symmetric, U-

shaped design that facilitates the efficient processing of images through a 

combination of contraction and expansion paths. The contraction path of the U-net is 

akin to a traditional convolutional network, comprising repeated application of 

convolution and pooling layers. This path captures context by downsampling the 

input image, effectively learning hierarchical features. Conversely, the expansion 

path consists of upsampling operations that increase the resolution of the output. This 

path merges high-level feature representations with corresponding features from the 

contraction path through skip connections. These connections preserve spatial 

information that is crucial for accurate segmentation. 

 

Figure 2.7.5 U-net architecture from [128] .  

The network consists of an encoder-decoder structure with symmetrical skip connections that help 

preserve spatial information. The encoder (contracting path) extracts hierarchical features through 

successive convolutional and pooling layers, reducing spatial dimensions while increasing feature 

complexity. The decoder (expanding path) restores spatial resolution using transposed convolutions 

and combines low-level features from the encoder via skip connections to refine the output. The final 

layer applies a convolution operation to generate the segmented output, making U-Net highly effective 

for medical image analysis tasks. 
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2.7.3 Anomaly Detection  

Quality control, often referred to as anomaly detection in the context of deep 

learning, presents unique challenges due to the difficulty of obtaining labelled data 

for every possible anomaly. While supervised learning algorithms, particularly those 

implemented through CNNs, have seen widespread use in industries such as 

manufacturing, surface inspection, and surveillance [129] [131] , however, their 

applicability in medical imaging is limited. The primary obstacle is the impracticality 

of acquiring comprehensive labelled datasets for all potential anomalies in MRI 

scans. 

Consequently, supervised learning methods [132] ,[133] are not ideally suited for 

anomaly detection in medical imaging. Instead, semi-supervised learning approaches 

[133] [134] have emerged as a more viable solution. These methods focus on 

identifying deviations from established norms, rather than relying on extensive 

labelled data. The initial step in this process involves developing a robust baseline of 

normal MRI scans, which serves as a reference point for detecting anomalies. This 

baseline is created by analysing a large dataset of MRI images that have been 

verified to be free of defects. Deep learning algorithms are employed to learn the 

typical patterns and features of these high-quality MRI images, establishing a 

standard against which new, unseen images can be compared. Once this baseline is 

established, the anomaly detection system can evaluate unseen MRI data by 

identifying deviations from the norm. Any irregularities that suggest potential 

anomalies are flagged by comparing the new images against the established baseline. 

This semi-supervised approach thus enables the detection of anomalies without the 

need for extensive labelled datasets. 

In addition to semi-supervised methods [135] [137] , unsupervised anomaly detection 

algorithms are also employed. These algorithms analyse both normal and anomalous 

data without relying on labels, identifying anomalies based on intrinsic properties of 

the datasets, such as distances or densities. By examining the structure and 

distribution of the data, unsupervised methods can detect outliers that do not conform 

to established patterns. 

The combination of semi-supervised and unsupervised approaches provides a 

comprehensive strategy for anomaly detection in MRI. By leveraging both defined 
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norms and intrinsic data properties, these methods enhance the reliability and 

accuracy of detecting anomalies in medical imaging. 

 

2.8 Conclusion 

This chapter outlined the fundamental concepts of MRI, with a specific focus on ASL 

MRI that stands out as a non-invasive technique that enables the quantitative 

measurement of perfusion. The ASL consensus paper [1] on the clinical 

implementation of ASL MRI marked a pivotal milestone in 2015, promoting its 

broader acceptance in clinical practice and establishing standardized protocols for 

both research and routine clinical applications [5] [34] [54] . Since then, various 

advancements have been made to ASL to enhance image quality, improve the 

accuracy of CBF quantification, and provide measurements of additional 

physiological parameters [27] . However, ASL still faces several challenges. This 

thesis focuses on two main aspects that complicate ASL MRI: partial volume effect 

correction and automated quality control methods. 

PVEc methods, such as linear regression [7]  and spatially regularized variational 

Bayes approaches [4] , are well-established in the literature. However, the impact of 

PVEc on ASL results is still debated, potentially due to factors like sample size or 

variability in protocols. One key limitation is the relatively small participant numbers 

[177] ,[181] [186] , which restricts the generalizability of findings and complicates 

the assessment of effects of PVEc. 

Another challenge in ASL MRI is automated QC. This chapter discussed some 

common artifacts that can arise during ASL acquisitions and highlighted the 

limitations of traditional QC methods. Automated QC, especially with the integration 

of advancing deep learning techniques, shows promise in detecting artifacts and 

evaluating image quality for subsequent analysis. 

To address these challenges, Chapter 3 applied PVEc to a relatively large ASL data, 

and investigated age-related changes in perfusion with and without PVEc to account 

for anatomical changes, such as brain atrophy, which can lead to cortical thinning 

and exacerbate GM voxel contamination by other tissue types. Additionally, a 

surface-based pipeline for ASL pre-processing and analysis was developed, alongside 
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the conventional volumetric pipeline, to provide surface-based representations of the 

results. Chapter 4 explores image quality metrics specific to ASL data to aid in QC, 

with the goal of standardizing ASL QC protocols, a gap that currently exists in the 

literature. These IQMs were incorporated into QC reports for quick visual inspection. 

Moreover, these metrics were individually evaluated and also used as features for 

machine learning tasks. In Chapter 5, deep learning models were built to 

automatically learn features directly from the images, eliminating the need for 

predefined IQMs, thereby enabling fully automated QC for ASL MRI. 
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3 Regional Changes in Cerebral Perfusion with Age 

When Accounting for Changes in Grey Matter 

Volume1 

 

3.1 Introduction 

Perfusion is the process of delivering blood to the capillaries within tissues, essential 

for maintaining tissue and organ health by supplying oxygen and nutrients while 

removing metabolic waste [138] [141] ,[142] . Cerebral blood flow (CBF), a 

quantitative measure of perfusion, represents the rate at which arterial blood flows 

through capillaries and is closely tied to normal metabolic function [146] -[148] . 

Arterial Spin Labelling (ASL) MRI is the only non-invasive technique that allows 

imaging of CBF in the brain, using blood water as an endogenous tracer [34] . ASL 

has become a widely used method for assessing CBF in various neurological 

conditions, as well as for studying the effects of age and sex on cerebral perfusion. 

While there is general agreement that CBF decreases with age, research findings on 

the influence of age and sex on CBF in specific brain regions have been inconsistent. 

Some studies indicate a decline in cortical CBF with age, while others report an 

increase or no significant correlation [150] . These conflicting results are likely due 

to limited cohort sizes and variability in the analysis methods employed. 

Like other perfusion techniques, ASL has a relatively low spatial resolution typically 

with voxel size around 3–5 mm. This resolution is lower than the anatomical 

variations within the tissues it aims to image. This can significantly impact CBF 

measurements affected by partial volume effects (PVE) since a voxel is likely to 

contain more than one type of tissues. Although this might not be evidently 

problematic when visually examining areas of hyper- or hypo-perfusion, such as 

brain tumors or stroke, PVE can confuse the quantitative measurements of CBF, 

especially when comparing individuals or detecting subtle perfusion changes. This is 

 

1 This work has been submitted as a paper to Magnetic Resonance in Medicine [242] . 
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particularly relevant in cases of neurodegenerative conditions, such as Parkinson's 

disease [6] , or certain stroke effects. In these scenarios, actual changes in blood flow 

might be misinterpreted for, or masked by CBF differences or changes between 

corresponding voxels in the same anatomical voxels. It is increasingly recognized 

that correcting PVE is crucial to quantify GM CBF independently of any 

confounding effects from partial volumes of WM or CSF [4] [175] . Therefore, 

various partial volume effects correction (PVEc) methods have been developed that 

use voxel-wise estimates of PVs to identify the signal from each tissue. Examples 

include the Muller-Gartner method for PET [153] , and linear regression [7]  or 

spatially regularized variational Bayes methods for ASL [8] . 

Traditional methods for obtaining partial volume estimates rely on volumetric 

segmentation, such methods may not provide precise results for intricate structures 

like the cortex, with its efficacy being contingent on the accuracy of the segmentation 

method employed. Given the complexity of shapes such as the thin, intricately folded 

cerebral cortex, surface-based segmentation has become increasingly popular, 

especially with tools like FreeSurfer [154] . This method offers significant 

advantages. First, it allows for more continuous representation because it places 

surface vertices with precision finer than a voxel, in contrast to the inherently 

discrete nature of volumetric segmentation. Second, it enables the application of 

anatomically accurate constraints that vary directionally, such as ensuring tissue 

homogeneity along a surface while allowing for heterogeneity perpendicular to it. 

While there are surface-based partial volume estimation tools in existing studies, 

previous attempts have typically been tailored for a particular imaging modality, e.g., 

the Human Connectome Project’s (HCP) fMRI Surface pipeline for BOLD using 

ribbon-constrained method [155] and PETSurfer [156] , a variant of FreeSurfer, for 

PET.  

Current brain research using ASL predominantly relies on region of interest (ROI) 

analysis or volumetric (i.e., voxel-based) analysis. In the ROI approach, researchers 

define anatomical or functional brain regions and compute a quantity of interest 

within these regions. This method, however, is limited by the prior hypotheses to 

determine the expected ROI. On the other hand, the volumetric method has an 

advantage in identifying unanticipated or non-hypothesized areas of abnormal 

activity in the brain [159] . Surface-based analysis has become increasingly popular 
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in neuroimaging because of its effectiveness in representing the cortex [159] . The 

cortex is intricately connected to various cognitive functions, including perception, 

attention, and language. The traditional volumetric analysis defines a neighbourhood 

in a three-dimensional space, including every voxel within a designated sphere 

around a central point, without considering if these voxels share the same tissue type 

to the central point. Alternatively, surface-based analysis confines the neighborhood 

specially to the cortical surface, or "cortical ribbon," and calculates distances 

exclusively along this ribbon. This method prevents the mixing of neighboring WM, 

CSF, and subcortical GM from cortical GM and avoids confounding between cortical 

areas that are close in Euclidean space but distant along the cortical surface. 

Some studies have used cortical surface-based analysis in perfusion to investigate 

regional CBF changing with aging [157] -[160] . However, relatively few studies 

applied this technique to ASL data specifically [150] ,[161] . A prior study 

demonstrated that performing cortical surface-based analysis on ASL is technically 

feasible and produces high-quality images. This approach has the potential to 

significantly improve the detection of focal perfusion changes, especially in 

neurodegenerative diseases, within a clinical setting [162] . Despite these promising 

findings, surface-based analysis has not yet been widely integrated into ASL 

research. The existing gap in the literature underscores the importance of adopting 

surface-based analysis in ASL studies. By leveraging the detailed cortical geometry 

inherent to surface-based approaches, this method holds promise for delivering 

enhanced precision in investigating disease mechanisms, tracking progression, and 

treatment effects. 

A previous study focusing on the elderly cohort from TILDA ASL data [163]  

investigated age-related perfusion changes and reported on mean global brain 

perfusion without PVEc. The objective of current study was to perform a subsequent 

exploratory investigation of the influence of aging on regional brain perfusion with 

PVEc in the same elderly dataset, potentially accounting for the influence of changes 

in anatomy. This study proposed a surface-based pipeline along with the 

conventional volumetric pipeline for ASL data (see Figure 3.2.1), aiming to 

demonstrate the processing and results with the two different representations for 

further use and interpretation by the community.  
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3.2 Methods 

3.2.1 Dataset  

This study used a subset of participants from The Irish Longitudinal Study on Ageing 

(TILDA), a prospective cohort study that collects health, economic, and social 

aspects of Irish adults [166] ,[167] . The characteristics of the dataset, including age, 

sex, education, and health conditions, were detailed in a prior study using the same 

dataset [163] .  The exclusion criteria were also detailed in the prior study [163] . 

Briefly, participants were excluded if they presented any contraindications to MRI, a 

history of stroke or head injury, or if their images contained artifacts. To ensure the 

reliability of the analysis, subjects outside the specified age range of 54 to 84 years 

were excluded. Furthermore, participants with extreme mean GM CBF values in 

non-PVEc data (<10 or >100 ml/100g/min) were also excluded. This exclusion 

criterion led to a discrepancy in the total number of participants compared to the 

prior study [163] due to different calibration methods resulting in differences of 

perfusion estimates. Consequently, the final sample comprised 423 healthy 

participants (215 females and 208 males) aged 54 to 84 years, all of whom had 

available T1-weighted and pCASL data. 

 

3.2.2 MRI data acquisition 

All MRI data (T1-weighted and pseudo-continuo ASL (pCASL) sequences) were 

acquired on a 3T scanner, using a 32-channel head coil. T1-weighted 3D 

magnetization-prepared rapid gradient echo (MPRAGE) anatomical images were 

acquired over 5 min 24 s with the following scan parameters: field of view (FOV) = 

240 × 240 × 162 mm3, matrix = 288 × 288 × 180, repetition time (TR) = 6.7 ms, echo 

time (TE) = 3.1 ms, flip angle = 8°, and SENSE = 2. The pCASL acquisition 

parameters using 2D multislice single-shot EPI were as follows: 30 interleaved pairs 

of images acquired alternating with and without arterial spin labelling, FOV = 240 × 

240 mm2, matrix=80×80, TR=4000ms, TE=9ms, FA=90°, SENSE=2.5, and scan 

duration = 4 min 16 s. 13 slices (8 mm thick, 1 mm gap) were acquired sequentially 

in a caudocranial direction. A labelling duration of 1800 ms and a post-label delay of 

1800 ms were used. Calibration scans measuring the equilibrium magnetisation (M0) 
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were also acquired using the same geometry as the pCASL sequence, with TR = 

10,000 ms, TE = 9 ms, and scan duration = 20 s. B0 field maps were measured using 

a two-echo 2D gradient echo sequence with the same in-plane resolution as the 

pCASL scans and the following acquisition parameters: TR=455ms, TE1 /TE2 

=1.69/7.0ms, FA=90°, and scan duration = 39 s. 

 

3.2.3 Data processing 

The overall ASL data processing pipeline used in this study was shown in Figure 

3.2.1. 

 

 

Figure 3.2.1 ASL pipelines for this study. 

Top: the proposed ASL surface-based pipeline; Middle: T1w pre-processing pipeline from Human 

Connectome Project [231] ; Bottom: the conventional ASL volumetric pipeline [109] with PVEc.  

 

3.2.3.1 Structural image processing 

T1-weighted images were processed using the HCP minimal processing pipelines 

[155] ,[168] , which consist of three distinct stages: (1) the PreFreeSurfer pipeline, 

which corrects for gradient distortions and bias fields (B1 inhomogeneities), performs 

brain extraction, and aligns the images to the MNI152 template space [70] ; (2) the 

FreeSurfer pipeline, which segments structural volumes according to a specified 
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parcellation, reconstructs white and pial cortical surfaces, and registers these surfaces 

to the FreeSurfer surface atlas; and (3) the PostFreeSurfer pipeline, which generates 

the final NIFTI files and GIFTI surface files registered to the Conte69 surface atlas 

[155] [169] . 

 

3.2.3.2 Partial volume estimation 

To obtain partial volume estimates, the volumetric pipeline used partial volume 

estimates (GM/WM/CSF) calculated by FSL FAST 

(https://fsl.fmrib.ox.ac.uk/fsl/oldwiki/FAST.html) [164]  with the pre-processed T1w 

image (see Figure 3.2.2). The surface-based pipeline utilized Toblerone 

(https://toblerone.readthedocs.io/) [165]  to calculate GM/WM partial volumes, 

leveraging the structural information provided by Freesurfer 

(https://surfer.nmr.mgh.harvard.edu/) [154]  (see Figure 3.2.2). This approach 

allowed us to estimate partial volumes within the cortex and all structures identified 

by Freesurfer in the structural space.  

 

Figure 3.2.2 Partial volume estimates in the from FSL FAST and Toblerone.  

FSL FAST PVs (top from left to right):GM, WM, and CSF; Toblerone PVs (bottom from left to right): 

GM, WM. 

 

3.2.3.3 ASL image processing 

With corrected T1w image and its partial volume estimates, pCASL images were 

processed using OXASL (https://github.com/physimals/oxasl) a pipeline for 

performing Bayesian analysis of Arterial Spin Labelling MRI data, an updated 

version of the BASIL toolbox found in FSL [109] , giving access to more advanced 

https://github.com/physimals/oxasl
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regions and surface analysis options. Within the OXASL pipeline, motion correction 

was firstly calculated for ASL data using FSL MCFLIRT, with the calibration image 

as reference. Then the perfusion-weighted image derived by averaging the ASL 

difference images was registered to the corrected T1w image using FSL FLIRT 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT) to obtain the transformation between 

native space and structural space. B0 maps were utilized to calculate distortion 

corrections for the ASL data, compensating for any spatially nonlinear image 

distortions caused by B0 inhomogeneities in these EPI data. At the end of pre-

processing, these corrections were applied to ASL data and calibration data. 

Quantification of the ASL data was conducted in native space using Bayesian 

inference, following the standard well-mixed single compartment kinetic model 

without dispersion of the bolus of labelled blood water [170] . Voxel-wise calibration 

was used to calculate absolute perfusion values (CBF in ml/100g/min) using the 

calibration image (M0) to calculate the scaling factor on a voxel-by-voxel basis, 

unlike the previous analysis of this dataset which used CSF as a reference region, and 

thus sensitivity correction was implicitly incorporated by the voxel-wise calibration, 

accounting for variable sensitivity of the radiofrequency receive head coil being 

used. Assumptions included a tissue T1 value of 1300 ms, an arterial blood T1 value 

of 1650 ms, and a blood-brain partition coefficient of 0.9. The labelling efficiency 

was set at 0.85 [1] . Slice timing effects were corrected by using a PLD of 1800 ms 

increasing for more superior slices with the slice delay of 30 ms for each. Partial 

volume effect correction (PVEc) was performed by BASIL [109]  in OXASL using 

PV estimates supplied from FAST (volumetric pipeline) or Toblerone (surface-based 

pipeline) in the volumetric space. In the surface-based pipeline, (non-PVEc and 

PVEc) CBF maps were then projected onto the cortical surface. Finally, regional 

analysis was carried out for CBF maps in the native space in the volumetric pipeline. 

A threshold of 80% grey matter partial volume was used to define "pure" grey matter, 

where the mean GM CBF was calculated for the non-PVEc data. For PVEc data, the 

mean GM CBF was calculated and averaged across all voxels within the GM mask in 

which there was GM tissue. Examples of processed CBF maps in volumetric space 

were shown in Figure 3.2.3. Notably, zero-perfusion vertices were excluded and only 

non-zero values were calculated for the global and parcels. 
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Figure 3.2.3 An example of processed CBF maps (in the native space) without PVEc (top) and with 

PVEc (bottom) from the volumetric pipeline. The planes are (from left to right):sagittal, coronal, and 

axial. 

 

3.2.3.4 Mapping pCASL onto cortical Surface 

To enable surface-based analyses, this study followed the processing procedure from 

the HCP fMRI Surface pipeline [155] . Firstly, non-PVEc and PVEc CBF maps in 

MNI volume space were mapped onto the midthickness surface in native mesh using 

the ribbon-constrained (RC) algorithm from the HCP workbench command (-

volume-to-surface-mapping). Weighted partial volume maps were input to the 

method to better distinguish the contribution of voxels partially inside or outside the 

grey matter ribbon. Ultimately, the cortical CBF maps was resampled onto 

32k_fs_LR mesh. The non-PVEc and PVEc ASL images from a participant projected 
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onto midthickness surfaces on 32k_fs_LR mesh in MNI volume space is shown in 

Figure 3.2.4.  

 

Figure 3.2.4 The same example of processed CBF maps (on to the 32k_fs_LR cortical midthickness 

surface) without PVEc (top) and with PVEc (bottom) from the surface-based pipeline.  

 

3.2.4 Statistical analysis 

Variations in CBF with age and sex were modelled using linear regression with 

ordinary least squares using python (version 3.11.8). Age was integrated into the 

models as a continuous variable, with sex serving as a covariate. Additionally, the 

models took into account potential interactions between age and sex. Statistical 

significance was set at p < 0.05. Notably, multiple comparisons were not corrected to 

remain the effects of ROIs as real as possible. In volumetric analysis, linear 

regressions were built for the whole brain grey matter and for ROIs derived from 

cerebral white matter, vascular territories [6] and the brain atlas including 18 regions 

(see Figure 3.2.5) used in UK Biobank imaging study neuroimaging analysis pipeline 

[171] . In surface-based analysis, models were calculated for the whole cortex and 

bilateral 33 cortical parcels from Desikan-Killiany atlas [172] . Normative reference 

values of non-PVEc and PVEc mean grey matter CBF are reported for both males 

and females at five-year intervals between the ages of 54 and 84, across the 5th, 10th, 

25th, 50th, 75th, 90th, and 95th percentiles. 
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Figure 3.2.5 Atlases and ROIs used in volumetric analysis (in the standard space). 

 (a) left and right cerebral white matter; (b) vascular territories (Right Internal Carotid Artery 

Territory (RICA), Left Internal Carotid Artery Territory (LICA) and Vertebrobasilar Arteries territory 

(VBA); (c) 18 ROIs, used in UK Biobank : Caudate, Cerebellum, Frontal Lobe, Insula, Occipital 

Lobe, Parietal Lobe, Putamen, Temporal Lobe, Thalamus. 

 

3.3 Results 

423 subjects were successfully processed in this study. For each subject, we obtained 

mean and regional CBF values in volumetric regions and cortical parcels from non-

PVEc and PVEc CBF maps. 

 

3.3.1 Volumetric results  

3.3.1.1 Effect of age on global CBF  

Age-related GM CBF changes classified by sex and with/without PVEc are presented 

in Figure 3.3.1. For non-PVEc ASL data, mean GM CBF in the brain was 40.66 ± 8.5 

ml/100 g/min; range: [14.98– 70.97 ml/100 g/min]. GM CBF decreased by 0.17 

ml/100 g/min for each year of aging (p<0.05) and was on average 3.5 ml/100 g/min 

higher in females (p<0.01). In males, the decrease in GM CBF with age was 

significant (p<0.05) and was equivalent to a decrease of 17.1% across the age range 

tested from 41.21 ml/100 g/min in the youngest (54 years) to 36.08 ml/100g/min in 
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the oldest (84 years). However, the decline in GM CBF with age in females was not 

significant. 

After PVEc, the mean global GM CBF in the brain was 48.56 ± 9.8 ml/100 g/min; 

range: [19.28– 82.6 ml/100 g/min]. GM CBF decreased by 0.18 ml/100 g/min for 

each year of aging (p<0.05) and was 3.8 ml/100 g/min higher in females (p<0.05). In 

males, the decrease in GM CBF with age was significant (p<0.05) and was 

equivalent to a decrease of 19.6% across the tested age range from 49.32 ml/100 

g/min to 43.43 ml/100g/min. No significant variation was observed in females.  

 

Figure 3.3.1 Age-related GM CBF changes by sex and with/without PVEc.  

Top row non-PVEc results, and bottom row PVEc results. The age-related normative values for GM 

CBF are displayed across the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles from low to high. 

The decreasing trends were significant in males but not in females. 

 

3.3.1.2 Effect of age on regional CBF  

Age-related CBF variations in volumetric ROIs from non-PVEc and PVEc data were 

given in Table 3.3.1. Slopes of significance were marked with asterisks. In most 
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significant regions, CBF exhibited a decreasing trend, but an increase was only found 

in the left putamen in PVEc data. 

 

 

Table 3.3.1 Age-related CBF variations in ROIs from the volumetric pipeline for non-PVEc and PVEc 

ASL. 

Slope Unit: ml/100g/min per year; CBF GM Unit: ml/100g/min; Sex difference(male-female) Unit: 

ml/100g/min; P < 0.01: **; P < 0.05: *. 

 

3.3.2 Surface-based results  

3.3.2.1 Effect of age on global cortical CBF  

For non-PVEc CBF, the mean cortical GM CBF was 35.60 ± 7.34 ml/100 g/min; 

range: [19.1-47.5 ml/100 g/min]. GM CBF decreased by 0.22 ml/100 g/min for each 

year of aging (p < 0.01) and was on average 3.44 ml/100 g/min higher in females 

(p<0.01). For PVEc ASL data, mean cortical GM CBF was 67.09 ± 13.42 ml/100 

g/min; range: [27.1-89.4 ml/100 g/min]. GM CBF decreased by 0.05 ml/100 g/min 

for each year of aging (p>0.1) and was on average 3.67 ml/100 g/min higher in 

females (p<0.01).  

 

ROI Slope GM CBF Sex Difference Slope GM CBF Sex Difference

LICA -0.12* 36.56 -4.25 -0.05 82.53 -4.4

RICA -0.16** 40.28 -3.47 -0.17 83.97 -4.07

VBA -0.09 40.18 -3.31 0.05 65.45 -3.71

Left Cerebral White Matter -0.05 20.59 -2.5 -0.32** 63.8 -3.18

Right Cerebral White Matter -0.07* 19.96 -2.38 -0.39** 62.57 -3

Left Caudate -0.31** 24.17 -3.97 0.09 52.4 -3.23

Left Cerebellum -0.06 31.35 -3.38 0.12 51.85 -2.92

Left Frontal Lobe -0.07 37.04 -2.96 -0.11 86.02 -4.79

Left Insula -0.18** 36.63 -2.32 -0.23* 65.1 -1.96

Left Occipital Lobe -0.09 35.62 -3.88 0.13 72.69 -3.67

Left Parietal Lobe -0.12* 36.15 -3.59 -0.08 89.02 -5.71

Left Putamen 0.09* 36.49 -1.57 0.24* 64.93 -0.5

Left Temporal Lobe -0.08 32.85 -3.03 0.03 59.84 -3.32

Left Thalamus -0.03 34.94 -4.27 0 82.29 -7.95

Right Caudate -0.34** 23.55 -4.12 0.08 51.55 -3.45

Right Cerebellum -0.06 31.18 -3.53 0.08 51.98 -3.23

Right Frontal Lobe -0.12* 36.79 -2.95 -0.23 85.6 -4.6

Right Insula -0.22** 35.89 -2.41 -0.30* 65.16 -2.46

Right Occipital Lobe -0.1 36.56 -4.14 0.05 76.89 -4.75

Right Parietal Lobe -0.13* 36.64 -3.38 -0.21 93.36 -5.44

Right Putamen 0.02 36.22 -1.57 0.1 65.66 0.33

Right Temporal Lobe -0.1* 32.77 -2.61 -0.04 62.8 -2.45

Right Thalamus -0.03 34.52 -4.29 0.06 81.52 -8.49

Non-PVEc PVEc 
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3.3.2.2 Effect of age on regional cortical CBF  

Table 3.3.2 shows regional CBF GM variations with age of non-PVEc and PVEc 

data in cortical bilateral parcels from the Desikan-Killiany atlas before and after 

PVEc over all subjects. Before PVEc, parcels with significant GM CBF variations all 

exhibited decreases with age. After PVEc, the decreasing trend of GM CBF with age 

was no longer statistically significant in most parcels. Only seven parcels (caudal 

anterior cingulate, caudal middle frontal, pars opercularis, rostral anterior cingulate, 

superior frontal, superior parietal, and insula) still exhibited significant reduction 

with age, while significantly increasing CBF with age was found in the banks 

superior temporal, fusiform, and inferior temporal, regions.  

