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A B S T R A C T   

Despite the promising results of deep learning research, construction industry applications are still limited. 
Facility Management (FM) in construction has yet to take full advantage of the efficiency of deep learning 
techniques in daily operations and maintenance. Heating, Ventilation, and Air Conditioning (HVAC) is a major 
part of Facility Management and Maintenance (FMM) operations, and an occasional HVAC malfunction can lead 
to a huge monetary loss. The application of deep learning techniques in FMM can optimize building performance, 
especially in predictive maintenance, by lowering energy consumption, scheduling maintenance, as well as 
monitoring equipment. This review covers 100 papers that show how neural networks have evolved in this area 
and summarizes deep learning applications in facility management. Furthermore, it discusses the current chal-
lenges and foresees how deep learning applications can be useful in this field for researchers developing specific 
deep learning models for FMM. The paper also highlights how establishing public datasets relevant to FM for 
predictive maintenance is crucial for the effectiveness of deep learning techniques. The utilization of deep 
learning methods for predictive maintenance on Thermal-Storage Air-Conditioning (TS-AC) in HVAC is necessary 
for environmental sustainability, as well as to improve the cost-efficiency of buildings.   

1. Introduction 

Deep learning, a branch of machine learning has evolved signifi-
cantly in the last ten years initiating drastic changes in technological 
approaches in various industries from medical research to electronics. In 
processing large amounts of data, deep learning can achieve accuracies 
in such an advanced way that it can exceed human-level performance 
and productivity, as well as save time and resources. Deep learning 
completely shifted the automotive industry with its applications from 
automated driving to automatically detecting traffic lights, stop signs, 
obstacles, and such. In automation in the construction industry, deep 
learning is also being used to detect people around heavy machinery to 
improve safety. The high-performance levels of deep learning in the field 
of computer vision have made several areas of construction adopt deep 
learning. For example, Zhang et al. [108] discussed the utilization of text 
mining and natural language processing techniques for accident report 
analysis at construction sites. Computer vision-based construction safety 
vest detection, an earlier method of construction worker detection 

improves safety by detecting the motion of workers and the colour pixels 
of safety vests [94]. 

In terms of Facilities Management (FM) in the construction industry, 
a large number of stakeholders handle the operation. During this pro-
cess, they appear and leave at various times during the building oper-
ation life cycle which causes information to be lost or distorted if not 
managed properly. Operation and maintenance in FM sector rely on 
effective and prompt decision-making from facility managers. It is an 
extremely hard challenge for facility managers to cater for quality ser-
vices at a minimum cost as they are required to be cost-efficient and 
responsible [28]. 

Nevertheless, maintenance is required to be monitored as accurately 
as possible because it plays an important role in the sustainability of 
buildings or the built environment. Improper and delayed maintenance 
has led facility managers into challenging situations regarding repairs, 
high maintenance costs and arduous repairs [90]. Hence, it is essential 
for sustainability in Industry 4.0 context in the FM industry to employ 
advanced intelligent digital technologies as they can help facilitate the 
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flow of information, along with drawing conclusions from predictions 
based on sensor data [5,107]. There are quite a few reviews on Machine 
Learning for life cycle management implementing combinations of 
different algorithms and discussing solutions for various scenarios 
[37,109]. The focus however has been more on predictive maintenance 
as this sort of maintenance can warn of a problem before it actually 
happens thanks to machine learning (ML), or more specifically deep 
learning as it is capable of making predictions [20]. Facility managers 
want advanced predictive maintenance assistance mainly in Heating, 
Ventilation, and Air Conditioning (HVAC). Focusing on HVAC is 
important as it encompasses a significant part of building life-cycle 
management. 

Deep Learning has gained interest in Construction and Maintenance 
according to the Google Keywords trends. It is more popular within 
Machine Learning compared to Reinforcement Learning and Transfer 
Learning in Facility Management and Construction. Fig. 1 shows how 
the interest of Deep Learning over time increased in Construction and 
Maintenance. The comparison clearly validates the interest in 
researching and reviewing Deep Learning applications in FM in order to 
digitize and make it more efficient. Deep Learning has superiority in 
terms of prediction accuracy and better performance when trained with 
a large amount of data compared to other Machine Learning algorithms. 
Another factor is that deep learning solves problems end to end e.g., 
You-Only-Look-Once (YOLO) net. Other Machine Learning techniques 
require to break down the problem into different parts first before 
combining to the final stage e.g., Support Vector Machine (SVM). When 
there is a lack of domain understanding for feature analysis which 
maybe the case in FM for researchers, Deep Learning techniques prove to 
be a better alternative since feature engineering is less of a concern. In 
terms of large data size, which is the case for Facility Management, deep 
learning outperforms other Machine Learning techniques. When it 
comes to solving complex problems or prediction, deep learning out-
shines other methods which is why it can greatly benefit FM by opti-
mizing energy efficiency and maintenance. 

However, not much research has been conducted those analyze deep 
learning applications for HVAC using specific algorithms in the Facility 
Maintenance and Management (FMM) of the construction industry. 
Furthermore, not many studies have been focused on deep learning 
models to improve automation in construction for better maintenance of 
assets. Therefore, this paper provides a thorough literature review of 
deep learning applications in the FMM sector focusing on HVAC which 
can act as a useful comprehensive guide for subsequent research studies. 
The aim of this paper is to help researchers understand the current 
progress, and challenges of the various algorithms in deep learning to 
overcome challenges in FM for HVAC. The paper is organized as follows: 
Section 1 introduces the topic of this paper briefly; Section 2 demon-
strates the research methodology for this study. Section 3 gives an 
overview of neural networks, and . Section 4 gives an overview of pre-
dictive maintenance. Section 5 reviews deep learning applications in the 
facility management and maintenance sector in the construction in-
dustry. Section 6discusses the challenges and possible approach for deep 
learning in FMM. Lastly, Section 7 summarizes and discusses the main 

findings. 

