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Abstract

In spite of compelling evidence for its existence and great experimental ef-

forts to detect it, the nature of dark matter remains unknown. One scenario

is that some or all of the dark matter consists of black holes formed from the

collapse of highly overdense regions in the early Universe. Observational

constraints on these ‘primordial black holes’ (PBHs) appear to exclude

PBHs from making up all of the dark matter unless their mass, MPBH, lies

in the range 1017 g ≲ MPBH ≲ 1022 g, often known as the ‘asteroid-mass

window’. In this thesis we investigate the impact of assumptions made

when calculating observational constraints on PBHs.

Firstly, we consider the effect of PBH clustering on microlensing con-

straints. Clustering of PBHs occurs to a greater extent than for standard

cold dark matter on small scales. For PBHs formed from the collapse of

large gaussian fluctuations, we find clustering has only a small effect on

microlensing constraints even for very massive PBHs (MPBH ∼ 103M⊙) for

which the effect of clustering is largest.

Constraints on PBHs are usually obtained assuming all PBHs have the

same mass, though accounting for critical collapse shows they would have

an extended mass function. A lognormal fit has been widely used to param-

eterise the PBH mass function, though recent work has shown that other

functions provide a better fit. We recalculate both current and prospec-
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tive future constraints on PBHs with these improved fitting functions, to

assess to what extent the asteroid-mass window remains open. For current

constraints, the window is narrowed, though there remains a region where

PBHs can make up all of the dark matter. Future constraints from evap-

oration and microlensing may together exclude all of dark matter being

made of PBHs if the PBH mass function is sufficiently wide.
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Chapter 1

Introduction

1.1 Cosmology

In this section we briefly overview the aspects of cosmology most relevant

to this thesis. We present the background required to explain the evidence

for dark matter and also discuss inflation, which provides a mechanism for

generating perturbations that can seed large-scale structure and, poten-

tially, produce primordial black holes. For a more detailed introduction,

see e.g. the book by Liddle & Lyth (Ref. [1]).

1.1.1 The homogeneous and isotropic Universe

In the standard scenario, our Universe is postulated to have been extremely

hot and dense at early times and has since expanded and cooled (the Big

Bang).

A key concept underlying observational cosmology is the cosmological prin-

ciple. This states that, on sufficiently large scales, the Universe is well-
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1.1. COSMOLOGY

described as being spatially homogeneous (the same everywhere) and isotropic

(the same in every direction). The spatial homogeneity and isotropy of the

Universe requires that the line element takes the form (in polar coordi-

nates) 1

ds2 = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, (1.1)

where t is the coordinate time, a(t) is the scale factor, K is the intrinsic

spatial curvature of the Universe and the spatial coordinates are comoving.

The following possibilities are allowed: K = 0 describes a flat universe (a

Euclidean space), K > 0 describes a closed universe with positive spatial

curvature and K < 0 describes an open universe with negative spatial

curvature.

The expansion rate is quantified by the Hubble parameter H ≡ ȧ/a, where

a(t) is the scale factor and the overdot denotes a time derivative. The

Hubble parameter is related to the energy density of the Universe, ρ, by

the Friedmann equation,

H2 =
8πGρ

3
− K

a2
+

Λ

3
, (1.2)

where G is the gravitational constant and Λ is the cosmological constant.

The energy density of each component of the Universe (such as matter and

radiation) evolves according to the fluid equation,

ρ̇+ 3H (ρ+ P ) = 0, (1.3)

where P is its pressure. Most of these components are described by a

constant equation of state parameter w = P/ρ, in which case Eq. (1.3) can

1Here, and throughout this thesis, we use natural units with ℏ = c = kB = 1 and the
(−,+,+,+) metric signature.
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1.1. COSMOLOGY

be solved to obtain

ρ ∝ a−3(1+w). (1.4)

The most commonly-considered sources of energy density in the Universe

are non-relativistic matter (w = 0), radiation (w = 1/3) and dark energy.

Dark energy drives the late-time accelerated expansion of the Universe,

which was first demonstrated by observations of the apparent brightnesses

of distant type-Ia supernovae [2, 3]. These observations and others, such as

those from temperature anisotropies in the cosmic microwave background

(CMB) (see Sec. 1.1.3 and Sec. 1.2.1) and galaxy surveys, indicate that

dark energy provides most of the Universe’s energy density today and that

it has an equation of state parameter w ≈ −1 [4, 5]. This is consistent

with the effect of a non-zero cosmological constant, which can be written

as a constant contribution to the energy density, ρΛ ≡ Λ/(8πG), with an

equation of state parameter w = −1. In the concordance cosmological

model (ΛCDM), the main sources of energy density in the Universe today

are in the form of a cosmological constant, Λ, and non-relativistic matter

mostly in the form of cold dark matter (CDM). We will introduce dark

matter in more detail at the end of this section and in Sec. 1.2.

From Eq. (1.4), the energy densities of matter (w = 0) and radiation (w =

1/3) evolve with the scale factor a as

ρm ∝ a−3, (1.5)

ρr ∝ a−4. (1.6)

Observations of temperature anisotropies in the CMB by the Planck satel-

lite and observations of galaxies show the Universe is close to spatially

flat [4]. We therefore assume spatial flatness (i.e. K = 0) throughout the

rest of this thesis. In a spatially flat Universe, Eqs. (1.2) and (1.3) have

3



1.1. COSMOLOGY

simple solutions when the Universe is dominated by matter or radiation.

For a matter-dominated Universe:

ρ ∝ a−3, a ∝ t2/3. (1.7)

For a radiation-dominated Universe:

ρ ∝ a−4, a ∝ t1/2. (1.8)

A universe with density equal to the critical density,

ρcrit =
3H2

8πG
, (1.9)

is spatially flat (as can be seen from Eq. (1.12)). It is convenient to define

the present-day energy density of a component i as a fraction of the present-

day critical density, which is known as the density parameter,

Ωi ≡
ρi,0
ρcrit,0

, (1.10)

where we use the subscript 0 to denote a quantity evaluated at the present

time, t = t0.

Observations of the anisotropies in the cosmic microwave background (see

Sec. 1.1.3 and Sec. 1.2.1) give the following values for the density param-

eters of the cosmological constant, matter and radiation in the ΛCDM

model [4]

ΩΛ ≈ 0.69, Ωm ≈ 0.31, Ωr ≈ 9.2× 10−5. (1.11)

Although the cosmological constant is the largest contributor to the energy

density today, the energy densities of matter and radiation dominated at

early times. This is because the energy density associated with the cosmo-
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1.1. COSMOLOGY

logical constant is fixed, while the energy densities of matter and radiation

increase as one goes back in time. One can therefore neglect the cosmo-

logical constant term in the Friedmann equation (Eq. (1.2)) at early times

and write

H2 ≃ 8πGρ

3
− K

a2
, (1.12)

where ρ only includes the energy densities of matter and radiation.

Since the energy density of radiation decreases faster than that of matter, at

sufficiently early times radiation is the dominant contribution to the energy

density in the early Universe. From Eqs. (1.5) and (1.6), ρm/ρr ∝ a. Using

the density parameters from Eq. (1.10) gives the scale factor at the time

when the energy densities of matter and radiation were equal (‘matter-

radiation equality’),

aeq
a0

≈ 2.9× 10−4, (1.13)

where a0 is the present value of the scale factor.

Observations of the abundance of light nuclei (see Sec. 1.1.2) and cosmic

microwave background anisotropies (see Sec. 1.2.1) indicate that the den-

sity parameter of visible (often known as ‘baryonic’) matter is Ωb ≈ 0.05,

much smaller than Ωm. These observations, as well as those of galactic rota-

tion curves (see Sec. 1.2.1), galaxy clusters (see Sec. 1.2.1), and large-scale

structure (see Sec. 1.2.1) indicate that the majority of the matter in the

Universe is ‘dark’. The nature of this ‘dark matter’ remains unknown. It

is most often considered to be an undiscovered particle species, with popu-

lar candidates including weakly interacting massive particles (WIMPs) and

axions (see Sec. 1.3). In this thesis, we will focus on the alternative scenario

that the dark matter consists (at least in part) of black holes formed in the

early Universe, so-called ‘primordial black holes’ (PBHs). Next, we outline

the relevant background to the evidence for dark matter (nucleosynthesis

5



1.1. COSMOLOGY

(Sec. 1.1.2), the cosmic microwave background (Sec. 1.1.3) and structure

growth (Sec. 1.1.4) before briefly reviewing cosmic inflation in Sec. 1.1.5.

1.1.2 Nucleosynthesis

The primordial abundances of light nuclei are well-predicted by applying

nuclear physics in the first few minutes after the Big Bang (see Refs. [6–8]

for reviews). In the absence of any physics beyond the Standard Model,

the only free parameter in these calculations is the baryon-to-photon ra-

tio, i.e. the present-day ratio of the number densities of baryons and pho-

tons, η ≡ nb,0/nγ,0. The baryon-to-photon ratio can therefore be deter-

mined by comparing theoretical predictions of the abundances of light

nuclei to observations, in particular the abundance of deuterium. This

gives η ≈ 6 × 10−10 [9], corresponding to Ωbh
2 ≈ 0.02 [10, 11], where

h ≡ H0/(100 km s−1Mpc−1). Using H0 = 67.4 km s−1Mpc−1 [4] gives

Ωb ≈ 0.05.

1.1.3 Cosmic microwave background

The cosmic microwave background (CMB) is an almost-exact black body [12]

of microwave photons with temperature T0 = 2.725K [13]. The CMB pho-

tons provide a snapshot of the Universe around 400,000 years after the Big

Bang. The small anisotropies in the CMB temperature, which are of order

∆T/T ∼ 10−5 [14], are an especially powerful cosmological probe.

In the early Universe, photons and baryons were tightly coupled by Thom-

son scattering, forming a ‘baryon-photon plasma’. Once the Universe had

cooled sufficiently for neutral atoms to form (an event known as ‘recom-

bination’), the scattering rate of photons greatly decreased (known as ‘de-

6



1.1. COSMOLOGY

coupling’). Since then, the photons have travelled essentially freely, so

the CMB reflects the conditions from the period just before decoupling.

The hotter and colder regions in the CMB correspond to overdense and

underdense areas in the plasma density, respectively.

CMB observations have played a crucial role in our modern understand-

ing of the Universe’s geometry and its contents. Its near-uniform tem-

perature and black body spectrum show that baryonic matter and ra-

diation in the early Universe were in thermal equilibrium, providing an

important motivation for inflation (see Sec. 1.1.5). Analysis of CMB tem-

perature anisotropies suggests that the Universe is close to spatially flat

(see Sec. 1.1.1) and (of greater relevance to this thesis) offers crucial evi-

dence for the existence of dark matter (see Sec. 1.2.1). Additionally, CMB

anisotropies and observational limits on the deviation of the CMB from

a black body spectrum constrain the abundance of primordial black holes

(see Sec. 1.4.5).

1.1.4 Structure growth

Structures in our Universe, such as galaxies, form from the gravitational

collapse of small initial overdensities with a slightly higher temperature

than average. These density perturbations are quantified by the density

contrast δ = (ρ− ρ̄)/ρ̄, where ρ is the density of the perturbation and ρ̄ is

the average density of the background Universe.

We first consider the evolution and statistics of the density contrast in

linear theory (applicable when δ ≪ 1). It is helpful to consider the evo-

lution of the density contrast in Fourier space since each Fourier mode,

δ(k, t) (where k is the comoving wavevector), evolves independently in lin-

7



1.1. COSMOLOGY

ear theory. Dark matter perturbations can only grow once their associated

comoving wavenumber, k ≡ |k|, ‘enters the horizon’ 2, which occurs when

k−1 is smaller than the comoving Hubble radius 1/(aH), i.e. k = aH.

The growth of dark matter overdensities on scales smaller than the Hubble

radius is negligible during the radiation-dominated epoch but after matter-

radiation equality they grow as δ ∝ a. Growth of baryonic perturbations

can only occur after decoupling, since baryons are tightly coupled to pho-

tons beforehand.

The matter power spectrum, Pδ(k, t), quantifies the amplitude of the den-

sity perturbations as a function of scale. It is defined through the ensemble

average of the Fourier modes of the density contrast

⟨δ(k, t)δ∗(k′, t)⟩ = (2π)3δD(k− k′)Pδ(k, t), (1.14)

where the superscript ∗ denotes complex conjugation and δD(k−k′) is the

Dirac delta function.

Commonly, one considers the dimensionless power spectrum (often also

referred to as simply the ‘power spectrum’), defined as

Pδ(k, t) ≡
k3

2π2
Pδ(k, t). (1.15)

The dimensionless power spectrum is related to its value at some initial

time ti (the ‘primordial power spectrum’ Pδ(k, ti)), by

Pδ(k, t) = T 2(k, t)Pδ(k, ti), (1.16)

where T (k, t) is the transfer function, which describes the evolution of the

2Dark matter perturbations can grow outside of the horizon in certain gauges, but
this is an artifact of the gauge choice.
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1.1. COSMOLOGY

density perturbations.

Most commonly, one considers the primordial power spectrum of the cur-

vature perturbation, ζ(x), defined as [15, 16]

ζ(x) = −Φ(x) +
aH

ρ̄+ P̄
δq(x), (1.17)

where Φ is the gravitational potential, δq is defined through the perturbed

momentum density in the xj direction, δT 0
j , as δT

0
j ≡ −∂δq/∂xj and ρ̄ and

P̄ denote the background energy density and pressure, respectively.

For modes re-entering the horizon during the radiation-dominated epoch,

by expanding the relation between δ(x) to first order in ζ(x), one finds

their Fourier transforms are related as

δ(k) =
4

9

(
k

aH

)2

ζ(k). (1.18)

The dimensionless power spectrum of the density contrast is therefore re-

lated to the dimensionless power spectrum of ζ, Pζ(k, t), as

Pδ(k, t) =
16

81

(
k

aH

)4

Pζ(k, t). (1.19)

Planck observations indicate that, on scales probed by the CMB (k ∼

10−3−1Mpc−1), the primordial power spectrum of curvature perturbations

is well-parameterised as

Pζ(k, ti) = A

(
k

k∗

)ns−1

, (1.20)

where A is the amplitude, k∗ is the pivot scale and ns is the scalar spec-

tral index. Planck observations of CMB anisotropies find that, for k∗ =

0.05Mpc−1, A = 2.1 × 10−9 and ns = 0.965 ± 0.004 [4]. The fluctuations

9



1.1. COSMOLOGY

are close to scale-invariant, with a slight ‘red tilt’, meaning that the power

decreases with increasing k (i.e. at smaller physical length scales).

On cosmological scales observations of the CMB are consistent with the

density perturbations being (largely) adiabatic, meaning that the pertur-

bation in the number density of each component is equal. In principle there

could also be an isocurvature component, in which a density perturbation

in one component is compensated by perturbations of the opposite sign in

one or more other components so the overall density perturbation is zero.

The existence of isocurvature perturbations on cosmological scales is tightly

constrained by CMB observations [17].

Spherical collapse

To describe the gravitational collapse of dark matter halos, we must go

beyond linear theory since the resulting overdensities are too large, δ ≳ 1.

A simple non-linear model describing this process is the spherical collapse

model [18].

In this model, one considers a spherical overdensity. The overdense region

initially expands, before collapsing to form a virialised dark matter halo

(i.e. a halo in which the virial theorem is satisfied, 2T + V = 0, where T is

the average kinetic energy and V is the average potential energy). One can

calculate the time taken for collapse and the density of the resulting dark

matter halo. In a flat matter-dominated Universe, the final dark matter

halo has a density ∆ ≈ 178 times the background matter density. Fitting

functions for ∆ exist for cosmologies with non-zero cosmological constant

or curvature [19].

One can then compare the value of the overdensity obtained by extrapo-

10



1.1. COSMOLOGY

lating linear theory to the time that the halo has collapsed. In a matter-

dominated Universe, this value is δc ≈ 1.69, meaning that when the over-

density δ calculated using linear theory exceeds δc, a virialised dark matter

halo forms. This value is largely cosmology-independent [20].

The smoothed density contrast

The mass, M , of a dark matter halo depends on its radius R, approxi-

mately as M ∼ ρR3, where ρ is the density of the halo. To determine the

abundance of halos of a given mass, it is therefore useful to smooth the

density contrast on a length scale R, which removes the contributions from

smaller scales. The smoothed density contrast is given by a convolution

with a window function W (x;R),

δR(x, t) =

∫
d3x′W (|x− x′|;R)δ(x′, t). (1.21)

The Fourier transform of the smoothed density contrast is then

δR(k, t) = W̃ (k;R)δ(k, t), (1.22)

where W̃ (k;R) is the Fourier transform of the real-space window function.

The variance of the smoothed density contrast, which gives the typical

amplitude of fluctuations on a length scale R, is given by

σ2(t;R) =
1

2π2

∫
dkk2|W̃ (k;R)|2Pδ(k, t) (1.23)

=

∫
dk

k
|W̃ (k;R)|2Pδ(k, t). (1.24)

On CMB scales, the primordial fluctuations in the density contrast have

an amplitude σ ∼
√

Pδ(k = 1/R) ∼ 10−5 [17].

11



1.1. COSMOLOGY

1.1.5 Inflation

As discussed in Sec. 1.1.3, the CMB temperature is essentially uniform

across the sky and (as mentioned in Sec. 1.1.1) combining measurements

from galaxy surveys and of CMB temperature anisotropies suggests the

Universe is close to spatially flat. When considering the Big Bang model as

described so far, these observations are challenging to explain, and present

several problems.

• Horizon problem: The almost uniform temperature of the CMB

suggests that baryonic matter and radiation throughout the observ-

able Universe must have been in thermal equilibrium around the time

of decoupling. Light can only have travelled a finite distance since the

Big Bang and at recombination, the distance travelled corresponds to

an angular size on the sky of ≈ 1°. It is therefore difficult to explain

why patches of the sky which were apparently not in causal contact

before decoupling have almost the same temperature.

