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Abstract

This thesis focuses on three classifications of convex polytopes, which are
separate, but the methods of each influences those that follow. There are
links to combinatorial algebraic geometry throughout, particularly to toric
and spherical geometry. This is most explicit in the third project, which is
additionally a classification of certain spherical varieties.

In the first project we introduce the multi-width of a polytope, which is an
extension of its lattice width. We study the classification of lattice simplices
by their multi-width in dimensions two and three. This is motivated by com-
putational questions in toric geometry. We completely classify lattice triangles
by their multi-width and also classify lattice tetrahedra of small multi-width.

The second project concerns the Ehrhart theory of rational polygons. The
Ehrhart theory of lattice polygons is already well understood and here we
make steps towards a similar understanding of denominator two polygons.
We classify denominator two polygons containing up to four lattice points,
including a description of infinite families of polygons with no interior points.
Using this data, we completely classify the Ehrhart polynomials of denominator
two polygons with zero interior points and find three sharp bounds on the
coefficients when there are interior points.

In the final project we study spherical varieties, which generalise toric and
flag varieties. We discuss isomorphisms between spherical varieties and de-
scribe a class of lattice automorphisms which are induced by isomorphisms of
spherical varieties. We define a normal form for lattice polytopes up to this
group of automorphisms. This normal form is vital to our classification of
spherical canonical Fano four-folds. Like toric Fano varieties, spherical Fano
varieties correspond to polytopes. Therefore, we can classify the varieties by
classifying the corresponding polytopes.
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Chapter 1

Introduction

The central thread of this thesis is a trio of polytope classifications. The

contexts and motivations for the classifications are different, but the methods

of each influences the next. An algebraic geometry perspective is relevant

throughout via toric geometry, and the third classification is a geometric one.

Toric varieties are an important class of algebraic variety, which have a beau-

tiful description in terms of convex geometry. Spherical varieties are a general-

isation of toric varieties which share a similar combinatorial description. Both

toric and spherical Fano varieties are in correspondence with certain polytopes,

and we can learn about the varieties by studying these polytopes. We recall

the necessary basics of toric geometry in Chapter 2. For a more in-depth study

of toric varieties see, for example, [Ful93] or [CLS11].

1.1 Classifying Simplices by Width

In this project we classify lattice simplices by their widths. In dimension 2

this consists of a classification of the lattice triangles which are a subset of any

given lattice rectangle. We complete this in Chapter 3 and find that it shows

unexpected regularity and links with geometry. In Chapter 4 we partially

extend this classification to three dimensions, where it shows similar patterns

to the two-dimensional case.

1



Chapter 1. Classifying Simplices by Width 2

We can associate lattice polytopes to toric Fano varieties. Their vertices

are points in the lattice of one-parameter subgroups of the torus and they

contain the origin in their interior. Many important invariants of the variety

can be computed from properties of this polytope. In dimension greater than

one, there are infinitely many equivalent polytopes associated to the variety.

Computing the desired invariants from any of these polytopes will give the

same solution but may have a different compute time, since the vertices of

the polytopes are different. This suggests the question: for which equivalent

polytope can we compute an invariant fastest? A first guess may be to find

a polytope whose vertices are ‘as close to the origin as possible’ so that the

numbers we compute with are small. We formalise this idea by considering

the widths of a polytope.

The lattice width of a polytope P with respect to a dual lattice point u counts

the number of integral hyperplanes, with normal vector u, which intersect a

polytope, and is defined as follows

widthu(P ) := max
x∈P
{u · x} −min

x∈P
{u · x}.

The width of P is the minimum value which widthu(P ) can take for all non-

zero u. We extend this definition into the multi-width of a polytope. For a

d-dimensional polytope the multi-width is

mwidth(P ) := min
u1,...,ud∈Zd

{(widthu1(P ), . . . ,widthud
(P ))}

where the collection of ui are required to be linearly independent and minimum

means with respect to lexicographic order. The multi-width describes the

dimensions of the smallest parallelepiped containing a polytope.

We completely classify lattice triangles with multi-width (w1, w2) in The-

orem 3.0.2. This can be adapted to count the lattice triangles which are a

subset of a square, yielding the following surprising result.
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Theorem. Let tn denote the number of lattice triangles, up to affine equiva-

lence, which are a subset of [0, n]2. Then tn = f(n) for n ∈ Z≥0 where f is the

Hilbert function of a hypersurface of degree 8 in P(1, 1, 1, 2, 2, 2). Additionally

tn = |nP ∩ Z4| for n ∈ Z≥0 where

P := conv
((

1
2
, 0, 0, 0

)
,
(
0, 1

2
, 0, 0

)
,
(
0, 0, 1

2
, 0
)
, (0, 0, 0, 1), (−1,−1,−1,−1)

)
.

This suggests some deeper structure in the classification which would be

interesting to investigate further.

It is straightforward to extend this style of classification to one-dimensional

simplices but extending it to higher dimensions is challenging. The method we

use to classify triangles can be generalised to classify tetrahedra, however the

number of cases which needs to be checked by hand increases dramatically. We

extend the theoretical classification to tetrahedra with multi-width (1, w2, w3)

and algorithmically classify tetrahedra with multi-width (2, w2, w3) for small

w2 and w3. Excitingly, very similar patterns appear in these extensions.

1.2 Rational Polygons

The denominator of a polygon P is the smallest integer r such that rP is a

lattice polytope. In Chapter 5 we classify rational polygons with small denom-

inator, containing a small number of lattice points, up to affine equivalence.

Using the results we study the Ehrhart theory of denominator 2 polygons.

There are infinitely many rational polygons with a fixed denominator con-

taining a fixed number of lattice points. However, we show that all but finitely

many denominator r polygons containing k lattice points are equivalent to a

subset of [0, 1]×R. This allows us to make a meaningful classification despite

the infinite number of polygons. The classification method is based on a grow-

ing algorithm. This means we determine a collection of minimal polygons,

then successively grow them by adding points. In this way we classify denom-
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inator 2 polygons containing 0, 1, 2, 3 and 4 lattice points and denominator 3

polygons containing 0 lattice points which are not equivalent to a subset of

[0, 1]× R. They are enumerated in Table 5.1.

Ehrhart theory is concerned with counting lattice points in integral dila-

tions of a polytope. A quasi-polynomial is a polynomial whose coefficients

are periodic functions with integer period. The Ehrhart polynomial of a ra-

tional polytope P is the quasi-polynomial ehrP (n) with the property that

ehrP (n) = |nP ∩ Zd| for all integers n. Ehrhart proved that there is such

a quasi-polynomial for all rational polytopes [Ehr62]. An interesting problem

is to classify the Ehrhart polynomials for a given class of polytope. For lattice

polygons the classification is known. The Ehrhart polynomial of a lattice poly-

gon P is determined by the number of interior and boundary lattice points of

P . Scott proved that if b is the number of boundary points of a lattice polygon

and i is the number of interior points then b ≥ 3 and either i = 0, b ≤ 2i+6 or

(b, i) = (9, 1) [Sco76]. Hasse and Schicho gave examples of polygons realising

all such pairs (b, i) completing the classification of Ehrhart polynomials in this

case [HS09].

We seek a similar classification in the case of denominator 2 polygons. As in

the lattice polygons case, the Ehrhart polynomial of a denominator 2 polygon

is completely determined by the number of interior and boundary points in P

and 2P . Our main result is the following. Its proof depends on the idea of

multi-width, defined in the previous project.

Theorem. Let P be a denominator 2 polygon and define b1, i1, b2 and i2 to be

the number of boundary and interior points of P and 2P respectively. For all

but finitely many such polygons, the integers b1, i1, b2 and i2 satisfy one of the

following conditions:

• i1 = 0, i2 = 0 and b2 ≥ max(3, 2b1),

• b1 = 0, i1 = 0, b2 = 4 and i2 > 0,

• i1 = 0, i2, b1 > 0, max(3, 2b1) ≤ b2 ≤ 2b1 + 4 and b2 ≤ 2i2 + 6 or
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• i1 > 0, b2 ≥ max{3, 2b1}, i2 ≥ b1 + 2i1 − 1 and b2 + i2 ≤ 2b1 + 6i1 + 7.

1.3 Canonical Spherical Fano Four-Folds

Classification of spherical varieties using their combinatorics requires a combi-

natorial understanding of isomorphisms of spherical varieties. In Chapter 6 we

describe a class of lattice automorphisms which are induced by isomorphisms

of spherical varieties. We also define a normal form for lattice polytopes up to

this class of automorphisms. Using this, in Chapter 7 we describe a method

to classify the non-toric spherical canonical Fano four-folds.

Our classification will include the non-toric spherical Gorenstein Fano four-

folds, completing Kreuzer and Skarke’s seminal classification of the toric case.

It will also include the non-toric, locally factorial spherical Fano four-folds, so

is an extension of Delcroix and Montagard’s classification of the same varieties

in rank at most 2 [DM23].

Our motivation comes from mirror symmetry, which is an active area of re-

search in algebraic geometry with applications in string theory. In this setting,

people care about finding pairs of Calabi-Yau varieties called mirror pairs.

Batyrev [Bat94] gave a way to construct many such pairs as hypersurfaces

in toric Gorenstein Fano varieties. There is a completely combinatorial de-

scription of the polytopes associated to these varieties opening the doors to

classification. Kreuzer and Skarke [KS00] classified all four-dimensional toric

Gorenstein Fano varieties. This is a dimension of particular interest in physics

since it produces three-dimensional (complex) Calabi-Yau’s which are the com-

pactifications of the six extra (real) dimensions theorised in string theory.

The combinatorial description of toric Gorenstein Fano varieties has been

generalised to the spherical case. The polytopes are called G/H-reflexive and

are the objects we describe how to classify. Spherical Gorenstein Fano varieties

are a subset of spherical canonical Fano varieties. We define G/H-canonical

polytopes which are easier to work with, although there are many more of
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them. We give a method to classify the spherical canonical Fano four-folds

and can then retrieve the Gorenstein classification as a subset.

The polytopes are found using modified versions of the growing algorithm

used in Chapter 5 and the growing algorithm used in the classification of

toric canonical Fano three-folds [Kas10]. For polytopes to represent spherical

varieties we must also combine them with Luna data. In spherical geometry

a Luna datum is a collection of objects which plays the role of the character

lattice in toric geometry. The full classification is expected to take months

to run, so it has not been practical to complete it before finishing this thesis.

Therefore, we present the classification method here and not the classification.



Chapter 2

Background

In this chapter we recall the basics of convex geometry, toric varieties and

Ehrhart theory, since these topics will be relevant throughout the remaining

chapters. Convex geometry and lattice polytopes are central to the whole

thesis, so we begin there.

A lattice is a finite dimensional Z-module M ∼= Zd for some non-negative d.

It is contained in a natural rational vector space MQ := Q ⊗Z M ∼= Qd and

real vector space MR := R ⊗Z M ∼= Rd. There is a dual lattice N = M∗ :=

Hom(L,Z) with a natural dual paring M × N → Z. A lattice polytope is the

convex hull of finitely many lattice points v1, . . . , vn ∈M . A rational polytope

is the same except we allow rational points v1, . . . , vn ∈ MQ. A polytope

is called a polygon if it is two-dimensional and a simplex if its vertices are

affinely independent. For example, line segments, triangles and tetrahedra are

simplices.

We will usually consider polytopes up to some equivalence relation. Some-

times this is unimodular equivalence, where polytopes are defined up to the

action of the general linear group GLd(Z). At other times we use affine equiv-

alence, where polytopes are defined up to integral translations and unimodular

maps. Many properties of a polytope are preserved by these equivalences such

as its volume and the number of lattice points in its boundary and interior.

Another affine invariant of a polytope is its lattice width. Given u ∈ N the

7
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width of P with respect to u is

widthu(P ) := max
x∈P
{u · x} −min

x∈P
{u · x}.

The width of P is the smallest widthu(P ) for all non-zero dual vectors u:

width(P ) = min
u∈N\{0}

{widthu(P )}.

A polytope P has dual polytope which is the set of points u in the dual space

NR such that u · v ≤ 1 for all points v in P . The dual of a lattice polytope is

a rational polytope but need not be a lattice polytope.

A (lattice) cone is the collection of non-negative linear combinations of a

finite collection of lattice points v1, . . . , vn ∈M :

cone(v1, . . . , vn) :=

{
n∑

i=1

λivi : λi ∈ Q≥0

}
.

One-dimensional cones are called rays. An affine cone is the translation of a

cone σ by some point x ∈ MR written x + σ. The dual cone σ∗ of a lattice

cone σ is the set of points u in the dual space such that u · v ≥ 0 for all points

v ∈ σ. A face of a lattice cone σ is a subset of σ ‘cut out by’ a linear form u

in σ∗. That is, the set of points v in σ such that u · v = 0. A cone is said to be

pointed if it has the origin as a face. A lattice fan is a finite set F of pointed

lattice cones such that

1. for all σ, τ ∈ F the intersection σ ∩ τ is also in F and

2. for all σ ∈ F and all faces τ of σ, τ is also in F .

2.1 Toric Geometry

A toric variety is a normal irreducible variety X such that an algebraic torus

T = (C×)d is a Zariski open dense subset of X and the action of T on itself

extends to an action of T on X. An algebraic torus has two, mutually dual,
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lattices associated to it: the character lattice M := X(T ) = Hom(T,C×)

and the lattice of one-parameter subgroups N := Hom(C×, T ). To each toric

variety X we can associate a lattice fan in N denoted by FX and to each lattice

fan F in N we can associate a toric variety XF .

Let X1 and X2 be toric varieties with algebraic tori Ti ↪→ Xi for i = 1, 2.

A toric morphism is a morphism φ : X1 → X2 such that φ(T1) ⊆ T2 and

φ|T1 : T1 → T2 is a morphism of algebraic tori. Let F1 and F2 be lattice

fans in N1 and N2 respectively, then a morphism of lattice fans is a lattice

homomorphism ϕ : N1 → N2 such that for every cone σ1 ∈ F1 there is a cone

σ2 ∈ F2 such that ϕ(σ1) ⊆ σ2. There is a covariant equivalence of categories:

{toric varieties} ↔ {lattice fans}

X 7→ FX

(φ : X1 → X2) 7→ (φ∗ : N1 → N2, λ 7→ φ|T ◦ λ)

Theorem 2.1.1 (Orbit-cone correspondence). Let X be a toric variety, then

there is a bijection between the cones in FX and the set of torus orbits T · x

for x ∈ X. The dimension of a cone σ ∈ FX is equal to the codimension of its

corresponding T -orbit in X and a cone τ ∈ FX is a face of σ if and only if the

closure of the orbit corresponding to σ contains the orbit corresponding to τ .

Proof. See for example [CLS11, Theorem 3.2.6].

A Fano variety is a normal projective variety X with restricted singularities

such that the anticanonical divisor −KX is an ample Q-Cartier divisor. Dif-

ferent authors place different restrictions on the singularities of a Fano variety.

Here all Fano varieties have at worst log-terminal singularities (see Defini-

tion 2.1.4). To represent toric Fano varieties with lattice polytopes rather

than lattice fans we need the following definitions. The lattice length of a lat-

tice line segment is the number of lattice points it contains minus 1. A lattice

point v is called primitive if the line segment conv(0, v) has lattice length 1.

Let F be a fan and let {ρ1, . . . , ρn} be the set of rays in F . Each ray ρi is
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generated by a primitive lattice point vi and F corresponds to a Fano toric

variety if and only if the points vi are the vertices of a convex lattice polytope.

From this we get a correspondence between toric Fano varieties and lattice

polytopes, motivating the following definitions.

Definition 2.1.2. A lattice polytope P with the origin in its interior is called

Fano if its vertices are primitive lattice points. A Fano polytope is called

• Canonical if the only interior point in P is the origin,

• Terminal if the only lattice points in P are the origin and its vertices,

• Reflexive if its dual polytope is also a lattice polytope.

Each of these correspond to a type of toric variety.

Definition 2.1.3. A normal variety X is Gorenstein (resp. Q-Gorenstein) if

the anticanonical divisor −KX is Cartier (respectively Q-Cartier).

Definition 2.1.4. Let X be a normal Q-Gorenstein variety and let f : V → X

be a resolution of X, that is f is birational and V is smooth. Then we have

KV − f ∗(KX) =
∑

i∈I aiEi where {Ei : i ∈ I} is the set of exceptional divisors

of f . We say that X is

• canonical if, for all i ∈ I, ai ≥ 0,

• terminal if, for all i ∈ I, ai > 0,

• log-canonical if, for all i ∈ I, ai ≥ 1 and

• log-terminal if, for all i ∈ I, ai > 1.

Often this is referred to asX having at worst canonical, terminal, log-canonical

or log-terminal singularities.

Theorem 2.1.5 ([Rei87, Bat94]). Toric Fano (resp. canonical, terminal,

Gorenstein) varieties up to toric morphisms are in correspondence with Fano

(resp. canonical, terminal, reflexive) lattice polytopes up to unimodular equiv-

alence.
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These descriptions naturally lead to classifications. Toric canonical and ter-

minal varieties have been classified up to dimension 3 [Kas10, Kas06], and toric

Gorenstein varieties up to dimension 4 [KS98, KS00].

2.2 Ehrhart Theory

Ehrhart theory is concerned with counting lattice points in integral dilations

of rational polytopes. For example, the number of lattice points in the n-th

dilation of the empty triangle conv((0, 0), (0, 1), (1, 0)) is the triangular number

(n+1)(n+2)
2

which is a polynomial in n with rational coefficients. To describe how

this appears in general we define quasi-polynomials

Definition 2.2.1. A quasi-polynomial is a polynomial whose coefficients are

periodic functions with integral period, which map the integers into some field

K. In particular, for some integer r, a quasi-polynomial f can be written:

f(n) =


f0(n) if n ≡ 0 mod r

...
...

fr−1(n) if n ≡ r − 1 mod r

for some polynomials f0, . . . , fr−1 ∈ K[n]. The integer r is called the period of

f . We will always assume that K = Q.

The central result of Ehrhart theory is that we can always count the points

in dilations of a rational polytope with some quasi-polynomial.

Theorem 2.2.2 ([Ehr62]). Let P be a d-dimensional rational polytope, then

there exists a quasi-polynomial ehrP such that for all positive integers n

ehrP (n) = |nP ∩ Zd|.

This is called the Ehrhart polynomial of P . The quasi-period of P is defined

to be the minimum period of ehrn.
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The Ehrhart polynomial of a polytope P has degree equal to the dimension of

P , its leading coefficient is constant and equals the volume of P . Remarkably,

it is also meaningful to consider the values taken by ehrP at negative integers:

Theorem 2.2.3 (Ehrhart–Macdonald reciprocity [Mac71]). Let P ⊆ Rd be a

rational polytope and let n be a positive integer. Then,

(−1)dim(P ) ehrP (−n) = |nP ◦ ∩ Zd|

where P ◦ is the relative interior of P .

A denominator of a rational polytope P is an integer r such that rP is a lat-

tice polytope. Some authors require r to be the minimum such integer but we

do not include that condition. The quasi-period of a polytope P will always di-

vide the denominator of P . If the quasi-period is less than all denominators of

P then we say that P exhibits quasi-period collapse. For example the denom-

inator 2 triangle conv((0, 0), (2, 0), (0, 1
2
)) has quasi-polynomial 1

2
n2 + 3

2
n + 1

and quasi-period 1.

It is sometimes useful to consider the series

EhrP (t) := 1 +
∞∑
n=1

ehrP (n)t
n

called the Ehrhart series of P . This always sums to h∗(t)
(1−t)d+1 where h∗(t) is a

polynomial of degree at most d and h∗(1) is non-zero. Note that the dimension

of P and the polynomial h∗ completely determine the Ehrhart theory of P .



Chapter 3

Classification of lattice triangles

by their two smallest widths

In this chapter we classify lattice triangles by the smallest rectangle they are a

subset of. We describe this in terms of lattice widths. Recall that for a lattice

polytope P ⊆ Rd and a primitive dual vector u ∈ (Zd)∗ the width of P with

respect to u is widthu(P ) := maxx∈P{u · x} −minx∈P{u · x} and the width of

P is the minimum width with respect to non-zero u.

Restricting the width of polytopes is a powerful tool towards classifying

them. It was shown in [BHHS21] that in each dimension d there is some con-

stant w ∈ N such that the number of lattice polytopes with width larger than

w containing n lattice points is finite. When d > 2 there are infinitely many

polytopes with small width containing n lattice points, so to classify them one

must classify the finitely many exceptional polytopes with large width and the

infinitely many polytopes with small width. This was done, for example, in the

classification of empty four-dimensional lattice simplices [IVnS21]. Although

there are finitely many polygons containing a given number of lattice points,

there are polygon classifications which follow a similar pattern. For exam-

ple, the classification of lattice polygons which contain a point from which all

other lattice points are visible [MT21] and the classification of denominator r

polygons containing k lattice points (Chapter 5) both consist of finitely many

13
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exceptional polygons and infinitely many polygons with small width.

Here we introduce the higher widths of a polytope as a way to break an

infinite class of polytopes with a given width into finite pieces. In particular,

the first and second widths of P are the two smallest widths of P in linearly

independent directions, denoted by width1(P ) and width2(P ) respectively (see

Definition 3.1.1). If P has dimension at least 2, and w1 and w2 are the first

and second widths then we always have 0 < w1 ≤ w2, so we assume that w1

and w2 are such integers for the rest of this chapter unless otherwise stated.

We demonstrate the use of higher widths by describing the finite set

Tw1,w2
:= {T = conv(v1, v2, v3) : vi ∈ Z2,width1(T ) = w1,width

2(T ) = w2}/ ∼

of lattice triangles whose first and second widths are w1 and w2, where ∼ de-

notes affine equivalence. Theorem 3.0.2 achieves this by establishing a bijection

between Tw1,w2 and the set Sw1,w2 defined as follows.

Definition 3.0.1. Let Sw1,w2 be the set of lattice triangles T such that

• If w1 < w2 then T is equal to

(A) conv((0, 0), (w1, y1), (0, w2)) where 0 ≤ y1 ≤ (w2 − y1 mod w1) or

(B) conv((0, 0), (w1, y1), (x2, w2)) where 0 < x2 ≤ w1

2
and

0 ≤ y1 ≤ w1 − x2 or

(C) conv((0, y0), (w1, 0), (x2, w2)) where 1 < x2 <
w1

2
and 0 < y0 < x2.

• If w1 = w2 then T is equal to

(A) conv((0, 0), (w1, y1), (0, w1)) where 0 ≤ y1 ≤ (w1 − y1 mod w1) or

(B) conv((0, 0), (w1, y1), (x2, w1)) where 0 < x2 ≤ w1

2
and

x2 ≤ y1 ≤ w1 − x2.

These triangles are each of one of the three types depicted in Figure 3.1. The

triangles in Sw1,w2 for w1 ≤ w2 ≤ 4 are depicted in Figure 3.2. For example,
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the triangles in S2,3 are conv((0, 0), (2, 0), (0, 3)), conv((0, 0), (2, 0), (1, 3)) and

conv((0, 0), (2, 1), (1, 3)).

(a) (b) (c)

Figure 3.1: The three types of triangle in the set Sw1,w2 as in Definition 3.0.1.
Black vertices are fixed for a given type while white vertices vary within fixed ranges
along the boundary of the rectangle.

Theorem 3.0.2. There is a bijection from Sw1,w2 to Tw1,w2 given by the map

taking T to its affine equivalence class. In particular,

• when w1 < w2 the cardinality of Tw1,w2 is

◦ w2
1

2
+ 2 if w1 and w2 are even

◦ w2
1

2
+ 1 if w1 is even and w2 is odd

◦ w2
1

2
+ 1

2
if w1 is odd

• and when w1 = w2 the cardinality of Tw1,w1 is

◦ w2
1

4
+ w1

2
+ 1 if w1 is even

◦ w2
1

4
+ w1

2
+ 1

4
if w1 is odd

w2

w1 0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 3 3 4 4 5 5 6
1 0 1 1 1 1 1 1 1 1 1 1
2 0 0 3 3 4 3 4 3 4 3 4
3 0 0 0 4 5 5 5 5 5 5 5
4 0 0 0 0 7 9 10 9 10 9 10
5 0 0 0 0 0 9 13 13 13 13 13
6 0 0 0 0 0 0 13 19 20 19 20

Table 3.1: The number of lattice triangles with multi-width (w1, w2) up to affine
equivalence for small w1 and w2.
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The idea of the proof is to use the fact that a triangle with first two widths

w1 and w2 is equivalent to a subset of a w1×w2 rectangle. It is straightforward

to classify the collection of possible x-coordinates of vertices of a triangle in

[0, w1]× [0, w2] up to affine equivalence. The y-coordinates of each vertex are

then integers in the range [0, w2] and we use facts about the width of the

triangles to bound these integers. By removing duplicates from the resulting

list we obtain the set of triangles Sw1,w2 . It remains to check that these triangles

have the desired widths and are distinct. This is made easier by the fact that

when w1 < w2 we know that there is a unique (up to sign) direction in which

the triangle has width w1.

A consequence of Theorem 3.0.2 is that we can completely classify lattice

triangles by their affine automorphism group. Another comes from the fact

that a lattice polygon is always equivalent to a subset of a rectangle with

dimensions given by its first two widths. Not only is this an integral part of

the proof of Theorem 3.0.2 but it also allows us to classify lattice triangles by

the smallest square they are a subset of. We can extend the classification to

include degenerate triangles, that is multi-sets of three collinear lattice points.

If we do so then, up to affine equivalence, the number of lattice triangles which

are a subset of [0, n]2 is equal to the cardinality of the set nQ∩Z4 where Q is

the four-dimensional simplex

Q := 1
2
conv ((1, 0, 0, 0) , (0, 1, 0, 0) , (0, 0, 1, 0) , (0, 0, 0, 2), (−2,−2,−2,−2)) .

Additionally, the sequence counting the triangles in [0, n]2 up to affine equiva-

lence is given by a Hilbert function of a degree 8 hypersurface in P(1, 1, 1, 2, 2, 2).

In two dimensions the Ehrhart polynomial is completely determined by the

number of boundary points b and the number of interior points i of a lat-

tice polygon. The possible pairs (b, i) for lattice triangles can be plotted (see

Figure 3.4), hinting at some beautiful combinatorial structures. Hofscheier–

Nill–Öberg [HNO18] described infinitely many empty cones in this plot. They
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also observed that points in the strips between these cones appear to form

periodic patterns. Using our classification of lattice triangles we will explain

why these patterns appear and partially describe them.

In Section 3.1 we will formally define the first two widths. We will prove that

any lattice polygon with widths w and w′ in linearly independent directions is

equivalent to a subset of a w × w′ rectangle and as a result prove that Tw1,w2

is equal to the set of triangles which are a subset of a w1 × w2 rectangle and

no smaller up to equivalence. In Section 3.2 we prove Theorem 3.0.2. Propo-

sitions 3.2.1, 3.2.2 and 3.2.4 show that the map taking a triangle to its affine

equivalence class is a well-defined, bijective map from Sw1,w2 to Tw1,w2 . In Sec-

tion 3.3 we discuss corollaries of the main theorem. We classify lattice triangles

by their affine automorphism group, examine the generating functions of se-

quences arising in the classification and identify some related sequences which

appear in the On-Line Encyclopedia of Integer Sequences [OEI23]. Finally,

in Section 3.4 we discuss the Ehrhart theory of lattice triangles. We do so

by studying the plot of the number of boundary and interior points of lattice

triangles. We provide an explanation for the periodic patterns which appear in

strips of points in this plot and, by colouring the plot with the first and second

widths of triangles realising each point, we provide an intuitive description of

the triangles appearing in these strips.
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Figure 3.2: The triangles T ∈ Sw1,w2 where 0 ≤ w1 ≤ w2 ≤ 4. Columns (resp.
rows) contain triangles with first (resp. second) width 0 to 4 from left to right (resp.
top to bottom). When a width 0, degenerate triangle (see Section 3.3) has multiple
identical vertices these are denoted by concentric circles.
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3.1 Width and Rectangles

Let N ∼= Zd be a lattice, N∗ := Hom(N,Z) ∼= Zd its dual lattice and NR :=

R ⊗Z N ∼= Rd the real vector space containing N . For two tuples of integers

w = (w1, . . . , wd) and w
′ = (w′

1, . . . , w
′
d) we say that w <lex w

′ when there is

some 1 ≤ i ≤ d such that wi < w′
i and wj = w′

j for all j < i. This defines the

lexicographic order on Zd.

Definition 3.1.1. Let P be a lattice polytope and u ∈ N∗ a dual vector. We

define the width of P with respect to u to be

widthu(P ) := max
x∈P
{u · x} −min

x∈P
{u · x}.

Since the widths are non-negative it is possible to define

mwidth(P ) := min
u1,...,ud∈N∗

(widthu1(P ), . . . ,widthud
(P ))

where the minimum is taken with respect to lexicographic order and u1, . . . , ud

are required to be linearly independent. We call this tuple the multi-width of

P and call widthui
(P ) the i-th width of P written widthi(P ).

We now define a polytope WP := (P + (−P ))∗ which is the dual of the

Minkowski sum of P and −P . Notice that WP is a rational polytope but

need not be a lattice polytope. This polytope encodes the widths of P in the

following sense.

Lemma 3.1.2. For u ∈ N∗, widthu(P ) ≤ w if and only if u ∈ wWP .

Proof. By definition, WP is the set of rational points u such that u · x ≤ 1

for all x ∈ P + (−P ). For a fixed lattice point u, widthu(P ) ≤ w if and only

if u · (x1 − x2) ≤ w for all pairs of points x1 and x2 in P . This is equivalent

to saying that 1
w
u · x ≤ 1 for all points x of P + (−P ), or in other words

u ∈ wWP .
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Note that this is equivalent to saying that the i-th width of P is the i-th

successive minimum of WP . For a definition of the successive minima of a

polytope see [KL88, p. 581]. We use Lemma 3.1.2 to prove the following

result.

Proposition 3.1.3. Let d ≥ 2 and P ⊂ NR be a lattice polytope. If P has

widths w1 and w2 with respect to two linearly independent, primitive dual vec-

tors, then P is equivalent to a subset of [0, w1]× [0, w2]× Rd−2.

Proof. Relabelling if necessary we may assume w1 ≤ w2. Pick linearly inde-

pendent, primitive dual vectors u1 and u2 which realise the stated widths of

P . By Lemma 3.1.2 we know that u1, u2 ∈ w2WP . As real vectors, u1 and u2

generate a two-dimensional vector space containing a sublattice of N∗. The

triangle conv(0, u1, u2) ⊆ w2WP contains a lattice point u′2 such that {u1, u′2}

is a basis for this sublattice. Since u′2 ∈ w2WP we know that widthu′
2
(P ) ≤ w2.

After a change of basis, we may assume that u1 and u′2 are the first two stan-

dard basis vectors. This change of basis and a translation are sufficient to map

P to a subset of [0, w1]× [0, w2]× Rd−2.

Notice that the fact that the triangle conv(0, u1, u2) contains a basis of the

rank 2 sublattice is an artefact of dimension 2. It depends on the fact that

empty lattice triangles (i.e. those whose only lattice points are their vertices)

are all affine equivalent. In dimensions 3 and higher we may no longer assume

that all empty lattice simplices are equivalent.

We utilise this special case in dimension 2 to reformulate the classification.

Given a lattice triangle T , there is a natural lattice rectangle with dimensions

width(1,0)(T )×width(0,1)(T ) which T is a subset of. Another triangle equivalent

to T may have a different associated rectangle so it is interesting to consider

what the “smallest” rectangle containing T is up to equivalence. One can make

rigorous the idea of “smallest” using lexicographic order on rectangles or by

requiring a triangle to be equivalent to no subset of a sub-rectangle. This is

formalised as follows.
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Definition 3.1.4. Let T lex
w1,w2

be the set of lattice triangles T , up to affine

equivalence, which are a subset of [0, w1] × [0, w2] such that for all (w′
1, w

′
2)

lexicographically less than (w1, w2), T is not equivalent to a subset of the

rectangle [0, w′
1]× [0, w′

2].

Let T sub
w1,w2

be the set of lattice triangles T , up to affine equivalence, which

are a subset of [0, w1] × [0, w2] such that for all lattice points (w′
1, w

′
2) in the

rectangle [0, w1]× [0, w2] if T is equivalent to a subset of [0, w′
1]× [0, w′

2] then

(w′
1, w

′
2) = (w1, w2).

For a lattice triangle T there is a unique pair of integers (w1, w2) such that

the equivalence class of T is in T lex
w1,w2

. However, while there is at least one pair

(w1, w2) such that the equivalence class of T is in T sub
w1,w2

, it is not immediate

that there is only one such pair. In fact, if we allow w2 < w1 there is more

than one for infinitely many triangles. The following proves that if we require

w1 ≤ w2 this pair is unique and that both of these sets are equal to Tw1,w2 .

Proposition 3.1.5. When w1 ≤ w2, the sets Tw1,w2, T lex
w1,w2

and T sub
w1,w2

are

equal.

Proof. If the equivalence class of T is in Tw1,w2 then there are linearly inde-

pendent, primitive directions with respect to which it has widths w1 and w2.

Therefore, by Proposition 3.1.3 T is equivalent to a subset of [0, w1]× [0, w2]. If

T were equivalent to a subset of a w′
1×w′

2 rectangle where (w
′
1, w

′
2) <lex (w1, w2)

this would contradict the widths of T so Tw1,w2 ⊆ T lex
w1,w2

. If T were equivalent

to a subset of some w′
1 × w′

2 rectangle where (w′
1, w

′
2) ∈ [0, w1] × [0, w2] ∩ Z2

then its widths would force (w′
1, w

′
2) = (w1, w2) so Tw1,w2 ⊆ T sub

w1,w2
.

If the equivalence class of T is in T lex
w1,w2

then its widths are lexicographi-

cally at most w1 and w2. If we had (width1(T ),width2(T )) <lex (w1, w2) then

by Proposition 3.1.3 T would be equivalent to a subset of [0,width1(T )] ×

[0,width2(T )] contradicting the definition of T lex
w1,w2

. Therefore, T has widths

w1 and w2 and Tw1,w2 = T lex
w1,w2

.

If the equivalence class of T is in T sub
w1,w2

then its widths are lexicographically
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at most w1 and w2. We may assume that T ⊆ [0, w1] × [0, w2]. If it had

width w′
2 in some direction linearly independent to (1, 0) and w′

2 < w2 then

by Proposition 3.1.3, T is equivalent to a subset of [0, w1] × [0, w′
2] which

contradicts the definition of T sub
w1,w2

. If it had width w′
1 < w1 with respect to

(1, 0) then, possibly after a translation, it would be a subset of [0, w1−1]×[0, w2]

which also contradicts the definition of T sub
w1,w2

. Therefore, T has widths w1 and

w2 and Tw1,w2 = T sub
w1,w2

.

From now on we will freely use any of these definitions to describe Tw1,w2 .

3.2 Proof of Theorem 3.0.2

The following results form the proof of Theorem 3.0.2 by showing that the

map taking a triangle to its affine equivalence class is a well-defined bijection

from Sw1,w2 to Tw1,w2 . First we prove surjectivity.

Proposition 3.2.1. Let T be a lattice triangle with first and second width w1

and w2 respectively. Then there exists a triangle T ′ ∈ Sw1,w2 which is affine

equivalent to T .

Proof. By Proposition 3.1.5 we may assume that T is a subset of [0, w1]×[0, w2].

We may further assume that there is a vertex of T contained in each edge of

the rectangle otherwise it would be a subset of a smaller rectangle. Consider

the three-point set we obtain by projecting the vertices of T onto the first

coordinate. This set is {0, x2, w1} for some integer x2 ∈ [0, w1]. By a reflection

in the line x = w1/2 we may assume that x2 ≤ w1/2.

Now, for some integers y0, y1, y2 ∈ [0, w2]

T = conv((0, y0), (w1, y1), (x2, y2)).

Since T has vertices in each edge of the rectangle one of these y-coordinates

must be 0 and one must be w2. Suppose, towards a contradiction, that 0 <
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y2 < w2. Then, possibly after a reflection in the line y = w2/2, we can assume

that y0 = 0 and y1 = w2 so the affine map (x, y) 7→ (x, y − x) takes T to

conv((0, 0), (w1, w2 − w1), (x2, y2 − x2)).

However, this is a subset of a smaller rectangle which contradicts the widths

of T , so we may assume that y2 = 0 or w2. By a reflection in the line y = w2/2

we assume that y2 = w2.

Now, for integers y0, y1 ∈ [0, w2], one of which is zero, we have

T = conv((0, y0), (w1, y1), (x2, w2))

and we need to consider three different cases corresponding to the three dif-

ferent types of triangle in Sw1,w2 . We will prove each of the following facts:

(1) If x2 = 0 then we may assume T is of type (A),

(2) If x2 > 0 and y0 = 0 then we may assume T is of type (B)

(3) If x2 > 0 and y0 > 0 then we may assume T is of type (C).

(1) Suppose x2 = 0 and consider the image of the vertices of T under (1, 1):

{y0, w1 + y1, w2}.

By the widths of T , this must not be a subset of [1, w2]. We know y1 = 0 or

y0 = 0. If y1 = 0 then w1 + y1 and w2 are both contained in [1, w2] so y0 = 0

too. Therefore, we always have y0 = 0. By a shear about the y-axis we may

assume that y1 < w1. Define y′1 to be (w2 − y1 mod w1). Notice that, since

0 ≤ y1 < w1, we have y1 = (w2 − y′1 mod w1). If y1 ≤ y′1 then T is of type

(A). Otherwise, let k be the integer such that y′1 = w2−y1+kw1 then the map

(x, y) 7→ (x,w2 − y + kx) takes T to the following triangle of the form (A):

T ′ = conv((0, 0), (w1, y
′
1), (0, w2)).
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(2) If x2 > 0 and y0 = 0 then consider the image of T under (-1,1):

{0, y1 − w1, w2 − x2}.

Due to the second width of T this must not be a subset of a line segment of

length less than w2 which means that (w2 − x2) − (y1 − w1) must be at least

w2. We can rearrange this to show that 0 ≤ y1 ≤ w1 − x2. If additionally

w1 = w2 then we have the following two triangles which are equivalent, under

the map exchanging x- and y-coordinates.

conv((0, 0), (w1, y1), (x2, w1)), conv((0, 0), (w1, x2), (y1, w1))

We choose the triangle with the smaller x-coordinates and so may assume that

y1 ≥ x2.

(3) If x2 > 0 and y0 > 0 then we must have y1 = 0. If x2 = w1/2 then a

reflection takes us to the previous case so we may assume x2 < w1/2. Consider

the image of T under (1, 1):

{y0, w1, w2 + x2}.

We know that y0 and w1 are both less than w2 + x2 so to prevent this fitting

in a line segment of length less than w2 we must have either y0 or w1 must be

less than or equal to x2. It is fixed that x2 < w1 so we must have y0 ≤ x2

If y0 = x2 then, under the map (x, y) 7→ (x, y − x2 + x), T is equivalent to

conv((0, 0), (w1, w1 − x2), (x2, w2)) which is included in case (2) so we may

assume that y0 < x2. A consequence of this is that x2 > 1. If w1 = w2 then

the map (x, y) 7→ (y, w1 − x) takes T to conv((0, 0), (y0, w1), (w1, w1 − x2)).

From our previous bounds we have y0 < x2 < w1/2 so this image of T is of

the form addressed in case (2). Therefore, we may assume case (3) only occurs

when w1 < w2. This shows that T is equivalent to a triangle in Sw1,w2 .



Chapter 3. Proof of Theorem 3.0.2 25

We now show that the widths of triangles in Sw1,w2 are w1 and w2 which we

will use to show that the map taking a triangle to its equivalence class is a

map from Sw1,w2 to Tw1,w2 .

Proposition 3.2.2. For T ∈ Sw1,w2, the first and second widths of T are w1

and w2 respectively.

Proof. The triangles in Sw1,w2 fall into one of the following types regardless of

whether w1 = w2 or w1 < w2. Therefore, it suffices to prove the result for each

of the following triangles for all positive integers w1 ≤ w2.

(A) T = conv((0, 0), (w1, y1), (0, w2)) where 0 ≤ y1 ≤ (w2 − y1 mod w1)

(B) T = conv((0, 0), (w1, y1), (x2, w2)) where 0 < x2 ≤ w1

2
and 0 ≤ y1 ≤

w1 − x2

(C) T = conv((0, y0), (w1, 0), (x2, w2)) where 1 < x2 <
w1

2
, 0 < y0 < x2 and

w1 < w2.