2. Research methodology 

2.1. Research design 

Deep learning is a branch of machine learning that overlaps signifi-
cantly with the area traditionally known as artificial neural networks. In 
most cases deep learning models are neural networks that adopt a large 
number of processing layers. In general, deep learning models require 
large amounts of training data. The network structures have a significant 
impact on performance, as measured by different metrics, including 
accuracy, training time, robustness to noise, and so on. An extensive 
literature discussed in this paper was collected from Scopus and Google 
Scholar databases. Scopus and Google Scholar provide the abstracts of 
all indexed publications, apart from additional information, including 
citation counts. The papers relevant to this study were filtered using a 
query string. The relevance and quality of the collected papers were 
ensured by defining the subject, and keywords. Deep learning theory in 
FMM is quite concentrated, therefore qualitative content analysis and 
quantitative analysis were conducted. The research framework is shown 
in Fig. 2. 

2.2. Materials 

The phrases “deep learning”, “convolutional neural networks 
(CNN)”, “recurrent neural networks (RNN)”, “Facility Management 
(FM)”, “Facility Management and Maintenance (FMM)”, were used to 
filter the results of the search to guarantee that the analyzed papers 
contained relevant deep learning-based solutions or applications. The 
query string used was ((KEY (Facility Management) OR SRCTITLE 
(construction OR civil)) AND TITLE-ABS-KEY (“deep learning” OR 
“CNN” OR “RNN” OR “convolutional neural networks” OR “recurrent 
neural networks”)). The search was specified from 2006 to date since 
deep learning in its modern form is generally perceived to have started 
around 2006. During the research, the language of the papers was set to 
be in English. The literature collected from the search was filtered 
manually by reading the titles, and abstracts. Then the filtration 
involved roughly browsing the papers to ensure that they were relevant 
to the subject of deep learning-based solutions for facility management 
and maintenance. A Microsoft Excel workbook was used to keep and 
organize the information of the collected papers. The deep learning 
approach taken for the type of FM task, the year of each paper, and the 
number of papers in each year, were recorded for further analysis. In the 
end, 100 papers on deep learning applications in the FM sector were 
obtained and reviewed. 

3. Overview of neural networks 

3.1. Brief historical remarks 

A neural network generally consists of three parts, i.e., input layer, 

Fig. 1. Deep Learning interest over time in Construction and Maintenance.  
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hidden layer(s), and output layer. A deep neural network typically has 
many hidden layers, thus making the network deep. This in turn allows it 
to form rich hierarchical representations, which facilitates the capture of 
complex causal factors underlying the data. In other words, the rationale 
for depth is that it allows for the learning of abstract multi-level features 
of an input [101]. In traditional feature engineering human designers 
need to manually and painstakingly construct relevant features which 
are then fed into machine learning algorithms [13]. The deep neural 
network approach has typically replaced the more time-consuming and 
traditional approach of feature engineering [83]. 

Apart from the structural or architectural aspects of neural networks, 
the other key ingredient to the success of this field lies in learning al-
gorithms. Rumelhart et al. [89] demonstrated the effective application 
of the backpropagation algorithm for training neural networks, in the 
context of a richer and deeper history of optimization. This was a key 
step in the development of the area. Deep learning techniques imple-
ment the back-propagation algorithm to find complex structures in large 
data sets and determine how the internal parameters of a model should 
change to compute the representation in each layer from the 

representation in the previous layer and perform predictions at a high- 
level accuracy [65]. As such, deep learning methods are also known as 
“representation learning”. Other algorithms commonly known for 
training ANNs include, simulated annealing, and genetic algorithms. 
Chen et al. [23] adapted ANNs for fault detection in engineering struc-
tures resulting from vibration or fatigue. ANNs have also been used for 
structural damage detection implementing backpropagation algorithms, 
empowered by a heuristics-based tunable steepest descent method for 
training, and Frequency response functions (FRF) used for structural 
damage detection [36]. 

Since their early days, ANNs have primarily been used for classifi-
cation problems or function estimation due to which they are widely 
used for solving complex industrial problems [14]. Supervised learning 
is a type of learning where the machine is trained using labeled data (i. 
e., for every input the dataset has a corresponding target label). Whereas 
in unsupervised learning, the dataset consists only of input instances 
without target labels [11]. ANNs are applicable to both supervised and 
unsupervised learning. Moselhi et al. [77] mentioned how ANNs can be 
implemented with conventional expert-based FM systems and 

Fig. 2. Research framework.  
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guarantees ideal performance over the systems. ANNs are particularly 
suited for Big Data which involves a very large number of data instances 
typically with high dimensionality, which makes it important in all the 
construction industry applications. 

Following the early demonstrations of backpropagation, several 
other landmarks in the history of neural networks ensued, including the 
development of LeNet [48,64,65], whose general architectures will be 
briefly discussed in the following sections. Other than finding it hard to 
get adequate amount of labeled data for training, the neural network 
algorithms in the initial stage faced difficulty training the network 
properly. The training difficulty was also due to the vanishing gradient 
problem when the depth of the network expanded and also the hardware 
could not handle the complexity of training. Hinton and Salakhutdinov 
[47] first proposed deep learning as a solution to the vanishing gradient 
problems in deeper neural networks. Although the early days of neural 
networks exhibited many of the key ingredients required for the success 
of the field, they still exhibited some key limitations. Some of these 
limitations included limited processing power, limited availability of 
labeled data for training, and the vanishing gradient problem. Over 
time, these limitations were gradually eroded due to the advancement of 
deep learning. Deep learning field experienced a renaissance around 
2006, marked by papers such as the one authored by Hinton and Sala-
khutdinov [47]. 

