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Abstract  
 

Advancements in data collection, storage and analysis techniques have resulted in a 

recent surge in the potential to collect and utilise data on sheep farms. When used 

effectively, data can help support management decisions to make informed choices 

regarding animal health and performance.  

Throughout the project the authors worked closely with the Challenge Sheep project. 

This was an Agriculture and Horticulture Development Board (AHDB) project to 

monitor the lifetime performance of ewes on a number of sheep farms throughout 

England. This thesis began with two main aims. An initial analysis of the Challenge 

Sheep project data would provide an insight into which variables affect ewe 

performance. These findings would then be used to build a series of models to 

analyse and predict key aspects of ewe performance, which would inform a 

simulation model to estimate total lifetime productivity. Key variables included within 

the analysis were; mating and lambing body condition score, pre-mating body 

condition score change, ewe age at first mating (either ewe lamb first bred at less 

than one years of age or shearlings first bred between one and two years of age) 

and parity. The analysis of ewe performance data focused on four areas: a 

reproductive analysis was conducted to model the rate at which ewes got in lamb; a 

wastage analysis, to observe the reasons and model timings of ewe losses 

throughout the production year; a predictive model for the number of lambs born to 

each ewe; and a predictive model of the impact of ewe performance on weaning 

weight of lambs. As body condition score is crucial to effective flock management, 

and will substantially inform the simulation model, an additional model was 

developed to predict body condition score using animal data including objective 

weight measurements. This was developed with the aim of reducing subjectiveness 

around body condition scoring, providing an objective measure for implementation 

on farm. An additional case study was conducted to observe scorer variability within 

body condition score measurements. The results from the case study were analysed 

independently to observe inter and intra rater variability and were also compared to 

the body condition scoring predictive model. 

The reproduction analysis found key variables which had a significant effect on the 

interval between mating and lambing (indicates days to conception plus gestation 
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period, calculated from ram entry date and lambing date). For mature ewes (parity 

two or more), mating body condition score had a significant effect, with Low (BCS 

less than 2.75 out of 5) and High (BCS more than 3.5 out of 5) groups having a 

significantly increased mating to lambing interval, suggesting increased days to 

conception. Ewes which gained condition pre-mating (weaning to mating) got in lamb 

more quickly while ewes which lost condition took longer to get in lamb. These 

findings agree with AHDB recommended mating body condition score targets. In 

their first year of production, ewe lambs took significantly longer than shealings to 

get in lamb, which was to be expected due to their lower stage of maturity.  

Within the wastage analysis, it was observed that lower BCS animals at mating (BCS 

less than 3.0 out of 5.0) had a significantly increased chance of loss (premature cull 

or death) throughout the production year compared with ewes in higher condition 

(BCS greater than 3.0). This suggests ensuring ewes are in a minimum BCS of 3.0 

out of 5.0 at mating will minimise losses. Overall, from these data, ewes first lambed 

as shearlings had a higher incidence of wastage compared with ewes first lambed as 

ewe lambs. Wastage was lowest in one year old animals, peaking in two-year-old 

animals then gradually reducing as animals age further.  

Systems dynamics models are one means of using farm data to simulate a 

production system, providing a measurable output. The individual models were 

incorporated within a simulation model that simulates how changes in ewe 

performance affect lifetime productivity. This allows the comparison of how 

parameters such as body condition score, age at first mating (ewe lamb or shearling) 

and breed combine at the individual ewe level to impact on flock productivity. Total 

lifetime lamb weaning weight was observed as a measure of performance within the 

simulation model. Findings from the simulation show that despite variation among 

breeds, effective management of body condition score is crucial to maximise lifetime 

performance. Ensuring body condition score is maintained on or above target at 

mating was estimated to yield an average increase of 26.7kg of weaned lambs over 

their lifetime. In addition, despite lower early life performance the model revealed first 

breeding as ewe lambs resulted in an average of 12.5kg greater weight of lambs 

over a ewes lifetime compared to first breeding as shearlings. 
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The body condition score prediction model was able to successfully predict body 

condition score from weight and additional predictor variables with the same 

accuracy as a human scoring. The best performing gradient boosting model had an 

RMSE of 0.406. Additionally, a regression chain model was used to improve 

predictions at extreme values, this resulted in a more generalisable model.  If 

implemented on farm, the use of a model to predict body condition score, combined 

with electronic identification technologies, has the potential to save time and 

resources by avoiding the need to manually body condition score and improve the 

objectivity and reliability of measurements. This will help ensure farmers can manage 

individual ewes to increase farm productivity and profitability. 
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1.1. The UK sheep industry 

1.1.1. Overview 

The UK Sheep industry consisted of approximately 32 million head of sheep in 2023 

of which 15.4 million were breeding ewes and 16.3 million were lambs and other 

sheep (Department for Environment Food & Rural Affairs, 2023). The sheep 

population has remained relatively consistent over the past 20 years, after a 

substantial fall of 13% was observed in 2001 as a result of foot and mouth disease 

from which numbers did not recover (Zayed and Loft, 2019). The figures for 2023 are 

4.3% lower than those of 2022, believed to be driven by rising feed prices 

(Department for Environment Food & Rural Affairs, 2023). The UK sheep industry 

had an estimated value of production of £1.3 billion in 2020, and worth approximately 

£290 million to the UK economy. 150,000 people are employed either directly on 

farm or within associated industries (NSA, accessed 23/01/2024). The UK sheep 

industry is focused on lamb production for meat with very few milking ewes kept in 

the UK unlike other European countries. The UK industry consists of a stratified 

system, which can largely be categorised into hill, upland and lowland systems. Hill 

flocks are kept at above 500m, upland flocks above 300m and lowland flocks below 

300m. Each system utilises different management practices, which are often linked 

to how extensive the system is. The UK sheep industry plays an important economic 

role, particularly for rural communities, while also helping ensure food security. 

Sheep are one of the few animals with the ability to utilise low quality feedstuffs and 

produce high quality protein for human consumption. This often uses land which is 

unable to be utilised for other farming practices. The complex interactions between 

system, breed and management type make the UK sheep industry extremely diverse 

and constantly evolving.  

1.1.2. Breeds  

The stratified nature of the UK sheep industry results in variation in breed type 

depending on system. It is common for more extensive hill flocks to farm hardy 

breeds which can cope with the more extreme climate and variable nutrition. 

Maternal breeds such as Swaledale or Welsh Mountain are often used in these 

environments. Comparatively, upland systems often have increased forage quality, 
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and less harsh weather conditions to contend with. Suitable breeds for these 

systems are sometimes composite ewes, often a cross between hill and lowland 

ewes such as the Mule or purebred ewes such as the Lleyn. Lowland breeds often 

include less hardy breeds, generally of a larger weight than upland and hill breed 

types and with the potential for higher fertility and offspring growth rates. Traditional 

lowland breeds include Suffolk and Texel. There are as many as 106 different sheep 

breeds represented in the UK industry (AHDB Beef and Lamb, 2018), however they 

can almost all be categorised into a system where their specific characteristics are 

desirable. Breed types are constantly evolving due to the introduction of new 

genetics, the use of composites and selective breeding. Farmers are constantly 

striving to find the right breed for their system to maximise productivity.  

1.1.3. UK Systems  

The nature of constantly changing breeds within the UK sheep industry is the result 

of market requirements and preferences, as well as changing systems throughout 

UK farming. Traditionally sheep may have been viewed as one component of a 

larger diverse farming enterprise which would often include arable and beef sections, 

particularly for lowland flocks. Sheep would often fit into the rotation, grazing arable 

land as a break crop, or grazing land unable to be used for crops.  A shift in the 

industry to more intensive arable farming has resulted in sheep predominantly 

grazing land unable to be used for crops, often upland and hill areas.   

The structure and size of the sheep industry in the UK has changed substantially 

over the past 30 years. These changes are largely a result of farmers managing 

disease risk and government policy. Stratification is reducing throughout the sector, 

this is due to an increase in closed flocks to reduce the disease and parasite risk, 

improving flock health status. Increasing interest in closed flocks has resulted in 

some of the shift in breed types observed, particularly an increase in Lleyn and 

Romney maternal genetics. In the 1990s support payments were calculated on a 

ewe headage basis, naturally this incentivised farmers to increase flocks size. More 

recent support payments including the ‘basic payment scheme’ focus on livestock 

units which may incentivise smaller sheep flocks. Increasing interest around the 

environmental impact of sheep production, particularly for upland and hill flocks has 
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led to environmental schemes becoming popular. These schemes reduce ewe 

stocking density and have somewhat led to a reduction in ewe numbers.   

1.1.4. Ewe Life Cycle  

UK farms have two options for replacement ewes. Replacements are either bought 

in or bred on farm. Initially, ewes can be bred as either a ewe lamb or shearling. Ewe 

lambs are ewes which are first mated at less than one year old, while shearling are 

mated a year later at approximately 18 months old. The main benefits associated 

with first breeding ewes as ewe lambs include, higher potential lifetime productivity 

from an additional productive year and improved maternal ability in subsequent 

years, particularly in their second year of production. First breeding as shearlings 

allows the ewes to achieve a much higher percentage of mature liveweight before 

mating. This may improve first year performance when compared to ewe lambs and 

potentially mitigate any knock-on effect on performance associated with first 

breeding as ewe lambs. Within UK systems, mating occurs as photoperiod reduces 

in the autumn. This generally results in spring lambing. Mating dates can vary 

depending on the system, often with lowland systems choosing to mate, and 

therefore lamb, earlier than upland systems. The later lambing associated with 

upland systems increases the probability of good weather at lambing which reduces 

neonatal lamb mortality and allows for an increased reliance on grazed forage 

throughout the lamb rearing phase. Other key management events throughout the 

year occur at: pregnancy scanning; eight-weeks post lambing; and weaning. Ewes 

are pregnancy scanned approximately 80 days post-mating. This not only indicates 

whether ewes are in lamb but also the number of foetuses for each ewe. At eight-

weeks post-lambing, ewe and lamb performance and health should be assessed. At 

this point lambs are starting to receive a substantial proportion of their energy intake 

from pasture due to ewe milk production starting to fall. At weaning, lambs are 

separated from the ewe. This is usually 12 to 16 weeks post-lambing. At this point 

ewe milk production has significantly reduced and most of the energy intake for 

lambs is received from pasture or concentrate. Ewes then have around 3 to 4 

months to regain any lost BCS and ensure optimum health for next mating. Most 

ewes are removed from the flock at seven years of age as this is deemed the end of 

their productive life.  
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1.1.5. Flock productivity 

Productivity throughout all areas of agriculture has seen substantial increases 

recently. Technological advancements, increasing knowledge and genetic 

improvement have led to increased productivity. The sheep industry in the UK has 

developed a range of extensive systems of small low input farms, with comparably 

low productivity, to larger, more productive systems in which genetics, management 

and nutrition play key roles in maximising productivity.  

1.1.5.1. Measures of Productivity 

There are multiple ways that performance can be assessed on sheep farms. Often 

this depends on the system and the desired output from that system. Ewe and lamb 

performance have multiple metrics to assess. Metrics to assess ewe performance 

often include fertility, number of lambs per ewe at scanning, lambing percentage, 

total lamb weaning weight, lamb growth rate up to eight-weeks of age, and lamb 

survival. Lamb performance metrics are often focussed around growth rates, 

particularly post-weaning and grade at slaughter. A series of key performance 

indicators (KPIs) have been established to observe the performance of both 

individual animals and a whole flock. Reference values can be used for each KPI to 

observe if a flock is under performing, or performing well (AHDB, 2024).  

1.1.5.2. Genetics  

An animal’s individual performance is closely linked to its genetic potential. Breed 

plays a large role in reproductive performance, lamb performance, and carcase 

conformation, however variations within breeds are also observed. Breeds can be 

categorised into maternal or terminal genetics. Terminal breeds produce lambs with 

optimal growth rates and carcass conformation traits, as their lambs are usually 

marketed for meat. Maternal genetics have traits associated with higher fertility and 

prolificacy, however good lamb carcass conformation and growth rates must also be 

maintained as most lambs will still be destined for slaughter. Selecting ewes and 

rams, using maternal and terminal indexes, is an effective way to improve overall 

flock productivity. Ewes with high maternal indexes have been shown to have higher 

litter size and reduced perinatal lamb losses. Improved terminal index resulted in 

heavier lambs post-weaning and reduced days to slaughter (Mchugh et al., 2022). 

Flocks with maternal breed types have been shown to have higher productivity than 

that of hill or terminal breeds (Lima et al., 2019). 
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1.1.5.3. Nutrition  

Nutrition influences all aspect of sheep production including health, reproductive 

performance, wastage and lamb growth. Ewe and lamb nutrition is based around 

grazed forage, with supplemental concentrates and minerals at key stages of 

production. Nutrition around lambing is important to ensure optimal energy balance 

to mitigate metabolic diseases such as ketosis, as well as ensuring adequate mineral 

intake to reduce the incidence of conditions such as hypocalcaemia and 

hypomagnesaemia.  

1.1.5.4. BCS & Weight 

The use of weight and body condition scoring on farms as a measure of ewe 

performance, and to aid in management and nutritional decisions has been 

associated with an increase in productivity (Povey, Stubbings and Phillips, 2018). 

Estimating ewe subcutaneous fat reserves at key intervals throughout the production 

year provides farmers with an additional metric to monitor their flock. BCS 

throughout the production year and in particular BCS change between mating and 

scanning has been shown to effect litter size and the proportion of ewes that lamb 

(Wright, 2021). Weight is commonly used as a means to assess lamb performance, 

usually through eight-week and weaning weights. It is also used as the main metric 

to assess whether ewes should first be bred as ewe lambs or shearlings. Guidelines 

suggest ewe lambs should be at 60% of their mature liveweight before mating 

(AHDB Beef & Lamb, 2016). 

1.1.5.5. Management 

Management decisions on farm can greatly impact the productivity of a flock. One 

key management decision is made at pregnancy scanning, which usually occurs 

around 80 days post-mating. This provides farmers with information on which ewes 

are in lamb and an estimation of the number of lambs. The data can be used to 

group ewes depending on scanning number. Targeted nutrition post-scanning 

ensures ewes are meeting the correct nutritional intake to ensure adequate lamb 

growth, without leading to large lambs, which increase dystocia. Ewes not in lamb at 

scanning are often sold as cull ewes, this reduces forage and feed requirements for 

the flock and provides a source of income earlier in the year.  
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Additionally, management decisions regarding reproduction are important. Farmers 

must decide whether ewes should be introduced to the flock as ewe lambs or 

shearlings. The length of mating is then important to maximise reproductive 

performance without substantially increasing the lambing period.  

Selecting cull ewes is another area where correct management decisions are vital to 

maximise productivity. Often ewes are selected for culling on a case-by-case basis, 

with poor health or poor performance being predominant factors for selection. 

Selection parameters and rate of culling are largely dependent on the specific 

system. Flock numbers must usually be maintained, therefore selectively culling 

ewes, or culling aging animals is important. This can sometimes result in ewes with 

less than desirable performance being retained to ensure replacement rate is not 

excessive. 

1.1.5.6. Health & Disease Prevention 

Disease prevention plays a large role in maximising flock productivity. Lima et al. 

(2019) investigated how disease prevention practices affect flock productivity. They 

used lamb sales data as a performance metric. They observed farms implementing 

preventative practices, including vaccination against abortion and clostridial agents, 

and administering anthelmintics during quarantine had greater flock productivity. 

Lameness can also substantially affect the productivity of a flock. It has been 

estimated that a lame ewe can see a reduction in BCS of 20% and a substantially 

reduced lambing percentage of 20% (Lovatt, 2015). The prevalence of lameness 

within English flocks has more than halved between 2004 and 2013, from 10.6% to 

4.9% (Winter et al., 2015). This may suggest that the negative impact on flock 

performance will also be reducing.  

1.1.5.7. Future Productivity 

Additional measures of productivity are likely to become common place in the future. 

Increasing pressure for ruminant production systems to reduce greenhouse gas 

emissions, and in particular methane emission is likely to lead to changes in how 

performance is viewed. The Centre for Innovation Excellence in Livestock (CIEL) 

reported the impacts of sheep production on greenhouse gas emission and 

discussed ways to reduce emissions (CIEL, 2022). They reported that more 

extensive systems have lower efficiency and therefore higher greenhouse gas 
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emission per kilogram of lamb produced. Nutrition and management can be used to 

reduce methane emissions. Feeding higher grain diets and oilseed inclusion within 

the diet reduces methane production from rumen microbes. Genetically selecting 

ewes for lower emission may be an effective means to breed inherently low 

emissions animals. However, it is important to consider the financial impact of 

feeding higher concentrate diets or purchasing expensive genetics, particularly with 

the low margins associated with sheep production in the UK.  

1.1.5.8. Profitability 

The productivity of sheep farms is closely correlated with profitability. Volatility within 

the sheep industry, both within feed prices and lamb prices leads to large variations 

in yearly income. Lamb prices not only fluctuate each year but also throughout the 

year, with maximum prices observed in June (Clarke, 2023). Uncertainty around 

prices makes it difficult for producers to plan. Some use their system to their 

advantage to lamb early and target the highest lamb prices in June, while other, 

generally lower input systems utilise high grass growth from late spring into summer 

to fatten lambs for lower cost, however, often receive lower fat lamb prices in the 

autumn. The lowest input systems will often sell lambs as store lambs at 

approximately 30kg liveweight, where they will generally be finished on lowland 

farms where grass growth is higher later in the year.  

Environmental schemes can limit the potential productivity of certain farms, however, 

can improve the profitability. These schemes are designed to limit the stocking 

density to minimise any effect on wildlife. Naturally incentivising farms to reduce 

stocking density will reduce the output and therefore the productivity of these farms. 

Overall profitability is often improved due to the subsidies from environmental 

stewardship schemes.  

1.1.5.9. Summary 

Although productivity and therefore profitability are key metrics on sheep farms, it is 

also important to balance economics and welfare. Stott et al. (2012) observed the 

relationship between economics and welfare. They suggested reducing 

extensification improved flock welfare. They also noted that flock expansion 

maximised productivity, largely due to a reduction in labour per ewe. As the sheep 

industry progresses it is vital to balance performance with welfare. A number of 
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factors dictate the productivity and profitability of a sheep system. These are specific 

to each farm, and some are largely out of the control of the farmer. Maximising 

nutrition, genetic potential and health of a flock provides the best opportunity to 

increase productivity and profitability.  

1.1.6. Data Collection and Implementation on UK Sheep Farms 

Advancements in data collection, storage and analysis techniques has resulted in a 

recent surge in potential to collect data on sheep farms. Since legislation changes in 

2009, all sheep in the UK not intended to be slaughtered before 12 months of age, 

must be electronically identified through the use of electronic identification tags 

(EID). These tags allow ewes to easily and effectively be traced throughout the 

industry, at each point within the supply chain. One additional benefit of EID tags for 

farmers is the ability to easily record individual animal data. Although data collection 

options are available, utilisation of this data is less common. Specific breeding 

programmes offer farmers financial incentives to collect data, however the wider 

industry appears to struggle to utilise animal performance data collected on farm. 

Out of 406 farmers surveyed to assess the use of EID technology to record animal 

information, only 87 utilised the technology (Lima et al., 2018). Perhaps the most 

common data collected is reproductive performance at pregnancy scanning, 

however this is rarely recorded.  

The sheep industry as a whole is in its infancy in terms of data collection and 

utilisation. The increasing ease of data collection and encouragement from 

organisations such as the AHDB may result in a substantial uptake within the 

industry. Reasons for the current lack of uptake include; negative views of EID 

technology by farmers; lack of published evidence on the benefits of EID technology; 

cost of the technology; and lack of IT skills required for recording (Lima et al., 2018).  
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1.2. Challenge Sheep Project 

 

The Challenge Sheep project is an Agriculture and Horticulture Development board 

(AHDB) funded project, started in 2016, to observe ‘the impact of the management of 

replacement ewes through their first pregnancy and lactation on their lifetime 

performance’ (Challenge Sheep | AHDB, accessed 20/10/2023). The project set out 

with four main objectives: 

1. To identify best practice for management of replacement ewes from a 

network of producers, researchers and consultants using participatory 

action research techniques. 

2. To monitor replacements brought into the flocks in 2017 and 2018 over 

their productive lifetime on ten farms through extensive analysis of EID 

data and benchmarking. 

3. To communicate the activity through a planned KE programme with a 

range of approaches employed. 

4. To collect additional information, such as DNA, health status and 

antimicrobial use, to complement other projects. 

The Challenge Sheep project arose from findings from the Longwool project (Defra, 

2007). High premature culling and mortality was observed for ewes in their first year 

of production (~11% of ewes bred). This results in a substantial production loss and 

therefore financial loss. It was estimated that £10.9 million per year is lost due to ewe 

losses in their first year of production. The Challenge Sheep project was designed to 

produce data to inform decision making for the management of ewe lambs and 

shearlings, resulting in the implementation of methods to reduce financial losses in 

their first year of production.  

Data collection started in 2017, and continued for seven years, ensuring ewes were 

followed from entry as ewe lambs or shearlings to exit. Ewe performance was 

monitored at five key-stages throughout the production year. These included: mating, 

scanning, lambing, eight-weeks post-lambing, and weaning. Progeny performance 

was recorded at birth, eight-weeks of age, and weaning. All data-points were 
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recorded using electronic identification (EID), to effectively record individual ewe 

data, and upload this data into each farm’s database.  

7003 ewes, from eleven farms, entered the project in 2017, with an additional 721 

joining within the first 4 years. 14 purebred and crossbred breed types were included 

within the project. These range from hefted hill flocks, farming predominantly 

Swaledale ewes to intensive lowland flocks. As would be expected the choice of 

breed is somewhat correlated with farm type, however most farms do include 

multiple breeds. The large range of breeds and management systems were chosen 

to help improve how generalisable the project data was for the wider industry. Farm 

size ranged from 252 ewes to 1190 ewes at the start of the project. Ewes exiting the 

project and replacements slightly alter these values throughout the seven years of 

the project. 

The data collection focussed predominantly on the performance of ewes, with ewe 

factors such as body condition score, weight and survival data collected, alongside 

lamb performance data. At each of the five key-stages, ewe body condition score 

(BCS) and weight data were collected. BCS data were recorded by a single trained 

individual on each farm, who underwent a BCS calibration session at the start of the 

Challenge Sheep project. A five-point scale was used with 0.25-point increments, 

with the reading entered directly into EID readers. Weight was recorded on electronic 

weigh scales to an accuracy of 0.1kg, with either manual entry of the weight into EID 

readers or automatic recording from the weigh head. Lamb weights were estimated 

at lambing and recorded at eight-weeks post-lambing and weaning using the same 

method as that for the ewes.   

All ewe exits from the project were recorded throughout the production year, with a 

date and reason for exit. This included ewes which were sold as breeding stock, 

ewes which were culled and ewes which died on farm. Farmers recorded the best-

known reason for ewe exit.  Lamb mortality was also recorded. At pregnancy 

scanning the number of lambs were recorded for each ewe. 

Data on some management practices were not collected, this includes data 

regarding nutrition, reproductive management and day to day decisions. Additionally, 

data was not available for ewes before their project entry date, meaning the first data 
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points were collected at first mating as a ewe lamb or shearling. Finally, paternal 

data was not recorded for any of the lambs.  
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1.3. Breeding from Ewe Lambs vs Shearlings 

A large component of the Challenge Sheep project is to observe and compare the 

lifetime performance of ewes first mated as ewe lambs or shearlings. One key 

analysis required to achieve this is to observe the effect of first breeding as a ewe 

lamb vs a shearling on lifetime productivity. Ewe lambs are defined as ewes which 

are first bred within their first year of life, at approximately 7 months of age. 

shearlings are first mated in their second year of life, at around 18 to 20 months of 

age. Ewe lambs are mated at around 60 percent of mature weight while shearlings 

are usually at or extremely close to mature weight, with a minimum target of 80 

percent.  Reducing the duration that ewes are non-productive, through breeding as 

ewe lambs, has the potential to increase overall lifetime productivity of ewes, and 

reduces the period for ewes in which no revenue is generated. Although, initially it 

appears that producing an additional litter from a ewe could only have positive 

effects on productivity, it is important to account for the effects that breeding at a 

much younger age may have on lifetime reproductive performance of that animal. 

The high metabolic requirements during gestation and lactation, for animals which 

have not reached maturity, has the potential to impact overall performance in 

subsequent years. There may also be a higher degree of risk to the animal from 

breeding at a younger age, which also must be accounted for.  

Some additional benefits of breeding from ewe lambs include: an overall increase in 

lambs weaned, with no increase in ewe numbers; a reduced generation interval 

which allows for rapid rates of genetic improvement, assuming that replacements are 

retained from ewe lambs; earlier replacement of poor performing ewes; and reduced 

environmental impact as a result of more lambs weaned per ewe (Kenyon and 

Corner-Thomas, 2022). Although on paper the rapid genetic turnover from retaining 

replacements from ewe lambs would allow quick introduction of new genetics into 

the flock, particularly for closed flocks, it is the authors experience that replacements 

are rarely retained from ewe lambs. This is likely due to ewe lambs often being 

mated later than the main flock to maximise mating weight and therefore their 

offspring have less time to reach a suitable mating weight, along with generally lower 

growth rates for offspring from ewe lambs.  
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There are many potential disadvantages associated with lambing as ewe lambs. 

Ewe lambs have variable reproductive performance in their first year of production, 

this results in a higher number of barren ewes which must be managed separately to 

the main flock. Ewe lambs must weigh at least 60 percent of their mature liveweight 

by mating, at seven to nine months of age. Ensuring a suitable weight is reached 

may require additional feeding throughout the summer months, depending on forage 

availability this could result in higher feed costs. Breeding from ewe lambs has been 

associated with increased labour requirements and therefore costs. These costs are 

a combination of increased labour for feeding and managing ewes and increased 

labour around lambing due to higher incidence of dystocia. The challenges around 

successfully mating and lambing ewe lambs can also increase the potential for 

higher mortality compared to mature ewes (Kenyon and Corner-Thomas, 2022).  

1.3.1. Managing Ewe Lambs for Optimal Performance 

The decision to breed from ewe lambs is largely dependent on the specific system. 

However, there are a number of factors which dictate the success of breeding from 

ewe lambs rather than shearlings.  

1.3.1.1. Growth Rate 

With the requirement for ewe lambs to weigh over 60 percent of their mature weight 

at first mating, it is important to maximise lamb growth rates post lambing, and to 

provide as long a period as possible for growth. Often replacements intended to be 

bred as ewe lambs will receive the best pasture at slightly reduced stocking rates. 

Some producers will choose to creep feed and then supplement these ewes to 

maximise the number that will reach the weight threshold. Ewe lambs are usually 

selected from animals which have lambed early in the season to maximise the time 

before mating. Similarly, ewe lambs are generally mated later than the main flock, 

resulting in later lambing dates. This further extends the interval from birth to first 

mating.  

1.3.1.2. Selection of Ewe Lambs 

Selection of replacements is an important factor to maintain the health and genetics 

of a flock. The AHDB has produced a series of guidelines for best practice when 

selecting ewe lambs for replacement. Ewe lambs should be at least seven months of 

age at first mating, should meet the minimum percentage of weight and not have any 
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health issues such as lameness. Purchased replacements should be bought 6-8 

weeks before mating, and undergo the same health checks as on farm replacements 

(Selecting ewe lambs for breeding | AHDB, accessed 24/01/2024).  
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1.4. Sheep Production Systems Research  

1.4.1. Introduction to Systems Models  

System dynamics models are a mathematical modelling technique used to better 

understand complex interactions within a system. They allow changes within a 

system to be observed over time. System dynamic models are of increasing interest 

within UK agriculture, already being extensively used in the arable sector with more 

recent introduction into livestock sectors through dairy farming. In livestock systems 

they provide a means to predict complex on farm interactions between livestock, 

nutrition, economics, and management.  Systems models are often comprised of a 

series of sub models which interact together to help conceptualise the whole system. 

Within the specific area of sheep production models there are a wide variety of 

possible model types. Growth models; bio-economic models; wastage models and 

reproduction models are increasing in use within the sheep industry globally. They 

are usually supported by a nutritional model, often selected from a pre-existing 

model to best suit the systems model being developed. Systems models are usually 

designed to increase productivity, and therefore profitability of sheep enterprises. 

This often results in the inclusion of an economic component of the model, or a 

means of assessing changes in profitability.  

The UK sheep industry currently has a very limited selection of dedicated system 

dynamic models. There have been attempts to adapt international models to suit the 

UK industry, however few have been built using UK based datasets. The structure of 

the UK sheep industry is almost unique, with a wide variety of management 

strategies and breeds. This increases the complexity of the model design and further 

increases the difficulty of adapting an international model. Our model will be almost 

unique in that a UK based dataset, collected from a significant number of UK farms, 

will inform the model. Internationally there are significantly more models in place, 

often originating in New Zealand and Australia. Consideration of the differences in 

farming practices, management and genetics between international flocks and UK 

flocks is important when designing our model.  
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1.4.2. Whole Farm Models 

Whole farm models (WFM) usually consist of a series of predictive models, which 

interact to observe whole farm effects. They can include both biophysical models 

and a combination of biological and financial aspects (Robertson, Pannell and 

Chalak, 2012). There are a select number of WFM available within the sheep 

industry. These are often closely related to financial outputs, due to the benefit this 

can have for producers. The overall aim of WFM is to allow producers to increase 

productivity at a farm level. There are usually a series of inputs that ensure the 

model is specific to their farming system, and any outputs from the model are 

specific to variables on their farm.  The overall design of some WFM will be 

discussed in this chapter, with a more in-depth investigation into the constituent 

predictive models in later chapters.  

GrazPlan is a whole farm model developed in Australia (Donnelly, Moore and Freer, 

1997). It incorporates a series of decision support systems (DSS) which interact 

together to predict flock performance. The constituent DSS include, MetAccess, 

LambAlive, GrazFeed and GrassGro (Freer, Moore and Donnelly, 1997). These DSS 

can either be used individually or within the larger GrazPlan DSS. GrazPlan was 

designed as an early computer package to be used by advisors to aid Australian 

sheep farmers in making key decisions. The suite of DSS are used in conjunction 

with local weather records and farm specific data to establish the effects of certain 

management decisions. The GrazPlan project incorporated results from grazing 

research into the individual packages. This allowed research on grazing 

management to be easily adopted by producers, while previously it would have been 

challenging to make the research specific to their farm. The inclusion of weather 

predictions within the GrazPlan DSS, utilising historical weather records, is almost 

unique. This allows chilling effects and grass growth to be more accurately predicted 

within the LambAlive and GrassGro DSS.  

The Teagasc Lamb Production Model (TLPM) is a stochastic budgetary simulation 

model developed to observe the effects of changes within a lamb production system 

on profitability (Bohan et al., 2016).  The financial aspect of this model is of key 

importance, using profitability to compare between different scenarios. Changes in 

cost per hectare and lamb sales per hectare are often used to compare different 
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scenarios using this model. The model includes a series of inputs and outputs. 

Inputs include: land; capital; animal numbers and prices, while some outputs include: 

flock sales and purchases; grass supply and demand; and lamb growth. The TLPM 

was developed using an Excel spreadsheet, with the performance of each flock 

simulated on a monthly basis.  Scanning rate was a key input for the TLPM, allowing 

mating success and weaning number to be determined. It also affected ewe energy 

requirements at late pregnancy and lamb growth rates post-partum. The proportion 

of breeding ewes culled or died were taken from experimental data with 25% lost at 

scanning and 75% pre-mating.  

Validation of models is important to ensure they predict accurately under the 

conditions they were intended. The TLPM was validated using data collected from 20 

commercial Irish sheep farms. The similarity between the model outputs and the real 

farm data supported the model and suggested the outputs were realistic.  The 

application of the model was demonstrated through investigating two scenarios with 

differing average lambing dates. The model found that a mid-season lambing flock 

had a higher return on investment (ROI). Ewe prolificacy has also been evaluated 

using the model, finding that in general higher prolificacy resulted in higher 

profitability.  