• Flatness problem: It is possible to re-write the Friedmann equation

(Eq. (1.12)) in terms of an effective energy density from spatial cur-

vature, ρK , which depends on the scale factor as ρK ∝ a−2. This can

also be expressed in terms of the density parameters as a deviation

from spatial flatness, ΩK = 1−Ω, where Ω is the sum of the density

parameters of all the components of the Universe and Ω = 1 in a flat

Universe. Since ρK dilutes away more slowly than the energy densities

of matter or radiation, it must have had an unnaturally small value at

early times in order to be compatible with observational constraints

from the CMB and the baryon acoustic oscillation feature in the

galaxy correlation function, which require ΩK = 0.0007± 0.0019 [4].
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1.1. COSMOLOGY

• Monopole problem: In the 1980s, the most commonly-considered

Grand Unified Theories (which describe the strong and electroweak

forces as arising from a single gauge theory via symmetry break-

ing) predicted that heavy magnetic monopoles would be abundantly

produced during symmetry-breaking phase transitions at high tem-

peratures in the early Universe. The energy density of monopoles

decreases as matter (ρ ∝ a−3). Before matter-radiation equality, the

energy density of the background Universe decreases as ρ ∝ a−4, so

monopoles would dominate the energy density of the Universe today.

Not only is this not the case but no magnetic monopoles have been

observed.

Inflation is a hypothesised period of accelerated expansion in the early

Universe, that is a period when ä > 0. Inflation can solve the problems

outlined above in the following ways:

• Horizon problem: The rapid expansion of the Universe during in-

flation means that our entire observable Universe can arise from a

single region that was in causal contact at early times.

• Flatness problem: The Universe’s rapid expansion dilutes away

any effective contribution from spatial curvature, which drives the

Universe towards spatial flatness. The matter and radiation is gen-

erated after inflation ends.

• Monopole problem: A period of inflationary expansion causes the

monopoles to be diluted so that their abundance is negligible today.

The condition for accelerated expansion can be written in terms of the equa-

tion of state parameter of the Universe, w, by combining the Friedmann

13



1.1. COSMOLOGY

equation (Eq. (1.12)) and fluid equation (Eq. (1.3)), which gives

ä

a
= −4πG

3
ρ(1 + 3w). (1.25)

From Eq. (1.25), inflation occurs if the Universe is dominated by a compo-

nent with equation of state parameter w < −1/3.

In most inflationary models, accelerated expansion is driven by a scalar

field ϕ (known as the inflaton) with potential V (ϕ), which dominates the

total energy density during inflation. Assuming the field is homogeneous

and isotropic, its energy density and pressure are given by

ρϕ =
1

2
ϕ̇2 + V (ϕ), (1.26)

Pϕ =
1

2
ϕ̇2 − V (ϕ), (1.27)

and its evolution follows the Klein-Gordon equation

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0, (1.28)

where ′ ≡ d
dϕ
. From Eqs. (1.26) and (1.27), and requiring that the equation

of state parameter of the scalar field w < −1/3 for accelerated expansion,

inflation occurs in a scalar-field dominated Universe if ϕ̇2 < V (ϕ). One can

describe the dynamics of inflation by introducing the slow-roll parameters

ϵ ≡ − Ḣ

H2
, (1.29)

η ≡ ϵ̇

ϵH
. (1.30)

The parameter ϵ describes the ratio of the kinetic energy to the potential

energy of the inflaton. Accelerated expansion occurs when ϵ < 1.

When the potential becomes steep enough that the inflaton gains enough

14
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kinetic energy that ϕ̇2 > V (ϕ) (or equivalently ϵ > 1), the condition for

accelerated expansion is no longer satisfied and inflation ends. The inflaton

then decays into matter and radiation.

In addition to resolving the problems outlined above, inflation predicts the

existence of primordial perturbations which arise from quantum fluctua-

tions of the inflaton field. For a given inflationary model, one can predict

the primordial power spectrum of curvature perturbations, Pζ(k, ti). We

now discuss how the primordial power spectrum predicted by slow-roll in-

flation can be related to the form inferred from CMB observations, and

in Sec. 1.4.3 we consider inflation as a possible mechanism for producing

primordial black holes.

Slow-roll inflation

The form of the primordial power spectrum inferred from CMB observa-

tions (Eq. (1.20)) can be obtained by considering inflation in the limit

ϵ ≪ 1, |η| ≪ 1, known as ‘slow-roll’ inflation. In this limit, one can re-

late the slow-roll parameters defined in Eq. (1.30) to the potential slow-roll

parameters ϵV and ηV , as ϵ ≈ ϵV and η ≈ 4ϵV − 2ηV , where

ϵV ≡ MPl
2

2

(
V ′

V

)2

, (1.31)

ηV ≡MPl
2V

′′

V
, (1.32)

and MPl = 1/
√
8πG = 2.4× 1018GeV is the reduced Planck mass.

The power spectrum of primordial curvature perturbations can be written

as

Pζ(k) =
1

8π2MPl
2

H2

ϵV
, (1.33)
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whereH and ϵV should be evaluated when a mode with comoving wavenum-

ber k leaves the comoving Hubble radius 1/(aH), i.e. at k = aH. In slow-

roll inflation, the probability distribution of the curvature perturbation ζ

can be very well-approximated as gaussian (consistent with CMB obser-

vations [21]), in which case the power spectrum (Eq. (1.33)) completely

characterises its statistics. Using the definitions of the potential slow-roll

parameters, the slope of the primordial power spectrum from slow-roll in-

flation can be written as ns − 1 = −6ϵV + 2ηV .

1.2 Dark Matter

The current concordance model of cosmology, the ΛCDM model, postu-

lates that most of the matter in the Universe is non-baryonic and consists

of ‘cold’ (i.e. non-relativistic well before matter-radiation equality [22]) dark

matter (CDM). In order to be consistent with observations, a viable dark

matter candidate must be stable, collisionless, and cannot have strong non-

gravitational interactions with itself or other particle species. We outline

the evidence for dark matter in Sec. 1.2.1, which comes from galactic ro-

tation curves, the velocity dispersions in galaxy clusters and their temper-

atures, gravitational lensing, the CMB and large-scale structure. All the

evidence for dark matter comes from its gravitational effects and therefore

our understanding of gravity. Modifications to gravity offer an alternative

explanation for the observed forms of galactic rotation curves [23, 24]. How-

ever, successfully reproducing CMB and large scale structure observations

in this framework has proven challenging [25–27] (though see Ref. [28]).

In this thesis we follow the standard interpretation that these observa-

tions provide evidence for dark matter. We discuss the distribution of dark

matter in Sec. 1.2.2. We briefly discuss particle dark matter candidates
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(WIMPs and axions) in Sec. 1.3 before introducing primordial black holes

(PBHs) Sec. 1.4.

1.2.1 Evidence for dark matter

Galaxies

Galaxy rotation curves describe how the orbital, or circular, speeds of stars

and gas in a spiral galaxy, vc(R), depend on their distance from the galactic

centre R. The dependence of vc on R can be measured using the Doppler

shift of absorption and emission lines from stars and gas.

For a spherically symmetric matter distribution, the rotational speed de-

pends on R as

vc(R) =

√
GM(< R)

R
, (1.34)

where M(< R) is the total mass enclosed within a radius R. Therefore, if

one only considers the visible mass, the rotation curve would be expected

to decrease as vc(R) ∝ R−1/2 at radii significantly larger than where the

visible mass is concentrated.

Rubin & Ford [29] studied the rotation curve M31 and found that it is

flattened at large radii. Observations of other galaxies showed a similar

flattening of the rotation curve at large radii [30–33]. The simplest expla-

nation for these observations is that there is some source of invisible mass

in a halo that extends to significantly larger radii than the visible matter,

and which significantly outweighs the visible matter.
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Galaxy clusters

Galaxy clusters, which are the largest gravitationally bound structures

in the Universe, provide several sources of evidence for the existence of

dark matter. Observations indicating the need for dark matter began with

Zwicky [34], who in 1933 noted the large velocity dispersion of galaxies

within the Coma Cluster. He found that the mass of visible matter in the

Coma cluster was insufficient to explain the observed velocity dispersion of

galaxies, indicating the need for a source of non-visible mass.

X-ray observations provide additional evidence that galaxy clusters contain

a large amount of non-baryonic dark matter. The intracluster medium con-

sists of hot gas, which produces X-rays through bremsstrahlung and line

emission. The X-ray spectrum can be used to calculate the dependence

of the gas temperature and density with radius (from the cluster centre),

which can be used to determine the cluster mass (see Refs. [35, 36] for

reviews of the determination of galaxy cluster masses from X-ray obser-

vations). The observed gas temperature is too high to be explained when

including only the visible mass in galaxy clusters.

Observations of merging galaxy clusters provide some of the most striking

evidence for dark matter. During a cluster merger, galaxies (which behave

as collisionless particles) essentially pass through one another, while the

hot X-ray emitting gas experiences pressure and lags behind. The distri-

bution of mass can be mapped by measuring the distortion of images of

background galaxies caused by the gravitational deflection of light. Since

the gas (rather than galaxies) makes up most of the baryonic mass of the

clusters, in the absence of a substantial dark matter component, one would

expect the total matter distribution to approximately follow the distribu-

tion of gas. Observations of the Bullet Cluster [37, 38] and other merging
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galaxy clusters [39–41] show that the total mass distribution follows the

distribution of the galaxies. This indicates that most of the mass of the

clusters is made up of an invisible matter component that is essentially

collisionless (requiring it to have weak non-gravitational interactions with

itself or baryonic matter).

Cosmic microwave background

Anisotropies in the CMB temperature provide the most precise measure-

ments of the abundance of dark matter. These anisotropies can be analysed

statistically by measuring the correlation between the temperature fluctua-

tions in different regions as a function of their angular separation, to obtain

the angular power spectrum.

Prior to recombination and decoupling, photons and baryons were tightly

coupled, forming a ‘photon-baryon fluid’. Peaks in the angular power spec-

trum arise as a result of oscillations in this medium. Since dark matter has

very weak (if any) non-gravitational interactions with itself or other parti-

cle species, after matter-radiation equality overdensities in the dark matter

distribution could grow and formed gravitational wells. In the gravitational

wells produced by the dark matter, the photon-baryon fluid was compressed

by gravity, until radiation pressure became sufficient to resist further col-

lapse, producing a spherical sound wave that expanded outwards. The

peaks in the CMB angular power spectrum correspond to different num-

bers of compressions and rarefactions. The first (highest) peak corresponds

to a region of plasma that had compressed once prior to decoupling, the

second peak to a region of plasma that underwent one compression and one

rarefaction, and so on.

The fraction of the Universe’s density in baryons, Ωb, affects the relative
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heights of odd and even peaks, while the total matter density Ωm determines

the overall heights of the peaks. Planck observations of CMB anisotropies

find [4]

Ωm ≈ 0.31, Ωb ≈ 0.05. (1.35)

This value of Ωb is consistent with the value measured independently from

the abundance of light elements (see Sec. 1.1.2), and is substantially smaller

than Ωm, indicating the need for a dark matter component making up most

of the Universe’s non-relativistic matter.

Large-scale structure

The existence of structures such as galaxies in the Universe today provides

indirect evidence for the existence of dark matter. Baryons are tightly cou-

pled to photons before decoupling. Therefore overdensities in the baryon

density can only grow after decoupling. At decoupling, the baryon den-

sity fluctuations are proportional to the temperature fluctuations in the

CMB, which are observed to be of order ∆T/T ∼ 10−5. Without dark

matter, the subsequent growth of baryonic density fluctuations would not

be sufficient to form non-linear structures such as galaxies by the present

day. Viewed another way, for baryons alone to form galaxies by today

would require larger baryonic density fluctuations at decoupling and there-

fore larger temperature fluctuations in the CMB (of order ∆T/T ∼ 10−4)

than observed. On sub-horizon scales, dark matter density fluctuations

grow linearly with the scale factor from matter-radiation equality onwards.

This growth is sufficient to allow for a more rapid collapse of the baryonic

density fluctuations after decoupling and the formation of galaxies [42].

The matter density parameter has been constrained by Dark Energy Spec-

troscopic Instrument (DESI) using measurements of the baryon acous-
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tic oscillation (BAO) feature in the distribution of galaxies, quasars and

the Lyman-α forest to give Ωm = 0.295 ± 0.015 [5]. Including CMB

anisotropy measurements from Planck [4] and CMB lensing data from

Planck [43] and the Atacama Cosmology Telescope (ACT) [44–46] leads

to Ωm = 0.307± 0.005 [5].

1.2.2 The distribution of dark matter

Density profile and velocity distribution

The density profile describes the dark matter density at a distance R from

the centre of the halo, ρ(R). A simple but commonly considered density

profile is that corresponding to an isothermal sphere, ρ(R) ∝ R−2 (where

R is the distance from the halo centre). For this density profile, the mass

enclosed within a radius R behaves as M(< R) ∝ R and from Eq. (1.34)

the rotation curve vc(R) is flat.

A variation of the isothermal sphere is the cored isothermal sphere, for

which the density profile is

ρ(R) = ρ0
R2

c +R2
0

R2
c +R2

, (1.36)

where ρ0 is the local dark matter density, Rc is the core radius and R0 is

the distance of the Sun from the halo centre.

Halos from DM-only numerical simulations are often well-described by the

Navarro-Frenk-White (NFW) density profile [47]

ρ(R) =
ρ0

(R/Rs) [1 + (R/Rs)]
2 , (1.37)
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where the scale radius, Rs, is defined as the radius at which the logarithmic

derivative of ρ(R) with respect to R, d ln ρ/d lnR, equals -2.

For a given density profile, the velocity distribution, f(v), can be be deter-

mined by solving the collisionless Boltzmann equation. For an isothermal

sphere, this gives a Maxwellian distribution [48],

f(v) =
1

π3/2v3c
exp

(
−v

2

v2c

)
, (1.38)

where vc is the circular speed.

Local dark matter density and circular speed

The local dark matter density, ρ0, can be determined by either local or

global measurements. Local measurements use the motions of nearby stars

to estimate the gravitational potential close to the Sun and thereby infer

the local dark matter density. Global measurements involve fitting the

observed velocities or spatial distributions of tracers (such as stars and

gas) to a mass model of the Milky Way. From this model one can obtain

the local circular speed, vc(R0), and therefore ρ0, using a measured value of

the galactocentric distance of the Sun, R0. The values obtained generally

lie in the range ρ0 = (0.3− 0.6)GeV/cm3 (see e.g. Table 4 of Ref. [49] and

Ref. [50]).

Traditionally, the local circular speed has been taken to be vc(R0) =

220 km s−1 [51]. More recent measurements [52, 53] have obtained larger

values. Ref. [52] found vc(R0) = 240 ± 8 km s−1 using masers in star-

forming regions across the Milky Way, while Ref. [53] found vc(R0) =

229.0±0.2 km s−1 using a Jeans analysis with red giant stars used as tracers.
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Dark matter substructure

In a Universe with most of its matter made up of cold dark matter, the

growth of structure is hierarchical: small halos of dark matter form at

earlier times, and larger structures are formed from the mergers of smaller

structures. In this process, the dense inner regions of merging halos can

survive, so the resulting dark matter halos can contain a large amount

of substructure. Dark matter-only numerical simulations find ≈ 10% of

the halo mass is in substructures sufficiently large to be resolved by the

simulation [54]. This fraction is smaller in simulations which model the

effects of baryonic matter [55].

1.3 Particle Dark Matter Candidates

Aside from PBHs, most DM candidates are a species of new fundamen-

tal particle. Two of the most commonly-considered particle dark matter

candidates are weakly interacting massive particles (WIMPs) and axions,

which we briefly discuss in the following section. See Refs. [42, 56–59] for

reviews on particle dark matter.

1.3.1 Weakly Interacting Massive Particles (WIMPs)

If there exists a particle with a weak-scale self-annihilation cross-section,

its relic density from thermal freeze-out matches that required to make up

the dark matter [60]. Such particles, termed weakly interacting massive

particles (WIMPs), have a sufficiently small interaction strength to be a

viable dark matter candidate. WIMPs naturally arise from resolutions of

the gauge hierarchy problem such as supersymmetry (see e.g. Ref. [61]). Su-
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persymmetry introduces a new supersymmetric partner for each Standard

Model particle species, such that Standard Model bosons have fermionic

partner particles and vice versa. To prevent proton decay one can intro-

duce R-parity conservation, where Standard Model particles have R-parity

1 and their supersymmetric partners have R-parity −1 [62]. As a conse-

quence, the lightest supersymmetric particle is stable, making it a viable

dark matter candidate.

Direct detection experiments search for WIMP scattering off nuclei. These

require highly-sensitive, tonne-scale detectors located deep underground.

At present, leading bounds are from liquid noble gas detectors such as

LUX-ZEPLIN [63], PandaX-4T [64] and XENONnT [65]. Indirect detec-

tion approaches search for Standard Model products produced by WIMP

annihilations, such as gamma rays from dwarf galaxies [66] or the Galactic

Centre [67] and neutrinos from the Sun [68, 69].

1.3.2 Axions

Axions were first proposed in the context of the strong CP problem. The

Standard Model predicts CP violation in the strong interaction, which

would manifest as a non-vanishing neutron electric dipole moment. Ex-

perimental measurements constrain its value to be extremely small [70],

requiring a cancellation between two seemingly unrelated terms that con-

tribute to CP violation. The solution proposed by Peccei & Quinn [71, 72]

introduces a new pseudoscalar boson (the QCD axion) [73, 74] which is a

viable dark matter candidate. In addition, string theory generically pre-

dicts the existence of a large number of axion-like particles (ALPs) which

may also be viable dark matter candidates [75]. We refer to QCD axions

and ALPs collectively as ‘axions’ (see Ref. [59] for a review).
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Axion coupling to photons allows them to interconvert with photons in the

presence of a strong magnetic field. This coupling underlies searches using

haloscopes such as ADMX [76], helioscopes such as CAST [77] and light

shining through walls experiments like ALPS [78] and OSQAR [79]. Astro-

physical and cosmological observations place additional constraints on the

axion coupling to photons and other Standard Model particles. See Ref. [80]

for a comprehensive repository of constraints on axions and Ref. [81] for a

recent review of the effects of axions on astrophysical observations.

1.4 Primordial Black Holes

Primordial black holes (PBHs) may have formed from the collapse of large

density perturbations in the early Universe [82, 83]. PBHs evaporate via

Hawking radiation [84, 85], however PBHs with initial mass MPBH, i ≳

1015 g have a lifetime longer than the age of the Universe [86, 87]. PBHs are

cold and non-baryonic, and are therefore a viable dark matter candidate.

Throughout the rest of this thesis we consider the most commonly consid-

ered scenario for PBH formation: the collapse of large fluctuations (gen-

erated during inflation) in the radiation-dominated epoch 3. In Sec. 1.4.1,

we present approximate calculations for the conditions required to form

PBHs, their resulting mass, and the PBH abundance. In Sec. 1.4.2 we

discuss the limitations of these calculations and outline more realistic ap-

proaches. We briefly overview inflationary models for producing PBHs in

Sec. 1.4.3 before discussing PBH clustering in Sec. 1.4.4. In Sec. 1.4.5, we

review observational constraints on PBHs.