Table 3.3.2 The cortical GM CBF variations with age with and without PVEc in Desikan-Killiany 

atlas over all subjects.  

 

Slope Unit: ml/100g/min per year; CBF GM Unit: ml/100g/min; Sex difference(male-female) Unit: 

ml/100g/min; P < 0.01: **; P < 0.05: *. 

 

ROI Slope GM CBF Sex Difference Slope GM CBF Sex Difference

Banks superior temporal sulcus -0.17** 42.07 -4.14 0.32** 77.88 -1.08

Caudal anterior-cingulate cortex -0.46** 29.93 -3.14 -0.3** 65.53 -2.74

Caudal middle frontal gyrus -0.26** 44.38 -4.5 -0.21* 87.99 -5.56

Cuneus cortex -0.24** 42.55 -4.95 0.1 74.26 -5.21

Entorhinal cortex -0.06 20.11 -1.73 -0.04 36.7 -5.08

Fusiform gyrus -0.06 27.18 -5.52 0.14* 53.33 -10.46

Inferior parietal cortex -0.31** 43.1 -4.38 0.08 81.37 -1.23

Inferior temporal gyrus -0.07 23.44 -4.66 0.12* 44.64 -5.47

Insula -0.28** 36.01 -2.6 -0.29** 59.5 -2.75

Isthmus-cingulate cortex -0.29** 37.8 -3.29 0 80.83 -7.53

Lateral occipital cortex -0.25** 32.14 -6.65 -0.1 64.45 -7.77

Lateral orbital frontal cortex -0.07* 27.14 -2.16 0.02 46.28 -2.71

Lingual gyrus -0.12** 35.48 -5.05 0.08 68.74 -11.37

Medial orbital frontal cortex -0.19** 29.08 -2.56 -0.08 44.18 -2.67

Middle temporal gyrus -0.14** 37.19 -3.81 0.12 62.72 -2.92

Paracentral lobule -0.16** 42.45 -3.24 0.07 81.99 -3.31

Parahippocampal gyrus -0.02 28.06 -4.11 0.11 52.79 -8.05

Pars opercularis -0.28** 41.68 -2.98 -0.16* 74.12 -2.95

Pars orbitalis -0.06 23.41 -0.59 0.09 45.83 -0.91

Pars triangularis -0.24** 38.4 -2.37 -0.07 66.17 -2.57

Pericalcarine cortex -0.17** 41 -4.46 0.07 74.82 -4.82

Postcentral gyrus -0.2** 42.45 -3.35 0 83.53 -3.66

Posterior-cingulate cortex -0.49** 35.6 -2.25 -0.13 78.96 -2.68

Precentral gyrus -0.17** 42.48 -2.75 0 85.72 -2.41

Precuneus cortex -0.28** 42.62 -3.89 -0.01 77.61 -4.38

Rostral anterior cingulate cortex -0.43** 39.39 -3.49 -0.21** 62.49 -4.09

Rostral middle frontal gyrus -0.17** 39.58 -3.21 -0.03 67.2 -2.35

Superior frontal gyrus -0.21** 39.44 -3.34 -0.18* 72.78 -4.18

Superior parietal cortex -0.33** 38.98 -5.32 -0.22* 82.33 -5.4

Superior temporal gyrus -0.2** 39.51 -2.56 0.07 69.61 -2.1

Supramarginal gyrus -0.27** 41.45 -3.11 -0.01 77.33 -2.24

Temporal pole -0.1* 19.23 -1.7 -0.02 31.21 -5.27

Transverse temporal cortex -0.3** 48.44 -1.21 0.08 91.03 0.7

Non-PVEc PVEc
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The significant slopes of CBF changes with age from surface-based results, before 

and after PVEc, were mapped on corresponding cortical parcels (in Figure 3.3.2) to 

ease the visualization of identified trends and for further investigation on the spatial 

continuity. 

 

 

Figure 3.3.2 The slopes of age-related CBF changes from the surface-based results mapped on to 

corresponding parcels of the cortex. Slope unit: ml/100 g/min per year. 

3.4 Discussion 

This study investigated the regional changes in perfusion with age and explored the 

influence of changes in anatomy with age on these observations by attempting to 

correct for variation in grey matter volume. To our knowledge, this is the first study 

using both volumetric and surface-based analyses with the correction of partial 

volume effects with ASL MRI perfusion in a large cohort.  

Perfusion images, especially ASL, are conventionally analysed using the volumetric 

method which is susceptible to partial volume effects. In this study, we mapped the 

ASL image onto the cortical surface to provide a better representation of cortical 

grey matter anatomy [162] 165]. Furthermore, we compared PVEc and non-PVEc 

results, following the suggestions from [4] , specifically to explore the role of PVEc 

and thus control for apparent changes in perfusion that are actually due to alterations 

in anatomy.  

The former study on the TILDA ASL data [163] reported a mean global GM CBF 

(36.5 ± 8.2 ml/100 g/min) and decreased by 0.2 ml/100 g/min per year without 

PVEc. In contrast, this study found a slightly higher mean GM CBF in the whole 

brain (40.66 ± 8.5ml/100 g/min) and a lower CBF decreasing slope by 0.17 ml/100 

g/min per year before PVEc. The reason for the observed differences could be largely 
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due to the different calibration methods employed, the use of voxel-wise calibration 

replacing the CSF reference region calibration in the former study, consistent with 

the recommendations of [1] . Pinto J et al. reported higher CBF values in voxel-wise 

calibration compared with CSF reference region using single-PLD pCASL data , 

which is consistent with our results [26] . Prior research has employed a range of 

perfusion imaging techniques to explore normative non-PVEc GM CBF values for 

different age groups. A study by Jefferson et al., following a similar protocol to this, 

reported mean whole brain CBF values of 37.3 ± 7.1 ml/100 g/min for 270 adults 

with an average age of 73 ± 7 years [173] . In a smaller study with different age 

groups using 3T pASL-MRI, Chen et al. reported higher mean cortical CBF values of 

52.6 ± 9.3, 52 ± 10.7, and 42.7 ± 8.8 ml/100 g/min in young, middle-aged, and older 

groups respectively [150] . Biagi L, et al., using continuous ASL found a mean GM 

CBF 58.4 ml/ 100 g/minute for the 21 adults (mean age 40 ±15 years) [174] . After 

PVEc, mean GM CBF was found to be higher compared to non-PVEc GM CBF 

which was consistent with previous comparisons with and without PVEc [175] . 

There are few existing studies reported global perfusion with PVEc. For instance, a 

study by Meltzer CC et al. reported mean cortical CBF using PET for younger (62 ± 

10 ml/100g/min) and older (62 ± 10 ml/100g/min) groups with PVEc, which was 

close to our results despite the use of a different perfusion technique [176] . Preibisch 

et al. using pASL MRI reported global GM CBF values 40.9 ± 5.5 ml/100g/min and 

42.0 ± 8.6 ml/100g/min for 19 young and 25 older adults respectively with 

PVEc[45] . 

We found global decrease of GM CBF with age before PVEc in both volumetric and 

surface-based analysis, and the slopes were not statistically different when evaluated 

by t-test. After PVEc, we found a greater decline of GM CBF with aging in 

volumetric analysis, although the slope was not statistically significantly different 

from that found before PVEc. Since post PVEc GM perfusion values were larger 

than pre-correction, the greater slope observed might simply be due to this, hence we 

also calculated the slope scaled by the mean GM CBF before and after PVEc, and we 

found the former was bigger than the latter (ratio between them 1.11). The relative 

reduction in the scaled slope values would be consistent with PVEc removing a 

component of apparent perfusion reduction with age that is associated with partial 
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volume effects and changes in brain structure. These results would tend to support 

the view that there is a genuine decrease in perfusion in GM with age [150] -[152] .  

After PVEc, the surface-based analysis indicated a negligible change in CBF with 

aging: a small decreasing slope was observed, but this was not statistically 

significant. This potentially contradicts the volumetric results. However, it might be a 

result of the current acquisition and analysis employed in this case, potentially 

limiting the generalizability of these findings to studies using more typical imaging 

resolutions. For example, the pCASL acquisition has a relatively large inter-slice gap 

of 1 mm, which may lead to undersampling of tissues and thus exacerbate PVE, as 

inter-slice gap may reduce the accuracy of registration, where anatomical structures 

might be mismatched between the high-resolution structural images and the lower-

resolution CBF images, resulting in misestimation of tissue types within voxels. Thus 

ASL data with higher resolution and partial volume correction optimised for surface 

analysis would ideally be adopted in future work to examine this [140] . 

Regarding regional age-related GM CBF variations in our study, in the volumetric 

analysis, we found regional GM CBF reductions with age in most ROIs before 

PVEc, in some ROIs this was no longer significant after PVEc. In surface-based 

analyses, the regional cortical GM CBF values were found to decrease with age 

before PVEc. After PVEc, seven parcels remain a decreasing trend with three parcels 

showing an increase in perfusion. Previous studies have also investigated regional 

CBF changes with age with and without PVEc [150] ,[178] -[181] . For example, 

Parkes et al. observed that age-related changes in grey matter without PVE correction 

were predominantly localized in the frontal cortex using CASL MRI [181] . Martin et 

al. found that non-PVEc CBF values decreased with age in several regions, including 

the cingulate, parahippocampal, superior temporal, medial frontal, and posterior 

parietal cortices bilaterally, as well as in the left insular and left posterior prefrontal 

cortices [182] . Lee et al. identified both decreased and increased regional non-PVEc 

CBF values, with the most common regions for decreased perfusion being the 

precuneus, superior temporal, and orbitofrontal, and for increased perfusion, the 

caudate, posterior cingulate, anterior cingulate, and amygdala [46] . Parkes et al. 

detected age-related non-PVEc GM CBF reduction in the anterolateral prefrontal 

cortex and in areas along the lateral sulcus and the lateral ventricle, bilaterally [181] . 

Zhang et al. observed that CBF without PVEc using pCASL demonstrated decreases 
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with age in the frontal and parietal regions and the cerebellum, alongside increases in 

the temporal and occipital areas [148] . Preibisch C et al. using pASL MRI reported 

age-related CBF decreases without PVEc in frontal, parietal, insular, cingulate, 

parahippocampal and caudate. Few prior studies reported cortical GM CBF with 

PVEc. For instance, Preibisch C et al. reported decreases in GM CBF after PVEc in 

the parietal cortex, cuneus and caudate [45] . Furthermore, Preibisch C et al. also 

observed increases of CBF after PVEc, similar to ours, in the lateral and medial 

temporal lobe such as hippocampus, the calcarine gyrus and the thalamus. 

Previous studies have also highlighted a dissociation between regional CBF and 

structural alterations specific to normal aging. Moreover, they suggest that other 

factors might influence age-related perfusion changes. For instance, Chen JJ et al. 

reported that regions experiencing CBF reduction are largely distinct from those 

most affected by GM atrophy, indicating that hemodynamic and anatomical changes 

may differentially contribute to age-related cognitive decline [150] . In the study by 

Parkes et al., they suggest that, without significant medical conditions, healthy aging 

might not affect resting cortical perfusion [181] . Other research indicates that the 

observed reduction in perfusion could be attributed to progressive neuronal loss, 

reduced neuronal activity, and a decline in the synaptic density of brain neurons 

[183] ,[184] . 

We also investigated sex differences in age-related CBF changes and found females 

exhibited higher global GM CBF values compared to males before and after PVEc 

(p<0.01), which was consistent with some other studies [185] ,[186] . Furthermore, 

previous studies have investigated the rate of global CBF decline between males and 

females with respect to normal aging [186] ,[187] . However, we cannot reach a 

related conclusion, since the variations of global CBF with age in females was not 

statistically significant.  

One limitation regarding to our pCASL MRI protocol is that it applied the same 

labelling duration and delay for all participants, effectively presuming negligible 

impact from possible spatial variations in arterial transit time (ATT)—the time it 

takes for the arterial blood bolus to travel from the labelling plane to the imaging 

voxels. However, ATT can vary regionally between individuals due to different age 

groups, health conditions, and populations [1] . A PLD of 1800 ms was considered 
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the optimal choice among our cohort with a mean age of less than 70 years to obtain 

adequate tissue signals and to minimize intravascular signals [188] . Consequently, 

this could lead to potential underestimation or overestimation of CBF measurements 

across the cohort of a wide age range (54 to 84) in this study. The 8 mm slice 

thickness of ASL acquisitions was substantially large for attempting surface 

mapping, and this may lead to differences in representations from both pipelines. 

Furthermore, small patches of zero perfusion of CBF map were spotted on the cortex 

(for example, Figure 3.2.3). The reason may be that the cortex of CBF map was not 

perfectly aligned with the template surface since registrations of CBF map (from 

native space to structural space and finally to the standard space) were conducted 

using volumetric methods (i.e. linear and non-linear registrations), or the deficiency 

of CBF map itself. In addition, extremely high perfusion of some vertices was found 

on the cortex which may be related to macrovascular contamination that cannot be 

corrected for in the single-PLD ASL data. It is worth noting that cortical perfusion 

could fluctuate slightly if resampled on a cortical mesh of different resolutions due to 

interpolation, and thus we made efforts to avoid redundant registration/smoothing as 

much as possible. 

For ROI analyses, the influences of age and sex on CBF were investigated using 

linear regression in 35 volumetric ROIs and on 33 bilateral cortical parcels. The 

threshold for statistical significance level was p < 0.05 without the correction of 

multiple comparisons to avoid missing significant results, however, this will increase 

the risk of Type I errors and false discovery rate given the number of regions 

reported and different analysis approaches adopted in this study. Since this study was 

exploratory, we have not implemented multiple comparison corrections and have 

simply reported all results as a reference for other work. Future studies will be 

required with focused hypotheses to draw firm conclusions about changes in specific 

brain regions. 

 

3.5 Conclusion 

In this chapter, partial volume effects were corrected on a large elder pCASL data so 

far with the proposed surface-based pipeline as well as a volumetric pipeline. These 

processing pipelines were expected to serve as a template for subsequent ASL data 
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processing. Age-related CBF changes with and without PVEc were demonstrated 

using the surface-based and the volumetric representation in cortical parcels and 

volumetric ROIs, respectively. 

Before PVE correction, a global decrease in GM CBF with age was observed. 

However, after applying PVEc, the perfusion variations became more regionally 

specific. While these findings suggest regional changes in CBF linked to aging, 

further studies with focused hypotheses are necessary to draw definitive conclusions 

about specific brain regions and to address other limitations identified in this study. 

Based on the results in this chapter, the changes in CBF (both non-PVEc and PVEc) 

in regions might be useful as metrics for assessing the quality of CBF maps. 

In the next chapter, we will explore the use of CBF values in global and selected 

regions as quality metrics for CBF maps, verifying their effectiveness through 

machine learning models. Additionally, other ASL-specific image quality metrics 

will be investigated for their potential to evaluate the quality of CBF maps, aiming to 

standardize QC protocols for ASL using these IQMs. 
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4 Quality Control in ASL MRI 

4.1 Introduction 

Arterial Spin Labelling (ASL) MRI is a powerful non-invasive imaging technique 

that has gained prominence in the study of brain function and the detection of neural 

disorders [189] [193] . ASL uniquely enables the quantification of cerebral blood 

flow (CBF) without the need for exogenous contrast agents by magnetically labelling 

the blood water as it flows into the brain. This method offers several advantages, 

including safety for repeated measurements, the ability to capture dynamic changes 

in brain activity, and suitability for various populations. ASL has been widely applied 

in neuroscience research for understanding brain physiology, assessing cognitive 

functions, and diagnosing conditions such as stroke, Alzheimer's disease, and other 

neurodegenerative disorders [194] . Abnormal regional brain perfusion can be used 

as the biomarker of underlying neural pathologies which makes ASL a critical tool 

for early detection and monitoring of brain disorders. 

However, like other MRI techniques, ASL MRI faces challenges such as motion 

sensitivity and susceptibility to artifacts, which can affect image quality and lead to 

inaccuracies in CBF measurements. To address these issues and facilitate the 

translation of ASL to clinical application, significant advancements have been made 

[194] , including improvements in image quality [195] , reduced acquisition times 

[196] , and enhanced reliability and reproducibility across different centers and 

scanners . Standardized acquisition methods [1]  and image processing techniques 

have also been developed, alongside specialized software and tools like BASIL 

[109] , ExploreASL [85] , ASLPrep [86] , ASL-MRICloud [197] , and OXASL 

[198] . Most current ASL studies [6] [163] ,[242] now rely on these automated pre-

processing pipelines to ensure efficiency and reproducibility. These pipelines 

typically involve steps including motion correction, distortion correction, 

registration, and quantification. However, standardized QC procedures were still 

absent across these tools. QC is the process identifying and excluding outliers in the 

data, helping to distinguish genuine perfusion changes from artifacts or low-quality 
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images introduced during acquisition and processing, thereby ensuring the reliability 

of the results before any analysis is conducted.  

Furthermore, one crucial step in ASL pre-processing is registration [68] ,[69] , which 

involves aligning ASL images with anatomical reference images and, subsequently, 

with the standard template images. This alignment is essential for accurate 

measurement of grey matter perfusion, as it requires the grey matter partial volume 

estimate from anatomical images to be precisely aligned with the ASL data. Proper 

registration not only improves the accuracy of perfusion measurements but also 

enhances other pre-processing and analysis steps, such as motion correction, 

distortion correction, region-of-interest (ROI) mapping, and group analysis across 

subjects and sessions.  

Registration in ASL imaging is often challenging due to the low resolution of ASL 

images, especially when dealing with variations in brain tissue characteristics, 

different fields of view, brain locations, orientations, and anatomical features. 

Previous works [199] -[203] have proposed different algorithms for registration to 

minimize potential errors to make more accurate registrations. However, the quality 

of registration is hard to assess, as there is no ground truth or gold standard of a 

perfect registration. In a study by [104] , the quality of registration was manually 

scored and categorized by experts, providing a subjective assessment of how well the 

registration had been performed. While this approach offers valuable insights, it is 

time-consuming and prone to subjectivity. A number of metrics have been used for 

evaluating registration quality [204] -[206] , however, they have their own 

shortcomings. For example, anatomical landmarks and contour-based metrics utilize 

the alignment of corresponding anatomical structures after registration, which 

depends on the annotation of anatomical structures or definition of accurate 

segmentation [206] ,[207] ; consistency-based metrics expect the concatenation of 

transformation matrices of registration in both directions to be the identity matrix. 

This method does not measure registration accuracy but consistency and cannot infer 

the error [208] . Some studies have employed deep learning to estimate the 

registration quality [209] . These methods require a large amount of data to train the 

models, however, obtaining such extensive datasets is challenging for most MRI 

studies. In response to these challenges, similarity-based metrics have become 

popular for evaluating registration quality. These metrics assess how closely the 
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registered image matches the reference image using quantitative measures such as 

mutual information, cross-correlation, or intensity differences. While useful, these 

metrics can be sensitive to noise and low-intensity contrast, common challenges in 

ASL imaging [210] . 

The consensus paper [1] outlined a manual approach for visual QC of ASL images, 

focusing on specific issues such as low labelling efficiency, global grey matter CBF 

values, and various artifacts. While this method addresses essential quality checks, it 

is labor-intensive, subjective, and highly dependent on the expertise of the raters, 

leading to potential inconsistencies and inefficiencies. This approach becomes 

particularly challenging with large-scale datasets like those from the UK Biobank or 

the Human Connectome Project [171] ,[231] , which include thousands of scans, 

making manual visual examination impractical. A later study by [104] attempted to 

standardize the QC process by introducing a visual scoring system for ASL data. This 

system evaluated CBF maps along with ancillary images like aBV and ATT maps, 

using a dual approach: contrast-based QC for anatomical structure contrast and 

artifact-based QC for common visual errors. Each aspect was scored on a scale from 

0 to 2, with higher scores indicating better image quality. Although this method 

provided examples for different severity levels to guide raters, it still relied on 

manual scoring. While more structured than the approach outlined in the consensus 

paper, this method also faces challenges in handling large datasets. 

Given the challenges associated with ASL data, automated QC tools are increasingly 

desired to reduce the burden of manual QC, minimize subjectivity, and enhance 

consistency across large datasets. In other MRI modalities, automated QC tools have 

been successfully integrated into workflows, such as those used in the UK Biobank 

[171]  and MRIQC [83]  for T1-weighted images, FSL EDDY [190] for dMRI, and 

FMRIPrep [211] and AFNI [84] for fMRI images. These tools effectively address 

common MRI quality issues like motion artifacts, signal dropouts, and geometric 

distortions. However, they are typically not specifically designed to handle the 

unique challenges and requirements for ASL MRI. Recently, ASL tools like 

ExploreASL [85]  and ASLPrep [86] have been developed for ASL image processing 

and analysis, with integrated QC components. These tools generate QC reports that 

assist in the visual QC process, providing a more streamlined and standardized 

approach. However, their QC methods are dependent on the intermediate and final 
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outputs of their workflows, limiting their applicability to ASL data processed by 

other tools. OXASL [198] is a package designed for performing Bayesian analysis of 

ASL MRI data, serving as a mostly Python-based replacement for the BASIL FSL. 

Its efficiency, reliability, and ease of use have been validated by previous studies 

[212] [213] , while it lacks an automated QC function. 

Machine learning offers a promising alternative for ASL quality control regardless of 

both manual visual scoring and the limitations of individual QC metrics. Machine 

learning can incorporate multiple computed QC metrics, capturing the complex 

relationships between them, to make more informed decisions about the quality of 

data. Instead of relying on a single metric or subjective visual assessment, machine 

learning models can analyse a combination of metrics to identify outliers and assess 

the overall quality of the images. This approach not only reduces the subjectivity and 

labour involved in manual QC but also enhances consistency and accuracy across 

large datasets. This approach has already shown promise in other medical imaging 

modalities. For instance, machine learning models have been used to detect outliers 

and assess image quality in large datasets, such as those in the UK Biobank [171] . 

Although these applications have primarily focused on other types of MRI data, the 

principles can be adapted to ASL imaging, where machine learning could offer a 

more scalable and objective alternative to both visual scoring systems and traditional 

QC metrics. In studies using other modalities by [103] ,[171] ,[214] , machine 

learning has been successfully employed to predict and exclude outliers by 

integrating various quality metrics. Applying a similar approach to ASL data could 

help recognize patterns indicative of potential issues, thereby enabling the automated 

exclusion of problematic images. This would make the process more efficient, 

reliable, and scalable, especially in large-scale studies. 

In this chapter, we explored image quality metrics specifically for ASL MRI to 

facilitate QC on large datasets. These ASL QC metrics included signal quality 

metrics, perfusion quality metrics, and registration quality metrics. Additionally, 

interactive QC reports were generated following the similar structure of [190] : the 

group-level report presents the distribution of ASL QC metrics across the dataset, 

enabling the identification of abnormal values (potential outliers) through user-

defined thresholds, while the individual-level report details pre-processing results 

from OXASL to assist in troubleshooting suspicious images. Moreover, machine 
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learning was employed to assess the effectiveness of each proposed QC metric, 

ultimately leading to the development of an automated QC tool for ASL data using 

these ASL QC metrics. 

 

4.2 Theory 

4.2.1 Signal Quality Metrics 

MR images are inherently contaminated by background noise, arising from stochastic 

fluctuations in the imaging systems (such as thermal motion of electrons in the 

receiver coil) or the tissues being imaged (such as physiological fluctuations for 

fMRI) [216] ,217]. The MRI signal is commonly detected in quadrature using 

receiver coils, which records real and imaginary components. Each component is 

assumed to have zero-mean Gaussian noise, with independent white noise 

contamination. When computing the magnitude image, the noise follows a Rician 

distribution, rather than a Gaussian one, as it arises from the square root of the sum 

of squared real and imaginary components as complex numbers [217] . This results 

in a noise bias, particularly in low signal regions, where the noise bias becomes more 

prominent. This bias, often referred to as the noise floor, results in increased variance 

and systematic overestimation of low-intensity signals. Consequently, Rician noise 

can affect MRI data quality by reducing contrast, distorting quantitative 

measurements, and introducing bias in parameter estimates [218] . In ASL, where 

perfusion signals are inherently low, this noise-induced bias can significantly impact 

the estimation of signals from blood water and thus bias the CBF quantification. 

