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Abstract

Distributed Electric Propulsion (DEP) is an innovative aircraft concept where

thrust is generated by an array of electrically powered propellers. The application

of electric propulsion systems ensures that a significant proportion of the cabin

noise within DEP aircraft is the result of structural vibrations driven by Turbulent

Boundary Layer (TBL) effects. The purpose of this thesis is thus to extend

the Dynamical Energy Analysis (DEA) approach to consider excitations by high

frequency correlated pressure fields, such as the TBL pressure field.

In Chapter 1 of this thesis, the rationale of the project is expressed and the

necessity for a high-frequency vibrational modelling approach is explored.

In Chapter 2, several high-frequency modelling approaches are evaluated, and the

advantages of the DEA approach are highlighted. A detailed review of the DEA

methodology then follows. Several TBL pressure field models are then evaluated,

based upon their suitability for implementation within DEA.

In Chapter 3, the approach for modelling correlated pressure fields within DEA

is developed. This is first applied to model the excitation of small structural re-

gions by homogeneous pressure fields, before being extended to consider full body

excitations. Following this, the vibrational behaviour of flat plates is considered

under TBL pressure fields for various material, boundary, and flow conditions.

Here, the plate response is found to be highly spatially variant and extremely de-

pendent on the system conditions, which has received minimal attention in prior

studies.

In Chapter 4 the implementation of correlated point-forces, representing vibra-

tions originating from the DEP propeller array, within DEA is explored. Here,

the observed vibrational response is found to be the sum of the individual con-

tributions plus a spatially oscillating interference term. This results in complex

interference patterns, which are highly variable under different source arrange-
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ments. It is also demonstrated that in some situations these interference effects

generate steerable beams of vibrational energy, which may be beneficial for sound

and wear reduction. The implemented approach however leads to non-physical

negative phase-space densities, and an approach to rectify this using the Husimi

Density Function (HDF) is discussed.
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Chapter 1

1 Introduction
In this chapter the motivation behind the work presented within this thesis will be

discussed. In addition, experiment-based studies on the topic will be reviewed and

the need for an appropriate computational modelling approach will be discussed.

Following this, the key aims and objectives of the project will be outlined and the

remaining chapters of the thesis will be summarised, highlighting the key results

from each.

1.1 Motivation

Currently, aviation represents a significant contribution to climate change, ac-

counting for around 2.5% of all CO2 emissions globally [1]. Due to increas-

ing demand and improvements in sustainability in other industries, this may

reach around 11% [2, 3]. To attempt to prevent this, a significant amount of

research is being performed to develop feasible alternatives to fossil fuel-powered

aircraft. One potential alternative is to replace traditional jet engines with elec-

tric propulsion systems. A particularly exciting example of this is Distributed

Electric Propulsion (DEP), where thrust is produced by an array of small electric

propulsion systems (EPSs) spread across the airframe. In this thesis, the term

“EPS” refers to the full configuration, including an electric motor and propeller,

which is employed to generate thrust for DEP aircraft. A “propeller” is then the

aerodynamic device which is rotated to generate the thrust itself.

This approach leads to increased low-speed lift generation as the propellers force

air across the wings [4–7], along with increased stability and steering control

through differential thrust [8]. These factors enable the reduction in the size

1



Chapter 1.1 Motivation 2

of key aerodynamic and control devices, greatly reducing drag and improving

aerodynamic efficiency over traditional configurations [8–10].

In addition to the obvious climate benefits of these aircraft, electric propulsion

systems also generate much less noise than their jet-engine counterparts [11, 12].

Currently, cabin noise experienced aboard aircraft is dominated by a combination

of engine noise and turbulent boundary layer (TBL) effects [13]. The switch to

electric propulsion would thus dramatically increase the influence of these TBL

effects. This is especially important at frequencies > 500Hz, where TBL contri-

butions already dominate the experienced cabin noise [14,15]. When attempting

to reduce the noise experienced aboard electric aircraft, a strong understanding

of the influence of the TBL on the aircraft in flight is thus required.

However, direct evaluation of the vibrational response of aircraft structures under

TBL pressure fields via wind tunnel or in-situ testing is extremely expensive and

time consuming [16–18]. As a result, little research has been performed in this

area, with direct vibrational studies of aircraft structures limited to point-force

excitations [19–21]. In these experiments, shakers were utilised to excite vibra-

tions in full size fuselage models. The vibrational response across the structure

was then measured by accelerometers or scanning laser vibrometers on a grid of

points across the structure. These results were then combined to define the dis-

tributed vibrational response of the fuselage under the applied excitation [20,21].

Due to physical constraints, these measurements could only be performed on small

regions of the fuselage, and were limited to the low-frequency range. The number

of measurements required to perform this analysis also meant that these studies

were extremely time consuming, taking several days to complete [21]. Housing

the aircraft structures in environments of sufficient size without external influence

also requires dedicated facilities [20], which may not be available in many cases.

The impracticality of these direct experimental approaches means that alterna-

tive methods are necessary to compute the response of aircraft to high-frequency

2
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TBL effects.

Due to the impracticality of these direct experimental approaches, numerous ap-

proximate methods have been developed to examine the vibrational behaviour of

systems under TBL pressure fields. Amongst these are methods which attempt

to synthetically recreate the pressure field applied by the TBL using an array

of loudspeakers [22, 23]. By careful management of the location and amplitude

of the sources, the loudspeaker array is able to produce a fluctuating pressure

field across the plate which is equivalent to the TBL pressure field. Thus a real

TBL pressure field, produced within a wind tunnel or in situ, is unnecessary,

making this approach far more accessible than a direct experimental evaluation.

This approach has been found to work well for low-frequency sources [22], but re-

quires an unfeasibly dense loudspeaker array for high-frequency applications [23].

To rectify this issue, the Source Scanning Technique (SST) has been developed,

which aims to accurately recreate the TBL using a single acoustic source [24,25].

To do this, measurements are made of the response of the plate to the acoustic

source when applied at various locations and amplitudes. If defined correctly, the

linear combination of these responses is approximately equivalent to the response

at this location under a full TBL pressure field excitation [24]. Cross-spectral re-

sults for this approach show close agreement with experimental results. However,

this procedure can only define the response of the plate at a single location and

the whole process must be repeated to define the response at further locations.

The generation of a distributed representation of the structural response using

this approach would thus be extremely time consuming.

Due to the discussed limitations in experimental evaluations of this phenomena,

numerical procedures must be investigated. Amongst these are approaches which

simplify the problem by considering the properties of the TBL pressure field and

the vibrational behaviour of the plate independent of one another [26–28]. In

these studies, the TBL pressure field is represented by an appropriate Cross-
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Spectral Density (CSD) function, which describes the correlation in the pressure

applied by the field at two distinct locations, based upon their separation. A

review of several CSD models for TBL pressure fields is presented in Section

2.3. Appropriate parametric values for these models may be defined from wind-

tunnel measurements [26,28], or from recommendations in the literature such as

the popular study by Graham [29]. The vibrational properties of the plate are

then defined by a sensitivity function, which describes the vibrational response

of the plate at some point x due to the application of a a point-force at location

x̃ [26,27]. The integral of the product of the CSD and sensitivity function across

wavenumber space then defines the response of the structure at x as a function

of the excitation frequency [26,27,30]. This approach has been validated against

experimental measurements of small, thin, plates under low-speed TBL fields

across a range of frequencies, showing good agreement. However, this method

can also only define the response at a single location and so is similarly unsuitable

when considering a distributed description of the response.

As shown, existing experiment-based evaluations of the vibrational response of

structures under TBL pressure fields are practical only for single point evaluation.

To produce a distributed prediction of the response across the structure, a high-

frequency modelling approach is required.

Another important source of structure-borne vibration in DEP aircraft is the

propeller array [31–33]. Here, disturbances in the aerodynamic forces acting on

the propellers during operation cause vibrations which spread across the aircraft

[34–36]. This effect is likely to be particularly influential in DEP aircraft, due

to the large number of propulsors applied in these configurations [37]. Given the

close proximity of the propulsors within DEP configurations, it is likely that the

vibrational waves generated by each propulsor could meet and interfere with one

another. For many closely-packed propulsors, these interactions could generate

a complex vibrational response across the aircraft. To properly compute the
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vibrational behaviour of DEP aircraft, the chosen approach must also be able to

quantify the response of structures to multiple correlated point-forces and their

interference effects.

1.2 Aims and objectives

The purpose of this thesis is thus to develop a high-frequency approach for mod-

elling the vibrational response of structures to correlated pressure fields (such as

the TBL) and correlated point-force excitations (representing excitations from

the propeller arrays of DEP aircraft). To achieve this, the following steps must

be completed:

• Review existing high-frequency modelling approaches and identify the most

appropriate for calculating a distributed representation of the response of

structures to correlated pressure fields and correlated point-force excita-

tions.

• Develop the chosen high-frequency modelling approach to evaluate the re-

sponse of structures to generic correlated pressure fields.

• Derive an appropriate source term to model the TBL pressure field within

this approach.

• Produce a spatially distributed representation of the response of plates to

TBL pressure fields with different material, boundary, and flow conditions.

• Develop the chosen high-frequency modelling approach to evaluate the re-

sponse of structures to correlated point-force excitations.

• Calculate the vibrational response of plates to two, or more, correlated

point-forces, including interference effects.

5
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1.3 Thesis outline

The following is a brief summary of the remainder of this thesis:

In Chapter 2, the range of models developed for simulating the high-frequency

behaviour of complex systems will be discussed. Here, the Dynamical Energy

Analysis (DEA) is highlighted as the preferred approach, and the theory behind

this method is examined in more detail. The properties of the TBL pressure field

are also examined, and the models used to represent this field in prior studies are

evaluated. Finally, vibrational interference effects are discussed, along with nu-

merous real-world applications of this effect. In Chapter 3, the implementation of

correlated pressure fields within DEA is discussed. This is initially demonstrated

for a generic, homogeneous, pressure field, and an appropriate implementation

for a TBL pressure field is then derived. This is then applied to model the exci-

tation of a flat plate by a TBL pressure field under different material, boundary,

and flow conditions. These results display a spatial variation in the Vibrational

response, and the significance of this outcome is discussed in the context of prior

studies. In Chapter 4, the vibrational response of flat plates to correlated point-

force excitations is considered. Results for varying sources, locations, and phases

are presented here. This includes a discussion of how the vibrational energy from

the sources may be channelled in desirable ways based upon a careful tuning of

the relative phase of each source. Following this, a demonstration of the imple-

mentation of these sources into DEA is presented. This includes the introduction

of a simple algorithm that is used to define an appropriate initial boundary for

these sources. Here, it is demonstrated that non-physical energy density solu-

tions can arise from correlated point-force excitations, and the Husimi Density

Function (HDF) is introduced as an approach to prevent this. Finally, in Chapter

5 the key outcomes of this work are summarised and potential opportunities for

further study are outlined.

6
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1.4 Author’s Contribution

The following is a list of contributions made by the author in the remainder of

this work.

• Generalisation of the existing DEA approach to consider generic correlated

pressure-field excitations, as discussed in Section 3.2.

• Identification of the Corcos and Mellen models as valuable representations

of the TBL pressure field, as discussed in Section 2.3, and derivation of

appropriate phase-space representations of the Corcos and Mellen model

for implementation within DEA, as dicussed in Section 3.4.

• Implementation of the discussed DEA extensions for correlated pressure

fields within an existing DEA software for both small-patch and full body

excitations.

• All results and discussion presented in Section 3.

• Definition of appropriate source correlation functions for multiple corre-

lated point-force excitations and resulting free-space phase-space density

distribution, as discussed in Section 4.1.

• Generalisation of this approach to N correlated point forces of arbitrary

phase, as discussed in Section 4.2.

• Development of python code to plot the direct phase-space energy density

due to N correlated point-forces, presented throughout Section 4.

• Implementation of correlated point-force excitations within the existing

DEA software, including investigations into appropriate definitions of the

initially excited region, as discussed in Section 4.3.

7
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• Discussion of possible negative phase-space energy density values and de-

velopment of the HDF representation of the phase-space energy density, as

discussed in Section 4.4.

• All discussions of limitations of the

8



Chapter 2

2 Background and Literature Re-

view
This chapter presents a summary of the prior literature and background knowl-

edge necessary to appreciate the work performed and results presented in the

remainder of this thesis. In Section 2.1, the range of high-frequency vibration

modelling approaches will be discussed, with the DEA method highlighted as the

preferred method. In Section 2.2, the application of this approach to define the

vibrational response of structures to high-frequency point-force excitations is then

introduced. To implement TBL excitations within DEA, an appropriate represen-

tation of the applied pressure field is required. By discussing the formation and

behaviour of the TBL, in Section 2.3, the formation and properties of the TBL

will be discussed, and the CSD will be introduced as an accurate representation

of the TBL pressure field. Here, the range of available TBL CSD models will

be evaluated, focusing particularly on their suitability for implementation within

DEA. Finally, in Section 2.4, the result of interference effects between waves will

be examined, along with some real-world applications of this phenomena.

9
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2.1 Review of high-frequency vibration modelling

approaches

Developed in the 1950s, based upon the earlier work of Hrennikoff [38] and

Courant [39], the Finite Element Method (FEM) is by far the most popular

approach for solving complex vibro-acoustic problems [40]. In FEM, the vibra-

tional behaviour of the system is described by a set of wave equations defined

acros the structural surface [40–42]. Given the continuous nature of the struc-

tures to be modelled, it is impossible to solve these equation directly. Instead,

in FEM the structure is reproduced using a set of small, non-overlapping, ele-

ments [40,43,44]. Approximate solutions to the wave equations are then defined

within each element by fitting a set of basis functions to the solutions to the over-

all wave equations found at a set of nodal points within the element [43–45]. This

is typically performed using a weighted residual approach such as the Galerkin

or Least Squares residual minimisation methods [44, 45]. A detailed description

of the vibrational response across the structure is then found by connecting all

of these elements to re-assemble the original structure. FEM has been applied

to accurately predict the vibrational response of structures to external loads in

numerous prior studies [46–48], including in aviation [49, 50]. The quality of the

results produced is however dependent on the size of the mesh elements and the

chosen basis functions. For example, increasing the number of mesh elements

and choosing more suitable basis functions will enable FEM to resolve finer de-

tails in the structural response [40, 41]. When considering vibrational problems

using FEM, the number of cells required to resolve the behaviour of the struc-

ture typically scales with the wavelength of the vibrations. For example, when

applying a piecewise constant basis, typically six mesh cells per wavelength must

be employed [51, 52]. Thus, as the excitation frequency increases the mesh must

be increasingly refined to properly capture the vibrational response. At higher

10
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frequencies the computational demand of this approach is thus extremely high

and quickly beomes unfeasible due to technological constraints [53–55]. Besides

these computational difficulties, there are also fundamental issues in applying

FEM for recreating real-world high-frequency vibrational problems. In the high-

frequency regime, the vibrational behaviour of structures is extremely sensitive

to fine details in the structural properties [54,56]. This is important, as there are

inevitable small variations in all structures due to manufacturing imperfections or

differing environmental influences such as temperature or static load [55, 57, 58].

As such, seemingly identical structures can produce greatly differing vibrational

responses under the same applied load. This problem could be accounted for by

performing an ensemble of FEM calculations covering the range of possible struc-

tural imperfections, though this solution is unfeasible in practise. Thus FEM

is unsuitable for solving high-frequency vibrational problems and a statistical

treatment is required.

The most widely known of these statistical methods is Statistical Energy Anal-

ysis (SEA). Developed in the early 1960s to predict the vibrational behaviour

of aerospace structures in a cost effective manner [59, 60], SEA has since been

employed to solve a wide array of vibro-acoustic problems across automation,

aviation, and architecture [61–65]. This approach aims to predict the ensemble-

average vibrational behaviour, using calculations based upon the fewest possible

details of the system [55]. When applying SEA, the structure is split into several

subsystems either along natural structural boundaries or to separate regions with

significantly different bulk properties [66,67]. Within each subsystem, the struc-

tural properties are presumed to be approximately constant [55]. In addition, it

is assumed that the damping within individual subsystems and the coupling be-

tween subsystems are sufficiently weak to accommodate diffuse vibrational fields

within each subsystem [68]. These assumptions ensure that the vibrational be-

haviour within each subsystem is homogeneous and isotropic, and can be de-
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scribed by a single mean vibrational energy value [52,55,69]. The weak coupling

of internally uniform subsystems then facilitates a thermodynamic description

of the flow of vibrational energy between subsystems. Here, the time-averaged

power flow between two coupled subsystems i and j is given by

Pij = ω [ηijEi − ηjiEj] , (2.1)

where Ei is the time-averaged mean vibrational energy in the ith subsystem and

ηij is the coupling loss factor for energy flowing from subsystem i to subsystem

j [55]. These coupling loss factors encompass all of the necessary details of the

subsystems and are given by

ηij = Lijcgi

πSiω
τij, (2.2)

where Lij is the length of the boundary which couples the two subsystems and

τij is the mean transmission efficiency. Si is then the area of subsystem i and

cgi
is the group velocity within this subsystem [67]. The power flow between

subsystems i and j in SEA is illustrated by Figure 1.

Figure 1: Demonstration of the power flow between subsystems i and j in SEA.

One may then produce a set of simultaneous equations encompassing the energy

12
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flow between all subsystem pairs. By considering the boundary conditions of

the system and conservation of energy, these may be solved to define the time-

averaged equilibrium energy within each subsystem [55,67].

The simplicity of this approach allows one to perform calculations very quickly

at low computational cost, with only a limited knowledge of the system being

modelled [55,70]. As a result, SEA is extremely useful in the early design phase of

projects, where the full details of the structure are unknown [55]. By considering

the individual power flow equations, the results of SEA calculations can also be

useful to provide a rough estimate of the flow of energy around the system. In

addition the usage of SEA to model the vibrational response of structures to TBL

pressure fields is already being considered [71]. In this study, it is suggested that

the power injected into each subsystem could be defined using an appropriate

CSD for the TBL pressure field over wavenumber space. The overall vibrational

response of the structure is then simply the solution to a set of simultaneous

equations including these power terms. The SEA approach would then be capable

of defining the vibrational behaviour of complex structures under TBL pressure

fields in a simple and cost-effective manner. However, the vast simplification

of the system employed by SEA brings numerous drawbacks. For example, the

diffuse field approximation employed by SEA is often difficult to justify in real-

world situations. This is especially true for large structures [72], or where passive

damping treatments have been applied [73], such as aircraft fuselages [55]. This

issue can somewhat be overcome however by applying Wave Intensity Analysis

(WIA) [74]. Developed by Langley in 1992, this enhancement to SEA employs a

Fourier series to approximate the directional dependence of the vibrational energy.

This facilitates the relaxation of the diffuse field approximation within SEA, and

provides enhanced accuracy when dealing with highly directional energy flows

between subsystems [74]. Despite providing an improved description of the flow

of vibrational energy between subsystems, under WIA the energy within each
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subsystem is still required to be homogeneous. This is problematic, as it limits

SEA solutions to a coarse description of the vibrational response of the structure.

As such, SEA is unable to provide a detailed distribution of the vibrational energy

within the system, or account for localised intense vibrations. This is important,

as these focused points of vibrational energy are the main reason for failures in

complex machinery [55]. In addition, the approach for defining an appropriate

sub-division scheme for SEA calculations is highly challenging, requiring an expert

knowledge of SEA sub-structuring techniques and of the system itself [52]. This

is important, as the accuracy of the solutions produced using SEA is often highly

dependent on the chosen subdivision configuration [66]. Thus, despite the speed

and efficiency of the SEA method, the fragility of its assumptions in real-world

situations and limited solution quality mean that an alternative high-frequency

approach is often required.

One method which aims to combine the strengths of FEM and SEA is the En-

ergy Flow Finite Element Analysis (EFEA) method. EFEA aims to apply an

energy balance approach similar to an SEA subsystem treatment to finite ele-

ment meshes [75]. EFEA begins by defining an appropriate equation of motion

for the system and breaking down the structure into a finite element mesh. It

is then assumed that the damping is sufficiently small to allow for a reverberant

vibrational field to form within the structure, thus ignoring the direct contribu-

tion from the applied source [76]. The solution to the chosen equation of motion

is then described as the sum of plane waves [77, 78]. The second approximation

of this approach states that the energy flow is proportional to the gradient in the

energy density [75]. By considering the conservation of energy within each mesh

element, one can relate this energy flow to the balance between the external power

entering the element and the power dissipated through damping [78,79]. Apply-

ing this approximation, one can then form a 2nd order differential equation for

the energy density within the element. The boundary conditions for this formula
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are then defined by evaluating the mean power flow across each of the element

boundaries [77]. Han et al [80], have applied EFEA to predict the structural

vibration of a flat plate excited by a TBL. In this study, the power injected into

each cell is given in the same form as discussed by Maxit et al [71] for an SEA

formulation. Here however, the simplicity of the structure ensures that the field

is approximately homogeneous across the plate. The response of the plate is then

considered by a single, averaged, energy density value and compared against an

equivalent experimental study involving the measurement of the plate response

using a scanning laser vibrometer. This comparison demonstrated that EFEA

could produce a reasonable, though over-estimated, prediction of the vibrational

behaviour of the plate at different frequencies. In a later study [81], the vibra-

tional response of a ship’s hull to a TBL pressure field was investigated using

EFEA. Here, the injected power was defined based upon CFD calculations of the

variance in the TBL properties across the structure. Unlike for SEA, the quality

of the finite element mesh ensured that no further sub-structuring was necessary

to capture the variance in the TBL parameters across the structure. The result

of this calculation was then a distributed description of the vibrational response

of the hull under the TBL. By repeating this process for different hull structures,

EFEA was able to demonstrate how changes to the hull structure could effectively

mitigate vibrations in the ship. These results are replicated here in Figure 2.

As shown by this study, the usage of finite element meshes enables EFEA to

provide a far greater indication of the spatial variation in the vibrational energy

compared to the subsystem-averaged results generated by SEA. In addition, the

usage of finite element meshes enables the inclusion of local variations in the flow

or structural properties [76, 82, 83]. The applied approximations however ensure

that low-frequency finite element meshes are sufficient for EFEA calculations.

Thus, the computational cost of EFEA is far smaller than an FEM evaluation of

the same problem [75]. The applied reverberant wave assumption and associated
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Figure 2: Vibrational response at 250 Hz (a) and 1 kHz (b) of the ship travelling
at 20 knots (top of each plot) and 30 knots (bottom of each plot) calculated using
EFEA [81].

neglect of the direct field contribution does however limit the effectiveness of this

approach. In particular, EFEA underestimates the response close to the source

point and significantly overestimates the result far from the excitation [76]. In

addition, the assumed reverberant field breaks down in heavy damped cases,

limiting the applicability of EFEA to minimally damped systems [77]. Even in

these low damping cases the effectiveness of EFEA is questionable, as the minimal

dissipation of energy ensures that the spatial variation in the energy density is

effectively flat [76]. In such a case, the result produced is effectively equivalent to

an SEA solution, which would be preferred due to its smaller computational cost.
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Despite the improvements of this approach over FEM and SEA, these difficulties

make EFEA impractical for these studies.

A very different approach for high-frequency vibro-acoustic modelling is the ray-

tracing method. Initially developed in the late 1960s for room acoustic modelling

and computer image generation [84–86], raytracing has more recently been ap-

plied to vibro-acoustic modelling. In this approach, the vibrational energy dis-

tribution is calculated by modelling the motion of rays which “carry” vibrational

energy from the source across the domain. To begin, identical rays are emitted

isotropically from the source point [72]. These rays follow classical ray behaviour,

propagating in straight lines, reflecting specularly at structural boundaries, and

losing energy over time due to damping and scattering effects [73, 84]. The to-

tal energy found at some location r ∈ Ω within the structure is then the sum

of contributions from all rays that have passed through this point in their life-

time [66,72,87]. Thus, with sufficient rays, the raytracing approach can construct

a complete map of the vibrational response to the applied load. Figure 3 provides

a visual demonstration of the raytracing procedure.

Unlike SEA, raytracing incorporates a great amount of detail of the structure

being modelled [52]. This allows raytracing to accurately model the vibrational

response of detailed structures with complex transmission properties [66, 72, 88].

This is particularly true for highly damped structures, where the assumptions of

the SEA approach break down [72]. By considering the motion of the rays as

they pass each point, raytracing can also accurately describe the directionality

of the wave energy at each point. The effectiveness of the raytracing approach

for vibrational behaviour of structures has been demonstrated by Chae and Ih

[72]. Here, raytracing is applied to model the vibrational response of a single

flat plate, as well as a coupled pair of plates, to point-force excitations. These

results were compared against equivalent SEA and EFEA calculations, along with

an analytical solution. For each case, the SEA result gives a uniform response
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Figure 3: Visual demonstration of the raytracing procedure.

across each plate and the EFEA demonstrates characteristic accuracy issues. The

raytracing result however shows an excellent match to the analytical solution,

particularly for higher damped cases. The procedure for tracking the motion

of the rays is however rather cumbersome. This is especially problematic in

low damped cases, where the ray lifetime is rather long, or in complex geometries

where a vast number of rays are required to fully resolve the structural surface [52,

69]. Thus, despite the excellent accuracy of this approach, these computational

costs limit its practicality for more complex systems.

