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Abstract

We propose a laboratory experiment to detect the fifth force mediated by a new light

scalar field. The symmetron is a light scalar field which couples quadratically to matter,

with a symmetry-breaking potential that takes the form of a symmetric double well. As

the characteristic phase transition of the symmetron field occurs, topological defects or

‘domain walls’ can form. It is hoped that by designing and manufacturing a topologically-

tailored vacuum chamber, we can ensure that these domain walls are long-lived by

pinning them to the interior of the chamber. A good vacuum will result in a very low

density environment in which the symmetron can couple to matter with gravitational

strength, or more strongly, and the effects of the scalar field on a matter particle are

potentially observable via a particle experiment involving ultracold atoms. As a cloud of

cold atoms approaches the domain wall, it will experience the fifth force mediated by the

scalar field and can be deflected or reflected off the domain wall. We also consider the

effects of domain walls on light that passes through them. The deflection or reflection of

matter due to the presence of a domain wall is a signature of the fifth force and could

constrain some previously unconstrained parts of the dark sector.
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Chapter 1

Introduction

Many theories in high energy physics predict the existence of new light scalar fields
that couple to gravity (see for example [1, 2]). These light scalar fields are of particular
interest in theories pertaining to the dark sector, since they have the potential to play
the role of dark matter or dark energy. The general method for modelling this class of
modified gravity theory is to alter the Klein–Gordon equation,

(−∂2
t +∇2 −m2)ϕ(t,x) = 0, (1.1)

to include a new light scalar field that couples to matter. Although these new light
scalar fields have proven to be popular in theories of modified gravity, they are yet to be
observed in any experiment designed to detect the ‘fifth force’ that arises due to the
coupling of the scalar field to matter [3, 4].

There have been several proposals for methods by which new light scalar fields can evade
detection in experiments. The first of these proposals was the chameleon mechanism [1,
5], in which the scalar field is coupled to matter such that its effective mass is dependent
on the local matter density. For any experiment performed where the local matter
density is high, the scalar field will acquire a mass, which causes its effects to become
short range. The field is thus ‘screened’ and its effects are unobservable. In this work we
investigate a different method of screening called the symmetron mechanism. The sym-
metron mechanism is similar to the chameleon, with a few key differences: firstly, in the
symmetron mechanism it is the expectation value of the field that depends on the local
matter density [6]. The expectation value is large in regions of low local matter density,
and small in regions of high local matter density. As in the chameleon mechanism, the
scalar mediating the symmetron field must couple to matter and we choose to introduce
nonlinearities in the Klein–Gordon equation to facilitate the screening behaviour that
allows the fifth force to hide from detection in experiments. However, for the symmetron
the coupling to matter is proportional to the expectation value of the field, such that
the scalar will couple with gravitational strength in regions of low mass density but is
decoupled and screened in regions of high mass density.

1



1.1. Domain walls 2

We propose an experiment to detect the fifth force mediated by a new light scalar
field that can play the role of dark matter [7–11] or dark energy [6, 12]. There exists
a previously unexplored region of parameter space in which a vacuum chamber can
nullify any outside effects and thus make the effects of the fifth force detectable. A
good vacuum will result in a very low density environment in which the symmetron
can couple with gravitational strength, and the effects of the scalar field on a matter
particle are potentially observable. Symmetron theories include a characteristic phase
transition; cosmologically speaking, this transition occurs as the universe expands and
cools [12]. High densities correspond to early times in the expansion of the universe,
and low densities correspond to late times. As the phase transition occurs, topological
defects or ‘domain walls’ can form. In the context of a tabletop experiment, we expect
domain walls to form as the density of a vacuum chamber is lowered. It is hoped that by
designing and manufacturing a topologically-tailored vacuum chamber, we can ensure
that these domain walls are long-lived by pinning them to the interior of the chamber.
We can then perform a particle experiment in which a matter particle is incident on a
domain wall. As the matter particle approaches the domain wall, it will experience the
fifth force mediated by the scalar field and will be deflected or possibly even reflected off
the domain wall. This deflection or reflection is a signature of the fifth force and could
constrain some previously unconstrained parts of the dark sector.

1.1 Domain walls
A domain wall is a class of topological defect, which forms when a discrete symmetry is
broken [13]. The idea of topological defect formation dates back to 1961, when Skyrme
described the first three-dimensional topological defect solution arising in a nonlinear
field theory, and how this solution could be relevant in particle physics [14]. Since then,
the significance of topological defect solutions has somewhat evolved; Skyrme and others
[15, 16] initially proposed that the particle-like nature of defect states could be used to
explain the observed spectrum of particle excitations. However, topological defects are

Figure 1.1: The potential given in Equation 1.2 defining a simple Goldstone model with a
single real scalar field.
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Figure 1.2: The analytical solution in Equation 1.3 for the simple Goldstone model.

now more commonly viewed as a consequence of spontaneous symmetry breaking, which
results in a vacuum manifold with non-trivial topology.

The first known mention of domain walls in the context of cosmology was courtesy of
Nambu in 1966 [17], although his idea that the Universe ‘may have a kind of domain
structure’ was not thoroughly explored until the mid-1970s. Interest in cosmological
domain walls increased in 1974, when Zel’dovich, Kobzarev and Okun published an
article describing the properties of domain walls and their causally inevitable nature
[18]. Weinberg was at this time studying the concept of cosmological domains [19],
which led Everett to investigate the possibility of interactions between domain walls and
matter [20]. The first quantitative study of domain wall formation was carried out in
1976 by Kibble [21], who showed that the existence of domain walls is dependent on
the topology of the vacuum manifold. Domain walls form at the boundaries between
regions of space in which the scalar field ϕ has two separate values, and ϕ is interpolated
between these two values across the wall. We describe the formation of domain walls
via the Kibble–Zurek mechanism in more detail in Section 3.1. First, to illustrate the
concept of a domain wall in a simple way, we can consider a Goldstone model with a
single real scalar field. This model is characterized by the following potential:

V (ϕ) =
λ

4

(
ϕ2 − η2

)2
, (1.2)

as shown in Figure 1.1. One possible analytical solution to the field equation associated
with this model is

ϕ (x) = η tanh
(
(λ/2)1/2 ηx

)
, (1.3)

as shown in Figure 1.2. This is sometimes referred to as a ‘kink’ solution centred at
x = 0, with the boundary conditions:

ϕ = −η at x = −∞ (1.4a)

and ϕ = η at x = +∞. (1.4b)
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On the left-hand side of the kink, the field lies in one minimum of the potential, and on
the right-hand side it lies in the opposite minimum. The discrete symmetry of the scalar
field ϕ is spontaneously broken when the field must roll into one of the two degenerate
minima. The topological defect is classically stable, as its removal would necessitate the
lifting of the field solution on one side over the potential hill of the double well [13]. Since
domain walls can couple to matter, it is feasible that we can exploit this coupling to find
observational evidence of the effects of the fifth force associated with the domain wall
formation. Using the equations of motion of a domain wall and a matter particle coupled
to the wall, we can calculate the reflection and transmission coefficients corresponding
to the interaction of the particle with the wall. We describe this calculation in detail
in Section 2.3. The observation of the deflection or reflection of a matter particle off a
domain wall would constitute experimental evidence of the fifth force.

1.2 Previous numerical studies of domain wall formation
Early simulations of domain wall evolution were carried out in 1989 by Press, Ryden and
Spergel [22], and in 1990 by Kawano [23]. In both approaches the authors simplify their
models, but in different ways: whereas Kawano chooses to approximate the domain walls
as infinitely thin sheets, Press, Ryden and Spergel study the evolution of domain walls
throughout space. Although arguably a much more realistic representation of physical
domain walls, this method is not without limitation: for computational reasons, the
authors modified the scalar field equation such that the thickness of the domain wall is
time-dependent; the thickness increases as the scale factor of the universe increases. This
simplification can cause issues such as erasing the small-scale structure of the domain
walls, or eliminating a wall completely when its thickness becomes comparable to its
size.

Many numerical models of domain wall formation rely on the quasistatic approximation;
time derivatives are neglected in the solution of the scalar field’s equation of motion
[24–27]. However, more recent simulations of domain wall dynamics in the symmetron
model have succeeded in solving the full equation of motion for the scalar field without
the need for this approximation. Llinares and Pogosian [28] present a 2D simulation of a
domain wall in a vacuum passing through a set of filaments, showing that a domain wall
can be trapped as a consequence of the direct coupling of the symmetron field to matter.
Similarly, it has been shown by Pearson [29] that domain walls are attracted to matter
structures, and these structures can be used to stabilize the domain walls and ‘pin’ them
in place. On cosmological scales, numerical simulations have been used to show that
domain walls could be used to explain the observed planes of satellite galaxies around
the Milky Way and Andromeda [30], or cause cosmic voids to be emptier [31]. It has also
been suggested that a network of cosmological domain walls could source the nanohertz
gravitational-wave background [32–35]. Very recently, the first cosmological simulations
of the symmetron scalar field including domain wall formation have been performed
[36]. Christiansen and colleagues use a relativistic N -body code to model domain wall
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formation, and its effects on cosmological observables and structure formation. They
also use this code to show that the dynamics of the dark sector can give rise to domain
walls which source stochastic gravitational waves in the late Universe [37].

1.3 Spherically symmetric solution for the symmetron field
For astrophysical tests of gravity, the source may often be approximated as spherical;
for this reason, we first look at the symmetron field profile around a spherical source.
We make an initial choice for the symmetry-breaking potential V associated with the
symmetron field ϕ:

V = −1

2
µ2ϕ2 +

1

4
λ2ϕ4 (1.5)

where µ is a mass scale and λ is a dimensionless coupling. For non-relativistic matter
for which the density ρ is roughly homogeneous, the symmetron field evolves according
to an effective potential [6]

Veff (ϕ) = V (ϕ) + ρA (ϕ) (1.6)

where
A (ϕ) = 1 +

1

2M2
ϕ2 (1.7)

and the matter density ρ = A3ρ̃ is conserved in the Einstein frame. M is a mass scale,
and A (ϕ) is the conformal factor relating the Einstein and Jordan frame metrics:

g̃ab = A2 (ϕ) gab. (1.8)

In terms of these quantities, the symmetron field equation can be written as

d2

dr2
ϕ+

2

r

d
dr

ϕ = V,ϕ +A,ϕρ, (1.9)

in our time-independent and spherically symmetric approximation. The boundary
conditions for Equation 1.9 are [12]

d
dr

ϕ (0) = 0 (1.10a)

and ϕ (r → ∞) = ϕ0, (1.10b)

where ϕ0 ≡ ϕ (0) is the value of the field at x = 0. Equation 1.9 is analogous to a
particle rolling in a potential −Veff, subject to a ‘friction’ term (2/r) dϕ/dr. Following
the analysis in [6] and [12], we look for solutions to Equation 1.9 both inside and outside
the spherical source. Inside the source, we can approximate the effective potential Veff

by

Veff (ϕ) ≃
ρϕ2

2M2
(1.11)
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when ρ > µ2M2. The interior solution is

ϕin (r) ≃ C
R

r
sinh

(√
ρ

M
r

)
(1.12)

for r < R, where R is the radius of the source and C is an undetermined constant.
Outside the source, the symmetron evolves as a free field until it gets close to its minimum
at ϕ = ϕ0 [12]. We can therefore make the quadratic approximation

Veff (ϕ) =
1

2
m2

0 (ϕ− ϕ0)
2 , (1.13)

and the exterior solution is given by

ϕout (r) = D
R

r
e−m0(r−R) + ϕ0 (1.14)

where D is a second undetermined constant. By matching the field and its radial
derivatives at r = R, the constants C and D are found to be

C = ϕ0

√
∆R

R
sech

(√
R

∆R

)
(1.15a)

and D = −ϕ0

[
1−

√
∆R

R
tanh

(√
R

∆R

)]
, (1.15b)

where ∆R/R is the ‘thin-shell factor’:

∆R

R
≡ M

ρR2
=

M

6M2
PlΦ

=
ϕ0

6gMPlΦ
(1.16)

and Φ ≡ ρR2/6M2
Pl is the gravitational potential of the source at its surface. To rewrite

the thin-shell factor in terms of MPl, we have used the fact that if the symmetron force
is to be comparable to gravity in a vacuum, we must impose that ϕ0/M

2 ∼ 1/MPl, that
is,

ϕ0 ≡
µ√
λ
= g

M2

MPl
(1.17)

where g ∼ O(1). g measures the strength of the symmetron force on a test particle in a
vacuum relative to gravity, such that Fϕ = 2g2FN. For a particle with R ≪ r ≪ m−1

0 ,
we can substitute the expression for D into the exterior solution, Equation 1.14. This
results in an expression for the symmetron force on the particle relative to gravity:

Fϕ

FN
= − g

MPl

dϕ/dr
FN

= 6g2
∆R

R

[
1−

√
∆R

R
tanh

(√
R

∆R

)]
. (1.18)

Objects that are screened have a small thin-shell factor, ∆R/R ≪ 1. This is due to the
fact that a screened object will have relatively large gravitational potential Φ. The tanh
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term in Equation 1.18 is therefore negligible for screened objects, and we have

Fϕ

FN

∣∣∣∣
screened

≃ 6g2
∆R

R
≪ 1. (1.19)

It is clear from Equation 1.19 that for screened objects, the small thin-shell factor causes
the symmetron force on the particle relative to gravity to be heavily suppressed. A
similar effect occurs in chameleon models [1]. For unscreened objects, the gravitational
potential Φ is small such that the thin-shell factor is large: ∆R/R ≫ 1. In this case it
makes sense to Taylor expand the tanh term, which leads to

Fϕ

FN

∣∣∣∣
unscreened

≃ 2g2. (1.20)

When g ∼ 1, the symmetron will couple with gravitational strength to the source for
objects that are unscreened. A coupling of this strength is promising with regards to the
possibility of detecting the effects of new light scalar fields in experiment. In the next
section, we discuss some existing constraints on the symmetron model from cosmological,
laboratory and astrophysical tests.

1.4 Existing constraints on the symmetron model

1.4.1 Cosmological constraints

Screened light scalar fields that couple to matter such as the symmetron are good
candidates for cosmological testing; provided the range of the fifth force is large enough
and the coupling to matter is sufficiently strong, they naturally violate gravitational
Solar System tests [38]. One such gravitational test is the test of general relativity
carried out on the Cassini spacecraft [39]. By measuring the shift in frequency of radio
photons to and from the Cassini probe as it passed near the Sun, the test was able to
put a bound on how much gravity can be affected by other fields. In the symmetron
model, the coupling of the scalar to matter is defined by

β(ϕ0) =
MPlϕ0

M2
(1.21)

where MPl is the Planck mass, ϕ0 is the symmetron field and M is a mass scale. The
results of the Cassini general relativity tests constrain this coupling as follows:

β(ϕ0)
2 ≤ 4× 10−5 (1.22)

where β(ϕ0)
2 is a measure of the strength of the fifth force acting on the Cassini

probe. The above bound is valid as long as the range of the fifth force exceeds several
astronomical units [38]. Assuming that the Cassini spacecraft is not screened but the
Sun is screened, the constraint on β(ϕ0) can be written as

β(ϕ0)β⊙
Z(ϕ0)

≤ 10−5 (1.23)
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where β⊙ is the coupling between the scalar field and the Sun, and Z(ϕ0) is a scaling
factor. For the symmetron and other chameleon-like models, we can assume that
Z(ϕ0) = 1 and β(ϕ0) ≃ 1, so the constraint on the coupling simplifies to

β⊙ ≲ 10−5, (1.24)

which corresponds to the following bound on the value of the scalar field:

ϕ0 ≲ 10−11 MPl. (1.25)

This bound is valid when we impose that the symmetron field vanishes in massive objects
such as the Sun or planets.

Another class of cosmological tests able to constrain the symmetron is lunar laser ranging
(LLR) experiments [40, 41]. These experiments measure the distance between the Earth
and the Moon using laser ranging; a technique for determining distances by measuring
the time taken for a laser pulse to return to the receiver. For the symmetron model, we
assume that the scalar field value ϕ0 is approximated by

ϕ0 ≃
µ√
λ
, (1.26)

where µ is a mass scale and λ is a dimensionless coupling. The LLR bound is then

M ≲ 10−3 MPl, (1.27)

where M is the mass scale in Equation 1.21. By comparison with Equation 1.24, we
see that the LLR experiments constrain the symmetron even more strongly than the
Cassini probe.