Moreover, ASL signals are highly susceptible to various factors such as blood flow, 

T1 relaxation times of blood and tissue, and the transit time of blood from the 

labelling plane to the imaging region [219] . Given these challenges, the 

measurement of ASL signals is a critical preliminary step in the quality control 

process, aiming to assess and ensure the reliability of the perfusion data. This section 

focuses on investigating signal quality metrics, providing a foundation for 

subsequent quality control measures. 
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4.2.1.1 Signal-to-noise Ratio 

SNR is a fundamental measure used to compare the level of the desired signal to the 

level of background noise, serving as the benchmark for evaluating the overall 

efficacy of the imaging process [220] . SNR is calculated on the perfusion-weighted 

images (that is the average of differences between label-control image pairs) by 

comparing the signal intensity from a region of interest, typically grey matter (GM), 

to the noise level, which can be referenced against white matter (WM), cerebrospinal 

fluid (CSF), or even air. A higher SNR generally indicates a clearer and more reliable 

image. However, a high SNR does not always correspond to the quality of the 

perfusion signal in ASL images. For example, an image with strong overall signal 

intensity (high SNR) may still have poor perfusion contrast due to issues like 

inadequate labelling or delayed blood arrival. SNR can be calculated using the 

following formula: 

𝑆𝑁𝑅 =
𝑆

𝜎𝑛𝑜𝑖𝑠𝑒
=

𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐺𝑀

𝑆𝐷𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 Equation 4.2.1 

where 𝑀𝑒𝑎𝑛 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐺𝑀 is defined as the mean intensity of grey matter, 

𝑆𝐷𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 uses the standard deviation of the intensities of other type of tissues 

(WM or CSF) or air.  

 

4.2.1.2 Temporal Signal-to-noise Ratio 

Temporal SNR (tSNR) extends the concept of SNR by incorporating the temporal 

dimension and evaluates the stability of the signal over time. In ASL, tSNR is 

calculated after motion correction using the ASL difference images, which are 

derived from the sequence of subtracted label-control image pairs. A high tSNR 

indicates that the signal remains consistent across multiple acquisitions, which is 

important to ASL that requires repeated acquisition of label-control image pairs. The 

tSNR can be influenced by factors such as motion artifacts and physiological noise.  

The tSNR is typically formulated as: 

𝑡𝑆𝑁𝑅 =
𝑆𝑡̅̅̅

𝜎𝑡
=

𝑀𝑒𝑎𝑛𝐺𝑀 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒

𝑆𝐷𝐺𝑀 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒
 Equation 4.2.2 

Where 𝑀𝑒𝑎𝑛𝐺𝑀 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒  and 𝑆𝐷𝐺𝑀 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒  are the mean and the standard deviation 

of the ASL difference images across time points within in the GM mask, respectively. 



 

86 

 

 

4.2.1.3 Contrast-to-noise Ratio 

Contrast-to-Noise Ratio (CNR) measures the difference in signal intensity between 

two tissue types, such as grey matter and white matter [221] , relative to the noise 

level. In ASL MRI, CNR is calculated using the ASL difference images, after motion 

correction, to obtain the contrast of perfusion signal by comparing the signals within 

GM masks and WM masks. A higher CNR suggests better differentiation between 

the two types of tissues, allowing better visualization of anatomical details. CNR is 

defined as: 

𝐶𝑁𝑅 =
∆𝑆

𝜎𝑛𝑜𝑖𝑠𝑒
=

𝑎𝑏𝑠(𝑆𝑠𝑖𝑔𝑛𝑎𝑙− 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝜎𝑛𝑜𝑖𝑠𝑒
  Equation 4.2.3 

In ASL, 𝑆𝑠𝑖𝑔𝑛𝑎𝑙 is the mean signal intensity in grey matter, 𝑆𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 is the mean 

signal intensity in background which can be either CSF or WM; 𝜎𝑛𝑜𝑖𝑠𝑒 is the 

standard deviation of signals in the background; abs is to calculate the absolute 

value. 

 

4.2.1.4 Temporal Contrast-to-noise Ratio 

Temporal Contrast-to-Noise Ratio (tCNR), similar to tSNR, measures the 

consistency of contrast over time, relative to the temporal noise, thereby quantifying 

dynamic changes in perfusion signals. This metric is particularly relevant in ASL 

MRI, where the perfusion signals are acquired across different time points. Temporal 

CNR helps in evaluating the reliability of perfusion contrast throughout the imaging 

session, ensuring that the detected differences in perfusion are not due to noise or 

temporal instability. However, tCNR is susceptible to motion artifacts or 

physiological noise. Temporal CNR can be calculated using the following formula: 

𝑡𝐶𝑁𝑅 =
∆𝑆𝑡̅̅ ̅̅ ̅

𝜎𝑡
=

𝑀𝑒𝑎𝑛𝐶𝑁𝑅 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒

𝑆𝐷𝐶𝑁𝑅 𝑜𝑣𝑒𝑟 𝑡𝑖𝑚𝑒
  Equation 4.2.4 

Where ∆𝑆𝑡̅̅ ̅̅ ̅ is the mean CNR of the ASL difference map; 𝜎𝑡 is the standard deviation 

of CNR values from the ASL difference map. 
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4.2.2 Perfusion Quality Metrics 

In the brain, GM is more sensitive to perfusion due to its higher metabolic activity, 

making it the primary tissue of interest for ASL. In this section, CBF, the quantitative 

perfusion measure, and its spatial distributions in the brain and specific ROIs were 

investigated as key indicators of perfusion quality in ASL data. 

 

4.2.2.1 Gray Matter Cerebral Blood Flow  

Gray matter contains the majority of neuronal cell bodies, axon terminals, and 

dendrites, all of which have a higher metabolic rate compared to white matter. 

Consequently, it is of primary interest for ASL MRI because this higher metabolic 

activity makes grey matter more sensitive to detecting changes in brain perfusion 

[222] . Furthermore, grey matter is involved in various critical brain functions, 

including sensory perception, memory, and decision-making. Accurate measurement 

of GM CBF can provide valuable insights into these cognitive and functional 

processes. 

The consensus paper [1] reported a general GM CBF range of 40-100 ml/min/100ml. 

Some studies [163] ,[186] reported a narrower range, suggesting a typical perfusion 

of 60 ml/100g/min in GM and 20 ml/100g/min in WM. Furthermore, the normative 

CBF values changing with age and sex were reported in studies [150] ,[163] ,[223] , 

which provide a better guide to detect outliers with abnormal GM CBF. These 

reference values are invaluable for detecting abnormalities and potential diseases by 

comparing individual GM CBF metrics against established baselines. Such 

comparisons are crucial for identifying deviations that could indicate pathological 

conditions. Therefore, GM CBF is not only a key indicator of brain health but also a 

critical metric for assessing the quality of ASL data. 

 

4.2.2.2 Spatial Coefficient of Variation  

The arterial transit time (ATT) is a common error source leading to artifacts in ASL 

imaging [51] . In clinical settings, diseases such as stroke, tumors, and vascular 

abnormalities can affect ATT. A short delay in this transit time hinders the complete 

delivery of labelled blood water, while a long delay leads to signal decay and thus 
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impairs SNR. Additionally, ATT varies between participants across different brain 

regions, and among various pathological tissues. Hence, ATT provides valuable 

insights into the vascular health and hemodynamics of the brain. 

Previous studies have found that the spatial distribution of ASL signals can be useful 

in inferring ATT differences across single-PLD CBF maps [225] -[228] . Specifically, 

if all ASL tracer is delivered to the tissue after the post-labelling delay (PLD), the 

ASL signal intensities will be spatially homogeneous within the tissue. Conversely, if 

the tracer is not fully delivered, the ASL signal intensities will vary markedly 

between the vascular and tissue regions (see Figure 4.2.1 from [228] ). Therefore, the 

spatial coefficient of variation (SpCoV) can be used as a proxy for ATT to assess the 

efficiency of ASL acquisition [228] . High SpCoV values suggest regions where the 

perfusion signal is unstable, potentially due to artifacts or other acquisition issues, 

thereby providing an indirect measure of ATT that is crucial for optimizing ASL MRI 

studies.  SpCoV for a ROI was defined as: 

𝑆𝑝𝐶𝑜𝑉 =
𝜎𝐶𝐵𝐹

𝜇𝐶𝐵𝐹
× 100%  Equation 4.2.5 

where 𝜎𝐶𝐵𝐹 is the standard deviation of CBF within the ROI and 𝜇𝐶𝐵𝐹 is the mean 

CBF within the same ROI. 
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Figure 4.2.1 CBF maps of different (low, intermediate, and high) spatial coefficient of variation from 

[228] . (a):  CBF maps; (b): histograms of voxel normalized frequency from CBF maps.  

 

4.2.2.3 Perfusion in Arterial Vascular territories and cerebral white matter 

Inefficient labelling is one of the most common artifacts in ASL, often resulting from 

factors such as vessel tortuosity or susceptibility variations (as discussed in Chapter 

2). This artifact typically manifests as decreased signals in specific arterial vascular 

territories of CBF maps, making it essential to monitor perfusion within these 

territories to identify and address potential issues. 

An arterial vascular territory atlas, as detailed in [6] and illustrated in Figure 3.2.5 

(b), includes the territories supplied by the left and right internal carotid arteries as 

well as the vertebrobasilar arteries. In normal ASL images, the CBF values across 

these vascular territories should be relatively similar, and significant deviations could 

indicate labelling inefficiencies or other artifacts. 

Furthermore, recent studies have shown that ASL can reliably measure white matter 

[171] perfusion when appropriate imaging settings are employed [229] , despite the 

lower SNR in white matter due to its lower blood flow and prolonged ATT compared 

to grey matter. The cerebral white matter regions were derived from the work  

(shown in Figure 3.2.5 (a)). Additionally, the ratio of CBF between grey matter and 

white matter has been reported to range from 1.6 to 4.6 [229] , may serve as a useful 

parameter for QC in ASL studies, as significant deviations from this range could 

indicate potential issues with image quality or data accuracy. Moreover, significant 

discrepancies in CBF between the left cerebral white matter (LCWM) and right 

cerebral white matter (RCWM) regions, CBF values falling outside the expected 

range, or an extreme perfusion ratio between GM and WM, can indicate potential 

issues with the ASL images.  

 

4.2.3 Registration Quality Metrics 

Assuming that registration is correctly performed for the majority of ASL CBF maps, 

which were aligned to the same reference image (i.e., the MNI template [70] ) 

through intermediate structural spaces, the degree of similarity between a registered 

ASL image and the reference image can serve as an indicator of registration quality. 
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Extremely low similarity values should be the primary focus, as they may indicate 

potential registration failures. In this section, metrics measuring the similarity 

between images are introduced to evaluate ASL registration quality based on the 

aforementioned assumption. 

 

Least Squares  

The least squares (LS) cost function is one of the simplest and most commonly used 

methods for image registration. It measures the similarity between two images by 

calculating the sum of the squared differences (SSD) between corresponding pixel or 

voxel intensities. Mathematically, it is expressed as: 

𝐿𝑆 = ∑ (𝐼𝐴𝑆𝐿(𝑖) − 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖))
2𝑛

𝑖=1                      Equation 4.2.6 

where 𝐼𝐴𝑆𝐿(𝑖) and 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖) represent the intensities of the ASL and template 

images, respectively, at the i-th voxel. The lower the LS value, the better the 

alignment between the two images. However, this method is sensitive to intensity 

variations, noise, and outliers, making it less robust for ASL MRI registration, 

especially in cases where image intensity differences do not strictly correspond to 

misregistration. 

 

Normalized Correlation  

Normalized Correlation (NC) is another metric used to assess the similarity between 

the registered ASL image and the template. Unlike LS, NC is less sensitive to global 

intensity differences between images. The NC between two images is calculated as: 

𝑁𝐶 =
∑ (𝐼𝐴𝑆𝐿(𝑖)−𝐼�̅�𝑆𝐿)(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖)−𝐼�̅�𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
𝑛
𝑖=1

√∑ (𝐼𝐴𝑆𝐿(𝑖)−𝐼�̅�𝑆𝐿)
𝑛
𝑖=1

2
∑ (𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖)−𝐼�̅�𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
𝑛
𝑖=1

2
                             Equation 4.2.7 

where 𝐼�̅�𝑆𝐿 and 𝐼�̅�𝑒𝑚𝑝𝑙𝑎𝑡𝑒 are the mean intensities of the ASL and template images, 

respectively. NC values range from -1 to 1, with 1 indicating perfect correlation (i.e., 

perfect alignment). NC is more robust than LS in handling global intensity shifts, but 

it may still struggle with significant intensity non-uniformities. 

 

Correlation Ratio  
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The Correlation Ratio (CR) is a more sophisticated metric that measures the 

functional relationship between the intensities of the registered ASL image and the 

template image. It accounts for non-linear intensity relationships, making it more 

robust in scenarios where the intensity distributions between the images differ. CR is 

defined as the ratio of the variance of the mean intensity values to the total variance 

of the intensity values: 

𝐶𝑅 =
∑ (𝐼𝐴𝑆𝐿(𝑖)−𝐼̅)(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖)−𝐼̅)
𝑛
𝑖=1

∑ (𝐼𝐴𝑆𝐿(𝑖)−𝐼̅)
𝑛
𝑖=1

2
(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖)−𝐼̅)

2
                               Equation 4.2.8 

where 𝐼𝐴𝑆𝐿(𝑖) and 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑖) represent the intensities of the ASL and template 

images, respectively, at the i-th voxel; 𝐼 ̅is the mean of ASL and template images. CR 

is effective in capturing complex intensity relationships, making it a valuable tool for 

evaluating registration quality when the intensity distributions between the ASL and 

template images are not linearly related. 

 

Mutual Information 

Mutual Information (MI) is frequently used in medical imaging for multi-modal 

image registration, where it helps to align images from different imaging modalities 

by maximizing the shared information between them. ASL data is often compared 

with structural MRI scans (such as T1-weighted images) for registration purposes. 

Given the different contrasts between ASL images and structural MRI, traditional 

methods like sum of squared differences might not be effective. Mutual Information, 

however, can align these multi-modal images by focusing on how information is 

shared between them, regardless of their differing contrast properties. 

The MI can be formulated as: 

𝑀𝐼 = ∑ ∑ 𝑃(𝐼𝐴𝑆𝐿(𝑖), 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑗))𝑙𝑜𝑔
𝑃(𝐼𝐴𝑆𝐿(𝑖),𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑗))

𝑃(𝐼𝐴𝑆𝐿(𝑖))𝑃(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑗))

𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1      Equation 4.2.9 

where 𝑃(𝐼𝐴𝑆𝐿(𝑖), 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑗)) is the joint probability distribution of the pixel 

intensities in the ASL and template images, and 𝑃(𝐼𝐴𝑆𝐿(𝑖)) and 𝑃(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒(𝑗)) are 

their marginal distributions. Higher MI values indicate greater similarity, suggesting 

better registration. MI is effective in handling different imaging modalities but may 

be computationally intensive. 
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Normalized Mutual Information 

Normalized Mutual Information (NMI) is an extension of MI that addresses some of 

its limitations by normalizing the mutual information score, making it less sensitive 

to changes in image overlap: 

𝑁𝑀𝐼 =
𝐻(𝐼𝐴𝑆𝐿)+𝐻(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒)

𝐻(𝐼𝐴𝑆𝐿,𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
 Equation 4.2.10 

where 𝐻(𝐼𝐴𝑆𝐿) and 𝐻(𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒) are the entropies of the ASL and template images, 

and 𝐻(𝐼𝐴𝑆𝐿, 𝐼𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒) is their joint entropy. NMI ranges from 0 to 2, with higher 

values indicating better alignment. NMI is particularly useful for comparing images 

of different sizes or in situations where the overlap between images is variable. 

 

4.3 Experiments  

4.3.1 Dataset  

This study used the same ASL dataset as described in Chapter 3, namely The Irish 

Longitudinal Study on Ageing (TILDA) [166] . Chapter 3 focused on investigating 

normative CBF decline in an elderly population, excluding outliers and artifacts. In 

contrast, the current study aims to identify outliers, retaining all available subjects for 

analysis. The non-PVEc CBF maps in the native space, processed with the 

volumetric ASL pipeline in Chapter 3, were employed for quality control in this 

chapter, encompassing a total of 474 subjects.  

The CBF maps in the native space were reviewed for quality control purposes by two 

individuals from the prior study [163] , who identified and labelled artifacts. A total 

of 30 subjects were marked as outliers based on the types of artifacts present (see 

Figure 4.3.1 for examples). The artifact types included poor labelling efficiency (27 

subjects), low contrast (1 subject), motion (7 subjects), poor signal (1 subject), and 
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delayed arrival (6 subjects), with some outliers exhibiting multiple artifact types. 

 

Figure 4.3.1 Normal (left) and outliers (right 4) examples in the ASL native space from the dataset.  

 

4.3.2 Methods 

Image quality metrics  

Image quality metrics were calculated for each subject in the dataset, with details in 

Table 4.3.1. For the calculation of signal quality metrics, SNR and CNR were 

calculated based on the perfusion-weighted images (averaged ASL difference 

images), and tSNR and tCNR were computed based on the ASL difference (control-

label) images. The noise region used eroded CSF masks from segmentation by FAST. 

To be detailed, SNR was calculated by comparing the GM signals (extracted from 

within the GM mask) of the perfusion-weighted images against these noise (CSF) 

signals. CNR was determined by comparing the signal between GM and WM to 

noise (CSF) signal within the perfusion-weighted images. Temporal metrics, 

including tSNR and tCNR, were computed using the SNR and CNR values from 

each ASL difference image, along with their standard deviations across the ASL 

difference images. 

The perfusion quality metrics, including CBF values, along with the SpCoV, were 

calculated based on the CBF maps, with regions of grey matter, white matter, 

cerebral white matter, and arterial vascular territories for both non-PVEc and PVEc 

ASL data. Additional metrics included the CBF ratios between GM and WM, the 

comparison of CBF between the left and right carotid arteries, and the CBF ratio 

between the left and right cerebral white matter. CBF values falling outside the 

reasonable range, or significant discrepancies of CBF ratios can indicate potential 

issues with the ASL images.  
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The quality of image registration was evaluated by similarity metrics between the 

registered CBF images (aligned to the structural space and then to the standard 

space) and the MNI152 standard template [70] . These metrics included Least 

Squares (LS), Normalized Correlation (NC), Mutual Information (MI), Normalized 

Mutual Information (NMI), and Correlation Ratio (CR). Notably, these metrics were 

computed as a cost function of registration using FLIRT FSL post-registration, and 

thus this would not influence the effectiveness of registration. 

Table 4.3.1 The proposed features used to evaluate ASL data quality. 

Feature Name Description 

Signal quality metrics   

SNR (Mean signal intensity in GM)/(Mean signal intensity in CSF) 

from perfusion-weighted image 

tSNR (Mean signal intensities in GM)/(temporal standard deviation) 

from the ASL difference (control-label) images 

CNR (Mean signal intenty in GM - Mean signal intensity in 

WM)/(Mean signal intensity in CSF) from perfusion-weighted 

image  

tCNR (Mean CNR)/(temporal standard deviation of CNR) from the ASL 

difference (control-label) images 

Perfusion Quality 

Metrics  

CBF=Cerebral blood Flow; PVEc=Partial Volume Effects 

correction;SpCov=Spatial Coefficient of variation=(mean 

CBF/standard deviation of CBF) within a ROI. 

NonPVC GM CBF CBF in gray matter from the non-PVEc CBF map 

NonPVC WM CBF CBF in white matter from the non-PVEc CBF map 

NonPVC RCWM CBF CBF in right cerebral white matter from the non-PVEc CBF map 

NonPVC LCWM CBF CBF in Left cerebral white matter from the non-PVEc CBF map 

NonPVC VBA CBF CBF in vertebrobasilar artery from the non-PVEc CBF map 

NonPVC RICA CBF CBF in right internal carotid artery from the non-PVEc CBF map 

NonPVC LICA CBF CBF in left internal carotid artery from the non-PVEc CBF map 

NonPVC GM SpCov SpCov in gray matter from the non-PVEc CBF map 

NonPVC WM SpCov SpCov in white matter from the non-PVEc CBF map 

NonPVC RCWM SpCov SpCov in right cerebral white matter from the non-PVEc CBF 

map 

NonPVC LCWM SpCov SpCov in Left cerebral white matter from the non-PVEc CBF map 

NonPVC VBA SpCov SpCov in vertebrobasilar artery from the non-PVEc CBF map 

NonPVC RICA SpCov SpCov in right internal carotid artery from the non-PVEc CBF 

map 

NonPVC LICA SpCov SpCov in left internal carotid artery from the non-PVEc CBF map 

PVC GM CBF CBF in gray matter from the PVEc CBF map 

PVC WM CBF CBF in white matter from the PVEc CBF map 

PVC RCWM CBF CBF in right cerebral white matter from the PVEc CBF map 

PVC LCWM CBF CBF in Left cerebral white matter from the PVEc CBF map 

PVC VBA CBF CBF in vertebrobasilar artery from the PVEc CBF map 

PVC RICA CBF CBF in right internal carotid artery from the PVEc CBF map 

PVC LICA CBF CBF in left internal carotid artery from the PVEc CBF map 

PVC GM SpCov SpCov in gray matter from the PVEc CBF map 
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PVC WM SpCov SpCov in white matter from the PVEc CBF map 

PVC RCWM SpCov SpCov in right cerebral white matter from the PVEc CBF map 

PVC LCWM SpCov SpCov in Left cerebral white matter from the PVEc CBF map 

PVC VBA SpCov SpCov in vertebrobasilar artery from the PVEc CBF map 

PVC RICA SpCov SpCov in right internal carotid artery from the PVEc CBF map 

PVC LICA SpCov SpCov in left internal carotid artery from the PVEc CBF map 

Registration quality 

metrics 

  

Least Square Least square (or Sum of the Squared Differences) between the 

CBF map registered to the MNI space and the MNI template 

image 

Norm Correlation Normalized correlation between the CBF map registered to the 

MNI space and the MNI template image 

Mutual Information Mutual information between the CBF map registered to the MNI 

space and the MNI template image 

Norm Mutual Information Normalized mutual information between the CBF map registered 

to the MNI space and the MNI template image 

Correlation Ratio Correlation ratio between the CBF map registered to the MNI 

space and the MNI template image 

Symmetric metrics   

NonPVC LICA/RICA LICA CBF to RICA CBF ratio from the non-PVEc CBF map 

NonPVC LCWM/RCWM LCWM CBF to RCWM CBF ratio from the non-PVEc CBF map 

NonPVC GM/WM GM CBF to WM CBF ratio from the non-PVEc CBF map 

PVC LICA/RICA LICA CBF to RICA CBF ratio from the PVEc CBF map 

PVC LCWM/RCWM LCWM CBF to RCWM CBF ratio from the PVEc CBF map 

PVC GM/WM GM CBF to WM CBF ratio from the PVEc CBF map 

 

The normalization used in this chapter is done by min-max feature scaling to restrict 

the range of values and to avoid arbitrary values. Furthermore, A CSV file was 

generated corresponding to these image quality metrics for each subject in the 

dataset, which can be used for subsequent QC research. 

 

Quality Control Reports 

QC reports were developed to facilitate the screening of ASL images and to detect 

common failure examples in the dataset, conducted at both the group and individual 

levels. These reports were generated using the processed images from OXASL and 

implemented using python with Jupyter Notebook. Furthermore, interactive controls 

were provided with the QC reports allowing the flexible screening process to their 

specific requirements. 
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Group-Level QC 

The group-level QC report provided an overview of the entire dataset by displaying 

scatter plots alongside box plots for all ASL QC metrics. Additionally, interactive 

widgets were developed with the plots, allowing to filter subjects by user-specified 

metric and user-defined thresholds. This interactive functionality facilitates the 

identification of potential outliers across the group, allowing users to quickly 

pinpoint images that deviate from the norm and may require further examination, 

which can then be conducted using the individual-level QC report. 

 

Individual-Level QC 

To streamline the screening process for individual images, individual-level QC 

reports were generated. These reports presented key images and relevant supporting 

information by OXASL, making it easier to assess the quality of key steps of 

processing. The subject to be presented can be selected using a dropdown menu, 

allowing users to easily navigate between different subjects in the dataset. The 

individual-level report was divided into three sections based on the spatial context of 

the data: 

1. Structural Space QC: The first section focused on evaluating the brain 

extraction and tissue segmentation of the T1w image in the structural space. 

Interactive plots allow users to view the brain-extracted T1w image along 

with GM/WM masks or contours. The images are presented in axial, sagittal, 

and coronal planes, with adjustable slices, enabling users to thoroughly 

inspect the segmentation quality. 

2. ASL Native Space QC: This section examined the ASL images in the native 

ASL space. It presents perfusion-weighted images before and after motion 

and distortion correction. Additionally, CBF maps were displayed, where 

users could utilize dropdown menus to control the display of non-PVEc or 

PVEc GM CBF maps. These maps could be further customized by selecting 

different calibration methods, such as voxelwise calibration, or using WM or 

CSF as reference regions. Users also had the option to overlay the GM or 

WM mask onto the CBF maps, allowing for a more detailed and interactive 

examination of the data. This flexibility aids in comparing the effects of 
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various corrections and calibration methods on the quality of ASL data. 

Regional analysis was provided to present CBF and SpCoV in ROIs. Motion 

estimates were also presented using FSL MCFLIRT [71] which help in 

evaluating the extent of subject movement of the raw ASL data with the 

middle volume as an initial template image showing the rotation and 

translation series in three dimensions.  

3. Standard Space QC: The final section was designed to examine the 

alignment of ASL data to the standard space, which was crucial for ROI 

mapping in group analysis. To this end, the template image, T1w image, and 

ASL image were all displayed within the standard space. 

 

Quality Control Using Machine Learning 

To evaluate the effectiveness of the proposed QC metrics and develop an automated 

QC tool for ASL data, machine learning was applied using the labelled data. 

Support Vector Machines (SVMs) [121] were widely utilized for classification tasks, 

functioning by identifying the optimal hyperplane that separates two classes with the 

goal of maximizing the margin between the nearest data points from each class. 

While many potential hyperplanes could serve this purpose, SVMs seek the one that 

provides the largest margin, thereby ensuring the most robust decision boundary. 

Additionally, the kernel trick allows SVMs to handle non-linearly separable data by 

implicitly mapping the input features into a higher-dimensional space where a linear 

hyperplane can be identified. 