3.2. Multilayer perceptron (MLP) 

The Multilayer Perceptron (MLP) is one of the most commonly used 
ANNs and, as with most architectures, can be used for both classification 
and regression [14,24]. Data samples are first normalized and then 
inserted into the input layer which then pass through the hidden layers 
resulting in the output according to the network's structure. Generally, 
for an MLP with a single hidden layer, the ANN topology is described as 
x:y:z. In x:y:z topology, x denotes the number of nodes in input layer, y 
denotes the number of nodes in hidden layer, and z denotes number of 
nodes in the output layer. In terms of the connectivity, nodes are typi-
cally referred to as fully connected, since all nodes from a layer are 
connected to all nodes in the subsequent (adjacent) layer. By using MLPs 
and Mixed Integer Linear Programming (MILP), Rajith et al. [86] 
developed a real-time optimized HVAC control system that was setup on 
top of an existing IoT framework. The optimized control system show-
cased just how powerful the combination of both could be in prediction, 
resulting in a turnaround in terms of predictive maintenance [86]. 

3.3. Convolutional neural network (CNN) 

Convolutional Neural Networks (CNNs) exploit several design prin-
ciples found in biological visual systems, namely the fact that repre-
sentations are hierarchically composed from localized and repetitive 
receptive fields. In CNN terminology this translates into localized ker-
nels that share weights across an image, both of which ultimately pro-
vide the network with prior knowledge that exploits the statistical 
regularities known to exist in images. In most CNNs this architectural 
feature is usually also combined with a more traditional fully connected 
structure, typically at the output side of the network. Apart from 
exploiting prior knowledge, which improves accuracy, CNNs also 
require fewer parameters compared to fully connected networks. This 
tends to make the learning process easier and faster and reduces some 
memory requirements. Today CNNs are often the method of choice in 
different computer vision applications, for example in object detection 
and image recognition. A classic early example of a successful CNN 
would be AlexNet, which demonstrated the power of combining deep 
learning, specifically a deep CNN, with very large datasets [58]. 

3.4. Recurrent neural network (RNN) 

Another classic neural network structure is the Recurrent Neural 

Network (RNN) which is used in time series data processing, for example 
in speech recognition. Two main types of RNN, and the most popular 
Deep RNN architectures, are Gated Recurrent Units (GRUs) and Long 
Short-Term Memory (LSTM), which differentiate themselves from more 
classic recurrent architectures by the use of gates that control the tem-
poral flow of information [25]. LSTMs and GRUs in general are able to 
capture long-term dependencies in a sequence which is why they are 
widely used in multiple applications including natural language appli-
cations [15], time-series prediction [38], and anomaly detection [97] 
[22]. 

LSTMs have also been integrated with autoencoders [16]; a special 
form of neural network designed for unsupervised learning tasks [35]. 
An autoencoder consists of an encoder that transforms the input data 
into a hidden representation, while the decoder attempts to reconstruct 
the input data from the same hidden representation [35,69] with a 
minimum amount of distortion and noise [10]. Due to this character-
istic, autoencoders have been used for dimensionality reduction appli-
cations [104], signal reconstruction applications, and anomaly detection 
applications [6,35]. 

4. Overview of predictive maintenance 

Digitization and mainly the advent of big data brought about the 
possibility of developing efficient smart monitoring and predictive 
maintenance applications. Modern data-driven applications with 
distributed computing architectures caused major improvements in 
maintenance service efficiency. Predictive maintenance, an important 
part of the revolution of Industry 4.0 is based on the Computerized 
Maintenance Management System (CMMS) concept that takes advan-
tage of state-of-the-art technological innovations [61]. CMMS co-
ordinates all activities related to the availability, productivity, and 
maintainability of cyber-physical systems (CPSs). Procedures in a 
computerized maintenance process take place with minimal human 
involvement which minimizes human error. In such procedures, a high 
degree of automation with complex CMMS is required. However, pre-
dictive maintenance faces the challenge of bringing together technolo-
gies from different application domains including big data, Internet of 
things (IoT), augmented reality (AR), virtual reality (VR), machine 
learning and deep learning [31]. 

These complex CMMS solutions work completely autonomously, and 
with the learning capability can collect, store, and analyze data 
continuously. Although, to predict future failures, or downtimes, it is 
required to analyze historical data, as well as constantly monitor data in 
real-time. With the application of mathematical and statistical methods, 
smart maintenance can detect where, when, and why a component may 
fail, hence in predictive maintenance, the component gets repaired or 
replaced before the failure occurs saving costs and increasing the reli-
ability of equipment [82]. 

Predictive Maintenance optimizes asset management and improves 
overall facilities management and maintenance. Time to failure (TTF) 
prediction and remaining useful life (RUL) prediction are well-known 
features of predictive maintenance. The TTF prediction denotes the 
amount of time a component is expected to last in operation. Whereas, 
RUL is the estimated lifespan of a component after which it is no longer 
capable of serving its intended purpose. Estimating TTF and RUL, albeit 
challenging, has proven to be useful for applications especially in 
characterizing rotating machines, such as pumps, and fans. Facility 
Managers can prepare to either maintain or change such machineries 
beforehand. 

5. Applications of deep learning in FMM 

Deep learning has greatly advanced the construction industry's FM 
by assisting facility managers in decision making and effective mainte-
nance. Industrial maintenance processes are important as the produc-
tivity of the companies depend significantly on that. There are five types 
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of maintenance that are frequently implemented in industry which are 
corrective, preventive, predetermined, condition-based and predictive 
[90]. Different companies adopt different types of maintenance 
depending on their specific needs. Fig. 3 shows where FMM is located in 
the Building Information Modeling (BIM) domain of construction in-
dustry. Facility managers generally conduct preventive or reactive 
maintenance for building maintenance management. However, these 
strategies have their limitations as preventive maintenance would not be 
able to predict when certain mechanical, electrical and plumbing (MEP) 
components would need repair in advance and reactive maintenance 
would not be able to prevent failures. Hence, predictive maintenance 
strategies, incorporated with advanced technologies such as IoT have 
become the preferred choice to improve the efficiency of facility man-
agement and maintenance (FMM) [24]. 