1.4.2 Laboratory tests

Casimir interaction and the Eöt–Wash experiment

In addition to cosmological tests, laboratory experiments are also able constrain light
scalar field models such as the symmetron. One type of laboratory test that can be
used to bound fifth forces is experiments investigating Casimir interaction. The Casimir
effect is a phenomenon in quantum field theory in which the quantum fluctuations of a
field result in a physical force that acts on some macroscopic boundaries of a confined
space [42]. It manifests in experiments involving two conducting plates separated by
some distance d. The magnitude of the classical pressure due to the scalar field between
the plates is given by ∣∣∣∣Fϕ

A

∣∣∣∣ = Veff(ϕ(0))− Veff(ϕ0) (1.28)

where Fϕ is the force associated with the scalar field, A is the surface area of the
conducting plates and Veff is the effective potential. For the symmetron model, the
value of ϕ(0) is very close to its vacuum value ϕ0 ≃ µ/

√
λ as long as the mass scale
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µ ≳ d−1. This implies that Fϕ/A ≃ 0, that is, the Casimir effect will be negligible if the
symmetron has a large mass in comparison to the inverse distance between the plates
[38]. In the opposite scenario when µ ≲ d−1, the symmetron field is close to zero both
in and between the conducting plates [43], and the symmetron is decoupled from matter
inside the experiment. In this case, the magnitude of the pressure due to the scalar field
simplifies to ∣∣∣∣Fϕ

A

∣∣∣∣ = µ4

4λ
. (1.29)

The current strongest constraint on the intrinsic value of the Casimir pressure was
obtained in a 2006 experiment by R. S. Decca and colleagues [44]:∣∣∣∣∆Fϕ

A

∣∣∣∣ ≤ 0.35 mPa. (1.30)

In some realistic tests of the Casimir pressure, including the work of Decca et al., the
experimental set-up is composed of a plate and a sphere rather than two parallel plates.
The bound in Equation 1.30 corresponds to a distance of d = 746 nm between the plate
and the sphere, and a plate density on the order of ρplate = 10 g cm−3.

The Eöt–Wash experiment is similar to Casimir experiments, with the added complexity
that the conducting plates are rotating rather than static [45]. Each of the rotating plates
is drilled with a series of equally spaced holes arranged on a circle. As the plates rotate,
the holes cause the gravitational and scalar interactions to become time-dependent, and
a torque is induced between the plates. This torque is given by the rate of change of the
potential energy due to the scalar force [46, 47]:

T ∼ aθ

∫ ∞

d
dx

Fϕ

A
(1.31)

where θ is the angle of rotation of one plate relative to the other, and aθ = dA/dθ is a
constant that depends only on the experimental parameters. For the symmetron model,
the classical pressure arising from the torque between the two conducting plates is only
non-zero when d ≲ µ−1, where d is the distance between the plates and µ is a mass scale.
We therefore have two distinct scenarios:T ≃ aθ

µ4d
4λ when d ≲ µ−1

T ≃ aθ
µ3

4λ when d ≳ µ−1,
(1.32)

that is, the torque increases linearly until it reaches some maximum value. According to
the 2006 Eöt–Wash experiment [3], two conducting plates with a separation of d = 55 µd
give the following bound on the torque:

|T | ≤ aθΛ
3
T , (1.33)

where ΛT = 0.35ΛDE and ΛDE is characteristic of the energy scale associated with dark
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energy, ΛDE = 2.4 meV [46].

Neutron bouncing experiments

It has been considered that new light scalar fields such as the chameleon and the
symmetron could be detected via laboratory experiments involving bouncing ultracold
neutrons [48, 49]. The experimental set-up consists of ultracold neutrons in the vicinity
of a planar plate, which is acted on by Earth’s gravitational field. The presence of a new
scalar field can modify the energy levels of the bouncing neutrons. When the coupling
of the scalar to nuclear matter is sufficiently strong, it is expected that the shift in the
neutrons’ energy levels will be detectable with sophisticated instruments such as the
GRANIT spectrometer [50]. If the scalar field is a symmetron, the correction to the
potential energy of the neutrons is dependent on

A(ϕ)− 1 =
ϕ2

2M2
, (1.34)

where the symmetron field profile is defined by [51]

ϕ(z) =
µ√
λ
tanh

µz√
2
. (1.35)

The above equations are valid when we assume that the planar plate is completely
screened. The shift in potential energy due to the symmetron field, δV , is bound by

|δE3 − δE1| ≲ 2× 10−15 eV, (1.36)

where δE3 and δE1 are shifts in energy levels of the bouncing neutrons. We use this bound
to inform our discussion on unexplored regions of parameter space in the symmetron
model (see Figures 5.1 and 5.2).

Atom interferometry

Another type of laboratory test that has the potential to measure effects of a fifth force
is experiments based on atom interferometry. These experiments are able to measure
the acceleration of an atom in free fall very precisely [52, 53], and have been shown to be
promising in searches for a classical fifth force Fϕ [54, 55]. Atom interferometry involves
placing a source mass at different positions in the vicinity of an atom. For each position
of the source mass, the acceleration of the atom is measured. The experiment works on
the basis that the presence of the source mass induces a non-vanishing field gradient
associated with an unknown fifth force. The force between the source and the atom,
Fsource, is then given by

Fsource = FN + Fϕ, (1.37)

where FN is the Newtonian gravitational force acting on the atom, and Fϕ is the fifth
force. This fifth force is given by

Fϕ = −matom∇ lnA(ϕ), (1.38)
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where matom is the mass of the atom and A(ϕ) is the coupling function between the scalar
field and matter. In theories involving screening, experimental tests using atom interfer-
ometry are of particular interest since small objects like atoms are usually unscreened [56,
57]. As a consequence of this, screened theories such as the symmetron model predict a
large value of Fsource; that is, a measurable deviation from the Newtonian gravitational
force. Atom interferometry experiments are generally performed inside vacuum chambers,
on a distance scale on the order of cm. The strongest bounds on observable effects of
the fifth force are found when the source mass is small, and inside the vacuum chamber
[38]. Experiments with this set-up [54, 58, 59] have bound the acceleration between an
atom and a marble-sized source to a ≲ 50 nm s−2 when the distance between the atom
and the source is r ≲ 1 cm, which corresponds to strong constraints on the parameters
of light scalar field models such as the chameleon and the symmetron [60]. We consider
constraints on the symmetron model from atom interferometry further in Chapter 5 (see
Figures 5.1 and 5.2).

Since the chameleon and symmetron theories are similar in many ways, the laboratory
tests capable of putting constraints on each model overlap. However, one key difference
between the two models is that the symmetron has a mass parameter µ, which causes
it to be fixed to a length scale of µ−1. The fifth force due to the symmetron field is
exponentially suppressed when L ≫ µ−1, where L is the length scale of the experiment.
If instead we have L ≪ µ−1, the symmetron field remains in its symmetric phase where
ϕ = 0, the symmetron decouples from matter and the fifth force vanishes. For this
reason, we can conclude that a symmetron theory with a mass parameter µ must be
experimentally tested on a length scale of L ≈ µ−1, in order for observable effects to be
a possibility.

Quantum constraints

In addition to the classical effects arising from the introduction of a new light scalar field,
we expect that the vacuum fluctuations of these scalars will induce quantum interactions.
The coupling of light scalar fields to matter and to the gauge bosons of the standard
model is facilitated by the Higgs portal; that is, the coupling of the Higgs field to the
scalar and to the standard model particles. It has been shown [61] that light scalar fields
have an effect on quantities such as the fine structure constant, the mass of the Z boson
and the Fermi interaction constant GF . Precision tests of the standard model have put
the following constraint on the mass scale M [61]:

M ≳ 103 GeV. (1.39)

Quantum interactions arising from light scalars can be measured in the laboratory;
quantum effects occur in both Casimir and Eöt–Wash experiments, for example. Tests
of the Casimir interaction can bound the quantum contributions to the pressure due
to the scalar, Fx/A, and Eöt–Wash experiments bound the torque induced between
the two rotating plates. For the symmetron model, the scalar field generally vanishes
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everywhere when the mass parameter µ is less than 1/d, where d is the distance between
the conducting plates. This coincides with the vanishing of the linear coupling of the
scalar field to matter, but the quadratic coupling, A′′ = 1/M2, remains; this term is
the coupling to the quantum fluctuations. In the chameleon case, quantum effects are
suppressed when the mass of the scalar becomes much lower than 1/d [62], and quantum
constraints are therefore stronger in the symmetron model than in the chameleon model.

As a point of interest, we note that it has recently been shown that light scalar fields
can explain one of the most prominent questions in modern-day particle physics: the
anomalous magnetic moment of the muon [63]. Light scalar fields coupled to matter and
photons induce a shift in the anomalous magnetic moment of charged particles. This
shift occurs via two separate mechanisms: classically, the light scalar induces a change in
the cyclotron frequency of the charged particles. Secondly, the scalar contributes to the
anomalous magnetic moment at the quantum mechanical one-loop level. For light scalars
without screening mechanisms, their contributions to the anomalous magnetic moment
become negligible after applying the Cassini bound, and they therefore fail to resolve
the anomaly. The screened theories of the chameleon and the symmetron, however, are
both able to account for the anomalous magnetic moment without violating any known
experimental constraints. For the symmetron model, the muon g − 2 anomaly can be
resolved when the following two bounds are satisfied [63]:

µ2

2λM2
≲ 1 (1.40a)

and λ ≲
1

6
. (1.40b)

1.4.3 Astrophysical constraints

We now consider how astrophysical bodies such as stars, galaxies and galaxy clusters
can be used in searches for a fifth force associated with a new light scalar field. In stars,
the effects of the fifth force can be measured via the hydrostatic equilibrium equation,
which is the condition on the pressure of the star which prevents it from collapsing under
its own weight:

dP
dr

= −GNM(r)ρ(r)

r2
, (1.41)

which is valid in the Newtonian limit of general relativity. The addition of a thin-shell-
screened fifth force modifies the hydrostatic equilibrium equation to [38]

dP
dr

= −GNM(r)ρ(r)

r2

[
1 + 2β2

(
1− M(rs)

M(r)

)
Θ(r − rs)

]
(1.42)

where Θ(x) is the Heaviside step function, β is the coupling coefficient of the scalar field
and rs is the screening radius of the star. The new light scalar field modifies gravity such
that the inward gravitational force on the star is greater than Newtonian gravity alone;
the star burns fuel at an increased rate and it is therefore brighter and shorter-lived.
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This effect is more prominent in low-mass stars than in high-mass stars, and it also
means that an unscreened galaxy would be more luminous and redder than a screened
galaxy [38]. A numerical simulation of galaxy formation including fifth force effects
could verify these predictions, although the complexity of such a simulation has thus far
prevented these tests from being carried out.

In addition to stars, screened fifth forces can also affect the behaviour of galaxies. One
such effect is the increase to a galaxy’s rotation velocity and velocity dispersion, due to
the additional force that arises from the scalar field. The symmetron model has been
used to reproduce the radial acceleration relation, which correlates the observed and
baryonic accelerations of galaxies [64, 65]. Another observable effect of the fifth force
may be found in the diffuse gas in a low-mass galaxy; if the density is sufficiently low,
this gas can be unscreened and therefore affected by the fifth force. One consequence of
this is that the gas will rotate faster than if it was screened [66, 67].

The most stringent constraints from astrophysical tests using thin-shell screened scalar
field models involve galaxy morphology; that is, the structural properties of galaxies.
Fifth force effects can manifest in unscreened galaxies surrounded by additional structure.
We can assume that a star inside an unscreened galaxy is screened, since main-sequence
stars self-screen [38]. The star is therefore not acted on by any fifth-force field that
the galaxy may be in. The gas and dark matter surrounding the star, however, will be
unscreened and will feel the additional acceleration due to the fifth force, aϕ. This results
in the gas and dark matter moving in front of the star in the direction corresponding to
the fifth-force field. Another observable effect arising from this scenario is that the stellar
disk can become warped, due to the potential gradient induced across it. Both of these
effects, the offset between stars and surrounding gas and the warping of stellar disks,
have been studied numerically using Bayesian forward models [68–70]. These models
have placed strong constraints on the matter coupling coefficient of a thin-shell-screened
scalar field, within the range of 0.3 – 8 Mpc [71].

1.5 Fifth force experiments with ultracold atoms
The idea that scalar domain walls can be detected via their impact on matter particle
trajectories has been explored on cosmological [13], Solar System [72] and laboratory
scales [73]. In this work, we are interested in laboratory-scale tests of the fifth force, and
specifically those in which a particle experiment performed inside a vacuum chamber
can produce observable effects of the force induced by a symmetron coupling to matter.
Significant progress has already been made in simulations of this type of experiment, as
detailed in sections 1.2 and 1.4.2. One promising avenue for these laboratory tests is
the use of ultracold atoms. Ultracold neutrons have already been used in searches for
chameleon fields [48, 49, 74, 75], and in numerical simulations of symmetron domain
wall dynamics. Llinares and Brax [73] have proposed a method to stabilize domain walls
formed via the symmetron mechanism using filaments, and to detect these domain walls
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in one of two ways: either by measuring the deflection angle of a beam of ultracold
neutrons off the wall, or through the time difference of the neutrons passing through
the wall. Ultracold particles are advantageous in such an experiment since they are
slow-moving; if the velocities of the neutrons are around 1 m s−1, the deviations of their
trajectories due to a symmetron fifth force will be macroscopic as long as the range of
the fifth force is on the order of 0.1 mm [73].

We extend the analysis in ref. [73] by considering the parameters necessary for a realizable
experiment that measures the impact of the symmetron fifth force on the trajectory
of a matter particle. We plan to use state-of-the-art 3D printing technology [76] to
manufacture a topologically-tailored vacuum chamber with the non-isotropic matter
distribution that is required to pin a domain wall in place. In the following chapters, we
detail the analytical background for our proposed experiment and present results of our
finite element numerical simulation of the effects of the fifth force on a matter particle.
In Chapter 2, we derive the equation of motion for the symmetron field and calculate
reflection and transmission coefficients for a matter particle approaching a domain wall.
In Chapter 3, we explain our experimental set-up, and describe the formation of domain
walls via the Kibble–Zurek mechanism. Chapter 4 introduces the finite element code
we use for our simulations, SELCIE [77], and the modifications required in order for
SELCIE to solve for symmetron rather than chameleon fields. Chapter 5 contains the
results of our numerical simulation of the motion of a matter particle in the presence of
the symmetron field. In Chapter 6, we investigate the possibility that the symmetron
field can couple to electromagnetism, and calculate some approximate numerical values
for the reflection and transmisson coefficients of a domain wall coupled to a photon.
In Chapter 7 we summarize our findings, and consider avenues for future work in the
detection of fifth-force effects associated with the symmetron model.



Chapter 2

Light Scalar Fields & Domain Walls

2.1 Domain wall solution for the symmetron field
The equation of motion describing the symmetron field is highly nonlinear, and therefore
very difficult to solve analytically except for in very simple scenarios. However, by
making some assumptions we can show that the domain wall solution to the symmetron
equation of motion takes the form of a tanh profile. The physical interpretation of
this approximate solution is an infinitely thin and straight domain wall. Since we are
interested in vacuum solutions, we approximate the source as pressureless such that
ρ = 0. The pressureless approximation can be very good in experimental contexts; going
from natural units back to physical units, pressure terms are suppressed by factors of
1/c2 compared to density terms, and nothing in our model is moving at relativistic
speeds. It is possible that if the mass becomes so high that the Compton wavelength is
short enough to see substructure in the material (that is, the Compton wavelength is on
the same scale as the atomic structure of the material), the approximation that matter
can be treated as a smooth continuous density profile can break down. The validity of
this approximation would need to be checked on a case-by-case basis. We choose the
symmetry-breaking potential V associated with the scalar field ϕ to be

V = −1

2
µ2ϕ2 +

1

4
λ2ϕ4 (2.1)

where µ is a mass scale and λ is a dimensionless coupling. To find the value of ϕ that
minimizes V , we differentiate V with respect to ϕ,

∂V

∂ϕ
= −µ2ϕ+ λ2ϕ3, (2.2)

and set the result to 0:
−µ2ϕmin + λ2ϕ3

min = 0

⇒ ϕmin = ±µ

λ
. (2.3)

15
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Figure 2.1: Plot of the symmetry-breaking potential in Equation 2.5 as a function of the scalar
field ϕ. The dashed black line shows the location of the domain wall at x = 0.

