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Abstract

In cardiac electrophysiology applications, mathematical models are relied
upon to provide quantitatively accurate predictions. The potassium current
IKr is of particular importance because its blockage by drugs is known
to cause dangerous changes in heart rhythm. To help quantify the risk
presented by potential new drugs, we require mathematical models which
produce quantitatively accurate predictions and accurately describe the
gating behaviour of a cell’s ion channels (particularly those which carry
IKr). Building such models requires experimental data that allows both
the selection of appropriate model structures and the inference of model
parameters. Recently, short “information-rich” experimental designs have
been developed, allowing cell-specific models to be fitted. Here, new
experimental designs can be specified, which allow the collection of new
data under previously unseen IKr dynamics. The resulting data promise to
improve models of the gating dynamics of IKr, improve our understanding
of cardiac electrophysiology as a whole, and improve the risk-classification
of new drugs.

In this thesis, we introduce the methods necessary for the fitting and
validation of cell-specific mathematical models of IKr using a diverse en-
semble of information-rich experimental designs. This approach allows us
to produce empirical quantifications of predictive uncertainty and permits
the comparison of literature models in terms of their predictive accuracy
and the variability of parameter estimates across cells. Whilst some models
produce more accurate predictions than others, a certain amount of model
discrepancy seems unavoidable. Our results suggest that this discrepancy
is caused, in part, by the presence of experimental artefact effects, which,
when unaccounted for, confound our parameter estimates, contributing
appreciably to the apparent cell-to-cell variability of parameters relating to
the kinetics of channel gating. Moreover, we demonstrate that our broadly
applicable multiprotocol approach allows for thorough validation of our
models, a realistic quantification of predictive uncertainty, and the selection
of suitable mathematical models.
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Chapter 1

Introduction

1.1 Motivation

Mathematical models are used across the biological sciences to provide qualitative
and quantitative descriptions of the dynamics of biological phenomena, such as the
spread of infectious diseases (Zhang et al., 2020), the response of the immune system
to antigens (Hu et al., 2007), and the function of organs such as the heart (Noble,
2002). When models are used in safety-critical settings (such as drug safety or clinical
decision-making), it is often important that our models produce quantitatively accurate
predictions over a range of scenarios—to predict the impact a certain drug will have
on the function of the heart under different physiological conditions, for example. In
such cases, we rely on the accuracy of our models as quantitative descriptions of the
underlying mechanisms. Such models may then be used to produce accurate predictions,
even in situations that are dissimilar to experiments used for model fitting. Perhaps more
importantly, these models must allow a reliable quantification of predictive uncertainty
if they are to be trusted when making safety-critical decisions, and shaping scientific
conclusions (Mirams et al., 2016).

Quantifying the predictive accuracy of models is a key aim of the field of Uncertainty
Quantification (UQ) (Smith, 2013). Exact models of biological phenomena are generally
unavailable, and we resort to using approximate mathematical models instead. When a
mathematical model does not fully recapitulate the data-generating process (DGP) of a
real biological system, we call this model discrepancy or model misspecification. This
discrepancy between the DGP and our models presents a particular challenge for UQ.

For example, in the field of electrophysiology, mathematical models are commonly
used to describe the electrical dynamics of many types of cell in the body—especially
excitable cells such as muscle cells and neurons. Such models continue to play an
important role in our understanding of the electrical signalling which coordinates the
pumping of the heart (cardiac electrophysiology), and the mechanisms by which cardiac

1
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arrhythmia (dangerous, irregular heart rhythms) can arise. Models across a range of
scales are used for this purpose—including single-cell models, tissue models, and
whole-organ models.

Single-cell models themselves rely on accurate quantitative models of the subcellular
dynamics responsible for the production of action potentials. These mathematical
models are fitted using data from various types of experiments, and describe various
aspects of cellular electrophysiology (with and without the presence of drugs). Such
models are, generally speaking, large-scale approximations of the temporal and spatial
dynamics dictating the movement of individual molecules, and, as such, are not perfectly
accurate.

There are also various sources of uncertainty which affect the predictions of such
models, such as statistical uncertainty in parameter estimates, and structural uncertainty
regarding the particular mathematical equations included in the models. Nevertheless,
these approximate models can offer a good description of the underlying biophysics, and
allow an imperfect but very useful risk classification for new compounds. These models
are used in other applications, too. For instance, these single-cell models, through their
inclusion in patient-specific organ-level models, have been used to guide ablation in
ventricular tachycardia patients (Trayanova et al., 2020). Such applications rely on the
selection of suitable model structures, and the accurate estimation of model parameters.

With a view to better understand drug action, and improve the classification of pro-
arrhythmic risk in novel compounds, we aim to address this structural uncertainty by
using previously unseen experimental designs to inform model selection for a particular
component of the cellular action potential, IKr.

The importance of IKr modelling

The Comprehensive in-Vitro Pro-Arrhythmic Assay (CiPA) is a large scale project
which aims to better classify the safety of potential drug compounds (Li et al., 2017b),
an import aspect of which is the interaction of novel pharmaceutical compounds with
a particular ion-channel current called IKr (Li et al., 2020). This biological current
has been the subject of considerable study due to its importance to the cardiac action
potential, and the association of its block with arrhythmia (Roy et al., 1996; Li et al.,
2017b). In particular, the block of IKr is associated with Long-QT Syndrome type-2
(LQT2), which, in turn, is associated with the onset of Torsade de Pointes (TdP), a
potentially fatal type of arrhythmia (Rampe and Brown, 2013).

The risk that drugs may cause unsafe changes to the heart’s function was first
highlighted in astemizole and terfenadine (two antihistamines which have since been
removed from markets) and their propensity to block IKr, cause QT prolongation and
increase the risk of TdP (Suessbrich et al., 1996). Since then, many other compounds
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have been found to interact with IKr. It has been suggested that the channel’s central
pore is particularly susceptible to block by small-molecule drug compounds (Maly
et al., 2022). Since the danger of IKr block was first highlighted, the screening of drugs
for their interactions with IKr has become a key part of the drug-development process.
The aim of such screening is to quickly and efficiently identify risky compounds (those
deemed likely to have unsafe interactions with IKr) so that they may be removed from
consideration at early stages of the drug-development process. Accurate mathematical
models of these dynamics are increasingly being used to assess the impact of promising
pharmaceutical compounds (Mirams et al., 2011, 2012).

A key focus of the CiPA initiative is the use of mechanistically-informed mathemat-
ical models to classify the safety of drugs. As discussed in Chapter 2, such applications
require IKr to accurately describe the “conformational state” of a cell’s ion channels,
and to produce accurate predictions of IKr in normal and drug-blocked conditions.
These model predictions allow the impact of drugs on the cardiac action potential to be
quantified.

1.2 Selection and validation of mechanistic models

In situations where quantitatively accurate models are used to make safety-critical
decisions, it is imperative to provide a realistic quantification of uncertainty in the model
output. Throughout this thesis, we aim to fit models which provide both quantitatively
accurate predictions (under a diverse range of experimental designs), and an accurate
description of the underlying biophysical processes.

There are many possible experimental designs which could be used to fit and validate
models of IKr. The designs explored in this thesis consists of different voltage signals
which are applied to individual cells (cells which are prepared as to exhibit large IKr

and minimise the presence of other currents). These designs are used to both train and
validate models, and the use of novel designs in this thesis promises to drive model
improvement, as shown in Figure 1.1.

It would, of course, be desirable for our models to provide near-perfect predictions
across each and every possible voltage signal, even when the experimental design used
for validation is dissimilar to that used for model fitting. Provided there are sufficient
data, we would expect a perfectly accurate model to provide accurate predictions across
all possible experimental designs. However, this general predictive accuracy is difficult
to test in practice, and such a model is, most likely, unattainable. We instead aim to
identify a model which produces accurate predictions (on average) when using a wide
range of experimental designs for both fitting and validation—that is, we seek to fit
models of IKr that provide an accurate response to a wide range of different voltage
signals.
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Figure 1.1: The model building process. Mathematical models are proposed and are
then fitted (or trained) using experimental data. These fitted models are then used
to produce quantitative predictions (sometimes for industry and clinical use). These
predictions can also be used to inform the design of further experiments, and may
suggest ways in which the original mathematical model can be improved.
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In this thesis, we compare a small cohort of IKr models, seeking to identify the
most accurate predictive models by using real, experimental data collected under a
diverse range of experimental designs. This approach provides new insights into the
dynamics of IKr gating, and the experimental methods used to record our data. Though
this work concerns the specific details of this particular modelling problem, the methods
introduced herein are presented as generally as practical with the expectation that
they may prove useful for other modelling problems—both in electrophysiology and
elsewhere in other biological application areas where mathematical models are used to
provide both quantitative and mechanistic insights.

1.3 Structure of the thesis

In Chapter 2 we provide a brief introduction to IKr, and the mathematical models and
experiments which have been used in its study. Particular attention is paid to Markov
models—a type of differential-equation-based model commonly used to study ion-
channel currents like IKr. Chapter 2 ends with an introduction to the field of Optimal
Experimental Design, and an overview of the limitations of Markov models of IKr.

In Chapter 3, we investigate the behaviour of the mathematical models discussed in
Chapter 2 under a range of information-rich experimental designs (our multiprotocol

approach). Here, we use synthetic data to characterise the effects of model discrepancy.
We pay particular attention to the structural uncertainty induced by the variety of
conflicting IKr models in the literature.

Then, in Chapter 4, we use similar methodology to fit and validate four literature
models to real patch-clamp recordings of IKr. We introduce existing and novel methods
to handle and process experimental data, and use these methods to provide a thorough
analysis of a newly-collected dataset. Here, novel experimental designs are performed
on a high-throughput automated patch-clamp machine, allowing the evaluation of our
models’ predictive accuracy for as-of-yet unseen experimental designs. Our results here
suggest promising routes for model improvement.

Building on this work, we modify our models to include experimental artefacts in
Chapter 5. These effects are omitted in Chapters 3 and 4, and in much of the existing
literature, in lieu of simpler models. Following the introduction of these artefact effects
and their implications for our mathematical models, we investigate their impact on the
postprocessing procedures introduced in Chapter 4. Then, we use similar methodology
to that used in Chapter 4 to validate our models under a range of protocols, providing a
comparison between those models which include artefact effects, and those which do
not. Here, our results highlight the importance of these artefact effects, show that their
inclusion leads to more accurate models, and suggest particular IKr model structures for
use in future studies.
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In Chapter 6, we conclude by discussing the necessity of including artefact effects
in our models, and the importance of thorough model validation (as made possible
by our multiprotocol approach). Suggestions for future work then follow, where we
suggest further analyses to be carried out using the experimental data introduced in
Chapter 4, provide some recommendations for future data collection, and suggest other
ion-channel currents for which our methodology may also prove useful.



Chapter 2

Literature Review

This chapter provides an introduction to the experimental and mathematical method-
ologies used to study IKr, a voltage-gated ion-channel current that plays a particularly
important role in the electrical signalling of the heart. Section 2.1 is a brief introduction
to the field of cellular electrophysiology, explaining the importance of ion-channel
currents such as IKr, and the experimental methods used to study them.

Then, a general introduction to literature models of IKr follows in Section 2.2,
where some fundamental properties of these models are summarised. Next, Section 2.3
provides an overview of relevant statistical and computational methods used to fit models
and design experiments in this thesis and the wider literature. Finally, in Section 2.4
we discuss the limitations of our models, summarise the different types of uncertainty
which can affect the accuracy of our predictions, and discuss some approaches that have
been suggested to address these limitations.

2.1 Electrophysiology

Electrophysiology is the study of electrical activity in biological cells and tissues.
Like many other types of excitable cells (such as nerve cells and smooth muscle
cells), cardiomyocytes (heart-muscle cells) produce and respond to electrical signals,
coordinating the pumping-action of the heart. This phenomenon is made possible
by subcellular mechanisms which selectively allow specific ion species (such as K+,
Na+, Ca2+ and Cl-) to cross the cell membrane (Alberts et al., 2015). In addition
to the maintenance of cellular homeostasis, the interplay between these subcellular
mechanisms, ionic concentrations and electrical potentials across the cell membrane
gives rise to complex electrophysiological dynamics.

Ion channels are one type of subcellular component which play a key role in these
electrophysiological dynamics, permitting the transport of ions across the cell mem-
brane. This is important because ions are unable to pass through the cell membrane’s

7
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KV11.1 channel
with voltage-sensitive 
gates

Impenentrable lipid 
bilayer K  ion

Electrochemical 
gradient

Intracellular

Extracellular

Figure 2.1: The KV11.1 channel opens, closes, and inactivates in response to changes
in the transmembrane voltage. Ions like K+ are unable to pass through the cells’ lipid
bilayer, but may pass through ion channels (which select a particular species of ion,
such as K+). When the cell is depolarised, the electrochemical gradient drives K+ ions
out of the cell, helping the cell return to its resting potential.

impenetrable lipid bi-layer. Ion channels are protein structures that are embedded in
the cell membrane, typically consisting of a central pore which opens and closes to
allow or block the flow of ions, and a “selectivity filter” which ensures that only a given
ion species (such as K+) may pass through the channel. As a passive transport process,
ion channels allow the flow of ions along an electrochemical gradient. This is shown
in Figure 2.1 for the KV11.1 ion channel, allowing K+ ions to enter and leave the cell.
The resulting current is referred to as the rapid delayed rectifier current, and denoted
by IKr. Certain ion channels, such as KV11.1 are voltage-sensitive, meaning that their
propensity to open and allow the flow of ions changes in response to the transmembrane

potential—the potential difference between the inside and outside of the cell membrane.
In contrast to ion channels, active transport mechanisms consume energy in the form of
ATP to pump ions against their respective concentration gradients. The Na+-K+-ATPase
pump is such an example (Stadt et al., 2022).

The action potential of a cardiomyocyte (and other excitable cells) begins with a
large influx of Na+ ions through the cell’s sodium ion channels. This rapid influx of Na+

can be triggered by neighbouring cells via electrical coupling of their cell membranes,
as described by mathematical models of cardiac tissue (Clayton et al., 2011); whereas
some other cell types are self-exciting and produce action potentials spontaneously—for
example, the pacemaker cells found in the heart’s sinoatrial node.

In either case, the influx of Na+ rapidly increases the cell’s transmembrane potential
(depolarising the cell membrane). In non-self-exciting cells, after depolarisation, the
transmembrane potential repolarises, that is, returns to its resting potential. This
repolarisation is caused, in part, by the opening of channels which allows K+ to leave
the cell (András et al., 2021), causing the transmembrane potential to gradually decrease.
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Figure 2.2: The currents and processes included in O’Hara et al.’s mathematical model
of cellular action potentials in human ventricular tissue (O’Hara et al., 2011). This model
contains multiple ion-channel currents (including IKr); active transport process such
as the sodium-potassium pump and subcellular calcium dynamics are also included.
Reproduced from O’Hara et al. (2011) under the terms of the Creative Commons
Attribution License ©2011 O’Hara et al.

A diagram showing processes which transport ions into and out of cardiomyocytes is
shown in Figure 2.2. This diagram is a visual representation of the various biophysical
subcomponents in O’Hara et al.’s mathematical model of cellular action potentials in
human ventricular heart tissue (O’Hara et al., 2011). This model includes multiple
potassium ion channel models, such IKr and, for example, IKs (the slow delayed rectifier
potassium current) and IK1 (the inward rectifier current). Other ion species play a key
role too. Calcium ions (Ca2+), for example, are released from sub-spaces inside the
cell and enable the cardiomyocyte to contract. The contribution of some key currents
responsible to the cardiac action potential are shown in Figure 2.3.

To study the dynamics of these constituent currents, individual subcellular mecha-
nisms are studied. This is done by manipulating model cells to express specific genes
(Beattie et al., 2018). For instance, in Chapters 4 and 5, we use data collected from
Chinese Hamster Ovary (CHO) cells which were transfected to stably express high
levels of hERG1a, the gene encoding the alpha-subunit of the KV11.1 ion channel.
The overexpression of this gene causes the formation of many more KV11.1 channels,
(albeit homomeric channels without the presence of hERG1b) resulting in large IKr

currents. This approach provides a way to perform experiments where large IKr currents
are present, but the contribution of other currents is minimised.
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Figure 2.3: The contribution of a selection of currents to the cardiac action potential.
The two axes on the right show the transmembrane potential during ventricular (top-
right) and atrial (bottom-right) action potentials. On the left, representative currents
for a ventricular action potential are shown. Those currents carrying charge into the
cell (namely, INa, ICa(L) and INCX) are shown above those currents which predominantly
carry charge out of the cell. PeaBrainC, CC BY-SA 4.0, via Wikimedia Commons.

https://creativecommons.org/licenses/by-sa/4.0
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For individual proteins like KV11.1, the structure of the ion channel can be investi-
gated with imaging techniques such as Cryo-EM which has produced a detailed view of
the molecular structure of the channel (Wang and MacKinnon, 2017). Also, gene modu-
lation techniques such as CRISPR are used to mutate the channel, after which changes
to its function can be observed (Fajrial et al., 2020). There has been some success using
structural information (of relevant channels) to inform macroscopic models of IKs—a
similar voltage-gated potassium ion-channel current (Silva et al., 2009). However,
there is limited information regarding, KV11.1, especially with regard to its closed and
inactive conformations (Robertson and Morais-Cabral, 2020). This lack of information
makes it difficult to apply a similar approach to the resultant macroscopic current, IKr.
Instead, we investigate baseline function of wild-type KV11.1 channels. We do this by
comparing mathematical models of IKr with time-series data from electrophysiology
experiments.

2.1.1 Patch-clamp experiments: state of the art

Today, one of the main techniques used to investigate the macroscopic behaviour of
ion-channel currents, such as IKr, is patch-clamp electrophysiology. Such experiments
may be performed, for example, by using pressure to rupture a small section of the
cell membrane such that current can flow from the inside of the cell to the amplifier
(see Figure 2.4). The data discussed in this thesis (in Chapters 4 and 5) were collected
via a planar patch-clamp setup. Such a configuration is common in automated high-
throughput apparatus (Weerakoon et al., 2009). A wide range of cells can be used for
such experiments: human cardiomyocytes; stem cells; and commercially available cell
lines such as the aforementioned CHO cells.

CellRseal

Planar patch-clamp 
Leak 
current 

Patch-clamp amplifer

Figure 2.4: A patch-clamp experiment performed in “whole-cell” mode in a planar
patch-clamp setup. Modified from Lei et al. (2020b).

The work in this thesis concerns a specific type of patch-clamp experiment, voltage-
clamp experiments, during which an amplifier manipulates the transmembrane potential.
In this configuration, the transmembrane potential is “clamped” to some predetermined
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voltage trace (the command voltage) whilst the current through the cell membrane is
recorded.

In single-channel experiments, a minuscule section of the cell membrane is removed,
which allows the measurement of the current flowing through an individual channel
(Neher and Sakmann, 1976). An analysis of the distribution of times a channel spent in
a “conducting” state allowed Colquhoun and Hawkes to suggest a minimum number of
distinct channel conformations which could plausibly exist (Colquhoun and Hawkes,
1981).

However, in this thesis, we focus on whole-cell configurations, where an electrode
is placed in the intracellular medium, on the inside of the cell membrane, and the cell is
kept largely intact. During these experiments, the vast majority of the cell membrane
is included in the circuit (as shown in Figure 2.4) The resultant current recordings are
typically much larger than those obtained from single-channel experiments because the
size of the current is roughly proportional to the number of channels.

Whilst these whole-cell patch-clamp experiments are difficult and time-consuming
to perform (even by an experienced experimenter), high-throughput automated patch-
clamp machines (such as the SyncroPatch 384 used to collect the data presented in
this thesis) allow many such experiments to be performed autonomously in parallel
(Di Veroli et al., 2013). The increased throughput of an automated platform is a great
advantage for industrial and clinical applications because it allows a large range of
compounds (such as drugs) to efficiently be screened for potential dangerous interaction
with IKr (namely, the blockage of current). However, the quality of the data obtained
through automated patch-clamp platforms may be of poorer quality of that obtained
using manual patch-clamp setups (Lei et al., 2020a).

2.2 Mathematical models of cellular electrophysiology

2.2.1 The Hodgkin-Huxley action-potential model

The first mathematical model of an action potential was fitted to data collected from
experiments performed on a squid giant axon—a particularly large nerve cell (Hodgkin
and Huxley, 1952). At the time, the precise mechanisms (such as ion channels) by which
electrically-excitable cells produce action potentials and transmit electrical signals were
unknown. Nevertheless, Hodgkin and Huxley knew that action potentials were produced
by the movement of Na+ and K+ (as well as other ion species) into and out of the cell. In
particular, they proposed that the depolarisation phase at the start of an action potential
(as shown in Figure 2.3) is caused by a rapid inflow of Na+; and that a slower, sustained
outflow of K+ is largely responsible for the repolarisation of the cell membrane.
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Hodgkin and Huxley reasoned that this was made possible by dynamic changes in
the permeability of the cell membrane with respect to K+ and Na+. They also found that
these ion-specific permeabilities responded dynamically to changes in voltage. These
facts motivated the development of an equivalent circuit model whereby the changing
ion-specific permeability of the membrane is modelled as a pair of variable resistors (in
parallel). A diagram of this equivalent circuit is shown in Figure 2.5.

Figure 2.5: A circuit diagram representation of the Hodgkin-Huxley action-potential
model. Note that in Hodgkin and Huxley’s original publication, the direction of the
transmembrane potential, some currents and reversal potentials are reversed. This
diagram displays the reversal potentials as opposing current flowing between the intra-
cellular and extracellular mediums, a convention which is used throughout this thesis,
and in more modern literature.

The Hodgkin-Huxley model can be seen as an electrical circuit formulation (shown
in Figure 2.5), combined with some ordinary differential equations (ODEs) (Chicone,
2006) describing the permeability of the membrane with respect to K+ and Na+ (repre-
sented in the circuit by variable resistors). The current through these resistors may be
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written as,

IK = ḡK(Vm −EK) , (2.1)

INa = ḡNa(Vm −ENa) , (2.2)

and Il = gl(Vm −El) , (2.3)

where ḡK and ḡNa are conductances which vary dynamically as the membrane allows
and restricts the flow of particular ion species and Il is the leak current. Note that this
leak current is an amalgamation of various biological currents, unlike the leak currents
discussed in later chapters, which are assumed to be non-biological currents arising
from the experimental setup. This leak current is modelled using a resistor with constant
resistance. These currents have a combined effect on the membrane potential governed
by,

Cm
dVm

dt
= IC − IK − INa − Il , (2.4)

where IC is the capacitive current, Vm is the potential difference between the inside and
outside of the cell membrane (such that Vm > 0 indicates that the potential inside the
cell is greater than the potential outside the cell). Note that in Hodgkin and Huxley
(1952), the direction of these currents differ, and we instead use the conventions that
are more prevalent in more modern literature (Brown, 2020).

The variable resistors in this model (with conductances ḡK and ḡNa) are the result of
biophysical changes in the membrane which allow certain ions to pass through (carrying
a current). Hodgkin and Huxley chose the following equations to describe the dynamics
of the membrane’s permeability changes,

ḡK = gKn4, (2.5)

and ḡNa = gNam3h, (2.6)

where m,h,n ∈ [0,1] are so-called “gating variables”, and gK and gNa are the maximal
values that ḡK and ḡNa can reach. This only happens when every single channel is open
(and so, gK and gNa are referred to as the maximal conductance parameters). These
gating variables are each governed by similar ODEs,

dh
dt

= αh(Vm)(1−h)−βh(Vm) , (2.7)

dm
dt

= αm(Vm)(1−m)−βm(Vm) , (2.8)

and
dn
dt

= αn(Vm)(1−n)−βn(Vm) , (2.9)
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where αh(Vm) and βh(Vm) are voltage-dependent transition rates. Together, Equa-
tions (2.1–2.9) along with a specific choice of transition-rate functions form the Hodgkin-
Huxley model.

Since the Hodgkin-Huxley model was first published, it has been adapted and
applied to many different types of electrically excitable cells and tissues. Similarly,
models of the subcomponent currents, IK and INa have been adapted to model various
subcellular processes not explicitly present in Hodgkin and Huxley’s original model.
As a result, various types of models are referred to as “Hodgkin-Huxley models” (Fink
and Noble, 2009). Of particular importance to this thesis are the gating variables in the
Hodgkin-Huxley model, Equations (2.7–2.9), which we refer to as Hodgkin-Huxley

style gating variables.
That is to say, equations similar to Equations (2.2), (2.8) and (2.9) may be used

to model IKr (Fink and Noble, 2009; Clerx et al., 2019a). Whilst the INa component
of Hodgkin and Huxley’s original model describes the dynamics of two independent
processes responsible for the conductance of INa, a generalisation of this general model
structure has been applied to IKr (and other macroscopic ion-channel currents) as
described in Section 2.2.3. The role that these currents play in the cardiac action
potential was shown through the adaptation of the Hodgkin-Huxley action-potential
model to cardiac cells and subsequent iterations of these models.

2.2.2 Cardiac action-potential models

Following the discovery of ion channels, Hodgkin and Huxley’s work was built upon
through the development of mathematical action-potential models for many other types
of cell. These models often describe the different currents carried by various types of ion
channel and other transport mechanisms. In this way, the original model (Hodgkin and
Huxley, 1952) has been augmented such that the conductance terms relate to specific
biophysical processes, which today are often identified with known protein structures in
the cell membrane.

Compared to the Hodgkin-Huxley Model, contemporary action potential models are
often more complex, and can be seen as the combination of a number of sub-models,
each of which describes a separate current (carried by a specific type of ion channel
or some other biophysical other process). Early work on cardiac action-potential
models followed Hodgkin and Huxley’s work, including IK and INa terms which act
as amalgamations of potassium and sodium currents (Noble, 1962; Beeler and Reuter,
1977; McAllister et al., 1975). Whereas, the Hund et al. (2001) model introduced a
distinct sub-model for IKr. Later, ten Tusscher et al. went further, including an IKr

component which was calibrated using data from human embryonic kidney (HEK)
cells heterologously expressing hERG (ten Tusscher et al., 2004). Subsequent models
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following this approach include the O’Hara et al. (2011) model, the Grandi (2018)
model, and more recently in the Tomek et al. (2019) model.

2.2.3 Isolated ion-channel current models

Models of IKr are also employed in isolation from a whole-cell action potential model
(Rudy and Silva, 2006; Beattie et al., 2018; Lei et al., 2019a). For instance, some
drug assays aim to characterise the behaviour of IKr in the presence of pharmaceutical
compounds (Li et al., 2020). Typically, these assays are performed on cells which
heterologously express hERG and where the presence of currents other than IKr is
minimised. These experiments provide a way of learning about the dynamics of IKr in
isolation. When modelling an isolated IKr current, an equivalent circuit formulation
can be used in which IKr is the only current passing through the cell membrane. This
is similar to the Hodgkin-Huxley formulation, but with the sodium current absent
(that is, with gNa = 0), and with some modification to the equation governing gK

(Equation (2.1)). Similar models have also been used to describe many other ion
channel currents, such as INa (Mangold et al., 2017, 2021), shaker-related potassium
channels (Schoppa and Sigworth, 1998), and Ito, f (Mangold et al., 2021; Schoening and
Silva, 2024). Mathematical models have also been used to quantify the impact of IKr

block (as well as the block of other currents) on the cardiac action potential (Li et al.,
2017b).

There are also models of the interaction between IKr and drugs. For example, Li
et al.’s model of IKr and its binding to compounds. However, literature models of IKr

are diverse, disagreeing on the number of conformational states included in the model
(Beattie et al., 2018). It is, therefore, uncertain how well a given model captures the
dynamics of IKr, even in the absence of any blocking compounds. To alleviate this
uncertainty, we seek a model structure (that is, a choice of states and transition rates)
which most accurately describes the mass-action dynamics of channel gating.

Though the specific equations used to model IKr vary between publications, all the
IKr models listed above can be formulated as Markov models—a type of compartmental
model which describes how channels transition between some number of conformational
states. Figure 2.6 shows a how conformational states which correspond to the Beattie
et al. (2018) model, and how these states are described by a given Markov model.

For IKr, the processes corresponding to the activation/deactivation process (the
upper gates in Figure 2.6) is typically assumed to occur much slower than the process
corresponding inactivation/recovery-from-inactivation (the lower gates in Figure 2.6).
However, there is little information regarding the number of states required to model
each gating process, and the independence of the rates governing each process. Typically,
there are one or more open states such that the conductance of the channel is proportional
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Vm

Vm

Vm Vm

Figure 2.6: How the Markov model formulation of the Beattie et al. (2018) model can
be seen as a simple description of two independent gating processes (shown in blue and
orange). Under the Markov model paradigm, we assume that each gate (each coloured
blue or orange) instantly snaps open and closed, which corresponds to a transition
between states on the graph. Only when both gates are open does current flow through
the channel. The inner arrows show the model’s voltage-dependent transition rates, and
the outer arrows show how a channel’s preference for a given state changes as voltage
increases.

to the fraction of channels in these states, though the models considered in this thesis
have only a single open state. These models of macroscopic ion-channel currents
describe the total current flowing through a large number of channels. Further discussion
of the relationship between models of individual channels and these macroscopic current
models is provided in Appendix A.

Similar models, using the same theoretical conformations and transitions between
conformations, are concordant with recordings of individual channels. These models
are typically continuous-time Markov chains, a type of stochastic process that describes
how each channel instantly snaps between conformations according to some voltage-
dependent transition rates. We focus on the mass-action approximation of a large
number of channels, that is, deterministic ODE-based models which may be seen as
the limiting behaviour of n independently and identically distributed (IID) copies of an
individual channel model as n → ∞. This is demonstrated in Figure 2.7, and discussed
further in Appendix A.

We start by considering models sharing the same form as the INa component of
the Hodgkin-Huxley model (Equations (2.2), (2.8) and (2.9)). These models consist
of two gating variables, m and h, which independently and dynamically respond to
changes in the transmembrane potential, Vm. Models of this form have been applied
to IKr, where the two gating variables are said to represent two independent processes
which control the gating of the channel: the activation and inactivation processes (Clerx
et al., 2019a). Activation describes the process by which channels slowly begin to



2.2. MATHEMATICAL MODELS OF CELLULAR ELECTROPHYSIOLOGY 18

0 50 100 150 200 250 300 350 400
time (ms)

0

5

10

15

20

25

Op
en

 st
at

e 
oc

cu
pa

nc
y 

(%
)

a
nchannels = 4
nchannels = 8
nchannels = 64
nchannels = 100
nchannels = 1000
deterministic solution

101 102 103

nchannels

100

101

RM
SE

 o
f d

et
er

m
in

ist
ic 

so
lu

tio
n 

(%
) b

Figure 2.7: A comparison of stochastic and deterministic models of IKr, using model
structure and kinetic-rate parameters from the Beattie et al. (2018) model. Panel a:
simulations of a CTMC ion channel model, each independently sampled using the
Gillespie (2007) method, with various value of nchannels. Panel b: the RMSE between
the deterministic (mass-action) approximation and our random simulations (averaged
across simulations and plus/minus the standard deviation). As nchannels increases, the
deterministic, ODE-based solution becomes a more accurate approximation of the un-
derlying stochastic process. These simulations were made by setting the transmembrane
potential to 0mV, and assuming that an equal number of channels are in each of the
model’s four states when t = 0.
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open when the transmembrane voltage is increased from the resting potential. Whereas,
the inactivation process occurs much more rapidly, and is most pronounced at higher
voltages. Only channels which are activated, but not inactivated, allow the passage of
K+ into or out of the cell (depending on the sign of the driving force term, Vm −EKr).

In the Beattie et al. (2018) model for instance, our activation gating variable, a may
therefore subject to voltage-dependent transition rates of the form,

αa(Vm) = p1exp{p2Vm}, (2.10)

βa(Vm) = p3exp{−p4Vm}, (2.11)

and is governed by,
da
dt

= (1−a)αa(Vm)−aβa(Vm), (2.12)

where p1, p2, p3 and p4 > 0 are model parameters. The recovery-from-inactivation
gating variable takes a similar form,

dr
dt

= (1− r)αr(Vm)− rβr(Vm), (2.13)

where,

βr(Vm) = p5exp{p6Vm}, (2.14)

αr(Vm) = p7exp{−p8Vm}, (2.15)

and p5, p6, p7 and p8 > 0 are model parameters. Note in the Beattie et al. (2018) model,
these transition rates are instead labelled such that k1 = αa, k2 = βa, k3 = βr , and
k4 = αr (Clerx et al., 2019a).

In the Beattie et al. (2018) model, it is assumed each channel consists of a single
copy of two types of gate, each governed by Equation (2.12) and Equation (2.13),
respectively. As such, the current may be written as,

IKr = ḡar(Vm −EKr). (2.16)

However, more generally, we may consider models where the net current through the
cell’s channels is,

IKr = ḡaµrν(Vm −EKr), (2.17)

for any positive integers, µ and ν . Such models correspond to the assumption that each
channel consists of µ copies of one type of gate (corresponding to our a gating variable)
and ν copies of a second type of gate (corresponding to our r gating variable). These
models, such as the Beattie et al. (2018) Model, may also be represented as Markov
models, where the states of the model represent different numbers of gates being open.
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Though they were first introduced to model the stochastic behaviour of single-
channel currents, Markov models are also used to model whole-cell currents such as IKr.
To do this, Markov models (such as those shown in Figure 2.6) are typically formulated
as a system of ODEs of the form,

dx
dt

= Q(Vm)
⊤x , (2.18)

where x ∈ RN is our state-variables vector (each element of which describes the
proportion of a cell’s channels which are in one of N ∈ N conformations) and Q(Vm) is
a matrix of voltage-dependent transition rates describing the rate at which channels move
between conformations, such that Qi, j is the transition rate between state i and state j.
The connection between these deterministic Markov models and the related stochastic
models used to model single-channel currents is discussed further in Appendix A.3.

The state-variable vector, x, is typically mapped to our observables via an equivalent
circuit formulation,

IKr = ḡxO(Vm −EKr), (2.19)

where ḡ is the maximal conductance, and xO is an element of the state vector, x,
describing the proportion of channels in the open conformation.

Consider a single Hodgkin-Huxley style gating variable, x, governed by

dx
dt

= α(Vm)(1− x)−β (Vm)x . (2.20)

Though such gating variables describe the mass-action behaviour of a large number of
channels, the behaviour of individual channels provides useful intuition. In this way,
we may consider a Hodgkin-Huxley style gating variable representing some type of
gate of which there are µ independent copies in each ion channel. The probability that
a given channel is open (that is, each of its µ independent gates are open), is xµ . Then,
we can construct a Markov model with a state for every possible number of open gates
(for example, the Beattie et al. (2018) model as shown in Figure 2.6).

All Markov models considered in this thesis may be represented in the form of
Equation (2.18), where the transition-rate matrix, Qm has the following properties:

1. the transition rates between states are dependent only on voltage;

2. there is a transition rate from state i to state j if and only if there is a transition
rate from state j to state i, that is, Q(Vm)i, j > 0 only if Q(Vm) j,i > 0;

3. transition rates are always positive, that is, Q(Vm)i, j > 0 for some Vm if and only
if Q(Vm)i, j > 0 for all Vm;
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4. the total occupancy of the system, 1⊤x(t) remains constant, that is, there are no
“source” or “sink” terms in the model.

These properties are sufficient to ensure that a Markov model has a unique, stable
steady state whenever Vm is held constant, as discussed further in Appendix A. Note
that Markov models for drug-channel interactions may relax Property 2 and allow
drug-dependent transition rates to be 0 in the absence of any drug, but such models lie
outside of the scope of this thesis.

In either case (whether Hodgkin-Huxley style gating variables or a Markov model
is used), our formula for IKr uses a similar equivalent circuit formulation. Moreover,
in Appendix A.1, we follow Keener and Sneyd (1998) and show that any Hodgkin-
Huxley style gating variable raised to the power µ may be expressed as an equivalent
(µ +1)-state Markov model. This equivalence is explained further in Appendix A, and
an example is shown in Figure 2.8.

Models consisting of multiple independent Hodgkin-Huxley style gating variables
may be similarly represented by considering a product of component Markov models,
each representing an independent gating variables (governed by Equation 2.20), as
shown in Figure 2.9. The resultant model structure may be seen as a Cartesian product
of graphs (Sheridan et al., 2023).

The resulting transition rates (shown in Figure 2.9, for example) are simple to derive
from the individual Markov model components. For example, consider the product
of two Markov models. Let u1 and u2 be states in the first model where the rate for
transition from u1 to u2 is k > 0, and v1 and v2 be states in the second model where
the transition rate between states v1 and v2 is l > 0. Then the transition rates between
(u1,v1) and a second combination of states, (u2,v2) are,





k if v1 = v2, andu1 ̸= u2 ,

l if u1 = u2, andv1 ̸= v2 ,

−k− l if v1 = v2, andu1 = u2 ,

0 otherwise,

(2.21)

from which the above properties of Markov models naturally follow. Again, such an
example is provided by the Beattie et al. (2018) model which may be represented as the
product of two Hodgkin-Huxley gating variables, or a single Markov model (Rudy and
Silva, 2006; Clerx et al., 2019a).

These facts are useful, because they show that all IKr models built using the Hodgkin-
Huxley gating variables can be expressed as Markov models and characterised by a
particular choice of transition-rate matrix, Q (and a corresponding set of states). This
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simplifies the IKr model selection problem, allowing us to only consider different
Markov model structures (that is, different choices of Q).

...

a

b

Figure 2.8: A Hodgkin-Huxley model represented as a Markov model. Model a
represents a single Hodgkin-Huxley style gating variable. Model structure b is formed
by the combination of N independent copies of model structure a.

In this way, any Hodgkin-Huxley style model (with two or more gating variables)
can be rewritten as a Markov model. Similarly, certain Markov models may be rewritten
as the product of two independent Markov models. This is possible for the Beattie
et al. (2018) and Kemp et al. (2021) models, which may be seen as representing two
independent processes: an activation/deactivation process and an inactivation/recovery-
from-inactivation process. This procedure is not possible, however, for models such as
the Wang et al. (1997) Model, where these two processes are not independent.

Note that the Markov model ODE system characterised by Equation (2.18), with this
particular choice of Q, has greater dimension (that is, more state variables) than the ODE
system governing the equivalent Hodgkin-Huxley model. And, as such, there are some
state vectors, x = (xi)

µ+1
i=1 , which do not correspond to a state of the Hodgkin-Huxley

style model. For µ = 2, there is no 0 ⩽ y ⩽ 1 such that x = (0,1,0)⊤, for example. In
practice, this is of little consequence because the initial conditions are typically chosen
to be at the unique equilibrium point, which is the same for both systems of ODEs, as
explained in Appendix A.

Whilst the Markov model of our simple Hodgkin-Huxley style gating variables may
be more cumbersome (typically having more state variables) they allow for greater
flexibility. This is because where each Hodgkin-Huxley style gating variable, say y, has
only 2 transition rates, our equivalent Markov model with open state occupancy yµ (as
constructed in Appendix A.1), has 2µ transition rates. We are free to parameterise 2µ

transition rates independently, resulting in a Markov model that cannot be represented
in the Hodgkin-Huxley formulation. An example of this equivalence between Hodgkin-
Huxley models and Markov models is demonstrated by Beattie et al. (2018) model,
which can be expressed as either a four-state Markov model, or a Hodgkin-Huxley style
model with two gating variables (Beattie et al., 2018). However, the Kemp et al. (2021)
model, as shown in Figure 2.9, cannot be expressed in the Hodgkin-Huxley formulation;
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whilst the product of Hodgkin-Huxley style gating variables results in a similar model
structure, the two activation rates (a1 and a2) and the corresponding deactivation rates,
(b1 and b2) are independently parameterised in the Kemp et al. (2021) model. This is
not possible for a Markov model arising from a Hodgkin-Huxley style gating variable,
where we would have a2 = 2a1 and b1 = 2b2 instead.
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Figure 2.9: The Kemp et al. (2021) model structure represented as the product of two
separate networks. Simple chain-like Markov models can be combined into a larger
model. Conversely, particular Markov models like the Beattie et al. (2018) model
and the Kemp et al. (2021) model can be decomposed into independent activation and
inactivation processes.

The Wang et al. (1997) model is another Markov model which cannot be expressed
in terms of Hodgkin-Huxley style gating variables. A notable feature of this model
is the absence of a path between the inactivated state, I and the closed states C1 and
C2 which does not pass through the open state O—this kind of model structure would
not be possible with a Hodgkin-Huxley style model. Where the Beattie et al. (2018)
and Kemp et al. (2021) models both treat activation and inactivation as independent
processes, the Wang et al. (1997) differs and enforces a rather strong form of dependence:
an inactivated channel cannot close without first recovering from inactivation, and,
conversely, that a closed channel cannot be inactivated without first opening. Both these
hypotheses have consequences when modelling the interaction of compounds with the
channel, because certain drugs to KV11.1 have been shown to have greater affinities
for open or inactive states (Lee et al., 2016). Therefore, the selection of the most
accurate model structure for IKr may have important ramifications for the modelling of
drug-channel interactions.

In Chapters 3, 4 and 5, we fit and validate numerous Markov models of IKr to
patch-clamp data (both synthetically generated data and data from real experiments).
All the Markov models considered in these chapters contain transition rates of the
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form, k = Aexp{bVm}, where A > 0 and b ∈ R is assumed a-priori to be either positive
or negative. However, other parameterisations have been suggested (Teed and Silva,
2016). It is possible that such parameterisations improve the predictive accuracy of our
models. However, we restrict our attention to a small collection of models (each using
the k = Aexp{bVm} parameterisation). This parameterisation of transition rates forms
another aspect of structural uncertainty for IKr models (and macroscopic ion channels
more generally). Nevertheless, the methods introduced in this thesis could be easily
applied to models utilising alternative parameterisations.

2.3 Fitting models of IKr to patch-clamp data

In this section, we provide a general introduction to this mathematical and statistical
methods used to fit the Markov models introduced in the previous section. No matter
what model structure we consider, we may use the same statistical methodology to fit
our model to patch-clamp data, that is, compute an estimate, θ̂θθ , of our parameter vector,
θθθ .

Supposing there are nd observations (possibly depending on the choice of experi-
ment), we consider models of the form,

z = F(θθθ ;d)+ εεε, (2.22)

where: z is an nd-vector of observations; F is a function mapping our model parameters,
θθθ and experimental design, d, to nd-vectors of observables (here F is called the mean

function); and εεε is an nd-vector of observational errors, each with mean, 0. Our mean-
function, F, is a rather general construct which could represent any nonlinear map
between our input parameters (the model parameters and choice of experimental design)
and the model output. Throughout this thesis, each instance of F will be computed by
integrating a system of ODEs, although the same statistical methodology may be applied
to other models (such as those involving partial differential equations). Additionally, we
assume that the observational errors (that is, ε1, ε2, . . . , εn) are IID Gaussian random
variables. Such an assumption is commonplace in literature (Beattie et al., 2018; Clerx
et al., 2019a; Lei et al., 2019a), mathematically convenient, and appears reasonable
given the experimental data explored later in this thesis. However, an improved noise
model (that is, the relaxation of this assumption) is a possible route for future model
improvement. The impact of this assumption, and some alternative approaches, are
discussed further in Section 2.4.
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2.3.1 Maximum likelihood estimation

Given a mean function, F, some parameter set θθθ , an experimental design, d and some
data z(d), our observational errors are,

εεε = F(θθθ ;d)− z(d) , (2.23)

using which we may compute the likelihood of a parameter set (Bates and Watts, 1988).
Under the assumption of additive Gaussian IID observation errors, εεε , our likelihood

is,

L(θθθ) =
nd

∏
i=1

p(εi) =
n

∏
i=1

1√
2πσ2

exp
{
− ε2

i
2σ2

}
(2.24)

= (2πσ
2)−

n
2

nd

∏
i=1

exp
{
− ε2

i
2σ2

}
. (2.25)

where p(εi) is the probability density function of the ith observational error, εεε , and nd is
the number of observations made during protocol d. Such a noise model (additive, IID
Gaussian noise) is often assumed in the literature (Menon et al., 2009; Beattie et al.,
2018; Clerx et al., 2019a), and the resulting parameter estimates are, in fact, independent
of σ .