It is apparent from the literature that a number of models may be specific to 

international producers, and it is unknown how applicable these are to the UK 

industry. GrazPlan is specific to temperate pasture-based systems in Australia, 

however many concepts of the model may be applicable to a UK based system. The 

TLPM was validated on Irish data, therefore it may be more appropriate for the UK, 

however the large emphasis on budgetary simulation creates a different scope for 

the model compared to our model. The TLPM uses the inclusion of scanning number 

as an input to determine mating success and number of lambs. Instead, our model 

includes a predictive model to estimate the number of lambs born to each ewe from 

ewe parameters, rather than including this as a direct input into the model. Within our 

model, ewe wastage was determined from the existing dataset, then predicted within 

the simulation model, rather than including wastage at a predetermined rate. This 

should help improve the accuracy of our model.  
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1.4.3. Nutrition and Growth Models 

The incorporation of a nutritional model into a WFM is important. The predictions and 

recommendations within the models will be closely associated with nutrition to 

ensure optimum productivity. There have been a significant number of small 

ruminant nutrition models developed to provide nutritionists, vets and farmers with a 

series of approximate parameters for ewe and lamb nutrition. Many of these models 

have undergone multiple iterations, utilising both previous versions of the same 

model and different models from around the world to improve the nutritional models. 

Cannas et al. (2019) described the history of small ruminant nutrition models and 

explained the features of different models used throughout the world. One of the 

earlier nutrition models developed was from the Agricultural Research Council (ARC) 

in 1965. This model took the concepts of an existing cattle nutrition model and 

adapted it to make it suitable for sheep production. The ARC model was improved in 

the 1980s with significantly more rigorous analysis of protein utilisation, specifically 

by accounting for rumen degraded and undegraded protein. In the late 1990s the 

Agricultural and Food Research Council (AFRC) based a new model on the ARC 

model. In addition to the sheep nutrition models the AFRC model included goat 

specific data. The AFRC model is currently one of the few UK sheep nutrition models 

available and is often the building block for UK sheep nutrition.  

The Institut National de la Recherche Agronomique (INRA) in France developed a 

sheep nutrition model as early as 1978. This model utilised many of the principles 

from the ARC model. The most recent update to the INRA model accounts for the 

reduction in rumen digestibility from increased feed intakes as well as correcting 

energy values for low pH associated with increased concentrate intake. One 

significant benefit of the INRA model is the inclusion of milking ewes. The European 

and African countries which utilise the INRA model often have a significant 

proportion of milking ewes. However, milking ewes make up a small minority of UK 

sheep systems, therefore, the use of the INRA model within a UK specific systems 

model may be non-optimal.  

The ARC and AFRC models were also adapted and combined with research caried 

out on sheep in Australia. This formed the basis for the CSIRO model. This model 
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was the first model to use degree of maturity to predict composition of gain, rather 

than using sex and breed categories.  

In North America, the National Research Council (NRC) developed a basic sheep 

nutrition model in 1945. This model has undergone various iterations with the most 

significant in 2007. The 2007 model was based on Cornell Net Carbohydrate and 

Protein System (CNCPS), a cattle nutrition model. Equations from the ARC, INRA 

and CSIRO models were incorporated into the CNCPS model to produce a CNCPS 

model for sheep.  

A significant amount of UK based nutritional decisions utilise the Agriculture and 

Horticulture Development Board’s (AHDB) ‘Feeding the Ewe’ research (Povey, 

Stubbings and Phillips, 2018) . This advisory document includes a range of feed 

intakes, nutritional requirements, and management advice collated from the ARC 

(1993), and consultants’ data. The AHDB ‘Feeding the Ewe’ contains UK specific 

requirements, including a range of common UK breeds and feed types, as well as 

being based around the UK sheep production cycle. The UK sheep industry is 

unique regarding the range of breeds, management systems and farm sizes. When 

compared to other prominent sheep producing countries such as New Zealand, the 

UK farms a much larger selection of purebred and crossbred ewes, over more varied 

land types (hill, lowland etc).  The stratified UK system is unique, requiring a tailored 

nutritional model to ensure accuracy. Overall, it is important for the model to include 

a suitable nutrition model to incorporate the large variation within UK flocks.  

GrazFeed and GrassGro are two decision support systems (DSS) included within the 

Australian GrazPlan DSS.  Freer, Moore and Donnelly, (1997)discussed the 

GrazFeed DSS and the integration into the larger GrazPlan DSS. GrazFeed allows 

users to consider the nutritive value of pasture for specific animals and therefore to 

calculate the required supplementation to maintain a desired daily liveweight gain. 

The model relies on stage of maturity and body condition rather than liveweight 

values to make it more applicable to a wide range of breeds and ages. Feed intake is 

calculated from the potential intake of an animal and the proportion of that intake 

which is available from pasture and supplementation. A series of potential intake and 

relative intake equations are presented in Freer, Moore and Donnelly (1997). Energy 

and protein requirements are also evaluated with requirements for maintenance, 
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pregnancy, lactation, wool growth, and environmental chilling all being considered. 

The GrazFeed model is dependent on the user providing data for some of the 

variables, for example the description of the pasture, breed and animal class.  

Finlayson et al. (1995) developed one of the earlier sheep grazing system models. 

They initially developed a series of equations to calculate metabolizable energy 

(MEI) intake from a range of parameters such as, liveweight, reproductive status, 

digestibility and energy content of feedstuffs, and availability of feedstuffs. They 

utilised values from existing literature to select the model parameters and 

constraints. Rumen capacity was calculated as a function of liveweight, accounting 

for any increase due to reproductive requirements. Breeds were categorised into, 

meat, wool, or half, with differences in liveweight between the breed categories being 

included in the model.  The selective grazing nature of small ruminants was 

accounted for by utilising a Michaelis-Menten function which determines the rate of 

consumption of leaf, dead and stem components. This series of equations account 

for pasture cover, resulting in higher digestibility and therefore intake, as pasture 

cover increases.  Finlayson et al. went on to include the consumption of hay and milk 

into their MEI equation. It was assumed that hay was preferentially consumed when 

both pasture and hay were available, with equal intake from all animals within each 

group. Hay wastage was also accounted for. Milk intake by lambs was also 

calculated, with the assumption that lambs consume milk until metabolic 

requirements are met or the ewe’s milk supply is exhausted.  

Finlayson et al. (1995) went on to produce a model for energy balance. They utilised 

the previous MEI model with the inclusion of specific energy requirements, these 

included: ME for maintenance; ME for pregnancy; ME for protein accretion; ME for 

wool growth and ME for lactation.  Energy balance was then used to predict fat 

deposition and utilisation. The model predicts the influence of nutrition on protein 

accretion, wool growth, milk production and DNA synthesis. The inclusion of fat 

deposition and utilisation was one of the first instances where body condition was 

recognised to influence metabolic processes within the animal. Each ME 

requirement was modelled independently. Maintenance was determined to be a 

function of body weight. Additional variables such as temperature and energetic cost 

of grazing were not included due to the observation that temperature fluctuations in 

the study location were not extreme enough to warrant consideration.   
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Overall, it is important to consider that the correct nutritional model is used to inform 

whole farm models. For a UK focussed simulation model, the NRC and INRA 

models, although detailed in their approach, may not be specific enough to the UK 

industry because of the range of breeds and systems the UK has. It appears the 

AHDB recommended values in ‘Feeding the Ewe’ would be most suitable for the UK 

industry due to their close association with the UK specific AFRC (1993) model. 

Additionally, Finlayson et. al (1995) simulation model used a series of parameters 

from previous literature, including nutritional parameters from the ARC model, which 

later informed the AFRC model. The existing use of the ARC model within a grazing 

system model suggests the information within the ARC model, and therefore 

‘Feeding the Ewe’, would be suitable.  

1.4.4.  Pasture Management Models  

Pasture management is of key importance within predominantly grazing systems, 

such as the UK sheep industry. Specific models have been developed to aid 

producers with decision making regarding pasture management. Farmax is a whole 

farm feed planning model originally developed in New Zealand. It is designed to help 

producers manage pasture utilisation through predicting grass supply through growth 

forecasts, and demand through dry matter intake. The model predicts grass growth 

using regional grass growth curves, produced from historical data, and calculates 

grass demand from liveweight and growth rates. This review will focus on a report 

discussing and comparing the implementation of the Farmax model in England 

(Genver, 2013).  A series of comparisons between English and NZ flocks were 

carried out. One of the most significant findings were that NZ ewes were on average 

14% lighter. Overall, there were a significant number of similarities in terms of 

pasture growth between NZ and the UK.  The differences in average ewe liveweight 

suggests current NZ based models may be inapplicable for the UK industry. These 

models may be able to be adapted to suit the UK, however the implementation of a 

UK based model should be more appropriate. 

Another component DSS of the GrazPlan project is the GrassGro DSS (Freer, Moore 

and Donnelly, 1997b). This DSS has the ability to predict pasture growth from 

historical data, much like the Farmax model. This model then supports the GrazFeed 
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DSS and the larger GrazPlan WFM. The model is informed by the MetAccess model, 

allowing weather to effect pasture growth.  

Although modelling pasture growth is an important area to consider, the inclusion of 

this within our model may add too much complexity. The variation between 

management strategies will have a significant effect on pasture availability, however 

the prediction of pasture growth curves would require a significant amount of 

historical and current data which is not currently available.  

1.4.5. Lamb Growth Models  

Lamb growth models are closely associated with the nutrition models previously 

discussed. Generally, the nutrition models do not account for variables such as 

breed. Within our systems model we included a predictive sub model to account for 

variation in growth rates depending on dam breed, BCS and birth status. We 

predicted lamb weaning weight using ewe parameters, creating a predictive sub 

model to inform the simulation model. The modelling of lamb growth is significant 

due to the potential for growth rates to increase farm productivity. Giving producers a 

means to accurately predict growth rates or lamb weaning weight from a range of 

ewe parameters will allow future planning to ensure optimum growth rates are 

achieved.  

1.4.6. Environmental Models 

The weather plays a significant role in all agricultural practices, often with extremes 

resulting in challenges for farmers. It is often accepted that farmers must adapt 

management practices in response to changes in weather. This is especially 

necessary within the UK sheep industry, specifically around lambing where weather 

can significantly impact lamb mortality.  

Two decision support systems (DSS) from the GrazPlan project in Australia help 

farmers predict weather patterns and lamb mortality (Donnelly, Moore and Freer, 

1997). The MetAccess and LambAlive DSS utilise a large database of historical 

Australian weather records, recorded by the Australian Bureau of Meteorology. The 

MetAccess DSS is designed to allow users to analyse typical weather patterns and 

calculate the probability of specific weather events occurring. This DSS is based on 
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the frequency of each weather event occurring at a specific time of year and location. 

It is not designed as a statistical model to predict weather patterns. The MetAccess 

DSS then supports the LambAlive DSS, which is designed to estimate the risk of 

lamb mortality from the effects of chilling due to the weather. Using probability to 

estimate the chance of a specific weather event occurring is effective, however will 

struggle to encompass extreme weather events. Within the sheep industry it is often 

these extreme events which cause significant challenges around lambing, rather 

than the event which has occurred at the highest frequency in the past.    

Similarly to the MetAccess DSS, White et al. (1983) used sampling from probability 

distributions to predict the probability of certain weather events in North Victoria, 

Australia. They used rainfall data to aid in the prediction of pasture growth, rather 

than lamb survival. Evapotranspiration was also estimated from time of year and 

probability of certain temperatures. Australian agriculture has a much larger risk of 

poor grass growth due to drought than the UK industry. Accounting for weather 

within Australian models appears to be a necessity due to a significant reliance on 

specific rainfall events. 

Although the incorporation of historical weather records to predict weather event 

probability is important within some Australian models, it may not be necessary 

within an UK based model due to the lower reliance on specific rainfall events for 

grass growth. There would be significant challenges around predicting or estimating 

probabilities of weather occurring within the UK due to large annual variability. The 

requirements for a large weather database, and continual updates with current 

weather records is also challenging to include within systems models. This project 

will not include weather predictions due to the large fluctuations and significant data 

required to produce the predictive models.  

1.4.7. Lamb Survival Models 

Total lamb mortality has been estimated at around 10% with over 50% of that 

occurring within 24 hours after birth (Binns et al., 2002). This results in both a 

significant loss in productivity along with potential welfare concerns. The reduction in 

lamb mortality, resulting in a higher number of lambs weaned per ewe has the 

potential to increase profit. If lamb mortality can be reliably decreased, there is the 

potential to reduce flock size and maintain the same output per hectare.   
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The LambAlive DSS is one constituent of the larger GrazPlan DSS in Australia. The 

LambAlive DSS is designed to estimate the risk of lamb mortality due to chilling from 

adverse weather conditions.  It is closely associated with the MetAccess DSS, used 

to estimate the probability of certain weather events occurring. The LambAlive DSS 

utilises an empirical model to predict the rate of heat loss from new-born lambs, with 

windspeed, rainfall and temperature as model variables. This allows the calculation 

of a chill index. The chill index, along with relative body condition and litter size is 

used to calculate the proportion of lambs that die in the first days of life.  Merino and 

Merino x Border Leicester genotypes were used within the study to evaluate the 

effects of weather on neonatal lamb mortality. The purebred ewes had a higher lamb 

mortality within the study.  

Oldham et al. (2011) predicted the birthweight and survival of Merino lambs using 

dam weight data. Lamb birthweight is closely associated with lamb survival, with the 

study finding that lambs which died within 48hr after birth were significantly lighter. 

However, there was no effect of birthweight on 48hr to weaning mortality. The study 

observed that increases in ewe liveweight between mating and lambing significantly 

increased lamb birthweight. They went on to predict lamb birthweight using a 

multivariable regression. The variables included were, ewe liveweight at joining, ewe 

liveweight change up to day 100 of pregnancy, ewe liveweight change from day 100 

to lambing, lamb sex and lamb birth status (single or twin). The study also predicted 

lamb survival from ewe liveweight profile. Each additional kg of ewe joining weight 

resulted in a 0.5% increase in lamb survival for lighter lambs. Also, ewe weight gain 

during pregnancy resulted in twin lambs having increased survival rates, with the 

largest effect observed in twin lambs under 4.5kg. Overall, this study suggests it is 

possible to predict both birthweight and lamb survival from maternal factors. Within 

our study, the prediction of lamb survival through a multivariable analysis may be 

beneficial, with an emphasis on BCS change rather than weight changes. The 

relationship between lamb birthweight and lamb survival may be observed within our 

study as a basis for predicting lamb survival.  

Binns et al. (2002) discussed the risk factors associated with lamb survival. They 

carried out an extensive study and developed a significant list of risk factors 

contributing to stillbirth, perinatal and postnatal mortality. When observing lamb 

survival data, it is important to consider the various risk factors associated with lamb 
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mortality, this would ensure accurate predictions for the magnitude and timing of 

lamb mortality.  

From the literature it is apparent that a significant number of variables can affect 

lamb survival. It is important to account for maternal factors such as BCS, BCS 

change, weight, and weight change within predictive models for lamb survival. It is 

apparent that breeds may also play a significant role in neonatal lamb survival rates 

(Freer et al., 1997). This could form a challenge within the UK industry due to the 

large range of maternal and paternal breeds. The effects of breed could be mitigated 

through the inclusion of a large range of common breeds to the UK. Lambing 

percentage also effects lamb mortality. The inclusion of weather variability, similar to 

the LambAlive DSS would also be beneficial, however poses a significant challenge 

within the UK due to extreme annual and local weather fluctuations. The data to 

support a predictive model for weather to inform a lamb survival model is not 

currently available within our study.  

1.4.8. Reproduction Models 

Reproductive performance is of key importance when increasing productivity on 

sheep farms. Earle et al. (2016) observed the effects of potential prolificacy and 

stocking rate in primiparous ewes. They observed an increase in carcass output per 

hectare when stocking rate and prolificacy were increased, however observed a 

decrease in lamb performance up to six weeks with higher stocking rates. It is 

important to match the reproductive performance and stocking rate of a flock to the 

management system in place to ensure optimum productivity. Within our model the 

relationship between ewe prolificacy and lamb growth will be considered.  

White et al. (1983) included a reproduction model as part of a larger simulation 

model, focused on modelling the performance of Merino ewes. Ewe fertility was 

estimated from the product of ovulation, fertilisation, and embryo survival rates. 

Ovulation rates were calculated as a factor of ewe weight and time of year. It was 

assumed that 5% of ewes would not ovulate due to a variety of reasons. Pre-mating 

nutrition was accounted for through an assumed linear relationship between 

increased weight and ovulation rate. The probability of fertilisation was dependant on 

time of year; however, it was assumed that all ova were fertilised in fertilised ewes. 

Embryo survival was affected by ovulation rate, ewe mating weight and weight 
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change up to 21 days post-mating. The GrazPlan model used white et.al (1983) 

model, with the addition of body condition, as a basis to determine conception rates.  

The ability to predict conception rate within a simulation model is beneficial to 

determine number of lambs born. Scanning number is often recorded on farm to aid 

management decisions. The use of scanning number as an input within a WFM may 

be beneficial in terms of accuracy, however it still may be possible to predict 

reproductive performance from other factors such as, BCS, weight and time of year.  

1.4.9.  Ewe Wastage Models 

Ewe wastage is defined as animals which are prematurely culled or died before the 

end of their productive life (Flay et al., 2021). There has been a significant amount of 

research in recent years, with the aim to evaluate and reduce ewe wastage, 

particularly within New Zealand flocks. New Zealand ewe wastage rates have been 

estimated in the range of 3 to 20% (Farrell et al., 2019). This has a significant 

economic impact, especially when wastage rates are high in ewe lambs (Flay et al., 

2021). 

Farrell et al. (2019) constructed a bioeconomic model to investigate the effects of 

ewe wastage on profitability. The model was representative of a typical New Zealand 

North Island hill country sheep farm. The system dynamics model developed 

consisted of five separate modules to model each sub-system, these include ewe 

flock dynamics, wool production, feed demand, feed supply and economics. The 

simulation model developed was run over a 30-year timeframe and the outputs of the 

model analysed. The model was run over a range of wastage rates from 5-21% and 

the effect on flock productivity evaluated. Farrell et al. (2019) found that as wastage 

increases the average flock age decreases. This results in lower reproductive 

performance due to younger breeding animals within the flock. An increased end of 

year feed surplus was also observed when lower wastage rates were evaluated. 

Wastage rates can have a substantial impact on flock profitability, with Farrell et al. 

(2019) predicting a 17% increase in case profit from a 10% reduction in wastage. It is 

therefore vital to accurately predict ewe wastage within our model, with the hope to 

reduce wastage rates throughout the UK industry.  The inclusion of a wool 

production sub model was required within Farrell et al. (2019) research, however, 
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may not be required within our models. The UK has little reliance on the sale of wool 

for profit due to the low wool prices and meat specific breeds, therefore the inclusion 

of wool production may overcomplicate the models.  

Flay et al. (2021) analysed and discussed annual and yearly ewe wastage of 13,142 

ewes from three farms in New Zealand. They also described the relationship 

between BCS at mating and ewe wastage. They concluded that it was beneficial to 

increase pre-mating BCS to reduce ewe wastage. When predicting ewe wastage 

within this study the relationship between BCS and ewe wastage will be important to 

consider. The literature suggests that until recently very little was understood about 

the reasons for ewe wastage. Flay et al. (2021) has evaluated when wastage is 

occurring within NZ flocks, however there is still large variation between systems. It 

is important for us to initially analyse ewe wastage within our dataset before 

developing predictive models for wastage.  

1.4.10. BCS and Weight Models 

BCS is a subjective measure of subcutaneous fat coverage across the lumbar region 

of a ewe (Russel, Doney and Gunn, 1969). It allows estimation of energy reserves at 

key intervals throughout the reproductive cycle. There is increasing interest around 

the use of BCS within ewes, with the AHDB providing target values to maximise 

productivity and health. The uptake of BCS by farmers is increasing, however can 

sometimes be seen as a labour-intensive process for little return. The recording of 

individual BCS values for each ewe is rarer still, with this type of recording being 

almost unique to farms involved within research or breeding of replacements.  

The relationship between BCS and weight has been observed within the literature, 

with some attempt to produce models to predict BCS.  The relationship between 

weight and BCS was observed by Sezenler et al. (2011). They studied three Turkish 

breeds of sheep, recording weight and BCS data at three intervals throughout the 

year. They found that physiological state had a significant effect on weight and BCS. 

Ewes at lambing were significantly heavier and had higher BCS values than ewes at 

weaning. They found at all three intervals, weight and BCS had a significant positive 

relationship. It is important to consider weight as a significant predictor variable in 

our BCS predictive model.  
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Semakula et al. (2020a) produced a regression model to predict BCS from lifetime 

liveweight, liveweight change and previous BCS. Their results were promising and 

suggested using a multivariable predictive model could predict BCS significantly 

better than solely looking at liveweight. Our model will adopt a similar strategy to 

Semakula et al. (2020a), however will include additional variables in an attempt to 

further reduce predictive error.  

1.4.11. Models Summary 

The literature highlights a series of key relevant areas to focus on when designing a 

series of predictive models for the sheep industry. Reproductive performance is of 

key interest due to the significant increases in productivity which can be observed 

through relatively small increases in reproductive performance. The relationship 

between BCS, age, weight, parity, and breed are important to consider within our 

model. The ability to accurately predict BCS as a management tool to assess flock 

performance, may have the benefit of reducing labour associated with manually 

collecting BCS. It is apparent from the literature that there is some uncertainty 

around the extent of lamb mortality, this includes uncertainty around why it is 

occurring and when. One reason for the uncertainty around the extent of lamb 

mortality may be due to the lack of recording, and large variability between 

management systems.  Ewe wastage has recently been analysed in NZ in an 

attempt to reduce ewe wastage through understanding the main risk factors. This 

project will analyse ewe wastage using a UK dataset, then build a predictive model 

to predict wastage. Although weather plays a significant role within lamb survival, it is 

unfeasible to include it within our study. The dataset required to calculate the 

frequency at which specific weather events occur is not available, and would likely 

be inaccurate for the UK.  
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1.5. Thesis Aims & Objectives 

This thesis set out with two main aims:  

1. To investigate some of the initial aims of the Challenge Sheep project through 

the analysis of the data and use of machine learning methods. These include: 

to identify best practice for management of replacement ewe; and to monitor 

replacement ewes throughout their productive lifetime using EID data 

collection (Challenge Sheep | AHDB, accessed 20/10/2023) 

2. To build a series of predictive models for key events within sheep production 

systems, and evaluate how these models interact within a larger systems 

model 

These aims were achieved through the building of a series of predictive models, 

informed from data collected during the Challenge Sheep project. Initially, the 

relationship between BCS and weight was observed. Predictive modelling 

techniques were used to predict BCS, using weight as the main predictor variable, 

alongside additional variables to improve model fit. The BCS predictions model could 

be used as a standalone model, as an objective means to predict BCS at any 

interval throughout the production year, or could be used to inform a larger systems 

model. It is well reported within the literature that the subjective nature of BCS leads 

to inconsistencies and bias within scoring. To further understand the effect of 

subjectivity within BCS measurements a pilot study was conducted, using the 

Challenge Sheep project farmers, to observe the inter and intra rater error. This 

indicated the accuracy and repeatability of scorers, and helped to validate the BCS 

measurements within the dataset.  

Reproductive performance was observed. Similar techniques to that used within 

dairy production models to model days to conception were used. Survival analysis 

techniques allowed mating to lambing interval to be observed. This was then used to 

predict mating to lambing interval for individual ewes. These predictions were then 

integrated within a larger ewe simulation model. 

Survival analysis techniques were used to observe wastage throughout the 

Challenge Sheep project farms. Initially the reasons for wastage was observed, 

alongside time of wastage. The probability of wastage was then calculated for each 
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day of the production year. This allowed an estimation for the probability of survival 

for each individual ewe.  

A ewe simulation model, observing the relationship between the sub-models was 

built to observe how the models interacted on a larger scale. The model observed 

the effects of BCS at key stages of production, ewe status at first mating and breed 

on lifetime performance. Lifetime performance was quantified by the total lifetime 

weaning weight of lamb from each ewe. The simulation was run over the expected 

productive life of an animal with comparisons of the outputs used to quantify the 

effect of ewe parameters on lifetime performance. 
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Chapter 2. Use of Machine Leaning to Predict Body Condition 

Score 
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2.1. Introduction 

2.1.1. Body Condition Scoring 

Body condition scoring is used throughout a wide variety of species, including 

livestock, companion, zoo and equine animals. Body condition scoring gives an 

indication of subcutaneous fat deposits, and an overall picture of the energy balance 

of an animal, particularly when changes in body condition score (BCS) are observed 

over a period of time. For production animals it is mainly used as a measure of 

performance, and to inform management decisions on farm. However, it can also be 

used to indicate health status and is one of the key indicators of disease such as 

ketosis in cattle and sheep. In companion and zoo animals it is largely used as a 

quick means to ensure the animal is not under or over-weight, again indicating health 

issues or poor nutrition. Methods of recording BCS vary depending on the species. It 

can be recorded through palpation, visual inspection or physical measurement, with 

one method often considered the “gold standard” for each species. Not only do the 

methods of collecting BCS vary between species, but the scale in which BCS is 

recorded can vary. Within livestock species BCS is usually recorded on a scale of 1 

to 5 with 0.5 point-increments or 1 to 9. Measuring body condition gained traction 

within the livestock sector as a means to quickly assess and monitor the status of an 

animal, irrespective of breed, physiological state or age. Body condition scoring is 

also viewed as a cheaper option when compared to weighing each animal. The 

uptake of body condition scoring is variable across all livestock systems. Within 

ruminants, dairy systems have seen the largest use of regular BCS to maximise 

reproductive performance and yield. Body condition scoring in sheep was pioneered 

in the 1960s by Jefferies (1961) then further refined and evaluated by Russel, Doney 

and Gunn (1969), through the observation of the relationship between animal fat 

percentage and measured BCS. Since the conception of body condition scoring in 

sheep, the uptake on UK farms has gradually increased, largely due to vets and 

advisors advocating for the use of BCS and educating farmers around the benefits of 

body condition scoring. Although body condition on sheep farms is often observed or 

measured, it appears that recording BCS for individual animals is rare. Concerns 

with body condition score include high labour requirements and bias as a result of 
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the subjective nature of the measurements. There is scope to increase the 

frequency, accuracy and recording of BCS on most farms throughout the UK.  

2.1.2. Benefits of Body Condition Scoring 

Depending on the species and the requirements from that species, body condition 

scoring can have varying uses. Generally, in livestock species body condition 

scoring is used as a means of measuring and optimising performance, with the 

utilisation of BCS targets at specific stages of the production cycle. For example, at 

mating the BCS target for ewes ranges from 3-3.5 to ensure optimal energy 

availability for reproductive processes (Wright, 2019).  Some health issues can also 

be observed through body condition scoring, particularly health issues associated 

with a rapid loss of bodyweight, leading to emaciation. Although body condition 

scoring identifies potentially ill animals, it can also play a vital role in mitigating the 

onset of specific diseases. The dairy industry has effectively utilised BCS at calving 

to minimise negative energy balance post-calving and reduce the incidence of 

metabolic diseases (Heinrichs, Jones and Ishler, 2023).  Often in companion species 

the emphasis of body condition scoring is placed on reducing obesity, which is a 

significant risk factor for many diseases. The uptake of body condition scoring in zoo 

species has also been substantial, with increased challenges due to the extreme 

differences in animal morphology. Similarly to companion species, body condition 

scoring is often used to reduce obesity, however, it can also highlight malnourished 

animals. Overall, body condition scoring provides an indication of an animal’s 

subcutaneous fat deposits, with different applications for varying species and 

systems.  

2.1.2.1. Benefits of Body Condition Scoring in Sheep 

The benefits of using BCS as a performance measure is well documented. BCS can 

be used to group ewes post-weaning for targeted nutrition (Povey, Stubbings and 

Phillips, 2018) , low BCS at weaning has been shown to negatively impact ovulation 

rates (Povey, Stubbings and Phillips, 2018), and low BCS at lambing has been 

shown to impact on lamb growth rates (Mathias-Davis et al., 2013). Body condition 

score is an indicator of metabolic diseases, particularly around lambing. Ketosis 

occurs in ewes toward the end of pregnancy, slightly earlier than in dairy cows. This 

is due to the large energy demands of the growing foetus and reduced ruminal 
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volume due to pressure from the foetus. The impact of reduced ruminal size is more 

pronounced in twin and triplet bearing ewes and is therefore often referred to as 

“twin lamb disease”. Both low and high BCS pre-lambing are risk factors for ketosis. 

Low BCS results in reduced energy availability for foetal growth and has been 

observed to increase the risk of elevated BHB levels which indicates ketosis. High 

BCS pre-lambing is associated with reduced feed intake and therefore rapid 

mobilisation of fat again resulting in ketosis, often referred to as fat-ewe pregnancy 

toxaemia (Crilly, Phythian and Evans, 2021). A negative correlation between BCS 

and blood BHB levels has been observed in milking ewes (Marutsova, 2018). This 

suggests lower BCS might be an indicator of sub-clinical ketosis. It is important to 

optimise BCS throughout the whole production cycle. In the UK, the Agriculture and 

Horticulture Development Board (AHDB) have developed a series of recommended 

BCS values for ewes at different stages of production (Povey, Stubbings and 

Phillips, 2018). These BCS recommendations are included in Table 2.1. They were 

calculated to provide farmers with an appropriate BCS target for each stage of 

production. Ensuring ewes are in the correct BCS can help “improve fertility, 

increase lamb performance and reduce incidence of metabolic disease” (AHDB Beef 

and Lamb, 2019). 

Table 2.1- Recommended BCS for Hill, Upland and Lowland ewes at each stage of 
production (Wright, 2019) 

 

 

 

 

 

 Target BCS 

 Hill Upland Lowland 

Mating  2.5 3.0 3.5 

Scanning  2.0 2.5 3.0 

Lambing  2.0 2.5 3.0 

Eight Weeks post-lambing 2.0 2-2.5 2.5-3.0 

Weaning  2.0 2.0 2.5 
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2.1.2.2. Benefits of Body Condition Scoring in Dairy Cows 

Substantial research within the dairy sector has allowed body condition scoring to be 

developed as an essential routine tool for monitoring herd health and performance. 

Fertility within Holstein Friesian dairy cows has significantly reduced as milk 

production has increased (Wathes and Taylor, 2002). Rapid BCS loss post-calving 

results in significant negative energy balance (NEB). This reduces the concentration 

of insulin-like growth factor-I (IGF-I), and in turn downregulates reproductive 

processes. Metabolic diseases in dairy cows are also prevalent, and largely due to 

the effects of NEB during the post-calving period. Ketosis has been shown to be 

twice as prevalent in cows calving at a BCS greater than 3.5 compared to BCS equal 

to 3.25 (Heinrichs, Jones and Ishler, 2023). These results are also applicable to 

sheep production systems with ewes in a BCS of 2.5 to 3.5 shown to have a reduced 

risk of elevated beta-hydroxybutyrate (19.7%) compared to ewes with a BCS less 

than 2.5 (Ratanapob et al., 2018). Research has shown that dietary energy intake of 

dairy cows cannot overcome the extreme energy demands during early lactation, 

and therefore optimising BCS at calving is vital (Heinrichs, Jones and Ishler, 2023). 

Days from calving to conception is substantially lower in dairy cows than sheep, 

therefore it is essential to ensure a suitable calving BCS, to mitigate the occurrence 

of increased days to conception and the loss of production associated with this. 

Garnsworthy & Wiseman (2006) discussed BCS targets and whether existing targets 

were suitable for modern, high production dairy cows. They concluded that calving 

BCS should not be more than 0.5 units above the cow’s target BCS to mitigate 

extended periods of NEB post-partum. The Agriculture and Horticulture Development 

Board has outlined similar BCS targets for sheep production systems at key events 

throughout the year (Wright, 2019). Unlike dairy BCS targets which focus on 

reducing NEB after calving, the targets for sheep production systems often 

emphasise minimum BCS targets at each event, with many health and production 

issues stemming from low rather than high BCS. It appears that the effect of NEB 

post-partum on reproduction is less of an issue in sheep due to the extended period 

of recovery between weaning and subsequent mating. Extreme BCS loss can still 

result in ketosis, however can often be managed through increasing dietary energy 

through improved forage or supplementation.  
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2.1.2.3. Benefits of Body Condition Scoring in Other Species  

The pig industry also utilises body condition scoring methods to ensure optimal sow 

performance. Low BCS has been associated with delayed oestrus, poor foetal 

development and poor performance during lactation. Alternatively, high BCS can 

cause difficulty farrowing, decreased litter size and low feed intake during lactation. 