The final approach discussed here aims to combine the advantages of the ray-

tracing and SEA methods. Introduced by Tanner in 2009, Dynamical Energy

Analysis (DEA) is a raytracing-like approach applied on low-frequency finite el-

ement meshes [66]. Unlike other raytracing approaches, in DEA the motion of

the rays is formulated on a boundary coordinate scheme. This ray motion is con-

sidered iteratively, with each iteration covering the motion of the rays between
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successive encounters with the boundary. To compute how the rays travel across

iterations, a linear transfer operator is applied [52, 66]. To properly model the

motion of the rays, the transfer operator incorporates details such as changes in

material properties and boundary conditions. A representation of the application

of the transfer operator on a single ray propagation is demonstrated in Figure 4.

Figure 4: Application of the transfer operator Φ to define the new position and
propagation of a ray due to a reflection at a structural boundary.

This transfer operator approach is far less computationally taxing than generat-

ing a continuous description of the motion of the rays across the structure. For

computational purposes, this transfer operator is expressed as a matrix equation

using a set of basis functions. The lowest order representation of this operator is

similar to an SEA/EFEA implementation, with energy flowing between adjacent

elements dependent on their relative energy balance [54, 66]. Higher order im-

plementations then enhance the transfer operator to enable more detailed energy

flows. This greatly improves the quality of the solutions produced, and enables

DEA to properly account for complex geometric features, source directionality,

and varying material properties in the structures studied [66]. This enhanced

solution also facilitates the relaxation of the requirement for a homogeneous and
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diffuse wave field within subsystems [56]. As a result, DEA is able to handle

problems with high damping or strong directionality, where these approxima-

tions fail. This also ensures that the choice of sub-structuring approach is no

longer critical to the quality of the solution, enabling a great deal more freedom

when subdividing the structure for DEA calculations compared to SEA [54, 89].

For an increasing number of basis functions, the DEA solution demonstrates

pointwise convergence to a full raytracing solution, meaning that DEA is effec-

tively an interpolation between SEA and raytracing approaches [89]. In general,

these computations require a very small number of basis functions, meaning that

DEA can produce results of comparable accuracy to raytracing with a far smaller

computational cost [66].

DEA has been employed to model the vibrational behaviour of complex structures

in several prior studies. In the first, the vibrational behaviour of a Range Rover’s

aluminium shock tower was evaluated using DEA and compared against a Nastran

FEM solver [89]. Here, the DEA model showed strong agreement with the FEM

result, and was able to demonstrate geometry dependent features in the response

that approaches such as SEA would fail to resolve. In a similar study, both DEA

and FEM were applied to predict the response of a car floor to an applied point-

force [56]. Here, the DEA solution again showed strong agreement, with results

within 6% of the FEM prediction for a low damped case and within 12% for a

higher damped case. In another study, the convergence of the DEA approach

was investigated based upon predictions of the vibrational response of a reduced

car model due to a point-force excitation [52]. Here, a result generated using

just four Legendre polynomials was able to match the closest fit to an equivalent

FEM calculation, demonstrating the fast convergence of this method. DEA has

also been applied to predict the vibrational response of numerous other complex

structures, such as a tractor chassis [53] and a double hull structure [69]. The

distributed vibrational response of several complex structures calculated using
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DEA are demonstrated in Figure 5.

Figure 5: Previous DEA vibro-acoustic simulations of a tractor chassis (top-left)
[53], a vehicle shock tower (top-right) [69], and a car chassis section (bottom) [52].

However, unlike SEA and EFEA, the DEA approach has currently only been

applied to model the response of structures to individual point or monodirectional

line sources. To be able to model the response of structures to TBL excitations,

DEA must be extended to implement excitations by correlated pressure fields. To

enable this, one must first understand how point-force excitations are modelled

within this approach.

2.2 Point-Force Excitations in DEA

DEA was developed to consider the excitation of structures by high-frequency,

continuous, monochromatic, point-force loads [66]. In this situation, the structure

is excited by a point-force which oscillates periodically at a fixed driving frequency
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ω without end. This ensures that the problem is stationary in time, enabling the

description of the system in the frequency domain [90]. When attempting to

define the vibrational response of the structure under the applied excitation, it is

assumed that the behaviour of the system may be characterised by a linear wave

operator Ĥ, which describes the overall wave dynamics [66]. The form of Ĥ is

chosen in each case to best capture the details of the structure, along with the

type of vibrational waves being excited. In the general case, the response of a

two-dimensional system to a point-force excitation of unit magnitude applied at

r0 ∈ Ω is defined by solving

(
Ĥ + ω2

)
G (r, r0, ω) = −δ(r − r0). (2.3)

Here, G (r, r0, ω) is the Green function, which represents the vibration amplitude

of the plate at a point r ∈ Ω induced by the applied excitation at r0 ∈ Ω. If

one was to model the vibrational behaviour of a structure by considering the

excitation of plane waves within a thin membrane, the appropriate form of the

linear wave operator is given by Ĥ = c2∆, where c is the vibrational wave velocity

[66]. In this case, the Green function is the solution to the Helmholtz equation

(
∆ + k2

)
GH (r, r0, ω) = − 1

c2 δ(r − r0), (2.4)

where k = ω/c is the vibrational wavenumber. However, in this study the exci-

tation of bending waves within structures which may be represented by a set of

thin, plate-like, elements is considered. In this case, the behaviour of the system

is modelled using Kirchhoff-Love thin plate theory [90]. This theory assumes

that the plate material is homogeneous and isotropic, the plate is initially flat,

and the plate thickness does not vary due to deformation [91]. In addition, it is

assumed that the out-of-plane displacement of the plate is negligible compared

to the plate thickness [92]. When applying Kirchhoff-Love thin plate theory, the
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linear wave operator is given by Ĥ = − D
ϱh

∆2, where ϱ is the density of the plate

and h is its thickness. In addition, D = Eh3

12(1−ν2) is the bending stiffness, with E

the Young’s modulus and ν the Poisson ratio [93]. The Green function describing

the response of the plate is then the solution to the bi-harmonic equation [66]

(
∆2 − k4

)
GB (r, r0, ω) = ϱh

D
δ(r − r0), (2.5)

where k =
(
ϱh
D
ω2
)1/4

is now the bending wave vibrational wavenumber. To solve

these equations, the Green function is split into two terms [90, 94]. The first is

the free-space part of the Green function G0, which captures the direct response

at each location within the structure to the applied driving force. The second

is the homogeneous part of the Green function Gh, which captures all indirect

contributions to the response of the plate at each location to the applied driving

force. This then encompasses the contributions made by vibrational waves which

are scattered at the structural boundary and propagate back across the structure,

providing additional vibrational energy contributions across the plate. The overall

Green function may be written as the sum of these direct and homogeneous parts

by

G (r, r0, ω) = G0 (r, r0, ω) +Gh (r, r0, ω) . (2.6)

The approaches to determine these components are described in Sections 2.2.1

and 2.2.2 respectively.

2.2.1 The free-space solution

As discussed, the free-space part of the Green function is the solution to equation

(2.3) in an unbounded domain [90]. Before solving this equation, it is useful to

define the free-space solution to the Helmholtz equation
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(
∆ + k2

)
G0H (r, r0, ω) = − 1

c2 δ(r − r0). (2.7)

The following is a summary of the approach detailed by Smith in [95] to solve

equation (2.7). Firstly, by converting into polar coordinates, this equation can

be rewritten as

(
∂2

∂r2 + 1
r

∂

∂r
+ 1
r2

∂2

∂θ2 + k2
)
G0H (r, ω) = − 1

c2
1
r
δ(r)δ(θ − θ′) (2.8)

where r = |r − r0|. Assuming that the Green function has no angular depen-

dence, ∂2G0H

∂θ2 = 0, removing the θ dependence from the left-hand side. The θ

dependence on the right-hand side may then be removed by integrating both

sides with respect to θ′ across the range θ′ ∈ [0, 2π]. The result is then given by

(
∂2

∂r2 + 1
r

∂

∂r
+ k2

)
G0H (r, ω) = − 1

c2
δ(r)
2πr . (2.9)

Outside of r = r0 the above is Bessel’s equation, which has solutions of the form

G0H (r, ω) = AH
(1)
0 (kr) +BH

(2)
0 (kr) (2.10)

where H(1)
0 and H(2)

0 are the zeroth order Hankel functions of the first and second

kind respectively. To define appropriate terms for A and B, the Sommerfeld

radiation condition is used [96], which states

lim
r→∞

√
r

(
∂

∂r
− ik

)
G0H(r, ω) = 0. (2.11)

This condition ensures that for a scalar field to satisfy the Helmholtz equation,

the energy which is radiated from the source must scatter to infinity in R2, with

no energy radiated back into the field [97]. One can demonstrate that the result

of substituting the zeroth order Hankel function of second kind into equation

(2.11) is a function which is unbounded as r → ∞. Thus, for equation (2.10)
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to follow the Sommerfeld radiation condition, it is necessary that B = 0. Upon

examination of the remaining term as r → 0, one can deduce that A = −i/4 [95].

The free-space part of the Green function for the Helmholtz equation is then

given by

G0H(r, r0, ω) = − i

4H
(1)
0 (k |r − r0|). (2.12)

The zeroth order Hankel function of the first kind is itself given by H
(1)
0 (z) =

J0(z) + iY0(z) where J0 and Y0 are the zeroth order Bessel functions of the first

and second kind respectively [98]. These are given by [99] as

Jn(z) =
∞∑
s=0

(−1)s
s!(n+ s)!

(
z

2

)n+2s

Yn(z) = Jn(z) cos (nπ) − J−n(z)
sin (nπ) .

(2.13)

To simplify future formulas, an approximated form of these functions is desired.

As DEA is applied to high-frequency problems, it is appropriate to assume that

the wavelength of the excitation is infinitesimal compared to the separation be-

tween the source and receiver locations in the majority of cases. As such, the

far-field approximation is applied to equation (2.12), where k |r − r0| → ∞,

leaving

G0H(r, r0, ω) ≈ −1
4

√
2

πk |r − r0|
ei(k|r−r0|− π

4 ). (2.14)

Returning to the biharmonic equation, equation (2.5), factorising the left-hand

side gives

(
∆ − k2

) (
∆ + k2

)
G0B (r, r0, ω) = ϱh

D
δ(r − r0). (2.15)

The Green function solution to this equation may be written as
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G0B = αG0H + βG0M (2.16)

where G0M is the Green function of the modified Helmholtz equation [90,95],

(
∆ − k2

)
G0M(r, r0, ω) = 1

c2 δ(r − r0) (2.17)

which is given by

G0M(r, r0, ω) = − 1
2πK0(k |r − r0|), (2.18)

where K0 is the zeroth-order modified Bessel function. By substituting equation

(2.16) into equation (2.15) and forming simultaneous equations for terms with

different orders of k2, it can be shown that α = −β = 1/(2k2) [95], leaving

G0B(r, r0, ω) = ϱh

2Dk2

(
i

4H
(1)
0 (k |r − r0|) − 1

2πK0(k |r − r0|)
)
. (2.19)

The second term decays exponentially with k and so disappears in the high-

frequency limit [100]. Under the far-field approximation, the free-space part of

the Green function for the biharmonic equation is thus given by

G0B(r, r0, ω) ≈ ϱh

8Dk2

√
2

πk |r − r0|
ei(k|r−r0|− π

4 ). (2.20)

As described in Section 2.1, interpreting the vibrational response of structures

to applied loads using DEA involves describing the flow of energy induced by

the source across the structure. As such, it is necessary that the solution pro-

duces a measure of both the spatial distribution and the flow of the vibrational

energy throughout the system [101]. To simultaneously express both the spatial

distribution and flow of energy across the system, a phase-space representation

of the vibrational energy distribution is required. The phase-space correspond-

ing to a two-dimensional system is four-dimensional, consisting of two position
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coordinates r = (x, z) and two momentum coordinates p = (px, pz) [53, 102].

To produce a phase-space representation of the vibrational energy, the Wigner

Distribution Function (WDF) of the plate response must be defined [103]. De-

veloped to describe the dynamics of quantum systems in phase-space [104], the

WDF has since found widespread application in modelling light propagation in

optical signals [105]. In the present case, the WDF is calculated from the cor-

relation function of the vibrational response [102] which describes the level of

coherence in the vibrational response of the structure at two separate locations

r1, r2 ∈ Ω. This correlation function can be defined from the Green function of

the vibrational response by [106]

Γ0 (r1, r2, ω) =
∫ ∫

G0 (r1, r
′
1, ω) Γf (r′

1, r
′
2)G∗

0 (r2, r
′
2, ω) dr′

1 dr
′
2, (2.21)

where the superscript ∗ denotes the complex conjugate. In this equation, Γf (r′
1, r

′
2)

is the correlation in the force applied to the plate at positions r′
1, r

′
2 ∈ Ω. Typi-

cally, this describes a distributed pressure field, which applies force across a wide

region of the structure. A point source excitation is thus a special case in which

the force is applied at a single location, and has a magnitude of zero elsewhere.

The correlation function relating the forces applied at positions r′
1 and r′

2 when

considering a point-force applied at some position r0 ∈ Ω, this is simply given by

Γf (r′
1, r

′
2) = δ(r′

1 − r0)δ(r′
2 − r0). (2.22)

As the force applied is zero at all locations except r0, then there is a non-zero

correlation only where both r′
1 and r′

2 are found at this location. The WDF

is then derived by taking the Wigner transform of equation (2.21) [107]. The

Wigner transform of a generic correlation function F (r1, r2), is given by

W (r, p, ω) =
∫
R
F

(
r + ξ

2 , r − ξ

2

)
e−ip·ξ dξ. (2.23)
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Here, the points r1 and r2 have been rewritten in terms of their mean position

r = 1
2(r1 + r2) and separation ξ = r1 − r2. Taking the Wigner transform of both

sides of equation (2.21) then gives

W0(r, p) =
∫ ∫

G(r, p; r′, p′)WΓ(r′,p′) dr′ dp′. (2.24)

Here, G is the phase-space propagator [108]

G(r, p; r′, p′) =∫ ∫
e−ip·ξ+ip′·ξ′

G

(
r + ξ

2 , r
′ + ξ′

2

)
G∗

(
r − ξ′

2 , r
′ − ξ

2

)
dξ dξ′.

(2.25)

Assuming homogeneity and isotropy in the properties of the structure, the re-

sponse at a point r to some excitation applied at r′ will depend only on the

separation of the points |r − r′|, rather than their actual positions. In this case,

we introduce the variable K(r − r′) = G(r, r′) , and following [107] equation

(2.25) becomes

G(r, p; r′, p′) = δ(p − p′)
∫
e−ip·ξK

(
r − r′ + ξ

2

)
K∗

(
r − r′ − ξ

2

)
dξ. (2.26)

The phase-space propagator for the excitation of a flat plate can be found by

substituting equation (2.20) into this equation to give

G(r, p; r′, p′) = ϱ2h2

32πD2k5 δ(p − p′)
∫ eik(|r−r′+ ξ

2 |−|r−r′− ξ
2 |)−ip·ξ√∣∣∣r − r′ + ξ

2

∣∣∣ ∣∣∣r − r′ − ξ
2

∣∣∣ dξ (2.27)

Assuming that the correlation in the vibrational response decays quickly with

increasing separation, contributions to the phase-space propagator will be made
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chiefly by small values of ξ . As such, parts of the integrand may be approximated

as the leading terms of their corresponding Taylor expansions about ξ = 0 up to

first order [106], as higher order contributions will be negligible by comparison.

As a result, it can be approximated that

∣∣∣∣∣r + ξ

2 − r′
∣∣∣∣∣
∣∣∣∣∣r − ξ

2 − r′
∣∣∣∣∣ ≈ |r − r′|2∣∣∣∣∣r + ξ

2 − r′
∣∣∣∣∣−

∣∣∣∣∣r − ξ

2 − r′
∣∣∣∣∣ ≈ r − r′

|r − r′|
· ξ

(2.28)

Substituting these terms into equation (2.27) and solving then leaves

G(r, p; r′, p′) = ϱ2h2

32πD2k5
e−µ|r−r′|

|r − r′|
δ(p − p′)δ

(
p − k

r − r′

|r − r′|

)
(2.29)

In this equation, e−µ|r−r′| is added to account for damping losses, with µ the

attenuation factor. In addition, the fraction within the delta function is a unit

vector, thus ensuring that the phase-space propagator is non-zero only for |p| =

k. This is important, as when describing the vibrational response in terms of

propagating rays, the energy of these rays is dependent on the magnitude of the

momentum and the excitation frequency [53,90]. This property thus implies that

the plate acts as a filter, ensuring that all vibrational waves generated by an

external excitation applied at a fixed frequency will carry the same energy.

Returning to equation (2.24), WΓ is the Wigner transform of the point-force cor-

relation function Γf . This is found by substituting equation (2.22) into equation

(2.23) to give

WΓ (r, p, ω) =
∫
δ

(
r + ξ

2 − r0

)
δ

(
r − ξ

2 − r0

)
e−ip·ξ dξ. (2.30)

The delta functions in this integral are equivalent, besides the sign of the ξ term.

Both delta functions can give non-zero values simultaneously only in the case
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that ξ = 0. In this case

WΓ(r, p) = δ(r − r0). (2.31)

Substituting this solution, along with equation (2.29) into equation (2.24) then

gives

W0(r, p) =

ϱ2h2

32πD2k5

∫ ∫ e−µ|r−r′|

|r − r′|
δ(p − p′)δ

(
p − k

r − r′

|r − r′|

)
δ(r′ − r0) dr′ dp′.

(2.32)

Here, each integral can be solved by evaluating the relevant delta function. The

resultant WDF for the response of a flat plate to a point-force excitation is given

by

W0(r, p) = ϱ2h2

32πD2k5
e−µ|r−r0|

|r − r0|
δ

(
p − k

r − r0

|r − r0|

)
. (2.33)

In a ray description, the WDF effectively defines the probability that a ray will

occupy a set location in phase-space [53]. For an ensemble of rays, the WDF

is then the density of rays that occupy each phase-space location. The over-

all ray density may then be related to the distribution of vibrational energy at

each phase-space location across the plate. For this, the phase-space density is

considered, which is given by [90] as

ρ0 (r, p) = 1
2ϱhω

2W0 (r, p) . (2.34)

The direct contribution to the phase-space density due to a point-force excitation

is then given by

ρ0 (r, p, ω) = 1
64π

ϱ2h2

Dk

e−µ|r−r0|

|r − r0|
δ

(
p − k

r − r0

|r − r0|

)
. (2.35)

30



Chapter 2.2 Point-Force Excitations in DEA 31

Given that |p| = k, the delta function also ensures that energy density contri-

butions are only made to phase-space locations where p̂ = r−r0
|r−r0| . This means

that contributions to the phase-space density at (r, p) are made only if p points

directly from the source to the receiver location. As prescribed, the free-space

contribution thus only accounts for the direct influence of the source on the plate,

without reflection or scattering contributions. The contributions of these terms

are then captured by the homogeneous solution.

2.2.2 The homogeneous solution

Prior to any scattering at the structural boundary, the initial phase-space density

distribution across the structure is given by the free-space contribution shown in

equation (2.35). To determine the additional contributions from energy density

scattered at the boundary Γ, a raytracing approach is applied. In this method,

the flow of vibrational energy across the structure is captured by the motion of

rays through phase-space. As discussed in Section 2.1, in DEA the structure Ω is

represented using a finite element mesh made up of N sub-domains Ωi with i =

1, 2, ..., N . When applying a raytracing approach to a mesh grid, the boundary

Γ now covers the line segments of all mesh element boundaries [69]. This means

that the boundary between two cells is actually made up of two segments pointing

in opposite directions, each of which captures the energy density flowing into their

constituent mesh element across this boundary. By comparison, the structural

boundaries are made up of only a single element, representing the energy density

that is reflected at the structural boundary back into the structure. A diagram

of the DEA mesh of a simple structure, highlighting these features, is illustrated

in Figure (6).

The phase-space density is then expressed only on Γ, using a boundary coordinate

representation of phase-space. Here, each phase-space location is expressed in

two dimensions Xs = (s, ps) where s is the location on Γ and ps denotes the ray
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Figure 6: Labelled edges of two connected elements within the DEA mesh. Note
that edges 1 and 6 refer to the same edge, representing the outward facing bound-
ary segments for their constituent elements along this edge.

momentum component which is tangential to the local boundary [66]. The first

step towards defining the homogeneous contribution to the phase-space density

is thus to define an initial boundary density distribution.

To do this, firstly, an initially excited boundary region Γsrc ⊂ Γ, is selected.

Here, Γsrc represents an appropriate subset of the overall boundary mesh which

encapsulates the excitation. For a point-force excitation this is typically the

outward-flowing boundary segments of the element containing the excitation.

Appropriate boundaries for pressure fields and groups of correlated points are

discussed in Chapters 3 and 4 respectively. Once this boundary is defined, the

energy density distribution across Γsrc must be computed. This is given by the

free-space energy density solution across the boundary. Based on equation (2.35),

the energy density across the boundary of a cell containing a point-force excitation

is given by

ρ (r, p, ω) = 1
64π

ϱ2h2

Dk

e−µ|r−r0|

|r − r0|
δ

(
p − k

r − r0

|r − r0|

)
. (2.36)
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Next, this energy density distribution must be converted into the boundary co-

ordinate scheme. This is performed using the following relation

ρ(r, p, ω) = k

p⊥
ρ̃(s, ps, ω)δ(p⊥ − k⊥), (2.37)

where p⊥ is the component of p normal to Γ at position s and k⊥ =
√
k2 − p2

s. [53].

By rearranging and substituting in equation (2.36), the initial boundary density

on Γsrc due to a point-source excitation can be expressed as

ρ̃0 (s, ps, ω) = 1
64π

ϱ2h2

Dk

e−µ|r(s)−r0|

|r(s) − r0|
cos (θ(ps))δ

(
p(ps) − k

r(s) − r0

|r(s) − r0|

)
, (2.38)

where cos (θ) = p⊥/k with θ representing the angle between p̂ and a vector

orthogonal to the local boundary. Here, ρ̃0 now represents the initial phase-space

energy density. At this point, the raytracing methodology is applied to propagate

this energy density across the structural domain. As mentioned in Section 2.1,

this process is considered iteratively, with each iteration covering the motion

of the rays between successive encounters with Γ. The energy density in one

iteration ρ̃(Xs) is mapped into the next ρ̃′(X ′
s) using the transfer operator T ,

also called the Frobenius-Perron operator:

ρ̃′ (X ′
s, ω) = {T ρ̃}(Xs) =

∫
λ(X ′

s)e−µD(X′
s,Xs)δ (X ′

s − Φ (Xs)) ρ̃(Xs, ω) dXs.

(2.39)

Here, D (X ′
s,Xs) determines the distance travelled across the iteration. In ad-

dition, Φ(Xs) is the boundary map, which is used to propagate rays from Xs to

their next encounter with Γ. The delta function in this equation then ensures

that contributions to the ray density at X ′
s are only made if the rays propagating

from Xs next encounter the boundary at X ′
s. Finally, λ(X ′

s) is included to rep-
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resent scattering events at the element boundary [53]. Scattering may be caused

by differences in material parameters, boundary conditions, or curvature effects

between elements [69]. An example of the scattering of the energy density at an

element boundary is displayed in Figure (7).

Figure 7: Resultant ray propagation following a scattering event at the cell bound-
ary. Here, red refers to the propagation of the original ray and blue is used to
represent the scattered ray density.

In this study the excitation of individual, homogeneous, flat plates is considered,

meaning that λ(r, p) = 0 across all boundaries between elements. All energy

density reaching the external flowing boundary segment of one element will thus

be directly transferred to the equivalent location on the internal flowing bound-

ary of the coupled boundary segment. As a result, scattering may only occur

at the external boundary. Since only cases of complete reflection or complete

transmission, where λ(r, p) = 1 or 0, will be considered in this study, this term

will be omitted from future equations. A more complete consideration of the ray

scattering effects is presented in [109]. The overall boundary phase-space den-

sity distribution may then be computed by repeating this process for n → ∞

iterations, that is
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ρ̃∞ =
∞∑
n=0

T nρ̃0 = (1 − T )−1ρ̃0, (2.40)

which will converge for all cases involving non-zero scattering losses at the struc-

tural boundary or µ > 0. The propagation of a single ray density across a simple

domain over several iterations is highlighted in Figure (8).

Figure 8: Propagation of a single ray across a simple domain over several itera-
tions. In this figure, the energy density within each iteration and the final energy
density distribution are highlighted.