Substituting ϕ = ϕmin into Equation 2.1 results in an expression for the minimum of the
potential:

Vmin = − µ4

4λ2
. (2.4)

Cosmological implications of a large negative potential minimum are that present day
vacuum energy is negative, which corresponds to a deceleration in the expansion of the
Universe. We would therefore like to tune Vmin to 0, so that there are no large-scale
cosmological effects. We can achieve this by adding a term to the potential in Equation
2.1:

V = −1

2
µ2ϕ2 +

1

4
λ2ϕ4 +

µ4

4λ2
. (2.5)

This potential takes the form of a symmetric double well, as shown in Figure 2.1.
Differentiation of Equation 2.5 with respect to ϕ shows that the value of ϕmin remains
the same as that of Equation 2.3. Substituting ϕmin into Equation 2.5 gives the new
value of Vmin:

Vmin =

(
−1

2
µ2

)
×
(
µ2

λ2
+

1

4
λ2

)
×
(
µ4

λ4
+

µ4

4λ2

)
= −1

2

µ4

λ2
+

1

2

µ4

λ2

⇒ Vmin = 0 (2.6)

as desired. The potential in Equation 2.5 can be written more simply in terms of ϕmin.
Consider

(ϕ2 − ϕ2
min)

2 = (ϕ2 − ϕ2
min)(ϕ

2 − ϕ2
min)

= ϕ4 − 2ϕ2ϕ2
min + ϕ4

min

= ϕ4 − 2ϕ2µ
2

λ2
+

µ4

λ4
. (2.7)
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Multiplying the above expression by λ2/4 results in

λ2

4
(ϕ2 − ϕ2

min)
2 = −1

2
µ2ϕ2 +

1

4
λ2ϕ4 +

µ4

4λ2

= V (2.8)

and the potential V can therefore be written as

V =
λ2

4
(ϕ2 − ϕ2

min)
2. (2.9)

The equation of motion of the scalar field ϕ is given by

−d2ϕ

dx2
= −dV

dϕ

=
d
dϕ

(
λ2

4
(ϕ2 − ϕ2

min)
2

)
(2.10)

where the first line is derived from the Euler–Lagrange equations. Let y = λ2

4 (ϕ2−ϕ2
min)

2

and u = ϕ2 − ϕ2
min. Then y = λ2

4 u2 and by the chain rule,

dy
dϕ

=
dy
du

du
dϕ

=
2λ2

4
u× 2ϕ = λ2ϕu

= λ2ϕ(ϕ2 − ϕ2
min). (2.11)

The equation of motion for the scalar field ϕ is therefore

−d2ϕ

dx2
+ λ2ϕ(ϕ2 − ϕ2

min) = 0. (2.12)

Equation 2.12 is a second-order nonlinear differential equation. Nonlinear differential
equations are notoriously difficult to solve, and are generally solved in one of two ways:

• Map the differential equation to an equation with a known solution.

• Solve the differential equation numerically.

For this reason, we will simply state the solution to Equation 2.12 here:

ϕ(x) =
µ

λ
tanh

( x

∆

)
(2.13)

where

∆ =

√
2

λϕmin
. (2.14)

∆ controls the width of the domain wall. The solution in Equation 2.13 is valid for two
spacetime bubbles in different vacua, separated by a domain wall at x = 0 as shown in



2.1. Domain wall solution for the symmetron field 18

Figure 2.1. The boundary conditions for this solution areϕ = +µ
λ when x = +∞

ϕ = −µ
λ when x = −∞.

(2.15)

We can prove that the tanh profile in Equation 2.13 is a solution by substituting it back
into the equation of motion for ϕ (Equation 2.12). We begin by calculating the first
term in the equation of motion, −d2ϕ/dx2. Let u = x/∆ and then by the chain rule,

dϕ
dx

=
dϕ
du

du
dx

=
µ

λ
sech2

( x

∆

)
× 1

∆

=
1

∆

µ

λ
sech2

( x

∆

)
(2.16)

where in the second line we have used the fact that (tanh (x))′ = sech2 (x). Now for the
second derivative of ϕ with respect to x we have

d2ϕ

dx2
=

d
dx

dϕ
dx

=
d
dx

(
1

∆

µ

λ
sech2

( x

∆

))
(2.17)

Let u = x/∆ as before, v = sech (x/∆) = sech (u) and

y =
1

∆

µ

λ
sech2

( x

∆

)
=

1

∆

µ

λ
v2. (2.18)

By the chain rule,

dy
dx

=
dy
dv

dv
dx

=
dy
dv

dv
du

du
dx

=
2

∆

µ

λ
v ×− sech (u) tanh (u)× 1

∆

= − 2

∆2

µ

λ
sech2

( x

∆

)
tanh

( x

∆

)
(2.19)

where in the second line we have used the fact that (sech (x))′ = − sech (x) tanh (x).
The first term on the left hand side of Equation 2.12 is then

−d2ϕ

dx2
=

2

∆2

µ

λ
sech2

( x

∆

)
tanh

( x

∆

)
. (2.20)

Substituting Equations 2.13 and 2.20 into the equation of motion for ϕ (Equation 2.12)
we find

2

∆2

µ

λ
sech2

( x

∆

)
tanh

( x

∆

)
+

µ3

λ
tanh3

( x

∆

)
− λµ tanh

( x

∆

)
ϕ2

min = 0. (2.21)
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Showing that the left hand side of the above equation does indeed vanish is sufficient
proof that the tanh profile in Equation 2.13 is a solution to the equation of motion for the
scalar field ϕ (Equation 2.12). Equation 2.21 can be simplified using the trigonometric
identity sech2 (x) = 1− tanh2 (x):

2

∆2

µ

λ
tanh

( x

∆

)
− 2

∆2

µ

λ
tanh3

( x

∆

)
+

µ3

λ
tanh3

( x

∆

)
− λµ tanh

( x

∆

)
ϕ2

min = 0. (2.22)

ϕmin = ±µ/λ and ∆ =
√
2/λϕmin, so we have

ϕ2
min =

µ2

λ2
(2.23a)

∆2 =
2

µ2
. (2.23b)

Substitution of Equations 2.23a and 2.23b into Equation 2.22 results in

µ3

λ
tanh

( x

∆

)
− µ3

λ
tanh3

( x

∆

)
+

µ3

λ
tanh3

( x

∆

)
− µ3

λ
tanh

( x

∆

)
= 0

⇒ 0 = 0. (2.24)

We have shown that upon substitution of the tanh profile ϕ(x) = µ/λ tanh(x/∆) into the
equation of motion for the scalar field ϕ (Equation 2.12), the left hand side does indeed
vanish and the tanh profile is therefore a valid solution to the symmetron equation of
motion.

2.2 1D symmetron field calculation
For our experiment to detect the scalar fifth force, we would like to manufacture some
optimal matter distribution inside the vacuum chamber which would enable us to pin the
domain walls to the chamber’s interior. We therefore need to understand the behaviour
of the symmetron field in the vacuum between two matter densities. To this end, it
is useful to look at the vacuum solution to the symmetron equation of motion around
two identical point sources in one spatial dimension. Simplifying the model in this way
allows for a semi-analytical approach. In this section we follow the analysis in Section V
of [78], where the density of the point sources is approximated by Dirac delta functions.
This approximation is valid while the Compton wavelength of the symmetron field is
much larger than the size of the sources [78]. We have two identical point sources of
mass m, located at x̂ = ±x̂1. The vacuum solution for the symmetron field around these
two point sources is given in terms of Jacobi elliptic functions:

φ =

φ0 cd
(

1√
2
|x̂|
√

2− φ2
0,

φ2
0

2−φ2
0

)
|x̂| < x̂1,

tanh
(

1√
2
(|x̂| − x̂1) + arctanhφ1

)
|x̂| > x̂1

(2.25)
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where φ0 is the field at x̂ = 0 (halfway between the point sources) and φ1 is the field at
x̂ = x̂1. φ0 and φ1 are constants that can be found by the solution of two simultaneous
equations:

φ1 = φ0 cd

(
1√
2
x̂1

√
2− φ2

0,
φ2
0

2− φ2
0

)
, (2.26a)

m

µM2
φ1 =

1√
2

(
1− φ2

1

)
+ φ0

1− φ2
0√

1− 1
2φ

2
0

nd

(
x̂1√
2

√
2− φ2

0,
φ2
0

2− φ2
0

)
sd

(
x̂1√
2

√
2− φ2

0,
φ2
0

2− φ2
0

)
(2.26b)

where m/µM2 is a dimensionless combination of the mass scales µ and M . Since there
is no known way to solve the above simultaneous equations analytically, we use Wolfram
Mathematica® to determine φ0 and φ1, and plot the symmetron field profile given by
Equation 2.25. Figure 2.2a shows the symmetron field profile for large particle separation,
x̂1 = π/2. In this case, the point sources are seen by the symmetron field as two separate
objects and the field has sufficient room to evolve towards its vacuum expectation value
(the vacuum expectation value has been normalized to 1). The field profile is plotted
for three different mass scales; as the mass m of the point sources increases, the field
is pulled further from its vacuum expectation value. This is because in a large enough
region of high density, the natural place for the normalized field to sit is 0 rather than
1. The case of small particle separation, x̂1 = 0.1, is shown in Figure 2.2b. When
the particles are close together, the symmetron field is unable to distinguish between
them; instead of two identical sources each of mass m, the field sees the sources as a
single object of mass 2m. The field does not have as much room to evolve towards its
vacuum expectation value and thus stays approximately constant. In comparison with
Figure 2.2a, the symmetron field is pushed further from its vacuum expectation value
when the point source separation is small. Figure 2.2 is a reproduction of Figure 3 in [78].

The field profiles shown in Figure 2.2 give some useful insights into the behaviour of the
symmetron field, but it would be interesting to explore this behaviour in more detail. It
is unclear at present whether the transition between the two regimes in Figures 2.2a and
2.2b is smooth. As we linearly decrease the separation between the point sources, do we
see linear behaviour in the symmetron field profile? In Figure 2.2b, is the field precisely
flat in the centre of the point sources or is the curve just very shallow? These questions
could be addressed with a more in-depth analysis of how the field profile changes as we
modify the separation, x̂1, between the point sources.
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(a) Symmetron field profile for large particle
separation, x̂1 = π/2. The field is plotted for
three different mass scales.

(b) Symmetron field profile for small particle
separation, x̂1 = 0.1. The field is plotted for
three different mass scales.

Figure 2.2: Field profiles for the symmetron field around two identical point sources in
one spatial dimension. These figures are a reproduction of Figure 3 in [78] using Wolfram
Mathematica®.

2.3 Domain walls and reflection and transmission coeffi-
cients

2.3.1 Derivation of the wave equation for the matter field

We would like to design an experiment to detect the fifth force mediated by the symmetron
field. As air is pumped out of a topologically-tailored vacuum chamber, topological
defects (domain walls) will form and may be pinned to the interior of the chamber.
A matter particle approaching one of these domain walls will feel the effects of the
fifth force, and will be deflected or reflected off the domain wall. We first look at the
simplified scenario in which a single matter particle is incident on a domain wall. We
start with a Lagrangian for two scalar fields:

L = −1

2
∂µϕ∂

µϕ− 1

2
∂µχ∂

µχ− 1

2
m2

χχ
2 − 1

4
λ
(
ϕ2 − η2

)2 − 1

2
λ̃ϕ2χ2 (2.27)

where ϕ is the domain wall field and χ is the field of the matter particle. The third
term in the above Lagrangian is the mass term for the matter particle, the fourth is the
symmetry-breaking potential for the symmetron field ϕ, and the fifth is the interaction
term (which allows the field of the particle χ to couple to that of the domain wall, ϕ).
If the scalar field couples conformally to χ, then there should also be terms where ϕ

multiplies the kinetic term for χ. However, the dominant impact of the coupling comes
from the ϕ2χ2 term, and thus we are able to capture the important physics without
these additional terms. We can use the Euler–Lagrange equations,

∂L
∂ϕ

= ∂µ

(
∂L

∂ (∂µϕ)

)
(2.28a)

∂L
∂χ

= ∂µ

(
∂L

∂ (∂µχ)

)
, (2.28b)



2.3. Domain walls and reflection and transmission coefficients 22

to derive the equations of motion for ϕ and χ. This leads to

2ϕ− λϕ
(
ϕ2 − η2

)
− λ̃ϕχ2 = 0 (2.29a)

2χ−m2
χχ− λ̃ϕ2χ = 0 (2.29b)

where 2 ≡ ∂µ∂µ is the d’Alembert operator. We can now solve for the background
domain wall, which requires the following assumptions:

1. χ = 0 in the equation of motion for ϕ, Equation 2.29a.

2. The domain wall is static, so that time derivatives of ϕ vanish.

If we also assume that the domain wall is straight, that is, ϕ ≡ ϕ (z), the equation of
motion for ϕ reduces to

d2ϕ

dz2
= λϕ

(
ϕ2 − η2

)
. (2.30)

We showed in Section 2.1 that the solution to the above nonlinear differential equation
is given by a tanh profile:

ϕ (z) = η tanh

(√
λ

2
ηz

)
. (2.31)

The next step in the derivation of a wave equation for the matter field χ is to add
a χ wave on top of the domain wall background. Assuming that the wave is moving
perpendicularly to the domain wall such that χ ≡ χ (z, t), the equation of motion for χ

(Equation 2.29b) reduces to

−∂2χ

∂t2
+

∂2χ

∂z2
−m2

χχ− λ̃ϕ2χ = 0. (2.32)

Since Equation 2.32 is very similar to a wave equation, we can make the ansatz

χ (z, t) = χ̂ (z) e−iωt, (2.33)

which results in
χ̂′′ +

(
ω2 −m2

χ

)
χ̂− λ̃ϕ2χ̂ = 0. (2.34)

Substituting the tanh profile in Equation 2.31 into the above differential equation, we
find

χ̂′′ +
(
ω2 −m2

χ − λ̃η2
)
χ̂+ λ̃η2χ̂ sech2

√
λ

2
ηz = 0

⇒ χ̂′′ + k2z χ̂+ λ̃η2χ̂ sech2
√

λ

2
ηz = 0 (2.35)

where in the second line we have rewritten k2z =
(
ω2 −m2

χ − λ̃η2
)

for simplicity. kz can
be thought of as a momentum. This equation is of the same form as the wave equation
for the matter field χ given in Vilenkin and Shellard’s book [13]. The wave equation for
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χ can be simplified further if we approximate the domain wall as thin, that is,

lim
α→∞

α

2
sech2 (αz) = δ (z) . (2.36)

Since we always use finite values for the rest of the parameters, we never consider a
scenario in which the domain wall can truly be described by a delta function. However,
a delta function can be a very good approximation when the width of the domain wall
is much smaller than the other length scales in the problem. Under this assumption, the
wave equation for the matter field χ simplifies to

χ̂′′ + k2z χ̂+ 2

√
2

λ
λ̃ηδ (z) χ̂ = 0. (2.37)

Now that we have a wave equation for the matter field χ, we can use it to compute the
reflection and transmission coefficients for a particle incident on a domain wall, and
therefore the probability that a particle will be reflected off the domain wall.

2.3.2 Reflection and transmission coefficients

In Section 2.3.1, we derived the wave equation for the matter field χ incident on the
domain wall (see Equation 2.37). We would like to find two separate solutions to
Equation 2.37 for the left and the right of the domain wall, z < 0 and z > 0. δ(z) = 0

everywhere apart from z = 0, so for both the left and right solutions the wave equation
reduces to

χ̂′′ + k2z χ̂ = 0. (2.38)

The general solution to Equation 2.38 isχ̂L = Aeikzz +Be−ikzz z < 0

χ̂R = Ceikzz z > 0
(2.39)

where χ̂L is the solution on the left of the wall (z < 0) and χ̂R is the solution on the
right (z > 0). Aeikzz is the incident wave, Be−ikzz is the reflected wave and Ceikzz is
the transmitted wave. The reflection and transmission coefficients for the particle are
dependent on the amplitudes A, B and C. In order to obtain relations between these
amplitudes, we can impose matching conditions on χ̂ and χ̂′ at the position of the wall
(z = 0). χ̂ must be continuous across the boundary, such that χ̂L(0) = χ̂R(0). This
leads to

A+B = C. (2.40)

The first derivative of the solution, χ̂′, is discontinuous across the domain wall by some
amount that we will denote as ∆. To compute the size of the discontinuity in χ̂′, we can
integrate Equation 2.37 over a very small region either side of the wall, from −ϵ to ϵ. ∆

is then given by

∆ = χ̂′
R(0)− χ̂′

L(0) =

∫ ϵ

−ϵ
dzχ̂′′. (2.41)
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Rearranging Equation 2.37 for χ̂′′ and substituting into the equation for ∆ we find

∆ =

∫ ϵ

−ϵ
dz

(
−k2z χ̂− 2

√
2

λ
λ̃ηδ(z)χ̂

)

= −k2z

∫ ϵ

−ϵ
dzχ̂− 2

∫ ϵ

−ϵ
dz
√

2

λ
λ̃ηδ(z)χ̂

= −k2z

∫ ϵ

−ϵ
dzχ̂− 2

√
2

λ
λ̃ηχ̂(0) (2.42)

where we have used the sifting property of the delta function,
∫

dxf(x)δ(x− a) = f(a),
to evaluate the second integral. The first integral can be split up into two separate
integrals on either side of the wall: from −ϵ to 0 (on the left of the wall) and from 0 to
ϵ (on the right). We can then use the left and right solutions in Equation 2.39 to find
an expression for ∆:

∆ = −k2z

∫ 0

−ϵ
dzχ̂L − k2z

∫ ϵ

0
dzχ̂R − 2

√
2

λ
λ̃ηχ̂(0)

= −k2z

∫ 0

−ϵ
dz(Aeikzz +Be−ikzz)− k2z

∫ ϵ

0
dzCeikzz − 2

√
2

λ
λ̃ηχ̂(0)

= −k2z

[
A

ikz
eikzz − B

ikz
e−ikzz

]0
−ϵ

− k2z

[
C

ikz
eikzz

]ϵ
0

− 2

√
2

λ
λ̃ηχ̂(0)

= −k2z

(
A

ikz
− B

ikz
− A

ikz
e−ikzz − B

ikz
eikzz

)
− kz2

(
C

ikz
eikzz − C

ikz

)
− 2

√
2

λ
λ̃ηχ̂(0)