Unlike sheep BCS targets, sow targets remain consistent at around 3 BCS units 

throughout the productive life of the animal, with a slight drop throughout lactation.  

(AHDB Pork, 2023). 

2.1.3. Body Condition Scoring Methods  

2.1.3.1. Methods for Body Condition Scoring Sheep  

The methods associated with body condition scoring animals can significantly differ 

between species and region. Body condition scoring in sheep is a method of 

assessing subcutaneous fat coverage across the lumbar region. The technique was 

first developed by Jeffries (1961) (cited in Kenyon, Maloney and Blache, 2014) as a 

method to estimate body fat stores and therefore energy reserves of ewes.  The 

process involves the palpation of the region between the spinous and transverse 

processes along the lumbar region of the ewe to assess subcutaneous fat deposits 

(Russel, Doney and Gunn, 1969). Scores are then allocated depending on the scale 

being implemented. BCS was designed as a means of assessing the condition of 

ewes irrespective of other traits such as skeletal size, breed, and physiological state 

(Kenyon, Maloney and Blache, 2014). This simplifies the assessment of ewes when 

compared to the use of other parameters such as weight, which is significantly 

influenced by breed and age. Commonly BCS is recorded on a 1-5 scale with 0.5 or 

0.25 point increments or a 1-9 scale. Table 2.2 provides a description for each 

category. Other methods for assessing BCS in sheep are limited, largely due to 

variability of wool coverage throughout the season making visual techniques 

challenging. Often body condition scoring in sheep is performed alongside weighing 

if the technology is available or when management changes or treatments are 

implemented. 

2.1.3.2. Methods for Body Condition Scoring Dairy Cows 

Two traditional methods exist when evaluating body condition score in dairy cows. 

The first method is similar to that of sheep with palpation of the lumbar vertebrae to 
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assess fat coverage. The second method is a visual assessment of the animal 

(Garnsworthy and Wiseman, 2006). Visual assessment can be effective for dairy 

cows, however, is not applicable to the sheep industry due to wool coverage 

impairing the view. With the increasing implementation of technology on livestock 

farms new methods of measuring BCS are being developed. The use of 3D 

cameras, image processing and regression models has provided a means to 

consistently assess cow BCS, while reducing labour requirements (Zin et al., 2020). 

Two models were tested to analyse the 3D images. The models resulted in a mean 

absolute error (MAE) of 0.15 and 0.13 and a maximum error of 0.45 and 0.55, when 

tested against skilled scorers. These results suggest adequate levels of accuracy 

can be achieved using 3D imaging to estimate BCS. Unfortunately, utilising 3D 

imaging technology within the UK sheep industry faces many challenges. Wool 

coverage will substantially reduce the accuracy of the imaging. Zin et al. (2020) 

observed issues with imaging when cows were in close proximity to one another, this 

issue would be greatly exacerbated on sheep farms. The extensive nature of many 

sheep farms would make it difficult and time consuming to collect the images. 

Finally, the investment required for the technology may be prohibitive, especially with 

the small margins and financial uncertainty that many UK sheep producers face.  

2.1.3.3. Methods for Body Condition Scoring in Other Species 

Many body condition scoring techniques are used in other species. In pigs visual 

methods are often used to assess BCS, however with increasingly leaner breeds it 

has became more challenging to visually assess. Specific calipers for measuring 

sow BCS have been developed with the aim to objectively assess sow BCS, 

removing the subjective nature of the measurements (Knauer and Baitinger, 2015). 

Although this method is effective for individual sows, similar technology could not be 

implemented for sheep, again this is due to limitations from wool coverage, but also 

high labour requirements. Companion species are largely assessed using BCS 

charts which compare the shape of the animal to an average animal within each 

category. This appears effective to monitor health of the animals, however, would not 

be an accurate or practical means of assessing animals on farm, particularly if 

management decisions were to be made as a result of their measurements. When 

BCS is being measured by dog owners, the results have been significantly more 

subjective that that of veterinarians. Eastland-Jones et al. (2014) observed that 66% 
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of owner’s scores were different to that of a primary investigator, with approximately 

60% of these scores being an underestimate. This suggests owner bias can 

significantly impact body condition scoring accuracy, and is important to remember 

that bias may be present when farmers are assessing their own animals.  

Table 2.2- Description of each Body Condition Score Category in Sheep (Kenyon, 
Maloney and Blache, 2014) 

BCS Category  Description 

Score 1  Prominent and sharp spinous and transverse processes. Little to no fat 

coverage. The animal will feel emaciated with shallow eye muscle. Animals in 

this category likely have underlying health issues or are extremely malnourished. 

Score 2 Spinous and transverse processes are still prominent, however now appear 

smooth. A thin coverage of fat over the whole loin area, with moderate eye 

muscle depth. Usually, animals found in this category are at the end of the lamb 

rearing phase due to high energy demand for pregnancy and lactation. These 

animals need to regain condition before next mating.   

Score 3 The spinous and transverse processes are now rounded and require some 

pressure to be felt. Eye muscle depth is full, with a good covering of fat across 

the whole area. This category is generally considered the ideal maintenance 

condition for ewes. Condition score will fluctuate from this level throughout the 

production cycle as energy demand changes, however, will return through good 

nutrition and management.   

Score 4 The spinous processes can be felt with pressure applied, however the 

transverse processes cannot. Eye muscle depth is high with substantial fat 

coverage across the whole loin region. Animals in this category are generally 

considered to be above the ideal condition. At mating it is more usual for animals 

to be found within the category due to increased plane of nutrition pre-mating. 

Animals in this category at lambing are considered to be in too high a condition, 

potentially leading to increased dystocia and metabolic disorders.  

Score 5 Both the spinous and transverse processes cannot be detected due to the high 

degree of fat coverage. Eye muscle depth is similar to that of Score 4, however 

fat deposits are higher. A depression above the spinous process may be present 

due to the nature of the fat deposits. Animals in this category are considered to 

have excessive fat deposits, which could impact on performance. Condition 

score should be managed so that animals do not deposit extreme levels of 

excess fat. Reproductive performance and general health can be impacted by 

high levels of fat deposition.  
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2.1.4. Adoption of Body Condition Scoring by Farmers 

Despite the well documented benefits of body condition scoring, surveys carried out 

on Australian flocks suggest the uptake of body condition scoring by farmers is 

limited (Jones et al., 2011). They reported that 96% of farmers monitored condition 

of their ewes, however only a small percentage of farmers (7%) carried out hands on 

condition scoring. This suggests that although the benefits of assessing BCS may be 

accepted, the physical process of condition scoring and recording may be too labour 

intensive and a barrier to use. In a more recent survey from the AHDB (Boon and 

Pollot, 2021), it was reported that 75% of UK farmers BCS their flocks at least once a 

year, 36% of which scored once a year, 25% twice, 18% three times and 21% four 

times. The nature of the BCS measurements are not discussed by Boon and Pollot 

(2021), therefore the extent that the farmers surveyed recorded or used the 

measurements is unclear. A survey of 105 British sheep farmers observed how body 

condition scoring was being assessed on farm. 67% of respondents reported using 

body condition scoring, however only 32% assessed BCS through palpation, using 

the methods discussed in section 2.1.3.1. Categorisation of BCS varied throughout 

the respondents, with 29% using three categories, 25% using a 1 to 5 scale and 19% 

using 2 categories (Owen et al., 2017). Often body condition scoring is used as a 

quick means to group animals or highlight extremely poor condition animals, rather 

than as a tool to accurately measure and monitor BCS over a period of time. It still 

appears that there is a substantially higher percentage of farmers utilising body 

condition scoring in the UK compared to Australia. This is likely due to the benefits of 

body condition scoring being understood by farmers in the UK, however the 

opportunity to increase periodic scoring and recording is still available. Boon and 

Pollot (2021) observed significantly more body condition scoring occurring at mating 

than any other stage of production. Clearly, farmers place an emphasis on ensuring 

correct BCS at mating, to likely optimise reproductive performance of the animals, 

and ensure correct nutrition during the post-mating period and throughout gestation. 
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2.1.5. Predicting BCS 

2.1.5.1. Benefits Associated with Predicting Body Condition Score  

BCS by nature is a subjective measurement, as the scorer is evaluating the ewe 

based on their experience or training. This can result in variation both within and 

between scorers, resulting in challenges around repeatability (Kenyon, Maloney and 

Blache, 2014).  Body condition scoring is also a labour-intensive process due to the 

requirement to handle every animal scored, multiple times per year. The current 

process of condition scoring ewes makes it challenging to compare BCS between 

flocks due to scorer subjectiveness and inconsistency. The use of predictive models 

to estimate BCS from specific predictor variables, may allow for an objective BCS to 

be calculated with little to no measurement error. Predictive models use known data 

to predict future outcomes. Historical BCS data along with predictor variables such 

as; weight, ewe age, breed, event, scanning number, and days since last lambing 

will be used to produce models to predict BCS. These models will then be evaluated 

using a range of error metrics.  

2.1.5.2. Existing Literature 

The relationship between BCS and weight in ewes is well documented. A positive 

relationship between BCS and weight for 25,246 ewes across 18 different farms in 

Ireland was observed (Mchugh et al., 2019). They found an increase of 4.81 kg of 

liveweight for each additional unit of BCS. A similar, positive relationship between 

weight and BCS has been observed in smaller studies by Sezenler et al. (2011) and 

Morel et al. (2016) with regression coefficient of 0.73 to 0.82 and 0.81 respectively. 

The significant relationship between BCS and weight, observed throughout multiple 

studies, suggests that it is possible to use a predictive model to predict BCS from 

weight, using additional variables to improve model fit. Previously, machine learning 

models have been used to predict BCS in New Zealand Romney ewes (Semakula, 

Corner‐thomas, et al., 2021). They built nine machine learning algorithms to predict 

BCS from a ewe’s current and previous liveweight. They found that a gradient 

boosting decision tree algorithm was most efficient, with an accuracy of >85% when 

predicting BCS between 43 and 54 months of age. Further research focussed on 

predicting BCS from ewe liveweight, age, and stage of production (Semakula, 

Corner-Thomas, et al., 2021).  They found that the combined model, including 

multiple predictor variables, improved model fit, however correcting liveweight for 
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fleece and conceptus weights did not improve accuracy of the models. Although the 

potential effectiveness of using machine learning models to predict BCS has been 

established, it is still unclear as to whether additional variables would improve model 

fit. Additionally, the effectiveness of models to accurately predict BCS for the wide 

variety of breeds found within the UK sheep industry is currently unknown.  

2.1.6. Aims and Objectives 

This research aims to mitigate both the subjective nature and labour requirements of 

body condition scoring ewes through the production of predictive machine learning 

models to predict BCS as a continuous variable. Primarily weight will be used as a 

proxy for BCS, with the addition of commonly available individual animal 

characteristics. 
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2.2. Materials and Methods  

2.2.1. Data Collection  

This study uses data collected as part of the AHDB Challenge Sheep project 

(Challenge Sheep | AHDB, accessed 20/10/2023). The Challenge Sheep project was 

launched with the aim of evaluating the effects of the first breeding season on 

lifetime productivity of ewes. The ongoing project is monitoring 7003 ewes over 

seven production years (2017-2024), with this chapter using data from the first three 

years. Eleven commercial English farms were included within the project covering a 

range of management practices, locations and animal types for the UK. Breeds in 

the dataset included nine purebred and five crossbred types.  Data were available for 

a range of variables. Animal data included breed, ewe date of birth and project entry 

status (ewe lamb or shearling). Scanning and lambing numbers were recorded. Exit 

date and reason were recorded for any ewes that left the project. All data were 

collected using electronic identification (EID) tags and readers to increase efficiency 

and help mitigate human error.  

BCS and weight data were recorded at five key intervals throughout the season 

(mating, scanning, lambing, eight- weeks post- lambing and weaning), with the 

exception of weight records at lambing, due to challenges around physically 

recording pregnant ewes and accurately determining the effects of foetal weight on 

liveweight of ewes. The intervals were determined by the farmers, with dates being 

recorded at each scoring. It is highly labour intensive to record exact mating dates 

for each ewe, therefore, the date was recorded as the date that mating began (ram 

entry date). On each farm, BCS was recorded by a single trained individual who was 

also the flock owner or shepherd. At the start of the project the scorers underwent 

specific training to ensure accurate recording of BCS and weight data. BCS was 

recorded on a 1-5 scale with either 0.25- or 0.5-point increments, depending on 

scorer preference, based on the scoring methods described by Russel et al. (1969). 

The scorers took part in a BCS training and calibration session at the start of the 

project to mitigate intra- and inter-rater error. At each body condition scoring event, 

weight was recorded using calibrated EID weigh scales. In total 59,927 individual 

BCS records were recorded. The distribution of all BCS measurements is shown in 

Figure 2.0)  
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Figure 2.0 - Distribution of all BCS measurements collected throughout the first three 

years of the Challenge Sheep project 

 

2.2.2. Data Cleaning  

Data were manipulated and analysed using R version 4.1.0 (R: The R Project for 

Statistical Computing). Data were initially cleaned to remove missing values. These 

were the result of not recording weights when body condition scoring at lambing 

(total 6010 records), incomplete date records for when body condition scoring 

occurred, or failure to record datapoints for unknown reasons.  Any weight values 

outside of +-3.sd for each breed were removed due to the high likelihood that these 

values were incorrectly recorded (372 records). The removal of missing values and 

weight values outside +-3 .sd, resulted in a clean dataset with 41,565 individual ewe 

records.  

There were 14 unique ewe breeds and crossbreeds recorded within the project. We 

refined this number through grouping similar crossbred ewes and grouping 

biologically similar ewes. The final dataset included 11 grouped ewe breeds to 

ensure a suitable number of records for each breed group. Ewe age was calculated 
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for each individual data record from the difference between the record date and ewe 

date of birth. Ewe age in days was calculated as a continuous variable. The lambing 

event was unique in that an exact date of the event was known, unlike records at 

mating. This resulted in a “days since last lambing” variable to be calculated as a 

timeframe within the model. This was determined by calculating the difference 

between each event and the previous lambing date. This was then grouped into a 

categorical variable, using groups of 10-day increments, with an additional category 

for ewes which had never lambed. 

2.2.3. Variable Selection 

Descriptive statistics and visualisation were used to explore the relationship between 

each of the variables (weight, age, days post-lambing and breed) and BCS. As 

weight was being used to predict BCS, the relationship between BCS and weight 

was initially explored at key stages of production. The effect of ewe age on the BCS 

weight relationship was then observed. As BCS is considered to be irrespective of 

breed (Kenyon, Maloney and Blache, 2014), yet weight is not, it was important to 

explore how breed affected the relationship between BCS and weight. The 

relationship between BCS and weight was also observed at each event throughout 

the production year. This was to observe whether the relationship was between BCS 

and weight was consistent as physiological state changed over time.  

2.2.4. Predictive Modelling 

Predictive models were built within R software 4.1.0 (R: The R Project for Statistical 

Computing, no date), using the caret package (Kuhn ,2021). Variables included as 

candidates in the models, largely selected from the results of the descriptive 

statistics, were weight, ewe age, days since last lambing and grouped breed 

category. The data were split into training and test sets at a ratio of 80:20. The Test 

split was used as a validation dataset to allow any model overfitting to be observed 

and help ensure generalisability of the model. Often Test datasets are taken from an 

external dataset in which the same parameters have been observed. When an 

external dataset is not available the existing dataset is split to ensure model 

performance is assessed on data not used for model training (Kuhn, 2008). When 

splitting the data, individual ewes were only included in either the training or test 
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datasets to ensure the model was trained and tested on different animals. Ten-

repeats of 10-fold cross validation were used during model training, with BCS 

predicted as a continuous outcome. Cross validation allows the performance of the 

model to be observed on each fold of the training dataset, further highlighting any 

overfitting.  

A series of predictive models were trialled to assess which model gave the optimal 

performance. The models included, linear regression, random forest, support vector 

machines, K-nearest neighbour, and gradient boosted regression. Each model 

underwent hyperparameter tuning to optimise model performance. Tuning parameter 

plots were observed, along with the use of root mean squared error (RMSE) and 

Concordance Correlation Coefficient (CCC) metrics to assess model performance. 

RMSE provides an indication of overall model error, giving a larger weighting to 

higher residuals. Concordance correlation coefficient measures the deviation of 

predictions from a perfect prediction line (y=x). These metrics not only show model 

performance, they also ensure that the models are not overfitting on the training 

dataset by directly comparing the metrics from the training and test datasets. The 

results of the test dataset also provide an approximation of how the models will 

perform on out of sample datasets.  

2.2.5. Model Overview  

2.2.5.1. Linear Regression  

Linear regression models describe the relationship between the dependent or 

response variable and one or more independent or predictor variables. The model 

fits a regression line which is the best fit line for the model. Benefits associated with 

linear regression models include low computational requirement and easy 

interpretation. This allows predictions to be generated in real time unlike some more 

computationally heavy models.  

2.2.5.2. Random Forest  

Random forest models are a supervised machine learning algorithm, utilising 

ensemble learning methods. This is a method to combine predictions from multiple 

models to create a more accurate prediction than any individual model. A series of 

decision trees are trained on independent subsets of data, with the predictions 
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averaged across all trees. Random forest models differ from traditional decision 

trees due to no interaction between individual trees. This results in a model with a 

high degree of accuracy; however, random forest models can be prone to overfitting, 

particularly on noisy datasets (Segal, 2004). 

2.2.5.3. Support Vector Machines  

Support vector machines are a supervised learning algorithm in which a hyperplane 

is fitted on the training dataset. The hyperplane is fitted to maximise the margins 

from each datapoint, this minimises the generalisation error of the model. The 

hyperplane is then used to categorise specific values. (Cortes, Vapnik and Saitta, 

1995). Support vector machines use some fundamental concepts to ensure accurate 

predictions. The separating hyperplane is used to separate datapoints belonging to 

different classes, maximising this margin is essential to improve generalisability of 

the model. Although in a perfect model the hyperplane would separate the data 

cleanly, this is often not the case, soft margins are used here to allow a certain 

degree of misclassification to occur, without affecting the model. User specified 

parameters are used to dictate the number of datapoints allowed to cross the 

hyperplane and the distance they are allowed to cross. For data which is one 

dimensional and non-separable, a hyperplane cannot be fitted, this is when the 

kernel function is implemented to add an additional dimension to the data (projects 

data from low dimensional space to a higher dimensional space) and often allows 

the data to be separated at the higher dimensional space (Noble, 2006). SVM can 

also be use for regression where a continuous output is predicted from the 

hyperplanes (Ashwin, 2020). 

2.2.5.4. K- Nearest Neighbour 

K nearest-neighbour is a non-parametric modelling technique. It uses distance 

functions to predict values using the available data points. The value of K determines 

the number of data points used to calculate the prediction. When the value of K 

exceeds one, the prediction is taken from an average of the nearest datapoints. It is 

important to optimise the value of K to ensure that the model is not oversensitive to 

outliers, or using datapoints with a higher distance function than necessary (Ahmed, 

no date).  

2.2.5.5. Gradient Boosting Regression  
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Gradient boosting regression models are similar to random forest models in that they 

are also ensemble techniques that use a series of decision trees to estimate the 

result. They differ in that random forest models create a series of decision trees 

through randomly splitting the dataset then averaging the predictions from each 

decision tree. Gradient boosting models use the addition of decision trees to correct 

the error from the last tree. Additional trees are added until an acceptable degree of 

error is reached, or the maximum number of trees are used. Extreme gradient 

boosting, used within this study, takes the basic gradient boosting algorithm and 

uses advanced regularization techniques. This results in a model which prevents 

overfitting. Although random forest models can be extremely accurate, they have a 

tendency to overfit. This is minimised in gradient boosting models as each tree is not 

constructed to its full depth (Yokotani, 2021).  

2.2.5.6. Hyperparameter Tuning  

Hyperparameters are configurations which can be selected within specific ranges to 

improve model performance. Hyperparameter tuning is the process of selecting 

hyperparameters to ensure optimal model fit (Bartz et al., 2023). The tunability of the 

model is determined by the difference between the model performance for reference 

values and optimised values. Each algorithm has a specific set of hyperparameters 

which can be tuned (Table 2.3).  
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 Table 2.3- Summary and description of the hyperparameters for each model 

 

2.2.5.7. Regression Chain Model 

A recurring theme when observing the outputs of the predictive models were that at 

the extreme BCS predictions (BCS <2.5, BCS >4) the models were consistently 

predicting poorly (high BCS values were underpredicted with low BCS values 

overpredicted). This resulted in a degree of bias throughout the model. The 

observation of model bias led to the use of a regression chain model in an attempt to 

reduce overall model bias. Multiple model machine learning, and subsequently the 

implementation of regression chain models is outlined in ‘A Gentle Introduction to 

Multiple-Model Machine Learning’ (Brownlee, 2022). Regression chain models result 

Model  Hyperparameter Description 

KNN  K  Determines the number of neighbours included 

within the model  

 

p Determines the distance to each neighbour  

 

Random 

Forest 

num.trees States the number of trees included within the 

ensemble. Increasing the number of trees 

generally improves model performance, however 

increases model runtime 

 

mtry Controls the randomization of individual trees 

through dictating how many features are randomly 

chosen.  

 

sample.fraction Number of observations used to train one tree  

 

 Replace States whether samples can be drawn multiple 

times for training of one tree 

 

Extreme 

Gradient 

Boosting 

(XGBoost)  

n.rounds Controls the number of trees in the ensemble 

eta Alters the influence of individual trees in the 

ensemble 

 

lambda, alpha Regularization parameters to prevent overfitting 

gamma  



   

 

67 
 

in a model which is conditional on the predictions from previous models in the chain. 

The fitted BCS values were taken from the gradient boosting model, then an average 

fitted BCS for each observed BCS category was calculated. A linear regression 

model was then fitted to predict BCS from the average gradient boosting fitted 

values. The linear model was then used to predict a second fitted value on the 

training dataset from the initial fitted values. This gives a model which has the ability 

to correct model predictions, depending on the previous predicted value. The degree 

of which the initial predictions are corrected is independent of the observed BCS 

values.  

2.2.6. Evaluating Model Performance  

Model performance was assessed on the test set using four metrics, mean absolute 

error (MAE), root mean squared error (RMSE), coefficient of determination (R2), and 

concordance correlation coefficient (CCC). Models with the lowest RMSE and 

highest R2 were determined to perform the best. The model performance was also 

evaluated via visualisation using quantile-quantile plots and scatterplots of the 

predicted vs observed BCS values. To evaluate model performance, observed vs 

predicted plots were used to observe model fit throughout the whole BCS range. 

This provides a means to assess both model fit and can indicate model bias. 

Boxplots of the model residuals were used to observe both error and bias within the 

model. For each observed BCS value, a boxplots of the error between observed and 

prediction values was plotted. This allows the observation of which BCS values the 

model was struggling to predict, and whether the model was biased at the extreme 

predictions. Bias could be observed when median residuals were not equal to 0. 

Variable importance plots and model coefficients were used to observe the relative 

importance of each predictor variable for each model.  

2.2.6.1. Descriptive Statistics  

A range of descriptive statistics were used to observe relationships between different 

variables. Initially, the relationship between BCS and weight was plotted. The effect 

of the additional predictor variables on the BCS weight relationship was then 

observed. These plots were used to help select the appropriate predictor variables to 

include within the predictive modelling.  
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2.3. Results  

2.3.1. Descriptive Statistics  

 

Table 2.4- Mean BCS and standard deviation for each breed grouping 

Breed Mean BCS Standard Deviation 

AberField 2.89 0.55 

AberField X 3.41 0.70 

Highlander 3.36 0.58 

Lleyn 2.92 0.45 

Mule 3.18 0.56 

Mule X 2.87 0.86 

Other 3.01 0.81 

Romney 3.32 0.56 

Swaledale 2.57 0.42 

Texel 3.07 0.83 

Texel X 3.30 0.73 

 

An overall positive relationship between BCS and weight was observed (Figure 2.1 

and Figure 2.2), however the relationship differed depending on stage of production. 

The positive relationship between BCS and weight was apparent throughout four 

ewe age groups, however the relationship changed depending on ewe age. As age 

increases, ewes are in a lower BCS for their weight. Breed also affected the BCS 

weight relationship.  
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Figure 2.1- Scatter plot showing the relationship between weight (kg) and BCS for 

four ewe age categories. Each age category is shown by a single line of best fit. 95% 

confidence intervals are highlighted by shading around each line of best fit.   

 

Figure 2.2- Scatter plot showing the relationship between weight (kg) and BCS for 

five stages of production. Each stage of production is shown by a single line of best 

fit. 95% confidence intervals are highlighted by shading around each line of best fit. 
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2.3.2. Model Performance  

A summary of model performance is provided in Table 2.5. The best performing 

singular model was gradient boosting regression (RMSE = 0.406 and CCC = 0.752), 

whilst the worst performing model was linear regression (RMSE = 0.478 and CCC = 

0.608). The difference in RMSE from best to worst performing models were 0.072 

units and gradient boosting regression had an R2 value 0.141 units higher than linear 

regression. The random forest model performed similarly to the linear gradient 

boosting model, whilst support vector machines and K-Nearest Neighbour models 

were mid-performing.  

Table 2.5- RMSE, MAE, R2 and CCC values on training and test datasets for all 

models 

Abbreviations; RMSE = Root mean squared error, MAE = Mean absolute error, R2 = 

Coefficient of determination, CCC = Concordance corelation coefficient. 

 

Figure 2.3 shows the distribution of residuals for each BCS category. The model 

predicts well throughout BCS values 2 to 4, however appears to have substantial 

bias within the prediction, shown by the higher residuals at extreme BCS values. 

This bias was apparent for all five models initially tested.  

 

Error 

Metric  

Linear 

regression  

Support 

Vector 

Machines  

Gradient 

Boosting 

regression 

K-Nearest 

Neighbour 

Random 

Forest  

Regression 

Chain model 

 Training Dataset  

RMSE  0.474 0.468 0.358 0.414 0.385 0.392 

MAE 0.365 0.473 0.258 0.312 0.297 0.306 

R2 0.432 0.448 0.722 0.577 0.651 0.722 

CCC 0.601 0.621 0.850 0.731 0.748 0.862 

 Test Dataset  

RMSE 0.478 0.464 0.406 0.447 0.423 0.464 

MAE 0.367 0.355 0.304 0.338 0.325 0.357 

R2 0.417 0.457 0.599 0.503 0.557 0.599 

CCC 0.608 0.627 0.752 0.680 0.688 0.766 
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Figure 2.3- Observed BCS against model residuals for Linear Gradient Boosting 

model on test dataset, where boxes represent the minimum and maximum residuals, 

first and third quartile and median residuals. 

Comparison of error metrics between training and test datasets for the linear 

gradient boosting model suggest a small degree of overfitting. There was higher 

RMSE on the test dataset than the training dataset by 0.048 units. This indicates 

overfitting of the model on the training dataset, however, is not excessive. Figure 2.4 

shows a variable importance plot for the gradient boosting model. This highlights 

which predictor variables had the largest effect on the predictions.  Weight was the 

most important variable, followed by ewe age. 
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Figure 2.4- Variable importance plot for the Gradient Boosting model 

2.3.3. Regression Chain Model 

Due to the bias in extreme predictions from the gradient boosting model, a 

regression chain model was built. The linear model built as part of the regression 

chain model had an intercept of -2.01 and BCS coefficient of 1.65. The regression 

chain model has a higher test RMSE than the gradient boosting model (0.464), 

identical R2 value (0.599) and improved CCC (0.766). The distribution of residuals for 

the regression chain model (Figure 2.5) shows a reduced bias across the extreme 

predictions (BCS <2 and BCS > 4) compared to the gradient boosting model 

distribution (Figure 2.3). It can be observed that error has increased throughout the 

central BCS values, however the extreme predictions have lower bias and reduced 

error. We observe a positive relationship between weight and predicted BCS from 

the regression chain model (Figure 2.6). This is the same relationship observed 

within the dataset collected on farm, presented in Figure 2.1.  
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Figure 2.5- Distribution of residuals for Regression Chain model on Test dataset, 

where boxes represent the minimum and maximum residuals, first and third quartile 

and median residual. Outliers are displayed as points. 

  

Figure 2.6- Scatter plot showing weight (kg) against predicted BCS on the test 
dataset for the Gradient Boosting with Regression Chain Model. The blue line shows 
the line of best fit.  
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2.4. Discussion 

2.4.1. Model Evaluation  

The aim of this study was to evaluate a series of machine learning models to predict 

BCS from weight with the addition of other predictor variables to improve predictive 

ability. This would be achieved through the use of ewe data as predictor variables. 

Historical ewe performance data would not be used to predict BCS, this mitigates the 

need for previous data within predictions and allows predictions to be produced from 

an individual timepoint.  The findings suggest that BCS can be predicted from 

variables; weight, age, days since last lambing, and breed, using a range of common 

machine learning models.  

2.4.2. Results Summary 

The results show that out of the singular models the gradient boosting regression 

model performed best (RMSE = 0.406, CCC = 0.752). Random forest models 

performed similarly, with slightly higher predictive error (RMSE = 0.423) and lower 

CCC (CCC=0.766). KNN, SVM and linear models all performed consistently worse, 

resulting in a greater predictive error. The regression chain model has a higher 

overall error than singular machine learning models, however bias was significantly 

reduced. The results from the final model (regression chain model) are consistent 

with RMSE values produced by Semakula et al. (2021), who used linear regression 

to predict BCS in Romney ewes using adjusted liveweight and previous BCS values. 

Their results showed RMSE varied from 0.33 to 0.54 depending on the use of 

combined models and stage of production. The results from our final model is 

comparable to Semakula et al. (2021) , without the requirement for previous BCS 

values.  

2.4.3. Linear Gradient Boosting 

The findings suggest the linear gradient boosting model, on average, is predicting 

well throughout the central BCS values (BCS 2 - 4), however is overpredicting for 

low BCS ewes and underpredicting for high BCS ewes. This trend was not unique to 

gradient boosting models with all models exhibiting a similar pattern. This suggests 

the machine learning models are struggling to capture some of the more extreme 



   

 

75 
 

BCS ewes. This may be due to additional variables influencing BCS at the extremes, 

for which data were not available, a result of the subjective nature of the BCS 

measurements or a lack of training data at the extreme values. Gradient boosting 

models are susceptible to overfitting (Natekin and Knoll, 2013), however, the 

comparable error metrics between the training and test datasets suggests little 

overfitting, resulting in a largely generalisable model.  

2.4.4. Regression Chain Model 

The use of a regression chain model significantly improved the residuals for extreme 

predictions, however decreased the predictive accuracy throughout the central BCS 

values. High observed BCS values were underpredicted by the model while low 

observed BCS values were overpredicted. Although model error is slightly worse for 

the regression chain model, the CCC is improved, partly as a result of reduced bias 

at the extreme predictions. Ensuring reduced bias at the extremes of the model is 

important when applying the model to a practical situation. BCS can be used as a 

selection tool to help implement targeted nutrition or targeted selective treatments. 

Cornelius, Jacobson and Besier, (2014) discussed the benefits of using BCS to 

group ewes for nematode control. This is one example where effective BCS grouping 

is essential, it is vital that ewes in extreme conditions are captured within the model 

to maximise productivity but also mitigate health risks.  

Similar to the current study, Semakula, Corner-Thomas, S. T. Morris, et al. (2020a) 

used a range of linear regression and machine learning models to try to predict ewe 

BCS. Initially they observed the effects of ewe liveweight, liveweight change and 

previous BCS records on predicted BCS (Semakula, Corner-Thomas, S. T. Morris, et 

al., 2020a). They found univariable analysis using lifetime weight to predict BCS 

resulted in weak predictions, however the addition of liveweight change and previous 

BCS in a multivariable approach somewhat improved their predictions. The study 

focussed specifically on 11,798 Romney ewes which were recorded between 8 – 67 

months of age.  Univariable and multivariate linear regression models were used to 

predict BCS. Their results showed that even with a multivariable linear regression a 

significant amount of variability remained unaccounted for. Semakula, Corner‐

thomas, et al. (2021a) further developed their research and used similar machine 

learning methods as this study for predicting BCS. They predicted grouped BCS 
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using previous and current liveweight. A series of models were built and evaluated to 

determine which model performed best. Similar to this research, they found that 

gradient boosting models were most accurate. In comparison our model does not 

use previous BCS values within the prediction. This gives the model the ability to 

predict each value independently of previous scores, allowing BCS to be assessed 

without the requirement for previous records which may not be available.  