3Other proposed formation mechanisms include the collapse of cosmic string
loops [88, 89] and collisions between bubbles generated during a first-order phase tran-
sition [90–92].
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1.4.1 A simple model for PBH formation

In the following, we present a simplified picture of PBH formation and the

requirements for PBHs to make up a significant fraction of the dark matter

today.

Threshold in the density contrast

In the following, we present an approximate calculation which provides an

order of magnitude estimate for the threshold overdensity required to form

a PBH. We discuss more accurate results from numerical simulations in

Sec. 1.4.2.

A PBH will form if a sufficiently overdense region overcomes the pres-

sure forces resisting its collapse and the region contracts to within its

Schwarzschild radius. Following Ref. [93] (see also Ref. [94], which this

calculation largely follows), we consider a spherically symmetric overdense

region with an initial radius, Ri, larger than the Hubble radius, RH ≡ 1/H,

in a spatially flat background. The overdense region evolves according to

the Friedmann equation (Eq. (1.12)) for a spatially-closed Universe with

positive curvature,

H̃2 ≡
(
1

ã

dã

dt̃

)2

=
8πG

3
ρ̃− K̃

ã2
, (1.39)

where the tilde denotes quantities in the overdense region. One can choose

the coordinates such that both the background and the overdense region

have the same expansion rate at some initial time t = t̃ = ti and the same

initial scale factor a(ti) = ã(ti). The initial density contrast, δi, can then
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be expressed as

δi ≡
ρ̃(ti)− ρ(ti)

ρ(ti)
=

K̃

(H(ti)a(ti))
2 . (1.40)

After some time, the overdense region will stop expanding. Its radius at

this time (which can be found by setting H̃ = 0 in Eq. (1.39)) is

Rc =

√
1 + δi
δi

Ri ≈ δi
−1/2Ri. (1.41)

In order for the region to continue contracting its radius must exceed the

Jeans radius, Rc > RJ ≃ cstc, where cs is the sound speed (cs = 1/
√
3 in

a radiation-dominated Universe) and tc ∼ 2ti/δi is the time at which the

overdense region stops expanding [95]. From Eq. (1.41), the condition for

collapse can be written as

cs ≲
1

2

Ri

ti
δi

1/2. (1.42)

Since the right-hand side of this inequality is independent of time one can

evaluate it at horizon crossing (Ri = 1/Hi = 2ti), which gives

δi ≥ δc ≈ c2s , (1.43)

with δc ≈ 1/3 in a radiation-dominated Universe.

The overdensity at the point of collapse is δ(tc) = (π/2)4 − 1 [95]. The

Schwarzschild radius, RS, of the overdense region is then

RS = 2GM =
8πG

3
ρ̃R3

c =
π4

16
H2R3

c =
π4

64

R3
c

t2c
∼ c2sRc, (1.44)

where M = (4π/3)ρ̃R3
c is the mass within the overdense region and we

have used H = 1/(2t) during the radiation-dominated epoch and Rc ∼ cstc.

From the time-evolution of the radius of the collapsing region [95], a black
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hole will form within one e-folding after the start of collapse.

PBH mass

The Jeans mass of the overdense region at the moment it stops expanding,

MJ, is given byMJ ≈ c3sMH, where the horizon mass, MH, is the total mass

enclosed within the Hubble radius, RH ≡ 1/H,

MH =
4π

3
R3

Hρ =
1

2GH
. (1.45)

In Eq. (1.45), we have assumed a flat Universe (ρ = ρcrit) and used Eq. (1.9)

for ρcrit. Therefore, the mass of the resulting black hole, MPBH, is of the

order of the horizon mass, MPBH ≈ αMH, where α = cs
3 ≈ 0.2 during the

radiation-dominated epoch [96]. Using Eq. (1.45) for the horizon mass, the

initial PBH mass can be approximately related to the formation time as

MPBH, i ∼ 1015α

(
ti

10−23s

)
g. (1.46)

Relation between initial and present abundance of PBHs

We now consider how the fraction of the Universe’s energy density that

collapses into PBHs at the PBH formation time, β, is related to MPBH

and the present-day PBH density parameter ΩPBH. The energy density

of PBHs behaves as non-relativistic matter, ρPBH ∝ a−3. During the

radiation-dominated era, the background density decreases as ρ ∝ a−4,

so the PBH density relative to the background density increases propor-

tional to a. Therefore, β is small even if PBHs make up all of the dark

matter today.

In the following (standard) calculation, unless specified otherwise, a sub-
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script 0 denotes a quantity evaluated at the present time and quantities

with no subscript are evaluated at the PBH formation time. The definition

of β gives

β ≡ ρPBH

ρ
=
ρPBH,0

ρ

(a0
a

)3

(1.47)

= ΩPBH

(
H0

H

)2 (a0
a

)3

, (1.48)

where ΩPBH is the (present-day) density parameter of PBHs and in the

final equality we have used the Friedmann Equation (Eq. (1.12)) and the

definition of the density parameter (Eq. (1.10)).

We consider PBHs formed during the radiation-dominated era, during

which the Friedmann equation (Eq. (1.12)) can be written

H2 =
8πG

3

ρr
ρr,0

ρr,0 =
ρr
ρr,0

ΩrH
2
0 . (1.49)

The energy density of radiation ρr ∝ g∗(T )T
4, where g∗(T ) is the number

of relativistic degrees of freedom at temperature T , so the energy density

in radiation at the PBH formation time and the present are related as

ρr
ρr,0

=
g∗
g∗,0

(
T

T0

)4

. (1.50)

The ratio of temperatures can be calculated using the conservation of en-

tropy. The entropy density s ∝ g∗,s(T )T
3, where g∗,s is the effective number

of entropy degrees of freedom. Conservation of the total entropy, S ∝ sa3,

implies

T 3
0 g∗,s(T0)a

3
0 = T 3g∗,s(T )a

3. (1.51)

In this thesis, we focus on PBHs of mass MPBH ≲ 104M⊙, which form

before electron-positron annihilation, so g∗ = g∗,s at the PBH formation
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time. Using Eqs. (1.51) and (1.50), Eq. (1.49) can therefore be written as

H2 =

(
g∗
g∗,0

)−1/3(
g∗,s(T0)

g∗,0

)4/3 (a0
a

)4

ΩrH
2
0 . (1.52)

Substituting Eq. (1.52) into Eq. (1.48) and re-arranging for ΩPBH gives

ΩPBH =

(
g∗
g∗,0

)−1/3(
g∗,s(T0)

g∗,0

)4/3 (a0
a

)
Ωrβ. (1.53)

Assuming all PBHs form at the same time and neglecting critical collapse

(see Sec. 1.4.2), all PBHs have the same initial mass MPBH, i. For the

initial mass, MPBH, i ≈ αMH is used with MH = 1/(2GH) (see Eq. (1.45)).

Additionally, it is assumed that the the present-day PBH mass, MPBH,

is the same as its initial mass, MPBH, i. This is a reasonable assumption

for PBHs of initial mass 1015 g ≲ MPBH, i ≲ 10M⊙. PBHs of initial mass

MPBH, i ≲ 1015 g lose a significant (≳ 10%) fraction of their mass over time

via Hawking radiation. Accretion onto PBHs of initial mass MPBH, i ≳

10M⊙ may cause their masses to grow by an order of magnitude or more,

though there are significant uncertainties in modelling PBH accretion [97].

The effects of critical collapse and mass loss via Hawking evaporation are

relevant to the mass function of asteroid-mass PBHs and are considered in

more detail in Chapter 3. During the radiation-dominated epoch, MPBH

can therefore be written as (using Eq. (1.52) for H)

MPBH =
α

2G

(
g∗
g∗,0

)1/6(
g∗,s(T0)

g∗,0

)−2/3(
a

a0

)2
1

(ΩrH2
0 )

1/2
. (1.54)

Re-arranging Eq. (1.54) for a0/a and substituting into Eq. (1.53) gives

ΩPBH = 4.5× 107
( g∗
106.75

)1/4 ( α

0.2

)1/2
(
MPBH

M⊙

)−1/2

β, (1.55)

where we have used g∗,0 = 3.38, g∗,s(T0) = 3.94, Ωr = 9.2 × 10−5 and
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H0 = 67.4 km s−1Mpc−1 [4].

Constraints on the abundance of PBHs are typically given in terms of the

fraction of dark matter in PBHs, fPBH ≡ ΩPBH/ΩDM. Using ΩDM = 0.26 [4],

from Eq. (1.55),

fPBH = 1.7× 108
( g∗
106.75

)1/4 ( α

0.2

)1/2
(
MPBH

M⊙

)−1/2

β. (1.56)

A simple model for the initial PBH abundance

In the simplest calculation of the PBH abundance, using Press-Schechter

theory [98], β is given by the fraction of regions of the Universe sufficiently

dense to form PBHs, multiplied by the ratio of the PBH mass to the horizon

mass,

β = 2

∫ ∞

δc

MPBH

MH

P (δ)dδ = 2α

∫ ∞

δc

P (δ)dδ, (1.57)

where P (δ) is the probability distribution of the density contrast. The

standard factor of 2 accounts for regions that are below the threshold but

which are subsumed in larger regions that are sufficiently overdense to

collapse. Assuming P (δ) is gaussian with variance σ2, the PBH abundance

is

β = αerfc

(
δc√
2σ

)
≃ 2ασ√

2πδc
exp

(
− δ2c
2σ2

)
, (1.58)

where for the second approximate equality we have assumed δc ≫ σ, which

is reasonable for values of σ that satisfy observational constraints on β.

From Eq. (1.58), we can see that the PBH abundance is exponentially

sensitive to the threshold overdensity, δc, and the width of the distribution,

σ.

To roughly estimate the lower bound on σ required for PBHs to make up a

significant fraction of the dark matter, we consider a population of PBHs
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with initial mass MPBH, i ∼ 1015 g (roughly the initial mass of a PBH with

a lifetime equal to the age of the Universe, see Sec. 1.4.5) making up all of

the dark matter. Combining Eq. (1.56) with Eq. (1.58), and assuming that

a PBH can form if the density contrast exceeds a threshold value δc ∼ 1/3,

gives a minimum value of σ ∼ 0.04, which is orders of magnitude larger

than the value on CMB scales (σ ∼ 10−5) [17].

If the primordial power spectrum were exactly scale-invariant, Pζ = A

with A = 2.1 × 10−9 given by its value on CMB scales, no PBHs would

be produced. Using Eq. (1.24) with Pδ calculated using Eqs. (1.19) and

(1.20) gives σ ∼ 10−5, so the resulting PBH abundance is negligible,

β ≈ αerfc

(
1/3√

2× 10−5

)
∼ 0.2× erfc(104) ∼ 10−6 exp

(
−109

)
. (1.59)

In order to produce a sufficient number of PBHs for them to make up a

significant fraction of the dark matter, the primordial power spectrum Pζ

has to be increased by approximately seven orders of magnitude compared

to its value on cosmological scales [99].

1.4.2 Improvements to PBH formation and abundance

calculations

PBH formation threshold

Numerical simulations show that δc depends on the shape of the energy

density profile in the overdense region [100, 101], where the average pro-

file is determined by the shape of the primordial power spectrum [102].

Ref. [101] finds a range 0.4 ≲ δc ≤ 2/3 for PBHs formed during the

radiation-dominated epoch. The value of δc is reduced during phase tran-
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sitions [103–108] and periods of particle annihilation [108, 109] due to the

temporary reduction in the equation of state parameter, leading to signifi-

cantly increased PBH production.

Ref. [110] showed that the threshold for PBH formation from an initial

spherically symmetric perturbation is universal (i.e. independent of the

shape of the energy density profile) when given in terms of the compaction

function C [111], which is defined as twice the mass excess δM in a sphere

of radius R centred at x 4,

C(x, R) = 2
δM

R
. (1.60)

The criterion for PBH formation can be expressed as the requirement that

the averaged value of the compaction within a sphere of radius rm exceeds

a threshold value Cc, where rm is the radius at which C is maximised [110].

Non-gaussianity

Since PBHs are formed from large density perturbations far into the tail of

the distribution of δ (or the compaction C), the PBH abundance is sensi-

tive to the exact form of the tail of the distribution. Therefore, deviation

from a gaussian distribution can significantly affect the abundance of PBHs

produced [112, 113].

Non-gaussianity in the tail of the distribution of ζ is expected from infla-

tionary models that form PBHs (see Sec. 1.4.3). Furthermore, δ is related

non-linearly to the curvature perturbation ζ. Therefore, even if the dis-

tribution of ζ is exactly gaussian, the distribution of δ will not be. For

the large perturbations required to form PBHs, using the linear relation in

4The original definition in Ref. [111] differs by a factor of two.
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Eq. (1.18) overpredicts the PBH abundance from a given primordial power

spectrum by orders of magnitude [114–116].

Calculation method

The PBH abundance has also been calculated using excursion-set the-

ory [117, 118], which is an improvement on Press-Schechter theory that

addresses the ‘cloud-in-cloud’ problem. This problem describes the situ-

ation when a region of mass M1 that is sufficiently overdense to form a

PBH can be embedded in a region of mass M2 > M1 that is sufficiently

overdense to collapse to form a PBH, but is counted as two separate ob-

jects. Excursion set theory addresses this problem by only considering the

largest region that is sufficiently overdense to collapse. Another approach

is peaks theory [119–121], which considers PBH formation to occur when

the maximum value of a fluctuation exceeds a threshold, rather than the

average value.

Extended mass functions

Due to near critical gravitational collapse [122], the mass of a PBH de-

pends on the amplitude, δ, of the perturbation from which it forms as well

as the horizon mass, MH: MPBH, i = kMH(δ − δc)
γ, where k and γ ≃ 0.36

are constants [123] 5. PBHs will therefore have an extended mass function

even if they all form at the same time, i.e. from a delta-function peak in

the primordial power spectrum [123–125]. In reality the primordial power

spectrum will have finite width, and PBHs will form on a range of scales.

For various inflation models (see Sec. 1.4.3) the mass functions calculated,

5The dependence of the PBH mass on the compaction function has the same power
law scaling.
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taking critical collapse into account, can be roughly approximated by a log-

normal distribution [126, 127]. Gow et al. [128] found that other functional

forms provide a better fit to the tails of the (numerically-calculated) PBH

mass functions calculated using the method from Ref. [129].

1.4.3 PBH formation from inflation

We now overview concrete inflationary models that can produce sufficiently

large fluctuations to form PBHs. Viable inflation models must produce the

correct form of the primordial power spectrum on cosmological scales, while

greatly enhancing it on smaller scales. See Ref. [130] for a recent review

of single-field and multi-field inflation models that may be able to produce

PBHs.

Single-field models

To achieve sufficient growth to form PBHs in single-field inflation models

requires violation of the slow-roll approximation [131]. Most often, one

considers a phase of ‘ultra slow-roll’ (USR) inflation [132, 133], in which

|V ′(ϕ)| ≪ |ϕ̈|, |3Hϕ̇|. In this limit, the first slow-roll parameter is small

and rapidly decreasing, ϵ ∝ a−6, while the second slow-roll parameter is

large and negative, η = −6.

The effect of quantum diffusion, in which the quantum fluctuations of a

field are larger than its classical displacement, can be significant. When

quantum diffusion dominates the dynamics of the inflaton, the tail of the

probability distribution of ζ changes from gaussian (as in the slow-roll case)

to exponential [134, 135].
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Recently, there has been an ongoing debate as to whether it is possible

to form PBHs in single-field inflation models without producing quantum

corrections which would cause perturbations on CMB scales to deviate from

their observed form (see e.g. Refs. [136–141]).

Multi-field models

An alternative scenario is that PBHs could be formed from inflation driven

by multiple fields. An example of a multi-field inflationary model with

the potential to produce PBHs is hybrid inflation with a mild waterfall

transition.

Hybrid inflation [142, 143] is a two-field inflationary model, with an inflaton

ϕ and an auxiliary field ψ. Initially, ψ is fixed and ϕ undergoes slow-roll in a

valley. Once the inflaton reaches a critical value ϕ = ϕc, the auxiliary field

falls into the true minimum of its potential (this is known as a ‘waterfall

transition’).

The duration of the waterfall transition determines whether the predictions

of hybrid inflation are consistent with CMB observations (whilst simulta-

neously providing a mechanism to produce PBHs). If the transition is too

fast the primordial power spectrum of curvature perturbations on CMB

scales has a blue tilt (i.e. the power spectrum is larger for larger k), which

is strongly ruled out by observations. If the transition is too slow then,

for values of the spectral index ns consistent with CMB observations, the

power spectrum amplitude is much larger than the observed value [144].

Ref. [145] considered the intermediate case with a mild waterfall transi-

tion. In this scenario, fluctuations on CMB scales exit the horizon while

the inflaton is slowly rolling in the valley. The change in the form of the

potential after the critical point leads to a tachyonic instability, generating
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large fluctuations. In this case the primordial power spectrum can sat-

isfy observational constraints on CMB scales whilst having a large peak at

smaller scales [145, 146].

1.4.4 PBH clustering

Clustering of PBHs can affect observational constraints. For gaussian den-

sity fluctuations, the regions sufficiently overdense to form PBHs are ran-

domly distributed in space, inevitably producing Poisson fluctuations in

the PBH distribution [118, 147, 148]. These give rise to an isocurvature

component in the PBH density field, leading to the formation of PBH

clusters shortly after matter-radiation equality [149, 150]. If the density

contrast is non-gaussian, the initial clustering of PBHs may be enhanced,

resulting in more compact PBH clusters than in the case with no initial

clustering [151–153].

1.4.5 Observational constraints

The abundance of PBHs is constrained by observations which probe a wide

range of masses (see Refs. [154–157] for recent reviews). These constraints

exclude PBHs from making all of the dark matter unless their mass lies in

the range 1017 g ≲ MPBH ≲ 1022 g, often referred to as the ‘asteroid-mass

window’. In this section, we briefly review the main sources of observational

constraints on PBHs.