= ikz(A−B −Ae−ikzz +Beikzz + Ceikzz − C)− 2

√
2

λ
λ̃ηχ̂(0). (2.43)

Using the relation A+B = C, the above equation simplifies to

∆ = ikz(−Ae−ikzz +Beikzz +Aeikzz +Beikzz − 2B)− 2

√
2

λ
λ̃ηχ̂(0)

= ikz{e−ikzz(−A) + eikzz(A+ 2B)− 2B} − 2

√
2

λ
λ̃ηχ̂(0). (2.44)

We now impose that the region over which we have performed the integration, −ϵ to ϵ,
is infinitely small. Taking the limit ϵ → 0 we find

∆ = ikz(−A+A+ 2B − 2B)− 2

√
2

λ
λ̃ηχ̂(0)

⇒ ∆ = −2

√
2

λ
λ̃ηχ̂(0). (2.45)

As can be seen in Equation 2.45, the first two integrals in the expression for ∆ have
disappeared and we are left with only the last term. In order to obtain a second equation
involving the coefficients A, B and C, we must now rewrite χ̂(0) in terms of these
coefficients. We know that χ̂L and χ̂R must be equal at z = 0, that is, χ̂L(0) = χ̂R(0).
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From Equation 2.39 we have

χ̂L(0) = A+B = χ̂R(0) = C. (2.46)

We can therefore say that χ̂(0) = A+B and

∆ = −2

√
2

λ
λ̃η(A+B). (2.47)

We can now use the first part of Equation 2.41 to eliminate ∆:

∆ = χ̂′
R(0)− χ̂′

L(0)

= ikzC − ikzA+ ikzB

= ikzA+ ikzB − ikzA+ ikzB

⇒ ∆ = 2ikzB (2.48)

where in the third line we used the fact that A+B = C. Equating the two expressions
for ∆ we find

2ikzB = −2

√
2

λ
λ̃η(A+B)

⇒ ikzB +

√
2

λ
λ̃ηB = −

√
2

λ
λ̃ηA

⇒

(
ikz +

√
2

λ
λ̃η

)
B = −

√
2

λ
λ̃ηA. (2.49)

We now have an equation relating the amplitude of the incident wave (A) to the amplitude
of the reflected wave (B):

A = −
ikz +

√
2
λ λ̃η√

2
λ λ̃η

B. (2.50)

The reflection coefficient for the particle incident on the domain wall is defined as
R = |B|2/|A|2, so from Equation 2.50 we have

R =
|B|2

|A|2
=

|B|2∣∣∣∣∣− ikz+
√

2
λ
λ̃η√

2
λ
λ̃η

B

∣∣∣∣∣
2

=
1∣∣∣∣∣− ikz+
√

2
λ
λ̃η√

2
λ
λ̃η

∣∣∣∣∣
2

=
1(

−ikz+
√

2
λ
λ̃η

)(
ikz+

√
2
λ
λ̃η

)
2
λ
λ̃2η2

⇒ R =
(2/λ)λ̃2η2

k2z + (2/λ)λ̃2η2
(2.51)
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where in the third line we used the fact that the squared modulus of any complex number
z is |z|2 = zz̄. The reflection coefficient in Equation 2.51 can be written more simply if
we let ν = 2(2/λ)1/2λ̃η, then ν2 = 4(2/λ)λ̃2η2 and

R =
ν2

4k2z + ν2
. (2.52)

In the limit of small kz, we let kz → 0 which leads to R → 1; this is the case of total
reflection off the domain wall. Since kz is related to the momentum of the incident
particle, this behaviour makes physical sense; a particle with momentum below some
threshold value does not have sufficient energy to traverse the domain wall and will be
reflected back off it. In the limit of large kz, we let kz → ∞ and then R → 0; this is the
case of no reflection. Particles with high momentum have enough energy to escape the
potential well of the domain wall, and are able to travel straight through it. In addition
to the reflection coefficient, we can now also calculate the transmission coefficient T ,
defined by T = 1−R:

T = 1−R = 1− ν2

4k2z + ν2

⇒ T =
4k2z

4k2z + ν2
. (2.53)

Equations 2.52 and 2.53 are identical to the reflection and transmission coefficients given
in ref. [13]. Using the expressions for the reflection and transmission coefficients for the
particle incident on the domain wall, it is possible to calculate the probability that the
particle will be reflected off or transmitted through the domain wall. In the next chapter,
we introduce our concept for a tabletop experiment that comprises a topologically-
tailored vacuum chamber in which we can detect the effect of the symmetron fifth force
on the trajectory of a matter particle.



Chapter 3

Vacuum Chamber Experiment

We propose an experiment comprised of a topologically-tailored vacuum chamber in
which we can pin topological defects (domain walls) and detect the fifth force mediated
by the symmetron field via deflection of a matter particle off a domain wall. Domain
walls form inside the chamber as air is pumped out, and a symmetry-breaking phase
transition occurs. The domain wall field is mediated by a scalar fifth force that interacts
with matter; a matter particle incident on a domain wall will feel the effects of this fifth
force and be deflected or reflected off the domain wall. In order for the deflection or
reflection of the particle to be observed, the domain walls must be long-lived inside the
vacuum chamber. It has been shown in [28] that it is possible to use structures inside
the vacuum chamber to pin the domain walls in place, thus prolonging their lifetime
and theoretically enabling the detection of matter particles deflected off them.

In order to maximize the lifetime of the domain walls and therefore also maximize the
probability of observing the deflection of matter particles off the walls, it is important
to consider the shape of the vacuum chamber’s interior. A non-trivial vacuum chamber
interior can be achieved in one of two ways; either with some structure that can be
inserted into the chamber, or by manufacturing a vacuum chamber with a topologically-
tailored interior. The latter method could make use of state-of-the-art 3D printing
technology [76]. The purpose of this non-trivial matter distribution inside the chamber
is to pin the domain walls in place and thus ensure that they are long-lived. It is not
immediately clear what the optimal shape of the vacuum chamber interior would be. We
start with an initial concept of two large spiked structures inside the chamber, between
which a domain wall may be pinned. A simple illustration of this proposed geometry is
shown in Figure 3.1. It is hoped that with careful consideration of the distribution of
matter inside the chamber, we will be able to influence the domain wall dynamics such
that it is long-lived, and deflection of a particle off the domain wall can be observed.
This observation would constitute a clear experimental signature of the dark force.

27
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Domain wall

ϕ1

ϕ2

Figure 3.1: Simplified diagram showing a spherical vacuum chamber containing two spiked
structures between which a domain wall may be pinned. ϕ1 and ϕ2 are two separate solutions
for the symmetron field either side of the domain wall.

3.1 Formation of domain walls via the Kibble–Zurek mech-
anism

Mechanisms for the formation of topological defects due to symmetry breaking phase
transitions were first studied quantitatively by Kibble in 1976 (ref. [21]). Kibble’s
theoretical framework was used by experimentalists in proposals for laboratory-based
cosmological tests; notably Zurek in 1985 who suggested an analogue cryogenic ex-
periment to test elements of the formation of cosmological strings [79]. To illustrate
how domain walls form via the Kibble–Zurek mechanism, we consider a scalar field ϕ

that has a discrete symmetry. This scalar field has a temperature-dependent effective
potential Veff(ϕ, T ), and the following argument assumes that the mass of the scalar
field is dependent on the temperature of the Universe rather than the density; the
temperature acts as a proxy for the density ρ. When temperature dependence is taken
into account, the effective potential of the scalar field is given by

Veff(ϕ, T ) = V (ϕ) +
λ+ 3e2

12
T 2|ϕ|2 − 2π2

45
T 4, (3.1)

where the bare symmetron potential V (ϕ) is

V (ϕ) =
1

4
λ(ϕ2 − η2)2, (3.2)

and λ and η are positive constants. λ is equivalent to the coupling parameter of the
symmetron model. Above a critical temperature Tc, the potential has a single minimum
at ϕ = 0. The critical temperature is defined by

Tc =
√
6η. (3.3)

When the temperature drops below this critical value, a symmetry-breaking phase
transition occurs and the potential develops two degenerate minima, as shown in Figure
3.2a. The scalar field ϕ can then roll into one or the other of these minima. We
assume that ϕ will be subject to random fluctuations in different regions of space; these
fluctuations cause the field to fall into one of the two ground states. If adjacent volumes
of ϕ fall into opposite minima, a ‘kink’ solution forms as a boundary between the two
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(a) The characteristic double-well potential of
our scalar field theory. When the temperature
drops below its critical value Tc, a symmetry-
breaking phase transition occurs and the po-
tential develops two degenerate minima.

(b) The ‘kink’ solution that forms when two
adjacent volumes of the scalar field ϕ fall into
opposite minima.

Figure 3.2: The double-well potential in (a) gives rise to the ‘kink’ solution in (b), when
adjacent volumes of ϕ fall into opposite minima.

volumes, as shown in Figure 3.2b. This boundary corresponds to what we refer to as a
‘domain wall’.
Since we are interested in prolonging the lifetimes of domain walls, it is useful to study

the dynamics of their formation in more detail. The critical temperature Tc on which
the symmetry-breaking phase transition depends is related to a condition known as the
Ginzburg criterion [80]:

|m(T )|
λT

≫ 1 (3.4)

where T is the thermal energy and m(T ) is the effective mass of the scalar field. The
Ginzburg temperature TG is the temperature below the critical value Tc at which
|m(TG)| ∼ λTG. As in ref. [13], we can use the form of the temperature-dependent
effective potential to show that

Tc − TG ∼ λTc, (3.5)

and therefore the Ginzburg temperature TG is very close to the critical temperature Tc

when λ ≪ 1. In this case, the Ginzburg criterion in Equation 3.4 is satisfied everywhere
except in a very narrow range of temperatures close to Tc. The physical consequence of
falling below the Ginzburg temperature TG is that temperature fluctuations in ϕ are
not sufficient to lift the field from one minimum into the other; this scenario is called a
‘freeze-out’ [13]. When in a freeze-out state, the topological defects will persist rather
than dissipate. The scale of the domain walls that form is determined by the correlation
length ξ, which is defined to be the length scale above which the fluctuations in ϕ are
uncorrelated. This means that the values of the scalar field ϕ in two regions of space are
totally independent from one another if they are separated by a distance greater than ξ.
The value of ξ depends nontrivially on on the dynamics of the phase transition, but we
can constrain it with the simple causality bound:

ξ(t) < dH(t) (3.6)
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where dH is the causal horizon, which is defined to be the distance travelled by light
during the lifetime of the Universe. This bound is a consequence of the fact that
correlations cannot be formed faster than the speed of light. Formation of domain
walls or networks of domain walls via the Kibble–Zurek mechanism can be described
as a non-equilibrium phenomenon; the density of topological defects is exponentially
suppressed at temperatures well below the critical temperature Tc. At such temperatures,
the defects are able to survive since the field does not have sufficient time to reach
equilibrium on scales greater than the correlation length ξ. When the temperature
approaches Tc, the field is affected by thermal fluctuations that can allow it to surpass
the potential barrier, which leads the topological defects to ‘unwind’. In the case of
an empty spherical vacuum chamber, we expect that any topological defects that form
will tend to move out towards the chamber walls and dissipate, since the scalar field
at the centre of the domain wall has the same value as in the physical walls of the
vacuum chamber [60]. In order to be able to perform a particle experiment involving a
domain wall, we must ensure that the domain wall does not immediately unwind after
formation; to have the best chance of observing the effects of the fifth force on a matter
particle, we would like to tailor the experimental scenario such that the domain wall is
as long-lived as possible. In this proposed experiment, we exploit one key characteristic
of the symmetron mechanism: in regions of very low density, the symmetron field can
couple to matter with gravitational strength. Using this fact, we suggest a method
by which domain walls are encouraged to form and their lifetimes can be extended:
non-trivial vacuum chamber interiors, which can lead to the pinning of domain walls in
place. We discuss how domain walls can be pinned to matter overdensities further in
the context of our test particle simulation in Chapter 5.

3.2 Simple two-spike vacuum chamber model
As a first model, we propose a simple geometry made up of two dense spikes that
protrude from the interior of the vacuum chamber, as illustrated in Figure 3.1. This
interior structure could be achieved in various ways; by 3D printing the entire chamber,
for example, or alternatively by printing an insert to be positioned inside the vacuum
chamber. The rationale for starting with a model comprised of two protruding spikes
is that it has been shown previously that domain walls formed via the symmetron
mechanism can be pinned to matter overdensities [28]. Inside the dense regions, the
symmetron field is decoupled and exhibits screening behaviour, so that its expectation
value returns to zero. In our simple model, the two spikes on either side of the vacuum
chamber are dense regions in which the symmetron field ϕ has a zero expectation value.
If the distance between the two spikes is comparable to the correlation length ξ of the
field, ϕ does not have enough space to reach equilibrium, or to roll into one of the two
degenerate minima of the potential. In this scenario, the domain wall will be ‘pinned’
between the two spikes. The aim is to achieve pinning of the domain wall for a length of
time such that experiments to investigate the interaction of matter particles with the
domain wall can be carried out.
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Figure 3.3: Simplified illustration of a vacuum chamber with a series of spikes protruding from
the walls. Dashed lines indicate some possible locations where domain walls could form.

We choose this simple geometry as a proof of concept, and because it should allow
the computational costs to remain relatively low in comparison with more complex
interior geometries. However, an interesting area of further study is to implement a full
optimization regime to find a configuration of matter inside the chamber that allows
the domain walls to be as long-lived as possible within experimental constraints. One
example of a more complex geometry is a series of spikes protruding from the chamber
walls at various angles. If we can pin a domain wall between one pair of spikes, then we
may be able to use a series of spikes to pin a network of domain walls inside the vacuum
chamber, as illustrated in Figure 3.3. Since the formation of topological defects is a
stochastic process, a greater number of spikes corresponds to a greater probability that a
domain wall will be formed between at least one pair of spikes. In turn, the probability
that at least one domain wall inside the chamber will be long-lived is increased. A
long-lived domain wall corresponds to more time to perform particle experiments, and
we are therefore more likely to be able to observe a deflection or reflection of a matter
particle off a domain wall. In addition to the number of spikes, varying the thickness
and separation of the spikes could also enable us to explore more of the symmetron
parameter space.

3.3 Simulation of the two-spike model
To gain some insight into the experimental parameters required for a detection of the
deflection or reflection of a matter particle off a domain wall, we simulate the simple
model described in Section 3.2 numerically. The field equation describing the symmetron
mechanism is highly nonlinear, and therefore very difficult to solve analytically. Using
an open-source finite element software package called SELCIE [77], we can solve the
static equation of motion for the symmetron. Once we have the static solution to the
equation of motion, we can simulate the motion of a test particle on this background
using an iterative method for the solution of differential equations called a ‘leapfrog
algorithm’. This allows us to investigate how the presence of a domain wall affects the
test particle’s motion. In Chapter 4, we describe in detail how the software package
SELCIE works, and how it has been modified to solve for the scalar field theory that we
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are interested in: the symmetron mechanism.



Chapter 4

SELCIE for the Symmetron

SELCIE (Screening Equations Linearly Constructed and Iteratively Evaluated) is a
software package written in Python™ that uses the finite element method to find vacuum
solutions for the chameleon field around a source with a user-defined mesh [77]. It uses
the open-source finite element software FEniCS [81] in combination with two methods
for the iterative solution of nonlinear differential equations: the Picard method and
the Newton method. In this chapter, we show how we have modified the SELCIE
code to solve for the symmetron field in addition to the chameleon. SELCIE uses the
open-source 3D finite element mesh generation software Gmsh [82], with which the
user may define the shape of their desired mesh with an arbitrary function. Figure 4.1
gives an example of how SELCIE can be used to solve for the chameleon field around
an arbitrarily-shaped source. We use this capability to design vacuum chambers with
interiors that are topologically-tailored to pin domain walls in place.

33
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Figure 4.1: Example of SELCIE’s user-defined mesh generating capabilities: the chameleon
field solution is computed around the chameleon-shaped mass distribution inside a spherical
vacuum chamber. The colour bar corresponds to log10 of the chameleon field ϕ̂. Image courtesy
of Chad Briddon.