2.4.5. Variable Selection  

The initial linear regression model found weight to be the main predictor variable for 

BCS. This finding is consistent with previous research observing a positive 

relationship between BCS and weight. Kenyon et al. (2014) showed a positive linear 

relationship between BCS and weight throughout 11 separate studies, with one 

study observing a curvilinear relationship. Sezenler et al. (2011) observed a similar 

linear relationship in 156 ewes from three Turkish breeds. Finally, McHugh et al. 

(2019) observed a positive linear relationship between weight and BCS. Semakula, 

Corner-Thomas, et al. (2021b) adjusted liveweight for fleece and conceptus weight. 

Both conceptus weight and fleece weight can vary significantly, therefore it was 

thought that adjusting for these factors would improve predictive ability. However, 

they did not observe a significant improvement in predictions with the adjusted 

liveweight. This suggests there would be little to no gain in predictive accuracy if 

liveweight was adjusted in the current study.  

The inclusion of breed as a predictor variable was important, considering the wide 

range of breeds within UK sheep systems and the influence of breed on weight. 

Jeffries (1961) (cited in Kenyon et al., 2014) suggests that one of the benefits of BCS 

ewes over weighing was that BCS is independent of skeletal size both within and 

between breeds. Figures from the AHDB suggest the UK has 99 different breeds 

(Boon and Pollot, 2021), however it appears a significant proportion of ewes are 

derived from a select few breeds. Some common breeds include, Texel crosses, 

Mules, Scottish Blackface, Welsh Mountain, Swaledale and Lleyn. This study 

included 11 of the most common UK breeds, which is important in relation to 

generalisability of study findings, however not all breeds were included and results 

should be interpreted in this context.  It is important to note the constant 

development of breeds within the UK with a current increasing trend of Texel and 
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Lleyn breeds according to the 2020 Sheep Breed Survey (Boon & Pollot, 2021). The 

large variation of breeds within the UK industry poses a significant challenge when 

selecting breed as a predictor variable, to ensure model generalisability on a UK 

scale. The grouping of breeds dependant on biological factors may circumvent this 

issue and make a more largely applicable model. When predicting on breeds not 

included within this study, it may be necessary to group the breeds into similar 

categories using ewe traits.  

This study found the relationship between BCS and weight is dependent on ewe 

age. This is likely due to the stage of maturity of the ewes, with older ewes exhibiting 

a lower BCS to weight ratio (Figure 2.1), also shown in the research as a larger 

incremental change in weight for each BCS category in older ewes (Semakula, 

Corner-Thomas, S. Morris, et al., 2020a). Stage of production also affected the BCS 

weight relationship (Figure 2.2). A timeframe needs to be included within the model 

to account for variation in the BCS weight relationship due to stage of production. 

Although it can be observed that the relationship is dependent on event, the 

inclusion of event within the model could be inaccurate. This is due to variation 

around the timing of each event and their correlation to time of year, for example 

mating, may be confounded by another factor not observed in this study. Days post 

lambing was included within the final model. This was selected due to an exact date 

of recording at lambing, giving the option to accurately reflect this stage of production 

for each ewe. The use of days in lamb would also be a useful parameter to reflect 

stage of production, however within this dataset it was not possible to calculate this 

with a high degree of accuracy. Semakula, Corner-Thomas, S. Morris, et al. (2020b) 

observed the effect of age, stage of production cycle and pregnancy rank (number of 

lambs at scanning) on the relationship between liveweight and BCS. They found that 

these three variables significantly affected the relationship between liveweight and 

BCS for the sample of Romney ewes. They concluded that age, stage of production 

and pregnancy rank should be included within a predictive model for BCS. The 

current study did not include pregnancy rank as a variable for two main reasons. 

Initially, there was little to no increase in model predictive performance with the 

inclusion of scanning number. Additionally, after considering the applicability of the 

model to the wider industry, it was decided that the requirement to record pregnancy 
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scanning data to use in the model would limit opportunities for application, especially 

for a small gain in model performance.  

2.4.6. Model Generalisability  

The Challenge Sheep project dataset includes 11 farms from a range of different 

areas throughout England. This study is comparable in scale to other similar studies. 

Semakula, Corner-Thomas, S. T. Morris, et al. (2020a) observed 11,798 ewes, from 

only two commercial farms in New Zealand, while McHugh et al. (2019) observed 

36,424 BCS and weight records from 25,246 ewes across 18 farms. Ensuring a large 

range of different flocks are included within the data helps increase the 

generalisability of the model when applied to UK systems, particularly due to the 

large variation in systems discussed in section 1.1.3. Not only does the data include 

a substantial number of farms, the range of breeds across these farms are highly 

varied. There were 14 different breeds recorded, which were refined to 11 grouped 

breeds during the initial data manipulation. Again, this increases model 

generalisability. Additional testing using an external dataset, not included as part of 

the Challenge Sheep project, would be beneficial to further observe the performance 

of the model on different flocks. When constructing machine learning models, it is 

important not to overfit the model on the training dataset. Commonly a training and 

test data split is used to mitigate overfitting with the aid of 10-fold cross-validation 

with 10 repeats. Low degrees of overfitting were observed throughout all models with 

no observed difference between training and test dataset RMSE values. Each model 

has unique tuning parameters which were used to help reduce overfitting. Plotting 

the tuning parameters for each model allowed each parameter to be observed and 

optimised. 

2.4.7. Implications  

Body condition scoring is viewed as an important management tool to improve 

overall flock performance. The benefits of BCS are well documented, with reports of 

low BCS and BCS loss impacting ewe performance, lamb growth and birth weight 

(Wright, 2019). The ability to predict BCS could significantly reduce labour 

requirements, as weighing is viewed as a quicker and more accurate parameter to 

record. Currently 75% of UK sheep farmers carry out BCS at least once a year, with 
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a large weighting towards scoring at mating (Boon and Pollot, 2021). This is a 

substantial number of farmers and suggests the benefits of BCS are accepted in the 

industry. However, the current BCS system allows for an unknown degree of error 

both within and between scorers. In the writer’s experience this is likely exacerbated 

by infrequent and rushed scoring which appears to be the case on many farms. 

Boon & Pollot (2021) also stated that although a significant number of farms 

condition score, the degree of recording is unknown. This results in a parameter 

which may be difficult to utilise on farm and even more challenging when comparing 

between farms. Although the prediction of BCS using both gradient boosting models 

and gradient boosting models with regression chains, results in RMSE of 0.402 and 

0.460 respectively, it is important to consider the error within and between scorers. 

Kenyon et al. (2014) discussed the repeatability of BCS, highlighting a significant 

variation throughout different studies. They suggested that consistency was closely 

linked to scorer experience and frequency. An advantage of machine learning 

models is that the impact of scorer experience is negated and allows for a repeatable 

process.  
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2.5. Conclusion 

It is possible to predict BCS in ewes with an acceptable level of error using machine 

learning models, weight recording and a limited number of commonly available ewe 

parameters including age, breed and days post lambing. A linear gradient boosting 

model produced the best predictions out of the five singular machine learning models 

tested. All models tended to under and over predict at the extremes, this made be 

due to an additional factor, not included in the model, a result of human error within 

the data collection, or a lack of training data at the extremes. The use of regression 

chain models significantly reduced the bias within the results, decreasing the under 

and over predicting at extreme BCS, however slightly increased the overall error. 

The use of a machine learning model on farm may significantly reduce subjectivity 

associated with condition scoring, while also reducing labour requirements of 

physically scoring each ewe. The final model will provide a means of quickly and 

accurately and consistently assessing the body condition of ewes, with comparable 

results between farms. Currently the model is designed to predict BCS as a 

continuous variable. There is the potential scope to group these variables into low, 

moderate and high categories to be used practically on farm. This would align closer 

to the current BCS system many farmers use and could potentially increase uptake 

on farm. In terms of integrating BCS predictions within a larger simulation model it 

was important to ensure BCS was predicted throughout the full scale.  
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Chapter 3. Case study: A Comparison of Manual Body Condition 

Scoring among Farmers, Experts and Machine Learning 

Prediction Models 
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3.1. Introduction  

Body condition scoring was developed as a subjective assessment of body fat in a 

live sheep (Russel, Doney and Gunn, 1969). Shortly after the development of body 

condition scoring in sheep, the consistency and repeatability were questioned, with 

comparisons being made to objective measurements such as weight to estimate fat 

deposits. Russel et al., (1969) conducted a study to assess the repeatability of BCS 

measurements both within and between scorers. Results showed that repeatability 

within scorers was over 80%, with repeatability between scorers showing over 70% 

absolute agreement. This study showed high levels of repeatability and suggested 

that body condition scoring ewes can provide a suitable estimation of body fat. In the 

64 years since this study was conducted the sheep industry has undergone 

significant changes with the adoption of new breeds and management practices. 

These changes, along with the potential for other body condition scoring methods 

(Chapter 2), may warrant an up-to-date evaluation of body condition scoring.  

3.1.1. Influence of BCS on Performance  

The use of BCS measurement and recording has been promoted on sheep farms as 

a performance measure and to assess flock health. The AHDB states “Regular 

condition scoring of ewes and acting on the results will increase the performance of 

a flock.” (Wright, 2019). BCS has been shown to impact specific production 

characteristics. Aliyari et al., (2012) observed a reduction in the duration of the 

oestrus cycle for ewes with lower condition scores. Mathias-Davis et al. (2013) 

observed that ewes in high condition at lambing which lost condition between 

lambing and weaning , or ewes in low condition at lambing which gained condition 

had higher lamb growth rates. It is clear from the literature that BCS can significantly 

influence the performance of ewes and their offspring. However, when implementing 

these findings, it is important to ensure that BCS measurements are collected 

accurately and consistently on farm. Commonly, a BCS range of 3.0 to 3.5 is 

considered ideal, with lower and higher values considered suboptimal. This does 

fluctuate with stage of production, often with ewes requiring a slightly increased BCS 

at mating. Generally, the difference between good condition and poor condition is as 

little as 0.5 to 1.0 units. The small difference between an ideal BCS and suboptimal 

BCS further highlights the need for accurate body condition scoring to maximise 
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performance and production. An incorrect score at an extreme BCS may have more 

significant effects. Incorrectly allocating BCS pre-lambing could lead to incorrect 

nutrition and an increased risk of metabolic diseases.   

 

Since the initial evaluation of body condition scoring by Russel et al., (1969), a 

substantial number of studies, both on livestock and zoo species have been 

conducted. The repeatability of body condition scoring in sheep was evaluated by 

Refshauge and Quin (2007). They conducted three trials on adult Merino ewes. 

Across the three trials 15 assessors scored a total of 409 ewes, however each 

assessor only took part in one trial. Ewes were scored twice in all trials. RMSE and 

R2  values were used to assess scorer performance, along with a histogram of each 

assessor’s scores. Mean BCS within each trial showed a range of 0.5 to 1.2 BCS 

units. They also found that although some scorers had low RMSE and high 

R2  values, which suggests high accuracy and repeatability, they did not necessarily 

detect the full range of BCS values that other scorers had observed. Fitzgerald et al. 

(2009) observed the effect of different experience levels on the ability to BCS sows. 

They found that individuals tended to allocate BCS measurements on their own 

scale, suggesting measurements were not calibrated between scorers. This resulted 

in consistent under or overpredictions for each individual scorer. They found 

experience level had little effect on the ability to assign BCS. A study conducted on 

Danish Holstein cows compared the ability of students and instructors to allocate 

BCS. They found experience had a large effect on the ability to accurately perform 

body condition scoring. Experienced scorers provided BCS measurements which 

were comparable across herds while less experienced scorers struggled (Kristensen 

et al., 2006).  The literature suggests there is substantial error when manually 

scoring BCS across a range of species. The results from previous studies observing 

the accuracy and repeatability of BCS measurements highlight key areas for 

observation. It appears that scorers that have high repeatability, may still be 

inaccurate due to consistent bias within their measurements, additionally bias 

appears to be difficult to assess without a ‘gold standard’ BCS. Within an 

experienced group of scorers, it is likely that the average BCS is the best estimate of 

a ‘correct’ score.  
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Using the concepts outlined by Russel et al. (1969), a pilot study was conducted to 

assess the repeatability of BCS measurements within the Challenge Sheep farmers 

and advisors. The evaluation of body condition scoring error within the Challenge 

Sheep project farmers not only allowed for scoring accuracy to be observed, but also 

allowed for the comparison of the BCS predictions models (outlined in Chapter 2), 

against manual scoring.  Differentiating between prediction error and measurement 

error within the BCS predictions model is challenging. This is a result of the 

subjective nature of manually body condition scoring ewes.  The pilot study begins to 

quantify within and between scorer error for the Challenge Sheep farmers. A sample 

of ewes were scored multiple times over two sessions. This allowed errors to be 

calculated for each ewe and each scorer, and allowed the repeatability between 

sessions to be observed. The results will not only allow repeatability and consistency 

of the scorers to be evaluated, but also provide an indication of the degree of error 

within the BCS predictions model that is accounted for by measurement and 

predictive error.  
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3.2. Materials and Methods 

3.2.1. Data Collection  

A subset of ewes taken from one of the Challenge Sheep project farms were 

selected for body condition scoring. 20 ewes, split between three breed categories 

(Mule, Texel and Texel x Mule) were included within the study. Ewes were selected 

by the farmer from the main flock, ensuring an approximately equal number of ewes 

from each breed were chosen. This provided a manageable sample size for the pilot 

study while ensuring a suitable number of individual BCS records were collected for 

analysis. The data was collected pre-mating. 17 trained farmers and advisors from 

within the Challenge Sheep project scored the 21 ewes twice across two sessions 

(morning and afternoon sessions). All data were initially recorded on paper by the 

individual scorers, before being manually entered into the dataset. A total of 714 

individual BCS records were collected. Ewes were divided into three pens and 

numbered for identification. In between the two sessions ewes were mixed, numbers 

changed and re-penned. BCS was recorded on a 1-5 scale with 0.25-point 

increments, as outlined by Russel et al. (1969) and Kenyon et al. (2014). No formal 

BCS training was undertaken on the day, however all scorers had undertaken 

previous training at the start of the project and were regularly involved in scoring 

their own flocks. The scorers were instructed to use a 1-5 scale with 0.25-point 

increments as they usually would on farm. The rate of scoring (time spent scoring 

each ewe) was consistent with that of the usual scoring practices for each scorer, 

this helps to ensure the results are applicable to a practical setting. 

3.2.2. Data Analysis  

The BCS were analysed to assess within scorer error, between scorer error and 

error around the mean for each ewe. Boxplots for each scorer were plotted to 

observe the distribution of scores, indicating calibration between scorers. MAE was 

calculated for within and between scorer error, using mean BCS to calculate the 

residual of each score. Due to the nature of BCS measurements in ewes, and the 

lack of method to provide objective BCS measurements, the ‘correct’ BCS 



   

 

86 
 

measurement was assumed to be the mean of all scores for each ewe. A 

comparison between scorer error and model error was made.  

3.2.3. Predictive Models 

Two BCS predictive models, (gradient boosting model and gradient boosting with 

regression chain model), outlined in Chapter 2 were used to predict BCS values for 

each ewe. One ewe had to be removed from the study due to incomplete data. Two 

methods were used to assess performance of the model. Firstly, each individual 

score was taken as an observed value, with the residuals calculated as the 

difference of each observed value and the predicted value for each ewe. Secondly 

the mean value of all scores for each ewe was taken as the observed value, then a 

single residual was calculated for each ewe. The RMSE from these predictions was 

then compared to the scorer error and boxplots of the scores were overlayed with 

the model predictions for comparison. 
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3.3. Results 

3.3.1. Repeatability Within and Between Scorers  

Table 3.1- Average error from the mean score and error between each session for 

each scorer 

Scorer Number  
Average error from the 

mean score 

Average error between 

sessions  

1  0.35  0.42  

2  0.28  0.43  

3  0.33  0.56  

4  0.63  0.50  

5  0.36  0.50  

6  0.57  0.35  

7  0.58  NA  

8  0.30  0.46  

9  0.44  NA  

10  0.28  0.38  

11  0.44  0.41  

12  0.37  0.29  

13  0.36  0.45  

14  0.47  0.34  

15  0.30  0.60  

16  0.30  0.34  

17  0.39  0.46  

Mean  0.41  0.44  
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Table 3.2- Mean error calculated for each ewe 

Ewe number  Mean error  Ewe number  Mean error  

1  0.39  12  0.38  

2  0.33  13  0.34  

3  0.4  14  0.34  

4  0.37  15  0.46  

5  0.49  16  0.42  

6  0.43  17  0.39  

7  0.45  18  0.35  

8  0.51  19  0.54  

9  0.4  20  0.37  

10  0.41  21  0.44  

11  0.48  Mean  0.41  

 

The average error from the mean score for each individual scorer (Table 3.1) ranges 

from 0.28 to 0.63. With an average of 0.41 for all scorers. The consistency between 

session one and session two showed an average error of +- 0.44 units (Table 3.1). 

The error ranged from 0.29 to 0.60.  The average error for each ewe was reasonably 

consistent ranging from 0.33 to 0.54 units, with an average error for all ewes of 0.41 

BCS units (Table 3.2). Results from Table 3.1 are presented graphically in Figure 

3.1. 
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Figure 3.1- Boxplot showing the error for each scorer from the mean BCS for each 

ewe 

3.3.2. Model Predictions  

When predicting BCS for the 20 ewes in this study, the RMSE from the gradient 

boosting model and regression chain model were 0.44 and 0.65, respectively. Figure 

3.2 shows the predictions for the gradient boosting model and regression chain 

model overlaid on the distribution of body condition scores for each ewe. This 

highlights the variation in predictive accuracy for each animal. Table 3.3 shows the 

RMSE values for each median BCS category using predictions from the gradient 

boosting model. RMSE ranged from 0.411 to 0.933, however we did observe low 

numbers of ewes in multiple categories due to the small animal sample size. 
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Figure 3.2- Boxplot showing BCS distribution for each ewe overlaid with predictions 

from the gradient boosting and regression chain models for each ewe. Boxplots are 

ordered by mean BCS for each ewe. ■ = Gradient Boosting Model Predictions, ▲= 

Regression chain model predictions 

Table 3.3- RMSE for each BCS category using median BCS. RMSE calculated using 
measured BCS and gradient boosting model predictions 

Median BCS Number of Ewes Gradient Boosting RMSE 

2.5 1 0.411 

2.75 3 0.563 

3.0 9 0.559 

3.5 4 0.562 

3.75 1 0.426 

4.0 2 0.933 
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3.4. Discussion  

3.4.1. Inaccuracies when Measuring BCS  

Many factors can affect the ability of an individual to accurately record BCS. Scorer 

experience significantly impacts the repeatability of scorers. Burmeister (2006) 

discussed the repeatability of BCS measurements in beef cattle across three scorer 

experience groups. They grouped scorers on experience, providing no training to the 

untrained group, moderate training to the trained group and substantial training to 

the experienced group. The amount of previous experience was also considered. 

Results showed that scoring was significantly worse for the untrained group, but 

showed little difference between the trained and experienced groups. Burmeister 

(2006) concluded that trainees needed to observe a large range of different cow 

body condition scores to become proficient and record repeatable, reliable 

measurements.  

 

Within our study it is difficult to specifically determine scorer experience, however it 

is known that the scorers regularly recorded their own flocks up to five times a year. 

Using this practical experience along with the BCS training course which all scorers 

underwent at the start of the project, it is a safe assumption that the scorers could be 

regarded as experienced.  

 

From the writer’s personal experience and through discussions with farmers, some 

scorers claim to require a period of calibration at the start of each scoring session. 

This is often discussed as scoring the initial animals to “get their eye in” and 

adjusting the initial scores slightly depending on fat coverage. Although this may be 

an effective means to score animals relative to one another, it means that the data 

collected is highly subjective and may make it challenging to compare between 

flocks and even implement recommended values from the literature.  

The adoption of measuring BCS is high in the UK, with studies suggesting 74% of 

UK sheep farmers score their animals once a year (Boon & Pollot, 2021). However, it 

is not clear of the methods used, or whether recording of scores occurs. Wright 

(2021) observed that over 99% of farmers surveyed observed condition of their ewes 

at mating, however only 77% used weight and BCS or only BCS methods. Body 
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condition scoring rates were lower at scanning, lambing, 8 -weeks and weaning at 

61%, 61%, 34% and 65% respectively. Overall, this suggests farmers understand 

the benefits of observing the condition of their ewes, particularly at mating, however, 

do not necessarily use specific scoring methods or recording. It is vital to ensure the 

accuracy of these measurements across the whole industry to optimise the use of 

BCS targets and allow comparison between scorers.  

 

It is possible to mitigate the subjective nature of BCS. This can be achieved through 

the regular calibration between scorers, regular training and increased experience. 

Even with these changes, the nature of collecting BCS means a certain degree of 

error is always present. Although the scorers involved within the Challenge Sheep 

project have substantial experience collecting BCS measurements, the accuracy of 

these measurements were largely unknown. This pilot study provides an indication of 

the accuracy of scorers within the project. This not only helps to validate the data 

collected, but also provides some understanding of the degree of measurement error 

and prediction error within the models in Chapter 2. 

The issues of quantifying BCS measurement error is not specific to the sheep 

industry. There are many studies, throughout a range of species which attempt to 

quantify error. Within pigs, a study to observe the accuracy and repeatability of BCS 

measurements within sows was conducted (Fitzgerald et al., 2009). They found that 

measurement error was largely a result of scorers having poor repeatability, rather 

than scorer bias or subjectiveness. 70.6% of test variability was associated with 

scorer repeatability. Within our study, the average RMSE between the two sessions 

was 0.44, slightly higher than that of the RMSE for each scorer from the mean score 

of 0.41. However, this difference is not as substantial as that observed by Fitzgerald 

et al. (2009). 

3.4.2. Evaluating Scorer Error  

3.4.2.1. Within Scorer Error 

Within scorer error ranged from 0.29 - 0.60. This is comparable to Refshauge and 

Quin (2007)  where they observed RMSE ranging from 0.16-0.6 within a trial 

conducted on Merino ewes.  This variation suggests that consistency is variable 
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between scorers. Four of the scorers had an average error between the two 

sessions of 0.5 or more. Errors of more than 0.5 may affect management decisions 

on farm, particularly when referring to the recommended BCS values outlined in 

Table 2.1, where half a condition score of error could result in missed BCS targets. 

The overall error between the morning and afternoon sessions of 0.44 BCS units 

indicates that on average for all the scorers, BCS measurements were within half a 

condition score from each other, this is still a substantial error when implementing 

BCS measurements to inform management decisions.  

 

3.4.2.2. Between Scorer Error 

Between scorer error was observed through calculating average error from the mean 

score. Error ranged from 0.26 to 0.63 units, with an average of 0.41 units. This 

suggests that on average all scorers were 0.41 BCS units from the mean BCS score 

for each ewe. Similar to within scorer error, scorers averaging more than 0.5 BCS 

units of error may be considered inaccurate, and could struggle to categorise ewes 

on farm for management. 

 

3.4.2.3. Error Around Each Ewe 

The error around the mean values for each ewe ranged from 0.33 to 0.54, with an 

average error of 0.41 BCS units. This would suggest that calibration between 

farmers is moderate. Calibration between farmers is important when applying 

recommended values to management practices, however may be less important 

when using BCS as a performance error on farm, provided that the error is 

consistent for all animals scored.  

The Challenge Sheep farmers generally farm between 1-3 breeds on each farm. It is 

assumed that some of the error observed may be the result of individual farmers 

being incorrectly calibrated to their specific breeds or animal type. For example, if a 

scorer is regularly observing high BCS values within their flock, it is more likely that 

these values will be classified as average values, with anything lower being 

observed as a low BCS, although this does go against the body condition scoring 

methods outlined in section 2.1.3.1. It had also been approximately three years since 

the assessors had undertaken any formal BCS training through the Challenge Sheep 

project. Although the aim was to calibrate all the scorers at the start of the project to 

create consistency throughout the whole seven-year project, there is a high chance 
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that variability in scores has developed since the initial calibration and training 

session. Additionally, it is unknown whether individual scorers had undergone 

training outside of the project.  

3.4.3. Next Steps   

This pilot study appears to highlight substantial inter and intra rater error, that could 

suggest body condition scoring measurement errors on a broader level within the 

sheep industry. Quantifying error throughout the industry is important, particularly if 

body condition scoring is to continue to be used and promoted as a means of 

assessing individual animal performance. A larger study would be required to 

observe a range of scorers, over a range of management systems throughout the 

UK. It would be beneficial to collect an experience profile of each scorer, along with 

background information, particularly on their farming system if applicable. This pilot 

study had some limitations that could be easily mitigated within future studies.   

3.4.3.1. Breed  

One substantial limitation of the pilot study is the number of ewes and breeds 

included within the study. There were 21 ewes across 3 breed types (Mule, Texel 

and Texel X Mule), all located on one farm, included within the sample group. Ideally 

a larger sample size, including a range of breeds encompassing the majority of 

breeds within the Challenge Sheep project would have been scored. Comments 

were made on the day that individuals had more confidence scoring their own 

animals, rather than scoring uncommon breeds to them. This was unsurprising, 

however body condition score was designed to be irrespective of breed, therefore 

this may highlight an underlying breed bias within the scorers. Within a larger study 

observing the relationships between scorer accuracy for each individual breed type 

may highlight any breed biases. Due to time constraints on the day and the inability 

to move sheep between farms, both practically and from a biosecurity standpoint it 

was not possible to score a larger group with an increased number of breeds. The 

decision to include more scorers rather than more animals within the study appears 

to beneficial, as substantial variations between scorers can be observed within the 

results.  
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3.4.3.2. Experience Level  

Experience level was an unknown factor within the pilot study, with scorers including 

farmers, advisors and project managers. Records of previous scorer experience, 

collected through a survey, would have been beneficial for this study. Although all 

scorers were either farmers involved with regularly collecting BCS for the Challenge 

Sheep project or advisors with significant experience in sheep, it may have been 

beneficial to group the scorers depending on experience. Some methods to group 

the scorers would have been via self-categorising, or the use of a survey to 

determine prior experience, however this could have resulted in highly subjective 

groupings. Observations on the day suggest that the scorers all had substantial 

experience and would most likely all be grouped into an experienced category. If a 

larger study was to be conducted, the addition of less experienced scorers may 

provide results more applicable to that of the industry.  The study chose not to 

provide any additional training on the day to ensure the scores were consistent with 

that of which the scorer would usually allocate. Providing training on the day to a 

specific group would indicate whether regular training improves the ability to 

accurately record BCS, however with the scorer sample size (n=17) it would have 

resulted in groups which were too small for an accurate comparison.  

Often studies have used experienced assessors or instructors as a “gold standard” 

BCS measurement to compare to. In this study the mean BCS from all results was 

used to calculate the BCS for each ewe to calculate error. Although this has the 

benefit that BCS is not calculated from one individual, who may have their own bias, 

it also has the negative effect of ‘incorrect scores’ impacting the mean.  

3.4.3.3. Time Constraints  

On farm scoring is usually a fast-paced process which involves the scorer quickly 

assessing BCS, then moving onto the next animal. Within this study we had no 

specific time constraints for scorers. This allowed scorers more time than usual to 

consider the groupings, and could have potentially increased scoring accuracy. 

Observing how the rate of scoring effects scoring accuracy may be of interest, 

however may not be applicable on farm where labour requirements can be a large 

concern of body condition scoring ewes. One point of interest was many scorers 

backtracking to previous animals to compare condition scores, then using this 
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comparison to decide on the score for the next animal, relative to previous scores. 

Scorers also commented that often when scoring their own animals they would ‘get 

their eye in’ on the initial animals, and felt that scoring accuracy would increase after 

that. Using this technique has the potential to significantly bias results for the group 

of animals being scored, however likely has little to no impact on management 

practices, as the low and high BCS animals are still being observed.  More issues 

are likely to occur if management practices are changed using recommended BCS 

values.  

3.4.3.4. Weight Measurements 

Within the pilot study, two scoring sessions were conducted, one late morning and 

one mid-afternoon. Weighing of the ewes occurred at a single point prior to the 

morning session and were not repeat weighed before the afternoon sessions. The 

ewes were kept indoors between sessions with no access to feed. The liveweight of 

the ewes may have changed between morning and afternoon session, due to 

fluctuations in gut fill. This is unavoidable and is one of the many reasons body 

condition scoring was developed. Taking an average between weights between each 

session may be beneficial to improve the ability of the model to predict accurately 

and highlight any incidences of incorrect weight measurements.  

3.4.4. Predictive Model Evaluation  

3.4.4.1. Measurement Error vs Predictive Error  

To test the performance of the BCS predictions model on an additional dataset, the 

two best performing models were tested (Gradient boosting model and gradient 

boosting model with regression chain). This testing indicates the generalisability of 

each model, and allows a comparison between predicting BCS and manually 

recording. The average BCS measurement error from the mean score on each ewe 

was 0.41 (Table 3.2). The gradient boosting model, predicting on the 20 ewes, had 

an RMSE of 0.44 when the observed value was taken as the mean of all scores on 

each ewe. The equal error in the predictive model and the measurements may 

suggest that a large degree of error is associated with measurement error, rather 

than predictive error, however it is still challenging to determine the exact cause of 

error due to the subjective nature of the data.  Figure 3.2 shows a boxplot of scores 

for each ewe overlayed with predictions from the gradient boosting model. It is clear 



   

 

97 
 

from this plot that the gradient boosting model predicts certain ewes well, however 

overpredicts a proportion of ewes.  The model appears to be overpredicting heavy 

ewes, which is exacerbated by the regression chain model.  

 

Although the gradient boosting model with regression chain reduced bias compared 

to the gradient boosting model (Section 2.2.5.7), it struggled to predict on this 

dataset, with increased overall RMSE values of 0.65 compared to 0.44. This appears 

to be a result of the nature of the data collected within this study. The gradient 

boosting model with regression chain was designed to increase the performance of 

the model at extreme predictions, where the gradient boosting model was struggling, 

while slightly increasing error across the central BCS values (2.5-3.5). This dataset 

had a mean BCS of 3.23, with an interquartile range of 0.75. A comparison of the 

predictions from the two models in Figure 3.2 show that ewes which were 

overpredicted in the gradient boosting model had increased error within the gradient 

boosting model with regression chain. 
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Chapter 4. Use of Survival Analysis Techniques to Model 

Reproductive Performance in Ewes 
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4.1. Introduction  

4.1.1. Overview 

Reproductive performance is one of the key drivers for efficiency on sheep farms in 

the UK. Advancements in genetics, nutrition and management has led to an increase 

in reproductive performance of ewes. Breed selection and the selective breeding of 

individuals within these breeds has led to advancements in ewe prolificacy and 

fertility. There are several common parameters used to quantify reproductive 

performance in ewes. Commonly observed parameters include, fertility (the 

percentage of ewes which lamb after being exposed to the ram), lambing percentage 

(number of lambs born to each ewe exposed to the ram), scanning percentage 

(number of foetuses per ewe as a percentage) and perinatal lamb losses (preferably 

observed separately as prenatal and neonatal losses)(Larsen, 2021). Reproductive 

performance can be assessed at both an individual animal and group level, with the 

later more common when comparing lambing group or flock performance. It could be 

argued that within the dairy sector, measurement of reproductive performance is 

more common and robust than the sheep sector, particularly when observing 

individual animals. Challenges around the large increase in metabolic requirements 

for milk production coinciding with insemination, has led to significantly reduced 

fertility in modern high yielding dairy cows (Crowe, Hostens and Opsomer, 2018). 