Since deep learning is particularly well-suited for perception- 
oriented tasks (as applied to IoT and other data), its applications are 
useful in predictive maintenance [63]. According to the literature, deep 
learning methods were found mostly in predictive maintenance rather 
than other types of proactive maintenance. Applications for building 
operation and maintenance were found specifically in fault detection 
and diagnostics, occupancy evaluation, and energy efficiency improve-
ment [49]. Common accessible tools for developing deep learning 
models are Python with the help of TensorFlow [1], Keras [26,27], and 
PyTorch [81]; MATLAB with the help of Deep Learning Toolbox 
(Mathworks) [75], and R [98]. 

The following sub-sections are titled according to the deep learning 
approaches adopted in FM; 5.1 discusses image classification, 5.2 sum-
marizes failure detection, and 5.3 is concerned with occupancy and 
energy detection or prediction. Section 5.4 reviews anomaly detection 
tasks, and is followed by a section on fault detection, and a section on 
monitoring or scheduling maintenance. The topic of data classification is 
discussed in Section 5.7, Natural Language Processing in 5.8, and object 
movement and detection in 5.9. Section 5.10 concludes with a brief 
analysis regarding the deep learning methods and research trends in the 
FM industry. 

5.1. Image classification 

Predictive maintenance aims to predict equipment failures to enable 
advance corrective maintenance scheduling to prevent unanticipated 
downtime, in turn improving service quality. Marzouk and Zaher [73] 
proposed a proactive maintenance application to maintain, upgrade, 
and operate assets of three fire protection systems in a cost-effective way 
with a deep-learning pre-trained model to assist facility management 
and maintenance. The deep learning model proposed was able to classify 
MEP components in the fire protection systems by image classification 
with a deep CNN using a support vector machine (SVM) technique with 
supervised learning [73]. The following research suggests an automated 
decision support system by integrating CNNs for image recognition to 
identify cracks or degradation phenomena directly in three-dimensional 
(3D) models [29]. By using 3D geometry, an automated decision support 
system could lead to suitable interventions by facility managers by 
evaluating multiple criteria in various scenarios. 

In smart museums, computer vision algorithms are used to recognize 
images and to attribute an exhibit to an artist or epoch. Computer vision 
algorithms also analyze sentiments to identify the emotional states of 
images. With deep learning and computer vision techniques, it is 
possible to classify images into millions of predefined categories [99]. It 
is also possible to detect image details, read printed and handwritten 
text, and create valuable metadata for smart museum image catalogues 
for better asset management [99]. This research uses deep learning 
models for smart surveillance systems and offers mechanisms for com-
pressing DNNs thereby improving the processing latency for a group of 
networked cameras [52]. A vision and learning-based indoor localiza-
tion framework that uses a shared CNN for feature extraction from im-
ages was proposed [106]. This framework performed localization and 
object recognition simultaneously for facility management and did not 
require the deployment of radio-frequency identification (RFID) tags 
[106]. With the implementation of deep learning, RGB-D images can be 
automatically segmented into building components [30]. 

5.2. Failure detection 

Nguyen and Medjaher [79] presented a dynamic predictive main-
tenance framework on a LSTM network in their research that depends on 
sensor measurements and prognostics according to the requirements of 
management planners. An LSTM can be used to compute the probabil-
ities that a system may fail at specific times, and it thus contributes to 
better decisions regarding maintenance [79,103]. As there is an 
increasing demand for the reliability, availability, safety and maintain-
ability of systems, there is also a great interest in the development of 
predictive maintenance (PdM). PdM helps facility managers schedule 
activities in a way that reduces machine or system downtime. Intelligent 
sensors can help in this real-time system monitoring process, providing 
managers with relevant information [42,92,103]. 

Limiting carbon dioxide emissions can be achieved through a general 
reduction of energy consumption, and by moving towards renewable 
energy sources. Establishing optimal energy consumption of buildings is 
necessary as they contribute significantly to the world's energy demand. 
Markoska [71] developed a framework for optimal forecasting of ex-
pected building performance by estimating expected energy Fig. 3. Building Information Modeling (BIM) domain.  
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consumption and indoor climate. The framework implemented an LSTM 
network using the Keras library for deep learning [26,27], which further 
uses the library TensorFlow, an open-source ML library [2]. The system 
identified numerous faults during operation and helped facility man-
agers find issues regarding faulty wiring in meters and defective sensors. 
[16] proposed a predictive maintenance approach; an LSTM based deep 
learning model with an autoencoder architecture to predict failures for 
HVAC and validated it in a sports facility. Autoencoders were part the 
proposed framework since they adopt an unsupervised learning 
approach, which doesn't require labeled data and can thus be easily 
adapted to several applications. LSTM layers allow sequential data 
processing such as time-series which is the case for temperature or en-
ergy consumption data. 

5.3. Occupancy detection/prediction & energy management 

Incorrect estimation of occupancy leads to poor management of 
building resources like HVAC and lighting systems. Occupancy predic-
tion models are developed with the data collected by occupancy sensors 
during the occupancy monitoring period. In general, ANN models do not 
make assumptions about data distributions before learning, which is 
consistent with their applicability for occupancy prediction. These 
models play an important role in occupancy prediction as occupancy 
levels can be highly dynamic and contextual. Advanced occupancy 
prediction methods use assumption-independent ANN techniques to 
obtain the hidden patterns in the collected sensor data making their 
predictive power more reliable [67,96]. 