4.1 How does SELCIE work?
SELCIE is a software package based on the finite element method, which allows the
user to construct an arbitrary system of mass distributions and then calculate the
corresponding solution to the chameleon field equation [77]. As discussed in Chapter 1,
the chameleon model is a light scalar field theory in which the mass of the scalar field is
dependent on the local matter density. As the local matter density increases, the mass
of the chameleon field also increases. In the symmetron mechanism, however, it is the
expectation value of the scalar field that is dependent on the local matter density. In
order to use SELCIE to find solutions for our chosen scalar field theory, the symmetron
model, we have written a new solver to be used with the SELCIE code that finds the
solution to the symmetron equation of motion rather than the chameleon equation of
motion. SELCIE uses one of two methods for the solution of nonlinear differential
equations: the Picard or the Newton method, in conjunction with the finite element
method. The finite element solution is computed using the open-source FEniCS Project
software [81]. The finite element method is chosen over the more commonly used finite
difference method for the ease with which it can adapt to irregularly-spaced meshes;
SELCIE is able to solve for the chameleon profile around any arbitrarily-shaped source.
Although not utilized in this work, we note that SELCIE also has the capability for
mesh optimization: additional refinement can be added to the mesh in regions where the
field solution is of particular interest, while the mesh is made coarser in other regions.
This allows the user to solve the field equation to a greater degree of accuracy without
significantly increasing the computational cost.
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In the finite element method, the domain of the problem Ω is divided into ‘cells’ that are
defined by their vertices Pi. We can decompose the field u(x) using the basis functions
ei(x), such that

u(x) =
∑
i

Uiei(x) (4.1)

where Ui = U(Pi). Both the Picard and Newton iterative methods for the solution of
nonlinear differential equations are inbuilt in SELCIE. The field solution obtained by
SELCIE will be the same regardless of whether the Picard or the Newton method is
chosen. There are positives and negatives to each method, as outlined in ref. [77]. The
Picard method was shown to perform the fastest and also to scale better with mesh
size: as the number of cells in the mesh increases, the run time of the solver increases
less than it would if the Newton method were to be chosen instead. For this reason, we
choose to use the Picard method in our simulation of the symmetron field.

4.2 Modifying SELCIE for the symmetron
SELCIE was built to solve for the chameleon field, which is defined by the equation of
motion

∇2ϕ = −nΛn+4

ϕn+1
+

βρ

MPl
(4.2)

where Λ is a mass scale, n is an integer and β is a coupling parameter. We can choose
to express the chameleon field equation as a linear equation for a vector whose elements
are the values of the field at each vertex, as shown in ref. [77]. Written in this form, the
chameleon equation of motion is given by

[αM+ (n+ 1)Bk]Φ̂ = (n+ 2)Ck − P̂ (4.3)

where Φ̂ is a vector comprising the values of the field ϕ̂ at each vertex. Bk and Ck are
defined by

[Bk]ij =

∫
Ω
ϕ̂
−(n+2)
k eivj dx (4.4a)

[Ck]j =

∫
Ω
ϕ̂
−(n+1)
k vj dx, (4.4b)

where vi and vj are test functions, and ei are the basis functions of the field. The density
vector P̂ is defined by

P̂i =

∫
Ω
ρ̂(x)vi dx. (4.5)

The indices i and j are counting the vertices of the mesh, and k is the relaxation index.
SELCIE employs a relaxation method to solve for the scalar field: the user inputs an
initial guess, and the solution is then allowed to relax to something that better solves
the equation of motion. k = 1 corresponds to one relaxation towards the final solution.
In order to use SELCIE to solve for the symmetron field rather than for the chameleon,
we must write a new solver to find the solution to the symmetron equation of motion.
This solver will require the symmetron equation of motion to be input in the same form
as Equation 4.3. To write the symmetron equation of motion in this way, we follow a
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three-step process:

1. Rescale the symmetron equation of motion.

2. Write the symmetron equation of motion in integral form.

3. Write the integral version of the symmetron equation of motion as a linear matrix
relation.

We outline this process in detail in Sections 4.2.1–4.2.3.

4.2.1 Rescaling the symmetron equation of motion

We start with the differential form of the symmetron equation of motion as given in
ref. [73], and write it in its simplest form. The differential version of the symmetron
equation of motion is [73]:

∇2ϕ =
( ρ

M2
− µ2

)
ϕ+ λϕ3. (4.6)

where ρ is the density of the medium, µ and M are mass scales which define the nature
of the effective potential in the presence of matter, and λ is a dimensionless constant.
In order to eliminate λ from the equation of motion, we introduce a new field variable
ϕ̂ ≡ ϕ/ϕ∞ where the ϕ∞ are the extrema of the symmetron field [78]:

ϕ∞ =

√
ρ0

λM2
(µ̂2 − 1) (4.7)

and the mass scale µ has been rescaled such that

µ̂2 =
M2

ρ0
µ2. (4.8)

We also rewrite the Laplacian such that ∇̂2 ≡ L2∇2 where L is the length scale of the
vacuum chamber. Substituting these new definitions into Equation 4.6, we find

α∇̂2ϕ̂ = −
(
µ̂2 − ρ̂

)
ϕ̂+

(
µ̂2 − 1

)
ϕ̂3 (4.9)

where ρ̂ ≡ ρ/ρ0 and the dimensionless constant α is given by

α =
M2

L2ρ0
. (4.10)

ρ0 is a reference density, typically chosen to be the density of the vacuum gas.

4.2.2 Integral version of the symmetron equation of motion

Following on from the rescaling of the symmetron equation of motion, the next step in
putting the equation of motion in a form that can be used with SELCIE is to write it in
its integral form. Following the method in ref. [77], we multiply both sides of Equation
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4.9 by a test function vj ,

α∇̂2ϕ̂vj = −
(
µ̂2 − ρ̂

)
ϕ̂vj +

(
µ̂2 − 1

)
ϕ̂3vj , (4.11)

and integrate over the domain Ω to find:

α

∫
Ω
∇̂2ϕ̂vj dx = −

∫
Ω

(
µ̂2 − ρ̂

)
ϕ̂vj dx+

∫
Ω

(
µ̂2 − 1

)
ϕ̂3vj dx. (4.12)

The left hand side of Equation 4.12 can be integrated by parts:

α

∫
Ω
∇̂2ϕ̂vj dx = αvj∇̂ϕ̂− α

∫
Ω
∇̂ϕ̂ · ∇̂vj dx

= −α

∫
Ω
∇̂ϕ̂ · ∇̂vj dx (4.13)

where the boundary term goes to 0 since vj vanishes on ∂Ω for all j. Substitution of
Equation 4.13 into Equation 4.12 gives us the integral form of the rescaled symmetron
equation of motion:

α

∫
Ω
∇̂ϕ̂ · ∇̂vj dx =

∫
Ω

(
µ̂2 − ρ̂

)
ϕ̂vj dx−

(
µ̂2 − 1

) ∫
Ω
ϕ̂3vj dx. (4.14)

4.2.3 The symmetron equation of motion as a linear matrix relation

As discussed in Section 4.1, we choose to use the Picard method for the iterative solution
of nonlinear differential equations to find the symmetron field. In the Picard method,
we take the Taylor expansion of the nonlinear term in the equation of motion around
some field ϕ̂k which is the kth estimate of the field ϕ̂. In the case of the symmetron, the
nonlinear term is the final term in Equation 4.14. Since the ϕ̂k will be updated each
time the Taylor expansion is performed, it is sufficient to only expand up to the term
linear in ϕ̂. Taylor expanding ϕ̂3 around ϕ̂k we find

ϕ̂3 ≃ ϕ̂3
k + 3ϕ̂2

k

(
ϕ̂− ϕ̂k

)
+O

(
ϕ̂− ϕ̂k

)2
≃ 3ϕ̂2

kϕ̂− 2ϕ̂3
k. (4.15)

Substitution of the last line of Equation 4.15 into the integral version of the symmetron
equation of motion in Equation 4.14 leads to

α

∫
Ω
∇̂ϕ̂ · ∇̂vj dx =

∫
Ω

(
µ̂2 − ρ̂

)
ϕ̂vj dx−

(
µ̂2 − 1

) ∫
Ω

(
3ϕ̂2

kϕ̂− 2ϕ̂3
k

)
vj dx. (4.16)

With the equation of motion in this form, that is, the left hand side bilinear in ϕ̂ and vj ,
and the right hand side linear in vj , FEniCS can be used to solve for the scalar field ϕ̂.
This procedure is then iterated by setting ϕ̂k+1 = ϕ̂, and solving for the new ϕ̂. The
iteration scheme is repeated while the condition

∣∣∣ϕ̂k+1 − ϕ̂k

∣∣∣ > δ is satisfied, where δ is
some tolerance set by the user.
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Following the method laid out in ref. [77] for the chameleon field, we write the integral
version of the symmetron equation of motion (Equation 4.16) as a linear matrix relation,

MU = b (4.17)

where U is a vector with elements Ui. As in Equation 4.1, we decompose the symmetron
field ϕ̂ using the basis functions êi:

ϕ̂ =
∑
i

Φ̂iêi (4.18)

where Φ̂i = Φ̂(Pi). Let M be a matrix with elements

Mij =

∫
Ω
∇̂êi · ∇̂vj dx. (4.19)

The left hand side of Equation 4.16 then becomes

αMΦ̂. (4.20)

Rewriting the terms on the right hand side of Equation 4.16 in terms of the basis
functions êi, we have

αMΦ̂ =

[∫
Ω
µ̂2 · êi · vjdx

]
Φ̂i −

[∫
Ω
ρ̂ · êi · vjdx

]
Φ̂i

−
[∫

Ω
3ϕ̂2

k

(
µ̂2 − 1

)
· êi · vjdx

]
Φ̂i + 2

(
µ̂2 − 1

) ∫
Ω
ϕ̂3
kvj dx. (4.21)

Now let P be a vector with elements

Pij =

∫
Ω
ρ̂ · êi · vj dx, (4.22)

and define the matrix Bk and the vector Ck by

[Bk]ij =

∫
Ω
ϕ̂2
k · êi · vj dx (4.23a)

[Ck]j =

∫
Ω
ϕ̂3
k · vj dx. (4.23b)

In terms of these matrices, the symmetron equation of motion is

αMΦ̂ = µ̂2Φ̂−PΦ̂− 3
(
µ̂2 − 1

)
BkΦ̂+ 2

(
µ̂2 − 1

)
Ck, (4.24)

or more simply:

[
αM+P+ 3

(
µ̂2 − 1

)
Bk − µ̂2I

]
Φ̂ = 2

(
µ̂2 − 1

)
Ck (4.25)

where I is the identity matrix. Equation 4.25 is a modification of Equation 4.3, which
solves for the symmetron equation of motion rather than for the chameleon. Now that
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we have the symmetron equation of motion written in matrix form, we can write a new
solver to be used in conjunction with the SELCIE code that finds solutions for the
symmetron field around an arbitrarily-shaped source.

4.3 Reliability checks for the SELCIE symmetron solver
Now that we have succeeded in writing a new solver in SELCIE to find solutions to the
symmetron equation of motion, it is essential to perform tests on the new code to check
that it is working as expected and producing reliable results. As a first model, we choose
an empty vacuum chamber and investigate how the field changes as we vary some of the
model parameters. For these simulations, the radius of the vacuum chamber is set to 1.

4.3.1 The effect of varying µ̂

The parameter µ̂ is a mass scale related to the Compton wavelength of the field, which
is the characteristic scale over which the field likes to vary:

C =
1

µ̂
(4.26)

where C is the Compton wavelength. A large value of µ̂ corresponds to a small value
of the Compton wavelength C. In order to test the validity of the symmetron solver,
we ran the solver for a range of µ̂ values to see whether it was producing results in
accordance with our expectations. Since the radius of the vacuum chamber is set to
L = 1, we expect that the symmetron field will be zero everywhere when µ̂ < 1, when
the Compton wavelength is longer than the radius of the vacuum chamber. A test run
on the empty vacuum chamber model confirms that this is indeed the case.

Figure 4.2 shows the symmetron field ϕ̂ as a function of r̂, the radial distance from the
centre of the vacuum chamber. As expected, the field is at its highest point in the centre
of the vacuum chamber when r̂ = 0, and it returns to ϕ̂ = 0 in the walls of the vacuum
chamber where r̂ = 1, where the density is highest. As the value of µ̂ gets closer and
closer to 1, the symmetron field has more room to get to where it wants to be: at one of
the two degenerate minima. If µ̂ gets too close to 1, however, we see no field profile. In
our test simulation for the symmetron field solution in an empty vacuum chamber, we
found that the field remains at 0 for values of µ̂ ≤ 1.0004.

4.3.2 The effect of varying α

In addition to investigating what happens when we vary the value of µ̂, we also ran a
series of simulations with the empty vacuum chamber model with various values of the
constant α to see what effect changing α has on the symmetron field profile. As defined
in Section 4.2.1, α is a dimensionless constant given by

α =
M2

L2ρ0
(4.27)
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(a) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for µ̂ = 2.

(b) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for µ̂ = 1.05.

(c) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for µ̂ = 1.005.

(d) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for µ̂ = 1.0005.

Figure 4.2: The symmetron field ϕ̂ as a function of distance from the centre of the spherical
vacuum chamber, r̂, for a variety of µ̂ values. As the value of µ̂ gets closer to 1, the field has
more room to reach one of the field minima.
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(a) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for α = 10−8.

(b) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for α = 10−6.

(c) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for α = 10−5.

(d) The symmetron field ϕ̂ as a function of
distance from the centre of the vacuum chamber
r̂, for α = 10−4.

Figure 4.3: The symmetron field ϕ̂ as a function of distance from the centre of the spherical
vacuum chamber, r̂, for a variety of α values. As the value of α increases, the field has more
room to reach one of the field minima.
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where M is a mass scale, L is the length of the vacuum chamber and ρ0 is a reference
density, typically taken to be the density of the vacuum gas. It appears as a scaling
factor on the left hand side of the matrix representation of the symmetron equation of
motion (Equation 4.25). We expect that, as was the case for µ̂, the symmetron field will
be at its highest point in the centre of the vacuum chamber, and will go to zero in the
chamber walls where the density is highest. The four panels in Figure 4.3 show that
this is indeed the case. As the value of α increases, the symmetron field varies more
slowly and it has more room to try to reach one of the two degenerate minima: this is
the same effect as taking the value of the coupling parameter µ̂ closer to 1. Since the
simulations for the empty vacuum chamber model agree with our expectations for what
should happen to the symmetron field profile as we vary the parameters µ̂ and α, we
can be reasonably confident that the symmetron solver for SELCIE is working correctly
and producing reliable results.

4.4 Initial results with sources inside the chamber

4.4.1 Two-sphere model

After showing that the symmetron solver was working as expected, the next step is to
use SELCIE’s mesh-generating capabilities to design some vacuum chamber models with
sources inside. As a first step, we choose a simple model with two identical spherical
matter distributions inside the chamber. The results from this simulation are shown
in Figure 4.4. We choose the values α = 10−10 and µ̂ = 100 for this run of the code,
since they correspond to a sharp field profile; the solution should be more defined than
if the field were allowed to relax more slowly. The initial condition of the field is set to
ϕ̂0 = 1. The density distribution in 4.4a is chosen such that the density of matter in the
chamber is zero everywhere apart from the two spherical sources. This is an idealized
scenario: it would not be experimentally possible to achieve a density of exactly zero
inside the chamber, although very low densities are achievable. A vacuum of 10−10 Torr
of hydrogen, for example, corresponds to a vacuum density of ρvac = 5×10−35 GeV4 (ref.
[56]). Our idealized simulation should therefore give useful insight into the behaviour of
the symmetron field solution around matter sources. Figure 4.4b shows the symmetron
field solution obtained with the symmetron solver in SELCIE. The field is zero in the
two spherical sources and in the vacuum chamber walls where the density is high, and
it remains at one of the two degenerate minima in the rest of the chamber: ϕ̂ = 1. In
this case, a symmetry-breaking phase transition does not occur and we do not see the
formation of a domain wall in the static field solution. The field profile in Figure 4.4c
shows what we expect from the field solution: as we move radially outwards from the
centre of the vacuum chamber at r̂ = 0 to the outer wall of the chamber at r̂ = 1, the
field ϕ̂ is equal to 1 everywhere apart from in the spherical sources and in the chamber
wall, where it is zero. Spiky features at the top of the field profile plot are numerical
artefacts resulting from low mesh resolution; they appear around ϕ̂ = 1 since this is a
region in which the field solution is rapidly changing.
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(a) Density distribution for the two-sphere
model. The colour bar indicates the matter
density inside the vacuum chamber.

(b) Solution to the symmetron equation of mo-
tion obtained with the symmetron solver in
SELCIE for the two-sphere model. The colour
bar indicates the value of the symmetron field
ϕ̂.

(c) Field profile showing the r̂-dependence of ϕ̂
for the two-sphere model. Differently coloured
lines correspond to different values of θ, the
angle from the centre of the vacuum chamber
to the outer wall.

Figure 4.4: Initial results from the symmetron solver with two identical spherical sources inside
the vacuum chamber.
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(a) Density distribution for the two-ellipse
model. The colour bar indicates the matter
density inside the vacuum chamber.

(b) Solution to the symmetron equation of mo-
tion obtained with the symmetron solver in
SELCIE for the two-ellipse model. The colour
bar indicates the value of the symmetron field
ϕ̂.

(c) Field profile showing the r̂-dependence of ϕ̂
for the two-ellipse model. Differently coloured
lines correspond to different values of θ, the
angle from the centre of the vacuum chamber
to the outer wall.

Figure 4.5: Initial results from the symmetron solver with two identical elliptical sources inside
the vacuum chamber.