This reduction in fertility led to an industry wide effort to improve the management of 

cows around insemination. More reproductive parameters are recorded and 

observed within the dairy sector than the sheep sector. These include but are not 

limited to calving interval and days to conception. Using previously gained 

knowledge from research on dairy reproduction, it may be possible to use similar 

techniques to observe timeframes within sheep reproduction, and observe specific 

variables which impact on reproductive performance. Days to conception is utilised 

as a fertility metric within dairy cows. Observing days from ram entry to lambing may 

provide a similar metric to days to conception and indicate how fertility rates may be 

increased within sheep production systems. The comparison of the reproductive 

performance between ewes first bred as ewe lambs and shearlings in their first year 

of production and subsequent years is also of interest, and one of the key aims of 

the Challenge Sheep project. The prediction of ram entry to lambing interval will also 
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play a significant role within a larger systems model, in which lambing date will be 

estimated from mating date and other ewe factors.  

4.1.2. Factors that Affect Reproduction in Ewes  

4.1.2.1. Body Condition Score 

Reproductive performance in sheep is affected by management, genetic and 

nutritional factors. Mating liveweight and condition score of ewes have been 

observed to have a positive relationship on reproductive performance (Kenyon, 

Morel and Morris, 2011). They observed a negative effect of low condition score 

(BCS < 2.0) on reproductive performance, however found no improvement over a 

BCS of 2.0 and 3.0 for composite and Romney breeds respectively. Ewes gaining 

condition pre-mating has been shown to significantly increase rates of ovulation and 

potential lambs per ewe pregnant (Gunn et al., 1991).  

4.1.2.2. Weight 

Currently the main use of liveweight in regards to reproductive performance is during 

the selection of ewe lambs for breeding. Ewe liveweight is the main indicator of 

whether ewes should be bred as ewe lambs or retained for breeding as shearlings. 

As discussed in section 1.3, ewe lambs should weigh at least 60% of their mature 

weight at first mating. It has been reported that increased ewe lamb live weight at 

mating significantly increases fertility and lambing percentage (Haslin, et al., 2022b). 

They observed the effect of heavy ewe lambs (47.9 +- 0.36 kg at mating) and a 

control group (44.9 +- 0.49kg at mating) on fertility and lambing percentage. The 

heavy group had 28% increased fertility and 59% increased lambing percentage 

compared to the control group. Interestingly, the higher first mating weight and 

resulting increase in fertility and lambing percentage did not impact subsequent 

production years (Haslin, et al., 2022b). 

4.1.2.3. Nutrition 

Nutrition around mating has a significant effect on reproductive parameters. Higher 

ovulation rates and a higher percentage of ewes conceiving at first oestrus, have 

been observed in ewes on a high plane of nutrition (Fletcher, Geytenbeek and 

Allden, 1970). Additionally, studies suggest a high plane of nutrition (1.5x estimated 

ME requirement), can significantly increase ovulation rate during induced oestrus for 
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more prolific breeds (2.26 compared to 1.78 for the lower ME group) (Lassoued et 

al., 2004). For less prolific breeds no significant effect on ovulation rate was 

observed. The nutritional requirement around mating appears to be highly dependent 

on the prolificacy of each specific breed. Flushing ewes is the process of increasing 

the plane of nutrition pre-mating with the aim to optimise ovulation, conception and 

embryo implant rates.  

4.1.2.4. Status at First Mating  

There is substantial discussion around how to improve lifetime productivity of ewes, 

with a lot of interest around whether ewes should be initially bred as ewe lambs or 

shearlings. Answering this question was one of the main aims of the Challenge 

Sheep project. Although breeding from ewe lambs provides the opportunity for an 

additional litter, and therefore a higher total number of lifetime progeny, it is unclear 

whether breeding as a ewe lamb, before mature weight is reached, could have a 

negative effect in subsequent production years. As ewes age, fertility generally 

increases, with a particularly large increase between first breeding as a ewe lamb 

and subsequent mating. Edwards and Juengel, (2017) observed the number of 

lambs born and weaned for a sample of New Zealand ewes. As age of the ewe 

increases from one to four years of age, so did average number of lambs born and 

weaned. In year one approximately 0.9 lambs were born per ewe while in years two, 

three and four, 1.7, 1.8 and 1.9 lambs were born per ewe, respectively. It is clear that 

ewe lambs have a substantially lower average number of lambs born compared to 

two-, three- and four-year-old ewes. There does not appear to be any effect of ewe 

age on number of lambs weaned, with a consistent reduction in number of lambs 

between birth and weaning for all groups.   

To ensure optimum productivity and health from ewe lambs it is important that 

management practices are implemented carefully. This largely involves the careful 

monitoring of both BCS and liveweight to ensure ewe lambs are ready for mating. 

Body condition score and liveweight has been shown to significantly affect ewe lamb 

reproductive performance (Corner-Thomas et al., 2015). Ewe lambs in a 47.5- 

52.5kg liveweight category at mating had the highest reproductive rate at 138%. 

Reproductive rate peaked at a mating BCS of 3.0, with no improvements seen at 

higher condition scores. It is understood that ewe lamb reproductive performance is 

largely dictated by the percentage of total liveweight at first mating, and less so by 
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the condition of that animal. It is recommended that ewe lambs must weigh at least 

60% of their mature weight at mating to be mated. (Selecting ewe lambs for breeding 

| AHDB, accessed 06/02/2024). A percentage of mature weight is used to allow for 

variations in breeds.  A similar recommendation exists for shearlings at first mating, 

in which it is advised that they should weigh at least 80% of mature liveweight.  

4.1.2.5. Effect of First Mating as a Ewe Lamb on Future Reproductive Performance  

The effect of ewe lamb first mating weight on reproductive performance in year 2 and 

year 3 has been observed in Romney ewes (Haslin et al., 2021). A control group with 

average first mating weight of 44.9 ± 0.49 kg, and a heavy group with average first 

mating weight of 47.9 ± 0.38 kg were observed. They found that first mating weight 

had no effect on ewe liveweight, BCS, reproductive performance or lamb 

performance in their second and third years. This suggests that breeding from a ewe 

lamb does not negatively impact mature ewe performance. Similar to Corner-

Thomas et al. (2015) , it was observed that heavier ewe lambs performed better in 

their first year of production (Haslin et al., 2021). Reproductive and lamb 

performance are not the only factors that farmers must consider when breeding from 

ewe lambs.  

4.1.2.6. Genetics  

Genetic differences between different breeds can significantly affect reproductive 

performance, with more prolific breeds having significantly higher fertility (Petrović et 

al., 2012). Some examples of highly prolific breeds include Lleyn, Blue Faced 

Leicester, Romney and Merino. Modern composite breeds such as the ‘Aberdale’ 

have been bred to optimise some of the characteristics from these highly prolific 

breeds, specifically the Inverdale gene mutation has been bred into Welsh mountain 

ewes.  There are many gene mutations within sheep which can result in increased 

prolificacy, however perhaps the two most common are the boroola mutation (FecB), 

commonly found in Merino breeds, and the Inverdale (FecX), found in Romneys 

(Davis, 2004). Ewes which are heterozygous for the Inverdale gene have been 

shown to ovulate an average of one more egg than noncarriers (Smith et al., 1997). 

Care must be taken when breeding ewes with the FecX mutation as homozygous 

ewes are infertile due to ‘streak’ ovaries. Often rams are used to carry the gene 

mutation on the X chromosome, to ensure homozygous ewes are not bred.  
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4.1.2.7. Environmental Factors 

Thermally stressed ewes have been shown to exhibit oestrus later and for a shorter 

period (Dobson et al., 2012). In their study, ewes subjected to temperatures of 40 

degrees Celsius for 6 hours per day exhibited oestrus 5 hours later than a control 

group at 19 degrees Celsius. Ewes subjected to increasing periods of high 

temperatures (>32 degrees Celsius) saw a 2.7% decrease in fertility for each 

subsequent day exposed at that temperature (van Wettere et al., 2021). Climate 

change is a concern for sheep producers in extreme environments. Producers are 

likely to observe an increased frequency of days in which animals are experiencing 

heat. If these occurrences of heat stress coincide with mating, a detrimental effect on 

fertilisation and embryo survival has been observed (Comparative Endocrinology of 

Animals, 2019).  Although the effects of heat stress on reproduction in ewes is of 

great concern for more arid areas, the UK rarely experiences extreme, high 

temperatures around mating. Although with ever changing climates and increase 

occurrence of extreme events increased seasonal temperature changes around 

mating are possible in the UK.  

4.1.3. Manipulating Ewe Reproduction  

Although the onset of oestrus is largely dictated by reducing photoperiod, there are 

many techniques which can be implemented to improve reproductive performance. 

Synchronising oestrus in ewes can be an effective way to condense ram entry to 

lambing interval. Progesterone sponges can be used to synchronise oestrus cycles 

and are particularly useful pre artificial insemination (Hameed et al., 2021). Teaser 

rams are commonly used to improve the rate of successful first cycle mating. It has 

been observed that 62.6% of teased ewe lambs were mated in the first 17 days while 

only 32.1% of unteased ewe lambs were mated. After 2 cycles, 17.8% of unteased 

ewe lambs were unmated while only 11.2% of teased ewe lambs were not mated 

(Kenyon et al., 2005). Artificial insemination is beginning to gain traction within the 

sheep industry. The dairy industry has utilised artificial insemination to maximise 

genetic gain and improve fertility. Cows can be inseminated at a specific timepoint 

when oestrus is detected or induced. This has improved the low fertility often 

associated with dairy cows. Similar techniques are starting to be implemented on 
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sheep farms, but not necessarily to increase fertility. The increasing focus on genetic 

improvement has led some producers to source the best paternal genetics through 

the use of artificial insemination. This is most often utilised by ram breeders, 

however, can reduce biosecurity risk for some closed flocks. For commercial flocks 

the cost associated with artificially inseminating large numbers of ewes is often 

prohibitive. Similar to artificial insemination, ram breeders sometimes use embryo 

transplants. This gives the option to introduce new ram and ewe genetics, from high 

performing animals, into an existing ewe with good maternal ability. Harvesting many 

embryos from high performing ewes allows higher number of offspring with those 

genetics.  

4.1.4. Survival Analysis 

Survival analysis is a collection of statistical techniques used to analyse changes 

over time of a specific event (Dudley, Wickham and Coombs, 2016). Initially these 

techniques were developed for use within medical studies to observe the time from 

treatment to death. However, are now used as a means to assess time to event data 

in many research areas. Kaplan-Meier analysis (K-M) and Cox proportional hazards 

model (CPH) are the two most common techniques. 

4.1.4.1. Kaplan-Meier Analysis 

Kaplan-Meier analysis is a univariate approach to observe the effect that one 

variable has on an event. Events are classified as binary variables, in which the 

event does or does not occur. Outputs from K-M Analysis include a predicted 

survival curve. The x-axis indicates the time variable, starting when the study 

commenced, with the y-axis indicating the probability of the event occurring. The K-

M curves have a stepped appearance with the horizontal drop indicating the 

occurrence of the event between two subsequent individuals. Censored data 

appears as tick marks on the K-M plot.  

4.1.4.2. Cox Proportional Hazard Models 

Cox models allow the investigation of multiple continuous and categorical variables 

simultaneously. The main output from the Cox model is the hazard ratio. The hazard 

ratio is the ratio of the event rate in any one group. For example, the ratio of a low 

BCS group to a high BCS group. All hazard ratios are relative to a reference group. 
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The Cox model has three main assumptions. Firstly, the hazard ratio is assumed to 

remain constant throughout the follow-up. Secondly, the survival time of each 

individual is not dependant on another. Finally, any individuals who were censored 

must have had the same likelihood of the event occurring (Deo, Deo and Sundaram, 

2021). A benefit of using survival analysis over more common techniques such as 

logistic regression is the ability of survival analysis to process censored data. 

4.1.4.3. Survival Analysis to Observe Reproductive Performance in Livestock Species  

Survival analysis has been used within the livestock sector to evaluate longevity. 

(Szabó and Dákay, 2009) used survival analysis techniques to evaluate how specific 

parameters at first calving affected longevity. They observed breed, age at first 

calving, season at first calving and level of calving difficulty. K-M analysis was used 

to plot the estimated survival distributions, allowing comparison of the groups within 

each variable. They found that cows which calved without assistance had a longer 

productive life than those which had still born calves or required veterinary 

assistance. This indicated that dystocia is a significant factor for reduced longevity in 

cattle. Breed had a significant effect on longevity with Herfeord having the highest 

longevity. It is important to include the influence of breed within models and analysis 

of ewes due to the extensive range of breeds, with significant phenotypic differences. 

Similar trends were observed using a Cox regression model on composite beef 

cows. Rogers et al. (2004) observed the risk factors affecting the longevity of beef 

females and evaluated the ability to predict longevity using measures collected in 

early life. They observed similar findings as Szabó and Dákay (2009), with risk ratio 

increasing when cows had been assisted at first calving. Additionally, they observed 

that changing herd sizes affected longevity, with increasing herd sizes resulting in 

increased longevity. K-M analysis was used to model days open in a sample of 385 

dairy cows in Ethiopia (Temesgen et al., 2022). They observed the median days 

open (154 days) and the percentage of cows open at 210 days post-partum (16%). 

Additionally, a Cox model was built to observe the effect of multiple variables on 

days open. They observed the effects of season; breeding system; calving-to-

insemination interval and herd milk yield, with hazard ratios calculated for each 

subset of the variables. All variables have a significant effect on days open, 

particularly cows inseminated in autumn with a hazard ratio of 4.45. Similarly, the 

effects of disease on days open was observed in 467 Holstein dairy cows (Lee, 
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Ferguson and Galligan, 1989). Five diseases were included within a Cox 

proportional hazards model. All diseases had a low hazard ratio (<1), resulting in 

increased days open. Transition cow diseases can have a large influence on 

reproductive performance and particularly fertility. Bogado Pascottini et al. (2020) 

studied the effect of a range of transition diseases on days open. Variables included, 

twinning, milk fever, retained placenta, metritis, ketosis, displaced abomasum and 

mastitis. They ran a Cox proportional hazards model to observe the effect of each 

variable on days open. Healthy animals were used as the reference value for 

calculation of hazard ratios. Primiparous and multiparous ewes were modelled 

separately.  

It is apparent that the use of survival analysis is common practice to analyse 

reproductive performance in dairy cows, with a particular emphasis on the risk 

factors associated with increased calving to conception interval. The focus on days 

open appears to be a result of significant production losses for each day a cow is not 

lactating (Louca and Legates, 1968). Although within sheep, days open is not used 

as a measure of reproductive performance, similar techniques could be used to 

observe days to conception or days to lambing from a ram entry date. 

4.1.5. Analysing Ram Entry to Lambing Interval  

Survival analysis or more generic time to event analysis had been used to model 

gestation length and calving interval in dairy cows (Safa Gürcan and Akçay, 2007). 

Kaplan-Meier analysis was used to observe the effects of maturity on gestation 

length. Cows were grouped into two age categories and compared using Kaplan-

Meier analysis. It was concluded that survival analysis was an appropriate means of 

analysing reproductive data in dairy cows. The success of utilising survival analysis 

to evaluate reproductive performance in dairy cows indicates that similar techniques 

may be useful to analyse sheep reproduction. This study will model the effect of ewe 

parameters on the interval from ram entry to lambing date using Kaplan-Meier 

analysis and Cox Proportional Hazard models.  
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4.1.6. Aims and Objective 

The aim of this section is the development of a model to predict ram entry to lambing 

interval, referred to as mating to lambing interval in this chapter. This will indicate the 

days to conception and gestation length of each ewe. This will be achieved through 

the initial analysis of the Challenge Sheep project dataset to observe the effects of 

specific variables on mating to lambing interval using survival analysis techniques. 

The results from this initial analysis will indicate which factors positively and 

negatively affect mating to lambing interval. Ewes which have a lower mating to 

lambing interval are considered to have higher fertility and therefore the performance 

measures resulting in this are desirable. Accelerated failure time models will be used 

to predict a specific interval for each ewe to use within larger systems models. The 

prediction of mating to lambing interval is important within a systems model to 

estimate the date of lambing dependant on the management decision of ram entry. 

Having an approximation for lambing date allows a larger systems model to correctly 

predict lamb performance, sales dates and ewe recovery period before next mating.  
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4.2. Materials and Methods  

4.2.1. Data  

4.2.1.1. Data Collection 

Data collected as part of the AHDB Challenge Sheep project (Challenge Sheep | 

AHDB, accessed 06/02/24) was used to model reproductive performance in ewes. 

The dataset included data collected from 11 commercial sheep farms across 

England over four production years. 14 breeds were observed from a total of 7724 

ewes. Ewe and progeny performance data were collected at five stages throughout 

each production year, mating, scanning, lambing, eight weeks post-lambing and 

weaning. All ewes entered the project as ewe lambs or shearlings. Dates were 

recorded at each event, providing ram entry dates and lambing dates. Exact mating 

dates were not collected as part of the project. BCS and weight records were 

recorded for each ewe, with progeny weight records recorded at lambing, eight-

weeks and weaning. Ewe birth date was recorded allowing age to be calculated at 

specific timepoints. BCS was recorded by a single trained individual on each farm, 

with the use of electronic identification (EID) tags and readers to accurately record 

data points for each ewe. All scorers had undergone a BCS calibration session at the 

start of the project to minimise subjectivity.  

4.2.1.2. Data Manipulation  

The survival analysis required specific variables to be manipulated or categorised 

from the raw data. Mating BCS was grouped into three categories, Low (BCS < 2.5), 

moderate (2.5 ≤ BCS ≤ 3.5) and high (BCS > 3.5). BCS categories were determined 

on biological factors, utilising recommended values outlined in by Wright (2019) in 

‘Managing ewes for better returns’. The range of moderate BCS values includes the 

recommended mating BCS values for lowland, upland and hill ewes.  This resulted in 

812 low BCS records, 10174 moderate BCS records and 3891 high BCS records. 

Breeds were refined to 11 breed groupings from an initial 14 breeds recorded within 

the project, this included the grouping of some crossbred ewes into larger 

categories. BCS change (∆ BCS) pre-mating was calculated as the difference from 

weaning in the previous production year to mating in the current production year. 

This was then grouped into three groups: loss (∆ BCS <0), maintain (∆ BCS = 0) and 
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gain (∆ BCS > 0). This resulted in groups of 805, 1555 and 5397 records, 

respectively. 7120 records did not have a previous weaning BCS, largely a result of 

ewes in their first year of production. Age at mating was calculated in days. Where 

applicable previous number of lambs were calculated using data from the previous 

production year, this included total number of live lambs born. Parity was calculated 

from the total number of times the ewes had lambed within the project. As all ewes 

joined the project as ewe lambs or shearlings, this provides an accurate measure of 

parity.  

4.2.1.3. Data Censoring  

One significant benefit of using survival analysis over more common techniques 

such as logistic regression is the ability of the survival analysis methods to process 

censored data. Censored data was defined as any ewes which did not lamb within 

the desired timeframe (right censored), or ewes that were lost to the project before 

recording began (left censored). In the case of this study all ewes were considered 

as right censored. A total of 1815 datapoints were censored from a total of 15,807 

usable entries. 

4.2.1.4. Data Analysis  

Two survival analysis techniques and an accelerated failure time model were used to 

investigate mating to lambing interval. Kaplan-Meier Analysis was used to determine 

the association of individual variables on the mating to lambing interval, and provided 

an indication of which variables to include within the final model. Two Cox 

proportional hazards models were built. One to analyse primiparous ewes, and one 

for multiparous ewes. These models allowed the comparison of variables through a 

multivariate approach.  

The K-M analysis was used to determine the association between individual 

predictors on mating to lambing interval. A series of variables were observed 

including, ewe BCS at mating, parity, weaning to mating BCS change, breed, and 

previous lambing number (the number of lambs born to each ewe in the previous 

production year). The results of these plots provided a graphical representation of 

the association between each variable and informed the decision of which variables 

to include within the Cox proportional hazards model. 
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Two individual Cox Proportional Hazard models were built to differentiate between 

primiparous ewes and multiparous ewes. The primiparous model included variables: 

grouped BCS at mating and age (ewe lamb or shearling), with breed included as a 

random effect and stratified by project year. The second multiparous model not only 

included variables collected at the point of mating, but also variables collected from 

the previous production year. These include, grouped BCS at mating, grouped pre-

mating BCS change, previous number of lambs (number of live lambs born to each 

ewe in the previous production year), age, and parity. Again, breed was included as 

a random effect with the model stratified by project year.  Hazard ratios were 

observed to assess the effect of each variable on the event. P-values were used to 

determine significance. Hazard ratios greater than one suggest the predictor is 

associated with decreased mating to lambing interval.  

4.2.2. Accelerated Failure Time model 

The nature of Cox proportional hazards models makes it challenging to predict 

intervals directly from the analysis, largely due to the nature of the results being 

relative to a reference value. Accelerated failure time models can be used to predict 

a survival time from time to event data, using the results from Cox proportional 

hazards models to decide which variables to include. Accelerated failure time models 

are a parametric method for predicting continuous time data. The probability that an 

individual can survive beyond a given time (t) is denoted by S(t).  

Similar to the two distinct Cox proportional hazards models produced to model first 

parity and multiple parity ewes separately, parametric distributions were used to 

model both groups, again allowing for the use of data from previous production years 

within the multiple parity model. A series of parametric distributions were plotted 

using the important variables highlighted from the results of the Cox proportional 

hazards models. These included, weibull, loglogistic, exponential, gaussian, logistic, 

and lognormal. Akaike information criterion (AIC) was used to estimate prediction 

error and allow for relative comparison between the models. The model with the 

lowest AIC was used for the time to event predictions. Out of the six parametric 

distributions tested, the loglogistic distribution provided the lowest AIC for first and 

multiple parity ewes, and therefore was used for prediction.   
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4.3. Results  

Figure 4.1 shows first parity animals that are in a lower mating BCS (<2.75) have a 

shorter mating to lambing interval with more animals lambing earlier in in the 

production year. This can be observed through the initial steeper gradient in the Low 

BCS group, starting at around 145 days post-mating. High BCS ewes lamb at a 

similar rate to moderate BCS ewes throughout the interval, with the rate slowing at 

around 165 days post-mating where the remaining high BCS animals take longer to 

lamb. In their first year of production, shearlings appear to get in lamb quicker, 

resulting in a shorter mating to lambing interval than ewe lambs (Figure 4.2). Ewe 

lambs begin lambing later, then continue to lamb slowly up until approximately 165 

days post-mating, where the rate increases. 
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4.3.1. Kaplan-Meier Analysis for First Parity Ewes 

 

Figure 4.1- Kaplan-Meier plot showing the probability of lambing for first parity ewes 
in either Low, Moderate or High mating BCS groups 

 

Figure 4.2- Kaplan-Meier plot showing the probability of lambing for ewes in their first 
year of production as either ewe lambs or shearlings 
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4.3.2. Kaplan-Meier Analysis for Multiple Parity Ewes 

In mature ewes the Kaplan-Meier Analysis (Figure 4.3) suggests that High BCS at 

mating has a negative effect, increasing mating to lambing interval. Lambing appears 

to begin later in the High BCS group and continue for longer (up to 200 days post-

mating). The Low and Moderate BCS groups have a similar curve and therefore 

intervals. The Low group appears to initiate lambing earlier, however by 155 days 

post-mating the same proportion of ewes have lambed in both the Low and 

Moderate Groups.  

 

 

Figure 4.3- Kaplan-Meier plot showing the probability of lambing for multiple parity 
ewes in either Low, Moderate or High mating BCS groups 
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4.3.3. Kaplan-Meier Analysis for All Ewes  

When observing the effect of age on mating to lambing interval (Figure 4.4) it is clear 

that younger animals have an increased mating to lambing interval. Ewes at less 

than one year of age at first mating (ewe lambs) initiate lambing at a later interval, 

with a larger proportion left to lamb compared to the other groups throughout the 

whole interval. One year old ewes exhibit a slightly increased interval with less 

animals lambed at 160 days post-mating than the older groups. Two, three, and four 

year old ewes at mating exhibit similar curves, maybe suggesting age is less of a 

factor in older animals.  

The relationship between age and parity is shown in Figure 4.5. For parity one 

animals, age at mating appears to have a substantial effect on mating to lambing 

interval. Ewes under one year of age (ewe lambs) had an obviously increased 

mating to lambing interval compared to ewes at one (shearlings) and two years of 

age at first mating.  Parity two ewes at two years of age appears to have the shortest 

mating to lambing interval, with parity one slightly increased. Parity two ewes at three 

years of age had a substantially increased mating to lambing interval, with over half 

the animals lambing after 165 days post-mating. For parity three animals at three 

years of age at mating have the shortest mating to lambing interval. Four-year-old 

animals in parity three have an increased mating to lambing interval with over 30% 

still left to lamb after 180 days post-mating. Ewes at four years of age at parity four 

performed best with ewes at three years of age taking slightly longer to initially start 

lambing. An interesting observation is that for multiple parity animals, when the age 

in years coincide with parity the mating to lambing interval appears to be reduced. 

Generally, this grouping would include ewes that were first mated as shearlings at 

one years of age.  
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Figure 4.4- Kaplan-Meier plots showing the effect of Age on mating to lambing 
interval 

 

Figure 4.5- Kaplan-Meier plots showing the effect of Age and Parity on mating to 
lambing interval 
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Figure 4.6- Kaplan-Meier plots showing the effect of Mating BCS and Parity on 
mating to lambing interval 

As parity increases the effects of a High mating BCS become more prominent 

(Figure 4.6). For parity three and four animals, High mating BCS has a substantial 

negative effect on mating to lambing interval. Low and moderate groups have a 

similar performance across all parities, with the exception of first parity ewes where 

Low mating BCS seems to reduce mating to lambing interval.  
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Figure 4.7- Kaplan-Meier plot showing the effect of pre-mating BCS change on 
mating to lambing interval 

BCS change from weaning to mating appears to have little effect on mating to 

lambing interval up until 170 days post-mating. The Gain group appears to have 

more ewes remaining after 170 days post-mating, with a substantially reduced 

lambing rate, resulting in a drawn-out interval. It appears that around 15% of ewes in 

the Gain category took substantially longer to lamb than other ewes.  

4.3.4. Cox Proportional Hazards Model 

Low and High mating BCS groups both had a significant negative effect on mating to 

lambing interval for multiple parity ewes, with hazard ratios of 0.91 and 0.71 

respectively (Table 4.1). Pre-mating BCS change was shown to have a significant 

effect on mating to lambing interval with ewes that lost and gained condition having 

hazard ratios of 0.88 and 1.13 respectively. The number of lambs born to a ewe in 

the previous production year only had an effect for ewes which had three lambs in 
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the previous production year. These ewes showed a reduced hazard ratio and 

therefore increased mating to lambing interval. Mating to lambing interval increases 

with parity, with higher parity ewes showing a significantly reduced interval. Age had 

less of an effect, the only significant effect was ewes at 1 year old had an increased 

mating to lambing interval.  

Table 4.1- Cox proportional hazards model results for the multiple parity model 

Variable Category Coefficient Hazard 
Ratio 

Lower 
.95 

Upper 
.95 

p-value 

Previous Number Lambs 
Born  

0 0.05 1.05 0.73 1.50 0.79 

 1 -0.00 1.00 0.95 1.05 0.99 

 2 ref ref ref ref ref 

 3 -0.21 0.80 0.71 0.91 <0.05 

Grouped Mating BCS  Low <2.75 -0.10 0.91 0.84 0.98 <0.05 

 Moderate 3 to 3.5 ref ref ref ref ref 

 High >3.5 -0.34 0.71 0.67 0.76 <0.05 

Pre-Mating BCS Change  Loss > – 0.25 -0.13 0.88 0.80 0.98 <0.05 

 Maintain -0.25 to 
0.25 

ref ref ref ref ref 

 Gain > 0.25 0.12 1.13 1.07 1.09 <0.05 

Mating Age (years)  1 -0.14 0.87 0.79 0.96 <0.05 

 2 ref ref ref ref ref 

 3 0.03 1.03 0.94 1.12 0.54 

 4 0.07 1.07 0.92 1.24 0.38 

Parity  2 ref ref ref ref ref 

 3  -0.12 0.89 0.82 0.97 <0.05 

 4 -0.17 0.84 0.73 0.98 <0.05 

 

Table 4.2- Chi squared output for multiple parity model 

Category Reference value  Df p-value 

Previous Number Lambs Born 2 4.00 <0.05 

Grouped Mating BCS  Moderate 2.00 <0.05 

Pre-Mating BCS Change Maintain 2.00 <0.05 

Mating Age (years) 2 3.00 <0.05 

Parity 2 2.00 <0.05 

Frailty= Breed - 11.00 <0.05 

Strata= Project Year - 0.0017 <0.05 
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Table 4.3- Cox proportional hazards model results for first parity model 

Variable Category Coefficient Hazard 
Ratio 

Lower .95 Upper 
.95 

p value 

Grouped Mating 
BCS 

Low <2.75 0.19 1.21 1.10 1.32 <0.05 

Moderate 3 to 3.5 ref ref ref ref ref 

High >3.5 0.16 1.17 1.09 1.26 <0.05 

Mating Age 
(years) 

0 (Ewe lamb) -0.66 0.52 0.47 0.57 <0.05 

1 (Shearling) ref ref ref ref ref 

2(2 Shear) -0.05 0.96 0.84 1.09 0.49 

 

Table 4.4- Chi Squared output for first parity model 

Category Reference value  Df p-value 

Grouped Mating BCS  Moderate 2.00 <0.05 

Mating Age (years) 1 1.99 <0.05 

Frailty=Breed - 10.89 <0.05 

Strata= Project Year - 0.011 <0.05 

 

 

Low and High mating BCS in the first parity model had a significant positive effect on 

mating to lambing interval. Age at lambing had a significant effect. Shearlings 

performed best with ewe lambs having significantly lower hazard ratio, and two-year-

old ewes showing no significant difference.  Breed as a whole had a significant effect 

within the model on mating to lambing interval (Table 4.4). 
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4.3.5. Accelerated Failure Time Model 

 

Figure 4.8- Effect of Grouped Mating BCS within the Accelerated Failure Time Model 
for multiple parity ewes 

 

Figure 4.9- Effect of Grouped Mating BCS within the Accelerated Failure Time Model 
for first parity ewes 
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The plots from the accelerated failure time models show the effect of mating BCS 

when estimating mating to lambing interval. The multiple parity model (Figure 4.8) 

shows moderate mating BCS ewes have a shorter mating to lambing interval, 

suggesting increased conception rates. Low mating BCS ewes performed slightly 

worse with High mating BCS ewes having the highest mating to lambing interval of 

all groups. The trend differed within the first parity model (Figure 4.9). Low mating 

BCS ewes performed best with the shortest mating to lambing interval. High and 

Moderate mating BCS groups performed similarly, with a slight improvement within 

the Moderate group. 

 

Table 4.5- Percentage lambed at each interval for Low, Moderate and High BCS 
ewes at mating 

 Percentage lambed at each interval 

 All ewes Grouped Mating BCS 

Interval (days)  Low Moderate High 

150 14.5 29.5 14.6 10.8 

170 81.1 88.7 83.9 71.7 

>170 100 100 100 100 
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4.4. Discussion  

 

Within the survival analysis it was observed that certain variables had a significant 

effect on mating to lambing interval while others had no effect. Grouped mating BCS 

had a significant effect in both first parity and multiple parity ewes. Multiple parity 

ewes in Low or High mating BCS had a significantly decreased hazard ratio and 

therefore increased mating to lambing interval relative to the moderate group (Table 

4.1). The opposite trend was observed for first parity ewes with the Low mating BCS 

group exhibiting the shortest mating to lambing interval (Table 4.3). Pre-mating BCS 

change from weaning to mating had less of an effect than expected, with no 

significant influence within the model. Ewes which had three lambs in the previous 

production year appeared to have a follow-on effect, with lower hazard ratios 

observed within the model. Ewes first mated as shealings had better performance 

than that of ewe lambs or two-year-old ewes. As parity increases within the multiple 

parity model, so does ewe performance. Certain breeds such as the highlander and 

Romney had significantly increased hazard ratios. The effect of breed appears to be 

significant, however largely irrelevant from a practical application.   