Mutis et al. [78] utilize a multi-stream deep neural network to 
identify human activities and uses the You Only Look Once (YOLO) V3 
deep CNN for multiple object detection to estimate occupancy counts in 
a room. The research results had a promising outcome as the application 
of the platform for accurate occupancy detection resulted in energy 
savings of approximately 10%–15%, thereby improving FM [3]. Martani 
et al. [72] described analyzing occupancy and measuring activity of 
occupants for energy consumption patterns (electricity, steam, and 
chilled water) by employing Wi-Fi connections as a proxy for occupancy 
level. The results of the research also showed that the operation of the 
HVAC systems depended on factors such as external temperature other 
than human occupancy, although a minimal part of electricity con-
sumption was correlated to occupancy [72]. An effective CNN archi-
tecture for visual parking occupancy detection was introduced in [4], 
where the solution was compressed to run on smart cameras. Sonetti 
et al. [95] suggests implementing deep learning to analyze human be-
haviors for smart and sustainable environments to lessen energy 
consumption. 

Predicting occupancy in real buildings rather than buildings under 
construction is very important because actual building occupancy has a 
significant effect on energy consumption. Kim et al. [57] proposed a 
machine learning framework with IoT data for HVAC where three ma-
chine learning based occupancy estimation algorithms, i.e., decision 
trees, support vector machines, and ANNs, were evaluated according to 
their performance in estimating occupancy status. The study showed 
that ANNs had an overall better accuracy in occupancy estimation 
compared to the other approaches. 

Research is being carried out to employ new DL techniques to 
develop the next generation of occupancy models, that will be able to 
predict the behavior of occupants with a high level of accuracy [91]. 
Hammad [45] proposed a method by integrating BIM with an ANN 
model for limiting the deviation between predicted and actual energy 
consumption rates. Accurate BIM representations are produced by 
training a deep neural network for predicting occupant behavior that 
indicates the actual performance of the building under examination, 
which is further validated via energy simulations [45]. Lee et al. [66] 
reported that by using thermal cameras on-site and deep learning, an 
adaptive comfort model could be developed. The adaptive comfort 
model would be capable of achieving intelligent control of an air- 

conditioning system considering the dynamic interaction between oc-
cupants and their environment [66]. Deep learning techniques have 
enabled the detection of standing/sitting postures of individuals even 
from a distance [74]. Commercial buildings, and retail shops require the 
constant monitoring and control of HVAC and refrigeration systems. 
From the IoT data collected from various sources, it has been possible to 
show that unnecessary energy consumption occurs due to manual ac-
tivity. Recently, supermarkets have become smart and handle the HVAC 
and refrigeration systems automatically for improving customer satis-
faction as well as optimizing energy consumption. Optimizing resources 
in turn optimizes the energy consumption of a building. Hence, this 
research proposed a firefly based optimized LSTM (FOLSTM) model with 
real-time HVAC and refrigeration sensor data for a supermarket [55]. 
The focus was to enable resource optimization by forecasting relevant 
variables such as temperature [55]. 

For efficient energy consumption, a renewable solar and wind 
energy-enabled hybrid HVAC-DHW (heating, ventilation, and air 
conditioning-Domestic Hot Water) system utilizes an optimized 
nonlinear autoregressive network with exogenous inputs artificial neu-
ral network (NARX-ANN) and fuzzy controller based on user needs, 
dynamic behavior of the atmospheric environment, and the spatial 
distribution of the energy supply [111]. Initially, the heating and cool-
ing effect of the environment and building is sensed via sensors and 
these sensed inputs are fed into a deep learning-based NARX-ANN model 
that predicts internal building temperatures, which are then fed into a 
fuzzy controller for optimizing energy distributions based on user de-
mands [111]. Deng and Chen [32] developed an ANN model for a smart 
HVAC control system for multi-occupant offices to improve overall 
thermal comfort and energy consumption. This was done using the data 
collected from a thermostat that enabled a building automation system 
(BAS) to control the room air temperature based on physiological 
wristband parameters [32]. The wristband parameters represented the 
thermal sensation of occupants. Revati et al. [87] suggested a hybrid 
model implementing RNN and BiLSTM for load profile prediction in 
smart buildings. The results showed that the proposed hybrid model 
outperformed other deep learning models [87]. 

Human occupancy prediction is more meaningful if occupant 
crowdedness can be predicted a day prior to improve facility manage-
ment. However, most research so far involves estimating the current 
number of people in a specific location, though the data can be used to 
further predict the occupant crowdedness in the future to improve 
decision-making processes [60,112]. Deep learning-based time-series 
crowd prediction is formulated to help facility managers schedule 
maintenance during periods of lowest pedestrian movement, i.e., an off- 
peak hour, thus minimizing disturbance [85]. Poon et al. [85] overcome 
the two primary limitations where prediction accuracy decreases as 
prediction time increases [46], and only the consecutive time steps in 
the most recent input data get exploited [70], by adopting a Long-Time 
Gap Two-Dimensional method (LT2D) to increase the crowd prediction 
length with high accuracy. The LT2D approach consists of long-time gap 
prediction, which extends the prediction length to 1 day with high ac-
curacy, and 2D inputs, which exploit temporal patterns from previous 
days. By integrating the proposed LT2D-method into different baseline 
models like LSTM, BiLSTM, and GRU, the accuracy is generally 
improved by around 22% [85]. 

5.4. Anomaly detection and analysis 

An anomaly in this context is essentially an odd occurrence, which 
typically requires the facility management to take corrective measures. 
Anomaly detection can become problematic for HVAC systems because 
sometimes odd patterns in the data can happen due to the normal 
operation of the system. Data variability usually occurs because of 
common changes in various operating conditions. The following paper 
suggested an anomaly detection system based on a kernelized One-Class 
Support Vector Machine (OCSVM) classifier reinforced by Principal 
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Component Analysis (PCA) to understand the difference between vari-
abilities due to anomalies or standard system operation [12]. 