These triangles all have widths w1 and w2 with respect to (1, 0) and (0, 1)

respectively so it suffices to show that they have width at least w2 in all

directions linearly independent to (1, 0). That is, with respect to all dual

lattice vectors u = (ux, uy) where uy is non-zero. It suffices to consider when

uy is positive. We do this in each of the three cases.

(A) This case it is immediate since the width of the triangles with respect

to u is at least |u · (0, w2)− u · (0, 0)| = uyw2 which is at least w2.

(B) The image of the vertices of this case under u is

{0, w1ux + y1uy, x2ux + w2uy}.

Suppose for contradiction that this is a subset of a line segment with length

less than w2. Then we have x2ux +w2uy < w2 so ux is negative. We also need

x2ux+w2uy−w1ux− y1uy < w2 and so w2(uy−1)−y1uy

w1−x2
< ux. However, we know

that w2 > w1 − x2 and y1 ≤ w1 − x2 so this shows that ux is greater than −1

which is a contradiction.
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(C) The image of the vertices of this case under u is

{y0uy, w1ux, x2ux + w2uy}.

Suppose for contradiction that this is a subset of a line segment with length

less than w2. Then we have x2ux+w2uy−w1ux < w2 so ux is positive. We also

need x2ux + w2uy − y0uy < w2 and so ux <
y0uy−w2(uy−1)

x2
. However, we know

that w2 > 2x2 and y0 < x2 so ux < 2− uy ≤ 1 which is a contradiction.

The next lemma will be used to prove distinctness of the triangles in Sw1,w2 .

Lemma 3.2.3. Let T = conv((0, y0), (w1, y1), (x2, w2)) be a triangle in Sw1,w2.

If u is a dual vector such that the image of the vertices of T under u is equiv-

alent to {0, x′2, w1} for some integer x′2 ∈ [0, w1], then x
′
2 ≥ x2. That is, x2 is

minimal. Moreover, u can only be one of the vectors (1, 0), (0, 1) and (−1, 1).

Proof. When x2 = 0 this is immediate. When w1 < w2 it follows from the

facts that widthu(T ) = w1 for a unique (up to sign) choice of u and that

x2 ≤ w1/2. Therefore, we need only prove this for triangles of the form (B)

when w1 = w2. That is, T = conv((0, 0), (w1, y1), (x2, w1)) with 0 < x2 ≤ w1/2

and x2 ≤ y1 ≤ w1 − x2.

Let u = (ux, uy) be a dual vector linearly independent to (1, 0), we may

assume that uy ≥ 1. The image of the vertices of T under u is

{0, uxw1 + uyy1, uxx2 + uyw1}.

Pick u such that this is equivalent to {0, x′2, w1} for some x′2 ∈ [0, w1]. This

places strong restrictions on u. The difference between each pair of elements in

this set must be at most w1. In particular uxx2+uyw1 ≤ w1 and uxw1+uyy1 ≥

−w1. These can be rearranged into

−(uyy1 + w1)/w1 ≤ ux ≤ w1(1− uy)/x2
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By the conditions on T we know that w1/x2 ≥ 2 and y1/w1 < 1 so we can

further show that

−1− uy < ux ≤ 2(1− uy). (3.1)

In particular uy < 3. Substituting uy = 1 and uy = 2 into (3.1) and considering

the possible integers ux in each case shows that u is equal to (0, 1), (−1, 1)

or (−2, 2). By definition of u the width of T with respect to u is w1, so if

u = (−2, 2) then the width of T with respect to (−1, 1) is w1

2
which contradicts

the widths of T . For this reason we can discard the case u = (−2, 2).

The images of the vertices of T under (0, 1) and (−1, 1) are

{0, y1, w1}, and {0, y1 − w1, w1 − x2}

respectively. The properties of the coordinates of T allow us to order the

elements of each of these sets: 0 < y1 < w1 and y1 − w1 < 0 < w1 − x2. This

allows us to identify which point in each set is sent to x′2 under the equivalence

with {0, x′2, w1}. We see that x′2 = y1, w1 − y1 or w1 − x2. For any of these

x′2 ≥ x2 as desired.

Now we can prove affine distinctness of the triangles in Sw1,w2 .

Proposition 3.2.4. The triangles in Sw1,w2 are all distinct under affine maps.

Proof. Let T and T ′ be equivalent triangles in Sw1,w2 . Let the variables as-

sociated to T and T ′ be denoted by y0, y1, x2 and y′0, y
′
1, x

′
2 respectively. By

Lemma 3.2.3 x2 = x′2. Therefore, both are of the form (A) or neither are. We

will show in each of the following four facts.

1. If T and T ′ are both of type (A) then T = T ′

2. If T and T ′ are both of type (B) then T = T ′

3. If T and T ′ are both of type (C) then T = T ′
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4. If T is of type (B) and T ′ is of type (C) then we have a contradiction.

(1) Either y1 = y′1 = 0 and w1 = w2 or they each have a unique edge of

lattice length w2. Therefore, either T = T ′ or the affine map taking T to T ′

preserves the line segment from (0, 0) to (0, w2). The reduces us to maps of

the form

(x, y) 7→ (x, y + kx) and (x, y) 7→ (x,w2 − y + kx).

for integers k. Since 0 ≤ y1, y
′
1 < w1 if a map of the first from takes T to T ′

then y1 = y′1 and T = T ′. If a map of the second form takes T to T ′ then

y1 ≤ (w2 − y1 mod w1) = y′1 and symmetrically y′1 ≤ y1 so again T = T ′.

(2) The normalised volumes of T and T ′ are w1w2 − y1x2 and w1w2 − y′1x2
which must be equal so y1 = y′1 and T = T ′.

(3) The normalised volumes of T and T ′ are w1w2−w1y0+ y0x2 and w1w2−

w1y
′
0 + y′0x2 which must be equal so y0 = y′0 and T = T ′.

(4) Since T ′ is of type (C) we know that 1 < x2 < w1/2 and w1 < w2. By

w1 < w2 we see that the dual vector u such that widthu(T
′) = w1 is unique. We

can use it to distinguish the three vertices of T and T ′ by their images under

u. In this way we see there is only one order in which to map the vertices of T

to the vertices of T ′ that is (0, 0), (w1, y1) and (x2, w2) map to (0, y′0), (w1, 0)

and (x2, w2) respectively. Thus the following matrix must be unimodular

 w1 x2

−y′0 w2 − y′0


w1 x2

y1 w2


−1

=

 1 0

y1y′0−y′0w2−y1w2

w1w2−x2y1
1

 .

Since w2 > y1 we must have y1y
′
0 − y′0w2 − y1w2 < 0 so for the matrix to

have integral entries we must have y1w2 + y′0w2 − y1y′0 ≥ w1w2 − x2y1. Since

y1 ≤ w1−x2 the right hand side is at least w2(x2+y1)−x2y1. Cancelling terms

and dividing by w2 − y1 gives y′0 ≥ x2 which is the desired contradiction.

We bring together the results of this section to prove the main theorem.
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Proof of Theorem 3.0.2. Proposition 3.2.2 shows that the map taking a trian-

gle to its affine equivalence class is a map from Sw1,w2 to Tw1,w2 . By Proposi-

tions 3.2.1 and 3.2.4 this map is bijective.

To calculate the cardinality of Tw1,w2 we need only count the triangles in

Sw1,w2 . For triangles of type (A) we need to compute the number of integers

y1 ∈ [0, w1) such that y1 ≤ (w2 − y1 mod w1). Pick q, r ∈ Z with 0 ≤ r < w1

such that w2 = qw1+r. Then y1 ≤ (w2−y1 mod w1) if and only if 0 ≤ y1 ≤ r
2

or r < y1 ≤ r+w1

2
which can be seen by considering the plot of (y1, y1) and

(y1, w2 − y1 mod w1) for y1 ∈ [0, w1). For any integer a the number of points

in [0, a
2
] ∩ Z is ⌈a+1

2
⌉ so the number of y1 satisfying one of the above is

⌈
r + 1

2

⌉
+

⌈
w1 − r + 1

2

⌉
− 1.

If we substitute in r = w2 − qw1 and consider cases for w1, w2 and q odd and

even it can be shown that this is ⌈w1

2
⌉ when w2 is odd and ⌈w1+1

2
⌉ when w2 is

even.

For triangles of type (B) and (C) we need only calculate

⌊w1/2⌋∑
x2=1

(w1 − x2 + 1) +

⌊(w1−1)/2⌋∑
x2=2

(x2 − 1) =


w2

1

2
− w1

2
+ 1 if w1 even

w2
1

2
− w1

2
if w1 odd

when w1 < w2 and

⌊w1/2⌋∑
x2=1

(w1 − 2x2 + 1) =


w2

1

4
if w1 even

w2
1

4
− 1

4
if w1 odd

when w1 = w2. Combining these sums and separating odd and even cases

gives the result.
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3.3 Corollaries

A consequence of Theorem 3.0.2 is that we have defined a normal form for

lattice triangles from which their first two widths can be read. This normal

form is compatible with scaling in the sense that for a positive integer λ and a

triangle T ∈ Sw1,w2 we have λT ∈ Sλw1,λw2 . We can also read the affine auto-

morphism group of a triangle from this normal form as shown in the following

corollary. Let S3 denote the group of permutations of {0, 1, 2}, written in cycle

notation, and Aut(T ) denote the group of affine maps which map T to itself.

Corollary 3.3.1. Let T ∈ Sw1,w2 then

• Aut(T ) ∼= S3 if and only if one of the following hold

◦ w1 = w2 and T = ((0, 0), (w1, 0), (0, w1)) or

◦ w1 = w2 and T = ((0, 0), (w1,
w1

2
), (w1

2
, w1))

• Aut(T ) ∼= ⟨(012)⟩ if and only if the following holds

◦ w1 = w2 and T = conv((0, 0), (w1, y1), (w1 − y1, w1)) such that

y1 ̸= w1

2

• Aut(T ) ∼= ⟨(01)⟩ if and only if one of the following hold

◦ T = conv((0, 0), (w1, y1), (0, w2)) such that y1 ≡ (w2 − y1 mod w1)

and either y1 > 0 or w1 < w2,

◦ T = conv((0, 0), (w1, 0), (
w1

2
, w2))

◦ T = conv((0, 0), (w1,
w1

2
), (w1

2
, w2)) and w1 < w2,

◦ T = conv((0, 0), (w1, y1), (y1, w1)), w1 = w2 and 2y1 < w1

• Aut(T ) ∼= {ι} otherwise.

Proof. We consider each of the three types of triangle in Sw1,w2 and find con-

ditions for them to have each automorphism group.



Chapter 3. Corollaries 31

Triangles T of type (A) have automorphism group S3 when w1 = w2 and y1 =

0 since this is just a dilation of the standard simplex conv((0, 0), (1, 0), (0, 1)).

Otherwise any automorphism of T must preserve the edge from (0, 0) to (0, w2)

so we are reduced to maps of the form (x, y) 7→ (x, y + kx) and (x, y) 7→

(x,w2−y+kx) for integers k. The first of these maps can only map T to itself

if k = 0 which is just the identity map. The second can only map T to itself if

y1 = (w2 − y1 mod w1). So T has automorphism group isomorphic to ⟨(12)⟩

in this case and trivial automorphism group otherwise.

For a triangle T of type (B) let φ be an affine map taking T to itself. It

is defined by multiplication by a unimodular matrix U ∈ GL2(Z) followed by

a translation t ∈ Z2. Let v0 = (0, 0), v1 = (w1, y1) and v2 = (x2, w2) be the

vertices of T then the set of numbers {(1, 0) · φ(vi) : i = 0, 1, 2} is equal to

{0, x2, w1}. This means that the set of numbers {(1, 0) · UvTi : i = 0, 1, 2}

is equivalent to {0, x2, w1} and so T has width w1 with respect to the vector

(1, 0)U . If w1 < w2 this forces the first row of U to be (±1, 0). Otherwise, by

Lemma 3.2.3 the first row of U must be (±1, 0), (0,±1) or (±1,∓1). Therefore,

for some integer k, U is one of the following

1 0

k ±1

 ,

−1 0

k ±1

 ,

 0 1

±1 k

 ,

 0 −1

±1 k

 ,

 1 −1

±1− k k

 ,

 −1 1

±1− k k

 .

The image of T under each of these maps, in the same order, is

T1 = conv((0, 0), (w1, kw1 ± y1), (x2, kx2 ± w2))

T2 = conv((0, 0), (−w1, kw1 ± y1), (−x2, kx2 ± w2))

T3 = conv((0, 0), (y1,±w1 + ky1), (w2,±x2 + kw2))

T4 = conv((0, 0), (−y1,±w1 + ky1), (−w2,±x2 + kw2))

T5 = conv((0, 0), (w1−y1, (±1−k)w1+ky1), (x2−w2, (±1−k)x2+kw2))

T6 = conv((0, 0), (y1−w1, (±1−k)w1+ky1), (w2−x2, (±1−k)x2+kw2)).
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These must be translations of T . In each case, sorting the vertices by the

size of their x-coordinates indicates the permutation of the vertices of T they

correspond to. This allows us to find the translation vector t. The sign of the

permutation indicates weather the determinant of U is positive or negative.

This is enough to explicitly compute k and obtain a collection of restrictions

on the variables. In the following we execute this procedure in each case:

If T1 is a translation of T it comes from the identity permutation, so t = (0, 0)

and the determinant of U is 1. By equating the vertices of T1 + t and T we

can show that k = 0 so φ is the identity map.

If T2 is a translation of T it comes from the permutation (01) of the vertices,

so t = (w1, y1) and the determinant of U is −1. By equating the vertices of

T2 + t and T we can show that 2x2 = w1 and k = −2y1/w1 which is only an

integer if y1 = 0 or y1 = w1/2. Then k = 0 or −1 each of which lead to valid

automorphisms.

If T3 is a translation of T it comes from the permutation (12) of the vertices,

so t = (0, 0) and the determinant of U is −1. By equating the vertices of T3

and T we can show that y1 = x2, w1 = w2 and k = 0 which leads to a valid

automorphism of T .

If T4 is a translation of T it comes from the permutation (012) of the vertices,

so t = (w1, y1) and the determinant of U is 1. By equating the vertices of T4+t

and T we can show that w1 = w2 = x2 + y1 and k = −1 which leads to a valid

automorphism of T .

If T5 is a translation of T it comes from the permutation (02) of the vertices,

so t = (x2, w2) and the sign of U is −1. By equating the vertices of T5 + t and

T we can show that w1 = w2 = 2x2 = 2y1 and k = −1 which gives a valid

automorphism of T .

If T6 is a translation of T it comes from the permutation (021) of the vertices,

so t = (x2, w2) and the determinant of U is 1. By equating the vertices of T6+t

and T we can show that w1 = w2 = x2 + y1 and k = 0 which gives a valid

automorphism of T .
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To describe the remaining triangles in the corollary with non-trivial automor-

phism group we combine the above types of triangle. Note that each triangle

defines a permutation and conditions under which T ∈ Sw1,w2 has this permu-

tation in its automorphism group. If y1 = w1/2 and w1 = w2 then Aut(T2) is

S3. Otherwise, T2 satisfies none of the other conditions so Aut(T2) is ⟨(01)⟩.

If y1 = w1/2 then Aut(T3) is S3. Otherwise, T3 satisfies none of the other con-

ditions so Aut(T3) is ⟨(12)⟩. If y1 = w1/2 then Aut(T4) and Aut(T6) are both

S3. Otherwise, Aut(T4) and Aut(T6) are both ⟨(012)⟩. Finally, T5 satisfies the

necessary conditions for all the other permutations so Aut(T5) is S3.

Triangles of type (C) all have trivial automorphism group. We show this

using a very similar method to the type (B) triangles above. For a triangle T

of type (C) let φ be an affine map taking T−(0, y0) to itself (where we subtract

(0, y0) so we may assume T has a vertex at the origin). This is defined by a

unimodular matrix U and translation vector t. Since w1 < w2 the first row of

U must be (±1, 0) so, for some integer k, U is one of the following

1 0

k ±1

 ,

−1 0

k ±1

 .

The image of T − (0, y0) under each of these maps is

T7 = conv((0, 0), (w1, kw1 ∓ y0), (x2, kx2 ± (w2 − y0))) or

T8 = conv((0, 0), (−w1, kw1 ∓ y0), (−x2, kx2 ± (w2 − y0))).

If T7 is a translation of T − (0, y0) it comes from the identity permutation

so t = (0, 0) and the determinant of U is 1. By equating the vertices of T7 + t

and T − (0, y0) we see that k = 0 so this is the identity map.

If T8 is a translation of T it comes from the permutation (01) so t = (w1,−y0)

and the determinant of U is −1. By equating the x-coordinates of T8 + t and

T − (0, y0) we see that w1 − x2 = x2 so x2 = w1/2 which contradicts the

definition of type (C) triangles.



Chapter 3. Corollaries 34

So far we have restricted ourselves to non-degenerate triangles, that is trian-

gles with non-zero volume. However, we can extend our definitions and proofs

to multi-sets containing three collinear points and call these points the ver-

tices of a degenerate triangle. Let the widths of such a set be the widths of its

convex hull. It has first and second widths 0 and l where l is its lattice length.

In this sense we can see that there are ⌈(w2 + 1)/2⌉ triangles with first width

0 and second width w2 up to affine equivalence for all w2 ≥ 0. They can be

assumed to have vertices (0, 0), (0, y1) and (0, w2) for integers y1 ∈ [0, w2/2].

Corollary 3.3.2. The number of (degenerate and non-degenerate) triangles,

up to affine equivalence, which are a subset of [0, n]2 is equal to |nQ∩Z4| where

Q is the four-dimensional rational simplex

Q := conv

((
1

2
, 0, 0, 0

)
,

(
0,

1

2
, 0, 0

)
,

(
0, 0,

1

2
, 0

)
, (0, 0, 0, 1), (−1,−1,−1,−1)

)
.

Furthermore, the generating function of this sequence is the Hilbert series of a

degree 8 hypersurface in P(1, 1, 1, 2, 2, 2).

Proof. First notice that we can rewrite the cardinality of |Tw1,w2| described in

Theorem 3.0.2 using the terms (−1)w1 and (−1)w2 instead of cases as follows

|Tw1,w2| =


w2

1

4
+ w1

2
+ 5

8
+ 3

8
(−1)w1 when w1 = w2

w2
1

2
+ 1 + 1

2
(−1)w1 + 1

4
(−1)w2 + 1

4
(−1)w1+w2 when w1 < w2.

Thus, for a fixed w1, the generating function
∑∞

w2=w1
sw2|Tw1,w2| is

w2
1

4
+ w1

2
+ 5

8
+ 3

8
(−1)w1 +

∞∑
w2=w1+1

sw2(
w2

1

2
+1+ 1

2
(−1)w1 + 1

4
(−1)w2 + 1

4
(−1)w1+w2).

This sum can be simplified by applying the polylogarithm equations

∞∑
k=1

sk =
s

1− s,
∞∑
k=1

ksk =
s

(1− s)2 ,
∞∑
k=1

k2sk =
s(1 + s)

(1− s)3
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after which we obtain the following result (when w1 > 0)

∞∑
w2=w1

sw2|Tw1,w2| =sw1

[
w2

1(1 + s)

4(1− s) +
w1

2
+

5 + 6s+ 5s2

8(1− s2) + (−1)w1
3 + 2s+ 3s2

8(1− s2)

]
.

When w1 = 0 we can rewrite the cardinality |T0,w2| as w2

2
+ 3

4
+ 1

4
(−1)w2 and

following the same procedure as above we show that

∞∑
w2=w1

sw2|Tw1,w2| =
1

(1− s2)(1− s) .

Consider the two generating functions we have found as polynomials in vari-

ables w1 and (−1)w1 . We can substitute these polynomials into the generating

function
∑∞

w1=0

∑∞
w2=w1

tw1sw2|Tw1,w2| and use the polylogarithm equations to

simplify and obtain the following expression for the generating function

∞∑
w1=0

∞∑
w2=w1

tw1sw2|Tw1,w2 | =
−s7t4 + s6t3 − s5t2 + s4t3 − s3t+ s2t2 − st+ 1

(1− s)2(1 + s)(1− st)3(1 + st)
.

(3.2)

Let T be a triangle with first and second width w1 and w2 respectively. To

be equivalent to a subset of a square of side length w, T must have width at

most w in two linearly independent directions. Therefore, the smallest square

which T is equivalent to a subset of has side length w2 and the number of

triangles which are equivalent to a subset of [0, w2]
2 and no smaller square

is
∑w2

w1=0 |Tw1,w2|. Reordering the sums, the generating function (3.2) is also

equal to
∑∞

w2=0

∑w2

w1=0 t
w1sw2|Tw1,w2|. Setting t = 1 in this function gives us

the generating function for the sequence counting triangles which are a subset

of [0, w2]
2 and no smaller square. The result is

1− s8
(1− s2)3(1− s)2 .

To compute instead the generating function of the number of triangles which

are a subset of [0, w2]
2 (and possibly smaller squares) we divide this by (1−s).
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The result is the Hilbert series of a degree 8 hypersurface in the weighted

projective space P(1, 1, 1, 2, 2, 2) and also the Ehrhart series of Q, that is

EhrQ(t) :=
∞∑
n=0

|nQ ∩ Z4|sn =
1− s8

(1− s2)3(1− s)3 .

The Ehrhart series of Q is found using computational algebra. By definition

of the Ehrhart series this proves the result. These two descriptions of the

generating function are related via mirror symmetry in the sense of [Prz13]. Let

f be a Laurent polynomial which is a mirror partner for a degree 8 hypersurface

in P(1, 1, 1, 2, 2, 2), then Q is the dual of the Newton polytope of f .

Finally, we note some sub-sequences which appear in the On-Line Encyclo-

pedia of Integer Sequences (OEIS) [OEI23]. We refer to these sequences by

their OEIS reference number. The sequence counting triangles which have an

edge of lattice length n and are a subset of [0, n]2 is A140144. The sequence

counting these same triangles but excluding those with zero volume is A135276.

Let (an)n≥0 be the sequence counting triangles which are a subset of an n× n

square and no smaller and which also have no edge of lattice length n. Then

the sequence (an− an−1)n≥1 is the rounded up staircase diagonal on the natu-

ral numbers, shown in Figure 3.3, which is A080827. We distinguish between

triangles with an edge of lattice length n and not since these are exactly the

triangles of type (A) and those with the longest possible edge contained in a

square. It is not obvious why any of these sequences should coincide.
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Figure 3.3: The rounded up staircase diagonal on the natural numbers.
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3.4 Ehrhart Theory of Lattice Triangles

In this section we discuss the pairs (b, i) where b and i are the number of

boundary and interior points of a non-degenerate lattice triangle. For a poly-

gon P , let b(P ) be the number of boundary lattice points and i(P ) the number

of interior lattice points. The Ehrhart polynomial of a lattice polygon is

ehrP (n) =

(
i(P ) +

b(P )

2
− 1

)
n2 +

b(P )

2
n+ 1.

Therefore, studying pairs (b(P ), i(P )) is equivalent to studying the Ehrhart

theory of lattice polygons. In [HNO18] it was proven that for integers c ≥ 1

the cones

σ◦
c :=

{
(b, i) ∈ R2

≥0 :
c− 1

2
b− (c− 1) < i <

c

2
b− c(c+ 2)

}

contain no points (b(T ), i(T )) where T is a lattice triangle. The boundaries

of consecutive cones are parallel lines and describe strips of the plane where

points (b(T ), i(T )) can fall. Hofscheier–Nill–Öberg observed periodic patterns

in the points in these strips which can be observed in Figure 3.4 and 3.5.

In Figure 3.4 we plot points (b(T ), i(T )) and denote which are realised by

a triangle with or without an edge of lattice length width2(T ). The periodic

strips seem to be made up of triangles with a long edge, suggesting that the

patterns observed relate somehow to a triangle having one relatively long edge.

Additionally, Figure 3.5 shows the same plot only now it is coloured by the

smallest and largest first and second width of lattice triangles realising each

point. In all of these plots, clear patterns emerge in the strips away from the

i-axis. When coloured by first width, each strip has its own consistent colour.

When coloured by second width, each strip has an even gradient of colour.

This suggests that the points in a given strip are realised mainly by triangles

with fixed w1 and evenly increasing w2. We make all of this precise in the

following result.



Chapter 3. Ehrhart Theory of Lattice Triangles 38

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Number of boundary points

N
u
m
b
er

of
in
te
ri
or

p
oi
n
ts

Figure 3.4: Number of boundary and interior points of lattice triangles with multi-
width (w1, w2) where 0 < w1 ≤ w2 ≤ 100 and where the number of interior or
boundary points does not exceed 100. Dots (resp. crosses) denote points which are
realised by triangles with (resp. without) an edge of length w2. Some points are
realised by both.

Proposition 3.4.1. Let Sw be the set of points (b(T ), i(T )) where T has width

w with respect to the normal to one of its edges. Then we have

Sw ⊆
{
(b, i) ∈ Z2 : 1− w2 ≤ i− w − 1

2
b ≤ 1− w

}

and

Sw +

(
w,
w(w − 1)

2

)
⊆ Sw

Moreover, there are finitely many triangles T1, . . . , Tr, which have width w

with respect to a normal to an edge, such that all points of Sw can be written

(b(Tj), i(Tj)) + k(w,w(w − 1)/2) for some positive integer k. In other words,

the points of Sw form a periodic pattern in a strip of the plane, generated by

a finite collection of triangles. The set S of points (b(T ), i(T )) where T is a

lattice triangle is the union of these Sw for w ≥ 1.
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(d) Coloured by the largest second width
of triangles realising points.

Figure 3.5: The plot shown in Figure 3.4, now coloured according to the widths of
triangles which realise each point.

Proof. It is immediate that S is the union of the sets Sw for w ≥ 1 so it remains

to prove the properties of Sw. Let T be a lattice triangle and say that u is a

normal to one of its edges such that widthu(T ) = w. There is an affine map

which takes one of the end points of this edge to the origin, the other to the

positive x-axis and the third vertex above the x-axis. We now have a triangle

of the form conv((0, 0), (l, 0), (a, w)) for some positive integer l.

Pick’s Theorem tells us that the normalised volume of a lattice polygon P is

2i(P )+b(P )−2. The normalised volume of T is lw and its number of boundary

points is at most l+2w and at least l+2. Notice that i(T )− (w− 1)b(T )/2 is

equal to (2i(T ) + b(T ))/2− wb(T )/2 and, using Pick’s Theorem, this is equal
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to (lw + 2)/2− wb(T )/2. Therefore, the bounds on b(T ) give

1− w2 ≤ i(T )− w − 1

2
b(T ) ≤ 1− w.

Now consider the triangle T ′ = conv((0, 0), (l + w, 0), (a, w). Its volume is

(l + w)w and it has b(T ) + w boundary points. From Pick’s Theorem we

can compute that it has i(T ) + w(w − 1)/2 interior points. This shows that

Sw + (w,w(w − 1)/2) is a subset of Sw.

To show that there is a finite collection of triangles generating Sw, consider

the triangle conv((0, 0), (l − kw, 0), (a, w)), where k is the integer such that

l − kw is the smallest positive integer possible. This has volume (l − kw)w,

b(T )−kw boundary points and i(T )−kw(w−1)/2 interior points. Therefore,

if k > 0 the point (b(T ), i(T )) can be obtained from another point in Sw by

adding (w,w(w − 1)/2). If k = 0 then l ∈ (0, w]. We may assume by a shear

that a ∈ [0, w). Therefore, there are finitely many choices for T .

Notice that the lower and upper boundaries of Sw are in the same hyper-

plane as the upper boundary of σw−1 and lower boundary of σw respectively.

However, this result does not reproduce the result of [HNO18] since, as subsets

of the real plane, the strips containing the sets Sw and the cones σc intersect

non-trivially. This intersection could potentially contain points (b, i) if it were

not for the proof that the cones are empty.



Chapter 4

Classification of width 1 lattice

tetrahedra by their multi-width

In this chapter we classify lattice tetrahedra with width 1 by their multi-width,

as an extension of the previous chapter to three dimensions. We also partially

classify lattice tetrahedra with width 2 by their multi-width algorithmically.

Lattice simplices are recurring objects of study with multiple applications.

Via toric geometry they are relevant to algebraic geometry and are closely

related to toric Q-factorial singularities. The toric Fano three-folds with at

most terminal singularities were classified by finding all the three-dimensional

lattice polytopes whose only lattice points were the origin and their vertices

[Kas06]. A key step towards this was classifying the subset of tetrahedra

among those polytopes. Simplices whose only lattice points are their vertices

can give terminal quotient singularities by placing one vertex at the origin and

considering the cone they generate. These are called empty simplices and were

classified in dimension 3 and 4 in [Whi64] and [IVnS21] respectively. There are

also applications of lattice simplices in mixed-integer and integer optimisation,

see for example [AWW11] and [AKN20]. Width appears in the proofs of both

[IVnS21] and [AWW11] so there is reason to investigate lattice tetrahedra of

given width.

Recall from Section 3.1 that the multi-width of a d-dimensional polytope

41
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is a tuple of widths (w1, . . . , wd). Among other properties, this satisfies that

wi ≤ wi+1 for i = 1, . . . , d− 1 so for the rest of this chapter we assume, unless

stated otherwise, that w1, w2 and w3 are positive integers with w1 ≤ w2 ≤ w3.

Ideally, we would describe the finite sets Tw1,w2,w3 defined

Tw1,w2,w3
:= {T = conv(v1, v2, v3, v4) : vi ∈ Z3,mwidth(T ) = (w1, w2, w3)}/ ∼ .

where ∼ denotes affine equivalence. Theorem 4.0.2 achieves this when the first

width is 1 by establishing a bijection between T1,w2,w3 and a set of tetrahedra

S1,w2,w3 . To define S1,w2,w3 we define the four types of tetrahedron which our

new classification will include. Let Sw1,w2 be as in Definition 3.0.1.

Definition 4.0.1. The four types of tetrahedron which appear in S1,w2,w3 are

1. conv({0} × t, (1, 0, 0)) where t ∈ Sw2,w3 ,

2. conv((0, 0, 0), (0, w2, z1), (1, 0, 0), (1, 0, w3)) where 0 ≤ z1 ≤ w2

2
,

3. conv((0, 0, 0), (0, w2, z1), (1, 0, w3), (1, y1, 0)) where 0 < y1 ≤ w2 and

w3 − w2 ≤ z1 ≤ w3,

4. conv((0, 0, 0), (0, w2, w3), (1, 0, w3), (1, y1, z1)) where 0 < z1 < y1 < w2.

For examples of these see Figure 4.1.

If w3 > w2 > 1 let S1,w2,w3 be the set containing all tetrahedra of type 1-4.

If w3 = w2 > 1 then S1,w2,w2 is the set of all type 1 and 2 tetrahedra as

well as type 3 tetrahedra satisfying y1 ≤ z1 and type 4 tetrahedra satisfying

z1 ≤ w2 − y1.

If w3 > w2 = 1 then

S1,1,w3
:= { conv((0, 0, 0), (0, 1, 0), (0, 0, w3), (1, 0, 0)),

conv((0, 0, 0), (0, 1, w3 − 1), (1, 0, w3), (1, 1, 0)),

conv((0, 0, 0), (0, 1, w3), (1, 0, w3), (1, 1, 0))}.
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If w3 = w2 = 1 then

S1,1,1 := { conv((0, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0)),

conv((0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0))}.

These last two cases have elements of type 1 and 3.

The reason not all tetrahedra of type (1)-(4) necessarily belong to S1,w2,w3

is that in the special cases w2 = 1, w2 = w3 and w2 = w3 = 1 some of these

tetrahedra are affine equivalent to one-another, so we exclude duplicates. The

following is the main classification result of this chapter.

(0,0,0)

(0,6,3)

(0,2,7)

(1,0,0)

(a) Type 1

(0,0,0)

(0,6,3)

(1,0,7)

(1,0,0)

(b) Type 2

(0,0,0)

(0,6,5)

(1,0,7)

(1,3,0)

(c) Type 3

(0,0,0)

(0,6,7)

(1,0,7)

(1,4,2)

(d) Type 4

Figure 4.1: Examples of tetrahedra of type 1-4 when w2 = 6 and w3 = 7. Black
vertices are fixed for a given type while white vertices are variable.

Theorem 4.0.2. There is a bijection from S1,w2,w3 to T1,w2,w3 given by the map

taking a tetrahedron to its affine equivalence class. In particular,

• when w3 > w2 > 1 the cardinality of T1,w2,w3 is

◦ 2w2
2 + 4 if w2 and w3 even
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◦ 2w2
2 + 3 if w2 even and w3 odd

◦ 2w2
2 + 2 if w2 odd

• when w2 > 1 the cardinality of T1,w2,w2 is

◦ w2
2 + w2 + 2 if w2 even

◦ w2
2 + w2 + 1 if w2 odd

• when w3 > 1 the cardinality of T1,1,w3 is 3

• and the cardinality of T1,1,1 is 2.

w3

w2 1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 3 3 3 3 3 3 3 3 3 3
2 0 8 11 12 11 12 11 12 11 12 11 12
3 0 0 13 20 20 20 20 20 20 20 20 20
4 0 0 0 22 35 36 35 36 35 36 35 36
5 0 0 0 0 31 52 52 52 52 52 52 52
6 0 0 0 0 0 44 75 76 75 76 75 76

Table 4.1: The number of lattice tetrahedra with multi-width (1, w2, w3) up to affine
equivalence for small w2 and w3.

Table 4.1 gives the cardinality of T1,w2,w3 when w2 ≤ 6 and w3 ≤ 12 described

by Theorem 4.0.2. Surprisingly this follows the same pattern as the triangles

case in the previous chapter: right of the diagonal, odd rows are constant and

even rows alternate between two values. The idea of the proof is to first show

that a tetrahedron with multi-width (1, w2, w3) is equivalent to a subset of

[0, 1] × [0, w2] × [0, w3]. We then successively classify the possible x-, y- and

z-coordinates of the vertices of the tetrahedra. At each step we remove cases

which have too small a width in some direction or are equivalent to other cases.

In earlier steps of the classification we consider multi-sets of points. In an

abuse of notation we write {v1, . . . , vn} for the n-point multi-set containing

lattice points vi ∈ Zd even when the vi are not distinct. We define widths of

these sets by saying the width of a set is the width of its convex hull.
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We can completely classify the four-point sets in Z with width w1. These

can represent the possible x-coordinates of all four-point sets in Z2 with multi-

width (w1, w2). The second width gives bounds on their possible y-coordinates

and we can completely classify the four-point sets in the plane with multi-width

(1, w2). Similarly, these represent the possible first two coordinates of the

vertices of tetrahedra of multi-width (1, w2, w3). By considering the possible

z-coordinates we can assign to each point we obtain the classification above.

When w1 > 1 the number of cases which needs to be checked for this proof

style increases dramatically. However, the method can be used to create an

algorithm which classifies the tetrahedra of a given multi-width. In this way

we begin classifying the width 2 case for small multi-width. The number of

tetrahedra classified can be found in Table 4.2. We take this classification only

far enough to obtain and test Conjecture 4.4.3 on the number of multi-width

(2, w2, w3) tetrahedra. The extent to which we can extend the two-dimensional

results to the three-dimensional case remains open, but the similarities in the

results we have found so far seem hopeful.

w3

w2 2 3 4 5 6 7 8 9 10 11 12

2 17 45 47 45 47 45 47 45 47 45 47
3 0 87 178 175 178 175 178 175 178 175 178
4 0 0 161 320 325 320 325 320 325 320 325
5 0 0 0 244 493 490 493 490 493 490 493
6 0 0 0 0 358 716 721 716 721 716 721
7 0 0 0 0 0 482 970 967 970 967 970
8 0 0 0 0 0 0 636 1274 1279 1274 1279
9 0 0 0 0 0 0 0 801 1609 1606 1609
10 0 0 0 0 0 0 0 0 995 1994 1999

Table 4.2: The number of lattice tetrahedra with multi-width (2, w2, w3) up to affine
equivalence for small w2 and w3.

In Section 4.1 we prove some facts about a polytope of given multi-width.

In particular a 3-dimensional lattice polytope with multi-width (w1, w2, w3)

is equivalent to a subset of [0, w1] × [0, w2] × [0, w] where w is the smallest

out of w1 + w3 − 1 and max{w1 + w2, w3}. In Section 4.2 we classify the
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four-point sets in Z with multi-width w1 and the four-point sets in Z2 with

multi-width (w1, w2) which have x-coordinates {0, 0, 0, w1} or {0, 0, w1, w1}.

A corollary of this is the classification of multi-width (1, w2) four-point sets.

In Section 4.3 we prove Theorem 4.0.2. Propositions 4.3.2, 4.3.3 and 4.3.5

show that the map taking a lattice tetrahedron to its equivalence class is a

well-defined bijection from S1,w2,w3 to T1,w2,w3 . In Section 4.4 we describe the

computational extension of this classification. We classify the multi-width

(w1, w2) four-point sets in the plane and the multi-width (2, w2, w3) tetrahedra

for small w1, w2 and w3. Based on these classifications we make conjectures

about the functions counting such sets and tetrahedra in general.
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4.1 Width and Parallepipeds

We carry forward all definitions of width and multi-width from Section 3.1.

Since we are no longer in the special case of dimension 2 multi-width is no

longer equivalent to the dimensions of a minimal box containing a polytope.

However, we can still bound the size of a box a polytope is equivalent to a

subset of using its widths as follows.

Proposition 4.1.1. Let Q be a 3-dimensional lattice polytope with widths w1,

w2 and w3 with respect to three linearly independent dual vectors. Assume that

0 < w1 ≤ w2 ≤ w3, then Q is equivalent to a subset of [0, w1] × [0, w2] ×

[0, w1 +w3− 1]. Furthermore, if (w1, w2, w3) is the multi-width of Q then Q is

equivalent to a subset of [0, w1]× [0, w2]× [0,max{w1 + w2, w3}].

Proof. By Proposition 3.1.3 we may assume that Q is a subset of the paral-

lelepiped

P := {v ∈ R3 : (1, 0, 0) · v ∈ [0, w1], (0, 1, 0) · v ∈ [0, w2], u · v ∈ [a, a+ w3]}

for some integer a and some dual vector u linearly independent to (1, 0, 0) and

(0, 1, 0). Say u = (ux, uy, uz) then uz ̸= 0. In fact we may assume uz > 0,

otherwise replace u with −u and adjust a so this does not change P . Therefore,

we may pick integers kx and ky such that 0 ≤ kiuz − ui < uz. Now let φ be

the shear described by

(x, y, z) 7→ (x, y, kxx+ kyy + z).

The coordinates of the vertices of φ(P ) are

(0, 0, a
uz
), (0, 0, a+w3

uz
), (w1, 0,

a+w1(kxuz−ux)
uz

), (w1, 0,
a+w3+w1(kxuz−ux)

uz
),

(0, w2,
a+w2(kyuz−uy)

uz
), (0, w2,

a+w3+w2(kyuz−uy)

uz
),

(w1, w2,
a+w1(kxuz−ux)+w2(kyuz−uy)

uz
) and (w1, w2,

a+w3+w1(kxuz−ux)+w2(kyuz−uy)

uz
).
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By inspecting the z-coordinates of the vertices of φ(P ), each of which is a sum

of a and some non-negative terms all divided by uz, we can see that

width(0,0,1)(φ(Q)) ≤
w1(kxuz − ux) + w2(kyuz − uy) + w3

uz

≤w1

(
1− 1

uz

)
+ w2

(
1− 1

uz

)
+ w3

1

uz

Since w2 ≤ w3 this is less that w1 + w3. After a translation this shows that Q

is equivalent to a subset of [0, w1] × [0, w2] × [0, w1 + w3 − 1]. This uses the

fact that Q is a lattice polytope so has integral widths.

Now suppose the multi-width of Q is (w1, w2, w3) then we show that Q

is equivalent to a subset of [0, w1] × [0, w2] × [0,max{w1 + w2, w3}]. In the

above inequalities if uz = 1 then width(0,0,1)(φ(Q)) ≤ w3 so we are done. If

uz ≥ 2 consider the fact that width(0,0,1)(φ(Q)) ≤ w1 + w2 +
w3−w1−w2

uz
. If

w3 > w1 +w2 then w1 +w2 +
w3−w1−w2

uz
is at most w1+w2+w3

2
which is less than

w3. If w3 ≤ w1 + w2 then w1 + w2 +
w3−w2−w1

uz
is at most w1 + w2. Since

the third width of φ(Q) is w3 and its first two widths are realised by (1, 0, 0)

and (0, 1, 0) it cannot have width less that w3 with respect to (0, 0, 1). This

eliminates the case uz ≥ 2 and w3 > w1 +w2 and so, after a translation, φ(Q)

is a subset of the desired box.