4.4.2 Two-ellipse model

As outlined in Section 3.2, our initial proposal for a topologically-tailored vacuum
chamber is a simple model composed of two spikes which can pin a domain wall in place.
We choose to make the sources elliptical rather than spherical, since ellipses are closer
to our two-spike design. We can then use SELCIE’s inbuilt mesh-generating function
for ellipses to create a two-ellipse model. Figure 4.5 shows the results of a second test
simulation of a model with two identical elliptical sources. To produce these results, we
choose α = 10−10, µ̂ = 100 and set the initial condition of the field as ϕ̂0 = 1. As in
the two-sphere model in Section 4.4.1, the density distribution is chosen such that the
density of matter is zero everywhere apart from in the two elliptical sources, as shown
in Figure 4.5a. Figure 4.5b shows the symmetron field solution calculated with the
symmetron solver in SELCIE. The field is zero in the sources and in the vacuum chamber
walls, and it remains at ϕ̂ = 1 everywhere else in the chamber, as in the two-sphere
model. The field does not have enough energy to escape from the potential well, and as



4.4. Initial results with sources inside the chamber 45

such there is no symmetry-breaking phase transition and a domain wall does not form.
The profile in Figure 4.5c matches our expectations for the behaviour of the field: at the
centre of the vacuum chamber where r̂ = 0, the symmetron field ϕ̂ = 1. As we move
radially outward from the centre of the chamber towards r̂ = 1, the symmetron field is
zero everywhere apart from in the elliptical mass distributions and in the walls of the
vacuum chamber. As in the two-sphere model, spiky features appear in the field profile
around ϕ̂ = 1. These are numerical artefacts caused by the fact that the symmetron field
solution is changing rapidly in this region; they would disappear if we were to increase
the mesh resolution.

4.4.3 Spatially-varying initial conditions

In Section 4.4.1, we showed that the symmetron solver for SELCIE produces physically
sensible results for the symmetron field around two identical sources. However, we did
not observe the formation of domain walls: we would like to investigate the regime where
it is not energetically favourable for the field to return to ϕ̂ = 1 in the region between
the two sources. To see the formation of domain walls in our simulations, we may need
to ‘seed’ the domain wall in the initial conditions of the field. One way of achieving this
is to use a spatially-varying initial guess. We showed in Section 2.1 that the analytical
solution for the symmetron field of an infinite and straight domain wall is given by a
tanh profile:

ϕ̂(x) =
µ̂

λ
tanh

( x

∆

)
(4.28)

where

∆ =

√
2

λϕmin
. (4.29)

It therefore makes sense to try a spatially-varying initial guess that follows a tanh profile,
to encourage a domain wall to form. We achieve this using SELCIE’s inbuilt function
for spatially-varying initial conditions. We choose to make the tanh profile very sharp,
so that it approximates a step function. The reason for this is that when the initial
condition is very sharp, we are making very few assumptions about how the field will
behave. The initial field values in the two halves of the chamber are then ϕ̂0 = ±1, that
is, the two degenerate minima of the field.

Figure 4.6 shows the initial results of the two-ellipse model with a spatially-varying
initial condition in the form of a tanh profile. We choose a value of µ̂ very close to 1

(µ̂ = 1.0000001) for this simulation, since it is interesting to see what happens in the case
of spatially-varying initial conditions when the field is allowed to relax more slowly. In
Figure 4.6a it is clear that a symmetry-breaking transition has occurred: the field values
in the two halves of the chamber are ϕ̂ = ±1, and a domain wall has formed between
the two ellipses along the ŷ = 0 axis. In each half of the chamber, the symmetron field
has insufficient energy to escape from the potential well and it therefore remains at
each of the two degenerate minima. The mesh patterns in both halves of the chamber
are numerical artefacts which disappear when the mesh is more refined, at the cost of
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(a) Field solution for the two-ellipse model with a spatially-varying initial
condition. The colour bar indicates the value of ϕ̂.

(b) Field profile for the two-ellipse model with a spatially-varying initial
condition. Differently coloured lines correspond to different values of θ,
the angle from the centre of the vacuum chamber to the outer wall.

Figure 4.6: Initial results obtained with the symmetron solver in SELCIE for the two-ellipse
model with a spatially-varying initial condition.
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increased computational time. We note that these spatially-varying initial conditions are
extremely idealized, and it is possible for a domain wall form in this scenario without any
sources inside the chamber; in some test runs of the code, we found that a domain wall
can exist in an empty vacuum chamber. However, the presence of matter overdensities
can encourage domain walls to form, and might allow us to ensure that a domain wall is
longer-lived. Figure 4.6b shows the symmetron field profile as a function of r̂, the radius
of the vacuum chamber. As expected, as we move radially outwards from the centre of
the chamber at r̂ = 0 to the outer wall at r̂ = 1, ϕ̂ = 0 in the elliptical sources and in
the chamber walls, and in the rest of the chamber ϕ̂ = ±1 depending on which half of
the chamber we are moving through.

We have shown that with a careful choice of parameters and initial conditions, we can
encourage a domain wall to form in a topologically-tailored vacuum chamber. The next
step is to use this static domain wall solution to perform simulations with test particles,
in order to investigate the effect that a domain wall has on the motion of matter. In
Chapter 5, we detail our results of test particle simulations on the static domain wall
solution, and discuss their implications.



Chapter 5

Test Particle Simulation

In the presence of a domain wall, a matter particle will be acted upon by the fifth force
proportional to the scalar gradient arising from the formation of the wall. If the new
light scalar field originates from a modification of gravity, then we might expect the
scalar to couple universally to gravity. If the scalar comes from particle physics then this
universal coupling might be an approximation, but the differences between couplings to
different particle species are generally expected to be small [83]. If we can pin a domain
wall in place inside a vacuum chamber as described in Chapter 3, we can then perform a
particle experiment to detect the effect that the domain wall has on the motion of matter.
A deflection of a matter particle by a domain wall would constitute a clear experimental
signature of the fifth force. In realistic experiments, the matter particles used could be
ultracold atoms or molecules, or nanobeads. We simulate a simple experimental scenario
in which a test particle is dropped with some initial velocity towards the pinned domain
wall. We can make some predictions for the behaviour of the particle using the analytic
solution for an infinite and straight domain wall. How well the experimental results are
modelled by the analytic solution will vary depending on the thickness of the domain
wall.

5.1 Infinite and straight domain walls
The equation of motion of an infinite, straight and static domain wall is solved by a
tanh profile:

ϕ(y) = ϕ0 tanh (y/d) (5.1)

where d =
√
2/µ is the width of the domain wall, and

ϕ2
0 =

µ2

λ

(
1− ρ0

ρ∗

)
. (5.2)

As in ref. [73], we can use conservation of energy arguments to make analytical predictions
for the behaviour of a test particle in the presence of an infinite and straight domain wall.
We assume that the test particle couples to the scalar field in the same way that the
matter sourcing the scalar field profile does. In each direction, the conserved Hamiltonian

48



5.1. Infinite and straight domain walls 49

of a test particle of unit mass is given by [73]

Hy =
ẏ2

2
+

ϕ2(y)− ϕ2
0

2M2
, (5.3)

where we have chosen the zero point of the Hamiltonian to lie at infinity. Rearranging
the Hamiltonian in terms of the particle velocity ẏ = dy

dt , we find

dy
dt

=

(
2Hy −

ϕ2(y)− ϕ2
0

M2

)1/2

(5.4)

=

(
2Hy −

ϕ2
0 tanh

2(y/d)− ϕ2
0

M2

)1/2

(5.5)

where in the second line we have used the tanh profile solution in Equation 5.1. To solve
for the particle’s position y, we rewrite the above equation as∫

y

y0

1(
2Hy −

ϕ2
0 tanh

2(y/d)−ϕ2
0

M2

)1/2 dy =

∫ t

t0

dt (5.6)

⇒

∫
y

y0

1

(2Hy)1/2
(
1− ϕ2

0
2HyM2 tanh

2(y/d) +
ϕ2
0

2HyM2

)1/2 dy = t− t0. (5.7)

We now introduce the quantity 1 + ϕ2
0/(2HyM

2), which we call a2 when positive and
−α2 when negative: a2 = 1 + ϕ2

0/(2HyM
2) > 0

−α2 = 1 + ϕ2
0/(2HyM

2) < 0.
(5.8)

In the positive case, we have
ϕ2
0

2HyM2
= a2 − 1 (5.9)

and the left hand side of Equation 5.7 becomes

1

(2Hy)1/2

∫
y

y0

1

(1− (a2 − 1)(tanh2(y/d)− 1))1/2
dy. (5.10)

Using the identity tanh2 (x) = 1− sech2(x), this simplifies to

1

(2Hy)1/2

∫
y

y0

1

(1− (a2 − 1) sech2(y/d))1/2
dy (5.11)
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or

1

(2Hy)1/2

∫
y

y0

1(
1 + a2−1

cosh2 (y/d)

)1/2 dy. (5.12)

This integral can be solved by substitution. We choose

u =
sinh (y/d)

a
(5.13)

⇒ du
dy

=
cosh (y/d)

ad
, (5.14)

so that the integral becomes

1

(2Hy)1/2

∫
1
a
sinh (y/d)

1
a
sinh (y0/d)

1(
1 + a2−1

cosh2 (y/d)

)1/2 ad

cosh (y/d)
du, (5.15)

which can be rewritten as

1

(2Hy)1/2

∫
1
a
sinh (y/d)

1
a
sinh (y0/d)

1(
1 + a2−1

1+sinh2 (y/d)

)1/2 ad

(1 + sinh2 (y/d))1/2
du. (5.16)

Equation 5.13 can be rearranged as

sinh (y/d) = au, (5.17a)

sinh2 (y/d) = a2u2. (5.17b)

Substituting these expressions into Equation 5.16 results in the simplified integral

d

(2Hy)1/2

∫
1
a
sinh (y/d)

1
a
sinh (y0/d)

1

(u2 + 1)1/2
du. (5.18)

We may now use the standard integral∫
1

(x2 +A2)1/2
= arcsinh

( x
A

)
+ C (5.19)

to find

d

(2Hy)1/2

(
arcsinh

(
1

a
sinh (y/d)

)
− arcsinh

(
1

a
sinh (y0/d)

))
= t− t0 (5.20)
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where we have substituted back in the right hand side of Equation 5.7. Rearranging
and taking sinh of both sides results in an expression describing one type of behaviour
exhibited by the test particle:

sinh

(
y(t)

d

)
= a sinh

(
(2Hy)

1/2(t− t0)

d
+ arcsinh

(
sinh (y0/d)

a

))
. (5.21)

Equation 5.21 is valid when the quantity a2 = 1 + ϕ2
0/(2HyM

2) > 0, and it describes
the scenario in which a test particle passes through the domain wall.

To find an expression for the second type of behaviour exhibited by a test particle, we
return to the integral in Equation 5.6:∫

y

y0

1(
2Hy −

ϕ2
0 tanh

2(y/d)−ϕ2
0

M2

)1/2 dy = t− t0. (5.22)

Using the identity tanh2 (x) = 1− sech2 (x), we can rewrite the integral on the left hand
side as

1

(−2Hy)1/2

∫
y

y0

1(
−1− ϕ2

0
2HyM2 sech

2(y/d)
)1/2 dy. (5.23)

In the negative case in Equation 5.8 we have α2 = −[1 + ϕ2
0/(2HyM

2)] > 0, such that

− ϕ2
0

2HyM2
= α2 + 1. (5.24)

Substituting this into Equation 5.23, we find

1

(−2Hy)1/2

∫
y

y0

1

(−1 + (α2 + 1) sech2(y/d))1/2
dy (5.25)

=
1

(−2Hy)1/2

∫
y

y0

1(
−1 + α2+1

cosh2 (y/d)

)1/2 dy (5.26)

=
1

(−2Hy)1/2

∫
y

y0

1(
−1 + α2+1

1+sinh2 (y/d)

)1/2 dy (5.27)

where we have used the additional trigonometric identities sech2(x) = 1/ cosh2 (x) and
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cosh2 (x) = 1 + sinh2 (x). To solve this integral, we make the substitution

u =
sinh (y/d)

α
(5.28)

⇒ du
dy

=
cosh (y/d)

αd
, (5.29)

and the integral becomes

1

(−2Hy)1/2

∫
1
α
sinh (y/d)

1
α
sinh (y0/d)

1(
−1 + α2+1

1+sinh2 (y/d)

)1/2 αd

cosh (y/d)
du (5.30)

=
1

(−2Hy)1/2

∫
1
α
sinh (y/d)

1
α
sinh (y0/d)

1(
−1 + α2+1

1+sinh2 (y/d)

)1/2 αd

(1 + sinh2 (y/d))1/2
du (5.31)

where in the second line we have used the fact that cosh (x) = (1 + sinh2 (x))1/2.
Rearranging the equation for u we find

sinh (y/d) = αu, (5.32a)

sinh2 (y/d) = α2u2, (5.32b)

and the integral in Equation 5.31 simplifies to

d

(−2Hy)1/2

∫
1
α
sinh (y/d)

1
α
sinh (y0/d)

1

(1− u2)1/2
du. (5.33)

We may now use the standard integral∫
1

(A2 − x2)1/2
dx = arcsin

( x
A

)
+ C (5.34)

to find

d

(−2Hy)1/2

(
arcsin

(
1

α sinh (y/d)

)
− arcsin

(
1

α sinh (y0/d)

))
= t− t0 (5.35)

where we have substituted back in the right hand side of Equation 5.22. Rearranging
this expression and taking sin of both sides results in

sinh

(
y(t)

d

)
= α sin

(
(−2Hy)

1/2(t− t0)

d
+ arcsin

(
sinh (y0/d)

α

))
. (5.36)
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Equation 5.36 is valid when the quantity α2 = −[1 + ϕ2
0/(2HyM

2)] > 0, and it describes
the scenario in which the test particle is trapped in the potential well of the domain
wall.

To summarize: we find that in the presence of a domain wall, the test particle will
behave in one of two ways:

1. If a2 = 1 + ϕ2
0/(2HyM

2) > 0, the particle passes through the domain wall and

sinh

(
y(t)

d

)
= a sinh

(
(2Hy)

1/2(t− t0)

d
+ arcsinh

(
sinh (y0/d)

a

))
, (5.37)

2. If α2 = −[1 + ϕ2
0/(2HyM

2)] > 0, the particle gets trapped by the domain wall and

sinh

(
y(t)

d

)
= α sin

(
(−2Hy)

1/2(t− t0)

d
+ arcsin

(
sinh (y0/d)

α

))
(5.38)

where y0 = y(t0) and ẏ0 = ẏ(t0). The conserved Hamiltonian Hy is dependent on the
velocity of the particle, and the behaviour of the particle in the presence of the domain
wall is therefore determined by its velocity. Above some threshold initial velocity, the
particle has enough energy to escape the potential well of the domain wall and travel
through it, but slow-moving particles will get trapped by the domain wall and oscillate
forwards and backwards across it.

5.2 Unexplored parameter space
Figure 5.1 shows the parameter space for our scalar field theory, where we have taken
λ = 10−10. By choosing a small value of λ, we are compromising between what is natural
and what is phenomenologically interesting: one might argue that natural values of λ
are much larger. However, we are focusing in on a region of parameter space in which
observable effects are possible in experiment. Very small values of λ are motivated by
pheonomenology such as gravitational waves; domain walls can source the observed
stochastic gravitational-wave background when [34]

µ

λ1/3
≈ 105 GeV, (5.39)

which could correspond to values of λ much smaller than 10−10. For this reason, we also
consider constraints on the symmetron model when λ = 10−30 (see Figure 5.2). In both
Figure 5.1 and Figure 5.2, the light opaque regions indicate where domain walls would
not form within our idealized experiment. The opaque band on the right of each plot is
the region in which the width of the domain walls would be greater than the size of the
vacuum chamber. The triangular opaque regions correspond to when the density in the
vacuum chamber walls is not high enough to restore the symmetry; for a domain wall
solution, we require that the symmetry is broken in the gas but restored in the chamber
walls. If figures 5.1 and 5.2 were larger, we would see an additional opaque band at the
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Figure 5.1: The parameter space for the scalar field theory, with λ = 10−10 [84]. The
light opaque shaded region indicates where domain walls would not form within our idealized
experiment, and the dark opaque shaded region at the bottom of the plot is excluded by existing
constraints from neutron bouncing experiments, cold neutron interferometry [85] and atom
interferometry [59]. The black dots indicate two points of interest in the parameter space,
corresponding to a thinner domain wall of width d = 10−4 m and a thicker domain wall of width
d = 10−3 m.

Figure 5.2: The parameter space for the scalar field theory, with λ = 10−30 [84]. The
light opaque shaded region indicates where domain walls would not form within our idealized
experiment, and the dark opaque shaded region is excluded by existing constraints from atom
interferometry [59].
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bottom of each plot corresponding to the region in which the gas inside the vacuum
chamber restores the symmetry. In both figures, the colour scale is ∆y = y(t)−y0+ ẏ0(t):
the perturbation caused by a domain wall to the motion of a test particle after 10 s,
with initial velocity ẏ0 = 10−3 m s−1 and starting position y0 = 5× 10−3 m, that moves
perpendicularly towards an infinite straight domain wall located at y = 0. We choose
this velocity because the equations in Section 5.1 describing the two types of behaviour of
the test particle suggest that a particle of this initial velocity could exhibit the oscillatory
motion in case 2 (Equation 5.38). Smaller values of λ correspond to stronger fifth forces,
and therefore larger particle displacements. For obvious reasons, it is advantageous for
the particle displacements to be as large as possible in experiments: a modern high
precision camera is able to detect a displacement of ∆y = 10 µm or more. The white
dash–dotted line in both plots corresponds to d = 8.2× 10−5 m, where quantum cor-
rections from the symmetron field could play the role of the cosmological constant [63, 86].