This independence may be demonstrated by considering the log-likelihood,

l(θθθ) = log(L(θθθ)), (2.26)

=−n
2

log
(
2πσ

2)−
n

∑
i=1

ε2
i

2σ2 , (2.27)

which, for any σ , is maximised when the sum of squared residuals, ∑
n
i=1 ε2

i , is min-
imised.

Because x 7→ log{x} is an increasing function, we can choose to maximise either
the likelihood or the log-likelihood to find the maximum likelihood estimate (MLE),

θ̂θθ : = argmaxθθθ∈Θ{L(θθθ)} (2.28)

= argmaxθθθ∈Θ{l(θθθ)}. (2.29)

Equivalently, we may minimise the root-mean-square error (RMSE) between the mean
function, and some data (z(d)),

RMSE
(
F(θθθ ;d), z(d)

)
=

√
1
nd

nd

∑
i=1

(
Fi(θθθ ;d)− zi(d)

)2
, (2.30)
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where nd is the number of observations in protocol d, and Fi is the mean function for the
ith variable (Willmott et al., 1985). Minimising the RMSE is equivalent to minimising
the sum-of-square errors (SSE) because,

RMSE
(
F(θθθ ;d), z(d)

)
=

1
n

√
SSE

(
F(θθθ ;d), z(d)

)
, (2.31)

and, under the assumption of IID Gaussian errors, both are equivalent to minimising the
log-likelihood (and, therefore, the likelihood itself). This is because, in this case, the
log-likelihood consists of a constant term, and a term that is proportional to the SSE (as
shown in Equation 2.27).

Throughout this thesis, we quantify the error between our data and models using
the RMSE, as this permits easier comparison between protocols with different numbers
of observations. This is not the case with the SSE, for example, which almost surely
increases as we include more observations. Another advantage is the fact that the RMSE
has the same units as the data, which allows for easier interpretation.

Using the RMSE, we define the parameter estimate obtained from protocol d as,

θ̂θθ d = argminθθθ∈Θ

{
RMSE

(
F(θθθ ;d), z(d)

)}
, (2.32)

which is a random variable because it depends on our random data, z(d) which, in
turn, depends on the choice of experimental design, d. Where it is necessary to draw
attention to the dependence of the parameter estimate on the experimental design used,
we denote the parameter estimate obtained from a particular experimental design, d, as,

θ̂θθ d = argminθ{l(θθθ ,z)}

= argminθ{RMSE(F(θθθ ;d),zd}. (2.33)

This is particularly useful when parameter estimates obtained from different experimen-
tal designs are discussed.

The log-likelihood, Equation (2.27), can be minimised by first finding the parameter
set, θ̂θθ , which minimises the RMSE, and then finding the optimal σ . For the patch-clamp
experiments described in Chapters 3, 4 and 5, we estimate σ directly from a stationary
section at the start of the trace (where we assume that IKr = 0).

Provided certain regularity conditions hold (such as the existence of this minimum),
θ̂θθ is an consistent estimator of our model parameters, meaning (loosely speaking) that
our parameter estimate, θ̂θθ , is a good approximation of our model parameters, provided
that there is enough data. To be more precise, as we increase the number of observations,
nd , our estimate θ̂θθ converges in probability to the true parameter set, θθθ (Seber and Wild,
2005).
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2.3.2 Numerical optimisation

Under the assumption of additive, Gaussian IID errors, fitting ODE-based models using
maximum likelihood estimation is an example of nonlinear least-squares regression.
Bates and Watts (1988) introduce a range of methods for nonlinear regression problems,
and pay particular attention to gradient-based numerical optimisation techniques to
iteratively find more suitable parameter values (those with greater likelihood than the
current proposed value). They suggest the use of the Newton iteration method. However,
there are numerous challenges when using numerical methods for optimisation (Bates
and Watts, 1988), and alternative methods may prove to be more suitable.

A challenge arises when the objective function that we seek to minimise (in this
case the negative log-likelihood, −l(θθθ)), is non-convex. Local, gradient-based methods
such as Newton iteration rely on the initial guess being in the “basin of attraction”—
that is, the set of initial guesses for which the method will converge to the global
optimum. In the case of a convex objective function, this basin of attraction contains
the whole parameter space. For some problems however, basins of attraction may have
a non-trivial geometry (Zotos, 2017), and so the parameter estimate obtained from
numerical estimation may vary depending on the chosen initial guess—that is, there is
no guarantee that such a method will successfully compute the maximum-likelihood
estimate. Furthermore, these gradient-based methods rely on the smoothness of the
objective function, which may be jeopardised when approximate, numerical methods
are used to compute l(θθθ).

To account for the (likely) non-convexity of our objective functions, we can use a
multi-start procedure in which we perform the optimisation from a range of different
starting points (Bates and Watts, 1988). The rationale for this approach being that
if repeated runs of the optimisation from different starting guesses all yield similar
answers, we can be somewhat confident that we have accurately determined the global
minimum (in this case, the maximum-likelihood estimate).

Some methods for numerical optimisation incorporate a degree of stochasticity in
the iterative procedure itself. For example, the Covariance Matrix Adaptation (CMA)
method is often implemented using the Evolutionary Strategy (CMA-ES) in which
candidate parameter values are selected according to a constantly updated multivariate
Gaussian distribution (Hansen, 2016). The method works by randomly sampling points
from this distribution, computing the corresponding likelihoods and updating the mean
and covariance of this sampling distribution such that points near those previously
found to have high likelihood are favoured. As the method converges, this sampling
distribution shrinks such that the sampling distribution is concentrated near to the global
optimum. For non-convex functions, a multi-start procedure may prove useful, allowing
a somewhat more complete exploration of the parameter space. CMA-ES has been used
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to fit models of IKr to information-rich patch-clamp data (Fink and Noble, 2009; Lei
et al., 2019a; Clerx et al., 2019a; Whittaker et al., 2020a).

Some methods are more suitable for different problems where modellers may have
different priorities regarding the computational expensive of the methods, and their
ability to reliability find global optima. In these cases, a careful consideration of
the results from multiple optimisation runs is necessary for us to be confident in our
parameter estimates. However, for other problems, priorities may vary. For example,
local, deterministic, methods such the Newton method and Nelder-Mead algorithm
may be more suitable if the speed of computation is a priority and confidence that we
have truly identified the global optimum is less important. On the other hand, there are
many optimisation methods may be more suitable for “harder” optimisation problems
in which there is a substantially larger parameter set, or more complicated optimisation
surface (Menon et al., 2009). Nevertheless, throughout this thesis, we use CMA-ES
because it has been shown to reliably and quickly identify optimal parameter sets for
problems similar to those encountered in this thesis (Clerx et al., 2019a).

2.3.3 Integration of ODE systems

To compute our models’ mean functions, and hence the likelihood, it is necessary to
solve systems of ODEs. When our model has a governing equation of the form of
Equation (2.18), the transition-rate matrix, Q is constant for fixed Vm, and so we have a
closed-form expression in terms of a matrix exponential, (Moler and Van Loan, 2003),

x(t)⊤ = x(0)⊤exp{tQ(Vm)}. (2.34)

There are numerous methods for computing expressions of this form (Moler and
Van Loan, 2003; Teed and Silva, 2016). A number of the methods suggested by Moler
and Van Loan (2003) rely on the eigendecomposition of the exponent matrix. For these
methods, it is useful to note that Q⊤ (or equivalently, Q) is guaranteed to have only real
eigenvalues for reversible Markov models, as discussed in Appendix A. However, for
non-reversible Markov models, the eigenvalues of Q⊤ may be non-real, meaning some
care should be taken to account for non-real eigenvalues in the implementation of these
methods.

A common trick is to use the property that the number of channels is preserved (as
per our definition of Markov models provided in Section 2.2.3), that is, Q1⊤ = 0 to
rewrite our governing equation in the form,

dx̃
dt

= A(Vm)x̃+b(Vm) . (2.35)
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There are many such simplified ODE systems, as discussed in Appendix A. One
common approach (Colquhoun and Hawkes, 1995) is to take x̃ to be the first N − 1
components of x.

It is then possible to apply the methods discussed by Moler and Van Loan (2003) to
this reduced system, instead. Additionally, the steady-state of the model for when Vm is
held constant at V0 can be computed by simply solving the linear equation,

A(V0)x∞(V0) = b0 . (2.36)

The fact that a unique solution to this equation exists follows from our definition of
a Markov model as discussed in Appendix A. This is important when applying ODE
models to patch-clamp experiments because it is typically assumed that, x(0) = x∞(V0),
that is, that the system is at equilibrium at the beginning of the experiment, which
provides us with the initial conditions necessary to integrate the governing equation.

When Vm is not constant (as it often is during experiments, or in whole-cell simula-
tions) we can no longer use this matrix-exponential formulation (Equation (2.34)). In
general, there is no matrix-exponential solution to this system. Instead, we use numeri-
cal methods to integrate Equation (2.35). Employing these methods requires some care,
however; depending on the system being solved, some methods can be unstable and fail
to provide a good approximation. Some systems which prove challenging to integrate
may be referred to as stiff. Sometimes, an ODE system may be called stiff if there are
both short and long timescales present in the model, that is, if the ratio of maximum
and minimum eigenvalues of Q⊤(Vm) is large (Fink and Noble, 2009).

Some methods for the numerical solution of ODEs make use of the forward-
difference formula, whereby the system can be iterated in discrete steps through time.
For example, the forward-Euler method is an iterative scheme defined by,

x(i+1) = f(x(i), ti) · (ti+1 − ti)+x(i), (2.37)

where f(y, t) is the derivative of the system at time t, and where the state of the system
is y. Note that, in practice, f may also depend on our model parameters and choice of
experimental design. By reducing the step-size, that is, h := ti+1 − ti, we can improve
the accuracy of this approximation. However, for certain systems, such methods may
require very small step sizes to provide a suitable approximation (Gupta et al., 1985).

An alternative is to use ‘backwards’ solution methods, in which a backwards differ-
ence formula is used instead. For example, the backwards Euler method uses,

x(i+1) = f(x(i+1), ti) · (ti+1 − ti)+x(i), (2.38)
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Whilst Equation (2.38) looks similar to Equation (2.37), it is not possible to calculate
y(i+1) directly because the right-hand side depends on x(i+1). Methods such as this are
also called “implicit” methods because, unlike forward methods, they do not provide an
explicit formula for computing x(t +h). Instead, iterative methods are used to solve
Equation (2.38). In other words, for each step in the solution, where we iterate the state
of the system forward, we have to solve a (for our purposes, multivariable) nonlinear
equation. The backwards differentiation formulae (BDF) and Adams-Moulton methods
are two families of implicit methods for numerical integration of ODEs; both families
contain the backwards Euler method, Equation (2.38), as the simplest method. BDF
methods are especially suitable for stiff problems (Gupta et al., 1985).

No matter what scheme is used (whether the forward-Euler, backward-Euler, BDF
or Adams-Moulton methods), the time-step size may be reduced to minimise error,
requiring more steps to solve the system up to the end of the experiment. However,
using time steps that are too small results in excessive computation. Adaptive-timestep
methods combine an iterative scheme with some way of selecting a suitable timestep,
typically by approximating the error between the true solution and the numerical
solution, and ensuring that this value is less than some predetermined threshold.

The ODEPACK package is a collection of software containing various methods for the
numerical solution of ODEs (Hindmarsh, 1982). One such method is LSDOA (Gupta
et al., 1985), an adaptive-timestep method which automatically switches between
Adams-Moulton and BDF methods depending on the stiffness of the problem at a given
point in time, the latter being preferred in the presence of stiffness. The performance
of LSODA is compared with other methods for a ODE-based compartmental model in
Postawa et al. (2020). We use this method for all numerical integration of ODE systems
in this thesis because we require a fast and robust method that will work even when
our systems are very stiff. There are other similar methods, such as CVODE, found in
the SUNDIALS software package (Balos et al., 2024), which is an adaptive-timestep,
backwards integration method developed in the C programming language. CVODE has
been shown to perform favourably compared to LSODA across a range of models in
systems biology (Städter et al., 2021). Though the majority of models considered by
Städter et al. (2021) have many more state variables than the models considered in this
thesis, the use of CVODE for future work may provide modest benefits to computational
performance.

Besides the various pitfalls of numerical optimisation approaches discussed in this
section, other problems can arise when estimating model parameters. As discussed in
the following section, some such problems are independent of the particular optimisation
methods used, and instead arise from the properties of particular modelling problems—
that is, from particular combinations of models and experimental designs.
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2.3.4 Identifiability

The identifiability of a model concerns our ability to determine the model parameters.
There are multiple ways in which a model may be unidentifiable. Perhaps the simplest
type of unidentifiability is a-priori unidentifiability where the model parameters cannot
be uniquely determined—no matter what experiment we perform, or how much data
we collect. This can be the case if we include extraneous parameters in our model.
Consider, for example, a model with,

Fi(θθθ ;d) = θ
∗
1 θ

∗
2 d. (2.39)

Then, given any θθθ 1,θθθ 2 ̸= 0, we have Fi(θθθ ;d) = Fi(φ ;d) where φ1 = 1 and φ2 = θθθ 1θθθ 2.
This is known as a-priori unidentifiability, and can be avoided by changing the way
that the model is parameterised. For example, we can simplify Fi such that the product
θ ∗

1 θ ∗
2 is replaced a single model parameter,

F̃i(θ̃ ;d) = θ̃d . (2.40)

Here, no matter what experiment is performed, we can only gain information about the
product, θ̃ = θ ∗

1 θ ∗
2 , and not the individual parameters θ ∗

1 and θ ∗
2 . Such parameters are

therefore said to be a-priori unidentifiable.
This is also an example of structural unidentifiability, where the output from a

given experiment may be insufficient to uniquely identify an optimal parameter set
(Bearup et al., 2013). Unlike a-priori identifiability, the structural identifiability of
a model may depend on what observations are made—for example, which states of
a Markov model are observed. Siekmann et al. (2012) provide some examples of
Markov models which are structurally unidentifiable from single-channel recordings
(at a fixed command voltage). The structural identifiability of linear models may be
assessed with well-established techniques. This is especially straightforward when a
Gaussian, IID noise model is assumed. The structural identifiability of nonlinear models
is more complex, however (Bates and Watts, 1988). Nevertheless, there are a number of
analytical approaches. One such approach concerns the local properties of the mapping
between model parameters and model outputs (Bearup et al., 2013).

Practical identifiability concerns the combination of model and experimental design.
Though a model may be structural identifiable, it may be practically unidentifiable if
a suitable experiment is not specified. Fink and Noble (2009) provide a rather broad
definition, which encompasses the computational difficulty in finding optimal parameter
estimates. This includes even the challenges involved in numerical optimisation, which
were discussed in the previous section. However, other definitions are more explicitly
based on the statistical properties of models under a particular experimental design. In
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particular, a poorly designed experiment for our model could leave us with untenably
large confidence regions for our parameter estimates. To illustrate this point, we first
consider a linear statistical model (a model in which there is a linear relationship
between the model parameters and dependent variables),

F(θθθ ∗;X) = Xθθθ
∗, (2.41)

subject to additive IID Gaussian noise, εεε . Here we have substituted d (the variable
representing our experimental design in Equation (2.22)) with a design matrix,X, which
characterises the experiment under consideration. In this well studied case, the MLE
satisfies the linear system of equations,

X⊤Xθθθ = X⊤z . (2.42)

If X⊤X is singular, this equation has infinitely many solutions stretching out to infinity
along some line, plane or hyperplane, each of which has the same likelihood according
to the model. In this situation, the MLE is undefined. Such a situation may arise from
structural identifiability as discussed previously, in which case the collection of further
data will not yield an identifiable model.

Even if X⊤X is nonsingular, we may obtain inaccurate parameter estimates. This can
happen, for example, when our experiment is designed in such a way that there is great
uncertainty in our parameter estimates (arising from the randomness of our observations).
This uncertainty can lead to inaccurate parameter estimates and predictions. In the
linear case (with IID, additive Gaussian error), such practical (un)identifiability may be
characterised using the Fisher Information Matrix (FIM).

The FIM is defined as

Ii, j =E
[(

∂ l(θθθ ;z)
∂θi

)(
∂ l(θθθ ;z)

∂θ j

)]
, (2.43)

where θθθ is our model-parameter vector and z is the data. Alternatively, provided certain
regularity conditions hold (Seber and Wild, 2005), we may write this as,

I = Ez

[(
∂ 2l(θθθ ;z)
∂θi∂θ j

)

i, j

]
. (2.44)

In the case of our linear model with Gaussian IID noise, direct computation shows,

∂ l
∂θi

=
n

∑
k=1

∂ l
∂Fk

∂Fk

∂θi
, (2.45)
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where we denote by Fk the kthth component of F, and n is the number of observations.
Then, since our log likelihood is,

l =
n

σ
√

2π
+

1
2σ2

n

∑
i=1

(F(θθθ)i − zi)
2, (2.46)

we have,

2σ
2 ∂ l

∂Fk
=−2(zk −Fk), (2.47)

for all 1 ⩽ k ⩽ n. Then, by summing over our observations, we have,

2σ
2 ∂ l

∂θi
=

n

∑
k=1

dl
dFk

∂Fk

∂θi
=

n

∑
k=1

2(Fk − zk)
∂Fk

∂θi
. (2.48)

Hence, using the product rule we obtain,

2σ
2 ∂ 2l

∂θi∂θ j
= 2

(
n

∑
k=1

∂Fk

∂θ j

∂Fk

∂θi
+

∂ 2Fk

∂θiθ j
(Fk − zk)

)
. (2.49)

For all k, we have E[Fk − zk] = 0. Hence,

E
[

2σ
2 ∂ 2l

∂θi∂θ j

]
= E

[
2

(
n

∑
k=1

∂Fk

∂θ j

∂Fk

∂θi

)]
, (2.50)

and so,
I(θθθ ;d) =

1
σ2 X⊤X. (2.51)

The confidence regions for our model parameter estimates take the form,

(θθθ − θ̂θθ)⊤X⊤X(θθθ − θ̂θθ)⩽ c, (2.52)

for some c corresponding to a choice of significance level, and so the size (measure) of
this confidence region scales linearly with det(X⊤X). Note that under a linear model
where X⊤X is nonsingular, all confidence regions are finite. However, this is not
generally true for nonlinear statistical models (Kreutz et al., 2012).

Provided our log-likelihood function is differentiable (Seber and Wild, 2005), we
can substitute X with the sensitivities matrix in the above derivation. This sensitivities
matrix is defined as,

S(θθθ) =
(

∂Fi

∂θ j

)

i, j
. (2.53)
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In this case, the resultant information matrix may be evaluated for a specific parameter
vector, θθθ ,

I(θθθ ;d) =
1

2σ2 S(θθθ ;d)⊤S(θθθ ;d), (2.54)

where d is our experimental design (replacing the linear case’s design matrix X). This
linear approximation of F yields a quadratic approximation of the likelihood,

2σ
2(l(θθθ ;d)− l(θθθ ∗;d)

)
≈ (θθθ −θθθ

∗)⊤S(θθθ ∗;d)⊤S(θθθ ∗;d)(θθθ −θθθ
∗) , (2.55)

where θθθ
∗ is the true value of the parameter set. This approximation is discussed in more

detail in Bates and Watts (1988); Seber and Wild (2005) where it is used to compute
approximate confidence regions.

This approximation is particularly useful when there is a lot of data, in which
case asymptotic properties which justify the use of confidence regions of the form of
Equation (2.57) (where we substitute X for S evaluated at the maximum likelihood
estimate). In particular, we have (for sufficiently large n) that the distribution of θ̂θθ −θθθ

∗

may be well approximated by the normal distribution,

N(0,σ2S(θθθ ∗;d)⊤S(θθθ ∗;d)). (2.56)

Using this approximation we may compute approximate confidence regions of the form,

(θ̂θθ −θθθ
∗)⊤S(θ̂θθ ;d)⊤S(θ̂θθ ;d)(θ̂θθ −θθθ

∗)⩽ c , (2.57)

for some chosen c > 0 (Bates and Watts, 1988). Note the similarity between these
confidence regions and those described by Equation (2.52).

Of the various definitions of practical identifiability in the literature, some are di-
rectly related to the size of these confidence regions (which are approximately provided
by Equation (2.57) in the nonlinear case). Some authors suggest establishing thresh-
olds for the size of these confidence intervals (Gábor et al., 2017; Tuncer et al., 2018;
Wieland et al., 2021), the exceedance of which prompting the model to be labelled
“practically unidentifiable”. Whichever definition we adopt, identifiability is an im-
portant property of our models which is necessary for us to obtain accurate parameter
estimates and produce accurate predictions. For nonlinear models, the computation
of the local sensitivities (Equation 2.53) provides a way of evaluating identifiability,
though this may fail to characterise the likelihood function outside of a given local
neighbourhood. Nevertheless, we introduce a numerical approach for the computation
of local sensitivities in the following section.
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2.3.5 Local sensitivities for ODE-based models

The models we apply in this thesis are built upon systems of ODEs that describe the
kinetics of ion-channel models. In this section, we describe an approach for the efficient
computation of the sensitivities matrix, S and hence, I, as introduced in the preceding
section. Whilst these methods are presented using our equivalent circuit formulation
(Equation (2.19)), they may be adapted for use with a wide range of ODE-based models.

As discussed in Section 2.2.3, Markov models of IKr are a specific type of ODE
model in which the model parameters are related to the observables, in part, through the
solution of a system of ODEs. In general, we may write,

dx
dt

= f(x, t,θθθ ;d) , (2.58)

where x is a state-variables vector, θθθ are our model parameters, and d is an experimental
design. The solution of this system of ODEs is then related to our observables through
an observation function. This function maps the states of the system at each observation
time, t, to some model output,

yi := h(ti,θθθ ;x(ti)), (2.59)

where h is the observation function. When applied to models of IKr, the observable,
yi, is taken to be the observed current at a given time, t. For example, for IKr models
(Beattie et al., 2018; Clerx et al., 2019a), we typically use,

h(t,θθθ ;x(t)) = IKr(t,θθθ) (2.60)

= gxO(Vm −EKr) , (2.61)

where xO is a particular component of x.
In this case, our mean function, F, may be evaluated by first integrating the model’s

governing Equation (2.18), and then evaluating the observation function at each obser-
vation time. This, gives our mean function, F, which maps each experimental design
and possible parameter set to a vector of observations, that is,

F(θθθ ;d) = (yi)
n
i=1 . (2.62)

We conclude this section by discussing some specific details regarding the appli-
cation of the previously introduced statistical theory to ODE-based models (such as
the Markov models introduced in Section (2.18), and other models used throughout
this thesis). For ODE-models, using the example of the Markov models introduced
in Section 3.3.2, the map from our parameters and designs to our observables (F in
Equation (2.62)) is the combination of a system of ODEs and an observation function.
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Typically, this observation function is used to map the model’s state variables to its
observables. For example, for a Markov model (with fixed Vm), we have,

IKr = gxO(Vm −EKr). (2.63)

By differentiating, we find,

∂ IKr

∂θi
=

∂xO

∂θi
g(Vm −EKr)+

∂g
∂θi

xO(Vm −EKr) . (2.64)

We also find,

∂ IKr

∂xO
=g(Vm −EKr), (2.65)

and
∂ IKr

∂g
=xO(Vm −EKr). (2.66)

Hence, given ∂xi
∂θ j

(for all i and j) we can compute our sensitivities matrix, S.

A common approach to finding ∂xi
∂θ j

is to augment the governing equation of our

ODE system with additional state variables which describe how ∂xi
∂θ j

(t) evolves over
time. For ease of generalisation, we write this governing equation as,

dx
dt

= f(x,θθθ), (2.67)

(dropping any dependence on the chosen experimental design).
Then we may find second-order partial derivatives,

∂ 2x j

∂θi∂ t
=

∂ f (x,θθθ)
∂θi

+
Ns

∑
j=1

∂ f (x,θθθ)
∂x j

∂x j

∂θi
, (2.68)

where Ns denotes the number of state-variables in our model. To compute these
sensitivities, all the terms on the right-hand side of Equation (2.68) may be calculated
with pen and paper or automatically using a computer algebra system. It should be
noted here, that the number of differential equations added by this method is NsNp

where Np is the number of parameters in the model. Although the number of additional
ODEs may present a problem for large, complicated models, it is feasible to use these
techniques with the models used in this thesis due to the relatively small number of
states and parameters in our models. This method may also provide insight into the
utility of a given experimental design, as discussed in the following section.
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2.3.6 Experimental design

Much work investigating IKr has closely followed Hodgkin and Huxley’s original
experimental and statistical methodology. Often, simple voltage-clamp protocols (the
command voltages applied during the experiment) are repeated with some variation in
the voltage during particular steps. Then, “summary curves” are made which describe
how, for example, peak currents and decay timescales change with respect to changes
in the command voltage, Vcmd. In these protocols, a similar three-to-four step voltage-
signal is applied to the cell, but the voltage during a single step is manipulated through
a range of values under repeats (Fink and Noble, 2009; Clerx et al., 2019a).

More recently, the concept of a information-rich protocols has been introduced.
These protocols are designed to permit the fitting of models using recordings taken
over a shorter duration (relative to the longer experimental designs originally used
in Hodgkin and Huxley (1952) and elsewhere). This idea was first proposed (in the
context of macroscopic ion-channel currents) by Fink and Noble (2009). Later, more
information-rich protocols have been designed and used to fit models (Beattie et al.,
2018; Lei et al., 2019a, 2024; Mirams et al., 2024). Such information-rich designs are
constructed to permit accurate parameter estimations.

We now provide a brief introduction to techniques used to design optimal experi-
ments for linear models. We start by considering a linear model of the form,

F(θθθ ;d) = Xθθθ , (2.69)

where θθθ is a vector of parameters, and a design matrix X, which may be subject to
experimental design. There are well-established approaches for the design of such
experiments to ensure that X is specified such that the resulting parameter estimates
have desirable properties (Bates and Watts, 1988). When this is done using optimisation

methods, it is known as optimal experimental design (OED) (Banga and Balsa-Canto,
2008). In the following sections, we review some OED methods for linear models and
show how these methods may be applied to nonlinear models (such as the Markov
models described previously in this chapter), also.

Optimal Experimental Design for linear models For our linear model described
in Equation (2.69), it is natural to seek a design matrix, X, which we expect to yield
accurate parameter estimates, or an accurate predictive model. The so-called “alphabet
criteria” (Ryan et al., 2016) are commonly used ways of quantifying the relative expected
accuracy of parameter estimates and model predictions. A selection of relevant “alphabet
criteria” are shown in Table 2.1.

Of these criteria, two relate specifically to properties of the design matrix, X. Under
the assumption of additive Gaussian IID noise with 0 mean and standard deviation, σ ,
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Name description

A-optimality Minimise trace(X⊤X)
D-optimality Minimise det(X⊤X)
E-optimality Maximise the minimum eigenvalue of X⊤X
G-optimality Maximise the maximal entry in X(X⊤X)−1X)

Table 2.1: Commonly used criteria used for design of experiments to find an optimal
design. In the case of a nonlinear model, the design matrix, X is substituted with the
local-sensitivities matrix, S.

the matrix, X⊤X is proportional to the FIM, I and is directly related to the size of the
model’s confidence regions, as described in Section 2.3.4.

The FIM, I, may be used to find D-optimal designs. Similarly, the size of our
marginal confidence intervals scales linearly with,

uA(X) :=

√
n

∑
i=1

(X⊤X)−1
i,i . (2.70)

which is used to find A-optimal design. That is, the A-optimal design is the design
which minimises trace(X⊤X), which is proportional to the length of marginal confidence
regions, averaged across each model parameter.

Optimal Experimental Design for nonlinear models We can employ a similar
approach with nonlinear regression models of the same form (Equation (2.22)) but
where Fi is some nonlinear map between our model parameters and experimental
design and the ith observable (taken from a Markov model, for example). Here, as
in the linear-model case, we may apply our alphabet criteria, albeit under the linear
approximation (that is, the linear approximation introduced in Section 2.3.4).

The use of this linear approximation simply results in the substitution of the design
matrix, X with the local sensitivities matrix, S(θθθ). However, unlike X in the linear
case, the sensitivity matrix of a nonlinear model, S(θθθ), may depend on the model
parameters θθθ . This presents a challenge because the alphabet criteria (Table 2.1) depend
on parameters which are unknown at the time the experiment is designed. One approach
is to assume a fixed, best-guess parameter vector, θθθ

∗, for the purpose of designing the
experiment. In doing this, we obtain an optimisation problem similar to the linear model
case, where we seek,

dopt := argmaxd∈D{uθθθ
∗(d)}, (2.71)

where uθθθ
∗(d̃) is a utility function which depends on a particular value for our parameters,

θθθ
∗.
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These methods may be used to assess the suitability of a given experimental design
for fitting a particular model. For example, in Appendix C, we use the A- and D-
optimality utility functions (uA and uD) to quantify the effect of data removal on the
uncertainty in parameter estimates. Similar utility functions were used to produce
the experimental designs used throughout this thesis (Lei et al., 2024; Mirams et al.,
2024). Here, in the context of experimental design for voltage-clamp experiments,
two main components are considered: the Vcmd signal and the sampling frequency
at which recordings are made. For the experimental designs used in this thesis, all
the Vcmd signals consist of piecewise affine functions (that is, a sequence of steps and
ramps). However, the protocol proposed in Beattie et al. (2018) is a sum of sine-wave
terms, and as such, could not be performed on the particular apparatus used for data
collection. The optimal design criteria introduced above may be applied to our models’
sensitivity matrices to ensure the suitability of experimental designs in future work—
particularly for new model structures and the inclusion of “artefact effects” as discussed
in Chapter 5.

2.4 Sources of predictive uncertainty

Throughout this thesis, we aim to develop methods to identify the most accurate
mathematical models of IKr. A key focus is the predictive accuracy of these models—
particularly when our models are used to produce predictions for experiments dissimilar
to those used for model fitting.

In this section, we briefly summarise some reasons why our mathematical models of
IKr do not produce perfectly accurate predictions. We discuss three sources of predictive
inaccuracy, discrepancy in the chosen noise model (misspecification of the random
distribution of our observation errors), structural uncertainty (misspecification of the
dynamics in our mathematical models), and uncertainty in our parameter estimates.
Whereas the latter may be addressed by improved experimental design (as discussed in
the previous section), model misspecification, also known as model discrepancy, poses
a specific challenge in fitting mathematical models to biological data.

2.4.1 Noise model

Markov models of macroscopic ion-channel currents typically assume that the observa-
tions are subject to some form of random error. The most common choice is additive
Gaussian noise, which is assumed to be IID. This noise can be estimated using a sta-
tionary part of the trace. The observational noise present in time-series traces from
patch-clamp experiments arises from a number of sources. Firstly, the measurement
of the very small currents present (of the order of nanoamperes) is not perfect and



2.4. SOURCES OF PREDICTIVE UNCERTAINTY 40

introduces an amount of observational noise. It is possible that the size of these ef-
fects changes over time and, as such, our observational errors may each be distributed
with different standard deviation, despite being assumed to be homoscedastic (each
distributed with equal variance).

We also anticipate a small amount of noise due to the stochasticity of channel gating
(Mirams et al., 2016). However, this is estimated to be negligible due to the number of
channels present, as demonstrated by Figure 2.7. Nevertheless, there have been attempts
to use the stochastic models describing the behaviour of individual channels to model
whole-cell macroscopic currents. This is done by assuming that the current is carried
by a population of independent yet identical channels, and, considering the proportion
of open channels over time. These techniques amalgamate the behaviour of individual
channels and affect the expected probability distribution of observations. Stochastic
differential equations provide a way of approximating this behaviour for many channels
whilst providing suitable methods for the computation of the likelihood in light of a
more complicated error model (Goldwyn et al., 2011).

2.4.2 Parameter uncertainty

When assuming random observational noise, we cannot expect to recover the true
data-generating parameter set exactly (even when the data is synthetically generated
using the model). This is because the parameter estimates we obtain (such as the
maximum-likelihood estimate) depend on the random data, and so, are random variables
themselves. However, by using a suitable experimental designs and models, the effect
of parameter uncertainty can be minimised. This is demonstrated in Clerx et al. (2019a);
Whittaker et al. (2020a), where high-frequency time-series data taken from appropriately
designed protocols results in very little variability in parameter estimates. Even so, this
parameter variability may increase if more parameters are included in the model.

2.4.3 Structural uncertainty

As discussed in Section 2.2.3, the number of states included in our models and the way
they connect together is known as the model structure (and sometimes as the model

topology) and can be represented mathematically as a graph (Bondy and Murty, 2008).
A number of model structures which have been used to model IKr as discussed in Beattie
et al. (2018), and shown in Figure 2.10.

These model structures vary both in terms of the number of states, but also in how
the states are connected—for example, as discussed in Section 2.2.3, the Wang et al.
(1997) model only allows the transition between open and inactive states via the open
conformation; whereas the Beattie et al. (2018) and Kemp et al. (2021) models permit
other sequences of transitions.
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Figure 2.10: A selection of model structures which have been used to model IKr. Figure
reproduced from Beattie et al. (2018) under the Creative Commons Attribution 4.0
International License .

In the context of INa models, Mangold et al. (2021) showed that there are an
astronomical number of plausible model structures. We similarly have few constraints
regarding possible model structures for IKr, and exhaustively considering each model
structure somewhat infeasible. An alternative approach is to perform optimisation over
the space of model structures. For example, Menon et al. used a graph-based approach
in which the model structure is randomly mutated using a genetic algorithm (Menon
et al., 2009).

Additionally, the presence of experimental artefacts in patch-clamp experiments
(Lei et al., 2020a) means that the (unaltered) Markov models presented in this chapter
provide an incomplete description of IKr under patch-clamp experiments. In particular,
the transmembrane potential, Vm is not exactly the command voltage, Vcmd due to series-
resistance attenuation and capacitive currents. These experimental artefacts impact the
observed dynamics of IKr, and hence, their omission is a source of structural uncertainty.
These experimental artefacts, and their combination with mathematical models of IKr

are explored in Chapter 5.
In general, finding a suitable ODE-based model of some real-world phenomena is

difficult. One general approach which has recently been popularised is sparse regression,
in which a weighted combination of library functions is found that matches the data
(Klimovskaia et al., 2016). However, we forgo these methods in favour of literature
models which have been built using domain-specific knowledge.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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2.5 General approaches for model discrepancy

One way of reducing over-confidence in inaccurate parameter estimates in the presence
of model discrepancy may be to use approximate Bayesian computation (ABC) (Frazier
et al., 2020). With ABC, a likelihood function is not explicitly specified; instead, the
model is repeatedly simulated for proposed values of the parameter sampled from a
prior distribution. Each proposed value is accepted or rejected according to whether
the simulated trajectory is close to the actual data, according to some chosen summary
statistics. ABC compares the simulated with the real data using these summary statistics
(rather than matching all aspects of the dynamics) and accepts approximate matches
(subject to a chosen tolerance). It is suited to inference where there is substantial
model discrepancy because this approach can decrease potential over-confidence in the
inferred values of parameters. However, it is challenging to select suitable summary
statistics, and the computational demands of ABC are much greater than those of
maximum-likelihood estimation.

Another approach was first introduced by Kennedy and O’Hagan (2001), who used
Gaussian processes to fit approximate, computer models of real-world phenomena. This
work has since been applied to electrophysiology models (Lei et al., 2020c). Elsewhere,
Sung et al. (2020) introduced an approach to account for heteroscedastic errors using
many repeats of the same experiment, although this seems to be less applicable to our IKr

modelling problem because the number of repeats of each experiment (when training
individual, cell-specific models) is limited. Alternatively, Lei and Mirams (2021)
modelled the discrepancy using a neural network within the differential equations.
However, these approaches are less interpretable than a purely mechanistic model.

2.6 Summary

In this chapter, we have introduced the primary aim of this thesis—the identification of
suitable model structures for models of IKr currents. These models were born from the
work of Hodgkin and Huxley’s work modelling cellular action potentials. The basic
principle of this model—treating the whole cell as an equivalent circuit—allows us
to reconcile our mathematical models with our experimental data. Throughout this
thesis, we use the statistical and computational techniques introduced in Section 2.3
to fit literature models of IKr to synthetic and real data from patch-clamp experiments.
In the following chapters, we use these methods to explore this structural uncertainty
in mathematical models of IKr, and evaluate the predictive performance obtained by a
small collection of plausible model structures.



Chapter 3

Uncertainty Quantification with an
ensemble of experimental designs

3.1 Preamble

The work presented in this chapter was published in the Bulletin of Mathematical
Biology, Shuttleworth et al. (2023). This work, including all the computational mod-
elling, and statistical analysis, including the software developed for these purposes, was
entirely my own.

3.2 Introduction

In mathematical biology, mechanistic models are typically fitted using experimental data
from a particular experimental design, and then used to make predictions under different
scenarios. We call the set of experimental designs under consideration the design space,
denoted by D, and assume the existence of some data-generating process (DGP), which
maps each element of d ∈ D to some random output. These elements are known as
experimental designs, or, as is more common in electrophysiology, protocols, and each
corresponds to some scenario for which our model can be used to make predictions.
For example, in the toy example presented in Section 3.2.1, each protocol, d ∈ D, is
simply a set of observation times, but for our patch-clamp voltage protocols, each d

corresponds to some particular choice of voltage steps and durations. By performing an
experiment consisting of multiple distinct protocols (a multiprotocol experiment), we
investigate (and quantify) the discrepancy between the DGP and our models in different
situations. Furthermore, the resultant parameter estimates provide insight into model
discrepancy.

However, in the context of voltage-clamp experiments, these designs consist of a
choice of voltage steps and ramps. In this way, each voltage signal (that is, Vcmd) is

43
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treated as a forcing function in our ODE-based Markov models. We may also choose
the sampling frequency, which dictates our observation times. Note that whilst each
voltage-clamp protocol in this chapter uses a 10kHz sampling rate, lower sampling
rates (2–5kHz) are used in the following chapters.

When fitting our mathematical models using standard frequentist or Bayesian ap-
proaches, it is typically assumed that there is no model discrepancy; in other words,
that the data arise from the model (for some unknown, true parameter set). This is a
necessary condition for some desirable properties of the parameter estimators which
provide some guarantees regarding the accuracy of parameter estimates when there are
many observations (as discussed in Section 3.3.1). However, when model discrepancy
is not considered, we may find that the ability of a model to make accurate predictions
is compromised. In particular, if we try to validate our model with a protocol dissimilar
to that used for fitting, there can be a noticeable difference between our predictions
and the data—even when the model appears to accurately recapitulate the data used for
fitting. This problem is illustrated by a simple, toy problem in the following section.

In Section 3.2.1, we present a simple example, in which each protocol corresponds
to a particular choice of observation times. Then, in Section 3.3, we introduce a similar
approach using IKr models and synthetically generated patch-clamp data using a diverse
range of voltage-clamp protocols. Here, we demonstrate that, for a discrepant model, the
resultant parameter estimates and model predictions depend on the particular protocol
used for model fitting, where experimental design relates to the aforementioned Vcmd

voltage signals. We use this variability in model predictions to evaluate the suitability
of our models, and provide empirically-derived, spread-of-prediction intervals which
provide some quantification of predictive uncertainty due to model discrepancy. We
demonstrate the utility of these methods under synthetically generated data by con-
structing two examples of model discrepancy. These methods are later applied to real,
experimental data in Chapters 4 and 5.

3.2.1 Motivating Example

In this section, we construct a simple, toy model example in which a discrepant model
is fitted under a range of experimental designs. To do this, we generate synthetic data
under a DGP which differs from the model being fitted. This example demonstrates
that, when using discrepant models, the experimental design we use for model fitting
has an impact on the value of parameter estimates and the resultant model predictions.

First, we construct a DGP formed of the sum of two exponential terms,

y∗(t) = exp{−t}+ exp
{
− t

10

}
(3.1)

z∗(t) = y∗(t)+ ε(t), (3.2)
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for some t > 0, where, for each t > 0, ε(t) is an independent Gaussian random variable
with zero mean and variance, σ2 = 10−4. Here, z∗(t) is a random variable representing
an observation of the system at some time, t.

Next, we attempt to fit a model which takes the form of single exponential decay,

y(t;θθθ) = θ1 exp
{
− ti

θ2

}
(3.3)

z(t;θθθ) = y(t;θθθ)+ ε(ti), (3.4)

to these data, denoting the column matrix [θ1,θ2]
T by θθθ . We call this a discrepant

model because there is no choice of θθθ such that y(t;θθθ) = y∗(t), for all t > 0.
To fit our model, we choose a set of n observation times, T = {t1, t2, . . . tn}. We may

then find the parameter set, θ̂θθ(T ), which minimises the sum-of-squares error between
our discrepant model (Equation (3.4)) and each z(θθθ ; ti), that is,

θ̂θθ(T ) = argminθθθ∈Θ

{
∑

ti∈T

(
y(ti;θθθ)− z∗(ti)

)2

}
, (3.5)

where T is some set of observation times.
Then, we consider multiple experimental protocols which we may use to fit this

model (Equation ((3.4))). In particular, we consider the following sets of observation
times

T1 = {0, 0.01, 0.02, . . . ,0.01} , (3.6)

T2 = {0, 0.1, 0.2, 0.3, . . . , 1} , (3.7)

T3 = {0.2, 0.3, 0.4, 0.5, . . . , 1.2} , (3.8)

T4 = {0.5, 0.55, 0.6, . . . , 1} , and (3.9)

Tall = T1 ∪T2 ∪T3 ∪T4. (3.10)

We sample from the DGP 10 times by computing Equation (3.2) for each observation
time, t, and adding IID Gaussian noise. Then, for each sample of the DGP, we compute
parameter estimates using each set of observation times (T1,T2,T3,T4 and Tall). This pro-
cess is then repeated with a ten-fold increase in sampling rate, that is, with observation
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Figure 3.1: Under model discrepancy, parameter estimates depend on the design used
for fitting—even when our models are practically identifiable (see Section 2.3.4) and
calibrated with a vast amount of information-rich data. Panels to the left of the dotted
line correspond to designs containing n = 11 observations at times (T1, . . . ,T4 as shown
in Panel a). Panels on the right show designs with n = 101 observations, (T ′

1, . . . ,T
′

4 as
shown in Panel b) (a) and (b): representative datasets generated by the DGP shown with
the solid black line (Equation (3.1)) with points indicating observations (sampled using
Equation (3.2)) and the fitted discrepant model (Equation (3.4)), with calibrated θθθ )
(grey dashed lines). (c) and (d): the parameter estimates for each design, each fitted to
one of ten repeats of the DGP. (e) and (f): 99% Bayesian credible regions obtained using
MCMC, a uniform prior and a single repeat of the DGP. (g) and (h): predictions using
the discrepant model fitted using a single repeat of each design (using the estimates
shown in e and f), showing the true DGP (black), discrepant model predictions (red),
and the difference between predictions (grey).
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times,

T ′
1 = {0, 0.001, 0.002, . . . ,0.01} , (3.11)

T ′
2 = {0, 0.01, 0.02, 0.03, . . . , 1} , (3.12)

T ′
3 = {0.2, 0.21, 0.22, 0.23, . . . , 1.2} , (3.13)

T ′
4 = {0.5, 0.505, 0.51, . . . , 1} , and (3.14)

T ′
all = T1 ∪T2 ∪T3 ∪T4. (3.15)

As shown in Figure 3.1, for each sample of the DGP, we obtain a parameter estimate
from each set of observation times, each with a different distribution. For instance,
fitting using T1 results in a model that approximates the DGP well on short timescales,
and fitting using T4 allows us to recapitulate the behaviour of the system over longer
timescales, as can be seen in Panel a. From how closely the discrepant model (Equa-
tion (3.4)) fits the data in the regions where observations are made (in Figure 3.1,
Panels a and b), we can see that, in either case, a single exponential seems to provide a
reasonable approximation to the DGP. However, if we require an accurate model for
both the slow and fast behaviour of the system, model discrepancy presents an issue,
and this model (namely, Equation (3.4)) may be unsuitable. This is the case for T2 as
shown in Figure 3.1a. This variability in behaviour is shown in Figure 3.1 (Panels g
and h) which shows how the model’s predictions for 0 ⩽ t ⩽ 2 depend on what protocol
was used to fit the model.