In this study, the ASL dataset was notably unbalanced, a common challenge in 

medical imaging, with only 30 subjects (6.3%) out of 474 being labelled as outliers. 

Unbalanced datasets can cause most machine learning models to bias towards the 

majority class. However, SVMs focus on the boundaries between classes rather than 

the overall data distribution, making them particularly effective for handling 

unbalanced data. Moreover, for ASL quality metrics, extreme high or low values 

typically indicate errors and often lie at the two sides of data distribution, making it 

difficult to filter them using a simple linear decision boundary. The kernel trick of 

SVMs is well-suited to address this issue, as it can effectively separate outliers by 
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finding a more complex decision boundary in a higher-dimensional space. Therefore, 

SVMs are theoretically an excellent choice for this application. 

The dataset consisted of 474 subjects, comprising 444 normal images and 30 outliers. 

It was randomly divided into two parts: 70% (306 normal images and 25 outliers) 

were used for model training, while the remaining 30% (138 normal images and 5 

outliers) were reserved for testing.  

All features were computed for the ASL images in the native space. The features 

used for classification included signal-related metrics (4 features), CBF, and SpCoV 

in GM, WM, cerebral white matter, and arterial vascular territories from both non-

PVEc and PVEc ASL data (28 features). Additionally, perfusion ratios between LICA 

and RICA, between LCWM and RCWM, and between GM and WM were from both 

non-PVEc and PVEc ASL data also included as features (6 features). Furthermore, 

similarity metrics (5 features) for registration were also incorporated. In total, 43 

features were obtained for building the machine learning models. 

SVMs with gaussian kernel were constructed for each individual feature to evaluate 

their respective capabilities in detecting outliers. Additionally, an SVM model with 

gaussian kernel was developed using the Python scikit-learn package [230]  

combining all metrics together to assess the overall effectiveness of QC. All SVM 

models were trained using 5-fold cross-validation to ensure robustness and prevent 

overfitting. To evaluate the quality of the classification, several metrics were 

computed from the confusion matrix, including the accuracy, FPR (false positive 

rate), sensitivity (true positive rate), and specificity (true negative rate).  

In addition to these metrics, permutation feature importance was calculated for each 

feature. This method involved breaking the relationship between each feature and the 

model to assess how much the model performance decreased when that a feature was 

permuted. This approach allowed for a comparison of the performance of each metric 

individually and in combination, providing insights into which metrics or 

combinations thereof are most effective for identifying outliers in ASL data. 
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4.4 Results 

4.4.1 Image Quality Metrics 

The T1w images and ASL images were successfully processed in 474 subjects and 

the quality metrics were computed using ASL images. The distributions for each 

metric in the cohort are presented using boxplots: SNR, CNR, tSNR, and tCNR in 

Figure 4.4.1; non-PVEc CBF and SpCoV in Figure 4.4.2; PVEc CBF and SpCoV in 

Figure 4.4.3; the registration quality metrics in Figure 4.4.4.  

 

 

Figure 4.4.1 Box plots of distributions of signal quality metrics for all subjects (from left to right): 

SNR, CNR, tSNR, and tCNR.  
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Figure 4.4.2 Box plots of distributions of non-PVEc CBF (Top) and SpCoV (bottom) in ROIs for all 

subjects. LCWM: left cerebral white matter; RCWM: right cerebral white matter; LICA: left internal 

carotid artery; RICA: left right internal carotid artery; VBA: vertebrobasilar artery. 

 

  

 

Figure 4.4.3 Box plots of distributions of PVEc CBF (Top) and SpCoV (bottom) in ROIs for all 

subjects. LCWM: left cerebral white matter; RCWM: right cerebral white matter; LICA: left internal 

carotid artery; RICA: left right internal carotid artery; VBA: vertebrobasilar artery. 
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Figure 4.4.4 Box plots of distributions of normalized registration quality metrics over all subjects. 

 Least Square (LS), Normalized Correlation (NC), Mutual Information (MI), Normalized Mutual 

Information (NMI), and Correlation Ratio (CR).  

 

 

4.4.2 Quality Control Report 

The example results from group-level QC report are presented including signal 

quality metrics in Figure 4.4.5; non-PVEc and PVEc CBF in Figure 4.4.6; non-PVEc 

and PVEc SpCov in Figure 4.4.7; and registration quality metrics (Figure 4.4.8). 

Dropdown menus were provided to choose specific metric; the upper and lower 

thresholds can be set by sliders. The filtered subjects were displayed in the text area 

below. 
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Figure 4.4.5 The example results from group-level report for normalized signal quality metrics: SNR, 

CNR, tSNR, and tCNR. The selected metric can be set with the metric dropdown menu. Upper and 

lower thresholds can be set by the Max and Min sliders, respectively, and thus the outliers can be 

filtered. 
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Figure 4.4.6 The example results from group-level report for CBF values on GM, WM, cerebral WM 

and arterial vascular territories. PVE or non-PVEc CBF maps can be set using the PVC dropdown 

menu, and the selected metric can be set with the metric dropdown menu. Upper and lower thresholds 

can be set by the Max and Min sliders, respectively, and thus the outliers can be filtered. Non-PVEc or 

PVEc results can be selected by setting the PVEc dropdown menu. LCWM: left cerebral white matter; 

RCWM: right cerebral white matter; LICA: left internal carotid artery; RICA: left right internal 

carotid artery; VBA: vertebrobasilar artery. 

 

 

 

Figure 4.4.7 The example results from group-level report for spatial coefficient of variation (SpCov) 

values on GM, WM, cerebral WM and arterial vascular territories. PVE or non-PVEc CBF maps can 

be set using the PVC dropdown menu, and the selected metric can be set with the metric dropdown 

menu. Upper and lower thresholds can be set by the Max and Min sliders, respectively, and thus the 

outliers can be filtered. Non-PVEc or PVEc results can be selected by setting the PVEc dropdown 

menu. LCWM: left cerebral white matter; RCWM: right cerebral white matter; LICA: left internal 

carotid artery; RICA: left right internal carotid artery; VBA: vertebrobasilar artery. 
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Figure 4.4.8 The example results from group-level report for normalized registration quality metrics. 

The selected metric can be set with the metric dropdown menu. Upper and lower thresholds can be set 

by the Max and Min sliders, respectively, and thus the outliers can be filtered. LS: Least Squares, 

NC:Normalized Correlation, MI: Mutual Information, NMI: Normalized Mutual Information, and CR: 

Correlation Ratio.  

 

Individual QC report 

The example results from individual-level QC report were presented including the 

structural space QC in Figure 4.4.9; the ASL native QC section for perfusion-

weighted images before and after motion and distortion correction in Figure 4.4.10; 

CBF maps in Figure 4.4.11; regional analysis in Figure 4.4.12; and motion estimates 

in Figure 4.4.13; the standard space QC in Figure 4.4.14. 
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Figure 4.4.9 The example of the results from individual-level report for the structural space QC. Brain 

contour can be overlain on the structural image to check PVs segmentation. 

 

 

 

 

Figure 4.4.10 The example of the perfusion-weighted image. The left image is without any correction 

and the right is the PWI image after distortion correction and motion correction. The visualized slice 

position can be adjusted from the slider. 
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Figure 4.4.11 The example results from individual-level report for CBF maps in the native ASL space, 

featuring dropdown menus that allow users to customize the display by selecting non-PVEc or PVEc 

GM CBF maps, choosing different calibration methods (voxelwise, WM, or CSF as reference regions), 

and adjusting GM/WM mask overlays with threshold settings. 
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Figure 4.4.12 The example results from individual-level report for regional analysis presenting CBF 

values and SpCoV in global GM and WM, as well as in specific ROIs. It also includes ratios between 

LICA and RICA, between LCWM and RCWM, and between GM and WM, along with histograms of 

CBF values in these regions. 
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Figure 4.4.13 The example of the results from individual-level report for motion estimates in rotations 

(top) and translations (bottom) of the ASL image. The x axis contains 30 interleaved label and control 

images, and y axis is the shifted distance with the middle volume as the reference, and x,y,z represent 

the shifts in three dimensions. 
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Figure 4.4.14 The example results from individual-level report for the template image, T1w image, 

and CBF image aligned to the standard template. 

 

4.4.3 Quality Control Using Machine Learning  

The classification results for each individual feature are presented in Table 4.4.1.  

Table 4.4.1 Classification on test dataset using each quality metric as the individual feature.  
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TP: True Positive; FP: False Positive; TN: True Negative; FN: False Negative; Accuracy: T/(T+N); 

Sensitivity: TP/(TP+FN); Specificity: TN/(TN+FP); FPR: False Positive rate (FP/(FP+TN)).  

 

The classification using all features in test dataset is shown in Figure 4.4.15. The 

accuracy, FPR, sensitivity, and specificity were 0.97, 0.2, 0.99, and 0.8 respectively. 

According to the classification results, the examples of detected outliers (True-

Negative), not detected outliers (False-Negative), and mis-classified normal images 

(False-Positive) are presented in Figure 4.4.16, Figure 4.4.17, and Figure 4.4.18, 

Feature TP FN FP TN Accuracy Sensitivity Specificity
NonPVC GM CBF 138 0 4 1 0.97 1 0.2
NonPVC GM SpCov 138 0 3 2 0.98 1 0.4
NonPVC WM CBF 137 1 2 3 0.98 0.99 0.6
NonPVC WM SpCov 138 0 4 1 0.97 1 0.2
NonPVC RCWM CBF 137 1 4 1 0.97 0.99 0.2
NonPVC RCWM SpCov 135 3 3 2 0.96 0.98 0.4
NonPVC LCWM CBF 138 0 3 2 0.98 1 0.4
NonPVC LCWM SpCov 136 2 2 3 0.97 0.99 0.6
NonPVC VBA CBF 138 0 3 2 0.98 1 0.4
NonPVC VBA SpCov 137 1 3 2 0.97 0.99 0.4
NonPVC RICA CBF 137 1 4 1 0.97 0.99 0.2
NonPVC RICA SpCov 138 0 1 4 0.99 1 0.8
NonPVC LICA CBF 138 0 3 2 0.98 1 0.4
NonPVC LICA SpCov 138 0 3 2 0.98 1 0.4
SNR 138 0 5 0 0.97 1 0
tSNR 138 0 5 0 0.97 1 0
CNR 138 0 5 0 0.97 1 0
tCNR 138 0 5 0 0.97 1 0
Least Square 138 0 3 2 0.98 1 0.4
Norm Correlation 136 2 2 3 0.97 0.99 0.6
Mutual Information 138 0 5 0 0.97 1 0
Norm Mutual Information 138 0 5 0 0.97 1 0
Correlation Ratio 136 2 2 3 0.97 0.99 0.6
NonPVC LICA/RICA 138 0 2 3 0.99 1 0.6
NonPVC LCWM/RCWM 138 0 2 3 0.99 1 0.6
NonPVC GM/WM 138 0 5 0 0.97 1 0
PVC GM CBF 138 0 4 1 0.97 1 0.2
PVC GM SpCov 136 2 4 1 0.96 0.99 0.2
PVC WM CBF 137 1 2 3 0.98 0.99 0.6
PVC WM SpCov 138 0 4 1 0.97 1 0.2
PVC RCWM CBF 137 1 4 1 0.97 0.99 0.2
PVC RCWM SpCov 138 0 5 0 0.97 1 0
PVC LCWM CBF 138 0 3 2 0.98 1 0.4
PVC LCWM SpCov 138 0 5 0 0.97 1 0
PVC VBA CBF 138 0 4 1 0.97 1 0.2
PVC VBA SpCov 137 1 3 2 0.97 0.99 0.4
PVC RICA CBF 137 1 4 1 0.97 0.99 0.2
PVC RICA SpCov 137 1 1 4 0.99 0.99 0.8
PVC LICA CBF 138 0 3 2 0.98 1 0.4
PVC LICA SpCov 138 0 5 0 0.97 1 0
PVC LICA/RICA 138 0 2 3 0.99 1 0.6
PVC LCWM/RCWM 138 0 2 3 0.99 1 0.6
PVC GM/WM 138 0 5 0 0.97 1 0
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respectively. The permutation feature importances, shown in Figure 4.4.19, is a 

model-agnostic technique used to assess the importance of individual features in thea 

trained model by comparoncomparisons with the re-trained the model with excluding 

each feature..  

 

 

Figure 4.4.15 Confusion matrix of classification by SVM in test data. 

 

Figure 4.4.16 Detected outliers in the test dataset. The artifact types are (from left to right): delayed 

arrival, poor signal, poor labelling, poor labelling.  

 

Figure 4.4.17 The outlier (delayed arrival) was not detected in the test dataset. 
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Figure 4.4.18 The normal CBF map classified as outlier in the test dataset. In the image, hyper-

perfusion voxels are observed in the anterior brain, potentially due to imperfect distortion correction. 

This could be regarded as one outlier; however, this was not among the predefined labelled artifact 

types. 

 

Figure 4.4.19 The permutation feature importances in the SVM model. Mean accuracy decrease: the 

decreased accuracy after excluding each feature. 

 

4.5 Discussion 

This work aimed to develop standardized QC protocols for ASL MRI with OXASL, 

which was achieved through three key steps. First, image metrics specific to ASL 

MRI were investigated to address the unique challenges of measuring perfusion 

through blood water labelling. Second, QC reports were generated to help identify 

outliers and assist in the screening of ASL images processed by OXASL. Finally, 

machine learning models were developed to evaluate the reliability and efficiency of 

these ASL quality metrics on a large ASL dataset, with the goal of providing effective 

and automated QC for ASL data.  
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The ASL quality metrics included signal quality metrics, prefusion quality metrics, 

and registration quality metrics. The signal quality metrics, providing intrinsic 

characteristics of ASL acquisitions before any processing, are valuable for initial 

examination, as indicated by their high importance when considering all quality 

metrics. However, relying solely on signal-related metrics to judge the quality of 

ASL images is insufficient. This is evidenced by the poor performance of classifiers 

using these metrics (no outliers were detected), as they may not capture all issues 

affecting the images. For example, specific artifacts like signal loss might not 

significantly impact SNR or CNR but could still cause problems in perfusion 

quantification. To address this, perfusion-related metrics, including CBF and SpCoV 

within ROIs (such as GM, WM, cerebral WM, and arterial vascular territories), were 

computed on non-PVEc and PVEc ASL data to better account for the quality of ASL 

data quantification. Notably, RICA SpCoV from non-PVEc and PVEc data were 

particularly effective, identifying the most outliers (4 out of 5), while other metrics 

detected 3 or fewer outliers. Although these classifiers showed abilities to detect 

outliers, they were generally limited in scope, often identifying only a small number 

of outliers and exhibiting a high false positive rate (FPR), meaning that many outliers 

were missed. In addition, similarity metrics (such as LS, NC, and CR) for registration 

were able to detect some outliers, even though the labels were predefined for native 

ASL data rather than based on the success or failure of registration. However, mutual 

information or normalized mutual information did not demonstrate the same 

effectiveness. This suggests that while registration metrics can contribute to outlier 

detection, not all metrics are equally reliable for this purpose.  

The group-level QC report was designed to filter extreme values of quality metrics 

that might indicate outliers. Given the difficulty of establishing absolute thresholds 

due to variations in study requirements, scanner types, and imaging protocols, users 

can define their own thresholds to identify potential outliers. Once these outliers are 

flagged, suspicious images can be further examined using the individual-level QC 

report. By utilizing both group-level and individual-level QC reports, the time 

required for QC can be significantly reduced. The individual-level reports focus on 

displaying only key images and quality metrics, rather than a large number of general 

quality images. This approach ensures the completeness of QC while being time-

efficient, as it avoids redundant information. Additionally, since the QC reports are 
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generated post-processing in OXASL, they do not interfere with the processing itself, 

making this approach convenient and adaptable for application to other large ASL 

datasets. 

The SVM model trained with all 43 ASL quality metrics demonstrated strong 

performance in outlier detection, even with the limited number of outliers in the test 

dataset. For QC purposes, it is generally acceptable to misclassify some normal 

images as outliers, as this might slightly increase the number of images requiring 

further examination but ensures that no true outliers are missed. This approach may 

result in high specificity but a low false positive rate. While precise classification is 

ideal, achieving it is challenging due to the extremely unbalanced nature of the data. 

The permutation feature importances for the SVM model using all features were 

provided, revealing that some features, such as SNR, PVEc RICA CBF, CNR, and 

non-PVEc LICA SpCoV, had higher importance. These features may be more 

sensitive to outliers, indicating they are closer to the decision boundary. However, 

features with lower or zero importance should not be considered useless; instead, 

they may simply be further from the decision boundary in this specific model. 

There are some limitations to this study. The data were originally processed using 

BASIL FSL with CSF as the reference region for calibration, on which raters 

categorized all subjects into five categories. In this study, however, the data were 

processed using OXASL with voxel-wise calibration. Discrepancies in processed 

images due to different calibration methods may lead to differences in data labelling, 

such as the normal image misclassified as a outlier with imperfect distortion 

correction shown in Figure 4.4.18. Additionally, the trained machine learning 

classifier still needs to be validated on other ASL datasets processed by OXASL, as 

factors like scanner types and acquisition protocols may influence outlier 

identification. Furthermore, the quality metrics generated in this study are specific to 

ASL MRI data, particularly single-PLD data. In the future, quality metrics for multi-

PLD ASL data will be needed, as there may be slight differences in their application. 

Furthermore, IQMs for general image QC may also be included to enhance the 

classifier performance. The QC reports were developed using Jupyter Notebook, 

allowing for interactive adjustments by users. However, this setup requires all files to 

be available on the development device, which is not ideal for processes that 

typically occur on high-performance clusters or servers. Future work will focus on 
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implementing these functions in more accessible formats, such as HTML, which can 

be easily shared and downloaded. 

 

4.6 Conclusion 

In this chapter, this study used 43 features specific to ASL were used for QC to 

establish standardized QC protocols for ASL, a gap in the current literature. Machine 

learning was employed to assess the effectiveness of these protocols and enable 

automatic QC for CBF maps, with the model proving robust against most artifacts in 

the dataset. QC reports were generated to assist with the manual review of ASL data.  

While this machine learning approach demonstrated high specificity, it still depends 

on manually labelled data for training. Despite the limited number of outliers in the 

unbalanced dataset, the model was able to maintain strong classification 

performance. In the next chapter, deep learning techniques will be explored for 

quality control purposes, with the aim of improving outlier detection in ASL data. 

This shift to deep learning is anticipated to enhance both accuracy and automation in 

the quality control process, building upon the machine learning foundation 

established in this chapter. 
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5 Quality Control Using Deep Learning in ASL MRI 

Images 

5.1 Introduction 

ASL MRI provides the only truly non-invasive method to measure perfusion by 

magnetically labelling arterial blood water as an endogenous tracer [54] . However, 

ASL MRI, like other MRI techniques, is susceptible to artifacts, such as motion, 

distortion and poor labelling efficiency, which can compromise image quality and 

impair accurate CBF quantification [5] ,[82] . Therefore, the quality of ASL images 

needs to be assessed and ensured, before proceeding with any further statistical 

analysis. Quality Control (QC) is the process to identify and exclude outliers for MRI 

data which is conventionally conducted by experts who visually examine individual 

images. While this manual approach is necessary, it is time-consuming, subjective, 

and often impractical for large datasets [163] ,[171] .  

Previous studies [9] ,[83] have increasingly employed machine learning to automate 

QC processes for MRI data. Machine learning models utilize Image Quality Metrics 

(IQMs) derived from MRI data to assess image quality, enabling them to identify 

potential issues based on predefined criteria. However, this approach faces several 

challenges. First, the definition and selection of IQMs can greatly influence the 

performance of machine learning models. The choice of metrics may not fully 

capture all relevant aspects of image quality, necessitating careful evaluation by 

experts to ensure that the selected IQMs are both comprehensive and appropriate for 

the task at hand. Second, supervised classification models still rely on labelled data, 

requiring expert annotations to guide model training—a process that remains 

subjective. In addition, acquiring labelled data for all types of potential anomalies in 

MRI data is impractical, which increases the risk of misclassifying unseen outliers.  

Furthermore, machine learning methods often struggle with unbalanced data, a 

common issue in QC tasks where the number of poor-quality images is typically 

much smaller than the number of high-quality images. This imbalance can result in 

models that are biased toward the majority class, reducing their effectiveness in 

detecting rare but critical anomalies.  
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Alternatively, deep learning offers a promising approach for QC in MRI, with QC in 

deep learning often referred to as anomaly detection. Unlike traditional machine 

learning, deep learning can automatically learn complex patterns and features 

directly from the image data, reducing the dependency on manually engineered 

IQMs and labels. This capability allows deep learning models to detect subtle 

anomalies that might be missed by both manual inspection and traditional machine 

learning approaches. Supervised deep learning approaches often utilize CNN-based 

networks as feature extractors, followed by one-class classifiers. However, they share 

the same limitation as supervised machine learning models in that they require 

manually labelled data for training.  

Instead, semi-supervised approaches [232] ,[233]  have emerged as a more plausible 

solution. These methods focus on identifying deviations from established norms, 

rather than relying on extensive labelled data. The initial step in this process involves 

developing a robust baseline of normal MRI scans, which serves as a reference point 

for detecting anomalies. This baseline is created by analysing a large dataset of MRI 

images that have been verified to be free of defects. Deep learning algorithms are 

employed to learn the typical patterns and features of these high-quality MRI images, 

establishing a standard against which new, unseen images can be compared. Once 

this baseline is established, the anomaly detection system can evaluate unseen MRI 

data by identifying deviations from the norm. If an image aligns with the patterns 

learned during training, the reconstruction error will be low, indicating a normal 

scan. Any abnormality that suggests potential anomalies are flagged for further 

inspection by comparing the reconstructed images against the established baseline. 

This semi-supervised approach thus enables the detection of anomalies without the 

need for extensive labelled datasets.  

Building on this foundation, two prominent deep learning models Variational 

Autoencoders (VAEs) [119]  and Generative Adversarial Networks (GANs) [120]  

have been effectively utilized for anomaly detection in MRI data. VAEs are 

generative models that learn to encode MRI images into a lower-dimensional latent 

space, capturing the essential features of the data, and then decode them back into the 

original image space. GANs, on the other hand, consist of two competing neural 

networks—a generator and a discriminator. The generator creates synthetic MRI 

images, while the discriminator attempts to distinguish between real and generated 
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images. The competition between the two networks enables the GAN to improve the 

generation of realistic images, and when used for anomaly detection, it can identify 

discrepancies between the generated and real data to flag potential outliers. 

In this chapter, we employed a VAE-GAN model, a deep learning technique, to 

perform QC for ASL data using a deviation-based method allowing for effective 

detection of outliers in ASL data. 

 

5.2 Theory 

5.2.1 Variational Autoencoders 

Autoencoders [244]  are a type of artificial neural network designed to learn efficient 

data representations, typically for dimensionality reduction or feature learning. The 

conventional architecture of autoencoders is presented in Figure 5.2.1. They consist 

of two main components: an encoder, which compresses the input data into a lower-

dimensional latent space, and a decoder, which reconstructs the original data from 

this compressed representation. The primary goal of an autoencoder is to minimize 

the reconstruction error, ensuring that the data compressed in the latent space retains 

enough information to accurately reconstruct the original input. A limitation of 

traditional autoencoders is that they do not explicitly model the distribution of the 

latent space, which can lead to poor generalization, especially when generating new 

data. 

 

 

Figure 5.2.1 The architecture of an autoencoder.   

It consists of an encoder, which compresses input data into a lower-dimensional latent representation, 

and a decoder, which reconstructs the original input from this representation. 
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Variational Autoencoders (VAEs) [119] build on the foundation of autoencoders but 

introduce a probabilistic framework. Instead of mapping input data to a single point 

in the latent space, VAEs learn to map it to a distribution, typically modelled as a 

Gaussian. During training, the encoder learns the mean and variance of this 

distribution for each input. The decoder then reconstructs the input data by sampling 

from this latent distribution. 

Let 𝑧 represent the latent variable and 𝑥 the observed data. The probability of 𝑧 in the 

latent space, given the observation 𝑥, can be expressed using Bayes’ rule as: 

𝑝(𝑧|𝑥) =
𝑝(𝑥|𝑧)𝑝(𝑧)

𝑝(𝑥)
                          Equation 5.2.1           

where 𝑝(𝑥) = ∫𝑝(𝑥|𝑧)𝑝(𝑧)𝑑𝑥 is the marginal likelihood. The marginal likelihood 

p(x) is intractable in most cases, however, the value can be estimated using 

variational inference by assuming that 𝑝(𝑧|𝑥) is approximated by another 

distribution, denoted as 𝑞(𝑧|𝑥), which has a tractable distribution. This can be 

achieved by minimizing the Kullback–Leibler (KL) divergency, a measure of 

difference between two probability distributions. Furthermore, the minimization KL 

divergence can be converted to maximizing the following: 

ℒ𝑉𝐴𝐸 = 𝐸𝑞(𝑧|𝑥) 𝑙𝑜𝑔 𝑝(𝑥|𝑧) − 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧|𝑥))  Equation 5.2.2 

The first term to penalize reconstruction error and the second term to ensure that the 

learned distribution 𝑞 is similar to the prior distribution 𝑝. Assuming a Gaussian 

likelihood, the loss function used in the VAE structure can be simplified as: 

ℒ𝑉𝐴𝐸 = ℒ𝑅𝑒𝑐 +∑ 𝐾𝐿(𝑞𝑗(𝑧|𝑥)||𝑝(𝑧))𝑗   Equation 5.2.3 

Notably, optimizing the KL divergence term requires a delicate balance with the 

reconstruction loss in practice.  

 

5.2.2 Generative Adversarial Networks 

Generative Adversarial Networks (GANs) [120] are a class of deep learning models 

comprising two neural networks, a generator and a discriminator, that compete 

against each other in a zero-sum game. The generator learns to produce data that is 

increasingly realistic over time, while the discriminator learns to better identify fake 

https://arxiv.org/pdf/1601.00670.pdf?ref=jeremyjordan.me
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
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data. This adversarial process continues until the generator's output becomes 

indistinguishable from real data, indicating that it has successfully learned the 

underlying distribution. The architecture of a GAN is shown in Figure 5.2.2. 