This shows that any 3-dimensional lattice polytope with multi-width (w1, w2, w3)

is equivalent to a subset of [0, w1]× [0, w2]× [0, w] where

w := min{w1 + w3 − 1,max{w1 + w2, w3}}.

This bound may not be sharp in general.

4.2 Four-point Sets in the Plane

The main aim of this section is to classify the four-point sets in the plane with

first width 1 up to affine equivalence. The four-point sets with multi-width
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(1, 1) are just

{(0, 0), (1, 0), (0, 1), (1, 1)} and {(0, 0), (0, 0), (1, 0), (0, 1)},

which we deduce by considering four-point subsets of {(0, 0), (1, 0), (0, 1), (1, 1)}.

When w2 > 1 the four-point sets with multi-width (1, w2) are

{(0, 0), (0, w2), (0, y0), (1, 0)} where y0 ∈ [0, w2

2
]

and

{(0, 0), (0, w2), (1, 0), (1, y1)} where y1 ∈ [0, w2]

(for example, see Figure 4.2). This can be proven directly but here we will

prove a more general result. We will classify four-point sets S in the plane

with multi-width (w1, w2) where w2 > w1 with the additional condition that

if widthu1(S) = w1 then all points of S are contained in the two hyperplanes

with normal vector u1 bounding S. This is sufficient to classify the width 1

four-point sets in the plane while being the most general classification which

is practical to obtain with this method. We do this because it may be useful

towards a future extension of the tetrahedron classification.

First we classify all four-point sets in Z of width w1.

Proposition 4.2.1. There is a bijection from the collection of lattice points

in the triangle Qw1
:= conv((0, 0), (0, w1), (

w1

2
, w1

2
)) to the set of the equiva-

lence classes of the four-point sets in Z with width w1. It is given by the map

Figure 4.2: The 4-point sets in Z2 with multi-width (1, 4) up to affine equivalence
and their convex hulls. Two points with the same coordinates are denoted by a circled
dot.
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taking (x1, x2) to {0, x1, x2, w1}. In particular, the number of such sets up to

equivalence is 
w2

1

4
+ w1 + 1 if w1 is even

w2
1

4
+ w1 +

3
4

if w1 is odd.

Proof. The map (x1, x2) 7→ {0, x1, x2, w1} is a well-defined map taking a lattice

point of Qw1 to a four-point set of width w1. For surjectivity notice that the

convex hull of any four-point set of width w1 is equivalent to conv(0, w1).

Therefore, we may assume that 0 and w1 are points in such a set and that

x1, x2 ∈ [0, w1] are the two remaining points. By relabeling of the xi we may

assume that x1 ≤ x2. A reflection takes {0, x1, x2, w1} to {0, w1 − x2, w1 −

x1, w1} so we may assume that x1 ≤ w1 − x2. This shows that (x1, x2) ∈ Qw1 .

For injectivity let (x1, x2) and (x′1, x
′
2) be lattice points in Qw1 such that

{0, x1, x2, w1} is equivalent to {0, x′1, x′2, w1}. The only non-trivial affine auto-

morphism of a line segment in Z is the reflection about its midpoint so either

(x1, x2) = (x′1, x
′
2) or (x1, x2) = (w1 − x′2, w1 − x′1). In the first case we are

done. In the second case notice that x1 = w1−x′2 ≥ x′1 and x
′
1 = w1−x2 ≥ x1

so x1 = x′1. Similarly x2 = x′2 which proves the result.

The counting can be seen by counting points in vertical lines of lattice points

in Qw1 . Thus there are (w1 + 1) + (w1 − 1) + · · · + 1 points in total if w1 is

even and (w1+1)+ (w1− 1)+ · · ·+2 if w1 is odd. These simplify to the given

formulas.

We now move on to four-point sets in Z2 with multi-width (w1, w2). If a

multi-width (w1, . . . , wd) polytope is a subset of a w1 × · · · × wd box it must

have a vertex in each facet of this box otherwise it would have smaller multi-

width. Therefore, a multi-width (w1, w2) four-point set which is a subset of

[0, w1]× [0, w2] has x-coordinates equivalent to one of the above classified sets.

We restrict to the case where the corresponding point of Qw1 is either (0, 0) or

(0, w1) since this is sufficient to classify all multi-width (1, w2) four-point sets

in Z2. We additionally assume that w1 < w2, since the four-point sets with
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multi-width (1, 1) are easy to identify and for w1 > 1 classifying the multi-

width (w1, w1) four-point sets adds unnecessary complexity to the proofs.

Proposition 4.2.2. Let S be a four-point set in the plane with multi-width

(w1, w2) where 0 < w1 < w2. There is a dual vector u1 such that widthu1(S) =

w1 and u1 ·S is equivalent to {0, 0, 0, w1} if and only if S is equivalent to exactly

one of the following four-point sets:

• {(0, 0), (0, w2), (0, y0), (w1, y1)} where 0 ≤ y0 <
w2

2
and 0 ≤ y1 < w1,

• {(0, 0), (0, w2), (0,
w2

2
), (w1, y1)} where 0 ≤ y1 ≤ (w2 − y1 mod w1) and

w2 is even.

Proof. First we show that the listed four-point sets have multi-width (w1, w2).

It is enough to notice that in either case if u = (ux, uy) is a dual vector with

uy ̸= 0, then

widthu(S) ≥ |u · (0, w2)− u · (0, 0)| = |uyw2| ≥ w2.

The image of these sets under u1 = (1, 0) is {0, 0, 0, w1} which proves the

implication in one direction.

Next we show that all four-point sets S with multi-width (w1, w2) and a dual

vector u1 such that u1 · S is equivalent to {0, 0, 0, w1} are equivalent to one of

the two given cases. Let S be such a set, then by Proposition 3.1.3 we may

assume it is a subset of [0, w1]× [0, w2]. Since w1 < w2 the direction in which

S has width w1 is unique up to sign so u1 = ±(1, 0). Under u1 points of S

are mapped to (possibly −1 times) their x-coordinates so the only way for

these to map to something equivalent to {0, 0, 0, w1} is to have three points

of S on one vertical edge of the rectangle and the fourth point on the other

vertical edge. Therefore, possibly after the reflection (x, y) 7→ (w1 − x, y),

we may assume that S contains three points with x-coordinate 0 and one

with x-coordinate w1. Also, S must contain (0, 0) and (0, w2) otherwise, by

a shear (x, y) 7→ (x, y − kx) for some integer k, S is equivalent a subset of
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a smaller rectangle which contradicts the widths. Therefore, we assume that

S = {(0, 0), (0, w2), (0, y0), (w1, y1)}.

By the reflection (x, y) 7→ (x,w2−y) we may assume that 0 ≤ y0 ≤ w2

2
. By a

shear (x, y) 7→ (x, y−kx) for some integer k we may assume that 0 ≤ y1 < w1.

If y0 = w2

2
and y1 > (w2 − y1 mod w1) then we can make the y-coordinate

of the vertex on x = w1 smaller by a reflection in the line y = w2

2
followed

by a shear. In more precise terms, pick k such that w2 − y1 − kx = (w2 − y1
mod w1) then the reflection and shear (x, y) 7→ (x,w2− y−kx) takes S to one

of the given four-point sets. This proves that S is equivalent to a set of one of

the given forms.

Finally we show that the four-points sets in the two cases are unique. Sup-

pose

S = {(0, 0), (0, w2), (0, y0), (w1, y1)} ∼ {(0, 0), (0, w2), (0, y
′
0), (w1, y

′
1)} = S ′

where S and S ′ are each of either of the forms from the proposition. We will

show that S and S ′ are equal. We can think of these sets as their convex hulls,

which are triangles, with a marked point. Since w2 > w1, considering the

lattice length of line segments (i.e. the number of lattice points they contain

minus 1) in [0, w1]×[0, w2], we see that the edge from (0, 0) to (0, w2) is the only

edge of each triangle with lattice length w2. Therefore, an affine map taking

S to S ′ must map this edge back to itself. This reduces us to shears (x, y) 7→

(x, y − kx) and the reflection followed by a shear (x, y) 7→ (x,w2 − y − kx)

where k is an integer. The images of S under such maps are

{(0, 0), (0, w2), (0, y0), (w1, y1 − kw1)}, and

{(0, 0), (0, w2), (0, w2 − y0), (w1, w2 − y1 − kw1)}

Since 0 ≤ y0, y
′
0 ≤ w2

2
this shows that y0 = y′0. The y-coordinate of the fourth

points of these images must equal y′1 so, since 0 ≤ y′1 < w1, we must always
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choose k so that this y-coordinate is reduced modulo w1. Since 0 ≤ y1 < w1

if the shear takes S to S ′ this means that y1 = y′1 and S = S ′. If instead

the reflection followed by a shear takes S to S ′ then y′0 = w2 − y0 and since

y0 = y′0 we have y0 = w2

2
. This means that y1 ≤ (w2 − y1 mod w1) = y′1

and by the symmetric argument exchanging S and S ′ we have y′1 ≤ (w2 − y′1
mod w1) = y1 so y1 = y′1 and S = S ′.

Proposition 4.2.3. Let S be a four-point set in the plane with multi-width

(w1, w2) where 0 < w1 < w2. There is a dual vector u1 such that widthu1(S) =

w1 and u1 · S is equivalent to {0, 0, w1, w1} if and only if S is equivalent to

exactly one of the following four-point sets:

• {(0, 0), (0, w2), (w1, y1), (w1, y2)} where 0 ≤ y1 ≤ y2 ≤ w2 and

y1 ≤ (w2 − y2 mod w1)

• {(0, 0), (0, y0), (w1, y1), (w1, w2)} where

max{w2 − y1, w2 − (w1 − y1)} ≤ y0 < w2

Proof. First we show that the listed four-point sets have multi-width (w1, w2).

The first case follows by the same proof as that in Proposition 4.2.2 since it

still contains (0, 0) and (0, w2). In the second case, it suffices to show that for

any dual vector u = (ux, uy) with uy > 0, widthu(S) ≥ w2. The image of S

under u is

u · S = {0, uyy0, uxw1 + uyy1, uxw1 + uyw2}.

Suppose for contradiction that the width of S with respect to u is less than w2.

This means that the difference of any two elements in u·S must be less than w2

so then uxw1+uyw2 < w2 which implies ux < 0. Also, uyy0−uxw1−uyy1 < w2

which we rearrange to show

ux > (uyy0 − w2 − uyy1)/w1. (4.1)

By the conditions on y0 and y1 we have y0 − y1 ≥ w2 − w1 so we know that

uy(y0 − y1) ≥ w2 − w1. Combining this with (4.1) shows that ux > −1 which
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is the desired contradiction. Under (1, 0) these sets are taken to {0, 0, w1, w1}

which shows the implication in one direction.

Let S be a four-point set with multi-width (w1, w2) with a dual vector u1 such

that u1 · S is equivalent to {0, 0, w1, w1}. We will show that S is equivalent to

one of the sets listed in the proposition. By Proposition 3.1.3 we may assume

this is a subset of [0, w1] × [0, w2]. Since w1 < w2 the direction in which the

first width is realised is unique up to sign so u1 = ±(1, 0). This shows that S

contains two points with x-coordinate 0 and two with x-coordinate w1. Also,

S must contain points with y-coordinates 0 and w2 or it would have smaller

multi-width. This means (0, 0) or (w1, 0) is in S and (0, w2) or (w1, w2) is in

S. Possibly after applying the reflection (x, y) 7→ (w1 − x, y) we may assume

that (0, 0) ∈ S. We may assume one of the following two possibilities:

A. S = {(0, 0), (0, w2), (w1, y1), (w1, y2)} where 0 ≤ y1 ≤ y2 ≤ w2,

B. S = {(0, 0), (0, y0), (w1, y1), (w1, w2)} where 0 ≤ y0 < w2 and

0 < y1 ≤ w2

where the additional inequalities come from relabeling the yi and removing

overlap between the cases.

In A we aim to minimise the y-coordinates of vertices on the line x = w1

and can do so either by a shear about the y-axis or by a reflection in the line

y = w2

2
followed by such a shear. We may assume by a shear that 0 ≤ y1 < w1.

Consider the map given by (x, y) 7→ (x,w2 − y − kx) for the integer k such

that w2 − y2 − kw1 = (w2 − y2 mod w1). This map is self inverse and takes

S to {(0, 0), (0, w2), (w1, y
′
1), (w1, y

′
2)} which is also of the form A and y′1 < w1.

Either y1 ≤ (w2− y2 mod w1) = y′1 or y
′
1 ≤ (w2− y′2 mod w1) = y1. In either

case S is equivalent to one of the sets listed in the proposition.

In case B we can get a set of the same form by applying the affine map

(x, y) 7→ (w1 − x,w2 − y), which replaces y0 and y1 with w2 − y1 and w2 − y0
respectively. Therefore, we may assume that y0 ≥ w2 − y1. Now consider

the image (−1, 1) · S = {0, y0, y1 − w1, w2 − w1}. To prevent the width of S
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with respect to (−1, 1) being less that w2 the difference between some pair of

elements of (−1, 1) ·S must be at least w2. However, checking these differences

case by case only y0 − (w2 − w1) and y0 − (y1 − w1) can be at least w2. If

y0 − (w2 − w1) ≥ w2 then definitely y0 − (y1 − w1) ≥ w2 so we may assume

the latter holds. Therefore, S is equivalent to one of the sets listed in the

proposition.

Now we show that the sets listed in the proposition are distinct up to equiv-

alence. The two cases are distinct since the convex hull of the first case has

an edge of lattice length w2 and the second does not. Let S and S ′ be of the

first form and suppose

S = {(0, 0), (0, w2), (w1, y1), (w1, y2)} ∼ {(0, 0), (0, w2), (w1, y
′
1), (w1, y

′
2)} = S ′.

Either these are both equal to the vertices of [0, w1] × [0, w2] or their convex

hulls each have exactly one edge of lattice length w2. If they are equal we

are done, otherwise the map taking S to S ′ must preserve the line segment

from (0, 0) to (0, w2). This reduces us to shears (x, y) 7→ (x, y − kx) and the

reflection followed by a shear (x, y) 7→ (x,w2 − y − kx) for integers k. Since

0 ≤ y1, y
′
1 < w1 if a shear maps S to S ′ then S = S ′. If the reflection followed

by a shear maps S to S ′ then y′1 = (w2− y2 mod w1) ≥ y1 and symmetrically

y1 ≥ y′1 so y1 = y′1. Since the volume of the convex hulls of S and S ′ must be

equal this shows that y2 = y′2 and S = S ′.

Now let S and S ′ be of the second form listed in the proposition and suppose

S = {(0, 0), (0, y0), (w1, y1), (w1, w2)} ∼ {(0, 0), (0, y′0), (w1, y
′
1), (w1, w2)} = S ′.

By the multi-width of these we know that ±(1, 0) are the only dual vectors

under which they have width w1. Therefore, a map taking the convex hull of

S to the convex hull of S ′ must take edges with normal (1, 0) to edges with

normal (1, 0). Thus it suffices to consider the lengths of the vertical edges of
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the convex hulls of S and S ′. By the conditions on S and S ′ their left-most

vertical edge is at least as long as their right most vertical edge so y0 = y′0,

y1 = y′1 and S = S ′.

We use these results to classify the four-point sets of multi-width (1, w2):

Corollary 4.2.4. Let S be a four-point set in Z2 with multi-width (1, w2) then

if w2 > 1 either S is equivalent to

• {(0, 0), (0, w2), (0, y0), (1, 0)} with y0 ∈ [0, w2

2
] or

• {(0, 0), (0, w2), (1, 0), (1, y1)} with y1 ∈ [0, w2].

Counting the possible integers y0 and y1 shows that these are counted by


3w2

2
+ 2 if w2 even

3w2

2
+ 3

2
if w2 odd.

If instead w2 = 1 then S is equivalent to

• {(0, 0), (0, 1), (1, 0), (1, 1)} or

• {(0, 0), (0, 0), (1, 0), (0, 1)}.

4.3 Proof of Theorem 4.0.2

In this section we prove Theorem 4.0.2, that is we show that the map taking

a tetrahedron to its affine equivalence class defines a bijection from the set of

tetrahedra S1,w2,w3 to the set T1,w2,w3 of tetrahedra of multi-width (1, w2, w3)

up to affine equivalence.

We begin with a preparatory lemma towards surjectivity.

Lemma 4.3.1. Let T be a lattice tetrahedron with multi-width (1, w2, w3).

Then there exists a tetrahedron T ′ of type 1, 2, 3 or 4, as in Definition 4.0.1,

which is equivalent to T .
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Proof. By Proposition 4.1.1 we may assume that T is a subset of [0, 1]×[0, w2]×

[0, w3]. The vertices of T can only be in the planes x = 0 and x = 1 so, possibly

after a reflection, we may assume the x-coordinates of the vertices of T are

either {0, 0, 0, 1} or {0, 0, 1, 1}. We will show that

• If the x-coordinates of T are {0, 0, 0, 1} then T is equivalent to a type 1

tetrahedron,

• If the x-coordinates of T are {0, 0, 1, 1} then T is equivalent to a type 2,

3 or 4 tetrahedron.

If the x-coordinates are {0, 0, 0, 1} then T is the convex hull of a triangle

embedded in the plane x = 0 and a point with x-coordinate 1. For integers

k1 and k2, the shears (x, y, z) 7→ (x, y + k1x, z + k2x), can take the vertex

with x-coordinate 1 to any lattice point with x-coordinate 1 without changing

the triangle in the plane x = 0. Therefore, we may assume that, under the

projection onto the last two coordinates, T is mapped to the triangle. The tri-

angle is a subset of a w2 ×w3 rectangle so its multi-width is at most (w2, w3).

If it had multi-width lexicographically smaller than (w2, w3) there would be

dual vectors u′2 and u′3 linearly independent from u1 = (1, 0, 0) such that

(1,widthu′
2
(T ),widthu′

3
(T )) <lex (1, w2, w3) which is a contradiction. There-

fore, this triangle has multi-width (w2, w3). By Theorem 3.0.2 we can assume

the triangle is in Sw2,w3 . Then by another shear of the same form we can move

the fourth vertex to (1, 0, 0) which proves that T is equivalent to a tetrahedron

of the form 1.

If the x-coordinates are {0, 0, 1, 1} we need to consider the four-point set

we get by projecting the vertices of T onto the first two coordinates. This

must have multi-width (1, w2) otherwise T has smaller multi-width. By Corol-

lary 4.2.4 the set is equivalent to one of the sets {(0, 0), (0, w2), (1, 0), (1, y1)}

for an integer y1 ∈ [0, w2] and by an affine map on T we may assume they are

equal. It remains to determine the z-coordinates of the vertices of T . These are

integers in [0, w3]. At least one of them must equal 0 and one w3 otherwise T
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has width less than w3 with respect to (0, 0, 1) contradicting the multi-width.

There are 12 ways to assign 0 and w3 to two of the vertices. See Figure 4.3

for the full list. By a reflection in the plane z = w3

2
, as depicted in Figure 4.4,

we may swap which vertices are assigned 0 and w3. In this way we see that

(g)-(l) are equivalent to (a)-(f) so we disregard the last 6 cases.

We are left with cases (a)-(f). By a reflection in the plane y = w2

2
followed

by the shear (x, y, z) 7→ (x, y− (w2−y1)x, z), as depicted in Figure 4.4, we can

swap the z-coordinates assigned to the lower two vertices with those assigned

to the upper two vertices. In this way we see that (d) and (e) are equivalent

to (c) and (b) respectively so we may disregard (d) and (e) also.

We are left with cases (a), (b), (c) and (f). In case (a), after a shear about

the plane x = 0, we may assume that z1 = w3 or z2 = w3. Therefore, (a) is

included in case (b) or (c) and we may disregard (a). Similarly, in case (f),

after a shear about the plane x = 1 we may assume that z1 = 0 or z2 = 0.

Therefore, (f) is included in case (c) or case (e) and thus (b). We disregard (f)

as a result.

We are left with only cases (b) and (c). We will show that we can also

disregard case (c) by showing that its width is incorrect unless it is also equiv-

alent to a type (b) tetrahedron. In case (c), if y1 = 0, z1 = 0 or z2 = w3

then these tetrahedra would be included in case (b) (or (e) and thus (b)) so

we assume these three equalities are false. The images of the vertices of (c)

under (−z2, 0, 1), (0,−1, 1) and (w3 − y1, 1,−1) are

{0, z1, z2, w3−z2}, {0, z1−w2, z2, w3−y1} and {0, w2−z1, w3−y1−z2, 0}

respectively. If any of these is a subset of [0, w3) then T would have width less

than w3 in some direction linearly independent to (1, 0, 0) and (0, 1, 0) which

is a contradiction. To prevent this all three of the following points must be

true.

• z1 = w3 or z2 = w3 or z2 = 0
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Figure 4.3: Image conv((0, 0), (0, w2), (1, 0), (1, y1)) of a tetrahedron under projec-
tion onto the first two coordinates. Labels denote the z-coordinates at each vertex.
Numbers z1 and z2 are integers in the range [0, w3] and these twelve cases include all
affine equivalence classes of tetrahedra with multi-width (1, w2, w3) and x-coordinates
{0, 0, 1, 1} in [0, 1]× [0, w2]× [0, w3].
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w3 − z1

w3 − z2

w3 − z3

w3 − z4

z2

z1
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Figure 4.4: Image of T = conv((0, 0, z1), (0, w2, z2), (1, 0, z3), (1, y1, z4)) and two
equivalent tetrahedra under projection onto the first two coordinates. Labels denote
the z-coordinates at each vertex. The second tetrahedron is obtained from the first by
a reflection in the plane z = w3

2 . The third is obtained from the first by a reflection
in the plane y = w2

2 followed by the shear (x, y, z) 7→ (x, y − (w2 − y1)x, z).
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• z1 < w2 or z2 = w3 or y1 = 0

• (w2 = w3 and z1 = 0) or z1 > w2 or y1 = z2 = 0 or y1 + z2 > w3

Eliminating options we have assumed are not true we see that it is impossible

to satisfy all of these conditions at once. Therefore, we may discard (c) entirely

and assume that when the x-coordinates of our tetrahedron are {0, 0, 1, 1} then

it is equivalent to

T = conv((0, 0, 0), (0, w2, z1), (1, 0, w3), (1, y1, z2))

for some integers z1 and z2 in [0, w3]. We will now refine this general tetrahe-

dron into a type 2, 3 or 4 tetrahedron considering the cases y1 = 0 and y1 > 0

separately.

If y1 = 0 then the image of the vertices of T under (−z2, 0, 1) and (−z2,−1, 1)

are

{0, z1, w3 − z2, 0}, and {0, z1 − w2, w3 − z2, 0}

respectively. Neither of these can be a subset of [0, w3) as this would contradict

the widths of T . Therefore, z2 = 0 since otherwise we would need both z1 = w3

and z1 < w2 which is false. By a shear (x, y, z) 7→ (x, y, z − ky) and possibly

the reflection in the plane y = w2

2
we may assume z1 ≤ (−z1 mod w2) and so

0 ≤ z1 ≤ w2

2
. This shows that T is of the form 2.

If instead y1 > 0 consider the images of the vertices of T under (−z2, 0, 1),

(−1, 1, 1) and (−1,−1, 1) which are

{0, z1, w3−z2, 0}, {0, w2+z1, w3−1, y1+z2−1}, and {0, z1−w2, w3−1, z2−y1−1}

respectively. Again, none of these can be a subset of [0, w3) so all three of the

following points must be true. For each set we identify the sign of each entry

and thus define a bound it would satisfy if it was not an element of [0, w3).

• z1 = w3 or z2 = 0
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• w2 + z1 ≥ w3 or y1 + z2 − 1 ≥ w3

• z1 < w2 or z2 < y1 + 1.

To satisfy these we must have either z1 = w3 and z2 ≤ y1 or z2 = 0 and

z1 ≥ w3−w2. The tetrahedron when z1 = w3 and z2 = y1 is equivalent but not

equal to that when z2 = 0 and z1 = w3−w2 by the shear (x, y, z) 7→ (x, y, z−y).

Therefore, we may also assume that z2 < y1 to avoid duplicates. This proves

that T is of the form 3 or 4.

The following shows that the map taking a tetrahedron to its affine equiva-

lence class gives a surjective map from S1,w2,w3 to T1,w2,w3 .

Proposition 4.3.2. Let T be a lattice tetrahedron with multi-width (1, w2, w3).

Then there exists some T ′ ∈ S1,w2,w3 which is equivalent to T .

Proof. By Lemma 4.3.1 and the definition of S1,w2,w3 , if 1 < w2 < w3 then we

are done.

Now we consider the special cases. If w2 = w3 and T is a tetrahedron of the

form 3 then the image of T under the map (x, y, z) 7→ (1− x, z1 − z + x(w2 −

z1), y) is

conv((0, 0, 0), (0, w2, y1), (1, 0, w2), (1, z1, 0)).

If y1 > z1 this is also of the form 3 but with the roles of y1 and z1 swapped.

Therefore, to remove duplicates we may assume that y1 ≤ z1. If w2 = w3

and T is a tetrahedron of the form 4 then the image of T under the map

(x, y, z) 7→ (x,w2 − z, w2 − y) is

conv((0, 0, 0), (0, w2, w2), (1, 0, w2), (1, w2 − z1, w2 − y1)).

This is also of the form 4 and the map is self inverse so unless T is equal to

its image we need to eliminate one of these tetrahedra to remove duplicates.

Our T is equal to its image only when z1 + y1 = w2 so we may assume that

z1 ≤ w2 − y1.
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When w2 = 1 substituting into tetrahedra 1-4 and simplifying reduces us to

the following cases:

• conv((0, 0, 0), (0, 0, w3), (0, 1, 0), (1, 0, 0))

• conv((0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 0, w3))

• conv((0, 0, 0), (0, 1, z1), (1, 0, w3), (1, 1, 0)) where z1 = w3 − 1 or z1 = w3.

Under (x, y, z) 7→ (1− x− y, y, z) the second of these maps to the first so we

are left with the three tetrahedra appearing in S1,1,w3 . Finally, when w3 = 1

two of these are equivalent to the convex hull of the empty triangle embedded

in the plane x = 0 and the point (1, 0, 0) so it reduces to the two cases in

S1,1,1.

The following proves that the map taking a tetrahedron to its affine equiva-

lence class gives a map from S1,w2,w3 to T1,w2,w3 .

Proposition 4.3.3. Let T ∈ S1,w2,w3, then the multi-width of T is (1, w2, w3).

Proof. By definition, the tetrahedra in S1,w2,w3 are always of one of the forms

1-4. Therefore, it suffices to show that a tetrahedron satisfying one of these

conditions has multi-width (1, w2, w3) for any w3 ≥ w2 ≥ 1. Let T be in one

of these forms. Lattice polytopes have integral widths and only have width

zero in some direction if their dimension is less than that of the space they are

in. Since width(1,0,0)(T ) = 1 and T has non-zero volume its first width is 1.

Furthermore, T has widths w2 and w3 realised by the dual vectors (0, 1, 0) and

(0, 0, 1) respectively.

There are two ways in which the remaining two widths can fail. Either there

is a dual vector u linearly independent to (1, 0, 0) such that widthu(T ) < w2

or there is a dual vector u linearly independent to {(1, 0, 0), (0, 1, 0)} such that

widthu(T ) < w3. To prove these do not occur it suffices to show that for all

u = (ux, uy, 0) with uy ̸= 0 widthu(T ) ≥ w2 and for all u = (ux, uy, uz) with

uz ̸= 0 widthu(T ) ≥ w3.
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Let π be the projection onto the first two coordinates then

width(ux,uy ,0)(T ) = width(ux,uy)(π(T )).

However, the four-point set which is the image of the vertices of T under π has

multi-width (1, w2) by Corollary 4.2.4. The first width of this set is realised

by (1, 0) therefore, for all u = (ux, uy, 0) with uy ̸= 0, we have widthu(T ) =

width(ux,uy)(π(T )) ≥ w2.

Now suppose for contradiction there exists dual vector u = (ux, uy, uz) with

uz ̸= 0 is such that widthu(T ) < w3. Without loss of generality we may

assume that uz > 0. Then by the proof of Proposition 4.1.1 a map of the form

(x, y, z) 7→ (x, y, k1x + k2y + z) takes T to a subset of a 1 × w2 × widthu(T )

box for some integers k1 and k2. The image of T under this map is one of the

following corresponding to the form of T .

1. conv({0} ×
(

1 0
k2 1

)
t, (1, 0, k1)) where t ∈ Sw2,w3

2. conv((0, 0, 0), (0, w2, z1 + k2w2), (1, 0, k1), (1, 0, w3 + k1)) where

0 ≤ z1 ≤ w2

2

3. conv((0, 0, 0), (0, w2, z1 + k2w2), (1, 0, w3 + k1), (1, y1, k1 + k2y1)) where

0 < y1 ≤ w2 and w3 − w2 ≤ z1 ≤ w3,

4. conv((0, 0, 0), (0, w2, w3+k2w2), (1, 0, w3+k1), (1, y1, z1+k1+k2y1)) where

0 < y1 < w2 and 0 < z1 < y1.

We will show that it is impossible for any of these to have width less than w3

with respect to (0, 0, 1).

1. Let π be the projection onto the last two coordinates then for a polytope

P we have

width(0,0,1)(P ) = width(0,1)(π(P )).

This means that conv({0}×
(

1 0
k2 1

)
t, (1, 0, k1)) where t ∈ Sw2,w3 never has width

less than w3 with respect to (0, 0, 1) thanks to the widths of t.
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2. The tetrahedron of the form 2 has width at least w3 with respect to

(0, 0, 1) due to the vertices (1, 0, k1) and (1, 0, w3 + k1).

3. In a tetrahedron of the form 3 if the width with respect to (0, 0, 1) was

less than w3 the difference between every pair of z-coordinates must be less

than w3. In particular we would need to have w3 + k1 − k1 − k2y1 < w3 and

z1 + k2w2 < w3. The first of these implies that k2 > 0 which combines with

the second to show that z1 + w2 < w3. However, z1 ≥ w3 − w2 which is a

contradiction.

4. Similarly, in a tetrahedron of the form 4 we would need w3 + k2w2 < w3

and w3 + k1 − z1 − k1 − k2y1 < w3. The first of these implies that k2 < 0 and

the second implies that k2 > −z1/y1 > −1 which is a contradiction.

In Proposition 4.3.5 we will show that if any two tetrahedra in S1,w2,w3 are

affine equivalent then they are equal. To prove this we will need the following

extra result about the tetrahedra whose x-coordinates are {0, 0, 1, 1}.

Lemma 4.3.4. Let 1 < w2 ≤ w3 and let T be a tetrahedron in S1,w2,w3 whose x-

coordinates are {0, 0, 1, 1}. Suppose the projection of T onto the first two coor-

dinates is conv((0, 0), (0, w2), (1, 0), (1, y1)). Then, for any surjective lattice ho-

momorphism π : Z3 → Z2, if π(T ) is equivalent to conv((0, 0), (0, w2), (1, 0), (1, y
′
1))

for some integer y′1 ∈ [0, w2] then y
′
1 ≥ y1. In other words, y1 is minimal.

Proof. For tetrahedra of the form 2 this is immediate since y1 = 0.

Let T be of the form 3 or 4. Let π : Z3 → Z2 be a surjective lattice homo-

morphism such that π(T ) is equivalent to conv((0, 0), (0, w2), (1, 0), (1, y
′
1)) for

an integer y′1 ∈ [0, w2]. Let P = (pij) be the 2 × 3 integral matrix defining π.

By Proposition 3.1.3 there are dual vectors u1 and u2 ∈ (Z2)∗ which form a

basis of (Z2)∗ and which realise the first two widths of π(T ). This means that

widthui
(π(T )) = widthui◦π(T ) = wi for i = 1 and 2. Since w2 > 1 the direction

in which P has width 1 is unique so, possibly after changing the sign of u1, we

have u1P = (1, 0, 0). Let U be the matrix with rows u1 and u2 then replace

P with UP and change π accordingly. In this way we can assume that the
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first row of P is (1, 0, 0). This does not alter our previous assumptions about

π since this operation is a unimodular map in Z2.

If w2 < w3 a vector realising the second width of P must be of the form

(ux, uy, 0) so the final entry of u2P is 0. This allows us to assume p23 = 0.

Now we have image

π(T ) = conv((0, 0), (0, p22w2), (1, p21), (1, p21 + p22y1)).

This has an edge of lattice length |p22w2| so p22 must be 0 or ±1. If p22 = 0 then

π(T ) is just a line segment, contradicting our assumptions on π. If p22 = ±1

then y′1 = |p22y1 + p21 − p21| = y1 so y′1 ≥ y1 as desired.

It remains to consider the case w3 = w2 > 1. By replacing P with
(

1 0
−p21 1

)
P

we may assume p21 = 0. This leaves us with the following two cases corre-

sponding to 3 and 4

π(T ) = conv((0, 0), (0, p22w2 + p23z1), (1, p23w2), (1, p22y1) or

π(T ) = conv((0, 0), (0, p22w2 + p23w2), (1, p23w2), (1, p22y1 + p23z1)).

The dual vector (1, 0) is the unique dual vector realising the first width of both

π(T ) and conv((0, 0), (0, w2), (1, 0), (1, y
′
1)). These quadrilaterals each have (at

most) two facets with normal vector (1, 0) so these facets must be equivalent.

This means that one of the vertical edges of π(T ) must have length w2 and the

other must have length in [0, w2]. Therefore, to complete the proof it suffices

to show that for each choice of vertical edge to be length w2 the other vertical

edge must have length at least y1.

First consider the quadrilateral associated to case 3. If |p22w2 + p23z1| = w2

then, after a possible change of sign of the second line of P , we may assume

that p23 = w2(1 − p22)/z1. Then |p23w2 − p22y1| = |w2
2/z1 − p22(w2

2/z1 + y1)|.

This is the modulus of a linear function in p22 so to find the smallest values it

takes we notice that it is zero when p22 = w2
2/(w

2
2 + y1z1) ∈ [0, 1]. Since p22 is
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an integer the length is smallest when either p22 = 0 or 1 which gives values

w2
2/z1 and y1 respectively. Both of these are at least y1 given the conditions

on a tetrahedron of the form 3 when w2 = w3.

On the other hand, if |p23w2 − p22y1| = w2 then as above we may assume

that p22 = w2(p23− 1)/y1. Then |p22w2 + p23z1| = | −w2
2/y1 + p23(w

2
2/y1 + z1)|

which is zero when p23 = w2
2/(w

2
2 + z1y1) ∈ [0, 1]. Since p23 is an integer it is

actually smallest at either w2
2/z1 or z1 both of which are at least y1 given our

assumptions.

Now for the quadrilateral associated to case 4. If |p22w2 + p23w2| = w2 then

as above we may assume that p22 + p23 = 1. Then |p23(w3 − z1) − p22y1| =

|p23(w2 − z1 + y1) − y1| which is zero when p23 = y1/(w2 − z1 + y1) ∈ [0, 1].

Since p23 is an integer it is actually smallest at either w2 − z1 or y1 both of

which are at least y1 given our assumptions.

On the other hand, if |p23(w2 − z1)− p22y1| = w2 then notice that |p22w2 +

p23w2| = |p22 + p23|w2. Since these are all integers this is at least y1 unless

p23 = −p22. However, then we would have w2 = |p23|(w2 − z1 + y1). We

can’t let both p22 and p23 be zero so then w2 ≥ w2 − z1 + y1 > w2 which is a

contradiction.

The following shows injectivity of the map taking a tetrahedron to its affine

equivalence class from S1,w2,w3 to T1,w2,w3 .

Proposition 4.3.5. Tetrahedra in S1,w2,w3 are distinct under affine maps.

Proof. The two tetrahedra in S1,1,1 have normalised volumes 1 and 2. Since

volume is an affine invariant they must be distinct. If w3 > 1 the three

tetrahedra in S1,1,w3 have normalised volumes w3, 2w3 − 1 and 2w3 so must

also be distinct.

In the remaining cases our goal is to show that if T and T ′ are equivalent

tetrahedra in S1,w2,w3 then either T = T ′ or this leads to a contradiction.

We have w2 > 1 so up to sign u1 = (1, 0, 0) is the unique vector such that

each tetrahedron has width 1 with respect to u1. Let T and T ′ be equivalent
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tetrahedra in S1,w2,w3 then the image of the vertices of T and T ′ under u1

must be equivalent. In other words, the set of x-coordinates of two equivalent

tetrahedra in S1,w2,w3 is also equivalent. Therefore, tetrahedra of the form 1

are always distinct from the others. Furthermore, if T and T ′ are equivalent

tetrahedra of the form 1 then they each have a unique facet with normal u1,

so these facets must be equivalent too. These facets were triangles in Sw2,w3

so by Theorem 3.0.2 this means T = T ′.

Now let T and T ′ be equivalent tetrahedra in S1,w2,w3 of the forms 2, 3 or

4. By Lemma 4.3.4 if we project the sets of vertices of T and T ′ onto the first

two coordinates we get the same set. That is the x- and y-coordinates of T

and T ′ are the same. This immediately tells us that tetrahedra of the form 2

are distinct from those of the forms 3 and 4. For the rest we will show the

following four facts:

A. If both T and T ′ are of the form 2 then T = T ′

B. If both T and T ′ are of the form 3 then T = T ′

C. If both T and T ′ are of the form 4 then T = T ′

D. If T is of the form 3 and T ′ is of the form 4 then we get a contradiction.

A. Unless w2 = w3 and z1 = z′1 = 0 the only edge of T or T ′ with lattice

length w3 is the one from (1, 0, 0) to (1, 0, w3). Therefore, either T = T ′ or the

affine map taking T to T ′ preserves this edge. There are only four ways to map

vertices of T to T ′ satisfying this. Define the map θ by (x, y, z) 7→ (x, y, z, 1)

and let π : Z4 → Z3 be the projection onto the first three coordinates. Affine

maps in Z3 are exactly the maps (x, y, z) 7→ π(θ(x, y, z)U) where U is a uni-

modular matrix with last column (0, 0, 0, 1)T . Let M and M ′ be the matrices

whose rows are the vertices of θ(T ) and θ(T ′) respectively. Let σM denote

the matrix obtained by permuting the rows of M according to σ. At least one

of M−1M ′, ((12)M)−1M ′, ((34)M)−1M ′ or ((12)(34)M)−1M ′ is unimodular.
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These matrices are



1 0 0 0

0 1 0 0

0 (z′1 − z1)/w2 1 0

0 0 0 1


,



1 0 0 0

−w2 −1 0 w2

−z′1 −(z1 + z′1)/w2 1 z′1

0 0 0 1




1 0 0 0

0 1 0 0

w3 (z1 + z′1)/w2 −1 0

0 0 0 1


,



1 0 0 0

−w2 −1 0 w2

w3 − z′1 (z1 − z′1)/w2 −1 z2

0 0 0 1


Therefore, either (z1− z′1)/w2 or (z1 + z′1)/w2 is an integer. In either case, the

fact that 0 ≤ z1, z
′
1 ≤ w2

2
forces T = T ′.

B. The normalised volume of T and T ′ is w2w3+z1y1 = w2w3+z
′
1y1, therefore

z1 = z′1 and T = T ′.

C. The normalised volume of T and T ′ is w2w3 − w2z1 + y1w3 = w2w3 −

w2z
′
1 + y1w3, therefore z1 = z′1 and T = T ′.