The Bayesian posteriors illustrated in Figure 3.1, Panels e and f, show that we
are not able to avoid the problems caused by model discrepancy by simply adopting
a Bayesian framework—we will obtain precise parameter estimates that are highly
dependent on the chosen fitting protocol, nevertheless. This problem becomes more
obvious when we increase the number of observations. In the examples detailed in
this chapter, we explore this ‘high-data limit’ where the variability in each parameter
estimate (under repeated samples of the DGP) is minuscule compared to the difference
between parameter estimates obtained from different protocols.

3.3 Methods

Here, we provide a general overview of our proposed methods before providing two
real-world examples of their applications. In Section 3.3.1 we explain our computational
methods in detail. In particular, we describe a method for validating our models, in
which we evaluate predictive accuracy whilst using many different pairs of protocols for
fitting and validation. This motivates our proposed methods for combining parameter
estimates obtained from different protocols to empirically quantify the impact of model
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discrepancy on predictions of unseen protocols. These methods are expanded upon
in later chapters in this thesis, where they are applied to real, experimental data sets
instead of synthetically generated data.

We begin this section by providing a general introduction to our multiprotocol, cross-
validation approach. Here, we use the same notation as in Section 2.3, where our mean
function under protocol d is denoted F(θθθ ;d), with components corresponding to our
nd observations under protocol d, (Fi(θθθ ;d))nd

i=1. Likewise, we denote the observations
made under protocol d by z(d), making the dependence on the chosen protocol explicit.

3.3.1 Fitting models using multiple experimental protocols

Evaluation of predictive accuracy and model fitting

We fit our model to a given experimental design, d, by computing a a maximum-
likelihood estimate, θ̂θθ d (using Equation (2.29)). Then, we validate our model by com-
puting predictions for some other protocol, d̃ ∈ D. To do this, we compute, F(θ̂θθ d; d̃) ,

where F is the model’s mean function as introduced in Chapter 2 such that the ith

component, Fi, is our ith observable. This is a simulation of the behaviour of the system
(without noise) under protocol d̃ made using parameter estimates that were obtained
by fitting the model to protocol d. In this way, our parameter estimates, each obtained
from different protocols, result in different out-of-sample predictions (predictions under
protocols other than the one used for fitting). Because we aim to fit a model able to
produce accurate predictions for all possible d ∈D, it is important to validate our model
using multiple protocols.

By computing, RMSE
(
F(θ̂θθ d; d̃),z(d̃)

)
we are able to perform model validation for

each pair of fitting and validation protocols (d and d̃, respectively). This allows us
to ensure our models are robust with regard to the fitting protocol, and allow for the
quantification of model discrepancy as demonstrated in Section 3.4.

Consequences of model error/discrepancy

Ideally, we would have a model that is correctly specified. In particular, we assume our
vector of observations, z(d), is such that our ith observation is,

zi = Fi(θθθ
∗;d)+ εi, (3.16)

where d is the protocol under consideration and θθθ
∗ is some fixed, unknown parameter

vector, and, as in Chapter 2, our observational errors, {εi}n
i=1 are IID distribution

Gaussian random variables with zero-mean and variance σ2.
We then consider the distance between an estimate θ̂θθ and the true value—that is, the

error in our parameter estimates. As discussed in Chapter 2, when the model is correctly
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specified, and provided certain regularity conditions hold, we can obtain arbitrarily
accurate parameter estimates by increasing the number of observations, n. That is, more
precisely, that θ̂θθ converges in probability to θθθ

∗ as n → ∞ (Seber and Wild, 2005).
However, when fitting discrepant models, we may find that our parameter estimates

are heavily dependent on the fitting protocol, as demonstrated for our toy model in
Section 3.2.1. For unseen protocols, these discordant sets of parameter-estimate vectors
may lead to a range of vastly different predictions, even if each parameter set provides
a reasonable fit for its respective protocol. In such a case, further data collection may
reduce the variance of these parameter estimates (under repeated data collection under
the same protocol), but fail to significantly improve the accuracy of our models when
predicting other, unseen protocols. In other words, further data collection does not
guarantee a more accurate predictive model.

In Section 3.4, we explore two examples of synthetically constructed model dis-
crepancy. In Section 3.4.1, we have that f and h (as in Equations (2.58) and (2.23)) are
exactly those functions used to generate the data, and the exact probability distribution
of the observational errors is known. However, the maximal conductance parameter is
fixed to a value that was not used for data generation. Consequently, the true parameter
set θθθ

∗ lies outside the parameter space considered for model fitting. Under the assump-
tion of structural identifiability (and a compact parameter space), this is an example of
model discrepancy because there is some limit to how well our model can recapitulate
the DGP as we will never recover the true data-generating parameter set.

In Section 3.4.2 we explore another example of model discrepancy where our choice
of f (and, in this case, the dimensions of θθθ and x) are misspecified by fitting a model
which differs structurally from the one used in the DGP. Again, in this case, the model
that we fit differs from that used for data generation, and so, this is an example of model
discrepancy.

Ensemble fitting and prediction interval

As outlined in Section 3.3.1, we can obtain parameter estimates from each protocol
d ∈D by finding the θ̂θθ ∈ Θ that minimises Equation (2.32). We then obtain an ensemble

of parameter estimates, {
θ̂θθ d : d ∈ Dfit

}
. (3.17)

Then, for any validation protocol d̃, the set,

{
y(θ̂θθ d; d̃) : d ∈ Dfit

}
, (3.18)

is an ensemble of predictions where Dfit ⊆D is some set of fitting protocols. Then we
may consider the range of our predictions for each observation of interest. For the ith
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observation of our validation protocol, d̃, that is

B(i) =
[
B(i)

lower,B
(i)
upper

]

=

[
min

d∈Dfit

{
Fi(θ̂θθ d; d̃)

}
, max

d∈Dfit

{
Fi(θ̂θθ d; d̃)

}]
. (3.19)

When all observations are considered at once, Equation (3.19) comprises a band of
predictions, giving some indication of predictive uncertainty. We demonstrate below
that this band provides a useful indication of predictive error for unseen protocols, and
provides a range of plausible predictions. We propose that a wide band of predictions for
a given validation protocol suggests that there is model discrepancy and poor prediction
accuracy for a particular context of use.

Note that the width of this band at any given point (Equation (3.19)) cannot decrease
as more protocols are added, it may only get larger. Therefore, if a large number
of protocols are considered, percentiles of our ensemble of predictions may be more
suitable. However, in this chapter, we only consider cases where there are a small
number of protocols (five protocols are used for fitting in each of the examples discussed
in Section 3.4). In later chapters, the number of protocols increases somewhat when 11
distinct fitting protocols are considered.

For the purposes of a point estimate, we may use the midpoint of each interval,

B(i)
mid =

B(i)
lower +B(i)

upper

2
. (3.20)

This is used to assess the predictive error of the ensemble in Figure 3.8. There are other
ways to gauge the central tendency of the set of predictions (Equation (3.18)). Such a
change would have little effect on Section 3.4, but a median or weighted mean may be
as (or more) suitable for other problems.

3.3.2 Application to IKr models

We now turn our attention to an applied problem in which dynamical systems are used
to model IKr under the application of various voltage-clamp protocols. The models we
employ are Markov models (as introduced in Section 2.2.3) augmented with additive
Gaussian observational errors.

IKr Markov models under consideration

In this chapter, we use two examples of Markov models for both data generation and
model fitting. As discussed in Chapter 2, these two Markov models may be characterised
by their respective transition-rate matrices, and, for both models, the evolution of the
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proportion of channels in each of N states is governed by,

dx
dt

= Q(Vm)
⊤x, (3.21)

where Q is an N ×N transition-rate matrix, x is a N-vector where each component
describes the proportion of channels in a given state, and Vm is the transmembrane
potential. As shown in Appendix A, we may simplify Equation (3.21), and instead
compute,

dx̃
dt

= A(Vm)x̃+b(Vm), (3.22)

for some voltage-dependent matrix A(Vm), and voltage-dependent vector b(Vm), where
x̃ is x with the bottom element, xN omitted. This final component, xN, may be recovered
from x̃ by using the conservation constraint, x⊤1 = 1, from which we see,

xN = 1− x̃⊤1. (3.23)

For both models, the state-variables vector x is mapped onto our ith observable, Fi,
by computing,

Fi = gxO(ti;θθθ ,d)(Vm −EKr), (3.24)

where g is the maximal conductance parameter (an element of θθθ ), xO denotes the
proportion of channels in the open conformation (an element of x), ti is the time
corresponding to the ith observation, and d is the protocol under consideration. Our
ith observable, Fi, is then mapped onto our ith observation, zi, via the addition of a
zero-mean Gaussian random variable (Equation (3.16)).

The first model of IKr we consider is by Beattie et al. (2018). This is a four state
Markov model with nine parameters (8 of which relate to the model’s kinetics). For data
generation, we use the parameters that Beattie et al. (2018) obtained from one particular
cell (namely, Cell #5) by fitting their model to data obtained from an application of the
“sinusoidal protocol” with a manual patch-clamp setup. The cells used were Chinese
hamster ovary cells, which were made to heterologously over-express hERG1a. These
experiments were performed at room temperature.

The second model was first presented in Wang et al. (1997). This is a five-state
model which has 15 parameters (including the maximal conductance parameter). These
parameters were obtained by performing multiple voltage-clamp protocols, all at room
temperature, on multiple frog oocytes overexpressing hERG. These experiments are
used to infer activation and deactivation time constants as well as steady-state current
voltage relations, which are, in turn, used to produce estimates of model parameters.
Of the two parameter sets provided in Wang et al. (1997), we use the parameter set
obtained by using the extracellular solution with a 2 mM concentration of potassium
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chloride, as this most closely replicates physiological conditions. The values of the
model parameters for both the Beattie et al. (2018) and Wang et al. (1997) models (as
used in Sections 3.4.1 and 3.4.2) are provided in Appendix B (Table B.1).

Before and after each protocol, cells are left to equilibrate with the transmembrane
potential, Vm, set to the holding potential, Vhold =−80 mV. Therefore, we require the
initial conditions, for at time t = 0,

x(0) = x∞(Vhold), (3.25)

where, x∞(Vhold) is the unique steady-state solution for the linear system,

dx
dt

= Q⊤(Vhold;θθθ f )x , (3.26)

subject to the constraint x⊤1 = 1. The existence and uniqueness of such a steady state
is demonstrated in Appendix A. Moreover, as described in Appendix A, we rewrite our
system of equations in terms of N −1 state variables, where N is the number of states,

dx̃
dt

= A(Vhold)x̃+b(Vhold). (3.27)

In particular, we choose A and b such that x̃ = (x1, . . . ,xN−1)
⊤. Then the steady state

may be found by setting dx̃
dt = 0 and solving the resulting linear system of equations.

We expect that simulating our models using the reduced form (Equation (3.27)) reduces
the computation required to fit our models.

As is standard for models of IKr (Beattie et al., 2018), we take our observation
function to be

IKr = h(x, ti;g,d) = g · xO(t;θθθ f ,d) · (V (t;d)−EKr), (3.28)

where [O] denotes the proportion of channels in an “open” conformation (one of the
components of x); g is the maximal conductance; and the reversal potential, EKr, is
assumed to be the Nernst potential. The Nernst potential is found by computing,

EKr =
RT
F

ln
{
[Kout]

[Kin]

}
, (3.29)

where R is the gas constant, F is Faraday’s constant, and T is the temperature and [Kin]

and [Kout] are the intracellular and extracellular concentrations of K+, respectively. Here,
we choose the temperature to be room temperature (T = 298K), and our intracellular and
extracellular concentrations to be 120 mM and 5 mM, respectively, which approximately
correspond to physiological concentrations. Hence, for all synthetic data generation,
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fitting, and validation in Sections 3.4.1 and 3.4.2, we fix EKr = −80.24 mV (using
Equation (3.29)).

We assume that our observational errors are additive Gaussian IID random variables
with zero mean and variance, σ2, that is,

zi = Fi + εi, (3.30)

where {εi}n
i=1 is a set of IID Gaussian random variables, where for each i,

εi ∼ N(0,σ). (3.31)

Accordingly, our models are fitted using MLE by computing the least-squares parameter
estimates.
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Figure 3.2: The structural differences between the two Markov model structures used in
this chapter for synthetic data generation and model fitting. (a): the four-state Beattie
et al. (2018) model used in both Case I and Case II. (b): the five-state Wang et al.
(1997) model used only for Case II. When a channel is in the open/conducting (O) state
(green) current is able to flow. Whereas, when the model is in the other closed (C) or
inactivated (I) states, no current can flow. The arrows adjacent to each model structure
indicate the direction in which rates increase as the voltage increases.

Experimental Designs for Voltage Clamp Experiments

A large amount of data can be recorded in voltage-clamp electrophysiology experiments,
where the current may be recorded at a several-kHz sampling rate for many minutes.
In what follows, we take observations of the current at the same 10 kHz frequency
for all protocols. Experimenters have a great deal of flexibility when it comes to
designing voltage-clamp experiments (specifying voltage-clamp protocols). A number
of studies having been published on the benefits of “information-rich” experimental
designs (Beattie et al., 2018; Lei et al., 2019a,b; Clerx et al., 2019a; Kemp et al., 2021).
In a real patch-clamp experiment, the amount of data we can obtain from each cell is
limited. Hence, it is not feasible to perform many long protocols in sequence on the
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same cell. We use five short information-rich protocols for the purposes of model fitting,
denoted d1 to d5, as shown in Figure 3.3.

Here, we use simple designs consisting of a combination of sections where the
voltage is held constant or “ramps” where the voltage increases linearly with time
for compatibility with automated high-throughput patch clamp machines which are
restricted to protocols of this form. For the protocols included in this chapter, short
identical sequences including ramps are placed at the beginning and end of each protocol.
In real experiments, these elements will allow for quality control, leak subtraction, and
the estimation of the reversal potential (Lei et al., 2019a,b), as described in Chapter 4.
The central portion, consisting of steps during which the voltage is held constant, is
what varies between protocols. These constant-voltage steps were chosen as to simplify
the optimisation of protocols (Mirams et al., 2024), and to allow the model to be solved
using matrix-exponential methods (as discussed in Section 2.2.3).

Not all possible designs are suitable for fitting models. Sometimes we encounter
protocols for which the model output is not sensitive to certain changes in parameter
values—that is, the model is not practically identifiable from the resulting data (as
discussed in Chapter 2.3.4). Subsequently, when fitting the model to data generated
from such a protocol, many different parameter sets give similar fits. This is, generally
speaking, best avoided, particularly when we use our models for predictions dissimilar
to those used for training, which may be sensitive to such changes in parameters.

Under both the Beattie et al. (2018) and Wang et al. (1997) models, practical uniden-
tifiability is a problem for the long action-potential protocol (Lei et al., 2024), denoted
d0. This practical unidentifiability is illustrated for a similar IKr model and protocol
in Figure 3 of Whittaker et al. (2020a)). Nevertheless, d0 mimics the transmembrane
potential of a myocyte in a range of scenarios. The precise waveform of a cardiac action
potential varies depending on the precise location of the myocyte (such as in ventricular
or atrial tissue), or under different pacing rates, for example (Giles and Imaizumi, 1988;
ten Tusscher et al., 2004). Hence, protocol d0 allows validation of our models’ ability to
recapitulate well-studied, physiologically-relevant behaviour. Due to this physiological
relevance, and lack of practical identifiability, we use d0 as a validation protocol, but
not for model fitting.

The remaining designs, d1–d5, were constructed using various criteria under con-
straints on voltage ranges and the duration of each step as described in Lei et al. (2024).
The protocol d1 was designed algorithmically by sampling from a probability distribu-
tion placed over possible parameter sets and maximising the difference in model outputs
between all pairs of parameter sets sampled from this distribution; d5 was the result of
the same algorithm applied to the Wang et al. (1997) model. In contrast, d4 is a manually
designed protocol used previously (Lei et al., 2019a) based on a simplification of a
sinusoidal design (Beattie et al., 2018). The design, d2 is a further manual refinement of
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Figure 3.3: Left: a range of different input voltage-clamp protocols (forcing functions)
used in this study. Right: corresponding synthetic output data IKr simulated using
the Beattie et al. (2018) model with noise added as described in Section 3.3.2. Here,
we generate and plot data observed at a 10 kHz sampling rate. fitting protocols (all
protocols except d0) were tested for practical identifiability: inverse problems performed
on synthetic data with repeatedly sampled random noise yielded parameter estimates
with little variability.
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d4, which aims to explore inactivation processes (rapid loss of current at high voltages)
more thoroughly. Finally, d3 is based on maximising the exploration of the model state
space for the Beattie et al. (2018) model, visiting as many combinations of binned
model states and voltages as possible (Mirams et al., 2024). The main thing to note for
this study, however, is that protocols d1–d5 were designed to result in good practical
identifiability (Fink and Noble, 2009) for both models. This is shown in the results
presented in Section 3.4 (and in Figure B.2 for λ = 1 for the Beattie et al. (2018) model,
and Figure B.5 for the Wang et al. (1997) model). From these results, we can see
that all five fitting protocols yield very low-variance parameter estimates when used
to fit model parameters under synthetically generated data (under the assumption of a
correctly specified model).

This practical identifiability is a useful property, because it allows us to disregard the
(very small) effect of different random noise in the synthetic data on the spread of our
predictions (Equation (3.19)). A summary of these protocols is provided in Table 3.1.1

Protocol duration (s) number of segments code name

d0 8.4 63 longap
d1 39.2 57 hhbrute3gstep
d2 15.0 52 sis
d3 18.8 64 spacefill19
d4 22.5 58 staircase
d5 32,6 58 wangbrute3gstep

Table 3.1: The duration of and number of segments in each protocol that we performed.
During these segments, the command voltage is either held constant, or changes accord-
ing to some constant gradient (a ramp). Here, the number of segments includes segments
which are common to all of our protocols—the leak ramp and reversal ramp, and their
associated +40 mV pre-conditioning steps. The staircase and longap protocols (d1 and
d6, respectively) were first introduced in Lei et al. (2019a), and the remaining protocols
are discussed in Lei et al. (2024).

Computational Methods

Numerical solution of ODEs Any time we calculate F(θθθ ;d), we must solve a system
of ordinary differential equations. We use a version of the LSODA solver designed
to work with the Numba package, and Python to allow for the generation of efficient
just-in-time compiled code from symbolic expressions. We partitioned each protocol
into sections where the voltage is constant or changing linearly with respect to time

1Note that the labelling of our protocols in this chapter differs from the labelling in Chapters 4 and 5,
where a larger number of protocols are considered. The code names listed in Table 3.1 remain consistent
between chapters, however.
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because this sped up our computations. We set LSODA’s absolute and relative solver
tolerances to 10−8. The fact that the total number of channels is conserved in our
models, allows us to reduce the number of ODEs we need to solve from N to N − 1
(Fink and Noble, 2009), where N is the number of conformational states in the model.
This is discussed further in Appendix A.5.

Synthetic data generation Having computed the state of the system at each ob-
servation time, (x(ti,θθθ ∗,d))nd

i=1, it is simple to compute Fi by substituting x into our
observation function (Equation (3.16)). Finally, to add noise, we obtain nd independent
samples using Equation (3.16), using NumPy’s (Harris et al., 2020) interface to the
PCG-64 pseudo-random number generator. Here, because we are using equally spaced
observations with a 10 kHz sampling rate, nd = 10,000× tduration where tduration is the
length of the protocol’s voltage trace in seconds.

Optimisation Finding the least-squares estimates, or, equivalently, minimising the
RMSE between the mean function and data (as described in Section 2.3) is (in general)
a nonlinear optimisation problem for which there exist many numerical methods. We
use CMA-ES (Hansen, 2016) as implemented by the PINTS interface (Clerx et al.,
2019b). As discussed in Section 2.3.2, CMA-ES is a global, stochastic optimiser that
has been applied successfully to many similar problems. We terminate the optimisation
once 200 iterations have failed to yield a materially improved parameter set (that is, by
decreasing the sum-of-squares error by more than 10−7). We select the population size
(that is, the number of parameter vectors sampled for each generation) by computing
the integer,

npop :=
⌊
4+3ln

(
np
)⌋

, (3.32)

where np is the number of model parameters. This heuristic is suggested by the PINTS
package (Clerx et al., 2019b)

We follow the optimisation advice provided in Clerx et al. (2019a). Here, for pa-
rameters ‘A’ and ‘b’ in state transition rates of the form k = Aexp{(bV )}, the optimiser
works with ‘logA’ and untransformed ‘b’ parameters. We enforce fairly lenient con-
straints on our parameter space, Θ, to prevent a proposed parameter set from forcing
transitions to become so fast/slow that the ODE system becomes very stiff and com-
putationally difficult to solve. In particular, we take a similar approach to Clerx et al.
(2019a) we require that every parameter is positive, and, for ease of computation,

1.67×10−5 ms−1 ⩽ kmax ⩽ 103 ms−1, (3.33)
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where kmax is the maximum transition rate, k(Vm), for all

Vm ∈ [−120 mV,+60 mV],

which is the range of voltages applied during our protocols (Figure 3.3).
To ensure that we have found the global minimum (that is, that we have accurately

computed Equation (2.32)), we repeat every optimisation numerous times (25 repeats
for λ = 1 in Case I, 5 repeats for subsequent λ , and 25 repeats in Case II). Moreover,
in Section 3.4.2, when fitting the discrepant model, our initial guesses for the kinetic
parameters are randomly sampled using

log10(p)∼U(−7,−1), (3.34)

whereas we set the maximal conductance initial guess (which only affects the obser-
vation function) to the value used for data generation (even though these data were
generated using a different model structure). We then check that our parameter set satis-
fies Equation (3.33), and resample if necessary before commencing the optimisation
routine.

The examples presented in Sections 3.4.1 and 3.4.2 require the solution of many
optimisation problems. For speed, we organised these tasks in such a way that they can
be run in parallel on a high-performance computing resource.

3.4 Results

In this section, we use synthetically generated data to explore two cases of model dis-
crepancy in Markov models of IKr. In this first case, we gradually introduce discrepancy
into a model with the correct structure by fixing one of its parameters to values away
from the DGP parameter set. Then, in Section 3.4.2, we apply the same methods to
another case where the model structure is incorrectly specified. In both cases, we take
a literature model of IKr together with Gaussian IID noise to be the DGP—in the first
case, we assume a DGP based on the Beattie et al. (2018) model, whereas in the second,
we assume a DGP based on the Wang et al. (1997) model. Again, these conflicting
model structures are shown in Figure 3.2.

3.4.1 Case I: Misspecified maximal conductance

In this case, we assume a correctly specified model, but assume increasingly erro-
neous values of one particular parameter and investigate how this impacts the protocol-
dependence of our parameter estimates and the predictive accuracy of our models. Also,
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we explore how the spread in our model predictions (Equation (3.19)) increases as the
amount of discrepancy increases (in a particular manner).

To do this, we simulate data generation from each fitting protocol, as outlined, ten
times using Gaussian IID noise with standard deviation (30pA). Specifically, we take
the true DGP to be the Beattie et al. (2018) model, as shown in Figure 3.2. Then, we
fix the maximal conductance, g, to a range of values, and infer the remaining model
parameters from the synthetic data, which we generate using the true parameter set, θθθ

∗.
We assume that the standard deviation of the Gaussian noise is known because it can be
well estimated from the initial portion of each protocol where the current is stationary.

When fitting our models, we use a restriction of the usual parameter space to fit the
data by assuming some fixed value, λ , for the maximal conductance, g. In this way, we
reformulate the optimisation problem slightly such that Equation (2.32) becomes,

θ̂θθ λ (d) = argminθθθ∈Θλ
{RMSE(y(θθθ ;d),z(d))} , (3.35)

where Θλ is the subset of parameter space where the maximal conductance is fixed
to λg. For each repeat of each protocol, we solve this optimisation problem for each
scaling factor, λ ∈

{1
4 ,

1
2 ,1,2,4

}
. These calculations are identical to those used in the

computation of profile likelihoods under the assumption of additive IID Gaussian errors
(Bates and Watts, 1988).

Next, we fit these restricted parameter-space models to the same dataset and assess
their predictive power under the application of a validation protocol. We do this for
each possible pair of fitting and validation protocols. To reduce the time required for
computation, we fit our discrepant models sequentially, starting at λ = 1 and increasing
or decreasing λ , using previous parameter estimates as an initial guess. This is done
so that, for example, the kinetic parameters found by fixing λ = 2 are used as our
initial guess when we fit the model with λ = 4, unless the original kinetic parameters
(Table B.1) provide a smaller RMSE than the results of the previous optimisation.

The spread in predictions for the validation protocol, d0, for, λ ∈ {1
4 ,1,4} is shown

in Figure 3.4. A more complete summary of these results is provided by Figure 3.5.
Here, when λ = 1 (the central row of Figure 3.5), we can see that no matter what
protocol is used to fit the model, the distribution of parameter estimates (Panel a) is
centred around their true values, and the resultant predictions are all accurate (Figure 3.5,
Panels b and c). In contrast, when the maximal conductance, g is set to an incorrect
value our parameter estimates become biased and our predictions become much less
accurate overall. This effect on predictive accuracy is also shown in Appendix B.2
(Figure B.1). This effect does not appear to be symmetrical, with λ < 1 seemingly
resulting in more model discrepancy than λ > 1. Here, we also see that the inaccuracy
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in our parameter estimates and our predictions depends on the design used to fit the
model.

Further results are provided in Section B.2. Figure B.1 shows the error in our
predictions of d0 for a range of λ . Table B.2 examines the distribution of our param-
eter estimates for each protocol (under repeated samples of the DGP) for different
values of λ and Table B.3 shows the behaviour of our spread-of-predictions interval
(Equation (3.19)) and midpoint prediction Equation (3.20) for different values of λ .

3.4.2 Case II: Misspecified dynamics

Next, we apply these methods to an example where we have misspecified the dynamics
of the model (the function f in our governing equation, Equation 3.21). We use two
competing Markov models of hERG kinetics, the Beattie et al. (2018) model and the
Wang et al. (1997) model. These models have differing structures and differing numbers
of states, as shown in Figure 3.2. We generate a synthetic dataset under the assumption
of the Wang et al. (1997) model with Gaussian IID noise (with standard deviation 30pA)
and the original parameter set as given in Wang et al. (1997), for all the protocols shown
in Figure 3.3. As in Case I, we assume the standard deviation of this noise is known.

Then, we are able to fit both models to this dataset, obtaining an ensemble of
parameter estimates and performing cross-validation as described in Section 3.3. In this
way, we can assess the impact of choosing the wrong governing equations (our choice
of f), and its impact on the predictive accuracy of the model. We do this to investigate
whether the techniques introduced in Section 3.3.1 are able to provide some useful
quantification of model discrepancy when the dynamics of IKr are misspecified.

Our results, presented in Figures 3.6 and 3.7, show how we expect a correctly
specified model to behave in comparison to a discrepant model. We can see from the
bottom row of Figure 3.7, that when using the correctly specified governing equation,
we were able to accurately recover the true maximal conductance using each and every
protocol. Moreover, similarly to Case I, no matter which protocol the correctly specified
model was fitted with, the resultant predictions were very accurate (as can be seen in
Figure 3.6).

However, when the discrepant model was used, there was significant protocol
dependence in our parameter estimates, and our predictions were much less accurate
overall. Moreover, it seems that for the majority of d0, the spread in predictions across
fitting protocols (Equation (3.19)) was smaller than those seen in Case I, but there
are certain portions where the discrepant model and DGP are noticeably different (as
highlighted in Figure 3.6). This may be due to the structural differences between the
Wang et al. (1997) and Beattie et al. (2018) models. In particular, in the Wang et al.
(1997) Model, channels transitioning from the high-voltage inactive state (I), must
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Figure 3.4: The set of predictions (Equation (3.18)) shown for parameter estimates
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Beattie et al. (2018) model). The synthetically generated data used for model validation
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discrepant model is fit to synthetic data, with all parameters free except the maximal
conductance, g, which is scaled by some factor λ , (g = λg∗), where g∗ is the true value.
Panel a: estimates of θ1 and θ2 obtained by fitting with different protocols for 10 repeats
of the DGP. The lines (linearly interpolated using 17 values for λ ∈ [1

4 ,4]) show how the
estimates from each protocol improve as λ → 1, and how they disperse as λ increases
and decreases (that is, when model discrepancy increases). Panel b: d0 voltage protocol.
Column c: the spread of predictions of IKr under the d0 protocol using the parameter
estimates in Column a. Column d: heatmaps showing the predictive error obtained by
fitting and validating for each pair of protocols. Here, Column c corresponds with the
top row of each heatmap, as indicated.
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transition through the conducting, open state (O) in order to reach low-voltage closed
states (C1, C2, C3), causing a spike of current. Instead, channels in the Beattie et al.
(2018) Model may transition through the inactive-and-closed state (IC) on their way
between O and C, resulting in reduced current during steps from high voltage to low
voltage.

Nevertheless, our methods provide a useful indication of this model discrepancy.
Figure 3.8, examines the behaviour of our prediction interval (Equation (3.19)) in
more detail. Importantly, we can see that our interval shows little uncertainty during
sections of the protocol where there is little current (this is also seen in Figure 3.7a and
Figure 3.6). This is ideal, because no reasonable model would predict a sizeable current
here. On the other hand, we see that our intervals show significant uncertainty around
the spikes in current that occur at the start of each action-potential waveform. This is
to be expected because it is known that these sections of the current time-series are
particularly sensitive to differences in the ‘rapid inactivation’ process in these models
(Clerx et al., 2019a).

Further results regarding Case II are provided in Section B.3. In particular, Ta-
bles B.4 and B.5 summarise the behaviour of our parameter estimates for each choice
of model.
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Figure 3.6: Case II: the set of predictions (Equation (3.18)) shown for parameter
estimates obtained by fitting Beattie et al. (2018) and Wang et al. (1997) models with
data synthetically generated using the Wang et al. (1997) Model. Panel a: the d0
voltage-clamp protocol. Panel b: the set of predictions using the Beattie et al. (2018)
Model. Panel c: the set of predictions with the Wang et al. (1997) Model, that is, with
under the assumption of the correct model structure.
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Figure 3.7: Model discrepancy between the Beattie et al. (2018) Model and synthetic
data generated using the Wang et al. (1997) Model. Panel a: estimates of the maximal
conductance obtained by fitting with different protocols for ten repeats of the DGP.
There is a noticeable protocol dependence for estimates obtained using the (discrepant)
Beattie et al. (2018) Model, but the true underlying parameter (dashed line) can be
accurately determined from any protocol when using the (correct) Wang et al. (1997)
Model. Panel b: d0 voltage protocol. Panel c: the spread of predictions for IKr under the
d0 protocol for discrepant (Beattie et al., 2018) and correct (Wang et al., 1997) models,
which are shown in more detail in Figure 3.6. Panel d: cross-validation heatmaps
for both the Beattie et al. (2018) and Wang et al. (1997) models fitted to this suite of
protocols, averaged over ten repeated samples of the DGP for each protocol.
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Figure 3.8: The spread in predictions obtained from different protocols provides a
useful indicator of model discrepancy for Case II. Panel a: the validation voltage-clamp
protocol, d0, with colours corresponding to Panels d and e. Panel b: the spread-of-
predictions interval (Equation (3.19)) for d0 using the Beattie et al. (2018) model fitted
with d1, . . . ,d5. Panel c: the true DGP subtracted from the spread-in-predictions interval.
Panel d: the true DGP with the colour of each observation corresponding to Panels a
and e. Panel e: a scatter plot of the midpoint prediction (Equation (3.20)) and the width
of the predictive interval (Equation (3.19)) for every observation in d0. Here, the red,
dashed lines show the true value of IKr lies on the extremes of the range of predictions.
Accordingly, points above these lines show the observations for which the DGP lies
inside this range, and the points below the line correspond to observations for which
the true DGP lies outside this range. The colours of these points correspond to those in
Panels a and d.
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3.5 Discussion

We have introduced an uncertainty quantification (UQ) approach to highlight when
discrepancy is affecting model predictions. We demonstrated the use of this technique by
providing insight into the effects of model discrepancy on a model of IKr in electrically
excitable cells. Here, we saw that under synthetically constructed examples of model
discrepancy, there was great variability between the parameter estimates obtained
using different experimental designs. This variability is a consequence of the different
compromises that a discrepant model has to make to fit different regimes of a true
DGP’s behaviour. Consequently, these parameter estimates produced a wide range of
behaviour during validation, despite each individual parameter estimate having little
variability under repeated samples of the DGP.

We propose that the variability in the model predictions stemming from this en-
semble of parameter estimates is, therefore, an empirical way of characterising the
predictive uncertainty due to model discrepancy. Usefully, our spread-of-prediction
intervals (Equation (3.19)) correctly indicated little uncertainty when the ion channel
model was exhibiting simple dynamics decaying towards a steady state, but more uncer-
tainty during more complex dynamics, which was indeed when the largest discrepancies
occurred. For many observations under our validation protocol, the true, underlying
DGP lay inside this interval, indicating that Equation (3.19) may provide a useful
indication of predictive error under unseen protocols. We expect that the presented
methods may be of use for problems where the variability in parameter estimates (from
repetitions of each individual protocol) is smaller than the variability between parameter
estimates obtained from different protocols—because there is little noise, and lots of
observations for example. In such cases, the variability in the extremes of our ensembles
(Bupper and Blower) is immaterial compared to the width of the interval (Bupper −Blower).

V

Beattie model
Wang model
Both models

OC3C2C1

IC I

V

Figure 3.9: the Beattie et al. (2018) and Wang et al. (1997) models may be seen as
special cases of this more complicated model. The C3 state is labelled C in the Beattie
et al. (2018) model and C3 in the Wang et al. (1997) model. The arrows outside the
Markov state diagram indicate the direction in which rates increase with more positive
voltage.
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At first, Case I may seem like an artificial example—in practice, the maximal
conductance is taken to be a model parameter and fitted along with the rest of the model.
But Case I and Case II are similar: any two Markov models may be regarded as two
special cases of a more general model with some transition rates fixed to 0 (as shown in
Figure 3.9 for the models used in this chapter). As in Case I, this means that different
model structures can be seen as restrictions of this larger model’s parameter space.
Misspecified model structures can then be identified with subsets of parameter space
which do not contain the true, data-generating parameter set (provided this larger model
is structurally identifiable).

This means there is a setting in which Case II (misspecified governing equations)
is an example of the type of discrepancy explored in Case I, where a “true” parameter
value exists in the more general model, but is excluded in the parameter space being
optimised over when fitting the model. This may prove a valuable perspective for
modelling ion channel kinetics, where there are many candidate models (Mangold et al.,
2021), and each model may be seen as corresponding to some subset of a general model
with a shared higher-dimensional parameter space. Model selection problems have been
framed in this way previously (Ball et al., 1989; Akaike, 1998). In Chapter 5, we extend
our models to include additional, experimental effects. The choice to set fix some of
these additional model parameters to possibly biased estimates is analogous to Cases I
and II, and is expected to induce similar model discrepancy, to some extent.

3.5.1 Limitations

Whilst the spread of predictions under some unseen protocol may provide some feasible
range of predictions, we can see from Figure 3.8, that our observables (the DGP
without noise) often lie outside this range. This is also shown in Figure 3.6 where
certain structural differences between the model and DGP (the inclusion or exclusion
of inactive-to-closed path which bypasses the open state) mean that no Beattie et al.
(2018) Model parameter estimates are able to recapitulate the data. For this reason,
Equation (3.19) is best interpreted as a heuristic indication of predictive uncertainty
stemming from model discrepancy, rather than providing any guarantees about the
output of the DGP. As shown in Figure 3.8, small errors between the median prediction
Bmid and the observed data mostly occur where the bound is narrow, and so large values
Bmax −Bmin are indicative of predictive inaccuracy (though small values provide no
guarantees).

Using more training protocols in the training set may increase the coverage of the
DGP by our interval. Whilst the number of protocols that can be performed on a single
biological cell is limited by time constraints (Beattie et al., 2018; Lei et al., 2019b), the
utilisation of more protocols is likely preferable.
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Besides the examples of model discrepancy considered in Section 3.4, there are other
ways that the DGP can differ from the fitted models. For example, the DGP may not be
accurately described by an ODE system, especially when ion channel numbers are small
and the stochasticity of individual channels opening and closing is apparent. In this
circumstance, the models can be cast in terms of stochastic differential equations (SDEs),
as in Goldwyn et al. (2011), and we can again consider an ensemble of parameter
estimates (Equation (3.17)) and an ensemble of model predictions (Equation (3.18).
The assumption of IID Gaussian errors for the observation noise model could also be
inaccurate. Here, auto-correlated noise processes (for example, as explored in Creswell
et al., 2020; Lambert et al., 2023) could be considered, also. These effects could be
included in the DGP, and it remains to be seen how well our method would perform in
these cases.

3.5.2 Concluding remarks

The spread of predictions of our ensembles, based on fitting to data from multiple
experimental designs, provides a good indication of possible predictive error due to
model discrepancy. Ultimately, whilst our ensemble approach is no substitute for
a correctly specified model, it is a useful tool for quantifying model discrepancy,
predicting the size and direction of its effects, and may guide further experimental
design and model selection approaches. The multiprotocol, cross-validation approach
and model fitting methodology in this chapter is applied to real, experimental data in
the following two chapters.



Chapter 4

Fitting an experimental, multiprotocol
dataset

Preamble

In 2019 a selection of voltage-clamp protocols were designed and run in series in
a “multiprotocol” experiment. However, the data quality was noticeably improved
once Nanion’s “fluoride-free” plates were obtained. Whilst these plates seemed to
lead to a decrease in success rate according to Nanion’s quality control procedures,
we found them to be much more suitable for our purposes, and decided to re-run our
multiprotocol experiments only in a fluoride-free set-up. My analysis of these datasets
showed that a fluoride-free experimental approach was feasible, and would provide the
high-quality data necessary for our multiprotocol approach. Following this analysis, the
data used in this chapter were collected from an experiment by Monique Windley at the
Victor Chang Cardiac Research Institute (VCCRI) in Sydney, Australia on the 25th of
November 2022 (25/11/2022).

The same experiment (with a fluoride-free setup) was later repeated during my
working visit to the VCCRI (November–December 2023), though the 25/11/2022
dataset remained the experiment with the highest success rate (according to the quality-
control procedures introduced in this chapter). For this reason, our analysis focuses
on this 25/11/2022, fluoride-free dataset, though work to extend this analysis to other
datasets is ongoing. The majority of this work is included in a manuscript submitted
for publication, which is currently available as a pre-print (Shuttleworth et al., 2024).
Some details of the exact experimental methodology and equipment used are deferred
to Shuttleworth et al. (2024). What remains in this chapter is my own work.
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4.1 Introduction

In the previous chapter, we fitted ODE-based models (that is, Markov models) to
synthetically generated data, and investigated the effect of model discrepancy on our
parameter estimates and model predictions. In this chapter, we use the same methods to
analyse real experimental data collected from patch-clamp experiments performed on
an automated patch-clamp machine. Applying these methods to real experimental data
(in place of synthetically generated data) presents a number of additional challenges.
For instance, we must perform quality control (QC) to ensure that data from failed
experiments is discarded (so that it does not confound our results), and we postprocess

the raw data, resulting in the postprocessed traces of time-series data (where non-IKr

currents are removed) used to fit our models. In this chapter, we introduce these QC
and postprocessing methods, perform some exploratory analysis on our experimental
data, and, finally, evaluate the suitability of some literature models of IKr.

Ideal-patch assumptions In this chapter, we apply our mathematical models under
the assumption of ideal patch-clamp conditions (Lei et al., 2020a). The first of our ideal-
patch assumptions is that the transmembrane voltage is always equal to the command
voltage plus some constant, systematic offset, that is,

Vm =Vcmd +Voff , (4.1)

where Voff is some (ideally small) systematic voltage offset. Our second ideal-patch
assumption is that the current, after postprocessing, is entirely due to IKr, but subject to
random observation errors. That is to say, we assume that the postprocessed trace used
for model fitting and validation is,

Ipost(ti) = IKr(ti)+ εi, (4.2)

where ti is our ith observation time, and {ε1, ε2 , . . . , εn}, is a set of Gaussian IID
random variables with mean zero, and n is the number of observations. The postpro-
cessing methodology used to produce our postprocessed trace, Ipost, are introduced in
Section 4.3.

We can see that these ideal-patch assumptions do not perfectly align with our
equivalent-circuit view of the model, which includes the capacitive effect of the cell
membrane (as shown in Figure 2.5 in Section 2.1). In particular, the capacitive ef-
fect of the cell membrane is absent in models built under the ideal-patch assumptions
(including those fitted in the previous chapter). However, the ideal-patch assump-
tions (Equations (4.1) and (4.2)) are commonly used to provide simple mathematical
models of IKr and other ion-channel currents (Fink and Noble, 2009; Beattie et al.,
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2018)—though these assumptions may not be stated explicitly. In the following chapter,
Chapter 5, we relax this assumption and adapt our models to account for additional
effects, such as the capacitive effect of the cell membrane. The work presented in this
chapter forms a basis of comparison for these augmented models.

In the following section, Section 4.2, we briefly summarise the experiment method-
ology used to collect these data. During these experiments, we obtain data from a
number of different wells, each of which is designed to apply each of our voltage-clamp
protocols to a single cell, resulting in an independently observed current trace (as shown
in Figure 4.1). Here, suction is used to catch and attach (ideally) a single cell into the
patch-clamp circuit. To select suitable data for the fitting and validation of our models,
we introduce a suite of methods for postprocessing and Quality Control (QC). These
methods, introduced in Section 4.3.1 are necessary to discard poor-quality data from
failed experiments.