Fig. 1.1 shows the constraints on fPBH (assuming all PBHs have the same

mass), produced using the PBHbounds code available from https://github.

com/bradkav/PBHbounds [154, 158]. We have changed the default con-

straints in PBHbounds (as of September 2024) to show the evaporation
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Figure 1.1: Constraints on the fraction of dark matter in PBHs, fPBH, assum-
ing all PBHs have the same mass MPBH, from PBH evaporation, microlensing,
gravitational waves (GWs), accretion and dynamical effects. For each type of
constraint, the most stringent limit is shown. This plot was produced using PB-
Hbounds [154, 158].

constraints from Refs. [159, 160] considered in Chapter 3 and to include

the microlensing constraint from highly-magnified stars from Ref. [161].

Evaporation

Black holes radiate with a temperature inversely proportional to their mass,

TBH ∝ 1/MBH [84, 85]. PBHs with an initial mass MPBH, i ≲ 5 × 1014 g

have evaporated by the present [86, 87] and so cannot constitute the DM

today, while PBHs of initial mass MPBH, i ≳ 1 × 1015g lose less than ∼

10% of their mass over their lifetimes. PBHs of mass MPBH ≲ 1017 g can

emit detectable levels of Hawking radiation, provided their abundance is

sufficiently large. The types of particle emitted and their flux depend on

the PBH temperature and therefore the PBH mass. Constraints on fPBH
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can be obtained by comparing the flux of particles emtited from PBHs with

observations (see Ref. [162] for a review of PBH evaporation constraints).

Evaporation constraints rule out fPBH = 1 for PBH masses up to a few

times 1017 g. Many evaporation constraints are quite similar to one another

and the uncertainties in the constraints are often larger than the differences

between them. Constraints on PBH dark matter arise from (approximately

in order of the maximum PBH mass for which fPBH = 1 is excluded)

limits on PBH neutrino emission from Super-Kamiokande [163–165], CMB

anisotropies [166–169], measurements of the flux of electrons and positrons

by Voyager 1 [159, 170] and AMS-02 [171], the extragalactic gamma-ray

background [156, 160, 163, 172], the 511 keV line [164, 170, 173, 174]

and MeV gamma-rays from the Galactic Centre [170, 175, 176]. The 21

cm signal detected by EDGES has been used to constrain fPBH < 1 for

MPBH ≲ (1 − 3) × 1017 g [169, 177], however the EDGES detection has

not been verified by the SARAS-3 experiment [178, 179]. Constraints have

also been placed on PBHs with initial masses MPBH, i ≲ 5 × 1014 g that

have evaporated by today and so cannot constitute the DM (which are also

covered in Ref. [162]).

Provided the contribution to the flux from astrophysical sources is well-

understood, evaporation constraints can be tightened by subtracting their

contribution. Ref. [180] finds constraints from the extragalactic gamma-

ray background are tightened by ∼ 2 orders of magnitude when accounting

for gamma-ray emission from star forming galaxies and active galactic nu-

clei, while constraints from Voyager 1 become more stringent by more than

an order of magnitude at MPBH ≲ 1016 g (and by a smaller amount at

larger masses) when subtracting the e± flux from pulsar wind nebulae and

supernova remnants [159]. Refs. [160, 181] used a template fit, which ac-

counts for the spatial distribution of the gamma-ray flux expected from
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astrophysical sources and dark matter, to obtain tighter constraints from

observations of MeV gamma rays. By isolating the gamma-ray flux from

a component following an NFW profile (as expected for the dark matter),

they find fPBH < 1 for PBHs of mass MPBH ≲ (3− 4)× 1017 g.

Microlensing

Microlensing is a form of strong gravitational lensing in which the sepa-

ration between the images produced by the lensing object is too small for

the images to be resolved separately. Due to the relative motion of the

lens and the source, the lensing effect appears as a temporary (achromatic)

brightening of the source [182]. Since the 1990s, surveys have searched for

stellar microlensing events due to compact objects (such as PBHs) in the

dark matter halos of the Milky Way and other nearby galaxies. The typical

duration of a microlensing event scales with the mass of the lensing object,

Mlens, as M
1/2
lens, so the range of lens masses a survey is sensitive to depends

on the cadence and total duration of the survey.

The results of these surveys suggest that PBHs with masses 10−11M⊙ ≲

MPBH ≲ 104M⊙ cannot constitute all of the dark matter. Observations of

stars in M31 by Subaru-HSC constrain PBHs of up to planetary masses

(10−11M⊙ ≲ MPBH ≲ 10−6M⊙) [183]. The OGLE Galactic Bulge sur-

vey has ruled out fPBH = 1 for PBHs of planetary to stellar masses (up

to MPBH ∼ 10−1M⊙) [184]. Surveys of the Large and Small Magellanic

Clouds by MACHO [185], EROS [186] and OGLE [187] have constrained

the mass range 10−7M⊙ ≲ MPBH ≲ 104M⊙. The most recent OGLE re-

sults, which appear in Ref. [187], were released after the work in Chapter 2

was published, so the constraints they obtained are not considered in that

chapter.

40



1.4. PRIMORDIAL BLACK HOLES

These constraints are subject to uncertainties in the modelling of PBHs

and in the distribution of DM. Uncertainties in the DM density profile

and velocity distribution lead to an order of magnitude uncertainty in the

largest PBH mass constrained by stellar microlensing and a factor of O(2−

3) uncertainty in the strength of the constraint at a given PBH mass [188–

191]. The constraints discussed above assume PBHs are unclustered and

have a single mass. We investigate the effect of clustering (for PBHs formed

from the collapse of large gaussian density fluctuations) in Chapter 2.

There are also observational challenges. Microlensing events can be caused

by lenses of astrophysical origin, such as planets, main-sequence stars and

stellar remnants (e.g. neutron stars, white dwarfs and black holes of as-

trophysical origin) [184]. Microlensing surveys designed to constrain PBH

DM are usually directed towards sources away from the Galactic disk (such

as the Magellanic Clouds and M31) to minimise this contribution. There

is also a contribution from ‘self-lensing’, which describes microlensing by

stars in the source galaxy. Additionally, due to the limited resolution of

telescopes, multiple individual stars may appear as a single object, an effect

known as ‘blending’. If only one of the stars in the object is lensed, the

change in the brightness of the lensed star will appear smaller due to the

additional flux from the other star(s) in the object, making it more difficult

to detect microlensing events.

Microlensing can also constrain the abundance of PBHs on cosmological

scales. Quasars can be multiple-imaged due to strong lensing by galaxy

clusters. Stars and other compact objects such as black holes can then

temporarily magnify one of the images [192, 193]. Ref. [194] used optical

observations of quasar image pairs to constrain fPBH ≲ 10−2 for M⊙ ≲

MPBH ≲ 102M⊙. Ref. [195] used X-ray observations of quasars to probe

smaller PBH masses, finding a constraint fPBH < 1 for 10−3M⊙ ≲MPBH ≲
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10−1M⊙. The mass range 10−1 ≲MPBH ≲M⊙ is not constrained since this

method cannot distinguish BHs in this mass range from stars.

Stars that pass close to caustics (regions where the magnification becomes

extremely large) of a lensing galaxy cluster can be magnified by a factor

of ∼ 1000. This allows stars at cosmological distances to be temporarily

detected [196, 197]. Stars and other compact objects distort the smooth

caustic produced by the cluster into a corrugated network of lines with an

angular width proportional to their surface density. Compared to the case

of a smooth lens, highly-magnified images can appear over a larger area,

though the maximum image magnification is reduced [198–200]. Ref. [161]

found that the positions of images of 9 highly-magnified stars can be ex-

plained by the known stellar population which contributes to the intra-

cluster light, leading to a constraint that PBHs of mass MPBH ≳ 10−6M⊙

cannot make up more than ≈ 3% of the DM.

Weaker constraints come from observations of type-1a supernovae. The

presence of PBHs would shift the distribution of supernova magnifica-

tions to smaller values and give rise to a tail at large magnifications [201].

Ref. [202] found that observations of type-1a supernovae do not allow PBHs

of mass MPBH ≲ 0.4M⊙ to make up more than ∼ 40% of the DM. How-

ever, Ref. [203] has argued that these constraints are too stringent since

they were obtained assuming overly-narrow cosmological priors and that

the supernova sizes were underestimated.

Gravitational waves

If two PBHs form sufficiently close to one another, they will decouple from

the Hubble expansion due to their mutual gravitational attraction. A third

PBH can induce a tidal force, preventing a head-on collision, in which
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case the PBH pair forms a highly eccentric binary. If these binaries are

not subsequently disrupted, the PBHs lose orbital energy by gravitational

wave (GW) emission and eventually merge [204, 205]. If all the DM was

in PBHs of mass 0.1M⊙ ≲ MPBH ≲ 300M⊙, the present-day merger rate

of these early-forming binaries would be larger than that inferred from

LIGO/Virgo/KAGRA (LVK) by an order of magnitude or more [206–209].

Recently, Ref. [209] constrained the PBH abundance using data from the

third observation run (O3a) of LVK. They considered a variety of PBH

mass functions, finding a constraint fPBH ≲ 10−3 for MPBH ∼ (1− 300)M⊙

in all cases. They calculated the constraint assuming gaussian curvature

perturbations, and also for the probability distributions of ζ obtained from

ultra slow-roll inflation and the curvaton model (a multi-field inflationary

model), finding the constraints do not change significantly compared to

the gaussian case. Ref. [210] searched for mergers involving one or more

subsolar-mass BHs (which must be of primordial origin) in LVK O3a data.

They found no candidate merger events, leading to a constraint fPBH < 1

for PBHs of mass 2 × 10−3M⊙ ≲ MPBH ≲ 10−2M⊙ for equal-mass PBH

binaries. PBH binaries can also form at late times, by dynamical capture

in DM substructures [211, 212] or three-body interactions [213], though the

contribution to the present-day merger rate from late-forming binaries is

subdominant compared to early-forming binaries [213, 214]. Merging PBHs

which produce GW signals too weak to be resolved individually contribute

to a stochastic gravitational wave background. The non-observation of

such a background by LIGO/Virgo/KAGRA [215] leads to a constraint

fPBH ≲ 0.1 for 0.1M⊙ ≲MPBH ≲ 103M⊙ [208, 216].

As discussed in Sec. 1.4.4, initially Poisson-distributed PBHs form clusters

shortly after matter-radiation equality. A PBH binary in a cluster may be

perturbed by the presence of surrounding PBHs [217], modifying the semi-
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major axis and eccentricity of the binary. These effects tend to increase

the merger timescale and suppress the present-day merger rate [218–220].

Refs. [221, 222] find that strong initial clustering of PBHs may increase

the PBH merger rate and tighten constraints, while Ref. [223] comes to the

opposite conclusion.

When PBHs do not make up all of the DM, particle DM halos will form

around PBHs [224, 225]. Refs. [207, 226] found the presence of particle

DM halos typically increases PBH merger rates by less than an order of

magnitude. However, Ref. [227] found that particle DM halos may increase

or decrease the merger rate by many orders of magnitude, depending on

the PBH mass function and whether the steep particle DM ‘spike’ at the

centre of the halo persists throughout the merger process.

Accretion

PBHs of masses MPBH ≳ (1 − 10)M⊙ are constrained by the radiation

emitted as gas accretes onto them. In the early Universe, the emitted ra-

diation would affect recombination, allowing constraints to be placed from

observations of CMB anisotropies [228, 229]. Ref. [230] obtained a con-

straint by requiring that the radiation from accreting PBHs does not heat

gas more than allowed by the 21 cm signal detected by EDGES (though, as

mentioned in the discussion on evaporation constraints, the EDGES signal

has not been verified by other observations [179]). At late times, accretion

onto PBHs would give rise to detectable radio and X-ray emission [231,

232], leading to a constraint fPBH ≲ 10−3 for MPBH ∼ (30− 100)M⊙ from

Chandra and the VLA survey of the Galactic Centre [232]. Ref. [233] used

the number density of X-ray binaries to constrain fPBH < 1 for PBHs of

mass 3M⊙ ≲ MPBH ≲ 107M⊙. Requiring that gas in the Leo T dwarf
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galaxy is not excessively heated by radiation produced during accretion

onto PBHs (and dynamical heating due to PBHs) rules out fPBH = 1 for

PBHs of mass MPBH ∼ (1− 107)M⊙ [234, 235].

There are large theoretical uncertainties in the modelling of PBH accre-

tion, and hence substantial variation between constraints claimed in the

literature. Accounting for the formation of an accretion disk around PBHs

strengthens constraints by around two orders of magnitude [236], and the

impact of winds and/or jets leads to order of magnitude or greater uncer-

tainties on constraints [237] (see also Ref. [238]). Ref. [239] has argued

that accounting for ionisation of gas around the PBH relaxes constraints,

though Ref. [240] finds limits comparable to those that do not include ion-

isation. PBH clustering (for initially Poisson-distributed PBHs) has only

a small effect on CMB accretion constraints [150, 241]. Refs. [228, 242]

found that accounting for the presence of particle DM halos around PBHs

when fPBH < 1 can significantly increase the accretion rate and tighten

constraints, though Ref. [240] finds that when considering a more realis-

tic PBH accretion model particle DM halos have only a small effect on

constraints.

Dynamical constraints

Encounters in a system consisting of two populations of objects with dif-

ferent masses cause the kinetic energies of each population to become more

equal. In a dwarf galaxy consisting of stars and more massive compact ob-

jects (such as PBHs), the result is that the stellar component expands while

the compact objects move towards the centre of the dwarf galaxy. Observa-

tions of the half-light radii of ultra-faint dwarf galaxies constrain fPBH < 1

for PBHs of mass MPBH ≳ 10M⊙ [243, 244], with the limit tightening to
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fPBH ≲ 10−3 at MPBH ∼ 104M⊙ [244]. There may also be constraints from

the survival of the star cluster at the centre of the dwarf galaxy Eridanus

II [243] and the lack of a ring feature in Segue I, which Ref. [245] pre-

dicted would be generated by PBHs of mass MPBH ≳ M⊙ (though such a

feature has not been observed in numerical simulations [246]). Ref. [247]

performed numerical simulations including PBHs of a single mass and with

a lognormal mass function, finding that fPBH = 1 appears to be ruled out

for MPBH ∼ O(1− 100)M⊙ in both cases.

Due to their low binding energies, wide stellar binaries can be easily dis-

rupted by compact objects [248], so the survival of wide binaries in the

Milky Way places constraints on the abundance of PBHs [249]. These con-

straints are very sensitive to the widest binaries in a sample, and one must

confirm that candidate binaries actually consist of gravitationally bound

stars using radial velocity measurements [250]. Ref. [251] found fPBH ≲ 0.1

for MPBH ≳ 70M⊙, weakening with decreasing mass to fPBH ≲ 1 for

MPBH = 3M⊙, using the 25 wide binaries in their catalogue that spend

the most time in the Galactic halo over their lifetimes. Ref. [252] stressed

that the initial semi-major axis distribution of wide binaries must be known

in order to place constraints on PBHs. Ref. [253] revisited the wide binary

constraints from Ref. [251], accounting for effects which increase the appar-

ent number of wide binaries for a given number of compact objects and us-

ing an initial semi-major axis distribution motivated by simulations of wide

binary formation during the dissolution of star clusters. They find signifi-

cantly weaker constraints than Ref. [251]: fPBH < 0.3 for MPBH ≳ 103M⊙,

weakening with decreasing MPBH to fPBH < 1 for MPBH ≈ 300M⊙.
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Indirect constraints

Constraints on the primordial power spectrum indirectly constrain PBHs

formed from the collapse of large overdensities. When translated to a con-

straint on fPBH, these indirect constraints are subject to large uncertainties

in calculating the PBH abundance from a given primordial power spec-

trum [99, 254].

The dissipation of overdense regions (arising from having significant power

in the primordial power spectrum on scales smaller than those probed by

CMB observations) can drive matter and radiation out of equilibrium in the

early Universe, giving rise to spectral distortions in the CMB that have been

constrained by COBE/FIRAS [12]. Refs. [255, 256] found COBE/FIRAS

observations exclude fPBH = 1 for MPBH ≳ 104M⊙. Constraints may be

significantly weakened if the curvature perturbation distribution is highly

non-gaussian [257–259].

Curvature perturbations inevitably generate gravitational waves upon en-

tering the horizon after the end of inflation [260–262]. These are known

as ‘scalar-induced gravitational waves’ (SIGWs). PBHs formed from the

collapse of large density perturbations are therefore constrained by limits

on the stochastic gravitational wave background [263]. Ref. [264] found a

constraint fPBH < 1 for 10−1M⊙ ≲MPBH ≲ 103M⊙ using the 15-year data

release from NANOGrav [265, 266]. The constraint depends on the shape

of the primordial power spectrum and is weakened in the presence of large

non-gaussianity in the curvature perturbation distribution.

Another indirect probe comes from the effect of enhanced power in the pri-

mordial power spectrum on the freeze-out value of the neutron-proton ratio

at the start of nucleosynthesis, which constrains fPBH < 1 for 103M⊙ ≲
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MPBH ≲ 105M⊙ [267]. Additionally, Poisson fluctuations in the PBH num-

ber density give rise to an enhancement in the primordial power spectrum

above that expected in the standard cold DM scenario which can be probed

using Lyman-α observations [149], leading to a constraint fPBHMPBH ≲

60M⊙ [268].

As mentioned above, when PBHs do not form all of the dark matter, they

seed the formation of particle DM halos with steep density profiles. If

the rest of the DM is made up of WIMPs, they will annihilate in the

dense inner regions of these halos. For many WIMP models, the flux of

gamma rays produced from annihilation around PBHs of mass MPBH ≳

10−6M⊙ would be in tension with the observed level of the extragalactic

gamma-ray background and CMB observations unless the PBH abundance

is very small. This rules out scenarios in which PBHs and WIMPs can both

constitute non-negligible fractions of the DM for a wide range of WIMP

models [225, 269, 270].

The asteroid-mass window

Currently, there are no observational constraints on PBHs in the mass

range 1017 g ≲MPBH ≲ 1022 g, often known as the ‘asteroid-mass window’.

A number of methods have been proposed to constrain this mass range.

An asteroid-mass PBHs passing through a neutron star may be captured

by dynamical friction, after which the PBH rapidly accretes the material of

the neutron star and destroys it [271, 272]. Ref. [271] placed a limit from

the survival of neutron stars in globular clusters, which requires globular

clusters to have high dark matter densities. It is thought that most globular

clusters contain little dark matter [272] so in fact there is no constraint from

neutron star survival [273]. The transit of a PBH through a white dwarf
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may trigger runaway nuclear fusion and destroy the white dwarf [274].