Katona and Panfilov [56] recommended a predictive maintenance 
framework for a smart HVAC application system with IoT that would 
handle big data streams from various data sources. It would also utilize 
deep learning for anomaly detection or outlier detection on the data 
based on a Gaussian model to alert the connected system in case of 
unexpected behaviors [56]. The classification problem depended on 
recorded (historical) data which analyzed the incoming temperature 
and humidity measurements and flagged them by assigning them to an 
“anomalous” class in case of suspicious behavior [56]. Guss and Linus 
[43] discussed the improvement of energy efficiency by detecting 
anomalies through developing a model using the K-means method. The 
model was used for clustering substations with similar consumption 
patterns to create electricity profiles, and using Gaussian process 
regression for electricity consumption prediction with a 24-h time frame 
[43]. Although both models performed anomaly detection in electricity 
consumption data, the K-means based model was faster and more reli-
able [43]. 

Jung et al. [54] focused on anomaly analysis using a long-short term 
memory (LSTM) model. High prediction accuracy was reported based on 
time-series data collected from Internet-of-Things (IoT) devices at in-
door office space conditions, for facility management. 

5.5. Fault detection 

ANNs and deep learning models have been used in both supervised 
and unsupervised fault detection and diagnostics (FDD) [41]. Kumar 
and Abraham [59] used a two-step defect detection framework by 
automatically interpreting images with a 5-layered CNN for classifica-
tion followed by a YOLO model for detecting pipe fractures from closed- 
circuit television (CCTV) videos. Most of the studies reviewed that 
implement automated fault detection and diagnostics (AFDD) are su-
pervised methods and treat the FDD as essentially a classification 
problem [41]. Unsupervised methods are mainly adopted in a pre- 
processing phase or are used for fault detection through clustering. 

Pump faults can be diagnosed if data and analytics are closely 
monitored; conversely, false negatives are a common occurrence when 
limited monitoring is employed. By closely monitoring MEP compo-
nents, an effective asset management can be carried out. There some-
times may be the occurrence of false alarm but it can be quickly checked 
which is better than an underlying defect. Some researchers have 
explored using Digital Twin (DT), which is a relatively new framework 
for real-time intelligent asset maintenance, energy servicing, and con-
dition monitoring [34,105]. Hallaji et al. [44] suggested a BIM-enabled 
DT (Digital Twin) framework to enhance the performance of deep 
learning methods for handling multivariate and low-quality, high-vol-
ume data after a thorough analysis. 

5.6. Maintenance scheduling/monitoring 

Cheng et al. [24] proposed a data-driven predictive maintenance 
planning framework based on BIM and IoT technologies for FMM of MEP 
components consisting of an information and an application layer. Data 
was collected and integrated among a BIM/IoT framework with an of FM 
system in the information layer. The application layer contained mod-
ules needed for attaining predictive maintenance utilizing ANN and 
SVM models. Braun [17] addressed the automation of construction 
progress monitoring using computer vision to detect construction ele-
ments in progress, and a CNN based framework to identify deviations 
between the as-planned and the as-performed schedule automatically. 
González-Domínguez et al. [40] proposed a preventive maintenance 
scheduling tool for healthcare centers using Markov chains. The tool 
proved to be useful in choosing the most suitable maintenance policies 
for each healthcare building without exceeding a specific degradation 
boundary, in turn allowing an ideal maintenance frequency to be 

achieved. Markov chains have also been shown to be effective in opti-
mizing routine maintenance tasks, guaranteeing a suitable level of 
maintenance according to the frequency of failures and reducing costs 
and the associated carbon footprint [40]. 

Unsolicited building occupant complaint logs can result in unstruc-
tured data sets, so the following study focused on a data driven MLP 
model to predict the number of thermal complaints as a predictive 
maintenance strategy [8]. Thermal complaints are one of the most 
common complaints [39], and the developed MLP model showed that it 
can assist facility managers in planning for the staffing resources needed 
to handle these complaints thus enhancing the satisfaction of occupants 
as well as the building performance [8]. Assaf and Srour [8] reported 
that the MLP model showed a 21% lower Root-Mean-Square-Error 
(RMSE) when compared to a traditional Autoregressive Integrated 
Moving Average (ARIMA) model related to cooler complaints. 

The urban building energy model (UBEM) is the foundation to sup-
port the design of energy efficient communities, but it is limited in its 
abilities to capture the inter-building interdependency due to its dy-
namic and non-linear characteristic. The data-driven UBEM synthesizing 
the solar-based building interdependency and spatial-temporal graph 
convolutional network (ST-GCN) was developed for predicting hourly 
energy consumption and showed significant improvements in building 
energy simulation based on a case study [50]. Tsai et al. [100] proposed 
a system to assist in the management of site equipment for construction 
management called SEMA that collects data from raw videos, extracts 
equipment-related information, and delivers that information based on a 
deep learning model that was first trained to automatically identify and 
track construction equipment passing by the site monitor [100]. SEMA 
also integrated a user-friendly chatbot interface to obtain data from the 
database containing the extracted information from videos such as date, 
time for equipment entering, exiting construction site, as well as the 
quantity, and it was proven to effectively save valuable time in getting 
related information for facility managers [100]. 

5.7. Data classification 

Large buildings have been using IoT platforms for managing indoor 
climate ever since the growth of wireless smart HVAC systems. However, 
the controllers and sensors are from different manufactures and 
communication between these devices requires a human translator to 
make them compatible for integration purposes. Cashion et al. [21] 
suggested a smart translator for the inter-communication of IoT devices 
using Deep Neural Networks (DNNs) for assigning registers exhibiting 
identifiable data patterns to standardized labels automatically. Jeong 
[53] mentions how deep learning can be useful in dividing BIM data into 
structured and unstructured types in the developed Evaluation, Ana-
lytics, and Prediction (EAP) Framework. The accuracy of supervised 
deep learning methods in 3D scene selection has improved drastically 
since 2017. The drastic change has been possible due to the availability 
of large, labeled datasets of indoor spaces, but the semantic object cat-
egories generally do not cover HVAC and plumbing systems. An anno-
tated dataset of 3D reconstructions of building facilities such as HVAC 
called 3DFacilities, was presented where supervised deep learning for 
Scan-to-BIM, i.e., a process of converting 3D reconstructions into BIM, 
was implemented [29]. 