The resulting boundary density distribution may then be mapped back into four-

dimensional phase-space and propagated into the cell interiors to produce a dis-

tributed phase-space description of the vibrational response. For visualisation

purposes, it is useful to integrate this solution over all p, to define a spatial

representation of the density. This is calculated as follows

ρ(r, ω) =
∫
ρ∞(r, p, ω) dp (2.41)

where ρ(r, ω) here is referred to as the spatial energy density in the remainder of

this thesis.

35



Chapter 2.2 Point-Force Excitations in DEA 36

2.2.3 Computational Implementation of DEA

When employing a raytracing methodology to compute the vibrational behaviour

of structures, the number of rays required is dependent on the complexity and

level of damping of the structure being modelled. When considering complex,

minimally damped, structures, an extremely large number of rays is required to

accurately capture the flow of vibrational energy across the system. Due to the

large numbers of rays required for such cases, the process by which the dynamics of

these rays are computed is extremely computationally expensive. To reduce this

computational expense, within DEA these individual ray dynamics are replaced

by a density of rays, the motion of which is considered across phase-space. As

phase-space is a continuum, it is impossible to directly describe the phase-space

density at all possible locations. Instead, it is useful to approximate the phase-

space density by a suitable set of orthogonal basis functions, in both position and

momentum space [66]. In position space, piecewise constant functions 1b(s) are

used, with b the boundary segment. This function is defined by [90] as

1b(s) =


1, if s is within boundary segment b

0, otherwise.
(2.42)

Initially, each boundary segment corresponds to a line segment of a mesh cell.

These line segments may then be subdivided into several boundary segments, to

enable variations in the energy density across each edge of each element. For

momentum space Legendre polynomials Pβ
(
ps

k

)
are applied due to their strong

convergence properties [110]. Here β specifies the order of the Legendre Poly-

nomial. When considering momentum and positional basis of 1, energy flows

across cell boundaries in all directions with under the distribution dp
dθ

= k cos (θ),

and the overall flow of energy between subsystems is dependent only on the en-

ergy difference across the boundary. This is then equivalent to an SEA/EFEA
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evaluation, with each cell representing individual subsystems [66]. Higher order

basis representations then enable a more detailed, and spatially variant, descrip-

tion of the flow of energy around the structure, converging to a full raytracing

description [110]. The overall basis function is then given by

Fn(Xs) = 1√
Abk

1b(s)Pβ
(
ps
k

)
(2.43)

where n = (b, β) is the multi-index and Ab is the length of the current boundary

segment. The energy density at some location on the boundary is then expressed

in this basis as

ρ̃(Xs, ω) =
Nb∑
b=1

Nβ∑
β=1

fnFn(Xs). (2.44)

In this equation, Nb and Nβ define the number of boundary segments within

the mesh and the maximum degree of the Legendre polynomials respectively.

In addition, fn are the basis coefficients. The process to define and propagate

these coefficients is discussed by Hartmann [53] and summarised here. Given an

estimate of the initial boundary density distribution, the basis coefficients are

given by

f0,n = (ρ̃0, Fn(Xs))
(Fn(Xs), Fn(Xs))

(2.45)

with (A,B) =
∫

Γ A(x)B(x) dx denoting the inner product. The orthogonality of

the chosen basis ensures that

(Fn(Xs), Fn′(X ′
s)) = 2

2β + 1δb,b
′δβ,β′ . (2.46)

For a point-force excitation, the initial basis coefficients are thus given by
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f0,n = 2β + 1
2
√
Abk

1
64π

ϱ2h2

Dk

∫
b

∫ k

−k

e−µD(s,r0)

D(s, r0)
δ

(
p(ps) − k

r(s) − r0

|r(s) − r0|

)

Pβ(sin (θ(ps)) cos (θ(ps)) dps ds,
(2.47)

where the subscript b on the integral indicates that the integration takes place

only on boundary segment b within Γ. The integral over ps can be solved by

evaluating the delta function, leaving

f0,n = 2β + 1
2
√
Abk

1
64π

ϱ2h2

Dk

∫
b

e−µD(s,r0)

D(s, r0)
Pβ(sin (θ(ps))) cos (θ(ps)) ds. (2.48)

The complexity of the remaining integral ensures that this must be solved nu-

merically. The basis coefficients in subsequent iterations are then found using the

following

fn′ =
Nb∑
b=0

Nβ∑
β=0

Tn′,nfn (2.49)

where Tn′,n are the matrix elements of the Frobenius-Perron operator [53]. These

are derived as follows

Tn′,n = (Fn′(X ′
s), T Fn(Xs))

(Fn′(X ′
s), Fn′(X ′

s))
. (2.50)

By exploiting the othogonality of the basis coefficients using equation (2.46) and

substituting in the form of T from equation (2.39) then the entries of the matrix

T are given in [90] as

Tn′,n =
2β′ + 1

2

∫
Fn′(X ′

s)
∫
e−µD(X′

s,Xs)δ (X ′
s − Φ(Xs))Fn(Xs) dXs′ dXs.

(2.51)

The integral over Xs′ is simplified by the delta function, which ensures that
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contributions to the new boundary density are made only at phase space locations

that are reached by Xs within a single iteration. Hence

Tn′,n = 2β′ + 1
2

∫
e−µD(Φ(Xs),Xs)Fn′(Φ(Xs))Fn(Xs) dXs. (2.52)

The fact that the transfer operator is given by an integral over the entire boundary

phase-space coordinate system ensures that the basis coefficient for a particular

multi index in the next iteration is the sum of rays propagating from elsewhere

in the structure that contribute to the energy density within the specified multi-

index. An example of the result of applying DEA to determine the response of a

structure to a point-force excitation is shown in Figure 9.

Figure 9: Point-force excitation of a simple aircraft mesh simulated using DEA
with Nb = Nβ = 5, which corresponds to two boundary elements per edge of the
triangular mesh elements. The colour scale shows the calculated energy density
and runs from low energy (dark blue) to high energy (yellow).
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2.3 Review of TBL CSD Models

To be able to implement TBL excitations into DEA, an appropriate model must

be chosen to represent the pressure field applied by the TBL. To properly under-

stand these models, the key properties of the TBL and its pressure field must be

explored.

TBLs are formed across structures that are fully immersed within a fluid moving

at some relative speed U0. Here, frictional forces acting at the fluid-structure

boundary slow the motion of fluid particles close to the structural surface [111].

This results in the formation of a thin layer of fluid particles that are stationary

relative to the structure [112, 113]. Further interactions between this thin layer

and passing fluid particles then leads to the build up of the boundary layer in the

mean-stream direction of the fluid flow [111, 114, 115]. Close to the leading edge

this boundary layer is considered laminar. Under laminar flow the fluid within

the boundary tends to move across the structure in stacked layers, with minimal

exchange of particles between layers [111, 116]. Some distance from the leading

edge, the thickness of the boundary layer becomes too large to sustain laminar

flow, and transitions into turbulent flow [117]. This transition is influenced by

many factors including non-homogeneities in the fluid, the roughness of the plate,

or external factors influencing the system [114]. These factors make it impossi-

ble to predict the exact location where the transition to turbulence will occur.

However, an approximate location can be estimated using the Reynolds’ number,

which for a boundary layer is given by

Re = U0x

ν
. (2.53)

Here x is the distance from the leading edge and ν is the kinematic viscosity of

the fluid [111]. When the considered fluid is air, this transition typically occurs

for Reynolds numbers 5 × 105 ≤ Re ≤ 3 × 106 [113, 117]. Under turbulent flow
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conditions the fluid motion becomes chaotic, with particles moving randomly in

all directions [113]. A diagram of the development of the TBL with increasing

distance from the leading edge is shown in Figure 10.

Figure 10: Formation of the TBL across a flat plate with increasing separation
from the leading edge [118].

The chaotic motion of the particles leads to many of them striking the structure

over time, generating a fluctuating pressure field across the surface [114, 119].

The random nature of these fluctuations means that it is impossible to accurately

predict the pressure applied by the field at any specific location or time. When

modelling the influence of the TBL, a statistical description of the applied pressure

field must be used [119,120].

This process can be demonstrated by considering the pressure field applied by a

fully-formed TBL with zero pressure gradient flowing in the +x̂ direction, where

ˆ represents a unit vector, over a flat plate in the x − z plane. Treating the

system in this manner allows us to consider the pressure field to be homogeneous

in space and stationary in time [121]. The fluctuating pressure field is then best

represented by a cross-correlation function, which describes the relationship in the

pressure applied by the field at two separate locations on the plate surface [122].

The cross-correlation for the pressure applied by the field at arbitrary space-time

positions (x1, z1, t1) and (x2, z2, t2) is given by the time-averaged product of the
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pressures applied at each location

Rpp(ξx, ξz, τ) = ⟨p(x1, z1, t1)p(x2, z2, t2)⟩ . (2.54)

Here ξx = x1 − x2 and ξz = z1 − z2 are the spatial separation of the points in x

and z and τ = t1 − t2 is the temporal separation [121,122]. As shown by equation

(2.21), for implementation within DEA a frequency-dependent measure of the

spatial-correlation in the applied pressure field is required. This can be found by

taking the Fourier transform of Rpp to construct the CSD function [121]

Ψpp(ξx, ξz, ω) = 1
2π

∫ +∞

−∞
Rpp(ξx, ξz, τ)e−iωτ dτ. (2.55)

Another interesting value is the wavenumber-frequency representation of the pres-

sure field, which is given by the Fourier transform of Ψpp(ξx, ξz, ω) over the spatial

separation

Ψ̃pp(kx, kz, ω) = 1
(2π)2

∫ +∞

−∞

∫ +∞

−∞
Ψpp(ξx, ξz, ω)e−iωξ·k dξx dξz. (2.56)

The most commonly applied CSD for a TBL pressure field is the Corcos model.

This model was first published by GM Corcos in 1963, based upon a series of ex-

perimental studies performed in the late 1950s and early 1960s [123]. In this work,

he postulated that the correlation in the stream-wise and cross-stream directions

should be separable and represented by terms which exhibit exponential decay

with increasing separation [27]. In addition, these terms should be multiplied by

a complex exponential term, which captures the mean downstream convection of

the TBL [13, 122]. For the case described previously, the resultant CSD for the

Corcos model is given as

Ψpp(ξx, ξz, ω) = ϕ(ω)e−αxkc|ξx|e−αzkc|ξz |eikcξx . (2.57)
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In this equation αx and αz are the longitudinal and latitudinal decay constants

respectively, These terms typically have values of αx = 0.10 − 0.12 and αz =

0.7 − 1.2 [124], with Graham [29] choosing αx = 0.1 and αz = 0.77 in his high-

frequency study of different CSD models. In addition, kc = ω/Uc is the convective

wavenumber of the TBL. Here, Uc is the convective velocity of the flow which is

typically approximated by Uc ≈ 0.7U0 [121, 125, 126]. The ϕ(ω) term is the

single point wall-pressure spectrum, which defines the magnitude of the CSD as

a function of the angular frequency ω [127]. By substituting equation (2.57) into

equation (2.56), the wavenumber-frequency representation of the Corcos model

CSD function is given as

Ψ̃pp(kx, kz, ω) = ϕ(ω) 4αxαzk2
c[

α2
xk

2
c + (kx − kc)2

]
[α2
zk

2
c + k2

z ]
. (2.58)

The main advantage of the Corcos model is the separation of the correlation in

the streamwise and cross-flow direction [121,127]. This is useful, as it ensures that

the model can easily be converted between the wavenumber-frequency and space-

time domains [121]. In addition, the model has only two empirical parameters,

ensuring that minimal knowledge of the system is required when applying this

model [120]. Finally, the Corcos model has been demonstrated to give an accurate

representation of the wavevector-frequency spectrum at the convective peak, close

to |k| = kc, where most of the TBL energy is contained [128, 129]. Outside

of this range however, the Corcos model tends to overpredict the contribution,

with predictions found to be around 20 dB too high away from the convective

peak [120,122]. In addition, at low wavenumbers the Corcos model fails to follow

the Kraichnan-Phillips constraint, which states that the wavenumber-frequency

representation of the CSD should be proportional to |k|2 and hence disappear as

|k| → 0 [122,130].

Due to the limitations of the Corcos model, several alternative versions of this

model have been developed. The first of these, presented by Efimtsov in 1982, was
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developed based upon the belief that the correlation strength should be impacted

by the boundary layer thickness δ [29,131]. For this, Efimtsov kept the correlation

function in the same basic form as in equation (2.57), but replaced the exponents.

These exponents are given by Graham [29] as follows

αxkc = 1
δ

√√√√√
(
a1ωδ

Uc

)2

+ a2
2(

ωδ
Uτ

)2
+
(
a2
a3

)2

αzkc = 1
δ

√√√√√
(
a4ωδ

Uc

)2

+ a2
5(

ωδ
Uτ

)2
+
(
a5
a6

)2 .

(2.59)

Where Uτ is the friction velocity of the TBL and a1 −a6 are empirical parameters

[29]. This change enhances the Corcos model solution at low-frequencies [29],

whilst at higher frequencies converges to the Corcos solution [131].

Another approach developed to improve the low-wavenumber accuracy of the

Corcos model is the Smol’yakov-Tkachenko model, first presented in 1991 [132].

Much like for the Efsimov model, the Smol’yakov-Tkachenko model is derived

based upon the belief that the correlation length should be inversely proportional

to the thickness of the boundary layer [122]. Unlike the separated correlations

presented by Corcos and Efimtsov, Smol’yakov and Tkachenko instead considered

the correlation in terms of the overall separation of the points [29]. The spatial

form of the initial Smol’yakov-Tkachenko model is presented by Hwang et al [122]

as

Ψpp(ξx, ξz, ω) = ϕ(ω)e−ᾱ(ω)
√

(kcξx)2+(m0kcξz)2
eikcξx , (2.60)

where m0 = αz/αx and

ᾱ(ω) = αx

√√√√1 − 0.2Uc
ωδ∗

+
(0.2Uc
ωδ∗

)2
(2.61)
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with δ∗ the displacement thickness of the TBL, and αx, αz the correlation decay

constants from the Corcos model [122]. When converting this model into the

wavenumber-frequency domain, Smol’yakov and Tkachenko found that the low-

wavenumber results were still higher than those found experimentally [29]. To fix

this, a correction factor was added to the wavenumber-frequency solution. The

full numerical form of the resultant function is presented by Graham in [29].

This change significantly improved the accuracy of this approach, with several

studies demonstrating very good agreement with experimental data, particularly

in the low-wavenumber range [121,125,128]. The added correction factor severely

complicates the model however, and prevents its conversion back into a spatial

representation of the CSD [121, 127]. Thus, the Smol’yakov-Tkachenko is in-

napropriate for implementation within DEA.

The final Corcos based model discussed here is the Mellen model [133]. Much

like the Smol’yakov-Tkachenko model, this approach considers the correlation in

terms of the overall separation. Unlike the Smol’yakov-Tkachenko model however,

Mellen uses the exact same parameters as in Corcos’ model. The spatial CSD for

the Mellen model is then given by [133] as

Ψpp(ξx, ξz, ω) = ϕ(ω)e−
√

(αxkcξx)2+(αzkcξz)2
eikcξx . (2.62)

The wavenumber-frequency representation of this field is given in [125] as

Ψ̃pp(kx, kz, ω) = ϕ(ω) (αxαzk2
c )

2[
α2
zk

2
c (kx − kc)2 + α2

xk
2
ck

2
z (αxαzk2

c )
2
]3/2 . (2.63)

As the Mellen model uses only Corcos’ original parameters it too can be applied

with minimal knowledge of the system. In addition, despite the lack of sepa-

ration of spatial correlations it is relatively easy to transfer between spatial and

wavenumber-frequency spectra. Despite these minimal changes, the Mellen model

is also more accurate than the Corcos model in the low-wavenumber region, with
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estimates around 8 dB lower than those found using the Corcos model [26, 125].

The final CSD function discussed here is the Chase model [134]. Unlike the other

Corcos-based models, the Chase model was developed to follow the Kraichnan-

Phillips constraint, with the hope of addressing the limitations of the Corcos

model away from the convective peak [122, 129]. The wavenumber-frequency

spectrum for the Chase model is presented as follows [134]

Ψ̃pp(kx, kz, ω) = (2π)3ρ2ω2U2
τ

U2
c ϕ(ω)

 CMk
2
x[

K2
+ + (bMδ)−2

]5/2 + CT |k|2[
K2

+ + (bT δ)−2
]5/2

 .
(2.64)

The defined forms and numerical values for the unknowns within this equation are

addressed by Graham in [29]. Much like the Smol’yakov-Tkachenko and Mellen

models, the Chase spectrum is not explicitly separable between the streamline

and cross-stream flow directions. This, in combination with the complexity of

the model, makes transforming this function into the spatial form required for

DEA highly challenging. An approach for completing this procedure has been

presented by Josserand [135,136]. The solution is given by

Ψpp (ξx, ξz, ω) = AM(ω)fM(ξx, ξz, ω)e−zM eikcξx

+ AT (ω)fT (ξx, ξz, ω)e−zT eikcξx

(2.65)

where the A terms are relative magnitudes, defined in terms of the convective

velocity and angular frequency and

fM = 1 + zM + α2
Mµ

2
M

(
1 − z2

Mx

zM

)
+ 2iαMµMzMx

fT = 1 + zT +α2
T

(
1 − z2

Tz

zT

)
+ α2

Tµ
2
T

(
1 − z2

Tx

zT

)
+ 2iαTµT zTx.

(2.66)
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Here, the z and α terms are functions of the separation, convective wavenumber,

and empirical parameters [135]. The equations and appropriate numerical values

for each of these terms are discussed by Finnveden in [135].

This approach has demonstrated excellent accuracy in comparison with numerical

results in prior studies [127, 128], particularly in the low-frequency region where

the Corcos model fails. However, the model is highly complex and requires a

detailed understanding of both the structural properties and of the TBL itself

[121]. In addition, the model contains six empirical parameters which have no

universal values, and so must be individually calibrated for each problem [120,

131]. As a result, the Chase model is not preferred for representing TBL pressure

fields in DEA.

Due to their simplicity and ease of transfer between spatial and wavenumber-

frequency CSD functions, the Corcos and Mellen models are preferred for mod-

elling TBL pressure fields in DEA.

2.4 Review of vibration interference effects

Another aim of this study is to consider vibrations originating from the pro-

peller arrays employed by DEP aircraft. During operation, these propellers will

rotate with a constant frequency ω. It is thus likely that the structural vibra-

tions generated by interactions between the propellers and the air will oscillate

at the same frequency. This is important, as when propagating waves of similar

frequencies encounter one another they merge to form a new waves through inter-

ference [137,138]. Under the superposition principle, the resultant wave is simply

the sum of the interfering waves [139]. This effect may be demonstrated by con-

sidering the interference between two harmonic waves of equal magnitude, which

are propagating in the +x̂ direction with identical wavenumber k, and are sep-

arated by a phase difference ϕ. These may be described by ψ1(x, t) = Aei(kx−ωt)

and ψ2(x, t) = Aei(kx−ωt+ϕ) = Aeiϕei(kx−ωt) [139]. The combined wavefunction is
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then the sum of the individual wavefunctions and is given by

ψ(x, t) = A(1 + eiϕ)ei(kx−ωt). (2.67)

The result is another wave propagating in the +x̂ direction, with frequency ω.

To evaluate the amplitude of this wavefunction, eiϕ is expanded using Euler’s

formula [139], this leaves

ψ(x, t) = A((1 + cos (ϕ)) + i sin (ϕ))ei(kx−ωt). (2.68)

The term in the brackets is now a complex number of the form z = a + ib,

the magnitude of which is given by z =
√
a2 + b2. After applying trigonometric

identities, the resultant wavefunction is given by

ψ(x, t) = 2A cos (ϕ/2)ei(kx−ωt). (2.69)

The magnitude of the resultant wave is then defined based upon the phase-

difference between the original waves. When this phase difference is given by

ϕ = 2nπ with n = 0, 1, 2, ... the interfering waves are identical, and the mag-

nitude of the resultant wave at each location is double the magnitudes of the

original waves. This is known as constructive interference [137, 139]. When the

phase difference ϕ = (2n+ 1)π with n = 0, 1, 2, ... the interfering waves are anti-

aligned, meaning that the waves are exactly opposite at all points. In this case,

the two waves cancel out and all wave propagation is lost. This is known as

destructive interference [137,139]. These interference effects are demonstrated in

Figure 11.

For any ϕ outside of these cases, the waves are considered “out of phase” and the

resultant wavefunction is more complex [139].

The opposite case of interfering waves propagating in opposite directions may

also be considered. Here, ψ1 is defined as before, with ψ2 = Ae−i(kx+ωt). By once

48



Chapter 2.4 Review of vibration interference effects 49

Figure 11: Constructive and destructive interference of two one-dimensional prop-
agating in the same direction at time t = π

2ω [140].

again taking the sum of the waves, the resultant wavefunction is given by

ψ(x, t) = Ae−iωt
(
eikx + e−ikx

)
. (2.70)

By applying Euler’s formula, the resultant wavefunction can be defined as

ψ(x, t) = 2A cos (kx)e−iωt. (2.71)

Here, the spatial and temporal dependencies are separated, meaning that the

time-dependence is equivalent at all locations along the wave [139]. The result

is that changes in t no longer generate propagation of the wave in space, instead

the value of ψ at all points simply oscillates with frequency ω. In this case, the

wavefunction is known as a standing wave [139]. The constituent and resultant

wavefunctions for this system for various t values are shown in Figure 12.

In this thesis, two-dimensional time-independent vibrational waves generated by

point-force excitations are considered. In this case, the waves are generated at

the source, and propagate radially across the structure. As discussed in Section
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Figure 12: Plot of two one-dimensional waves ψ1 (blue) and ψ2 (red) propagating
in opposite directions, along with their resultant standing wave ψ (purple) at
various times t.

2.2, the response of the plate to a point-force at location r1 is given by the Green

function G1(r, r1, ω) ∝ A√
|r−r1|

eik|r−r1|. As shown in this equation, the radial

propagation of the vibrational waves ensures that the magnitude of the response

at any location r is dependent only on the distance from the source. Introducing

a second point-force at some location r2 nearby, then induces additional vibra-

tions within the structure, described by G2(r, r2, ω) ∝ A√
|r−r2|

eik|r−r2|. As the

vibrational waves generated by both sources propagate they will encounter one

another at various locations across space, at different distances from each source.

The relative phase of the waves will then differ at each meeting point, leading

to large variation in the interference effects across space. The result is a highly

complex wavefield, an example of which is demonstrated by Figure 13.

The dependence of each wavefunction on the distance from the source means

that a convenient form for the wavefield is difficult to obtain in practise. An

approximate solution may however be found at great distances from the sources,

where the source separation is comparably negligible [139]. In this case, the

amplitude of each Green function is approximated as equal to the amplitude of

the Green function for a source positioned directly between the two sources. By
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Figure 13: Two-dimensional interference pattern within a ripple tank formed
through interference of circular waves formed from two point-forces [141].

rewriting each Green function in terms of this distance and adding them together,

the resultant wavefunction at large distances from the sources is given by

G(r, ω) = Ae
1
2 ik(|r−r1|+|r−r2|)∣∣∣r − 1

2(r1 + r2)
∣∣∣ cos

(
k(|r − r1| − |r − r2|)

2

)
. (2.72)

As in the one-dimensional case, the result is a wavefunction with an amplitude

which oscillates across space. In this case however, it is the difference in the

separation of the location from each point-force which defines this amplitude.

Given that cos (nπ) = (−1)n for n = 0, 1, 2, ..., maxima in the magnitude of the

amplitude are found where |r − r1| − |r − r2| = 2nπ
k

. Given that k = 2π/λ,

then this is equivalent to |r − r1| − |r − r2| = nπ, where λ is the wavelength of

the vibrational waves excited by each source. Thus, peaks are found where the

vibrational waves propagating from each source are separated by nλ, meaning

that they are in-phase and hence constructive interference will occur. Given that

cos
(
nπ
2

)
= 0 for n = 0, 1, 2, ..., zero amplitude is found where the vibrational

waves differ in path length by λ/2, which is where the sources are anti-phase and

destructive interference occurs. These results thus match the one-dimensional

result. Outside of these locations the vibrational waves from each source are

out of phase, with a rapidly varying magnitude across space. The combination
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of these interactions results in a complex interference wavefield, such as that

demonstrated in Figure 13.

To the author’s knowledge, no prior studies have considered the vibrational re-

sponse of structures under multiple, coherent, point-force excitations. Vibrational

interference is however a popular area of study, having found usage in a wide range

of applications, as detailed below.

A key area of application of vibrational interference is as a means of Active Vibra-

tion Control (AVC). When subjected to vibrational disturbances, AVC systems

drive actuators to generate a signal which is equal in magnitude and frequency to

the disturbance, with a phase difference of ϕ = π. As discussed, the interference

of two coherent waves propagating in opposite directions generates a standing

wave. The chosen phase difference is such that the interfering waves are anti-

aligned, meaning that the waves cancel [142–144]. AVC systems are employed in

numerous complex structures, including, motor vehicles [142], aircraft [145], wind

turbines [146], and sensitive measuring equipment [147]. An equivalent adaptive

approach has also been developed for the purpose of sound mitigation. Here,

a reference sensor detects any incoming sound waves and a loudspeaker is em-

ployed to generate the appropriate inverted signal [148–150]. This procedure has

been applied to prevent feedback in hearing aids [151], reduce the noise gener-

ated by MRI machines during operation [152], and to limit community noise in

noise-cancelling headphones [153].