4.4.1. Mating to Lambing Interval for Multiple Parity Ewes 

 

4.4.1.1. Grouped Mating BCS 

Often the concept of optimal BCS at each stage of production is discussed within the 

literature, with specific recommendations provided for ewes at mating. The AHDB 

recommend that the optimal mating BCS for lowland and hill ewes is 3.5 and 2.5 

respectively (Povey, Stubbings and Phillips, 2018). This is to optimise the energy 

available for reproduction, while also ensuring sufficient energy deposits throughout 

the winter period. The survival analysis for multiple parity ewes suggests there is an 

optimal mating BCS to minimise mating to lambing interval, and therefore optimise 

conception rates. Mating BCS values of <2.75 or > 3.5 significantly increased the 

interval. Vatankhah et al. (2012) observed the effect of mating BCS on reproductive 

parameters. They studied the effect of BCS at mating, ranging for 1 to 4 units on 

conception rate.  They found that as BCS increases conception rate also increases, 

however at a BCS of 3 and above the increase in conception rate was not significant. 
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Yilmaz et al. (2011) similarly found that low BCS at mating (BCS ≤ 1.5) significantly 

reduced pregnancy rate when compared to ewes in a BCS of more than 2.0. 

Interestingly, they also observed a decrease in pregnancy rate above a BCS of 3.0. 

This follows a similar trend to the observations within this study, with BCS 3.5 and 

above ewes having an increased mating to lambing interval.  

4.4.1.2. Pre-Mating BCS Change 

Nutrition both pre and post mating is vital in maximising reproductive performance. 

The Challenge Sheep project did no collect specific data regarding the ewe’s plane 

of nutrition or specific supplements provided, therefore could not be included within 

the models. It is essential that deficiencies are mitigated throughout the whole 

production year, especially at mating where trace element deficiencies can 

significantly impact on reproduction rates. Often risk of deficiency is highly breed 

specific, with bioavailability varying significantly.  It is assumed that deficiencies 

within the Challenge Sheep project farms are rare due to the nature of the farms, 

and when present are adequately resolved, therefore it is not considered to be a 

large concern on model performance. Ewe energy balance between weaning and 

mating is also a significant factor when assessing reproductive performance. Energy 

profile of the ewes’ feed was unknown, therefore the use of BCS change between 

weaning and mating was used as an indicator of net energy balance. Although this 

does not provide a precise energy balance at mating, or allow for calculation of 

energy availability for reproduction, it does provide an approximation for overall 

energy profile between weaning and mating. The energy availability during the 

implantation period post-mating is unknown within the dataset. The Cox proportional 

hazards model suggests that BCS change has no effect on mating to lambing 

interval, with no significance within the results (Table 4.1). Similar results have been 

observed within the literature with early pregnancy nutrition having no significant 

effect on conception rate and therefore total lamb birth weight in mature ewes 

(Annett and Carson, 2006). With BCS change pre-mating having no effect on mating 

to lambing interval, it is likely more important to optimise mating BCS, irrespective of 

the changes in BCS required.  

It is still important to ensure the correct plane of nutrition post-mating. One benefit of 

increased plane of nutrition in early pregnancy is that female offspring eight-week 

weight and sixteen-week weight have been observed to increase when ewes were 
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on a higher plane of nutrition (Muñoz et al., 2009). This could result in an increased 

number of ewe lambs reaching required weight pre-mating.  

4.4.1.3. Breed 

The choice of which breed a farm uses is specific to their management practices, 

and what the producer requires from the animals. Traditionally UK sheep breeds 

were largely split into categories depending on whether they were bred for meat or 

wool production, with an additional smaller category for milk producing animals. 

These categories were then split into lowland, upland and hill breeds, often based on 

level of hardiness. The current nature of the UK sheep industry means that sheep 

are predominantly bred for their meat production characteristics. Maternal and 

terminal breeds often differ, with a focus on growth rates within terminal breeds and 

reproduction and maternal ability within maternal breeds. The results from the 

survival analysis showed that breed had a significant effect when included as a frailty 

in both the multiple parity model (Table 4.2) and the first parity model (Table 4.4), 

however the effect of individual breeds was not observed.   

4.4.1.4. Parity and Age 

Three parities of ewe were included within the multiple parity model. As parity 

increased so did the hazard ratio, reducing mating to lambing interval. This would be 

expected with reproductive performance increasing as parity increases, particularly 

with the relatively young distribution of ewes within the dataset. When observing age, 

two-year-old ewes had the best performance, with three- and four-year-old ewes 

performing worse. This may suggest that peak reproductive performance in terms of 

conception rate occurs in two years old ewes. These could either be ewes that joined 

the project as ewe lambs and are now in parity three, or ewes that joined the project 

as shearlings now in parity two. 

4.4.1.5. Previous Number of Lambs  

Within the mature ewe model, number of lambs in the previous production year had 

a significant effect on mating to lambing interval for ewes which had triplets. This is 

likely due to a higher energy demand for reproduction in the previous production 

year, which is having a subsequent knock-on effect. The effects observed for 

previous number of lambs are potentially less than expected. This is probably due to 

the relatively long period of recovery from weaning to mating in ewes compared to 



   

 

125 
 

other species. Studies have however shown that number of lambs affects gestation 

length. Within Konya Merino ewes triplet births had the longest gestation length 

(153.7 ± 0.73 days), with twins approximately one day shorter (152.8 ± 0.16 days) 

and singles the shortest (151.6 ± 0.22 days). (Öztürk and Aktaş, 1996). Additionally, 

offspring sex and litter size have both been shown to significantly impact gestational 

length in ewes (Tozlu Celik et al., 2021).  Data on number of lambs in the current 

production year was not included within the model as it would not be available at 

mating for use in predictions. 

4.4.2. Mating to Lambing Interval for First Parity Ewes 

4.4.2.1. Grouped Mating BCS  

Within the parity one model, Low BCS appeared to reduce mating to lambing interval 

(Table 4.3). A significant hazard ratio of 1.3 was observed for the Low BCS category. 

The Kaplan-Meier plot showing the effects of mating BCS on mating to lambing 

interval (Figure 4.1) shows an obvious increase in the rate at which lower mating 

BCS ewe lambs and shearlings lamb. There is very little recorded in the literature 

regarding this. It may be due to immature animals having more energy available for 

reproduction if they are not storing energy in the form of fat reserves, or potentially a 

higher appetite around mating having the same effect. It does appear that 

recommended mating BCS values for first parity and multiple parity ewes should 

differ.  

4.4.2.2. Ewe Lambs and Shearlings 

Figure 4.2 shows a distinct difference between the performance of ewe lambs and 

shearlings in their first year of production. Ewe lambs have an increased interval 

compared to shearlings, highlighting the lower conception rates within ewe lambs. 

This observation was expected as energy available for reproduction will be lower 

within ewe lambs which still have a large requirement for growth. Interestingly within 

the Cox proportional hazards model (Table 4.3), the same trend was observed with 

ewe lambs performing significantly worse than shearlings (hazard ratio 0.7), however 

any ewes that remained parity one at two years of age also had significantly worse 

performance than shearlings. It is assumed that parity one ewes at two years of age 

have had poor reproductive performance earlier in their productive life. This appears 

to be having a continued effect, shown through the increased interval.  
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4.4.3. Predicting Mating to Lambing Interval 

Predicting time to event directly from the Cox proportional hazards Models is not 

possible. The use of an accelerated failure time model allows the estimation of a 

specific date of lambing and therefore mating to lambing interval. Separate models 

were developed for parity one and multiple parity ewes. The distribution observed in 

Figure 4.8 and Figure 4.9 show the effect of BCS within each accelerated failure time 

model. The results observed are in line with that of the Cox proportional hazards 

models.  

4.4.4. Limitations 

Mating to lambing interval can also be affected by a number of other variables not 

included within the analysis. Many of these variables were not included due to 

limitations around data collection and recording. Ram factors were not recorded 

within the project. This makes it difficult to discern the effects of ram performance on 

days to conception. Ram age has been shown to effect ewe hogget reproductive 

performance (Kenyon et al., 2007). More ewe hoggets were mated by mature rams 

in the first 17 days compared to ram hoggets. However, a larger proportion of the 

ewe hoggets mated by mature rams returned to service, resulting in similar 

pregnancy rates between mature and hogget rams at 17 days. Ram performance 

data is challenging to collect and utilise, due to difficulties discerning which rams 

mated with which ewes. Crayon markers have been used, however recording these 

are labour intensive and often multiple marks can be observed on one ewe. Although 

there is variability between all ewes, from the authors experience it is likely that high 

quality rams were used on all farms within the study. Ram to ewe ratio will have 

been maintained at suitable level to ensure optimum conception rates.  

Ewe reproductive performance can be somewhat dependant on year of production. 

Many on farm factors such as, weather, nutrition from pasture, and flock disease 

risk, can vary from one production year to the next. Understanding the intricacies of 

each of these factors is challenging and leads to added complexity when predicting 

future reproductive performance. For example, in 2018 the UK was hit by 

Anticyclone Hartmut, which led to extreme snowfall and cold temperature during 

February and March, this coincided with lambing for many farmers and led to 

considerable lamb losses across the country. Events of this nature are impossible to 
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predict at mating, and therefore can never influence a predictive model for 

reproduction.  

Nutrition was not recorded within the Challenge Sheep project dataset. Like many 

UK sheep farms the project farms were largely low input systems, focussed on 

maximising nutritional intake from pasture. This is the system that many UK farms 

have adopted, rather than feeding a high input, concentrate and forage crops diet. 

The different systems within the Challenge Sheep project farms, including lowland, 

upland and hill farms help to ensure the models are somewhat generalisable within 

the UK industry. Although ewe nutrition was not directly recorded, BCS change pre-

mating can indicate net energy balance at mating. Ewes on a high plane of nutrition 

throughout gestation have been reported to have significantly shorter gestation 

periods that ewes on a low plane of nutrition (Holst, Killeen and Cullis, 1986), 

therefore the option to include nutritional categories into a predictive model may be 

beneficial, if the data were to become available. Within the Challenge Sheep dataset 

breed is closely correlated to farm which introduced a farm effect which could be 

influencing the results. It is challenging to mitigate these farm factors due to the 

small number of breeds utilised on each farm.  

4.4.5. Summary 

This chapter focuses on the analysis of the variables which affect reproduction within 

the Challenge Sheep project data, and how this analysis can be used to estimate 

mating to lambing interval. Some variables which were observed to have a 

significant effect were grouped mating BCS, mating age, parity, breed and previous 

number of lambs. An important aspect of the analysis was the requirement to build 

two separate models. This improved performance of the multiple parity models 

through the use of variables not available for first parity animals. Using mating to 

lambing interval provides an indication of days to conception plus gestation length, 

this can be used to calculate the probability of a ewe lambing on a specific day post-

mating within the simulation model.  
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Chapter 5. Wastage Analysis  
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5.1. Introduction  

5.1.1. Reasons for ewe wastage 

Ewe wastage is a combination of on farm mortality and premature culling (Farrell et 

al., 2019). Premature culling is often the result of poor performance, or health issues, 

with mortality being almost solely linked to poor health. Naturally, farmers have 

always tried to mitigate wastage through ensuring optimum flock health and 

performance. This increases longevity and lifetime productivity of each ewe. Ewes 

culled at the end of their productive life are not considered wastage as productive 

years from that animal have been maximised. There is a substantial financial cost in 

raising a ewe before any return is seen (AHDB Beef and Lamb, accessed 

12/02/2024), or a significant investment if replacements ewes are bought in. 

Ensuring the maximum return on each ewe is vital to maximise flock productivity. 

Overall replacement rates on sheep farms are around 23%, with a small amount of 

variation depending on management and farm profitability (AHDB Beef and Lamb, 

accessed 12/02/2024). On low wastage farms the replacement rate is expected to be 

controlled through the culling of poor performing or older animals. On higher wastage 

farms there is more emphasis on replacement rate being driven by dead animals or 

animals culled due to health issues. Lower wastage rates provide the opportunity to 

selectively cull ewes, giving more scope to improve flock health and performance, 

while reducing overall costs.  

Quantifying wastage on UK sheep farms has significant challenges due to the lack of 

performance recording within most commercial flocks. Throughout this chapter ewes 

which left the flock due to premature culling, on farm mortality or sold as cull ewes 

are referred to as ewe losses.  Usually, the reasons for ewe loss and specific time of 

ewe loss would not be recorded. Overall losses throughout the production year are 

often easier to calculate by using ewe numbers at the start and end of the production 

year, however this provides very limited information. The extensive nature of many 

UK sheep farms, along with small economic margins, make it extremely difficult for 

individual farmers to justify spending time assessing ewe losses. In cases where a 

substantial number of ewe losses are occurring for the same reason it is likely this 

would be observed, however recording individual ewes is rare. In research settings 
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ewe losses have been recorded and analysed, with the aim to estimate wastage on 

an average farm.  

Flay et al. (2021) observed ewe wastage on New Zealand commercial sheep farms. 

They calculated levels of wastage across three farms, along with observing the 

factors affecting both mortality and premature culling. They observed that pre-mating 

body condition score (BCS) had a negative correlation with wastage rates in ewes. 

Quantifying wastage rates and understanding the risk factors associated with higher 

levels of wastage, allows for a multifaceted approach to reducing ewe wastage on 

farm.  

Within this study, reasons for loss and timings of loss will be observed throughout 

the Challenge Sheep project farms, with the effects of specific variables on wastage 

observed. Time of loss will then be predicted to estimate the probability of loss for 

each day of the production year for a specific animal.  

5.1.1.1. Culling 

Culling on sheep farms can be categorised into ewes which have reached the end of 

their production life, or ewes that have been culled prematurely. Wastage on farms 

focusses on the ewes which have been culled prematurely, as this is where culling 

rates can often be reduced. Often culling decisions are the result of a multifactorial 

approach, with a large number of variables contributing to the culling rates on each 

farm. There is usually a hierarchy when culling decisions are made. Initially animals 

which have reached the end of their productive lives are culled, often at around 

seven years of age. Although animals which have reached the end of their 

productive lives are not included within wastage analysis, it accounts for around 23% 

of culls on UK sheep farms (McLaren et al., 2020). Poor teeth account for 39.9% of 

all culls, this can be a result of poor genetics, however, is usually closely correlated 

with ewe age. Reproductive performance is also an important factor in culling 

decisions. Often animals which are barren when pregnancy scanning are removed 

from the main flock and sold as cull ewes, often with the exception of ewes mated as 

ewe lambs. A seasonal peak in wastage rate can be observed during scanning due 

to levels of infertility.  Factors affecting the health and welfare of animals such as 

lameness, prolapses, and udder problems are often initially treated and if treatment 

fails the animals are then culled. It has been reported that 63% of farmers cull ewes 
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after two or three bouts of lameness, with larger farms more likely to cull animals 

(Best et al., 2020). Body condition scoring can also be used to assess which animals 

to cull, however this will often be linked to underlying health conditions or a general 

poor performance. Farmers would select extremely low condition ewes relative to the 

rest of the flock. It is extremely uncommon to cull ewes solely on condition score due 

to the plethora of other factors to select from, particularly if ewes are only marginally 

under target BCS. 

5.1.1.1.1. Disease  

Individual events can affect ewe wastage, and potentially make it extremely difficult 

to predict for a specific year. Epidemics can substantially increase ewe wastage for 

an individual production year. For example, the 2001 outbreak of foot and mouth in 

the UK led to extremely high incidence of culling (Keeling et al., 2001). It is not 

possible to predict specific events of this nature, therefore there will always be a 

certain degree of uncertainty within predictive models for wastage. However, survival 

analysis techniques can still be an extremely useful tool to observe the affect or 

impact of specific events after they have occurred.  

5.1.1.1.2. Lameness 

Lameness on UK sheep farms is an extremely common and persistent disease 

problem, with both economic and welfare concerns (Page et al., 2023). Lameness is 

predominantly caused by either footrot or contagious ovine digital dermatitis 

(CODD). The exact economic impact of lameness within UK flocks is largely 

unknown, however, is estimated in the range of £20-80 million each year (Lameness 

in sheep | AHDB). The total cost of footrot has been estimated at £24 million, £7 

million of which is due to lost performance, £3 million due to treatment and culling, 

and £14 million due to costs associated with prevention (Wright, 2013). Ignoring the 

obvious and often severe health and welfare issues associated with lame animals, 

the economic impact alone highlights the needs to initially understand and 

subsequently reduce lameness across UK flocks. It is often the case that although 

incidence of lameness is high, culling due to lameness is significantly lower than 

expected. This is due to other culling reasons taking precedence and the effective 

treatment of the disease. Only 20% of farms in the UK are culling lame sheep 

promptly (Farm Animal Welfare Council, 2011), decreasing the incidence of wastage 

due to lameness. Since 2011 the Five-Point-Plan for the prevention and treatment of 
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lameness has been introduced. This has introduced best practice for management of 

lameness in flocks. The prevalence of lameness is currently around 3.2%, this may 

suggest than an increased number of farms are now using lameness as a culling 

parameter.    

5.1.1.1.3. Mastitis 

Unlike lameness, ewes with mastitis are often culled in the same production year as 

the disease is discovered. This can be attributed to the severe impact on health and 

production. Mastitis is the inflammation of the mammary gland, caused by bacterial 

infection. Treatment is often difficult, and even when successful can often result in 

loss of mammary function to at least one half of the udder. High rates of culling when 

mastitis is detected lead to mastitis being one of the main reasons for premature 

culling of ewes, particularly within lowland flocks (McLaren et al., 2020). Although 

specific cases of mastitis would be extremely difficult to predict, a wastage analysis 

can highlight if farms have higher incidence of mastitis. If this is the case a specific 

treatment and preventative plan can be put in place.  

5.1.1.1.4. Fertility 

 

Sheep production systems rely on high fertility to ensure all ewes are productive. 

Within UK systems mating occurs in the autumn, with lambing in the spring. It is 

important for ewes to have high fertility as if they do not conceive in the autumn, they 

would be unproductive for a whole season. Around scanning, culling of barren ewes 

is common practice with advice that infertile ewes should be culled to allow for more 

productive animals to enter the flock (Genever and Wright, 2016). Ewes first bred as 

ewe lambs are often retained for a subsequent year if they are barren at first 

scanning, this is due to the high likelihood that these animals had not reached a 

suitable age or weight at mating for conception. Infertile ewe lambs are often culled 

in their second year of production.  

5.1.1.2. Mortality  

Ewe mortality is defined as the percentage of females that died on farm, calculated 

as the total number of females mated in that production year (Key performance 

indicators (KPIs) for lamb sector | AHDB, Accessed 10/02/2024). Although there are 

many similarities between the reasons for culling and causes of mortality, mortality 

by nature is less controlled and selective than culling. This results in high level of 
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uncertainty regarding the reason for death. Across the UK sheep industry average 

ewe mortality is approximately 5%, however it is highly variable and can range from 

2% to 10% depending on individual farms (Wright, 2013). Key performance 

indicators (KPIs) for ewe mortality suggest that farms with a mortality of <2.5% are 

performing well, 2.5 to 5% have room for improvement and >5% requires a review of 

performance (Key performance indicators (KPIs) for lamb sector | accessed 

10/02/2024). Wastage analysis can highlight specific events leading to higher 

mortality and may provide an insight into how to reduce this.  A certain level of ewe 

mortality will always be present on farm, however any reduction in mortality allows 

for more selective culling while maintaining the replacement rate or allows 

replacement rate to be reduced. Managing replacement rate effectively, leads to 

more productive animals and an overall healthier flock.  

5.1.1.3. Factors Affecting Wastage Rates 

As previously established, ewe wastage is a combination of multiple reasons for both 

culling and mortality, however there are a number of risk factors associated with 

increased wastage rate. Flay et al. (2021) established a relationship between pre-

mating BCS and wastage rates, while Kenyon, Maloney and Blache (2014) observed 

that low BCS can reduce reproductive performance, which would in turn lead to 

increased culling and wastage. First breeding as a ewe lamb vs as a shearling is 

believed to have an impact on lifetime productivity, however it is unclear from the 

literature of its extent. Breeding from ewe lambs provides the opportunity for an 

additional litter, and therefore additional lamb sales at an earlier age. However, some 

people believe the metabolic stress required during gestation and lamb rearing has a 

long lasting impact on ewe performance as parity increases. First breeding as a 

shearling allows ewes to reach a larger percentage of mature weight before 

breeding, this results in a smaller metabolic requirement for ewe growth, and 

therefore more energy is available for reproduction.   

It is clear that failing to maximise the productive lifespan of a ewe is going to have an 

economic impact on the flock, however there are key factors which lead to reduced 

profitability. Ewe wastage, particularly in ewes during their most productive mature 

years, leads to a reduction in the mean flock age. Generally younger animals have 

lower reproductive performance, therefore the average flock reproductive rate can be 

impacted, leading to an overall reduction in lamb sales. This can also contribute to a 
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reduced feed efficiency and therefore higher feed wastage, particularly from pasture 

(Lydia Farrell, 2020). 

5.1.1.4. Survival Analysis in Sheep  

Within the literature a large emphasis appears to have been placed upon lamb 

mortality, rather than ewe wastage. This appears to be due to the direct correlation 

between lamb survival and productivity, and the welfare concerns associated with 

high mortality. High perinatal lamb mortality has been associated with more intensive 

systems, poor hygiene at lambing, increased foster rate, and poor nursing of sick 

lambs. Poor ewe condition and flocks with higher replacement rates were also 

associated with increase postnatal mortality (Binns et al., 2002). Lamb survival in 

Harnali sheep has been observed by Gaur et al. (2022). They used Cox proportional 

hazards models and Kaplan-Meier Analysis to observe the effect of each variable on 

lamb survival. They found that year of birth, lamb sex and birth weight all significantly 

affected lamb survival until weaning. Similarly, in Turkish sheep, lamb survival was 

observed using Cox regression and Kaplan-Meier techniques (Ceyhan and Kozaklı, 

2023). Year, season, lamb sex, types of birth (single or twin) and birth weight all had 

a significant effect on survival within the Cox model. Similar Cox proportional 

hazards models and Kaplan Meier analysis have been used to observe ewe wastage 

in New Zealand flocks (Flay et al., 2021). They observed lifetime and annual 

wastage of 13,142 commercial ewes. Key findings included a positive relationship 

between pre-mating BCS and reduced wastage, with the ability to predict wastage 

from pre-mating BCS. They also highlighted the importance of reducing hogget 

wastage through reducing hogget on farm mortality and improving hogget 

reproductive performance (Flay et al., 2021). 

5.1.2. Aims 

One of the first steps to effectively reduce ewe wastage is to understand where 

wastage is occurring within the system. This will provide an overview of overall 

wastage, but also pin-point specific events, or causes of high wastage. One of the 

aims of the Challenge Sheep project was to compare the lifetime performance of 

ewe first mated as ewe lambs vs shearlings. Understanding lifetime wastage rates 

for each of these categories, and the risk factors associated with wastage is 

important when observing lifetime productivity. This will initially be achieved through 
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descriptive statistics, comparing the reasons for loss with variables such as the 

status of the ewe when joining the project (ewe lamb or shearling), the BCS of the 

animals at mating, the breed of the animals and age. The results from the loss 

analysis will help inform the survival analysis model to observe time to wastage. This 

will include Kaplan-Meier Analysis to observe the effects of specific variables on time 

to loss and Cox proportional hazards models to determine the interactions between 

each variable. The results from the Cox proportional hazards model will then be used 

to inform an accelerated failure time model which will be used to predict ewe exit 

dates.  
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5.2. Material and Methods  

5.2.1. Data Collection and Manipulation 

The Challenge Sheep project not only collected data on ewe and lamb performance, 

but also collected a substantial subset of data on ewe losses. Exit reasons and dates 

were recorded for every ewe that left the project, whether that was due to sales, 

mortality or culling. Farmers recorded the main reason for loss for each ewe that 

exited the project, in cases where multiple reasons were observed the most likely 

cause was recorded. Reasons for loss were then grouped into a selection of fate 

codes for consistency within the dataset. Any ewes with uncertainty around the 

cause of mortality were recorded as ‘unknown’. The overall number of losses for 

each fate code are shown in Table 5.1. A total of 2167 ewes were lost over the first 

three years of the project. BCS was recorded at five intervals throughout the 

production year including, mating, scanning, lambing, 8-weeks post-lambing, and 

weaning. As discussed in Chapter 2 body condition scoring is a subjective 

measurement, however measures were taken to mitigate the effect of bias and 

scorer error within the data collection process. Ewe factors such as date of birth and 

project entry status (ewe lamb or shearling) were recorded for each ewe when they 

entered the project. All data was recorded using EID tags and readers to ensure 

accuracy and help mitigate human error.  

Initially data were tidied and manipulated using R (R: The R Project for Statistical 

Computing, no date). For a ewe to be included in the model it had to have complete 

data including: exit date; fate code and event dates. Specific ewes were removed 

from the dataset due to inconsistencies within the scoring, or extremely low number 

of ewes within a group. Additional variables for the analysis were then manipulated, 

including, censoring status and interval for each ewe over each production year. The 

start of the production year was set at mating, with all intervals calculated as days 

post-mating. The date at which the ram entered is referred to as mating date 

throughout this chapter. Age at mating was calculated from mating date and ewe 

date of birth, and was included as years within the analysis. BCS at mating were 

grouped into five categories: <2.5, 2.5 to 2.75, 3.0 to 3.25, 3.5 to 3.75, and  ≥ 4.0. 

Fate codes from the raw data were refined into eight categories to group similar 

reasons for loss. These groups included, Infertility, Lameness, Mastitis, Lambing 
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difficulty; Health, Poor performance, Sold, and Unknown (Table 5.1). The number of 

ewe records in each group ranged from 11 to 639, with total ewe exits of 2167.  

5.2.2. Analysing Reasons for Loss  

Descriptive analysis was used to observe the number of losses within the dataset. 

Histograms of overall losses, along with histograms for each category of loss 

throughout the production year were plotted. This allowed observation of specific 

time points of higher losses. To observe the relative losses within each fate category, 

percentages were calculated for each fate code, then compared within the 

histograms. Variables which may affect rate of loss were then plotted against the 

reasons for loss, providing an indication of which mating variables led to increased 

wastage within a specific category. Exit reasons were then observed on an individual 

farm basis to highlight specific causes of high culling or mortality on each farm. A 

large farm effect was expected due to subjective recording of exit reasons, as well as 

health issues often having higher incidence on specific farms (e.g. mastitis).  

 

5.2.3. Survival Analysis 

The techniques for quantifying wastage share a lot of similarities with the methods 

outlined in section 4.2 for observing mating to lambing interval, however, they are 

used in a more traditional way to observe wastage. Mating date was used as the 

start of the production year, with all intervals calculated in days from the mating start 

point.  

Kaplan Meier plots were used to observe the effect of each variable on ewe 

wastage. Initially, an overall survival plot was produced to show the losses for each 

production year starting at mating. The variable `entry status` was included to show 

the effects of ewes first mated as a ewe lamb or shearling. Age at mating was 

included to show the effects of age for each of the ewe lamb and shearling 

categories. Age was considered independently with four age categories at mating 

being included (1, 2, 3, and 4 years of age). The five BCS categories were plotted to 

show the effects of BCS at mating on survival throughout the subsequent production 

year. Results from the Kaplan-Meier plots were used to observe differences between 
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survival probability for each variable. The results from the Kaplan-Meier plots 

allowed comparison of survival probability between variables, highlighted specific 

high loss events throughout the production year, and indicated the important 

variables to include within the Cox proportional hazards model. 

A Cox proportional hazards model was built using variables including, BCS at 

mating, entry status (ewe lamb or shearling), and age, to analyse the effects of each 

variable in the Challenge Sheep project data. Unlike the Kaplan-Meier analysis, Cox 

proportional hazards models are a semi-parametric model and allow for multiple 

predictors within the model. The output of the Cox proportional hazards model gives 

a hazard ratio for each variable, which is relative to a reference value. Higher hazard 

ratios indicate increased ewe losses. Confidence intervals and p-values are also 

provided to show the variation within the estimate and significance. 

 

5.2.4. Predicting Exit Date 

Similar to predicting the interval from mating to lambing in section 4.2, it is not 

possible to predict a specific date of ewe exit using the Cox proportional hazards 

model. Therefore, the results from the Cox proportional hazards models were used 

to build an accelerated failure time model (AFT model).  Accelerated failure time 

models are a parametric method for predicting continuous time data. The probability 

that an individual can survive beyond a given time (t) is donated by S(t).  Within the 

model a series of distributions were tested to select the type of distribution which 

best fit the data. Parametric distributions tested included, Weibull, loglogistic, 

exponential, gaussian, logistic, and lognormal. The model with the lowest AIC was 

the loglogistic model and was therefore deemed to have the best fit and used to 

predict days to exit. 



   

 

139 
 

5.3. Results  

5.3.1. Distribution of Ewe Exit Reason  

Table 5.1 shows that certain ewe exit reasons were more prevalent than others. 

Mastitis was the main reason for ewe exits at 19% (Table 5.1). Sold for slaughter 

and poor performance were the second and third main reasons for loss at 15% and 

14% respectively. 29% of ewes had an unknown exit reason, either due to 

uncertainty around cause of death or incomplete scoring. BCS appears to be related 

to higher incidence of certain exit reasons (Figure 5.2). Within the “Sold” category it 

appears that low mating BCS ewes (BCS <2.5) and ewes which would be 

considered in a good BCS at mating (BCS 3-3.25 and BCS 3.5-3.75) are being sold 

at a higher rate than the other two groups.  Low mating BCS ewes have an 

increased incidence of loss due to poor performance, however have lower incidence 

of mastitis. There is little effect of mating BCS on loss for infertility. The distribution of 

exit reasons for each age group (Figure 5.3) suggest mastitis is the most prevalent 

exit reason for three-year-old ewes with over 30% of losses due to mastitis. While in 

one-year-old and two-year-old ewes, losses are spread more evenly across exit 

reasons. Only one loss reason (poor lambing) was recorded for four-year-old ewes, 

largely due to the small number of four-year-old ewes within the dataset. 

Table 5.1- Number and percentage of ewes which exited project for each fate code 

Exit reason Number Percentage 

Other Poor performance 302 14 

Infertility 268 12 

Lambing  61 3 

Lameness 11 1 

Mastitis 417 19 

Other Health 149 7 

Sold 320 15 

Unknown 639 29 

Total  2167 100 
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Figure 5.1- Bar chart showing the number of ewe exits for each exit reason. Split by 

ewes which were culled and died on farm.  

Figure 5.2- Graph showing the percentage of losses from each BCS group at mating 

attributed to each exit reason 
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Figure 5.3- Graph showing the percentage of total losses for each ewe age at mating 

for each exit reason.  

 

The total number of losses from each farm varies substantially due to differences in 

flock size and management practices (Figure 5.4). Observing the effect of farm on 

exit reasons, shows that exit reasons are often associated with individual farms. 

Farms 9, 10 and 11 lose a disproportionately higher number of ewes to mastitis than 

the other farms, while Farm 3 appears to be culling significantly more due to poor 

performance.  Poor performance is largely associated with farms 2, 3 and 5, while 

unknown reasons for loss were heavily associated with farms 6 and 7. Although 

losses such as mastitis and infertility were prevalent, the distribution of these is more 

even across all farms.  
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Figure 5.4- Distribution of the reason for ewe losses for each project farm 
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Figure 5.5- Distribution of ewe losses throughout the production year for each exit 
reason, for ewes first mated as ewe lambs or shearlings. 
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The point in the production year in which losses are occurring is shown in Figure 5.5. 

Losses are closely associated with management events such as pregnancy 

scanning and pre-mating health checks with peaks at approximately 120 days and 

330 days post-mating (Figure 5.5). The time of loss is often dependent on reason for 

loss. Mastitis losses occur later in the year between weaning and mating, while ewe 

losses due to infertility are much more prevalent around scanning. Other health 

issues are reasonably consistent throughout the production year.  

5.3.2. Kaplan Meier Analysis  

The Kaplan-Meier plots show the overall survival curves, and a comparison of the 

survival curves of different categories for ewes within the Challenge Sheep project. 