5.8. Natural language processing 

Automated energy compliance checking focuses on automatically 
checking the compliance of a BIM with appropriate energy re-
quirements. Existing automated compliance checking (ACC) mostly fo-
cuses on code-checking and still requires manual extraction from text 
into computer-processable representations and then matching these to 
BIM standards. Zhou [110] proposed an automated ACC to check 
compliance of BIM-represented building designs with energy codes and 
contract specifications by developing a semantic, natural language 
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processing (NLP)-enabled, rule-based information extraction method. A 
variant of a three-layer feedforward neural network, the hierarchical 
softmax skip-gram, was used to learn the distributed representation. The 
network exhibited promising performance due to its computational ef-
ficiency and accuracy on large datasets [110]. Deep learning further 
enriches the applications of NLP. A residual convolutional neural 
network (Res-CNN) model was selected for its training speed and high 
accuracy, to perform the task of distantly supervised noisy relation 
extraction [51]. Generally, knowledge regarding Mechanical, Electrical, 
and Plumbing (MEP) is represented in unstructured text form and het-
erogeneously dispersed in design documents and the Internet. To 
address this issue, MEP text documents were collected from multiple 
websites and then text segmentation was carried out by implementing 
NLP models to extract entities and find out the relationship from the 
documented information to speed up the process [68]. 

Different personnel in the property management business, including 
owners, property managers, investors, vendors, as well as other users 
like tenants and renters, use property management software (PMS) 
technology. These personnel use PMS to collect, share and distribute 
data related to property management. PMS refers to online platforms 
that facilitate the management, maintenance, and operation process of 
properties and increase efficiency simply by updating and visualizing all 
data via a centralized computer system. The following research reported 
how deep neural networks advance the automation of property man-
agement, focusing on integrating a smart chatbot into a PMS for real- 
time automated customer support, engaging website/platform visitors, 
and understanding their intent [93]. Bouabdallaoui et al. [15] proposed 
an NLP based solution to classify maintenance requests in healthcare 
facilities thus assisting FM to handle day-to-day maintenance activities. 

5.9. Object/movement detection 

Region-based convolutional neural networks (R-CNN) have made 
major advances in object detection. Such advances involve scanning an 
input image for desirable objects using selective search, which in turn 
generates region proposals from which features are extracted and then 
classified. 

Arslan et al. [7] used a Hidden Markov Model (HMM) to improve 
worker safety in dynamic environments by categorizing the trajectory 
movements and extracting movement patterns because human mobility 
is described as a series of Markovian stochastic processes. In HMMs, 
minimal training data is required. The probability distribution of a 
future state in a series (i.e., safe, or unsafe behavior, or a subsequent 
location) of a of a Markov stochastic process is only dependent on its 
current state or a present location. Hence, it eliminates the need of 
incorporating the whole history of preceding states. Baek et al. [9] 
proposed a two-module system where an Augmented Reality (AR) de-
vice captured a holographic image of a sanitary pipe and then indoor 
location and orientation were estimated with a CNN. 

5.10. Analysis and research trends 

Smart grid and smart city trends are emerging making energy man-
agement a crucial factor for their sustainability and management. En-
ergy management requires forecasting that is as precise as possible 
regarding a building's electrical energy usage. With deep learning, en-
ergy efficiency was improved approximately 10%–15% by occupancy 
prediction [3]. Deep learning has clearly proven to be useful in predic-
tive maintenance according to the literature, where it tries to predict the 
number of occupants to understand thermal energy requirement in 
advance, so facility managers can be prepared [12]. Predictive building 
control increases the efficiency of building operations assisting facility 
managers [82]. 

FM has become aware of the benefits of deep learning-based solu-
tions for asset management, and fault/failure detection, hence the time 
span between development and deployment has been greatly reduced. 

RNNs were initially proposed in the 1980s but were applied only in 2008 
to avoid obstacles for robotic excavators [80]. CNNs were also intro-
duced in the 1980s but became popular in FM-related applications after 
being used to detect trip hazards on construction sites [76]. Conversely, 
the YOLO v3 algorithm was first introduced in 2018 and was quickly 
applied in facility management in construction [59,78]. Crowd predic-
tion significantly increases efficiency for building management, but 
deep learning time-series is rarely used for crowd prediction. The liter-
ature in the field of facility management in construction mostly focus on 
the energy and cost saving aspects of buildings rather than user satis-
faction [62]. 

The focus is mainly on managing energy and preserving it. Of all the 
papers reviewed, energy management was the subject of application in 
18% of the papers, the highest percentage, followed by 14% for main-
tenance scheduling, 12% for occupancy detection, 10% each for 
anomaly detection, fault detection and image classification, 8% failure 
detection, 6% each for natural language processing and movement 
detection and finally 2% for data classification. 

Fig. 4 shows that only recently researchers have started to pay 
attention to using DL techniques for FM, whereas research has been 
more concentrated in the construction industry as a whole. Fig. 5 shows 
a stacked bar graph displaying the different deep learning methods used 
in different research papers and in which years those papers were 
published. It can be noticed that CNNs and MLPs, sometimes referred to 
as a Feed-Forward Neural Networks were the most commonly used 
methods, and they were also used in recent years. Fig. 6 shows a stacked 
bar graph displaying each of the main deep learning methods and which 
applications there were used in. Given increasing demands for reducing 
energy consumption, it is perhaps unsurprising that energy management 
is one of the main focus areas of recent research. It can also be noticed 
that some deep learning methods are more suitable than others 
depending on the application type. 