 

Figure 5.2.2 The architecture of a GAN, which consists of two neural networks: a generator and a 

discriminator.  

 

The generator network, Gen(z), maps a latent random variable z to the data space, 

while the discriminator network assigns a probability y = Dis(x)∈[0,1], where y 

represents the likelihood that x is a real training sample, and 1 − y is the probability 

that x was generated by the model through x = Gen(z), with z ∼ p(z). The objective 

of the GAN is to find the optimal binary classifier that can best differentiate between 

real and generated data while simultaneously encouraging Gen to learn and fit the 

true data distribution. The loss function of GANs is designed to optimize this min-

max problem using binary cross-entropy in Equation 5.2.4. 

ℒ𝐺𝐴𝑁 = 𝑚𝑖𝑛
𝐺𝑒𝑛

𝑚𝑎𝑥
𝐷𝑖𝑠

𝑙𝑜𝑔(𝐷𝑖𝑠(𝑥)) + 𝑙𝑜𝑔 (1 − 𝐷𝑖𝑠(𝐺𝑒𝑛(𝑧)))  Equation 5.2.4 

On the one hand, discriminator aims at predicting 𝐷is(x) = 1 for real data samples 

and 𝐷is(𝐺en(z)) = 0 for fake samples. On the other hand, the GAN learns how to fool 

𝐷 by finding 𝐺en which is optimized on hampering the second term in Equation 

5.2.4. 

 

5.2.3 VAE-GAN 

In models such as [119] [234] , the selection of an appropriate similarity metric is 

crucial, as it forms the core of the training signal through the reconstruction error 

objective. Typically, element-wise measures like the squared error are employed by 

default. Although these metrics are straightforward, they are not particularly well-

suited for image data, as they fail to account for the nuances of human visual 
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perception. For instance, a minor image translation can result in a significant pixel-

wise error, despite being nearly imperceptible to the human eye. Consequently, it is 

preferable to measure image similarity using a higher-level, sufficiently invariant 

representation of the images. 

Instead of manually engineering a metric to address the limitations of element-wise 

measures, it is more effective to design a task-specific function. The VAE-GAN 

model was developed to learn such a similarity measure by jointly training a VAE 

and a GAN [235] , utilizing the GAN discriminator to assess sample similarity. The 

VAE-GAN model architecture is illustrated in Figure 5.2.3, where the VAE-GAN 

model combines the VAE with the GAN by merging the decoder and generator into a 

single unit and training them simultaneously. In this model, the conventional 

element-wise reconstruction metric is replaced by a feature-wise metric derived from 

the discriminator. 

 

Figure 5.2.3 The architecture of the VAE-GAN model in this study. Decoder from VAE and the 

generator from GAN were combined into one. Image generation is achieved by sampling the latent 

space of the VAE, followed by decoding through decoder. 

 

In VAE-GAN, the VAE reconstruction (expected log likelihood) error term from 

Equation 5.2.3 was replaced by a reconstruction error expressed in the GAN 

discriminator. This is achieved by using the hidden representation of the 𝑙-th layer of 

the discriminator, denoted as 𝐷𝑖𝑠𝑙(𝑥). Then Gaussian observation model was used to 

compute its mean 𝐷𝑖𝑠𝑙(𝑥) and identity covariance: 

𝑝(𝐷𝑖𝑠𝑙(𝑥)|𝑧) = 𝑁(𝐷𝑖𝑠(𝑥)|𝐷𝑖𝑠𝑙(�̃�), 𝐼)   Equation 5.2.5 

Thus, the reconstruction error in VAE can be replaced with: 

ℒ𝑑𝑖𝑠_𝑙 = −𝐸𝑞(𝑧|𝑥)(𝑙𝑜𝑔  𝑝(𝐷𝑖𝑠𝑙(𝑥)|𝑧))   Equation 5.2.6 

The loss function of VAE-GAN incorporates three parts (depicted in Figure 5.2.4): 

ℒ𝑉𝐴𝐸−𝐺𝐴𝑁 =  ℒ𝑑𝑖𝑠_𝑙 + ℒ𝐾𝐿 + ℒ𝐺𝐴𝑁    Equation 5.2.7 
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Figure 5.2.4 Loss functions in VAE-GAN including the discriminator loss, GAN loss, and KL loss. 

 

 

5.2.4 Kernel Density Estimation 

Kernel Density Estimation (KDE) [236] is a non-parametric method used to estimate 

the probability density function (PDF) of a random variable [236] . Unlike 

parametric methods, which assume a specific distribution for the data (e.g., normal 

distribution), KDE makes no such assumptions and can therefore adapt to the 

underlying structure of the data more flexibly. 

The basic idea behind KDE is to estimate the probability density function by placing 

a kernel (a smooth, symmetric function) at each data point. The contribution of each 

data point to the overall density estimate is determined by the kernel function. The 

KDE then sums these contributions across all data points to produce a smooth 

estimate of the density function. 

Given a set of data points 𝑥1, 𝑥1, … , 𝑥𝑛, the kernel density estimation 𝑓(𝑥) at a point 

𝑥 is defined as: 

𝑓(𝑥) =
1

𝑛ℎ
∑ 𝐾(

𝑥−𝑥𝑖

ℎ
)𝑛

𝑖=1    Equation 5.2.8 

Where 𝑛 is the number of data points; ℎ is the bandwidth, a smoothing parameter 

that controls the width of the kernel and, therefore, the smoothness of the density 

estimate; 𝐾 is the kernel function, which is usually a symmetric, non-negative 

function that integrates to one. Common choices for the kernel function include the 

Gaussian (normal) kernel, Epanechnikov kernel, and uniform kernel. 

KDE is effective in identifying multiple modes or peaks in distributions without 

making strong assumptions, enabling it to adapt to the true underlying shape of the 
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data. This is particularly useful in cases where the data distributions do not follow 

simple or well-known forms (such as Gaussian), making KDE a sensible approach 

for estimating the distribution [236] . 

 

5.3 Methods 

5.3.1 Dataset  

This study used the same ASL dataset [166]  as in Chapter 3 and 4. Like in chapter 4, 

all available subjects were retained for analysis. The non-PVEc CBF maps in the 

standard space, processed by the volumetric ASL pipeline in Chapter 3, were 

employed for quality control in this chapter, encompassing a total of 474 subjects.  

The CBF maps were manually examined and labelled in the native space by two 

experts [163] , as in chapter 4. A total of 30 subjects were marked as outliers based 

on the types of artifacts present (see Figure 5.3.1 for examples). The artifact types 

included poor labelling efficiency (27 subjects), low contrast (1 subject), motion (7 

subjects), poor signal (1 subject), and delayed arrival (6 subjects), with some outliers 

exhibiting multiple artifact types. 

 

Figure 5.3.1 Normal (left) and outliers (right four images) examples in the standard space in the 

dataset.  

 

Notably, the native CBF maps were registered to the MNI152 space [70] via 

intermediate structural images, and the CBF maps in standard space were then 

utilized in subsequent processing. The CBF images were resampled to a 64x64x64 
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resolution, with 2D images extracted from the central axial slice, to maintain 

computational efficiency and avoid the undying increase in data dimension from 2D 

to 3D. This resolution strikes a balance between computational efficiency and 

anatomical relevance, considering the relatively fewer layers of the models. 

Subsequently, the central axial slices from the CBF maps were randomly divided into 

a training set, consisting of 402 normal images, and a test set, comprising 42 normal 

images along with 30 outliers. 

5.3.2 VAE-GAN Architecture 

The architecture of the VAE-GAN network (shown in Figure 5.2.3) follows that with 

the details in Table 5.3.1. 

Table 5.3.1 Architectures of encoder, decoder and discriminator for the VAE-GAN. 

Encoder Decoder Discriminator 

3x3 32 Conv ↓ BNorm, 

ReLU 

8x8x32 FC, BNorm, ReLU 3x3 32 Conv ↓ BNorm, 

ReLU 

3x3 64 Conv ↓ BNorm, 

ReLU 

3x3 128 Conv ↑ BNorm, ReLU 3x3 64 Conv ↓ BNorm, 

ReLU 

3x3 128 Conv ↓ BNorm, 

ReLU 

3x3 64 Conv ↑ BNorm, ReLU 3x3 128 Conv ↓ BNorm, 

ReLU 

2 FC, BNorm, ReLU 3x3 32 Conv ↑ BNorm, ReLU 512 FC, BNorm, ReLU 

 3x3 1 Conv, tanh 1 FC, sigmoid 

BNorm: Batch normalization; ReLU: Leaky ReLU; ↓ and ↑:downsamling and 

upsampling; Conv: convolutional layer with kernel size and the number of output 

channels listed ahead of it; FC: fully-connected layer with the number of output 

channels listed ahead of it. Stride is 2 in all convolutional layers. 

 

5.3.3 Detect Outliers Using VAE-GAN  

The process of outlier detection in this study is shown in Figure 5.3.2. A VAE-GAN 

model was used to capture the patterns of normal CBF maps. A significantly 

compressed latent space was employed to ensure that the latent space distribution 

remained tightly clustered, allowing the reconstructed images of the sampled latent 

space closely resembled typical normal data patterns This approach effectively 

accounted for the inherent variability among normal CBF images while maintaining 
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a focus on common structural features, thereby improving its ability to differentiate 

between normal and anomalous data.  

During training, the difference scores between the input CBF images and the 

reconstructed images from the VAE-GAN were computed using metrics such as 

mean squared error (MSE), cosine similarity (CS), or both [237]. KDE was then 

applied to learn and model the distribution of these difference scores. In the testing 

phase, the same process was followed for the test data to calculate the difference 

scores, after which KDE was used to estimate the position of these images within the 

established distribution.  

By modelling the distribution of the difference scores with KDE, thresholds were set 

using predefined criteria, allowing for the identification and filtering of outliers that 

exhibited significant deviations from the norm. 

 

Figure 5.3.2 The workflow of QC using VAE-GAN. In training, KDE is used to learn the distribution 

of difference scores from VAE-GAN using normal images as input, and the threshold needs to be 

determined. In test, the quality of input image is judged by comparing its difference score to the 

determined threshold. 

 

During training, all 402 normal images were fed into the VAE-GAN model to learn 

the distribution of normal data. The Adam optimizer was utilized, with learning rates 
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set at 0.0001 for the encoder, 0.001 for the decoder, and 0.0001 for the discriminator. 

The model was trained for up to 1000 epochs using the normal images. The third 

layer of the discriminator was used to calculate the feature-wise error between input 

images and reconstructed images to replace the element-wise error. A relatively low 

latent space size of 2 was chosen to avoid sparsity in the latent space. The difference 

scores consisted of the cosine similarity, mean squared error and their combination, 

which were computed between the input data and the reconstructed data. Then, KDE 

was used to estimate probability density function of the difference scores on the 

normal data with gaussian kernel and bandwidth of 0.2.  

In testing, only the encoder and decoder are used like a traditional VAE. The test 

dataset comprising 42 normal images along with 30 outliers was input to the VAE-

GAN model, and their difference scores were calculated. Both the threshold setting 

and final performance evaluation were conducted using this test data. In principle, 

outliers should exhibit larger difference scores compared to normal data. The binary 

decision threshold for identifying outliers was determined by selecting the threshold 

that achieved the best classification performance, as measured by the Area Under the 

Receiver Operating Characteristic (AUROC) [238] . Images with difference scores 

exceeding the decision threshold were classified as outliers. While some studies 

[239] ,[240] use cross-validation to fine-tune the threshold, collecting a sufficiently 

large validation set can be difficult, especially when anomalous samples are rare and 

challenging to gather. Thus, relying on the test data for threshold determination is 

often a practical alternative. 

 

5.4 Results 

The testing data consisted of 42 normal CBF images and 30 outliers. The 

distributions of three types of difference scores estimated by KDE, categorized by 

data type, are shown in Figure 5.4.1. Among the five artifacts, delayed arrival, poor 

signal, and poor labelling exhibited a significantly wide range of difference scores. In 

contrast, the distributions for motion and low contrast artifacts were more similar to 
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those of the normal images. 

 

Figure 5.4.1 Box plots of different difference score distributions across the test dataset (42 normal and 

30 outliers) estimated by KDE.  MSE: mean squared error; CS: cosine similarity. PLE: poor labelling 

efficiency; DA: delayed arrival; Mo: motion; LC: low contrast; PS: poor signal.  

The AUROC curves, which were used to evaluate classification performance based 

on three different types of difference scores, are presented in Figure 5.4.2. The 

AUROC scores for using cosine similarity and mean square error as the difference 

scores were 0.82 and 0.89, respectively. The highest AUROC score, 0.92, was 

achieved by combining mean square error and cosine similarity, indicating that this 

combination provided the best classification performance. 

 

Figure 5.4.2 AUROC curves of difference scores used for testing. MSE: mean squared error; CS: 

cosine similarity. Among them, using both CS+MSE achieves the highest AUROC of 0.92. 
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Figure 5.4.3 displays the distribution of difference scores, computed using cosine 

similarity and mean squared error, as estimated by KDE. While some outliers exhibit 

distinctly high values and normal images consistently have low values, the lower-

value region is densely populated with a mix of both normal and outlier images, 

which challenges the decision of the binary classification boundary. 

 

Figure 5.4.3 The distribution of difference scores from test data, which was predicted by KDE using 

cosine similarity and mean squared error. Red: outliers; Green: normal images. 

 

The classification results based on the optimal decision threshold are depicted in 

Figure 5.4.4. 

 

  

Figure 5.4.4  The classification results using the optimal threshold with the difference scores (mean 

square error and cosine similarity). 
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The three false negative (undetected) outliers shown in Figure 5.4.5 exhibit subtle 

artifacts. Additionally, six false positives (normal images misclassified as outliers) 

are shown in Figure 5.4.6. Although these images are labelled as normal, some 

artifacts are still present. 

 

 

Figure 5.4.5   Three undetected outliers of CBF maps with slight artifacts (from left to right): poor 

labelling, motion, and motion. 

 

 

 

Figure 5.4.6   Six misclassified CBF images.  Although these images were labelled as normal, some of 

them still contain artifacts. The top three images display delayed arrival of the ASL signal, while the 

bottom three CBF maps (from left to right) are normal, delayed arrival, and normal with a bit artifact 

at the right bottom rim due to imperfect brain extraction. 
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5.5 Discussion 

In this chapter, QC was conducted for the ASL data using deep learning techniques. 

The VAE-GAN model was used to learn the pattern of the normal data, that use a 

feature-wise error replacing the element-wise error in conventional VAE model. The 

differences scores were computed between input data and reconstructed data 

including mean squared error, cosine similarity, and their combinations. Then KDE 

was used to measure the distribution of the difference scores, and thresholds were 

determined to identify outliers with high difference scores. 

The combination of MSE and cosine similarity as difference scores yielded the 

highest performance, with an AUROC of 0.92. Using the optimal decision threshold 

based on this result, the model achieved the specificity of 0.9, successfully 

identifying most of the labelled outliers. Among the incorrectly classified normal 

images, although labelled as normal, artifacts were present in many of them, 

demonstrating the robustness and reduced sensitivity to manual labelling errors. 

Furthermore, artifacts such as the border zone sign and poor signal were found in the 

incorrectly classified normal images, highlighting the effectiveness of the model in 

capturing subtle features that were missed by the machine learning model in the 

previous chapter (see Figure 5.5.1), despite a lower sensitivity of the deep learning 

method. This also illustrates the model tolerance for labelling errors, showing the 

strength of the deviation-based approach, which does not rely on perfectly accurate 

labels. Additionally, even with a limited number of labelled outliers, the model was 

able to detect other types of artifacts, a task that would be nearly impossible for the 

machine learning model to accomplish. 

 

Figure 5.5.1 The comparison of the machine learning method in chapter 4 (left) and the deep learning 

method (right) on the same test data from chapter 4. Left: machine learning method (specificity=0.8, 

sensitivity=0.99); right: deep learning method (specificity=1, sensitivity=0.79).  
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There are several options for determining the decision thresholds for the difference 

scores. As observed in Figure 5.4.1, the distribution near the decision threshold used 

in this study is quite dense. Therefore, in practice, the criteria for setting the 

threshold should be carefully considered. In some cases, rather than aiming for the 

best overall model performance, the priority might be to avoid missing any outliers. 

An alternative approach would be to set the threshold based on a fixed percentage of 

the dataset, like in study [241] , such as filtering out the top 10% with the highest 

difference scores. This could ensure that low-quality data will not be overlooked, 

while only a small additional number of images will need to be manually examined.  

Although the model successfully achieved the QC goal in ASL data, several issues 

remain worth discussing. One notable concern is the limited number of outliers in the 

dataset, which may affect the reliability of the model. The effectiveness of the model 

still needs to be verified with more outliers. However, collecting and simulating 

artifact-laden data poses a challenge, as images with evident errors are often 

discarded either during acquisition or pre-processing. Another aspect to consider is 

the number of normal images used for model training. In this study, all available 

normal images were utilized to construct the normal ASL patterns. However, for 

applying this model to other ASL datasets or adapting similar methodologies, the 

ideal number of training images should be investigated. Insufficient normal data may 

prevent the deep learning model from adequately learning normal patterns, while 

using too many images could introduce the risk of including lower-quality images, 

which might bias the training process. Although the model demonstrated robustness 

to label inconsistencies, this issue remains a potential area for further refinement and 

improvement. 

There are several limitations in this study. First, the CBF maps in the standard space 

were used for consistency in model training, which, while facilitating image 

preparation, may have introduced geometrical distortions. This could have caused 

discrepancies between the CBF maps in the native and the standard space, potentially 

affecting the QC results. Additionally, given the 8 mm slice thickness and the 1 mm 

inter-slice gap of the CBF maps, using 2D slices from sagittal or coronal planes was 

avoided. Moreover, by using only the central axial slices, the risk of overfitting was 

minimized, as the focus was placed on key anatomical structures such as CSF, white 

matter, and primary cortical areas, which are essential for assessing CBF map quality. 
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While the results demonstrated that using the middle axial slice alone is sufficient to 

identify most artifacts in the current dataset, this approach could overlook perfusion 

information from the superior or inferior slices, potentially limiting the model 

generalizability to other datasets. Regarding the resolution of resampling, the 

downsampling chosen in this study was closer to the original size of the axial slices 

(80x80), which balances anatomical relevance with computational efficiency. While 

upsampling (e.g., scaling to 128x128) could provide more detail, it introduces 

interpolation that conflicts with the inherently low-resolution nature of ASL data. 

The choice of a lower resolution strikes a reasonable balance.  

Further research is needed to validate these choices and explore the use of 3D models 

to better represent the inherent 3D structure of CBF maps. This would provide a 

more comprehensive assessment of the data, and metrics like Dice scores could be 

employed as additional difference scores. Combining machine learning with deep 

learning approaches could further improve QC, as incorporating specific ASL QC 

metrics as features may help in more accurately identifying outliers and enhancing 

decision-making robustness. 

 

5.6 Conclusion 

In this chapter, deep learning techniques were employed to develop a robust model 

conducting automatic QC on ASL CBF maps, filling the gap of automatic QC for 

CBF maps using ASL MRI on a relatively large cohort. The model requires only a 

limited number of labelled images and does not depend on highly precise image 

labelling, yet it achieved higher accuracy and specificity compared to traditional 

machine learning methods used in the chapter 4. In practical applications, the 

decision threshold for identifying outliers can be adjusted to capture more potential 

low-quality images, providing flexibility in balancing sensitivity and specificity in 

QC tasks.  
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6 Conclusion and Future Directions  

6.1 Conclusion 

This thesis has addressed two critical challenges in ASL MRI: the application of 

partial volume effects correction for CBF measurements in a large ASL dataset and 

the development of standardized QC protocols for ASL data. Additionally, automated 

QC tools were developed, with the aim of improving the accuracy and efficiency of 

outlier detection, ensuring more reliable ASL data for clinical and research 

applications. 

Chapter 3 of this thesis investigated regional CBF changes with age and examined 

how correcting for PVEs, which accounts for changes in grey matter, might affect the 

understanding of CBF decline in a large aging population. In addition to the 

conventional volumetric pipeline, a surface-based ASL pre-processing pipeline was 

developed to account for the intrinsic structure of cortex. These pipelines can serve 

as templates for future ASL data processing. The findings revealed that while global 

decreases in grey matter CBF are observed with aging before PVEc, the corrected 

data showed more regionally selective perfusion changes. This suggests that that 

variations in cerebral perfusion with age observed with imaging are influenced by 

regional changes in anatomy that can be accommodated with PVEc, but perfusion 

variations are still observable even after PVE is accounted for.  

Chapter 4 focused on developing standardized QC protocols specific to ASL MRI. 

These protocols incorporated metrics related to signal quality, perfusion quality, and 

registration quality. Additionally, interactive QC reports were developed to facilitate 

manual screening. The effectiveness of individual QC metrics was evaluated using 

machine learning, and the proposed metrics were combined to train a machine model 

to identify outliers, which achieved high performance despite the limited number of 

outliers in the test data.  

In Chapter 5, deep learning techniques were employed to develop an automated QC 

tool for ASL data. A VAE-GAN model was trained to recognize patterns in normal 

ASL data and detect outliers by measuring the differences between ASL images and 

the learned normal pattern. These differences were modelled by Kernel Density 

Estimation, and images with difference scores below a pre-defined decision threshold 
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were classified as outliers. This method outperformed traditional machine learning 

models in identifying subtle anomalies. Additionally, the VAE-GAN model 

demonstrated robustness and effectiveness by reducing the reliance on precise 

manual labels and accommodating variability in ASL data. This highlights its 

potential as an efficient and reliable automated QC tool for ASL imaging. 

In conclusion, the findings of this thesis contribute the foundation for future 

advancements in both the application of partial volume effects correction and the 

standardized QC protocols in ASL MRI. The automated QC tools developed, either 

using ASL quality metrics with machine learning or deep learning techniques, have 

demonstrated strong potential in identifying outliers in ASL data. These tools hold 

promise for significantly enhancing the clinical utility of ASL MRI, paving the way 

for more reliable and effective imaging in both research and clinical settings. 

 

6.2 Future Directions 

While each chapter has discussed the limitations and potential solutions to improve 

upon the research presented in this thesis, several key points emerge as future 

directions based on the findings. 

In Chapter 3, partial volume effects were corrected to account for the potential 

anatomical changes in GM volumes with aging. For non-PVEc ASL data, an 80% 

GM partial volume threshold was used during pre-processing to define "pure" grey 

matter for calculating GM CBF. This high threshold was intended to minimize the 

sensitivity of non-PVEc GM CBF to PVE, however, this approach may have 

contributed to the subtle or non-evident age-related CBF decline observed when 

compared to PVEc results. Moving forward, a lower GM partial volume threshold, 

such as 50%, could be used to capture more GM tissue that might be significantly 

influenced by PVE. 

In Chapter 4, quality metrics specific to ASL MRI were investigated and evaluated 

using machine learning. These metrics were primarily derived from raw ASL images 

(label-control image pairs) and CBF maps in different spaces. However, there are 

commonly ancillary images associated with ASL data, such as arterial transit time 

maps. Although ATT maps were not used in this study, given the single PLD data, 
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future QC metrics should consider these ancillary images to account for various ASL 

sequences. Additionally, general image quality metrics and other registration quality 

metrics might also prove useful for ASL QC. However, given the potentially large 

number of general quality metrics, further investigation and assessment are 

warranted to determine which are most relevant for ASL QC. 

While the automated QC tools developed in this thesis demonstrated strong 

performance using a large ASL dataset, it is crucial to validate their effectiveness on 

ASL images from different sources. To support broader adoption in research, 

developing and publishing user-friendly Python packages that offer flexible input 

from various ASL pre-processing tools would be beneficial. Despite the success of 

automated tools, visual inspection remains essential, underscoring the value of QC 

reports. In this thesis, QC reports were developed using Jupyter Notebook to 

facilitate manual checks of ASL images. Although the reports support interactive 

controls, more user-friendly formats, such as HTML, would be advantageous as they 

are easier to share. Enhancing the usability and aesthetics of these QC reports is also 

an important future direction.  

In Chapter 5, it was discussed that further improvements can be made to the VAE-

GAN model. Beyond the deep learning approach presented, prior studies [107] [108]  

proposed alternative methods such as structural correlation-based outlier rejection 

algorithms and empirical robust Bayesian methods for ASL QC. These methods 

leverage information from structural images to identify outliers more effectively. 

Building on this idea, incorporating structural images into the deep learning model 

could enhance its capabilities by providing additional context beyond CBF maps 

alone. In future work, the performance of partial volume segmentations could be 

integrated into the model as a sub-task of the neural networks, contributing to a more 

comprehensive quality assessment of ASL data. 

Moreover, combining machine learning with deep learning techniques may offer 

further improvements. For instance, the QC metrics developed in Chapter 4 could be 

incorporated as features in the deep learning model, enhancing its ability to 

distinguish outliers from normal data. This hybrid approach could leverage the 

strengths of both methodologies, potentially offering a more robust and precise ASL 

QC system. 
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For the clinical application of ASL QC, an ultimate goal is to integrate QC processes 

directly into the scanners, enabling real-time evaluation of image quality 

immediately after acquisition. This integration would allow clinicians to assess the 

reliability of the acquired data on the spot, facilitating immediate decision-making on 

whether a scan needs to be repeated or adjusted, ensuring optimal data quality for 

accurate diagnosis or treatment planning. Based on the research of this thesis, one 

potential solution is to embed machine learning algorithms alongside ASL pre-

processing within the scanner software. This approach would enable quality metrics 

to be calculated from processed ASL data and then fed into machine learning 

algorithms for real-time QC. However, a significant challenge is that ASL pre-

processing, particularly for complex kinetic models, can be computation-intensive 

and time-consuming, making real-time application difficult. This challenge, however, 

is not unsolvable. For example, a prior study by Y. Zhang [243]  proposed using 

neural networks to replace the parameter estimation step in kinetic models for CBF 

measurements in ASL data. This method significantly accelerated the process of CBF 

quantification while maintaining comparable accuracy to conventional approaches 

like Variational Bayes. By reducing the computational cost, such advancements make 

it feasible to integrate machine learning-based QC processes directly into scanners. 