D. Let P and P ′ be the parallelograms obtained by intersecting 2T and 2T ′

with the plane x = 1. These are:

P = conv((0, w3), (y1, 0), (w2, w3 + z1), (w2 + y1, z1))

P ′ = conv((0, w3), (y1, z
′
1), (w2, 2w3), (w2 + y1, w3 + z′1))

Since T and T ′ are equivalent so are P and P ′. We will show that this leads

to a contradiction. By the symmetries of a parallelogram, P − (0, w3) must be

unimodular equivalent to either P ′ − (0, w3) or P ′ − (y1, z
′
1). Consider three

matrices M,M1 and M2 whose rows are the following vertices of P − (0, w3),

P ′ − (0, w3) and P
′ − (y1, z

′
1) adjacent to the origin:

M =

y1 −w3

w2 z1

 , M1 =

y1 z′1 − w3

w2 w3

 , M2 =

−y1 w3 − z′1
w2 w3

 .
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One ofM−1
1 M, ((12)M1)

−1M,M−1
2 M and ((12)M2)

−1M must be a unimodular

matrix. The necessary inverses are

M−1
1 =

1

V

 w3 w3 − z′1
−w2 y1

 , M−1
2 =

1

V

−w3 w3 − z′1
w2 y1


((12)M1)

−1 =
1

V

w3 − z′1 w3

y1 −w2

 , ((12)M2)
−1 =

1

V

w3 − z′1 −w3

y1 w2


where V = w2w3 − w2z

′
1 + w3y1. Using these we know that either

U =M−1
1 M =

1

V

w2w3 − w2z
′
1 + w3y1 −w2

3 + w3z1 − z1z′1
0 w2w3 + z1y1


is a unimodular matrix or one of the following is an integer

w2w3 − y1z′1 + w3y1
V

,
z1y1 − w2w3

V
,
−w2w3 + w3y1 − z′1y1

V
.

These are entries (1, 1), (2, 2) and (1, 1) of ((12)M1)
−1M,M−1

2 M and ((12)M2)
−1M

respectively. Since the diagonal entries of U are positive they must both be 1

for U to be unimodular. From this notice thaty1 z′1 − w3

w2 w3


1 a

0 1

 =M1U =M =

y1 −w3

w2 z1


for some integer a. From this we show that z′1−w3−ay1 = −w3 and w3−aw2 =

z1. Since w3 − w2 ≤ z1 ≤ w3 either a = 0 or 1. Therefore, z′1 = 0 or y1 both

of which are contradictory so U cannot be unimodular.

Notice that −z′1y1 > −w2z
′
1 so the first of the fractions is at least 2. From

this we show that 2w2z
′
1 ≥ w2w3 + w3y1 + z′1y1 which is a contradiction since

w2w3 and w3y1 are both greater than w2z
′
1 and z′1y1 is non-negative. Since

y1 < w2 and z1 ≤ w3 the second fraction is at most −1 from which we show

w2z
′
1 ≥ z1y1 + w3y1. This is contradictory since w3 ≥ w2 and y1 > z′1. Finally,
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since y1 < w2 the third fraction is also at most −1 so z′1(w2 + y1) ≥ 2w3y1.

This is a contradiction since z′1 < y1 and w2 + y1 < 2w2 ≤ 2w3.

We now bring together the above results to prove Theorem 4.0.2.

Proof of Theorem 4.0.2. Proposition 4.3.3 shows that the map taking a tetra-

hedron to its equivalence class is a well-defined map from S1,w2,w3 to T1,w2,w3 .

Propositions 4.3.2 and 4.3.5 show that it is bijective. It remains to find the

cardinality of S1,w2,w3 . When w2 = 1 it is immediate. When w2 > 1 we

combine the triangles classification with the new tetrahedra to get the desired

counts.

The generating function of the sequence counting lattice triangles with sec-

ond width w2 was the Hilbert series of a hypersurface in a weighted projective

space so we investigate the generating function of |T1,w2,w3|.

Corollary 4.3.6. The generating function of |T1,w2,w3| is

∞∑
w2=1

∞∑
w3=w2

tw2sw3 |T1,w2,w3| =
f(s, t)

2(1− s2)(1− ts)3(1 + ts)

where f(s, t) is the polynomial

t5s7 + 5t5s6 + 4t5s5 − 2t4s7 − 5t4s6 − 9t4s5 − 4t4s4 + 4t3s6 + 13t3s5 + 7t3s4

− 6t3s3 − 5t2s4 − 3t2s3 + 4t2s2 − 4ts4 − 10ts3 − 4ts2 + 2ts+ 2s3 + 14s2 + 20s+ 8.

Sketch of proof. We use Theorem 4.0.2. First note that
∑∞

w3=w2
sw3|T1,w2,w3 | is

s(s+ 2)

1− s

when w2 = 1 and

sw2
w2

2(s+ 1)2 + w2(1− s2) + (3
2
s2 + 5

2
s+ 3

2
) + 1

2
(−1)w2(s2 + s+ 1)

1− s2 .

otherwise. Combining these we get the desired result. This can all be done
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by hand using facts about the generating functions of polynomials or with the

assistance of computer algebra.

To instead count lattice tetrahedra with first width 1 and third width w3 we

let t = 1 in the above generating function resulting in

−s7 + 4s6 + 8s5 − 6s4 − 3s3 + 22s+ 8

2(1− s)4(1 + s)2
.

Neither of these generating functions share any of the properties of the one

from triangles. However, this does not prevent a function counting lattice

tetrahedra of a given multi-width in general from doing so.

4.4 Computational and Conjectural Results

The above classification method can be extended into a computer algorithm

which classifies four-point sets and tetrahedra of a given multi-width. We

implement all algorithms using Magma V2.27. The code and data produced

can be found at [Ham24b] and [Ham23b] respectively. Algorithm 1 classifies

four-point sets of multi-width (w1, w2). It takes the list of four-point sets in

the line of width w1 and assigns a y-coordinate in the range [0, w2] to each

point of each set in every possible way. The resulting sets in the plane include

all four-point sets of multi-width (w1, w2). We eliminate any which do not

have the correct widths. Let P be the convex hull of such a set then we use

the polytope WP to check its multi-width. The i-th width of P is w if and

only if the dimension of conv((w−1)WP ∩Zd) is less than i and the dimension

of conv(wWP ∩ Zd) is at least i. This allows us to check if the multi-width

of a polytope is equal to (w1, w2) without necessarily calculating its multi-

width. We also discard repeated sets using an affine unimodular normal form.

Kreuzer and Skarke introduced a unimodular normal form for lattice polytopes

in their Palp software [KS04]. This can be extended to an affine normal form

by translating each vertex of a polytope to the origin in turn and finding the
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minimum unimodular normal form among these possibilities. If the convex

hull of a four-point set is a quadrilateral we can use this normal form without

adjustment. If the convex hull is a triangle we find the normal form of this

triangle then consider the possible places the fourth point can be mapped to

in this normal form. We choose the minimum such point and call the set of

vertices of the triangle and this point the normal form of the four-point set

denoted NF(S). Note that we keep the normal forms of each set as well as the

set itself as we need the four-point sets written as a subset of [0, w1] × [0, w2]

for the tetrahedra classification.

Algorithm 1: Classifying the four-point sets in Z2 with multi-width
(w1, w2).

Data: The set P of all lattice points in
Qw1 = conv((0, 0), (0, w1), (

w1

2
, w1

2
).

Result: The set A containing all four-point sets in the plane with
multi-width (w1, w2) written as a subset of [0, w1]× [0, w2].

A ←− ∅
NormalForms ←− ∅
for (x1, x2) ∈ P do

for h1, h2, h3, h4 ∈ [0, w2] ∩ Z such that hi = 0 and hj = w2 for
some i < j do
S ←− {(0, h1), (x2, h2), (x3, h3), (w1, h4)}
if mwidth(S) = (w1, w2) and NF(S) /∈ NormalForms then
A ←− A∪ {S}
NormalForms ←− NormalForms ∪ {NF(S)}

Running Algorithm 1 for small widths produces Table 4.3. We use this data

to give estimates for a function counting the width (w1, w2) four-point sets in

the plane. To decide how much data to compute we use the following.

Proposition 4.4.1. There are at most (
w2

1

4
+w1 + c)(6w2

2 + 1) four-point sets

in the plane with multi-width (w1, w2) where c = 1 if w1 is even and c = 3
4
if

w1 is odd.
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Proof. By Proposition 4.2.1 we know that there are


w2

1

4
+ w1 + 1 if w1 even

w2
1

4
+ w1 +

3
4

if w1 odd

four-point sets in the line with width w1. Let (y1, . . . , y4) ∈ [0, w2]
4 be a lattice

point representing the y-coordinates we give to each point. We know that

there exist indices i0 and i1 such that yi0 = 0 and yi1 = w2. By a reflection

we may assume that i0 < i1. We also assume these are as small as possible.

Counting the possibilities in each of the six cases we show that there are at

most 6w2
2 + 1 ways to assign y-coordinates to a four-point set in the line.

w2

w1 1 2 3 4 5 6 7 8 9 10 11 12

1 2 5 6 8 9 11 12 14 15 17 18 20
2 0 13 31 42 49 60 67 78 85 96 103 114
3 0 0 39 101 123 148 170 195 217 242 264 289
4 0 0 0 114 282 342 394 454 506 566 618 678
5 0 0 0 0 254 624 727 835 938 1046 1149 1257
6 0 0 0 0 0 520 1239 1428 1605 1794 1971 2160
7 0 0 0 0 0 0 937 2206 2490 2781 3065 3356
8 0 0 0 0 0 0 0 1595 3682 4120 4542 4980
9 0 0 0 0 0 0 0 0 2527 5775 6380 6994
10 0 0 0 0 0 0 0 0 0 3851 8687 9534
11 0 0 0 0 0 0 0 0 0 0 5610 12555
12 0 0 0 0 0 0 0 0 0 0 0 7949

Table 4.3: The number of four-point sets with multi-width (w1, w2) up to affine
equivalence.

A quasi-polynomial is a polynomial whose coefficients are periodic functions

with integral period. By Theorems 3.0.2 and 4.0.2 the functions counting

lattice triangles and width 1 lattice tetrahedra are piecewise quasi-polynomials

whose coefficients have period 2 so we may expect a function counting four-

point sets in the plane to be similar. By Proposition 4.4.1, if there is a quasi-

polynomial counting four-point sets of multi-width (w1, w2) we expect it to be

at most quadratic in w2. We expect the case when w1 = w2 to be distinct due
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to the increased symmetry. Also we expect the cases when w2 is odd and even

to be distinct so consider them separately. By fitting a quadratic to the results

for (w1, w1 + 1), . . . , (w1, w1 + 5) and (w1, w1 + 2), . . . , (w1, w1 + 6) we obtain

the following conjecture which agrees with the entries of Table 4.3.

Conjecture 4.4.2. The number of four-point sets of multi-width (w1, w2) if

w1 < w2 is 
9w2 + 6 if w2 even

9w2 + 4 if w2 odd

when w1 = 2, 
47
2
w2 + 7 if w2 even

47
2
w2 +

11
2

if w2 odd

when w1 = 3, 
56w2 + 6 if w2 even

56w2 + 2 if w2 odd

when w1 = 4, 
211
2
w2 − 9 if w2 even

211
2
w2 − 23

2
if w2 odd

when w1 = 5 
183w2 − 36 if w2 even

183w2 − 42 if w2 odd

when w1 = 6 
575
2
w2 − 94 if w2 even

575
2
w2 − 195

2
if w2 odd

when w1 = 7 and 
430w2 − 180 if w2 even

430w2 − 188 if w2 odd

when w1 = 8.
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It is tempting to fit cubics in w1 to the coefficients of these polynomials to

get a quasi-polynomial counting four-point sets whenever w1 < w2. However,

the result is

(5
6
w3

1 +
1
6
w1 + 2)w2 − 5

4
w3

1 +
39
4
w2

1 − 47
2
w1 + 24 if w1, w2 even

(5
6
w3

1 +
1
6
w1 + 2)w2 − 5

4
w3

1 +
39
4
w2

1 − 49
2
w1 + 24 if w1 even and w2 odd

(5
6
w3

1 +
1
6
w1 +

1
2
)w2 − w3

1 +
51
8
w2

1 − 10w1 +
53
8

if w1 odd and w2 even

(5
6
w3

1 +
1
6
w1 +

1
2
)w2 − w3

1 +
51
8
w2

1 − 21
2
w1 +

53
8

if w1, w2 odd

which disagrees with Table 4.3 whenever w1 ≥ 9. This suggests that either

there is no such quasi-polynomial or that for small values of w1 we have special

cases and so cannot predict it from this data. Taking successive differences

of a sequence can help to identify when it is given by a quasi-polynomial

since higher order terms cancel making the pattern more obvious. Considering

successive differences (and successive differences of these differences etc.) of

the sequence counting multi-width (w1, w1 + 1) four-point sets, it seems that

if such a quasi-polynomial exists we would need significantly more data-points

to estimate it. Therefore, we do not attempt to classify enough four-point sets

to make such a conjecture.

Using the classification of four-point sets, we move on to classify tetrahedra.

This uses a similar algorithm to the four-point set case (see Algorithm 2) with

two main differences. We may no longer assume that all the tetrahedra we

want to classify are contained in a w1 × w2 × w3 box so must allow more z-

coordinates to be assigned to each point. Also, since we are not extending

this classification to a higher dimension, we need only store the normal form

of each tetrahedron in order to count them.

Based on Theorem 4.0.2 we may hope that the tetrahedra of multi-width

(2, w2, w3) are counted by some quadratic functions in w2. Since we can fit

a quadratic to any three points we would like at least 4 points in each sub-

sequence of |T2,w2,w3| to make a reasonable conjecture. Including the case
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Algorithm 2: Classifying the tetrahedra with multi-width
(w1, w2, w3).

Data: The set A containing all four-point sets in the plane with
multi-width (w1, w2) written as a subset of [0, w1]× [0, w2].

Result: The set T containing all tetrahedra with multi-width
(w1, w2, w3).

T ←− ∅
for {v1, v2, v3, v4} ∈ A do

for h1, h2, h3, h4 ∈ [0,max{w1 + w2, w3}] ∩ Z such that hi = 0 and
hj ≥ w3 for some i < j do
T ←− conv(vi × {hi} : i = 1, 2, 3, 4)
if mwidth(T ) = (w1, w2, w3) then
T ←− T ∪ {NF(T )}

w2 = 2 makes the resulting polynomials higher degree so we need to classify at

least multi-width (2, w2, w2), (2, w2, w2 + 1) and (2, w2, w2 + 2) tetrahedra for

w2 = 3, . . . , 10 to get enough data points. The classification of lattice tetra-

hedron with width 2, second width up to 10 and third width up to 12 can be

found in the database [Ham23b] and they are counted in Table 4.2. Fitting

polynomials to the sequences displayed in Table 4.2 produces the following.

Conjecture 4.4.3. • When w3 > w2 > 2 the cardinality of T2,w2,w3 is

∗ 1
4
(81w2

2 − 18w2 + 76) if w2 and w3 even

∗ 1
4
(81w2

2 − 18w2 + 56) if w2 even and w3 odd

∗ 1
4
(81w2

2 − 18w2 + 37) if w2 odd and w3 even

∗ 1
4
(81w2

2 − 18w2 + 25) if w2 and w3 odd

• when w2 > 2 the cardinality of T2,w2,w2 is

∗ 1
8
(81w2

2 − 22w2 + 80) if w2 is even

∗ 1
8
(81w2

2 − 20w2 + 27) if w2 is odd

• when w3 > 2 the cardinality of T2,2,w3 is

∗ 47 if w3 is even

∗ 45 if w3 is odd
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• and the cardinality of T2,2,2 is 17.

More generally we may also guess that the following pattern will continue to

hold.

Conjecture 4.4.4. There is a piecewise quasi-polynomial with 4 components

counting lattice tetrahedra of multi-width (w1, w2, w3). There is a component

for each combination of equalities in w3 ≥ w2 ≥ w1 > 0. The leading coefficient

in the case w3 > w2 > w1 > 0 is double the leading coefficient in the case

w3 = w2 > w1 > 0. For fixed w1 and w2 there are at most three values which

|Tw1,w2,w3| can take depending of whether w3 is odd, even or equal to w2.



Chapter 5

Half-Integral Polygons With

Small Size

We call the number of lattice points contained in a rational polygon its size.

In this chapter we classify polygons with small size and denominator up to

affine equivalence and use the resulting classification as a starting point to

investigate the Ehrhart theory of denominator 2 polygons.

Denominator 2 polygons are also of interest outside of Ehrhart theory and

have applications in algebraic geometry. For example, in [BH20] denominator

2 polygons whose only lattice points are vertices are classified to understand

canonical three-fold singularities with a complexity one torus action. They

also appear as the intersection of a 3-dimensional width 2 polytope with a hy-

perplane, which appears in [AKW17] and which forthcoming work of Bohnert

will apply to toric hypersurfaces [Boh22].

Consider polygons with denominator r ∈ Z>0 and size k ∈ Z≥0. When r ≥ 2

there are infinitely many such polygons. For example, when a and k are posi-

tive integers the polygon conv((0, 0), (k − 1, 0), (0, 1
r
), (a

r
, 1
r
)) has denominator

r and size k (see Figure 5.1). However, all but finitely many denominator r

size k polygons are part of an infinite family in the following sense.

Definition 5.0.1. A polygon P with denominator r and size k is infinitely

growable if there exists an infinite sequence of polygons P0, P1, P2, . . . such that

78
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1. P0 = P ,

2. Pi is a proper subset of Pi+1 for all i = 0, 1, 2, . . . and

3. Pi is a polygon with denominator r and size k for all i = 0, 1, 2, . . ..

A polygon Q with denominator r and size k is said to be maximal if for any

point v ∈ 1
r
Z2 not in Q the size of conv(Q ∪ v) is greater than k. We say

that a polygon P with denominator r and size k is finitely growable if it is not

infinitely growable. Notice that a finitely growable polygon is always a subset

of some maximal polygon.

Figure 5.1: A collection of polygons with denominator 2 and size 2 which can be
grown infinitely. Crosses denote points of Z2, dots denote points of 1

2Z
2.

We prove the following result in Corollary 5.1.5 and Proposition 5.2.6.

Proposition 5.0.2. Let P be a denominator r, size k polygon, then either

P is infinitely growable and is equivalent to a polygon contained in the strip

[0, 1]× R or P is finitely growable and is one of finitely many exceptions.

Since the finitely growable denominator r size k polygons are finite in number

they are a potential subject for classification. We classify them for small r and

k using a growing algorithm. They are enumerated in Table 5.1.

k

r 0 1 2 3 4 5

1 0 0 0 1 3 6
2 1 106 1333 8774 40139 ?
3 214 ? ? ? ? ?

Table 5.1: The number of finitely growable polygons with denominator r and size k.

Using the data obtained from the classification we investigate the Ehrhart

theory of denominator 2 polygons. This topic was previously studied in [Her10].

There they approach the classification of the odd components of the Ehrhart
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quasi-polynomial, whereas we approach the classification of the entire Ehrhart

polynomial. There is also interest in quasi-period collapse, where the quasi-

period of a polytope is strictly smaller than it’s denominator. Denominator

2 polygons which exhibit quasi-period collapse have been studied in [MM17]

and [Boh24].

The Ehrhart polynomial of a denominator 2 polygon is determined by the

number of boundary and interior points in P and 2P . Therefore, the following

result, proven in Section 5.4, places strong restrictions on the possible Ehrhart

polynomials of denominator 2 polygons.

Theorem 5.0.3. Let P be a denominator 2 polygon with b1 boundary points,

i1 interior points such that the lattice polygon 2P has b2 boundary points and

i2 interior points. For all but finitely many such polygons, the integers b1, i1,

b2 and i2 satisfy one of the following conditions:

• i1 = 0, i2 = 0 and b2 ≥ max(3, 2b1),

• b1 = 0, i1 = 0, b2 = 4 and i2 > 0,

• i1 = 0, i2, b1 > 0, max(3, 2b1) ≤ b2 ≤ 2b1 + 4 and b2 ≤ 2i2 + 6 or

• i1 > 0, b2 ≥ max{3, 2b1}, i2 ≥ b1 + 2i1 − 1 and b2 + i2 ≤ 2b1 + 6i1 + 7.

We continue to use the notation of Section 3.4, so i(P ) and b(P ) are the

number of interior and boundary points of P . The set of tuples (b1, i1, b2, i2)

satisfying the bounds in Theorem 5.0.3 appears to be a close approximation

to the set of tuples (b(P ), i(P ), b(2P ), i(2P )) for denominator 2 polygons P .

When i(P ) = 0 there are exactly 2 polygons which do not satisfy these bounds,

and all tuples which satisfy the bounds are realised by some polygon. We

have found no polygon with i(P ) > 0 which does not satisfy the bounds.

Additionally, when the size k = b1 + i1 is at most 4 and i(P ) > 0, of the 1201

points satisfying the above inequalities, 968 are realised by some polygon.

In Section 5.1 we discuss infinitely growable polygons in greater generality

and show that they are all equivalent to a subset of the strip [0, 1] × R. In
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Section 5.2 we present an algorithm for finding all the finitely growable poly-

gons. This depends on finding a list of ‘minimal’ polygons and growing them

by successively adding points. In Section 5.3 we classify the minimal, denom-

inator r, size k polygons in general. This includes recalling a classification

method for lattice polygons of fixed size. Finally, in Section 5.4 we look at the

Ehrhart theory of the polygons in our classification and prove Theorem 5.0.3.

This includes a complete classification of the tuples (b(P ), i(P ), b(2P ), i(2P ))

when P has no interior points.
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5.1 Infinitely Growable Polygons

In this section we show that a rational polygon is infinitely growable if and

only if it is equivalent to a subset of the strip [0, 1] × R. We work in greater

generality; instead of 1
r
Z2 and Z2 we consider a lattice L and sublattice K ⊆ L

both of rank d. For a rank d lattice K we denote K ⊗Z R ∼= Rd by KR. We

think of both K and L as sublattices of the Euclidean space KR = Rd where K

is the integral lattice Zd and L is a bigger lattice extended by rational points.

For fixed lattices L and K recall that there exists a basis ℓ1, . . . , ℓd of L and

unique positive integers a1, . . . , ad with ai | ai+1 for i = 1, . . . , d− 1 such that

κ1 := a1ℓ1, . . . , κd := adℓd is a basis of K. The ai are usually referred to as

elementary divisors (or invariant factors) of the sublattice K ⊆ L. Notice

that ai ≥ 1 for all i = 1, . . . , d as K has full rank. Furthermore, observe that

we have a chain of sublattices K ⊆ L ⊆ 1
ad
K where 1

ad
K is the sublattice of

LR generated by the basis 1
ad
ℓ1, . . . ,

1
ad
ℓd.

Let us recall some important concepts from [NZ11]. In [NZ11] only one

lattice is considered. Since we consider multiple lattices here, we need notation

to keep track of the respective lattice.

Definition 5.1.1. Let N be a lattice and P a polytope in NR. We call P an

N-polytope if the vertices of P are contained in N . We say that P is N-hollow

if it doesn’t contain any points of N in its interior. For s ∈ Z>0, we say a

convex body P ⊆ NR is s-N-hollow if the interior of P doesn’t contain any

points from the dilated lattice sN . We say that P is of N-size k if |P ∩N | = k.

The definition of infinitely growable and finitely growable extend naturally to

this setting by considering L-polytopes instead of polytopes with denominator

r and K-size instead of size.

A lattice projection is a surjective affine-linear map φ : KR → V onto a

vector space V of dimension m whose kernel is generated, as a vector space,
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by elements of K. We get a chain of sublattices

φ(K) ⊆ φ(L) ⊆ φ
(

1
ad
K
)
= 1

ad
φ(K).

We adapt the following result from [NZ11, Theorem 2.1].

Proposition 5.1.2. There are only finitely many K-hollow d-dimensional L-

polytopes (up to affine equivalence) that do not admit a lattice projection φ to

a (d− 1)-dimensional φ(K)-hollow polytope.

Proof. Any L-polytope is also a 1
ad
K-polytope, so it suffices to show the result

in the case where L = 1
ad
K. By replacing K-hollow with ad-

1
ad
K-hollow and

φ(K)-hollow with ad-
1
ad
φ(K)-hollow this is exactly [NZ11, Theorem 2.1].

Proposition 5.1.3. An infinitely growable L-polytope P ⊆ LR is K-hollow and

it admits a lattice projection φ to a (d− 1)-dimensional φ(K)-hollow polytope.

Towards a proof of Proposition 5.1.3, recall that the Euclidean space Rd

can be equipped with the maximum norm which associates to x ∈ Rd the

maximal absolute value of its coordinates, i.e., ∥x∥∞ = maxi |xi|. We will use

the following well-known result (see, for instance, [Sch91, Theorem 1B]).

Theorem 5.1.4 (Dirichlet’s approximation theorem). For every w ∈ Rd and

every N > 1 there exist k ∈ Z with 1 ≤ k ≤ Nd and x ∈ Zd such that

∥kw − x∥∞ < 1/N . In other words, for every ray in Rd there exist lattice

points that lie arbitrarily close to it.

The recession cone (or tail cone) of a non-empty closed convex set C ⊆ Rd

is defined as rec(C) = {u ∈ Rd | u+ C ⊆ C}.

Proof of Proposition 5.1.3. Assume towards a contradiction that there exists

v ∈ int(P )∩K. Since P can be grown infinitely, there exists a strictly increas-

ing sequence (Pi)i∈N of L-polytopes that have K-size |Pi ∩K| = |P ∩K| such
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that P ⊆ Pi and Pi ⊊ Pi+1. The closure of the union of the Pi, that is

C :=
⋃
i

Pi,

is an unbounded, closed, convex set. Hence, its recession cone is non-trivial,

i.e. there exists a non-zero point w in rec(C). By Theorem 5.1.4, there exist

lattice points in K that lie arbitrarily close to the ray R≥0w. Since v ∈ K,

there also exist lattice points in K that lie arbitrarily close to the affine ray

ρ := v + R≥0w, which is in the interior of C. Notice that either ρ contains a

second lattice point of K or v is the only lattice point of K that is contained

in ρ. In the first case, ρ contains infinitely many lattice points. In the second

case, we can choose a lattice point close enough to ρ that it is in the interior of

C, then we can choose an even closer lattice point, and so on infinitely many

times to obtain infinite family of lattice points close enough to ρ to be in the

interior of C. However, int(C) ⊆ ⋃i Pi, and thus, the sizes of the Pi become

arbitrarily large. This is a contradiction which proves that P is K-hollow.

Each of the Pi is also infinitely growable using the sequence of polytopes

(Pj)j≥i so the Pi are also K-hollow. By Proposition 5.1.2 there is an i ∈ N

such that Pi admits a lattice projection φ to a (d−1)-dimensional φ(K)-hollow

polytope. Since P ⊆ Pi this projection also takes P to a (d − 1)-dimensional

φ(K)-hollow polytope.

From now on we return to the setting where K = Z2 and L = 1
r
Z2.

Corollary 5.1.5. Let P be a rational polygon with denominator r and size k.

Then P is infinitely growable if and only if it is equivalent to a subset of the

strip [0, 1]× R of the plane.

Proof. Suppose φ is an affine map such that φ(P ) is a subset of [0, 1] × R.

Then for a sufficiently large integer a, the polygons Pi := conv(P, φ−1(1
r
, a+i

r
))

for i = 0, 1, . . . form an infinite sequence of denominator r size k polygons

realising P as infinitely growable.
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Now suppose P is infinitely growable. By Proposition 5.1.3 there is a lattice

projection φ : R2 → R such that φ(P ) is φ(Z2)-hollow. By a scaling we may

assume that φ(Z2) = Z so in other words φ(P ) is a subset of an interval

[a, a + 1] for some integer a. The map φ is equal to the map induced by the

dual lattice vector (φ(1, 0), φ(0, 1)). By a change of basis we may assume that

φ(0, 1) = 0 (and φ(1, 0) ̸= 0). Then, the fact that φ(P ) ⊆ [a, a + 1] can be

reinterpreted as: the x-coordinates of P are in the range
[

a
φ(1,0)

, a+1
φ(1,0)

]
. By a

translation, we may assume that the x-coordinates of P are in [0, 1].

5.2 Growing Finitely Growable Polygons

We classify the finitely growable polygons of small size and denominator using

a growing algorithm. This is done by finding a collection of minimal polygons

from which all others can be obtained by successive adding of points.

Definition 5.2.1. A polygon P with denominator r and size k is called min-

imal if for each vertex v of P the polygon

conv
((
P ∩ 1

r
Z2
)
\ {v}

)
either has size less than k or is less than two-dimensional.

The growing algorithm is based on the following result.

Proposition 5.2.2. Let P be a polygon with denominator r and size k. Then

there exists a sequence of polygons P0, P1, . . . , Ps with denominator r and size

k such that P0 is minimal, Ps = P and for all i = 0, . . . , s− 1:

1. Pi+1 = conv(Pi, vi), for some point vi in
1
r
Z2,

2. there is exactly one more lattice point in rPi+1 than in rPi (i.e. rvi) and

3. vi is contained in a hyperplane defined by ui · x = hi +
1
r
, where ui is

the outwards pointing normal vector of a facet of Pi and that facet is a

subset of the hyperplane ui · x = hi.
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We call a hyperplane like the one containing vi in point (3) a hyperplane

adjacent to a facet of P . To prove the proposition we need the following:

Lemma 5.2.3. For lattice N ∼= Z2 let P be a rational polygon in NQ. Suppose

P contains a point of N in the interior of the half-space

H := {v ∈ NR : u · v ≥ h}

where u is a primitive element of the dual space to N . If P also contains a

lattice line segment of lattice length 1 in the boundary of H then P contains a

lattice point in the hyperplane {v : u · v = h+ 1}.

Proof. By an affine transformation we may assume that u = (0, 1) and h = 0

so that H is the set of points with non-negative y-coordinates. By a translation

we may assume that P contains the line segment conv((0, 0), (1, 0)). Let v0 =

(x0, y0) be the lattice point in P ∩H◦. If y0 = 1 we are done, otherwise consider

the lattice triangle T0 = conv((0, 0), (1, 0), v0) contained in P . This triangle

has volume y0 > 1 so by Pick’s theorem contains more than three lattice points.

Let v1 = (x1, y1) be a lattice point in T0 which is not a vertex. If y1 = 1 we

are done, otherwise replace v0 with v1 and repeat this process until we obtain

a lattice point in P with y-coordinate 1. This process terminates since each

successive vertex vi has strictly smaller y-coordinate.

Proof of Proposition 5.2.2. If P is minimal we are done. If P is not minimal

let vs−1 be a vertex of P such that Ps−1 := conv(P ∩ 1
r
Z2 \ {vs−1}) is also a

denominator r size k polygon. It is immediate that P = conv(Ps−1, vs−1) and

that there is exactly one more lattice point in rP than in rPs−1. It remains to

show that vs−1 is contained in a hyperplane adjacent to a facet of Ps−1.

We can represent Ps−1 as the intersection of a finite number of half-spaces,

each corresponding to a facet of Ps−1. Since vs−1 /∈ Ps−1 one of these half-spaces

does not contain vs−1. Since a facet of Ps−1 is contained in the boundary of

this half-space P contains both a point in the complementary half-space and
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a line segment in its boundary. Therefore, by Lemma 5.2.3 there is a point P

which falls on a hyperplane adjacent to a facet of Ps−1. However, there is only

one point of 1
r
Z2 in P and not Ps−1, that is vs−1. This shows that vs−1 satisfies

the conditions of the proposition.

If Ps−1 is minimal we are done, otherwise continue by induction. The process

terminates since P contains a finite number of points of 1
r
Z2.

The algorithm will start with the list of minimal polygons and successively

add points which lie on hyperplanes adjacent to each of their facets. Based

on Proposition 5.2.2 all finitely growable polygons will certainly occur in this

manner. However, we must also ensure that the algorithm terminates.

There are infinitely many points on each hyperplane so we need to bound

the collection of points which we add to polygons at each growing step. The

following definition is useful for this.

Definition 5.2.4. Let P ⊆ Rn be a polytope with vertices v1, . . . , vr and

v ∈ Qn a point. Define the penumbra of v with respect to P to be

pen(P, v) := v − cone(P − v) =
{
v − w : w =

r∑
i=1

λi(vi − v), λi ∈ R≥0

}
.

Let pen(P,w1, . . . , wr) denote the union of the regions pen(P,w1), . . . , pen(P,wr).

See Figure 5.2 for an example of a penumbra.

P

v

Figure 5.2: For P = conv((0, 0), (1, 0), (0, 1)) and v = (2, 2) the shaded region is
the penumbra of v with respect to P , that is pen(P, v) = (2, 2) + cone((2, 1), (1, 2)).

Proposition 5.2.5. A point x is in pen(P, v) if and only if v is in conv(P, x).
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Proof. Let x ∈ pen(P, v). Then by definition there exist non-negative rational

numbers λ1, . . . , λr such that

x = v −
r∑

i=1

λi(vi − v) ⇒ v =
1

1 +
∑r

i=1 λi

(
x+

r∑
i=1

λivi

)

which means that v meets the conditions to be an element of conv(P, x).

Let v ∈ conv(P, x). Then there exist non-negative rational numbers µ0, . . . , µr

such that µ0 + · · ·+ µr = 1 and

v = µ0x+
r∑

i=1

µivi ⇒ x =
1

µ0

(
v −

r∑
i=1

µivi

)
= v −

r∑
i=1

µi

µ0

(vi − v)

if µ0 ̸= 0 so x ∈ pen(P, v). If µ0 = 0 instead then v ∈ P so pen(P, v) is the

whole space and therefore contains x.

Figure 5.3: The points which Algorithm 3 adds to P = conv((0, 0), (1/2, 0), (0, 1/2))
on the hyperplane adjacent to conv((0, 0), (1/2, 0)). Dots denote points of 1

2Z
2,

crosses denote two points of the hyperplane y = 0 which we may not include in
the new polygon and circles denote points which can be added.

Suppose we wish to add a point v to P on the hyperplane adjacent to a

facet F of P in a way which satisfies the conditions of Proposition 5.2.2. Let

H be the half-space containing F in its boundary and not containing P as

a subset. Since conv(P, v) has exactly one additional point, it contains no

new points in the boundary of H. In particular, the first point of 1
r
Z2 outside

of F in either direction, say x1 and x2, must not be in conv(P, v). Thus by

Proposition 5.2.5, v cannot be in pen(P, x1, x2). This penumbra is the union

of two 2-dimensional cones, both of which are contained in H and have a facet

contained in the boundary of H. For this reason, the second facet of each cone

is not parallel to the boundary of H, so must intersect the hyperplane adjacent

to F in the way depicted in Figure 5.3. This restricts us to a finite collection

of points v in the hyperplane adjacent to F . For an example of the points we
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can add see Figure 5.3. We also exclude lattice points to avoid increasing the

size.

For the algorithm to terminate it must also have a finite number of polygons

to classify. In particular, there must be a finite number of finitely growable

polygons of a given size and denominator.

Proposition 5.2.6. Let r ∈ Z>0 and k ∈ Z≥0, then there are finitely many

finitely growable polygons with denominator r and size k.

Proof. By Proposition 5.1.2 it suffices to show that there are finitely many

such polygons with interior lattice points. By [LZ91, Theorem 1] the volume

of a polygon containing exactly l ≥ 1 points of rZ2 in its interior is at most

lr2(7(lr + 1))16. Therefore, the volume of a polygon containing at most k − 3

interior points is also bounded by some number V . By [LZ91, Theorem 2] this

bound means that the finitely growable polygons with denominator r and size

k are equivalent to polygons contained in a lattice square of side length at

most 4V . Therefore, there are finitely many of them.

Note that a sufficiently small infinitely growable polygon may also be a sub-

set of a maximal polygon. Our growing algorithm cannot exclude infinitely

growable polygons, since some minimal polygons are infinitely growable. We

still need to classify a finite set so we bound the collection of infinitely growable

polygons which we include using the following result.

Proposition 5.2.7. Let P be a rational polygon with denominator r and size

k. Let H be a hyperplane defined by u · x = h̃ for some non-integral h̃ ∈ 1
r
Z.

Let h be the minimum of (rh̃ mod r) and (−rh̃ mod r). If

∣∣P ∩H ∩ 1
r
Z2
∣∣ ≥ r(r − h+ 1)(k + 1)

then P is not a subset of a maximal polygon.

Proof. We may assume by an affine map that u = (1, 0) and that 0 < h̃ < 1.

Notice then that h = rh̃ or r − rh̃. The line segment P ∩H contains a points
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from 1
r
Z2 for some integer a ≥ r(r + 1 − h)(k + 1) so the length of this line

segment is at least a−1
r
.

Assume towards a contradiction that there exists a maximal rational polygon

Q with denominator r and size k containing P . Since Q is not infinitely

growable it contains a point v1 = (x1, y1) in
1
r
Z2 outside of the strip [0, 1]×R.

By a reflection in the y-axis followed by a horizontal translation we may assume

that x1 ≥ 1 + 1
r
. We claim that there exists a point of 1

r
Z2 which is contained

in the line segment Q ∩ {x = 1 + 1
r
}.

Suppose that x1 ≥ 1 + 2
r
and let T1 be the triangle conv(P ∩H, v1) which is

contained in Q. Applying the intercept theorem on the two triangles T1 and

T1 ∩ {x ≥ 1 + 1
r
} yields that the length of the line segment T1 ∩ {x = 1 + 1

r
}

is at least

a− 1

r
· rx1 − r − 1

rx1 − rh̃
. (5.1)

We claim that this lower bound is at least 1
r
which then guarantees that the

line segment Q∩{x = 1+ 1
r
} contains a rational point in 1

r
Z2. Notice that the

partial derivative of (5.1) with respect to x1 is positive:

∂

∂x1

a− 1

r
· rx1 − r − 1

rx1 − h′
=

(a− 1)(r + 1− h′)
r2(rx1 − h′)2

> 0

so (5.1) is increasing. Since x1 ≥ 1 + 2
r
, a lower bound for the fraction (5.1) is

given by substituting in x1 = 1 + 2
r
, that is,

a− 1

r
· rx1 − r − 1

rx1 − h′
≥ a− 1

r(r + 2− rh̃)
.

Thus it suffices to show that (a − 1)/(r(r + 2 − rh̃)) ≥ 1
r
. By definition

a ≥ r(r + 1− h)(k + 1) and k ≥ 0 so it further suffices to show that

r(r + 1− h)− 1

r + 2− rh̃
≥ 1.

This can be verified using the facts that rh̃ ∈ {h, r − h} and h ≤ r
2
. This
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proves that Q contains a point of 1
r
Z2 with x-coordinate 1 + 1

r
.

From now on, assume that v1 has x-coordinate x1 = 1 + 1
r
. Let us denote

the a consecutive points of P ∩H ∩ 1
r
Z2 by p1, . . . , pa. Let qi be the rational

intersection points of the line segments conv(v1, pi) with S = Q∩{x = 1}. By

computing the intersection of these line segments in general we see that the

y-coordinate of qi is in
1

r(r+1−rh̃)
Z. Thus, S contains at least r(r+1−h)(k+1)

points of 1

r(r+1−rh̃)
Z2. At least k + 1 of these must be integral points which

contradicts the size of Q.

We make the algorithm rigorous in Algorithm 3. We have shown that it

starts with finitely many polygons and at each growing step adds finitely many

additional polygons with strictly larger volume. Additionally all polygons it

produces are either members of the finite set of finitely growable polygons or

the finite set of infinitely growable polygons which have a bound, described in

Proposition 5.2.7, on the number of colinear points which they can contain.

Therefore, the algorithm terminates and classifies all finitely growable polygons

of a given size and denominator.

Algorithm 3 does not store any polygon which is infinitely growable. To iden-

tify if a denominator r polygon P is infinitely growable we consider the lattice

polygon rP . If this has width greater than r then rP has width greater than 1

and cannot be infinitely growable. Otherwise, we consider the finite collection

of dual lattice points in rWrP (where WrP is as defined in Section 3.1). If

P is contained between two adjacent parallel integral hyperplanes then those

hyperplanes must be normal to one of these points. We check if this occurs for

any point. If it does then P is infinitely growable, otherwise it is not.

Three final adjustments can be made to make the growing algorithm more

efficient. First notice that affine equivalent polygons contain the same number

of points in 1
r
Z2. Also, our algorithm grows polygons by exactly one point

of 1
r
Z2 at a time. Therefore, we can stratify the growing algorithm by the

1
r
Z2-size of the polygons. That is, grow all polygons with 1

r
Z2-size n then n+1
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and so on. The benefit of this is that once all polygons of a given 1
r
Z2-size

have been classified, and all duplicates and infinitely growable polygons have

been removed, they can be stored and deleted from working memory without

any danger that we will classify them again later in the iterations.

The next adjustment relates to removing infinitely growable polygons from

the final classification. Notice that a finitely growable polygon can never be

grown into an infinitely growable polygon. Thus, once we have checked and

found that a polygon is finitely growable we should not check whether any

polygon grown from it is finitely growable. To avoid this we distinguish be-

tween polygons which are infinitely growable and finitely growable throughout

the main loop.