6. Challenges and possible approach for deep learning in FM 

6.1. Challenges 

Despite the promising outcome in automating and assisting FMM, it 
is still a big challenge to make the majority of the industry employ deep 
learning techniques [88]. An important limitation and contributing 
factor consists of the lack of good quality labeled data, specifically 
related to FM of HVAC [49]. This hampers the creation of large training 
sets, which in turn dampens the performance of deep learning algo-
rithms. Useful industry applications of deep learning for energy opti-
mization and building life-cycle management are still limited [49]. 
Transfer learning utilizes and reuses the relevant parts of a pre-trained 
model and applies it to a similar problem speeding up and overcoming 
the issue of data availability [84]. The main applications of transfer 

Fig. 4. Comparison of DL research productivity as applied to FM or 
construction. 
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learning albeit mostly limited to smart buildings involve load prediction, 
occupancy detection, activity recognition, building dynamics predic-
tion, and energy systems control [84]. In the future, transfer learning 
techniques may reduce the demand for large volumes of data as 
currently only a few studies have been deployed in real world [84]. 
However big data is still required to build the first models from which 
transfer learning can then be applied. Lack of data happens mostly 
because of the manual nature of data handling and collection. 

Reinforcement learning may pose to be a better alternative as well 
compared to conventional HVAC FM. Nonetheless, actual applications in 
real buildings are scarce Wang and Hong [102]; Hong et al. [49] report 
only three reinforcement learning applications for HVAC. Although deep 
learning methods are popular for sentiment analysis, they can be 

generally semantically weak, requiring large amounts of text input [18]. 
Hybrid approaches, combine both knowledge-based and statistical 
methods like deep learning to achieve objectives such as emotion 
recognition for commercial building occupant satisfaction and polarity 
detection from text or multimodal data [19,33]. Another problem of 
implementing deep learning methods for fault detection and diagnosis is 
the lack of data containing information about the system's operational 
conditions. It poses as a hindrance when it comes to developing effective 
Fault Detection (FD) methods for HVAC installations. More research 
needs to be done on improving automated fault detection and diagnosis 
methods for HVAC. 

Fig. 5. Application of Deep Learning(DL) techniques in FM.  

Fig. 6. Types of FM tasks that adopt DL techniques.  
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6.2. Possible approach 

Regulating an appropriate indoor temperature has clearly been a 
primary objective for facility managers. Crowd prediction, occupancy 
detection, and prediction with deep learning has successfully proven to 
make a building more energy efficient. For a more sustainable envi-
ronment, decreasing carbon dioxide emission is necessary, which means 
optimizing the energy consumption of a building due to the fact that 
people stay mostly indoors. Many research studies have focused on 
optimizing energy consumption, but not much research has been done 
on the application of deep learning techniques to green and sustainable 
methods. Such sustainable methods involve thermal-storage air-condi-
tioning (TS-AC) systems rather than conventional ACs, which could 
improve the energy efficiency of a building and lower carbon dioxide 
emission for a better environment. It would be a promising future di-
rection to use deep learning methods to predict how much water the 
chiller of a TS-AC system requires for water circulation the next day. 

Utilizing deep learning technique to estimate energy requirements 
for commercial buildings by predicting peak and off-peak hours 
depending on the number of building occupants during a certain time 
period could greatly reduce energy loads. This would also be useful for 
scheduling HVAC maintenance by predicting peak hours a day before, 
increasing occupant satisfaction. More research studies need to utilize 
deep learning for increasing prediction timespans. 

The field of deep learning has grown substantially in the last five 
years. With the growth of deep learning, automatic detection of faults 
and failures with deep learning is becoming common due to its adapt-
ability in a dynamic environment. However, it requires added focus on 
automatic fault detection in HVAC equipment and automatic mainte-
nance scheduling for optimizing building performance. Many previous 
techniques for fault detection include IoT implementations, but many 
commercial buildings show unwillingness to change their current HVAC 
equipment and update it with IoT. Because of this, it is necessary to 
further explore how deep learning can be help when such IoT features 
are absent from existing equipment. 

Since deep learning requires data for training, it is crucial to establish 
one or more public datasets relevant to facility management and pre-
dictive maintenance. The quantity and quality of this data significantly 

affects the performance of deep learning solutions. Public datasets are 
limited in terms of buildings and energy systems. This makes it more 
challenging for researchers to focus on building energy management and 
maintenance. Building energy related public datasets for maintaining or 
managing HVAC equipment will allow researchers to focus more on 
deep learning techniques for improving facility management and 
maintenance. 

7. Conclusions 

An occasional HVAC malfunction can lead to a huge financial loss for 
the FM sector in the construction industry. This is why it is important to 
utilize deep learning techniques for handling FMM effectively with 
predictive maintenance. A scheduled maintenance system to predict 
maintenance time during reduced pedestrian flow and automated fault 
detection and diagnosis for HVAC equipment can greatly benefit FM. 
Hence the goals of lowering carbon dioxide emission as well as opti-
mizing the energy consumption of a building, should be primary 
research focus areas. The literature surveyed in this paper, indicates the 
importance of implementing an automated maintenance scheduling for 
TS-AC since it is a major part of HVAC and the focus of FM teams. It is 
also crucial to utilize deep learning techniques by developing models for 
targeted domains, since this effort can generate environmental benefits 
by facilitating HVAC to be green and sustainable. Fig. 7 shows a sum-
mary of research objectives and answers this review paper focuses on. 
However, most research so far involves estimating the current number of 
people in a specific location, though the data can be used to further 
predict the occupant crowdedness in the future to improve decision- 
making processes. Additionally, more focus needs to be on automatic 
fault detection on HVAC equipment and automatic maintenance 
scheduling to ensure building efficiency and occupant comfort. Ac-
cording to the literature review, DL shows promising results in 
improving the FMM of building efficiency, and hence requires more 
research in developing DL applications for FMM of HVAC. 
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