While the implementation of these solutions would be technically demanding, with 

hurdles such as hardware limitations, data processing speed, and the development of 

advanced algorithms, their realization would mark a significant advancement in the 

clinical utility of ASL MRI. Overcoming these challenges could enable real-time 

ASL QC, improve clinical workflow efficiency, and ensure consistently high-quality 

data for diagnosis and treatment planning. 

 

 

 

 

 

 



 

137 

 

Bibliography 
 

[1]  Alsop, D. C., Detre, J. A., Golay, X., Günther, M., Hendrikse, J., Hernandez-

Garcia, L., Lu, H., MacIntosh, B. J., Parkes, L. M., Smits, M., van Osch, M. 

J., Wang, D. J., Wong, E. C., & Zaharchuk, G. (2015). Recommended 

implementation of arterial spin-labeled perfusion MRI for clinical 

applications: A consensus of the ISMRM perfusion study group and the 

European consortium for ASL in dementia. Magnetic resonance in 

medicine, 73(1), 102–116. https://doi.org/10.1002/mrm.25197 

[2]  Akgoren N, Fabricius M, Lauritzen M. 1994. Importance of nitric oxide for 

local increases of blood flow in rat cerebellar cortex during electrical 

stimulation. Proc Natl Acad Sci U S A 91:5903–5907. 

[3]  Hoge RD, Pike GB. 2001. Oxidative metabolism and the detection of 

neuronal activation via imaging. J Chem Neuroanat 22:43–52. 

[4]  Chappell, M. A., McConnell, F. A. K., Golay, X., Günther, M., Hernandez-

Tamames, J. A., van Osch, M. J., & Asllani, I. (2021). Partial volume 

correction in arterial spin labeling perfusion MRI: A method to disentangle 

anatomy from physiology or an analysis step too far?. NeuroImage, 238, 

118236. https://doi.org/10.1016/j.neuroimage.2021.118236 

[5]  Amukotuwa SA, Yu C, Zaharchuk G. 3D Pseudocontinuous arterial spin 

labeling in routine clinical practice: A review of clinically significant 

artifacts. J Magn Reson Imaging. 2016 Jan;43(1):11-27. doi: 

10.1002/jmri.24873. Epub 2015 Apr 9. PMID: 25857715. 

[6]  Mutsaerts, H. J., van Dalen, J. W., Heijtel, D. F., Groot, P. F., Majoie, C. B., 

Petersen, E. T., Richard, E., & Nederveen, A. J. (2015). Cerebral Perfusion 

Measurements in Elderly with Hypertension Using Arterial Spin 

Labeling. PloS one, 10(8), e0133717. 

https://doi.org/10.1371/journal.pone.0133717 

[7]  Asllani, I., Borogovac, A., Brown, T.R., 2008. Regression algorithm 

correcting for partial volume effects in arterial spin labeling MRI. Magn. 

Reson. Med. 60, 1362–1371. https://doi.org/10.1002/mrm.21670. 

[8]  Chappell, M. A., Groves, A. R., MacIntosh, B. J., Donahue, M. J., Jezzard, P., 

& Woolrich, M. W. (2011). Partial volume correction of multiple inversion 

time arterial spin labeling MRI data. Magnetic resonance in medicine, 65(4), 

1173–1183. https://doi.org/10.1002/mrm.22641 

[9]  Alfaro-AlmagroF, Jenkinson M, BangerterN, AnderssonJ,Griffanti L, 

DouaudG, et al. UK Biobank Brain Imaging: Automated Processing Pipeline 
and Quality Control for 100,000 subjects. In: Organiza tion for Human Brain 

Mapping. Geneve,Switzerland; 2016. p. 1877. 

[10]  F. Bloch, W. Hansen, and E. Martin, Packard m. nuclear induction, 

Physical Review 127 (1946) 

[11]  Khashami, F. (2024). A mini review of NMR and MRI. arXiv preprint 

arXiv:2401.01389. 

https://doi.org/10.1002/mrm.25197
https://doi.org/10.1016/j.neuroimage.2021.118236
https://doi.org/10.1371/journal.pone.0133717
https://doi.org/10.1002/mrm.21670
https://doi.org/10.1002/mrm.22641


 

138 

 

[12]  A. Abragam, The principles of nuclear magnetism, 32 (Oxford 

university press, 1983). 

[13]  S. C. Bushong and G. Clarke, Magnetic Resonance Imaging-E-Book: 

Physical and Biological Principles (Elsevier Health Sciences, 2013). 

[14]  Haskell MW, Nielsen JF, Noll DC. Off-resonance artifact correction 
for MRI: A review. NMR Biomed. 2023 May;36(5):e4867. doi: 

10.1002/nbm.4867. Epub 2022 Dec 14. PMID: 36326709; PMCID: 

PMC10284460. 

[15]  Hahn EL. Spin Echoes. Physical Review. 1950;80(4):580-594. 

[16]  Elster AD. Gradient-echo MR imaging: techniques and acronyms. 

Radiology. 1993;186(1):1-8. 

[17]  Stanisz GJ, Odrobina EE, Pun J, et al. T1, T2 relaxation and 
magnetization transfer in tissue at 3T. Magn Reson Med. 2005;54(3):507-

512. 

[18]  Gallagher TA, Nemeth AJ, Hacein-Bey L. An introduction to the 

Fourier transform: relationship to MRI. AJR Am J Roentgenol. 2008 

May;190(5):1396-405. doi: 10.2214/AJR.07.2874. PMID: 18430861. 

[19]  Frisoni, G. B., Fox, N. C., Jack Jr, C. R., Scheltens, P., & Thompson, 

P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature 

reviews neurology, 6(2), 67-77. 

[20]  Berger A. (2002). Magnetic resonance imaging. BMJ (Clinical 

research ed.), 324(7328), 35. https://doi.org/10.1136/bmj.324.7328.35 

[21]  Pohost, G. M., Elgavish, G. A., & Evanochko, W. T. (1986). Nuclear 

magnetic resonance imaging: with or without nuclear?. Journal of the 

American College of Cardiology, 7(3), 709–710. 

https://doi.org/10.1016/s0735-1097(86)80486-7 

[22]  Fonov V, Evans AC, Botteron K, Almli CR, McKinstry RC, Collins 

DL; Brain Development Cooperative Group. Unbiased average age-

appropriate atlases for pediatric studies. Neuroimage. 2011 Jan 1;54(1):313-

27. doi: 10.1016/j.neuroimage.2010.07.033. Epub 2010 Jul 23. PMID: 

20656036; PMCID: PMC2962759. 

[23]  MEIER, P., & ZIERLER, K. L. (1954). On the theory of the indicator-

dilution method for measurement of blood flow and volume. Journal of 

applied physiology, 6(12), 731–744. 

https://doi.org/10.1152/jappl.1954.6.12.731 

[24]  Chappell MA, MacIntosh BJ, Donahue MJ, Günther M, Jezzard P, 

Woolrich MW. Separation of macrovascular signal in multi-inversion time 

arterial spin labelling MRI. Magn Reson Med. 2010 May;63(5):1357-65. doi: 

10.1002/mrm.22320. PMID: 20432306. 

[25]  Parkes LM. Quantification of cerebral perfusion using arterial spin 

labeling: two-compartment models. Journal of magnetic resonance imaging : 

JMRI. 2005; 22(6):732–736. [PubMed: 16267854] 

https://doi.org/10.1136/bmj.324.7328.35
https://doi.org/10.1016/s0735-1097(86)80486-7
https://doi.org/10.1152/jappl.1954.6.12.731


 

139 

 

[26]  Pinto J, Chappell MA, Okell TW, Mezue M, Segerdahl AR, Tracey I, 

Vilela P, Figueiredo P. Calibration of arterial spin labeling data-potential 

pitfalls in post-processing. Magn Reson Med. 2020 Apr;83(4):1222-1234. 

doi: 10.1002/mrm.28000. Epub 2019 Oct 12. PMID: 31605558; PMCID: 

PMC6972489. 

[27]  Hernandez-Garcia L, Aramendía-Vidaurreta V, Bolar DS, et al. Recent 

Technical Developments in ASL: A Review of the State of the Art. Magn 

Reson Med. 2022; 88: 2021-2042. doi:10.1002/mrm.29381 

[28]  Paschal CB, Morris HD. K-space in the clinic. J Magn Reson 

Imaging. 2004 Feb;19(2):145-59. doi: 10.1002/jmri.10451. PMID: 

14745747. 

[29]  Dhabalia R, Kashikar SV, Parihar PS, Mishra GV. Unveiling the 

Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) 

Assessment of T2-Weighted Hyperintensities in the Neuroimaging 
Landscape. Cureus. 2024 Feb 24;16(2):e54808. doi: 10.7759/cureus.54808. 

PMID: 38529430; PMCID: PMC10961652. 

[30]  Mezrich R. A perspective on K-space. Radiology. 1995;195(2):297-

315. 

[31]  Zhang, L. X. Improving the Quantification of Cerebral 

Haemodynamics Using Optimally Sampled Arterial Spin Labelling MRI. 

University of Oxford, 2022. 

[32]  Huang SY, Seethamraju RT, Patel P, Hahn PF, Kirsch JE, Guimaraes 

AR. Body MR Imaging: Artifacts, k-Space, and Solutions. Radiographics. 

2015 Sep-Oct;35(5):1439-60. doi: 10.1148/rg.2015140289. Epub 2015 Jul 24. 

Erratum in: Radiographics. 2015 Sep-Oct;35(5):1624. PMID: 26207581; 

PMCID: PMC4613875. 

[33]  Mark Jenkinson and Michael Chappell, “Introduction to 
Neuroimaging Analysis “, (Oxford: Oxford University Press), 2018, 276 

pages, ISBN: 978-0198816300. 

[34]  Chappell, M., MacIntosh, B., Okell, T., 2018. Introduction to 

Perfusion Quantification Using Arterial Spin Labelling. Oxford University 

Press. 

[35]  Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: where do we 

go from here?. Brain connectivity, 1(3), 169–183. 

https://doi.org/10.1089/brain.2011.0033 

[36]  DeLaPaz R. L. (1994). Echo-planar imaging. Radiographics : a review 

publication of the Radiological Society of North America, Inc, 14(5), 1045–

1058. https://doi.org/10.1148/radiographics.14.5.7991813 

[37]  Glover G. H. (2012). Spiral imaging in fMRI. NeuroImage, 62(2), 

706–712. https://doi.org/10.1016/j.neuroimage.2011.10.039 

[38]  Glover G. H. (2011). Overview of functional magnetic resonance 

imaging. Neurosurgery clinics of North America, 22(2), 133–vii. 

https://doi.org/10.1016/j.nec.2010.11.001 

https://doi.org/10.1002/mrm.29381
https://doi.org/10.1148/radiographics.14.5.7991813
https://doi.org/10.1016/j.neuroimage.2011.10.039
https://doi.org/10.1016/j.nec.2010.11.001


 

140 

 

[39]  Jahng, G. H., Li, K. L., Ostergaard, L., & Calamante, F. 

(2014). Perfusion magnetic resonance imaging: A comprehensive update on 

principles and techniques. Korean Journal of Radiology, 15(5), 554-

577. https://doi.org/10.3348/kjr.2014.15.5.554 

[40]  Merkle, F., Haupt, B., El-Essawi, A., & Hetzer, R. (2012). State of the 

art in cardiovascular perfusion: now and in the next decade. HSR proceedings 

in intensive care & cardiovascular anesthesia, 4(4), 211–216. 

[41]  Pichler, B. J., Wehrl, H. F., Kolb, A., & Judenhofer, M. S. (2008). 

Positron emission tomography/magnetic resonance imaging: the next 

generation of multimodality imaging?. Seminars in nuclear medicine, 38(3), 

199–208. https://doi.org/10.1053/j.semnuclmed.2008.02.001 

[42]  Boxerman, J. L., Quarles, C. C., Hu, L. S., Erickson, B. J., Gerstner, 

E. R., Smits, M., Kaufmann, T. J., Barboriak, D. P., Huang, R. H., Wick, W., 

Weller, M., Galanis, E., Kalpathy-Cramer, J., Shankar, L., Jacobs, P., Chung, 

C., van den Bent, M. J., Chang, S., Al Yung, W. K., Cloughesy, T. F., … 

Jumpstarting Brain Tumor Drug Development Coalition Imaging 

Standardization Steering Committee (2020). Consensus recommendations for 

a dynamic susceptibility contrast MRI protocol for use in high-grade 

gliomas. Neuro-oncology, 22(9), 1262–1275. 

https://doi.org/10.1093/neuonc/noaa141 

[43]  Gordon, Y., Partovi, S., Müller-Eschner, M., Amarteifio, E., Bäuerle, 

T., Weber, M. A., Kauczor, H. U., & Rengier, F. (2014). Dynamic contrast-

enhanced magnetic resonance imaging: fundamentals and application to the 

evaluation of the peripheral perfusion. Cardiovascular diagnosis and 

therapy, 4(2), 147–164. https://doi.org/10.3978/j.issn.2223-3652.2014.03.01 

[44]  Liu W, Lou X, Ma L. (2016). Use of 3D pseudo-continuous arterial 

spin labeling to characterize sex and age differences in cerebral blood flow. 

Neuroradiology. 58:943–48. https://doi.org/10.1007/s00234-016-1713-y 

PMID:27380039 

[45]  Preibisch, C., Sorg, C., Förschler, A., Grimmer, T., Sax, I., 

Wohlschläger, A. M., Perneczky, R., Förstl, H., Kurz, A., Zimmer, C., & 

Alexopoulos, P. (2011). Age-related cerebral perfusion changes in the parietal 

and temporal lobes measured by pulsed arterial spin labeling. Journal of 

magnetic resonance imaging : JMRI, 34(6), 1295–1302. 

https://doi.org/10.1002/jmri.22788 

[46]  Lee, C., Lopez, O. L., Becker, J. T., Raji, C., Dai, W., Kuller, L. H., & 

Gach, H. M. (2009). Imaging cerebral blood flow in the cognitively normal 

aging brain with arterial spin labeling: implications for imaging of 

neurodegenerative disease. Journal of neuroimaging : official journal of the 

American Society of Neuroimaging, 19(4), 344–352. 

https://doi.org/10.1111/j.1552-6569.2008.00277.x 

[47]  Lu H, Clingman C, Golay X, van Zijl PC. Determining the 

longitudinal relaxation time (T1) of blood at 3.0 Tesla. Magnetic resonance in 

medicine : official journal of the Society of Magnetic Resonance in Medicine 

/ Society of Magnetic Resonance in Medicine. 2004; 52(3):679–682.  

https://doi.org/10.1053/j.semnuclmed.2008.02.001
https://doi.org/10.1093/neuonc/noaa141
https://doi.org/10.3978/j.issn.2223-3652.2014.03.01
https://doi.org/10.1007/s00234-016-1713-y%20PMID:27380039
https://doi.org/10.1007/s00234-016-1713-y%20PMID:27380039


 

141 

 

[48]  Zhang X, Petersen ET, Ghariq E, De Vis JB, Webb AG, Teeuwisse 

WM, Hendrikse J, van Osch MJ. In vivo blood T(1) measurements at 1.5 T, 3 

T, and 7 T. Magnetic resonance in medicine : official journal of the Society of 

Magnetic Resonance in Medicine / Society of Magnetic Resonance in 

Medicine. 2012 10. 1002/mrm.24550. 

[49]  Petersen ET, Mouridsen K, Golay X. The QUASAR reproducibility 

study, Part II: Results from a multi-center Arterial Spin Labeling test-retest 

study. NeuroImage. 2010; 49(1):104–113. [PubMed: 19660557] 

[50]  Bokkers RP, van der Worp HB, Mali WP, Hendrikse J. Noninvasive 

MR imaging of cerebral perfusion in patients with a carotid artery stenosis. 

Neurology. 2009; 73(11):869–875. [PubMed: 19752454] 

[51]  Qiu M, Paul Maguire R, Arora J, Planeta-Wilson B, Weinzimmer D, 

Wang J, Wang Y, Kim H, Rajeevan N, Huang Y, Carson RE, Constable RT. 

Arterial transit time effects in pulsed arterial spin labeling CBF mapping: 

insight from a PET and MR study in normal human subjects. Magn Reson 

Med. 2010 Feb;63(2):374-84. doi: 10.1002/mrm.22218. PMID: 19953506; 

PMCID: PMC2867043. 

[52]  Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance 

imaging of perfusion using spin inversion of arterial water. Proceedings of the 

National Academy of Sciences of the United States of America. 1992; 

89(1):212–216. [PubMed: 1729691] 

[53]  Kim SG. Quantification of relative cerebral blood flow change by 
flow-sensitive alternating inversion recovery (FAIR) technique: application to 

functional mapping. Magnetic resonance in medicine : official journal of the 

Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance 

in Medicine. 1995; 34(3):293–301. 

[54]  Petcharunpaisan, S., Ramalho, J., & Castillo, M. (2010). Arterial spin 

labeling in neuroimaging. World journal of radiology, 2(10), 384–398. 

https://doi.org/10.4329/wjr.v2.i10.384 

[55]  Trampel R, Jochimsen TH, Mildner T, Norris DG, Möller HE. 

Efficiency of flow-driven adiabatic spin inversion under realistic 

experimental conditions: a computer simulation. Magn Reson Med. 2004 

Jun;51(6):1187-93. doi: 10.1002/mrm.20080. PMID: 15170839. 

[56]  Wong EC, Buxton RB, Frank LR. Quantitative imaging of perfusion 

using a single subtraction (QUIPSS and QUIPSS II).Magn Reson Med 

1998;39:702-708. 

[57]  Noguchi T, Nishihara M, Hara Y, Hirai T, Egashira Y, Azama S, Irie 

H. A technical perspective for understanding quantitative arterial spin-

labeling MR imaging using Q2TIPS. Magn Reson Med Sci. 2015;14(1):1-12. 

doi: 10.2463/mrms.2013-0064. Epub 2014 Dec 15. PMID: 25500774.  

[58]  Borogovac A, Asllani I. Arterial Spin Labeling (ASL) fMRI: 
advantages, theoretical constrains, and experimental challenges in 

neurosciences. Int J Biomed Imaging. 2012;2012:818456. doi: 

https://doi.org/10.4329/wjr.v2.i10.384


 

142 

 

10.1155/2012/818456. Epub 2012 Feb 22. Erratum in: Int J Biomed Imaging. 

2012;2012:658101. PMID: 22966219; PMCID: PMC3432878. 

[59]  Maleki N, Dai W, Alsop DC. Optimization of background suppression 

for arterial spin labeling perfusion imaging. MAGMA. 2012; 25(2):127–133. 

[PubMed: 22009131]  

[60]  Garcia DM, Duhamel G, Alsop DC. Efficiency of inversion pulses for 

background suppressed arterial spin labeling. Magnetic resonance in 

medicine : official journal of the Society of Magnetic Resonance in Medicine 

/ Society of Magnetic Resonance in Medicine. 2005; 54(2):366–372. 

[61]  Vidorreta M, Wang Z, Rodriguez I, Pastor MA, Detre JA, Fernandez-

Seara MA. Comparison of 2D and 3D single-shot ASL perfusion fMRI 

sequences. NeuroImage. 2012; 66C:662–671. [PubMed: 23142069]  

[62]  Nielsen JF, Hernandez-Garcia L. Functional perfusion imaging using 

pseudocontinuous arterial spin labeling with low-flip-angle segmented 3D 

spiral readouts. Magnetic resonance in medicine : official journal of the 

Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance 

in Medicine. 2013; 69(2):382–390. 

[63]  Chang, Y. V., Vidorreta, M., Wang, Z., & Detre, J. A. (2017). 3D-

accelerated, stack-of-spirals acquisitions and reconstruction of arterial spin 

labeling MRI. Magnetic resonance in medicine, 78(4), 1405–1419. 

https://doi.org/10.1002/mrm.26549 

[64]  Nachmani A, Schurr R, Joskowicz L, Mezer AA. The effect of motion 

correction interpolation on quantitative T1 mapping with MRI. Med Image 

Anal. 2019 Feb;52:119-127. doi: 10.1016/j.media.2018.11.012. Epub 2018 

Dec 1. PMID: 30529225. 

[65]  Tsao J. (2010). Ultrafast imaging: principles, pitfalls, solutions, and 

applications. Journal of magnetic resonance imaging : JMRI, 32(2), 252–266. 

https://doi.org/10.1002/jmri.22239 

[66]  Grade, M., Hernandez Tamames, J. A., Pizzini, F. B., Achten, E., 
Golay, X., & Smits, M. (2015). A neuroradiologist's guide to arterial spin 

labeling MRI in clinical practice. Neuroradiology, 57(12), 1181–1202. 

https://doi.org/10.1007/s00234-015-1571-z 

[67]  Madai, V. I., Martin, S. Z., von Samson-Himmelstjerna, F. C., Herzig, 

C. X., Mutke, M. A., Wood, C. N., Thamm, T., Zweynert, S., Bauer, M., 

Hetzer, S., Günther, M., & Sobesky, J. (2016). Correction for Susceptibility 
Distortions Increases the Performance of Arterial Spin Labeling in Patients 

with Cerebrovascular Disease. Journal of neuroimaging : official journal of 

the American Society of Neuroimaging, 26(4), 436–444. 

https://doi.org/10.1111/jon.12331 

[68]  Rong, Y., Rosu-Bubulac, M., Benedict, S. H., Cui, Y., Ruo, R., 

Connell, T., Kashani, R., Latifi, K., Chen, Q., Geng, H., Sohn, J., & Xiao, Y. 
(2021). Rigid and Deformable Image Registration for Radiation Therapy: A 

Self-Study Evaluation Guide for NRG Oncology Clinical Trial 

https://doi.org/10.1002/mrm.26549
https://doi.org/10.1007/s00234-015-1571-z
https://doi.org/10.1111/jon.12331


 

143 

 

Participation. Practical radiation oncology, 11(4), 282–298. 

https://doi.org/10.1016/j.prro.2021.02.007 

[69]  Crum, W. R., Hartkens, T., & Hill, D. L. (2004). Non-rigid image 

registration: theory and practice. The British journal of radiology, 77 Spec No 

2, S140–S153. https://doi.org/10.1259/bjr/25329214 

[70]  Diedrichsen, J., Balsters, J. H., Flavell, J., Cussans, E., & Ramnani, N. 

(2009). A probabilistic MR atlas of the human 

cerebellum. neuroimage, 46(1), 39-46. 

[71]  Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved 

optimization for the robust and accurate linear registration and motion 

correction of brain images. Neuroimage, 17(2), 825-841. 

[72]  Buxton, R. B., Frank, L. R., Wong, E. C., Siewert, B., Warach, S., & 

Edelman, R. R. (1998). A general kinetic model for quantitative perfusion 

imaging with arterial spin labeling. Magnetic resonance in medicine, 40(3), 

383–396. https://doi.org/10.1002/mrm.1910400308 

[73]  Mutsaerts, H.J.M.M., Richard, E., Heijtel, D.F.R., Van Osch, M.J.P., 

Majoie, C.B.L.M., Nederveen, A.J., 2014. Gray matter contamination in 

arterial spin labeling white matter perfusion measurements in patients with 

dementia. NeuroImage Clin. 4, 139–144. 

https://doi.org/10.1016/j.nicl.2013.11.003. Review Article. 

[74]  Golay, X., Hendrikse, J., Lim, T.C.C., 2004. Perfusion imaging using 

arterial spin labeling. Top. Magn. Reson. Imaging 15, 10–27. 

https://doi.org/10.1097/00002142 200402000-00003. 

[75]  Johnson, N.A., Jahng, G.-H., Weiner, M.W., Miller, B.L., Chui, H.C., 
Jagust, W.J., Gorno Tempini, M.L., Schuff, N., 2005. Pattern of cerebral 

hypoperfusion in Alzheimer disease and mild cognitive impairment measured 

with arterial spin-labeling MR imaging: initial Experience1. Radiology 234, 

851–859. https://doi.org/10.1148/ radiol.2343040197. 

[76]  Le Heron, C.J., Wright, S.L., Melzer, T.R., Myall, D.J., Macaskill, 
M.R., Livingston, L., Keenan, R.J., Watts, R., Dalrymple-Alford, J.C., 

Anderson, T.J., 2014. Comparing cerebral perfusion in Alzheimer's disease 

and Parkinson's disease dementia: an ASL MRI study. J. Cereb. Blood Flow. 

Metab. 34, 1–7. https://doi.org/10.1038/ jcbfm.2014.40. 

[77]  Henery, C.C., Mayhew, T.M., 1989. The cerebrum and cerebellum of 

the fixed human brain: efficient and unbiased estimates of volumes and 

cortical surface areas. J. Anat. 167, 167–180. 

[78]  Steketee, R.M.E., Bron, E.E., Meijboom, R., Houston, G.C., Klein, S., 

Mutsaerts, H.J.M.M., Mendez Orellana, C.P., de Jong, F.J., van Swieten, J.C., 

van der Lugt, A., Smits, M., 2015. Early-stage differentiation between 

presenile Alzheimer's disease and frontotemporal dementia using arterial spin 

labeling MRI. Eur. Radiol. https:// doi.org/10.1007/s00330-015-3789-x. 

[79]  Zhao, M.Y., Petersen, E.T., Chappell, M.A., 2016. Cerebral perfusion 

quantification using Turbo-QUASAR arterial spin labelling MRI: a model-

based approach. Proc. MEIBioeng 2–4. 

https://doi.org/10.1016/j.prro.2021.02.007
https://doi.org/10.1259/bjr/25329214


 

144 

 

[80]  Groves, A.R., Chappell, M.A., Woolrich, M.W., 2009. Combined 

spatial and non-spatial prior for inference on MRI time-series. Neuroimage 

45, 795–809. https://doi.org/ 10.1016/j.neuroimage.2008.12.027. 