Finally, we will show in Section 5.3 that a polygon with denominator r ≥ 1

and size k ≥ 1 contains a unique minimal polygon and two such polygons can

only be equivalent if their minimal polygons are equivalent (see Remark 5.3.4).

As a result, when the size is at least 1 the algorithm grows each minimal

polygon independently one after the other rather than simultaneously. This

reduces the number of polygons which need to be stored in working memory.

5.3 Minimal polygons

In this section we classify the minimal polygons with denominator r > 1 and

size k ≥ 0. Those with size zero are a separate case which we classify first.

Proposition 5.3.1. The minimal polygons of size zero with denominator r

are all affine equivalent to size zero triangles of the form 1
r
(∆ + v) where

∆ := conv((0, 0), (1, 0), (0, 1)) and v is a lattice point in the square [0, r − 1]2.

First note that not all triangles of the form 1
r
(∆ + v) have size zero so the

condition ‘of size zero’ in the proposition places restrictions on v. Secondly,

this list may contain duplicates when considered up to affine equivalence. For

example, see Figure 5.4.
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Algorithm 3: Growing algorithm for polygons with denominator r
and size k. All sets are considered modulo affine equivalence.

Data: The set MinPoly containing minimal polygons with
denominator r and size k.

Result: The set Final containing all finitely growable polygons with
denominator r and size k.

function Grow(P ,r-size,IsFin)
NewInf←− ∅
NewFin←− ∅
for Each point p on a hyperplane adjacent to a facet of P which we
may add to P do
Q←− conv(P, p)
if Q has the correct size, r-size and not too many collinear
points according to Proposition 5.2.7 then

if IsFin or Q is finitely growable then
NewFin←− NewFin ∪ {Q}

else
NewInf←− NewInf ∪ {Q}

if IsFin then
return NewFin

return NewInf, NewFin

Final←− ∅
for Pmin ∈ MinPoly do

if k = 0 then
ToGrowInf←− MinPoly

ToGrowFin←− ∅
else if Pmin is infinitely growable then

ToGrowInf←− {Pmin}
ToGrowFin←− ∅

else
ToGrowInf←− ∅
ToGrowFin←− {Pmin}

r-size ←− |P ∩ 1
r
Z2|

repeat
r-size ←− r-size+1
ToGrowNextInf←− ∅
ToGrowNextFin←− ∅
for P ∈ ToGrowInf do

NewInf, NewFin←− Grow(P, r-size, false)
ToGrowNextInf←− ToGrowNextInf ∪ NewInf
ToGrowNextFin←− ToGrowNextFin ∪ NewFin

for P ∈ ToGrowFin do
NewFin←− Grow(P, r-size, true)
ToGrowNextFin←− ToGrowNextFin ∪ NewFin

Final←− Final ∪ ToGrowFin
ToGrowInf←− ToGrowNextInf

ToGrowFin←− ToGrowNextFin

until ToGrowFin = ∅ and ToGrowInf = ∅
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Proof. First we can see that these triangles are minimal since removing any of

their vertices makes them one-dimensional.

Let P be a minimal polygon of size zero with denominator r. We can find

a triangulation of P into triangles containing exactly three points of 1
r
Z2. Let

T be one of these triangles. Using Pick’s theorem we may assume that T is

some affine transformation of 1
r
∆. By an affine map, we may assume that T is

1
r
(∆+ v) for some lattice point v in [0, r− 1]2. Any vertex of P not contained

in T can be removed without changing the size or dimension so P = T .

(0, 1, 1) (0, 1, 1) (0, 1, 1) (1, 2, 2) (1, 2, 2) (1, 2, 2)

Figure 5.4: The minimal polygons of size 0 with denominator 3 as described in
Proposition 5.3.1, along with the tuples described in Proposition 5.3.2. The first
three triangles are affine equivalent, as are the last three.

Proposition 5.3.2. There is a bijection between the minimal polygons of size

zero with denominator r and the set A of triples (a1, a2, a3) ∈ Z3
≥0 which satisfy

a1 ≤ a2 ≤ a3 ≤ r − 1 and one of the following conditions:

1. a1 + a2 + a3 = r − 1 and 0 < a1 + a2

2. a1 + a2 + a3 = 2r − 1 and r ≤ a1 + a2

For example, see Figure 5.4.

Proof. By Proposition 5.3.1 it suffices to show that there is a bijection between

A and the set S of affine equivalence classes [1
r
(∆+v)] when v is a lattice point.

Let T := 1
r
(∆ + v). We can write T as the intersection of three half-spaces

Hi := {v ∈ R2 : ui · v ≥ h̃i} for i = 1, 2, 3 where each h̃i ∈ 1
r
Z. We define

hi = (rh̃i mod r) and, up to relabelling, we may assume that h1 ≤ h2 ≤ h3.

By a unimodular map we may assume that u1 = (1, 0) and u2 = (0, 1) and by

an integral translation we may assume that rh̃1 = h1 and rh̃2 = h2. This means

that T = 1
r
((h1, h2) + ∆) and so we can explicitly calculate h3 in terms of h1



Chapter 5. Minimal polygons 95

and h2. That is, h3 = r−1−h1−h2 when h1+h2 < r and h3 = 2r−1−h1−h2
otherwise. Since T contains no lattice points h1 + h2 is always greater than 0.

This shows that (h1, h2, h3) ∈ A.

We claim that the map from S to A taking [T ] to (h1, h2, h3) is the desired

bijection. This is well-defined as the triple (h1, h2, h3) is invariant under affine

maps. It remains to prove that it is injective and surjective. As shown above,

if [T ] 7→ (h1, h2, h3) then T is equivalent to the triangle 1
r
((h1, h2) + ∆) from

which we can deduce injectivity. Surjectivity comes from the fact that for any

(a1, a2, a3) ∈ A we have [1
r
((a1, a2) + ∆)] 7→ (a1, a2, a3).

Proposition 5.3.3. The minimal polygons with denominator r and size k > 1

are exactly the integral polygons of size k and the triangle

Tr,k := conv
(
(0, 0), (k − 1, 0),

(
0, 1

r

))
and the only minimal polygon with denominator r and size k = 1 is the triangle

Tr,1 := conv
(
(0, 0),

(
1
r
, 0
)
,
(
0, 1

r

))
.

Proof. The integral polygons of size k are minimal since if we removed any of

their vertices the result would have size k− 1. The triangle Tr,k is minimal for

all k ≥ 1, since if we removed an integral vertex from it the result would have

size k − 1 and if we removed a rational vertex the result would be a line.

Suppose P is a minimal polygon with denominator r and size k > 1. Let Q

be the convex hull of the lattice points in P . This is either a lattice polygon

of size k or a line segment of lattice length k − 1.

IfQ is an lattice polygon of size k then any vertex of P not contained inQ can

be removed without making the result a smaller size or dimension, therefore

P = Q is a lattice polygon of size k.

If Q is a line segment of lattice length k − 1 then by an affine map we

may assume that P contains the line segment between (0, 0) and (k − 1, 0).
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By a reflection we may assume that P contains a 1
r
-integral point with pos-

itive y-coordinate. By Lemma 5.2.3 P contains a point with y-coordinate 1
r

which by a shear we may assume is (0, 1
r
). Any point of P not contained

in conv((0, 0), (k − 1, 0), (0, 1
r
)) can be removed without making the result a

smaller size or dimension, therefore P = conv((0, 0), (k − 1, 0), (0, 1
r
)).

If P is a minimal polygon with denominator r and size 1 an affine transfor-

mation allows us to assume it contains the points (0, 0) and (1
r
, 0). A similar

argument to the above shows that P is equivalent to Tr,1.

Remark 5.3.4. Notice that the minimal polygon contained in a rational poly-

gon of size at least 1 is entirely determined by the convex hull of the lattice

points it contains. As a result, two such polygons can only be equivalent if

they can be grown from the same minimal polygon.

To compute the minimal polygons, it remains to classify the lattice polygons

of a given size. Algorithms to do so have been presented elsewhere, for example

in [LZ11] and [BS16]. We use a very similar growing algorithm to the one

described in Section 5.2, which adds points on hyperplanes adjacent to the

facets of a polygon which is the approach mentioned in [BS16].

5.4 Ehrhart Theory in Denominator 2

As mentioned previously, the Ehrhart polynomial of a lattice polygon deter-

mines and is determined by the number of boundary and interior points of

that polygon. Thus, the following result gives a complete classification of the

Ehrhart polynomials of lattice polygons.

Theorem 5.4.1 ([Sco76, HS09]). Integers b and i are the number of boundary

and interior points of a lattice polygon if and only if b ≥ 3, i ≥ 0 and one of

the following holds

• i = 0,

• i = 1 and b = 9 or
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• i ≥ 1 and b ≤ 2i+ 6.

The only polygon with one interior point and 9 boundary points is the tri-

angle conv((0, 0), (3, 0), (0, 3)).

Towards a generalisation of this result for rational polygons we first show

that the Ehrhart polynomial of a rational polygon can be written in terms of

numbers of boundary and interior points of polygons.

Proposition 5.4.2. Let P be a rational polygon with Ehrhart quasi-polynomial

ehrP (n) = a2,in
2 + a1,in+ a0,i when n ≡ i mod r

for some positive integer r and i ∈ {0, 1, . . . , r − 1}. Then

a2,i =
1
2
Vol(P )

a1,i =
1
r

(
|iP ∩ Z2| − |(r − i)P ◦ ∩ Z2| − r(2i−r)

2
Vol(P )

)
a2,ii

2 + a1,ii+ a0,i = |iP ∩ Z2|

for all i where Vol(P ) denotes the normalised volume of P .

Remark 5.4.3. The case r = 2 was presented before in [Her10, Lemma 3.3].

We use the same method to extend this to the general quasi-period case.

Proof. The fact that a2,i =
1
2
Vol(P ) is a known result coming from considering

the limit as n tends to infinity. By the definition of ehrP (n), for i = 0, 1, . . . , r−

1

a2,ii
2 + a1,ii+ a0,i = |iP ∩ Z2|

and by Ehrhart-Macdonald reciprocity (Theorem 2.2.3)

a2,i(i− r)2 + a1,i(i− r) + a0,i = |(r − i)P ◦ ∩ Z2|.

Expanding this second equation and substituting in the first we can simplify
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to show that

a1,i =
1

r

(
|iP ∩ Z2| − |(r − i)P ◦ ∩ Z2| − r(2i− r)

2
Vol(P )

)
.

Since rP is a lattice polygon we can use Pick’s theorem to write the volume

of P in terms of the number of boundary and interior points of rP . Similarly

to lattice polygons, this shows that the Ehrhart quasi-polynomial of a denomi-

nator r polygon is completely encoded by the number of boundary and interior

points of P, . . . , (r − 1)P and rP .

For the remainder of this section we study the number of interior and bound-

ary points in P and 2P where P is a denominator 2 polygon. Recall, Theo-

rem 5.0.3 states that all but finitely many such polygons P must satisfy one of

four given conditions on the number of interior and boundary points of P and

2P . We prove this in Proposition 5.4.4, 5.4.5, 5.4.10, 5.4.11 and Table 5.2.

5.4.1 Polygons With Zero Interior Points

Infinitely Growable Polygons

We showed in Section 5.1 that infinitely growable denominator 2 polygons are

those which are equivalent to a subset of the strip [0, 1]×R. This description

allows us to completely classify the Ehrhart polynomials of such polygons.

Proposition 5.4.4. Let P be an infinitely growable, denominator 2 polygon.

Let i1, b1, i2 and b2 be the number of interior and boundary points of P and

2P respectively. Then i1 = 0 and the remaining variables satisfy one of the

following conditions:

1. i2 = 0 and b2 ≥ max(3, 2b1),

2. i2 > 0, b1 = 0 and b2 = 4 or

3. i2, b1 > 0, max(3, 2b1) ≤ b2 ≤ 2b1 + 4 and b2 ≤ 2i2 + 6.
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See Figure 5.5 for plots of pairs (b2, i2) when b1, i2 and b2 are small.
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Figure 5.5: Plots of (b(2P ), i(2P )) for denominator 2 polygons of size up to 6 with
zero interior points. Crosses are realised by infinitely growable polygons and dots
by finitely growable polygons. Dotted lines denote the bounds described in Proposi-
tion 5.4.4. Continued on next page.

Proof. The fact that P is infinitely growable shows that i1 = 0. It is immediate

that exactly one of the following three conditions holds

• i2 = 0,

• i2 > 0 and b1 = 0 or

• i2 > 0 and b1 > 0.

It suffices to show that, in each of these cases, the corresponding condition of

the proposition holds.
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(e) P has 4 boundary points
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(f) P has 5 boundary points
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(g) P has 6 boundary points

Figure 5.5: Plots of (b(2P ), i(2P )) for denominator 2 polygons of size up to 6 with
zero interior points continued.

The integers b2 and i2 are the number of boundary and interior points of

a lattice polygon so they must satisfy Theorem 5.4.1. The exceptional case

where b2 = 9 and i2 = 1 never occurs since the only possible 2P in this case

has width 3, contradicting the fact that P is infinitely growable. Therefore,

b2 ≥ 3 and either i2 = 0 or b2 ≤ 2i2 + 6.

For each boundary point v of P we know that 2v is a boundary point of 2P .

For each pair of adjacent boundary points of P either they are connected by

part of a single edge of P or there is a half-integral vertex between them on the

boundary of P . In either case, there is a half-integral point on the boundary

of P between each such pair so b2 ≥ 2b1. Therefore, when i2 = 0 condition (1)

holds

From now on we assume that i2 > 0. We may assume that P is a subset of
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[0, 1]× R and consider the number of boundary points 2P has on each of the

hyperplanes x = 0, 1 and 2. Since i2 > 0, 2P has interior points on the line

x = 1, so 2P can have at most two boundary points on this line. On the lines

x = 0 and x = 2 together 2P can have at most 2b1 + 2 boundary points so

b2 ≤ 2b1 + 4. Therefore, when i2 and b1 are positive, condition (3) holds.

If b1 = 0 and i2 > 0 then 2P contains interior lattice points in the line

x = 1 but contains at most one point in each of the lines x = 0 and 2.

Therefore, 2P contains exactly one boundary point on each of the lines x = 0

and 2. Call these v0 and v2. The only possible remaining vertices of 2P are

in the line x = 1. If 2P has two vertices in the line x = 1 then we have

shown that b2 ≥ 4. Otherwise, the line segment from v0 to v2 is an edge of

2P . It contains a lattice point at its midpoint since it is affine equivalent to

conv((1, 0), (1, 2)). Therefore, 2P has two boundary points on the line x = 1

and b2 ≥ 4. Therefore, when i2 is positive and b1 = 0, condition (2) holds.

Proposition 5.4.5. Let b1, b2 and i2 be non-negative integers satisfying one

of the conditions in Proposition 5.4.4. Then there is an infinitely growable,

denominator 2 polygon P such that P has b1 boundary points and 2P has b2

boundary points and i2 interior points.

Proof. We consider tuples (b1, b2, i2) of non-negative integers which satisfy the

conditions of Proposition 5.4.4. We say that a polygon P realises such a tuple if

it is infinitely growable, has b1 boundary points and 2P has b2 boundary points

and i2 interior points. We give examples of infinite families of denominator 2

polygons realising all of these tuples.

The first condition is satisfied by tuples (0, b2, 0) where b2 ≥ 3, (1, b2, 0)

where b2 ≥ 3 and (b1, b2, 0) where b2 ≥ 2b1 ≥ 4. These are realised by the

polygons

• conv((0, 1
2
), (1

2
, 0), (1

2
, b2−2

2
) if b1 = 0, and

• conv((0, 0), (0, b1 − 1), (1
2
, 0), (1

2
, b2−2b1

2
) if b1 > 0.
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The second condition is satisfied by tuples (0, 4, i2) where i2 > 0. These are

realised by polygons

• conv((0, 1
2
), (1, 1

2
), (1

2
, i2+2

2
)).

If b1 = 1 the third condition is satisfied by the tuples (1, b2, i2) where 3 ≤

b2 ≤ 6 and b2 ≤ 2i2 + 6. These are realised by the polygons

• conv((0, 0), (1, 1
2
), (1

2
, i2+1

2
)) if b2 = 3,

• conv((0, 0), (0, 1
2
), (1, 1

2
), (1

2
, i2+1

2
)) if b2 = 4,

• conv((0, 0), (0, 1
2
), (1

2
, 0), (1, 1

2
), (1

2
, i2+1

2
)) if b2 = 5, and

• conv((0,−1
2
), (0, 1

2
), (1, 1

2
), (1

2
, i2+1

2
)) if b2 = 6.

If b1 ≥ 2 the third condition is satisfied by the tuples (b1, b2, i2) where 2b1 ≤

b2 ≤ 2b1 + 4 and b2 ≤ 2i2 + 6. These are realised by the polygons

• conv((0, 0), (0, b1 − 2), (1, 0), (1
2
, i2+1

2
)) if b2 = 2b1,

• conv((0,−1
2
), (0, b1 − 2), (1, 0), (1

2
,−1

2
), (1

2
, i2+1

2
)) if b2 = 2b1 + 1,

• conv((0,−1
2
), (0, b1 − 2), (1, 0), (1,−1

2
), (1

2
, i2+1

2
)) if b2 = 2b1 + 2,

• conv((0,−1
2
), (0, b1 − 2), (1, 1

2
), (1,−1

2
), (1

2
, i2+1

2
)) if b2 = 2b1 + 3, and

• conv((0,−1
2
), (0, b1 − 3

2
), (1, 1

2
), (1,−1

2
), (1

2
, i2+1

2
)) if b2 = 2b1 + 4.

Finitely Growable Polygons

We grow the finitely growable polygons with zero interior points using an adap-

tation of Algorithm 3. First we identify the minimal polygons they contain.

Proposition 5.4.6. Let P be a denominator 2, finitely growable polygon with

zero interior points. Then P contains a unique minimal polygon P0 with the
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same size and denominator as P . The polygon P0 must be one of the following

conv((0, 0), (1
2
, 0), (0, 1

2
)), conv((1

2
, 1
2
), (1

2
, 1), (1, 1

2
)),

conv((0, 0), (1, 0), (0, 1
2
)), conv((0, 0), (1, 0), (0, 1)),

conv((0, 0), (1, 0), (0, 1), (1, 1)), conv((0, 0), (2, 0), (0, 1)),

conv((0, 0), (2, 0), (0, 1), (1, 1)), conv((0, 0), (3, 0), (0, 1)),

conv((0, 0), (3, 0), (0, 1), (1, 1)), conv((0, 0), (2, 0), (0, 2)).

Proof. Let Q denote the convex hull of the lattice points in P . If Q is empty

then P0 is equivalent to conv((1
2
, 1
2
), (1

2
, 1), (1, 1

2
)) as this is the only size 0 min-

imal polygon which Proposition 5.3.2 gives when the denominator is 2. The

remaining cases depend on the classification of minimal polygons in Proposi-

tion 5.3.3. If Q is a point then there is only one minimal polygon of size 1 in

any given denominator, so P0 is equivalent to conv((0, 0), (1
2
, 0), (0, 1

2
)). If Q

is a line segment then there is only one minimal polygon whose lattice points

are colinear, so P0 is equivalent to conv((0, 0), (k, 0), (0, 1
2
)) for some positive

integer k. Finally, if Q is a lattice polygon then it is minimal so P0 = Q.

If Q is a line segment of lattice length at least 2 then we may assume it

contains the points (0, 0) and (2, 0). Since P is finitely growable we may

assume that it contains a point with y-coordinate at least 3
2
. However, all such

points are contained in the penumbra pen(conv((0, 0), (2, 0)), (n, 1)) for some

integer n, so none can be included in P without contradicting the condition

that Q is a line segment. This is enough to complete the cases where Q has

dimension less than 2.

Similarly, if Q contains a line segment of lattice length at least 4 then, after

some affine map, we may assume it contains the points (0, 0) and (4, 0). Since

P is finitely growable we may assume it contains a point with y-coordinate at

least 3
2
. However, all such points are contained in the interior of the penumbra

pen(conv((0, 0), (4, 0)), (n, 1)) for some integer n so none can be included in P

without contradicting the condition that P has no interior points. Therefore,
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Q contains no line segment of lattice length 4 or more.

If Q is a lattice polygon then it is either conv((0, 0), (2, 0), (0, 2)) or it has

width 1 as these are the only lattice polygons with no interior points (see for

example [Rab89, Theorem 1]). If Q = conv((0, 0), (2, 0), (0, 2)) then it cannot

be grown by any point of 1
2
Z2 without including a lattice point in the interior

since all facets of Q contain an interior point. Therefore, in this case P = Q

and we do not attempt to grow Q.

If Q has width 1 then we may assume it is equivalent to a subset of the strip

[0, 1]× R and that P contains some rational vertex with x-coordinate greater

than 1. This means that the intersection of Q with the line x = 1 must have at

most two lattice points. This combined with the fact that Q contains at most

4 collinear lattice points is sufficient to classify the minimal polygons P0.

For each minimal polygon we apply Algorithm 3 with the new condition

that we discard polygons with interior lattice points. Additionally, suppose

a finitely growable polygon P contains 6 colinear points of 1
2
Z2 \ Z2. By an

affine transformation we may assume that these points are (0, 1
2
), (1

2
, 1
2
), . . .

and (5
2
, 1
2
). Since it is finitely growable P we may assume it contains vertex

with y-coordinate greater than 1, however all such points of 1
2
Z2 are con-

tained in pen(conv((0, 1
2
), (5

2
, 1
2
)), (n, 1)) for some integer n. Therefore, our

polygons contain at most 5 colinear points in a half-integral hyperplane. We

use this to improve compute time. We implement this adjusted algorithm using

Magma V2.27 and produce a list of 79 rational polygons P with denominator

2 and i(P ) = 0. The tuples (b(P ), b(2P ), i(2P )) for these polygons are listed

in Table 5.2 and plotted in Figure 5.5.

The two points which do not satisfy the bounds listed in Proposition 5.4.4 are

(0, 3, 3) and (3, 9, 1) which are realised by the polygons conv((1, 0), (0, 1), (3, 5))

and conv((0, 0), (3
2
, 0), (0, 3

2
)) respectively. These are notable polygons as the

first is the unique finitely growable polygon with denominator 2 and size 0

and the second is 1
2
times the unique lattice polygon which does not satisfy
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Theorem 5.4.1. All other finitely growable, denominator 2 polygons satisfy the

bounds of Proposition 5.4.4.

( 0, 3, 3 ) ( 1, 4, 3 ) ( 1, 4, 4 ) ( 1, 5, 3 ) ( 1, 6, 1 )
( 2, 4, 3 ) ( 2, 5, 3 ) ( 2, 5, 4 ) ( 2, 6, 3 ) ( 2, 6, 4 )
( 2, 7, 1 ) ( 2, 7, 3 ) ( 2, 8, 1 ) ( 3, 6, 3 ) ( 3, 6, 4 )
( 3, 7, 3 ) ( 3, 7, 4 ) ( 3, 8, 3 ) ( 3, 8, 4 ) ( 3, 9, 1 )
( 3, 9, 3 ) ( 4, 8, 3 ) ( 4, 8, 4 ) ( 4, 8, 5 ) ( 4, 9, 3 )
( 4, 9, 4 ) ( 4, 10, 3 ) ( 4, 10, 4 ) ( 5, 10, 3 ) ( 5, 10, 4 )
( 5, 11, 3 ) ( 5, 11, 4 ) ( 6, 12, 3 ) ( 6, 12, 4 )

Table 5.2: Tuples (b(P ), b(2P ), i(2P )) for all finitely growable denominator 2 poly-
gons with zero interior points.

5.4.2 Polygons With Interior Points

We now consider the polygons with at least one interior point. The number of

boundary and interior points of P and 2P for all denominator 2 polygons P

containing an interior point and up to 4 lattice points are plotted in Figure 5.9.

The dashed lines in each plot denote the bounds b(2P ) ≥ max{3, 2b(P )},

i(2P ) ≥ b(P ) + 2i(P )− 1 and b(2P ) + i(2P ) ≤ 2b(P ) + 6i(P ) + 7 all of which

are satisfied by every polygon in the classification. To prove that these bounds

hold in all but finitely many cases we first need some preparatory results.

Lemma 5.4.7. Let P be a lattice polygon of multi-width (w1, w2) written as

a subset of the rectangle Qw1,w2
:= [0, w1] × [0, w2]. Let h ∈ [2, w1 − 2] be an

integer and let h′ be the minimum of h and w1 − h, then P contains at least

h′ − 1 interior points in the line x = h.

Proof. Suppose for contradiction that P contains less than h′−1 interior points

in the line x = h. Then the line segment P ∩ {x = h} must be a subset of

Ih := {h} × [y1, y2] where y1 is an integer in [0, w2] and y2 = y1 + h′ − 1.

Let v be a point of P and u a point of the line x = h not contained in this

interval. Then no point of pen(v, u) can be contained in P . In particular, if

v has x-coordinate less than h then all points of P with x-coordinate greater

than h must be contained in the affine cone Cv := v + cone(Ih − v) and vice
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versa when v has x-coordinate greater than h. For example, see Figure 5.6.

Ihv

Cv

(h, y1)

(h, y2)

Figure 5.6: In the proof of Lemma 5.4.7, if v ∈ P then all points of P with
x-coordinate greater than h are contained in the affine cone Cv := v + cone(Ih − v).

By the widths of P we know that P has a vertex contained in each edge

of the rectangle Qw1,w2 . Either y1 > 0 or y2 < w2 so the points in the upper

and lower edge of Qw1,w2 cannot both be in the line x = h. By reflections

and possibly exchanging the values of h and w1 − h, we may assume that P

contains a vertex in the upper edge of Qw1,w2 with x-coordinate greater than

h. Let v be a point of P with x-coordinate less than h, then the vertices of P

on the upper and right edges of Qw1,w2 are contained in Cv. As a result, the

point (w1, w2) is also contained in Cv, and so v ∈ C(w1,w2).

Suppose towards a contradiction, that P contains a point on the lower edge

of Qw1,w2 , with x-coordinate greater than h (see Figure 5.7a). Then (w1, 0)

must also be contained in Cv as above, so all points of P with x-coordinate

less than h are contained in the intersection of C(w1,0) and C(w1,w2). However,

the line through (w1, 0) and (h, y1) and the line through (w1, w2) and (h, y2)

meet at a point with x-coordinate

w2h+ w1(y1 − y2)
w2 − y2 + y1

=


w2h−w1(h−1)

w2−h+1
if h ≤ w1

2

w2h−w1(w1−h−1)
w2−w1+h+1

if h > w1

2

which is always greater than 0. This shows that P cannot contain a point in

the left edge of Qw1,w2 which is the desired contradiction.

Suppose, towards a contradiction that P contains the point (h, 0) (see Fig-
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ure 5.7b). Then y1 = 0 and we consider C(w1,w2) which must contain all points

of P with x-coordinate less than h. However, the line through (w1, w2) and

(h, y2) intersects the x-axis at the point

(
w2h− w1y2
w2 − y2

, 0

)
=


(

w2h−w1(h−1)
w2−(h−1)

, 0
)

if h ≤ w1

2(
w2h−w1(w1−h−1)
w2−(w1−h−1)

, 0
)

if h > w1

2

which is always greater than 0. As above, this prevents P from containing a

point in the left edge of Qw1,w2 , which is the desired contradiction.

(h, y1)

(h, y2)

Ih

p

(a)

p = (h, y1)

(h, y2)

Ih

(b)

Figure 5.7: In the proof of Lemma 5.4.7, if P contains a point p on the lower
boundary of Qw1,w2 with x-coordinate greater than h, or the point p = (h, 0), then
the points of P with x-coordinate less than h must be contained in the intersection
of the depicted cones. However, this prevents P from containing a point in the left
boundary of Qw1,w2 as required.

Now let v′ be a point of P with x-coordinate greater than h. We may assume

that a vertex of P in the lower edge of Qw1,w2 has x-coordinate less than h.

The cone Cv′ must contain both this vertex and some point in the left edge of

Qw1,w2 so (0, 0) is contained in Cv′ . Therefore, v
′ is contained in C(0,0).

We have shown that P is a subset of the union of C(0,0) and C(w1,w2) as

depicted in Figure 5.8. We will show that the width of this region with respect

to u = (1,−1) is less than w2 which is the desired contradiction.

By reflections, we can now assume that h′ = h. Notice that the line y = w2

w1
x

intersects the interval Ih non-trivially. In particular, w1y1 ≤ w2h ≤ w1y2.

Consider the slope of each edge of C(0,0) and Cw1,w2 compared to the line
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(h, y1)

(h, y2)

P1

P2

P3

P4Ih

Figure 5.8: In the proof of Lemma 5.4.7, the polytope P is contained in the union
of the two shaded affine cones C(0,0) and C(w1,w2) whose points are at (0, 0) and
(w1, w2) respectively.

y = w2

w1
x. The edges meeting at (h, y1) and (h, y2) have gradients such that

these two points can never be a vertex of the convex hull

P ′ := conv
((
C(0,0) ∪ C(w1,w2)

)
∩Qw1,w2

)
so P ′ has vertices P1, P2, P3 and P4, depicted in Figure 5.8, with coordinates

P1 = (0, w2 − w2−y2
w1−h

w1), P2 = (w1 − w1−h
w2−y1

w2, 0),

P3 = ( h
y2
w2, w2), P4 = (w1,

y1
h
w1).

It suffices to show that the width of P ′ with respect to u is less than w2 since

P is a subset of P ′ so widthu(P ) is at most widthu(P
′). To bound the width

of P ′ we need only bound the absolute value of u · (Pi − Pj) for each pair of

vertices Pi and Pj.

Since the value u takes increases from left to right along horizontal lines and

from top to bottom along vertical ones, u ·P1 ≤ u · (0, 0) ≤ u ·P2 and similarly

u ·P3 ≤ u · (w1, w2) ≤ u ·P4. Therefore, we need only show that the difference

between each pair of values of u · Pi is less than w2.

By considering the value of u · (0, 0) and u · (w1, w2) we see that u · P1 and
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u ·P3 are at most zero and that u ·P2 is at least 0. Therefore, u · (P1−P2) and

u ·(P3−P2) are both negative and thus less than w2. If u ·Pi and u ·Pj are both

positive or both negative, we need not check u · (Pi−Pj) or u · (Pj −Pi) since

they will always have a greater difference with some other vertex (a negative

or positive one respectively). This means we need not check u · (P1 − P3) or

u · (P3 − P1). Each of u · (P1 − P4), u · (P3 − P4) and u · (P4 − P3) are either

negative or made up of u · Pi and u · Pj with the same sign, so we need not

check these either. We now prove that the following are less than w2 which

completes the proof.

u · (P2 − P1), u · (P2 − P3), u · (P2 − P4), u · (P4 − P1), u · (P4 − P3).

If u · (P2 − P1) ≥ w2 then

w1 − w1−h
w2−y1

w2 + w2 − w2−y1−h+1
w1−h

w1 ≥ w2.

This inequality can be rearranged into the following:

w1y1(2w2 − w1 − y1 + 1) ≥ w2(w1w2 + w1 − 2w1h+ h2).

Since the left-hand side is positive we can use the fact that w2h ≥ w1y1 to say

that this is all less than or equal to w2h(2w2 − w1 − y1 + 1). Dividing by w2

and rearranging again shows that

h(2w2 − y1 + 1 + w1 − h) ≥ w1(w2 + 1).

But w1 ≥ 2h so, after cancelling and rearranging again, this implies that

−1 ≥ y1 + h which is the desired contradiction.

If u · (P2 − P3) ≥ w2 then

w1 − w1−h
w2−y1

w2 − h
y1+h−1

w2 + w2 ≥ w2.
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This inequality can be rearranged into the following:

w2h(2y1 − w2 + h− 1) ≥ w1y1(y1 + h− 1).

The right-hand side is non-negative so we may assume the left-hand side is

too. Using the fact that w2h ≤ w1(y1 + h− 1) we can rearrange to get

y1 + h ≥ w2 + 1

which is the desired contradiction.

If u · (P2 − P4) ≥ w2 then

w1 − w1−h
w2−y1

w2 − w1 +
y1
h
w1 ≥ w2

which we can rearrange into

w1y1(w2 − y1) ≥ w2h(w2 − y1 + w1 − h).

Since we know that w2h ≥ w1y1 and the right-hand side is non-negative then

w2 − y1 ≥ w2 − y1 + w1 − h

which is a contradiction since w1 > h.

If u · (P4 − P1) ≥ w2 then

w1 − y1
h
w1 − w2−y1−h+1

w1−h
w1 + w2 ≥ w2

which can be rearranged into

h(w1 − w2 − 1) ≥ y1(w1 − 2h).

The right-hand side is non-negative and the left-hand side is negative which is
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the desired contradiction.

If u · (P4 − P3) ≥ w2 then

w1 − y1
h
w1 − h

y1+h−1
w2 + w2 ≥ w2

which can be rearranged into

w1h(y1 + h− 1) ≥ w2h
2 + w1y1(y1 + h− 1)

but w1(y1 + h− 1) ≥ w2h so we get

w1h(y1 + h− 1) ≥ w2h(h+ y1)

which is the desired contradiction.

We introduce new notation for the following proofs. Let ph(P ), bh(P ) and

ih(P ) denote the number of points, boundary points and interior points of P

in the line x = h.

Lemma 5.4.8. Let P be a lattice polygon with vertices (0, y1), (0, y2), (2, y3),

(2, y4) where y1 ≤ y2 and y3 ≤ y4, then

p0(P ) + p2(P ) = p1(P ) + i1(P ) + 2.

Proof. The normalised volume of P is 2(y2 − y1 + y4 − y3) and the number of

boundary points of P is y2− y1+ y4− y3+2+ b1(P ). Using Pick’s theorem we

can combine these to show that the number if interior points of P is 1
2
(y2 −

y1+y4−y3)− 1
2
b1(P ). The number of points of P in x = 0 and x = 2 combined

is equal to the number of boundary points of P minus b1(P ) so

p0(P ) + p2(P ) = y2 − y1 + y4 − y3 + 2 = 2i(P ) + b1(P ) + 2

which equals p1(P ) + i1(P ) + 2 since i(P ) = i1(P ).
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Lemma 5.4.9. Fix integers w > 1, k > 0 and 1 ≤ h ≤ w − 1. Up to affine

equivalence, there are finitely many polygons P contained in the strip [0, w]×R

with width w and less than k lattice points in the line x = h.

Proof. By a shear about the y-axis and a translation we may assume that the

intersection of P and the line x = h is a subset of the interval Ih := {h}× [0, k]

and that P has a vertex v0 = (0, y0) with y0 ∈ [0, h − 1]. As in the proof

of Lemma 5.4.7 all points of P with x-coordinate greater than h must be

contained in the cone Cv0 := v0 + cone(Ih − v0). Since P has width w, it must

have some vertex vw = (w, yw) contained in the interval where Cv0 intersects

the line x = w. Once again, all points of P with x-coordinate less than h must

be contained in the cone Cvw .

There are finitely many choices for v0 and finitely many choices for vw in

each case. The conditions on P described above define a finite region which

must contain P . Thus, there are only finitely many such polygons P .

Proposition 5.4.10. Let P be a denominator 2, finitely growable polygon.

Apart from finitely many exceptions, p(2P ) ≤ 2b(P ) + 6i(P ) + 7.

Proof. By a change of basis we may assume that width(P ) = width(1,0)(P )

and that (1, 0) · P ⊆ [0, w] for some integer w such that

(A) (1, 0) · P = [0, w],

(B) (1, 0) · P = [0, w − 1
2
] or

(C) (1, 0) · P = [1
2
, w − 1

2
].

We prove the bound by bounding the number of points of 2P in each line

x = 0, 1, . . . , 2w.

First notice that by Lemma 5.4.8, for any h = 1, . . . , w − 1

p2h−1(2P ) + p2h+1(2P ) ≤ p2h(2P ) + i2h(2P ) + 2.
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This allows us to eliminate positive odd terms from p(2P ) =
∑2w

h=0 ph(2P ) as

follows:

p(2P ) =
w∑

h=0

p2h(2P ) +
w−1∑
h=1

(p2h−1(2P ) + p2h+1(2P ))−
w−2∑
h=1

p2h+1(2P )

≤
w∑

h=0

p2h(2P ) +
w−1∑
h=1

(p2h(2P ) + i2h(2P ) + 2)−
w−2∑
h=1

p2h+1(2P ).

Now observe that for any integer 0 < h < w the number of points p2h(2P )

is at most 2ih(P ) + bh(P ) + 1 and the number of interior points i2h(2P ) is at

most 2ih(P )+ 1. We can simplify the previous inequality and substitute these

bounds into it to obtain

p(2P ) ≤ p0(2P ) + p2w(2P ) + 6i(P ) + 5(w − 1) +
w−1∑
h=1

2bh(P )−
w−2∑
h=1

p2h+1(2P ).

The number of points p0(2P ) and p2w(2P ) are bounded by 2b0(P ) + 1 and

2bw(P ) + 1 respectively. Applying this to the previous inequality, collecting

bh(P ) terms and replacing
∑w

h=0 bh(P ) with b(P ) we get the following:

p(2P ) ≤ 2b(P ) + 6i(P ) + 5(w − 1) + 2−
w−2∑
h=1

p2h+1(2P ).

If w = 2 then 5(w− 1) + 2−∑w−2
h=1 p2h+1(2P ) is at most 7, which proves the

result in this case. For larger w we find a lower bound for
∑w−2

h=1 p2h+1(2P )

using Lemma 5.4.7. This bound depends on which case out of (A), (B) and

(C) we are in. First notice that for any odd integer 3 ≤ h ≤ w − 3

(A) ph(2P ) ≥

h− 1 if h ≤ w

(2w − h)− 1 if h > w

(B) ph(2P ) ≥

h− 1 if h < w − 1
2

(2w − h)− 2 if h > w − 1
2

(C) ph(2P ) ≥

h− 2 if h ≤ w

(2w − h)− 2 if h > w.
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We sum each of these, separating the cases where w is odd and even, to get

(A)
∑w−2

h=1 p2h+1(2P ) ≥

1
2
w2 − w if w even

1
2
w2 − w + 1

2
if w odd

(B)
∑w−2

h=1 p2h+1(2P ) ≥ 1
2
w2 − 3

2
w + 1

(C)
∑w−2

h=1 p2h+1(2P ) ≥

1
2
w2 − 2w + 2 if w even

1
2
w2 − 2w + 5

2
if w odd.

Applying these bounds to p(2P ) shows that

(A) p(2P ) ≤ 2b(P ) + 6i(P ) +

−1
2
w2 + 6w − 3 if w even

−1
2
w2 + 6w − 7

2
if w odd

(B) p(2P ) ≤ 2b(P ) + 6i(P )− 1
2
w2 + 13

2
w − 4

(C) p(2P ) ≤ 2b(P ) + 6i(P ) +

−1
2
w2 + 7w − 5 if w even

−1
2
w2 + 7w − 11

2
if w odd

The polynomials in w are less than or equal to 7 when

(A) w ≥ 10, (B) w ≥ 11, (C) w ≥ 12.

Therefore, if p(2P ) > 2b(P ) + 6i(P ) + 7 then the width of 2P is at most

20 and it contains less than 5(w − 1) − 5 lattice points in the hyperplanes

x = 3, 5, . . . , 2w− 3 in total. In particular, 2P contains less than 5(w− 1)− 5

points in the hyperplane x = 3. By Lemma 5.4.9 this shows finiteness of the

exceptions.

Finally, we prove the last two bounds in Theorem 5.0.3.

Proposition 5.4.11. Let P be a polygon with denominator 2 and at least one

interior point. Then b(2P ) ≥ max{3, 2b(P )} and i(2P ) ≥ b(P ) + 2i(P )− 1.

Proof. By definition 2P is a lattice polygon so b(2P ) ≥ 3. If b(P ) ≥ 2, consider

two adjacent boundary lattice points of P (i.e. one can walk from one to the

other along the boundary of P without touching another lattice point). These

are either on the same edge of P , or there is at least one half-integral vertex
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on the boundary between them. In either case, there is a point of 1
2
Z on

the boundary of P between them. Therefore, b(2P ) ≥ 2b(P ) and the first

inequality holds.

Let Q be the convex hull of the interior lattice points of P . If Q is a point or a

line then 2Q contains 2i(P )−1 points. Otherwise, 2Q contains 3i(P )+i(Q)−3

points by the considering the Ehrhart polynomial of Q and Pick’s theorem.