The survival of white dwarfs is no longer believed to place a constraint on

fPBH [273], though limits may be placed if white dwarf destruction by a

PBH produces a visible explosion [273]. Ref. [275] has noted the existence

of a population of faint calcium-rich supernovae believed to originate from

white dwarf explosions, which have an unusual spatial distribution (far

from their presumed host galaxies), and suggested they might be caused

by PBHs of mass MPBH ≳ 1021 g. Ref. [276] proposed that PBH capture

during the formation of main-sequence stars could occur at a sufficient rate

to constrain PBHs of mass 1018 g ≲ MPBH ≲ 1022 g from the survival of

stars in dwarf galaxies, though this depends on the maximum fraction of

stars that can be destroyed (which has not yet been estimated).

Asteroid-mass PBHs could also be detected by gravitational lensing of

gamma-ray bursts (GRBs). Lensing could be detected as fringes in the

GRB frequency spectrum, which arise from interference between different

unresolved images that travel different path lengths and experience different

gravitational potentials (an effect known as ‘femtolensing’) [277]. Ref. [278]

used the absence of femtolensing of GRBs detected by the Fermi Gamma-

ray Burst Monitor to constrain fPBH < 1 for 5 × 1017 g ≲ MPBH ≲ 1020 g,

though these constraints are removed when accounting for the finite size

of the GRBs [279]. Another proposal is GRB microlensing parallax: two

observers viewing a GRB will record the same flux in the absence of lensing

(since GRBs occur at cosmological distances), while for a lensed GRB each

observer would record a different flux [280–282].

Other proposed methods of constraining (or detecting) asteroid-mass PBHs

include microlensing of X-ray pulsars [283, 284] and the effect on the dis-

tances between planets in the inner Solar System [285] and the orbits of

satellites [286].
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Constraints on PBHs with extended mass functions

For an extended mass function, constraints are ‘smeared out’. For each

constraint the tightest limit on fPBH is weakened, while when consider-

ing multiple constraints the windows between constraints are narrowed or

closed [126, 287, 288]. Ref. [287] presented a method to calculate extended

MF constraints from a constraint calculated assuming all PBHs have the

same mass (see also Ref. [289] for a similar approach) which we apply in

Chapter 3. As emphasised in Ref. [287], this method has a number of

caveats. For instance, the mass function may depend on position due to

mass segregation (relevant for dynamical constraints from ultra-faint dwarf

galaxies) and time (due to PBH mergers, accretion and evaporation). We

explore the last of these caveats further in Chapter 3, since it is relevant

when considering evaporation constraints on PBHs with extended mass

functions.

1.5 Conclusions

We have reviewed the strong and varied evidence for the existence of dark

matter and discussed its distribution. Most often, dark matter has been

assumed to be a form of undiscovered particle species. In the absence of

observational evidence for these particle dark matter candidates, primor-

dial black holes (PBHs) have been considered as an alternative. We have

discussed the formation of PBHs (from the collapse of large fluctuations in

the radiation-dominated epoch), their abundance and observational con-

straints, which (taken at face value) rule out PBHs making up all of the

dark matter except for PBHs of mass 1017 g ≲MPBH ≲ 1022 g, often known

as the ‘asteroid-mass window’.
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These constraints are calculated making various assumptions about the

mass and spatial distribution of PBHs. Constraints on the PBH abundance

are usually calculated assuming they are smoothly distributed. However,

PBHs are expected to form clusters shortly after matter-radiation equality

even if they are not strongly clustered at formation. We consider the effect

of clustering on microlensing constraints in Chapter 2. Another common

assumption is that all PBHs have the same mass, though due to near-

critical collapse, PBHs will form with an extended range of masses even

if they all form at the same time. We investigate whether the asteroid-

mass window remains open when considering constraints calculated using

realistic extended mass functions in Chapter 3.
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Chapter 2

Microlensing Constraints on

Clustered Primordial Black

Holes

2.1 Introduction

Stellar microlensing is the temporary magnification of a star that occurs

when a compact object passes close to the line of sight to the star. Various

microlensing surveys have placed tight constraints on PBHs (see Sec. 1.4.5),

which if taken at face value exclude PBHs of mass 10−11M⊙ ≲ MPBH ≲

104M⊙ from making up all of the dark matter. These constraints have been

obtained assuming that the DM is smoothly distributed.

In this chapter, we assume PBHs are formed from the collapse of large gaus-

sian density fluctuations generated by inflation. As discussed in Sec. 1.4.4,

in this scenario, PBHs form at randomly-distributed points in space [118,

147, 148]. The resulting Poisson fluctuations in the initial distribution
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of PBHs leads to clusters of PBHs forming shortly after matter-radiation

equality [149, 150]. Refs. [109, 191, 290] have argued that clustering leads

to microlensing constraints being shifted to smaller masses or evaded en-

tirely, allowing PBHs of multiple Solar masses to make up all of the DM.

These studies assumed that PBH clusters are sufficiently compact that the

cluster as a whole acts as a single lens.

In this chapter, we investigate the effect of PBH clustering on stellar mi-

crolensing constraints, for PBHs formed from the collapse of large gaussian

density fluctuations. In Sec. 2.2 we discuss the properties of the clusters.

In Sec. 2.3, we outline the calculation of the microlensing differential event

rate for smoothly-distributed DM (Sec. 2.3.1), the microlensing behaviour

of PBHs in clusters (Sec. 2.3.2) and the calculation of the microlensing

differential event rate for clustered DM (Sec. 2.3.3). We present our results

in Sec. 2.4 and conclude in Sec. 2.5.

2.2 PBH Cluster Properties

Ref. [218] used the spherical collapse model (see Sec. 1.1.4) to calculate

the properties of PBH clusters for PBHs formed from the collapse of large

gaussian density fluctuations generated by inflation, assuming all PBHs

have the same mass MPBH. The initial (Poisson) fluctuation in the number

of PBHs in a volume containing N PBHs on average is δ(N) = 1/
√
N . The

growth of these isocurvature fluctuations is proportional to [150]

D(a) ≈
(
1 +

3

2

a

aeq

)
, (2.1)

where aeq is the scale factor at matter-radiation equality.
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In the spherical collapse model, a virialised cluster of PBHs forms at a scale

factor acoll when the linear solution for the overdensity reaches a critical

value D(acoll)δ(N) = δc, where δc ≈ 1.69 1. From Eq. (2.1), acoll is given

by

acoll ≈
2

3

(
δc
√
N − 1

)
aeq. (2.2)

The final density of the cluster is approximately ρcl ≈ 178ρDM(acoll), where

ρDM is the average background DM density. Using ρDM ∝ a−3, ρcl can be

written as

ρcl(acoll) ≈ 178ρDM,0

(
acoll
a0

)−3

(2.3)

≈ 178× 3H2
0ΩDM

8πG

(
acoll
aeq

)−3(
aeq
a0

)−3

, (2.4)

where in the second equality we have written the present DM density

ρDM,0 = ΩDMρc,0 and we used the Friedmann equation (Eq. (1.12)) to

rewrite the present value of the critical density ρc,0. Using acoll/aeq from

Eq. (2.2), aeq/a0 from Eq. (1.13), H0 = 67.4 km s−1Mpc−1 and ΩDM =

0.26 [4], the number density, ncl, of PBHs within a cluster consisting of Ncl

PBHs is then

ncl =
ρcl

MPBH

≈ 1.7× 105N
−3/2
cl

(
M⊙

MPBH

)
pc−3, (2.5)

where we have assumed
√
Ncl ≫ 1. The cluster radius, Rcl, can be esti-

mated, using Ncl = (4π/3)nclR
3
cl, to give

Rcl ≈ 1.1× 10−2N
5/6
cl

(
MPBH

M⊙

)1/3

pc. (2.6)

1The value of the critical overdensity is δc ≈ 1.69 only for collapse that occurs
in a matter-dominated universe. For collapse occurring shortly after matter-radiation
equality, the value of δc is slightly larger (see appendix A and Fig. 14 of Ref. [150]),
though the effect on the estimated cluster properties is small.
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The virial velocity, σcl, of PBHs within clusters is approximately given

by [218]

σcl ≈ 0.6

(
MPBH

M⊙

)1/3

N
1/12
cl km s−1. (2.7)

Numerical simulations [150] find that the number of PBH clusters contain-

ingNcl objects at a given time is well-described by the theoretical prediction

for initially Poisson-distributed objects [291]. For Ncl ≫ 1, the number of

clusters containing Ncl PBHs is [150, 291]

Ñ ∝ δ∗

N
3/2
cl

exp

(
−Ncl

N∗

)
, (2.8)

where δ∗(a) = δc/D(a) and

N∗ ≡
(
log(1 + δ∗)−

δ∗
1 + δ∗

)−1

. (2.9)

Since Ñ is a monotonically decreasing function of Ncl, clusters with small

Ncl are the most abundant at all times. However, since N∗ grows with time,

the number of clusters with large Ncl increases with time.

Clusters of small numbers of objects are unstable due to evaporation [48].

PBH clusters with Ncl ≲ 103 will have evaporated by the present [149,

218], independent of the PBH mass. Since the number of PBH clusters

with Ncl members is a monotonically decreasing function of Ncl, we expect

most clusters today to contain Ncl ∼ 103 PBHs.

2.3 Microlensing

Microlensing can be detected as a temporary achromatic magnification of

a source star. When the lens and source star are both point-like, the
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amplification is [182]

A(u) =
u2 + 2

u(u2 + 4)1/2
, (2.10)

where u is the distance of the source from the lens on the sky, in units of

the Einstein radius RE,

RE(x) = 2 [GMPBHx(1− x)L]1/2 (2.11)

≈ 10−4 pc

[(
MPBH

M⊙

)(
L

50 kpc

)
x(1− x)

]1/2
, (2.12)

whereMPBH is the mass of the lens, L is the distance of the source from the

observer (normalised to the LMC distance L ≈ 50 kpc [292]) and x is the

observer-lens distance in units of L. When the separation of the source and

the lens on the sky is no greater than RE (i.e. u ≤ 1), from Eq. (2.10) the

amplification of the source star is A ≥ 1.34. The duration of a microlensing

event is the time taken for a lens to cross the Einstein diameter 2,

t̂ = 2RE(x)/v⊥ (2.13)

≈ 300

[(
MPBH

M⊙

)(
L

50 kpc

)
x(1− x)

]1/2(
220 km s−1

v⊥

)
days, (2.14)

where v⊥ is the transverse velocity of the lens.

2.3.1 Differential event rate (smooth halo)

For a smooth DM halo consisting entirely of compact objects of mass

MPBH with a density profile ρ(x) and a Maxwellian velocity distribution

(Eq. (1.38)), the microlensing differential event rate (the rate of microlens-

2Some microlensing studies (e.g. Refs. [186, 187]) define the event duration as the
time taken to cross the Einstein radius rather than the Einstein diameter.
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ing events per source star as a function of t̂), dΓ/dt̂, is [188, 293]

dΓ

dt̂
=

32L

t̂4MPBHv4c

∫ 1

0

ρ(x)R4
E(x)e

−Q(x)dx, (2.15)

where Q(x) = 4R2
E(x)/(t̂

2v2c ) and vc = 220 km s−1 is the Milky Way circular

speed.

We adopt the standard halo model for microlensing studies (the ‘Model

S’ in Ref. [188]). In this model, the halo has a cored isothermal density

profile (Eq. (1.36)) with a local DM density ρ0 = 7.9 × 10−3M⊙ pc−3 and

a Galactic core radius Rc = 5kpc, while the Galactocentric distance of the

Sun is R0 = 8.5 kpc 3. For this model, the differential event rate can be

written as [188]

dΓ

dt̂
=

512ρ0(R
2
c +R2

0)LG
2MPBH

t̂4v2c

∫ 1

0

x2(1− x)2

A+Bx+ x2
e−Q(x)dx, (2.16)

whereA = (R2
c+R

2
0)/L

2, B = −2(R0/L) cos b cos l and (b, l) = (−32.8°, 281°)

are the galactic latitude and longitude of the LMC, respectively.

Strictly speaking, the Maxwellian velocity distribution should only be used

for a density profile of the form ρ(R) ∝ R−2 (see Sec. 1.2.2), though in

practice it is widely used with the cored isothermal profile of the standard

halo model [185, 186, 188]. This is a reasonable choice since microlensing

events of LMC stars are most likely to be caused by lenses at galactocen-

tric distances R for which (R/Rc)
2 ≫ 1, where the R-dependence of the

standard halo model density profile is well-approximated as ρ(R) ∝ R−2.

3We use these ‘traditional’ values for consistency with previous analyses of microlens-
ing surveys, though we note that more recent measurements have found different best-fit
values for some of these parameters. For example, the GRAVITY collaboration has mea-
sured a smaller value for the galactocentric distance of the Sun with a very high precision,
R0 = (8.18 ± 0.01 ± 0.02) kpc [294]. The effect of the differences from the traditional
values on the differential event rate is smaller than the uncertainty from the choice of
density profile [190, 191].
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The expected number of events, Nexp, is

Nexp = E

∫ ∞

0

ϵ(t̂)
dΓ

dt̂
dt̂, (2.17)

where E is the exposure (number of stars observed multiplied by the survey

duration), and ϵ(t̂) is the detection efficiency for events of duration t̂ (the

probability that a microlensing event of duration t̂ will be detected). The

actual number of events follows a Poisson distribution with a mean given

by Eq. (2.17) [293].

2.3.2 Microlensing behaviour of clustered PBHs

The spherical collapse model predicts the typical separation of PBHs in a

cluster, n
−1/3
cl , is much larger than the Einstein radius of a single PBH. For

instance, for Solar-mass PBHs, n
−1/3
cl ∼ 10−2N

1/2
cl pc while RE ∼ 10−4 pc.

In such diffuse clusters, each PBH behaves as an independent lens. This is

different from the compact clusters considered in Refs. [191, 290] in which

the entire cluster acts as a single lens. For large Ncl and/orMPBH, Eq. (2.6)

predicts cluster radii so large that the clusters could overlap. To avoid this

issue we follow Ref. [295] and set Rcl = 10 pc. The condition for PBHs to

act as independent lenses (n
−1/3
cl ≫ RE) is satisfied when using Rcl = 10 pc

even for the most massive clusters we consider.

We next outline some arguments about how clustering could affect mi-

crolensing by PBHs, and explain why they do not apply for PBH clusters

from the collapse of gaussian density fluctuations.

Binary PBHs Some fraction of PBHs are expected to form binaries [204,

206, 218]. If these binaries form in the early Universe and survive to
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the present, or PBHs form binaries at sufficiently late times, this presents

the possibility of PBHs causing multiple microlensing events of the same

source star while it is being observed. Since repeated variability in the

source brightness is usually attributed to intrinsic variability in the source

star, repeated microlensing events caused by PBHs in binaries may be

missed [295]. However, Ref. [295] calculated that the minimum time be-

tween lensing events from PBHs in a binary would be on the order of 100

years, much longer than the duration of any microlensing survey.

Lensing by the whole cluster Ref. [109] argued that the deflection of

light by a PBH cluster as a whole would make microlensing by individual

PBHs undetectable. However, this conclusion relies on an underestimate of

the Einstein radius. We outline their argument below, using the corrected

Einstein radius.

Light rays from a source star are deflected by an axially symmetric mass

distribution M(ξ) (where ξ is the radial coordinate perpendicular to the

line of sight from the observer to the centre of mass of the lens) by an angle

α =
4GM(ξ)

ξ
, (2.18)

where M(ξ) is the lensing mass enclosed within a cylinder of radius ξ.

Eq. (2.18) is maximised for a light ray passing at a distance ξ = Rcl from

the cluster centre. The largest deflection possible is therefore

α = 5× 10−11 Mcl

103M⊙

4 pc

Rcl

, (2.19)

where Rcl and the cluster mass, Mcl = NclMPBH, are normalised to the

approximate values for the lowest-mass PBH clusters we consider (Ncl =

103, MPBH =M⊙).
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Ref. [109] argues that l ≫ RE for Solar-mass PBHs in clusters of mass

Mcl ≳ 103M⊙, so the magnification of the star’s light due to individual

PBHs is too small to be observed. The Einstein radius they adopt for

Solar-mass PBHs (RE ∼ 10−8 pc) is much smaller than the typical value

from Eq. (2.12) of RE ∼ 10−4 pc. From Eqs. (2.12) and (2.19), we find

l

RE

≈ 0.02

(
x

1− x

)1/2(
Mcl

M⊙

)(
4 pc

Rcl

)(
L

50 kpc

)1/2(
M⊙

MPBH

)1/2

.

(2.20)

Using Eq. (2.6) for Rcl and Mcl = NclMPBH, we obtain

l

RE

≈ 0.02

(
x

1− x

)1/2(
Ncl

103

)1/6(
L

50 kpc

)1/2(
MPBH

M⊙

)1/6

. (2.21)

Therefore, l/RE ≪ 1 for what we expect to be the most common number

of PBHs per cluster cluster, Ncl ∼ 103, in the whole range of PBH masses

we consider (M⊙ ≤MPBH ≤ 103M⊙), for typical cluster distances x.

2.3.3 Differential event rate (clustered halo)

To calculate the differential event rate for clustered PBHs, we follow a

similar approach to Refs. [295–297]. We assume a fraction f 4 of DM is

in PBHs, and assume all PBHs are found in clusters containing Ncl PBHs.

As discussed in Sec. 2.2, clusters containing Ncl ≲ 103 PBHs are expected

to have evaporated by the present. Furthermore, from Eq. (2.8), small

clusters are the most abundant at formation. It is therefore likely that a

significant fraction of PBHs are unclustered today, so our results represent

an upper limit of the effect of clustering on stellar microlensing constraints.

We approximate the LMC as a circle on the sky subtending a solid angle

4The standard notation for this quantity is fPBH. In this Chapter, we adopt the
notation f to make later expressions clearer and more concise.
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ΩLMC = 84 deg2, matching the area of the LMC observed by EROS-2 [186].

The region in which PBHs can cause microlensing of LMC stars is therefore

a cone (the ‘microlensing cone’) with half-angle θ = 5.2°. The total mass of

DM within the microlensing cone, which can be calculated using Eq. (1.36)

for the standard halo model, isMcone ∼ 109M⊙. PBH clusters that lie either

fully or partially in the microlensing cone contribute to the differential event

rate. Therefore, we consider all clusters with centres lying in a region which

is centred on the microlensing cone and has radius equal to the width

of the microlensing cone plus the cluster radius at each x: Rtcone(x) =

Rcone(x) + Rcl, where Rcone(x) = xL tan θ is the width of the microlensing

cone. This region has the shape of a truncated cone.