Another, more complex, application of vibrational interference is found in the

function of phased array transducers. This is a device made up of an array of

elements that independently emit vibrational or electromagnetic waves [154]. By

sequentially firing the elements with some set time delay, the resulting interference

pattern produces a propagating beam of plane waves in a specific direction [155,

156]. Adjustments to the time delay between adjacent elements then change the

angle of the beam, enabling directional control of the beam propagation [154,156].
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This is useful for radar applications, as it enables phased array transducers to

scan across wide areas without any physical motion [156, 157]. This technique

is also applied for broadcasting [158], satellite communications [159] (including

deep space missions [160]), medical imaging and treatment [161–163] and fault

detection in sensitive systems such as nuclear reactors [155,164].

These applications of vibrational interference suggest that, with careful manage-

ment of the phase relation between the propulsors, it may be possible to cancel out

or otherwise favourably direct the vibrational energy generated by the propulsors

in DEP aircraft. This concept is explored further in Chapter 4.

2.5 Conclusion

This chapter has provided the key background information required to under-

stand the findings presented in the remainder of the thesis. Having discussed the

need for a high-frequency approach for modelling the response of structures to

TBL pressure fields, in Section 2.1 several possible methods for this have been

evaluated. Here, DEA has been established as the preferred approach, and in Sec-

tion 2.2 the background theory and computational implementation of this method

have been detailed. As DEA is currently limited to point-force excitations, the

implementation within DEA of appropriate correlation functions representing the

TBL pressure field has also been discussed. In Section 2.3 several TBL correla-

tion functions have been discussed, with the Corcos and Mellen models found to

be the most suitable for a DEA implementation due to their favourable math-

ematical properties. The implementation of TBL pressure fields in DEA using

these models will be explored in Chapter 3. Finally, in Section 2.4, the inter-

ference effects between monochromatic waves and the resultant wavefields have

been investigated and some real-world applications of this effect have been dis-

cussed. This theory will be important when implementing correlated point-force

excitations in DEA, as will be investigated in Chapter 4.
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3 Implementation of correlated pres-

sure fields in DEA

3.1 Introduction

In Chapter 2, the DEA approach for modelling the vibrational response of com-

plex structures to point-force excitations was introduced. There, it was demon-

strated that the vibrational response of structures to any correlated pressure

source can be defined using an appropriate correlation function representing the

applied source. In addition, the range of correlation functions developed to cap-

ture the properties of the pressure field applied to structures by the TBL was

discussed. In this chapter these concepts are combined, to produce an approach

to determine the vibrational response of complex structures to correlated pressure

field excitations, such as that applied by the TBL.

The chapter is presented as follows. In Section 3.2, the approach to model the

excitation of structures by correlated pressure fields within DEA is introduced by

considering the excitation of a small, convex, patch of a simple structure by an

arbitrary pressure field. It is demonstrated here that the energy density at the

boundary of a region excited by a homogeneous pressure field is dependent on the

geometry of the excited region and a phase-space representation of the applied

pressure field. The procedure to apply specific excitations is then demonstrated in

Section 3.4, through the implementation of the TBL pressure field. This involves
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defining the Wigner transform of an appropriate correlation function represent-

ing the applied pressure field. For a homogeneous source, it is demonstrated

that the resultant Wigner transform term is also homogeneous. Following this,

in Section 3.5 approaches to extend this approach to larger patches, including

full-body excitations, are evaluated. In Section 3.6, the approach to model the

response of structures to full-body correlated source excitations is demonstrated.

Here, the vibrational response of a flat plate under a fully-formed, homogeneous,

TBL pressure field is evaluated. The system configuration for this simulation is

described in Section 3.6.1, and the results for a variety of flow, structural, and

boundary conditions are presented in Sections 3.6.2 - 3.6.4. Finally, in Section

3.6.5, the applicability of this approach to more general situations is considered,

and opportunities for future development are discussed.

3.2 Small patch excitations

In this section the approach for modelling the excitation of structures to correlated

pressure fields within DEA is discussed. To introduce this topic, the excitation

of a simple structure by a generic pressure field applied within a small, convex,

patch on the structural surface Ωsrc is considered. The structure to be studied,

and its associated finite element mesh, are displayed in Figure 14.

Figure 14: Left: Simple structure within which the small patch excitation is stud-
ied. Right: Finite element mesh applied to model this structure computationally,
the red cell highlighted here indicates the patch excited by the correlated field.
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The region highlighted in red indicates the patch excited by the correlated pres-

sure field. As shown, the excitation is applied here to a single finite element

mesh cell within the structure, defined in the plot by Ωsrc. This is an un-physical

situation, however it will act as a starting point to develop the theory behind

modelling the influence of correlated fields far larger than individual cells, includ-

ing full-body excitations.

Here, the aim is to compute the direct contribution from the excited patch to

the phase-space density at some location on the boundary of Ωsrc. As shown

by equation (2.21) in Section 2.2.1, when defining the response of a structure

to an applied pressure field, a correlation function defining the coherence in the

force applied by the field at locations r01 and r02 within the excited region is

required. At this stage it is assumed that the correlation in the force applied by

the generic pressure field is homogeneous. The associated correlation function is

then denoted by ΓF (r01 − r02), indicating that the correlation between the force

applied at the two locations is dependent only on their spatial separation. This

is chosen here for simplicity, however it will be demonstrated in Section 3.4 that

this is an appropriate representation for the TBL pressure field within individual

finite elements. The correlation function describing the response of the structure

to the applied excitation is then given by

Γ0 (r1, r2, ω) =∫
Ωsrc

∫
Ωsrc

G0 (r1, r01, ω) ΓF (r01 − r02)G∗
0 (r2, r02, ω) dr01 dr02,

(3.1)

where r01, r02 ∈ Ωsrc. As described in Section 2.2.1, to define the WDF of

the excitation the Wigner transform of this response correlation function must

be found. As shall be demonstrated in Section 3.4, the Wigner transform of a

spatially homogeneous function produces a function which is dependent only on

the momentum p. Based upon equation (2.32), the WDF at some phase-space
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location (r, p) due to the applied homogeneous pressure field is thus given by

W0(r, p) = R0

∫
Ωsrc

∫ e−µ|r−r′|

|r − r′|
δ(p − p′)δ

(
p − k

r − r′

|r − r′|

)
WΓ (p′) dp′ dr′.

(3.2)

Here R0 defines the magnitude of the response to the applied pressure field and

is defined by R0 = ϱ2h2

32πD2k5 in equation (2.33) [53]. Solving the integral over p′

then leaves

W0(r, p) = R0WΓ (p)
∫

Ωsrc

e−µ|r−r′|

|r − r′|
δ

(
p − k

r − r′

|r − r′|

)
dr′. (3.3)

To solve the resulting integral over r′ a coordinate transform is performed, defin-

ing r′′ = r′ − r. The resulting integral is given by

W0(r, p) = R0WΓ (p)
∫

Ωsrc

e−µ|r′′|

|r′′|
δ

(
p + k

r′′

|r′′|

)
dr′′ (3.4)

By writing r′′ = (r′′
x, r

′′
z ) with |r′′| =

√
(r′′
x)2 + (r′′

z )2, the delta function in this

equation can be split into the product of parallel and orthogonal terms with

regards to p̂.

W0(r, p) = R0WΓ (p)
∫ ∫

Ωsrc

e−µ|r′′|

|r′′|
δ

(
|p| + k

r′′
x cos (ϕ) + r′′

z sin (ϕ)
|r′′|

)

δ

(
k
r′′
z cos (ϕ) − r′′

x sin (ϕ)
|r′′|

)
dr′′

x dr
′′
z .

(3.5)

Here ϕ defines the angle between the p vector and the +x̂ direction. The resultant

integral is then converted into polar coordinates (R,φ). Here |r′′| = R, r′′
x =

R cos (φ), and r′′
z = R sin (φ), with φ defining the angle between r̂′′ and the +x̂

direction. Making this transform then gives
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W0(r, p) = R0WΓ (p)
∫ ∫ 2π

0
e−µRδ (|p| + k (cos (φ) cos (ϕ) + sin (φ) sin (ϕ)))

δ (k (sin (φ) cos (ϕ) − cos (φ) sin (ϕ))) dφ dR.

(3.6)

Employing trigonometric identities [165], this can be simplified to

W0(r, p) = R0WΓ (p)
∫

Ωsrc

∫ 2π

0
e−µRδ (|p| + k cos (φ− ϕ))

δ (k sin (φ− ϕ)) dφ dR.
(3.7)

As k is positive and real, the second delta function can give a non-zero solution

only if sin (φ− ϕ) = 0. Given the constrained range of φ within the integral, this

is only possible if φ − ϕ = 0, π, 2π. By definition, |p| is also positive and real,

meaning that for the first delta function to give non-zero solutions cos (φ− ϕ) < 0.

The only solution which fits both constraints is then where φ − ϕ = π. Given

that ϕ describes the angle between p̂ and x̂ and φ describes the angle between

r̂′′ and x̂ then φ − ϕ must by definition describe the angle between r̂′′ and p̂.

Given that φ − ϕ = π, then these vectors must be anti-parallel to each-other.

This means that contributions to the energy density at the location (r, p) can

only come from source locations r′ within the excited region which are located

along a line pointing from r in the −p̂ direction. This result is logical, as these

are the only points from which rays of momentum p can be emitted and pass

through (r, p) without prior scattering. The result of the integral over φ is then

given by

W0(r, p) = R0WΓ (p) δ (|p| − k)
∫ RB

0
e−µR dR, (3.8)

where RB(r, p) describes the distance from the current location to the boundary
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of Ωsrc in the −p̂ direction. This is determined by finding the distance between

r and the point at which a line drawn from this location in the −p̂ direction

intercepts another boundary of the excited cell. This process is displayed in

Figure 15.

Figure 15: Demonstration of RB for a particular phase-space location on the
boundary of an excited cell.

Solving the integral along this line then gives the WDF for the arbitrary correlated

field excitation as

W0(r, p) = 1
µ
R0
(
1 − e−µRB(r,p)

)
WΓ (p) δ (|p| − k) . (3.9)

Substituting into equation (2.34) then gives the direct contribution to the phase-

space density as

ρ0(r, p) = 1
µ
R′
(
1 − e−µRB

)
WΓ (p) δ (|p| − k) (3.10)

with R′ = 1
2ϱhω

2R0. By definition, this solution is the energy density at the

boundary of the excited cell. For a single-cell excitation, this boundary is defined

as Γsrc, which is identical to that applied for a point-force excitation. Conversion

into the boundary coordinate scheme is then performed by substituting this result
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into equation (2.37), leaving

ρ̃0(s, ps, ω) = 1
µ
R′
(
1 − e−µRB(s,ps)

)
WΓ (ps) cos (θ(ps))δ (|p| − k) . (3.11)

The initial basis coefficients are thus defined by substituting this solution into

equation (2.45), giving

f0,n = 2β + 1
2
√
Abk

R′

µ

∫
b

∫ +k

−k

(
1 − e−µRB(s,ps)

)
WΓ(ps)δ(|p| − k)

cos (θ(ps))Pβ(sin (θ(ps)) dps ds.
(3.12)

The various dependencies of terms on s and ps means that this is highly challeng-

ing to solve analytically, and numerical approaches are thus preferred. Solving

this integral numerically also has difficulties, due to a gradient discontinuity in

RB observed in the integral over ps. This occurs where the edge that is inter-

cepted by the vector −p̂ swaps as ps changes, which occurs at some value pcrit(s).

This phenomena is demonstrated by Figure 16.

To eliminate this issue, the integral across ps at each location s is split into two

separate integrals across pcrit(s). These integrals are solved using quadpy C2

numerical integration schemes, adjusted to fit triangular domains [166].

3.3 Physical Parameters

In the following sections, the high-frequency vibrational behaviour of plate-like

structures excited by correlated pressure fields will be studied. As demonstrated

by equation (3.11), the response of the plate is dependent on parameters which

describe the force applied by the TBL, along with the structural properties of the

plate itself. In this section, appropriate values for these terms will be defined, for

application in the remainder of this chapter.

DEA is a high-frequency approach, and so it is important that the vibrational
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Figure 16: Demonstration of the gradient discontinuity in RB for varying ps at a
particular boundary location s.

frequency f is carefully selected to ensure that this approach is applicable to the

considered problem. In vibrational analysis, high-frequency typically refers to

situations where the scale of variations of the structure are far greater than the

wavelength of the excited vibrations [167]. However, as the structure is modelled

using Kirchhoff-Love thin plate theory, it is essential that the chosen wavelength

is much greater than the thickness of the plate [168,169].

When modelling the vibrations of plates of lengths of order 0.1m−1m using high-

frequency methods such as SEA and DEA, frequencies in the range 2 − 10 kHz
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are typically considered [56, 74, 110]. In this study, a value of f = 5 kHz is

selected, giving a vibrational wavelength of 0.068m. As discussed previously, the

R′ term in equation (3.11), which represents the strength of the applied source,

varies depending on ω2. The impact of changes to this quantity thus affects the

magnitude of the response observed at each location by some scale factor. In

this study however, only the spatial variation of the vibrational energy across

the plate is of interest, rather than the magnitudes themselves. As such, this

value is irrelevant to the conclusions of this study. For simplicity, a value of

R′ = 1 is thus chosen. The plate is considered to be constructed from aluminium

alloy 6061. This material has density ϱ = 2700kgm−3, Young’s modulus E =

68.9GNm−2, and poisson ratio ν = 0.33 [170]. In addition, a thickness of h =

3mm is chosen. This is far smaller than the vibrational wavelength of the system

as defined above, and so Kirchhoff-Love thin plate theory is valid in this example.

Using this thickness, the bending stiffness and vibrational wavenumber are given

byD = 173.97Nm and k = 82.33m−1 respectively. Given that the speed of sound

c = 340ms−1 and f = 5 kHz, the vibrational wavelength is given by λ = 0.068m

meaning λ ≫ h. Thus, . In this thesis only bending waves are considered, and

mode conversions at boundaries are neglected.

3.4 Implementation of the TBL pressure field

As demonstrated by equation (3.10), for a cell of known geometry the only un-

known contribution to the phase-space density excited by a correlated field is

WΓ. Thus, to define the response of a structure to a specific correlated field, this

function must provide an accurate representation of the applied pressure field. As

demonstrated in Section 2.2.1, a useful choice for this term is the Wigner trans-

form of an appropriate correlation function representing the applied pressure field,

using equation (2.23).

In this study the excitation of flat plates by TBL pressure fields is considered.
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As discussed in Section 2.3, the Corcos and Mellen models have been chosen to

represent the TBL pressure fields in this study. Considering the excitation of

plates orientated in the x− z plane by TBL pressure fields formed due to a free-

stream flow in the +x̂ direction, the correlation functions for these models are

given by equations (2.57) and (2.62) respectively. The approach for defining WΓ

for each model is demonstrated in Sections 3.4.1 and 3.4.2.

3.4.1 Wigner transform of the Corcos model

The Wigner transform of the Corcos model, found by substituting equation (2.57)

into equation (2.23), is given by equation (3.13)

WΓ(r, p, ω) =
∫
e−αxkc|ξx|e−αzkc|ξz |eikcξxe−ip·ξ dξ. (3.13)

Here, the single point wall-pressure spectrum term ϕ(ω) is omitted, as for a ho-

mogeneous TBL this is dependent only on the vibrational frequency ω. Much

like R′, this term thus impacts only the magnitude of the vibrational response

observed rather than the distribution. As the Corcos model is already dependent

only on the separation of the points, rewriting this function for the Wigner trans-

form is unnecessary. To solve, the integral is separated into its streamwise and

cross-stream components, leaving

WΓ(r, p, ω) =
[∫ +∞

−∞
e−αxkc|ξx|eikcξxe−ipxξx dξx

]
×
[∫ +∞

−∞
e−αzkc|ξz |e−ipzξz dξz

]
.

(3.14)

Focusing first on the streamwise integral, this may be split into two integrals

across ξx = 0 to give
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∫ +∞

−∞
e−αxkc|ξx|eikcξxe−ipxξx dξx =

∫ 0

−∞
e(i(kc−px)+αxkc)ξx dξx

+
∫ +∞

0
e(i(kc−px)−αxkc)ξx dξx.

(3.15)

Solving the first integral

∫ 0

−∞
e(i(kc−px)+αxkc)ξx dξx =

[
e(i(kc−px)+αxkc)ξx

]0
−∞

αxkc + i(kc − px)
. (3.16)

As discussed in Section 2.3, αx is an empirical parameter of value 0.10 − 0.12 and

kc = ω/Uc where ω is the excitation frequency and Uc is the convective flow speed.

As each of these parameters are positive, αxkc > 0, and the integral solution tends

to 0 as ξx → −∞. The solution to this integral is thus given by

∫ 0

−∞
e(i(kc−px)+αxkc)ξx dξx = 1

αxkc + i(kc − px)
. (3.17)

Similarly,

∫ +∞

0
e(i(kc−px)−αxkc)ξx dξx = 1

αxkc − i(kc − px)
. (3.18)

The solution to the streamwise component of equation (3.14) is then given by

∫ +∞

−∞
e−αxkc|ξx|eikcξxe−ipxξx dξx = 1

αxkc + i(kc − px)
+ 1
αxkc − i(kc − px)

= 2αxkc
α2
xk

2
c + (kc − px)2 .

(3.19)

The cross-stream component of equation (3.14) may also be split across ξx, to

give

∫ +∞

−∞
e−αzkc|ξz |e−ipzξz dξz =

∫ 0

−∞
e(αzkc−ipzξz) dξz +

∫ +∞

0
e−(αzkc+ipzξz) dξz. (3.20)
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As αz is also a non-zero, positive, empirical parameter, the solutions of each

integral are given by

∫ 0

−∞
e(αzkc−ipzξz) dξz = 1

αzkc − ipz
. (3.21)

and

∫ +∞

0
e−(αzkc+ipzξz) dξz = 1

αzkc + ipz
. (3.22)

given that αzkc > 0. The overall cross-stream component of equation (3.14) is

given by

∫ +∞

−∞
e−αzkc|ξz |e−ipzξz dξz = 2αzkc

α2
zk

2
c + p2

z

. (3.23)

The overall Wigner transform of the Corcos model is thus given by

WΓ(p, ω) =
[

2αxkc
α2
xk

2
c + (kc − px)2 × 2αzkc

α2
zk

2
c + p2

z

]

= 4αxαzk2
c

[α2
xk

2
c + (kc − px)2] [α2

zk
2
c + p2

z]
.

(3.24)

In this result the Wigner transform of the Corcos model varies only with the

ray momentum p. When studying equation (2.23), which is used to define this

term, it can be shown that the Wigner transform procedure provides no additional

spatial dependency. Thus, if the correlation function being considered is spatially

homogeneous then the resulting Wigner transform will as well. As discussed

in Section 2.3, the TBL pressure field models studied here were developed to

represent the pressure field applied by fully formed, homogeneous, TBLs across

flat plates. It is thus appropriate that the term used to capture the TBL pressure

field is also spatially homogeneous. As demonstrated in equation (3.11), only rays

with |p| = k can contribute to the energy density across the plate. Thus, p2
x+p2

z =
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k, and if k is known, then p effectively defines the direction of propagation of the

rays. The contribution to the energy density from the TBL represented by the

Corcos model is then best represented by a radial plot. An example for several

mean flow speeds is demonstrated by Figure 17.

Figure 17: Radial plots of the energy density flowing from a point excited by a
TBL represented by the Corcos model. The free-stream is flowing at 0o at speeds
(a) 19ms−1, (b) 50ms−1 (c) 160ms−1 and (d) 300ms−1. Here, px = k cos (θ)
and pz = k sin (θ) with the additional parameters as stated in Section 3.3.

Figure 17 shows that at low speeds the energy inserted by the field propagates

near isotropically from the source location. For increasing flow speeds however,

the ray density becomes progressively more directional, with the vast majority

66



Chapter 3.4 Implementation of the TBL pressure field 67

of rays propagating in the flow direction for U0 = 300ms−1. Thus, despite the

homogeneous nature of the applied pressure field, the observed directional de-

pendence of the energy flow suggests that the response of the structure may vary

with position. This is interesting, as in Section 2.1 it was discussed that prior

studies of the vibrational response of plates under TBL excitations consider either

a single-point or point-averaged response [26, 80, 120]. These results would thus

fail to account for spatial variations in the vibrational behaviour of the plate. The

overall response is however likely to depend on the properties of the plate, as the

applied boundary conditions or damping may limit the importance of this direc-

tional effect. The influence of these effects on the vibrational energy distribution

across the plate is explored in detail in Section 3.6.

3.4.2 Wigner transform of the Mellen model

The Wigner transform of the Mellen model, found by substituting equation (2.62)

into equation (2.23), is given by

WΓ =
∫
e−

√
(αxkcξx)2+(αzkcξz)2

eikcξxe−ip·ξ dξ. (3.25)

with ϕ(ω) once again omitted. Unlike with the Corcos model, it is impossible

to split this integral into its streamwise and cross-stream components. Instead,

an approach similar to that employed previously in [125] to compute the Fourier

transform of the Mellen model is applied. Here, the dot product is expanded and

the resulting exponent is re-factorised to give

WΓ(r, p, ω) =
∫ ∫

e−
√

(αxkcξx)2+(αzkcξz)2
e−i(px−kc)ξxe−ipzξz dξx dξz. (3.26)

The substitutions αxkcξx = ξ′
x with dξx = 1

αxkc
dξ′

x and αzkcξz = ξ′
z with dξz =

1
αzkc

dξ′
z are then made, leaving

67



Chapter 3.4 Implementation of the TBL pressure field 68

WΓ(r, p, ω) = 1
αxαzk2

c

∫ ∫
e−

√
(ξ′

x)2+(ξ′
z)2
e−i 1

αxkc
(px−kc)ξ′

xe−i 1
αzkc

pzξz dξ′
x dξ

′
z.

(3.27)

Writing ξ′ = (ξ′
x, ξ

′
z) and p′ =

(
1

αxkc
(px − kc), 1

αzkc
pz
)
, this can be re-formatted as

WΓ(r, p, ω) = 1
αxαzk2

c

∫ ∫
e−|ξ′|e−iξ′·p′

dξ′
x dξ

′
z. (3.28)

The integral is then converted into polar coordinates, with ξ′ = |ξ′| and dξ′
xdξ

′
z =

ξ′dξ′dθ. In addition, the substitution P = |p′| is made. Hence,

WΓ = 2π
αxαzk2

c

∫ ∞

0
ξ′e−ξ′

[ 1
2π

∫ 2π

0
e−iξ′P cos (θ) dθ

]
dξ′. (3.29)

The integral over θ is the definition of the zeroth order Bessel function of the first

kind J0(RP ) [171] and so

WΓ = 2π
αxαzk2

c

∫ ∞

0
ξ′e−ξ′

J0(ξ′P ) dξ′. (3.30)

The resultant integral is the Hankel transform of e−ξ′ [171] which has the solution

WΓ = 2π
αxαzk2

c

1
(P 2 + 1)3/2 . (3.31)

Substituting back in for P ,

WΓ = 2π
αxαzk2

c

1((
1

αxkc
(px − kc)

)2
+
(

1
αzkc

pz
)2

+ 1
)3/2 , (3.32)

which can be simplified to give

WΓ = 2π(αxαzk2
c )2

((αzkc)2(px − kc)2 + (αxkc)2p2
z + (αxαzk2

c )2)3/2 . (3.33)

Once again, the homogeneous nature of the original correlation function leads
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to a homogeneous, radially dependent, representation of the TBL pressure field.

Radial plots of this function for various mean stream flow speeds are shown in

Figure 18.

Figure 18: Radial plots of the energy density flowing from a point excited by a
TBL represented by the Mellen model. The free-stream is flowing at 0o at speeds
(a) 19ms−1, (b) 50ms−1 (c) 160ms−1 and (d) 300ms−1. Here, px = k cos (θ)
and pz = k sin (θ) with the additional parameters as stated in Section 3.3.

These results are rather similar to those demonstrated when applying the Corcos

model, as shown in Figure 17. The main difference being that the energy flow

in the Mellen model shows a stronger preference towards the mean flow direction

than the Corcos model at all flow speeds. This is most apparent when consid-
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ering the higher speed cases, with the Mellen model demonstrating effectively

zero energy flow anti-parallel to the mean flow at 300ms−1. The impact of this

difference on the resultant vibrational behaviour will be studied in the following

section.