Since Q is a polygon, P has at least three interior points so 3i(P )+ i(Q)−3 ≥

2i(P ) − 1. Therefore, 2Q contains at least 2i(P ) − 1 lattice points and all of

these are interior points of 2P .

Now, consider subdividing the region P \Q in such a way that each boundary

lattice point of P has a corresponding line to a boundary lattice point of

Q. Each such line has a half-integral point at its midpoint which will be

interior points of 2P not contained in 2Q, when doubled. This gives at least

an additional b(P ) interior points in 2P . Thus, the second inequality holds.
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Figure 5.9: Number of boundary and interior points for P and 2P for denominator
2 polygons P of size up to 4. Continued on next page.
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Figure 5.9: Ehrhart data for denominator 2 polygons of size up to 4 continued.



Chapter 6

Isomorphisms of Spherical

Varieties

Let G be a connected reductive complex algebraic group. A G-variety is a

variety X with an action of G on X. A normal irreducible G-variety X is called

a spherical variety if there is some point x0 ∈ X and some Borel subgroup

B ⊆ G such that the B-orbit B · x0 is open and dense in X. A spherical

homogeneous space is a spherical variety of the form G/H for some subgroup

H ⊆ G, and such an H is called a spherical subgroup of G. In the same way

that toric varieties can be characterised by an open dense embedding of a torus

T ↪→ X, spherical varieties have a G-equivariant open dense embedding of a

spherical homogeneous space G/H ↪→ X.

A spherical homogeneous space gives us more complicated combinatorics

than an algebraic torus. Luna [Lun01] defined a Luna datum (also called a

spherical homogeneous datum), which is a tuple S = (M,Σ, SP ,Da), along

with a map ρ, which can be assigned to any spherical homogeneous space

G/H. For a full description of this tuple see Section 6.1.2, but for now it

suffices to say that M is a lattice, Σ is a finite set of points in M, SP is a

subset of simple roots of G and Da is an abstract set equipped with a map

ρ : Da → N where N is the lattice dual toM.

Luna formulated a list of axioms which S satisfies (see Definition 6.1.5), and

118
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it has been shown by Bravi, Cupit-Foutou, Loseva and Pezzini that spherical

subgroups of G, up to G-equivariant automorphism, are in bijection with Luna

data [BP14, CF14, Los09]. Much like toric varieties, spherical varieties have

a combinatorial description in terms of lattice fans, but spherical varieties

require the additional structure of colored lattice fans which are defined with

respect to their Luna datum.

Recall, in toric geometry, given two algebraic tori S, T and two toric em-

beddings S ↪→ X and T ↪→ Y , a toric morphism φ : X → Y is a morphism

of algebraic varieties such that φ(S) ⊆ T and φ|S : S → T is a morphism of

algebraic tori. Toric morphisms are combinatorially described by morphisms

of lattice fans, which are a class of lattice morphism between the character lat-

tices of T and S. These play a crucial role in the study of toric varieties. For

instance, classification results in toric geometry use the fact that it is enough

to consider the corresponding combinatorial objects up to isomorphisms, for

example, the classifications of Canonical toric Fano three-folds [Kas10] and

Gorenstein toric Fano four-folds [KS00].

Our goal is to extend the understanding of toric isomorphisms to the spher-

ical setting. We use a combinatorial description of epimorphisms of reductive

groups described in Section 6.1.1, so from now on, all morphisms of algebraic

groups are assumed to be surjective. We generalise toric morphisms as follows.

Definition 6.0.1. Given a sphericalG-varietyX and a sphericalG′-varietyX ′,

a pair (F, φ) consisting of a homomorphism of algebraic groups φ : G→ G′ and

a morphism of algebraic varieties F : X → X ′ is called a twisted equivariant

morphism if F (g · x) = φ(g) · F (x) for all g ∈ G and x ∈ X. We write

(F, φ) : X → X ′ when we need to specify the source and image.

In [Kno91, Theorem 4.1], Knop describes exactly when a G-equivariant mor-

phism (F, φ) : G/H → G/H ′ extends to spherical embeddings G/H ↪→ X

and G/H ′ ↪→ X ′. The same argument generalises to the twisted equivariant

morphisms (F, φ) : G/H → G′/H ′ which we consider. Naturally, any twisted
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equivariant morphism (F, φ) : X → X ′ between spherical embeddings restricts

to the corresponding homogeneous spaces. Thus, we restrict our attention to

twisted equivariant morphisms between spherical homogeneous spaces.

In general, describing the combinatorial maps induced by twisted equivariant

morphisms is difficult, so instead we describe certain lattice automorphisms

which are easier to work with, and prove that these are induced by geometric

isomorphisms. The first class of lattice automorphisms is defined as follows.

Definition 6.0.2. Let S be a Luna datum, then an isomorphism from S is a

lattice automorphism ϕ :M →M such that ϕ(γ) = γ for every γ ∈ Σ. The

set of isomorphisms from S is denoted by Iso(S).

This is a generalization of [Pas08, Proposition 3.5 and the paragraph before

it.] and Iso(S) is a subgroup of Aut(M) which has previously appeared in

[AB04, Lemma 4.8], though not in the context of Luna data. Notice that

these isomorphisms change the Luna datum S, so it is not immediate that

there exists a Luna datum that these maps are to. The existence of such a

datum is proven as part of Theorem 6.0.3 bellow.

In general, isomorphisms from a Luna datum are not induced by a twisted

equivariant automorphism, but related in the following sense: in [AB04], Alex-

eev and Brion show that there exists a bigger connected reductive group G such

that we may regard G/H ∼= G/H as a spherical homogeneous space with re-

spect to this new group and the new action is smart (see Definition 6.1.12).

There exists a natural choice of a Borel subgroup B ⊆ G and of a maximal

torus T ⊆ B corresponding to the choice of (B, T ) for G. With respect to

this natural choice, the Luna datum of G/H gets naturally identified with the

Luna datum S of G/H.

Theorem 6.0.3. For every ϕ ∈ Iso(S) there is a spherical homogeneous space

G′/H ′ and an adapted twisted equivariant isomorphism (F, φ) : G′/H ′ → G/H

such that φ∗|M = ϕ. The Luna datum of G′/H ′ is naturally identified with the

Luna datum of G/H.
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(For the definition of adapted see Section 6.2).

In Section 6.1 we recall some past results which we will use later. Sec-

tion 6.1.1 recalls facts about reductive groups and root data. Section 6.1.2

describes the components of a Luna datum in detail and gives the Luna da-

tum axioms. Section 6.1.3 is concerned with the combinatorial description of

spherical subgroups of G which contain H. Section 6.1.4 describes smart ac-

tions and some of the properties the Luna datum has when the action of G

on G/H is smart. In Section 6.2 we refine the correspondence between Luna

subdata and spherical subgroups described in Theorem 6.1.10 and use this

to combinatorially describe twisted equivariant morphisms. In Section 6.3 we

prove Theorem 6.0.3. Finally, in Section 6.4 we describe an algorithm which

returns a normal form for rational polytopes in NQ, under the action of Iso(S).
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6.1 Background

6.1.1 Reductive Groups

Understanding reductive groups is key to spherical geometry. They have a

combinatorial description in terms of root data which we will recall here. For

further details see [Spr09, Chapters 7-10]

Definition 6.1.1. A (reduced) root datum is a tuple Ψ = (X, R, X̌, Ř) where

1. X and X̌ are a pair of finite rank lattices with the same rank, and a dual

pairing ⟨·, ·⟩ : X̌× X→ Z, and

2. R ⊆ X, Ř ⊆ X̌ are finite subsets, with a bijection R→ Ř;α 7→ α̌.

For α ∈ R we define endomorphisms sα : X→ X and sα̌ : X̌→ X̌ by

sα(x) = x− ⟨α̌, x⟩α and sα̌(y) = y − ⟨y, α⟩α̌.

The root datum Ψ satisfies the following axioms:

(RD1) ⟨α̌, α⟩ = 2 for all α ∈ R,

(RD2) sα(R) ⊆ R, sα̌(Ř) ⊆ Ř for all α ∈ R, and

(RD3) (Reduced) for all α ∈ R the only multiples of α in R are ±α.

We can associate a root datum to any reductive group G as follows: Choose

a maximal torus T ⊆ G and write X for its character lattice and X̌ for its

lattice of 1-parameter subgroups. Then the roots R are the weights of the

adjoint action of T on the Lie algebra g of G and Ř can be determined from

R by the above axioms.

A set R+ ⊆ R is called a choice of positive roots if, for every α ∈ R, exactly

one of α and −α is in R+, and for every α, β ∈ R+, if α + β is a root then

α+β ∈ R+. An element of R+ is called a simple root if it cannot be written as

a sum of two other elements of R+ and we denote the set of simple roots in R+
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by S. A choice of Borel subgroup amounts to a choice of positive roots R+ or a

choice of simple roots S. A parabolic subgroup of G is a subgroup containing a

Borel subgroup B. There is a natural way to associate a parabolic subgroup Pα,

containing B, to a simple root α ∈ S and any subset of simple roots determines

a parabolic subgroup containing B. The main reductive groups which will be

relevant here are (C×)n, SL2, SL3, SL4, Sp4 and products of these. We list

choices of simple and positive roots for each of these in Table 6.1 for later

convenience.

G X(T ) S Š R+

(C×)n Zn ∅ ∅ ∅
SL2 Z α1 = 2 1 α1

SL3 Z2 α1 = (1,−1),
α2 = (1, 2)

(1,−1),
(0, 1)

α1, α2,

α1 + α2

SL4 Z3
α1 = (−1, 1, 0),
α2 = (0,−1, 1),
α3 = (−1,−1,−2)

(−1, 1, 0)
(0,−1, 1)
(0, 0,−1)

α1, α2, α3,

α1 + α2,

α2 + α3,

α1 + α2 + α3

Sp4 Z2 α1 = (1,−1),
α2 = (0, 2)

(1,−1),
(0, 1)

α1, α2,

α1 + α2,

2α1 + α2

Table 6.1: Some reductive groups G and a choice of simple and positive roots.

There is a notion of isomorphism of root datum so that two reductive groups

are isomorphic if and only if their root data are. This has been extended to a

description of epimorphisms of root data by Steinberg [Ste99].

Definition 6.1.2. Let Ψ = (X, R, X̌, Ř) and Ψ′ = (X′, R′, X̌′, Ř′) be two root

data. An epimorphism from Ψ onto Ψ′ is a lattice homomorphism φ∗ : X′ → X,

satisfying the following:

1. φ∗ is injective,

2. there exists a partition of sets R = R1 ∪R2,

3. there exists a bijection α 7→ α′ from R1 onto R′,

4. φ∗(α′) = α, φ∗(α̌) = α̌′ for all α ∈ R1, and
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5. φ∗(α̌) = 0 for all α ∈ R2,

where φ∗ : X̌→ X̌′ denotes the morphism dual to φ∗.

By [Ste99, 1.5 Isogeny Theorem and Section 5], we get the following.

Theorem 6.1.3 (Epimorphism Theorem). Let G and G′ be reductive groups

and let T and T ′ be maximal tori of them with corresponding character groups X

and X′ respectively. To every epimorphism of their root data φ∗ : X′ → X, there

exists an epimorphism φ from G onto G′ which maps T onto T ′ and induces

φ∗. It is uniquely determined up to composition with the inner automorphism

of G effected by an element of T .

In light of this result, we define an equivalence of epimorphisms so that two

epimorphisms are equivalent exactly when they induce the same epimorphism

of root data.

Definition 6.1.4. Two epimorphisms φ, φ′ : G → G′ are called equivalent, if

there exists t ∈ T such that φ′ = φ ◦ Inn(t) where Inn(t) denotes the inner

automorphism of G given by t.

6.1.2 Luna Data

Let G be a reductive group with Borel subgroup B, maximal torus T ⊆ B and

spherical subgroup H. We describe the Luna datum S = (M,Σ, SP ,Da).

Note that the character lattices X(B) and X(T ) are isomorphic. M is the

sublattice of X(B), of weights χ ∈ X(B) such that there is a B-semi-invariant

rational function f ∈ C(G/H)(B) with weight χ, that is b · f(x) = χ(b)f(x).

Such a function fχ is determined, up to a constant factor, by its weight, so

we can writeM = C(G/H)(B)/C×. Let N := Hom(M,Z) be the lattice dual

toM, with the natural dual pairing ⟨·, ·⟩ : N ×M → Z. Let NQ denote the

rational vector-space containing N , that is NQ := N ⊗Z Q.

Let V be the set of G-invariant discrete valuations ν : C(G/H)∗ → Q. To

such a valuation, we can associate a point x ∈ NQ by requiring that ⟨x, χ⟩ =
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ν(fχ) for all χ ∈ M. The map ν 7→ x is injective so we can think of V as

a subset of NQ. It is shown in [Bri90] that V is a cosimplicial cone, so the

negative dual cone −V∗ has up to rk(M) extremal rays. Σ is defined to be

the set of primitive generators of these rays. The elements in Σ are called the

spherical roots of G/H.

The stabilizer P of the open B-orbit in G/H is a parabolic subgroup of G

containing B, hence uniquely determines a subset SP ⊆ S of simple roots.

A B-invariant prime divisor in G/H is called a color, and we write D for

the set of colors of G/H. A color D ∈ D induces a valuation denoted by

νD. We define a map ρ : D → N by requiring that ⟨ρ(D), χ⟩ = νD(fχ) for

all χ ∈ M. For α ∈ S, let D(α) be the set of colors which are moved by the

parabolic subgroup Pα defined in Section 6.1.1. We obtain a map ς : D → P(S)

by assigning to a color D ∈ D the set of simple roots α such that Pα moves

D (P(S) denotes the power set of S). A color D ∈ D(α) is said to be of

type a if α ∈ Σ, of type 2a if 2α ∈ Σ, and of type b otherwise. Every color

D ∈ D has one of these types and it does not depend on the choice of α, so

we can partition D into subsets Da, D2a and Db corresponding to each type.

This defines the entry Da of the Luna datum. It is treated as an abstract set

equipped with the restricted map ρ|Da .

Let ΣG denote the set of all spherical roots of G, which are simple minimal

roots of arbitrary wonderful G-varieties of rank 1 (see for example [BL11] for

more detail). We recall the list of Luna datum axioms from [Lun01].

Definition 6.1.5. Given a reductive group G with maximal torus T , a Luna

datum is a tuple (M,Σ, SP ,Da), whereM is a sublattice in X(T ), Σ ⊆ ΣG is a

linearly independent set of primitive lattice points inM, SP is a subset of the

simple roots S of G, and Da is a finite set equipped with a map ρ : Da → N ,

satisfying the following axioms:

(A1) ⟨ρ(D), γ⟩ ≤ 1 for all D ∈ Da and γ ∈ Σ. and the equality is reached

if and only if γ = α ∈ Σ ∩ S and D = D±
α , where D

+
α and D−

α are two
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distinct elements depending on α.

(A2) ρ(D+
α ) + ρ(D−

α ) = α∨ onM for all α ∈ Σ ∩ S

(A3) Da = {D±
α : α ∈ Σ ∩ S}

(Σ1) If α ∈ S ∩ 1
2
Σ, then ⟨α∨,M⟩ ⊆ 2Z and ⟨α∨,Σ \ {2α}⟩ ≤ 0

(Σ2) If α, β ∈ S, α ⊥ β, and α + β ∈ Σ ∪ 2Σ, then α∨ = β∨ onM.

(S) ⟨α∨,M⟩ = 0 for all α ∈ SP , and the pair (γ, SP ) come from a wonderful

variety of rank 1 for any γ ∈ Σ

The last condition has a reformulation which can be seen in [BL11, Sec-

tion 1.1.6]. This depends on the fact that all spherical roots are linear combi-

nations of simple roots, and thus have a support supp(γ) which is a collection

of roots, denoted by their associated Dynkin diagram.

Definition 6.1.6. We say that a pair (γ, SP ), of a spherical root and a set of

simple roots, is compatible if

Spp(γ) ⊆ SP ⊆ SP (γ)

where SP (γ) = {α ∈ S : ⟨α̌, γ⟩ = 0} and

Spp(γ) =


supp(γ) ∩ SP (γ) \ {αr} if γ = α1 + · · ·+ αr and has supp. of type Br

supp(γ) ∩ SP (γ) \ {α1} if γ has supp. of type Cr

supp(γ) ∩ SP (γ) otherwise.

We can replace the condition (S) above with

(S) ⟨α∨,M⟩ = 0 for all α ∈ SP , and for any spherical root γ ∈ Σ the pair

(γ, SP ) is compatible.
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6.1.3 Containment Relations for Spherical Subgroups

Let us recall from [Hof18] how containment relations among spherical sub-

groups can be determined combinatorially. Throughout, G is a reductive group

with maximal torus and Borel subgroup T ⊆ B ⊆ G. Let H be a spherical

subgroup of G with Luna datum S = (M,Σ, SP ,Da).

A colored subspace is a pair (N 1
Q,D1) where N 1

Q ⊆ NQ is a subspace and

D1 ⊆ D is a subset, such that N 1
Q coincides with the cone spanned by V ∩N 1

Q

and ρ(D) for all D ∈ D1. By Knop [Kno91, Section 4], colored subspaces are in

bijective correspondence with spherical subgroups H ′ ⊆ G containing H such

that H ′/H is connected. As described by Losev [Los09, Proposition 3.4.3], the

Luna datum S ′ = (M′,Σ′, (S ′)P , (D′)a) associated to H ′ can be determined by

the colored subspace as follows.

• M′ = (N 1
Q)

⊥ ∩M,

• Σ′ is the set of primitive ray generators inM′ of cone(Σ) ∩ (N 1
Q)

⊥,

• (S ′)P = {α ∈ S : D(α) ⊆ D1},

• (D′)a = {D ∈ Da : ς(D) ∩ Σ′ ̸= 0} and

• ρ′ = π ◦ ρ where π : N → N ′ is dual to the inclusion ofM′ inM.

We write X(R) for the subgroup of X generated by R, called the root lattice

of R. We define the set of distinguished roots Σ+ to be the set of all γ ∈ Σ

such that,

1. γ is in the root lattice X(R),

2. there is a spherical subgroup in G with Luna datum (Z2γ, {2γ}, SP , ∅),

3. if γ ∈ S, then ρ(D+) = ρ(D−) where D(γ) = {D±}.

Definition 6.1.7. Let M̃ be a subgroup ofM and D1 a subset of D such that

C := (M̃⊥,D1) is a colored subspace. Let S0 = (M0,Σ0, S
P
0 ,Da

0) be the Luna

datum of the spherical subgroup corresponding to C and Σ̃ the set of primitive
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generators of cone(Σ) ∩ M̃Q. Then the pair (M̃,D1) is called distinguished if

1
2
γ ∈ Σ+

0 ∪ (Σ0 \ X(R)) for every γ ∈ Σ̃ \ Σ0.

Theorem 6.1.8 ([Hof18, Theorem 1.2]). Let H̃ ⊆ G be a spherical subgroup

containing H and having Luna datum S̃ = (M̃, Σ̃, S̃p, D̃a). Let D1 ⊆ D be

the subset of colors of G/H which get mapped dominantly onto G/H̃ under

the natural map G/H → G/H̃. Then (M̃,D1) is a distinguished pair and the

assignment H̃ 7→ (M̃,D1) induces a bijection between the spherical subgroups

in G containing H and distinguished pairs.

Theorem 6.1.8 can be rephrased using Luna data.

Definition 6.1.9. A Luna datum S̃ = (M̃, Σ̃, S̃p, D̃a) is called a subdatum of

S, if there exists a distinguished pair (M̃,D1) such that

1. Σ̃ are the primitive ray generators in M̃ of cone(Σ) ∩ M̃Q,

2. S̃p = {α ∈ S : D(α) ⊆ D1}, and

3. D̃a = {D ∈ Da : ς(D) ∩ Σ̃ ̸= ∅} equipped with the map ρ̃ : D̃a →

Hom(M̃,Z) =: Ñ ;D 7→ (π ◦ ρ)(D) where π : N → Ñ is the map dual to

the inclusion ι : M̃ ↪→M.

Theorem 6.1.10 ([Hof18, Theorem 1.4]). The assignment S̃ 7→ H̃, which as-

sociates to a subdatum S̃ ⪯ S its corrsponding spherical subgroup H̃, induces

an order-reversing bijection from the set of subdata of S onto the set of equiv-

alence classes of supergroups of H where equivalence is given by conjugation.

6.1.4 Smart Actions

We recall the definition of smart actions and some results on them, which

we use in the proof of Theorem 6.0.3. In [AB04, Section 4], Alexeev and

Brion explain several steps to “improve” the G-action of a spherical embedding

G/H ↪→ X into a smart action. The restrictions on smart actions make them

much easier to work with. Suppose G = Gss × C where Gss is semisimple

simply connected and C is a central torus, then we define the following:
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Definition 6.1.11 ([AB04, Definition 4.3]). A G-action on X is called almost

faithful if its kernel is finite, and C acts faithfully.

Definition 6.1.12 ([AB04, Definition 4.4]). A G-action on X is called smart

when the action is almost faithful, and the natural homomorphism C →

AutG(X)◦ is an isomorphism, where AutG(X)◦ is the connected component

of the group of G-equivariant automorphisms of X.

By [AB04, Lemma 4.5], for any reductive group G and spherical subgroup

H ⊆ G, we can find a reductive group G and spherical subgroup H ⊆ G such

that G/H ∼= G/H, and the action of G on G/H is smart. Moreover, by [Hof15,

Proposition 4.10.0.15], there is a natural identification between the Luna data

S associated to H ⊆ G and S associated to H ⊆ G. The main difference

between S and S, is how they relate to their ambient character lattices.

From now on assume thatG = Gss×C as above, and that S is the usual Luna

datum of H ⊆ G. The Borel subgroup B ⊆ G = Gss×C satisfies B = Bss×C

for some Borel subgroup Bss ⊆ Gss, so that X(B) = X(Bss)⊕ X(C).

Proposition 6.1.13 ([Gag19, Lemma 3.5],[Hof15, Lemma 4.10.0.2]). The cen-

tral torus C acts faithfully on X if and only if the restriction πC :M→ X(C)

of the natural projection map X(B)→ X(C) is surjective.

We have a natural projection map πss : G → Gss. Like the Borel subgroup,

the maximal torus T ⊆ G = Gss×C can be written as T = T ss×C with T ss ⊆

Bss a maximal torus. The induced set of roots R and the corresponding set of

simple roots S with respect to (B, T ) and (Bss, T ss) are naturally identified.

Proposition 6.1.14 ([Hof15, Proposition 4.10.0.7]). The Luna datum of

πss(H) ⊆ Gss, denoted by Sss = (Mss,Σss, Sss,p,Dss,a), satisfies:

Mss =M∩ X(Bss), Σss = Σ, Sss,p = SP , Dss,a = Da,

where the abstract set Dss,a is equipped with the map ρss : Dss,a → N ss :=

Hom(Mss,Z) given by ρss(D) = π ◦ρ(D) where π : N → N ss denotes the map
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dual to the inclusionMss ↪→M.

Proposition 6.1.15 ([Gag19, Lemma 3.6],[Hof15, Lemma 4.10.0.8]). If G =

Gss × C acts almost faithfully on X, then the following are equivalent:

1. The G-action is smart.

2. |Σ| = rk(M∩ X(Bss)).

6.2 Adapted Epimorphisms

Throughout this section let G and G′ be reductive groups with maximal tori

T and T ′, Borel subgroups B and B′, and spherical subgroups H and H ′ with

corresponding Luna data S and S ′. Recall that two epimorphisms φ, φ′ : G→

G′ of reductive groups are said to be equivalent if φ′ = φ◦Inn(t) for some t ∈ T

where Inn(t) denotes the inner automorphism given by t (Definition 6.1.4). We

define a related notion of equivalence for twisted equivariant morphisms.

Definition 6.2.1. We say that two twisted equivariant morphisms (F1, φ1),

(F2, φ2) : G/H → G′/H ′ are equivalent, if there exists t′ ∈ T ′ such that φ2 =

Inn(t′) ◦ φ1 and a twisted equivariant morphism (F, Inn(t′)) : G′/H ′ → G′/H ′

such that F2 = F ◦ F1.

In this section we obtain a combinatorial description of twisted equivariant

morphisms up to equivalence.

By the following result, we can move back and forth between twisted equiv-

ariant morphisms and epimorphisms of reductive groups in a meaningful way.

As a consequence we are interested in the set of epimorphisms φ : G→ G′ such

that φ−1(H ′) contains a conjugate of H, denoted by Hom(G/H,G′/H ′).

Proposition 6.2.2. Let φ : G → G′ be an epimorphism of reductive groups.

There exists a morphism F : G/H → G′/H ′ for which (F, φ) is a twisted equiv-

ariant morphism if and only if φ−1(H ′) contains a conjugate of H. Moreover,
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if φ−1(H ′) contains gHg−1 for some g ∈ G, then one such F is defined by

F : G/H → G′/H ′, xH 7→ φ(xg−1)H ′.

Proof. Let (F, φ) : G/H → G′/H ′ be a twisted equivariant morphism. Then

there is some g′ ∈ G′ such that F (eH) = g′H ′. For any h ∈ H replacing eH

with hH does not change this result, so by twisted equivarience:

g′H ′ = F (eH) = F (hH) = φ(h)g′H ′.

Therefore, g′−1φ(H)g′ is a subset of H ′, so φ−1(H ′) contains a conjugate of H.

Conversely, let φ : G→ G′ be an epimorphism of reductive groups such that

φ−1(H ′) contains gHg−1 for some g ∈ G. Let F : xH 7→ φ(xg−1)H, then for

any h ∈ H we have F (xH) = F (xhH) so F is well-defined. Therefore, (F, φ)

is a twisted equivariant morphism.

As Luna data depend on the choices of a Borel subgroup and a maximal torus,

we say that an epimorphism φ : G→ G′ is adapted (to (B, T ) and (B′, T ′)) if

φ(T ) = T ′ and φ(B) = B′. An epimorphism of root data φ∗ : X′ → X is called

adapted (to (B, T ) and (B′, T ′)) if φ∗(S ′) ⊆ S. A twisted equivariant morphism

(F, φ) : G/H → G′/H ′ is called adapted if φ is adapted. It is straightforward

to verify that the bijection between epimorphisms of root data and equivalence

classes of epimorphisms of algebraic groups restricts to a bijection between the

corresponding adapted morphisms. Note that it is only a mild assumption for

an epimorphism of algebraic groups to be adapted. Indeed, as any two Borel

subgroups and any two maximal tori in a Borel subgroup are conjugated, it

follows that for any epimorphism φ : G → G′ there exists g ∈ G such that

the epimorphism φ ◦ Inn(g) is adapted. We denote the subset of consisting of

adapted epimorphisms φ : G→ G′, such that φ−1(H ′) contains a conjugate of

H, by HomB′,T ′

B,T (G/H,G′/H ′).

We now recall two results from Hofscheier’s thesis [Hof15].
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Proposition 6.2.3 ([Hof15, Proposition 4.2.0.2]). Let φ∗ : X′ → X be an

adapted epimorphism of root data and let φ : G → G′ be an adapted epimor-

phism of algebraic groups inducing φ∗. The Luna datum φ−1(S ′) = (M̃, Σ̃, S̃p, D̃a)

of φ−1(H ′) is given as follows:

M̃ = φ∗(M′), Σ̃ = φ∗(Σ′), S̃p = φ∗((S ′)p) ∪ S2, D̃a = (D′)a,

where the abstract set D̃a is equipped with the map ρ̃ : D̃a → Ñ := Hom(M̃,Z)

given by (φ∗ ◦ ρ̃)(D′) = ρ′(D′) for every D′ ∈ (D′)a = D̃a where φ∗ : Ñ → N ′

is the isomorphism dual to φ∗ :M′ → M̃ and the set S2 consists of all simple

roots α ∈ S such that the corresponding coroot α̌ is in the kernel of the dual

map φ∗ : X̌→ X̌′.

Observe that the assumption of being adapted ensures that the preimage

φ−1(S ′) is a Luna datum in terms of the root system R and the set of simple

roots S. We get the following description of HomB′,T ′

B,T (G/H,G′/H ′) by the

same proof as [Hof15, Proposition 4.8.0.2].

Theorem 6.2.4. To any adapted epimorphism of root data φ∗ : X′ → X satis-

fying φ−1(S ′) ⪯ S, we can associate an adapted epimorphism φ : G→ G′ such

that φ−1(H ′) contains a conjugate of H. This assignment induces a bijection:

HomB′,T ′

B,T (G/H,G′/H ′)/ ∼ ↔
{
adapted epimorphism of root data

φ∗ : X′ → X with φ−1(S ′) ⪯ S

}

where ∼ denotes equivalence of epimorphisms as described in Definition 6.1.4.

We will adapt this theorem to describe twisted equivariant morphisms up to

a different notion of equivalence to that described in [Hof15].

By Theorem 6.1.10 there is an inclusion reversing bijection between subdata

S1 ⪯ S and spherical subgroups H1 containing H, defined up to conjugation.

Using the following lemmas we will show that this is an honest bijection.

Throughout, let H1 be a spherical subgroup of G containing H.
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Lemma 6.2.5 (Stein factorization). With H and H1 as above, define H ′
1 :=

HH◦
1 where H◦ denotes the connected component of H containing the identity.

Then H ⊆ H ′
1 ⊆ H1, H1/H

′
1 is finite and H ′

1/H is connected.

Lemma 6.2.6 ([Hof18, Remark 2.13]). With H and H1 as above, if the quo-

tient H1/H is finite, then normal subgroups NG(H
◦), NG(H

◦
1 ), NG(H) and

NG(H1) are equal.

The following is [Hof18, Proposition 4.8] following from [Los09, Lemma 3.1.5].

Lemma 6.2.7 ([Hof18, Los09]). With H and H1 as above, let S1 be the Luna

datum corresponding to H1 and let all components of S1 be denoted as in S

with an additional subscript 1. If the quotient H1/H is finite, then

1. M1 is a sublattice ofM of finite index,

2. cone(Σ) = cone(Σ1) and

3. SP = SP
1 .

Proposition 6.2.8. Fix a reductive group G and spherical subgroup H in G

with Luna datum S = (M,Σ, SP ,Da). Then the assignment of a Luna datum

to a spherical subgroup induces a bijection

{H ′ ⊆ G spherical : H ′ ⊇ H} 1:1←→ {S ′ ⪯ S}.

Proof. By Theorem 6.1.10 it suffices to show that any two spherical subgroups

H1 and H2 containing H, with the same Luna datum S1 = S2, are equal.

Define two subgroups H ′
i := HH◦

i as in Lemma 6.2.5 and say their Luna

data are denoted by S ′
i. We denote each component of the Luna data of Si

and S ′
i by the same symbol as in S with an additional subscript or subscript

and dash respectively.

Since both groups H ′
i/H are connected, both Luna data S ′

i can be defined

from S using some colored subspace (N i
Q,Di) as described in Section 6.1.3.

In particular, M′
i = M ∩ (N i

Q)
⊥. Since both groups Hi/H

′
i are finite, by
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Lemma 6.2.7 Mi is a finite sublattice of M′
i for each i = 1, 2. In particular,

the Q-span of Mi and M′
i is the same vector space. However, the Q-span

of M′
i is (N i

Q)
⊥ so we have N 1

Q = N 2
Q. By the description in Section 6.1.3,

the lattice M′
i, spherical roots Σ′

i, colors (D′
i)
a and map ρ′i : (D′

i)
a → N ′

i all

depend only on the subspace N i
Q so

M′
1 =M′

2, Σ′
1 = Σ′

2, (D′
1)

a = (D′
1)

a, ρ′1 = ρ′2.

By Lemma 6.2.7 (S ′
1)

P = (S ′
2)

P so we have shown that S ′
1 = S ′

2.

We are reduced to proving that if H1 and H2 are spherical subgroups of G

containing H such that Hi/H is finite and S1 = S2 then H1 = H2. By The-

orem 6.1.10 such subgroups would be conjugate to one-another so for some

g ∈ G we have H2 = gH1g
−1. Clearly the connected component H◦ is con-

tained in both connected components H◦
i . Additionally, H◦ is a finite index,

closed subgroup of each Hi, so must contain their connected components (see

for example [Hum75, Proposition on page 53]). Thus, the connected com-

ponents H◦, H◦
1 and H◦

2 = gH◦
1g

−1 are all equal and g is in the normaliser

NG(H
◦
1 ). However, by Lemma 6.2.6 this means g is in the normaliser of H1,

so H2 = H1.

Theorem 6.2.9. To any adapted epimorphism of root data φ∗ : X′ → X

satisfying φ−1(S ′) ⪯ S, we can associate an adapted epimorphism φ : G→ G′

such that φ−1 contains a conjugate of H and thus there is a twisted equivariant

morphism (F, φ) : G/H → G′/H ′. This assignment induces a bijection:

{
adapted t.e.m.

(F, φ) : G/H → G′/H ′

}
/ ∼ ↔

{
adapted epimorphism of root data

φ∗ : X′ → X with φ−1(S ′) ⪯ S

}

where ∼ denotes the equivalence defined in in Definition 6.2.1.

Proof. It is enough to show that any two twisted equivariant morphisms which

can be assigned to the same epimorphism of root data are equivalent. Suppose

(F1, φ1), (F2, φ2) : G/H → G′/H ′ are both twisted equivariant morphisms
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adapted to (B, T ) and (B′, T ′). By Theorem 6.1.3, if φ∗
1 = φ∗

2 then φ2 =

φ1 ◦ Inn(t) for some t ∈ T .

There are elements g1 and g2 ∈ G′ such that Fi(eH) = giH
′. For any h ∈ H

we must have Fi(eH) = Fi(hH) for Fi to be well-defined, and so

g−1
i φi(H)gi ⊆ H ′.

We define two subgroups H1 and H2 of G by Hi := φ−1
i (giH

′g−1
i ) both of

which contain H. These subgroups are conjugate to one-another, so by Theo-

rem 6.1.10 they have the same Luna datum. Thus, by Proposition 6.2.8 they

are equal and so g−1
1 φ1(t

−1)g2 is in the normaliser NG′(H ′).

Now define t′ := φ1(t) and g′ := t′g−1
1 t′−1g2. By the previous paragraph,

t′−1g′ ∈ NG′(H ′) so, by Proposition 6.2.2, we can define a twisted equivariant

morphism (F ′, Inn(t′)) by F ′ : xH ′ 7→ Inn(t′)(x)g′H ′. It is a straightforward

computation to show that F ′(F1(xH)) = F2(xH) for all x ∈ G.

6.3 Proof of Theorem 6.0.3

Throughout this section let G be a reductive group, T a maximal torus, B a

Borel subgroup and H a spherical subgroup such that the action of G on G/H

is smart. As in Section 6.1.4 we have G = Gss × C and B = Bss × C and

define the Luna datum Sss = (Mss,Σss, Sss,P ,Dss,a) as in Proposition 6.1.14.

Definition 6.3.1. Let π : N → N ss be the lattice homomorphism dual to the

inclusionMss ↪→M. Then we define

Aut(N , π) := {ϕ∗ ∈ Aut(N ) : π(x) = π(ϕ∗(x)),∀x ∈ N}

which is a subgroup of the automorphisms of N .

Restricting π to its image N1 so that it is surjective does not change the

group Aut(N , π). Therefore, the group Aut(N , π) defined above is equivalent
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to the Aut(N , π) defined in [AB04, Lemma 4.8] since an automorphism ϕ∗

leaves the kernel of π invariant and induces the identity on its image if and

only if π(x) = π(ϕ∗(x)) for all x ∈ N .

Lemma 6.3.2. The set Iso(S) (Definition 6.0.2) is the set of automorphisms

ofM dual to the automorphisms in Aut(N , π).

Proof. Recall that all roots in the root datum of G = Gss × C are in the

sublattice X(Bss) and that spherical roots are linear combinations of these

roots (see, for example, [BL11, Section 1.1.6]), contained inM, thus Σ ⊆Mss.

Let ϕ ∈ Iso(S), so ϕ(γ) = γ for all spherical roots γ ∈ Σ. By Proposi-

tion 6.1.15 the number of spherical roots is equal to the rank of Mss. Since

Σ is the set of primitive ray generators of a simplicial cone, it is a linearly

independent subset ofMss. Therefore, spanZ(Σ) is a finite index sublattice in

Mss, so ϕ fixes all elements ofMss and the following diagrams commute:

M M

Mss Mss

ϕ

π∗ π∗

id

and its dual
N N

N ss N ss

ϕ∗

π π

id

where π∗ is the inclusion ofMss inM and ϕ∗ : N → N is the dual automor-

phism to ϕ. The second commutative diagram shows that π(x) = π(ϕ∗(x)) for

all x ∈ N so ϕ∗ ∈ Aut(N , π).

Now let ϕ∗ ∈ Aut(N , π) and let ϕ : M → M be its dual. Then by the

definition of Aut(N , π) the above two diagrams are once again commutative.

Therefore, ϕ fixes elements ofMss including all spherical roots γ ∈ Σ.

Lemma 6.3.3. Let πss and πC be the natural projection maps from X(B) onto

X(Bss) and X(C). If ϕ ∈ Iso(S), then there exists a unique injective lattice

homomorphism φC : X(C)→ X(B) such that

ϕ(χ) = πss(χ) + φC(πC(χ)), for all χ ∈M.

Proof. By Proposition 6.1.13, the restriction of πC toM is surjective. Thus,

for any χC ∈ X(C) there is an element χ ∈ M which projects onto χC under
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πC . We define φC(χ
C) by ϕ(χ) − πss(χ). It suffices to show that this is an

injective lattice homomorphism.

Suppose χ1 and χ2 both project onto the same χC under πC . Their difference

is contained in ker(πC) =Mss and so is fixed by ϕ. Also, since χ1 and χ2 have

the same X(C)-component, their difference can be written as the difference

between their images under πss. These two equalities combine to show that

φC(χ
C) does not depend on our choice of χi, so φC is a lattice homomorphism.

For injectivity, let χC be an element of the kernel of φC . By definition of

φC , for some χ ∈ M projecting onto χC , we have ϕ(χ) = πss(χ). However,

both sides of this are inMss which is fixed by ϕ so χ ∈Mss and χC = 0.

Proof of Theorem 6.0.3. Define φC as in Lemma 6.3.3, then we can define

φ∗ : X(B)→ X(B), χ 7→ πss(χ) + φC(πC(χ))

which restricts to ϕ onM. We claim that this is a lattice automorphism.

For injectivity, let χ be in the kernel of φ∗, then φC(πC(χ)) must be in

X(Bss). There is some χ′ ∈ M with the same X(C)-component as χ and

φC(πC(χ)) = ϕ(χ′) − πss(χ′). This means that ϕ(χ′) and χ′ are in Mss.

Therefore, πC(χ
′) = 0, and since χ had this same X(C)-component, χ =

πss(χ). This shows that πss(χ) and thus χ itself are also zero.

For surjectivity, let χ ∈ X(B). Since πC |M and ϕ are surjective, there is an

element χ′ ∈ M such that πC(ϕ(χ
′)) = πC(χ). For an appropriate choice of

χss ∈ X(Bss), the character χss + πC(χ
′) maps to χ under φ∗.

Now we define Ψ′ = (X′, R′, X̌′, Ř′) by letting X′ = φ∗(X(B)), R′ = φ∗(R),

X̌′ = φ−1
∗ (X̌) and Ř′ = φ−1

∗ (Ř) where φ∗ is the dual lattice automorphism to

φ∗. This is a root datum since the root datum axioms are preserved under

unimodular maps. Fix the set of simple roots S ′ = φ∗(S), then φ∗ is an adapted

isomorphism of root data φ∗ : X→ X′. Note that since φ∗ fixes X(Bss) it also

fixes R, though it need not fix Ř. Let G′ be a reductive group with maximal

torus T ′ associated to Ψ′, and let and B′ be the Borel subgroup determined
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by the set of simple roots S ′. By Theorem 6.1.3, we may fix an adapted

isomorphism of reductive groups φ : G′ → G which induces φ∗ : X→ X′.

Define a new Luna datum S ′ equal to φ−1(S) as defined in Proposition 6.2.3.

Let H ′ ⊆ G′ be a spherical subgroup of G′ associated to S ′. By definition,

φ−1(S) is a subdatum of S ′. Since φ is an isomorphism we can consider its

inverse which induces the epimorphism of root data (φ∗)−1. The preimage

(φ−1)−1(S ′) is equal to S so it is a subdata of S.