Clustering introduces stochasticity into the spatial distribution of PBHs

and their velocities, so we use Monte Carlo simulations to determine the

differential event rate, dΓ/dt̂. First, for each pair ofMPBH and Ncl, we find

the mean number of clusters with centres in the truncated cone,

Ntcone =
fMtcone

MPBHNcl

, (2.22)

where Mtcone is the total mass of DM in the truncated cone. For each real-

isation, the actual number of clusters is drawn from a Poisson distribution

with mean Ntcone.

We generate a cluster line-of-sight distance, xcl, following a probability dis-

tribution function P (xcl) ∝ ρ(xcl)R
2
tcone(xcl) to account for the varying DM

density and width of the truncated cone along the line of sight. The cluster

radius is much smaller than the LMC distance, L = 50 kpc, or the typical

cluster distance, xclL ∼ O(10) kpc, so we approximate all PBHs within

a given cluster as having the same line-of-sight distance, xcl. The cluster

transverse velocity, v⊥,cl, is generated following a 2-dimensional Maxwellian
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distribution with vc = 220 km s−1. Since the virial velocity from Eq. (2.7)

is negligible compared to the typical cluster transverse velocity, we neglect

it and assume all PBHs within a cluster move with the cluster transverse

velocity, v⊥,cl. To calculate the fractional cross-sectional area of the cluster

lying within the microlensing cone, f̂ , we also generate a distance between

the centre of the cluster and the line-of-sight from the observer to the

LMC, assuming that the cluster centres are uniformly distributed across

the cross-section of the truncated cone at all x.

We next calculate the rate of microlensing events from each cluster. The op-

tical depth is the probability that the separation between a lens and source

star on the sky is smaller than the Einstein radius RE (see e.g. Ref. [298]).

The optical depth of a cluster, τcl, is the product of the lensing cross-section

of a PBH (πR2
E), the surface number density of PBHs in the cluster and the

fraction of the solid angle of the LMC that is covered by the cluster [297]:

τcl = (πR2
E)

Ncl

πR2
cl

Ωcl

ΩLMC

f̂ =
NclπR

2
E

x2clL
2ΩLMC

f̂ , (2.23)

where Ωcl = πR2
cl/(xclL)

2 is the solid angle subtended by the cluster. The

event rate for a given cluster, Γcl, is given by the time derivative of the

optical depth. Since all PBHs within a cluster have the same transverse

velocity v⊥,cl, the area swept out by each lens in a time dt is dAlens =

2REv⊥,cldt. The area on the sky within the Einstein radius of each lens is

Alens = πR2
E, so from Eq. (2.23),

Γcl =
dτcl
dt

=
dτcl
dAlens

dAlens

dt
(2.24)

=
2NclREv⊥,cl

x2clL
2ΩLMC

f̂ . (2.25)

Since the Einstein radius, RE, and transverse velocity, v⊥,cl, are the same
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for all PBHs in a given cluster, every PBH in a given cluster generates

events of equal duration, t̂cl = 2RE/v⊥,cl. In each realisation, we calculate

the total differential event rate, dΓ/dt̂, by binning the events (weighted by

the event rate Γcl) according to their durations.

The mean number of events from each cluster is

N̄cl = Eϵ(t̂cl)Γcl. (2.26)

The number of microlensing events from each cluster, Nobs,cl, is generated

from a Poisson distribution with mean N̄cl. The total number of events in

each realisation, Nobs, is the sum of Nobs,cl over all clusters.

2.4 Results

2.4.1 Differential event rate

We calculate the differential event rate from 104 realisations of each combi-

nation of the number of PBHs per cluster, Ncl, and the PBH mass, MPBH,

using the approach described in Sec. 2.3.3. When the PBH cluster mass

Mcl ≲ 106M⊙ (equivalently, the number of PBH clusters in the microlens-

ing cone Ncone ≳ 103), the differential event rate for each realisation has

only small stochastic deviations from the smooth DM result. When the

cluster mass Mcl ≳ 106M⊙ (equivalently, the number of clusters in the

microlensing cone is Ncone ≲ 103), most realisations have a deficit of short-

duration events, while a small number show a strong excess in the dif-

ferential event rate at small t̂. Fig. 2.1 shows several realisations of the

differential event rate, dΓ/dt̂, for clusters containing Ncl = 106 PBHs, for

PBHs with masses MPBH = M⊙ and MPBH = 10M⊙, compared to the re-
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Figure 2.1: Example realisations of the differential event rate for clustered
PBHs (blue lines) and the result for smoothly-distributed DM (black lines).
In each realisation, all clusters contain Ncl = 106 PBHs. The PBH mass is
MPBH = M⊙ (MPBH = 10 M⊙) in the left (right) column. The top two rows
show ‘typical’ realisations in which there are no clusters close to the observer,
leading to a deficit in short-duration events. The bottom row shows rare real-
isations in which a cluster close to the observer produces a high rate of short-
duration events (notice the different y-axis range shown for these cases).

sult for smoothly-distributed DM. We show two ‘typical’ realisations and

one ‘rare’ realisation for each PBH mass.

This behaviour can be understood by considering the dependence of the

Einstein radius, RE, and the width of the microlensing cone, on x. The

rare realisations all include PBH clusters at small x. They are rare because

the width of the microlensing cone is proportional to x2, so the probability

of finding a cluster close to the observer is small. Since the Einstein radius

(and therefore the event duration) is proportional to [x(1 − x)]1/2 while

the transverse velocity distribution is independent of x (for a Maxwellian
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Figure 2.2: Microlensing detection efficiency for the EROS-2 survey as a func-
tion of the Einstein diameter crossing time, t̂, for observations towards the Large
Magellanic Cloud, as shown in Fig. 11 of Ref. [186]. The efficiency used for
calculations in our model survey based on EROS-2 (and the original EROS-2
survey) observing the LMC is the efficiency shown here multiplied by a factor of
0.9 to account for binary lenses.

velocity distribution), short-duration events are typically caused by clusters

at small or large x. The event rate Γcl ∝ RE/x
2
cl, so clusters close to the

observer can cause a high rate of microlensing events, giving rise to large

peaks in the differential event rate at small t̂. Since the Einstein radius

increases with the PBH mass, the largest value of t̂ for which deviations

from the smoothly-distributed DM result appear increases with MPBH.

2.4.2 Distribution of number of observed events

We consider the probability distribution of the number of observed events

for a given fraction of DM in PBHs, P [Nobs(f)], for two model microlensing

surveys towards the LMC:

• An EROS-2-like survey, with an exposure E = 3.77 × 107 star-years
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and efficiency ϵ(t̂) from Fig. 11 of Ref. [186] (reproduced in Fig. 2.2),

multiplied by a factor of 0.9 to account for lensing by binary lenses,

which detects zero microlensing events.

• A ‘toy’ survey sensitive to long-duration events, with an exposure

E = 2.5 × 109 star-years and an efficiency given by ϵ(t̂) = 0.4 for

400 days < t̂ < 15 years and ϵ(t̂) = 0 outside this range, which also

detects zero microlensing events.

For smoothly-distributed DM, constraints on f from the EROS-2-like sur-

vey are within ∼ 10% of those found by the EROS collaboration [126].

For the ‘toy’ survey, the lower cutoff in the efficiency (at t̂ < 400 days)

corresponds to the cut chosen in Ref. [299] (which combined MACHO and

EROS-2 data to produce a survey sensitive to long-duration events) to re-

move supernovae and short-lived fluctuations in stellar brightness, and the

efficiency roughly matches the value obtained in Ref. [299]. The upper cut-

off at t̂ = 15 years approximately matches the value at which the predicted

efficiency drops off sharply in a proposed long-duration survey combining

data from EROS, MACHO and OGLE [300] 5.

In Fig. 2.3 we show the probability distribution of the number of events in

the case that all the DM is in clusters containing Ncl PBHs, P [Nobs(f = 1)],

for PBHs of mass MPBH = M⊙ in the EROS-2-like survey and PBHs of

mass MPBH = 103M⊙ in the ‘toy’ survey. Each distribution is obtained

from 104 realisations. Our results for the EROS-2-like survey are in very

good agreement with Ref. [295], which includes some effects we neglect (the

variation of the stellar surface density in the LMC and a density profile of

clusters).

5The published version of this work (Ref. [301]) incorrectly states that the choice of
of exposure approximately corresponds to that from catalogs 2-3 from Ref. [300]. The
exposure used is in fact a factor of ≈ 10 larger.
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Figure 2.3: Probability distribution of the number of observed microlens-
ing events, P [Nobs(f = 1)], assuming all the DM is made of PBHs of mass
MPBH =M⊙ (left panel) and MPBH = 103M⊙ (right panel).
Left panel: The orange, red and brown lines are obtained assuming all PBHs
are in clusters containing Ncl = 106, 107 and 108 PBHs respectively. Re-
sults are shown for the EROS-2 efficiency (solid lines) and assuming perfect
detection efficiency ϵ(t̂) = 1 for all t̂ (dotted lines). The distribution for
smoothly-distributed DM is Poissonian, with a mean observed number of events
Nexp(f = 1) = 25 (60), and is shown with a black dashed (dotted) line for the
EROS-2 efficiency (perfect efficiency).
Right panel: The green, blue and purple lines are obtained assuming all of the
DM is in clusters containing Ncl = 103, 104 and 105 PBHs respectively, for a
‘toy’ survey sensitive to long-duration events. The black dashed line shows the
Poisson distribution for smoothly-distributed DM with mean Nexp(f = 1) = 40.

ForMcl ≲ 106M⊙, the distributions P [Nobs(f = 1)] are close to the Poisson

distribution expected for smoothly-distributed DM. For larger Mcl, the

distribution deviates from Poissonian, with a peak at smaller numbers of

events and a long tail out to large numbers of events. The deviation from

a Poisson distribution is relatively small for Mcl ∼ 106M⊙ and becomes

more significant for larger cluster masses. This behaviour arises from the

deviation in the differential event rate from the smoothly-distributed DM

result at short event durations. For Mcl ≳ 106M⊙, most realisations of the

differential event rate have a deficit of short-duration events, resulting in

fewer microlensing events compared to smoothly-distributed DM. Therefore

P [Nobs(f = 1)] peaks at smaller numbers of events. The rare realisations

with a cluster at small x generate a high rate of microlensing events, giving
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rise to the long tails out to large numbers of events. In the left hand panel of

Fig. 2.3, we have also presented the results using the exposure from EROS-2

but with perfect detection efficiency (ϵ(t̂) = 1 for all t̂). The deviation from

a Poisson distribution is more pronounced when using perfect efficiency

than when using the EROS-2 efficiency from Ref. [186]. This is because

the EROS-2 efficiency is largest for events of duration t̂ ≈ 200 days, while

for Solar-mass PBHs the impact of clustering on the differential event rate

is most apparent at smaller values of t̂ where the efficiency is lower.

2.4.3 Constraints on the PBH abundance

Since both model surveys detect zero events, a 95% exclusion limit on

the fraction of DM in PBHs, f , can be obtained by finding f such that

P [Nobs(f) = 0] = 0.05. For smoothly-distributed DM, P [Nobs(f)] is Pois-

sonian, in which case

P [Nobs(f) = 0] = exp (−Nexp(f)) , (2.27)

where Nexp(f) is the mean number of expected events for a fraction of

DM in PBHs f . Since the differential event rate (Eq. (2.16)) is pro-

portional to the local DM density, ρ0, the expected number of events

(Eq. (2.17)) is proportional to f , so Nexp(f) = fNexp(f = 1). Here,

Nexp(f = 1) is the number of events expected if all of DM is in PBHs,

given by Eq. (2.17). Requiring P [Nobs(f) = 0] = 0.05 gives a 95% ex-

clusion limit f < 3.0/Nexp(f = 1) [302]. For clustered DM, P [Nobs(f)]

deviates from a Poisson distribution when Mcl ≳ 106M⊙. To calculate the

95% exclusion limit in this case, one must explicitly calculate P [Nobs(f)] for

a range of f values to find the value of f for which P [Nobs(f) = 0] = 0.05.
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For the EROS-2-like survey, assuming all PBHs are found in clusters con-

taining Ncl = 103 PBHs, the change in f from the smoothly-distributed

DM result is negligible over the entire PBH mass range constrained by this

survey. This is because the differential event rate closely approximates that

found for smoothly-distributed DM, so P [Nobs(f)] is very close to Poisso-

nian. To significantly weaken constraints on f , Ncl would need to be several

orders of magnitude larger than what is expected for PBHs formed from

the collapse of large gaussian density fluctuations.

Since the most common cluster size today is expected to be Ncl ∼ 103, the

deviation of P [Nobs(f)] from a Poisson distribution is only non-negligible

for MPBH ≳ 103M⊙, a mass range that is probed by the ‘toy’ survey. We

use Monte Carlo simulations to find the 95% exclusion limit on f in the

‘toy’ survey for MPBH = 103M⊙ (approximately the largest PBH mass

constrained in by the long-duration survey in Ref. [299]) and Ncl = 103.

We find a 95% exclusion limit f < 0.096, compared to f < 0.076 for

smoothly-distributed DM.

2.5 Conclusions

We have considered the effect of PBH clustering, for PBHs formed from

the collapse of large gaussian density fluctuations generated by inflation,

on constraints from stellar microlensing of stars in the LMC. In this PBH

formation scenario, PBHs within clusters are well-separated and therefore

act as independent lenses. We expect PBH clusters containing Ncl ∼ 103

PBHs to be most abundant, since smaller clusters will have evaporated and

larger clusters form much more rarely. We have assumed every PBH has

the same mass and that all are found in clusters containing a fixed number

69



2.5. CONCLUSIONS

of PBHs. A significant fraction of PBHs are expected to be unclustered, so

our results are an upper limit on the effects of clustering on LMC stellar

microlensing constraints.

When the total cluster mass Mcl ≲ 106M⊙, the differential event rate and

therefore the probability distribution for the total number of events is very

close to that found for smoothly-distributed DM, so clustering has a neg-

ligible effect on constraints. When the cluster mass Mcl ≳ 106M⊙, the dif-

ferential event rate deviates from that found for smoothly-distributed DM.

The probability of a cluster being close to the observer is small, so most

realisations of the differential event rate have a deficit of short-duration

events compared to the result for smoothly-distributed DM (see the top

two rows of Fig. 2.1). Rare realisations feature clusters close to the ob-

server, which can produce a high rate of short-duration events (see the

bottom row of Fig. 2.1).

As shown in Fig. 2.3, the probability distribution for the total number

of events therefore deviates from the Poisson distribution that arises for

smoothly-distributed DM. Compared to the Poisson distribution, the dis-

tribution for clustered PBHs peaks at smaller numbers of events due to

the deficit of short-duration events in most realisations of the differential

event rate, while rare realisations with an excess of short-duration events

give rise to a long tail in the probability distribution up to large numbers

of events.

Since we expect clusters containing Ncl ∼ 103 PBHs to be the most abun-

dant, the effect of clustering is only non-negligible for PBHs of massMPBH ≳

103M⊙. At the time this work was completed, the only microlensing con-

straints in this mass range were from the long-duration survey performed

in Ref. [299], which ruled out f = 1 for 10M⊙ ≲ MPBH ≲ 103M⊙ (where
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f is the fraction of DM in PBHs). By considering a model microlensing

survey sensitive to long-duration events, we find that, for MPBH = 103M⊙,

the weakening of constraints on f is only of order 10%, even if all PBHs are

in clusters. For clustering to significantly affect stellar microlensing con-

straints (for MPBH ≲ 103M⊙) therefore requires conditions not expected

for PBHs formed from the collapse of large gaussian density fluctuations:

either PBH clusters contain Ncl ≫ 103 PBHs or the clusters are compact

so the whole cluster acts as a single lens. Since this work was completed,

Ref. [303] has shown that clusters of stellar-mass PBHs that are sufficiently

compact or sufficiently massive to evade microlensing constraints are con-

strained by Lyman-α observations, so stellar-mass PBHs cannot make up

a dominant fraction of the DM.
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Chapter 3

How open is the asteroid-mass

window?

3.1 Introduction

Typically observational constraints on PBHs are calculated assuming that

PBHs have a delta-function mass function (MF). However, PBHs formed

from the collapse of large density perturbations are expected to have an

extended mass function (see Sec. 1.4.2). Due to critical collapse, the mass of

a PBH depends on both the horizon mass and the amplitude of the density

fluctuation from which it forms. Consequently even if PBHs all form at

the same time, from a narrow peak in the primordial power spectrum, they

have a range of masses [123–125]. Furthermore, the peaks in the primordial

power spectrum that are produced by concrete inflation models, for instance

hybrid inflation with a mild waterfall transition [145] (see Sec. 1.4.3), can

be broad.

With an extended PBH MF the constraints are ‘smeared out’; for each
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constraint the tightest limit on the fraction of DM in the form of PBHs,

fPBH, is weakened, however the range of peak masses 1 for which fPBH = 1 is

excluded is wider [126, 287, 288]. Refs. [126, 287, 288] calculated constraints

on PBHs with a lognormal MF, which provides a reasonable fit to the MFs

found for PBHs produced by various inflation models [126, 127]. However,

Gow et al. [128] found that the MFs they calculate are better fit by other

functions, specifically a skew-lognormal distribution and a form motivated

by critical collapse. As Gow et al. [128] mention, the shape of the low mass

tail is important when considering evaporation constraints on PBHs with

MFs which peak in the asteroid-mass window. It is important to ascertain

how the extent to which the asteroid-mass window remains open (i.e. for

what range of peak masses fPBH = 1 is allowed) depends on the shape of

the PBH MF.

We recalculate constraints on fPBH in the asteroid-mass window for the MF

fitting functions presented in Ref. [128]. Sec. 3.2 presents the constraints

we consider, the fits to the PBH MF that we use and their time evolution,

and the method for applying the constraints to extended mass functions.

We present the current and prospective future constraints on PBHs with

extended MFs in Sec. 3.3 and conclude with discussion in Sec. 3.4.

3.2 Method

In Sec. 3.2.1 we overview the (current and proposed future) evaporation and

stellar microlensing constraints that we use. In Sec. 3.2.2 we overview the

best-performing MF fitting functions from Ref. [128] and the evolution of

the MF due to evaporation, and in Sec. 3.2.3 we outline how the constraints

1Here and throughout this chapter peak mass refers to the mass at which the mass
function is maximal.
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are applied to extended mass functions.