As discussed in Chapter 2, the selection of an accurate model structure for IKr,
which is suitable for general use, remains an open problem, and so we compare four
literature models of IKr: the Beattie et al. (2018) and Wang et al. (1997) models explored
in the previous chapter, as well as a simple three-state model and the Kemp et al. (2021)
model (as introduced in Chapter 2). In Section 4.4 we detail the mathematical and
statistical methodology used to fit these models. These methods are mostly similar to
those presented previously in Chapters 2 and 3. The results of this model fitting allow a
detailed comparison of these models’ predictive accuracy, and the variability of their
parameter estimates under an ensemble of experiments (following the methodology
introduced in Chapter 3). In addition to the predictions of our fitted models, we consider
the variability of the corresponding parameter estimates in Section 4.5. This is done by
introducing a linear, multivariate regression model which describes the dependence of
parameter estimates on the well and protocol from which they were obtained. Standard
statistical methods are then used to quantify the importance of the well- and protocol-
dependent effects. This type of well-to-well variability has been explored previously in
the literature, where it is suggested that artefact effects are a leading cause (Lei et al.,
2020a).

4.2 Experimental methods

Our experiments were designed specifically to provide data for some aspects of our
postprocessing methodology—the removal of leak currents, for example. These methods
are necessary for the evaluation of our Quality Control (QC) criteria in Section 4.3.
These criteria are used to identify and remove data from failed experiments, and are
largely similar to those introduced in Lei et al. (2019a), albeit with some additional
criteria for use with our multiprotocol approach.
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Apparatus Experiments were performed on a Nanion SyncroPatch 384 at the Victor
Chang Cardiac Research Institute, Sydney, Australia. The platform used (a Nanion
SyncroPatch 384) uses a wellplate containing 384 separate “wells”, each of which
allowing a single cell to be “patched”—that is, attached to the machine as shown
in Figure 4.1. Once the cells are patched, multiple voltage-clamp experiments are
performed in parallel, by simultaneously applying the same voltage-clamp protocol to
each cell.

Cell

× 384

Columns: 1-24

Rows:
A-P

High throughput patch-clamp 
wellplate
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m
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Figure 4.1: A diagram of a patch-clamp experiment performed on a high-throughput,
automated patch-clamp platform. A seal is formed between the plate and the cell.
The cell membrane is then punctured using automatically applied pressure. Here, the
removal of a miniscule section of cell membrane allows the formation of an electrical
circuit, where current flows from the inside of the cell, through the membrane, to
the amplifier where it is recorded. Figure modified, with permission, from Lei et al.
(2020b).

During an experiment performed on the Nanion SyncroPatch, many cells are de-
posited into each of the 384 wells. Negative pressure is then used to attach a single cell
to a hole in each well. Once a cell is attached to the wellplate, an increase in pressure
punctures a small section of the cell membrane and allows the patch-clamp circuit to
be completed (this circuit is shown in Figure 4.1). Here, an imperfect seal is formed
between the cell membrane and the well plate, allowing some amount of leak current,
IL, to flow.

In our equivalent circuit, this leak current is modelled using an Ohmic resistor
(Equation (4.3)) that is, a resistor with constant resistance/conductance. Here, the

strength of this seal is characterised by the seal resistance, Rseal =
1
gL

. In manual

patch-clamp experiments, a gigaohm seal, that is, Rseal ≥ 1GΩ, is considered desirable
(Sakmann and Neher, 1984), but automated patch-clamp experiments typically result in
reduced seal quality—that is, decreased Rseal and, equivalently, increased gL (Lei et al.,
2019a).

In experiments using the Nanion SyncroPatch, CaF2 is often used as a seal en-

hancer—a compound designed to increase Rseal. However, it has been shown that the
presence of CaF2 complicates the leak current, introducing a nonlinear component (Lei
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et al., 2020b). In fluoride-free experiments, a different preparation is used, which may
allow suitably good seals to be formed without the need for CaF2. We used such an
approach to avoid the introduction of additional model discrepancy through the presence
of nonlinear and time-dependent leak current dynamics.

Solutions replicating Nanion’s standard External NMDG 60 and Internal K Glu-
conate 120 were used, as the potassium concentrations roughly correspond to physio-
logical concentrations. However, our experiments were performed at room temperature
(taken to be 25°C). The SyncroPatch’s cooling fans were used to actively maintain this
temperature throughout the experiment. Further details of the experimental methodology
and equipment used are provided in Shuttleworth et al. (2024).

Pharmacological Isolation of IKr current After applying each voltage protocol to
our cells, we add dofetilide at 1 µM (a concentration known to almost completely block
IKr) and repeat each protocol in the same order as shown in Figure 4.3. By performing
leak correction and subtracting the post-drug, leak-corrected trace from the pre-drug
leak-corrected trace, we are able to isolate IKr with minimal contamination from any
endogenous or other unwanted currents. These postprocessing methods are explained
in Section 4.3.

4.2.1 Design of voltage-clamp protocols

In this chapter, we employ the methodology of Chapter 3, using an ensemble of voltage
protocols to investigate the dynamics of IKr in CHO cells. To do this, we perform a
sequence of protocols on the SyncroPatch 384, such that for each well we obtain data
under the application of each protocol. Provided that the experiment is successful, this
multiprotocol approach provides us with repeats of all protocols across multiple wells,
allowing us to calibrate multiple cell-specific models for each protocol. In particular, for
any given model structure, we obtain a vector of parameter estimates for each repetition
of each protocol in each well—that is, for each sweep.

To ensure the consistency of our IKr recordings over the course of the experiment,
we repeat one of the protocols, Lei et al.’s staircase protocol (Lei et al., 2019b) four
times—twice at the beginning of the experiment and twice again after all other protocols.
All other protocols are performed once only, as to minimise the total duration of the
experiment.

Leak ramp As shown in Figure 4.1, the seal between the wellplate and the cell is
imperfect, resulting in a small leak current. We assume that this current is of the form,

IL = gL(Vm −EL), (4.3)
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where gL is a constant leak conductance and EL is the leak reversal (that is, the
transemembrane potential at which there is no leak current). Our protocols are designed
to allow the easy estimation of these leak-model parameters (gL and EL), and the
subsequent subtraction of this current from our traces. This is achieved by the inclusion
of a leak ramp, as described below. We refer to estimation and subtraction of the leak
current from our raw, experimental traces as leak correction.

Before each protocol, and for 250ms at the beginning of each protocol, Vcmd is
fixed to the holding potential, −80 mV. The leak ramp follows, beginning with a 50ms,
−120 mV step followed by a gradual increase (over 400ms) back to the −80 mV holding
potential. Because IKr is negligible in this range of voltages, the observed current can be
used to fit our leak model. The use of this segment to infer our leak-model parameters
(gL and EL) is described in Section 4.3.1.

Reversal ramp As in Lei et al. (2019a), we include a reversal ramp at the end of each
protocol. This is intended to allow the inference of IKr’s reversal potential (denoted by
EKr in our models). This reversal-ramp segment is preceded by a 500ms long +40 mV
conditioning step, after which the command voltage is set to −70 mV. Then, over the
course of 100ms, the command voltage rapidly decreases to −110 mV. This part of the
protocol, the reversal ramp, is useful, because the conditioning step ensures a sizeable
current whilst Vcmd steadily decreases. During this decrease in Vcmd, the sizable current
reverses (goes from positive to negative), allowing us to observe the time, t∗, and hence
command voltage (Vcmd(t∗)), at which the postprocessed trace, Ipost, is zero. We denote
the observed reversal potential by Epost = Vcmd(t∗), and estimate this quantity using
polynomial interpolation. This method is described in further detail in Section 4.3.1.

The gradient of this ramp-like section must be steep enough such that the reversal
potential is reached before too many channels close. However, must not be so gradual
as to allow too many channels to close before the current reverses. This reversal ramp
employs the same design as the one used in (Lei et al., 2020a). Further details and
examples of this reversal-potential inference are presented in Section 4.3.1.

Design of individual voltage-clamp protocols A range of information-rich voltage
protocols were applied sequentially to each well. The differences lie in the specified
‘command voltage’, Vcmd, that is, the voltage the amplifier is instructed to clamp the
membrane potential to at each time point during the experiment. These protocols were
developed using a range of techniques, as detailed in Lei et al. (2024) and summarised
in Table 4.1. Additionally, each protocol is shown in Figure 4.2. We briefly describe the
rationales for their designs again here. Note that the labelling of protocol used in this
chapter differs from Chapter 3, where we used only a subset of these protocols.
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Lei et al. (2024) designed a number of these protocols via the numerical optimisation
of various objective functions (Mirams et al., 2024; Lei et al., 2024). In particular:
protocols d3,d8 and d9 were designed using the phase-space-filling approach described
in Mirams et al. (2024); protocols d10 and d12 designed to maximise Sobol sensitivities
(Lei et al., 2024; Sobol, 2001) of the Wang et al. (1997) and Beattie et al. (2018) models,
respectively; protocols d4 and d5 were found using a brute-force approach to maximise
the sensitivity of model output to changes in parameters for the Beattie et al. (2018) and
Wang et al. (1997) models, respectively; protocol d7 was found by considering 3-step
blocks, randomising the durations of each step and optimising the voltages; whereas,
protocol d11 was found by randomising the voltages and optimising the durations.

The remaining three protocols (d1,d2 and d6) were designed manually, without the
use of an algorithm. Lei et al. (2019b) staircase protocol, d1 was shown to permit
the estimation of transition-rate parameters in models of IKr. A similar protocol,
d2 is included because it includes a central section in which there are many short-
duration segments. We expect that this protocol highlights more of IKr’s short-timescale
behaviour (namely the inactivation/recovery-from-inactivation process, which occurs
very rapidly). Finally, d6 was performed without the intention of providing useful
parameter estimates and, in fact, our models are practically unidentifiable under d6.
Nevertheless, this protocol consists of a sequence of action-potential voltage traces and,
hence, provides physiologically relevant data for the purpose of model validation.

Protocol duration (s) # segments frequency (kHz) codename

d1 15.0 32 5 staircase
d2 15.0 52 5 staircase-in-staircase
d3 18.8 64 5 spacefill19
d4 32.9 58 2 hhbrute3gstep
d5 22.5 58 2 wangbrute3gstep
d6 8.4 63 5 longap
d7 21.4 43 5 rtov
d8 17.0 64 5 spacefill10
d9 14.6 64 5 spacefill26
d10 32.6 58 2 wangsobol3step
d11 21.1 43 2 rvot
d12 22.4 40 5 hhsobol3step

Table 4.1: The duration of, number of segments and sampling frequency of each protocol
included in our dataset. During these segments, the command voltage is either held
constant, or changes according to some constant gradient (which we call a ramp). Here,
the number of segments includes segments which are common to all of our protocols—
the leak ramp and reversal ramp, and their associated +40 mV preconditioning steps.

The protocols described above were performed sequentially before and after the
application of a 1µM dose of dofetilide, a drug known to specifically block IKr at
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Figure 4.2: The protocols used in our experiment, shown in the order that they are
applied. Common features present at the start and end of each protocol are used for
postprocessing. All protocols are repeated exactly once except protocol d1, Lei et al.’s
staircase protocol. All protocols are used for model fitting except Lei et al.’s longap
protocol, d6, which is used only for validation.
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moderate concentrations when compared with other drugs (Mirams et al., 2011). For
QC, we perform four repeats of the staircase protocol, d1, allowing us to discard data
from wells that do not remain stable over the course of the experiment. In particular, the
staircase protocol, d1, was repeated four times, twice at the beginning of the experiment
and twice after all other protocols. All other protocols were performed exactly once
before, and once after, the addition of dofetilide. This procedure is illustrated by the
schematic shown in Figure 4.3.

d1 d1 d1 d1

d1 d1 d1
Post-drug 
traces

Pre-drug 
traces

Apply dofetilide (IKr blocker)

d2 d12...

d2 d12...d 1d

Figure 4.3: A cartoon showing the order in which protocols were performed, our post-
drug repeats. Each protocol is run before and after the addition of dofetilide, an IKr
blocker. All protocols are performed once before and once after the addition of drugs
except d1, which is repeated eight times in total.

4.3 Postprocessing

4.3.1 Methods

Leak correction Leak correction is performed by first inferring the parameters of our
leak-current model (Equation (4.3)) and then computing IL. This predicted leak current
is then subtracted from our observations, resulting in traces where the presence of leak
current has been removed. Because IKr is typically small for the range of voltages used
in the leak-ramp section, it is possible to use these observations to infer gL and EL

independently of IKr. Hence, we assume that our observed current during the leak ramp
is entirely leak current, that is,

Iobs = IL + ε, (4.4)

for the duration of the leak ramp where ε ∼N (0,σ) for some known standard deviation
σ . As usual, we assume that the observation errors ε are independent of eachother.

The constant conductance of our leak-current model (Equation (4.3)) means that,
when IKr = 0, there is a linear relationship between the command voltage Vcmd and
Iobs, the resulting current. Thus, it is natural to use simple linear regression to fit our
leak-model parameters, writing,

IL = β0 +Vcmdβ1, (4.5)
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where and β0 and β1 are our regressors—parameters to be estimated.
As is standard, we estimate these parameters via simple linear regression by com-

puting the unbiased estimators (Jammalamadaka, 2003),

β̂0 =
nleak

∑
i=1

Īobs −β1V̄cmd, (4.6)

and β̂1 =
∑

nleak
i (Iobs − Ī)2(Vcmd −V̄cmd)

∑
nleak
i=1 (Vcmd −V̄cmd)2 , (4.7)

where nleak is the number of observations made during the leak ramp, and V̄cmd and
Ī are the respective averages of Vcmd and Iobs taken over the course of the leak-ramp
section of the protocol. For ease of interpretation, we map these leak-model estimates
(Equations (4.6) and (4.7)) to estimates of our leak parameters by writing ĝL = β1 and
ÊL =−β0

β1
. We then compute the leak-corrected trace,

Icorrected = Iobs − IL, (4.8)

= Iobs − β̂1Vcmd − β̂0 (4.9)

= Iobs − ĝL(Vcmd − ÊL), (4.10)

Though it would be possible to calibrate this model using only two distinct Vcmd

values—sometimes referred to as a “leak pulse” (Li et al., 2017a)—using a leak ramp
allows our linear leak-current model to be validated across a range of voltages. This
approach, referred to as leak-correction, is demonstrated in Figure 4.4. Note that when
Voff ̸= 0, our estimate of the leak reversal, ÊL, is instead an estimate of EL +Voff in
accordance with Equation (4.3). In this way, the resulting, fitted leak current, IL, is
completely independent of Voff, and so we simply perform leak correction under the
assumption that Voff = 0 and adjust our estimate of EL as necessary.

The +40 mV step immediately following the leak ramp is also useful for validation
because during this step, IKr activates slowly. This means that IKr remains small for
some time, during which the observed current, Iobs, mostly consists of IL. Hence, the
observation of a significantly negative current here would indicate that the leak has
been “overcorrected”. Checking for such leak overcorrection forms part of our QC, as
outlined below.

Drug subtraction Although our leak-correction method allows us to infer and correct
for linear leak currents, there may be biological currents (other than IKr) that are active
in our cells. These currents are called endogenous currents, and we wish to minimise
their presence as to avoid the pollution of our data.

As mentioned in Section 4.2, we apply dofetilide to our cells and repeat each of our
protocols after IKr has been almost completely blocked We use these post-drug traces to
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Figure 4.4: Our linear leak-current model is fitted to data from Well B20 using simple
linear regression. Panels a (showing the observed current) and b (showing the command
voltage) highlight the leak ramp. Panel c shows the simple linear regression used to fit
the linear leak model. Panel d shows the observed current (Iobs), the leak current (IL)
and the leak-corrected current (Iobs− IL). This data was taken from the application of the
staircase protocol to Well B20 (the first repeat). Note how there is little leak-corrected
current at the beginning and end of the experiment where IKr is small.
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remove endogenous currents from our data. However, we must be careful to account
for leak current, because the pre- and post-drug repeats are performed approximately
10 minutes apart, during which time we may observe some changes in the experimental
conditions. For instance, it is plausible that the quality of the seal would degrade over
time, causing gL, and hence, the amount of leak current, IL, to increase.

Hence, to compute our postprocessed trace Ipost, we subtract the leak-corrected
pre-drug trace, I(after)

obs , from the leak-corrected post-drug trace I(before)
obs ,

Ipost =
(

I(before)
obs − I(before)

L

)
−
(

I(after)
obs − I(after)

L

)
. (4.11)

We then use Ipost to fit and validate our models.
We may quantify the amount of leftover nuisance current by considering the relative

size of our leak-corrected traces before and after the addition of dofetilide,

Rleftover =

∥∥∥I(after)
obs − I(after)

L

∥∥∥
2∥∥∥I(before)

obs − I(before)
L

∥∥∥
2

. (4.12)

Under our ideal patch-clamp assumptions, we expect that Rleftover is small (though
non-zero due to the presence of random noise). This statistic provides a useful quan-
tification of the relative size of current that remains after drug subtraction and leak
correction. Such leftover current may be due to endogenous currents, nonlinear leak,
or miscalibration of the leak model (perhaps due to data pollution, or changes in the
quality of the seal over time).

Reversal potential inference Recall from Chapter 2 that our models of IKr contain
an observation function of the form,

IKr = gxO(Vm −EKr),

where Vm is the transmembrane potential, EKr is the current’s reversal potential, g is
the maximal conductance (a model parameter), and xO is the proportion of KV11.1
channels in the (sole) open conformation—found by solving our models governing
ODE (Equation (2.18)).

We typically assume that the reversal potential, EKr, is some known quantity, and
hence, kept constant during model fitting. In Beattie et al. (2018), for example, EKr, is
set to the Nernst potential which is calculated as in the previous chapter,

ENernst =
RT
F

ln
{
[Kout]

[Kin]

}
, (4.13)
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Figure 4.5: Our postprocessing methods, leak correction and post-drug subtraction,
shown for data obtained from B20 under the application of the staircase protocol (first
and second sweeps). The fourth row shows the leak-corrected post-drug trace in orange,
and the leak-corrected pre-drug trace in blue. All currents are shown in picoamperes
(pA).
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Figure 4.6: Leak correction and drug subtraction, shown for data collected from M06
under the application of the staircase protocol (first and second sweeps). This was
discarded because of the large leak-corrected post-drug traces, as shown in panels g and
h. All currents are shown in picoamperes (pA).
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where [Kout] denotes the extracellular potassium concentration, [Kin] denotes the intra-
cellular potassium concentration, R is the gas constant, F is Faraday’s constant, and
T = 298.15K = 25◦C is the temperature at which our experiments were performed (Lei
et al., 2019a), and EKr is the transmembrane potential at which, according to the model,
K+ ions do not flow through the channel in either direction (see Equation (4.25)). Using
the known potassium concentrations of our intracellular and extracellular solutions, we
find ENernst ≈−89.83 mV.

However, it is also possible to estimate EKr directly from our time-series data. The
reversal-ramp segment (Lei et al., 2019a) was included in each protocol to facilitate
estimation of EKr. Following leak correction and drug subtraction, we estimate the
reversal potential by fitting a order-4 polynomial to Ipost, and use this polynomial to
identify the time, t∗, at which IKr(t∗) = 0. We then let Epost = Vcmd(t∗) denote the
observed reversal potential. Figure 4.8(a) shows how τ (the time-constant in our single
exponential model) varies over the course of the experiment, in each well. From this
figure, we can see that for all but one well, Epost ≈−80 mV is consistently observed,
which is markedly different to our computed value of ENernst ≈ −89.8mV. Three
separate approaches for fitting our models in light of this discrepancy are discussed in
Section 4.4.

Time-course variability To quantify differences between sweeps, we may use the
time-course of decay after the first +40 mV step in our protocols. Here, after the
command voltage drops to −120 mV, typically we see a large negative which slowly
decays. By fitting an exponential curve through this section of the sweep (a non-leak-
corrected, pre-drug trace), we can quantify the rate of this decay, and compare this value
between sweeps.

To do this, we find scalar parameters, α , and τ > 0) such that,

iend

∑
i=istart

(
I(i)obs −α exp

{
−1

τ

(
ti − tpeak

)})2

, (4.14)

is minimised, where tpeak is the time at which the peak current is observed, and istart and
iend are the indices of the first and last observations considered during the fitting of the
tail current. Here, the characteristic time of decay is, τ , which describes the time taken
for the current to decay. We choose ipeak to be the index where the maximal negative
current is observed, and iend such that the last datum considered is 50 ms before the end
of the −120 mV segment.

Figure 4.7 highlights the relevant section of our protocols, and shows these parame-
ters fitted to an example trace. Figure 4.8(a) shows how this quantity varies over the
course of the experiment, in each well. From this figure, we can see that there is a
noticeable degree of variability between wells, but the values from each well remain
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mostly consistent (with the notable exception of Well C12). This indicates that (broadly
speaking), the dynamics of IKr (for a given well) are consistent throughout the experi-
ment. These figures do, however, indicate variability between wells. Similarly, we show
the variability of the peak current during the second −120 mV step in Figure 4.8(b).

It is also possible to fit two decay time constants to this current (say, τ1 and τ2).
Though a two-exponential model may better fit the data, our single-exponential model
results in a single statistic describing the rate of decay, allowing us to more easily
summarise our dataset. Moreover, using a single exponential helps avoid practical
identifiability in some cases where a single exponential appears would be more suitable.
For comparison, a double-exponential fit is shown in Figure 4.9.

Now, consider the size of a leak current, IL (either the pre-drug leak current, I(before)
L ,

or the post-drug leak current, I(after)
L ). This depends on: the leak reversal EL, the

leak conductance, gL, and the command voltage, Vcmd. The latter corresponds to the
particular voltage-clamp being performed. Hence, the size of the leak current varies
between protocols. So, in order to allow a simple, protocol-independent comparison of
leak current sizes, we consider the average size of the squared leak current across our
voltage range,

Ī2
L : =

1
Vmax −Vmin

∫ Vmax

Vmin

g2
L(V −EL)

2dV (4.15)

=
g2

L
3(Vmax −Vmin)

(
(Vmax −EL)

3 − (Vmin −EL)
3) , (4.16)

where we choose Vmax =+40 mV+Voff and Vmin =−120 mV+Voff. Figures 4.10 and
4.11 show how ĪL, when computed for each individual pre-drug and post-drug sweep,
changes over the course of the experiment. Here we can see that the size of the leak
current in a given well changes little over the course of the experiment, though there
seems to be substantial leak-magnitude variability between wells. It is noteworthy,
however, that Well B09 shows uncharacteristically large leak currents, and it appears
that the size of this well’s leak currents steadily increased over the course of our pre-drug
recordings. We expect that this may have some effect on the resultant IKr parameter
estimates, perhaps leading to bias if such leak currents are large enough to impact Vm

and violate our ideal-patch assumptions.

4.3.2 Quality control

After performing leak-correction, post-drug subtraction and reversal on our data, we
use a set of quality control (QC) criteria to filter out failed experiments from our dataset.
These QC-criteria are detailed in Table 4.2. These criteria are mostly the same as those
used in Lei et al. (2019b), but only a subset of these QC criteria may be applied to all
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Figure 4.7: A single-exponential model is fitted through a common section of the trace
to quantify the variability between sweeps. Panel a: an example of a postprocessed
trace—the portion of the trace used to fit the exponential is highlighted (grey). Panel b:
the exponential decay that is fit to these data, along with the characteristic time-constant
of decay. Though a single-exponential does not provide a perfect fit to the data (and,
perhaps, a double exponential would be better suited), the resultant time-constant is a
useful statistic.
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Figure 4.10: The size of the leak current remains largely constant in most wells.
We show the pre-drug leak magnitude, Ī(before)

L for each well over the course of the
experiment.
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protocols. Furthermore, the fact that we run the staircase protocol at the beginning and
end of the experiment allows us to include an additional criterion which concerns the
stability of the experiments.

Lei et al.’s staircase criteria The Nanion SyncroPatch automatically applies a short
protocol and infers a number of parameters before each of our user-specified voltage-
protocols (d1–d12). Namely, these parameters are the seal resistance Rseal, the membrane
capacitance Cm, and the series resistance, Rseries. We remove data from each well where
any of these values lie outside a predetermined range (QC1). For this purpose, we use
the values suggested in Lei et al. (2019a) (those listed in Table 4.2. We deem any value
outside these ranges as indicative of a failed experiment. For example, such cases arise
from wells where: there has been a failure to attach a cell to the hole in the well plate;
the cell has detached part-way through the experiment; or we have failed to puncture
the cell membrane (that is, we failed to “patch” the cell).

Lei et al. (2019a) introduced and applied a thorough selection of QC criteria to high-
throughput, automated patch-clamp data (collecting using a similar Nanion SyncroPatch
384). These quality control criteria use data obtained from Lei et al.’s staircase protocol
alongside parameter estimates provided by the machine (namely Rseal, Cm and Rleak).
The first selection of criteria, QC1, ensures that the machine estimates of these values
within some reasonable bounds for each sweep of each protocol—these are the same
bounds used in Lei et al. (2019b).

In QC2, we check the signal-to-noise ratio in our data. The noise, σ , is estimated
from the first 200 observations (where the current is assumed to be stationary) by
taking the sample standard deviation. We then compute the standard deviation of the
entire postprocessed trace (Ipost)and ensure that this is at least five times larger than
our estimated noise. This condition is checked for both the raw trace, and the drug-
subtracted, leak-corrected trace. These criteria are not satisfied due to, for example, an
unexpectedly small current, or excessive noise in the trace. A small current may be due
to insufficient expression of hERG1a in the cell, whereas excessive noise may indicate
a failure of the experimental equipment (faulty electrodes, for example).

In QC3, we check if two traces of post-processed, time-series data differ appreciably.
A large difference between the raw traces for the first and second sweep of the staircase
protocol, for instance, would indicate that something has unexpectedly changed through
time whilst the experiment progressed—perhaps indicating an unstable leak current, for
example. This instability undermines our modelling assumptions, and so, we discard
such data. Lei et al.’s criteria ensure that,

1√
n
∥I1 − I2∥< 0.2× 1

2n

(
std(I1)+ std(I2)

)
, (4.17)
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where I1 and I2 are the two time-series current traces that are being compared (Lei et al.,
2019b), and std(I) denotes the standard deviation of the observations from a trace, I.
This check is performed for raw traces (QC3.raw), post-drug traces (QC3.drug) and
leak-corrected, drug-subtracted traces (QC3.subtracted).

In QC.4 we test that our machine estimates, (Cm, Rseal and Rseries) have not dras-
tically changed between back-to-back sweeps of the staircase protocol. To do this,
consider the ratio of the mean and standard deviation of the two values, testing the
condition,

std
(

C(2)
m ,C(1)

m

)

mean
(

C(2)
m ,C(1)

m

) < 0.25. (4.18)

where C(i)
m is machine estimate of Cm obtained during the ith sweep of the staircase

protocol (QC4.Cm). Similarly, we check consecutive estimates of Rseries (QC4.Rseal)
and Rseal (QC4.Rseries).

In QC5, we ensure that the drug subtraction has resulted in a significant reduction
in current. This is done by first checking that the maximal staircase current (ob-
served during the second half of the protocol) decreases after the addition of dofetilide
(QC5.staircase), and then checking whether 2∥Iafter∥2 < ∥Ibefore∥2 (QC5.1.staircase).
In QC6, we ensure that a positive leak-corrected, drug-subtracted current is observed
during +40 mV steps. This is done by checking the first, second and fourth +40 mV
steps in the staircase protocol (d1)—these criteria are denoted QC6.subtracted, QC6.1.subtracted
and QC6.2.subtracted, respectively.

Originally, Lei et al. applied these criteria to two sweeps (repeats) of the staircase
protocol. However, we perform four staircase sweeps in total: two sweeps before, and
two after all other protocols, as shown in Figure 4.3. This means we can apply QC 1–6
separately to the first two sweeps and the second two sweeps of the staircase protocol,
before evaluating the remaining QC criteria (concerning the other protocols). Since
we discard wells failing any single criteria, this reduces the computational resources
(namely execution time and storage) necessary for postprocessing our data.

We include one additional criterion to sweeps obtained using the staircase protocol,
QC.R_leftover. Here, we ensure that each sweep exhibits a small amount of nuisance
current which is not explained by our leak model, and retain only those wells for which
each of our four staircase protocol (d1) sweeps satisfy,

Rleftover ⩽ 0.25, (4.19)

where Rleftover is calculated as in Equation (4.12). Recall that Rleftover ≈ 0 indicates that
the post-drug trace consists almost entirely of linear leak.
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Application of criteria to other protocols After applying Lei et al.’s QC to our
repeats of the staircase protocol, we apply a subset of these criteria to the other protocols.
In particular, protocols QC1 and QC4 rely only on the machine estimates of Cm, Rseal

and Rseries, and QC6.subtracted concerns only the first +40 mV step in the protocol,
until which point all protocols are identical. We denote the application of these criteria
to the remaining protocols by QC1.all, QC4.all and QC6.all, respectively.

Reversal potential criteria We also include some additional checks concerning the
apparent reversal potential of the current, Epost, (inferred as described in Section 4.3).
We ensure that Epost lies in the range covered by our reversal ramp,

−110 mV < Epost <−70 mV, (4.20)

removing any wells for which there is a sweep where Epost lies outside this range.
Regarding the variability in our inferred Epost values, we ensure that the spread, in

values obtained from a given well, is no greater than 5 mV, that is,

max
i

{
E(i)

post
}
−min

i

{
E(i)

post
}
< 5 mV, (4.21)

where E(i)
post is the reversal potential estimated from a given sweep and i indexes

the sweeps performed on the well under consideration. We denote this criterion
QC.Erev.spread

Ensuring consistency across the experiment We apply QC3.subtracted to compare
the very first and very last repeats of the staircase protocol. This, again, is done to
ensure that the experimental conditions have not changed significantly over the course
of the experiment.

All of our QC criteria are evaluated after the removal of “capacitive spikes” from the
data. In particular, we zero the data observed no more than 2ms after each discontinuity
in Vcmd—as is done in Lei et al. (2019b). We zero this data because are large current
spikes after each voltage “step” resulting from the capacitive effect of the cell membrane,
which violates our ideal patch-clamp assumptions during a short period of time after
each voltage step. It is also possible to discard this data entirely, which we expect to
have little impact on the evaluation of our QC criteria.

QC for leak correction and drug subtraction Figure 4.12 shows how Rleftover

changes over time, between sweeps. Because the size of IKr varies between protocol,
we should expect that Rleftover is somewhat protocol dependent. This is shown in the
values taken from d4 and d5, where Rleftover increases for all but one well, as shown in
Figure 4.12.
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Figure 4.12: The relative size of the current leftover after drug subtraction and leak
correction, as quantified by our Rleftover statistic. Only wells passing each of our QC
criteria are shown. One such criterion is that Rlefotver < 0.25 for each staircase protocol
(d1) repeat. The value of Rleftover is protocol dependent, which is apparent from the
values obtained from protocols d5, d9 and d12, where we see increased Rleftover.

Ideally, following leak-correction and drug-subtraction, we should be left with a
trace that is consisting entirely of IKr and observational noise, resulting in a small
Rleftover value. Conversely, if Rleftover is large, this may indicate the presence of a
nonlinear leak (violating our modelling assumption that the leak current is due to a
simple, Ohmic resistor in accordance with Equation (4.3)). It may also indicate the
presence of other, endogenous currents. The presence of either nonlinear leak, or
endogenous currents is undesirable, and so a small Rleftover is indicative high-quality
data. Data from Well M06, which passed all QC criteria except QC.R_leftover, is
shown in Figure 4.6.

Order of application of criteria In practice, we may apply these criteria sequentially—
starting with only the criteria that require only data from the staircase protocol, and
eliminating the wells that fail QC1 for example, without the need for processing the
data from other protocols in these wells. This sequential approach can save unnecessary
computation because a significant portion of wells tend to fail criteria which relate only
to the staircase protocol and onboard parameter estimates. Nevertheless, we apply these
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criteria in their entirety to every well, allowing a more informative summary of the
quality of our data.

Success rate The number of wells passing all of our QC criteria (for every sweep
of every protocol) is 8, representing a 2.1% success rate. This is a lower success rate
than that of Lei et al. (2019b), which is perhaps not surprising given the additional
protocols and QC criteria we have included. The total duration of the experiment (over
10 minutes) and the use of fluroide-free plates may have also contributed to lower
success rates.

The location of each passing/failing well on the wellplate is shown in Figure 4.14.
This figure shows no obvious spatial clustering, which, if present, may indicate an
equipment failure affecting part of the plate. A more comprehensive summary is shown
in Table 4.3, where the number of wells passing each criterion is shown. These results
are also visualised in Figure 4.13, which shows which wells are removed by which
criteria.

Reversal potential variability There was a noticeable difference between the ob-
served reversal potential, Epost and its theoretical value, ENernst, as shown in Figure 4.15.
Many of the wells that passed QC have a mean reversal potential somewhat greater than
the calculated Nernst potential (ENernst ≈−89.83).

4.4 Fitting and validation of models

Modelling assumptions Throughout this chapter, we assume that our data arises
from an ideal patch-clamp setup described in Section 4.1 (Equations (4.1) and (4.2)).
Here, we fit our models to the postprocessed trace, Ipost (Equation (4.11)) under the
assumption of IID additive, guassian errors, with mean 0 and known standard deviation
σ . The standard deviation, σ , may be estimated from the beginning, stationary portion
of the trace but, our parameter estimates are in fact independent of σ as explained in
Chapter 2.

Modelling the reversal potential We saw in Section 4.3 that there is variability in
Epost, the value we infer from the reversal ramp. Under ideal conditions, we would
expect that this value is identical to the Nernst potential, that is,

ENernst = Epost. (4.22)

However, we can clearly see that this is not the case in Figures 4.15 and 4.16. This raises
the question: which value should we use for the reversal potential in our mathematical
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Label Protocols Criterion

QC1.Rseal 1 all Check RSeal ∈ [0.1,1000] GΩ

QC1.Cm 1 all Check Cm ∈ [1,100] pF

QC1.Rseries 1 all Check RSeries ∈ [1,25] MΩ

QC2.raw 1 staircase Check std(Iraw)
σ

> 5

QC2.subtracted 1 staircase Check std(Isubtracted)
σ

> 5

QC3.raw 1 staircase Check Condition (4.17) with I(1)obs, I
(2)
obs

QC3.drug 1 staircase Check Condition (4.17) I(1)drug, I
(2)
drug

QC3.subtracted staircase Check Condition (4.17) I(1)subtracted, I
(2)
subtracted

QC3.bookend 1 staircase Check Condition (4.17) with I(1)subtracted, I
(4)
subtracted

QC4.Cm 1 all Check C(before)
m and C(after)

m satisfy Condition (4.18)

QC4.Rseal 1 all Check R(before)
seal and R(after)

seal satisfy Condition (4.18)

QC4.Rseries 1 all Check R(before)
series and R(after)

series satisfy Condition (4.18)

QC5.staircase 1 staircase Check 0.25×max Iraw > max Idrug

QC5.1.staircase 1 staircase Check that 2∥Iafter∥2 < ∥Ibefore∥2

QC6.subtracted 1 all max{I(+40mV)
subtracted}>−2σ where I(+40mV)

subtracted is the current
during the first +40mV step

QC6.1.subtracted 1 staircase max{I(+40mV)
subtracted}>−2σ where I(+40mV)

subtracted is the current
during the second +40mV step

QC6.2.subtracted 1 staircase max(I(+40mV)
subtracted)>−2σ where I(+40mV)

subtracted is the current
during the third +40mV step

QC.Erev all Check that −110mV < Eobs <−70mV

QC.Erev.spread all Check that Eobs varies by less than 5mV across all
repeats and all protocols

Table 4.2: Quality-control criteria used to process our data. The central column shows
which protocols are applied only to the staircase protocol, and which criteria are applied
to all protocols. Note that QC3.subtracted is applied to the first and second sweeps of
the staircase protocol, as well the third and fourth sweeps. Whereas, QC3.bookend is
identical but applied to the first and fourth sweeps. However, QC3.raw, QC3.drug,
QC6.1.subtracted and QC6.2.subtracted are applied only to the first two sweeps and
the last two sweeps of the staircase protocol.
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Protocols used
Criterion first staircase second staircase all

QC1.cm 86 87 97
QC1.rseal 181 178 194
QC1.rseries 229 229 242
QC2.raw 77 90 94
QC2.subtracted 92 115 121
QC3.E4031 86 93 104
QC3.raw 119 108 140
QC3.subtracted 123 105 144
QC4.cm 86 86 99
QC4.rseal 92 103 117
QC4.rseries 110 90 125
QC5.1.staircase 167 211 224
QC5.staircase 150 152 172
QC6.1.subtracted 117 179 188
QC6.2.subtracted 118 177 190
QC6.subtracted 118 181 191
QC.Erev.all_protocols 121
QC.Erev.spread 229
QC1.all_protocols 309
QC3.bookend 229
QC4.all_protocols 183
QC6.all_protocols 192
QC6.R_leftover 326

All criteria 335 344 376

Table 4.3: The number of wells failing each individual QC criterion. For Lei et al.
(2019b)’s original QC criteria, we list the amount of wells failing the first applications
of the staircase protocol (the first and second sweeps) and those failing the second (third
and fourth sweeps).
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Figure 4.13: How many wells are discarded using each stage of our quality-control
(QC) pipeline. The displayed stages of this pipeline are: Stage 1, Lei et al.’s QC1
criteria applied to each repeat of the staircase protocol; Stage 2, Lei et al.’s QC criteria
applied to both the first two, and final two, repeats of the staircase protocol; Stage 3, Lei
et al.’s QC applied to all protocols (where applicable); Stage 4, check that that observed
reversal potential is observed during the reversal ramp, that is, −11mV< Epost < 70mV
for all protocols (QC.Erev.all_protocols); Stage 5, check that Epost remains consistent
throughout the experiment (QC.Erev.spread); finally, we ensure that the post-drug
trace is dominated by leak (QC.R_leftover), discarding a single well, Well M06. The
remaining wells are used for the fitting and validation of our models.
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Figure 4.14: A plan view of the wellplate, with 384 wells arranged in 24 columns. Wells
that passed all QC criteria are highlighted in orange. There is no obvious clustering of
cells which passed QC. Such clustering may suggest a partial equipment failure as each
quadrant of the wellplate shares certain components.

models? For every model in this chapter, we use an observation function of the form,

IKr(t) = gxO(t)(Vm −EKr) , (4.23)

where g is a model parameter representing a cell’s maximum conductance with respect
to IKr, xO denotes the proportion of channels in an open conformation at time t, and EKr

is the reversal potential.
Some possible explanations for this discrepancy between ENernst and Epost are

outlined in Table 4.4. Each case corresponds to slight changes in our model with regard
to how it is fit to the data, and how it is used to make predictions. The first case, Case I,
is the simplest and corresponds to the assumption that EKr = ENernst, Cases II and III
correspond to two possible hypotheses regarding the discrepancy between ENernst and
Epost: that the reversal potential is truly (and materially) different from ENernst; and that
there is a simple, constant offset between Vcmd and Vm.

These are not the only possible sources of error, nor are they necessarily mutually ex-
clusive. However, comparing the parameter estimations and predictive models obtained
from these different assumptions may allow the dominant cause for the discrepancy
between Epost and EKr to be determined, leading to improved predictive models. In this
section, we compare each of these subtly different ways of configuring our models, as
well as our different model structures.
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Figure 4.15: The reversal potential for each well averaged over our 15 repeats of the
reversal ramp. Wells passing QC are shown in orange, and wells passing Lei et al.
(2019b)’s original QC criteria (for all sweeps of the staircase protocol), but not our full
criteria are shown in blue (stacked above segments showing the wells passing QC).
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Figure 4.16: The reversal potential for each well plotted (inferred from our drug-
subtracted traces) for each protocol in our experiment (listed chronologically). The grey
dashed line shows ENernst.

Case Parameterisation Physical Interpretation

I EKr = ENernst and
Vm =Vcmd

IKr reverses at the Nernst potential.
We fit the model treating ENernst as a
known constant calculated from the
Nernst equation.

II EKr = Epost and
Vm =Vcmd

EKr ̸= ENernst (e.g. due to temper-
ature/solution changes). We set
EKr = Epost using the reversal-ramp
estimate and treat this as a known
constant when fitting the maximal
conductance and transition-rate pa-
rameters.

III EKr = ENernst and
Vm =Vcmd +Voff

ENernst ̸= Epost due to a system-
atic voltage offset, Voff. We fit
the model with the known constant
Voff = ENernst −Epost (Epost inferred
from the reversal ramp as in Case
II).

Table 4.4: Different assumptions regarding the models’ reversal potential, EKr, and the
observed reversal potential, Epost, and how this informs model fitting.
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Capacitive spike removal As mentioned in Section 4.3, we observe “capacitive
spikes” whenever there is a discontinuity in Vcmd. These capacitive spikes violate
our modelling assumption that Vcmd = Vcmd +Voff, because during this time, the cell
membrane charges and discharges in response to the changing transmembrane potential.
To address this problem, we simply discard 5ms of data after each voltage jump when
fitting our models. This approach to model fitting is exactly the approach taken in
Beattie et al. (2018). In Appendix C, we explore how removing different amounts of
data affects the statistical properties of our parameter estimates under various values.
Note that we explicitly include the capacitive effect of the cell membrane in the models
presented in the following chapter.

Markov models We apply Markov models of the same form introduced in Chapters 2
and 3. In particular, these are ODE-based models with a governing equation of the
form,

d
dt

x = Q(Vm)
⊤x , (4.24)

together with an observation function of the form,

IKr(t) = gxO(t)(Vm(t)−EKr) , (4.25)

where Q(Vm) is a transition-rate matrix.
As described in Section 3.3.2, various Markov models, characterised by a particular

choice of Q, may be chosen here. We consider four models—those shown in Figure 4.17.
These models differ in the number of states and parameters, and in the existence of a
path between the inactivated state (I) and the closed states (C/C1/C2/C3) that avoids
the open state (O). These models are chosen such that a comparison in the models’
predictive accuracy may provide insight into the gating dynamics of IKr.

Model fitting Similarly to the previous chapter, we use maximum likelihood esti-
mation under the assumption of additive, IID Gaussian noise. This is mathematically
equivalent to nonlinear least-squares regression, as explained in Section 3.3.1.

To constrain our kinetic rate parameters, we use the same kinetic-rate constrains
used in Chapter 3. In particular, for rates of the form k(V ) = Aexp{bV}, we require
that,

10−7 ms−1 < a < 105 ms−1, (4.26)

10−7 mV−1 < b < 105 mV−1, (4.27)

k(V )< 103 ms−1 for all V ∈ [−120 mV,+60 mV], (4.28)
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Figure 4.17: The four model structures used in this chapter: the C-O-I model (Panel
a), the Wang et al. (1997) model (Panel b), the Kemp et al. (2021) (Panel c), and the
Beattie et al. (2018) (Panel d). Note that the C1 to C2 transition in the Wang et al.
(1997) model is constant, that is, determined by a single model parameter. Panel b: A
table summarising the models

and

k(V )> 1.67×10−5 ms−1 for some V ∈ [−120 mV,+60 mV]. (4.29)

When calibrating our models with real data, we expect the maximal conductance,
gKr to vary between cells. This is because we expect the maximal conductance to be
roughly proportional to the number of channels, which varies between cells. Likewise,
we may expect our maximal conductance to vary if we were to use different cells for our
experiments. For this reason, we use maximal conductance constraints that are based
on the size of the observed current.