They provide an indication of when ewes are exiting the project and highlight any 

specific events or intervals of increased rate of exit. Figure 5.7 shows that throughout 

the first four years, approximately 45% of ewes enrolled had left the project due to 

either culling or mortality. Each production year there is approximately an 8% loss of 

ewes (Figure 5.7), with substantial events at approximately 120 days, 150 days and 

300 to 350 days post-mating. This is observed by the steeper gradient of the Kaplan-

Meier curves at these times. These coincide with scanning, lambing and pre-mating, 

respectively. Ewes that joined the project as shearlings rather than ewe lambs have 

lower survival probabilities, with a particularly pronounced effect over 300 days into 

the production year. BCS at mating appears to substantially affect the survival 

probabilities for low and high BCS groups (BCS< 2.5 and BCS≥ 4) (Figure 5.9), with 

both these groups having lower survival probabilities by the end of the production 

year. However, the interval in which each group are exiting differs. The BCS < 2.5 

group appears to have higher exit rates earlier in the production year (140 days post-

mating) while the BCS ≥ 4 group appears to exit later in the production year (300 

days post-mating). The middle three mating BCS groups (BCS 2.5 to 2.75, BCS 3.0 

to 3.25, and BCS 3.5 to 3.75) have similar survival curves throughout the whole 

production year, possibly with the highest BCS group of the three having slightly 

higher survival probability earlier in the production year. Four age categories ranging 

from 0 to 3 years of age at mating were plotted (Figure 5.10). Group 0 ewes had a 

much higher survival probability throughout the whole production year. Groups 1, 2 

and 3 ewes had similar survival curves, with older ewes performing slightly better 
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overall. Ewe lambs in their second year of production had a much lower survival 

probability than those in first and third years of production (Figure 5.12). Shearlings 

observed a different trend in which they had higher losses in their first year of 

production compared to their second and third years.  

5.3.2.1. Overall Survival 

 

Figure 5.6- Kaplan-Meier plot showing the overall survival curve and the number of 
ewes at each timepoint. 

 

Figure 5.7-Kaplan-Meier plot showing the survival curve for the production year 
starting at mating 
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5.3.2.2. Ewe Lambs vs Shearlings 

 

Figure 5.8- Kaplan-Meier plot showing the survival curves for ewes which entered 
the project as ewe lambs compared to shearlings 

5.3.2.3. Mating BCS  

 

Figure 5.9- Kaplan-Meier plot showing survival curve for each mating BCS category 
for one production year from mating 
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5.3.2.4. Age 

 

Figure 5.10- Kaplan-Meier plot showing the effect of age on survival probability over 
one production year 

 

Figure 5.11- Kaplan-Meier plot showing the effect of age and status at first mating on 
survival probability over one production year 
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5.3.3. Cox Proportional Hazards Model  

Table 5.2- Output from the Cox proportional hazards Model to observe the 

relationship between each ewe parameter on wastage.  

Variable  Term Coefficient Hazard ratio Lower .95 Upper .95 P value 

Age (years) 

0 Ref Ref Ref Ref Ref 

1 0.61 1.84 1.30 2.6 <0.05 

2 0.36 1.43 1.02 2.04 <0.05 

3 0.05 1.05 0.68 1.61 0.81 

Entry Status 
Ewe Lamb Ref Ref Ref Ref Ref 

Shearling 0.32 1.37 0.99 1.80 <0.05 

Grouped BCS 

at Mating  

< 2.5 0.57 1.77 1.28 2.40 <0.05 

2.5-2.75 0.35 1.42 1.15 1.74 <0.05 

3.0-3.25 Ref Ref 0.86 Ref Ref 

3.5-3.75 0.02 1.02 0.88 1.21 0.83 

 >4 0.06 1.06 0.50 1.34 0.58 

 

Results show that the lowest two mating BCS groups had a significantly higher 

hazard ratio that the reference group (BCS 3.5- 3.75). BCS groups of less than 2.5 

and 2.5 to 2.75 had hazard ratios of 1.77 and 1.42 respectively. Higher BCS groups 

of 3.5 to 3.75 and greater than 4 had hazard ratios close to the reference of 1.02 and 

1.06 respectively, however these were not significant with p > 0.05. Entry status had 

a significant effect with hazard ratio of 1.38 for shearlings compared to the ewe lamb 

reference.  Age of the ewe at mating had a significant effect on ewe wastage within 

one- and two-year-old ewes, with hazard ratios of 1.84 and 1.43 respectively. There 

was no significant difference between three-year old ewes and the reference group 

(0 year old ewes). 
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5.3.4. Accelerate Failure Time Model  

 

The results from the accelerated failure time model show that BCS group at mating 

has a substantial effect on ewe survival. A similar trend to that of the Kaplan-Meier 

plot shown in Figure 2.1. Low BCS ewes at mating showed poor survival compared 

to that of more moderate BCS groups (BCS 3.0 to 2.25 and BCS 3.5 to 3.75). 

Shearlings also performed worse than ewe lambs within the accelerated failure time 

model with overall higher losses throughout the production year. This reinforced the 

findings from the Kaplan-Meier plot shown in Figure 5.8. The Accelerated Failure 

Time models provide a good foundation for predicting survival time within the 

simulation model. 
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Figure 5.12- Effect of Grouped Mating BCS within the Accelerated Failure Time 
Model 

 

Figure 5.13- Effect of Entry Status within the Accelerated Failure Time Model 
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5.4. Discussion  

5.4.1. Introduction of Main Findings  

The wastage analysis showed that within the Challenge Sheep project farms, 

reasons for loss including, mastitis, infertility and poor performance were most 

prevalent. The timings of loss showed a correlation with management decisions 

throughout the year, particularly for ewes which were culled. The survival analysis 

showed approximately an 8% ewe loss throughout each production year. Again, 

specific periods of high loss occurred around scanning and pre-mating, where culling 

decisions were being made. The survival analysis gave a comparison between 

different groups within the data. Age, entry status and mating BCS all had a 

significant effect on wastage. Ewes in a lower BCS than 3.0 at mating saw a 

significantly increased hazard ratio and therefore increased incidence of wastage. 

There was no significant difference observed for ewes with a BCS more than 3.0 at 

mating. Throughout all production years observed ewes which entered as shearlings 

had higher wastage than ewes which entered as ewe lambs. Two-year-old ewes had 

significantly higher wastage than one year old ewes. As ewes age the hazard ratio 

reduced, suggesting older animals experienced lower incidence of wastage.  

5.4.2. Overall Wastage 

Overall exit rates within Challenge Sheep project farms over the first four years of 

recording are approximately 8% per year. As expected, reason for loss is often 

correlated with stage of production year (Figure 5.5). For example, relatively high 

levels of culling for infertility occur around 110 days post-mating or when pregnancy 

scanning is carried out. Similarly, culling for mastitis increased throughout lactation 

with most ewes culled before the start of the next production year. Ewes recorded as 

‘Sold’ increased substantially pre-mating, likely due to ewes not being selected for 

breeding in the next production year. 

It is important to note that only the main reason for loss was recorded by the farmers. 

This may lead to bias within the data due to farmers recording the most visually 

obvious reason, rather than multiple causes of mortality or culling. The extremely low 

number of ewes culled for poor feet (n=5) (Table 5.1) may be an example of this. 
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Ewes with poor feet have a higher chance of performing poorly, therefore there is a 

high likelihood that these animals could have been recorded as poor performance or 

poor condition. The categories of loss (Table 5.1) are subjective due to farmers 

being given the freedom to record the most probable cause of death or culling. This 

makes the accuracy dependant on the experience of each farmer. It is impractical to 

have each ewe categorised by a trained individual due to the randomness of ewe 

losses on farm. The infertility, lameness and mastitis groupings are self-explanatory, 

with these being the main observable causes of loss. The categories, lambing, other 

health and other poor performance indicate the reason for exit, however, do not 

provide a specific cause. The lambing category includes both losses from death at 

lambing and culling because of poor lambing. Other health includes all health-related 

issues which were not categorised as lameness or mastitis, this includes, 

neurological issues, accident/Injury, flystrike and pneumonia. Other poor 

performance includes, teeth, poor condition and poor mothering ability. The final two 

categories; sold and unknown largely include ewes where specific reasons for exit 

were not recorded. The “sold” category is ambiguous in that it could include ewes 

sold for slaughter or sold as breeding stock, however we know they left the farm 

alive. The unknown category includes all ewes in which the cause of death was 

unknown or that exit reasons were not recorded. It is important to note that due to 

the subjective nature of the recording, the exit reasons are specific to each 

Challenge Sheep project farm, however the overall wastage and time of wastage is 

more generalisable.  

5.4.2.1. Wastage by Farm 

Although the overall wastage is consistent with values from the literature, the 

reasons for losses on each farm (Figure 5.4) show a large amount of variation. The 

“unknown” ewe fate category is substantially more prevalent in farms 5 and 6. This 

category includes ewes which died on farm from an unknown cause of death and 

ewes which a cause of death or culling was not recorded. It is difficult to distinguish 

specific reasons for higher unknown losses within these two farms, however it is 

likely a result of inability to record reason for loss at time of loss, due to more 

extensive systems.  
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5.4.3. Reasons for Loss 

5.4.3.1. Mastitis 

Mastitis was the largest reason for ewe wastage within the Challenge Sheep project 

farms, with 19% of ewe exits a result of mastitis. McLaren et al., (2020) observed the 

main factors affect ewe longevity on UK, Irish and Norwegian sheep flocks. They 

found a large variation within reasons for culling between each country. They also 

found the main reason for culling in Norwegian flocks was mastitis at 19.9%, while 

Irish and UK flocks were 13.5% and 3.4% respectively. The results for the UK clearly 

differ from the 19% observed within this research, however the result from 

Norwegian flocks are highly comparable. The author suspects the difference in 

number of ewes culled for mastitis is largely a result of breed, with Norwegian flocks 

having higher fertility than the UK hill flocks observed. Within the Challenge Sheep 

project farms the breed types and systems are largely comparable to the Irish farms 

observed, therefore it would be expected that health issues such as mastitis would 

have similar incidence, however it does appear to be slightly higher within the 

Challenge Sheep project dataset, likely due to the relationship between prolificacy 

and mastitis.  

Mastitis is caused by a selection of environmental and animal related predisposing 

factors. Environmental factors such as temperature and wet weather have been 

shown to affect the cases of mastitis (Vasileiou et al., 2019). Good hygiene and 

biosecurity during lambing, particularly for indoor lambing systems, may have a 

substantial impact on cases of mastitis. Housed ewes have been shown to have 

increased cases of clinical mastitis (Cooper et al., 2016), with bedding and floor type 

effecting cases. Poor BCS has been associated with an increased risk of mastitis 

(Arsenault et al., 2008), however it is unclear if this is an effect of low milk production 

leading to over-suckling. Increased litter size may have a positive correlation with 

incidence of mastitis. Figure 5.2 suggest that as mating BCS increases, culling due 

to mastitis also increases. This may be an effect of increased mating BCS resulting 

in higher fertility and therefore an increased number of lambs suckling. Bacteria (M. 

haemolytica) has been shown to pass from the lambs mouth to ewes teat during 

suckling (Fragkou et al., 2011), increased suckling will lead to an increased rate of 

bacterial transfer. It is clear from the literature that the cases of mastitis are 

dependant on many environmental and animal factors, and therefore may be specific 
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to the farm. The losses by farm shown in Figure 5.4 highlight that mastitis is a 

predominant cause of loss on 8 of the 11 farms, however a larger proportion of 

losses were attributed to mastitis on some farms (e.g. farms 2, 4, 5, 9 and 11), 

reiterating the effects of breed and system on losses due to mastitis.  

5.4.3.2. Teeth 

McLaren et al. (2020) found that teeth were the cause of the highest percentage of 

culling on UK sheep farms at 38.9%, however were not a factor within Norwegian or 

Irish flocks. Due to the nature of this dataset only including the first three years data 

from the challenge sheep project, the incidence of culling for poor teeth is reduced at 

approximately 1% of overall losses. Again, the nature of the Irish flock is likely more 

comparable to the flocks within the Challenge Sheep project farms, therefore it is not 

surprising that teeth account for a small proportion of ewe losses.  

5.4.3.3. Lameness 

Culling due to lameness accounted for 1% of losses (n=11) (Table 5.1). This is 

clearly a low number of ewes compared to the more prevalent exit reasons. The 

average percentage of lame ewes on UK flocks has been recorded as 3.2%, 

however this is variables with some farmers observing >30% (Best et al., 2020). All 

farms within this study appear to have low rates of culling due to lameness (Figure 

5.4), with only farms 2 and 9 recording any losses due to lameness as the main 

factor. Although this may indicate a low prevalence of lameness within the project 

farms, traditionally culling specifically due to lameness is rare. In 2011 it was 

reported that only 20% of farms in the UK are culling lame sheep promptly (Farm 

Animal Welfare Council, 2011). A combination of the low number of lame sheep in 

the UK, along with the reluctancy to cull lame animals explains why the losses due to 

lameness are low within the Challenge Sheep project. Treatments for lameness have 

developed significantly, with current best practice stating that lame animals should 

receive prompt treatment with antibiotics, with no routine foot trimming or footbathing 

(Lewis and Green, 2020) .It is assumed that the Challenge Sheep project farmers 

are well informed on how to effectively prevent and treat lameness before it has a 

significant impact on the flock.  
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5.4.3.4. Infertility 

Infertility was one of the leading causes of ewe losses within the project (12%, 

n=268). There is no universal value for fertility targets in ewes with, breed, ewe age, 

and system all affecting an individual farms target. KPIs are available for number of 

lambs reared per ewe. These KPIs are dependent on lambing system (indoor or 

outdoor) and ewe status at mating (ewe lamb, shearling or mature ewe) (AHDB, 

2024). 

There is a significant peak in losses due to infertility from 100 to 130 days post-

mating (Figure 5.5). This coincides with pregnancy scanning and the presumed sale 

of barren animals for slaughter. Interestingly the sold loss category also observes a 

significant peak post-scanning, therefore it is likely that the reason for sale of these 

animals was also liked to poor reproductive performance. As reproductive 

performance and mainly fertility is a driver for overall productivity on sheep farms. It 

is advised that infertile ewes should be culled to allow for more productive animals to 

enter the flock. (Genever and Wright, 2016).  

5.4.3.5. Poor Performance 

Although low BCS was not included as a specific reason for losses within the data. It 

is advised that any ewes with a condition score of <2 at weaning and which fail to 

regain at least 0.5 BCS units post-weaning should be culled (Genever and Wright, 

2016). This suggests that poor performance and mating BCS are closely correlated 

with significantly higher numbers of ewes being culled for poor performance that 

were in low condition at mating (BCS <2.5) than higher conditions (BCS > 4). It is 

likely that these animals failed to regain condition throughout gestation, leading to 

poor reproductive performance. Culling for poor performance appears to occur at two 

distinct points throughout the production year. Initially ewes are culled at pregnancy 

scanning around 100 days post-mating, likely due to infertility caused by overall poor 

performance, hence the categorisation. The second period of culling due to poor 

performance is pre-mating in the subsequent year, likely during pre-mating health 

check. Ewes culled at this point may have struggled to rear lambs effectively or may 

be in a lower condition than mating BCS targets advise.  

It is clear from analysing the reasons for losses that it is difficult to determine specific 

reasons for each loss, particularly due to the range of breeds and managements 
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systems within the project. It does still however provide a general overview of 

wastage on a larger UK flock scale.  

5.4.4. Survival Analysis  

Although the reasons for wastage appear to be somewhat farm specific, with some 

ambiguity between the categorisation of reasons for loss, using survival analysis to 

observe the timings of loss and the ewe factors which effect wastage is still effective. 

As data was collected at specific intervals throughout the production year, and most 

farmers make management decisions at these intervals, the data shows peaks post-

scanning and pre-mating (Figure 5.5). The overall loss of ewes throughout the first 

three years of the Challenge Sheep project is shown in Figure 5.6. Approximately 

40% of ewes exited over this period. It appears that the rate of loss has two distinct 

periods shown by two differing negative gradients. From 0 to 700 days the Kaplan-

Meier plot is linear with a slight negative gradient. From 700-1750 days of age the 

gradient is significantly steeper, indicating a higher probability of loss each day. This 

is a result of animals having greater losses due to both deaths and culling after their 

first lambing (at either zero or one years of age).  The losses for each production 

year, starting at mating are shown in Figure 5.7. There are two clearly observable 

periods of higher loss at 140 and 320 days post mating. This coincides with scanning 

and pre-mating respectively. Yearly losses are around 8% of ewes mated.  

Deaths throughout the year were recorded on the date of death therefore these are 

less affected by management decisions. mating BCS, ewe age and ewe status at 

first mating (ewe lamb or shearling) all affect the incidence of wastage throughout 

the production year (Table 5.2). The survival analysis indicates the probability of loss 

each day post-mating, irrespective of the reason for loss, and informs producers of 

the main variables affecting wastage. Overall, approximately 40% of ewes which 

entered the project were lost.  
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5.4.5. Losses over Time 

5.4.5.1. Effect of BCS at Mating 

Lower condition ewes (BCS < 2.5) had significantly increased hazard ratios and 

therefore increased chance of wastage than higher condition ewes (Table 5.2). 

These results are consistent with findings by Flay et al. (2021) where they found that 

ewes in low BCS pre-mating (BCS 2.0) had a higher wastage due to premature 

culling and dead or missing, than ewes in higher BCS pre-mating (BCS 3.5) for the 

majority of cohorts. The Kaplan- Meier plot showing the effects of mating BCS 

(Figure 5.9) shows that within the first 300 days post-mating, the low BCS group had 

substantially lower survival probability that all other groups, however after 300 days 

post-mating the difference is less pronounced with the high BCS group (BCS ≥ 4.0) 

having a similar survival curve. The nature of the low BCS group curve may be 

explained by a couple of factors. Low BCS ewes at mating may have an underlying 

health issue resulting in the low BCS, these ewes may struggle throughout the 

production year, resulting in mortality or culling due to health issues. Also, these 

ewes may have poorer fertility due to less energy availability for reproduction, 

resulting in barren ewes at scanning and therefore higher exit rates. Interestingly, the 

higher BCS ewes appears to perform similarly to the middle BCS groups, then have 

a period of extremely high exit rates at around 280 days post-mating. This is likely 

the result of culling ewes with non-fatal health issues, such as mastitis or lameness 

at the end of the production year. It is unclear why exit rates would be substantially 

higher than other groups at this stage however,  Haslin, et al. (2022b) found that 

higher BCS pre-lambing improved the survival of triplet bearing Merino ewes, 

however, there was no significant effect on a maternal breed. They found that pre-

lambing BCS change had a larger impact on ewe survival than BCS at a fixed point.  

5.4.5.2. Effect of Ewe Age 

Within the analysis of the Challenge Sheep project data, year one ewes, had a 

substantially higher survival probability over the whole year compared to year two, 

three, and four ewes (Figure 5.10). This is likely due to the reluctancy to cull ewe 

lambs, particularly for poor reproductive performance. It is likely that farmers are 

reluctant to cull barren ewe lambs which have the potential to perform well once a 

mature weight is reached. The reluctance to cull ewe lambs is also shown with the 
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lower survival probability of ewes at one year of age or more at mating (Figure 5.10). 

From the Kaplan-Meier plot it appears that around 130 days post mating there is a 

substantial increase in ewe exit rate for one year old ewes or more at mating. This is 

likely the result of culling due to infertility, observed through pregnancy diagnosis at 

scanning. The effects of culling at scanning are less pronounced in year three and 

four ewes. This is likely due to the effects of not culling ewe lambs in their first 

production year. Figure 5.11 further clarifies this when comparing the survival 

probabilities of year one ewe lambs and years two ewe lambs, in which year two ewe 

lambs have a much lower overall survival probability, and therefore higher exit rates.  

The higher exit rates within two and three year old ewes is further highlighted within 

the results from the Cox proportional hazards model (Table 5.2). Year two ewes had 

the highest hazard ratio (1.86), suggesting a higher likelihood of exit from the flock.  

5.4.5.3. Effect of Breeding as a Ewe Lamb or Shearling 

One of the main aims of the Challenge Sheep project was to observe the effects of 

first breeding as a ewe lamb or a shearling on lifetime productivity. When comparing 

the survival probability of ewe lambs and shearlings, shearlings have a lower overall 

survival probability (Figure 5.8). It appears that this difference in overall survival 

probability is largely due to increased exit rates around pregnancy scanning and 300 

days post-mating. For ewes exiting before the next breeding season, the decision 

has often been made by the farmer not to breed these animals again therefore 

they’ve been sold as cull ewes. Increased culling of shearlings around pregnancy 

scanning suggests that ewes which joined as shearlings are more likely to be culled 

for infertility. This is possibly a result of ewe lambs not being culled for infertility in 

their first year of production and therefore mated again as shearlings. The Cox 

proportional hazards model (Table 5.2) shows a significantly higher hazard ratio for 

ewes first enrolled as shearlings than ewe lambs.  
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5.4.6. Limitations 

5.4.6.1. Data Recording  

The data collected by the challenge sheep farmers showed some inconsistencies 

throughout the recording of ewe exit reasons. Farmers were required to input the 

main reason for death or culling for each ewe that exited the project. This is 

somewhat subjective, and in the event that multiple reasons were present the most 

visually obvious reason was likely recorded. Requiring the farmers to decide the exit 

reasons also led to a substantial number of ewes where the true exit reason was not 

recorded. For example 320 ewes (15%) were categorised as `sold for slaughter` 

(Table 5.1). Although this records the fate of the ewe, there is not enough data to 

distinguish the true cause of the sale. It is likely that these ewes had poor 

reproductive performance or general poor performance, therefore removal of this 

category would lead to bias within other exit reasons.  

The nature of some of the exit reasons leads to a substantial farm effect within the 

data, particularly for some health related exit reasons such as mastitis. Mastitis is 

usually more prevalent in flocks with higher reproductive performance. These are 

often the lowland flocks, therefore there is a certain amount of bias when observing 

the prevalence of specific exit reasons. The results do however indicate an overall 

picture of the UK sheep industry, especially due to the large variation of systems 

included within the project.  

The dataset received only included data collected over the initial three years of the 

Challenge Sheep project. It is important to note that as ewes age, predominant exit 

reasons may also change. It is likely that in ageing ewes, reproductive performance 

will be less of an issue due to early removal of these animals, however health related 

issues such as mastitis and poor feet will become more prevalent. Three year old 

ewes at mating were the oldest animals included within the dataset, these animals 

would often be considered the optimum age for productivity.  

29% of ewes had an unknown exit reason (Table 5.1). It is unclear from the data 

whether these ewes were initially recorded as unknown by the farmers due to 

uncertainty around a specific cause of death, or whether these were datapoints with 

missing exit reasons. This does not affect the survival analysis as dates of exit were 
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still recorded, however does raise issues when determining relationships between 

ewe variables (e.g. mating BCS) and exit reasons.  

5.4.7. Summary 

Higher ewe wastage leads to fewer lambs weaned, lighter ewes at weaning and 

ewes born later into the season, due to a younger flock demographic. This chapter 

observed that wastage is significantly affected by ewe age, entry status into the flock 

and mating BCS. One- and two-year-old ewes at mating had a significantly higher 

wastage rate than ewes mated at less than one year old. Ewes first mated as 

shearlings observed a higher wastage rate than that of ewes first mated as ewes 

lambs. When BCS was observed to be lower than recommended at mating (BCS 

<3.0) a substantially higher hazard ratio and therefore risk of wastage was observed. 

The results from the Accelerated Failure Time model agreed with that of the survival 

analysis models, providing an effective means of predicting time to wastage within a 

larger simulation model. 
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Chapter 6. Ewe Simulation Model  
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6.1. Introduction 

A ewe simulation model was developed to observe the interactions between status 

at first mating, body condition score and body condition score change throughout 

production, on ewe lifetime productivity. The reproduction model (Chapter 4) and 

wastage model (Chapter 5) create the foundation for the ewe simulation model. 

These models can be used as standalone models to estimate days from mating to 

lambing and predict the probability of survival on a specific day, or can be combined 

to predict lifetime output of a ewe. Two additional models were developed to quantify 

ewe performance, these were a number of lambs model and a lamb weaning weight 

model.  

6.1.1. Estimating Number of lambs 

 

When observing number of lambs within a systems model there are two options. 

Firstly you can include scanning number as an input within the model at mating, this 

would allow for accurate predictions of the number of lambs born to each ewe, 

however would not provide accurate simulations over multiple production years. 

Secondly you can predict the number of lambs born to each ewe from known 

parameters. The concept of predicting ewe fertility from ewe parameters is not new. 

White et al. (1983) predicted ovulation rate in merino ewes in Australia as part of a 

larger simulation model. They found that ovulation rate increased with liveweight and 

concluded that the relationship between mean ovulation rate and mean liveweight of 

the flock was approximately 0.025 in the autumn and 0.015 in the spring. Similarly, 

(Saul, Kearney and Borg, 2011) observed that increasing BCS had a positive effect 

on lambing percentage. Ewes which joined at a BCS of 3.0 observed a 16% higher 

lambing percentage than that of ewes which joined at a BCS of 2.3 (111% and 95% 

respectively.  

Within the ewe simulation model the number of lambs was predicted using a 

multinomial model to estimate the number of lambs born to each ewe. Predictor 

variables included grouped mating BCS, breed and age at mating. The output 

variable was a categorical prediction of whether ewes would produce one, two or 

three live lambs at lambing.  
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6.1.2. Modelling Lamb Growth and Weaning Weight 

Within the literature there are a number of models that have been designed to 

predict and model lamb growth rates, using lamb and ewe parameters. Amaral et al. 

(2024) developed a model to simulate lamb growth, nutrient requirement and body 

composition within a feedlot system. The model observed the nutritional requirement 

for maintenance and growth for lambs during the pre-weaning period. The input 

variables within the predictive model include; body mass, standard final mass, age 

and dietary energy composition.  Final body mass was observed with simulated 

results being compared to measured weight. They observed at R2 value of 0.89 

when comparing simulated final body mass to observed final body mass. They 

discuss that their model provides an effective means to be used a decision support 

tool to estimate final body mass of lambs. The requirement for dietary energy 

composition as an input within Amaral et al. (2024) model means that it is outside the 

scope of this project, as dietary composition was not recorded within the data 

collection process. It is likely that developing a similar model would provide a more 

accurate estimation of specific lamb weaning weight, and would allow the 

comparison between different planes of nutrition, but would require additional inputs 

and therefore complexity within our ewe simulation model. The TLPM (Bohan et al., 

2016) estimated lamb growth rates initially from ewe milk yield, then from previously 

collected Irish sheep data. Energy requirements for a set rate of growth were 

established for each stage of the animals production cycle, then an economic cost 

calculated for this. This differs from our model in that we estimated the average 

weaning weight of lambs from ewe parameters, rather than observing the 

requirements for lamb growth. This allows our ewe simulation model to make 

comparisons between ewe performance, rather than observing the economic benefit 

of different management systems on farm.  The prediction of average lamb weaning 

weight within our model provides one of the outputs required to estimate a total 

lifetime weaning weight within the ewe simulation model. It was not deemed 

necessary, or possible to include a nutritional component within this model without 

increasing complexity within the larger ewe simulation model through an increase 

number of required inputs.  
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6.1.3. Quantifying Lifetime Performance 

 

Lifetime performance of a ewe is somewhat difficult to quantify with both economic 

and biological metrics being used. As discussed in section 1.1.5 there are many 

variables which affect flock performance, but also many measures of flock 

productivity. Metrics to assess ewe performance often include, fertility, number of 

lambs per ewe at scanning, lambing percentage, total lamb weaning weight, lamb 

growth rate up to eight-weeks of age, and lamb survival.  These metrics are affected 

by factors such as, ewe genetics, nutrition and management.  Often an economic 

output can be used to quantify the overall lifetime performance of an animal, or more 

likely, the overall performance of a flock. The TLPM model provides a good example 

of using economic outputs to evaluate overall performance of a flock over an 

extended period. Outputs included variable cost, net profit and return on total capital 

(Bohan et al., 2016). Economic outputs are useful when comparing whole systems, 

however less so when comparing one aspect of a system, such as ewe lifetime 

performance, as there are a number of other factors which effect the economic 

output not captured by a ewe simulation model.  

To quantify lifetime performance within the ewe simulation model a total lifetime lamb 

weaning weight was used as a metric. This provided an indication of the 

performance attributed to the ewe, and accounted for lamb growth rates, ewe fertility 

and lamb survival. The ewe simulation model allows the comparison of the output of 

ewes managed under different conditions, and indicates the best management 

practices for individual animals. Practically, the simulation model would allow UK 

farmers to simulate their ewes by inputting breed, entry status and BCS. This could 

help make informed decisions on whether to first breed ewes as ewe lambs or 

shearlings, or to observe the impact of poor BCS throughout the production year. 

The outputs from the model could then be used alongside the farmers knowledge of 

their own system and production costs, to ensure best management decisions, 

however a bio-economic component was not directly included.  
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6.2. Materials and Methods 

6.2.1. Model Structure  

The structure of the simulation model is shown in Figure 6.1. The inputs for the 

model include, breed, age, mating date and length, ewe entry status, mating BCS, 

lambing BCS and pre-mating BCS change. The model uses a mechanistic stochastic 

approach to predict the total lifetime lamb weaning weight of each animal. Using the 

reproduction model for first parity animals, the probability of getting in lamb on each 

day is calculated. The probability of mortality is calculated for each day of the 

production year using the wastage model. In the second year of production, the 

multiple parity reproduction model is used. The model simulated the animal over a 

maximum of six years or until lost from the flock. Ewes which are first mated as ewe 

lambs therefore have an additional potential year of production, than that of ewes 

which entered as shearlings. The model was ran over 400 iterations due to the 

stochastic nature of its design. This ensured that all the range of possible outcomes 

was explored, allowing for improved accuracy and reliability in the model’s 

predictions. Increasing the number of interactions within stochastic simulation 

models often captures the variability between each iteration and may better reflect 

real world dynamics. 

 

Figure 6.1- Flow diagram showing the overall structure of the flock simulation model. 
Individual component models are shown in red, with events shows in grey and 
outputs shown in green. 
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6.2.2. Model Output 

Total lifetime lamb weaning weight was used to quantify ewe performance within the 

model. This was chosen due to the relationship between ewe performance and total 

lamb weaning weight, and the availability of robust weaning data within the dataset. 

The model observes the effect of ewe parameters on total lifetime lamb weaning 

weight and does not account for the effects of paternal genetics or nutrition during 

the lamb growth phase.  

6.2.3. Additional Models  

To calculate the output ‘total lifetime lamb weaning weight’ for each ewe, an 

additional two models were built. A predictive model for number of lambs born to 

each ewe, and a predictive model to estimate lamb weaning weight were developed. 

These models were also built using the Challenge Sheep project data.  

6.2.3.1. Prediction of Number of Lambs 

6.2.3.1.1. Multinomial models  

 

Multinomial models are used when the dependant variable has more than two 

categories. The categories are nominal, therefore do not have a natural order. The 

predictor variables can be either continuous or categorical. Probabilities are 

estimated for each category which are relative to the reference value. Some of the 

key assumptions that multinomial models make are that the categories within the 

dependent variable are mutually exclusive, the observations are independent and 

that the dependent variable is nominal.  

Model coefficients represent the relationship between each predictor variable within 

the model, relative to a reference category. Standard error is observed for each of 

the coefficients to indicate how precise the estimate is. High standard error relative 

to the coefficient suggests that the model has low precision. 95% confidence 

intervals are observed to indicate the reliability of the predictions. 
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6.2.3.1.2. Methods 

 

The multinomial model was built using data collected from the first four years of the 

Challenge Sheep project. The model was built in R (R: The R Project for Statistical 

Computing, no date), utilising the nnet package. The output from the model was 

number of lambs, included in three categories (1, 2 and 3), with category one being 

included as the reference value. The predictor variables included, grouped mating 

BCS (Low <2.75, Moderate 3.0 to 3.25, and High >3.5), breed and age at mating in 

years. This provides ewes which conceive, an output of either one two or three 

lambs. Barren ewes were observed within the reproduction model. 

 

6.2.3.2. Prediction of Average Lamb Weaning Weight 

6.2.3.2.1. General Linear Models 

 

General linear models are used to describe the relationship between a continuous 

dependent variable and a series of predictor variables. They assume that there is a 

linear relationship between the predictor variables and the dependent variables. 

There are a number of metrics used to interpret the output of a general linear model. 