3.2.1 Constraints on PBHs around the asteroid-mass

window

As discussed in Sec. 3.2.1, the constraints on PBHs with masses MPBH ≲

1017 g and MPBH ≳ 1022 g arise from PBH evaporation via Hawking radi-

ation (Sec. 3.2.1) and stellar microlensing (Sec. 3.2.1) respectively. The

constraints that we consider (both existing and prospective) are shown in

Fig. 3.1 for a delta-function PBH MF.

PBH evaporation

PBHs formed from the collapse of large density perturbations rapidly lose

angular momentum and charge [86, 304]. Hawking [84, 85] showed that

a non-rotating, uncharged black hole (BH) of mass MBH radiates with a

temperature

TBH =
1

8πGMBH

= 1.06

(
MBH

1016 g

)−1

MeV. (3.1)

As a result of Hawking radiation, in the absence of accretion or mergers,

the mass of a BH decreases at a rate [85, 86]

dMBH

dt
= − 1

G2

α(MBH)

M2
BH

, (3.2)

where α(MBH) parameterizes the number of particle species which can be

emitted at a significant rate from a BH of mass MBH. BHs with mass

MBH ≫ 1017 g can only emit photons and neutrinos, while those with

smaller masses (and higher temperatures) can emit other particle species,
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Figure 3.1: The constraints we use on the fraction of dark matter in PBHs,
fPBH, as a function of the PBH mass, MPBH, assuming a delta-function PBH
mass function. Current constraints are shown as solid lines and prospective
future constraints as dotted lines. The current evaporation constraints are from
Voyager 1 measurements of the local flux of electrons and positrons [159] (red)
and INTEGRAL/SPI observations of MeV gamma rays [160] (orange). The
current stellar microlensing constraints in this mass range are from Subaru-HSC
[183], as calculated in Ref. [306] (grey). The prospective future evaporation
constraints are from a MeV gamma-ray telescope [307] (light blue) while the
microlensing constraints are for a LMC white dwarf survey [308] (black).

such as electrons and positrons [86, 305]. Unstable particles emitted by

PBHs decay to stable secondary particles, such as photons and electrons.

The total emission of a given species from a PBH is the combination of

the primary (i.e. directly emitted) and secondary components. As a result

of Hawking evaporation, the PBH mass changes with time and PBHs have

a finite lifetime. Since the PBH mass is time-dependent, the PBH mass

function (MF) also evolves with time (see Sec. 3.2.2).

As discussed in Sec. 1.4.5, there are various evaporation constraints, from

different particle species and observations, calculated using different as-

sumptions, with different uncertainties. We consider two illustrative con-

straints: the INTEGRAL/SPI MeV gamma-ray limits from Ref. [160] which

tightly constrain fPBH (for a delta-function MF) for 1016 g ≲ MPBH ≲
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1017 g, and the Voyager 1 e± limits from Ref. [159] which tightly constrain

fPBH for MPBH ≲ 1016 g. As we will see in Sec. 3.3, the constraint that

rules out fPBH = 1 for the largest value of MPBH doesn’t necessarily ex-

clude fPBH = 1 for the largest peak mass for broad, extended MFs.

Ref. [160] calculates constraints from gamma rays produced by positrons

from PBH evaporation annihilating with electrons in the interstellar medium,

including the contribution from positrons that first form a positronium

bound state. We use the constraint (shown with a dashed purple line

in Fig. 1 of Ref. [160]) obtained using the INTEGRAL/SPI limit on the

flux of MeV gamma rays from a component with a Navarro-Frenk-White

(NFW) density profile (see Sec. 1.2.2) from Ref. [181]. We use the Voyager

1 e± constraint in the left panel of Fig. 2 of Ref. [159] with astrophysical

background subtraction for their propagation model A, which has strong

diffusive reacceleration.

Proposed future MeV gamma-ray telescopes have the potential to place

tighter constraints on evaporating PBHs, extending the range of masses

where fPBH = 1 is excluded to larger MPBH. As an illustrative case we

consider the projected constraints from observations towards the Galactic

Centre (assuming a NFW profile) by the proposed GECCO telescope from

Fig. 9 of Ref. [307] 2.

Microlensing

As discussed in Sec. 1.4.5 and Sec. 2.3, stellar microlensing is the temporary

amplification of a background star that occurs when a compact object

passes close to the line of sight to the star [182]. Observations of stars in

2The proposed AMEGO telescope would be able to exclude fPBH = 1 to somewhat
larger MPBH [309, 310].
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M31 by Subaru-HSC [183] have been used to constrain fPBH in the mass

range 1022 g ≲MPBH ≲ 1028 g [183, 306].

Accounting for the finite size of the source stars weakens the constraints sig-

nificantly from those calculated assuming a point-like source [273, 311]. Ad-

ditionally, for PBHs with massesMPBH ≲ 10−11M⊙ ∼ 1022 g, the Schwarzschild

radius of the PBHs is comparable to the wavelength of the light used to

observe the stars, resulting in diffraction and interference effects. Due

to these ‘wave optics’ effects, it is not possible to constrain PBHs with

MPBH ≲ 10−11M⊙ ∼ 1022 g using microlensing surveys of main-sequence

stars [273, 308]. We use the point-like lens constraint from Fig. 4 of

Ref. [306].

To minimise the finite source and wave optics effects, Ref. [308] suggests a

survey of white dwarfs in the Large Magellanic Cloud (LMC) using shorter

wavelength observations. They find such a survey could place significantly

tighter constraints on PBHs with mass MPBH ∼ 10(22−23) g. We use the

constraint from Fig. 8 of Ref. [308] that accounts for both finite source and

wave optics effects.

3.2.2 PBH mass functions and evolution

Initial mass functions

The initial PBH mass function (MF) can be defined as

ψ(MPBH, i, ti) ≡
1

ρi

dρ(MPBH, i, ti)

dMPBH, i

, (3.3)

where ρ(MPBH, i, ti) is the comoving mass density in PBHs of initial mass

MPBH, i at the time they form, ti, and ρi is the initial total comoving mass
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density of PBHs.

As discussed in Sec. 1.4.2, due to near-critical gravitational collapse [122],

PBHs will have a range of masses even if all PBHs form at the same time,

i.e. from a delta-function peak in the primordial power spectrum [123–125].

In this case the critical collapse (CC) initial MF is well approximated,

assuming the probability distribution of the amplitude of the fluctuations

is gaussian, by

ψCC(MPBH, i, ti) =
1

γMpΓ (γ + 1)

(
MPBH, i

Mp

)1/γ

× exp

[
−
(
MPBH, i

Mp

)1/γ
]
,

(3.4)

whereMp is the mass at which the MF peaks and Γ is the gamma function.

In reality the primordial power spectrum will have finite width, and PBHs

will form on a range of scales. For various inflation models the MFs calcu-

lated, taking critical collapse into account, can be roughly approximated

by a lognormal (LN) distribution [126, 127]:

ψLN(MPBH, i, ti) =
1√

2πσMPBH, i

exp

(
− ln2(MPBH, i/Mc)

2σ2

)
, (3.5)

where σ is the width and Mc is the mean of MPBH, iψLN(MPBH, i, ti). The

lognormal MF has been widely adopted as the canonical extended PBH

MF (for instance when applying observational constraints to extended mass

functions [287, 288]).

Gow et al. [128] investigated more accurate fitting functions for the initial

MF of PBHs formed from a symmetric peak in the primordial power spec-

trum. They parameterise the peak in the power spectrum of the curvature
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perturbation, Pζ(k), as lognormal,

Pζ(k) = A
1√
2π∆

exp

(
− ln2 (k/kp)

2∆2

)
, (3.6)

where A and ∆ are the amplitude and width of the peak and kp is the

comoving wavenumber at which it occurs. We have found that the broad

peak in the primordial power spectrum produced by hybrid inflation with

a mild waterfall transition [145] (see Sec. 1.4.3) is fairly well-approximated

by a lognormal with ∆ ∼ 5. Ref. [128] calculates the PBH MF numerically

as in Ref. [129], using the traditional (BBKS) peaks theory method [119]

with a modified gaussian window function 3.

Gow et al. [128, 129] find that for narrow peaks in the power spectrum,

∆ ≲ 0.3, critical collapse dominates the PBH MF; the MF is independent

of the width of the power spectrum and skewed towards low masses. For

∆ ≳ 0.5 the width of the peak becomes important. As ∆ is increased

the width of the MF increases and the skew towards low masses decreases,

and for large ∆ (the transition occurs between ∆ = 2 and 5) their MFs

are skewed towards large masses [128]. Of the fitting functions considered

in Ref. [128], the two that best reproduce this behaviour are the skew-

lognormal and generalised critical collapse functions. The skew-lognormal

(SLN) MF is a generalisation of the lognormal with non-zero skewness:

ψSLN(MPBH, i, ti) =
1√

2πσMPBH, i

exp

(
− ln2(MPBH, i/Mc)

2σ2

)
×
[
1 + erf

(
α
ln(MPBH, i/Mc)√

2σ

)]
,

(3.7)

3More recently Germani and Sheth [312] have formulated a procedure for calculating
the abundance and MF of PBHs, using the statistics of the compaction function (see
Sec. 1.4.2). They find (assuming a gaussian distribution for the perturbations) that the
low mass tail of the MF is generically (i.e. for any primordial power spectrum) a power

law, ψ(MPBH, i, ti) ∝M
1/γ
PBH, i, while at large masses there is a cut off, which depends on

the shape and amplitude of the power spectrum.
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where α controls the skewness of the MF; for negative (positive) α the MF

is skewed to low (high) masses 4. The generalised critical collapse (GCC)

MF 5 is given by

ψGCC(MPBH, i, ti) =
β

Mp

[
Γ

(
α + 1

β

)]−1(
α

β

)α+1
β

(
MPBH, i

Mp

)α

× exp

[
−α
β

(
MPBH, i

Mp

)β
]
,

(3.8)

where Mp is the mass at which the generalised critical collapse MF peaks,

and α and β are parameters that control its behaviour in the low and high-

mass tails respectively (for MPBH, i ≪ Mp, ψGCC(MPBH, i, ti) ∝ Mα
PBH, i).

The generalised critical collapse MF is a generalisation of the critical col-

lapse MF obtained assuming all PBHs form at the same time, Eq. (3.4),

which corresponds to Eq. (3.8) with α = β = 1/γ [124]. Gow et al. [128]

find that the generalised critical collapse MF is a better fit to their cal-

culated MFs than the skew-lognormal for narrow peaks (∆ ≲ 0.5) where

critical collapse dominates the PBH MF and it has negative skew, while

for broad peaks (∆ ≳ 5) the skew-lognormal is a better fit.

Ref. [128] focuses on stellar-mass PBHs. For the three fitting functions we

consider (lognormal, skew-lognormal and generalised critical collapse), we

choose values for the mass parameters (Mc or Mp) in the asteroid-mass

window. For the parameters which govern the shape of the MF (α, β

and σ), we adopt the best-fit parameter values in Table II of Ref. [128] 6,

i.e. for simplicity we assume that these parameters do not depend on the

PBH mass, or equivalently the position of the peak in the primordial power

4For consistency we use the same notation for the parameters of the fitting functions
as Gow et al. [128], however the α parameters in the skew-lognormal and generalised
critical collapse fitting functions affect their shapes in different ways.

5In Ref. [128], this is referred to as the ‘CC3’ model.
6Table II of Ref. [128] contains the best-fit parameter values for the skew-lognormal

and generalised critical collapse MFs, we are grateful to Andrew Gow for providing those
for the lognormal MF via email.
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spectrum, kp. To facilitate comparison between the constraints obtained

with different fitting functions, we present the constraints for the lognormal

and skew-lognormal MF in terms of the peak mass, i.e. the mass at which

the MF is maximal, Mp. For the lognormal, Mp =Mc exp(−σ2), while for

the skew-lognormal there is no analytic expression for Mp.

Time evolution of the mass function

The MFs presented in Sec. 3.2.2 are fits to the initial MFs calculated in

Ref. [128]. For PBHs with initial mass MPBH, i ≲ 1 × 1015 g, Hawking

evaporation leads to significant (> 10%) mass loss by the present day, and

hence the MF varies with time [163, 313–315]. Therefore for extended MFs

that are peaked at sufficiently small Mp and/or are sufficiently broad that

there is a significant abundance of PBHs with initial masses MPBH, i ≲

1× 1015 g, the time evolution of the MF should be taken into account.

To evaluate the PBH mass today at time t = t0, we follow Ref. [315] (see

also Ref. [316]) and approximate α(MPBH) as depending only on the initial

mass, α(MPBH) ≈ αeff(MPBH, i). Integrating Eq. (3.2), the PBH mass today,

MPBH(t0), can be expressed as

MPBH(t0) ≈
(
M3

PBH, i −
3αeff(MPBH, i)t0

G2

)1/3

, (3.9)

where the formation time, ti, has been set to zero since t0 ≫ ti. Here,

αeff(MPBH, i) is defined as

αeff(MPBH, i) ≡
G2M3

PBH, i

3τi
, (3.10)

where τi is the PBH lifetime (which can be calculated numerically e.g. using

BlackHawk [317, 318]). This definition ensures that the PBH lifetime is
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calculated accurately for all initial masses MPBH, i.

Using the conservation of the number of PBHs, the PBHMF today, ψ(MPBH, t0),

defined as

ψ(MPBH, t0) ≡
1

ρi

dρ(MPBH, t0)

dMPBH

, (3.11)

where ρ(MPBH, t0) is the comoving mass density in PBHs with present day

massMPBH, can be expressed in terms of the initial PBHMF, ψ(MPBH, i, ti),

defined in Eq. (3.3), as [163, 169, 315, 319]

ψ(MPBH, t0) =

(
MPBH

MPBH, i

)3

ψ(MPBH, i, ti). (3.12)

The equivalent expression in Ref. [315] contains a factor that can be written

as (MPBH/MPBH, i) squared, rather than cubed, since they are considering

number, rather than mass, densities.

3.2.3 Calculating constraints for extended MFs

We use the method introduced in Ref. [287] to apply constraints to extended

MFs (a similar method is presented in Ref. [289]). The constraint on the

fraction of dark matter in PBHs can be expressed as [287]

fPBH ≤
[∫

dMPBH
ψN(MPBH, t0)

fmax(MPBH)

]−1

, (3.13)

where fmax(MPBH) is the maximum fraction of dark matter in PBHs allowed

for a delta-function MF, and ψN(MPBH, t0) is defined as

ψN(MPBH, t0) ≡
1

ρ(t0)

dρ(MPBH, t0)

dMPBH

, (3.14)
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where ρ(t0) is the total comoving mass density in PBHs today. This defi-

nition of the MF is normalised to unity today
∫
dMPBHψN(MPBH, t0) = 1,

while the MF ψ(MPBH, t0) defined in Eq. (3.11) in Sec. 3.2.2 is not, since

the total mass in PBHs decreases with time due to evaporation. As dis-

cussed in Sec. 3.2.2 PBHs with initial mass MPBH, i ≲ 1 × 1015 g lose a

non-negligible fraction of their mass by the present day. Therefore for the

evaporation constraints the MF should be evolved to the present day using

Eq. (3.12) before calculating ψN(MPBH, t0) by renormalizing to the present

day PBH mass density.

For the evaporation constraints fmax(MPBH) decreases rapidly with decreas-

ing MPBH, as the Hawking temperature is inversely proportional to the

mass, Eq. (3.1). Consequently, for sufficiently wide MFs peaked at the

lower end of the asteroid-mass range, the contribution to Eq. (3.13) from

fmax(MPBH) at smaller masses than the constraints are publicly available

for (MPBH ≲ 1015 g for the Voyager 1 constraints [159] and MPBH < 1016 g

for the INTEGRAL/SPI MeV gamma-ray constraints [160]) may be im-

portant. At the smallest masses where constraints are publicly available,

fmax(MPBH) ∝ M q
PBH with q ≈ 2− 3 to a good approximation, and we as-

sume that the power-law form, fmax(MPBH) ∝ M q
PBH, continues to smaller

masses. We have checked that the resulting extended MF constraints do

not change significantly (by no more than a factor of a few at peak masses

where fPBH ∼ 1) if instead fmax(MPBH) becomes constant at small masses.

3.3 Results

In this section we calculate the constraints on the time-evolved lognormal,

skew-lognormal, and generalised critical collapse PBH mass functions pre-
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sented in Sec. 3.2.2, for the constraints reviewed in Sec. 3.2.1 using the

method presented in Sec. 3.2.3. We do this first for the existing limits in

Sec. 3.3.1, and then for the future prospective limits in Sec. 3.3.2. We

discuss the apparent differences in our results from previous constraints

obtained using a lognormal mass function in Sec. 3.3.3.

3.3.1 Existing constraints

Fig. 3.2 shows current constraints on the fraction of DM in PBHs, fPBH,

for the fitting functions presented in Sec. 3.2.2 for PBHs arising from a

log-normal peak in the power spectrum, Eq. (3.6), with width ∆ = 0, 2

and 5 (∆ = 0 corresponds to a delta-function peak). These values span

the range of values considered by Ref. [128]. As discussed in Sec. 3.2.1, the

constraints we consider are from INTEGRAL/SPI observations of MeV

gamma rays [160], Voyager 1 measurements of the local flux of electrons

and positrons [159], and the Subaru-HSC microlensing survey [183] as cal-

culated in Ref. [306].

As previously seen in e.g. Refs. [156, 287], compared to the delta-function

MF constraints, the tightest extended MF constraint is weakened, while

fPBH = 1 is excluded over a wider range of peak masses Mp. As antici-

pated in Ref. [128], the constraints depend on the shape of the low and

high mass tails of the MF. Nevertheless, even for the widest power spec-

trum considered, ∆ = 5, there remains a range of peak masses for which

fPBH = 1 is allowed for all three extended mass functions. Our evapora-

tion constraints for extended MFs appear closer to the delta-function MF

constraints than previously found for the lognormal MF (see e.g. Fig. 20

of Ref. [156]). As we discuss in Sec. 3.3.3, this is largely an artefact of the

lognormal MF constraints previously being plotted in terms of the parame-
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Figure 3.2: Current constraints on the fraction of dark matter in PBHs, fPBH,
as a function of the mass at which the PBH MF peaks, Mp, for PBHs formed
from a lognormal peak in the primordial power spectrum, Eq. (3.6), with width
∆ = 0 (top left), ∆ = 2 (top right) and ∆ = 5 (bottom left). Constraints for the
lognormal (LN), skew-lognormal (SLN) and generalised critical collapse (GCC)
MFs are shown with dotted, dot-dashed, and dashed lines respectively, while the
original constraints, calculated assuming a delta-function MF are shown with
solid lines. The constraints shown are from Voyager 1 measurements of the local
flux of electrons and positrons [159] (red), INTEGRAL/SPI observations of MeV
gamma rays [160] (orange), and the Subaru-HSC microlensing survey [183] as
calculated in Ref. [306] (grey). In the ∆ = 2 case, the constraints for the skew-
lognormal and generalised critical collapse MFs are indistinguishable.
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ter Mc which appears in the definition of the lognormal MF (see Eq. (3.5))

rather than the peak mass, Mp.