In particular, we consider the minimum observation from the first −120 mV step
of our leak-corrected and drug-subtracted trace (discarding the first 5 ms, as we do
when fitting our models), and denote this by Imax. Then, according to our model, and
assuming Voff = 0,

Imax = ḡxO(Vcmd −EKr) , (4.30)

where the proportion of states in the open conformation satisfy 0 < xO < 1 (see Ap-
pendix A) and so, by computing,

ḡxO =
Imax

Vcmd −EKr
, (4.31)

we can obtain an upper bound for ḡ. This is possible because we know that xO ⩽ 1 and
Vm =−120mV. Then, under the rather lenient assumption that xO ⩾ 0.01 when Imax is
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observed, we have the inequality,

Imax

0.01× (Vm −EKr)
⩾ ḡ . (4.32)

Similarly, we ensure that,
Imax

100× (Vm −EKr)
⩽ ḡ , (4.33)

which corresponds to the similarly weak assumption that xO ⩽ 100.

4.4.1 Computational methods

Fitting As discussed in Section 2.3 and 3.3.1, we fit our models to time-series data
by computing maximum-likelihood estimates (MLEs) under the assumption that our
observations are subject to independently and identically distributed, additive Gaussian
noise. That is, for a given protocol, d, we compute,

θ̂θθ d = argminθθθ

{
nd

∑
i=1

(
yi(θθθ ;d)− zi

)2

}
, (4.34)

where nd is the number of observations in protocol d, our ith observation is denoted
by zi, and the model output (for the ith observation) for a given parameter vector θθθ is
denoted by yi(θθθ ;d). To fit our models, we seek a solution to this optimisation problem
(Equation (4.34)). A general closed-form solution is not available, so we resort to
numerical optimisation methods instead.

To fit our models, we use CMA-ES (Hansen, 2016), as introduced in Section 2.3.2.
Moreover, we repeat our optimisation at least 30 times from different initial sampling
distributions, which allows us to explore more of the model’s parameter space and,
provided we reliably recover the same parameter estimate, demonstrates that we are able
to identify the true global optimum (that is, we can reliably compute Equation 4.34).
However, for the Wang et al. (1997) model, we repeat the optimisation from 120 initial
guesses, owing to the model’s increased complexity and greater number of parameters.
For all models except the Wang et al. (1997) model, we select the population size (that
is, the number of parameter vectors sampled for each generation) using the heuristic
suggested by the PINTS package (Clerx et al., 2019b) ,

npop :=
⌊
4+3ln

(
np
)⌋

, (4.35)

where np is the number of model parameters, In the case of the Wang et al. (1997) model,
we increase the population size to 50 because of the model’s increased complexity. We
terminate the optimisation once 200 iterations have failed to yield a materially improved
parameter set (that is, by decreasing the sum-of-squares error by more than 10−7).
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A cell-specific parameter set is fitted to every repeat of every protocol for each
well. In this way, each repeat of each protocol is a separate fitting task which may be
treated independently. As in Chapter 3, this allows us to fit many traces in parallel
using a high-performance computing resource. Again, as in Chapter 3, these methods
are implemented using Numba such that efficient code can be generated and just-
in-time (JIT) compiled for any Markov model structure. Our ODE systems (that is,
Equation 4.24) are integrated using the LSODA method (as described in Section 2.3)
with absolute and relative tolerances set to 10−8 to ensure convergence of the objective
with respect to parameters (Clerx et al., 2019a; Creswell et al., 2024).

As in Chapter 3 we perform each optimisation multiple times using different initial
guesses. Here, in this chapter, we use 30 initial guesses for each sweep of each protocol.
Our initial guesses for parameters relating to our models’ transition rates are sampled
from our parameter space using log-uniform and uniform distributions, here we choose,

log10{Ai} ∼U(−7,5), (4.36)

bi ∼U
(

10−7,105
)
, (4.37)

where Ai and bi are our initial guesses of parameters characterising some transition rate,
ki = Aexp{±biVm}. Choosing these probability distributions ensures that we initiate our
optimisation starting from various locations in parameter space, lessening the chance
that we do not identify the global optimum.

However, unlike Chapter 3, we also sample an initial guess for our maximal conduc-
tance parameter, g. Our initial guesses for the maximal conductance, g, are sampled
according to a log-uniform distribution which has support over our parameter space,

log{g} ∼U (log{gmin}, log{gmax}) . (4.38)

where gmin and gmax are the upper and lower bounds, respectively, from Inequali-
ties (4.32) and (4.33).

We fit our models under the assumption of Case I and Case II independently.
However, It is not necessary to re-fit our models under Case III because there is a simple
mapping between parameters obtained under Case II and those under Case III, that is,

k(Vcmd +Voff) = Aexp{±b(Vcmd +Voff)}

= Aexp{±bVoff}︸ ︷︷ ︸
A†

exp{±bVcmd} . (4.39)

Hence, Case II’s ‘A’ parameter is mapped to A† = Aexp{±bVoff}, but our ‘b’ parameter
remains unchanged. It should be noted, however, that this does result in a small change
in the effective initial guess distributions and the constraints of our optimisation.
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Predictions As when fitting, we compute our model predictions by integrating the
governing equation (Equation (4.24)) and computing the observation function, Equa-
tion (4.25). In this way, we obtain a prediction for a validation protocol d̃ from a
parameter estimate obtained from a training protocol, d, that is, y(θ̂θθ(d); d̃), where θ̂θθ(d)

denotes the parameter estimate obtained by fitting to protocol d, and d̃ is the validation
protocol (that is, the protocol which we are making a prediction for). In Case I and
Case III, EKr (which appears in the driving term of our observation function) is set to
ENernst. In Case II, we assume the value we inferred for the validation trace during
postprocessing, that is, EKr = Epost.

Case III differs from Case I and Case II, because we assume a non-zero voltage
offset, Voff = ENernst −Epost, which affects not only the driving term in Equation (4.25),
but also the channel kinetics as described by Equation (4.24). This is achieved through
the assumption that Vm =Vcmd +Voff. As explained above, our ‘fits’ (the model output
of our fitted model under the fitting protocol) are identical under Cases II and III. Hence,
to produce model predictions under Case III, we use the parameters obtained from
fitting under the assumption of Case II, and, for rates of the form k = Aexp{±bVm}, we
compute,

Apredict = Afit exp
{
±b
(

V (predict)
off −V (train)

off

)}

= Afit exp
{
±b
(

E(train)
post −E(predict)

post

)}
. (4.40)

Under the assumption of Case III, this allows us to account for any change in voltage
offset (Voff) between protocols. Note that constant transition rates (which appear only
in the Wang et al. (1997) Model) are independent of the transmembrane potential and,
as such, are left unaffected by changes in Voff.

4.4.2 Model fitting results

To be confident that we have successfully identified the optimal parameter set, we
should obtain similar results from repeated runs of our optimisation procedure (which
both starts from a randomised initial guess, and is inherently stochastic). Figure 4.18
shows the results of one particular optimisation task with 30 repeats. Here, we can see
that amongst our best runs, the resulting parameter set varies only slightly. Those results
which correspond to a less than a 1% increase in RMSE when compared to the best
parameter set are highlighted. Figure 4.18e shows a profile along the likelihood surface,
plotted along the straight line from the optimal parameter set (λ = 0) to our reference
parameter set, the Cell #5 transition-rate parameters in the original publication, Beattie
et al. (2018) (at λ = 1). This profile is smooth and shows no local optima on the line
directly between these parameter sets (though, our high-dimensional likelihood surface
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is far more complicated than this simple one-dimensional projection). This also shows
that the (transition-rate) parameters found by fitting this particular sweep of data are not
a radical departure from those found previously in Beattie et al. (2018).

4.4.3 Predictive accuracy under differing assumptions

Following the methodology introduced in Chapter 3, we consider ensembles of predic-
tions for each model. We first consider differences arising from the different modelling
assumptions listed in Table 4.4. Figure 4.19 highlights the difference between those
models resting on the assumption that EKr = ENernst (Case I), and those obtained via the
assumption that EKr = Epost and Voff = ENernst −Epost (Cases III). There is a noticeable
difference in the models around during the penultimate −80mV step around 13s into the
protocol. During this step, the models fit under the assumption EKr = Epost ≈−80 mV,
like our recordings, exhibit little current; those models with EKr = ENernst ≈−89.8 mV
fail to recapitulate this small current.

We can quantitatively compare the predictive accuracy of our models by computing
the RMSE between our model predictions and the data. To do this, we first compute
the RMSE in our predictions for each parameter estimate. As in Chapter 3, we may
visualise the resulting values with a heatmap. Figure 4.20 shows a selection of such
cross-validation heatmaps, each showing the models’ predictive accuracy when fitted to
and making predictions for Well B09 (and validated using data from the same well).

To summarise of the models’ predictive accuracy across wells, in terms of RMSE,
we normalise the RMSE by the size of the trace. This accounts for variability in
conductance between wells. Here, we compute

NRMSE(y,z) :=

√
1
n ∑

n

i=1
(zi − yi)2

√
1
n ∑

n

i=1
z2

i

=
∥z−y∥2

∥z∥2
(4.41)

where z is our vector of data, and y is the model output.
We quantify the average predictive accuracy of our models (under cross-validation)

by computing,

Epredict =
1

Nd(Nd −1)∑
d∈D



 ∑

d̃∈D\{d}

NRMSE
(
IKr(θθθ d̃; d̃),zd̃

)


 , (4.42)

Here, we exclude terms where the fitting and validation protocol are identical (that
is, those terms for which d = d̃). As such, because of the diverse nature of our set of
protocols, this sum describes the performance accuracy of the model when used in
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Figure 4.18: Results from fitting the Beattie et al. (2018) model under Case II/III
with data collected from Well B20 under the staircase protocol (first repeat). Panel a:
staircase protocol (d1). Panel b: the state occupancies according to our fitted model.
Panel c: the data and model fit. Panel d: estimates of p1 and p2 obtained from thirty
repeats of the optimisation routine— blue markers show optimisation results with
RMSE at most 101% of the best-found value. Panel e: the amount of RMSE error in
each fit. Panel f: a profile through the likelihood surface, starting at our best estimate
of the parameters (λ = 0, yellow square) and finishing (when λ = 1) at the model’s
original (Cell # 5) parameter set (Beattie et al., 2018) (with fitted conductance).



4.4. FITTING AND VALIDATION OF MODELS 108

100
0

V c
m

d (
m

V) a

2000

1000

0

1000

I p
os

t (
pA

)

C-O-Ib

Case I
Case II

0 2 4 6 8 10 12 14 16
t (s)

2000

1000

0

1000

I p
os

t (
pA

)

Beattiec

Figure 4.19: A comparison of the spread of predictions obtained from fitting our models
to recordings of each protocol in Well B09. Panel a: the staircase protocol (d1). Panel
b: the spread-of-predictions obtained by fitting the C-O-I model under Cases I and II.
Panel c: the spread-of-predictions obtained by fitting the Beattie et al. (2018) model to
under Cases I and II.
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as-of-yet unseen situations. Additionally, we compute,

Efit =
1

Nd
∑
d∈D

NRMSE
(
IKr(θθθ d; d̃),zd̃

)
. (4.43)

Equation (4.43) is an average over the RMSE between our fits and the data (down-
weighted by the size of the recorded trace). Where there are multiple repeats of a
protocol (as for our four repeats of d1), we treat these values as separate protocols in
Equations (4.42) and (4.43).

These values (Equation (4.42) and Equation (4.43)) are shown for data taken from
Well B20 in the cross-validation heatmap in Figure 4.24. This heatmap shows the
NRMSE error for each pair of prediction and validation protocols, and as such, shows
which protocols the Beattie et al. (2018) model is able to recapitulate. In particular, we
can see that parameter estimates obtained from any of our four sweeps of the staircase

protocol (d(1)
1 , d(2)

1 , d(3)
1 , and d(1)

1 ) result in little error when compared with data from
other sweeps, indicating little variability between sweeps. Moreover, we can see that d1

and d2 (the latter being the similar staircase-in-staircase protocol) result in relatively
poor predictions across many of our protocols.
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Figure 4.20: Cross-validation heatmap for the Beattie et al. (2018) model under the
assumption that EKr = ENernst (Case I), showing the accuracy of model fits and predic-
tions when compared to data from Well B20. The square in the ith row and jth column
shows the normalised RMSE when the parameter set obtained from the ith trace is used
to predict the data taken from the jth trace. The staircase protocol (d1) was repeated
four times, twice before all other protocols, and twice after all other protocols. The
rows and columns are ordered chronologically, except the row showing d6 predictions
(highlighted), as this protocol is used only for validation and not fitting.

Next, we may consider the mean predictive accuracy across each well. Figure 4.21
shows the best and worst wells in terms of predictive accuracy of our Case III Beattie
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et al. (2018) model, as quantified by NRMSE averaged over each pair of fitting and
validation protocols. Additionally, panels b and d show best and worst fits/predictions
from these models for these particular wells. A similar plot is shown for the Wang
et al. (1997) model (also under Case III) in Figure 4.22. At their best, our models
produce highly accurate fits to the data. At their worst, they produce predictions which
are quantitatively inaccurate, but are still reasonable qualitative descriptions of IKr.
Figure 4.20 shows the NRMSE error for each pair of fitting and validation protocols,
averaged across all wells (those that passed QC). Figure 4.25 summarises the predictive
accuracy under the assumption of each model, and each fitting case (as described in
Table 4.4).

Whilst Figures 4.23, 4.24, and 4.25 provide a summary of predictive accuracy,
they do not provide an indication of when the discrepancy between the model and
our measurements of IKr is most prevalent. To highlight periods of time when this
discrepancy seems significant, we consider the distribution of predictions at each
observation time, ti. Regarding the accuracy of our model fits, we may consider the
summary statistic,

y(ti)− zi

σ
, (4.44)

where y(ti) is our model fit at time ti, and zi is the datum observed at time ti. Large
positive values of this statistic indicate that our model consistently overestimates the
true, underlying DGP at time ti, whereas large negative values indicate a consistent
underestimation, highlighting the discrepancy between our ensemble of predictions and
the true underlying DGP. We average this test statistic across wells and show where our
models are unable to recapitulate the data in Figure 4.26.

Regarding the accuracy of our model prediction ensembles, we consider,

T (ti) =
mean j{y j(ti)− zi}
1√
Nd

std j{y j(ti)}+σ
, (4.45)

where zi, again, denotes the datum observed at time ti, yi(ti) denotes the prediction of
the observation at time, and where mean and std denote the sample mean and sample
standard deviation, respectively. Large values of T , whether positive or negative,
indicate that the mean error in our predictions is much larger than either the spread
in predictions, or the apparent noise in the data set. In this way, T , summarises the
ensemble of predictions at a given point in time, and indicates whether they consistently
overestimate or underestimate the DGP. The σ term in the denominator accounts for
the presence of random noise. This problem would be particularly noticeable at a low
holding potential (such as the start of each protocol, when Vcmd = −80mV). In this
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Figure 4.21: A cross-validation heatmap showing the predictive accuracy of the Beattie
et al. (2018) model (Case III). The two wells shown, Well D09 (Panel e) and Well B20
(Panel f), are the wells with the least and greatest average NRMSE across each pair of
fitting and training sweeps. Panel b shows the best fit (in terms of NRMSE) from Well
D09, the highlighted cell in Panel e. The worst model prediction (in terms of NRMSE)
for Well B20 is shown in d. Panels a and c show corresponding voltage traces: Vcmd
(black) and Vm (blue).
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Figure 4.22: A cross-validation heatmap showing the predictive accuracy of the Wang
model under Case III. The two wells shown, Well D09 (Panel e) and Well B20 (Panel f),
are the wells with the greatest and least average NRMSE across each pair of fitting and
training sweeps. Panel b shows the worst model prediction (in terms of the NRMSE)
from Well D09, corresponding to the highlighted cell in panel e. Panel c shows the
lowest scoring (NRMSE) cell in panel f. Panels a and c show the corresponding voltage
traces, Vcmd (black) and Vm (blue).



4.4. FITTING AND VALIDATION OF MODELS 113

C-O-I

Beattie

Kemp

Wang

Case I Case II Case III

10−1 100

NRMSE

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.25,
Epredict =0.36

Efit =0.12,
Epredict =0.22

Efit =0.12,
Epredict =0.23

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.24,
Epredict =0.36

Efit =0.12,
Epredict =0.22

Efit =0.12,
Epredict =0.22

d6
d

(1)
1d
(2)
1d2
d3
d4
d5
d7
d8
d9
d10
d11
d12
d

(3)
1d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.21,
Epredict =0.35

Efit =0.10,
Epredict =0.23

Efit =0.10,
Epredict =0.23

d
(1

)
1 d

2

d
4

d
7

d
9

d
1
1

d
(3

)
1

fitting protocol

d6
d

(1)
1d
(2)
1d2
d3
d4
d5
d7
d8
d9
d10
d11
d12
d

(3)
1d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.21,
Epredict =0.39

d
(1

)
1 d

2

d
4

d
7

d
9

d
1
1

d
(3

)
1

fitting protocol

Efit =0.10,
Epredict =0.23

d
(1

)
1 d

2

d
4

d
7

d
9

d
1
1

d
(3

)
1

fitting protocol

Efit =0.10,
Epredict =0.23

Figure 4.23: A comparison of different combinations of model structures and assump-
tions, as well as a quantification of the fitting and prediction errors, for data taken from
Well D09 (for which our model predictions produce the lowest average NRMSE). Each
element of each heatmap shows the prediction error when the model is fitted to data
from a particular protocol and used to predict data from another protocol. The traces
are ordered chronologically except d6 (highlighted) which is used only for validation.
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Figure 4.24: A comparison of different combinations of model structures and assump-
tions, as well as a quantification of the fitting and prediction errors, for data taken
from Well B20 (for which our models produce the highest average NRMSE). Each
element of each heatmap shows the prediction error when the model is fitted to data
from a particular protocol and used to predict data from another protocol. The traces
are ordered chronologically except d6 (highlighted) which is used only for validation.
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Figure 4.25: A comparison of different combinations of model structures and assump-
tions, as well as a quantification of the fitting and prediction errors, averaged over each
well. Each cell in each heatmap shows the prediction error when the model is fitted
to data from a particular protocol and used to predict data from another protocol. The
traces are ordered chronologically except d6 (highlighted) used only for validation.
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Figure 4.26: The accuracy of our Beattie model fits (under Case II) for each training
protocol, as quantified by the normalised residuals averaged across wells. No model
was fit to protocol d6.
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case, IKr and all model predictions are approximately 0 and we have,

mean j{y j(ti)− zi}
1√
Nd

std j{y j(ti)}
≈

mean j{εi}
1√
Nd

std j{y j(ti)}
,

where εi is the observational error for the ith observation. This value would be highly
sensitive to random variability. Moreover, since T is non-dimensional (and is invariant
under scaling), it provides a way of averaging this behaviour over multiple wells for
which there is variability in maximal conductance, g.

In Figure 4.27, we show T for the Beattie et al. (2018) model (under Case II) for
each prediction protocol using data from Well B09. Then, for the same model, we show
the same statistic averaged across all wells in Figure 4.28. The fact that the model does
not accurately predict the first +40 mV step (which is identical across all protocols),
sometimes overestimating it, and sometimes underestimating it, indicates that there are
some time-dependent effects which change over the course of the experiment. However,
we see larger T values in the central portions of our protocols, indicating dynamics that
the model is unable to accurately recapitulate.

4.5 Variability of parameter estimates

By fitting our data to each sweep in our dataset, we obtain a collection of parameter
estimates for each model (and fitting case as outlined in Table 4.4). Each of these
parameter estimates pertains to a different sweep in our dataset. There are 12 protocols
and 8 wells (after the vast majority of wells are removed during QC). All the protocols
are performed exactly once (both before and after the addition of dofetilide) except
the staircase protocol (d1) of which there are 4 repeats, each of which provides a
separate vector of parameter estimates. In this section, we discuss the variability of
these parameter estimates and use a simple, linear statistical model to characterise the
well-to-well and protocol-to-protocol variability thereof.

By plotting our parameter estimates (Figure 4.29), we can see that there is some
relationship between the well the data was obtained from and the resulting parameter-
estimate vector (Figure 4.29b). Likewise, we can see that there is some relationship
between the protocol under which the data was obtained and the resulting parameter
estimate (Figure 4.29c). Some protocols yield consistently high estimates of p1 when
compared to other protocols, for example. However, the relationship is not clear from
these plots. Furthermore, due to the high-dimensionality of our parameter space, it
is difficult to provide a complete picture of our model. Note that throughout this
section, we consider log-transformed ‘A’ parameters, such that for any transition rate
of the form k = Aexp{bVm}, our model-parameter vector contains log(A) in place of
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Figure 4.27: Segments of our protocols where the Beattie et al. (2018) model (under
Case III) produces inaccurate (yet consistent across parameter sets) prediction, for data
obtained from Well B09, as quantified by our T statistic. The areas of our segments
where there is significant discrepancy between our ensembles of predictions and the
data are shown in dark-red (overestimation) and dark-blue (underestimation).
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Figure 4.28: Segments of our protocols where the Beattie et al. (2018) model under Case
III) produces inaccurate (yet consistent across parameter sets) prediction, as quantified
by our T statistic averaged across wells.
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A. Nevertheless, all plots shown in this section are plotted in terms of original model
parameterisations, that is, those used throughout this thesis.

This fact motivates the introduction of a simple statistical model, which we may
use to quantify the variability of our parameter estimates. To do this, we assume that
a parameter-estimate vector obtained from well i and protocol j is vector of random
variables,

θθθ i, j = wi +d j + εεε, (4.46)

where: εεε is some random variable with an uncorrelated, zero-mean, Gaussian distribu-
tion, MVN(0,diag{σk}k), where each σk being the standard deviation corresponding to
the random variation in each parameter; and each wi and d j is an effect related to said
well and protocol respectively.

By performing linear regression, we infer the sizes of these effects for each well and
each protocol fitted in the dataset. We denote the matrix of well and protocol effects by,

βββ w =




βββ
(1)
w
...

βββ
(N)
w


 , βββ d =




βββ
(1)
d
...

βββ
(N)
d


 .

These are matrices representing the well and protocol effects, respectively. Each column
represents the well or design effects on each parameter, and each row corresponds to
the particular well and protocol from which a given parameter estimate was obtained.

We may also write this model in matrix form,

Y = µµµ +Xwβββ d +Xdβββ d +E, (4.47)

where: Y is a matrix where each row is a parameter estimate obtained from model
fitting; Xw and Xd are well- and protocol-effect design matrices where each row
encodes the well/protocol used for a given parameter estimate; βββ w and βββ d are our
(column) parameter vectors, with each element representing a well and protocol effects
(respectively); E is a matrix of Gaussian-distributed random variables such that the
kth column of E is a vector of IID Gaussian variables with zero mean and standard
deviation, σk.

In this model, we consider Nd = 11 designs (of which d1 is repeated four times) to
Nw = 8 wells. Hence, we have N = (3+Nd)Nw data (each a separate vector of parameter
estimates, θ̂θθ ). To test whether there is significant well- and/or protocol-dependence
in our parameter estimates, we use log-likelihood differences (LLDs). We do this by
considering a family of nested models where the full model is,

Mw,d : Y = µ +Xdβββ d +Xwβββ w + εεε , (4.48)
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Figure 4.29: Panel a: every estimate the p1 and p2 Beattie et al. (2018) model parameters
obtained under Case III. Panel b: the different colours and markers show which estimates
correspond to the same well. Panel c: the different colours and markers show which
parameter estimates were obtained from the same protocol. The protocol and well
dependence of these parameter estimates is explored in more detail in Section 4.5.
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and the protocol and well effects sum to zero that is,

βββ
⊤
w1 = βββ

⊤
d 1 = 0 . (4.49)

Consequently, µ is an average of our parameter-estimate vectors across all wells and
protocols (discounting repeats).

These constraints, together with sufficient observations, guarantee identifiability.
Here, our linear model has Nθ (Nw +Nd + 1) independent parameters (of which Nd

correspond to the standard deviations of our random errors, σi). Hence, we are able to
identify each of the parameters (elements of βw and βd) only if there are more data than
independent parameters, that is if,

Nθθθ N ≥Nθθθ (Nw +Nd +1) , (4.50)

where N is the number of parameter estimate vectors we have (that is, the number
of traces used for fitting). Since all protocols are performed exactly once except the
staircase protocol which is performed 4 times, this inequality holds if,

Nθθθ Nw(Nd +3)≥ Nθθθ (Nw +Nd +1) (4.51)

Nw(Nd +3)−≥Nw +Nd +1 (4.52)

Nw(Nd +2)−Nd −1 ≥0 (4.53)

2Nw +Nd(Nw −1)−1 ≥0 , (4.54)

which is always true when Nw, Nd ≥ 1, that is, when we have parameter estimates
obtained from at least one well and one protocol. Note that this is a family of nested
models: M0 results from any of the other models subject to βββ w = βββ d = 0. Similarly,
models Mw and Md may be seen as model Mw,d subject to the constraints that βββ w = 0
and βββ d = 0, respectively. This hierarchy of models is shown in Figure 4.30.

Each model may be fit by rewriting it as a standard linear regression model,

Y = Xβββ + εεε , (4.55)

from which we obtain the maximum-likelihood estimate, β̂ββ , which satisfies,

X⊤Xβ̂ββ = X⊤Y. (4.56)

After solving this equation, we may obtain βββ w and βββ d from β̂ββ .
We consider the maximal likelihood under the assumption of each model, Mi, by

Li(β̂ββ i) where β̂ββ iii is the MLE of the model parameters for model i. We list each of these
values, for each set of parameter estimates (arising from our candidate IKr models)
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Figure 4.30: The relationship between the linear models applied to our collection
of parameter estimates. All of these models are sub-models of Mw,d under various
constraints. These constraints correspond to the removal of the well- and/or protocol-
dependent effects. In any case, we require that our effects vectors, βββ w and βββ d. The null
model (M0) is the simplest model in this family, having no well- or protocol-dependent
effects.

in Table 4.5, from which we can see that including the well- and protocol-dependent
effects leads to a large increase in likelihood. This indicates that there is a large degree
of protocol and well dependence in our parameter estimates.

In Figure 4.31, we see the variability in these estimates for the (Beattie et al., 2018)
model (Case I) across each sweep of each protocol for each well. The repeated protocol
(the staircase protocol) is highlighted and compared with the linear model. Though
this plot shows only a pair of transition-rate parameters, we can see that the linear
model captures (to some extent) the protocol and well dependence of all transition-
rate parameter estimates in a given Markov model. In other words, it appears that
well-to-well and protocol-to-protocol differences in parameter estimates can mostly be
explained as simple, independent translations in parameter space. The suitability of
these models is discussed further in Appendix E, where we show that the assumption of
IID normally distributed errors (that is, Equation (4.55)) is reasonable.

The parameter estimates that we obtained are shown in Figures 4.31. From these
results, we can see that there is noticeable variability between parameters obtained from
different wells under the same protocol, and also variability between wells in those
parameter estimates obtained from the same protocol. It is noteworthy that parameter
estimates obtained under repeats of d1 are largely consistent, except in the case of Well
B20, where the p1 parameter estimate obtained from the second repeat is noticeably
different, as shown in Figures 4.31 and 4.32. We suggest that this is due to the over-
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Figure 4.31: The full linear model, Mw,d, containing both well- and protocol-dependent
effects describes the variability in our parameter estimates. Each panel shows the
parameter estimates obtained from a given well, and highlights the four parameter
estimates obtained from the staircase protocol (red crosses), the only protocol which
was repeated. The blue square shows the well-dependent effect according to Mw, our
linear model with no protocol-dependent effects, and the blue star shows the sum of
the well and protocol effects according to Mw,d. Note that p1, on the x-axis, has been
log-scaled (as it is in each linear model).
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Figure 4.32: Each panel shows the parameter estimates obtained from a given protocol,
and highlights the parameter estimates obtained by fitting with data from Well B20
(red crosses), which exhibits noticeable variability under repeats of d1. The blue square
shows the well-dependent effect according to Mw, our linear model with no well-
dependent effects, and the blue star shows the sum of the well and protocol effects
according to Mw,d—our linear model with both well- and protocol-dependent effects.
Note that p1, on the x-axis, has been logged-scaled (as it is in our each linear model).
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correction of the leak current, which is perhaps most noticeable during the first +40mV
step (as shown in Figure 4.33).

Due to the high-dimensional nature of our parameter spaces, it is difficult to provide
a complete picture of the variability in our parameter estimates. Nevertheless, we may
summarise this information by using some log-likelihood differences (LLDs)—this
is made possible by the fact that Mi are nested models, as illustrated in Figure 4.30.
In particular, this provides a way of quantifying the relative significance of the well-
dependent and protocol-dependent effects.

The first LLD we calculate, LLD-W, shows whether there is a significant well-effect
where we find the difference in the maximum log likelihoods of models Md and Mw,d.
We then compute LLD-D where we take the difference in log likelihoods between Mw

and Mw,d. In either case, the log-likelihood difference is,

log

{
L1(θ̂θθ 1)

L2(θ̂θθ 2)

}
= log

{
L1(θ̂θθ 1)

}
− log

{
L2(θ̂θθ 1)

}
, (4.57)

where: L1 and L2 are the maximum likelihoods found under the first and second models,
respectively. These statistics, presented in Table 4.5, quantify the importance of well
and protocol dependence in our ensemble of parameter estimates.

Model Case M0 Mw Md Mw,d LLD-W LLD-D

C-O-I
Case I 1081.9 1172.0 1301.0 1467.0 166.0 295.0
Case II 1451.5 1657.0 1709.7 2104.7 395.1 447.7
Case III 1465.6 1668.5 1724.4 2111.1 386.7 442.6

Beattie
Case I 1231.2 1361.5 1469.3 1723.4 254.1 362.0
Case II 1547.4 1804.0 1757.0 2219.3 462.3 415.4
Case III 1563.3 1817.0 1784.2 2247.2 462.9 430.2

Kemp
Case I 118.9 1220.1 1486.5 1671.3 184.8 451.2
Case II 914.7 1081.8 1096.0 1337.2 241.2 255.4
Case III 931.8 1099.8 1113.7 1356.3 242.6 256.5

Wang
Case I −1919.8 −1851.5 −1578.2 −1474.3 103.9 377.1
Case II −506.4 −379.0 −216.6 14.6 202.0 364.4
Case III −2082.1 −1976.1 −1836.7 −1673.5 163.2 302.6

Table 4.5: Log-likelihoods and log-likelihood differences (LLD-W and LLD-D) for each
of the linear models, applied to all of our models (that is, the collection of parameter
estimates obtained using each model). Here we see that in each case, and for each model,
that both well- and protocol-effects are sizeable. Whilst large values of LLD-D suggests
discrepancy between the recordings of IKr (taken from each well) and the dynamics of
our models, the size of LLD-W may suggest the presence of latent, well-dependent
effects.
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Figure 4.33: Results from fitting the Beattie et al. (2018) model under Case II/III with
data collected from Well B20 under the staircase protocol, d1 (second repeat). Panel a:
the data and the model fit. Panel b: the command voltage during this protocol. Panel c:
estimates of p1 and p2 obtained from thirty repeats of the optimisation routine—blue
markers show optimisation results with RMSE at most 101% of the best-found value.
Panel d: the amount of RMSE error in each fit. Panel e: a profile through the likelihood
surface, starting at our best estimate of the parameters (λ = 0, yellow square) and
finishing (when λ = 1) at the model’s original (Cell # 5) parameter set (Beattie et al.,
2018), with its conductance parameter set to that of the fitted model.
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4.6 Discussion

In the previous chapter, we demonstrated methods for the application of ODE-based
models of IKr to real time-series data from information-rich experimental designs. How-
ever, the previous chapter was focused on synthetically generated data, avoiding many
of the challenges that arise when fitting mathematical models to real experimental data.
In this chapter we adapted and applied the methodology to work with real experimental
data. Our multiprotocol approach necessitates methods which ensure consistent con-
ditions throughout the experiment. Through the diligent selection of QC criteria, we
were able to select a subset of the data consisting of high-quality recordings (where the
linear leak model seems to work exceptionally well), which exhibit consistency over
the course of the experiment (as shown by the minimal variation in leak currents and
reversal potentials over time). This aspect of this chapter lays the foundation for further
analysis of multiprotocol datasets of ion-channel current recordings, particular those
taken from high-throughput automated patch-clamp platforms.

Following the quality control and postprocessing work, in Section 4.4 we used
our information-rich multiprotocol dataset to perform thorough cross-validation of the
predictive accuracy of a selection of literature IKr models. Though these models were
applied under the assumption of an ideal patch-clamp, these models produced reason-
ably accurate predictions across a range of protocols. In terms of general predictive
performance (when predictive error is averaged across a range of fitting and validation
protocols), it appears that the simpler models (with fewer parameters) perform better
than models with larger parameter spaces. Generally speaking, models with more
parameters (the Kemp et al. (2021) and Wang et al. (1997) models) produced more
accurate fits to our data, as quantified by Efit, whereas the simpler models (the C-O-I
and Beattie et al. (2018) models) produced slightly more accurate model predictions for
unseen protocols (see Figure 4.25). However, the difference between our competing
model structures regarding Efit and Epred are rather subtle.

These results show that whilst our model structures are able to mostly recapitulate
the individual voltage-protocol that they are being fitted to, their predictions for other
protocols (which they were not fitted to) is markedly worse. This behaviour, combined
with the protocol-dependence of our parameter estimates, indicates model discrepancy.
We suggest that it may be possible to improve the accuracy of our predictions by
selecting other model structures or reconsidering our modelling assumptions (in the next
chapter, namely the ideal patch-clamp assumption). Because our data were collected
from a diverse range of information-rich experiments, we are able to thoroughly validate
the predictive accuracy of a small selection of IKr models under previously unseen
stimuli. Overall, we have shown that each model is able to mostly accurately recapitulate
our IKr recordings, producing quantitatively accurate fits and predictions. This is
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particularly true in certain wells, such as Well D09, where our models not only provide
very accurate fits to the data, but are able to predict the current during unseen protocols
to a high degree of accuracy (see Figure 4.25).

There was some variability between sweeps, for example, in the parameters obtained
from repeats of the staircase protocol in Well B20. We suggest that this variability
was due to the overcorrection of leak current. This variability had a large effect on the
resultant p1 parameter estimate, which shows that small instances of data pollution
have the potential to impart large bias onto parameter estimates. In future work, it may
be possible to avoid such overcorrection of leak by enforcing stricter QC criteria, or
adjusting our inference of the leak-model parameters such that any negative Ipost during
the +40mV step following the leak ramp is heavily discouraged. However, in this
chapter, only 8 of 384 wells were considered, providing a balance between the quality
and volume of data—further QC criteria should be carefully selected as to not discard
more data. Nevertheless, this particular example of leak over-correction is avoided in
the following chapter, where we fit our models directly to the pre-drug trace.

Our statistical analysis of our ensembles of parameter estimates (as discussed
in Section 4.5) suggests that there are strong well- and protocol-dependent effects
acting upon our parameter estimates. As discussed in the previous chapter, we expect
these protocol-dependent effects to be present when there is discrepancy between our
mathematical models and the underlying biophysical mechanisms. The strong well-
dependent effects, however, suggest substantial experimental variability, unaccounted
for by the models presented here. As argued by Lei et al. (2020a), it is possible that
experimental artefacts are a leading cause of the well-to-well variability in our of our
parameter estimates. Perhaps the variability in our kinetic parameters is caused by
the overfitting to account for these experimental artefact effects, which are not present
in our models. Moreover, the inclusion of these effects reduced protocol dependence
in parameter estimates and led to more accurate model predictions. In the following
chapter, we consider models that include these artefact effects (as presented in Lei
et al. (2020a)) and investigate whether they provide more accurate predictions and more
uniform parameter estimates across wells and protocols.



Chapter 5

Accounting for experimental artefacts
in fitting improves model accuracy

5.1 Preamble

The work presented in this chapter is based on the same data as the previous chapter,
collected at the Victor Chang Cardiac Research Institute (VCCRI), Sydney, Australia.
This work was done before, during and after my working visit to The VCCRI in
November/December 2023, where I collected further data and gained insights into
experimental methods for patch-clamp electrophysiology. This experience shaped my
treatment of artefact effects in our models, leading to the development of the methods
presented in this chapter. The work presented in this chapter is my own.

5.2 Introduction

In the previous chapter, we fitted Markov models of IKr to experimental data. This
was done under the assumption of an ideal patch-clamp setup, whereby certain known
artefact effects are omitted, and we assumed,

Vm(t) =Vcmd(t)+Voff , (5.1)

where Vm is the transmembrane potential, Vcmd is the command voltage specified by the
experimental design and Voff is some constant voltage offset. We also assumed that the
current remaining after leak-correction and drug-subtraction is exactly IKr that is,

Ipost =
(

I(before)
obs − I(before)

L

)
−
(

I(after)
obs − I(after)

L

)
, (5.2)
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where I(before)
obs and I(after)

obs are the raw current traces observed before and after (respec-
tively) the addition of dofetilide, and I(before)

L and I(after)
L are the corresponding leak

currents.
Whilst these models resulted in accurate fits to individual sweeps of data, they

were noticeably less accurate when used to predict IKr under unseen voltage protocols.
Furthermore, the well-to-well variability found in our collections of parameter estimates
suggested the presence of latent variables. This may indicate that the ideal-patch
assumptions themselves, and not a particular choice of model structure, are a dominant
source of model discrepancy. This is also supported by the apparent well-dependence
of our parameter estimates, because, under the assumption that our models’ kinetic
parameters are constant across cells, there must be some hidden well-dependent effects
causing the apparent variability in our recordings. Experimental artefacts, which vary
randomly between wells, may provide an explanation (Lei et al., 2020a). In this chapter,
we investigate whether the inclusion of such experimental artefacts in our models can
improve the predictive accuracy of our models, and decrease the well-to-well variability
in parameter estimates.

As discussed at the end of the previous chapter, and in Lei et al. (2020a), there
are known “artefact effects” which affect the output of patch-clamp experiments, and
are expected to vary between wells. These effects, if large enough, invalidate the
assumption of an ideal patch-clamp setup (the assumptions described in Section 4.1).
One example of such an effect is series resistance (Lei et al., 2020a), as shown in
Figure 5.1. Typically, in manual patch-clamp setups, series-resistance compensation is
performed, mitigating the impact of this effect, though our automated experiments were
performed on a machine where this feature is not present. However, even platforms
capable of series-resistance compensation do not completely remove the effect, in
which case series resistance, and the circuitry responsible for its compensation, may be
included in mathematical models (Lei et al., 2020a).

Another important effect, which is omitted by the ideal-patch model, is the capaci-
tance across the cell membrane. Because charges are stored (in the form of ions such as
K+, Na+ and Ca2+) on either side of the cell membrane, any current flowing through the
circuit has an effect on the transmembrane potential, Vm. This is shown in the circuit
diagram in Figure 5.1 where we can see that the membrane charges and discharges in
response to changes in Vcmd, the command voltage. When there is an abrupt change in
Vcmd, this results in a smooth change in Vm, resulting in a discrepancy in Vm and Vcmd

that is most pronounced after discontinuities in our voltage-clamp protocols (that is, at
the beginning of each voltage step). Some patch-clamp equipment is able to perform
“supercharging” to mitigate the smoothing effect of the cell membrane’s capacitance,
though, again, our experiments were performed on an automated machine with no such
feature.
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In the following section, Section 5.3 we introduce some methods for integrating
the artefact model into the postprocessing and fitting methodology of the previous
chapter. Then, we fit each of the IKr Markov models discussed in the previous chap-
ter, with and without the inclusion of artefact effects. This allows a comparison of
the predictive accuracy and distribution of parameter estimates obtained between the
artefact-modelling approach, and the ideal-patch approach in terms of their predictive
accuracy (Section 5.5.2) and the variability of parameter estimates (Section 5.5.3).
Finally, in Section 5.5.4, we revisit the variability in decay time-constants discussed in
Section 4.3, and investigate whether this variability can be explained solely by artefact
effects under the assumption of identical channel-gating kinetics.

5.3 Mathematical modelling of experimental artefacts

ODE models of patch-clamp experiments have been used to describe the dynamics
of patch-clamp experiments, even in the absence of biological currents (Weerakoon
et al., 2009; Lei et al., 2020a). Lei et al. (2020a) used ODE-based models to describe
the changes in transmembrane potential over time, modelling the interaction between
cellular currents and the patch-clamp apparatus. This includes the effect of capacitive
currents and voltage attenuation through the series resistance.

Lei et al. (2020a) present two artefact models. Some of the terms included in Lei
et al.’s complete model related to the parasitic capacitance, Cp. Typically, the effect of
Cp is negligible when considering millisecond-and-above timescales, and values lie in
the range 3–5pF (Lei et al., 2020a). As shown in Figure 5.2, our estimates of Cm lie in
the range 12.5–30pF. Perhaps more importantly, the timescale over which the parasitic
capacitance acts is very short—approximately 0.8 µs (Lei et al., 2020a). Hence, this
effect has little impact on the vast majority of our observations when using a 1–10 kHz
sampling rate, especially when the presence of capacitive effects is minimised through
the removal of 5ms of data after each discontinuity in Vcmd as described in the previous
chapter and Appendix C.

Other short-timescale effects are due to various delays within the patch-clamp
amplifier itself, which are the result of the solid-state electrical circuitry used to control
the injected current. We use Lei et al. (2020a)’s simplified model (henceforth referred
to as “the artefact model”) which omits these effects and models the membrane voltage
simply as,

dVm

dt
=

Vcmd +Voff −Vm

RseriesCm
− Iout

Cm
, (5.3)

where: Iout = IKr + IL; Cm is the membrane capacitance; Rseries is the series resistance,
and Voff is some systematic voltage (similar to the voltage offset discussed in the
previous chapter).
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Figure 5.1: An equivalent circuit formulation of the artefact model. Here, the subject
of our modelling effort, IKr is just one component of the circuit. We aim to improve
our models of IKr by including other components of the circuit (such as Rseries and Cm).
The grey dashed box highlights the components modelled by our choice of IKr model.

In this way, the inputs into and outputs from our IKr model are not exactly Vcmd

and IKr + IL (as we assumed in the previous chapter). Moreover, as Iout appears in the
right-hand side of Equation (5.3), there is feedback between the ion-channel current
(IKr) and the membrane potential that the amplifier achieves (Vm). The converse is also
true, since IKr is dependent on the transmembrane voltage, Vm.

Estimation of artefact-model parameters The Nanion SyncroPatch 384 provides its
own protocols and procedures for the estimation of Rseries and Cm. These short, simple
protocols are not shown to the user, but are performed before each sweep to provide
estimates of Cm and Rseries. Figures 5.2 and 5.3 show how, in each well, these estimates
stay largely consistent throughout the duration of the experiment. There is, however,
noticeable well-to-well variability in these estimates. We suggest this variability may be
related to the well-dependence of parameter estimates discussed in the previous chapter.
Because these estimates are readily available, we fix our artefact-model parameters to
the respective machine estimates obtained from a particular well immediately prior to
the particular sweep under consideration.