3.4.3 TBL excitation of a single patch

To demonstrate the implementation of TBL pressure fields within DEA, the exci-

tation of the simple structure shown in Figure 14 by a TBL pressure field applied

within the highlighted region is considered. To isolate the influence of the flow

on the vibrational response of the plate, absorbing boundary conditions are ap-

plied at the structural boundary. The resultant vibrational energy distribution

for both the Corcos and Mellen models for a flow speed of U0 = 50ms−1 is shown

by Figure 19.

Figure 19: Vibrational response of the simple structure to a TBL of flow speed
U0 = 50ms−1 applied within the indicated region. The colour scale shows the
calculated energy density and runs from low energy (blue) to high energy (red).

In this plot, it can be observed that the energy density inserted by the field

radiates near isotropically from the excited cell. This is unsurprising, as in Figures

(17) and (18) at 50ms−1 both the Corcos and Mellen models show that there is

70



Chapter 3.4 Implementation of the TBL pressure field 71

little preference in the direction of propagation of ther rays from the source at

this speed. This is also why the peak of the vibrational energy is found close

to the centre of the excited patch in each case. As the rays are emitted almost

isotropically, the energy density at each location is effectively determined by the

range of locations which emit rays that will intercept this point as they propagate

across the domain. The actual peak is then found slightly downstream of this

centre, indicating a slight preference for emission of rays in this direction. The

vibrational response of the plate to a TBL pressure field applied with a flow speed

of U0 = 300ms−1 is then shown by Figure 20.

Figure 20: Vibrational response of the simple structure to a TBL of flow speed
U0 = 300ms−1 applied within the indicated region.

As shown by Figures 17 and 18, at higher speeds the energy flow from the source

is far more directional, demonstrating a strong preference for the emission of rays

which propagate in the mean flow direction. This is demonstrated in Figure 20,

with the bulk of the energy flowing close to parallel with the +x̂ direction. The

result is a clear variation in the vibrational response of the plate based on the

location relative to the original source. In comparison to the low-speed case,

the peak in the energy density has also shifted to be further downstream. This

is because, the further that one moves downstream within the excited cell, the
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more rays which propagate close to the flow direction will intercept this location.

As the fraction of rays propagating in the flow direction increases for increasing

flow speeds, the peak in the energy density also shifts downstream.

3.5 Large patch and full-body excitations

The extension of this approach for more widespread source fields, spanning mul-

tiple mesh elements, is now considered. To introduce this idea, the excitation

of a rectangular patch made up of two conjoined triangular cells is considered.

When applying a correlated field to this patch, the constituent cells may be han-

dled in one of two ways. The first is the “split-cell” approach, where each mesh

element is treated as an individual patch excitation as in Section 3.2. The overall

response of the plate is then the sum of the response to each excitation. The

other method is the “super-cell” approach, where the elements which make up

the excited patch are merged to form a single larger cell. To establish the merits

of these approaches, the capability of each to provide an accurate measure of the

energy density at the boundary of the excited patch must be considered. Consid-

ering the excitation of the patch by an arbitrary, homogeneous, excited field, the

energy density at some location on the boundary can be expressed in terms of the

shape of the patch by ρ̃0(s, ps) ∝
(
1 − e−µRB(s,ps)

)
. The approach to define the

energy density at an arbitrary point on the boundary of the rectangular patch

using each approach is demonstrated in Figure 21.

As shown in this figure, the approaches give equivalent estimates for the energy

density at the boundary of the excited patch. It can be demonstrated that this is

true for any combination of numbers and shapes of cells. The preferred approach

must thus be chosen based upon the suitability of each method for modelling large

excitation regions. When applying the super-cell approach, the energy density is

only calculated across the outer boundary of the excited patch. By comparison,

for the split-cell method this calculation must instead be performed across the
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Figure 21: Calculation of the boundary density of a rectangular patch using the
split-cell and super-cell approaches.

boundary segments of all mesh elements within the excited patch. The super-

cell approach is thus likely to be far less computationally taxing than the split-

cell approach, particularly for large excitations spanning many mesh elements.

However, the region contained within the super-cell must be concave, and the

approach for defining the super-cell boundary is cumbersome. These issues then

limit the applicability of this approach in situations involving large pressure fields

applied across complex structures. The greatest fault of the super-cell approach

is however found when attempting to account for spatial variances in the source,

structural, or material properties. To do so effectively would involve considering

the contributions made at each boundary phase-space location individually, ac-

counting for changes in these properties as the energy propagates through other

mesh elements to the boundary, involving highly complex and time-consuming

calculations. To mitigate this issue, it could be assumed the variance in the sys-

tem properties is sufficiently small that the excited region could be treated as

a single, flat, element with consistent properties. For cases involving spatially

variant source fields applied to structures with complex geometries and varying

material properties this may severely limit the accuracy of the approach. Thus,
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despite its greater computational cost, the split-cell approach is preferred here due

to its reduced complexity and ability to manage variations in structural proper-

ties. This approach is employed to define the response of plates to full-body

excitations in Section 3.6.

3.6 TBL excitation of a flat plate

3.6.1 System configuration

Having extended the correlated field approach from single-cell to larger patch

excitations, the response of structures to correlated fields spanning the structural

surface may now be considered. To demonstrate this procedure, the excitation of

a flat plate by a spatially homogeneous TBL applied across the plate surface is

considered. The basis of this test is a common wind tunnel experiment performed

to measure the vibrational response of plates under TBL pressure fields. In these

experiments, the plate is positioned on the floor of a wind tunnel and is subjected

to a grazing flow of air moving parallel to the plate surface [172–174]. As discussed

in Section 2.3, this leads to the formation of a boundary layer across the floor.

Within the wind tunnel, the plate is positioned far downstream of the inlet [175],

and in many cases the flow is tripped by a piece of sandpaper or wire [176–178].

The purpose of these actions is to ensure that the TBL is fully-formed across

the plate [27]. When modelling this system, it is thus appropriate to consider

the TBL to be spatially homogeneous. As discussed in Section 2.3, this enables

the modelling of the TBL pressure field using the Corcos or Mellen models [121].

Due to the similarity in the single-patch response observed for both models in

Section 3.2, only the Corcos model results will be presented here. Results for TBL

pressure fields represented by the Mellen model will be presented in Appendix

A. The plate to be studied has dimensions 200 × 150 × 3mm and is constructed

of aluminium alloy 6061, with material properties as described in Section 3.3. It
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is represented computationally by a mesh grid of 36 × 28 quadrilateral elements,

each of dimensions 5.56 × 5.36mm, as demonstrated in Figure 22.

Figure 22: Mesh used to represent the flat plate for the results presented in this
section.

The vibrational response of the plate will be considered under three different

boundary conditions: (i) Absorbing boundary conditions, where all energy reach-

ing the boundary is absorbed without any reflection (equivalent to λ(r, p) = 0 in

equation (2.36)); (ii) Reflecting boundary conditions, where all energy reaching

the boundary is fully reflected (equivalent to λ(r, p) = 1); (iii) Periodic boundary

conditions, where absorbing boundary conditions are applied to the leading and

trailing edges and periodic boundary conditions are applied to the flow-parallel

edges. In this study, the effect of damping on the vibrational behaviour of the

plate will also be investigated. As such, the damping coefficient will be varied

between µ = 0.01 and µ = 0.80.

When modelling this system in DEA, the flow is captured by Legendre poly-

nomials up to order Nβ = 25, and each boundary segment is subdivided into

Nb = 15 segments. The resultant energy density distributions for the chosen

flow, structural, and boundary conditions are presented in sections 3.6.2 - 3.6.4.
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3.6.2 Absorbing boundary conditions

The vibrational response of the plate with absorbing boundary conditions for

various flow speeds is demonstrated by Figure 23.

Figure 23: Vibrational response of a flat plate with absorbing boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields formed from free-
stream flows with speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1 (d) 300ms−1.

The results shown in this figure display a strong resemblance to the single-cell

excitation case in subsection 3.4.3. In both cases, the absorbing condition applied

to the boundary ensures that the rays generated by the sources may propagate
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across the structural domain only once before they are lost. The peak in the

energy density is then found at the location that the greatest number of rays

generated by the field cross in a single journey across the plate. At low speeds,

rays are emitted near-isotropically at each location, and the peak is thus found

close to the centre of the plate. As U0 is increased, the source field becomes

progressively more directional, and a strong preference emerges for the generation

of rays which propagate in the mean flow direction. The increased generation

of rays in the flow direction then ensures that the peak in the energy density

moves gradually downstream for increasing flow speeds. At U0 = 300ms−1, the

preference for the propagation of rays in the flow direction is sufficiently strong

that the peak in the energy density is found at the trailing edge of the plate, with

a near-linear increase in energy density along the plate.

By repeating this study with various µ values, the effect of damping on the

observed vibrational behaviour of the plate may be investigated. This is demon-

strated in Figure 24, where the energy density distribution across the plate along

the line z = 0 is displayed for various damping coefficients µ is demonstrated by.

Figure 24: Energy density distribution along the line z = 0 for flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) with absorbing boundary conditions.

In the lower speed case, the distribution of energy density across the plate appears

approximately constant with increasing µ, with only a small reduction in the

magnitudes observed. The reason for this is the absorbing condition applied to

the structural boundary, and its effect to limit the rays to a single propagation
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across the plate. Given that the plate has dimensions of 0.2 × 0.15m, these rays

travel a ver short distance in their lifetimes, and very little ray density is lost due

to damping. This is illustrated by Figure 25.

Figure 25: Decay of energy density for rays propagating across plates with dif-
ferent damping coefficients µ.

Here, even in the most highly damped cases, the short lifetime of the rays ensures

that damping has a limited impact on the observed vibrational response.

In the higher speed case there is however some variation in the observed vibra-

tional response, particularly at the trailing edge. As discussed previously, for

large U0 the majority of rays propagate in the mean-stream flow direction. Thus,

contributions to the energy density at any arbitrary location on the plate will

chiefly come from rays originating upstream of the considered point. Close to the

leading edge, the distance travelled by these rays is minimal and so very few are

lost due to damping. There is thus very little difference in the energy density

observed for different µ values. Further downstream, the mean distance travelled

by the rays increases, meaning that the damping will have a greater impact on the

resulting energy density distribution. The increase in significance of this effect

further downstream then leads to the “tailing off” of the energy density close to

the trailing edge. Although most apparent in the highest speed case, this effect

will occur at all flow speeds due to the inherent directionality of the source field.
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This effect can be observed through comparison of the results for µ = 0.01 in

Figure 23 with the results presented in Figure 26 for µ = 0.80.

Figure 26: Vibrational response of a flat plate with absorbing boundary conditions
and damping coefficient µ = 0.80 under TBL pressure fields formed from free-
stream flows with speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1 (d) 300ms−1.

Here, the increased damping at the trailing edge leads to the broadening of the

peak in the energy density compared to the low-damping case, as well as shifting

this peak slightly upstream. This effect is more prominent for greater U0.
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3.6.3 Reflecting boundary conditions

The vibrational response of the plate under reflecting boundary conditions for

various flow speeds is demonstrated in Figure 27.

Figure 27: Vibrational response of a flat plate with reflecting boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields formed from free-
stream flows with speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1 (d) 300ms−1.

When applying reflecting boundary conditions, rays impinging on the structural

boundary are reflected back into the structural domain, without scattering losses.

In this situation, the density of rays can only decay due to damping losses. As
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all of the energy density remains in the plate rather than being dissipated at the

structural boundary, the vibrational energy excited within the plate is far greater

than in the absorbing boundary case. Through comparison of Figures 23 and

27, one can observe that the energy densities are approximately two orders of

magnitude greater here than in the equivalent absorbing boundary cases.

The application of reflecting boundary conditions has also impacted the distribu-

tion of the energy density across the plate. As discussed in subsection 3.6.2, the

plate is sufficiently small that damping losses are minimal for individual journeys

across the surface, even in the more highly damped cases. As such, the rays are

able to propagate across the plate many times before being lost to damping. This

is a key assumption of the SEA approach [55,68], which is employed to justify the

assumed homogeneous energy distribution within each subsystem. In the cross-

flow direction this result is true, as the energy density is equal in this direction

for any distance from the leading edge. In the streamwise axis however, the di-

rectionality of the source field leads to the linear increase in the observed energy

density with increasing distance from the leading edge. The result is that for all

flow speeds, the resultant energy density distributions appear to be remarkably

similar. Despite the visual similarity in each case, the distribution of the energy

density varies substantially for different flow speeds. For the U0 = 19ms−1 case,

the relative difference in the energy density between the leading and trailing edges

is around 0.1 % of the leading edge energy density, whilst for the U0 = 300ms−1

case, this difference is 1.21 %. As discussed, higher flow speeds generate a greater

proportion of rays which propagate initially in the mean flow direction. As such,

despite the final energy density distribution being the sum of many ray journeys

across the plate, the initial distribution of ray momenta is still highly influential

on the observed vibrational response.

In this case the only source of decay of the ray density is damping within the plate,

and so it is likely that adjustments to the damping coefficient µ will have a larger
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impact on the distribution of energy density across the plate. The distribution

of vibrational energy across the plate in the streamwise direction for different

damping coefficients with reflecting boundary conditions is shown in Figure 28.

Figure 28: Energy density distribution along the line z = 0 for flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) with reflecting boundary conditions.

As expected, the damping coefficient has a large impact on the resultant vibra-

tional energy density within the plate. In each case the energy densities found

for µ = 0.01 are two orders of magnitude larger than in the µ = 0.80 case. In-

terestingly however, the difference in energy across the plate seems to be very

similar for all damping values. To study this in more detail, the absolute and

percentage differences in energy density across the plate are considered for each

µ value. These results are demonstrated in Figure 29.

Figure 29: Absolute and relative energy difference in the energy between the
leading and trailing edge of the plate for different µ values and flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) with reflecting boundary conditions.

As shown in Figure 29, the difference in the energy density across the plate is
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approximately constant for all µ in each case, despite the large difference in the

energy density values observed for different damping values. This suggests that

the observed energy difference across the plate is far more strongly linked to the

properties of the source field than the material properties of the plate. Given

the consistency in this energy density difference across all µ it is likely that this

energy difference is generated in the initial propagation of the rays across the

structural domain. This is because for many journeys across the plate the ray

density will fall rapidly for large µ but, as shown in Figure 25, within a single

propagation the damping loss is minor. This also accounts for the small decline

in the energy difference across the plate for high µ, which closely matches the

decay in energy density for a single journey across the plate. Given the difference

in energy density for each µ, this almost constant energy difference across the

plate means that the relative energy difference varies dramatically for different

µ. As discussed the relative energy difference across the plate is around 0.27 %

for the U0 = 50ms−1 case and around 1.21 % for the U0 = 300ms−1 case, whilst

for µ = 0.80, these values are now ≈ 20% and ≈ 150% respectively. Despite

its small size, the vibrational behaviour is thus highly variable across the plate,

particularly for highly damped cases.

3.6.4 Periodic boundary conditions

Finally, the vibrational response of a plate with absorbing boundary conditions

on the leading and trailing edges and periodic boundary conditions on the flow-

parallel edges is considered. Under periodic boundary conditions, any rays de-

parting the plate through one periodic boundary re-enter at the equivalent loca-

tion on the paired edge, with identical p [179–181]. The application of periodic

boundary conditions here ensures that the plate behaves as a small section of an

infinitely wide plate. The vibrational response of the plate with periodic bound-

ary conditions is demonstrated by Figure 30.
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Figure 30: Vibrational response of a flat plate with periodic boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields formed from free-
stream flows with speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1 (d) 300ms−1.

Given the symmetry of the plate and the source field in the cross-flow direction,

as shown in Figure 17, the ray density flowing through the top and bottom

edges will be equal across all iterations. The result is that the periodic boundary

conditions applied to these edges are equivalent to reflecting boundaries. This can

be observed in the resultant vibrational energy distributions, as these share the

constant energy density in the cross-flow direction associated with the reflecting
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boundary condition results, as displayed in Figures 27. In addition, the action

of these boundaries to return any rays leaving the system causes an increase in

the energy density across the plate for all flow speeds when compared to the

absorbing boundary case. This is particularly apparent for the lower flow speed

cases, for example the peak energy density for U0 = 19 is around 5.5 times greater

than in the equivalent absorbing boundary case. As shown in Figure 17, at lower

flow speeds a large proportion of the rays generated by the source propagate

in the cross-stream direction. In this case, these rays remain trapped within

the system by the periodic boundaries, propagating across the plate many times

and contributing a significant proportion of their energy density to the plate via

damping. At higher flow speeds an increasing proportion of the rays generated

will propagate close to the streamwise direction and so will be dissipated by the

absorbing boundary, contributing less of their energy density to the plate. There

is thus a far smaller difference in the energy density as compared to the absorbing

case. For example, for U0 = 300ms−1, the peak energy density here is only around

1.2 times the equivalent value for the absorbing boundary conditions.

The absorbing boundary conditions applied to the leading and trailing edges

ensure that the energy density in the streamwise axis behave as in subsection

3.6.2. At low speeds the near isotropicity of the source ensures that the energy

density peak is found close to the centre of the plate. For greater flow speeds the

increasing directionality of the source field then leads to the downstream shift

in this peak. Interestingly, the drift of the peak with increasing flows speeds

is slower here than in the absorbing boundary case. This is likely due to the

increased contributions made by rays that are trapped within the plate by the

periodic boundaries. Rays which propagate close to the centre of the plate in the

cross-stream axis are likely to be trapped within the plate for the greatest number

of journeys across the plate. As such, these rays will contribute a larger proportion

of their energy density to the plate as compared to rays which propagate closer
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to the flow direction or are positioned further from the centre of the plate. The

result is that the peak will be more closely aligned with the centre of the plate

than in the absorbing boundary case, as is observed.

One may also consider the influence of the damping coefficient on the results

observed. The distribution of vibrational energy across the plate in the streamwise

direction for different damping coefficients µ is demonstrated by Figure 31.

Figure 31: Energy density distribution along the line z = 0 for flow speeds
U0 = 50ms−1 (left) and U0 = 300ms−1 (right) with periodic boundary conditions.

As shown in Figure 31, the damping coefficient has a large impact on the observed

energy density results. In both cases, increasing µ leads to a large decrease in

the peak energy density values. For U0 = 300ms−1 the peak energy density

for µ = 0.01 is around 1.9 times larger than the result for µ = 0.80 whilst

for U0 = 50ms−1 the µ = 0.01 result is 4.3 times larger. This impact is due

to the influence of the rays which are trapped within the plate by the periodic

boundaries. Due to their extended lifetimes, these rays contribute a significant

amount of energy density across the plate, and are also heavily impacted by

changes to the damping coefficient µ. The high proportion of these rays generated

for lower flow speeds is then the reason why this effect is more severe in the

U0 = 50ms−1 case. The increased loss of these rays is also clearly visible in the

shapes of the distributions in each case. In the U0 = 50ms−1 case, the strong

peak in the centre caused by the trapped rays becomes flatter with increasing
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µ, as the influence of these rays is reduced. In the U0 = 300ms−1 case the

increased loss of these rays also reduces the energy density found at the centre of

the plate in particular, leading to the energy density peak shifting downstream for

increasing µ. The energy density distributions for all flow speeds with µ = 0.80

are demonstrated in Figure 32.

Figure 32: Vibrational response of a flat plate with periodic boundary conditions
and damping coefficient µ = 0.80 under TBL pressure fields formed from free-
stream flows with speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1 (d) 300ms−1.

As expected, the low-speed cases here show a clear broadening of the energy
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density peak as compared to the µ = 0.01 results. As an equivalent result is

not observed when applying absorbing boundary conditions, it is clear that this

is down to the increased damping of rays trapped by the periodic boundary

conditions, as discussed previously. The higher speed cases are also changed

dramatically by the increase in damping, with the peak in the energy density

shifted further downstream as compared to the µ = 0.01 case. As discussed, this

result is also a consequence of the periodic boundary condition applied to the

flow-parallel edges.

3.6.5 Discussion

In the previous subsections, the vibrational behaviour of flat plates with a va-

riety of structural and boundary properties have been considered under TBL

pressure fields with various flow speeds. Under absorbing boundary conditions,

the vibrational response peaked at the centre of the plate for low flow speeds,

gradually shifting downstream at greater flow speeds. For reflecting boundary

conditions, the vibrational energy density increased linearly towards the trail-

ing edge of the plate. In lightly damped cases, the variation in energy across

the plate was limited, whilst for highly damped plates, particularly at high flow

speeds, the observed energy variation was dramatic. Periodic boundary condi-

tions then produced an effective interpolation of the prior results, with constant

vibrational energy in the cross-flow direction and a centralised peak in the flow

direction which drifted downstream with increasing flow speed. In this case, the

damping had a large and varied impact on the energy density distribution, with

increased damping producing a more even vibrational response at low speeds and

greater variation in the vibrational response for higher flow speeds.

Thus, despite its small and simple shape, the vibrational behaviour of the plate

has been shown to be highly complex and variable under different flow or struc-

tural conditions. The vibrational behaviour of real-world structures, such as air-
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craft fuselage, are thus likely to be even more complex, due to the extreme scale

and complexity of these systems as compared to the simple plate. Single-point

or averaged vibrational responses are thus likely to be inefective when describing

these systems. Thus, when considering the vibrational behaviour of these systems

under correlated pressure fields, it is essential that a full spatial representation is

generated, using approaches such as the one demonstrated here.

The results presented here however represent the excitation of a very simple struc-

ture by an idealised representation of the TBL pressure field, which is unlikely

to be found in practical settings. When considering the vibrational behaviour of

more complex structures in real-world situations, adjustments must be made to

the applied methodology.

The first detail to consider is the assumed fully-formed and spatially homogeneous

pressure field across the plate surface. As discussed in subsection 3.6.1, this is

achieved experimentally through the presence of structures upstream of the plate

which act to accelerate the formation of the TBL to ensure that it is fully formed

and homogeneous across the plate surface. In real-world applications no such

structures exist, and the TBL will only begin to form at the point of first contact

with the structure. Close to the leading edge of the structure the TBL will

thus not be fully formed and hence in-homogeneous. This is important, as when

considering the pressure field applied by the TBL, the assumed homogeneity

enabled the simplification of some key parameters in the applied pressure field.

For example, the approximation of the convective velocity Uc as Uc ≈ 0.7U0. In

reality, this is a complex variable which is dependent on local details of the TBL

structure, which is defined by Bull [27,182] as

Uc ≈ U0

(
0.59 + 0.3e− 0.89ωδ∗

U0

)
. (3.34)

Here δ∗ is the boundary layer displacement thickness, which is dependent on the

local thickness of the TBL [111]. Another term which is dependent on the local
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properties of the TBL is the single point wall-pressure spectrum ϕ(ω). Numerous

models have been developed to represent this function, a comprehensive review

of which has been performed by Miller [127]. In this study, the Goody model

was highlighted [183] due to its numerical simplicity and excellent accuracy. The

Goody approximation for the single point wall-pressure spectrum is given by

ϕ(ω) = 3 (δ/U0)3 (ωτw)2[
(ωδ/U0)0.75 + 0.5

]3.7
+
[(

1.1R−0.57
T

)
(ωδ/U0)

]7 , (3.35)

where RT = U2
τ δ/U0ν, with Uτ =

√
τw/ϱf the friction velocity [111, 124]. In

addition τw is the wall-shear stress, which is itself given by

τw ≈ 0.0225ϱU2
0

(8U0δ∗ν−1)1/4 (3.36)

where ν is the kinematic viscosity of the air. When considering the excitation of

structures by non-homogeneous TBL pressure fields, these terms ensure that the

source pressure field is defined based upon the local boundary layer thickness. It

is possible to define the wall-shear stress value experimentally, either using hot

wire measurements [80, 135], or by measuring the mean velocity profile within

the TBL normal to the plate U(y), and applying von Karmen’s estimate of the

boundary layer thickness [176,177,184]

δ∗ =
∫ ∞

0

(
1 − U(y)

U0

)
dy. (3.37)

Where experimental readings are unavailable, the boundary layer thickness may

also be approximated using the work of Blasius [111,185]. Here,

δ∗ ≈ 1.72x√
Re

(3.38)

where x is the separation from the leading edge. As discussed in subsection 3.2,

modelling the response of structures to spatially variant pressure fields is highly
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challenging. However, the choice to apply the split-cell approach to represent

the applied pressure field, where the excitation is applied to each mesh element

independently, may help to simplify this process somewhat. Given that DEA is

typically performed on finite element meshes with ≈ 106 elements [52,53,56], the

size of each element is likely to be negligible compared to the overall structure.

For even complex structures, it is thus likely that the variance in the TBL pa-

rameters is also negligible across individual mesh elements. In this case, it should

be appropriate to represent the spatially variable pressure field as the sum of

pressure fields applied within individual elements which are locally homogeneous.

An accurate representation of the pressure field within each element may then

be defined from averages of these parameters taken across each element. This

approach has been employed by Guillon et al, to represent an in-homogeneous

TBL pressure field in [120]. Here, the vibrational response of a flat plate under

the subsystem averaged pressure field was found to provide close agreement to

that under a fully variable pressure field. By implementing an approach to de-

fine appropriate parameter values across the structure, it will thus be possible

to extend the presented approach to consider the in-homogeneous pressure fields

found in real-world situations.