In Figure 5.1, the dark opaque shaded region at the bottom of the plot is excluded by
existing constraints from neutron bouncing experiments, cold neutron interferometry [85]
and atom interferometry [59]. The curved lines towards the bottom right of Figure 5.1
correspond to the experimental scenario in which a particle is trapped in the potential
well of the domain wall and undergoes sinusoidal oscillations, as in case 2 in Section
5.1. The dashed blue line indicates where ∆y = 10 µm, which is the limit of current
detectability. The white solid line shows where µMPl =

√
λM2, that is, where the

fifth force in vacuum has gravitational strength. The black dots in Figure 5.1 are two
points of interest in the parameter space, which we explore in more detail in the rest
of this chapter. They correspond to a thinner domain wall of width d = 10−4 m, and
a thicker domain wall of width d = 10−3 m. Thin domain walls are more difficult to
model numerically, since they require a much finer mesh for the solution of the scalar
field. However, it is useful to examine the case of a thin domain wall for the purposes
of comparison with our analytic solution for infinite and straight domain walls. If the
numerical solution for a thin domain wall matches what we expect from the analytical
calculation, this will be a good indication that the finite element code is working correctly.
It is also useful to look at the case of a thicker domain wall, as this scenario is more
easily achievable experimentally, and will give some insight into the particle deflections
we can expect to achieve in a realistic experiment.

In Figure 5.2, the dark shaded region is excluded by existing constraints from atom
interferometry [59]. Constraints from neutron bouncing experiments and cold neutron
interferometry are not present in this plot, as these experiments are not relevant for the
parameter space of λ = 10−30. The curved region at the bottom right of the plot shows
where a particle would be trapped in the potential well of the domain wall and undergo
sinusoidal oscillations, as in case 2 in Section 5.1. Unlike in Figure 5.1, the details of
these oscillations are not resolved. The white dotted line indicates where µ/λ1/3 = MeV;
close to this line, domain walls can make up a fraction of the dark matter in the Universe
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today [11].

5.3 Evolving the motion of a test particle
Since infinite straight domain walls are not possible in any experimental scenario, we
require a numerical solution to investigate the behaviour of a test particle in the presence
of the domain wall. We use a leapfrog algorithm to evolve the motion of the particle
on the static scalar field background. The leapfrog algorithm consists of an initial
desynchronization of the velocity:

v1/2 = v − 1

2
adt (5.40)

where a is the acceleration of the particle due to the symmetron field. In terms of the
gradient of the scalar field ∇̂ϕ̂, the acceleration is given by

a = −c2

L

µ2

λM2
ϕ̂∇̂ϕ̂. (5.41)

Inside a loop over time, the position and velocity of the test particle are updated via

v1/2 = v1/2 + a dt, (5.42a)

x = x+ v1/2 dt, (5.42b)

after which the velocity is resynchronized with

v = v1/2 −
1

2
a dt. (5.43)

The use of a leapfrog algorithm involves the choice of a time step over which the simulation
is run. If this time step is too large, the leapfrog algorithm no longer accurately captures
the dynamics of the test particle; the particle could step over the domain wall and any
insight into the particle’s change in behaviour due to the presence of the domain wall
will be lost. Conversely, if the time step is chosen to be very small, the computational
time will be increased but the particle’s trajectory will stay the same; below a certain
size of time step, it will take longer to achieve the same result. We tested the leapfrog
code with various time steps, and are confident that the chosen time step is small enough
to accurately represent the motion of the particle.

5.4 Thin domain walls
For the thin domain wall case that we model, the width d = 10−4 m of the domain wall
is much smaller than the internal dimensions of the vacuum chamber. For this reason,
we expect the motion of a test particle to be well-modelled by the analytic solution for
an infinite and straight domain wall. We choose µ = 2× 10−13 GeV, M = 100 GeV and
λ = 10−10, corresponding to the left black dot in Figure 5.1. In the case that the initial
position is y0 = 5× 10−3 m, the analytic solution in Section 5.1 suggests that particles
with initial velocities of ẏ0 = 3× 10−3 ms−1 or below will be trapped in the potential
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Figure 5.3: The motion of two test particles with initial position (x0, y0) = (−0.005, 0.005) m
and initial velocities (ẋ0, ẏ0) = (10−3,−10−3) ms−1 (solid curve) and (ẋ0, ẏ0) =
(10−2,−10−2) ms−1 (dashed curve). We choose µ = 2× 10−13 GeV, M = 100 GeV and
λ = 10−10, corresponding to the left black dot in Figure 5.1. The colour bar indicates
the value of the scalar field, with ϕ0 normalized to 1. The simulation runs for t = 35 s.
The particle with lower initial velocity gets trapped in the potential well of the domain
wall and oscillates backwards and forwards across it; these oscillations are shown to scale
in the figure. The particle with higher initial velocity has enough energy to escape the
potential well and passes straight through the wall.
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well of the domain wall, and particles with initial velocities higher than this will pass
straight through the domain wall.

In Figure 5.3 we show the results of two numerical simulations for a thin domain
wall, corresponding to two test particles with different initial velocities. The colourbar
indicates the value of the scalar field, with ϕ0 normalized to 1. The simulation runs
for t = 35 s. We calculate the motion of each particle in the scalar field background
using the leapfrog algorithm described in Section 5.3. We find that, as expected, a
particle with initial velocity (ẋ0, ẏ0) = (10−3,−10−3) ms−1 is trapped by the domain
wall: its path is shown by the solid red sinusoidal curve. The particle does not have
enough energy to escape from the potential well of the symmetron field, so it oscillates
backwards and forwards across the domain wall. The dashed red line in Figure 5.3 shows
the path of a test particle with a higher initial velocity of (ẋ0, ẏ0) = (10−2,−10−2) ms−1.
This particle has enough energy to escape the potential well, and it therefore passes
straight through the domain wall, in agreement with the analytic solution.

5.5 Thick domain walls
The second point in parameter space that we choose to explore in more detail corresponds
to a thicker domain wall, and is indicated by the right black dot in Figure 5.1. In this
case we have µ = 2×10−14 GeV, M = 104 GeV and λ = 10−10. The width of the domain
wall is d = 10−3 m, and the simulation runs for t = 3000 s. For a thicker domain wall, a
test particle must be travelling at a much slower velocity than in the thin wall case in
order for us to be able to observe the effects of the domain wall on the particle motion.
We do not expect the effects of thick domain walls to be well-modelled by the analytic
approximation for a thin and infinite domain wall in Section 5.1. We find that, for the
values of initial velocity that we have simulated (down to (ẋ0, ẏ0) = (10−5, 10−5) ms−1),
the test particle always passes through the domain wall.
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Figure 5.4: The motion of a test particle with initial position (x0, y0) = (−0.005, 0.005) m
and initial velocity (ẋ0, ẏ0) = (10−5, 10−5) ms−1. We choose µ = 2× 10−14 GeV, M = 104 GeV
and λ = 10−10, corresponding to the right black dot in Figure 5.1. The colour bar indicates
the value of the scalar field, with ϕ0 normalized to 1. The simulation runs for t = 3000 s. The
particle has enough energy to escape the potential well of the domain wall, and is able to travel
through it. However, the trajectory of the particle is altered when it approaches the domain
wall; it is deflected by the scalar fifth force.



Chapter 6

Coupling to Electromagnetism

We have thus far only considered the impact of the symmetron fifth force on an arbitrary
test particle. By allowing the symmetron to couple to electromagnetism, we can
contextualize our findings in terms of realizable experiments, both in the laboratory and
in astronomical or cosmological settings. In this chapter, we study the dynamics of a
photon coupled to a domain wall. By deriving a bound on the wavenumber k of the
photon, we can find approximate numerical values for the reflection and transmission
coefficients when the photon is incident on a domain wall. These values allow us to make
some preliminary comments on the likelihood of observing the impact of a domain wall
on the dynamics of a photon in experiment.

6.1 Equation of motion for a photon coupled to a symmetron
We can choose to introduce a coupling that respects the ϕ → −ϕ symmetry of the
symmetron model. The equation of motion for a photon coupled to the symmetron field
takes the form:

∇σ

(
Fσρ

(
1 +

4ϕ2

M2

))
= 0 (6.1)

where the electromagnetic tensor Fσρ = ∂σAρ − ∂ρAσ. The equation of motion comes
from varying the Lagrangian of the photon with respect to the photon field Aµ [87]. We
assume that the scalar field is a symmetron, which forms a static domain wall with a
tanh profile solution given by

ϕ = ϕ0 tanh
x

d
. (6.2)

We also assume the gauge condition

∂αA
α = 0. (6.3)

Defining the function f(x) as

f(x) = 1 +
4ϕ2

0

M2
tanh2

x

d
, (6.4)

60
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the equation of motion for the photon becomes

∇σ (f(x)Fσρ) = 0. (6.5)

Using the product rule, the equation of motion for the photon field Aµ is

2Aµ +
∇νf

f
(∇νAµ −∇µAν) = 0. (6.6)

As the function f(x) ≡ f is only dependent on x, Equation 6.6 simplifies to

2Aµ +
f ′

f
(∇xAµ −∇µAx) = 0. (6.7)

The Ax equation is unchanged, and the Ay and Az equations have the same form:

2Ax = 0 (6.8a)

2Ay +
f ′

f
(∇xAy −∇yAx) = 0 (6.8b)

2Az +
f ′

f
(∇xAz −∇zAx) = 0. (6.8c)

The equations of motion may also be written in terms of the electric and magnetic fields:

Ei = F0i (6.9a)

Bi = −1

2
ϵijkF

jk. (6.9b)

Following the logic laid out in ref. [87], we can use these equations to recover the
modified Maxwell equations in the form

∇ · B = 0 (6.10a)

∇× E + Ḃ = 0 (6.10b)

∇ · (f(x)E) = 0 (6.10c)

∇× (f(x)B) = ∂0 (f(x)E) . (6.10d)

Using Equation 6.9b, we find

∇ ·Bi = ∇i

(
−1

2

)
ϵijkF

jk (6.11)

=
1

2
ϵijk∇i (∂jAk − ∂kAj) (6.12)

= 0 (6.13)

⇒ ∇ · B = 0 (6.14)
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where the third line follows from the antisymmetry of ϵijk. Then taking the curl of the
electric field E, we find

∇× E = ϵijk∇jEk

= ϵijk∇j (∂0Ak − ∂kA0)

= ϵijk∂0∇jAk, (6.15)

and Ḃ is given by

Ḃ = −1

2
ϵijkḞjk

= −1

2
ϵijk

(
∂jȦk − ∂kȦj

)
= −1

2
ϵijk (ϵijk − ϵikj)

= −1

2
ϵijk (ϵijk + ϵijk)

= −ϵijk∂jȦk. (6.16)

Therefore, we have
∇× E + Ḃ = 0. (6.17)

To find the third of the modified Maxwell equations, we use the equation of motion for
the photon (Equation 6.44) and Equation 6.9a:

∂µ
(
f(x)Fµ0

)
= 0 & ∂µ

(
f(x)Fµi

)
= 0

⇒ −∂0
(
f(x)F 00

)
+ ∂i

(
f(x)F i0

)
= 0

⇒ ∇ · (f(x)E) = 0 (6.18)

where Equation 6.18 follows from the fact that F 00 = 0. To find the final modified
Maxwell equation, we start from

−∂0
(
f(x)F 0i

)
+ ∂j

(
f(x)F ji

)
= 0 (6.19)
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and take the curl of f(x)B to find

∇× (f(x)B) = ϵijk∇j (f(x)Bk)

= ϵijk∇j

(
f(x)

(
−1

2

)
ϵkpqF

pq

)
= −1

2
∇j (f(x) (∂ip∂jq − ∂iq∂jp)F

pq)

= −1

2
∇j

(
f(x)

(
F ij − F ji

))
= −1

2
∇j

(
2f(x)F ij

)
= −∇j

(
f(x)F ij

)
= ∇j

(
f(x)F ij

)
. (6.20)

Therefore, we have
−∂0 (f(x)E) +∇× (f(x)B) = 0

⇒ ∇× (f(x)B) = ∂0 (f(x)E) . (6.21)

Assuming that f ≡ f(x), the wave equations for the electric and magnetic fields
associated to the modified Maxwell equations are then

2Ei +
f ′

f
∇xEi = δix

(
f ′′

f
− (f ′)2

f2

)
Ex (6.22a)

2Bi +
f ′

f
∇xBi = (Bi − δixBx)

(
f ′′

f
− (f ′)2

f2

)
(6.22b)

In ref. [87], the second derivatives of f are neglected and the equation of motion for the
electric field becomes

2Ei +
f ′

f
∇xEi = 0. (6.23)

Upon making the assumption that the change in the dispersion relation is small, Equation
6.23 is solved to find the angular frequency ω:

ω = k − if ′kx
2fk

(6.24)

where k is the wavenumber, and the imaginary part is the dissipation term. Equation
6.23 shows that the domain wall, which has non-zero f ′, can change the amplitude of
the electric wave as it passes through the wall. The second derivative terms in the
full equation of motion for Ex can only be neglected when the following conditions are
satisfied:

f ′

f
< k (6.25a)

f ′′ < f ′k. (6.25b)



6.1. Equation of motion for a photon coupled to a symmetron 64

Assuming f ≈ 1, these conditions require

8ϕ2
0

dM2
< k (6.26a)

and 1 < kd. (6.26b)

In the low frequency regime, the above conditions will be violated. We can investigate
the behaviour of the photon’s equation of motion in this regime, to see whether we can
expect that electromagnetic waves will be reflected or transmitted through the domain
wall. When the frequency is small, the equation of motion for Ex becomes

2Ex = −

(
f ′′

f
− (f ′)2

f2

)
Ex. (6.27)

Instead of neglecting the second derivatives of f as in ref. [87], we make the assumption
that the domain wall is thin. We would like to find the behaviour of the term in brackets
in Equation 6.27 in the limit d → 0. Recalling the definition of the function f(x),

f(x) = 1 +
4ϕ2

0

M2
tanh2

x

d
, (6.28)

we have

f ′ =
8ϕ2

0

M2d
sech2

x

d
tanh

x

d
(6.29a)

and f ′′ =
8ϕ2

0

M2d2
sech4

x

d
− 16ϕ2

0

M2d2
sech2

x

d
tanh2

x

d
. (6.29b)

Substituting the above expressions into the term in brackets in Equation 6.27 and
integrating from −∞ to ∞ results in∫ ∞

−∞

f ′′

f
− (f ′)2

f2
dx ≃

∫ ∞

−∞
f ′′ − (f ′)2dx (6.30)

= − 256ϕ2
0

15M2d
(6.31)

where in the first line we approximate f ≈ 1, since the dominant contribution comes
from the f ′′ term. Equation 6.27 then becomes

2Ex =
256ϕ2

0

15M2d

(
15M2d

256ϕ2
0

[
8ϕ2

0

M2d2
sech4

x

d
− 16ϕ2

0

M2d2
sech2

x

d
tanh2

x

d

−
(

8ϕ2
0

M2d

)2

sech4
x

d
tanh2

x

d

])
Ex

=
256ϕ2

0

15M2d

(
15

256d

[
8 sech4

x

d
− 16 sech2

x

d
tanh2

x

d
− 64ϕ2

0

M2
sech4

x

d
tanh2

x

d

])
Ex (6.32)
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where the term in round brackets is a function that integrates to 1. We can now use the
fact that for any integrable function η(x) with∫ ∞

−∞
η(x)dx = 1, (6.33)

the expression

ηϵ(x) =
1

ϵ
η
(x
ϵ

)
(6.34)

will approximate a delta function in the limit ϵ → 0. The expression in round brackets
in Equation 6.32 is of the form in Equation 6.34, and we can therefore say that in the
limit d → 0, the term in round brackets can be approximated by δ(x). The equation of
motion for the photon in the thin wall approximation is then simplified to

2Ex =
256ϕ2

0

15M2d
δ (x)Ex. (6.35)

6.2 Reflection & transmission coefficients for a domain wall
coupled to a photon

As in Section 2.3, we can calculate the reflection and transmission coefficients of the
domain wall coupled to a photon. The difference in this scenario is that instead of
equations of motion for the domain wall and and a matter particle, we now have equations
of motion for the domain wall and a photon. The equation of motion for the domain
wall is the same as in Section 2.3:

d2ϕ

dz

2

= λϕ
(
ϕ2 − η2

)
. (6.36)

As shown in Section 6.1, the equation of motion for the photon coupled to the domain
wall is given by