Whilst the modelling and prediction of experimental artefacts is not our primary aim,
the inclusion of artefact effects may explain the apparent latent effects implied by the
well-dependence of our ideal-clamp parameter estimates, as described in the previous
chapter. In this way, the inclusion of the artefact model may be necessary to build better
predictive models of IKr and, ultimately, to improve our understanding of the gating
dynamics of IKr. To fit models including these artefact effects, we use methods largely
similar to those introduced in the previous chapter. However, the estimation of our
leak-model parameters (gL and EL), and Voff is somewhat complicated by the presence
of these artefacts, as explained in the following section.
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Figure 5.2: Onboard estimates of the cell membrane capacitance, Cm, obtained other
the course of the experiment. These estimates are obtained by the Nanion SyncroPatch
before each sweep of data is recorded. Only those wells passing our QC criteria (as
introduced in the previous chapter) are shown. We expect that much of the well-to-well
variability shown here arises from the varying sizes of each cell. Note that Well J11
was discarded from this dataset due to a failure to infer the reversal potential from its
pre-drug traces.

5.3.1 Impact of experimental artefacts on postprocessing

The postprocessing methods introduced in the previous section were built under the
assumption of an ideal patch-clamp set-up. Therefore, there are some adjustments
necessary to allow the inclusion of experimental artefacts. The most important difference
is the use of the pre-drug traces for fitting our models, as opposed to the drug-subtracted
traces used in the previous chapter. This is possible due to the fact that our post-drug
traces are almost entirely dominated by leak current, as shown by the very small Rleftover

values obtained during postprocessing (as discussed in Section 4.3).
The artefact model (characterised by Equation (5.3)) describes the feedback between

the transmembrane potential and Iout = IL + IKr, and so we choose to fit the outputted
current, Iout, to the pre-drug traces. In the previous chapter, we computed Epost by
applying polynomial interpolation to our postprocessed trace, Ipost. In this chapter, we
instead use the pre-drug traces, from which we estimate Ebefore using the same method.
Here, we are unable to compute Ebefore for each pre-drug, leak-corrected sweep taken
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Figure 5.3: Onboard estimates of the series resistance, Rseries, obtained other the course
of the experiment. These estimates are obtained by the Nanion SyncroPatch before
each sweep of data is recorded. Only those wells passing our QC criteria (as introduced
in the previous chapter) are shown. Note that well J11 was also discarded because we
were unable to infer Ebefore.

from Well J11 and so, it is removed from consideration for this chapter. The values
obtained for Ebefore are shown in Figure 5.4.

Impact of artefact effects on the reversal potential We should expect experimental
artefacts to have an effect on Epost, the reversal potential observed according to our
polynomial interpolation method (Section 4.3). We may expect that this sharp decrease
causes Vm to lag behind Vcmd. However, our calculations in Appendix F indicate that
this effect is small (no more than 1 mV)—and so, would not explain the much larger
discrepancy we see between the observed reversal potential, Ebefore and the Nernst
potential, ENernst. Moreover, the effect of this delay would be to reduce Ebefore, but, as
shown in Figure 5.4, we have Epost > ENernst ≈−89.8 for all wells.

In fact, the effect of any delay would lead to a decrease in Epost—the opposite of
what we see in the dataset (Figure 5.4). Moreover, we show in Appendix F that, under
the assumption of the artefact model with Voff = 0, such a large difference between
ENernst and Epost is not possible unless Rseries or the recorded currents are unrealistically
large. For this reason, we include a voltage offset, and approximate it prior to model
fitting.
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Figure 5.4: Values of Ebefore computed using each well’s pre-drug leak-corrected traces,
using the polynomial interpolation method outlined in the previous chapter. It was not
possible to compute Ebefore for every protocol from Well J11 due to the pre-drug leak
subtracted current not reversing during the reversal ramp.

Leak-model fitting with artefacts We also expect the artefact model to have some
effect on the inference of our leak-model parameters because the assumption that
Vcmd ≈ Vm may not hold during the leak ramp. In the previous chapter, ideal-patch
assumptions (Equations (4.1) and (4.2)) allowed us to fit the leak current parameters,
gL and EL using simple linear regression. However, the artefact model breaks these
assumptions, necessitating a different approach.

Using the artefact model, we keep the assumption that IKr = 0 during the leak ramp,
but fit gL and EL by minimising the difference between Iout and Ibefore (the pre-drug
trace) using numerical optimisation. If we assume g = 0 during this section of the
protocol, Equation (5.3) gives rise to a simple, linear ODE, from which we approximate
Vm(t) and Iout = IL (as shown in Appendix F).

Then, we fit gL and EL by finding ĝL and ÊL which minimise the sum-of-squares
criterion,

nleak

∑
i=1

(
IL(ti;gL,EL)− zi

)2
, (5.4)

where nleak is the number of observations considered, and IL(ti;gL,EL) is the leak
current at time ti according to the artefact model, n is the number of observations taken
during the leak ramp and each zi is the datum observed at time ti.
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Although this is a nonlinear regression problem unlike the linear regression method
presented in Section 4.3, the previous, simple linear-regression method is used to provide
an initial guess for gL and EL. Additionally, we constrain our parameter space such
that, 0 ⩽ gL ⩽ 103 and −500 ⩽ EL ⩽ 500. Of the remaining artefact-model parameters,
we set Cm and Rseries to their respective onboard estimates, and Voff to 0. If we instead
assume a non-zero value of Voff, our estimate of gL is unaffected, but we have,

ÊL = E†
L +Voff , (5.5)

where E†
L is the estimate of EL obtained under the assumption that Voff = 0. This fact

allows us to fit our leak-model parameters under the assumption that Voff = 0, and
easily adjust these parameters for other values of Voff without performing additional
optimisation.

Direct estimation of voltage offset It is desirable to estimate Voff before we fit our
model and compute our parameter estimates. This effectively allows us to simplify our
model by reducing the number of parameters—similarly to how we fit our leak-model
parameters, gL and EL. To estimate the voltage offset (before we begin fitting our IKr

model), we use the artefact model under the assumption that EKr = ENernst together
with a reference model of IKr (the Beattie et al. (2018) Model with Cell #5 parameters).
Next, we find the value of Voff, which, in conjunction with the other artefact effects, best
explains the discrepancy between ENernst and Ebefore. To do this, we fix the remaining
artefact-model parameters, Rseries and Cm, to their respective machine estimates. We
then estimate the voltage offset by computing,

V̂off = argminṼoff

{(
ENernst −Ebefore(Ṽoff, ĝ(Voff), ĝL, ÊL)

)2}
, (5.6)

where Ebefore(Ṽoff, ĝ(Voff), ĝL, ÊL) denotes the reversal potential that we expect to ob-
serve according to the model (using the polynomial interpolation procedure introduced
in Section 4.3.2) where: ĝ(Voff) is the estimate of the channel conductance, g, which
is contingent on the proposed Voff; the variables, ĝL and ÊL(Ṽoff) denote our estimates
of the leak-current conductance, the leak-current reversal, respectively. Here, we must
find new estimates for g̃(Ṽoff) and ÊL(Ṽoff) for each proposed value of Ṽoff.

As explained above, our estimates of ĝL are independent of Voff and after estimating
EL(0) (assuming Voff = 0), it is simple to compute ẼL(Ṽoff) = EL(0)+Ṽoff. However,
we must use numerical optimisation to find our conductance estimate,

ĝ
(
Voff, ĝL(Voff), ÊL(Voff)

)
= argming̃{∥Iobs − Iout(Voff, g̃, ĝL(Voff), ÊL(Voff))∥2}, (5.7)
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where Iobs is the data recording during the reversal ramp of the pre-drug sweep and
Iout(Voff, g̃) denotes the predicted current according to our reference model with voltage
offset, Voff and maximal conductance ḡ, and where Rseries and Cm are set to their
respective machine estimates. This estimate of the conductance is found using only the
central 70% of observations taken during the reversal ramp—that is, those observations
taken between 30ms and 70ms after the start of the reversal ramp. This is done
such that the model’s Iout matches our observations, Iobs, as closely as possible during
the reversal ramp (as quantified by the RMSE). To solve Equation (5.6), we must
evaluate Equation (5.7) for every proposed value of ˜Voff. As shown in Figure 5.5,
this comprises a nested optimisation problem. Nested optimisation problems can be
computationally expensive, but the relative simplicity of this particular problem (which
has few parameters) renders this approach feasible.

In this way, the relative simplicity of the reversal ramp section of the protocol
allows us to accurate recapitulate Iout (by fitting the maximal conductance, g) and hence,
accurately approximate Vm during this time.

Recapitulating artefact-model parameters from synthetic data To validate the
leak-fitting and Voff estimation methods described above, we use a reference parameter
set and randomly sample artefact-model parameters to generate synthetic data, then we
attempt to re-infer these artefact-model parameters.

We sample random parameter values according to,

log10(gKr)∼N (log10(300),0.1) , (5.8)

Voff ∼N (−7.5,5), (5.9)

log10(Rseries)∼N (0, log10(2)), (5.10)

log10(Cm)∼N (log10(20), log10(5)), (5.11)

EL ∼ U(−50 mV,25 mV), (5.12)

and log10(gL)∼N (log10(5),0.1) , (5.13)

where voltages (Voff and EL) are expressed in millivolts (mV), conductances (gKr and
gL) are expressed in nanosiemens (nS), Cm is expressed in nanofarads (nF), and the
series resistance, Rseries, is expressed in megaohms (MΩ), and where U(l,u) denotes a
uniform distribution between l and u, and N (µ,σ) denotes a normal distribution with
mean, µ and standard deviation, σ . By taking 100 samples from these distributions, we
obtain samples consisting of a wide range of plausible combinations of artefact-model
parameters. In contrast, our IKr model parameters (except the maximal conductance) are
fixed—set to be the Cell #5 parameters from Beattie et al. (2018) (listed in Table B.2).
The synthetically generated datasets are generated from our sampled artefact-model
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Figure 5.5: The nested-optimisation procedure we use to estimate Voff, gL and EL, prior
to fitting our kinetic parameters, under Case V. The estimation of the leak parameters
and maximal conductance are performed by minimising the RMSE between the data
and the model during a relevant portion of the protocol.
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parameters by first forward-simulating the Beattie model (embedded within the artefact
model), before adding IID Gaussian noise which is sampled as εi ∼N (0,10 pA).

We denote our estimates of gL, EL and Voff by ĝL, ÊL and V̂off, respectively. In
Figure 5.5 we show the accuracy of these estimates across all of our sampled parameter
sets. These results show that we can reliably recover these parameters (for those datasets
passing our QC, at least). For our experimental dataset, our estimates of Voff obtained
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Figure 5.6: Using our nested optimisation approach, we were able to recover artefact-
model parameters from synthetically generated data. Data were generated using the
Beattie et al. (2018) Model combined with the artefact model. Parameter estimates
arising from traces that did not pass QC are shown in blue, whereas those from traces
passing QC are highlighted in orange. Panels a and b show our estimates of the leak
parameters, gL and EL, respectively. Panels c and d shows estimates of the voltage-
offset parameter. In Panel d, we can see that the traces which lead to the largest error in
our voltage-offset estimates (V̂off −Voff) came from traces which failed QC (the largest
error being from a sample where Rseries is uncharacteristically large).

by this approach, alongside our inferred values of Ebefore are shown in Figure 5.7. Here
we see that, within each well, our estimates of Voff vary little (relatively speaking) over
the course of the experiment. However, there is noticeable inter-well variability.

Additionally, Figure 5.8 compares a sweep of our data with the Beattie et al. (2018)
Model (with its original Cell #5 parameter set) under our ideal-patch assumptions (with
Voff = 0), and including artefact effects. Here, the conductance and artefact-model
parameters are fitted using the methods outlined above. This figure shows that we
expect the artefact model has a significant impact on the dynamics of IKr, and the
output of our models. As a result, we might expect that our parameter estimates and the
resultant model predictions to be similarly affected by the inclusion of artefact effects.
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Figure 5.7: Our estimates of Voff stay consistent over the duration of the experiment,
as shown in Panel a. For comparison, the inferred values of Ebefore for our pre-drug,
leak-corrected traces are shown in Panel b, and those obtained from the corresponding
leak-corrected, drug-subtracted traces (that is, Epost) are shown in Panel c.
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Figure 5.8: Comparison of real, experimental data, an ideal-patch model and a model
including artefact effects. Both models include the Beattie et al. (2018) Model with its
original parameter set (that is, the parameter set obtained from fitting to Cell #5 in its
original publication). The data were collected from Well B20 under the application of
the staircase protocol (first repeat). In both cases, the maximal conductance was fitted
as to minimise the RMSE between the model and the data. The artefact parameters were
inferred using the methods described in this section. Here, we can see that the inclusion
of experimental artefacts drastically affects the dynamics of IKr and Vm. Model output
is shown both with artefact effects (orange), and without artefacts (but, with a non-zero
voltage offset) under our ideal-patch assumptions (blue).
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5.4 Fitting predictive models of IKr using the artefact
model

As with the application of ideal-patch models (in Chapter 4), we again remove R = 5ms
of data after each discontinuous jump in voltage. Whilst it may be suitable to reduce R

or set R = 0 after the inclusion of artefact effects, there are some short-timescale effects
that are omitted from the artefact model. However, as we have seen previously, such
short-timescale information is not absolutely necessary to parameterise our IKr models.

To allow an evaluation of the artefact model, we implement each of our literature
models under various assumptions. Firstly, in Case IV, we omit the artefact effects and
instead use the ideal-patch assumptions, and assume that Voff = ENernst −Epost. This is
almost identical to Case III introduced in Chapter 4, but, to allow fair comparison, we fit
our models directly to pre-drug traces without leak correction (requiring the inclusion
of the leak current in our models). Then, in Case V, we relax this assumption, fitting
our models to the same data using the using the artefact model, after estimating Voff

according to the approach outlined in the previous section. Cases IV and V are outlined
in Table 5.1.

To integrate our ODE system, fit our models and make predictions, we, use LSODA
(Gupta et al., 1985) with absolute and relative tolerances set to 10−8. The initial
conditions of the artefact model are set by computing the model’s stable equilibrium at
the holding potential (that is, when we fix Vcmd =−80 mV). This is done by setting the
Markov model component to its steady state with Vm =−80mV+Voff, and allowing
the artefact model to reach equilibrium by integrating with LSODA for 5 seconds. As
in the previous chapter, we use CMA-ES (Hansen, 2016) as implemented by the Python
PINTS package (Clerx et al., 2019b). The number of optimisation repeats, solver
tolerances, parameter transforms and initial guess sampling are performed in exactly
the same way as described in Section 4.4.1.

5.5 Results

5.5.1 Model fitting

Parameter sets were obtained by fitting each of our model structures to each sweep of
our data, with and without artefact effects (that is, under the assumption of both Case IV
and V). Figure 5.9 shows one particular example where the Beattie et al. (2018) Model
is fitted to data taken from the staircase protocol (d1) under Case IV. Figure 5.10 shows
the same model structure fitted to the same data under the assumption of Case V (that
is, with the inclusion of experimental artefacts).
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Case parameterisation physical interpretation

IV gleak = ĝleak,
Eleak = Êleak are
estimated using
simple linear
regression; Voff =
ENernst − Epost;
and EKr = ENernst.

There are no artefact effects; we use
the ideal-patch formulation from the
previous section and fit our models
directly to leak-corrected pre-drug
traces (that is, without drug subtrac-
tion).

V gleak = ĝleak and
Eleak = Êleak
are estimated
using the arte-
fact model;
Rseries = R̂series,
Cm = Ĉm
from ma-
chine estimates;
EKr = ENernst and
Voff is estimated
using the nested
optimisation pro-
cedure outlined in
the text.

There are artefact effects, including
a systematic voltage offset (Voff ̸= 0).
We assume EKr = ENernst, and in-
fer Ebefore from the reversal ramp
(accounting for series resistance ef-
fects) and use this to calibrate Voff
which, together with gL, EL,Cm,
and Rseries is treated as a known
constant whilst fitting the maximal-
conductance and transition-rate pa-
rameters of the IKr model.

Table 5.1: The twos ways in which we fit our Markov models of IKr in this chapter.
Case IV differs from Case III (as used in the previous chapter), because the model is fit
directly to the pre-drug trace without the subtraction of a post-drug trace. This is done
to permit a fair comparison with the artefact model (Case V).
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In the previous chapter, we saw that an apparent overcorrection of leak current
resulted in differences in the obtained value of model parameter p1 between the first
and second sweeps (as shown in Figures 4.18 and 4.33). Here, in Figures 5.9 and 5.10,
where we fit the Beattie et al. (2018) Model (under both Case IV and V) to the pre-drug
traces, we see no such difference between sweeps. We also see that we obtain similar
estimates (compared to those shown in the previous chapter) of p1 and p2 under both
models for both Cases IV and V.

In Figures 5.9–5.10, we can see that the Beattie et al. (2018) Model fails to re-
capitulate the large tail current during the initial −120mV step following the leak
ramp—whether or not artefact effects are included (Case V) or not (Case IV). This
may be a particular shortcoming of the Beattie et al. (2018) Model, which contains
only one pair of closed states—especially when fitted to room-temperature recordings
(Vandenberg et al., 2012; Kemp et al., 2021). It appears that the addition of experimental
artefacts is not sufficient to remedy this specific aspect of model discrepancy. More
“deeper” closed states from which more transitions are required for a channel to open
(such as those included in the Kemp et al. (2021) and Wang et al. (1997) models) may
permit a closer fit to the data in this particular part of protocol. The properties of this
tail current, and to what extent it can be recapitulated by the artefact model (together
with the Wang et al. (1997) model) is discussed further in Section 5.5.4.

5.5.2 Predictive accuracy

Following the methodology of Chapter 4, we compute the normalised root-mean-square
error (NRMSE) between our model predictions and the corresponding data. This was
done for using every possible pair of protocols for fitting (except d6) and validation.
Figures 5.11 and 5.12 show these NRMSE values for the best and worst performing
wells according to the Beattie et al. (2018) Model under Cases IV and V, respectively.

The resulting cross-validation heatmaps, averaged across all wells, are shown in
Figure 5.15. Here, we can see that our Case IV models (with no artefacts) performs
better than our Case V models (when averaged across wells). Though, our most accurate
predictive model (in terms of Epredict) for both Well B20 and Well L23 (independently)
is the Kemp et al. (2021) model under our Case V assumptions—this is despite the
equivalent ideal-patch model producing better fits on average (as quantified by Efit).
This difference in predictive accuracy may be due to the larger series-resistances found
in these wells (as shown in Figure 5.3), which may lead to greater discrepancy between
our ideal-patch assumptions and the true DGP.

Even so, the most accurate fits for this well are found under Case IV. Overall,
it appears that our models which include artefacts (or more precisely, our particular
treatment of the artefact model under Case V) produce less quantitatively accurate fits
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Figure 5.9: Results from fitting the Beattie et al. (2018) Model (Case IV) data from
Well B20 under the staircase protocol (second repeat). Panel a: Vcmd (black) and Vm
under the fitted model (blue). Panel b: the occupancies of each conformational state
under the fitted model. Panel c: the data and the model fit. Panel d: estimates of
p1 and p2 obtained from thirty repeats of the optimisation routine—the blue markers
shown in the inset correspond to those results where the RMSE is at most 101% of the
minimum value. Panel e: the amount of RMSE error in each fit. Panel f: a cross-section
through the likelihood surface, starting at our best estimate of the parameters (λ = 0,
blue square) and finishing (when λ = 1) at a parameter set with identical maximal
conductance (g), but where the transition-rate parameters are taken from the model’s
original publication (Cell # 5) (Beattie et al., 2018).
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Figure 5.10: Results from fitting Beattie et al. (2018) Model (Case V) data from
Well B20 under the application of the staircase protocol (second repeat). Panel a:
Vcmd (black) and Vm under the fitted model (blue). Panel b: the occupancy of each
conformation state under the fitted model. Panel c: the real-data traces together with
the model fit. Panel d: the results of repeated optimisations—blue markers correspond
to those results where the RMSE is at most 101% of the minimum value. Panel e:
the amount of RMSE error in each fit. Panel f: a cross-section through the likelihood
surface, starting at our best estimate of the parameters (λ = 0, blue square) and finishing
(when λ = 1) at the model’s original transition-rate parameters publication (Cell #5
Beattie et al., 2018).
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Figure 5.11: Cross-validation heatmaps for the Beattie model under Case IV (without
artefacts), showing the best and worst performing wells (as quantified by Epred). The
best prediction from the best performing well is shown in panels a and b, and the worst
prediction from the worst performing well is shown in panels c and d. Note that in both
panels b and d, the model fails to recapitulate the large tail current occurring at t = 2s.
Panels a and c show the corresponding voltage traces: Vcmd is shown in black and Vm is
shown in blue.
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Figure 5.12: Cross-validation heatmaps for the Beattie model under Case V (with
artefacts), showing the best and worst performing wells (as quantified by Epred). The
best fit (and the heatmap cell exhibiting the lowest error) from the best performing well
(Well B09, panel e) is shown in panels a and b, and the worst prediction from the worst
performing well (Well B20, panel f) is shown in panels c and d.
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Figure 5.13: Cross-validation heatmaps for the Wang et al. (1997) model under Case
IV (without artefacts), showing the best and worst performing wells (as quantified by
Epred). The best prediction from the best performing well (Well B09, panel e) is shown
in panels a and b, and the worst prediction from the worst performing well (Well L23,
panel f) is shown in panels c and d. Panels a and c show the corresponding voltage
traces: Vcmd is shown in black and Vm is shown in blue
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Figure 5.14: Cross-validation heatmaps for the Wang et al. (1997) model under Case V
(with artefacts), showing the best and worst performing wells (as quantified by Epred).
The best prediction from the best performing well (Well B09, panel e) is shown in
panels a and b, and the worst prediction from the worst performing well (Well L23,
panel f) is shown in panels c and d. Note that in both panels b and d, the model closely
matches the large tail current occurring at t = 2s.
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and predictions than our ideal-patch models. Also, the beneficial effect of including
additional closed states is also apparent because models fitted to d2 with only a single
level of closed states (the C-O-I and Beattie et al. (2018) models) are noticeably less
accurate (in terms of prediction) than those include an extra layer of closed states
(the Kemp et al. (2021) and Wang et al. (1997) models) as shown in Figure 5.15 and,
especially, in Figures 5.16 and 5.17. These results support the inclusion of deeper closed
states in our IKr model structures.

5.5.3 Variability in parameter estimates

As in the previous chapter, we consider the collection of parameter estimates obtained
by fitting to each sweep of data (that is, each repeat of each protocol in each well).
Accordingly, we proceed to use similar methodology to the previous section, using
a simple linear statistical model (assuming independent well and protocol effects) to
quantify the variability in our models’ parameter estimates. As in Chapter 4, this
simple linear statistical model recapitulates the variability of our parameter estimates
reasonably well. These protocol-dependent effects are shown in Figures 5.18 and 5.19,
for the Beattie et al. (2018) Model under Cases IV and V, respectively. Likewise, the
apparent well-dependence of the same parameter estimates are shown in Figures 5.20
and 5.21 (again, for Cases IV and V, respectively). Here we see that the output of our
statistical model is largely aligned with the parameter estimates computed during model
fitting. As in the previous chapter, the suitability of these linear statistical models is
discussed further in Appendix E.

Again, as in Chapter 4, we use log-likelihood differences to quantify the magnitude
of well and protocol dependence in our parameter estimates. As in Chapter 4, we
compute two log-likelihood difference statistics, LLD-W quantifying the degree of
well dependence, and LLD-D quantifying the degree of protocol dependence. These
values are presented in Table 5.2 for each of our candidate model structures. In any case,
there remains a noticeable well and protocol dependence in our parameter estimates,
indicating that our implementation of the artefact model is imperfect and does not full
capture the aforementioned well-to-well variability. The size of LLD-D indicates model
discrepancy in the dynamics of our models, because different protocols reliably result
in different parameter estimates—this is similar to the synthetic data case discussed in
Chapter 3.

These results suggest that, at least for the C-O-I and Beattie et al. (2018) models,
artefact effects may explain some of the variability in parameter estimates. However, this
difference is quite subtle, and the Case IV models seem to better match our recordings
(see Figure 5.15). This well-to-well variability is also reflected in our model outputs. To
show this, we produce normalised model output under d1 and d6 without the presence
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Figure 5.15: Averaged cross-validation heatmaps for each candidate model under Cases
IV and V. Generally speaking, the Case V models tend to produce worse fits than the
Case IV models. Though, the best predictive model (as quantified by Epredict) is the
Wang model under Case V (with artefacts).
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Figure 5.16: Cross-validation heatmaps showing the prediction error, in terms of the
normalised root-mean-square error (NRMSE), when fitting and validating each model
using data from Well B20. This well produced the worst average validation score for
the Wang et al. (1997) Model under both Cases IV and V. We can see that the Case V
models perform better than the Case IV models in terms of fitting, but worse in terms of
prediction of unseen protocols. Under either case, the Wang model seems to produce
both the best fits and predictions.



5.5. RESULTS 155

C-O-I

Beattie

Kemp

Wang

Case IV Case V

10−1 100

NRMSE

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.15,
Epredict =0.35

Efit =0.16,
Epredict =0.34

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.14,
Epredict =0.36

Efit =0.16,
Epredict =0.34

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.11,
Epredict =0.34

Efit =0.13,
Epredict =0.33

d
(1

)
1
d

(2
)

1 d
2
d

3
d

4
d

5
d

7
d

8
d

9
d

1
0

d
1
1

d
1
2

d
(3

)
1
d

(4
)

1

fitting protocol

d6

d
(2)
1

d3

d5

d8

d10

d12

d
(4)
1

va
li
d

a
ti

o
n

p
ro

to
co

l

Efit =0.12,
Epredict =0.34

d
(1

)
1
d

(2
)

1 d
2
d

3
d

4
d

5
d

7
d

8
d

9
d

1
0

d
1
1

d
1
2

d
(3

)
1
d

(4
)

1

fitting protocol

Efit =0.12,
Epredict =0.29

Figure 5.17: Cross-validation heatmaps showing the prediction error, in terms of the
normalised root-mean-square error (NRMSE), when fitting and validating each model
using data from Well L23. This well produced the worst average validation score for
the Beattie et al. (2018) Model under both Cases IV and V. We can see that the Case V
models perform better than the Case IV models in terms of fitting, but worse in terms of
prediction of unseen protocols. Under either case, the Wang model seems to produce
both the best fits and predictions.
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Figure 5.18: Parameter estimates obtained from each trace using the Beattie et al. (2018)
Model (Case IV). Each panel shows the parameter estimates obtained from a given
protocol, and highlights the parameter estimates obtained from well B20 (red crosses).
The blue square shows the well-dependent effect according to Mw, our linear model
with no protocol-dependent effects, and the blue star shows the sum of the well and
protocol effects according to Mw,d. Note that p1, on the x-axis, is plotted on a log scale,
consistent with how p1 appears in the linear model.
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Figure 5.19: Parameter estimates obtained from each trace using the Beattie et al. (2018)
Model (Case V). Each panel shows the parameter estimates obtained from a given
protocol, and highlights the parameter estimates obtained from well B20 (red crosses).
The blue square shows the well-dependent effect according to Mw, our linear model
with no protocol-dependent effects, and the blue star shows the sum of the well and
protocol effects according to Mw,d. Note that p1, on the x-axis, is plotted on a log scale,
consistent with how p1 appears in the linear model.
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Figure 5.20: Parameter estimates obtained from each trace using the Beattie et al.
(2018) Model (Case IV). Each panel shows the parameter estimates obtained from a
given well, and highlights the parameter estimates obtained from the staircase protocol
(d1). Data points arising from repeats of this protocol are highlighted with red crosses.
The blue square shows the well-dependent effect according to Mw, our linear model
with no protocol-dependent effects, and the blue star shows the sum of the well and
protocol effects according to Mw,d. Note that p1, on the x-axis, is plotted on a log scale,
consistent with how p1 appears in the linear model.
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Figure 5.21: Parameter estimates obtained from each trace using the Beattie et al.
(2018) Model (Case V). Each panel shows the parameter estimates obtained from a
given well, and highlights the parameter estimates obtained from the staircase protocol
(d1). Data points arising from repeats of this protocol are highlighted with red crosses.
The blue square shows the well-dependent effect according to Mw, our linear model
with no protocol-dependent effects, and the blue star shows the sum of the well and
protocol effects according to Mw,d. Note that p1, on the x-axis, is plotted on a log scale,
consistent with how p1 appears in the linear model
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Model Case M0 Mw Mp Mw,d LLD-W LLD-D

C-O-I
Case IV 1313.2 1512.1 1553.0 1996.8 443.8 484.7
Case V 1104.9 1249.0 1320.6 1576.6 256.0 327.6

Beattie
Case IV 1372.3 1578.8 1622.2 2070.1 447.9 491.2
Case V 1394.9 1620.8 1661.5 2099.1 437.7 478.4

Kemp
Case IV 849.5 999.8 1039.8 1266.0 226.2 266.2
Case V 915.9 1085.5 1127.6 1408.0 280.5 322.5

Wang
Case IV −362.3 −226.8 −88.0 127.6 215.6 354.3
Case V −222.0 −95.9 104.7 290.8 186.1 386.7

Table 5.2: Log-likelihoods and likelihood ratios for each of our model structures fitted
using Cases IV and V. The statistic LLD-W quantifies the significance of our parameter
estimates’ well-dependence, whereas LLD-D quantifies the significance of protocol
dependence.

of artefacts and with Voff = 0. As shown in Figure 5.22, the well-to-well variability in
model outputs under this regime are noticeably reduced when models are fitted with
the artefact model. This suggests that, under Case IV, the transition-rate parameters in
our models absorb some of the well-dependent artefact effects, whereas, when artefact
effects are included, the resulting channel kinetics appear much more uniform across
wells. Note, however, that the assumptions underpinning this linear model of parameter-
estimate vectors may be somewhat less suitable for the Wang et al. (1997) model
(under Case V) than the other models due to the apparent non-normality of residuals as
discussed in Appendix E.

Nevertheless, the reduction in well-to-well variability of model output is corrobo-
rated by the values in Table 5.3 which show the average spread in predictions across the
protocol for parameter sets obtained from different wells, that is,

B(i)
max −B(i)

min , (5.14)

where B(i)
max and B(i)

min are the maximum and minimum model output at time ti across
our ensembles of parameter sets. However, unlike in Chapter 3, these ensembles of
parameter sets are obtained from the same protocol (the first sweep of d1, to be precise),
but from different wells.

5.5.4 Variability in time constants of decay

In Section 4.3, we saw that there is noticeable variability in the time-constant of decay
during our protocols’ second −120 mV step. The current during this step was fitted
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Figure 5.22: Fitting our models to data from different wells results in a range of model
output (using the Wang et al. (1997) Model. Here, for d1 (panels a, c and e), an ensemble
of model output is generated using the parameter estimates obtained from each well
(when fitted using d1).This model output is then normalised by dividing it by its standard
deviation. Panels b, d and f show protocol d6, for which we use the parameter estimates
obtained from d1 to produce an ensemble of predictions. The second row, panels c and
d shows output arising from our Case IV parameter estimates, whereas panels e and f
are produced using our Case V parameter estimates.
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Protocol Case IV Case V

d1 0.25 0.22
d2 0.26 0.22
d3 0.23 0.18
d4 0.30 0.17
d5 0.29 0.21
d6 0.35 0.20
d7 0.17 0.13
d8 0.22 0.16
d9 0.21 0.13
d10 0.21 0.11
d11 0.21 0.13
d12 0.30 0.26

Table 5.3: The spread between maximum and minimal predictions under each of our
protocols. For each protocol, an ensemble of model output is generated using the Wang
et al. (1997) Model parameter estimates obtained from each well under that protocol.
In the case of d6 (which is not used for model fitting) we use the parameter estimates
obtained from d1 instead. This model output is then normalised by dividing it by its
standard deviation. The values shown are the average spread of this normalised model
output, averaged over the duration of the protocol.

using a simple, single-exponential decay model of the form,

Ipost(ti) = α exp
{

ti − tpeak

τ

}
, (5.15)

where τ and α where subject to optimisation, and tpeak is the time at which the (negative)
peak current was observed. We showed that there was noticeable variability in τ .
However, under our ideal-patch assumptions, such variability is not possible unless
there is large variability in the gating kinetics of different cells. An alternative hypothesis
(Lei et al., 2020a) is that this variability is largely caused by the variability in artefact
effects between wells.

To investigate to what extent our artefact model explains this variability, we choose
one set of parameter values for the Kemp et al. (2021) model, those obtained from
the first sweep of the staircase protocol in Well B09 under Case III. We assume these
are the correct kinetic parameters for IKr, and for each trace in our data, simulate the
artefact model using our estimates of Rseries,Cm, gL, EL, and Voff that are computed as
described in Section 5.4. Here, we calibrate the maximal conductance, g, by minimising
the sum-of-square errors between the model output and the data from the start of the
trace to the end of each protocol’s second −120 mV step (until 50ms after this step, to
be precise). We then fit a single time-constant of decay as described in Section 4.3.
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The results of this exercise are shown in Figure 5.23. Here, we can see that the
artefact effects included in our model do induce changes in τ , and these changes largely
coincide with those found in the data. This correlation exists within the estimates of τ

taken from a particular well (which is most noticeable in Well C12), but also between
wells. Note, however, that our artefact model does not perfectly recapitulate these
values, especially in the case of Well N11, suggesting significant discrepancy between
our artefact model and the true data-generating process. It is noteworthy that Well N11
has the highest estimates of Cm and the lowest estimates of Rseries.

5.6 Discussion

In this chapter, we developed new methods allowing the multiprotocol, cross-validation
approach (as introduced in Chapters 3 and 4) to be applied to models augmented with
artefact effects. This is the first use of a suite of information-rich protocols to fit and
validate Markov models of IKr. An important feature of this approach is that it enables
artefact-model parameters (namely, gL,EL and Voff) to be estimated in a way that is
independent of the particular IKr model under investigation (albeit using a reference
model for the estimation of Voff). This enabled us to provide a comparison of models
with and without the addition of Lei et al. (2020a)’s artefacts effects model.

Though our analysis of our ensembles of parameter estimates may suggest that the
well-to-well variability of the resultant parameter estimates is lessened for the C-O-I and
Beattie et al. (2018) models, the same was not found to be true of the Kemp et al. (2021)
model. It should be noted that the predictive performance of our ideal-patch models
may be substantially reduced if capacitive spikes are included in the data for fitting
and prediction, because this is where transient effects of the experimental artefacts
(in particular the capacitive charging and discharging of the cell membrane) are most
pronounced. Note that capacitive spike removal (removing 5ms of data after each
voltage discontinuity, as described in Appendix C), was performed to enable a fair
comparison between the models as models of IKr. It is likely that our artefact models
would have out-performed our ideal-patch models had this data been included for
training and validation.

The reduction in fitting accuracy shown in Section 5.5.1, together with the limited
ability of our models to recapitulate basic tail currents (as discussed in Section 5.5.4)
indicates some deficiencies in our artefact model. It appears that model discrepancy
is more noticeable in particular wells, such as Well N11 (as shown in Figure 5.23).
These problems may arise due to certain limitations of our methodology. Firstly, our
models rely on particular estimates of Cm and Rseries provided by the automated patch-
clamp platform. Whilst these estimates have enabled accurate predictive models to be
fitted, the robustness and accuracy should be improved, if possible. In particular, the
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Figure 5.23: With fixed kinetic parameters and trace-specific artefact parametrs, the
artefact model somewhat recapitulates the variability found in the time-constant of
decay for the second −120mV step. Panel a: the predicted membrane potential for each
of the wells under the application of the first portion of the staircase protocol. Here, the
output from our ideal-patch model (with no leak current) is shown in black. Panel b: a
scatter plot of the time-constant of decay for our protocols’ second −120 mV step for
a fixed set of kinetic parameters (but with fitted artefact parameters) compared with
that of the data. Panel c: the real-data traces together with the model fit. Panel b: the
time-constants of decay obtained from our real data and those obtained from our model
output. These values are plotted chronologically (for each sweep) in Panels d and f.
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robustness of these estimates for large values of Cm and Rseries should be ensured, as
some such wells (Wells B20, N11 and C12, for example) seem to exhibit greater model
discrepancy. Nevertheless, some amount of discrepancy is unavoidable when fitting to a
real, experimental dataset due to the presence of endogenous currents, and possible data
pollution.

For the majority of protocols, our models produced similarly accurate model predic-
tions. However, parameter estimates obtained from the d1 protocol seem to produce
noticeably worse model predictions, despite producing accurate fits to the data. The
same can be said of parameter estimates obtained from protocol d2 under the C-O-I
and Beattie et al. (2018) models (Figure 5.15). Perhaps this suggests that the additional
activation/deactivation transition rates included in the Kemp et al. (2021) model (k5 and
k6) are necessary to build an accurate IKr model under the dynamics induced during
the fast, central portion of the d2 protocol (at room temperature, at least). Similarly,
the staircase protocol seems to yield noticeably less accurate predictions in all but the
Wang et al. (1997) model, perhaps indicating that the independence of activation and
inactivation, together with deeper closed states, are necessary properties of an accurate
IKr model.

The work in this chapter is limited by the consideration of only four of many possible
model structures of IKr. Our methodology may be repeated for any other possible model
structures, possibly leading to more accurate predictive models. An obvious extension
would be to the Mazhari et al. (2001) model, which has a similar topology to the Wang
et al. (1997) model but includes a direct inactive-closed transition which bypasses the
open state. The inclusion of such a pathway is supported by single-channel results
(Kiehn et al., 1999), and may lead to improved predictive accuracy, and perhaps a
reduction in protocol-to-protocol and well-to-well variability in parameter estimates
and model output.

In fact, this work could, in theory, be extended to any number of potential model
structures, as in Mangold et al. (2021). However, the computational demands of these
analyses are high—requiring models to be fit individually to numerous sweeps of data
with each individual model structure being fitted to 12 protocols of data (with some
repeats) for each of our 8 wells, with and without the inclusion of artefact effects. To this
end, our work in this chapter, and the previous chapter, may be seen as proof-of-concept,
introducing the methods necessary to repeat this analysis with other model structures,
datasets and perhaps other ion-channel currents.

Regarding further data collection, we found that, with and without the presence
of experimental artefacts, a large voltage offset is necessary to explain the apparent
discrepancy between Epost and ENernst. Further datasets (perhaps using different experi-
mental setups) should be analysed to ensure that these results hold when such a large
voltage-offset is not present. With the aim of identifying the most accurate models
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of IKr, such future work should focus on the inclusion of more model structures in
the analysis, improvements to the artefact model (including new methodology for the
estimation of relevant parameters), and the analysis of other, similar datasets (perhaps
using newly designed protocols).



Chapter 6

Discussion

The selection of a suitable mathematical model for IKr remains a pertinent and open
question. In this thesis, we have used information-rich, time-series data to fit and
validate a small cohort of candidate models using similar methodology to that laid out in
Fink and Noble (2009); Beattie et al. (2018); Clerx et al. (2019a). That is, we fit model
parameters to cell-specific, time-series recordings of currents obtained under a short,
information-rich protocol (referred to as whole-current fitting), rather than summary
statistics gathered from a range of experiments performed on multiple cells (Clerx
et al., 2019a). However, this previous work has used information-rich protocols only in
synthetic-data studies (Fink and Noble, 2009), or used only a single information-rich
protocol for model fitting (Beattie et al., 2018; Clerx et al., 2019a; Lei et al., 2019a).
In this thesis, we present the first analysis of a multiprotocol experiment where many
information-rich protocols have been used for both fitting and validation. The resulting
observations of IKr under unexplored dynamics provides insight into the nature of model
discrepancy. Using the whole-current approach, these data allow for more thorough
model validation, as shown in Chapters 4 and 5. However, as these chapters demonstrate,
the whole-current approach is sensitive to the presence of experimental artefacts and
small amounts of data pollution—such as nonlinear or time-dependent leak (Lei et al.,
2020b).

Nevertheless, we were able to mitigate the presence of artefacts and nonlinear
leak through the use of a fluoride-free set-up and the application of stringent quality-
control criteria. A key improvement in our work is the application of multiple voltage-
clamp protocols during a single experiment, allowing a more thorough validation of
dynamic models of IKr, demonstrating that our cell-specific models can be used to make
largely accurate quantitative predictions of IKr for a broad ranges of voltage signals.
Additionally, most of these protocols have not been used previously, meaning that
our data promises to provide further information for selection of suitable IKr model
structures.
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We first presented a synthetic data study, demonstrating this multiprotocol approach
and the anticipated impact of model discrepancy on the resulting parameter estimates
and model predictions. Here, we showed that model discrepancy can be exhibited as
protocol-to-protocol variability in parameters estimates, despite low apparent uncer-
tainty in each individual estimate (under the assumption that the discrepant model is
correctly specified). The tendency of discrepant models to produce accurate fits to
training data, but inaccurate predictions under unseen protocols, is also demonstrated
here.

In Chapters 4 and 5 we demonstrated that these symptoms of model discrepancy
were also found when fitting our models to real, experimental data. Considerable
attention was given to our postprocessing methodology presented in Chapter 4. By
augmenting methods used in previous work (Lei et al., 2019b), we were able to use a
fully-automated procedure to perform quality control, resulting in a small selection of
wells exhibiting remarkably clean recordings—where we see little endogenous current
or changes in our recordings of IKr over the course of the experiment. Then, later
in Chapter 4, we fitted and validated our candidate models to these data under the
assumption of an ideal patch-clamp setup. Whilst these modelling assumptions result
in the omission of known experimental artefacts (Lei et al., 2020a), they resulted in
largely accurate, well-specific, predictive models of IKr. It was our opinion, however,
that our Markov models were overfitted to the unaccounted-for, well-specific, artefact
effects, resulting in significant well-to-well dependence in the resulting parameter
estimates—even though we obtained largely accurate fits and predictions for each cell,
individually. The fact that these parameter estimates are, to a large degree, confounded
with uncompensated artefact effects undermines their suitability for general applications
(in action-potential models and studies on drug block, for instance).

It did seem possible that inclusion of these artefact effects, by way of Lei et al.
(2020a)’s simplified artefact model, could remedy this situation. However, the inte-
gration of such effects within our multiprotocol approach entailed some challenges—
namely the estimation of newly introduced artefact parameters. Here, we introduced
a method to infer the leak-model parameters (gL and EL), and a voltage offset, Voff,
using the reversal and leak ramps included in each protocol. This allowed the fitting and
validation of our IKr models with artefact effects, without the need to include additional
parameters in our model-fitting routines (during which only the maximal conductance
and parameters relating to our models’ transition rates are inferred).

The imperfect estimation of our artefact-model parameters, including the machine
estimates of Cm and Rseries may have contributed to model discrepancy somewhat.
Nevertheless, the inclusion of these artefact effects seemed to yield a more accurate
predictive model—our most accurate predictive model being the Wang et al. (1997)
Model augmented with artefacts. However, the improvement in terms of predictive



169

accuracy was rather slight, and the quality of our model fits actually reduced with the
addition of the artefact model. Notably, the well-to-well variability of Wang et al. (1997)
Model parameter estimates appears to have reduced with the addition of artefact effects.
We showed that this model, the Wang et al. (1997) Model with additional artefact
effects, was, to some extent, able to explain the noticeable well-to-well variability in our
−120 mV tail currents across wells under the assumption of uniform kinetic parameters.
This may suggest that artefact effects are responsible for much of the well-to-well
variability we have seen, both in our data, and in our parameter estimates throughout
Chapters 4 and 5. Perhaps improved estimation of key artefact-model parameters
(namely, Cm and Rseries) may yield even more convincing results.