For small ∆ the MFs calculated in Ref. [128] are skewed towards low masses

and the best-fit lognormal underestimates the low-mass tail and overesti-

mates the fhigh-mass tail. At a givenMp, the evaporation and microlensing

constraints for a lognormal MF are therefore less and slightly more strin-

gent, respectively, than those for the better fitting skew-lognormal and

generalised critical collapse MFs. For ∆ = 0, the Voyager 1 constraint

for the generalised critical collapse MF (the best-performing function for

∆ ≲ 0.5 [128]) at a given Mp is more stringent than the constraints for

the lognormal and skew-lognormal MFs by an order of magnitude or more.

This is because the power-law tail of the generalised critical collapse MF

at low masses is much larger than the low-mass tails of the lognormal and

skew-lognormal MFs, and the constraint from Voyager 1 is especially tight

at low MPBH. The INTEGRAL/SPI MeV gamma-ray constraints for the

different extended MFs are more similar, as this constraint is relatively

weak for the range of MPBH where the differences between the MFs are

large. Since the microlensing constraints for each MF agree closely, and

the extended MF constraints from INTEGRAL/SPI observations of MeV

gamma rays are more stringent than those from Voyager 1, the range of

Mp where fPBH = 1 is allowed is fairly similar for each MF. For ∆ = 0,

for the best fitting generalised critical collapse MF, fPBH = 1 is allowed for

5 × 1017 g ≲ Mp ≲ 1 × 1022 g, a slightly narrower mass range than for the

lognormal MF.

For ∆ = 2, the MF calculated in Ref. [128] is close to symmetric, and

all three MFs provide a very good fit [128]. Therefore the constraints

for the extended MFs are very similar, with fPBH = 1 being allowed

for 6 × 1017 g ≲ Mp ≲ 3 × 1021 g. For ∆ = 5, the MF calculated in
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Ref. [128] is skewed towards large masses and the skew-lognormal MF pro-

vides a significantly better fit than the lognormal and generalised criti-

cal collapse MFs. For the skew-lognormal MF fPBH = 1 is allowed for

2 × 1018 g ≲ Mp ≲ 1 × 1019 g. The lognormal and generalised critical col-

lapse MFs over (under) estimate the MF at low (high) masses, resulting in

overly stringent evaporation (overly weak microlensing) constraints. The

range of Mp where fPBH = 1 is allowed is therefore wider and shifted to

larger Mp (compared to the better-fitting skew-lognormal MF). For ∆ = 5

the strongest evaporation constraints come from Voyager 1, even though

for a delta-function MF the INTEGRAL/SPI MeV gamma-ray constraint

excludes fPBH = 1 at larger masses than the Voyager 1 constraint (see

Fig. 3.1). This is because for ∆ = 5 the MF is sufficiently wide that it

is non-negligible in the mass range MPBH ≲ 1016 g where the Voyager 1

constraint is more stringent than the INTEGRAL/SPI MeV gamma-ray

constraint, and for the Voyager 1 constraint the integral in Eq. (3.13) is

dominated by this mass range. This highlights that for a broad MF the

tightest constraint (i.e. the constraint that rules out fPBH = 1 at the largest

peak mass) might not be the constraint which is tightest for a delta-function

MF.

For ∆ ≲ 2, the difference between the evaporation constraints calculated

using the time-evolved MF ψN(MPBH, t0) and the initial MF ψ(MPBH, i, ti)

is no more than 10%, for Mp ≳ 1017 g. For ∆ = 5, the constraints obtained

using ψN(MPBH, t0) and ψ(MPBH, i, ti) differ by no more than a factor of

two at Mp = 1017 g and less than ≈ 20% at peak masses where fPBH ∼ 1.

For broader mass functions (or for MFs peaked at smaller masses [315])

the effect on the constraints on fPBH would be larger.
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3.3.2 Prospective future constraints

Fig. 3.3 shows prospective future constraints obtained from MeV gamma-

ray telescopes [307] and a proposed microlensing survey of white dwarfs in

the LMC [308], as discussed in Sec. 3.2.1. Due to the improved sensitivity

compared to existing observations, fPBH = 1 is excluded over a wider peak

mass range than for existing constraints. In particular for the broadest

peak in the primordial power spectrum, ∆ = 5, fPBH = 1 is excluded

across the whole asteroid-mass window for all three MFs, and the maximum

allowed PBH dark matter fraction is fPBH ∼ 0.2 − 0.4. For ∆ = 5 the

current Voyager 1 constraint [159] rules out fPBH = 1 at largerMp than the

projected future MeV gamma-ray constraint that we consider, even though

the largest mass for which fPBH = 1 is excluded for a delta-function MF is

smaller for the Voyager 1 e± constraint. As for the current MeV gamma-ray

constraint, this is because the low-mass tails of the widest MFs are large

at MPBH ≲ 1016 g, where the delta-function MF constraint from Voyager 1

[159] is tighter.

3.3.3 Comparison with previous constraints for log-

normal mass function

Carr and collaborators [156, 287] have previously calculated constraints on

fPBH for a lognormal MF with width σ = 2. In Fig. 3.4, we reproduce the

evaporation and microlensing constraints shown in Fig. 20 of Ref. [156] for

a lognormal MF with width σ = 2 (as well as the original delta-function

MF constraints). Their constraints differ significantly more from the delta-

function MF constraints than is the case for the widest lognormal MF we

consider, which has σ = 1.8 [128]. In this section we outline the reasons
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Figure 3.3: Prospective future constraints on the fraction of dark matter in
PBHs, fPBH, as a function of the mass at which the PBH MF peaks, Mp, for
PBHs formed from a lognormal peak in the primordial power spectrum with width
∆ = 0 (top left), ∆ = 2 (top right) and ∆ = 5 (bottom left). The line styles
for the MFs are the same as in Fig. 3.2. The future constraints shown are from
future MeV gamma-ray telescopes (assuming a NFW profile for the Galactic DM
halo) [307] (light blue) and stellar microlensing of white dwarfs in the LMC [308]
(black). For comparison we also show the current constraints from Voyager 1
measurements of the e± flux (red) from Fig. 3.2.

for this apparent difference.

Fig. 3.5 shows the most stringent constraints on fPBH, from Voyager 1 [159],

for a lognormal MF with σ = 1.8 and σ = 2 plotted as a function of bothMc
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Figure 3.4: Constraints on the fraction of dark matter in PBHs, fPBH, from
extragalactic gamma rays as calculated in Ref. [156] (purple) and microlensing
from Subaru-HSC as calculated in Ref. [311] (blue), for a delta-function MF and
a lognormal (LN) MF with width σ = 2, as shown in Fig. 20 of Ref. [156]. The
constraints for a delta-function MF are shown with solid lines as a function of
the PBH mass MPBH. The constraints for a LN MF, Eq. (3.5), are shown as a
function of Mc (as in Fig. 20 of Ref. [156]) with dotted lines.

1016 1017 1018 1019 1020

M [g]

10−3

10−2

10−1

100

f P
B

H

Delta func.

LN (σ = 1.8), Mp

LN (σ = 2), Mp

LN (σ = 1.8), Mc

LN (σ = 2), Mc

Figure 3.5: The constraints on the fraction of dark matter in PBHs, fPBH,
from Voyager 1 measurements of the local flux of electrons and positrons [159]
for a delta-function MF and a lognormal (LN) MF. The constraint for a delta-
function MF is shown with a black solid line as a function of the PBH mass
MPBH. The constraint for the LN MF, Eq. (3.5), is shown as a function of both
Mp (red) and Mc (blue) for σ = 1.8 and 2 (solid and dotted lines respectively).
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and Mp. The main reason for the apparent difference between our results

in Fig. 3.2 and those in Fig. 20 of Ref. [156] is that the constraints appear

significantly different when plotted in terms of the peak mass, Mp, than

when plotted in terms of the parameterMc, which appears in the definition

of the lognormal MF (Eq. (3.5)). This mass parameter, Mc, is the mean of

MPBH, iψ(MPBH, i, ti) for the lognormal MF and is related to the peak mass

byMc =Mp exp(σ
2), so that for σ ≈ 2,Mc ≈ 50Mp. The peak mass better

reflects the typical mass of the PBHs, and plotting constraints in terms of

the peak mass also allows comparison with other mass functions with a

single peak. Furthermore the value for the width of the lognormal used in

Refs. [156, 287], σ = 2, is larger than that of the best fit lognormal to the

widest power spectrum considered by Gow et al. [128], σ = 1.8, and this

relatively small difference in σ leads to a significant shift in the evaporation

constraint when it is plotted as a function of Mc.

3.4 Conclusions

If the PBH mass function is a delta-function then PBHs with mass in the

asteroid-mass window, 1017 g ≲ Mp ≲ 1022 g, can make up all of the DM,

i.e. fPBH = 1. However, due to critical collapse, PBHs formed from the col-

lapse of large density perturbations are expected to have an extended MF,

even if they form from a narrow peak in the power spectrum. Refs. [156,

287] found that the range of masses for which fPBH = 1 is allowed is much

smaller for the commonly used lognormal MF than for a delta-function MF.

We have explored how constraints on fPBH in the asteroid-mass window de-

pend on the shape of the PBH MF. In addition to a lognormal MF, we use

the skew-lognormal and generalised critical collapse MFs, which Gow et

al. [128] found provided a better fit to the MFs they calculated than the
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lognormal.

We find, using the constraints from Voyager 1 measurements of the local e±

flux [159], INTEGRAL/SPI observations of MeV gamma rays [160], and

microlensing constraints from Subaru-HSC [183, 306], that the asteroid-

mass window is typically narrower (i.e. fPBH = 1 is allowed for a smaller

range of peak masses,Mp) for the better fitting MFs than for the lognormal

MF. Nevertheless, for the widest primordial power spectrum considered by

Gow et al. [128], there is still a range of Mp values (2 × 1018 g ≲ Mp ≲

1×1019 g) where fPBH = 1 is allowed for the skew-lognormal mass function,

which is the best-fitting mass function in this case.

The constraint that excludes fPBH = 1 over the widest range of PBH masses

for a delta-function MF does not always exclude fPBH = 1 for the widest

range of peak masses for extended mass functions. For instance the largest

mass for which fPBH = 1 is excluded for a delta-function MF is smaller

for the Voyager 1 e± constraint than for the MeV gamma-ray constraints

(see Fig. 3.1). However for the widest MFs we consider, the Voyager 1 con-

straint rules out fPBH = 1 at larger Mp than the current INTEGRAL/SPI

MeV gamma-ray constraint and also the projected future MeV gamma-ray

constraint that we consider. This shows that tighter constraints on PBHs

with MPBH ≲ 1016 g would be beneficial for constraining PBHs with broad

MFs.

Future gamma-ray observations will improve limits on the abundance of

PBHs with masses MPBH ≲ 5 × 1017 g, while a proposed LMC white

dwarf microlensing survey could provide tighter constraints for 5×1021 g ≲

MPBH ≲ 2 × 1023 g. Together, these constraints could potentially exclude

asteroid-mass PBHs with a broad MF making up all of the DM. However

the evaporation and microlensing constraints are sensitive to the shape of
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the low and high mass tails of the MF respectively. An accurate calcu-

lation of the shape of the tails of the MF will therefore be essential in

future for assessing whether evaporation and microlensing constraints al-

low asteroid-mass PBHs to make up all of the DM. This also demonstrates

the importance of developing new observational probes of PBHs with mass

1018 g ≲MPBH ≲ 1022 g (see Sec. 1.4.5).
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Chapter 4

Conclusions

Observations of galaxies, galaxy clusters, anisotropies in the cosmic mi-

crowave background and the growth of large-scale structure provide com-

pelling evidence for the existence of cold non-baryonic dark matter that

makes up ≈ 85% of the total matter content in the Universe. The nature

of dark matter remains a major unresolved question in cosmology. Par-

ticle dark matter candidates, such as weakly interacting massive particles

(WIMPs) and axions, have not been detected in spite of great experimental

efforts. An alternative scenario is that dark matter consists (in whole or

in part) of black holes formed in the early Universe, so-called ‘primordial

black holes’ (PBHs).

Constraints on the abundance of PBHs arise from their Hawking evapo-

ration, microlensing, gravitational waves, dynamical effects and accretion.

These constraints appear to exclude PBHs from making up all of the dark

matter unless their mass is in the range 1017 g ≲ MPBH ≲ 1022 g, often

known as the ‘asteroid-mass window’. Constraints are calculated under

various assumptions and a more realistic treatment may modify the ex-

cluded mass range. In this thesis, we recalculate constraints using more
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realistic PBH mass and spatial distributions.

In Chapter 2, we study the effect of PBH clustering on microlensing con-

straints. Previous work found that if PBHs are in clusters sufficiently

compact that each cluster acts as a single lens, constraints are shifted to

smaller masses and limits on PBHs of mass MPBH ∼ 10M⊙ may be weak-

ened or evaded. We consider the scenario that PBHs form from the collapse

of large gaussian density fluctuations generated by inflation. In this case,

Poisson noise in their initial distribution leads to the formation of PBH

clusters shortly after matter-radiation equality. We review the properties

of these clusters, showing that each PBH acts as a single lens (rather than

the cluster as a whole). We assume all PBHs have the same mass, MPBH,

and all are found in clusters containing the same number of PBHs, Ncl.

Some fraction of PBHs would not be in clusters today, since some PBHs

would have once been in clusters that have now evaporated and others

never became part of a cluster at all. Our results are therefore an upper

limit to the effect of clustering on microlensing constraints.

Assuming all PBHs are in clusters of mass Mcl ≲ 106M⊙, the differen-

tial event rate is very close to that for smoothly-distributed dark matter

and hence the effect of clustering on microlensing constraints is negligi-

ble. Assuming all PBHs are in more massive clusters, Mcl ≳ 106M⊙, the

differential event rate deviates substantially from that found for smoothly-

distributed dark matter. We explored how this deviation arises due to rare

clusters close to the observer that produce a high rate of short-duration

events. In this case the behaviour of the differential event rate causes

the probability distribution of the number of microlensing events to peak

at smaller numbers of events, resulting in weaker constraints than for

smoothly-distributed dark matter.
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We expect clusters containing Ncl ∼ 103 PBHs to be the most common,

since smaller clusters will have evaporated and larger clusters form much

more rarely. Since clustering has a negligible effect on observations if the

cluster mass Mcl ≲ 106M⊙, it has a negligible effect on constraints from

the EROS-2 survey (which constrains PBHs of mass MPBH ≲ 10M⊙). To

understand the effects on more massive PBHs we considered a prospective

survey sensitive to PBHs of mass MPBH ≳ 103M⊙ (since this work was

completed the OGLE-III and OGLE-IV surveys have constrained PBHs of

mass up to MPBH ∼ 104M⊙). Assuming all PBHs have a mass MPBH =

103M⊙ and are in clusters containing Ncl = 103 PBHs, the constraints from

this prospective survey are only O(10%) weaker than those calculated for

smoothly-distributed dark matter. We therefore conclude that clustering of

PBHs has only a small effect on microlensing constraints for PBHs formed

from the collapse of large gaussian density fluctuations.

In Chapter 3, we recalculate current and prospective constraints from

evaporation and microlensing (which constrain PBHs of mass MPBH ≲

1017 g and MPBH ≳ 1022 g, respectively), to assess how open the asteroid-

mass window remains when considering more realistic PBH mass functions.

Near-critical gravitational collapse means that PBHs will have an extended

mass function even if they all form at the same time (from a delta-function

peak in the power spectrum). We consider the widely-used lognormal mass

function, as well as the fitting functions found by Gow et al. [128], which

provide a better fit to the tails of the mass function than the lognormal.

Constraints on PBHs with an extended mass function are sensitive to the

tails of the mass function (especially for wide mass functions), so an ac-

curate calculation of the tails is crucial for assessing whether evaporation

and microlensing constraints allow asteroid-mass PBHs to make up all of

the dark matter.
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For existing constraints, we find the asteroid-mass window is typically nar-

rower when using the fitting functions from Gow et al. [128] than for the log-

normal, though it is not entirely closed even for the widest mass functions

considered. Prospective evaporation and microlensing constraints may be

able to close the window, depending on the width of the mass function. We

also observe that stringent constraints on PBHs of masses MPBH ≲ 1016 g

play an important role in narrowing (or closing) the asteroid-mass window

for wide mass functions.

This work contributes to ongoing efforts to understand whether PBHs are

a viable dark matter candidate. In recent years, there have been signifi-

cant developments in observational constraints and theoretical modelling

of PBHs, and further progress is expected. Proposed gamma-ray tele-

scopes such as GECCO and AMEGO could probe the currently uncon-

strained mass range at the lower end of the asteroid-mass window, and

a proposed microlensing survey of white dwarfs in the Large Magellanic

Cloud may tighten constraints on PBHs of mass MPBH ∼ 1022 g. These

techniques are limited, however, by the rapid decrease of rate of particle

emission from PBHs (due to their Hawking radiation) with increasing mass

(ṀPBH ∝ 1/M2
PBH) and wave optics effects which make it impossible for

microlensing surveys of main-sequence stars to constrain PBHs of mass

MPBH ≲ 1022 g. Probing asteroid-mass PBHs (to either detect or exclude

them) therefore requires other techniques, and there are a variety of pro-

posals that may make this possible in the near-future. Challenges remain

in accurately modelling PBHs. These include the calculation of the prob-

ability distribution of large fluctuations in inflation models (and therefore

the resulting PBH abundance and mass function) and understanding the

evolution of PBH clusters to the present. Continued work on observational

probes of PBHs, particularly those sensitive to asteroid-mass PBHs, com-
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plemented by advances in theoretical modelling of PBH formation and their

clustering evolution, will allow for a better understanding of the viability

of PBHs as a dark matter candidate.
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