Alongside spatial variations in the TBL, geometric complexities in the structure

being studied must also be considered. As discussed in Section 2.3, the TBL

pressure correlation function models discussed in this thesis were developed to

model the pressure field applied to a flat plate by a grazing TBL flow [123,

133]. This is thus an inappropriate representation of the highly complex and

three-dimensional nature of aircraft structures. Further work is thus required to

ensure that the representation of the TBL pressure field applied within DEA is

appropriate for all structures.

Alongside considerations of spatial deviations in the pressure field applied by

the TBL, one must also account for additional sources of vibrational excitation
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which may be important during flight. One example of this is additional acoustic

contributions to the pressure field from the air, which were suggested following an

experimental study by Arguillat et al [186], aimed at determining the correlation

in the pressure field applied by a TBL to a flat plate. As the Corcos and Mellen

models show approximately exponential decay in the correlation with increasing

point separation, one would expect a logarithmic plot of the observed correlation

to decay linearly. The actual logarithmic plot of the decay observed in [186] is

displayed in Figure 33.

Figure 33: Correlation in the pressure field applied by the TBL for points with
cross-flow separations r measured by Arguillat et al [186].

Here, the expected linear decay in the correlation is observed, but with additional

oscillations around the expected result. When converted into a spectral repre-

sentation of the field, these oscillations appear as a distinct contribution to the

pressure field, associated with acoustic contributions generated at the exterior

of the turbulent flow [187]. The cross-spectral density function representing this

acoustic contribution is defined by [186,188]
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Ψacc(ξx, ξz, ω) = Sacc(ω)sin (k0 |ξ|)
k0 |ξ|

. (3.39)

Here k0 = ω/c is the acoustic wavenumber of the plate, with c the speed of sound

and Sacc(ω) is the single point wall-pressure spectrum of the acoustic field. In a

DEA context, the acoustic contribution to the applied pressure field is found by

taking the Wigner transform of this function, giving

WΓ,acc = Sacc(ω)
2πk2

0

1√
1 −

(
k
k0

)2
(3.40)

for k < k0. Based on the experimental data produced, Arguillat et al proposed

an alternate TBL CSD function, which in a DEA context translates to

WΓ = 1
1 + A

(WΓ,TBL + AWΓ,acc) (3.41)

where A describes the size of the acoustic contribution to the applied pressure

field. In an automotive context, this is estimated to be around 0.05 in most

cases. However, in high-frequency and resonant cases the acoustic contribution

can rise to A ≈ 0.45, representing a significant contribution to the overall pressure

field [186]. As demonstrated by equation (3.40) however, the acoustic contribution

to the overall pressure field is both homogeneous and isotropic. As a result,

this term will only impact the magnitude of the pressure field applied at each

point on the plate, without affecting the overall distribution of energy. This

factor would thus not impact the results of the current study, though would

be important when discussing the noise generated through the vibrations of the

excited structure. This is important as the eventual aim of this work is to define

the cabin noise experienced due to the excitation of aircraft by the TBL pressure

field during flight. As such, it is also essential that further work is performed

to ensure that the results of these DEA calculations can be coupled with sound
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radiation techniques, such as those introduced in [93], to produce a detailed three-

dimensional description of the sound field generated through these interactions.

Finally, as discussed, no previous experimental or numerical study has generated

a detailed distributed representation of the vibrational response of structures to

TBL pressure fields. It is thus essential that an experimental recreation of the test

case considered here is performed, in order to validate the assumptions applied

and results generated in this study.

3.7 Conclusion

In this chapter, the approach for modelling the response of complex structures to

correlated pressure fields using DEA has been introduced. To achieve this, the

excitation of a small region of a structure by a homogeneous, continuous, pres-

sure field has been considered. By solving the resultant equations, it has been

found that the resultant vibrational response of the structure is dependent on

the material properties of the plate, the geometry of the excited region, and a

WDF representation of the applied source. For a TBL pressure field, the source

WDF is the Wigner transform of an appropriate correlation function, the result

of which is a homogeneous and directionally dependent pressure field. Using this

approach, the vibrational response of a simple structure to a TBL excitation

applied to a small patch was then modelled. Having extended the introduced

approach to apply full structural excitations, the response of a flat plate with

varying boundary conditions under a TBL excitation was then studied. When

applying absorbing boundary conditions, the vibrational energy was found to

peak at the centre of the plate at low flow speeds, before shifting gradually down-

stream as U0 increased. For reflective boundaries, a linear increase in vibrational

energy downstream was observed for all flow and damping conditions, changes

to which only impacted energy difference across the plate. Periodic boundary

conditions showed a combination of these results, with constant values in the
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crossflow direction and a centrally located peak in the vibrational energy which

steadily shifted downstream with increasing flow speed.

Opportunities for the future development of this approach have also been consid-

ered in this chapter. This included the consideration of spatially variant pressure

fields, which could be represented by the sum of locally homogeneous patch exci-

tations. The inclusion of acoustic contributions to the applied pressure field have

also been discussed, although the homogeneous and isotropic nature of these

fields would only impact the magnitude of the observed response. Finally, the

need to determine the noise generated by these vibrations and to validate the

implemented method was discussed.
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4 Implementation of correlated

point-forces in DEA
Having developed an approach to model the vibrational behaviour of DEP air-

craft under TBL pressure fields, in this chapter an additional vibration source

originating from interactions between the propellers of the aircraft and the pass-

ing air is considered. As discussed in subsection 2.4, the equal rotational speed

of these propellers should ensure that the vibrational waves generated through

these interactions will have identical frequencies, and will thus interfere with one

another. The resultant interference effects between vibrational waves generated

by an array of closely arranged propellers will thus likely generate complex vi-

brational effects within the structure. In this chapter an approach is introduced

to model the excitation of structures by multiple correlated sources, including all

interference effects, using DEA. In this approach, the propellers are modelled by

point-force excitations, and the vibrational response of structures under various

numbers and configurations of point-forces is demonstrated.

The chapter is presented as follows. In Section 4.1, the approach for consider-

ing the response of structures to correlated point-forces, including interference

effects, is introduced for the simple case of 2 point-force excitations. Here, results

are presented for various point-separations and phase differences. This method

is generalised in Section 4.2 to consider n phase-shifted sources and the complex

interference effects of these configurations are studied. In addition, the opportu-
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nity to generate preferable vibrational energy flow through careful phase selection

is discussed. In Section 4.3, the implementation of this approach within DEA

is demonstrated, including the definition of the initial excited boundary. These

results demonstrate non-physical negative phase-space density values, and in Sec-

tion 4.4 the Husimi Density Function (HDF) is introduced as a possible solution.

In Section 4.5, the limitations of the current implementation are discussed, and

opportunities for further development are explored.

4.1 Excitation of a plate by two phase-correlated

point forces.

As discussed in subsection 2.2, the excitation of a plate by a point-force of driv-

ing frequency ω generates propagating vibrational waves within the structure. If

a second point-force of equal frequency is then added to the system, the waves

generated by each force will thus interfere. As discussed in Section 2.4, this in-

terference produces a resultant interference wavefield, which is the sum of the

vibrational wavefields generated individually by each source. In DEA, the vi-

brational response of structures to external sources is described by the response

correlation function, which is calculated using equation (2.21). In this equation,

the correlation function is defined based upon the response of the structure to in-

dividual point-force excitations, and a correlation function describing the source

field applied to the system. In this case, the excitation of a plate by two-point

force excitations of unit magnitude applied at locations r01, r02 ∈ Ω is considered.

The correlation function describing this excitation is defined here as

Γf (r1, r2) =
(
δ (r1 − r01) eiϕ1 + δ (r1 − r02) eiϕ2

)
(
δ (r2 − r01) e−iϕ1 + δ (r2 − r02) e−iϕ2

)
,

(4.1)
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where ϕ1 and ϕ2 represent the phase of each point-force. By substituting this

force correlation function into equation (2.21), the correlation function of the

response of a plate to two point-force excitations is given by

Γ0 (r1, r2, ω) =∫ ∫
G(r1, r

′
01)δ (r′

01 − r01) δ (r′
02 − r01)G∗ (r2, r

′
02) dr′

01 dr
′
02

+
∫ ∫

G(r1, r
′
01)δ (r′

01 − r02) δ (r′
02 − r02)G∗ (r2, r

′
02) dr′

01 dr
′
02

+ ei(ϕ1−ϕ2)
∫ ∫

G(r1, r
′
01)δ (r′

01 − r01) δ (r′
02 − r02)G∗ (r2, r

′
02) dr′

01 dr
′
02

+ ei(ϕ2−ϕ1)
∫ ∫

G(r1, r
′
01)δ (r′

01 − r02) δ (r′
02 − r01)G∗ (r2, r

′
02) dr′

01 dr
′
02.

(4.2)

Solving the integrals over r′
01 and r′

02 then leaves

Γ0(r1, r2) =G(r1, r01)G∗(r2, r01)

+G(r1, r02)G∗(r2, r02)

+ ei(ϕ1−ϕ2)G(r1, r01)G∗(r2, r02)

+ ei(ϕ2−ϕ1)G(r1, r02)G∗(r2, r01),

(4.3)

where, based upon the working of Section 2.2, each of these Green functions is

given by

G(r, r0i, ω) ≈ ϱh

8Dk2

√
2

πk |r − r0i|
ei(k|r−r0i|− π

4 ). (4.4)

By substituting the form of each Green function into equation (4.3), the overall

vibrational response correlation function is given by
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Γ0(r1, r2, ω) = ϱ2h2

32πD2k5

 1√
|r1 − r01| |r2 − r01|

eik(|r1−r01|−|r2−r01|)

+ 1√
|r1 − r02| |r2 − r02|

eik(|r1−r02|−|r2−r02|)

+ ei(ϕ1−ϕ2)√
|r1 − r01| |r2 − r02|

eik(|r1−r01|−|r2−r02|)

+ ei(ϕ2−ϕ1)√
|r1 − r02| |r2 − r01|

eik(|r1−r02|−|r2−r01|)

 .

(4.5)

The WDF of the vibrational response of the plate is then found by substituting

this correlation function into equation (2.23), with r1 = r + ξ
2 and r2 = r − ξ

2 ,

as follows

W0(r, p) = ϱ2h2

32πD2k5

∫ ei(k(|r+ ξ
2 −r01|−|r− ξ

2 −r01|)−p)·ξ√∣∣∣r + ξ
2 − r01

∣∣∣ ∣∣∣r − ξ
2 − r01

∣∣∣ dξ

+
∫ ei(k(|r+ ξ

2 −r02|−|r− ξ
2 −r02|)−p)·ξ√∣∣∣r + ξ

2 − r02

∣∣∣ ∣∣∣r − ξ
2 − r02

∣∣∣ dξ

+ei(ϕ1−ϕ2)
∫ ei(k(|r+ ξ

2 −r01|−|r− ξ
2 −r02|)−p)·ξ√∣∣∣r + ξ

2 − r01

∣∣∣ ∣∣∣r − ξ
2 − r02

∣∣∣ dξ

+ei(ϕ2−ϕ1)
∫ ei(k(|r+ ξ

2 −r02|−|r− ξ
2 −r01|)−p)·ξ√∣∣∣r + ξ

2 − r02

∣∣∣ ∣∣∣r − ξ
2 − r01

∣∣∣ dξ
 .

(4.6)

The first two integrals are equivalent to the intergral part of equation (2.27).

These integrals may thus be simplified in the same manner as applied in Section

2.2, by approximating parts of the integrand using the leading terms of their

corresponding Taylor expansions via equation (2.28). Whilst Taylor expansions

may also be applied to these parts of the final two integrals, these integrals are

dependent on contributions from both source locations simultaneously. To solve
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this issue, we assume that the distance between the observer location r and the

two source locations r01 and r02 is far larger than the separation of the sources,

such that |r − r01| ≈ |r − r02|. This approximation limits the accuracy of the

result in the proximity of the source locations. However, in this study it is the flow

of vibrational energy to locations far away from the sources which is of interest,

where this approximation is far more suitable. Based upon equation (2.28) and

this approximation, the terms in the final two integrals of equation (4.6) may be

approximated by

∣∣∣∣∣r + ξ

2 − r0i

∣∣∣∣∣
∣∣∣∣∣r − ξ

2 − r0j

∣∣∣∣∣ ≈ |r − r0i| |r − r0j|∣∣∣∣∣r + ξ

2 − r0i

∣∣∣∣∣−
∣∣∣∣∣r − ξ

2 − r0j

∣∣∣∣∣ ≈ 1
2

(
r − r0i

|r − r0i|
+ r − r0j

|r − r0j|

)
· ξ

(4.7)

Applying the substitutions of equations (2.28) and (4.7) then leaves

W0(r, p) = F 2
0

32πD2k5

∫ e
−i
(

p−k r−r01
|r−r01|

)
|r − r01|

dξ

+
∫ e

−i
(

p−k r−r02
|r−r02|

)
|r − r02|

dξ

+eik(|r−r01|−|r−r02|)+ϕ1−ϕ2
∫ e

−i
(

p− k
2

(
r−r01

|r−r01| + r−r02
|r−r02|

))
√

|r − r01| |r − r02|
dξ

+eik(|r−r02|−|r−r01|)+ϕ2−ϕ1
∫ e

−i
(

p− k
2

(
r−r01

|r−r01| + r−r02
|r−r02|

))
√

|r − r01| |r − r02|
dξ

 .

(4.8)

The solution of these integrals is then given by
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W0(r, p) = ϱ2h2

32πD2k5

e−µ|r−r01|δ
(
p − k r−r01

|r−r01|

)
|r − r01|

+
e−µ|r−r02|δ

(
p − k r−r02

|r−r02|

)
|r − r02|

+
e−µ

√
|r−r01||r−r02|eik(|r−r01|−|r−r02|)+ϕ1−ϕ2δ

(
p − k

2

(
r−r01

|r−r01| + r−r02
|r−r02|

))
√

|r − r01| |r − r02|

+
e−µ

√
|r−r01||r−r02|eik(|r−r02|−|r−r01|)+ϕ2−ϕ1δ

(
p − k

2

(
r−r01

|r−r01| + r−r02
|r−r02|

))
√

|r − r01| |r − r02|

 .

(4.9)

Here, additional factors have been included to each to account for losses due to

damping as the rays propagate across the domain. In this equation, the first two

terms are identical to equation (2.33), which describes the resultant WDF due to

an individual point-force. These terms thus account for the direct contributions

to the overall vibrational response of the plate from each of the point-forces.

The final two terms then account for the additional contributions caused by the

interference effects between the vibrational waves generated by each source. These

terms are very similar, varying only by the sign on the exponent of the complex

exponential term. Using Euler’s formula, these factors may thus be combined

into a single term. Substituting the result into equation (2.34), then gives the

direct contribution to the phase-space density distribution across a plate due to

two correlated point-force excitations as

ρ0(r, p) = ρr01(r, p) + ρr02(r, p)+

e−µ
√

|r−r01||r−r02|

32π
ϱ2h2

Dk

cos (k (|r − r01| − |r − r02|) + ϕ1 − ϕ2)√
|r − r01| |r − r02|

δ

(
p − k

2

(
r − r01

|r − r01|
+ r − r02

|r − r02|

))
.

(4.10)

As in Section 2.2, this solution may then be converted onto the boundary coordi-

101



Chapter 4.1 Excitation of a plate by two phase-correlated point forces. 102

nate scheme using equation (2.37), propagated across the domain using equation

(2.40), and mapped back into the cell interiors to define the overall phase-space

energy density distribution ρ̃∞. This result could then be visualised by substitut-

ing this value into equation (2.41). As discussed in subsection 2.4, interference

effects between vibrational waves generated by correlated sources lead to highly

directional energy flows. As such, when visualising the vibrational response of

structures under correlated point-force excitations, it would also useful to define

the energy flow I(r, ω), given by

I(r, ω) =
∫

pρ∞(r, p, ω) dp. (4.11)

This quantity describes the mean flow of the energy density at each location of

the plate.

In the remainder of subsection , several plots

To demonstrate the vibrational response of structures to correlated point-force ex-

citations, the vibrational response of a plate excited by two in-phase point-forces

separated by d = |r1 − r2| = π
k

= λ/2 is considered. In this, and all remaining

cases in subsections 4.1 and 4.2, these excitations are applied to homogeneous

square plates with absorbing boundary conditions. The energy density and en-

ergy flow distributions across the plate with absorbing boundary conditions by

these two sources are displayed in in Figure 34.

In this plot, a large vibrational response can be observed in the region directly

between the two point sources. This is unsurprising, as the energy density con-

tributed independently by each source is proportional to e−µ|r−r0i|/ |r − r0i|,

meaning that large energy density values will be observed at locations in close

proximity to both sources. Given the dependence of the interference term on the

separation from each source, the interference effects between the sources are also

likely to have a large impact on the energy density observed within this region.

Close to the sources, the separation from each source is minimal, meaning that
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Figure 34: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to two point-forces with separation d = 0.5λ and phases
ϕ1 − ϕ2 = 0. The colour scale runs from low energy (dark blue) to high energy
(yellow).

|r − r01| − |r − r02| ≈ 0. Given that ϕ1 = ϕ2 = 0, the argument of the cosine

term in equation (4.10) is thus be close to 0. As cos (0) = 1, the vibrational waves

generated by each source interfere constructively within this area, providing an

additional strong positive contribution to the energy density directly between the

two sources. Outside of this area, these interference effects further influence the

observed vibrational behaviour, generating a highly directional energy flow away

from the sources. As shown in Figure 34, the majority of the energy density flows

in the z−axis away from the sources, with very little flow in the z−axis. The

ability to generate such a highly directional energy flow using just two sources

thus demonstrates the strong influence of these interference effects.

By adjusting ϕ1 and ϕ2, one can investigate the influence of the phase difference

between the sources on the observed vibrational response. Setting ϕ1 − ϕ2 = π,

the resultant vibrational response is displayed in Figure 35.

In this example the sources are in anti-phase, meaning that maxima in the force

applied by one source occur simultaneously with minima in the force applied by

the other. Focusing again on the region directly between the sources, once again
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Figure 35: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to two point-forces separated by 0.5λ with phases ϕ1 −
ϕ2 = π.

the separations from each source are minimal and rather similar. In this example

however, the phase difference now ensures that the argument of the cosine term

is given by ϕ1 − ϕ2 = π, with cos (π) = −1. In this case, destructive interference

now occurs between the vibrational waves generated by each source, providing a

strong negative contribution to the energy density. This acts to cancel out the

direct contributions from the sources, leading to the minima in the energy density

between the sources as observed in Figure 35.

The phase difference also affects the flow of energy away from the sources, which

is effectively the opposite to the in-phase result. Here, the majority of the energy

now flows close to the x−axis, with minimal energy flowing in the z−axis. The

stark contrast in the results observed for each phase-difference thus demonstrates

the strong impact of this factor on the resultant vibrational behaviour of the

plate. Similar results can be observed when considering sources which are more

widely spaced, as shown in Figure 36.

In this plot, the increased separation of the sources further highlights the influence

of the interference term in equation (4.10). When moving between the sources
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Figure 36: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to two point-forces with d = 2λ and phase differences
ϕ1 − ϕ2 = 0 (top) and ϕ1 − ϕ2 = π (bottom).

k(|r − r01| − |r − r02|) varies between −π and +π, causing the cosine term to

oscillate several times between −1 and +1, generating the observed sinusoidal

oscillations in the energy density across this region. By comparing the energy

density distributions between the sources for both phase differences, the influ-

ence of this factor on the observed vibrational behaviour is also clear. Within this

region, changing the phase-difference of the sources produces a half-wavelength

shift in the observed oscillation pattern, meaning that the locations of the peaks

and troughs in the energy density in the anti-phase result are the direct oppo-
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site of the in-phase results. Outside of this region, the interference effects once

again generate strong directionality in the energy flow away from the sources. In

both cases, energy density flows from the central region outwards through narrow

cones, meaning that small regions experience a strong vibrational response whilst

much of the plate displays minimal vibrational behaviour. As with the interior

region, the energy flow results generated by each phase relationship appear to be

the exact opposite of each-other.

By spacing the sources much further apart, the long range interactions between

point-forces may be considered. The vibrational response of a plate to in-phase

point-forces separated by d = 100λ is demonstrated in Figure 37.

Figure 37: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to two point-forces separated by d = 100λ with phase-
difference ϕ1 − ϕ2 = 0.

In this plot, the interference patterns observed between the sources in prior exam-

ples cannot be seen, and the resultant vibrational energy distribution resembles

the response of the plate to two non-interfering point-forces. To demonstrate this

mathematically, the interference effects in the region directly between the two

sources is again considered. In this region, although the cosine term still oscil-

lates rapidly in space, the strength of the interference contribution is proportional
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to 1√
|r−r01||r−r02|

. Given the separation of the sources, this term is extremely small

across the majority of this region, thus providing minimal impact on the overall

vibrational response of the plate. An exception to this is found close to either

source, where one of the separation terms becomes sufficiently small that inter-

ference effects once again become important. This can be observed in Figure 37

through small oscillations in the energy density located close to each source. This

also effects the energy flow within the system, causing a slight outward preference

in the energy flow plot within this figure.

4.2 Excitation of a plate by N-phase shifted point-

forces

Having considered the response of a plate to two point-force excitations, it is

trivial to extend the approach to consider N sources applied at locations r0m. In

this case, Γf =
2∏

m=1

N∑
n

δ(r′
m − r0n)ei(−1)(m−1)ϕn . By substituting these terms into

equation (2.21), the resultant phase space energy density distribution is given by

ρ0(r, p) =
N∑
n=1

ρr0n(r, p) + ϱ2h2

32πDk
N∑
m=1

N∑
l>m

e−µ
√

|r−r0m||r−r0l| cos (k (|r − r0m| − |r − r0l|) + ϕm − ϕl)√
|r − r0m| |r − r0l|

δ

(
p − k

2

(
r − r0m

|r − r0m|
+ r − r0l

|r − r0l|

))
.

(4.12)

To demonstrate this result, the excitation of a plate by 9 in-phase point-forces is

considered. The resulting energy density distribution is shown in Figure 38.

This result is similar to the energy density distribution observed in Figure 36 for

two in-phase sources. This is especially true near the x−axis, where a strong

energy flow is observed outwards from the line along which the sources are posi-
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Figure 38: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to 9 in-phase point-forces with separations d = λ.

tioned, with minimal energy flow appearing elsewhere. The energy flow is however

far more focused here than in the two-source case, producing a far narrower flow

of energy away from the sources. Outside of this area, the large number of interac-

tions between the vibrational waves generated by each source produces a complex

interference pattern. As with the two source cases, the phases of the point-forces

can be adjusted to achieve different vibrational responses. For N -sources, one

approach for this is “phase-shifting” where the phase of the ith source differs from

its neighbour by some set margin. In Figure 39 the effect of setting this margin

as ϕi − ϕi−1 = π, which ensures that each source is in anti-phase with its direct

neighbours, is considered.

As shown, the adjustment made to the phase distribution has a profound effect

on the vibrational response of the plate. Here, a diamond shaped region of high

vibrational energy can be observed around the sources, with width and height

equal to the separation of the first and last sources. Throughout this shape,

lines of minima can also be observed directly between each pair of sources, as

demonstrated for pairs of anti-phase sources in Figure 35. As in the prior example,

focused rays of vibrational energy can be observed flowing away from this diamond
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Figure 39: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to 9 point-forces with separations d = λ and phase
differences ϕi − ϕi−1 = π.

shape, with minimal vibrational response found elsewhere. Through adjusting

the phase-shift between each source, the influence of this effect on the vibrational

response of the plate may be investigated. In Figure 40, the vibrational response

of the plate under a phase-shift of ϕi − ϕ2 = 2π/3 is considered.

Figure 40: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to 9 point-forces with separations d = λ and phase
differences ϕi − ϕi−1 = 2π/3.
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This plot is rather similar to the π-shifted case, however the features of the energy

distribution are no longer symmetric across the z−axis. Here, the lines of mini-

mum energy density between the sources described previously are now off-centre,

and curve towards the −x̂ direction further from the sources. This is because

these minima are now found where k
(
|r − r0i| −

∣∣∣r − r0(i−1)

∣∣∣) = −π
3 . Along

with this shift, the beams of vibrational energy propagating from the sources

are also skewed in this direction, and the leftmost beams demonstrate a greater

energy density than those flowing in the +x̂ direction. This result thus demon-

strates the strong influence of the applied phase-shift on the flow of vibrational

energy within these systems.

Along with the phase-shift, the separation of the sources is another important

factor in defining the vibrational response of the plate. The vibrational response

of the plate to 9 in-phase point-forces with separation d = 0.5λ is displayed in

Figure 41.

Figure 41: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to 9 point-forces each separated by 0.5λ with phase
differences ϕi − ϕi−1 = 0.