By Theorem 6.2.4, φ(H ′) contains a conjugate of H and φ−1(H) contains a

conjugate of H ′. In fact, we obtain the following chain of containments

H ′ ⊇ g1φ
−1(H)g−1

1 ⊇ g2H
′g−1

2 (6.1)

for some g1, g2 ∈ G′. By Theorem 6.1.10, since g2H
′g−1

2 is a conjugate of H ′

they are spherical subgroups with the same Luna datum. Thus by Proposi-

tion 6.2.8, g2 is in the normaliser NG′(H ′) and the containments in (6.1) are

all equalities. By Proposition 6.2.2, since φ−1(H) contains g−1
1 H ′g1 and φ(H

′)

contains φ(g1)Hφ(g
−1
1 ), we can define two twisted equivariant morphisms:

(F, φ) : G′/H ′ → G/H, F (xH ′) = φ(xg1)H

(F ′, φ−1) : G/H → G′/H ′, F ′(xH) = φ−1(x)g−1
1 H ′

which are mutually inverse, and so are isomorphisms of G/H and G′/H ′.

6.4 Generalised Hermite Normal Form

As a practical application of the above, we present an algorithm to find a

normal form for rational polytopes containing the origin in their interior up to

Aut(N , π). This is used in the classification found in Chapter 7.

Definition 6.4.1. Let S be a set and A a group acting on S, then a normal



Chapter 6. Generalised Hermite Normal Form 139

form is a map NF : S → S satisfying the following

(NF1) For all s ∈ S there exists an a ∈ A such that NF(s) = a · s, and

(NF2) For all s, t ∈ S, NF(s) = NF(t) if and only if there exists some a ∈ A

such that t = a · s.

In other words, we choose a unique representative of each equivalence class in

S/ ∼ where s ∼ t if and only if t = a · s for some a ∈ A. We say that NF is a

normal form for S under the action of G.

For example, row Hermite normal form is a normal form for MatZ(n ×m)

under multiplication on the left by elements of GLn(Z) and column Hermite

normal form is a normal form for Mat(n × m) under multiplication on the

right by elements of GLm(Z). We seek an normal form for rational polytopes

containing the origin in NQ, under the action of Aut(N , π). In fact, it suffices

to find a normal form NF for lattice polytopes, then for a denominator d

polytope P , define NF(P ) := 1
d
NF(dP ). Therefore, we will discuss only lattice

polytopes for the remainder of the section.

We adapt the method used by Kreuzer and Skarke in their Palp software

[KS04]. We interpret the vertices of a polytope as rows of a matrix and will

define a normal form for such matrices. However, this requires a choice of

order of the vertices. A näıve approach would be to define a matrix for every

permutation of the vertices, find their normal forms, and choose the ‘minimal’

such matrix. The normal form of the polytope would then be the convex hull

of the rows of this minimal matrix. However, this becomes slow for polytopes

with many vertices. Palp improves this approach by using the height of each

vertex above each facet to produce a reduced collection of vertex permutations

which is invariant under change of basis. We use this portion of Kreuzer and

Skarke’s algorithm directly. For details on implementation see [GK13].

We are reduced to seeking a normal form for the set MatnZ(l × n) of rank n,

l × n matrices under the action of Aut(N , π), where n is also the rank of N .

Our approach is to define three of normal forms NF, NFm and NFu, where NF
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is defined in terms of NFm and NFm is defined in terms of NFu. In these three

steps we adapt Hermite normal form into our desired normal form.

The map π : N → N ss may not be surjective, so consider instead the

restriction to its image N1 := π(N ), which does not alter Aut(N , π). Let m

be the rank of N1 and choose a basis of both N and N1 so that we think of

their points as row vectors. The map π is defined by multiplication on the right

by an n×m matrix Π. Maps in Aut(N , π) are defined by multiplication on the

right by unimodular matrices so we reinterpret it as a subgroup of GLn(Z):

Aut(N , π) = {U ∈ GLn(Z) : xUΠ = xΠ,∀x ∈ N}.

We additionally define the group of automorphisms

Aut(N ,m) :=


 Im V1

0n−m,m V2

 ∈ GLn(Z)


where Ii is the i× i identity matrix and 0i,j is the i× j zero matrix.

Lemma 6.4.2. The group Aut(N , π) is conjugate to Aut(N ,m).

Proof. By the surjectivity of π we know that the rows of Π contain a basis of

N1. Therefore, there exists a change of basis A ∈ GLn(Z) such that

AΠ =

 Im

0n−m,m

 .

This map defines the projection πm from N onto the first m coordinates.

Notice that the maps in Aut(N ,m) are exactly the maps which fix the first

m coordinates. Therefore Aut(N ,m) is equal to Aut(N , πm) and it suffices to

show that Aut(N , π) = A−1Aut(N , πm)A.

Let V ∈ Aut(N , πm), then we know that xV AΠ = xAΠ for all x ∈ N . Since

A is a change of basis we can replace x with xA−1 and so xA−1V AΠ = xΠ

implying that A−1V A ∈ Aut(N , π). Now let V ∈ Aut(N , π), so xVΠ = xΠ
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for all x ∈ N . Expand this equation as follows

(xA−1)(AV A−1)(AΠ) = (xA−1)(AΠ) for all x ∈ N .

Since A is a change of basis we can replace xA−1 with x which shows that

AV A−1 ∈ Aut(N , πm).

Proposition 6.4.3. If NFm is a normal form for MatnZ(l×n) under multipli-

cation on the right by Aut(N ,m), then NF : X 7→ NFm(XA
−1)A is a normal

form for MatnZ(l × n) under multiplication on the right by Aut(N , π).

Proof. Let X be a rank n, l× n matrix. By definition of a normal form, there

exists a matrix U ∈ Aut(N ,m) such that NFm(XA
−1) = XA−1U . Therefore,

NF(XA−1) can be rewritten as XA−1UA and A−1UA ∈ Aut(N , π). From

this we also see that if NF(X) = NF(X ′) then X ′ can be obtained from X

by multiplication on the right by some element of Aut(N , π). Conversely, if

X ′ = XV for some V ∈ Aut(N , π), then there is a matrix U ∈ Aut(N ,m)

such that V = A−1UA so in fact X ′A−1 = XA−1U . Therefore, NFm(X
′A−1) =

NFm(XA
−1) and NF(X) = NF(X ′).

Proposition 6.4.4. Let NFu be a normal form for GLn(Z) under multiplica-

tion on the left by elements of Aut(N ,m) and let HNF denote column Hermite

normal form. For any matrix X in MatnZ(l×n) there is a unique U ∈ GLn(Z)

such that HNF(X) = XU . The map

NFm : X 7→ XU NFu(U)
−1

is a normal form for MatnZ(l×n) under multiplication on the right by Aut(N ,m).

Proof. By definition of column Hermite normal form, HNF(X) is unique and

there exists a unimodular matrix U such that HNF(X) = XU . Let X̃ be

a rank n square submatrix of X. Let X̃U be the square submatrix of the

Hermite normal form made up of the same rows as X̃, then X̃U = X̃U . Since

X̃ has rank n, it is invertible over Q, so U = X̃−1X̃U is defined and unique.
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By definition of normal form, NFu(U) = V U for some V ∈ Aut(N ,m).

Therefore, we can rewrite NFm(X) asXV −1. This also shows that if NFm(X) =

NFm(Y ) then Y can be obtained fromX by multiplication on the right by some

element of Aut(N ,m). Now suppose Y = XV for some V ∈ Aut(N ,m). Then

since V is unimodular, X and Y must have the same Hermite normal form.

Let UX and UY be the unimodular matrices taking X and Y to their Hermite

normal forms, then we have XUX = XV UY . By the same argument as above,

since X is of rank n, this means that UX = V UY and so NFu(UX) = NFu(UY ).

Finally, we can see that NFm(X) = NFm(Y ) by writing NFm(X) in terms of

Y, UY and V and simplifying.

By the above results it suffices for us to find a normal form for GLn(Z)

under multiplication on the left by elements of Aut(N ,m). Let U be a matrix

in GLn(Z) and let U1 and U2 be the submatrices of its first m and last n−m

rows respectively. We need to define a matrix V in Aut(N ,m) such that V U

is in normal form. Let V1 and V2 be its submatrices as in the definition of

Aut(N ,m). We factorise V as follows

V =

 Im V1

0n−m,m V2

 =

 Im V ′
1

0n−m,m In−m


 Im 0m,n−m

0n−m,m V2


where V ′

1 = V1V
−1
2 . Since U is unimodular, U2 has rank n −m so there is a

unique choice of matrix in GLn−m(Z) sending U2 to its row Hermite normal

form. Define V2 to be this matrix. Now, in terms of block matrices V U is

 Im V ′
1

0n−m,m In−m


 Im 0m,n−m

0n−m,m V2


U1

U2

 =

U1 + V ′
1U

′
2

U ′
2


where U ′

2 = V2U2 is in row Hermite normal form. It remains to fix V ′
1 .

Let i1, . . . , in−m be the indices of the columns in which each row of U ′
2 has

its first non-zero entry. Note that since U is invertible these are all defined

and since U ′
2 is in Hermite normal form we have 1 ≤ i1 < i2 < · · · < in−m ≤ n.
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Let u
(1)
1 , . . . , u

(1)
n ∈ Zm, u

(2)
1 , . . . , u

(2)
n ∈ Zn−m and c1, . . . , cn ∈ Zm denote the

columns of U1, U
′
2 and U1 + V ′

1U
′
2 respectively. Then ci = u

(1)
i + V ′

1u
(2)
i .

We fix the columns of V ′
1 sequentially. Let i = i1, then since only the first

entry of u
(2)
i is non-zero, only the first column of V ′

1 impacts the value of ci.

Choose the entries of first column of V ′
1 such that the entries of ci are the

smallest non-negative integers possible. This choice is unique since it comes

from reducing the entries of u
(1)
i modulo the non-zero entry of u

(2)
i . Now

suppose i = ij and we have defined columns 1, . . . , j − 1 of V ′
1 then the only

entries of V ′
1 which have not been fixed and have an impact on the value of ci

are those in the j-th column. As before, choose the entries of the j-th column

of V ′
1 such that the entries of ci are the smallest non-negative integers possible.

Again this is unique. From this we can define V1 and V . Let NFu(U) be

defined by V U .

Proposition 6.4.5. The map NFu defined above is a normal form for GLn(Z)

under multiplication on the left by elements of Aut(N ,m).

Proof. By definition of NFu, for any U ∈ GLn(Z) there exists a V ∈ Aut(N ,m)

such that NFu(U) = V U , and if two matrices U and U ′ have the same normal

form NFu(U) then U
′ = V U for some V ∈ Aut(N ,m).

Now suppose U ′ = V U for some V ∈ Aut(N ,m), then expanding these into

submatrices we get: U ′
1

U ′
2

 =

U1 + V1U2

V2U2

 .

As a consequence, we know that U2 and U
′
2 have the same row Hermite normal

form and so the last n−m rows of NF(U) and NF(U ′) are the same. We can

now assume that U2 and U ′
2 are equal and in Hermite normal form.

If the first m rows of NFu(U
′) are given by U ′

1 + V ′
1U2 for some m× (n−m)

matrix V ′
1 , then we rewrite this as U1+(V1+V

′
1)U2. This automatically satisfies

the minimality conditions required by the construction of NFu, so is also the

first m rows of NFu(U). This shows that NFu(U) = NFu(U
′).
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Each of the last three results gives rise to a function which together produce a

normal form for full dimensional lattice polytopes containing the origin in their

interior under the action of Aut(N , π). In Algorithm 4 we define a function

LeftUnimodNF which is the normal form NFu for unimodular matrices under

multiplication on the left by elements of Aut(N ,m). In Algorithm 5 we use a

series of functions to transform this into a normal form for lattice polytopes

containing the origin in their interior in NQ under the action of Aut(N , π).
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Algorithm 4: A normal form for GLn(Z) under multiplication on the
left by Aut(N ,m).

Data: A function RowHermiteNF() which takes a matrix and returns
its row Hermite normal form and a unimodular matrix which
realises it.

Result: A function LeftUnimodNF() which takes an n× n
unimodular matrix U and an integer 0 ≤ m ≤ n and returns
a normal form for U under multiplication on the left by
elements of Aut(N ,m) and a matrix V such that
LeftUnimodNF(U )= V U .

function LeftUnimodNF(U,m)

n←− number of rows of U
/* Split U into two submatrices and replace one of them

with its Hermite normal form */

U1 ←− first m rows of U
U2 ←− last n−m rows of U
U ′
2, V2 ←− RowHermiteNF(U2)

U ′ ←− matrix obtained by vertically joining U1 and U ′
2

/* If m = 0 we just want Hermite normal form */

if m = 0 then
return U ′

2, U
′
2U

−1

/* Else, find the entries of V ′
1 one column at a time */

Ṽ ←− Im
for i ∈ [1, . . . , n−m] do

c←− smallest index such that U ′
2[i][c] is non-zero

Ṽ U ←− Ṽ× (rows 1, . . . ,m+ i− 1 of column c of U ′)
newcol←− [ ]
for r ∈ [1, . . . ,m] do

d←− U ′
2[i][c]

Append (Ṽ U [r][1] mod d)−Ṽ U [r][1]
d

to newcol

Ṽ ←− horizontally join Ṽ and newcolT

/* We now define V ′
1 and V ′ an find the normal form */

V ′
1 ←− columns m+ 1, . . . n of Ṽ

V ′ ←−
(
Im V ′

1

0 In−m

)
normU ←− V ′ × U ′

return normU , normU × U−1
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Algorithm 5: Normal form for full dimensional lattice polytopes
in NQ containing the origin in their interior, under the action of
Aut(N , π).
Data: A lattice polytope P ⊆ NQ of full dimension containing the

origin in its interior, with vertices v1, . . . , vl and a surjective
lattice projection π : N → N1. A column Hermite normal form
function ColHermiteNF, LeftUnimodNF as defined in
Algorithm 4 and PALPPerm which takes a polytope and returns
a set of permutations of its vertices.

Result: A polytope Q, equivalent to P and in normal form.
/* A normal form for MatnZ(l × n) under multiplication on

the right by Aut(N ,m) as in Proposition 6.4.4 */

function RightMatNFm(M, m)

, U ←− ColHermiteNF(M )

, V ←− LeftUnimodNF(U,m)

return MV −1, V −1

/* A normal form for MatnZ(l × n) under multiplication on

the right by Aut(N , π) as in Proposition 6.4.3 */

function RightMatNFpi(M,π)
Π←− DefiningMatrix(π)
A,B ←− matrices such that AΠB is in Smith normal form
m←− number of columns of Π

A←−
(
B−1 0
0 In−m

)−1

A

norm, V ←− RightMatNFm(MA−1, m)

return normA, A−1V A

/* A normal form for polytopes from the normal form for

matrices obtained in the same way as Kreuzer and

Skarke’s Palp algorithm */

NormalForms←− {}
for σ ∈ PALPPerm(P ) do

M ←−

vσ(1)...
vσ(l)


NormalForms←− NormalForms ∪ {RightMatNFm(M, π)}

MQ ←− minimum matrix in NormalForms
Q←− convex hull of the rows of MQ



Chapter 7

Classification of Spherical

Canonical Fano Four-Folds

In this chapter we describe how to classify the (non-toric) spherical canonical

Fano four-folds by classifying polytopes which correspond to them. This sits

within the rich history of classifying families of Fano varieties using convex

geometry. In particular, our classification includes the spherical Gorenstein

Fano four-folds and so extends Kreuzer and Skarke’s classification of the toric

Gorenstein Fano four-folds [KS00].

In his thesis, Hofscheier completed the classification of spherical Gorenstein

Fano three-folds [Hof15]. Similar methods were recently used by Delcroix

and Montagard, to classify the spherical locally factorial Fano varieties with

dimension up to 4 and rank ofM up to 2 [DM23]. We follow a similar approach

to these classifications, but we allow the rank of M to be up to 3, which

is the maximum rank it can have for non-toric spherical four-folds. As a

result, our classification is far too large to complete by hand in the way these

previous classifications were. Instead we use algorithmic methods to classify

the polytopes and interpret them as spherical varieties.

Toric canonical Fano varieties have been classified in dimension 3 [Kas10]

and we use the corresponding list of polytopes as a key component of our

classification. However, it is worth noting that toric canonical Fano four-folds

147
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have not been classified, due to the expected massive size of this list. Therefore,

we do not present a classification of all spherical canonical Fano four-folds, only

those which are spherical under the action of some non-toric reductive group

G. This may incidentally include some toric varieties, but without identifying

an action of (C×)4 on them or a fan associated to them.

Our approach uses the fact that spherical canonical Fano varieties are in

correspondence with a certain class of polytope which we call G/H-canonical

polytopes. We classify the possible Luna data of spherical homogeneous spaces

G/H for which the action of G on G/H is smart and such that G/H has

an embedding in a spherical canonical Fano four-fold. Each Luna datum S

indicates the type of polytope which can be G/H-canonical with respect to S

so we get a list of families of polytopes which we then classify. For example, we

classify the rational polygons with denominator 3, exactly one interior point

and exactly one non-lattice vertex. We do this using a combination of the

methods of Chapter 5 and [Kas10]. Finally, we describe a way to combine

the polytopes and Luna data in every possible way to obtain a list of G/H-

canonical polytopes for each Luna datum.

In Section 7.1, we define colored fans, describe how we can obtain a polytope

associated to a Q-Gorenstein spherical Fano variety and define G/H-canonical

polytopes. In Section 7.2, we classify the Luna data of all spherical canonical

Fano four-folds. In Section 7.3, we classify all but one family of polytopes

which may be G/H-canonical with respect to one of the Luna data we have

found. For the final family, consisting of three-dimensional denominator 2

polytopes with one interior lattice point and one non-lattice vertex, we sketch

the approach we will use to classify them. We expect the algorithm to take

months to run, so do not present the classification itself at this time. Finally,

in Section 7.4 we describe an algorithm which, given a polytope P and a Luna

datum S, returns all polytopes (up to equivalence) which are G/H-canonical

with respect to S and are unimodularly equivalent to P .
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7.1 Spherical Canonical Fano Varieties

In this section we discuss the fans and polytopes associated to spherical vari-

eties and define the G/H-canonical polytopes which we will classify. Through-

out fix a reductive group G with a Borel subgroup B, maximal torus T ⊆ B

and spherical subgroup H. Let S = (M,Σ, SP ,Da) be the Luna datum associ-

ated to H with components as defined in Section 6.1.2. Let V be the valuation

cone, that is, the set of G-invariant discrete valuations ν : C(G/H)∗ → Q.

Definition 7.1.1. A colored cone is a pair (C,F) with C ⊆ NQ and F ⊆ D

such that C is a cone generated by ρ(F) and finitely many elements of V , and

such that C◦ ∩ V ̸= ∅. A colored cone is called strictly convex if C is strictly

convex and 0 /∈ ρ(F).

A face of a colored cone (C,F) is a colored cone (C ′,F ′) such that C ′ is a

face of C and F ′ = F ∩ ρ−1(C ′).

A colored fan is a nonempty finite collection F of strictly convex colored

cones such that for every (C,F) ∈ F every face of (C,F) is also in F and for

every v ∈ NQ there is at most one (C,F) ∈ F with v ∈ C◦. A colored fan F is

called complete if supp(F) :=
⋃

(C,F)∈F C ⊇ V .

Theorem 7.1.2 ([Kno91, Theorems 3.3 and 4.2]). Colored fans are in bijective

correspondence with isomorphism classes of spherical embeddings G/H ↪→ X.

Moreover, X is complete if and only if the corresponding colored fan is complete.

Example 7.1.3. Let G = SL2, B the upper triangular matrices and T the

diagonal matrices all acting on X = C2 by matrix multiplication. The open

dense B-orbit is B · (0, 1) = {(x, y) : y ̸= 0} and the G-orbit containing this

is G(̇0, 1) = C2 \ {(0, 0)} ∼= G/N(T ), so this is our spherical homogeneous

space. Let the character lattice X(T ) be generated by ω1, then the Luna

datum corresponding to G/N(T ) has components M = ⟨2ω1⟩, Σ = {2ω1},

SP = ∅ and D = {D1} with ρ(D1) = 1. The colored fan associated to X is

FX = {(0, ∅), (cone(1), {D1})}
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where the colored cone (0, ∅) corresponds to the open dense orbit G · (1, 0)

and the colored cone (cone(1), {D1}) corresponds to the orbit G · (0, 0). The

color D1 = B · (1, 0) is associated to the orbit G · (0, 0) because this orbit is

contained in the closure of the color.

Example 7.1.4. With the same G,B and T as in the previous example let G

act on X = Bl(0,0)(C2) = {((x, y), [z : w]) : xw = yz} by matrix multiplication

on ( x z
y w ). The open dense B-orbit is {((x, y), [z : w]) ∈ X : y, w ̸= 0}. The

G-orbit containing this is {((x, y), [z : w]) ∈ X : x, y ̸= 0} ∼= G/N(T ), so we

have the same spherical homogeneous space and Luna datum as above. The

colored fan associated to X is

FX = {(0, ∅), (cone(1), ∅)}

where the colored cone (0, ∅) corresponds to the orbit G · ((0, 1), [0 : 1]) and

the colored cone (cone(1), ∅) corresponds to the orbit G · ((1, 0), [1 : 0]). Notice

that the color D1 = B · ((1, 0), [1 : 0]) is not associated to any of these orbits

since its closure contains none of them as a subset.

For our classification it is easier to work with polytopes than colored fans.

To associate a polytope to a spherical variety, we first need to define some

constants associated to the colors. For a spherical embedding G/H ↪→ X let

X1, . . . , Xr be the G-invariant prime divisors in X, then Brion [Bri97] showed

that the anti-canonical divisor of X can be written as

−KX =
r∑

i=1

Xi +
∑
D∈D

mDD

where the mD are positive integers depending on G/H. For each color D, mD

can be computed as follows:

mD =


1 if D is a color of type a or 2a

⟨α̌, κP ⟩ if D is a color of type b
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where α is a simple root such that Pα moves D and κP is the sum of the

positive roots generated by S minus the sum of the positive roots generated

by SP [Lun97, Section 3.6].

Definition 7.1.5. Let G/H ↪→ X be a complete spherical embedding with

G-invariant divisors X1, . . . , Xr and associated valuations νXi
∈ NQ. Then we

define the polytope associated to X to be the following rational polytope

QX := conv
(

1
mD
ρ(D), νX1 , . . . , νXr

)
⊆ NQ

where 1
mD
ρ(D) denotes the set of points 1

mD
ρ(D) for each color D ∈ D.

Definition 7.1.6. Given a rational polytope Q ⊆ NQ containing the origin in

its interior, we can define the following colored fan associated to Q:

FQ := {(cone(F ), ρ−1(F )) : F is a proper face of Q s.t. F ◦ ∩ V ̸= ∅}.

This is a colored fan called the face fan of Q and we denote the associated

spherical variety by XQ.

Like toric Fano polytopes, the polytopes of the form QX , satisfy a collection

of conditions which are identified by Gagliardi and Hofscheier in [GH15].

Definition 7.1.7 ([GH15, Definition 7.1]). A polytope Q ⊆ NQ is called Q-

G/H-reflexive if the following conditions are satisfied:

1. 1
mD

ρ(D) ∈ Q for every D ∈ D,

2. 0 ∈ Q◦ and

3. Every vertex of Q is in 1
mD
ρ(D) or is a primitive element of N ∩ V .

Proposition 7.1.8 ([GH15, Proposition 7.4]). The assignments X 7→ QX

and Q 7→ XQ define a bijection between isomorphism classes of Q-Gorenstein

spherical Fano embeddings of G/H and Q-G/H-reflexive polytopes.
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They use this to define a spherical analouge for reflexive polytopes:

Definition 7.1.9 ([GH15, Definition 1.8]). A Q-G/H-reflexive polytope Q ⊆

NQ is called G/H-reflexive if v ∈ M for every vertex v of Q∗ associated to a

facet of Q whose interior intersects non-trivially with V .

Proposition 7.1.10 ([GH15, Theorem 1.9]). The assignment X 7→ QX in-

duces a bijection between isomorphism classes of Gorenstein spherical Fano

embeddings G/H ↪→ X and G/H-reflexive polytopes.

We adjust this definition to describe canonical spherical varieties:

Definition 7.1.11. A Q-G/H-reflexive polytope Q ⊆ NQ is called G/H-

canonical if it contains no non-zero interior points in V .

We use the following result of Pasquier to prove that this is the correct

description.

Proposition 7.1.12 ([Pas17, Proposition 5.2]). Let G/H be a spherical homo-

geneous space. Let G/H ↪→ X be a Q-Gorenstein G/H-embedding associated

to a colored fan FX . For any colored cone (C,F) of FX , write hC for the linear

function such that for any color D ∈ F , hC(ρ(D)) = mD and, for any prim-

itive element u of an edge of C (not generated by some ρ(D) with D ∈ F),

hC(u) = 1. Then X is canonical if and only if for any colored cone (C,F) of

FX , for any x ∈ C ∩ N ∩ V, hC(x) ≥ 1.

Proposition 7.1.13. The assignment X 7→ QX induces a bijection between

isomorphism classes of canonical spherical Fano embeddings G/H ↪→ X and

G/H-canonical polytopes.

Proof. Given a Q-Gorenstein G/H-embedding X and its associated Q-G/H-

reflexive polytope QX the function hC is exactly the outwards pointing normal

vector to the face of QX which generates the cone C. In other words, an interior

point x ∈ QX satisfies hC(x) < 1. Therefore, X is canonical if and only if no

non-zero point of N ∩ V is contained in the interior of QX .
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7.2 Classification of Luna Data

In this section we classify the Luna data S corresponding to spherical homo-

geneous spaces G/H for which the action of G on G/H is smart and G/H can

be embedded in a spherical canonical Fano four-fold.

A spherical system is a triple (Σ, SP ,Da) along with a map ρ : Da →

spanZ(Σ)
∗ such that (spanZ(Σ),Σ, S

P ,Da) is a Luna datum. Notice that any

Luna datum determines a spherical system, by replacing the lattice M with

the sublattice generated by Σ. Therefore, we can obtain any Luna datum by

extending the lattice of some spherical system.

Spherical systems have a combinatorial description in terms of Luna dia-

grams. A Luna diagram is a decoration of the Dynkin diagram of G. Since

our action is smart we have G = Gss×C so this is also the Dynkin diagram of

Gss. Recall that the vertices of a Dynkin diagram correspond to simple roots.

To obtain a Luna diagram from a spherical system we first apply the markings

associated to each spherical root. The full list of such markings can be found

in [BL11] but all the ones we will need are in Table 7.1. Then we circle any

root which is not in SP and does not yet have a circle above, below or around

it. If S∩Σ is empty then we are done. Otherwise, by the Luna datum axioms,

each root α in S ∩ Σ has a corresponding pair of colors D+
α and D−

α of type a

in Da. We assign D+
α to the circle above α and D−

α to the circle bellow α, then

join circles which correspond to the same element of Da with a line. Finally,

for every spherical root γ not orthogonal to α such that ⟨ρ(D+
α ), γ⟩ = −1, we

add an arrow of the form < or >, starting from the circle corresponding to

D+
α , and pointing toward γ.

Using the Luna datum axioms in Definition 6.1.5 we can retrieve the spherical

system from a Luna diagram. In fact, the diagram associated to a Luna datum

tells us the full set of colors and the map ρ : D → N . Each circle corresponds

to a color, it has type a if there are circles above and bellow a root, type 2a

if there is just a circle bellow that root and type b if the circle is around the
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diagram spherical root

α1

2α1

2
α1 + α′

1

α1 + · · ·+ αr

2

2α1 + · · ·+ 2αr

Table 7.1: Spherical roots which appear in spherical canonical Fano four-folds and
their corresponding marking of a Luna diagram.

root. When D is of type a, ρ(D) is determined by Definition 6.1.5. Otherwise

ρ(D) =


1
2
α̌|M if D is of type 2a

α̌|M if D is of type b

where α is a simple root such that Pα moves D.

The Luna diagrams which can be associated to spherical canonical Fano four-

folds were classified by Hofscheier using the Luna datum axioms and dimension

bounds on G/P where P is the parabolic subgroup which stabilizes the open

dense Borel orbit in G/H. These diagrams appear in column 1 of Tables 7.2-

7.5. Proof of this classification will appear in a forthcoming paper. It remains

to find all Luna data which give each of these Luna diagrams.

First we determine the reductive group G = Gss ×C. The semi-simple part

Gss is determined by the Dynkin diagram the Luna diagram is based on. These

are products of the reductive groups in Table 6.1. We label the vertices of the

diagram and their corresponding simple roots α1, . . . , αk from left to right

and assume that the simple roots are the corresponding products of those

listed in Table 6.1. Since we assume a smart action, X(B) = X(Bss) ⊕ X(C),

rk(M∩X(Bss)) = |Σ| andM surjects onto X(C) under the natural projection

map πC : X(B) → X(C). We can choose a basis b1, . . . , bn of M such that

πC(bk+1), . . . , πC(bn) is a basis of X(C) and πC(bi) = 0 for i ≤ k. Therefore,
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the rank ofM is the sum of the number of spherical roots and rank of X(C).

By [BLV86], the rank ofM is dim(G/H)− dim(G/P ), which determines the

dimension of the torus C, so we have found G.

The set of simple roots SP can be written down directly from the diagram by

recording the roots which do not have a circle, above, bellow or around them.

The set of spherical roots can be found using Table 7.1 and the set Da comes

from the spherical roots which are also simple roots. The map ρ : Da → N

depends on the choice of sublatticeM but onceM is fixed it follows from the

above. Therefore, the main step is finding all sublatticesM for each diagram.

Proposition 7.2.1. Let G/H be a spherical homogeneous space such that the

action of G on G/H is smart and there is some spherical embedding G/H ↪→ X

such that X is a canonical Fano four-fold. Then the sublattice M ⊆ X(B) is

listed in the second column of one of Tables 7.2-7.5.

Table 7.2: Luna data for spherical canonical Fano four-folds with dim(G/P ) = 4.

Luna

diagram
M Σ ⊆M SP ρ(D) ⊆ NQ

Data

ID

⟨0⟩ ∅ {α1, α3} {0} 1

⟨0⟩ ∅ {α2, α3, α4} {0} 2

⟨0⟩ ∅ ∅ {0, 0} 3

⟨0⟩ ∅ {α2, α3} {0, 0} 4

⟨0⟩ ∅ ∅ {0, 0, 0} 5

⟨0⟩ ∅ {α2} {0, 0} 6

⟨0⟩ ∅ {α1} {0, 0} 7

⟨0⟩ ∅ {α2, α4} {0, 0} 8

⟨0⟩ ∅ {α2} {0, 0, 0} 9

⟨0⟩ ∅ ∅ {0, 0, 0, 0} 10
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Table 7.3: Luna data for spherical canonical Fano four-folds with dim(G/P ) = 3.

Luna

diagram
M Σ ⊆M SP 1

mD
ρ(D) ⊆ NQ

Data

ID

⟨b1ω1 + χ1⟩ where

b1 ∈ {0, 1, 2, 3, 4}
∅ {α2, α3} {1

4
(−b1)} 1-5

⟨b1ω1 + b2ω2 + χ1⟩

where b2 ≥ b1 and

b2 − b1, b2
∈ {0,±1,±2}

∅ ∅ {1
2
(b2− b1), 12b2} 6-20

⟨ω1 − ω2⟩ {1} ∅ {1
1
1, 1

1
1,−1

2
1} 21

⟨2ω1 − 2ω2⟩ {1} ∅ {1
1
2,−1

2
2} 22

⟨2ω1 + ω2⟩ {1} ∅ {1
2
1, 1

2
1} 23

⟨b2ω2 + χ1⟩ where

b2 ∈ {0, 1, 2, 3}
∅ {α2} {1

3
b2}

24-

27

2 ⟨2ω1 + 2ω2⟩ {1} {α2} {1
3
2} 28

⟨b1ω1 + χ1⟩ where

b1 ∈ {0, . . . , 4}
∅ {α1} {1

4
b1}

29-

33

⟨b1ω1 + b3ω3 + χ1⟩

where

b1 ∈ {0, . . . , 3}

and

b3 ∈ {0,±1,±2}

∅ {α2} {1
3
b1,

1
2
b3}

34-

51

⟨2ω3⟩ {1} {α2} {0, 1
1
1, 1

1
1} 52

⟨4ω3⟩ {1} {α2} {0, 1
1
2} 53
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Luna

diagram
M Σ ⊆M SP 1

mD
ρ(D) ⊆ NQ

Data

ID

⟨b1ω1 + b2ω2 +

b3ω3 + χ1⟩ where

bi ∈ {0,±1,±2},

b1 ≥ 0 and

b1 ≥ b2 ≥ b3

∅ ∅ {1
2
b1,

1
2
b2,

1
2
b3}

54-

84

⟨2ω1⟩ {1} ∅ {1
1
1, 1

1
1, 0, 0} 85

⟨4ω1⟩ {1} ∅ {1
1
2, 1

2
0, 1

2
0} 86

2 ⟨2ω1 + 2ω2⟩ {1} ∅ {1
2
2, 1

2
2, 1

2
0} 87

Table 7.4: Luna data for spherical canonical Fano four-folds with dim(G/P ) = 2.
The basis of M is given in terms of the coordinates of X(B) and written as the
columns of a matrix. All other coordinates are given in terms of this basis of M
and its dual basis of N .

Luna

diagram
Basis ofM Σ ⊆M SP 1

mD
ρ(D) ⊆ NQ

Data

ID(
b1 0
0 0
1 0
0 1

)
∅ {α2}

{1
3
(b1, 0)} where

b1 ∈ {0, 1, 2, 3}
1-4(

b11 0
b21 b22
1 0
0 1

)
where(

b11 0
b21 b22

)
is in

column HNF

∅ ∅

{1
2
(b11, 0),

1
2
(b21, b22)} where

b11, gcd(b21, b22) ∈

{0, 1, 2}

5-17

(
2 b1
0 b2
0 1

)
{( 1

0 )} ∅

{1
1
(1, d±1 ),

1
2
(0, b2)}

where d+1 + d−1 =

b1 ∈ {0, 1} and

b2 ∈ {0, 1, 2}

18-

35

(
4 2b1
0 b2
0 1

)
{( 1

0 )} ∅

{1
1
(2, b1),

1
2
(0, b2)}

where b1 ∈ {0, 1}

and b2 ∈ {0, 1, 2}

36-

41
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Luna

diagram
Basis ofM Σ ⊆M SP 1

mD
ρ(D) ⊆ NQ

Data

ID

( 2 0
0 2 ) {( 1

0 ) , (
0
1 )} ∅

1
1
{(1, d+1 ), (1,−d+1 ),

(d+2 , 1)
::::::

, (−d+2 , 1)
::::::::

}

42-

48

( 2 1
0 1 ) {( 1

0 ) , (
−1
2 )} ∅

1
1
{(1, d+1 ),

(1, 1− d+1 ),

(2d+2 − 1, d+2 )
:::::::::::::

,

(1− 2d+2 , 1− d+2 )
:::::::::::::::::

}

49-

54

( 2 0
0 2 ) {( 1

0 ) , (
0
1 )} ∅

1
1
{(1, 1)

:::::

, (1,−1),

(−1, 1)
:::::::

}
55

( 2 1
0 1 ) {( 1

0 ) , (
−1
2 )} ∅

1
1
{(1, 1)

:::::

, (1, 0),

(−1, 0)
:::::::

}
56

( 2 0
0 4 ) {( 1

0 ) , (
0
1 )} ∅

1
1
{(1, d+1 ), (1,−d+1 ),

(0, 2)} where

d+1 ∈ [0, 2]

57-

59

( 2 1
0 2 ) {( 1

0 ) , (
−1
2 )} ∅

1
1
{(1, d+1 ),

(1, 1− d+1 ), (0, 1)}

where d+1 ∈ [1, 2]

60-

61

( 4 0
0 4 ) {( 1

0 ) , (
0
1 )} ∅ 1

1
{(2, 0), (0, 2)} 62

( 4 2
0 2 ) {( 1

0 ) , (
−1
2 )} ∅ 1

1
{(2, 1), (0, 1)} 63

2

(
2 b1
2 b2
0 1

)
where

b1 ∈ {0, 1}

and b2 ≥ b1

{( 1
0 )} ∅ {1

2
(2, b1),

1
2
(2, b2)}

64-

80
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Table 7.5: Luna data for spherical canonical Fano four-folds with dim(G/P ) = 1.
The basis of M is given in terms of the coordinates of X(B) and written as the
columns of a matrix. All other coordinates are given in terms of this basis of M
and its dual basis of N .

Luna

diagram
Basis ofM Σ ⊆M SP 1

mD
ρ(D) ⊆ NQ

Data

ID(
b 0 0
1 0 0
0 1 0
0 0 1

)
where

b ∈ {0, 1, 2}

∅ ∅ {1
2
(b, 0, 0)} 1-3

(
2 b 0
0 1 0
0 0 1

)
where

b ∈ {0, 1}

{(
1
0
0

)}
∅

{1
1
(1, d±1 , 0)}

where

d+1 + d−1 = b and

d+1 − d−1 ∈ [0, 12]

4-16

(
4 2b 0
0 1 0
0 0 1

)
where

b ∈ {0, 1}

{(
1
0
0

)}
∅ {1

1
(2, b, 0)}

17-

18

In the proof we need an extended definition of lattice length. Let len(P )

denote the lattice length of a lattice line segment P , then we define the lattice

length of a denominator r line segment to be 1
r
len(rP ).

Proof. The parabolic subgroup P is the one determined by the simple roots

SP , so the dimension of G/P can be determined from the Luna diagram. The

tables are divided by dimension of G/P and so also by the rank ofM. We will

mainly use the facts that at least one G/H-canonical polytope exists and that

automorphisms of the form φ :M→M, χ 7→ πss(χ)+φC(πC(χ)), where φC is

an automorphism of X(C), are induced by twisted equivariant isomorphisms.

The later is shown by the same proof as Theorem 6.0.3 and allows us to remove

some Luna data with equivalent spherical subgroups.

Throughout, assume that the basis of X(Bss) is ω1, . . . , ωk and the basis of

X(C) is χ1, . . . , χn−m where k is the number of simple roots, m is the number

of spherical roots and n is the rank ofM.
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Dimension of G/P is 4:

The rank ofM is 0 soM can only be the trivial lattice ⟨0⟩.

Dimension of G/P is 3:

The rank ofM is 1. If there is one spherical root then it is required to be a

primitive point ofM so we may assume it is the one basis vector ofM. This

determinesM for entries 21-23, 28, 52, 53 and 85-87 of Table 7.3.

The coefficients of the basis vector of M in entries 1-5, 24-27 and 29-51

are all restricted by considering the spherical subgroups H which can induce

them. This is done in [DM23, Proposition 3.20]. In all of these cases there

are no spherical roots so the valuation cone is V = NQ and we can have no

interior points in a G/H-canonical polytope. Therefore, for each color D ∈ D

the lattice length of conv(0, 1
mD

ρ(D)) must be at most 1. This bounds the

coefficients of the basis vector ofM to finitely many possibilities.

In the remaining cases, 6-20 and 54-84, since we know thatM surjects onto

X(C) under the natural projection πC , we may assume that M is generated

by b1ω1 + · · · + bkωk + χ1 for some integers b1, . . . , bk. In both of these cases

there are no spherical roots so as above the lattice length of conv(0, 1
mD

ρ(D))

must be at most 1. This, as well as symmetry of the diagram in case 54-84,

gives the bounds on the bi described in Table 7.3.

Dimension of G/P is 2:

The rank ofM is 2. The coefficients of the basis vector ofM in entries 1-4

are restricted by considering the spherical subgroupsH which can induce them.

This is done in [DM23, Proposition 3.18]. There are no spherical roots, so for

each colorD ∈ D the lattice length of conv(0, 1
mD

ρ(D)) is at most 1. Therefore,

we may assume the basis ofM is b1ω1 + χ1, χ2 for some b1 ∈ {0, 1, 2, 3}.

Entries 5-17 of Table 7.4 have no spherical roots, so we may assume thatM

has a basis a11ω1 + a21ω2 +χ1, a12ω1 + a22ω2 +χ2 for some integers aij. There

is an equivalent basis ofM of the form b11ω1 + b21ω2 + χ′
1, b22ω2 + χ′

2 where(
b11 0
b21 b22

)
is in column Hermite normal form and χ′

1, χ
′
2 is some other basis of

X(C). Therefore, by applying an automorphism of X(C) to X(B), we may
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assume that M has basis b11ω1 + b21ω2 + χ1, b22ω2 + χ2. A G/H-canonical

polytope P can have no interior points since there are no spherical roots, and

has denominator 2 since that is the worst denominator of the set 1
mD
ρ(D).