[81]  Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005. Bayesian 

fMRI time series analysis with spatial priors. Neuroimage 24, 350–362. 

https://doi.org/10.1016/ j.neuroimage.2004.08.034. 

[82]  Jaganmohan, D., Pan, S., Kesavadas, C., & Thomas, B. (2021). A 

pictorial review of brain arterial spin labelling artefacts and their potential 

remedies in clinical studies. The neuroradiology journal, 34(3), 154–168. 

https://doi.org/10.1177/1971400920977031 

[83]  Esteban, O., Birman, D., Schaer, M., Koyejo, O. O., Poldrack, R. A., 
& Gorgolewski, K. J. (2017). MRIQC: Advancing the automatic prediction of 

image quality in MRI from unseen sites. PloS one, 12(9), e0184661. 

https://doi.org/10.1371/journal.pone.0184661 

[84]  Cox R. W. (1996). AFNI: software for analysis and visualization of 

functional magnetic resonance neuroimages. Computers and biomedical 

research, an international journal, 29(3), 162–173. 

https://doi.org/10.1006/cbmr.1996.0014 

[85]  Mutsaerts, H. J. M. M., Petr, J., Groot, P., Vandemaele, P., Ingala, S., 

Robertson, A. D., Václavů, L., Groote, I., Kuijf, H., Zelaya, F., O'Daly, O., 

Hilal, S., Wink, A. M., Kant, I., Caan, M. W. A., Morgan, C., de Bresser, J., 

Lysvik, E., Schrantee, A., Bjørnebekk, A., … Barkhof, F. (2020). 
ExploreASL: An image processing pipeline for multi-center ASL perfusion 

MRI studies. NeuroImage, 219, 117031. 

https://doi.org/10.1016/j.neuroimage.2020.117031 

[86]  Adebimpe, A., Bertolero, M., Dolui, S., Cieslak, M., Murtha, K., 

Baller, E. B., Boeve, B., Boxer, A., Butler, E. R., Cook, P., Colcombe, S., 

Covitz, S., Davatzikos, C., Davila, D. G., Elliott, M. A., Flounders, M. W., 
Franco, A. R., Gur, R. E., Gur, R. C., Jaber, B., … Satterthwaite, T. D. (2022). 

ASLPrep: a platform for processing of arterial spin labeled MRI and 

quantification of regional brain perfusion. Nature methods, 19(6), 683–686. 

https://doi.org/10.1038/s41592-022-01458-7 

[87]  Woodard, J. P., & Carley-Spencer, M. P. (2006). No-reference image 

quality metrics for structural MRI. Neuroinformatics, 4(3), 243–262. 

https://doi.org/10.1385/NI:4:3:243 

[88]  Mortamet, B., Bernstein, M. A., Jack, C. R., Jr, Gunter, J. L., Ward, 

C., Britson, P. J., Meuli, R., Thiran, J. P., Krueger, G., & Alzheimer's Disease 

Neuroimaging Initiative (2009). Automatic quality assessment in structural 

brain magnetic resonance imaging. Magnetic resonance in medicine, 62(2), 

365–372. https://doi.org/10.1002/mrm.21992 

[89]  Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, 

A. C., Harvey, D. J., Jack, C. R., Jr, Jagust, W. J., Shaw, L. M., Toga, A. W., 

Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer's Disease 

Neuroimaging Initiative (ADNI): clinical characterization. Neurology, 74(3), 

201–209. https://doi.org/10.1212/WNL.0b013e3181cb3e25 

https://doi.org/10.1177/1971400920977031
https://doi.org/10.1371/journal.pone.0184661
https://doi.org/10.1016/j.neuroimage.2020.117031
https://doi.org/10.1385/NI:4:3:243


 

145 

 

[90]  Pizarro, R. A., Cheng, X., Barnett, A., Lemaitre, H., Verchinski, B. A., 

Goldman, A. L., Xiao, E., Luo, Q., Berman, K. F., Callicott, J. H., 

Weinberger, D. R., & Mattay, V. S. (2016). Automated Quality Assessment of 

Structural Magnetic Resonance Brain Images Based on a Supervised Machine 
Learning Algorithm. Frontiers in neuroinformatics, 10, 52. 

https://doi.org/10.3389/fninf.2016.00052 

[91]  Kuncheva, L.I., 2004. Combining Pattern Classifiers: Methods and 

Algorithms. John Wiley & Sons. 

[92]  Kittler, J., Hatef, M., Duin, R.P., Matas, J., 1998. On combining 

classifiers. IEEE Trans. Pattern Analysis Mach. Intell. 20 (3), 226–239. 

[93]  Lepping, R. J., Yeh, H. W., McPherson, B. C., Brucks, M. G., Sabati, 
M., Karcher, R. T., Brooks, W. M., Habiger, J. D., Papa, V. B., & Martin, L. 

E. (2023). Quality control in resting-state fMRI: the benefits of visual 

inspection. Frontiers in neuroscience, 17, 1076824. 

https://doi.org/10.3389/fnins.2023.1076824 

[94]  Lu, W., Dong, K., Cui, D., Jiao, Q., & Qiu, J. (2019). Quality 

assurance of human functional magnetic resonance imaging: a literature 
review. Quantitative imaging in medicine and surgery, 9(6), 1147–1162. 

https://doi.org/10.21037/qims.2019.04.18 

[95]  Reynolds, R. C., Taylor, P. A., & Glen, D. R. (2023). Quality control 

practices in FMRI analysis: Philosophy, methods and examples using 

AFNI. Frontiers in neuroscience, 16, 1073800. 

https://doi.org/10.3389/fnins.2022.1073800 

[96]  Shehzad Z, Giavasis S, Li Q, Benhajali Y, Yan C, Yang Z, Milham M, 

Bellec P and Craddock C (2015). The Preprocessed Connectomes Project 

Quality Assessment Protocol - a resource for measuring the quality of MRI 

data.. Front. Neurosci. Conference Abstract: Neuroinformatics 2015. doi: 

10.3389/conf.fnins.2015.91.00047 

[97]  Atkinson D, Hill DL, Stoyle PN, Summers PE, Keevil SF (1997). 

Automatic correction of motion artifacts in magnetic resonance images using 

an entropy focus criterion. IEEE Trans Med Imaging. 16(6):903-10. 

[98]  Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., 

Glover, G. H., … & Potkin, S. G. (2008). Test–retest and between‐site 

reliability in a multicenter fMRI study. Human brain mapping, 29(8), 958-972 

[99]  Nichols, T. (2012, Oct 28). Standardizing DVARS. Retrieved from 

http://blogs.warwick.ac.uk/nichols/entry/standardizing_dvars. 

[100]  Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & 

Petersen, S. E. (2012) Spurious but systematic correlations in functional 

connectivity MRI networks arise from subject motion. Neuroimage 59, 2142-

2154. 

[101]  Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., 

Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., 

Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, 

L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., … Milham, M. 

https://doi.org/10.3389/fninf.2016.00052
https://doi.org/10.21037/qims.2019.04.18


 

146 

 

P. (2014). The autism brain imaging data exchange: towards a large-scale 

evaluation of the intrinsic brain architecture in autism. Molecular 

psychiatry, 19(6), 659–667. https://doi.org/10.1038/mp.2013.78 

[102]  Zuo, X. N., Anderson, J. S., Bellec, P., Birn, R. M., Biswal, B. B., 

Blautzik, J., Breitner, J. C., Buckner, R. L., Calhoun, V. D., Castellanos, F. X., 

Chen, A., Chen, B., Chen, J., Chen, X., Colcombe, S. J., Courtney, W., 

Craddock, R. C., Di Martino, A., Dong, H. M., Fu, X., … Milham, M. P. 

(2014). An open science resource for establishing reliability and 

reproducibility in functional connectomics. Scientific data, 1, 140049. 

https://doi.org/10.1038/sdata.2014.49 

[103]  Provins C, MacNicol E, Seeley SH, Hagmann P and Esteban O (2023) 

Quality control in functional MRI studies with MRIQC and fMRIPrep. Front. 

Neuroimaging 1:1073734. doi: 10.3389/fnimg.2022.1073734 

[104]  Fallatah, S. M., Pizzini, F. B., Gomez-Anson, B., Magerkurth, J., De 

Vita, E., Bisdas, S., Jäger, H. R., Mutsaerts, H. J. M. M., & Golay, X. (2018). 

A visual quality control scale for clinical arterial spin labeling 

images. European radiology experimental, 2(1), 45. 

https://doi.org/10.1186/s41747-018-0073-2 

[105]  Pernet, Cyril. 2019. “SPM U+.” Open Science Framework. March 16, 

2019. https://osf.io/wn3h8/. 

[106]  Gorgolewski, K. J. et al. The brain imaging data structure, a format 

for organizing and describing outputs of neuroimaging experiments. Sci. Data 

3, 160044 (2016). 

[107]  Dolui, S. et al. Structural Correlation-based Outlier Rejection 

(SCORE) algorithm for arterial spin labeling time series: SCORE: denoising 

algorithm for ASL. J. Magn. Reson. Imaging 45, 1786–1797 (2017). 

[108]  Dolui, S. SCRUB: a structural correlation and empirical robust 

Bayesian method for ASL data. In Proc. International Society for Magnetic 

Resonance in Medicine, Singapore, May 

http://archive.ismrm.org/2016/2880.html (ISMRM, 2016). 

[109]  Michael A. Chappell, Thomas F. Kirk, Martin S. Craig, Flora A. 

Kennedy McConnell, Moss Y. Zhao, Bradley J. MacIntosh, Thomas W. 

Okell, Mark W. Woolrich; BASIL: A toolbox for perfusion quantification 

using arterial spin labelling. Imaging Neuroscience 2023; 1 1–16. 

doi: https://doi.org/10.1162/imag_a_00041 

[110]  Li, W., Mo, W., Zhang, X., Squiers, J. J., Lu, Y., Sellke, E. W., Fan, 

W., DiMaio, J. M., & Thatcher, J. E. (2015). Outlier detection and removal 

improves accuracy of machine learning approach to multispectral burn 

diagnostic imaging. Journal of biomedical optics, 20(12), 121305. 

https://doi.org/10.1117/1.JBO.20.12.121305 

[111]  K. Li, C. Ye, Z. Yang, A. Carass, S. H. Ying, and J. L. Prince, “Quality 
assurance using outlier detection on an automatic segmentation method for 

the cerebellar peduncles,” in Medical Imaging 2016: Image Processing, vol. 

9784. International Society for Optics and Photonics, 2016, p. 97841H. 

https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/sdata.2014.49
https://doi.org/10.1186/s41747-018-0073-2
https://osf.io/wn3h8/
https://doi.org/10.1162/imag_a_00041
https://doi.org/10.1117/1.JBO.20.12.121305


 

147 

 

[112]  A. F. Mejia, M. B. Nebel, A. Eloyan, B. Caffo, and M. A. Lindquist, 

“Pca leverage: outlier detection for high-dimensional functional mag netic 

resonance imaging data,” Biostatistics, vol. 18, no. 3, pp. 521–536, 2017.  

[113]  C.-M. Kim, E. J. Hong, and R. C. Park, “Chest x-ray outlier detection 

model using dimension reduction and edge detection,” IEEE Access, 2021. 

optics, vol. 20, no. 12, p. 121305, 2015.  

[114]  Ahmad, A., Parker, D., Dheer, S., Samani, Z. R., & Verma, R. (2023). 

3D-QCNet - A pipeline for automated artifact detection in diffusion MRI 

images. Computerized medical imaging and graphics : the official journal of 

the Computerized Medical Imaging Society, 103, 102151. 

https://doi.org/10.1016/j.compmedimag.2022.102151 

[115]  Samani ZR, Alappatt JA, Parker D, Ismail AAO and Verma R (2020) 

QC-Automator: Deep Learning-Based Automated Quality Control for 

Diffusion MR Images. Front. Neurosci. 13:1456. doi: 

10.3389/fnins.2019.01456 

[116]  Ding, Y., Suffren, S., Bellec, P., & Lodygensky, G. A. (2019). 

Supervised machine learning quality control for magnetic resonance artifacts 

in neonatal data sets. Human brain mapping, 40(4), 1290–1297. 

https://doi.org/10.1002/hbm.24449 

[117]  Hendriks, J., Mutsaerts, HJ., Joules, R. et al. A systematic review of 

(semi-)automatic quality control of T1-weighted MRI 

scans. Neuroradiology 66, 31–42 (2024). https://doi.org/10.1007/s00234-023-

03256-0 

[118]  Yamashita, R., Nishio, M., Do, R.K.G. et al. Convolutional neural 
networks: an overview and application in radiology. Insights Imaging 9, 611–

629 (2018). https://doi.org/10.1007/s13244-018-0639-9 

[119]  Diederik P. Kingma; Max Welling, An Introduction to Variational 

Autoencoders , now, 2019. 

[120]  Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, 

D., Ozair, S., Courville, A., & Bengio, Y. (2020). Generative adversarial 

networks. Communications of theACM,63(11), 139–

144.https://doi.org/10.1145/3422622 

[121]  M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt and B. Scholkopf, 

"Support vector machines," in IEEE Intelligent Systems and their 

Applications, vol. 13, no. 4, pp. 18-28, July-Aug. 1998, doi: 

10.1109/5254.708428. 

[122]  Gao, L., Zhang, L., Liu, C., & Wu, S. (2020). Handling imbalanced 

medical image data: A deep-learning-based one-class classification 

approach. Artificial intelligence in medicine, 108, 101935. 

https://doi.org/10.1016/j.artmed.2020.101935 

[123]  Amari, S. I. (1993). Backpropagation and stochastic gradient descent 

method. Neurocomputing, 5(4-5), 185-196. 

https://doi.org/10.1016/j.compmedimag.2022.102151
https://doi.org/10.1002/hbm.24449
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.artmed.2020.101935


 

148 

 

[124]  Kingma, D. P. (2014). Adam: A method for stochastic 

optimization. arXiv preprint arXiv:1412.6980. 

[125]  Block, H. D. (1962). The perceptron: A model for brain functioning. 

i. Reviews of Modern Physics, 34(1), 123. 

[126]  Agarap AF. Deep learning using rectifed linear units (relu). 2018. 

arXiv preprint arXiv:1803.08375. 

[127]  Lundervold AS, Lundervold A. An overview of deep learning in 

medical imaging focusing on MRI. Z Für Med Phys 2019;29:102–27. 

https://doi.org/10.1016/j.zemedi.2018.11.002. 

[128]  Ronneberger O., Fischer P., and Brox T. U-Net: Convolutional 

networks for biomedical image segmentation. In MICCAI, 2015 

[129]  M R, Anala & Makker, Malika & Ashok, Aakanksha. (2019). 
Anomaly Detection in Surveillance Videos. 93-98. 

10.1109/HiPCW.2019.00031. 

[130]  D. Kwon, K. Natarajan, S. C. Suh, H. Kim and J. Kim, "An Empirical 

Study on Network Anomaly Detection Using Convolutional Neural 

Networks," 2018 IEEE 38th International Conference on Distributed 

Computing Systems (ICDCS), Vienna, Austria, 2018, pp. 1595-1598, doi: 

10.1109/ICDCS.2018.00178.  

[131]  Minhas, M. S., & Zelek, J. (2019). Anomaly detection in 

images. arXiv preprint arXiv:1905.13147. 

[132]  Q. Wei, Y. Ren, R. Hou, B. Shi, J. Y. Lo, and L. Carin, “Anomaly 

detection for medical images based on a one-class classification,” in Medical 

Imaging 2018: Computer-Aided Diagnosis, vol. 10575. International Society 

for Optics and Photonics, 2018, p. 105751M. 

[133]  Tschuchnig, M. E., & Gadermayr, M. (2022, March). Anomaly 

detection in medical imaging-a mini review. In Data Science–Analytics and 

Applications: Proceedings of the 4th International Data Science Conference–

iDSC2021 (pp. 33-38). Wiesbaden: Springer Fachmedien Wiesbaden. 

[134]  Han, C., Rundo, L., Murao, K., Noguchi, T., Shimahara, Y., Milacski, 

Z. Á., ... & Satoh, S. I. (2021). MADGAN: Unsupervised medical anomaly 
detection GAN using multiple adjacent brain MRI slice reconstruction. BMC 

bioinformatics, 22, 1-20. 

[135]  T. Schlegl, P. Seeb¨ ock, S. M. Waldstein, G. Langs, and U. Schmidt 

Erfurth, “f-anogan: Fast unsupervised anomaly detection with genera tive 

adversarial networks,” Medical image analysis, vol. 54, pp. 30–44, 2019. 

[136]  D. ˇ Stepec and D. Skoˇ caj, “Image synthesis as a pretext for 

unsupervised histopathological diagnosis,” in International Workshop on 

Simulation and Synthesis in Medical Imaging. Springer, 2020, pp. 174–183. 

[137]  T. Fujioka, K. Kubota, M. Mori, Y. Kikuchi, L. Katsuta, M. Kimura, 

E. Yamaga, M. Adachi, G. Oda, T. Nakagawa et al., “Efficient anomaly 

detection with generative adversarial network for breast ultrasound imaging,” 

Diagnostics, vol. 10, no. 7, p. 456, 2020. 



 

149 

 

[138]  Peters R. (2006). Ageing and the brain. Postgraduate medical 

journal, 82(964), 84–88. https://doi.org/10.1136/pgmj.2005.036665  

[139]  VS Fonov, AC Evans, RC McKinstry, CR Almli and DL Collins, 

Unbiased nonlinear average age-appropriate brain templates from birth to 

adulthood, NeuroImage, Volume 47, Supplement 1, July 2009, Page S102 

Organization for Human Brain Mapping 2009 Annual Meeting, 

DOI: http://dx.doi.org/10.1016/S1053-8119(09)70884-5 

[140]  Funck, T., Paquette, C., Evan s, A., & Thiel, A. (2014). Surface-based 

partial-volume correction for high-resolution PET. NeuroImage, Suppl.Part 

2, 102, 674-87. doi:https://doi.org/10.1016/j.neuroimage.2014.08.037 

[141]  Blinkouskaya, Y., & Weickenmeier, J. (2021). Brain Shape Changes 
Associated With Cerebral Atrophy in Healthy Aging and Alzheimer's 

Disease. Frontiers in Mechanical Engineering, 7, 705653. 

https://doi.org/10.3389/fmech.2021.705653 

[142]  Dickstein, D. L., Kabaso, D., Rocher, A. B., Luebke, J. I., Wearne, S. 

L., & Hof, P. R. (2007). Changes in the structural complexity of the aged 

brain. Aging cell, 6(3), 275–284. https://doi.org/10.1111/j.1474-

9726.2007.00289.x 

[143]  Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W., & Zlokovic, 

B. V. (2018). The role of brain vasculature in neurodegenerative 

disorders. Nature neuroscience, 21(10), 1318–1331. 

https://doi.org/10.1038/s41593-018-0234-x  

[144]  Payne, S. (2016). “Cerebral Autoregulation : Control of Blood Flow in 

the Brain,” in SpringerBriefs in Bioengineering, 1st Edn, (Cham: Springer 

International Publishing). 

[145]  Huber, W., Zanner, R., Schneider, G., Schmid, R., & Lahmer, T. 

(2019). Assessment of Regional Perfusion and Organ Function: Less and 

Non-invasive Techniques. Frontiers in medicine, 6, 50. 

https://doi.org/10.3389/fmed.2019.00050 

[146]  Fantini, S., Sassaroli, A., Tgavalekos, K. T., & Kornbluth, J. (2016). 

Cerebral blood flow and autoregulation: current measurement techniques and 

prospects for noninvasive optical methods. Neurophotonics, 3(3), 031411. 

https://doi.org/10.1117/1.NPh.3.3.031411 

[147]  Claassen, J. A. H. R., Thijssen, D. H. J., Panerai, R. B., & Faraci, F. 

M. (2021). Regulation of cerebral blood flow in humans: physiology and 
clinical implications of autoregulation. Physiological reviews, 101(4), 1487–

1559. https://doi.org/10.1152/physrev.00022.2020 

[148]  Zhang, N., Gordon, M. L., Ma, Y., Chi, B., Gomar, J. J., Peng, S., 

Kingsley, P. B., Eidelberg, D., & Goldberg, T. E. (2018). The Age-Related 

Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy 

Subjects. Frontiers in aging neuroscience, 10, 214. 

https://doi.org/10.3389/fnagi.2018.00214 

http://dx.doi.org/10.1016/S1053-8119(09)70884-5


 

150 

 

[149]  Hernandez-Garcia, L., Lahiri, A., & Schollenberger, J. (2019). Recent 

progress in ASL. NeuroImage, 187, 3–16. 

https://doi.org/10.1016/j.neuroimage.2017.12.095 

[150]  Chen, J. J., Rosas, H. D., & Salat, D. H. (2011). Age-associated 

reductions in cerebral blood flow are independent from regional 

atrophy. NeuroImage, 55(2), 468–478. 

https://doi.org/10.1016/j.neuroimage.2010.12.032 

[151]  Bertsch, K., Hagemann, D., Hermes, M., Walter, C., Khan, R., & 

Naumann, E. (2009). Resting cerebral blood flow, attention, and aging. Brain 

research, 1267, 77–88. https://doi.org/10.1016/j.brainres.2009.02.053 

[152]  Tarumi, T., Ayaz Khan, M., Liu, J., Tseng, B. Y., Parker, R., Riley, J., 
Tinajero, C., & Zhang, R. (2014). Cerebral hemodynamics in normal aging: 

central artery stiffness, wave reflection, and pressure pulsatility. Journal of 

cerebral blood flow and metabolism : official journal of the International 

Society of Cerebral Blood Flow and Metabolism, 34(6), 971–978. 

https://doi.org/10.1038/jcbfm.2014.44 

[153]  H. W. Müller-Gärtner et al., (1992). “Measurement of radiotracer 
concentration in brain gray matter using positron emission tomography: MRI- 

based correction for partial volume effects,” J. Cerebral Blood Flow 

Metabolism, vol. 12, no. 4, pp. 571–583, Jul.  

[154]  Fischl B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. 

https://doi.org/10.1016/j.neuroimage.2012.01.021 

[155]  Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., 

Fischl, B., Andersson, J. L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J. R., 

Van Essen, D. C., Jenkinson, M., & WU-Minn HCP Consortium (2013). The 

minimal preprocessing pipelines for the Human Connectome 

Project. NeuroImage, 80, 105–124. 

https://doi.org/10.1016/j.neuroimage.2013.04.127 

[156]  Greve, D. N., Svarer, C., Fisher, P. M., Feng, L., Hansen, A. E., Baare, 

W., Rosen, B., Fischl, B., & Knudsen, G. M. (2014). Cortical surface-based 

analysis reduces bias and variance in kinetic modeling of brain PET 

data. NeuroImage, 92, 225–236. 

https://doi.org/10.1016/j.neuroimage.2013.12.021  

[157]  Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based 

analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–

194. https://doi.org/10.1006/nimg.1998.0395  

[158]  Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the 

human cerebral cortex from magnetic resonance images. Proceedings of the 

National Academy of Sciences of the United States of America, 97(20), 

11050–11055. https://doi.org/10.1073/pnas.200033797  

[159]  Park, H. J., Lee, J. D., Chun, J. W., Seok, J. H., Yun, M., Oh, M. K., & 
Kim, J. J. (2006). Cortical surface-based analysis of 18F-FDG PET: measured 

metabolic abnormalities in schizophrenia are affected by cortical structural 



 

151 

 

abnormalities. NeuroImage, 31(4), 1434–1444. 

https://doi.org/10.1016/j.neuroimage.2006.02.001 

[160]  Ferreira D, Nedelska Z, Graff-Radford J, Przybelski SA, Lesnick TG, 

Schwarz CG, Botha H, Senjem ML, Fields JA, Knopman DS, Savica R, 

Ferman TJ, Graff-Radford NR, Lowe VJ, Jack CR, Petersen RC, Lemstra 

AW, van de Beek M, Barkhof F, Blanc F, Loureiro de Sousa P, Philippi N, 

Cretin B, Demuynck C, Hort J, Oppedal K, Boeve BF, Aarsland D, Westman 

E, Kantarci K. Cerebrovascular disease, neurodegeneration, and clinical 

phenotype in dementia with Lewy bodies. Neurobiol Aging. 2021 

Sep;105:252-261. doi: 10.1016/j.neurobiolaging.2021.04.029. Epub 2021 

May 14. PMID: 34130107; PMCID: PMC8338792. 

[161]  Taso, M., Munsch, F., Zhao, L., & Alsop, D. C. (2021). Regional and 

depth-dependence of cortical blood-flow assessed with high-resolution 

Arterial Spin Labeling (ASL). Journal of cerebral blood flow and 

metabolism : official journal of the International Society of Cerebral Blood 
Flow and Metabolism, 41(8), 1899–1911. 

https://doi.org/10.1177/0271678X20982382 

[162]  Verclytte, S., Lopes, R., Delmaire, C., Ferre, J. C., Pasquier, F., & 

Leclerc, X. (2015). Optimization of brain perfusion image quality by cortical 

surface-based projection of arterial spin labeling maps in early-onset 

Alzheimer's disease patients. European radiology, 25(8), 2479–2484. 

https://doi.org/10.1007/s00330-015-3652-0 

[163]  Leidhin, C. N., McMorrow, J., Carey, D., Newman, L., Williamson, 

W., Fagan, A. J., Chappell, M. A., Kenny, R. A., Meaney, J. F., & Knight, S. 

P. (2021). Age-related normative changes in cerebral perfusion: Data from 

The Irish Longitudinal Study on Ageing (TILDA). NeuroImage, 229, 117741. 

https://doi.org/10.1016/j.neuroimage.2021.117741 

[164]  Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., 

Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, 

I., Flitney, D. E., Niazy, R. K., Saunders, J., Vickers, J., Zhang, Y., De 

Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional 

and structural MR image analysis and implementation as 

FSL. NeuroImage, 23 Suppl 1, S208–S219. 

https://doi.org/10.1016/j.neuroimage.2004.07.051 

[165]  Kirk, T. F., Coalson, T. S., Craig, M. S., & Chappell, M. A. (2020). 