This result resembles the two-source case shown in Figure 34, with both plots

demonstrating strong energy flow in the z−axis. In the two-source case however,
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this energy flows outwards from the sources, becoming broader with increased

distance from the sources. By contrast, in this case however, the energy flowing

in this axis appears to become more focused with increased separation from the

sources. Figure 4.2 then demonstrates the effect of applying phase-shifting to the

observed vibrational response.

Figure 42: Energy density (left) and flow (right) across a plate with absorbing
boundary conditions due to 9 point-forces each separated by 0.5λ with phase
differences ϕi − ϕi−1 = 2π/3 (top) and ϕi − ϕi−1 = −1π/3 (bottom).

Figure 4.2 shows that the vibrational response of the plate is very similar in each

case, displaying focused beams of vibrational energy propagating away from the

sources, with minimal vibrational response elsewhere. It can also be observed that
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the changes in phase difference lead to changes in the direction of propagation of

the vibrational energy beams. This demonstrates that, with careful selection of

this phase difference, it is possible to direct the beams of vibrational energy in

any direction. This is the same technique applied in phased-array transducers,

as discussed in subsection 2.4. In the context of DEP aircraft, the point-forces

represent the interactions between the propellers and the passing air during flight.

As the propellers rotate, these forces will thus oscillate based upon the current

orientation of the propeller relative to the incoming flow. Phase differences could

thus be implemented in these systems by adjusting the relative orientations of the

propellers during flight. The results presented here then suggest that, with careful

selection of this phase difference, along with the separation of the propulsors, it is

possible to channel the vibrational energy produced by the propeller interactions

in favourable directions. This could be applied to steer vibrational energy away

from the fuselage to reduce the cabin noise experienced aboard the flight, or away

from vital mechanisms to minimise mechanical wear.

This approach has already been implemented within distributed propulsion air-

craft, to minimise the noise generated directly through the interactions between

the propellers and the passing air. In these systems, passive noise reduction ap-

proaches involving adjustments to the shape or positioning of the propellers are

avoided, due to the associated loss in aerodynamic performance of these meth-

ods [189–191]. Active control approaches, as discussed in subsection 2.4, are also

ineffective in these systems, due to the large number of additional acoustic sources

required to cancel out the noise from multi-propulsor configurations [190,192,193].

Instead phase-locking is employed, in which the rotation of the propellers is tuned

to enable favourable interference effects between the sound waves generated by

each source. These interference effects act to cancel out undesirable sounds or di-

rect noise away from key locations such as the cabin [189–191]. In these systems,

phase control can be maintained with simple devices, which add minimal complex-
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ity, weight, or power requirements to the system [193, 194], and no modification

is necessary to the shape of the propellers themselves [190]. The effectiveness

of this approach has been demonstrated in numerous prior studies, producing

wholesale noise reductions of 5 − 15 dB [191,193,195,196], and location targeted

noise reductions of up to 30 dB [190]. The electric motors applied by DEP aircraft

are especially well suited to phase-locking systems, providing exceptional control

and fast response to maintain synchronisation [191,197]. These existing systems

could then be adjusted to provide optimal reduction in both the air-bourne sound

and structure-bourne vibrations generated by the multi-propulsor configurations

used in DEP aircraft.

4.3 Implementation within DEA

The approach introduced in the prior subsections describes the free-space contri-

bution to the vibrational response of structures under correlated point excitations.

For a full description of the vibrational response, the homogeneous contribution

from the energy density reflected at the structural boundary is also required,

which necessitates the implementation of these sources within DEA. Each of the

examples featured in this subsection considers the excitation of a flat plate of

dimensions 3m × 3m × 3mm, with material properties as described in subsec-

tion 3.3. The plate itself is represented computationally by a mesh of triangular

elements as demonstrated in Figure 43.

To implement correlated point-force excitations within DEA, the boundary den-

sity across Γsrc must be defined. When considering the excitation of a plate by

N sources of arbitrary phase, this is calculated by substituting equation (4.12)

into equation (2.37), leaving
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Figure 43: Mesh used to demonstrate the implementation of correlated point-
forces in DEA.

ρ0(s, ps) = ϱ2h2

64πDk

[
N∑
n=1

e−µ|r(s)−r0n|

|r(s) − r0n|
δ

(
p(ps) − k

r(s) − r0n

|r(s) − r0n|

)

+ 2
N∑
m=1

N∑
l>m

e−µ
√

|r(s)−r0m||r(s)−r0l|

cos (k (|r(s) − r0m| − |r(s) − r0l|) + ϕm − ϕl)√
|r(s) − r0m| |r(s) − r0l|

δ

(
p(ps) − k

2

(
r(s) − r0m

|r(s) − r0m|
+ r(s) − r0l

|r(s) − r0l|

))]
cos (θ(ps)).

(4.13)

The initial set of basis coefficients is then found by substituting this solution into

equation (2.45) to give
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f0,n = 2β + 1
2
√
Abk

ϱ2h2

64πDk

∫
b

∫ +k

−k

[
N∑
n=1

e−µD(s,r0n)

D(s, r0n) δ
(

p(ps) − k
r(s) − r0n

D(s, r0n)

)
+

2
N∑
m=1

N∑
l>m

e−µ
√
D(s,r0m)D(s,r0l) cos (k (D(s, r0m) −D(s, r0l)) + ϕm − ϕl)√

D(s, r0m)D(s, r0l)

δ

(
p(ps) − k

2

(
r(s) − r0m

D(s, r0m) + r(s) − r0l

D(s, r0l)

))]

cos (θ(ps))Pβ(sin (θ(ps))) dps ds.

(4.14)

When implementing this result within DEA, an appropriate selection for Γsrc,

the subsection of the boundary across which the initial boundary density is cal-

culated, must be defined. In DEA, the rays which carry the energy density from

Γsrc across the domain propagate independently, without interfering with other

rays. As such, it is impossible to capture the interference effects between each

source using the ray dynamics. Thus, if single cell boundaries were applied around

each source, as is applied typically employed for point-force excitations in DEA,

this result would capture only the direct contributions from the point-forces, with-

out considering interference effects. The region within which the initial energy

density is calculated must thus encompass all correlated point-forces within the

system, along with their associated interference effects before being translated

into a raytracing picture. For systems with several, widely-spaced, sources this

initially excited region (IER) is likely to be large, spanning many mesh elements.

Given the complex and spatially variable nature of the vibrational energy fields

generated by correlated point-force excitations, it is inappropriate to compute the

energy density across the boundary of all of the mesh elements within the excited

region. Instead, the super-cell approach introduced in subsection 3.5 is applied

to effectively merge the IER into a single, large, mesh element. The difficulty of

this approach is then to define an appropriate choice for Γsrc.

As discussed, in terms of the accuracy of the generated solution it would be

115



Chapter 4.3 Implementation within DEA 116

preferable for Γsrc to be as large as possible, to ensure that it is able to prop-

erly encapsulate all of the interference effects between the point-forces. However,

computing the initial boundary density distribution is far more computationally

taxing than the subsequent propagation of rays across the domain. For computa-

tional reasons, it would thus be preferred that the IER is as small as possible. The

ideal choice for the IER is thus the smallest possible region which is able to pro-

duce an accurate representation of the correlated point-forces and their associated

interference effects. To introduce the approach chosen to define this region, the

excitation of a plate by N point-forces applied at positions r0i ∈ Ω, i = 1, 2, ..., N

is considered. The first stage of this calculation is to define the average position

of all of the point sources r̄. The chosen boundary Γsrc is then a circle of radius

A×max(r0i − r̄), with A a parameter to be defined. This process is summarised

in Figure 44.

Figure 44: Process used to define the initial boundary Γsrc around a group of
correlated point-forces in DEA.

When implementing this approach within DEA, the boundary density must be

calculated across the outward-flowing boundary segments of the mesh elements

at the edge of the circle. As such, it is impossible to define a perfectly circular

excited region within a discretised mesh. Instead, one must define an approach

to decide which mesh elements should be included to produce the best possible
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representation of the circular excited region. In this approach, it is assumed that

the mesh elements are sufficiently small that their locations may be represented

by individual average positions. All elements with average locations within the

defined radius of r̄ are then included within the IER, with all others left out. The

IER for two point-force excitations applied to the plate described in Figure 43 is

demonstrated in Figure 45.

Figure 45: Example excited region within DEA for two point-force excitations.
Here, green indicates the mesh elements containing the point-force excitations,
with light blue indicating the remaining elements within the IER, which is defined
with A = 2.

To complete the implementation of this approach within DEA, an appropriate

value is needed for the radius parameter A. To identify an appropriate value

for A, the energy density distribution across the plate for N = 9 sources phase-

shifted by ϕi − ϕi−1 = 2π/3 and separated by 0.5λ is plotted for different values

of A. This result is demonstrated in Figure 46.

As shown, the close proximity of the boundary to the point-forces in the A = 1.00

leads to significant variance in the energy density flow. Although this case still

displays a focused beam of vibrational energy away from the sources, the direction
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Figure 46: Energy density distribution across a plate with absorbing boundary
conditions due to 9 point-forces, phase-shifted by ϕi−ϕi−1 = 2π/3 and separated
by 0.5λ calculated using DEA with A values of (a) A = 1.00 , (b) A = 1.25 , (c)
A = 1.50 , and (d) A = 2.00.

of this flow differs substantially from that found with a greater initial boundary.

In addition, severe distortions in the energy density can be observed all across

the boundary, once again highlighting the inability of the A = 1.00 boundary

to properly capture the full interference field generated by the sources. The

A = 1.25 case provides a significant improvement over this case, showing a strong

resemblance to the analytical solution demonstrated in Figure 4.2. This suggests
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that the A = 1.25 region is sufficient to properly capture all of the interference

effects between the sources. However, some fringes in the energy density can still

be observed in this example. The origin of these fringes is unknown, and could

either be caused by deficiencies in the approach implemented to calculate the

boundary density or in the applied mesh. These fringes are not observed in the

A = 1.50 and A = 2.00 results, suggesting that these regions are sufficiently large

to overcome the issues which generate these fringes. To minimise computational

cost, A = 1.50 is preferred. This boundary is however not sufficient for all cases.

For example, when considering the case of two in-phase point-forces separated by

2λ, fringes are observed in the A = 1.50 case and only disappear for A = 3.00.

Similarly, for two in-phase point-forces separated by 0.5λ a value of A = 12.00 is

required. These results are displayed in Figures 47 and 48.

Figure 47: Energy density distribution across a plate with absorbing boundary
conditions due to 2 in-phase point-forces, separated by 2λ calculated with A =
2.00 (left) and A = 3.00 (right).

The choice of an appropriate radius for the initial excited region is thus highly

dependent on the number of sources applied and their separation. Interestingly,

in each of the cases shown, the minimum appropriate radius has been found

to be Amax(|r0i − r|) ≈ 0.66. Given the range of situations considered here
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Figure 48: Energy density distribution across a plate with absorbing boundary
conditions due to 2 in-phase point-forces, separated by 0.5λ calculated with A =
2.00 (left) and A = 3.00 (right).

this result may simply be coincidental. For example, the arrangement of mesh

elements used to construct the IER in this case may happen to minimise this

fringing effect. In any case, more work is required to develop meshes which are

more suitable for implementing correlated point-force excitations, or to implement

approaches for minimising this effect within DEA itself. In addition, a more

thorough investigation into an approach to define appropriate IERs is necessary.

The results demonstrated here are equivalent to the vibrational response of a plate

under absorbing boundary conditions. The response of the plate with reflecting

boundary conditions to 2 in-phase, correlated, point-forces separated by 2λ is

demonstrated in Figure 49

Here, the flow of energy density away from the sources is sufficiently weak that

the reflecting condition applied at the boundaries has little impact on the overall

energy density distribution. The reflecting boundary result then closely resembles

the absorbing boundary results demonstrated in Figure 47. The response of

the plate with reflecting boundary conditions to 9 correlated point-forces phase

shifted by ϕi − ϕi−1 = 2π/3 and separated by 0.5λ is demonstrated in Figure 50.
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Figure 49: Energy density distribution across a plate with reflecting boundary
conditions due to 2 in-phase point-forces separated by 2λ.

Figure 50: Energy density distribution across a plate with reflecting boundary
conditions due to 9 point-forces each separated by 0.5λ with phase differences
ϕi − ϕi−1 = 2π/3.
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Once again, this result is rather similar to the absorbing boundary case. How-

ever, the focused beams of energy density in this case are sufficiently strong that

the influence of the reflecting boundary on the overall energy density distribution

is clear. Upon encountering the edges of the plate, these beams are reflected

towards the right-hand edge of the plate, leading to a buildup of energy density

within these areas. These results then demonstrate the ability of DEA to effec-

tively model the response of plates with varying boundary conditions to correlated

point-force excitations.

4.4 Negative energy density and the HDF

As discussed in subsection 2.4, the interference between vibrational waves gen-

erated by different sources can be either constructive or destructive. When cal-

culating the energy density due to correlated point-forces using equation (4.12),

this effect is represented by the cosine term which oscillates between −1 and +1

across space. As the magnitude of this term depends on the product of the sep-

aration from each of the interfering points, this value will be at most equal to

the sum of the contributions from each of the interfering point-forces. As such,

the energy density ρ(r, ω) will be non-negative for any number of point-forces

at all locations on the plate. However, as shown in equation (4.12), the rays

generated by this interference propagate with different momenta than those gen-

erated by the point-forces independently. The result is that many locations (r, p)

across phase space will receive contributions only from rays generated through

destructive interference, meaning that the phase-space density at these locations

is negative. This is demonstrated in Figure 51.

This is important, as it is impossible for the energy to be negative at any location

in space. When considering the vibrational response of plates to correlated point-

force excitations, the approach involving the WDF phase-space representation of

the system introduced in subsection 4.1 is unfeasible. As such, an alternate phase-
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Figure 51: Phase-space density with p = k(1, 0) for two in-phase point-forces
(top) and 9 point-forces with phase differences ϕi − ϕi−1 = 2π/3 (bottom).

space representation of this system is required. For this, the Husimi Distribution

Function (HDF) will be applied. To introduce this approach, the mathematical

derivations of both the WDF and HDF are considered here.

The Wigner and Husimi functions were first developed to define the probability

distributions of quantum systems in phase-space [198, 199]. Given a quantum

state |ψ⟩, the aim is to define the probability that each phase-space location

(r, p) is occupied. In Wigner’s approach, the WDF is given by [200]

Wψ(r, p) =
∫
e−i 1

ℏp·ξ
〈

r + ξ

2

∣∣∣∣∣ ρ̂
∣∣∣∣∣r − ξ

2

〉
dξ. (4.15)

Where ρ̂ = |ψ⟩ ⟨ψ| is the density operator [199, 200], applying this substitution
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then leaves

Wψ(r, p) =
∫
e−i 1

ℏp·ξ
〈

r + ξ

2

∣∣∣∣∣ψ
〉〈

ψ

∣∣∣∣∣r − ξ

2

〉
dξ. (4.16)

In Dirac notation [199],

⟨x|ψ⟩ = ψ(x), (4.17)

meaning that equation (4.16) can be rewritten as

Wψ(r, p) =
∫
e−i 1

ℏp·ξψ

(
r + ξ

2

)
ψ∗
(

r − ξ

2

)
dξ. (4.18)

Defining a function F
(
r + ξ

2 , r − ξ
2

)
= ψ

(
r + ξ

2

)
ψ∗
(
r − ξ

2

)
, the resultant equa-

tion then closely resembles the Wigner transform applied to determine the WDF

in equation (2.23).

The HDF is instead defined by

Hψ(r, p) = ⟨α|ρ̂|α⟩ . (4.19)

where |α⟩ is the coherent state [198,199]. Substituting once again for the density

operator

Hψ(r, p) = ⟨α|ψ⟩ ⟨ψ|α⟩ . (4.20)

In Dirac notation, ⟨a|b⟩ = (⟨b|a⟩)∗ and so

Hψ(r, p) = |⟨α|ψ⟩|2 . (4.21)

Thus, the HDF is positive across all of phase space, as is required when computing

the phase-space density. Returning to equation (4.20), these inner products can

be evaluated by acting upon the kets with the identity operator Î. By definition,
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Î |ψ⟩ = |ψ⟩, and so this has no impact on the overall solution, thus

Hψ(r, p) =
〈
α
∣∣∣Î∣∣∣ψ〉 〈ψ∣∣∣Î∣∣∣α〉 . (4.22)

Î can be expanded in terms of an arbitrary vector |y⟩, by Î =
∫

|y⟩ ⟨y| dy.

Substituting into equation (4.22)

Hψ(r, p) =
(∫

⟨α|y⟩ ⟨y|ψ⟩ dy
)(∫

⟨ψ|z⟩ ⟨z|α⟩ dz
)
. (4.23)

By again exploiting equation (4.17), these integrals can be rewritten by

Hψ(r, p) =
(∫

α∗(y)ψ(y) dy
)(∫

ψ∗(z)α(z) dz
)
. (4.24)

where α(y) is the position representation of the coherent state, given by [201] as

α(y) = 1
(2πσ2

r)
1/4 e

− (y−r)2

4σ2
r

+ i
ℏp·y

, (4.25)

with σr a parameter to be determined. Substituting this into equation (4.24)

Hψ(r, p) = 1√
2πσr

(∫
e

− (y−r)2

4σ2
r

− i
ℏp·y

ψ(y) dy
)(∫

ψ∗(z)e− (z−r)2

4σ2
r

+ i
ℏp·z

dz

)
(4.26)

which can be rewritten as

Hψ(r, p) = 1√
2πσr

∫ ∫
e

− (y−r)2

4σ2
r

− (z−r)2

4σ2
r

− i
ℏp·(y−x)

ψ(y)ψ∗(z) dy dz. (4.27)

This problem may be rewritten using the following substitutions y = r′ + ξ′

2 , z =

r′ − ξ′

2 such that r′ = 1
2(y + z) and ξ′ = y − z. Substituting these parameters

into equation (4.27) leaves
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Hψ(r, p) = 1√
2πσr

∫ ∫
e

− (ξ′)2

8σ2
r

− i
ℏp·ξ′

e
− (r−r′)2

2σ2
r

ψ

(
r′ + ξ′

2

)
ψ∗
(

r′ − ξ′

2

)
dr′ dξ′.

(4.28)

To solve this, first the following integral solution is considered

∫ +∞

−∞
e− (x−a)2

b2 −2cx dx =
√
πbe−c2b2−2ac (4.29)

which can be proven by expanding the exponent of the integrand and then

re-factorising the solution by completing the square and using the fact that∫+∞
−∞ e−x2

dx =
√
π. Using this expression, the ξ′ exponential term in equation

(4.28) can be rewritten as

e
− (ξ′)2

8σ2
r

− i
ℏp·ξ′

= 1√
2πσp

∫
e

− 1
2σ2

p
(p−p′)2

e− i
ℏp′·ξ′

dp′ (4.30)

with σp = ℏ
2σr

. Substituting this term into equation (4.28) then leaves

Hψ(r, p) = 1
2πσrσp

∫ ∫
e

− (p−p′)2

2σ2
p e

− (r−r′)2

2σ2
r[∫

e− i
ℏp′·ξ′

ψ

(
r′ + ξ′

2

)
ψ∗
(

r′ − ξ′

2

)
dξ′
]
dp′ dr′.

(4.31)

The integral enclosed within the square brackets is the definition of the WDF,

shown in equation (4.18). Hence

Hψ(r, p) = 1
2πσrσp

∫ ∫
e

− (p−p′)2

2σ2
p e

− (r−r′)2

2σ2
r Wψ(r′,p′) dp′ dr′. (4.32)

The HDF is then effectively the WDF smoothed by a Gaussian across phase-space

[198, 199]. In quantum mechanics, the coherent state represents the minimum

uncertainty state and so σrσp = ℏ
2 to ensure that the Heisenberg uncertainty
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principle is maintained [199]. Through comparison of equations (4.18) and (2.23),

it is apparent that in a vibrational modelling context σrσp = 1
2 . In this study,

σr = a√
2 and σp = 1

a
√

2 with a = 0.4 chosen for computational reasons.

To define the HDF version of the phase-space density for multiple correlated

point-forces, equation (4.12) is substituted into equation (4.32), to give

ρ0,H(r, p) = 1
2πσrσp

ϱ2h2

64πDkπ

[
N∑
n=1

∫ ∫ e−µ|r′−r0n|

|r′ − r0n|
δ

(
p′ − k

r′ − r0n

|r′ − r0n|

)

e
−
(

1
2σ2

r
|r−r′|2+ 1

2σ2
p

|p−p′|2
)
dp′ dr′

+2
N∑
m=1

∑
l>m

∫ ∫ cos (k (|r′ − r0m| + |r′ − r0l|) + ϕm − ϕl)√
|r′ − r0m| |r′ − r0l|

e−µ
√

|r′−r0m||r′−r0l|δ

(
p′ − k

2

(
r′ − r0m

|r′ − r0m|
+ r′ − r0l

|r′ − r0l|

))

e
−
(

1
2σ2

r
|r−r′|2+ 1

2σ2
p

|p−p′|2
)
dp′ dr′

 .

(4.33)

In this equation, the integrals over p′ can be solved using the corresponding delta

functions, leaving

ρ0,H(r, p) = 1
2πσrσp

ϱ2h2

64πDkπ N∑
n=1

∫ e−µ|r′−r0n|

|r′ − r0n|
e

− 1
2σ2

r
|r−r′|2

e
− 1

2σ2
p

∣∣∣p−k r′−r0n
|r′−r0n|

∣∣∣2
dr′

+2
N∑
m=1

∑
l>m

∫ cos (k (|r′ − r0m| + |r′ − r0l|) + ϕm − ϕl)√
|r′ − r0m| |r′ − r0l|

e−µ
√

|r′−r0m||r′−r0l|e
− 1

2σ2
r

|r−r′|2
e

− 1
2σ2

p

∣∣∣p− k
2

(
r′−r0m

|r′−r0m| + r′−r0l
|r′−r0l|

)∣∣∣2
dr′

 .

(4.34)

The equivalent HDF phase-space densities for the results presented in Figure 51

are shown in Figure 52.

As anticipated, in each case the HDF is positive across the entire plate, mean-
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Figure 52: HDF with p = k(1, 0) for two in-phase point-forces (top) and 9 point-
forces with phase differences ϕi − ϕi−1 = 2π/3 (bottom).

ing that the resultant phase-space density will be valid across all of phase-space.

The Gaussian smoothing applied to the WDF has however had a dramatic ef-

fect on the properties in the function. In Figure 51, each point-force is easily

recognisable due to the sharp peaks in the WDF close to these locations. In

the HDF, these details are replaced by a smooth distribution within which the

original point-forces and their interference effects are impossible to distinguish.

In each case however, the HDF still demonstrates a general flow of energy in the

+x̂ direction, suggesting that not all of the detail from the WDF has been lost

through the smoothing. As with the WDF, the energy density distribution is

found by substituting equation (4.34) into equation (2.41). The energy density
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distributions for the cases demonstrated in Figure 52 are shown in Figure 53.

Figure 53: Energy density computed from the HDF for two in-phase point-forces
(left) and 9 point-forces with phase differences ϕi − ϕi−1 = 2π/3 (right).

As in the phase-space density case, the applied Gaussian smoothing has led to

the loss of much of the detail of the original sources and their interactions. This

is particularly prevalent in the two-source case, with the original sources now

combined into a single Gaussian-like peak in the centre of the plate, with all

details of the sources and their detailed local interference effects lost. Further

from the sources however, some detail of the directional energy flow still remains.

For example, the preference for the flow of energy outwards from the sources

along the y = 0 line as shown in Figure 36 is still visible. In addition, both the

WDF and HDF solutions demonstrate minimal flow of energy density towards the

corners of the plate. The effects of computing the HDF solution are even more

pronounced when discussing the 9-source case. Here, the smoothing applied has

removed all detail of the point-forces and their local interactions, replacing these

with a single wide peak in energy density found close to the centre of the plate.

Outside of this area the HDF solution demonstrates focused beams of vibrational

energy propagating out towards the corners of the plate, closely matching the

WDF result in Figure 4.2.
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These results thus demonstrate the capability of the HDF to product non-negative

phase-space density distributions for correlated point-force excitations. This come

at the cost of some of the detail in the solution, particularly in the region close to

the sources. In the far-field however, the HDF results demonstrate very similar

energy flow behaviour as found in the equivalent WDF results.

By following the approach discussed in subsection 4.3, the HDF approach can

also be implemented within DEA. For this, the super-cell approach discussed in

subsection 4.3 is again applied. The energy density distributions calculated using

DEA for 2 in-phase point-forces and 9 point-forces phase shifted by ϕi − ϕi−1 =

2π/3 are shown in Figure 54.

Figure 54: HDF energy density calculated using DEA for two in-phase point-
forces (left) and 9 point-forces with phase differences ϕi − ϕi−1 = 2π/3 (right).