Here, our focus on general predictive accuracy (across a range of fitting and valida-
tion protocols) contrasts with more typical model selection criteria. Perhaps the most
commonly used is the Akaike Information Criterion (AIC) (Akaike, 1998; Vandenberg
and Bezanilla, 1991), which concerns only the accuracy of model fits and the number
of model parameters. However, as we demonstrate in Chapters 4 and 5, the model
which produces the most accurate fits does not necessarily produce the most accurate
predictions (even when the same number of model parameters are used), and may not
be the most suitable.

Our results highlight the important role that artefact effects play in patch-clamp
recordings of IKr. Here, we used two key aspects of our models for validation: the
variability of our parameter estimates between different wells and protocols (which we
would expect to be largely uniform across provided a correctly specified model), and
the accuracy of our model predictions under unseen (during model fitting) validation
protocols. In this thesis, both aspects of model validation have led us to the same
conclusion: that it is necessary to include artefact effects in our models. However, in
other situations where the model with the most accurate predictions is not the most
interpretable, it may be necessary to compromise on one or the other: either prioritising
quantitative accuracy or the interpretability of models (Lema-Perez et al., 2019).

Future directions

The consideration of more IKr model structures is a natural extension of our work.
In particular, the fact that the Wang et al. (1997) model produced the most accurate
predictions (on average) is surprising given that a direct closed-open pathway has
been suggested somewhat more recently (Kiehn et al., 1999; Mazhari et al., 2001).
Perhaps the model error induced by the omission of this transition in the Wang et al.
(1997) model is much less significant than the assumption of independent activation and
inactivation assumed by both the Beattie et al. (2018) and Kemp et al. (2021) models.
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Moreover, the extension of this work to further model structures could be achieved
through an iterative computational approach (Menon et al., 2009; Mangold et al., 2021).

Many general approaches to the identification of ODE systems have been presented
in the literature. Sparse identification of Nonlinear Dynamics (SiNDy) (Brunton et al.,
2016; Massonis et al., 2023) and Graph Reconstruction by Additive Differential Equa-
tions (GRADE) (Chen et al., 2017) are two such examples which are used to consider
a wide range of possible model structures. The direct application of these methods to
ion-channel recordings may produce cell-specific models that produce accurate pre-
dictions across a range of voltage-clamp protocols. However, such a model may be
less interpretable than an equivalent Markov model (even one that produces worse
predictions) because any model we fit to our patch-clamp datasets necessarily describes
a combination of artefact effects and underlying IKr dynamics. It is, therefore, unclear
how such a “grey-box” approach could disentangle artefact effects from the underlying
dynamics of IKr and allow the latter to be integrated into a whole-cell action potential
model or used to model drug block, for example. For these purposes, the integration of
domain-specific knowledge (regarding our experimental methodology and underlying
mechanisms of channel gating, for instance) is essential.

Whilst our results suggest that the Wang et al. (1997) model is our most accurate
predictive model, and that inclusion of artefact effects led to an improvement in pre-
dictive accuracy, these conclusions would be bolstered by the analysis of repeated runs
of our multiprotocol experiments. Future work could also include new voltage-clamp
protocols—ensuring that our results still hold under other choices of fitting and valida-
tion protocols. Here, care should be taken to ensure that whatever new protocols are
used permit practical identifiability for every model under consideration. Because of the
observed well-to-well variability in recorded currents, a probabilistic approach, such as
Bayesian or pseudo-Bayesian optimal experimental design (Ryan et al., 2016; Overstall
et al., 2018; Dette et al., 2023), may be considered to ensure that models are practically
identifiable under any plausible instantiation of artefact-effect and kinetic parameters.

Under synthetic data generation, the generation of experimental designs which allow
precise parameter estimation (practical identifiability) is possible by using the standard
approaches discussed in Section 2.3.6. However, there is no guarantee that such designs
lead to practical identifiability once data is collected—model discrepancy and data
pollution, for example, may render some experimental designs unsuitable even if they
are optimal under a given utility function. For this reason, future work should strive to
ensure the robustness of voltage-clamp protocols by testing for practical identifiability
under a range of model structures, artefact effects and, perhaps, the addition of small
amounts of synthetically added, time-dependent leak current.

Experimental designs that permit discrimination between our candidate model
structures are desirable, but, in practice, may be challenging to produce such designs in
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the presence of model discrepancy. Standard approaches Atkinson and Federov (1975)
may magnify model differences but fail to explore interesting, novel dynamics, as
shown by the squarewave protocol (Lei et al., 2024). The combination of a “T-optimal”
utility function (Atkinson and Federov, 1975; Dette et al., 2012; Tommasi, 2008) with
the space-filling curve approach (Mirams et al., 2024) may succeed at highlighting
model differences across a larger selection of our models’ state spaces. However, the
computational requirements for the computational design of T-optimal are intense,
requiring the solution of a nested optimisation problem.

Whilst we have aimed to validate our models through cross-validation with a range
of voltage-clamp protocols, further validation of the resulting IKr models is necessary.
This may be done, for example, by ensuring that integration of our IKr models with
existing in silico action-potential models yields expected output, as has been done
previously (Beattie et al., 2018). Further model validation may also make use of drug
studies, where the interaction of a drug with IKr is recorded and then modelled. Here,
we may seek to validate whether our chosen model structure and parameter estimates
yield a plausible model of drug-channel interactions.

Finally, the experimental and mathematical methodology presented in this thesis
may be extended to the study of other voltage-dependent ion-channel currents. The
combination of rapid inactivation/recovery-from-inactivation and markedly slower
activation/deactivation is a distinguishing feature of IKr. The dynamics exhibited
by other voltage-dependent ion-channel currents differ from this, and, as such, our
particular choice of voltage protocols may not be suitable. If not, new voltage-clamp
protocols should be designed to account for the particular dynamics of the current
under investigation. In this way, it may be possible to apply these methods to other
important cardiac currents, such as the fast sodium current, INa (Ebihara and Johnson,
1980; Pathmanathan et al., 2015), for example.

Similarly to drug-channel interactions, genetic mutations affect the function of
ion-channel currents like IKr, and consequently have an effect on the function of the
heart as a whole (Perry et al., 2019; Whittaker et al., 2020b; Kemp et al., 2021). Markov
models, such as those used in this thesis, could also be used to model the impact of such
mutations, and any potential increase in risk under the application of a given drug. Here,
our multiprotocol approach could make apparent important changes in the dynamics of
channel gating and used to inform precision medicine approaches, where an individual’s
characteristics (such as their genetics) are considered when clinical decisions are made
regarding certain interventions (Niederer et al., 2019; Nakajima et al., 2021).

In any case, the methods presented herein not only provide novel insights into
IKr, but provide a blueprint for assessing and improving the modelling of many other
important ion-channel currents.



Appendix A

Fundamental properties of Markov
models

In this appendix, we review some basic properties of Markov models, as introduced
in Section 2.2.3. We begin by directly demonstrating how a Hodgkin-Huxley style
gating variable may be reformulated as a simple chain-like Markov model. As discussed
in Section 2.2.3, this shows that Markov models may be viewed as a generalisation
of Hodgkin-Huxley style gating variables. Consequently, we do not need to consider
Hodgkin-Huxley style gating variables separately when selecting model structures.

Then, in Section A.2 we discuss the behaviour of Markov models of macroscopic
ion-channel currents when the command voltage, Vm is held constant. This often occurs
under our ideal-patch assumptions (that is, for the models presented in Chapters 3 and
4), both at the start of our protocols, where Vcmd is held at −80mV, and during each
“voltage step”. In these setting, the governing equation (see Equation (2.18)) becomes
a linear system of ODEs. As discussed in Appendix F, these results also prove useful
in the analysis of our artefact models (introduced in Chapter 5). Then in Section A.3,
we discuss the connection between our deterministic ODE-based macroscopic current
models and the stochastic models used to model the gating of individual channels.

A discussion of microscopic reversibility and its implications for the dynamics of
Markov models follows in Section A.4. Here, we review the Kolmogorov Theorem
(Kelly, 2011), which allows the reversibility of a Markov model to be easily checked
via a simple graph-based approach. Finally, in Section A.5, we explain the method
used to simplify our Markov models’ systems of ODEs. Whilst this method has been
described (briefly) elsewhere (such as in Colquhoun and Hawkes (1995)), we present a
general linear algebra approach that may be modified to improve numerical stability.
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A.1 Hodgkin-Huxley style gating variables as Markov
models

To show that we may express any Hodgkin-Huxley style gating variable as a Markov
model, we consider a single variable, y, governed by,

dy
dt

= (1− y)α(Vm)− yβ (Vm) . (A.1)

Examples of such gating variables appear in the Hodgkin-Huxley action-potential model
(Equation (2.1)–(2.9)).

Let x be a (µ +1)-vector with ith element,

xi =

(
µ

i

)
yi(1− y)µ−i, (A.2)

where
(

µ

i

)
denotes the number of i-combinations in a set of µ elements ,

(
µ

i

)
= µ!

(µ−i)!i! .
Then xi is the probability that a given channel has i independent, open gates. The
channel only allows current to flow when all gates are open, hence the conductance of
the channel is given by,

ḡy(Vm −E) = ḡyµ(Vm −E) , (A.3)

where ḡ is the maximal conductance and E is the reversal potential of the channel. To
show the equivalence of the Markov model formulation with the use of a Hodgkin-
Huxley style gating variable, we seek to construct a Markov model, with state vector, x,
such that xO(t) = y(t)µ .

Differentiation of Equation (A.2) yields,

dxi

dt
=

(
µ

i

)(
iyi−1(1− y)µ−i − (µ − i)yi(1− y)µ−i−1) dy

dt
(A.4)

=(α(1− y)−βy)
(

µ

i

)(
iyi−1(1− y)µ−i − (µ − i)yi(1− y)µ−i−1) , (A.5)

where we temporarily omit the dependence of the transition rates, α(Vm) and β (Vm),
on the transmembrane potential, Vm. Then, by expanding the right-hand side of this
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expression, we see,

dy
dt

=αi
(

µ

i

)
yi−1(1− y)µ−(i−1)

−α(µ − i)
(

µ

i

)
yi(1− y)µ−i

−β i
(

µ

i

)
yi(1− y)µ−i

β (µ − i)
(

µ

i

)
yi+1(1− y)µ−i−1. (A.6)

Note how some terms disappear when i = µ or i = 0 which correspond to y0 = (1−x)µ

and yµ = xµ , respectively. Now, when i > 0, we have the identity,

i
(

µ

i

)
= (µ +1− i)

(
µ

i−1

)
, (A.7)

and when i < N,

(µ − i)
(

µ

i

)
= (i+1)

(
µ

i+1

)
. (A.8)

Hence, for 0 < i < N, we may rewrite Equation (A.6),

dxi

dt
=α(µ − (i−1))

(
µ

i−1

)
yi−1(1− y)µ−(i−1)

−α(µ − i)
(

µ

i

)
yi(1− y)µ−i

−β i
(

µ

i

)
yi(1− y)µ−i

+β (i+1)
(

µ

i+1

)
yi+1(1− y)µ−i−1 , (A.9)

We then have a system of coupled ODEs,

dx0

dt
= x1β − x0αµ , (A.10)

dxi

dt
= (µ − i+1)xi−1α − (µ − i)xiα +(i+1)xi+1β − ixiβ for 1 ≤ i ≤ µ −1,

(A.11)

and,
dxµ

dt
= xµ−1α −µxµβ . (A.12)

In fact, this system of ODEs may be expressed as a Markov model,

dx
dt

= Q(Vm)
⊤x , (A.13)
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where,

Q(Vm) =




−k0 k0 0 . . . 0 0 0
l1 −l1 − k1 k1 . . . 0 0 0

... . . . ...
0 0 0 . . . kµ−1 −kµ−1 − lµ−1 lµ−1

0 0 0 . . . 0 lµ−1 −lµ



, (A.14)

is a (µ +1)× (µ +1) transition-rate matrix with,

ki = (µ − i)α(Vm) , , (A.15)

and li = iβ (Vm). (A.16)

This demonstrates that any Hodgkin-Huxley style gating variable, raised to a positive
integer power, may be expressed as a Markov model. As explained in the main text, a
model may consist of the product of two or more such Hodgkin-Huxley style gating
variables. The Beattie et al. (2018) is such an example (Clerx et al., 2019a).

The Markov model system of ODEs shown above has more state variables compared
to Equation (A.1) (µ+1 state variables as opposed to 1), However, the relation, yµ = xO,
holds provided suitable initial conditions are chosen. In this thesis, our models are
always initialised at equilibrium—a unique equilibrium point shared by both formu-
lations, and so, when mapped to our observations through the observation function
(Equation (2.19) in the main text) Hodgkin-Huxley style models (which may consist
of one or more gating variables) and the equivalent Markov models provide identical
model output. This steady-state behaviour is discussed in the following section.

A.2 Steady states of Markov models

In this section, we review some fundamental results regarding the dynamics of Markov
models when Vcmd is held constant. Again, for concision, we omit the voltage depen-
dence and consider linear systems of the form,

dx
dt

= Q⊤x , (A.17)
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where, as in Chapter 2, we have:

Q is a real-valued (N ×N) matrix for allV ; (A.18)

Q1 = 0 ; (A.19)

Qi, j > 0 if and only if Q j,i > 0; (A.20)

and for all 1 ≤ i ≤ N,1 ≤ j ≤ N, with i ̸= j, we have Qi, j ≥ 0. (A.21)

Provided these conditions hold, it is simple to show that the total occupancy of the
system is conserved. Differentiating Equation (A.19) constraint yields,

d
dt

1⊤x (A.22)

= 1⊤
d
dt

x (A.23)

=
(

1⊤Q⊤
)

x (A.24)

=(Q1)⊤ x (A.25)

= 0 . (A.26)

Thus, the total occupancy remains constant, and we may, without loss of generality,
assume that, the initial conditions of our governing equations are such that 1⊤x = 1.
This condition is chosen such that the ith state-variable, xi(t), represents the proportion
of channels in conformation i at time t.

Connectedness and Irreducibility

It is natural to associate Q with a directed graph (digraph) D (Bondy and Murty, 2008)
where an edge between states i and j exists, with weight Qi, j, if and only if Qi, j > 0.
Then, some concepts from graph theory prove useful in characterising the behaviour of
Equation (A.17). Moreover, given Property (A.20) holds, we need only consider the
underlying (undirected) graph instead, which we denote G. In particular, G has a node
for every state in the model, and an edge between states i and j if Qi, j > 0. Note that a
weighted digraph may also be called a network (Kelly, 2011).

Let G be an (undirected) graph. A subgraph H ≤ G is said to be connected if, for any
two nodes, u,v ∈ H there is a walk from u to v. In this way, a graph can be partitioned
into connected components, each of which is a distinct, connected subgraph. A graph
which has only one connected component is said to be connected. A matrix, say A, is
said to be reducible if there exists some permutation matrix M such that MAM−1 is
upper triangular (Berman and Plemmons, 1979).

These concepts may be related to properties of our matrix Q; It is known that Q is
irreducible if and only if G is connected (Berman and Plemmons, 1979). As we will see
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in the following section, the connectedness of G (and, equivalently, the irreducibility
of Q) proves useful in the following sections where we characterise the behaviour of
Markov models. The main focus of this appendix is the following result.

Proposition 1 Let Q satisfy conditions (A.18)–(A.21). Then, if Q is irreducible, there

is exactly one equilibrium point of the system

d
dt

x = Q⊤x, (A.27)

satisfying the constraint 1⊤x(0) = 1.

In other words, provided the underlying graph of our Markov model is connected,
there exists a unique stable equilibrium point. That is, we have x(t)→ x∞(V ) for some
limit, x∞(V ) which does not depend on x(0). This is important because, when fitting our
models, we assume that at when t = 0 the system is at equilibrium, and the uniqueness
of this equilibrium allows us to set the initial condition of a given model.

We first focus on the existence of an equilibrium point for Equation (A.27). We
begin by may be considering the eigenvalues of Q⊤. Firstly, we can see that the
condition,

Q1 = 0,

means precisely that the pair (0,(1)) is an eigenpair of Q. Hence, we see that,

0⊤ = (Q1)⊤ (A.28)

= 1⊤Q⊤, (A.29)

and so 1 is a left-eigenvector of Q⊤ with eigenvalue 0. This implies that there is a (right)
eigenpair of Q⊤ of the form (0,(v)). That is, Q⊤v = 0 and u is an equilibrium point of
Q. Also, we have,

Q⊤v = 0, (A.30)

and so, if x = v,
dx
dt

= 0. (A.31)

However, this equilibrium point is not unique. We can see that for any α ∈R, we also
have Q⊤(αv) = 0. The only equilibrium point on this line that satisfies Equation (A.19)
is

u
1⊤u

.
Next, we consider the uniqueness of this steady state by supposing that there is a

distinct eigenpair of the form (0,u). That is, we assume that u and v linearly dependent,
but Q⊤u = 0. This implies the existence of a plane of equilibrium points,

span(u,v) = {λu+µv : λ ,µ ∈ R}.
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The following proposition, which we proceed to prove, concerns the uniqueness of the
steady states of Equation (A.30)

Proposition 2 Let Q satisfy conditions (A.18)–(A.21). If Q is irreducible, then 0 is an

eigenvalue of Q⊤ with geometric multiplicity 1.

Proof: Let u and v be such that Q⊤u = Q⊤u = 0. Then u is also an eigenvector of
Q with corresponding eigenvalue, 0. Then for any linear combination λ1v+λ2u, with
λ1,λ2 ∈ R, we have Q⊤(µv+νu) = µQ⊤v+νQ⊤u = 0. Then,

w = v− v1

u1
u, (A.32)

is a vector satisfying Qw = 0 and w1 = 0. Now,

Q⊤w = Q⊤
(

v− v1

u1
Q⊤u

)
, (A.33)

= Q⊤v− v1

u1
Q⊤u, (A.34)

= 0. (A.35)

Hence,
N

∑
j=1

Q j,1w j = 0, (A.36)

and so, since the first component of w is zero, that is, w1 = 0, we have,

N

∑
j=2

Q j,1w j = 0. (A.37)

By assumption, the underlying graph is strongly connected, and so, there must be
a simple walk between l and state 1, that is, (s1,s2, . . .sn) where s1 = l and sn = 1,
where each edge corresponds to a positive transition rate (Bondy and Murty, 2008).
Therefore, we have Qsm,sm+1 > 0 for each 1 ≤ m ≤ n−1. Hence, w1 = wsn = 0 implies
that wsn−1 = 0, and wsm = 0 implies that wsm−1 = 0 for m > 1. It follows by induction
ws1 = wl = 0. Hence, for any k, we have wk = 0 that is, w = 0. In other words, v and u
are linearly independent. This proves Proposition 2.

Whilst Proposition 2 proves the uniqueness of a steady state, it provides little infor-
mation about the properties of this steady state. It does not, for example, guarantee the
stability of this steady state. Moreover, the interpretation of our models’ state variables
as “state occupancies” is only valid if we have vi > 0 for any i, and Proposition 2 pro-
vides no such guarantee. The following result concerns the properties of the non-zero
eigenvalues. These results allow us to assess the stability of the equilibria described
above. For example, if Q has an eigenvalue, λ > 0, then the system is unstable.
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Proposition 3 Let Q be a matrix satisfying conditions (A.18–A.21). Then, for any

eigenvalue of Q we have Re(λ )≤ 0.

Our proof of this proposition relies on a result regarding the loci of eigenvalues of
square matrices due to Gershgorin: the Gershgorin circle theorem, the proof of which
lies beyond the scope of this thesis.

Theorem 1 (Gershgorin Circle theorem, Horn and Johnson (2013)) Let A ∈ Rn×n

then each eigenvalue of A, λ , there is an i such that,

λ ∈ {x : |x−Ai,i| ≤ ri},

where ri = ∑i̸= j |Ai, j| .

We defer the proof of this theorem to Horn and Johnson (2013).
Proof of Proposition 3: by Conditions (A.18)–(A.21), we have

|Qi,i|=

∣∣∣∣∣
N

∑
j ̸=i

Qi, j

∣∣∣∣∣= ∑
j ̸=i

∣∣Qi, j
∣∣ , (A.38)

because Qi, j ≥ 0 for all i, j with i ̸= j. In other words, Q is (weakly) diagonally

dominant. We may then directly apply the Gershgorin Circle Theorem to see that the
eigenvalues must satisfy Re(λ ) ≤ 0 because our conservation condition tells us that
Qi,i = −ri. Then, because the eigenvalues of Q and Q⊤ are identical, all non-zero
eigenvalues of Q⊤ satisfy Re(λ )≤ 0, also. This proves Proposition 3.

We demonstrate these eigenvalue properties for two cases, the first, a Markov model
where Q is irreducible, and the second, an example of a Markov model with a reducible
Q, for which there is no unique equilibrium.

A.2.1 Example I: A connected Markov model

Consider the three-state Markov model with transition rate matrix,

Q =



−k1 − k6 k1 k6

k2 −k2 − k3 k3

k5 k4 −k4 − k5


 . (A.39)

The corresponding weighted digraph is shown in Figure A.1. Firstly, Q is irreducible,
there is no permutation matrix P such that PQP−1 is in triangular block form (Berman
and Plemmons, 1979). This can be clearly seen from the fact that the corresponding
digraph is strongly connected. For this reason, we know that there is exactly one
eigenvector of Q⊤ corresponding to a vanishing eigenvalue. We proceed to show this
by direct computation.
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Figure A.1: A three-state Markov model. This graph is connected, so the corresponding
transition rate matrix must be irreducible, and the corresponding system has a unique
equilibrium point (under the constraint 1⊤x(0) = 1).

The characteristic polynomial of Q⊤ is

det(Q⊤−λ I) (A.40)

= λ
(
− k1k3 − k1k4 − k2k4 − k1k5 − k2k5 − k3k5 − k2k6 − k3k6 − k4k6

− k1λ − k2λ − k3λ − k4λ − k5λ − k6λ −λ
2).

Hence, 0 is an eigenvalue of multiplicity 1. Meaning that there is an eigenvector v
satisfying Q⊤v = 0 which is the unique in the sense that any other vector, u, such that
Qu = 0, may be expressed as a scalar multiple of v, that is, u = αv. Therefore, if
we include the constraint that 1⊤x = 1, the governing equation (Equation (A.13)) has
exactly one equilibrium point.

A.2.2 Example II: A disconnected Markov model

Consider the four-state Markov model,

Q =




−k1 k1 0 0
k2 −k2 0 0
0 0 −k3 k3

0 0 k4 −k4



. (A.41)

We can see from the corresponding graph (Figure A.2) that this Markov model is
disconnected. Alternatively, we can see that Q is reducible because it is already in block
upper triangular form.

Again, we may compute the eigenvectors and eigenvalues of Q⊤ directly. For this
example, the characteristic polynomial is

det(Q⊤−λ I) = k1λ
2(λ + k3 + k4)+λ

3(λ + k2 + k3 + k4)+λ
2(k2k3 + k2k4).
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k4

k3 DC

k2

k1 BA

Figure A.2: A four-state Markov model with a disconnected graph. Since the graph is
disconnected, the corresponding transition-rate matrix is reducible. The two connected
components (A and B, and C and D) may be seen wholly independent processes, each
with a unique stable equilibrium. Whilst such models do not meet satisfy our Markov
model definition, the connected components may be combined to form a Markov model
as discussed in Chapter 2.

Hence, 0 is an eigenvalue of Q⊤ with algebraic multiplicity 2. By considering the linear
system

Q⊤w = 0, (A.42)

we find two linearly independent eigenvectors (corresponding to the vanishing eigen-
value):

v =

(
k1

k2
,−1, 0, 0

)
, u =

(
0, 0,

k3

k4
,−1

)
. (A.43)

We may decompose this Markov model into its two connected components, and write

dy
dt

= R⊤y , (A.44)

dz
dt

= S⊤z , (A.45)

where,

x =

(
y
z

)

and,

R =

(
−k1 k1

k2 −k2

)
, (A.46)

(A.47)

S =

(
−k3 k4

k3 −k4

)
. (A.48)
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We may then identify the eigenvectors of Q⊤, u and v with equilibrium points of the
Markov models described by transition-rate matrices R and S:

(
k1

k2
,1
)⊤

(A.49)

for the former; and, for the latter we have,

(
k3

k4
,1
)⊤

. (A.50)

In this case, the equilibrium that the system reaches will depend on the initial conditions,
for example if we choose,

x(0) =
(

1
2
,
1
2
,0,0

)⊤
,

we will find that x3(t) = x4(t) = 0 for all t > 0, and if we choose,

x =

(
0,0,

1
2
,
1
2

)⊤
,

then x1(t) = x2(t) = 0 for all t > 0.
Provided the Markov model has only one connected component, we know that it

has an irreducible transition-rate matrix, which (using Proposition 3) means that it has
no positive eigenvalues and a zero-eigenvalue with multiplicity 1. However, can also
apply the same result to the connected components of a disconnected Markov model,
and such models may be treated as the combination of two separate Markov models.
It is easy to check for connectedness either visually, or by using an algorithm such as
Depth-First Search (Gibbons, 1985).

A.2.3 Application of the Perron-Frobenius Theorem

The following result provides some more properties of our models’ steady states.

Theorem 2 (Perron-Frobenius Theorem (Berman and Plemmons, 1979)) Let A =

(Ai, j) be an N ×N matrix with strictly positive entries. Then there exists an eigenpair

(r,v) such that:

• vi > 0 for all i;

• r ∈ R;

• and r > Re(λ ) for all eigenvalues λ ̸= r.
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Such an eigenvalue, r, may be referred to as the leading eigenvalue. This is an incom-
plete statement of the full Perron-Frobenius Theorem, which is provided in Berman and
Plemmons (1979).

Now, for some irreducible Q taken from a connected Markov model, Q⊤ is not a
positive matrix (its diagonal elements are negative) and so the Perron-Frobenius Theo-
rem is not directly applicable. Instead, we let A = Q⊤+kI where k = maxi {−Qi,i}+1.
Then, Ai, j > 0 for all i, j and so, we may apply the Perron-Frobenius Theorem to A.

Now, let (λ ,V) be an eigenpair of A. Then,

Av = λv, (A.51)

and so,

(Q⊤+(k+1)I)v = λv, (A.52)

Q⊤v+(k+1)v = λv, (A.53)

Q⊤v = (λ − k−1)v. (A.54)

That is, if λ is an eigenvalue of A, then λ − k− 1 is an eigenvalue of Q⊤, and the
corresponding eigenvectors are equal. In other words, there is a one-to-one mapping
from eigenpairs of A onto eigenpairs of Q⊤ given by,

(λ ,v) 7→ (λ − k−1,v). (A.55)

We know from Proposition 3 that all eigenvalues of Q⊤ satisfy Re(λ ) ≤ 0 and
from Proposition 2, that 0 is one of these eigenvalues and so, 1+ k must be the leading
eigenvalue of A. Hence, applying the Perron-Frobenius theorem to A tells us that for
each eigenvalue of A, λ , satisfies

|λ | ≤ k+1, (A.56)

and so, each eigenvalue of Q⊤ satisfies,

|λ − (k+1)| ≤ k+1. (A.57)

These loci are shown in Figure A.3.
The Perron-Frobenius theorem also tells us that the leading-eigenvalue, r corre-

sponds to some eigenvector v+ with v+i > 0 for all i. Since 0 is the value of Q⊤ with
maximal real part, the eigenpair of A, (r,v+) must correspond to an eigenpair of Q⊤,
(0,v+) (using Equation (A.55)). This proves Proposition 1.
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Figure A.3: The Perron-Frobenius theorem provides information about the eigende-
composition of A. In particular, there exists a leading, positive eigenvalue, greater
in absolute value than all other eigenvalues, which corresponds to a wholly positive
eigenvector. The map A 7→ Q⊤ induces a simple translation of eigenvalues and tells us
that each eigenvalue of Q⊤ has non-positive real part.

We conclude by demonstrating the results introduced in this section by computing
the eigenvalues of Q⊤ for a three-state model. We set transition rates as,

(k1, k2, k3, k4, k5, k6) = (1, 2, 3, 4, 5, 10). (A.58)

The resulting transition rate matrix is,

Q =



−11 1 10

2 −5 3
5 4 −9


 . (A.59)

To one decimal place, the eigenpairs of Q⊤ are,

λ1 =−17.1, v1 = (−0.7,0.3,1)⊤, (A.60)

λ2 =−7.9, v2 = (0.6,−1.6,1)⊤, (A.61)

and λ3 = 0, v3 = (0.59,0.88,1). (A.62)
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Also, we have k = maxi, j{−Qi, j}= 11 so,

A = Q⊤+(k+1)I, (A.63)

= Q⊤+12I, (A.64)

=




1 2 5
1 7 4

10 3 3


 . (A.65)

Then, to one decimal place, the eigenpairs of A are,

λ1 =−5.1, v2 = (−0.7,−0.3,1)⊤, (A.66)

λ2 = 4.1, v3 = (0.6,−1.6,1), (A.67)

λ1 = 12, v1 = (0.59,0.88,11)⊤. (A.68)

As we would expect, the eigenvectors of Q⊤ and A are equal, but the eigenvalues
are different. Additionally, no eigenvalues of Q⊤ have positive real part, and the
vanishing eigenvalue corresponds to the eigenvector (33, 49, 53)⊤ which has only
positive components. We have hence demonstrated that the linear system of ODEs
defined by Equation (A.30) has a unique, global steady equilibrium.

A.3 Single-channel models and macroscopic currents

Markov models have also been used to model the behaviour of single channels (Colquhoun
and Hawkes, 1981). Here, the conformation of the channel is modelled stochastically
by a continuous-time Markov chain (CTMC) on a finite state space. Such a CTMC may
be seen as the combination of a collection of distributions of waiting-times for each
state, and an embedded random jump process, a discrete-time Markov chain with proba-
bility matrix, P. The holding-time distributions for each state i follow an exponential
distribution, wi ∼ exp(µi) for some µi > 0. Then, the infinitesimal generator matrix or
“Q-matrix” is defined as,

Q = (I−P)µµµ−1. (A.69)

where µµµ = (µi)
N
=1 (Colquhoun and Hawkes, 1995). This is a matrix which satisfies

conditions (A.18–A.21), which we defined for our Markov model. Hence, for any
fixed voltage, Vm, every Markov model corresponds to a CTMC with infinitesimal
generator matrix Q(Vm) (and vice versa). Let p(t) = (pi(t))N

i=1 be a row vector, where
pi(t) is the probability that the Markov chain is in state i at time t. Then, the forward
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Chapman-Kolmogorov equation (Kelly, 2011) tells us that,

dp⊤(t)
dt

= p(t)Q, (A.70)

which is simply the system described by Equation (A.17) written with row vectors
instead of column vectors. Row vectors are commonly used to describe Markov chains
(both discrete and continuous), and, subject to the condition that p1 = 1 (that is, the
elements of p sum to 1), the row-vector p is known as a probability vector (Kelly, 2011).
Note that the definition of p as a probability vector is analogous to the conservation
constraint in our Markov models Equation (A.19). Furthermore, any Q-matrix satisfies
conditions (A.18)–(A.21) and so, there is a correspondence between Markov models
and CTMCs (Kelly, 2011).

To demonstrate this correspondence, we consider nchannels IID channels such that the
proportion of channels in each state at each time is a random process, {Xi(t)}t≥0. For
each t, ncX(t) has a multinomial distribution with probability vector p(t). In particular,
the expected number of channels in state i is

E [Xi(t)] =
1

nchannels
E [nchannels pi(t)] . (A.71)

and the corresponding variance is

V [Xi(t)] =
1

n2
channels

V [nchannelsX(t)] (A.72)

=
1

nchannels
pi(t)(1− pi(t))→ 0 , (A.73)

as nchannels → ∞. Hence, the deterministic model (characterised by the governing
equation in Equation (A.13)) becomes a reasonable approximation to this stochastic
process when there is a large number of channels. Furthermore, since pi(1− pi) is
maximal when pi = 0.5, we know that,

V[Xi(t)]≤
1

4nchannels
, (A.74)

and so if nchannels = 10,000, for example, we have

V[Xi(t)]≤ 2.5×10−5. (A.75)

A practical demonstration of the increasing accuracy of the mass-action approximation
is provided in Figure 2.7 (Chapter 2), from which we see that there is little difference
between the ODE solution and the stochastic process when nchannels is sufficiently large.



A.4. REVERSIBLE MARKOV MODELS 187

Without making strong assumptions regarding the independence and identical be-
haviour of individual channels, ODE-based Markov models are commonly used in
cardiac electrophysiology (Beattie et al., 2018; Tomek et al., 2019), and our results
in Chapter 4 show that such models can recapitulate experimental data, and produce
accurate predictions. Though we use ODE-based models, results arising from the study
of CTMCs provide useful intuition. For example, it is known that for a given CTMC,
equilibrium distribution exists if and only if the CTMC is irreducible (Kelly, 2011) that
is, if the matrix Q is irreducible (Berman and Plemmons, 1979). This result is equiva-
lent to Proposition 2. However, in the probability literature, this result may instead be
obtained by considering the properties of the embedded random jump process, and not
by examining the eigenvalues of Q (Whitt, 2006).

A.4 Reversible Markov models

In addition to satisfying conditions (A.18–A.21), reversibility is another property that is
often required of Markov models. This property is sometimes referred to as microscopic

reversibility, and is equivalent to the existence of detailed balance and thermodynamic

equilibrium (Colquhoun et al., 2004).

Definition 1 Consider a Markov model which satisfies Conditions (A.18–A.21) with

transition-rate matrix, Q such that Q⊤ is irreducible. Then by Proposition 1, a unique

equilibrium point, x∞, exists. We say that this Markov model is reversible if it satisfies,

Qi, jx(i)∞ = Q j,ix( j)
∞ . (A.76)

for all i and j.

Since reversibility is a property wholly concerned with properties of Q, we extend this
definition to the transition-rate matrix and call Q reversible if the corresponding Markov
model is reversible. The following result shows that there may be qualitative differences
between reversible Markov models and non-reversible Markov models.

Proposition 4 Let Q be a matrix satisfying conditions (A.18)-(A.21). Additionally,

suppose Q is reversible. Then, the eigenvalues and eigenvectors of Q⊤ are real.

Proof: Assuming that our model is reversible, we may construct the diagonal matrix D

with Di,i =

√
x(i)∞ for all i. D is a diagonal matrix with no zeroes on its diagonal, so it is



A.4. REVERSIBLE MARKOV MODELS 188

invertible. Then,

(DQ⊤D−1) j,i =

√
x( j)

∞ Q j,i
1√
x(i)∞

, (A.77)

=

√
x( j)

∞ Qi, j
x(i)∞

x( j)
∞

1√
x(i)∞

, (using Equation (A.76)) (A.78)

=
x(i)∞√
x(i)∞

Qi, j

√
x( j)

∞

x( j)
∞

, (A.79)

=

√
x(i)∞ Qi, j

1√
x( j)

∞

, (A.80)

= (DQ⊤D−1)i, j. (A.81)

Which means that DQD−1 is a symmetric matrix. In other words, Q⊤ is similar to a
symmetric matrix, and so the characteristic polynomials of DQ⊤D−1 is,

det
(

DQ⊤D−1 −λ I
)
= det(D)det

(
Q⊤D−1 −λD−1I

)
, (A.82)

= det(D)(Q⊤−λD−1ID)det
(
D−1), (A.83)

= det(D)det(D)−1 det
(

Q⊤−λ I
)
, (A.84)

= det
(

Q⊤−λ I
)
, (A.85)

which is exactly the characteristic polynomial of Q⊤. Therefore, the eigenvalues of Q⊤

are exactly the eigenvalues of DQ⊤D−1. Then, since DQ⊤D−1 is symmetric, it has real
eigenvalues, and so, Q⊤ has real eigenvalues, also (Meyer, 2000).

This provides some insight into the implications of reversibility on the dynamics of
Markov models. Eigenvalues with Im(λ ) ̸= 0 describe oscillatory behaviour (similar to
a damped oscillator when Re(λ )≤ 0), but such eigenvalues are not possible when Q is
reversible. Complex eigenvalues can arise from non-reversible Q are demonstrated in
the following example.
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Example III: A non-reversible Markov model

We return to the three-state model shown in Figure A.1. The equilibrium points of this
system satisfy,

x∞ = α




k2k4 + k2k5 + k3k5

k1k3 + k2k6 + k3k6

k1k4 + k1k5k4k6

k1k3 + k2k6 + k3k6

1




, (A.86)

for α ∈ R. We can see that this Markov model is not reversible in general because the
flux between states 1 and 2 at steady state is,

x(1)∞ Q1,2 = k1
k2k4 + k2k5 + k3k5

k1k3 + k2k6 + k3k6
, (A.87)

whilst, the flux in the opposite direction is,

x(2)∞ Q2,1 =k2
k1k4 + k1k5 + k4k6

k1k3 + k2k6 + k3k6
. (A.88)

Hence, this Markov model is reversible if and only if,

k1k3k5 = k2k4k6. (A.89)

In Section A.4, we will see that a similar condition may be used, in general, to check
the reversibility of any Markov model.

When our model is not reversible, or equivalently, k1k3k5 ̸= k2k4k6, the transition-
rate matrix, Q, may have complex eigenvalues. For example, this is the case when we
choose,

(k1,k2,k3,k4,k5,k6) = (1,100,1,100,1,100). (A.90)

In this case the eigenpairs of Q are (to one decimal place),

λ1 =−16.5+7.8i, v1 = (−0.5−0.9i,−0.5+0.9i,1.0,1.0),

λ2 =−16.5+7.8i, v2 = (0.5+0.9i,−0.5−0.9i,1.0,1.0),

λ3 = 0.0, v3 = (1.0,1.0,1.0).

This demonstrates that if non-reversible models are considered, computational methods
relying on the eigendecomposition of Q⊤ must account for non-real eigenvalues. This
is not the case when reversible models are used, in which case, the eigenvalues and
eigenvectors are guaranteed to be real.
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In the following section, we introduce a useful method for ensuring the reversibility
of Markov models. As we will see, our three-state Markov model is reversible if and
only if,

k6 =
k1k3k5

k2k4
. (A.91)

Moreover, we can find similar conditions which guarantee the reversibility of any other
Markov model.

Kolmogorov’s Criterion

It is possible to ensure reversibility by checking that the detailed-balance equation (Equa-
tion (A.76)) holds. However, this requires us to compute the steady state. Kolmogorov’s
criterion provides an alternative method which is far more convenient.

Theorem 3 (Kolmogorov’s Criterion (Kelly, 2011)) A Markov model with transition-

rate matrix Q(V ), with corresponding graph, G, in which transition rates are positive

for all V , or zero for all V is reversible if and only for every cycle in G if the products

of transition rates in each direction are equal. In other words, Equation (A.76) holds if

and only if,
Cn

∏
i

Qsi,si+1 =
Cn

∏
i

Qsi+1,si (A.92)

for every cycle of G, C = (s1, . . .sCn+1) where sCn+1 = s1.

This result is due to the study of continuous-time Markov chains (CTMCs) which are
closely related to the system described by Equation (A.13). The relationship between
the ODE formulation used in this section, and CTMCs is discussed in Appendix A.3.
Nevertheless, Kolmogorov’s result can be directly applied to our ODE formulation. For
example, regarding Example I, we saw that reversibility was equivalent to the condition
k1k3k5 = k2k4k6 which is an equality between the product of transition rates around the
only cycle in each direction (as illustrated in Figure A.1).

This result is proved in Kelly (2011) for continuous time Markov chains (CTMCs),
but an identical proof can be applied to ODEs of the form of Equation (A.30), because,
for such models, Q may be realised as the infinitesimal generator matrix of a CTMC.
As explained by Colquhoun et al., we need only check that each of a subset of cycles
satisfies Equation (A.92)—the cycle basis of G (Yang et al., 2006) .

A.5 Simplifying the governing equation

We conclude this appendix to explain how our Markov models’ conservation constraint
(Equation (A.19)) can be used to simplify our models’ governing equation (Equa-
tion (A.30)). As discussed in (Fink and Noble, 2009), this operation reduces the number
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of state variables by 1, which reduces the amount of computation required to integrate
our governing equation. This ultimately allows us to fit our models and produce pre-
dictions more efficiently. If we solve the governing equation directly with numerical
methods, this constraint may be violated somewhat due to the accumulation of numeri-
cal errors. On the other hand, when numerical methods are applied to the simplified
form of the system of ODEs, this is no longer a concern because the conservation
constraint is satisfied implicitly.

Such an simplification of the system of ODEs is commonly applied to particular
Markov models of ion-channel currents (Fink and Noble, 2009; Beattie et al., 2018).
Colquhoun and Hawkes (1995) provide a description of this procedure, which may be
applied to any Markov model (that is, a system of ODEs satisfying Equations (A.18–
A.21). In this section, we provide an explicit derivation of this method. We then show
that many similar simplifications are possible and suggest future work for the selection
of more suitable schemes for simulation of Markov models.

First, to derive the scheme suggested by Colquhoun and Hawkes (1995), we seek a
system of ODEs,

dx̃
dt

= Ax̃+b, (A.93)

where x̃ is the first N −1 components of x, A is a (N −1)× (N −1) matrix, and b is a
vector of size (N −1). Then, by setting xn = 1−∑

N−1
j=1 xi, our constraint, 1⊤x is always

satisfied.
Let A be a (N − 1)× (N − 1) matrix, b be a N − 1 vector, and c be a scalar such

that,

Q(V ) =

(
Q̃ a
b⊤ c

)
, (A.94)

where Q̃ is an (N − 1)× (N − 1) matrix containing the elements in the upper-left
rows and columns of Q. Then, by multiplying both sides of Equation (A.30) by the
(N −1)×N matrix,

(
IN−1 0

)
=




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0

... . . . ...
...

0 0 0 . . . 1 0



, (A.95)
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which is simply an identity matrix with a column of zeros appended to its right side, we
have,

(
IN−1 0

) d
dt

x =
(

Q̃⊤ IN−1b
)

x, (A.96)

=

(
Q̃⊤x̃

0

)
+ xN

(
b
0

)
. (A.97)

Hence, substituting xN = 1− x̃⊤1 gives,

d
dt

x̃ =
(

Q̃−b1⊤
)

x̃+b. (A.98)

After solving this system, it is simple to use the relation xN = 1− 1⊤x̃, to recover x
from x̃.

However, Equation (A.98) is but one of many ways in which we use the conservation
constraint to simplify Equation (A.30). Suppose T is a non-singular matrix such that
each element of the bottom row is 1. Then, we have the block matrix,

T =

(
U
1⊤

)
. (A.99)

Now, we have s = Tx, and so, from Equation (A.13), we have,

ds
dt

=
dTx
dt

(A.100)

= T
dx
dt

(A.101)

= TQ⊤x (A.102)

= TQ⊤T−1s , (A.103)

which is possible because we chose U to be non-singular. If we let W = TQ⊤T−1 , we
may write,

ds
dt

= Ws. (A.104)

Since each element of the bottom row of T is 1, we have, for the bottom component of
S, sN = 1⊤x = 1, and so, sN is constant. Hence, we may simplify Equation (A.30), by
writing,

ds̃
dt

= Cs̃+d, (A.105)

where s̃ is the first N −1 rows of s, C is the first N −1 rows and columns of W, and
d = ynwN , where wN denotes the rightmost column of W.