Toblerone: Surface-Based Partial Volume Estimation. IEEE transactions on 

medical imaging, 39(5), 1501–1510. 

https://doi.org/10.1109/TMI.2019.2951080 

[166]  Kearney, P. M., Cronin, H., O'Regan, C., Kamiya, Y., Savva, G. M., 

Whelan, B., & Kenny, R. (2011). Cohort profile: the Irish Longitudinal Study 

on Ageing. International journal of epidemiology, 40(4), 877–884. 

https://doi.org/10.1093/ije/dyr116 

[167]  Whelan, B. J., & Savva, G. M. (2013). Design and methodology of 

the Irish Longitudinal Study on Ageing. Journal of the American Geriatrics 

Society, 61 Suppl 2, S265–S268. https://doi.org/10.1111/jgs.12199 



 

152 

 

[168]  Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). 

A Bayesian model of shape and appearance for subcortical brain 

segmentation. NeuroImage, 56(3), 907–922. 

https://doi.org/10.1016/j.neuroimage.2011.02.046 

[169]  Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical 

areas in vivo based on myelin content as revealed by T1- and T2-weighted 

MRI. The Journal of neuroscience : the official journal of the Society for 

Neuroscience, 31(32), 11597–11616. 

https://doi.org/10.1523/JNEUROSCI.2180-11.2011  

[170]  Buxton R. B. (2005). Quantifying CBF with arterial spin 

labeling. Journal of magnetic resonance imaging : JMRI, 22(6), 723–726. 

https://doi.org/10.1002/jmri.20462  

[171]  Griffanti, L., Raman, B., Alfaro-Almagro, F., Filippini, N., Cassar, M. 

P., Sheerin, F., Okell, T. W., Kennedy McConnell, F. A., Chappell, M. A., 

Wang, C., Arthofer, C., Lange, F. J., Andersson, J., Mackay, C. E., 

Tunnicliffe, E. M., Rowland, M., Neubauer, S., Miller, K. L., Jezzard, P., & 

Smith, S. M. (2021). Adapting the UK Biobank Brain Imaging Protocol and 

Analysis Pipeline for the C-MORE Multi-Organ Study of COVID-19 

Survivors. Frontiers in neurology, 12, 753284. 

https://doi.org/10.3389/fneur.2021.753284 

[172]  Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., 

Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., 

Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for 

subdividing the human cerebral cortex on MRI scans into gyral based regions 

of interest. NeuroImage, 31(3), 968–980. 

https://doi.org/10.1016/j.neuroimage.2006.01.021 

[173]  Jefferson, A. L., Cambronero, F. E., Liu, D., Moore, E. E., Neal, J. E., 

Terry, J. G., Nair, S., Pechman, K. R., Rane, S., Davis, L. T., Gifford, K. A., 

Hohman, T. J., Bell, S. P., Wang, T. J., Beckman, J. A., & Carr, J. J. (2018). 

Higher Aortic Stiffness Is Related to Lower Cerebral Blood Flow and 

Preserved Cerebrovascular Reactivity in Older Adults. Circulation, 138(18), 

1951–1962. https://doi.org/10.1161/CIRCULATIONAHA.118.032410  

[174]  Biagi, L., Abbruzzese, A., Bianchi, M. C., Alsop, D. C., Del Guerra, 

A., & Tosetti, M. (2007). Age dependence of cerebral perfusion assessed by 

magnetic resonance continuous arterial spin labeling. Journal of magnetic 

resonance imaging : JMRI, 25(4), 696–702. 

https://doi.org/10.1002/jmri.20839 

[175]  Zhao, M. Y., Mezue, M., Segerdahl, A. R., Okell, T. W., Tracey, I., 

Xiao, Y., & Chappell, M. A. (2017). A systematic study of the sensitivity of 

partial volume correction methods for the quantification of perfusion from 

pseudo-continuous arterial spin labeling MRI. NeuroImage, 162, 384–397. 

https://doi.org/10.1016/j.neuroimage.2017.08.072 

[176]  Meltzer, C. C., Cantwell, M. N., Greer, P. J., Ben-Eliezer, D., Smith, 

G., Frank, G., Kaye, W. H., Houck, P. R., & Price, J. C. (2000). Does cerebral 

blood flow decline in healthy aging? A PET study with partial-volume 



 

153 

 

correction. Journal of nuclear medicine : official publication, Society of 

Nuclear Medicine, 41(11), 1842–1848. 

[177]  Inoue, K., Ito, H., Goto, R., Nakagawa, M., Kinomura, S., Sato, T., 

Sato, K., & Fukuda, H. (2005). Apparent CBF decrease with normal aging 

due to partial volume effects: MR-based partial volume correction on CBF 

SPECT. Annals of nuclear medicine, 19(4), 283–290. 

https://doi.org/10.1007/BF02984620 

[178]  De Vis, J. B., Hendrikse, J., Bhogal, A., Adams, A., Kappelle, L. J., & 

Petersen, E. T. (2015). Age-related changes in brain hemodynamics; A 

calibrated MRI study. Human brain mapping, 36(10), 3973–3987. 

https://doi.org/10.1002/hbm.22891 

[179]  Liu, Y., Zhu, X., Feinberg, D., Guenther, M., Gregori, J., Weiner, M. 

W., & Schuff, N. (2012). Arterial spin labeling MRI study of age and gender 

effects on brain perfusion hemodynamics. Magnetic resonance in 

medicine, 68(3), 912–922. https://doi.org/10.1002/mrm.23286 

[180]  Lu, H., Xu, F., Rodrigue, K. M., Kennedy, K. M., Cheng, Y., Flicker, 

B., Hebrank, A. C., Uh, J., & Park, D. C. (2011). Alterations in cerebral 
metabolic rate and blood supply across the adult lifespan. Cerebral cortex 

(New York, N.Y. : 1991), 21(6), 1426–1434. 

https://doi.org/10.1093/cercor/bhq224 

[181]  Parkes, L. M., Rashid, W., Chard, D. T., & Tofts, P. S. (2004). Normal 

cerebral perfusion measurements using arterial spin labeling: reproducibility, 
stability, and age and gender effects. Magnetic resonance in medicine, 51(4), 

736–743. https://doi.org/10.1002/mrm.20023 

[182]  Martin, A. J., Friston, K. J., Colebatch, J. G., & Frackowiak, R. S. 

(1991). Decreases in regional cerebral blood flow with normal aging. Journal 

of cerebral blood flow and metabolism : official journal of the International 

Society of Cerebral Blood Flow and Metabolism, 11(4), 684–689. 

https://doi.org/10.1038/jcbfm.1991.121 

[183]  Fierstra, J., Poublanc, J., Han, J. S., Silver, F., Tymianski, M., 

Crawley, A. P., Fisher, J. A., & Mikulis, D. J. (2010). Steal physiology is 

spatially associated with cortical thinning. Journal of neurology, 

neurosurgery, and psychiatry, 81(3), 290–293. 

https://doi.org/10.1136/jnnp.2009.188078 

[184]  Salat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. 

S., Busa, E., Morris, J. C., Dale, A. M., & Fischl, B. (2004). Thinning of the 

cerebral cortex in aging. Cerebral cortex (New York, N.Y. : 1991), 14(7), 

721–730. https://doi.org/10.1093/cercor/bhh032  

[185]  Bangen KJ, Werhane ML, Weigand AJ, Edmonds EC, Delano-Wood 

L, Thomas KR, Nation DA, Evangelista ND, Clark AL, Liu TT, Bondi MW. 

Reduced Regional Cerebral Blood Flow Relates to Poorer Cognition in Older 

Adults With Type 2 Diabetes. Front Aging Neurosci. 2018 Sep 10;10:270. 

doi: 10.3389/fnagi.2018.00270. PMID: 30250430; PMCID: PMC6139361. 



 

154 

 

[186]  Alisch, J. S. R., Khattar, N., Kim, R. W., Cortina, L. E., Rejimon, A. 

C., Qian, W., Ferrucci, L., Resnick, S. M., Spencer, R. G., & Bouhrara, M. 

(2021). Sex and age-related differences in cerebral blood flow investigated 

using pseudo-continuous arterial spin labeling magnetic resonance 

imaging. Aging, 13(4), 4911–4925. https://doi.org/10.18632/aging.202673 

[187]  Han, H., Lin, Z., Soldan, A., Pettigrew, C., Betz, J. F., Oishi, K., Li, 

Y., Liu, P., Albert, M., & Lu, H. (2022). Longitudinal Changes in Global 

Cerebral Blood Flow in Cognitively Normal Older Adults: A Phase-Contrast 

MRI Study. Journal of magnetic resonance imaging : JMRI, 56(5), 1538–

1545. https://doi.org/10.1002/jmri.28133 

[188]  Campbell, A. M., & Beaulieu, C. (2006). Pulsed arterial spin labeling 

parameter optimization for an elderly population. Journal of magnetic 

resonance imagin : JMRI, 23(3), 398–403. https://doi.org/10.1002/jmri.20503  

[189]  Borogovac A, Asllani I (2012) Arterial spin labeling (ASL) fMRI: 

advantages, theoretical constrains and experimental challenges in 

neurosciences. Int J Biomed Imaging 2012:818456  

[190]  Bastiani M, Cottaar M, Fitzgibbon SP, Suri S, Alfaro-Almagro F, 
Sotiropoulos SN, Jbabdi S, Andersson JLR. Automated quality control for 

within and between studies diffusion MRI data using a non-parametric 

framework for movement and distortion correction. Neuroimage. 2019 Jan 

1;184:801-812. doi: 10.1016/j.neuroimage.2018.09.073. Epub 2018 Sep 26. 

PMID: 30267859; PMCID: PMC6264528. 

[191]  Restom, K., Behzadi, Y., & Liu, T. T. (2006). Physiological noise 

reduction for arterial spin labeling functional MRI. NeuroImage, 31(3), 1104–

1115. https://doi.org/10.1016/j.neuroimage.2006.01.026 

[192]  Hendrikse J, Petersen ET, Golay X (2012) Vascular disorders: insights 

from arterial spin labeling. Neuroimaging Clin N Am 22:259–269  

[193]  Alsop DC, Dai W, Grossman M, Detre JA (2010) Arterial spin 

labeling blood flow MRI: its role in the early characterization of Alzheimer’s 

disease. J Alzheimers Dis 20:871–880 

[194]  Detre JA, Rao H, Wang DJ, Chen YF, Wang Z (2012) Applications of 

arterial spin labeled MRI in the brain. J Magn Reson Imaging 35:1026–1037  

[195]  Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in 

noninvasive magnetic resonance imaging of human cerebral blood flow. J 

Cereb Blood Flow Metab 16:1236–1249  

[196]  Fernández-Seara M, Edlow BL, Hoang A, Wang J, Feinberg DA, 

Detre JA (2008) Minimizing acquisition time of arterial spin labeling at 3T. 

Magn Reson Med 59:1467–1471  

[197]  Li, Y., Liu, P., Li, Y., Fan, H., Su, P., Peng, S. L., Park, D. C., 

Rodrigue, K. M., Jiang, H., Faria, A. V., Ceritoglu, C., Miller, M., Mori, S., & 

Lu, H. (2019). ASL-MRICloud: An online tool for the processing of ASL 

MRI data. NMR in biomedicine, 32(2), e4051. 

https://doi.org/10.1002/nbm.4051 



 

155 

 

[198]  Physimals. OXASL. GitHub. https://github.com/physimals/oxasl 

[199]  Razlighi, Q.R, Kehtarnavaz, N, and Yousefi, S. "Evaluating Similarity 

Measures for Brain Image Registration." Journal of Visual Communication 

and Image Representation 24.7 (2013): 977-87. Web.  

[200]  Chen T, Yuan M, Tang J, Lu L. Digital Analysis of Smart Registration 
Methods for Magnetic Resonance Images in Public Healthcare. Front Public 

Health. 2022 Jun 6;10:896967. doi: 10.3389/fpubh.2022.896967. PMID: 

35734757; PMCID: PMC9207932. 

[201]  Castillo, R., Castillo, E., Fuentes, D., Ahmad, M., Wood, A. M., 

Ludwig, M. S., & Guerrero, T. (2013). A reference dataset for deformable 

image registration spatial accuracy evaluation using the COPDgene study 
archive. Physics in medicine and biology, 58(9), 2861–2877. 

https://doi.org/10.1088/0031-9155/58/9/2861 

[202]  Pluim JPW, Maintz JBA, Viergever MA. Mutual-information-based 

registration of medical images: a survey. IEEE Transactions on Medical 

Imaging. 2003; vol. 22(no. 8):986–1004. [PubMed: 12906253] 

[203]  Gholipour A, Kehtarnavaz N, Briggs R, Devous M, Gopinath K. Brain 

functional localization: a survey of image registration techniques. IEEE 

Transactions on Medical Imaging. 2007; vol. 26(no. 4):427–451. [PubMed: 

17427731] 

[204]  Moore CS, Liney GP, Beavis AW. Quality assurance of registration of 

CT and MRI data sets for treatment planning of radiotherapy for head and 

neck cancers. J Appl Clin Med Phys. 2004 Winter;5(1):25-35. doi: 

10.1120/jacmp.v5i1.1951. Epub 2004 Jan 1. PMID: 15753931; PMCID: 

PMC5723443. 

[205]  J. P. W. Pluim, S. E. A. Muenzing, K. A. J. Eppenhof and K. Murphy, 

"The truth is hard to make: Validation of medical image registration," 2016 

23rd International Conference on Pattern Recognition (ICPR), Cancun, 

Mexico, 2016, pp. 2294-2300, doi: 10.1109/ICPR.2016.7899978.  

[206]  Joshua Bierbrier, Houssem-Eddine Gueziri, D. Louis Collins, 

Estimating medical image registration error and confidence: A taxonomy and 

scoping review, Medical Image Analysis, Volume 81, 2022, 102531, ISSN 

1361-8415, https://doi.org/10.1016/j.media.2022.102531. 

[207]  W. R. Crum, O. Camara, and D. L. G. Hill, “Generalized overlap 

measures for evaluation and validation in medical image analysis,” IEEE 

Trans Med Imaging, vol. 25, no. 11, pp. 1451–1461, 2006 

[208]  T. Netsch, P. Rsch, J. Weese, A. van Muiswinkel, and P. Desmedt, 

“Grey value-based 3-D registration of functional MRI time-series: 

comparison of interpolation order and similarity measure,” presented at the 

Medical Image Computing and Computer Assisted Intervention - MICCAI, 

2000, vol. 3979, pp. 1148–1159. 

[209]  Xi Cheng, Li Zhang & Yefeng Zheng (2018) Deep similarity learning 

for multimodal medical images, Computer Methods in Biomechanics and 

https://doi.org/10.1016/j.media.2022.102531


 

156 

 

Biomedical Engineering: Imaging & Visualization, 6:3, 248-252, DOI: 

10.1080/21681163.2015.1135299 

[210]  Steffen Czolbe, Paraskevas Pegios, Oswin Krause, Aasa Feragen, 

Semantic similarity metrics for image registration, Medical Image Analysis, 

Volume 87, 2023, 102830, ISSN 1361-8415, 

https://doi.org/10.1016/j.media.2023.102830. 

[211]  Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I., 

Erramuzpe, A., Kent, J. D., Goncalves, M., DuPre, E., Snyder, M., Oya, H., 

Ghosh, S. S., Wright, J., Durnez, J., Poldrack, R. A., & Gorgolewski, K. J. 

(2019). fMRIPrep: a robust preprocessing pipeline for functional 

MRI. Nature methods, 16(1), 111–116. https://doi.org/10.1038/s41592-018-

0235-4 

[212]  Paschoal, A. M., Woods, J. G., Pinto, J., Bron, E. E., Petr, J., Kennedy 

McConnell, F. A., Bell, L., Dounavi, M. E., van Praag, C. G., Mutsaerts, H. J. 

M. M., Taylor, A. O., Zhao, M. Y., Brumer, I., Chan, W. S. M., Toner, J., Hu, 

J., Zhang, L. X., Domingos, C., Monteiro, S. P., Figueiredo, P., … Anazodo, 

U. (2024). Reproducibility of arterial spin labeling cerebral blood flow image 

processing: A report of the ISMRM open science initiative for perfusion 

imaging (OSIPI) and the ASL MRI challenge. Magnetic resonance in 

medicine, 92(2), 836–852. https://doi.org/10.1002/mrm.30081 

[213]  Fan, H., Mutsaerts, H. J. M. M., Anazodo, U., Arteaga, D., Baas, K. P. 

A., Buchanan, C., Camargo, A., Keil, V. C., Lin, Z., Lindner, T., Hirschler, L., 

Hu, J., Padrela, B. E., Taghvaei, M., Thomas, D. L., Dolui, S., & Petr, J. 

(2024). ISMRM Open Science Initiative for Perfusion Imaging (OSIPI): ASL 

pipeline inventory. Magnetic resonance in medicine, 91(5), 1787–1802. 

https://doi.org/10.1002/mrm.29869 

[214]  Ma, Z., Reich, D. S., Dembling, S., Duyn, J. H., & Koretsky, A. P. 

(2022). Outlier detection in multimodal MRI identifies rare individual 

phenotypes among more than 15,000 brains. Human brain mapping, 43(5), 

1766–1782. https://doi.org/10.1002/hbm.25756 

[215]  Pollock, J. M., Tan, H., Kraft, R. A., Whitlow, C. T., Burdette, J. H., & 

Maldjian, J. A. (2009). Arterial spin-labeled MR perfusion imaging: clinical 

applications. Magnetic resonance imaging clinics of North America, 17(2), 

315–338. https://doi.org/10.1016/j.mric.2009.01.008 

[216]  Gudbjartsson, H., & Patz, S. (1995). The Rician distribution of noisy 

MRI data. Magnetic resonance in medicine, 34(6), 910-914. 

[217]  Dietrich, O., Raya, J. G., Reeder, S. B., Reiser, M. F., & Schoenberg, 

S. O. (2007). Measurement of signal‐to‐noise ratios in MR images: influence 

of multichannel coils, parallel imaging, and reconstruction filters. Journal of 

Magnetic Resonance Imaging: An Official Journal of the International 

Society for Magnetic Resonance in Medicine, 26(2), 375-385. 

[218]  Reeder, S. B., Wintersperger, B. J., Dietrich, O., Lanz, T., Greiser, A., 

Reiser, M. F., ... & Schoenberg, S. O. (2005). Practical approaches to the 

evaluation of signal‐to‐noise ratio performance with parallel imaging: 

application with cardiac imaging and a 32‐channel cardiac coil. Magnetic 

https://doi.org/10.1016/j.media.2023.102830
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4


 

157 

 

Resonance in Medicine: An Official Journal of the International Society for 

Magnetic Resonance in Medicine, 54(3), 748-754. 

[219]  Petersen, E. T., Lim, T., & Golay, X. (2006). Model-free arterial spin 

labeling quantification approach for perfusion MRI. Magnetic resonance in 

medicine, 55(2), 219–232. https://doi.org/10.1002/mrm.20784 

[220]  Dominik Weishaupt, Victor D. Kochli, Borut Marincek, How does 

MRI work?, Springer Verlag Berlin Heidelberg New York, 2003. 

[221]  Shirzadi, Z., Stefanovic, B., Chappell, M. A., Ramirez, J., Schwindt, 

G., Masellis, M., Black, S. E., & MacIntosh, B. J. (2018). Enhancement of 

automated blood flow estimates (ENABLE) from arterial spin-labeled 

MRI. Journal of magnetic resonance imaging : JMRI, 47(3), 647–655. 

https://doi.org/10.1002/jmri.25807 

[222]  Mercadante AA, Tadi P. Neuroanatomy, Gray Matter. [Updated 2023 

Jul 24]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 

2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK553239/ 

[223]  Van Osch MJ, Teeuwisse WM, van Walderveen MA, Hendrikse J, 

Kies DA et al. (2009) Can arterial spin labeling detect white matter perfusion 

signal? Magn Reson Med 62: 165-173. doi:10.1002/mrm.22002. PubMed: 

19365865.  

[224]  Chalela JA, Alsop DC, Gonzalez-Atavales JB, et al. Magnetic 

resonance perfusion imaging in acute ischemic stroke using continuous 

arterial spin labeling. Stroke 2000; 31: 680–687. 

[225]  Donahue J, Sumer S and Wintermark M. Assessment of collateral 

flow in patients with cerebrovascular disorders. J Neuroradiol 2014; 41: 234–

242. 

[226]  MacIntosh BJ and Graham SJ. Magnetic resonance ima ging to 

visualize stroke and characterize stroke recovery: a review. Front Neurol 

2013; 4: 60. 

[227]  Zaharchuk G. Arterial spin label imaging of acute ische mic stroke 

and transient ischemic attack. Neuroimaging Clin N Am 2011; 21: 285–301. 

[228]  Mutsaerts, H. J., Petr, J., Václavů, L., van Dalen, J. W., Robertson, A. 
D., Caan, M. W., Masellis, M., Nederveen, A. J., Richard, E., & MacIntosh, 

B. J. (2017). The spatial coefficient of variation in arterial spin labeling 

cerebral blood flow images. Journal of cerebral blood flow and metabolism : 

official journal of the International Society of Cerebral Blood Flow and 

Metabolism, 37(9), 3184–3192. https://doi.org/10.1177/0271678X16683690 

[229]  Wu, W. C., Lin, S. C., Wang, D. J., Chen, K. L., & Li, Y. D. (2013). 

Measurement of cerebral white matter perfusion using pseudocontinuous 

arterial spin labeling 3T magnetic resonance imaging--an experimental and 

theoretical investigation of feasibility. PloS one, 8(12), e82679. 

https://doi.org/10.1371/journal.pone.0082679 

[230]  Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., 
Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, 

https://www.ncbi.nlm.nih.gov/books/NBK553239/
https://doi.org/10.1177/0271678X16683690


 

158 

 

J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. 

Scikit-learn: Machine learning in Python. Journal of Machine Learning 

Research, 12:2825–2830, 2011. 

[231]  Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, 

E., Ugurbil, K., & WU-Minn HCP Consortium (2013). The WU-Minn 

Human Connectome Project: an overview. NeuroImage, 80, 62–79. 

https://doi.org/10.1016/j.neuroimage.2013.05.041 

[232]  P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, and L. 

Bottou, “Stacked denoising autoencoders: Learning useful represen tations in 

a deep network with a local denoising criterion.” Journal of machine learning 

research, vol. 11, no. 12, 2010.  

[233]  J. Sun, X. Wang, N. Xiong, and J. Shao, “Learning sparse 

representation with variational auto-encoder for anomaly detection,” pp. 

33353 33361, 2018. 

[234]  Rezende, D., & Mohamed, S. (2015, June). Variational inference with 

normalizing flows. In International conference on machine learning (pp. 

1530-1538). PMLR. 

[235]  Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. 

(2016, June). Autoencoding beyond pixels using a learned similarity metric. 

In International conference on machine learning (pp. 1558-1566). PMLR. 

[236]  Chen, Y. C. (2017). A tutorial on kernel density estimation and recent 

advances. Biostatistics & Epidemiology, 1(1), 161-187. 

[237]  A. R. Lahitani, A. E. Permanasari and N. A. Setiawan, "Cosine 

similarity to determine similarity measure: Study case in online essay 
assessment," 2016 4th International Conference on Cyber and IT Service 

Management, Bandung, Indonesia, 2016, pp. 1-6, doi: 

10.1109/CITSM.2016.7577578.  

[238]  Nahm F. S. (2022). Receiver operating characteristic curve: overview 

and practical use for clinicians. Korean journal of anesthesiology, 75(1), 25–

36. https://doi.org/10.4097/kja.21209 

[239]  J. An, S. Cho, Variational autoencoder based anomaly detection using 

reconstruction probability, Tech. rep., SNU Data Mining Center (2015). 

[240]  D. Park, Y. Hoshi, C. C. Kemp, A multimodal anomaly detector for 

robot-assisted feeding using an lstm-based variational au toencoder, IEEE 

Robotics and Automation Letters 3 (3) (2018) 1544–1551 (2018).  

[241]  Wang X., Du Y., Lin S., Cui P., Shen Y., Yang Y., adVAE: A self-
adversarial variational autoencoder with Gaussian anomaly prior knowledge 

for anomaly detection, Knowledge-Based Systems 190 (2020). 

[242]  Hu J, Craig MS, Knight SP, De Looze C, Meaney JF, Kenny RA, 

Chen X, Chappell MA. Regional changes in cerebral perfusion with age when 

accounting for changes in gray-matter volume. Magn Reson Med. 2025 

Apr;93(4):1807-1820. doi: 10.1002/mrm.30376. Epub 2024 Nov 20. PMID: 

39568213; PMCID: PMC11782718. 



 

159 

 

[243]  Y. Zhang, J. -Q. Zheng and M. Chappell, "Bayesian Inference for 

Non-Linear Forward Model by Using a VAE-Based Neural Network 

Structure," in IEEE Transactions on Signal Processing, vol. 72, pp. 1400-

1411, 2024, doi: 10.1109/TSP.2024.3374115. 

[244]  Sewak, M., Sahay, S. K., & Rathore, H. (2020). An overview of deep 

learning architecture of deep neural networks and autoencoders. Journal of 

Computational and Theoretical Nanoscience, 17(1), 182-188. 

[245]  Henkelman, R. M., Stanisz, G. J., & Graham, S. J. (2001). 

Magnetization transfer in MRI: a review. NMR in biomedicine, 14(2), 57–64. 

https://doi.org/10.1002/nbm.683 

[246]  Camille Van Assel, Gabriel Mangeat, Benjamin De Leener, Nikola 
Stikov, Caterina Mainero, and Julien Cohen-Adad. Partial volume effect 

correction for surface-based cortical mapping 

(https://ismrm.gitlab.io/2017/5068.html). ISMRM.2017. 

 

 

https://doi.org/10.1002/nbm.683
https://ismrm.gitlab.io/2017/5068.html