When computed using DEA, the HDF approach demonstrates abrupt changes in

the behaviour of the solution at the boundary of the IER. This is most prevalent

in the 2 source case, with large fringes in the energy density found all across

this boundary and minimal structure in the energy flow outside of this region.

The 9 source case shows a somewhat more coherent result, demonstrating far

smaller fringes in the energy density at the boundary and some continuation

of the mean energy flow outside of this region. These results suggest that the
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A values applied in subsection 4.3 for the WDF solution are insufficient when

calculating the HDF solution. The resultant HDF energy density distributions

when doubling the radius of the IER as compared to the WDF, using values of

A = 6.00 and A = 3.00 for the 2- and 9-source cases respectfully, are shown in

Figure 55.

Figure 55: HDF energy densities for the 2- and 9-source cases shown in Figure
54 with A = 6.00 and A = 3.00 respectfully.

As shown, the increase in radius of the IER has produced improvements in the

quality of the solutions shown. In each case, the fringes are far smaller and some

detail of the flow outside of the IER can be shown. This is particularly true

in the 9-source case, with continuation of the energy density beams propagating

towards the corners of the plate achieved across the boundary of the IER. Even

with this larger excited region, significant detail in the solution outside of this

range is still lost. Given the extreme size of the IER in either case, this result then

points to potential issues in the approach applied to define the initial boundary

density using the HDF solution. As such, further work is required to ensure that

the boundary representation of the HDF energy density calculated within DEA

is accurate, along with defining an appropriate IER for these calculations.
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4.5 Further work

In this study, an approach has been developed to calculate the vibrational re-

sponse of flat plates to correlated point-force excitations using DEA. However,

issues in the quality of the solutions produced mean that further work is required

to achieve the ultimate goal of modelling the behaviour of DEP aircraft due to

the correlated vibrations induced by the propeller array. As demonstrated in

subsections 4.3 and 4.4, there are issues with fringes in the energy density at

the boundary of the IER for the implementation of this approach within DEA.

Although this issue can be somewhat rectified by increasing the radius of this

region, the radius required to achieve this has been found to vary for each exam-

ple and follows no clear pattern. As such, further work is required to attempt

to identify the origin of these fringes and attempt to remove them. Otherwise,

further attempts to define appropriate IERs are needed. Given the variety of

results observed in subsections 4.3 and 4.4, this approach should take into con-

sideration the number of sources and their separation, along with whether the

result is computed using the WDF or HDF energy density distributions.

Once complete, this approach should be applied to model the vibrational re-

sponse of real DEP aircraft structures to correlated point-forces representing the

propeller structures. Figure 56 displays the NASA X-57 Maxwell, a DEP aircraft

which could be used for such a calculation.

Given the separation of the wings, it seems sensible in this case to only consider

the interference between vibrational waves produced by propellers positioned on

the same wing. Even applying this assumption, the distribution of the propellers

across the wing will mean that the IER will likely need to cover most of the wing

structure. This is important, as the super-cell approach applied in this study

requires initial excited region to be approximately flat, with constant material

properties. As shown in this figure, the wing structure is curved at the leading

and trailing edges, along with at the wing tip and on the extensions where the
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Figure 56: NASA X-57 Maxwell, an example DEP aircraft [202].

propellers are placed. As such, the approach for defining the IER will need to be

adjusted to account for curvature, which could be accomplished using geodesics

[203], and changes in material properties

Once this study is completed, this approach could be combined with the corre-

lated field approach discussed in Chapter 3, to calculate a spatially distributed

description of the overall vibrational behaviour of DEP aircraft during flight.

4.6 Conclusion

In this chapter, an approach has been introduced to model the response of struc-

tures to correlated point-force excitations. To achieve this, the superposition

principle has been applied, which states that the result of the interference of two

impinging wavefields is the sum of the wavefields. Thus, the Green function of

the vibrational response under N point-forces is given by the sum of the Green

function for each individual source. The resultant energy density distribution

was then found to be the sum of the individual contributions from each point-

force, plus terms representing the interference effects between each pair of sources.
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The resultant energy density distributions display detailed interference patterns

which vary based upon the separation and phase-difference between the sources.

By careful management of the phase-differences between each source, it has been

demonstrated that these interference effects can be adjusted to generate narrow

beams of vibrational energy that may be guided in different directions. This

approach is already used in propeller aircraft to steer aerodynamic noise from

the propellers away from the fuselage, thus demonstrating the validity of this re-

sult. The implementation of this approach within DEA has also been presented,

demonstrating how an initial excited region which encapsulates the sources is

necessary to capture all interference effects between the sources. Following this,

the opportunity for the generation of non-physical negative phase-space density

is also discussed and the HDF, the result of applying a Gaussian smoothing to

the WDF, is introduced. Here it has been demonstrated that the HDF is able

to fully positive phase-space density distribution, at the cost of solution detail

particularly close to the point-forces. Finally, opportunities for potential future

developments of this approach have been discussed, including the improvements

required to apply this method to model the vibrational response of real DEP

aircraft under correlated excitations originating from the propeller array.
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5 Conclusion

5.1 Summary

The aim of this project has been to develop an approach to model the vibrational

behaviour of DEP aircraft during operation. Whilst in flight, these aircraft ex-

perience vibrational excitations from the TBL pressure field, along with through

the interactions between the propellers and the passing air. Given the importance

of the TBL pressure field for frequencies > 500Hz, the chosen approach had to

be able to capture the vibrational behaviour of the system in the high-frequency

range. In this range analytical approaches are unfeasible due to computational

and methodological issues, and statistical approaches are preferred. In particular,

the DEA approach was selected due to its excellent solution detail and minimal

computational cost. The application of this approach to model the response of

structures to individual point-force excitations was then introduced.

Within DEA, pressure sources are represented by appropriate correlation func-

tions, which describe the level of coherence in the pressure applied by the source

at different locations based upon their spatial separation. When modelling the

vibrational behaviour of complex structures under TBLs, an effective correla-

tion function representing the applied pressure field is required. Amongst the

available models the Corcos and Mellen models were chosen, due to their mathe-

matical simplicity and ability to easily transfer between spatial and wavenumber

representations. The implementation of correlated pressure fields represented by
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these models within DEA was then discussed in Chapter 3. There, the applied

pressure field was assumed to be spatially homogeneous and was initially con-

strained to small regions of the structure. In this case, the vibrational response

of the structure was found to depend on the geometry of the excited region and

the properties of both the structure and the applied pressure field. The extension

of the approach to full body pressure fields was then demonstrated by considering

the excitation of flat plates by fully formed TBL pressure fields. The vibrational

response of the plates demonstrated large spatial variability, with a strong de-

pendence on the properties of the plate and the applied pressure field. These

results demonstrate the need for a spatially distributed measure of the vibra-

tional behaviour of structures under correlated pressure fields, which has found

little attention in prior studies. In this section several limitations of the approach

were also discussed. In particular, the applied homogeneous TBL pressure field

is unlikely to reflect real DEP systems, due to structural complexities and non-

idealised flow conditions. In addition, the implemented pressure fields fail to

account for additional acoustic contributions to the applied pressure field, which

would require updates to the source correlation function to be included.

With the TBL accounted for, the remainder of the thesis focused on the contri-

bution of the propellers to vibrational behaviour of DEP aircraft. In subsection

2.4, it was discussed how interactions between the propellers and the surround-

ing air could induce vibrations within the structure. Due to the monochromatic

nature of the propeller rotations within the system, this would lead to interfer-

ence between the vibrational waves generated by each propeller. To model the

vibrational response of structures to these effects, the propellers were modelled as

correlated point-forces. The aim of Chapter 4 was thus to define the vibrational

response of structures to correlated point-forces, including interference effects,

using DEA. Based on the superposition theorem, it was assumed that the vi-

brational response of the plate was the sum of the responses to each individual
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point-force. The resultant vibrational energy distribution is then the sum of

the contributions from each point-force plus additional spatially oscillating terms

capturing the interference effects. The vibrational behaviour of flat plates under

correlated point-force excitations was then studied, demonstrating complicated

energy distributions which vary greatly due to changes in the source separations

and phase-differences. For large numbers of sources, it was found that certain

combinations of these factors lead to the generation of focused beams of vibra-

tional energy. With careful tuning, it was demonstrated that the direction of

propagation of these beams could be guided in favourable directions. This could

be applied to reduce cabin noise or minimise wear of vital mechanical compo-

nents. The implementation of this approach within DEA was then discussed,

including the requirement of a suitable IER within which the full interference

effects must be computed. Following this, the issue of negative phase-space den-

sities due to correlated point forces was highlighted. Here, the HDF, a Gaussian

smoothed version of the WDF, was introduced as an alternative approach to

compute the phase-space density. Although this solution is always positive, the

applied smoothing removes much of the detail in the vibrational response, partic-

ularly close to the point-forces. In addition the implementation of this approach

within DEA proved difficult, with discontinuities found across the boundary of

the IER even for large boundaries. Finally, the future steps required to apply

this approach to model the vibrational behaviour of DEP aircraft were discussed.

Amongst these are the limitation of the IER to flat regions, which is a poor

approximation of the complex three-dimensional structures that make up DEP

aircraft.

5.2 Further Work

The presented work demonstrates a baseline for modelling the vibrational re-

sponse of structures to TBL pressure fields and correlated point-force excitations.
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To be able to apply this approach to compute the vibrational behaviour of DEP

aircraft during flight, several extensions to the implemented approach must be

developed. These include

• The assumed homogeneity of the TBL pressure field applied in Chapter 3

is unlikely to apply in real-world cases. Instead, the applied pressure field

should vary dependent on local structural and TBL properties. This could

be achieved by using the mesh-averaged approach suggested in subsection

3.6.5.

• The correlation function used to represent the TBL pressure field should be

adjusted to include acoustic pressure contributions from within the TBL.

This could be achieve by defining the WDF of the correlated pressure field

in equation (3.10) using equation (3.40).

• The Corcos and Mellen correlation functions approximate the system as a

flat plate positioned beneath a fully formed TBL flowing parallel to the plate

surface. For more complex structures this must be adjusted to consider the

formation of the TBL across the structure, along with the effect of structural

complexities such as curvature and non-parallel components on the pressure

applied.

• The current implementation of correlated point-force excitations within

DEA generates fringes at the boundary of the IER. Further work is neces-

sary to either remove these fringes, or to define appropriate IERs to min-

imise their effect.

• The requirement for the IER to be flat, with constant material properties,

is problematic when applied to complex three-dimensional structures such

as DEP aircraft. Further work is thus necessary to ensure that interference

effects can be properly accounted for across such structures.
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• The WDF produces negative phase-space densities, whilst the HDF guar-

antees positive results at the cost of solution detail. Further work is thus

required to minimise the loss in detail in the solution whilst ensuring that

the phase-space density is always positive.

• Once these prior issues have been solved, the correlated field and corre-

lated point-force methodologies should be applied to compute the vibra-

tional behaviour of DEP aircraft during flight. This method should then be

combined with existing sound radiation techniques, to produce a detailed

description of the noise experienced aboard DEP aircraft due to these vi-

brational sources.
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Appendix A

Response of a flat plate to a corre-

lated pressure field - Mellen model

results
In subsection 3.4.3, it was demonstrated that the vibrational response of plates

under small-patch TBL pressure fields modelled by the Corcos and Mellen mod-

els are almost identical. As a result, only the Corcos model was applied when

computing the response of plates to the full TBL pressure field in Section 3.5.

In this appendix this analysis is repeated to consider the vibrational energy dis-

tribution across plates excited by TBL pressure fields modelled using the Mellen

model. As in the Corcos model case, the vibrational response of the plate will be

considered for (i) absorbing boundary conditions (subsection A.1) (ii) reflecting

boundary conditions (subsection A.2) (iii) periodic boundary conditions (subsec-

tion A.3). For this analysis, the system configurations applied are the same as

164



BIBLIOGRAPHY 165

those described in subsection 3.6.1.

A.1 Absorbing boundary conditions

The vibrational response of the plate with absorbing boundary conditions to a

TBL pressure field of various flow speeds represented by the Mellen model is

shown in Figure 57.

Figure 57: Vibrational response of a flat plate with absorbing boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields represented by the
Mellen model with free-stream flow speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1

(d) 300ms−1.
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As expected, this plot demonstrates rather similar results to the Corcos model

case, demonstrated in Figure 23. At U0 = 19ms−1, the near-isotropy of the

Mellen CSD ensures that the peak in the energy density is again found close to

the centre of the plate. This peak is however found slightly further downstream

here compared to the Corcos model case. This is due to the slightly higher

preference for the generation of rays which propagate in the flow direction for

the Mellen model compared to the Corcos model, as discussed in subsection

3.4.2. This result is mirrored for the higher speed cases, with the Mellen model

demonstrating the downstream shift in the energy density peak for increasing

flow speed. In addition, in each case this peak is once again marginally further

downstream than in the equivalent Corcos model case. At U0 = 300ms−1, the

peak for both the Corcos and Mellen models is found at the trailing edge. In

this case, the peak is marginally narrower for the Mellen model, again showing

the increased preference for the propagation of energy in the mean flow direction

when applying the Mellen model. As in the Corcos model case, this study can

be repeated with various µ values to identify the effect of the damping on the

vibrational behaviour of the plate under the Mellen TBL pressure field can be

observed. This result is demonstrated in Figure 58.

Figure 58: Energy density distribution in the +x̂ direction for flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) when applying the Mellen model with
absorbing boundary conditions.

As in the Corcos model case, changes in the damping coefficient have little effect
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to the overall energy density distribution across the plate in the lower speed case,

only influencing the magnitude of the energy density at each location. In the

higher speed case, the effect of increasing the damping on the distribution of

vibrational energy is again analogous to the Corcos model case. Here, the energy

density is approximately constant for all µ at the leading edge, with an increasing

“tailing off” of the energy density closer to the trailing edge for increasing µ values.

As demonstrated by equations 3.13, 3.33, and 3.10, the damping of the plate has

no influence on the energy density put into the plate by the TBL pressure field,

and only impacts the magnitude of the initial boundary density at each location

on Γsrc. It is thus unsurprising that changes to this value effect the response of

the plate to each pressure field in the same manner, particularly when considering

the similarity of the two models. One difference can be observed in the higher

speed case however, as in Figure 24, the influence of the damping at the trailing

edge causes the peak in the energy density to shift slightly upstream. In the

Mellen model case, displayed in Figure 58, the slightly greater preference for the

generation of rays which propagate in the flow direction ensures that the energy

density peak remains at the trailing edge in this case. The full energy density

distribution of the plate in the highest damping case, µ = 0.80, for the Mellen

model with different flow speeds is demonstrated by Figure 59.

As in the Corcos model case, the increased damping leads to a broadening of

the energy density peak, along with a marginal upstream shift for all flow speeds

besides U0 = 300ms−1.

A.2 Reflecting boundary conditions

The vibrational response of the plate with absorbing boundary conditions to a

TBL pressure field of various flow speeds represented by the Mellen model is

shown in Figure 60.

As in the Corcos model case, the preference for the generation of rays which
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Figure 59: Vibrational response of a flat plate with absorbing boundary conditions
and damping coefficient µ = 0.80 under TBL pressure fields represented by the
Mellen model with free-stream flow speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1

(d) 300ms−1.

propagate in the mean stream flow direction ensures that the energy density

increases linearly with increasing separation from the leading edge. Figure 61

then demonstrates the influence of the damping coefficient on the distribution of

energy density across the plate.

As expected, the application of reflecting boundary conditions across the plate en-

sures that the damping coefficient has a large impact on the observed vibrational
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Figure 60: Vibrational response of a flat plate with reflecting boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields represented by the
Mellen model with free-stream flow speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1

(d) 300ms−1.

energy distribution. As in the Corcos model case, the difference in the energy

density seems minimal compared to the magnitudes themselves, particularly for

the lower damped cases, meaning that each line appears approximately flat for

all damping coefficients. A clearer understanding of these energy distributions

can be found by plotting the absolute and relative energy difference across the

plate in each case. These results are displayed in Figure 62.
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Figure 61: Energy density distribution in the +x̂ direction for flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) when applying the Mellen model with
reflecting boundary conditions.

Figure 62: Absolute and relative energy difference in the energy between the
leading and trailing edge of the plate for different µ values and flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) with reflecting boundary conditions.

As in the Corcos model case, the energy difference across the plate is consistent

in each case across most damping values, only beginning to fall in the highest

damped cases. This is especially true in the higher speed case, with the energy

difference found to be almost identical for µ ≤ 0.25 and falling only slightly after

this point. This result is almost identical to that observed in Figure 29 for the

Corcos model. In subsection 3.6.3, it was suggested that the reason for this is that

the observed difference in the energy density across the plate is caused mainly

by the initial propagation of the rays across the plate. The linear increase in the

energy density downstream of the leading edge was then hypothesised to originate

from the preference of the Corcos model to generate rays which propagate in the
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mean-stream flow direction for all flow speeds. The results presented in this

section then demonstrate that this result is also found when modelling the TBL

pressure field using the Mellen model. By comparing the initial ray densities

produced at each location by the Corcos and Mellen models for different flow

speeds, as shown in Figures 17 and 18, one finds that in the flow direction the

consistent detail across all of the plots is the preference for the generation of

rays which propagate in the mean-stream flow direction. The fact that this linear

energy distribution is observed for both models at all flow speeds, it is thus highly

likely that this is the cause of the observed behaviour in this direction. Further

evidence for this can be found by comparing the behaviour in the flow axis to that

in the cross-flow direction. As shown by Figures 27 and 60, the energy density

is constant in the cross-flow direction for both models across all flow speeds. By

again considering the ray densities generated by both models from Figures 17 and

18, one finds that these distributions are also parallel across the x−axis for all flow

speeds. Thus, the different properties of the initial ray density distribution in each

direction correlate perfectly to the different energy distributions observed in each

axis, regardless of the choice of model or flow conditions. It is thus highly likely

that these results are a consequence of the initial ray density generated within

the plate. As the difference in the energy density across the plate is constant for

a wide range of damping values, it is then most likely that these effects are caused

by the initial propagation of rays across the plate, which as shown by Figure 25

is effected minimally by the choice of damping coefficient.

In Figure 29, it was also demonstrated that the consistency of this energy dif-

ference for different damping coefficients, combined with the large influence of

the damping coefficient on the overall vibrational energy density across the plate,

generated a highly variable vibrational response across the plate in highly damped

cases. For the Mellen model, this result is even more severe. For the U0 = 50ms−1

case, the energy difference across the plate is around 0.4% for µ = 0.01, whilst
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for the µ = 0.80 case this difference is ≈ 28%. This is especially true for the

U0 = 300ms−1 case, with the energy difference found to be ≈ 1.35 % in the

µ = 0.01 case, and ≈ 170 % in the U0 = 300ms−1 case. In each of these cases,

the variance in the energy density across the plate is greater than in the Corcos

model case. This result is unsurprising, given the increased preference in the ini-

tial ray density of the Mellen model for rays which propagate in the mean-stream

flow direction compared to the Corcos model. Given that both models predict a

large variation in the vibrational energy distribution across the plate it is likely

that this result could also appear in experimental studies. By comparing the

difference in the vibrational energy across the plate experimentally to the results

generated by each model, one could then determine which of the Corcos or Mellen

models provides a more accurate representation of the TBL pressure field.

A.3 Periodic boundary conditions

The vibrational response of the plate with periodic boundary conditions to a TBL

pressure field represented by the Mellen model is shown in Figure 63.

The vibrational energy distributions under periodic boundary conditions for the

Mellen model displayed here are again rather similar to the Corcos model results,

shown in Figure 30. Much like the Corcos model, the parallel nature of the Mellen

model in the cross-flow direction ensures that the energy density is constant in

this direction. In the flow axis, the energy density distribution is also similar to

the Corcos model result. At low speeds, the Mellen model produces a wide peak

in the energy density close to the centre of the plate, which shifts increasingly

downstream for increasing flow speeds. By comparing this result with Figure 57,

one see the impact of the periodic boundary on the flow-parallel edges on the

energy density distribution in this direction. As with the Corcos model case,

this causes an increase in the contributions from rays which propagate in the

cross-flow direction close to the centre of the plate. This increases the energy
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Figure 63: Vibrational response of a flat plate with periodic boundary conditions
and damping coefficient µ = 0.01 under TBL pressure fields represented by the
Mellen model with free-stream flow speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1

(d) 300ms−1.

density in the centre of the plate at all flow speeds, slowing the shift in the peak

towards the trailing edge as compared to the absorbing boundary case. Given the

increased directionality of the Mellen model compared to the Corcos model, in

each case less of the overall ray density will be made up of rays which propagate

in the cross-flow direction. This, combined with the greater preference for the

generation of rays which propagate in the flow direction, ensure that these peaks
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are closer to the trailing edge for all flow speeds for the Mellen model. This effect

is most noticeable at higher flow speeds.

The influence of the damping on the results observed can be determined by plot-

ting the streamwise energy distribution across the plate for different damping

coefficients. This result is shown in Figure 31.

Figure 64: Energy density distribution in the +x̂ direction for flow speeds U0 =
50ms−1 (left) and U0 = 300ms−1 (right) when applying the Mellen model with
periodic boundary conditions.

As in the Corcos model case, the damping of the plate has a large impact on the

energy density distribution observed across the plate. As discussed in subsection

3.6.4, changes to the damping coefficient will have the largest impact on rays

which propagate across the plate many times. These are chiefly the rays which

propagate close to the centre of the plate in the cross-flow direction, and thus

will contribute a large amount of energy density in this area. An increase in

the damping coefficient will thus have a greater impact on the energy density at

lower flow speeds, as in these cases a larger proportion of the initial ray density

propagates in the cross-flow axis. This is demonstrated within this plot, as the

peak in the energy density for the U0 = 50ms−1 case for µ = 0.01 case is around

5.3× greater than for µ = 0.80. In the equivalent case for the Corcos model,

discussed in subsection 3.6.4, the µ = 0.01 result was around 4.3× greater than

the µ = 0.80 result. This is interesting, as it would suggest that the cross-flowing

rays have a larger influence on the energy density distribution for the Mellen
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model than the Corcos model. One would expect that the greater directionality

of the Mellen model as compared to the Corcos model would ensure that the

cross-flowing rays have a smaller relative impact on the overall energy density

distribution, meaning that the energy lost through increasing damping is reduced

compared to the Corcos model. Further work is thus required to understand the

reason for this. In the higher speed case, the effect of the higher damping on

these cross-flowing rays is also apparent. As with the Corcos model, this causes

a shift in the energy density peak in the downstream direction with increasing

damping, with the peak in the energy density being found at the trailing edge of

the plate for µ ≥ 0.25. The overall energy density distributions for µ = 0.80 for

the Mellen model under different flow speeds is shown in Figure 65.

As in the Corcos model case, the increased damping generates a broadening in

the energy density peak at low flow speeds, along with a marginal downstream

shift in the energy density peak. This shift of the energy density peak becomes

more apparent at increasing flow speeds, reaching the trailing edge in the U0 =

300ms−1 case.

A.4 Conclusion

In this appendix, the vibrational response of a plate excited by a TBL pressure

field represented by the Mellen model has been studied, as well as contrasted

against the equivalent Corcos model results presented in Section 3.6. In each

case, the similarity of the Corcos and Mellen models ensured that the results pro-

duced by the Mellen model show rather similar features to the equivalent Corcos

model results. For absorbing boundary conditions, the marginally greater direc-

tionality of the Mellen model ensured that for all flow speeds the energy density

peak was found slightly further downstream than in the equivalent Corcos case.

In each case, the shape of the energy distributions were however rather similar

to the Corcos model result, as was the influence of different damping coefficients
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Figure 65: Vibrational response of a flat plate with periodic boundary conditions
and damping coefficient µ = 0.80 under TBL pressure fields represented by the
Mellen model with free-stream flow speeds (a) 19ms−1 (b) 50ms−1 (c) 150ms−1

(d) 300ms−1.

on the distributions observed. In the reflecting boundary case the Mellen model

displayed linearly increasing energy densities in the streamwise direction, in the

same manner as the Corcos model. As with the Corcos model, the energy den-

sity difference across the plate was also found to be rather constant for different

damping coefficients. This result then further supported the idea that this ef-

fect is caused by the initial propagation of the rays across the domain. In this

case, the increased directionality of the Mellen model once again influenced the
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energy distributions observed, causing a greater disparity in the energy density

across the plate for all flow speeds and damping values. In the Periodic case, the

Mellen model results once again closely resembled the Corcos model results, with

constant energy density in the cross-flow direction and absorbing boundary-like

distributions in the flow axis. In addition, an increase in the damping coefficient

of the plate also showed a disproportionate reduction in the energy density across

the centre of the plate, highlighting the influence of rays which are trapped within

the plate by the periodic boundaries. However, this increase in damping demon-

strated a larger impact on the energy density distribution for the Mellen model

at low flow speeds than for the Corcos model. This is interesting, as it would be

expected that the Mellen model should be influenced less by this action, due to

the greater directionality of this model compared to the Corcos model. Further

work is then required to properly investigate this outcome.
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