2Ex =
256ϕ2

0

15dM2
δ (x)Ex, (6.37)

which can be written as

−∂2Ex

∂t2
+

∂2Ex

∂x2
− 256ϕ2

0

15dM2
δ (x)Ex = 0 (6.38)

for waves travelling in the x direction. The domain wall is located at x = 0. We would
like to find two separate solutions to the above equation of motion, corresponding to
either side of the domain wall where x < 0 and x > 0. The delta function δ(x) disappears
everywhere apart from x = 0, so the equation of motion can be simplified to:

−∂2Ex

∂t2
+

∂2Ex

∂x2
= 0. (6.39)

Since this is very similar to a wave equation, we can make the following ansatz:

Ex(x, t) = Êx(x)e
−ikt. (6.40)
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Substituting this into the equation of motion, we find:

∂2Ex

∂t2
= −k2Êxe

−ikt (6.41a)

∂2Ex

∂x2
= Ê′′

xe
−ikt (6.41b)

where ′ denotes a derivative with respect to x. Substituting Equations 6.41a and 6.41b
into the equation of motion for the photon, we find

k2Êxe
−ikt + Ê′′

xe
−ikt = 0. (6.42)

Writing the Êx in terms of Ex results in

Êx = Exe
ikt (6.43a)

Ê′′
x = E′′

xe
ikt, (6.43b)

and the equation of motion for the photon therefore becomes

E′′
x + k2Ex = 0. (6.44)

Equation 6.44 has the general solutionEL = Aeikx +Be−ikx x < 0

ER = Ceikx x > 0
(6.45)

where EL is the solution on one side of the domain wall (x < 0) and ER is the solution
on the other (x > 0). Aeikx is the incident wave, Be−ikx is the reflected wave and Ceikx

is the transmitted wave. The reflection and transmission coefficients for the photon
are dependent on the amplitudes A, B and C; we can calculate these reflection and
transmission coefficients by imposing matching conditions across the domain wall at
x = 0. Since the solution to the photon’s equation of motion, Ex, must be continuous
across the boundary, we have

EL(0) = ER(0) (6.46)

which leads to the following relation between the amplitudes A, B and C:

A+B = C. (6.47)

For the second matching condition, we note that the first derivative of the solution, E′
x,

is discontinuous across the domain wall by some amount that we will denote as ∆. To
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calculate the size of this discontinuity, we can integrate the full equation of motion,

E′′
x + k2Ex −

256ϕ2
0

15dM2
δ(x)Ex = 0

⇒ E′′
x = −k2Ex +

256ϕ2
0

15dM2
δ(x)Ex, (6.48)

over a very small region either side of the wall, from −ϵ to ϵ. The size of the discontinuity
is then given by

∆ = E′
R(0)− E′

L(0) =

∫ ϵ

−ϵ
dxE′′

x (6.49)

=

∫ ϵ

−ϵ
dx
(
−k2Ex +

256ϕ2
0

15dM2
δ(x)Ex

)
= −k2

∫ ϵ

−ϵ
dxEx +

256ϕ2
0

15dM2

∫ ϵ

−ϵ
dxδ(x)Ex

= −k2
∫ ϵ

−ϵ
dxEx +

256ϕ2
0

15dM2
Ex(0) (6.50)

where in the last line we have used the sifting property of the delta function,
∫

dxf(x)δ(x−
a) = f(a). The first integral in Equation 6.50 can be evaluated by splitting it into two
integrals between −ϵ and 0, and between 0 and ϵ:

∆ = −k2
(∫ 0

−ϵ
dxEL + k2

∫ ϵ

0
dxER

)
+

256ϕ2
0

15dM2
Ex(0)

= −k2
∫ 0

−ϵ
dxEL − k2

∫ ϵ

0
dxER +

256ϕ2
0

15dM2
Ex(0). (6.51)

Substituting in the left and right solutions from Equation 6.45 results in

∆ = −k2
∫ 0

−ϵ
dx
(
Aeikx +Be−ikx

)
− k2

∫ ϵ

0
dxCeikx +

256ϕ2
0

15dM2
Ex(0)

= −k2
[
A

iω
eikx − B

ik
e−iωx

]0
−ϵ

− k2
[
C

ik
eikx

]ϵ
0

+
256ϕ2

0

15dM2
Ex(0)

= −ik3(A−B −Ae−ikϵ +Beikϵ + Ceikϵ − C) +
256ϕ2

0

15dM2
Ex(0). (6.52)

Using the relation between the amplitudes, A+B = C, the equation for ∆ simplifies to

∆ = −ik3(−2B −Ae−ikϵ +Aeikϵ + 2Beikϵ) +
256ϕ2

0

15dM2
Ex(0). (6.53)

We can now impose that the region over which we have performed the integration, −ϵ

to ϵ, is infinitely small. Taking the limit ϵ → 0 results in cancellation of the entire first
term, and the equation for ∆ becomes

∆ =
256ϕ2

0

15dM2
Ex(0). (6.54)
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Since the left and right solutions are equal at x = 0, EL(0) = ER(0) = A+B, we can
write

Ex(0) = A+B, (6.55)

so that

∆ =
256ϕ2

0

15dM2
(A+B). (6.56)

We would like to eliminate ∆, in order to use the amplitudes A and B to calculate
the reflection and transmission coefficients of the photon. Using the definition of ∆ in
Equation 6.49 and substituting in the left and right solutions to the equation of motion,
we find

∆ = E′
R(0)− E′

L(0)

= ikCeikx(0)−
(
ikAeikx(0)− ikBe−ikx(0)

)
= ikC − ikA+ ikB. (6.57)

Using A+B = C to eliminate C results in a simple expression for ∆:

∆ = 2ikB. (6.58)

Equating this with the expression for ∆ in Equation 6.56 leads to

256ϕ2
0

15dM2
(A+B) = 2ikB

⇒ A =
2ik − 256ϕ2

0
15dM2

256ϕ2
0

15dM2

B (6.59)

where in the second line we have written the amplitude of the incident wave (A) in
terms of the amplitude of the reflected wave (B). The reflection coefficient of the photon
incident on the domain wall is defined by R = |B|2/|A|2, so from Equation 6.59 we have

R =
|B|2

|A|2
=

|B|2∣∣∣∣∣2ik− 256ϕ20
15dM2

256ϕ20
15dM2

B

∣∣∣∣∣
2

=

16384ϕ4
0

d2M4

k2 +
16384ϕ4

0
d2M4

. (6.60)

Defining α2 = 16384ϕ4
0/d

2M4, the reflection coefficient of the photon incident on the
domain wall is given by

R =
α2

k2 + α2
. (6.61)
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We may now also calculate the transmission coefficient T , which is defined by T = 1−R:

T = 1− α2

k2 + α2

⇒ T =
k2

k2 + α2
. (6.62)

In the following section, we put some approximate bounds on the wavenumber k; this will
allow us to find some preliminary numerical estimates for the reflection and transmission
coefficients of a photon coupled to a domain wall.

6.3 Bounds on the wavenumber k

6.3.1 First estimate

Putting a bound on the wavenumber k will allow us to gain some insight into what kinds
of frequencies would be required for an experiment involving a domain wall coupled to a
photon to produce observable results. To do this, we use the bound in Equation 6.26a:

8ϕ2
0

dM2
< k (6.63)

and insert the numerical values used in our test particle simulation in Chapter 5. We
choose the thin domain wall simulation, for which the values of d and M are

d = 10−3 m (6.64a)

M = 100 GeV. (6.64b)

To keep the units consistent, we put the domain wall width d in GeV, and substitute
both values into the bound on k, resulting in

8ϕ2
0

1
1.9733×10−13 GeV−1 × (100 GeV)2

< k

⇒ 1.57864× 10−16ϕ2
0 GeV−1 < k. (6.65)

The quantity ϕ0 is given by

ϕ2
0 =

µ2

λ

(
1− ρ0

ρ∗

)
. (6.66)

We can assume that ρ∗ ≫ ρ0, such that the second term inside the parentheses is
negligible and

ϕ2
0 =

µ2

λ
. (6.67)

For a domain wall of width d = 10−4m, the corresponding value of µ in our test particle
simulation is:

µ = 1.97× 10−13 GeV (6.68)
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and we choose λ = 10−10. Substituting these values into the above equation for ϕ2
0, we

find
ϕ2
0 = 3.8809× 10−16 GeV2, (6.69)

and the bound on the wavenumber k is then

6.13× 10−32 GeV < k (6.70)

to 3 significant figures. The wavenumber k is inversely proportional to the frequency,
so that a very small k corresponds to very high frequencies, and short wavelengths.
To observe the effects of domain walls in astronomical or cosmological experiments,
the wavelength should be on the scale of tens of metres to hundreds of metres. In a
tabletop experiment such as the test particle simulation in Chapter 5, the wavelength
should instead be approximately between 10 cm and 10 m. The bound in Equation 6.70
corresponds to vastly larger wavelengths than either of these experimental scenarios,
and thus does not represent a set of parameters which would lead to observable effects.
We would therefore like to shift the bound on k upwards. This can be done in various
ways, including making the width of the domain wall smaller, or using a smaller value of
the coupling constant λ. In the following section, we demonstrate how the bound on k

can be shifted to align with more realistic experimental parameters, by using a smaller
value of λ.

6.3.2 Shifting the bound on k

There is motivated parameter space for values of the coupling constant λ smaller than
10−10, as illustrated in Figure 5.2. Figure 5.2 shows the parameter space for λ = 10−30.
We choose a point in the bottom left part of the plot which is not excluded by existing
constraints from atom interferometry, with the following values of d and M :

d = 10−5 m (6.71a)

M = 10 GeV. (6.71b)

Putting d in units of GeV and substituting into the bound on k, we find

8ϕ2
0

1
1.9733×10−11 GeV−1 × (10 GeV)2

< k

⇒ 1.57864× 10−12ϕ2
0 GeV−1 < k. (6.72)

These values of d and M correspond to µ = 1.97 × 10−11 GeV in our test particle
simulation. ϕ2

0 is then given by

ϕ2
0 =

µ2

λ

= 388090000 GeV2 (6.73)
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and the bound on k is
6.13× 10−4 GeV < k (6.74)

to three significant figures. These larger values of the wavenumber are associated with
wavelengths on the order of 104 m, which is much closer than our first estimate to
the parameter space in which we expect experimental observations to be possible. If
a network of domain walls exists in the universe, it could have a detectable impact on
radio observables.

6.3.3 Numerical values for the reflection and transmission coefficients

Using the bound on the wavenumber k that we calculated in Section 6.3.2, we can
find some approximate numerical values for the reflection and transmission coefficients
associated with the photon incident on the domain wall. As in Section 6.3.2, we choose
a point in the parameter space plot for λ = 10−30 corresponding to the following values
of d and M :

d = 10−5m =
1

1.9733× 10−13
GeV−1 (6.75a)

M = 10 GeV. (6.75b)

These values of d and M correspond to µ = 1.97 × 10−11 GeV in our test particle
simulation. This choice of µ is different from that in Chapter 5, since we are now using
λ = 10−30 rather than λ = 10−10. The value of ϕ2

0 is given by

ϕ2
0 =

µ2

λ
= 388090000 GeV2. (6.76)

We can now calculate the constant α that we defined previously:

α2 =
16384ϕ4

0

d2M4
⇒ α =

128ϕ2
0

dM2
= 9.80× 10−5 GeV (6.77)

to three significant figures. Substituting this value of α into the expression for the
reflection coefficient R = α2/(k2 + α2) leads to

R = 0.025 (6.78)

to two significant figures. Using the fact that the transmission coefficient T is defined
by T = 1−R, we can write T as

T = 0.975 (6.79)

to three significant figures. The physical interpretation of these reflection and transmis-
sion coefficients is that in our idealized experiment, 25 in every 1000 photons that are
incident on the domain wall will be reflected back. It is important to note that our model
is subject to simplifications, and the calculated values of reflection and transmission
coefficients must therefore be viewed as preliminary approximations. However, we can
conclude that such a high proportion of reflected photons is promising for the possible
detection of the effect of the symmetron fifth force when domain walls couple to electro-
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magnetism, especially in astronomical or cosmological contexts where the frequency of
electromagnetic radiation is very high. In the context of tabletop experiments, photon
reflection could be observed using a highly sensitive camera that can detect very low light
levels. These types of instruments are used in light-shining-through-walls experiments
to search for axions (see ref. [88] for an example).



Chapter 7

Conclusions & Future Work

In this work we have proposed an experiment to detect the effects that topological
defects called ‘domain walls’ which mediate the fifth force can have on matter particles.
In Chapter 1 we introduce the concept of new light scalar fields that couple to gravity,
and how screening models such as the symmetron have the potential to constrain some
previously unconstrained parts of the dark sector. We describe how domain walls form
through spontaneous symmetry breaking, and discuss previous numerical studies of
domain wall formation. We summarize the existing constraints on the symmetron model
from cosmological, laboratory and astrophysical tests, and consider some ways in which
ultracold atoms can be used in tabletop experiments to observe the effects of domain
walls on matter.

In Chapter 2, we specialize to the spherically symmetric symmetron field, and show how
its equation of motion can be solved to yield a domain wall solution. Using this solution
along with the wave equation for a particle approaching the domain wall, we derive
expressions for the reflection and transmission coefficients arising from the interaction
between the particle and the wall. We use the simplified model of plane waves reflecting
off an infinite straight domain wall. Although this is not a realistic scenario, the fact that
the impact of the domain wall is evident in the reflection and transmission coefficients
leads us to believe that this is an experimentally interesting signature that warrants
further investigation. Chapter 3 introduces the concept of our experiment to trap domain
walls using a topologically-tailored vacuum chamber. We describe how domain walls
can form via the Kibble–Zurek mechanism, and propose some idealized experimental
scenarios in which a domain wall is pinned to matter overdensities in the chamber in
the form of spikes that protrude from the chamber walls.

Chapter 4 details how the finite element software package SELCIE can be used to find
vacuum solutions for the chameleon field around a user-defined source, and how we have
modified the code to solve for the symmetron field. We describe the results of some
initial simulations involving two identical sources inside the chamber, and show how
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spatially-varying initial conditions of the field can result in a static domain wall solution.
In Chapter 5, we present our main results: the numerical simulation of the motion of
a test particle approaching a domain wall formed through the symmetron mechanism.
We show that for different widths of the domain wall, the test particle is affected by
the fifth force gradient mediated by the wall and its motion is altered. In the case of a
thin wall, a particle with low initial velocity can be trapped in the potential well of the
domain wall and oscillate backwards and forwards across it. If observed in experiment,
this modification of a particle’s motion in the presence of a domain wall would constitute
a clear signature of the fifth force associated with the symmetron field.

Chapter 6 explores the possibility that the symmetron field can couple to electromag-
netism. We choose to introduce a coupling that respects the ϕ → −ϕ symmetry of the
symmetron model, and use the new equation of motion for the symmetron to derive
an equation of motion for a photon coupled to the symmetron. By deriving some
approximate bounds on the wavenumber k, we are able to calculate numerical values
for the reflection and transmission coefficients associated with a photon approaching
a domain wall. In our idealized experimental scenario, we show that 25 in every 1,000
photons that are incident on the domain wall will be reflected back.

There are many ways in which the work presented here can be built upon. One obvious
goal is that the vacuum chamber experiment described in Chapter 3 and simulated
in Chapter 5 can be realized experimentally. Such a vacuum chamber could be man-
ufactured using state-of-the-art 3D printing technology [76]. In order for the vacuum
chamber to be built to the required specifications, we must first model the vacuum
chamber more accurately; in this work we have assumed that the vacuum chamber
is spherical, but in reality it is more likely to be cylindrical. The particulars of the
particle experiment performed inside the chamber will also need to be decided upon;
these include the type of ultracold atom used, and the method of detecting the effect of
the fifth force on these ultracold atoms (for example, atom interferometry).

In our initial simulations of a test particle approaching a domain wall, we have chosen
the simple geometry of two ellipses as matter densities which pin the domain wall in
place. Although we have shown that this choice of modified vacuum chamber interior
results in a domain wall solution, we have not yet explored how a different distribution
of spikes inside the chamber could affect the domain wall dynamics. Using a genetic
algorithm or a machine learning algorithm, we could optimize the matter distribution
such that the domain wall is as long-lived as possible, giving us more time to perform
particle experiments to observe the effect that the fifth force gradient of the domain
wall has on matter. It could also be possible to encourage the formation of a network
of domain walls inside the chamber; such an experimental scenario is advantageous
because the probability of observing a deflection or reflection of a particle off a domain
wall increases as the number of potential interactions between matter and domain walls
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increases.

Thus far, we have studied the interaction of a test particle with the static domain wall
solution. For the formation and dynamics of domain walls in our vacuum chamber
experiment to be investigated thoroughly, a time-dependent numerical simulation of the
symmetron field is essential. If we can model how domain walls are formed and how
they evolve over time, we can comment on their stability; knowledge of the stability
of the domain walls will inform the optimization procedure for the matter distribution
inside the vacuum chamber. The combination of a time-dependent model of the domain
wall dynamics with an interior topology optimized for trapping and stabilizing domain
walls will give us the best chance of detecting the effects of the symmetron fifth force in
experiment.
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