Initially the intercept is used to provide a baseline value for all predictions. It is 

calculated from output in which the predictor variables are all 0 or the reference 

value. An estimate is calculated for each category within the predictor variables. This 

shows the effect that each category has on the dependant variable relative to the 

reference value. Standard errors are used to indicate the degree of uncertainty 

around the estimate. The larger the standard error the less precise the estimate is. 

Finally, the p-value indicates whether the effect shown in the estimate is having a 

significant effect within the model.   

6.2.3.2.2. Methods 

 

A multiple linear regression model was used to predict average lamb weaning weight 

from number of lambs born, grouped lambing BCS (Low <2.75, Moderate 3.0 to 

3.25, and High >3.5), breed and age at mating in years. Lambing BCS was used to 

provide the most recent datapoint to predict from, and was deemed likely to have the 

largest effect on lamb weaning weight. There is a correlation between weaning 
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weight and number of lambs born to each ewe therefore, number of lambs was 

included within the model to account for this. These values were taken from the 

outputs discussed in section 6.2.3.1. Within the model the average weaning weight 

of lamb was predicted, total lamb weaning weight can then be calculated within the 

simulation. The effect that each category within the predictor variables has within the 

model is presented as the estimate, and highlights the effect on average lamb 

weaning weight. 

6.2.4. Simulated Scenarios 

Simulations were run to compare the effects of mating BCS and entry status for two 

breed categories (Lleyn and Mule). In total 400 iterations of the simulation were run 

for each possible combination of model inputs. This resulted in 43,200 datapoints for 

analysis. To observe the effects of each variable within the simulation model, total 

lifetime lamb weaning weight was plotted against all variables. A linear regression 

model was built to summarise the relationship between each variable and the total 

lifetime weight of weaned lambs from the simulation model.  
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6.3. Results  

6.3.1. Additional Models  

 

6.3.1.1. Number of Lambs 

The results from the number of lambs model (Table 6.1) show that Low BCS at 

mating decreases the chance of multiple lambs when compared to the reference of 

one. High mating BCS increases the chance of having two or three lambs. As mating 

age increases, the number of lambs also increases with 3-year-old animals having a 

higher coefficient for both two and three lambs (1.88 and 4.27 respectively).  Breeds 

exhibited a difference in number of lambs born. Mules and Mule X ewes had high 

coefficients for both two and three lambs born, while Swaledale ewes had a lower 

coefficient, with a particularly low incidence of three lambs born.  

Table 6.1- Output from the Multinomial model to predict number of lambs from ewe 
parameters. All coefficients are relative to the reference value of Number of lambs = 
1. 

 

 

 

 Number 
Lambs 

2 3 

 
 

Coefficient Std. 
Error 

0.95 CI 
Lower 

0.95 CI 
Upper 

Coefficient Std. 
Error 

0.95 CI 
Lower 

0.95 CI 
Upper 

 (Intercept) -1.39 0.09 -1.56 -1.22 -6.29 0.38 -7.04 -5.55 

Mating 
BCS 

High 0.40 0.05 0.31 0.49 0.87 0.11 0.66 1.08 

Moderate ref ref ref ref ref ref ref ref 

Low -0.42 0.06 -0.53 -0.30 -0.51 0.16 -0.83 -0.19 

Breed AberField  ref ref ref ref ref ref ref ref 

AberField X 0.20 0.07 0.07 0.33 0.33 0.15 0.05 0.62 

Highlander 0.80 0.10 0.60 1.00 0.16 0.25 -0.34 0.66 

Lleyn 0.29 0.09 0.11 0.47 0.55 0.20 0.17 0.94 

Mule 0.80 0.07 0.67 0.93 1.76 0.13 1.51 2.00 

Mule X 0.81 0.09 0.64 0.98 1.36 0.17 1.02 1.70 

Other 0.60 0.33 -0.06 1.25 0.82 0.65 -0.46 2.10 

Romney 0.35 0.07 0.21 0.48 -0.58 0.22 -1.00 -0.15 

Swaledale -0.46 0.07 -0.60 -0.32 -2.26 0.46 -3.16 -1.35 

Texel -0.22 0.10 -0.41 -0.02 0.21 0.21 -0.20 0.63 

Texel_X 0.50 0.12 0.26 0.73 1.74 0.20 1.34 2.14 

 0 ref ref ref ref ref ref ref ref 

Mating 
Age 
Years 

1 1.25 0.08 1.10 1.41 2.77 0.37 2.05 3.49 

2 1.50 0.08 1.34 1.67 4.03 0.37 3.31 4.75 

3 1.88 0.09 1.71 2.06 4.27 0.37 3.54 5.00 
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6.3.1.2. Average Lamb Weaning Weight 

The results from predicting average lamb weaning weight are shown in (Table 6.2). 

Number of lambs born had a significant effect on average weaning weight. Ewes 

with two and three lambs born observed significantly lower average weaning weights 

(-3.69kg and -3.74kg respectively). Lambing BCS had a significant effect on average 

lamb weaning weight. High BCS ewes at lambing showed an increase of 1.89kg 

average weaning weight than Moderate BCS ewes, while Low BCS ewes had a 

0.86kg lower average weaning weight than the moderate group. As ewes age it 

appears that average lamb weaning weight increases, with the exception of ewe 

lambs (0 at first mating) which exhibit an unusually high average lamb weaning 

weight. Breed plays a significant effect on average lamb weaning weight. Swaledale 

ewes show the lowest average weaning weight (7.51kg lower than Aberfield 

reference) while Texel X ewes have the highest average lamb weaning weight 

(2.24kg higher than Aberfield reference).  

Table 6.2- Output from the general linear regression model to predict lamb weaning 
weight from ewe parameters 

  
Estimate (kg) 

Standard 
Error P Value 

 (Intercept) 34.17 0.19 <0.05 

Number Lambs Born 1 ref ref ref 
2 -3.69 0.14 <0.05 
3 -3.74 0.28 <0.05 

Breed AberField ref ref ref 
AberField X 0.65 0.21 <0.05 
Highlander -5.60 0.28 <0.05 
Lleyn -2.42 0.34 <0.05 
Mule -1.48 0.23 <0.05 
Mule X 0.66 0.30 <0.05 
Other 1.19 0.93 <0.05 
Romney -4.87 0.22 <0.05 
Swaledale -7.51 0.22 <0.05 
Texel 1.97 0.33 <0.05 
Texel X 2.24 0.40 <0.05 

Lambing BCS High 1.89 0.16 <0.05 
Moderate ref ref ref 
Low -0.86 0.17 <0.05 

Age at Mating 0 -0.19 0.31 <0.05 
1  -2.07 0.16 <0.05 
2 ref ref ref 
3 1.24 0.16 <0.05 
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6.3.2. Ewe Simulation 

The results from the simulation (Table 6.3) showed that Low mating BCS had a 

significant negative effect on total lifetime lamb weaning weight compared to the 

Moderate and High groups. The Low mating BCS group weaned on average 27kg 

less over their productive life. Lambing BCS showed a similar trend with Low BCS 

animals showing a lower average total lifetime lamb weaning weight. Mules weaned 

a significantly higher weight of lambs than Lleyns at approximately 60kg more. Over 

the lifetime of the animal, ewes which first lambed as ewe lambs weaned a 

significantly higher weight of lambs than ewes which were first mated as shearlings. 

This is due to the additional year of productivity possible from ewes first bred as ewe 

lambs. This resulted in around 12.5kg more lamb weaned from ewes first mated as 

ewe lambs over their lifetime. 

Table 6.3- Regression model showing the effect of each variable on total lifetime 
lamb weaning weight within the ewe simulation model 

  Estimate (kg) Standard Error P-value 

 Intercept 168.70 1.46 <0.05 

Breed Lleyn Ref Ref Ref 

Mule 59.24 0.98 <0.05 

 

Mating BCS 

Low Ref Ref Ref 

Moderate 26.71 1.19 <0.05 

High 26.95 1.19 <0.05 

 

BCS Change 

Loss Ref Ref Ref 

Maintain 2.31 1.19 0.053 

Gain 2.05 1.19 0.085 

 

Lambing BCS 

Low Ref Ref Ref 

Moderate 5.65 1.19 <0.05 

High 13.20 1.19 <0.05 

Entry Status Ewe lamb Ref Ref Ref 

Shearling -12.47 0.98 <0.05 
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Figure 6.2 shows a boxplot of the simulation results. When breed, mating BCS and 

entry status are observed, ewes in a Low BCS at mating appear to have lower total 

lifetime lamb weaning weight that that of Moderate or High mating BCS. Ewes first 

bred as ewe lambs have a higher total lifetime lamb weaning weight than ewes first 

bred as shearlings for all mating BCS groups observed, with the exception of Lleyn 

ewes in high mating BCS. Within the simulation, Mules had a higher total lifetime 

lamb weaning weight than Llyens, for both entry statuses and all mating BCS 

groups. Table 6.4 shows the mean total lifetime lamb weaning weight for each 

category of animal. It ranges from 167kg to 268kg, depending on entry status, breed 

and mating BCS. 
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Figure 6.2-Boxplot showing predicted total lifetime lamb weaning weight for ewes in 
different mating BCS groups. Ewe entry status and two breeds (Lleyn and Mule) are 
included. 

 

Figure 6.3-  Bar chart showing the effect of lambing and mating BCS on mean total 
lifetime lamb weaning weight for different ewe entry status. 
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Table 6.4- Mean total lifetime lamb weaning weight for each group of ewes ran within 
the simulation model. 

 

Entry Status Mating BCS Breed Mean (kg) 
Standard 
Deviation 

Ewe lamb low Lleyn 177 102 

Ewe lamb moderate Lleyn 200 105 

Ewe lamb high Lleyn 196 112 

Shearling low Lleyn 167 87.4 

Shearling moderate Lleyn 195 86.4 

Shearling high Lleyn 193 93.6 

Ewe lamb low Mule 235 110 

Ewe lamb moderate Mule 267 108 

Ewe lamb high Mule 268 122 

Shearling low Mule 220 92.5 

Shearling moderate Mule 244 90.6 

Shearling high Mule 250 100 
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6.4. Discussion  

The simulation model provided a means to observe the overall interactions between 

each of the individual models throughout the lifetime of an animal. Total lifetime lamb 

weaning weight was used as the main output from the simulation. This was 

considered an appropriate metric for comparing the lifetime performance of individual 

ewes. Running the simulation 400 times for each combination of ewe parameters 

provided a suitable number of simulations for analysis.  

It was observed that mating BCS had a substantial effect on the total lifetime lamb 

weaning weight. Low BCS animals at mating, saw a substantially reduced total 

lifetime lamb weaning weight than those in Moderate or High mating BCS groups. 

This was apparent for both breeds simulated (Lleyn and Mule). The negative effects 

associated with Low mating BCS are likely a combination of poor fertility and 

conception rates within this group. Low mating BCS may also be associated with 

higher incidence of wastage as discussed in Chapter 5. The simulation supports the 

AHDBs recommended mating BCS values suggesting ewes should be in a BCS of 

more than 3.0 at mating (Povey, Stubbings and Phillips, 2018). One of the key aims 

of the Challenge Sheep project was to investigate best management practices for 

rearing replacement ewes. A large part of this is the decision of whether to first mate 

ewes as a ewe lamb or shearling. There are concerns around whether mating as a 

ewe lamb before maturity is reached may have a knock on effect and reduce lifetime 

productivity. The obvious advantage of breeding from a ewe lamb is the additional 

year of production available. The simulation model suggested that breeding from 

ewe lambs had an overall positive effect on total lifetime lamb weaning weight 

compared to shearlings. This is the result of the additional crop of lambs produced in 

their first year of production. Differences were observed between breeds within the 

simulation model. Mules had a total lifetime lamb weaning weight around 60kg 

higher than Llyens. This is in line with results from the ‘Sheep KPI Validation Project’ 

showing that on average Mule lambs have a heavier weaning weight than that of 

Llyen lambs  (Sheep KPI Validation Project, AHDB, EBLEX, 2014).  
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6.4.1. Model Validation 

Validating the model using data observations was not possible due to the novelty of 

the model and complexity of the data required to validate the simulations. An 

external dataset including overall ewe lifetime productivity (total lifetime weight of 

weaned lambs) and all the parameters included within the simulation was not 

available. The simulation was built on only the first four years of the Challenge 

Sheep project data, therefore we could not compare the simulation results to the 

lifetime productivity of animals within the dataset.  To validate the model the 

approach was to ensure that each component of the simulation was robust and 

independently validated and that the structure was logical when compared to UK 

sheep production systems.  

Each sub model was built on a large dataset, including records from 14 breeds  

across 11 farms throughout England. This improved the generalisability of the 

simulation model. The reproduction component of the simulation model was 

developed using Kaplan-Meier, Cox proportional hazards and accelerated failure 

time models to ensure the accuracy of predictions within this model. The Cox 

proportional hazards model showed the effects of each variable and whether they 

had a statistically significant effect on mating to lambing interval. Similarly the 

wastage model used Kaplan-Meier, Cox proportional hazards and accelerated failure 

time models. Descriptive statistics helped validate the wastage model as reasons for 

loss were plotted over time, highlighting any substantial events of loss, this was then 

used to ensure the Cox proportional hazards and accelerated failure time models 

appeared accurate. The statistical significance of each variable on ewe survival was 

observed within the Cox proportional hazards model. This ensured all variables 

included within the accelerated failure time model improved predictions. For both the 

reproduction and wastage models, when building the accelerated failure time 

models, five distributions were tested for each. AIC was used as a metric to 

determine the relative quality of the models, with the best performing model selected 

for prediction. The overall structure of the model followed established principles 

followed on UK sheep farms regarding the management component. Care was taken 

to ensure the simulation model was applicable to the UK industry, particularly when 

selecting breeds and management decisions. Each sub model was built on data 
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collected from 11 commercial farms, therefore the timing of management decisions 

were largely extrapolated from the dataset. 

The results from the simulation model were consistent with findings within the 

literature. In a study on Romney ewes, total lifetime weaning weight was observed 

for ewes selected from either ewe lambs or mature ewes. Total lifetime weaning 

weight over six production years ranged from 203kg to 232 kg (Pettigrew et al., 

2019). This is highly comparable to the average total lifetime weaning weight within 

the simulation of 225kg. Within the literature it is apparent that breed has a 

substantial effect on lamb weaning weight. It has been observed that the average 

lamb weaning weight in Mules is approximately 5kg per lamb greater than Lleyns 

(Sheep KPI Validation Project, 2014). Extrapolating this heavier average lamb 

weaning weight across the lifetime of the animal would account for the breed 

differences observed within the simulation model.  

6.4.2. Limitations 

The simulation model was designed to observe how ewe factors, with an emphasis 

on ewe BCS, affect lifetime performance of the animal. It focusses on ewe factors 

and does not account for management or economic aspects. There are a number of 

additional models and inputs that would be required to produce a full systems model. 

These include management factors such as, ewe nutrition, management of health 

and mating practices. Additionally, environmental factors which are somewhat 

disconnected from management such as, grass growth and weather could play a 

vital role within a full systems model.  

The development of a bioeconomic model, similar to that of the Teagasc Lamb 

Production Model (Bohan et al., 2016) has the benefit in that a whole systems model 

can be developed with an economic evaluation of each model output. The ewe 

simulation model did not include an economic output due to unknown variables 

within the data including the management practices previously discussed. It was 

deemed that the added complexity of an economic output within the model would 

reduce the generalisability of the simulation, particularly with the large range of farm 

types and management practices observed within the data.  
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6.4.3. Summary 

Overall, the simulation model provides an effective means of comparing ewe 

performance under different conditions. It largely shows the importance of ensuring 

correct BCS at key stages of production, however, integrates this into a model which 

accounts for reproductive performance and ewe wastage across the lifetime of a 

ewe. Although ewe performance is observed within the model, the economic cost 

and output is not included. The simulation model shows that ensuring recommended 

BCS values are met throughout the productive life of the animal, can result in a 

significantly greater lifetime lamb weaning weight. This project has developed a 

novel ewe simulation model unique to the UK industry. The methods used within this 

research has created a series of robust models which were combined to produce the 

final simulation model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 

179 
 

Chapter 7. General Discussions and Conclusions 
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7.1. General Discussions 

7.1.1. Project Aims  

The first aim of the project was to investigate some of the aims of the Challenge 

Sheep project through an initial analysis of the Challenge Sheep project dataset 

followed by the development of a series of models for key areas of production. This 

research focused on the Challenge Sheep project aim of identifying best practice for 

the management of replacements, through observing the variables which effect the 

performance of ewes throughout their productive lives. Throughout this research the 

importance of effectively managing BCS at all stages of production, and in particular 

at mating is vital to maximising lifetime productivity. Ensuring ewes are in a moderate 

or high BCS at mating throughout their productive lives resulted in a significant 

increase in lifetime productivity in the ewe simulation model (Table 6.4). The 

simulation agreed with the literature, particularly regarding recommended BCS 

values around mating which often suggest ewes should be in a higher condition at 

mating (Wright, 2019). The differences observed between ewes first bred as ewe 

lambs and shearlings within the simulation is of interest when assessing the 

Challenge Sheep project aims. The simulation showed that ewe lambs had a 

significantly higher lifetime productivity when simulated over six years than 

shearlings, with an average of 12.47kg higher lifetime lamb weaning weight. 

The results from the simulation (Table 6.3) showed that Low mating BCS had a 

significant negative effect on total lifetime lamb weaning weight compared to the 

Moderate and High groups. The Low mating BCS group weaned on average 27kg 

less over their productive life. Lambing BCS showed a similar trend with Low BCS 

animals showing a lower average total lifetime lamb weaning weight. Mules weaned 

a significantly higher weight of lambs than Lleyns at approximately 60kg more. Over 

the lifetime of the animal, ewes which first lambed as ewe lambs weaned a 

significantly higher weight of lambs than ewes which were first mated as shearlings. 

This is due to the additional year of productivity possible from ewes first bred as ewe 

lambs. This resulted in around 12.5kg more lamb weaned from ewes first mated as 

ewe lambs over their lifetime (Table 6.3). 
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This suggests that industry concerns regarding first breeding ewes before they meet 

a mature weight on lifetime productivity may be inconsequential. The simulation did 

however suggest that on average, ewes first bred as ewe lambs were less 

productive than that of shearlings in a single production year, but due to an 

additional year of production from ewe lambs the effect of this was mitigated. 

Similarly, (Thomson, Smith and Muir, 2021) observed an increase in total lifetime 

lamb weaning weight for ewes first mated as ewe lambs, and also concluded this 

was due to an additional year of productivity resulting in more lambs born per ewe. A 

significant increase in total number of foetuses over the lifetime of the ewe has been 

observed for animals first bred as ewe lambs (Kenyon et al., 2011), further 

highlighting a potential increase in productivity as a result of additional productive 

years.  It is important for farmers to ensure the correct management of replacements 

for their individual farms. It appears that post-mating nutrition is important to 

maximise the lifetime productivity of ewe lambs (Kenyon et al., 2011). Overall this 

research shows that there is a potential higher lifetime productivity from first breeding 

as ewe lambs, rather than shearlings, however correct BCS must be maintained 

throughout.  

7.1.2. Predicting Body Condition Score on Farm  

Body Condition Score has been consistently promoted as a useful management tool 

since Russel, Doney and Gunn, (1969) developed and validated the methods used 

today. The AHDB promotes the use of BCS throughout the whole production year 

(Wright, 2019), but particularly at mating to help make informed management 

decision and monitor the health of the flock.   

The question of whether weight could be used as a proxy for BCS, within a machine 

learning model, was raised. This would make it possible to predict BCS from weight 

and additional predictor variables at key stages of production. Chapter 2 discussed 

the ability to predict BCS from common ewe factors collected on farm. Predicting 

BCS has an advantage in that issues around the accuracy of measurements, as a 

result of subjectivity can be overcome. It may also be a means to reduce labour 

requirements on farm from manually scoring each animal. The best performing 

model predicted ewe BCS to approximately half a BCS unit, with an RMSE of 0.46. It 
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was concluded that this was a suitable degree of accuracy to make effective 

management decisions from predicted BCS values.  

The benefit of predicting BCS is not limited to labour savings. It also provides a 

means to objectively assess BCS values without any of the measurement error 

traditionally associated with subjective BCS measurement. This allows the 

comparisons of BCS values between farms which is currently difficult. Within the 

case study outlined in Chapter 3 it was observed that there was a substantial amount 

of intra and inter rater variability within the Challenge Sheep project farmers and 

advisors with an average error from the mean BCS scores of 0.41 units.  

Challenges around predicting BCS on farms are largely associated with difficulty in 

effectively collecting weight measurements and electronically linking these 

measurements to each ewe. To make the process efficient, technology would have 

to be implemented in which ewes are weighed on scales with integrated EID weigh 

heads to automatically record a weight value for each animal. BCS could then be 

predicted in real time, allowing for an effective means to rapidly predict BCS values 

to use within management decisions. It is likely not economically viable to use BCS 

prediction alongside manual weigh scales and manual input of weights into an EID 

reader, as this would substantially increase labour requirements over traditional body 

condition scoring.  

The future success of using a BCS predictions model rather than manual scoring 

techniques largely depends on the rate of uptake of technology on sheep farms 

throughout the UK. The uptake of precision livestock farming (PLF) on small 

ruminant farms is in its infancy and often not specific enough for effective utilisation. 

(Morgan-Davies et al., 2024). The effective uptake of PLF is largely dependent on 

practicality, usefulness and, external pressure and negative feelings (Lima et al., 

2018b). When sharing the benefits of predicting BCS over manual recording it is 

important to not only highlight the potential gains in productivity and labour savings, 

but also ensure that farmers do not feel under pressure to adopt the technology 

which could result in lower uptake (Lima et al., 2018). As the industry naturally 

begins to utilise EID technology as not only a means to track the movement of 

animal but to record data to aid in effective management decisions, it is much more 

likely that a BCS predictive model could be integrated into the industry. The ability to 
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compare performance between farms, using an objective measure of BCS may 

provide a useful performance metric for the industry.  

 

7.1.3. Applying the Ewe Simulation Model as a Management Tool 

As the simulation model stands, it is useful in that it highlights the effects of entry 

status, breed and BCS throughout production on the lifetime performance of a ewe. 

This may be a useful tool when management decisions regarding the impact of first 

breeding animals as ewe lambs or shearlings are made, or how BCS and BCS 

change should be managed throughout production. The wastage model and 

reproduction model formed the foundation of the ewe simulation model. Each sub 

model functioned as an individual model, and the performance of each of these 

models was observed (Chapter 4 and Chapter 5). The process of building each 

model individually and following a commonly accepted structure for UK sheep 

production ensured that the model was generalisable to the UK industry. The initial 

eleven farms were commercial sheep farms, covering a range of management types, 

which makes the individual models and final ewe simulation model applicable to a 

wider range of farms. The data collection on farm followed a rigorous process with 

each scorer receiving training at the start of the Challenge Sheep project, this 

ensured a high quality of data to form the foundations of the models. Although, as 

previously discussed, BCS were subjective, it is important to note that the farmers 

involved in collecting the data were highly trained in measuring BCS and likely 

substantially better than that of average UK farmers. Overall the process of building 

the ewe simulation model was rigorous and should provide a largely generalisable 

model for UK sheep production.  

7.1.3.1. Barriers to Use  

Similar challenges face the implementation of a ewe simulation model as that of a 

BCS predictions model (sections 7.1.2). As the industry moves further towards the 

routine use of PLF, the integration of a ewe simulation model would be efficient. As a 

standalone model it is useful to compare the lifetime performance of different ewes, 

and could help inform management decisions. If the model were to be integrated in a 

larger systems model it could provide the foundation for a powerful tool to aid on 

farm decision making. Often farm models include an economic which allows easy 
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comparisons between different inputs component (Lydia Farrell, 2020) (Bohan et al., 

2016). The lack of an economic component to the ewe simulation model may form a 

barrier to use, however this would be added within any future research.  

7.1.4. Novelty of Research 

The concepts used within this research are well understood within the literature. 

Survival analysis techniques have been effectively used to observe ewe wastage (L 

Farrell, 2020). Survival analysis or time to event analysis techniques have not 

previously been used to observe reproductive performance in sheep, however, have 

been used to observe days open in dairy cows. This research project took a novel 

approach to simulating aspects of sheep production in the UK. Within our study, 

using the wastage analysis to estimate the probability of wastage for each day post-

mating is unique. Other models often make assumptions on when mortality and 

culling occurs. Farrell (2020) assumed all ewe deaths occurred at lambing, with 20% 

of culling at pregnancy scanning and the remainder at weaning. Our approach to 

predicting the probability of wastage should provide a more accurate estimation of 

when wastage is occurring for each ewe. The stochasticity of the model accounts for 

unpredictability both when predicting the probability of wastage and probability of 

lambing on a specific day. There does not appear to be another UK specific ewe 

simulation model which takes a mechanistic, stochastic approach to predicting the 

lifetime performance of an animal. Using the Challenge Sheep project data to inform 

the simulation model was a unique opportunity to develop a model that is widely 

generalisable. The large number of datapoints, collected from a substantial number 

of breeds and different commercial farms gave a unique dataset for analysis.  
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7.2. General Conclusions 

Simulation models within livestock production provide a means to predict the 

performance of animals while observing interactions within the system. This research 

developed an effective simulation model for observing the effects of ewe BCS, status 

at first mating and breed on lifetime productivity. The combination of a reproduction 

model and wastage model formed the foundation for the simulation model.  

The simulation model showed that maintaining ewe BCS throughout production is 

important to maximise lifetime weaning weight of lambs. Ewes in a lower BCS at 

mating weaned a significantly lower weight of lambs than that of the Moderate or 

High groups. Ewes in a moderate and high BCS groups performed similarly, 

therefore highlighting the importance of ewes not being below the recommended 

body condition scores. Ewe lambs performed significantly better than shearlings 

throughout their productive life. This is largely a result of the additional year of 

production available from ewes first bred as ewe lambs rather than shearlings. This 

study suggests that concerns regarding the negative knock-on effect from breeding 

immature ewes may be unfounded as neither reproduction, wastage nor lifetime 

productivity appears to be impacted within ewe lambs. This is an important 

consideration for farmers when making management decisions on when to first 

breed ewes.  

Using survival analysis techniques was an effective means to assess both 

reproductive performance and wastage in ewes. The reproduction analysis showed 

that in mature ewes, both High and Low mating BCS increased mating to lambing 

interval, suggesting these groups took longer to conceive. Mating BCS also 

significantly affected ewe wastage. BCS groups lower than 3.0 had a significantly 

higher hazard ratio and therefore higher incidence of wastage. Ewes first mated as 

shearlings experienced higher wastage throughout their lives than that of ewes first 

mated as ewe lambs. It appears this was largely due to higher exit rates of 

shearlings pre-mating.  Reasons for loss were variable within the data, however 

certain causes were more prevalent. Mastitis was observed as a substantial reason 

for loss, particularly towards the end of the production year.   

The ability to accurately predict body condition score has the potential to improve 

management practices on farm. One of the challenges associated with body 
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condition scoring is the degree of subjectivity associated with the scores. This makes 

it difficult for BCS to be used as a performance metric, and also challenging when 

using target BCS values during production. The BCS predictive model shows that it 

is possible to predict BCS to a suitable degree of accuracy to use during 

management decisions, and appears to predict to a similar degree of consistency as 

manually scoring. If this was to be used as a tool on farm to quickly predict BCS from 

weights, a larger selection of breeds would be beneficial to inform the model. The 

case study observing inter and intra scorer variability when body condition scoring 

highlights the need for further research into the accuracy and subjectiveness 

associated with BCS measurements. A more detailed study incorporating previous 

scorer training and experience would be beneficial.  

Overall, this research has provided an insight into the data collected as part of the 

AHDB Challenge Sheep project. The models developed highlight key factors 

important for maximising ewe performance. The simulation model shows how ewe 

wastage and reproductive performance interact to effect lifetime performance of the 

animal. The final simulation model can be used as a management tool to compare 

the performance of different ewe entry statuses, to compare breeds and to compare 

the effects of BCS and BCS change for farmers within the UK industry. 
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7.3. Further Research 

7.3.1. Improving the Prediction of Ewe Body Condition Score  

Although within this study BCS was predicted to a suitable degree of accuracy to be 

used as a useful metric to aid management decisions, the opportunity to improve 

model performance through the use of additional predictor variables is available. 

Number of lambs at scanning may improve model fit as it would more accurately 

account for conceptus weight. Semakula, et al. (2020) concluded that number of 

lambs at scanning was an important factor to include within a predictive model for 

BCS. Including further breed types would make the model more generalisable, 

however the number of breeds included, alongside the range of breeds does 

encompass a large proportion of ewes in the UK. The subjective nature of BCS 

measurements made it difficult to estimate error within measurements in the dataset. 

Even with assessing error in the case study it was still difficult to determine the error 

in the original dataset in which farmers has solely scored their own animals. 

Collecting a large dataset using experts who scored each and every animal may help 

mitigate issues around subjectivity, increasing predictive accuracy. In this study the 

model was tested on a subset of the original dataset. In future research, testing the 

predictive model on an out of sample dataset would provide a more accurate 

indication of the generalisability of the model. Unfortunately, such a dataset was not 

available for this study.   

7.3.2. Using Survival Analysis Techniques to Observe Animal 

Performance 

This study proved that using survival analysis techniques, including Kaplan-Meier 

analysis and Cox proportional hazards models were an effective means to observe 

the timing of wastage and the factors affecting ewe wastage on the Challenge Sheep 

project farms. It was possible to predict the incidence of wastage using a series of 

predictor variables within an accelerated failure time model. Further research utilising 

the same survival analysis methods, with additional variables could provide further 

insight into the causes of ewe wastage. The wastage analysis used data collected 

over the first four production cycles. To improve the accuracy of wastage in older 

ewes reaching the end of their productive lives, it would be beneficial to run the 

analysis on a dataset which followed all ewes to mortality or culling.  
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The approach to modelling reproductive performance was novel in this study in that 

traditional reproduction metrics were not observed. Instead mating to lambing 

interval was observed, which indicated the rate at which ewes conceived, and 

accounted for any animals which were not in lamb.  

7.3.3. Developing a Systems Model for Sheep Production 

Within this research the effect of ewe factors on lifetime productivity was simulated. 

There is substantial scope for simulating other aspects of sheep production to form 

the foundations of a whole flock systems model. The addition of an economic 

component to the model would provide an easily understandable metric for farmers. 

Similar to the TLPM (Bohan et al., 2016), the use of a ‘net profit per hectare’ metric 

would be beneficial. This component would require data on lamb and ewe sale 

prices, feed costs, management and land costs and replacement costs. A nutritional 

component to the simulation would be highly beneficial as many management 

decisions revolve around nutrition. The impact of environmental conditions were 

outside the scope of this project, however the potential benefit from predicting 

environmental conditions, particularly regarding nutrition (grass growth) and lamb 

mortality, could be an important metric for farmers to utilise. A similar model to the 

environmental component of the Grazplan DSS (Donnelly, Moore and Freer, 1997) 

may be effective. 

7.3.4. Additional Data Requirements 

Due to the nature of the Challenge Sheep project focussing predominantly on the 

effects of ewe performance on lifetime productivity, it was challenging to develop 

some of the components that a larger systems dynamics model would require. 

Within this study, data collection started at first mating, therefore management of 

these animals before this point was largely unknown, except for some replacements 

which were retained from previous animals within the study. This study provides 

some information on how to best manage ewes during their productive lives after first 

mating, however does not indicate how to manage replacements in their early life 

before first mating. A separate study observing the effects of different management 

practices before first mating would be beneficial, and may help inform the ewe 
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simulation model, particularly regarding the performance of ewe lambs and 

shearlings. 

The analysis were mainly conducted on the first four years of the Challenge Sheep 

project data. Although the project ends in 2024, the data was not available at the 

time of analysis. It was impractical to include any subsequent years retrospectively. 

Building the components of the simulation model on data collected over a ewe’s 

whole productive life may have increased the accuracy of the model, particularly for 

older animals.  

An external dataset for validating the individual models and the ewe simulation 

model was not available. Testing the model against an external dataset would give a 

more accurate measure of generalisability, and further ensure the applicability to the 

UK industry. The dataset would need to include both ewe and progeny data over the 

lifetime of the animal.  
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