There are many choices for such a matrix, U. Perhaps the most obvious choice is
the matrix the N −1-dimensional identity matrix, IN−1, with a zero vector, 0, appended
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to its right-hand side. In this case we have,

T =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
1 1 1 . . . 1 1




, (A.106)

from which obtain Equation (A.98). Instead of eliminating the Nth state, xN , we could
eliminate any other state. For example, to eliminate the first state, x1 instead of xN , we
may define,

T =




0 0 0 . . . 0 1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
... . . . ...

...
0 0 0 . . . 1 0
1 1 1 . . . 1 1




. (A.107)

In this way, it may be possible to choose T such that the resultant system of
ODEs has some desirable properties. For example, we may wish to ensure that the
condition number of W is as large as possible—reducing the error in matrix exponential
computations (Moler and Van Loan, 2003). One simple approach would be to iterate
through each of our N states, removing each state individually, and checking the
resulting condition numbers.

We suggest that such a method may allow more efficient (and more accurate) simu-
lation of Markov models of ion channel currents, as well as other similar equations. A
more greedy approach, considering a larger set of possible choices of T, may also be
plausible. Further work could explore how the choice of T affects the numerical error
in numerical solutions of Equation (A.30) across various solution methods. However,
it should be noted that Q⊤ depends on the transmembrane potential, and our model
parameters, and so, the suitability of a given T may vary over the course of the experi-
ment. Hence, an easily computable heuristic for a suitable choice of T may prove more
useful than a harder-to-compute, more optimal method.



Appendix B

Supplementary material for Chapter 3

B.1 IKr model equations

Beattie model

In full, the system of ODEs is,

dx
dt

=




−k1 − k3 0 k4 k2

0 −k2 − k4 k1 k3

k3 k2 −k1 − k4 0
k1 k4 0 −k2 − k3




x, (B.1)

where

k1 = p1ep2V , (B.2)

k2 = p3e−p4V , (B.3)

k3 = p5ep6V , (B.4)

k4 = p7e−p8V . (B.5)

Hence, the corresponding parameter set is,

θθθ =
[

p1, . . . , p8, g
]T

, (B.6)

and,

x =
[
C, I, IC, O

]T
. (B.7)

Note that this model may also be written in terms of two Hodgkin-Huxley style gating
variables (Clerx et al., 2019a).

194
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Wang model

We may write this model’s governing system of ODEs as

dx
dt

=




−αa0 βa0 0 0 0
αa0 −βa0 − k f kb 0 0
0 k f −kb −αa1 βa1 0
0 0 αa1 −βa1 −α1 β1

0 0 0 α1 −β1




x, (B.8)

where

a1 = q1eq2V , (B.9)

aa0 = q3eq4V , (B.10)

aa1 = q5eq6V , (B.11)

ba1 = q7e−q8V , (B.12)

b1 = q9e−q10V , (B.13)

ba0 = q11e−q12V . (B.14)

(B.15)

The corresponding parameter set is,

θθθ =
[
q1, . . . , q12, k f , kb

]T
, (B.16)

and
x =

[
C1, C2, C3, O, I

]T
. (B.17)

The default parameter values for both models are presented in Table B.1.

B.2 Further Case I results

The predictive accuracy of the model used in Section 3.4.2 (under the validation protocol,
d0) , trained using each protocol, for a range of values of λ is shown in Fig. B.1. Here,
we see that as there is more model discrepancy (when λ moves away from 1) our
predictions become less accurate.

The parameter estimates obtained in Sections 3.4.1 and 3.4.2 are summarised in
Table B.2, Table B.4 and Table B.5, respectively. Here, we can see that when the model
is misspecified, the standard deviation in our estimates (across fits to different samples
of our DGP) is small compared to the differences between estimates obtained from
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Wang model

Parameter Value Units

g 1.52×10−1 µS
kb 3.68×10−2 ms−1

k f 2.38×10−2 ms−1

q1 9.08×10−2 ms−1

q2 2.34×10−2 mV−1

q3 2.23×10−2 ms−1

q4 1.18×10−2 mV−1

q5 1.37×10−2 ms−1

q6 3.82×10−2 mV−1

q7 6.89×10−5 ms−1

q8 4.18×10−2 mV−1

q9 6.50×10−3 ms−1

q10 3.27×10−2 mV−1

q11 4.70×10−2 mV−1

q12 6.31×10−2 ms−1

Beattie Model

Parameter Value Units

g 1.52×10−1 µS
p1 2.26×10−4 ms−1

p2 6.99×10−2 mV−1

p3 3.45×10−5 ms−1

p4 5.46×10−2 mV−1

p5 8.73×10−2 ms−1

p6 8.91×10−3 mV−1

p7 5.15×10−3 ms−1

p8 3.16×10−2 mV−1

Table B.1: The default parameter sets we use for the Wang et al. (1997) and Beattie
et al. (2018) models, with parameter sets taken from the corresponding publications.
In the case of the Beattie et al. (2018) model, these parameters values are taken from
Cell #5. For the Wang et al. (1997) model, we take those parameters obtained using
a 2 mM concentration of potassium chloride. The same maximal conductance (g) a
representative value for a CHO hERG expression system, is used for both models.
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Figure B.1: Case I: predictive accuracy (under our validation protocol, d0) decreases as
λ → 1. For 17 values of λ (1

4 ≤ λ ≤ 4), the predictive error (averaged over repeats) is
shown for each fitting protocol (d1–d5)
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different protocols—the choice of fitting protocol is less important when there is no
model discrepancy.

Table B.2 details the distribution of each parameter estimate (under repeated samples
of the DGP) for each protocol as λ varies (as described in Section 3.4.1). Whereas,
Table B.3 shows how our spread-of-prediction intervals change under different values
of λ . Here, we can see that each parameter estimate, as well as B itself, show little
variability under repeated samples of the DGP.

B.3 Further Case II results

Table B.4 and Table B.5 summarise the parameter estimates obtained in Section 3.4.2
using the Beattie et al. (2018) model and Wang et al. (1997) model, respectively. Here,
the Wang et al. (1997) model was chosen as the DGP and so, the Wang et al. (1997)
model is an example of a correctly specified model, whereas the Beattie et al. (2018)
model is a discrepant model. This is reflected by the parameter estimates which show
that when the Wang et al. (1997) model is fitted to the data, we obtain similar parameter
estimates from each protocol, whereas our parameter estimates for the Beattie et al.
(2018) model are dependent on the protocol used for training.

Table B.6 shows the behaviour of our spread-of-prediction intervals (Equation (3.19))
for both the Wang et al. (1997) Model and the Beattie et al. (2018) Model, as described
in Section 3.4.2. Here, we see that the average width of this interval (averaged over the
length of the protocol) is much larger for the Beattie et al. (2018) Model (a discrepant
model) when compared with the Wang et al. (1997) Model (the same model used for
data generation).
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λ d1 d2 d3 d4 d5

0.25

p1 1.8E-04±2E-07 2.4E-04±7E-07 9.0E-05±1E-06 1.9E-04±4E-07 4.7E-05±8E-08
p2 9.1E-02±5E-05 9.7E-02±9E-05 1.0E-01±2E-04 9.3E-02±8E-05 1.0E-01±4E-05
p3 3.0E-05±2E-08 1.9E-05±3E-08 1.2E-05±4E-08 1.7E-05±4E-08 9.3E-06±2E-08
p4 4.8E-02±6E-06 5.2E-02±2E-05 5.5E-02±3E-05 5.3E-02±2E-05 5.8E-02±2E-05
p5 5.0E-02±5E-05 5.5E-02±6E-05 5.0E-02±5E-05 7.9E-02±3E-04 5.1E-02±8E-05
p6 1.5E-02±2E-05 1.0E-02±4E-05 1.0E-02±2E-05 1.8E-02±5E-05 1.3E-02±3E-05
p7 1.5E-02±2E-05 1.3E-02±2E-05 9.8E-03±2E-05 2.3E-02±7E-05 1.0E-02±5E-05
p8 4.4E-02±2E-05 4.6E-02±5E-05 5.1E-02±4E-05 3.6E-02±4E-05 5.8E-02±1E-04

0.50

p1 2.2E-04±2E-07 2.5E-04±6E-07 2.0E-04±6E-07 2.1E-04±4E-07 6.9E-05±2E-07
p2 7.6E-02±3E-05 8.5E-02±8E-05 8.0E-02±6E-05 8.8E-02±7E-05 9.7E-02±6E-05
p3 3.7E-05±2E-08 3.4E-05±5E-08 3.6E-05±6E-08 3.6E-05±6E-08 2.5E-05±3E-08
p4 5.0E-02±4E-06 5.1E-02±1E-05 5.0E-02±2E-05 5.1E-02±1E-05 5.3E-02±9E-06
p5 7.5E-02±7E-05 7.5E-02±6E-05 6.8E-02±6E-05 8.4E-02±2E-04 7.7E-02±7E-05
p6 9.4E-03±1E-05 9.0E-03±3E-05 9.7E-03±2E-05 1.1E-02±3E-05 9.9E-03±1E-05
p7 9.3E-03±1E-05 8.2E-03±7E-06 6.8E-03±8E-06 1.0E-02±3E-05 8.5E-03±1E-05
p8 3.7E-02±1E-05 3.8E-02±2E-05 4.0E-02±1E-05 3.5E-02±3E-05 3.8E-02±2E-05

1.00

p1 2.3E-04±2E-07 2.3E-04±4E-07 2.3E-04±6E-07 2.3E-04±3E-07 2.3E-04±6E-07
p2 7.0E-02±3E-05 7.0E-02±7E-05 7.0E-02±5E-05 7.0E-02±5E-05 7.0E-02±6E-05
p3 3.4E-05±1E-08 3.4E-05±4E-08 3.4E-05±5E-08 3.4E-05±5E-08 3.4E-05±2E-08
p4 5.5E-02±5E-06 5.5E-02±1E-05 5.5E-02±1E-05 5.5E-02±1E-05 5.5E-02±5E-06
p5 8.7E-02±7E-05 8.7E-02±8E-05 8.7E-02±6E-05 8.7E-02±3E-04 8.7E-02±6E-05
p6 8.9E-03±9E-06 8.9E-03±2E-05 8.9E-03±1E-05 8.9E-03±3E-05 8.9E-03±1E-05
p7 5.2E-03±6E-06 5.2E-03±4E-06 5.2E-03±4E-06 5.1E-03±1E-05 5.2E-03±4E-06
p8 3.2E-02±9E-06 3.2E-02±2E-05 3.2E-02±8E-06 3.2E-02±3E-05 3.2E-02±1E-05

2.00

p1 2.3E-04±2E-07 2.1E-04±3E-07 2.3E-04±7E-07 2.1E-04±3E-07 3.4E-04±6E-07
p2 6.8E-02±3E-05 6.1E-02±7E-05 7.0E-02±6E-05 5.8E-02±5E-05 6.0E-02±4E-05
p3 3.0E-05±1E-08 3.0E-05±4E-08 2.5E-05±4E-08 2.8E-05±5E-08 3.4E-05±2E-08
p4 5.9E-02±5E-06 5.8E-02±1E-05 6.0E-02±1E-05 5.8E-02±2E-05 5.8E-02±6E-06
p5 9.0E-02±7E-05 8.9E-02±8E-05 9.5E-02±7E-05 9.5E-02±3E-04 9.0E-02±5E-05
p6 1.0E-02±6E-06 9.6E-03±2E-05 9.0E-03±1E-05 8.6E-03±4E-05 9.7E-03±8E-06
p7 2.6E-03±3E-06 2.9E-03±2E-06 2.9E-03±2E-06 2.8E-03±1E-05 2.7E-03±2E-06
p8 2.7E-02±8E-06 2.7E-02±2E-05 2.6E-02±6E-06 2.8E-02±3E-05 2.7E-02±8E-06

4.00

p1 2.3E-04±2E-07 2.0E-04±3E-07 2.3E-04±8E-07 2.1E-04±2E-07 3.8E-04±5E-07
p2 6.6E-02±3E-05 5.7E-02±6E-05 7.0E-02±6E-05 5.5E-02±4E-05 5.7E-02±3E-05
p3 2.9E-05±1E-08 2.8E-05±4E-08 2.3E-05±4E-08 2.6E-05±5E-08 3.3E-05±2E-08
p4 6.1E-02±5E-06 6.0E-02±1E-05 6.2E-02±1E-05 6.0E-02±2E-05 5.9E-02±6E-06
p5 9.4E-02±7E-05 9.1E-02±9E-05 9.7E-02±7E-05 9.9E-02±4E-04 9.6E-02±5E-05
p6 1.1E-02±5E-06 9.7E-03±2E-05 9.1E-03±1E-05 8.6E-03±3E-05 1.0E-02±6E-06
p7 1.4E-03±1E-06 1.6E-03±1E-06 1.5E-03±1E-06 1.5E-03±5E-06 1.5E-03±1E-06
p8 2.5E-02±8E-06 2.5E-02±1E-05 2.4E-02±5E-06 2.6E-02±3E-05 2.5E-02±7E-06

Table B.2: The mean and standard deviation of the least-squares parameter estimates
(Equation (2.32)) used in Case I, where the maximal conductance, is misspecified by
scaling it with λ . These values were obtained from each fitting protocol (d1–d5) for
multiple repeats of synthetically generated data.
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λ Mean interval width (nA) DGP in interval (%) Midpoint RMSE (nA)

0.25 7.4E-02 ± 1.1E-04 3.4E01 ± 2.3E-02 1.6E-01 ± 8.9E-05
0.30 6.6E-02 ± 6.5E-05 3.7E01 ± 5.0E-02 1.4E-01 ± 8.9E-05
0.35 6.1E-02 ± 5.8E-05 4.2E01 ± 4.3E-02 1.3E-01 ± 9.1E-05
0.42 5.6E-02 ± 6.4E-05 5.0E01 ±4.2E-02 1.1E-01 ± 9.2E-05
0.50 4.9E-02 ±7.1E-05 5.1E01 ±5.1E-02 8.5E-02 ± 9.4E-05
0.59 4.0E-02 ± 8.4E-05 5.3E01± 6.7E-02 6.5E-02 ± 9.7E-05
0.71 2.8E-02 ± 9.1E-05 5.5E01 ± 8.8E-02 4.7E-02 ± 9.0E-05
0.84 1.4E-02 ± 9.3E-05 5.5E01 ± 1.7E-01 3.4E-02 ± 8.4E-05
1.00 2.1E-04 ± 3.7E-05 9.4E01 ± 9.2E-00 3.0E-02 ± 6.7E-05
1.19 1.2E-02 ± 8.9E-05 5.6E01 ± 6.9E-01 3.3E-02 ± 5.1E-05
1.41 2.1E-02 ± 8.5E-05 5.7E01 ± 6.7E-01 3.7E-02 ± 5.3E-05
1.68 2.8E-02 ± 8.5E-05 5.7E01 ± 1.7E-00 4.2E-02 ± 6.2E-05
2.00 3.3E-02 ± 8.6E-05 5.6E01 ± 1.7E-00 4.7E-02 ± 6.9E-05
2.38 3.6E-02 ± 8.6E-05 5.5E01 ± 1.4E-00 5.1E-02 ± 7.3E-05
2.83 3.9E-02 ± 8.4E-05 5.4E01 ±1.4E-00 5.4E-02 ± 7.5E-05
3.36 4.1E-02 ± 8.6E-05 5.4E01 ± 1.7E-01 5.7E-02 ± 7.6E-05
4.00 4.3E-02 ± 8.4E-05 5.3E01 ± 1.5E-01 5.9E-02 ± 7.8E-05

Table B.3: A summary of showing how the spread-of-predictions interval (Equa-
tion (3.19)) behaves under Case I. Here we show: the mean width of the interval
(averaged over each observation time); the proportion of observations for which the
underlying DGP (minus noise) lies within the interval; the RMSE between the data
and the midpoint prediction (Equation (3.20)). By considering ten randomly sampled
datasets (each containing a repeat each protocol d1–d5), we show the mean and standard
deviation of these values.

d1 d2 d3 d4 d5

g 1.5E-01±3E-05 1.5E-01±5E-05 1.6E-01±3E-05 1.5E-01±5E-05 1.6E-01±2E-05
p1 1.6E-03±7E-07 1.6E-03±8E-07 1.7E-03±1E-06 1.7E-03±1E-06 2.0E-03±5E-07
p2 7.3E-02±2E-05 7.9E-02±2E-05 3.7E-02±2E-05 8.4E-02±4E-05 5.4E-02±2E-05
p3 1.9E-05±2E-08 2.2E-05±2E-08 4.3E-05±6E-08 2.2E-05±2E-08 3.0E-05±2E-08
p4 5.2E-02±7E-06 5.1E-02±1E-05 4.6E-02±1E-05 5.1E-02±1E-05 4.9E-02±6E-06
p5 1.1E-01±7E-05 9.6E-02±2E-05 9.3E-02±2E-05 1.2E-01±2E-04 9.6E-02±6E-05
p6 2.3E-02±5E-06 2.4E-02±8E-06 2.2E-02±5E-06 2.7E-02±2E-05 2.3E-02±7E-06
p7 8.9E-03±5E-06 7.1E-03±3E-06 7.4E-03±2E-06 8.9E-03±1E-05 6.8E-03±5E-06
p8 2.9E-02±8E-06 3.1E-02±1E-05 3.0E-02±7E-06 2.9E-02±2E-05 3.1E-02±7E-06

Table B.4: The parameter estimates obtained for Case II (Section 3.4.1) when using the
Beattie et al. (2018) Model to fit data generated by the Wang et al. (1997) Model.
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d1 d2 d3 d4 d5

g 1.5E-01±3E-05 1.5E-01±4E-05 1.5E-01±2E-05 1.5E-01±4E-05 1.5E-01±2E-05
kb 3.7E-02±4E-04 3.6E-02±1E-03 3.7E-02±2E-04 3.6E-02±2E-03 3.7E-02±3E-04
k f 2.4E-02±9E-05 2.4E-02±4E-04 2.4E-02±9E-05 2.4E-02±6E-04 2.4E-02±7E-05
q1 9.1E-02±5E-05 9.1E-02±7E-05 9.1E-02±2E-05 9.1E-02±1E-04 9.1E-02±6E-05
q2 2.3E-02±6E-06 2.3E-02±1E-05 2.3E-02±5E-06 2.3E-02±1E-05 2.3E-02±8E-06
q3 2.2E-02±5E-04 2.3E-02±7E-04 2.2E-02±3E-04 2.3E-02±8E-04 2.2E-02±3E-04
q4 1.2E-02±4E-04 1.1E-02±7E-04 1.2E-02±2E-04 1.1E-02±8E-04 1.2E-02±2E-04
q5 1.4E-02±2E-04 1.4E-02±4E-04 1.4E-02±1E-04 1.4E-02±7E-04 1.4E-02±1E-04
q6 3.8E-02±2E-04 3.8E-02±3E-04 3.8E-02±1E-04 3.8E-02±6E-04 3.8E-02±2E-04
q7 6.9E-05±7E-08 6.9E-05±3E-07 6.9E-05±1E-07 6.9E-05±4E-07 6.9E-05±1E-07
q8 4.2E-02±8E-06 4.2E-02±4E-05 4.2E-02±1E-05 4.2E-02±5E-05 4.2E-02±1E-05
q9 6.5E-03±4E-06 6.5E-03±5E-06 6.5E-03±2E-06 6.5E-03±8E-06 6.5E-03±7E-06
q10 3.3E-02±7E-06 3.3E-02±2E-05 3.3E-02±9E-06 3.3E-02±2E-05 3.3E-02±8E-06
q11 4.7E-02±1E-03 4.9E-02±3E-03 4.7E-02±4E-04 4.9E-02±3E-03 4.7E-02±6E-04
q12 6.3E-02±4E-04 6.3E-02±6E-04 6.3E-02±4E-04 6.3E-02±6E-04 6.3E-02±2E-04

Table B.5: The parameter estimates obtained for Case II when using the Wang et al.
(1997) Model to fit synthetic data generated under the same model.

Model Mean interval width (nA) DGP in interval (%) Midpoint RMSE (nA)

Beattie 7.5E-02±9E-05 34±0.07 1.1E-01±8E-05
Wang 7.0E-04±2E-04 87±20 3.0E-02±2E-05

Table B.6: A summary showing how the spread-of-predictions interval (Equation (3.19))
behaves for both the Beattie et al. (2018) Model (a discrepant model) and the Wang
et al. (1997) Model (a correctly specified model). The columns show: the mean width
of the interval (averaged over each observation time); the proportion of observations for
which the underlying DGP (minus noise) lies within the interval; the RMSE between
the data and the midpoint prediction (Equation (3.20)). By considering ten randomly
sampled datasets (each containing a repeat for each protocol d1–d5), we show the mean
and standard deviation of these values.



Appendix C

Effects of capacitance spike removal

In an appendix of Beattie et al. (2018)[B2.1], Beattie et al. explain that small amounts
of data were removed after discontinuities in the command voltage (Vcmd) to minimise
the presence of capacitive currents. It has been suggested that spikes in current arise
from the charging and discharging of the cell membrane (Beattie et al., 2018), which
acts like a capacitor (this capacitive effect is included in the Hodgkin-Huxley model as
shown in Figure 2.5). As these currents are not part of IKr, we seek to minimise their
presence, and continue using our simple, ideal patch-clamp Markov model. Note that in
the following chapter, we model these effects explicitly.

If more data is removed, the variability of our parameter estimates will increase.
We chose to remove R = 5ms of data as a compromise between minimising model
discrepancy, and maximising the information provided by our experimental designs. In
Figure C.1, we use synthetic data to show how different values of R affect the predictive
accuracy of our models. In Figures C.2 and C.3, we can see how increasing R causes
an increase in parameter uncertainty under our idea patch-clamp assumptions (see
Chapters 4 and 5). When choosing how much data to remove after each discontinuity,
that is, choosing the removal duration, R, we aim to strike a balance between the
uncertainty of our parameter estimates and the bias introduced by including data polluted
by capacitive currents.

In Beattie et al. (2018), the Beattie et al. (2018) model is presented as both as the
product of two Hodgkin-Huxley style gating variables, and as a four-state Markov
model. Using the former representation, we can see that for constant, Vm, the behaviour
of the model is governed by two exponentials,

a(t) = a0 +(a∞(Vm)−a0)exp
{

t
τa(Vm)

}
(C.1)

and r(t) = r0 +(r∞(Vm)− r0)exp
{

t
τr(Vm)

}
(C.2)
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Figure C.1: The removal of capacitive spikes under the staircase protocol. Panel a: the
highlighted regions show R = 80ms of data after each discontinuity in the command
voltage. Panel b: a synthetic IKr recording (grey) is generated by adding IID Gaussian
noise to the model output. Model output with R = 80ms of data removed after each
spike is shown in blue.
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Figure C.2: Increasing the time removed after each voltage discontinuity, R, impacts the
accuracy of our p5 and p6 parameter estimates, which determine the rate of inactivation
in the Beattie et al. (2018) Model. Here, we see that parameter uncertainty increases
greatly as more data is removed, that is, as R increases. Panel a shows only the 95%
confidence region resulting from no data removal (that is, R = 0). Panel b shows similar
confidence regions for various values of R.
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Figure C.3: The size of our parameter estimates’ confidence regions grows as R in-
creases. Approximate 95% confidence regions are shown using a linear approximation.
Marginal confidence regions are shown for model parameters p1 and p2, which de-
termine the rate of activation (k2 = p3 exp{−p4Vm}). Here, we see little increase in
parameter uncertainty, even when R ≥ 20ms. Panel a shows only the 95% confidence
region resulting from no data removal (that is, R = 0). Panel b shows similar confidence
regions for various values of R.



205

where a0 and h0 are our initial conditions, and where a∞(Vm) and r∞(Vm), τa(Vm) and
τr(Vm) are voltage dependent functions arising from our model.

In the Beattie et al. (2018) model, our transition rates are each of the form

k = Aexp{±bVm} (C.3)

for A,b ∈ R with A > 0 and b ̸= 0. In fact, we have (Clerx et al., 2019a),

τa =
1

k1 + k2
, (C.4)

τr =
1

k3 + k4
, (C.5)

a∞ =
k1

k1 + k2
, (C.6)

and r∞ =
k4

k3 + k4
. (C.7)

In practice, we find that τa (that is, the timescale relating to the C→O and O→C
transitions) is much greater than the τr which describes the timescale of the inactivation

and recovery-from-inactivation processes (the O→I and I→O transitions, respectively).
This is illustrated in Figure C.4, where these variables, τa and τr, are shown for a range
of voltages using the Beattie et al. (2018) model with cell #5’s parameters.

If we were to only observe the model at its steady state, there would be insufficient
data to identify our parameters. Therefore, we may expect that our estimates of p5, p6, p7

and p8 (which correspond to the inactivation/recovery-from-inactivation process), to
be more affected by increasing the removal time, R. This is shown to be the case in
Figures C.2 and C.3 where we show the uncertainty of our parameter estimates. From
these figures, it seems increasing R has a much more noticeable effect on parameters
pertaining r rather than a, likely because of the vast differences in the timescales that the
model’s two processes operate over, as shown in Figure C.4. This increase in parameter
estimate uncertainty is also reflected in the A- and D-optimality measures (introduced
in Section 2.3), as shown in Figure C.5. Here, the sensitivities matrix is normalised as
described in Fink and Noble (2009), that is, A- and D-optimality statistics are computed
using S′ where, S′i, j = θ jSi, j for 1 ≤ i ≤ n and 1 ≤ j ≤ Nparameters where n is the number
of observations and Nparameters is the number of model parameters.

From these results, we can see that, under the ideal patch-clamp assumption, de-
creasing R increases the accuracy of our parameter estimates. We choose retain Beattie
et al.’s choice of R = 5ms, as this avoids excessive accuracy/information loss, yet is
large enough that the impact of capacitive currents is greatly reduced. The choice of
R = 5ms is a somewhat subjective choice, and could be reevaluated for future protocols,
models and parameter sets.
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Figure C.4: Characteristic timescales of the Beattie et al. (2018) model across a physi-
ologically relevant range of voltages. These values were computed using the Cell #5
parameter set as presented in Beattie et al. (2018). Here, τ1 is the timescale correspond-
ing to the slower, activation/deactivation process, and τ2 corresponds to the much faster
inactivation/recovery-from-inactivation process.
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Figure C.5: A- and D-optimality utility functions computed for the Beattie et al. (2018)
Model under the application of the staircase protocol, where increasingly more data
is removed after each discontinuity in voltage. The increase in these two quantities
corresponds to an increase in uncertainty in estimates of model parameters. Here, R
quantifies the duration during which observations are discarded after each discontinuity
in Vcmd.



Appendix D

Model details

Here, we provide further mathematical details of the IKr models used in Chapter 4, and
later in Chapter 5—those shown in Figure 4.17. Two of these models were already
used in Chapter 3, and described in Appendix B.1. The remaining two models are the
three-state, Closed-Open-Inactive (C-O-I) model, and the Kemp et al. (2021) model.
However, unlike in Chapter 3, there is no synthetic data generation, and so we do not
require any reference parameter sets prior to model fitting. Accordingly, we only list
the mathematical equations that arise from these two model structures.

All the model structures explored in chapters 3, 4 and 5 may be expressed using
a transition-rate matrix Q(Vm), the transpose of which appears in the governing ODE
(Equation (2.18)). Similarly, these models all utilise similar observation functions (as
in Equation (3.28)). Here the maximal conductance, g, appears as an additional model
parameter that we estimate during model fitting. Both of these models were implemented
using a graph-based, symbolic manipulation approach using the Markov-builder package
(see https://github.com/CardiacModelling/markov-builder).

D.1 Closed-Open-Inactive model

This model consists of three states, the closed state (C), the open state (O), and the
inactive state (I). Using this ordering of states, the voltage-dependent transition-rate
matrix is,

Q(Vm) =



−am am 0
bm −ah −bm ah

0 bh −bh


 , (D.1)
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where am,ah,bm and bh are voltage-dependent transition rates satisfying,

am =p1 exp{p2Vm} , (D.2)

bm =p3 exp{−p4Vm} (D.3)

ah =p5 exp{p2Vm} , (D.4)

and,bh =p7 exp{−p8Vm} , (D.5)

and pi > 0 for each model parameter, 1≤ i≤ 8. As with all of our other model structures,
the maximal conductance, g, is an additional model parameter which does not appear in
Q.

D.2 Kemp model

The Kemp et al. (2021) Model is a six-state model with transition-rate matrix, with
twelve transition-rate parameters, p1, . . . , p12. It is similar to the (Beattie et al., 2018)
model in that it consists of two independent processes—an activation/deactivation

process and an inactivation/recovery-from-inactivation process. The latter, as in the
Beattie et al. (2018) Model, is governed by two voltage-dependent transition rates,

k3 = p5 exp{p6Vm} , (D.6)

and k4 = p7 exp{−p8Vm} (D.7)

describing the rate of inactivation and recovery from inactivation, respectively. However,
where activation and deactivation are described by two transition rates, k1 and k2, in
the Beattie et al. (2018) Model, two additional transition rates appear in the Kemp et al.
(2021) Model,

k1 = p1 exp{p2Vm} , (D.8)

k2 = p3 exp{−p4Vm} , (D.9)

k5 = p9 exp{p10Vm} , (D.10)

and, (D.11)

k6 = p11exp{−p12Vm} . (D.12)
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Each of these transition rates appears in the model’s transition-rate matrix,

Q(Vm)=




−k3 − k2 k3 k2 0 0 0
k4 −k2 − k4 0 k2 0 0
k1 0 −k1 − k3 − k6 k3 k6 0
0 k1 k4 −k1 − k4 − k6 0 k6

0 0 k5 0 k3 − k5 k3

0 0 0 k5 k4 −k4 − k5




.

(D.13)
where the rows and columns correspond to, the open state (O) the inactive state (I), the
closed state (C), the inactive-closed state (IC), the second closed state (C2) and the
second inactive-closed state (IC2), in that order.



Appendix E

Further statistical analysis of
variability in parameter estimates

In Chapters 4 and 5, we use linear statistical models to characterise our collections of
parameter estimates. In particular, we seek to quantify the degree of well and protocol
dependence in our parameter-estimate vectors. This quantification is achieved through
computing the log-likelihood difference between a model which includes well-and
protocol-dependent effects and a simplified model (that is, one that omits either well- or
protocol-dependent effects).

Under the assumption of Gaussian errors, our linear statistical models (including
well- and/or protocol-dependent effects) are a family of nested models, as described
in Chapter 4 (Figure 4.30). Likelihood ratio tests are commonly used for model
selection between such families of models (Rencher and Schaalje, 2008), and concern
the relative maximal likelihoods under each model. Under the hypothesis that the
simpler model is true and there are sufficient observations, the distribution of the
likelihood ratio is approximately a chi-squared distribution, where the degrees of
freedom in the distribution is equal to the number of additional parameters included in
the more complex model. Therefore, the LLD-W and LLD-D statistics discussed in
Chapters 4 and 5 quantify the significance of well- and protocol-dependent effects in
our parameter estimates.

However, this approach relies on the validity of the full linear model (that is, Mw,d

as introduced in Chapter 4). This model is built upon the assumption of Gaussian
random errors. Quantile-quantile (QQ) plots are commonly used to assess the validity
of this assumption. Here, the quantiles of residuals found between the model and data
are plotted against their corresponding expected values (under the assumption that the
model is correct). An example of such a plot is presented in Figure E.1 for the Beattie
et al. (2018) Model (Case III). Here, under a perfectly correct model, we expect the
residuals to approximately lie along the line y = x, where the sample quantiles largely
agree with the theoretical quantiles obtained under our model assumptions. The points
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in Figure E.1 show some departure from this line, where the most extreme residuals are
more common in the sample distribution than the theoretical distribution, indicating that
the sample distribution is heavy-tailed. Whilst this figure shows that the distribution of
residuals may have heavy tails, it appears that the assumption of Gaussian distributed
residuals is a reasonable one to make.

Such heavy tails may be due to certain interactions between well- and protocol-
dependent effects which are not accounted for in the model, leading to large errors
between the model and the data for particular pairs of wells and protocols. It is also
possible that such large residuals could be caused by data pollution affecting our
parameter estimates. Such an example seems to be shown in the main text (Figure 4.31)
for the data obtained from the second repeat of d1 in Well B20. Additionally, the
symmetry of this plot about the line y = x shows that the distribution of the residuals
is mostly symmetrical (that is, not skewed), as we would expect if the residuals were
normally distributed.

Similar QQ plots are also shown for the C-O-I, Kemp et al. (2021) and Wang
et al. (1997) models (Case III) in Figures E.2, E.3 and E.4, respectively. Furthermore,
Figures E.5, E.6, E.7 and E.8 show similar plots, for the Beattie et al. (2018), C-O-
I, Kemp et al. (2021) and Wang et al. (1997) models (respectively) under Case V
(that is, with artefact effects). The QQ plots involving the Wang model (Figures E.4
and E.8) show heavier tails in the distribution of residuals compared to those of the
other models. Also, for the Wang et al. (1997) Model under Case V (with artefacts)
the distribution of residuals for some parameters appear multimodal (see Figure E.8).
However, generally speaking, each figure shows that the residuals are approximately
normally distributed. Overall, these figures support the validity of the linear statistical
models used in Chapters 4 and 5.
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Figure E.1: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Beattie et al. (2018) Model (Case III). The quantiles of
the residuals found in the data are compared against theoretical quantiles under the
assumption that they are normally distributed (with zero mean and some fitted variance).
When the model is appropriate then the plotted points will approximately lie on the
grey, dashed line (y = x).
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Figure E.2: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the C-O-I Model (Case III). The quantiles of the residuals
found in the data are compared against theoretical quantiles under the assumption that
they are normally distributed (with zero mean and some fitted variance). When the
model is appropriate, the plotted points will approximately lie on the grey, dashed line
(y = x).
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Figure E.3: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Kemp et al. (2021) Model (Case III). The quantiles of
the residuals found in the data are compared against theoretical quantiles under the
assumption that they are normally distributed (with zero mean and some fitted variance).
When the model is appropriate, the plotted points will approximately lie on the grey,
dashed line (y = x).
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Figure E.4: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Wang et al. (1997) Model (Case III). The quantiles of
the residuals found in the data are compared against theoretical quantiles under the
assumption that they are normally distributed (with zero mean and some fitted variance).
When the model is appropriate, the plotted points will approximately lie on the grey,
dashed line (y = x).
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Figure E.5: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Beattie et al. (2018) Model (Case V, with artefacts). The
quantiles of the residuals found in the data are compared against theoretical quantiles
under the assumption that they are normally distributed (with zero mean and some fitted
variance). When the model is appropriate, the plotted points will approximately lie on
the grey, dashed line (y = x).
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Figure E.6: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the C-O-I Model (Case V, with artefacts). The quantiles of
the residuals found in the data are compared against theoretical quantiles under the
assumption that they are normally distributed (with zero mean and some fitted variance).
When the model is appropriate, the plotted points will approximately lie on the grey,
dashed line (y = x).
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Figure E.7: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Kemp et al. (2021) Model (Case V, with artefacts). The
quantiles of the residuals found in the data are compared against theoretical quantiles
under the assumption that they are normally distributed (with zero mean and some
fitted variance). When the model is appropriate, the plotted points will approximately
lie on the grey, dashed line (y = x). The relative flatness of some parameters (such
as q3, q5 and q6) may suggest a degree of multimodality in the distribution residuals.
Whilst generally reasonable, the assumption of normally-distributed residuals may be
somewhat less suitable for these parameters.
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Figure E.8: A quantile-quantile plot for the full linear statistical model fitted to parameter
estimates obtained under the Wang et al. (1997) Model (Case V, with artefacts). The
quantiles of the residuals found in the data are compared against theoretical quantiles
under the assumption that they are normally distributed (with zero mean and some fitted
variance). When the model is appropriate then the plotted points will approximately lie
on the grey, dashed line (y = x) and where we would expect all data to lie provided the
model is correct and there is a large number of data.



Appendix F

Dynamics of the artefact model

As discussed in Chapter 5, when our IKr models are combined with the artefact model,
we obtain a nonlinear system of ODEs where,

dx
dt

= Q(Vm)
⊤ , (F.1)

and,
dVm

dt
=

Vcmd +Voff −Vm

CmRseries
− Iout

Cm
, (F.2)

and, as under the ideal-patch assumptions,

dx
dt

= Q(Vm)
⊤x , (F.3)

where

Iout = IL + IKr , (F.4)

and IL = gL(Vm −EL), and IKr = gxO(Vm −EL).
In this section, we first consider the behaviour of this system when xO = 0 (that

is, when there is no IKr present). This is assumed to be the case when fitting our
leak-model parameters, and so, this exercise provides some insight into the behaviour of
the model under the leak ramp. Similarly, by assuming a fixed xO, we may investigate
the behaviour of the artefact model under the application of the reversal ramp. Note
here, that under the assumption that xO is fixed, IKr is identical to a leak current, and so,
we need not include these terms explicitly.

We then briefly show how the properties of Markov models described in Appendix A
can be extended to the artefact model. In particular, we show that—provided realistic
Artefact Model parameters—this system has a unique steady state. This is important for
our multiprotocol approach because it allows us to set the initial conditions for each
protocol—we simply initialise our ODE model with the system’s steady state.
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F.1 Dynamics under ramps

During the leak ramp, we assume that g = 0 and so,

Iout = IL = gL(Vm −EL) . (F.5)

Hence,

dVm

dt
=

Vcmd +Voff −Vm

RseriesCm
− Iout

Cm
(F.6)

=
V0 + kt +Voff −Vm −RseriesIout

RseriesCm
(F.7)

=
V0 + kt +Voff −Vm −RseriesgL(Vm −EL)

RseriesCm
(F.8)

=
V0 +Voff −Rseries −AVm + kt +RseriesgLEL

τ
(F.9)

where τ = RseriesCm, and A = 1+gLRseries. Equation (F.9) is a linear, first-order non-
homogenous ODE with solution,

Vm(t) =−V0 +Voff −gLRseriesEL + kτ

A
+

kt
A2 +Bexp

{
−A

τ
t
}
, (F.10)

for some constant B ∈ R, which we set using the initial condition, that is,

Vm(0) =V0 +Voff . (F.11)

Consider the constant A. Typically, (under our QC criteria in Chapter 4, for example)

we have Rseal =
1
gL

> 0.5GΩ and Rseries < 25MΩ in which case,

Rseries ≪
1

gL + ḡxO
(F.12)

and so,
A = 1+Rseries(gL + xOḡ)≈ 1. (F.13)

Hence, the exponential term in Equation (F.10) decays quickly as our upper bound
(according to QC.1) for this timescale of decay is approximately

τ = RsealCm < 25MΩ×100pF = 2.5ms . (F.14)

Comparatively, our leak ramp and reversal ramps much longer than this (400ms and
100ms in length, respectively). Hence, once some has elapsed after the beginning of
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the ramped segment is large, (t ≫ 2.5ms) this term becomes small, and we have,

Vm(t) =−kτ

A2 +
V0 +Voff −BRseries

A
+ kt , (F.15)

which is simply the equation of a straight line, the gradient of which depends only
on the gradient of the command voltage. We also obtain the discrepancy between the
transmembrane potential and command voltage induced by artefact effects,

Vm(t)−Vcmd(t) =Vm(t)−V0 − kt (F.16)

≈−kτ

A2 +
V0 +Voff −gLELRseries

A
−V0 − kt (F.17)

≈−kτ +Voff −gLELRseries (F.18)

≈−kτ +Voff , (F.19)

since gLRseries is small and A ≈ 1. Here, for sufficiently large t, a constant-offset term
becomes a reasonable approximation of Vm(t)−Vcmd(t). The size of this offset is
influenced by the gradient of the command voltage, k, the series resistance (Rseries)
and membrane capacitance (Cm). For the protocols discussed in Chapters 4 and 5,
the leak ramp has a gradient of k = 0.1Vs−1, and the reversal ramp has a gradient of
k = 0.4Vs−1. Additionally, the largest value of τ allowed by our QC criteria (QC1) is,

τ =CmRseries < 100pF×25MΩ = 2.5ms.

Thus, the −kτ term is rather small.
We expect that this discrepancy between Vm and Vcmd has a material impact on the

inference of our leak-model parameters, and on the observed reversal potentials, Epost

and Ebefore as introduced in Sections 4.3 and 5.4, respectively.

F.2 Steady states of the artefact model

First, we reform our artefact model’s system of ODEs such that each state variable is

nondimensional. To do this, let v=
Vm −Vmin

Vmax −Vmin
where [Vmin,Vmax] is a range of voltages

that Vcmd is allowed to take during the experiment. For the experiments described in
Chapters 4 and 5, we have Vmin = −120mV and Vmax = +60mV). Note that it may
be possible for the transmembrane potential to lie slightly outside of this range, that
is, we may have Vm ̸∈ [Vmin,Vmax] and so v < 0 or v > 1. Then, we may formulate our
governing equation in terms of v rather than Vm such that our governing equations are,

dx
dt

= R⊤(v)x , (F.20)
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and,

dv
dt

=
1

Vmax −Vmin

dVm

dt
(F.21)

=
1

Vmax −Vmin

Vcmd +Voff −V
RseriesCm

− Iout

Cm
(F.22)

dv
dt

=
vcmd + voff − v

RseriesCm
− iout

Cm
, (F.23)

where vcmd =
Vcmd

Vmax−Vmin
, voff =

Voff
Vmax−Vmin

, iout =
Iout

Vmax−Vmin
, and R(v) = Q(Vm).

In Appendix A, we discuss the steady states of Markov models when transmembrane
potential is held constant. Equivalently, using these results, we may write for any fixed
v ∈ R, the system,

du
dt

= R⊤u , (F.24)

has a unique, stable, global equilibrium point. We denote the open occupancy at this
equilibrium point by u∞

O(v)—that is, when v is fixed we have, uO(t)→ u∞
O(v).

Now, if the artefact model to be at equilibrium, we must have that each of the
system’s state variables are at equilibrium (both our vector state occupancies, x, and the
transmembrane potential). That is,

du
dt

= 0 , (F.25)

and,
dv
dt

= 0 . (F.26)

The former condition implies,

vcmd + voff − v−Rseriesiout = 0 , (F.27)

and so,

0 =−v− vcmd + voff +Rseriesiout (F.28)

=−v+ vcmd + voff −Rseries(gu(∞)
O (v)(v− eKr)+gL(v− eL)) (F.29)

= vcmd + voff − v(1+Rseriesgu(∞)
O (v)+RseriesgL)+ eKrRseriesgu(∞)

O (vm)+ eLRseriesgL) .

(F.30)

Differentiation of (F.30) with respect to v yields,

h(v) :=−1−Rseriesgu(∞)
O (v)−RseriesgL − vRseriesg

du(∞)
O (v)
dv

, (F.31)
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and provided this quantity is negative for all v there will be at most one equilibrium point.
Note that we typically have Rseriesg,RseriesgL ≪ 1 and so, in order for two equilibrium

points to exist, we would either Rseries, gL, g or du(∞)
O (v)
dv to be uncharacteristically large

(Figure F.1 shows typical values for x(∞)
O (Vm) = u(∞)

O (v) across a range of voltages).

Otherwise, for realistic parameter values (that is, where Rseriesg, RseriesgL,
du(∞)

O
dv ≪ 1),

we have h(v)≈−1 for all v, in which case we expect there to be exactly one equilibrium
point.
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Figure F.1: The steady-state open occupancy of the Beattie et al. (2018) model (using
Cell #5 parameters) under a range of transmembrane potentials.
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