In Section 7.3 we classify all denominator 2 polygons with one interior point,

and by examining this classification we can list all pairs of points 1
2
(b11, 0),

1
2
(b21, b22) which can be contained in such a polygon to a finite list:

If b11 = 0 then we may assume (b21, b22) is one of

(0, 0), (1, 0), (2, 0)

If b11 = 1 then we may assume that (b21, b22) is one of

(−1, 0) (0, 1) (1, 0) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6) (2, 3)

(2, 9) (3, 4) (3, 5) (3, 8) (4, 7) (5, 8) (5, 9) (7, 12)

If b11 = 2 then we may assume that (b21, b22) is one of

(0, 0) (0, 1) (1, 2) (1, 3) (1, 4) (1, 5) (2, 0)

(2, 2) (2, 3) (2, 4) (2, 5) (2, 6) (2, 7) (2, 8)
.

Entries 18-35 in Table 7.4 have one spherical root 2ω1, so we may assume

that this is the first basis vector ofM. SinceM surjects onto X(C) we may

assume the second basis vector has the form b1ω1+b2ω2+χ1 for some integers b1

and b2. We may assume that b1 ∈ {0, 1} and add or subtract 2ω1 to the second

basis vector until this is true otherwise. The point (0, b2) is the image of a color

D under ρ and is in the valuation cone. Since mD = 2 and a G/H-canonical

polytope cannot have interior points in the valuation cone b2 ∈ {0, 1, 2}.

The matrices in entries 36-41 are obtained in a very similar way with the

additional restriction that, since ρ(D) is a lattice point of N for all colors D,

the leading coefficient of the second basis vector must be even.

The matrices in entries 64-80 are also obtained in a similar way but here we

can also use the symmetry of the Luna diagram to assume that b2 ≥ b1. Let x1
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and x2 be the two primitive lattice point in the boundary of V , then a G/H-

canonical polygon cannot contain these in its interior. Therefore, P cannot

contain any point in the interior of the penumbra of x1 or x2 with respect to

conv( 1
mD
ρ(D)). Since P contains the origin in its interior it must have some

vertex with negative x-coordinate. Combined, these give the bound b2 ≤ 8.

Entries 42-54 of Table 7.4 have two spherical roots, 2ω1 and 2ω2, both of

which need to be primitive points ofM. We may assume that 2ω1 is the first

basis vector of M. The second basis vector has the form b1ω1 + b2ω2 where

we may assume b2 ∈ {1, 2} in order for 2ω2 to be a point ofM. We may also

assume that b1 ∈ {0, 1} otherwise we can add or subtract 2ω1 from the second

basis vector until this is the case. Checking this finite collection of choices, we

find that the only possible second basis vectors are 2ω2 and ω1+ω2. The rank

2 Luna data with IDs 55-63 all follow in a very similar way.

Dimension of G/P is 1:

The rank of M is 3. Entries 1-3 of Table 7.5 have no spherical roots so

we may assume that the basis of M is b1ω1 + χ1, b2ω1 + χ2, b3ω1 + χ3 for

some integers b1, b2 and b3. There is an equivalent basis of M of the form

gcd(b1, b2, b3)ω1 + χ′
1, χ

′
2, χ

′
3 where χ′

1, χ
′
2, χ

′
3 is some other basis of X(C).

Therefore, possibly after applying an automorphism of X(C) to X(B), we may

assume that M has basis bω1 + χ1, χ2, χ3 for some non-negative integer b.

Since there are no spherical roots, the line segment conv(0, 1
2
(b, 0, 0)) must

have lattice length at most 1 so b ∈ {0, 1, 2}.

Entries 4-16 of Table 7.5 have one spherical root 2ω1, which we may assume

is the first basis vector of M. As in the previous case we may assume the

remaining basis vectors are bω1 + χ1 and χ2 for some non-negative integer b.

We may assume that b ∈ {0, 1} otherwise we can add or subtract 2ω1 to the

second basis vector until this is so.

The lattice M in entries 17 and 18 of Table 7.5 can be found in the same

way as the previous case with the additional restriction that, since ρ(D) must

be a lattice point, the leading coefficient of the second basis vector is even.
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We refer to the rank of M as the rank of the Luna datum. When a Luna

datum has rank at least 2 and some color of type a there may be infinitely

many possibilities for the map ρ : D → N which we now bound using the

condition that a G/H-canonical polytope exists. In the rank 2 cases 18-35,

42-54 and 57-61, let x1 and x2 be the two distinct primitive lattice points in

the boundary of V . A G/H-canonical polytope can have no non-zero interior

point in the valuation cone. In particular, P can have no point in the interior

of the penumbra of x1 or x2 with respect to conv( 1
mD
ρ(D)). This condition

bounds the values of d+1 , d
−
1 and d+2 to finite possibilities in all of these cases.

In Section 7.3 we will show that G/H-canonical polytopes for the rank 3

Luna data 4-16 are all canonical lattice polytopes and that the line segment

connecting (1, d+1 , 0) and (1, d−1 , 0) is an edge of such a polytope. These have

been classified previously, so we bound d±1 using this classification.

Tables 7.2-7.5 also list the spherical roots and sets 1
mD
ρ(D) for each datum in

terms of the basis ofM. Since these are what the definition of G/H-canonical

depends on they will be useful when we classify the G/H-canonical polytopes

in the following sections.

7.3 Classification of Polytopes

In this section, we classify all polytopes which can be G/H-canonical with

respect to some Luna datum in Tables 7.2–7.5.

In rank 0 this classification is trivial as there is only one rank 0 polytope.

For the rank 1 Luna data 22, 52 and 85 the only G/H-canonical polytope

is conv(−1, 2). For the remaining Luna data all points 1
mD

ρ(D) have lattice

length at most 1 so the only interior point of a G/H-canonical polytope is the

origin. Notice that the denominator of a G/H-canonical polytope is at worst

the lowest common multiple of the denominators of 1
mD

ρ(D) for each color D.

Therefore, it is enough to classify all line segments of denominator 1, 2, 3, 4

and 6 with one interior point. Not all of these line segments need be G/H-
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canonical for any rank 1 Luna datum, but the list will include all line segments

which we are looking for. This will be the case in the remaining classifications

also, then in Section 7.4 we will describe how to determine which polytopes

are G/H-canonical for which Luna data.

7.3.1 Rank 2, Denominator 1

For many of the Luna data S in Table 7.4, the set 1
mD
ρ(D) contains only

lattice points, so all G/H-canonical polygons P are lattice polygons. If S has

no spherical roots then, by Definition 7.1.11, the only interior point of P is

the origin. Otherwise, let x1 and x2 be the two primitive lattice points on the

boundary of the valuation cone V . Any non-zero interior lattice point of P

must be contained in the convex hull of x1, x2 and 1
mD
ρ(D) and not in V .

In this way we can show that, for several of the Luna data in Table 7.4, the

only polygons which are G/H-canonical are canonical lattice polygons. There

is a well-known classification of these 16 polygons. These Luna data include

the rank 2 Luna data with ID 55, 56, 60, 61 and 63 as well as

• 1-4 for which b1 ∈ {0, 3},

• 5-17 for which b11, gcd(b21, b22) ∈ {0, 2},

• 18-35 for which b2 ∈ {0, 2},

• 36-41 for which b1 = 1 and b2 ∈ {0, 2},

• 42-48 for which (d+1 , d
+
2 ) ∈ {(0, 0), (0, 1), (0, 2), (1, 1)},

• 49-54 for which (d+1 , d
+
3 ) ∈ {(1, 1), (1, 2), (2, 1)} and

• 64-80 for which b1 = 0 and b2 is even.

Let P be a polytope which is G/H-canonical for a Luna data out of 36-

41 for which b1 = 0 and b2 ∈ {0, 2}. This is a lattice polygon with vertex

(2, 0) and the origin in its interior. Let Q be the convex hull of the vertices
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of P except replacing (2, 0) with (1, 0). Then Q is a lattice polygon, and its

only interior point is the origin. Therefore, we can classify such polygons P , by

doubling each vertex of each canonical lattice polygon and removing equivalent

polygons. The result is a list of 38 lattice polygons.

The remaining rank 2 Luna data for which all G/H-canonical polygons are

lattice polygons are best approached by hand. These are the remaining rank

2 Luna data out of 42-54, 57-59 and 62. Let S be one of these, and let Q be

the convex hull of the origin and 1
mD
ρ(D). Let P be a lattice polygon which

is G/H-canonical with respect to S, then P contains Q and contains no non-

zero interior points in V . Let x1 and x2 be the two primitive lattice points in

the boundary of V , then x1, x2 and (−1,−1) cannot be interior points of P .

In particular, no vertex of P is in the interior of the penumbra of x1, x2 or

(−1,−1) with respect to Q. For any of these Luna data, only finitely many

lattice points in V remain which can be in P , so we can classify such polygons.

See Figures 7.1 and 7.2 for the full list.

(a) 46 (b) 46 (c) 46 (d) 47 (e) 48

(f) 52 (g) 52 (h) 52 (i) 53 (j) 54

Figure 7.1: All G/H-canonical polytopes for the rank 2 Luna data with ID:
46, 47, 48:

(
( 2 0
0 2 ) , {α1, α2}, ∅, {D+

1 , D
−
1 , D

+
2 , D

−
2 }
)

52, 53, 54:
(
( 2 1
0 1 ) , {α1, α2}, ∅, {D+

1 , D
−
1 , D

+
2 , D

−
2 }
)

where the points of 1
mD

ρ(D) are depicted by arrows. The shaded cone is V and the
penumbra of forbidden points in V is shaded darker.
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(a) 57 (b) 57 (c) 57 (d) 57 (e) 57 (f) 57

(g) 57 (h) 57 (i) 58 (j) 58 (k) 58 (l) 58

(m) 59 (n) 62 (o) 62 (p) 62 (q) 62

(r) ID: 62

Figure 7.2: All G/H-canonical polytopes for the rank 2 Luna data with ID:
57, 58, 59:

(
( 2 0
0 4 ) , {α1, 2α2}, ∅, {D+

1 , D
−
1 }
)
and

62: (( 4 0
0 4 ) , {2α1, 2α2}, ∅, ∅)

where the points of 1
mD

ρ(D) are depicted by arrows. The shaded cone is V and the
penumbra of forbidden points in V is shaded darker.

7.3.2 Rank 2, Denominator 2

Several of the Luna data in Table 7.4 can only be realised by denominator 2

polygons with exactly one interior point and up to two rational vertices. These

are the rank 2 Luna data with ID 5-35 and 64-80 as well as the Luna data

out of 36-41 for which b1 = 1. This list repeats some Luna data considered in

the previous section, which we can therefore ignore. The proof that these data

are only realised by the type of polygon described is identical to the one for

canonical lattice polygons in the previous section. Note that these data may

have canonical lattice polygons which are G/H-canonical, however we already

have a classification of these so need only classify the rational polygons.

To classify these polygons we classify all denominator 2 polygons containing
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one interior point, by adapting the algorithm introduced in Section 5.2. We

first adjust our definition of minimal polytope:

Definition 7.3.1. Let P be a denominator r polytope whose only interior

lattice point is the origin. We call P minimal if for any vertex v of P the

polytope

conv(P ∩ 1
r
Z2 \ {v})

is either of dimension less than dim(P ) or contains no interior points.

Notice that this is similar to but different from Definition 5.2.1 since we place

a condition on the number of interior points rather than the size of a polytope.

We can describe these minimal rational polytopes in terms of minimal canon-

ical lattice polytopes.

Proposition 7.3.2. A denominator r polytope P , whose only interior lat-

tice point is the origin, is minimal if and only if P = 1
r
Q for some minimal

canonical lattice polytope Q.

Proof. Let Q be a minimal canonical lattice polytope. Consider P = 1
r
Q.

Suppose there is a vertex v of P such that P ′ = conv(Q ∩ 1
r
Z2 \ {v}) is a

polytope with the same dimension and number of interior points as P . Then

rP ′ is a lattice polytope of the correct dimension with the origin in its interior

and is strictly contained in P . This is a contradiction so 1
r
P is minimal.

Let P be a minimal denominator r polytope containing only the origin in its

interior. Then much as above, Q = rP must be a minimal canonical lattice

polytope.

Therefore, the minimal denominator r polytopes containing only the origin

in their interior are:

1
r
conv((1, 0), (0, 1), (−1,−1))

1
r
conv((1, 0), (0, 1), (−1, 0), (0,−1))

1
r
conv((1, 0), (0, 1), (−1,−2)).
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It is a minor adjustment of Algorithm 3 to grow these polygons by one point

of 1
r
Z2 at a time, until all denominator r-polygons containing one interior point

have been found. We need only change the conditions for when we continue

to grow a polygon. We run this algorithm in denominator 2 and store those

polygons which have one or two rational vertices. The result is a list of 114

polygons with exactly one non-integral vertex and 624 with exactly two.

The only remaining Luna datum for which denominator 2 polygons are G/H-

canonical, is the datum out of 36-41 for which b1 = 0 and b2 = 1. Let P be a

G/H-canonical polygon with respect to this datum, then let Q be the convex

hull of the vertices of P except replacing (2, 0) with (1, 0). Then Q has exactly

one interior point and at most one rational vertex. Therefore, we can classify

such polygons P by taking the list of polygons with one interior point and

up to one half-integral vertex and doubling each of their integral vertices,

then removing equivalent polygons. The result is a list of 321 denominator 2

polygons and the 38 lattice polygons classified in the previous section.

7.3.3 Rank 2, Denominator 3

If a polytope P is G/H-canonical with respect to the rank 2 Luna datum 2

or 3, then it has at most one 1
3
-integral vertex and one interior point, since

there are no spherical roots. We could classify these in the same way as the

denominator 2 polygons, but this requires that we classify many more polygons

than we need to. Instead we adapt a growing algorithm of Borisov and Borisov

described in detail in [Kas10].

We want to classify rational polygons P whose only interior point is the

origin and whose vertices are all lattice points except for the vertex v0 which

is equivalent to either (1
3
, 0) or (2

3
, 0). Unless otherwise stated we assume P

satisfies this. Once again, we redefine minimal polygons:

Definition 7.3.3. We say that a rational polytope P with exactly one interior

lattice point and up to one rational vertex v0 is minimal if, for all lattice point
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vertices v of P , the polytope conv(P ∩Zn\{v}, v0) either has no interior points

or is of dimension smaller than P .

The majority of these minimal polygons are triangles, which we classify later.

The rest are given by the following.

Proposition 7.3.4. If P is minimal then either P is a triangle or P is equiv-

alent to one of the following polygons:

• conv((1
3
, 0), (−1, 0), (0, 1), (0,−1)),

• conv((2
3
, 0), (−1, 0), (0, 1), (0,−1)) and

• conv((2
3
, 0), (−1, 0), (0, 1), (1,−1)).

Proof. Suppose P = conv(v0, . . . , vk) is not a triangle. By a unimodular map

we may assume that v0 = (1
3
, 0) or (2

3
, 0). Consider the triangulation of P

obtained by drawing a line between v0 and each other vertex of P . One of

these triangles contains the origin and by minimality of P it contains the

origin in a facet. After a possible relabelling we may assume that v1 = (−1, 0)

is the other vertex of this facet.

P contains at least two more vertices, one with positive and one with negative

y-coordinate. In fact, we may assume that P contains exactly two more lattice

points v2 and v3 by Lemma 5.2.3, and that these points have y-coordinates 1

and −1 respectively. By a shear we may assume that v2 = (0, 1). To keep v0,

v1 and v2 as vertices, v3 must be one of (−1,−1), (0,−1) or (1,−1). Removing

non-minimal cases leaves us with the desired list.

Proposition 7.3.5. The denominator 3 triangles with exactly one non-lattice

vertex in 1
3
Z2 and exactly one interior point are those equivalent to one of:

• conv(v0, (−1,−1), (0,−1)) where 3v0 ∈ {(1, 2), (1, 3), (1, 4), (2, 4), (1, 5),

(2, 5), (2, 6), (2, 7), (3, 7), (3, 8), (4, 9), (4, 10), (4, 11), (5, 12), (5, 13)},

• conv(v0, (−1,−1), (1,−1)) where 3v0 ∈ {(0, 1), (0, 2), (1, 2), (1, 3), (2, 3),

(1, 4), (2, 4), (3, 4), (1, 5), (2, 5), (3, 5), (2, 6), (2, 7), (3, 7), (3, 8)},
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• conv(v0, (−2,−1), (1,−1)) where 3v0 ∈ {(0, 1), (1, 2), (2, 2), (3, 2), (1, 3),

(1, 4), (2, 4), (2, 5)},

• conv(v0, (−2,−1), (2,−1)) where 3v0 ∈ {(0, 1), (1, 1), (0, 2), (1, 2)},

• conv(v0, (−3,−1), (2,−1)) where 3v0 ∈ {(0, 1), (1, 1), (1, 2)},

• conv(v0, (−3,−1), (3,−1)) where 3v0 ∈ {(0, 1), (1, 1)},

• conv((0, 1
3
), (−4,−1), (3,−1)) or

• conv((0, 1
3
), (−4,−1), (4,−1))

Proof. Let the vertices of T be v0, v1 and v2 and suppose v0 is non-integral.

Then the convex hull of v1, v2 and the origin is a lattice triangle with no interior

points and no lattice points on two of its boundaries, thus it is affine equivalent

to conv((0, 0), (k, 0), (0, 1)) for some positive integer k. By a unimodular map

we may assume that v1 = (−⌈k
2
⌉,−1) and v2 = (⌊k

2
⌋,−1).

Now v0 must be chosen such that the origin is in the interior of T . In other

words, v0 must be in the interior of pen(conv(v1, v2), (0, 0)). Additionally, no

other lattice point can be in the interior of T so v0 must not be in the interior

of pen(conv(v1, v2), x) for any lattice point x /∈ conv((0, 0), v1, v2). In practice

it is enough to consider x ∈ {(0, 1), (1, 1), (1, 2), (1, 0), (−1, 0)}. The collection

of points of 1
3
Z2 which remains is finite and can be identified using Figure 7.3.

Equivalent triangles can be removed by considering shears about the x-axis

and reflections in the y-axis.

Not all these triangles are minimal but they certainly contain all the minimal

triangles so we can initialise the growing algorithm with them and the non-

triangular minimal polygons. We will grow them by adding lattice points to

them rather than points of 1
3
Z2, so the method of growing in Chapter 5 no

longer works. Instead we use the following result which is based on an argument

in [Kas10, Section 1].
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Proposition 7.3.6. Let P and Q be denominator 3 polygons with the same,

single rational vertex: either (1
3
, 0) or (2

3
, 0). Suppose Q = conv(P, v) for some

lattice point v, then there is a lattice simplex S, with at most one 1
3
-integral

vertex and containing exactly one interior point, such that S is the convex hull

of v and a vertex or edge of P .

Proof. Consider the line through v and the origin. This intersects a face of P

at a point λv for a negative rational number λ. Let F be the inclusion minimal

face of P with this property. The convex hull of F and v is the simplex S.

The simplex S in the above proposition is either one of the triangles classified

in Proposition 7.3.5 or one of the line segments conv(−1, 1), conv(−1, 1
3
) and

conv(−1, 2
3
). The weights of a simplex conv(v0, . . . , vn) are a tuple of integers

(λ0, . . . , λn) with greatest common divisor 1, such that λ0v0 + . . . λnvn is the

origin. For example, the weights of the above line segments are (1, 1), (1, 3)

and (2, 3) respectively. The weights of all denominator 3 triangles with one

interior point and up to one rational vertex are listed in Table 7.6.

Given a polygon P = conv(v0, . . . , vk), whose one rational vertex is v0, we

can only add one of the following points to grow P :

• −3v0 if v0 is equivalent to (1
3
, 0),

• −3
2
v0 if v0 is equivalent to (2

3
, 0),

• −vi where i = 1, . . . , k, or

• λ1

λ0
vi+

λ2

λ0
vj for any two distinct vertices vi and vj, where some permutation

of (λ0, λ1, λ2) is in Table 7.6.

We grow polygons with a vertex equivalent to (1
3
, 0) and (2

3
, 0) separately

to reduce the collection of possible points we can add at each step. Like in

Section 5.2, we stratify the growing steps by the size of P to improve compute

time. To grow a polygon P , we compute the list of possible points v we can

add and compute Q = conv(P, v) for each v which is a lattice point. If Q is a
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Weights of triangles with a vertex equivalent to (1
3
, 0).

( 1, 1, 3 ) ( 1, 1, 6 ) ( 1, 2, 3 ) ( 1, 2, 9 ) ( 1, 3, 3 ) ( 1, 3, 4 )
( 1, 3, 6 ) ( 1, 3, 12 ) ( 1, 5, 6 ) ( 1, 5, 9 ) ( 1, 6, 7 ) ( 2, 3, 3 )
( 2, 3, 5 ) ( 2, 3, 15 ) ( 3, 3, 4 ) ( 3, 3, 5 ) ( 3, 4, 5 ) ( 3, 4, 7 )
( 3, 4, 21 ) ( 3, 5, 6 ) ( 3, 5, 7 ) ( 3, 5, 8 ) ( 3, 5, 12 ) ( 3, 6, 7 )
( 4, 5, 9 ) ( 5, 6, 9 ) ( 5, 6, 11 ) ( 5, 7, 9 ) ( 7, 8, 9 )

Weights of triangles with a vertex equivalent to (2
3
, 0).

( 1, 1, 3 ) ( 1, 3, 3 ) ( 2, 2, 3 ) ( 2, 3, 4 ) ( 2, 4, 9 ) ( 3, 4, 6 )
Weights of lattice triangles.

( 1, 1, 1 ) ( 1, 1, 2 ) ( 1, 2, 3 )

Table 7.6: Weights of denominator 3 triangles with one interior lattice point and up
to one non-integral vertex.

denominator 3 polygon with exactly one rational vertex, exactly one interior

lattice point and size equal to one more than the size of P , then we save Q

and grow it in the next iteration. The result is a list of 238 polygons with a

vertex equivalent to (1
3
, 0) and 88 polygons with a vertex equivalent to (2

3
, 0).

7.3.4 Rank 3, Denominator 1

The rank 3 Luna data, apart from that with ID 2, are lattice polytopes. Poly-

topes which are G/H-canonical for Luna data 1 and 3 must be canonical poly-

topes since there are no spherical roots. Polytopes P which are G/H-canonical

for Luna data 4-16 must also be canonical since all points of P outside of the

valuation cone are contained in the hyperplane x = 1, thus P can have no

interior points inside or outside of V .

Let P be a G/H-canonical polytope for the rank 3 Luna datum with ID

17. Then, let Q be the convex hull of points of P except replacing (2, 0, 0)

with (1, 0, 0). Q is a lattice polytope containing the origin and no other lattice

point in its interior. In fact, conv(S) is G/H-canonical with respect to the

rank 3 Luna datum with ID 4. Therefore, we can obtain all such polytopes by

doubling a vertex of a canonical lattice polytope.

Let P be a G/H-canonical polytope for the rank 3 Luna datum with ID 18.

Suppose V is some non-zero interior lattice point of P , so v is contained in the

interior of the affine cone (2, 1, 0) + conv(P − (2, 1, 0)) and is not in V . The
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(a) (b)

(c) (d)

Figure 7.3: Points in the non-shaded region and its dashed boundaries are the
points of 1

3Z
2 which may be the third vertex of a triangle with exactly one 1

3 -integral
vertex and exactly one interior lattice point.

x-coordinate of v is 1 so there is a non-zero lattice point 2v− (2, 1, 0) which is

both in the interior of P and in V . This is a contradiction, so P has only one

interior point and is also a canonical polytope.

Recall that the three-dimensional canonical polytopes have been classified in

[Kas10], so the G/H-canonical polytopes of rank 3 can almost all be obtained

from this classification.
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(e)

(f)

(g)

(h)

Figure 7.3: Points which may be the vertex of a denominator 3 triangle containing
one interior point continued.

7.3.5 Rank 3, Denominator 2

Let S be the rank 3 Luna datum with ID 2 which has one color D for which

the denominator of 1
mD

ρ(D) is 2. Since S has no spherical roots, any G/H-

canonical polytope P has up to one interior lattice point. When P has no

rational vertices it is a 3-dimensional canonical lattice polytope, which have

already been classified. Therefore, it remains to classify the rational polygons

with exactly one interior point and exactly one rational vertex, which is equiv-

alent to (1
2
, 0, 0). As in Section 7.3.3, we adapt the growing method of Borisov



Chapter 7. Classification of Polytopes 175

and Borisov, detailed in [Kas10]. In this section we present a sketch of the

approach we will use to complete the classification at a later date.

We continue with the definition of minimal introduced in Section 7.3.3.

Proposition 7.3.7. Let P be a 3-dimensional denominator 2 polytope with

one interior lattice point and exactly one rational vertex which is equivalent to

(1
2
, 0, 0). If P is not a simplex then P = conv(S, P ′) where S is a k-dimensional

minimal simplex and P ′ is a n − k + r-dimensional minimal polytope where

0 ≤ r < k < 3. Moreover, dim(S ∩ P ′) ≤ r, and r equals the number of

common vertices of S and P ′.

Proof. The proof is the same as the proof of [Kas10, Proposition 2.2].

Notice that P ′ and S may be lattice polytopes or rational polytopes and both

have dimension less than P . Therefore, we have classified all polytopes needed

to build the 3-dimensional non-simplex minimal polytopes in Section 7.3.2.

The method will be the same as that used in [Kas10, Section 3] with the addi-

tion that we will use an algorithmic approach to help deal with the increased

number of cases to consider.

To classify the three-dimensional simplices we return to the idea of the

weights of a simplex. Using the methods of [Con02] we can obtain a list

of all lattice simplices with a given collection of weights. Multiplying these

simplicies by 1
2
preserves their weights and gives the denominator 2 simplices

we seek. Therefore, it suffices for us to bound the collection of possible weights

which denominator 2 tetrahedra can have.

To do this we will use the Barycentric coordinates with respect to a simplex.

Given an n-dimensional simplex P = conv(v0, . . . , vn), we can write any point

x ∈ Qn uniquely in the form x = α0v0 + · · · + αnvn where α0 + · · · + αn = 1.

We call (α0, . . . , αn) the Barycentric coordinates of x and note that they are

all positive if and only if x is in the interior of P . We use the following two

results to bound the sum of the weights.
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Lemma 7.3.8. Let P = conv(v0, . . . , vn) be a denominator 2 simplex and let

w be an interior point of P with Barycentric coordinates (α0, . . . , αn). Then

vol(2P ) ≤ 2n

n!α1 . . . αn

|P ◦ ∩ Zn|

Proof. This is a special case of [Pik01, Lemma 5].

Lemma 7.3.9. Let P be a denominator 2 simplex with weights λ0, . . . , λn.

Then
n∑

i=0

λi ≤ n! vol(2P ).

Proof. This follows from [Kas09, Equation (2.3)].

Proposition 7.3.10. Let P be a denominator 2 tetrahedron whose only inte-

rior point is the origin. Then the sum of the weights of P is at most 1152.

Proof. Let v0, . . . , v3 be the vertices of P and let α0, . . . , α3 be the Barycentric

coordinates of the origin, that is

α0 + · · ·+ α3 = 1 and α0v0 + · · ·+ α3v3 = 0.

After a possible relabelling we may assume that 0 < α0 ≤ · · · ≤ α3 where

positivity comes from the fact that the origin is in the interior of P . If v3 is

the rational vertex of P then the point −2v3 is a non-zero lattice point and

hence is not contained in the interior of P . It has Barycentric coordinates

(3α0, 3α1, 3α2, 3α3− 2) one of which must be non-positive since it is not in the

interior of P . However, 3αi > 0 for i = 0, 1, 2, 3 so we have α3 ≤ 2
3
. In a similar

way the points −2v2− 2v3, −2v1− 2v2− 2v3 and −v2− 2v3 give us the bounds

α2 ≤ 2
5
, α1 ≤ 2

7
and either α2 ≤ 1

4
or α3 ≤ 1

2
. Combining the inequalities for

α2 and α3 we can show that α2 + α3 ≤ 11
12

and since 2α1 + α2 + α3 ≥ 1, we

then know that α1 ≥ 1
2
(1− α2 − α3) ≥ 1

24
.

The collection of linear bounds we have defined on the αi describe a 3-

dimensional polytope of possible points (α1, α2, α3) in the interior of the cube
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[0, 1]3 ⊆ Q3. The minimum value which α1α2α3 can take is realised on a vertex

of this polytope so we can show that α1α2α3 ≥ 1
144

.

Using the same procedure we obtain a similar collection of linear bounds

on the Barycentric coordinates when each of the other vertices is the rational

vertex of P . The lattice points we need to consider and the bounds they

give are listed in Table 7.7. However, the bounds we obtain on α1α2α3 are

all stronger than the one we have already computed, so whichever vertex is

rational α1α2α3 ≥ 1
144

. Thus, by Lemma 7.3.8, the volume of 2P is at most

192 and by Lemma 7.3.9, the sum of the weights of P is at most 1152.

Lattice Point Barycentric coordinates Inequality
When v0 is the rational vertex.

−v3 (2α0, 2α1, 2α2, 2α3 − 1) α3 ≤ 1
2

−v2 − v3 (3α0, 3α1, 3α2 − 1, 3α3 − 1) α2 ≤ 1
3

−v1 − v2 − v3 (4α0, 4α1 − 1, 4α2 − 1, 4α3 − 1) α1 ≤ 1
4

−v2 − 2v3 (4α0, 4α1, 4α2 − 1, 4α3 − 2) α2 ≤ 1
4
or α3 ≤ 1

2

When v1 is the rational vertex.
−v3 (2α0, 2α1, 2α2, 2α3 − 1) α3 ≤ 1

2

−v2 − v3 (3α0, 3α1, 3α2 − 1, 3α3 − 1) α2 ≤ 1
3

−2v2 − 2v2 − 2v3 (7α0, 7α1 − 2, 7α2 − 2, 7α3 − 2) α1 ≤ 2
7

−v2 − 2v3 (4α0, 4α1, 4α2 − 1, 4α3 − 2) α2 ≤ 1
4
or α3 ≤ 1

2

When v2 is the rational vertex.
−v3 (2α0, 2α1, 2α2, 2α3 − 1) α3 ≤ 1

2

−2v2 − 2v3 (5α0, 5α1, 5α2 − 2, 5α3 − 2) α2 ≤ 2
5

−2v1 − 2v2 − 2v3 (7α0, 7α1 − 2, 7α2 − 2, 7α3 − 2) α1 ≤ 2
7

−2v2 − 3v3 (6α0, 6α1, 6α2 − 2, 6α3 − 3) α2 ≤ 1
3
or α3 ≤ 1

2

When v3 is the rational vertex.
−2v3 (3α0, 3α1, 3α2, 3α3 − 2) α3 ≤ 2

3

−2v2 − 2v3 (5α0, 5α1, 5α2 − 2, 5α3 − 2) α2 ≤ 2
5

−2v1 − 2v2 − 2v3 (7α0, 7α1 − 2, 7α2 − 2, 7α3 − 2) α1 ≤ 2
7

−v2 − 2v3 (4α0, 4α1, 4α2 − 1, 4α3 − 2) α2 ≤ 1
4
or α3 ≤ 1

2

Table 7.7: Lattice points which witness the bounds on the Barycentric coordinates
of the origin with respect to a denominator 2 tetrahedron with exactly one interior
point and one rational vertex.

We are yet to classify the weights and simplices.
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7.4 Embedding Polytopes in N

From the previous two sections we have a classification of Luna data and a

classification of the polytopes which may appear as G/H-canonical polytopes

with respect to these data. In this section we describe how to combine these to

produce a list of spherical canonical Fano four-folds. Throughout we assume

that G/H is a spherical homogeneous space corresponding to one of the Luna

data S in Tables 7.2-7.5. Consequently, the action of G on G/H is smart.

First, we must be able to identify equivalent G/H-canonical polytopes. The

normal form of Section 6.4 may change the Luna datum, which makes poly-

topes difficult to compare, so we define a new class of automorphisms.

Definition 7.4.1. An automorphism of a Luna datum S is a lattice automor-

phism ϕ :M→M such that

1. ϕ(γ) = γ for every spherical root γ ∈ Σ, and

2. ϕ∗(ρ(D(α))) = ρ(D(α)) for every α ∈ S \ SP , where ϕ∗ : N → N is the

dual to ϕ, and D(α) is the set of colors moved by Pα.

The set of automorphisms of S, denoted by Aut(S), forms a group under

composition and is contained in Iso(S). We say two G/H-canonical polytopes

P and P ′ are equivalent if there is an automorphism ϕ of S with P ′ = ϕ∗(P ).

In other words, automorphisms of S are isomorphisms from S which fix ρ(D)

for each color D of type 2a and b and which preserve the sets {ρ(D+), ρ(D−)}

whereD+ andD− are a pair of type a colors associated to the same simple root.

Therefore, by Theorem 6.0.3 automorphisms of S are induced by isomorphisms

of spherical varieties so if two G/H-canonical polytopes are equivalent they are

associated to the same spherical canonical Fano variety. We write P ∼aut P
′

if P and P ′ are equivalent.

We introduce a new normal form for G/H-canonical polytopes which allows

us to determine whether they are equivalent under automorphisms of S. This

is done by ‘marking’ P with a tuple t, then finding a normal form for this
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marked polytope (P, t). If D = {D1, . . . , Dk} is the set of colors of G/H then

we define ρi ∈ NQ to be 1
mDi

ρ(Di) for each i = 1, . . . , k. Let t be the tuple

which first lists, in order of i, the ρi such that Di is a color of type 2a or b,

then lists, in lexicographic order of (i, j), the sets {ρi, ρj} such that i < j and

Di and Dj are colors of type a associated to the same simple root.

Given total orders on sets S1, . . . , Sr, we can define the lexicographic order on

the Cartesian product S1×· · ·×Sr, which is itself a total order. Lexicographic

order defines a total order on NQ. We order sets {v1, v2} of two distinct points

in NQ, by treating them as elements of the subset of N 2
Q where v1 < v2, then

using lexicographic order. In this way we obtain a total order on the set of

tuples t which first list k1 points of NQ then list k2 two-point sets of points in

NQ. For brevity we refer to this as lexicographic order.

Now let P be a G/H-canonical polytope and let π be the dual to the in-

clusion of Mss in M. Let ϕ ∈ Aut(N , π) be an automorphism of N such

that ϕ(P ) = NF(P ) is the normal form of P defined in Section 6.4. We get

a modified tuple ϕ(t), whose entries are the image of the entries of t under ϕ.

The intersection of Aut(N , π) and the group Aut(P ) of automorphisms of N

which preserve P is non-empty and finite. We choose ψ ∈ Aut(N , π)∩Aut(P )

which lexicographically minimises the tuple ψ(ϕ(t)). We define NFaut(P, t) to

be the pair (ϕ(P ), ψ(ϕ(t))).

Notice that NFaut is not strictly a normal form in the sense of Section 6.4,

since ϕ(P ) need not be G/H-canonical. However, it serves the purpose of a

normal form in the following sense.

Proposition 7.4.2. Suppose P and P ′ are two G/H-canonical polytopes, then

P ∼aut P
′ if and only if NFaut(P, t) = NFaut(P ′, t).

Proof. (⇒) Suppose P ∼aut P
′, so there is an automorphism of S which maps

P to P ′. Therefore, the normal forms NF(P ) = ϕ(P ) and NF(P ′) = ϕ′(P ′) are

equal and, since all automorphisms of S fix the tuple t, the minimised tuples

ψ(ϕ(t)) and ψ′(ϕ′(t)) are also equal.
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(⇐) Conversely, suppose NFaut(P, t) = NFaut(P ′, t). Then there is and iso-

morphism ϕ of S, such that NFaut(P, t) = (ϕ(P ), ϕ(t)) and a similar isomor-

phism ϕ′ for P ′. By our assumption, ϕ(P ) = ϕ′(P ′) and ϕ(t) = ϕ′(t), so the

isomorphism of S given by ϕ′−1◦ϕ maps P to P ′ and fixes t. Therefore, ϕ′−1◦ϕ

is an automorphism of S and P ∼aut P
′.

Now we consider combining the polytopes and Luna data. Let S be the Luna

datum associated G/H, and say rk(M) = n. Suppose Σ = {γ1, . . . , γm} and

D = {D1, . . . , Dk} and define ρi as above. Let P0 ⊆ NQ be a rational polytope

of dimension n containing the origin in its interior. We find all G/H-canonical

polytopes, up to ∼aut, which are unimodularly equivalent to P0.

First we make a choice of points a1, . . . , ak in P which we will eventually

map to the points ρ1, . . . , ρk. These are chosen so that the lattice length of

each line segment conv(ai,0) matches the length of conv(ρi,0) and so that the

convex hull of {0, a1, . . . , ak} is unimodularly equivalent to the convex hull of

{0, ρ1, . . . , ρk}. There are finitely many choices for the ai. If all vertices of P

are either lattice points or points ai we proceed with this selection of ai’s.

For each color Di and each spherical root γj, the value of ρi · γj is fixed. We

choose linearly independent primitive points σ1, . . . , σm ofM such that

ai · σj = ρi · γj, for all i = 1, . . . , k and j = 1, . . . ,m

and such that, for all vertices v of P which do not equal any ai, we have

v · σj ≤ 0. Note that for each vertex v of P we require v · σj ≤ r for some non-

negative rational number r, therefore σi is in a polytope obtained by moving

some facets of P ∗ in or out, without them passing the origin. In particular,

there are finitely many choices for each σj. We choose linearly independent σi

such that the convex hull of {0, σ1, . . . , σm} is equivalent to the convex hull of

{0, γ1, . . . , γm}.

Recall that the definition of G/H-canonical depends only on the points

ρ1, . . . , ρk and γ1, . . . , γm. Therefore, we can meaningfully ask if P is G/H-
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canonical with respect to {a1, . . . , ak} and {σ1, . . . , σm}, even if we do not know

that there is a Luna datum with this collection of colors and spherical roots.

If P is not G/H-canonical with respect to {a1, . . . , ak} and {σ1, . . . , σm}, then

there is no unimodular φ map taking ai to ρi and σj to γj such that φ(P0)

is G/H-canonical with respect to S, so our choice of ai and σj was not valid.

Otherwise, we proceed.

Now we have a polygon and two finite lists of points to map to the colors

and spherical roots respectively. We map the σi to the spherical roots first.

If m = 0 the identity map suffices. If m = 2 then we can only be in rank

2, so there is exactly one linear map which takes both σi to their respective

γi. If this map is in GL2(Z) we proceed, otherwise our choice of ai and σj

was not valid. If m = 1, then by our choice of basis of M, γ1 = (1, 0, . . . , 0)

(see Tables 7.3-7.5). Note that σ1 is primitive so we can use the Euclidean

algorithm to find a point on which σ1 evaluates to 1. Combining this with a

basis of the kernel of σ1 gives a new basis of N . The map taking this basis to

the standard basis has dual taking σ1 to γ1.

We have found a unimodular map whose dual takes the σi to the γi. Let P1

be the image of P0 under this map and let bi be the image of ai for each

i = 1, . . . , k. Now P1 is G/H-canonical with respect to {b1, . . . , bk} and

{γ1, . . . , γ2}. From now on we want to preserve the spherical roots so can

only use isomorphisms of S to adjust P1. We want an isomorphism ϕ of S,

which takes each bi to its corresponding ρi. By our earlier check, we know there

is a unimodular map φ taking the convex hull of b1, . . . , bk and the origin to the

convex hull of ρ1, . . . , ρk and the origin. However, there may be more than one

such map, and there no guarantee that any of them is an isomorphism of S or

maps bi to ρi for all i = 1, . . . , k. Therefore, we consider each automorphism

ψ ∈ Aut(conv(0, ρ1, . . . , ρk)), and check if ψ ◦ φ is the isomorphism of S we

seek. If we find none then our choice of ai and σj was not valid. If we find any

then let P2 be the image of P1 under such a map and we have found a polytope

P2 which is G/H-canonical and equivalent to P0. We will repeat this process
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for each Luna datum and each polytope which could be G/H-canonical with

respect to that datum and use the normal form described above to remove

polytopes which are equivalent under the action of Aut(S).
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