
Modelling Polarisation of
Materials with Applications in

Self-Assembly

Connor Williamson

Student Number: 14276386

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

Supervised by Prof. Elena Besley

School of Chemistry
University of Nottingham

September 2024





Abstract

Theoretical descriptions of charged induced polarisation and dispersion forces

between materials are investigated, extended or applied to study a range of

natural and novel environments. Initially, a mathematical framework is estab-

lished to describe many-body interactions between charged dielectric particles.

This framework is then extended to include the effects of inhomogeneous sur-

face charge distributions and externally applied electric fields. This extension

is rigorously tested against classical results and then further justified for N

particles by considering a novel experimentally realised system.

The framework is then applied to study the effect of surface charge density and

polarisation on the interactions between like-charged particles in noctilucent

clouds. Like-charge attraction is shown to promote nucleation of such particles

given the possible velocities at the temperature of these environments. Vol-

canic ash is then investigated in a similar context at the various temperatures

it would experience throughout an eruption. Aggregation of volcanic ash due

to non-thermal perturbation is also investigated by considering the collisional

cross sections of the clouds constituents via particle dynamics. Particle dy-

namics is then utilised to study the aggregation driven inefficiencies of dry

powder inhalers, suggesting a possible method to alleviate this.

The electronic interaction of neutral materials at close separation is then inves-

tigated in the context of the Casimir force. After an initial bench-marking of a

convenient mathematical formalism, new systems in which quantum levitation

can be realised are predicted via consideration of the Casimir equilibrium.
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Chapter 1

Introduction

Of the four fundamental forces in nature, (electromagnetic, gravitational, strong,

weak) the electromagnetic force was understood in its entirety first, with James

Clark Maxwell defining the electromagnetic interaction conclusively in 1862.

[1–4] As Maxwell’s equations define all electromagnetic interactions, only two

of his four equations are required to describe the electro static interaction of

charged particles interacting through the electric field. Whilst other phenom-

ena could occur as a consequence of electrostatic interactions, the treatment

of which could require other examples of Maxwell’s equations to describe, in

this work only the electrostatic interaction will often be considered.1

Two-hundred and thirty-eight years prior to this work, Coulomb first published

[5] his name-bearing law stating that the force acting between two infinitesi-

mally small charged particles (point charges) is proportional to the product of

their charges (q1q2), and inversely proportional to the square of their separation

(r), such that

F =
q1q2

4πϵ0r2
(1.1)

where the prefactors 1/4πϵ0 are often substituted asK such thatK = 8.987551792×

109 N m2 C−2, as ϵ0 = 8.85418782 C2 s2/kg m3. The 1/4π presents itself in

1polarisation due to the presence of external fields and the interaction of charged particles
will only consider Gauss’s law, whilst dispersion forces require a more general approach.

1
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Coulomb’s law due to the radial nature of the electric field emanating from a

point charge, whilst ϵ0 is the permittivity of free space and defines the strength

of all electromagnetic interactions in the universe; the permittivity of free space

can be understood to control or scale the response of the electric field given a

charge density at any point in space. Coulomb’s law also predicts whether two

point charges will attract or repel, stating that if two charges are of the same

sign they will repel (undergo a positive force), whereas if they are of opposite

charge they will attract (undergo a negative force). [6, 7]

Equation 1.1 can be written in a more formal mathematical setting such that

F is a vector (F1) of the force acting on a particle (particle 1) due to the

presence of another particle (particle 2); each particle is a point charge with

charges q1 and q2 respectively. At some separation of particles 1 and 2 (r12),

where r12 = r1−r2, the Coulomb’s force acting on each i’th particle (Fi) can

be written as

F1 =
q1q2
4πϵ0

r̂12
|r12|2

, F2 =
q1q2
4πϵ0

r̂21
|r21|2

= −F1 (1.2)

where r̂12 is the unit vector defining the distance from charge 1 to charge 2, and

similarly for r̂21 which occasionally may appear as r such that |r12| = |r21| = r.

Equation 1.2 can be seen to satisfy Newton’s third law of motion such that each

particle undergoes a force of the same magnitude but of opposing direction to

the particle causing the force.

The interaction of the two point charges is through the electric field, such

that they act as either a source (qi > 0) or a sink (qi < 0) of electric field

lines, the order of which is historic and not of scientific implication.[7] When

considering the electric field within a finite space, Gauss’s law can be applied

to determine the nature of the field through a closed surface. As derived by

Lagrange [8], Gauss’s law [9, 10] states that the flux of the electric field through

an arbitrary closed surface is proportional to the electric charge enclosed by

the surface, irrespective of how that charge is distributed. Mathematically,



3

this is stated as

{

S

E · dA =
1

ϵ0

y

V

ρ dV (1.3)

where ρ is the density of charges contained within a volume V of surface area

A, enclosed by the surface S through which there is a flux of the electric field

E. In the case of a point charge, the integral on the right-hand side (RHS) of

equation 1.3 can be evaluated as the charge of the point charge (q), which for

simplicity is defined as being at the centre of the spherically symmetric S, of

radius r such that the field is uniform on the surface. In this case, it can be

seen that as E and A are always parallel,

{

S

E · dA = E 4πr2 =
q

ϵ0
=⇒ E =

q

4πϵ0r2
(1.4)

where Er̂ = E and r̂ is the unit vector of the radius. This is true in the

case when E is uniform across the surface, such as when a point charge is in

the centre of the volume, as can often be chosen for ease. Given the Lorentz

equation[6, 7, 11]

F = q(E+ v×B) (1.5)

in the absence of any magnetic field B, and assuming 0 velocity (v), it can

be seen that Coulomb’s law is reproduced given the electric field derived in

equation 1.4.

Coulomb’s law holds true not only in the case of two point charges interacting

but also in the case of many point charges interacting. The evaluation of a

force acting on a particle i due to the presence of M other particles, can be

achieved by applying the principle of superposition (such that the sum of the

individual actions is equal to the overall action) [6] to either Coulomb’s force

law (equation 1.2),
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Fi =
1

4πϵ0

M∑
j ̸=i

qiqj
|rij|2

r̂ij, (1.6)

or via the summation of the electric field each point charge in the system

produces at the location of particle i, but not including particle i, where one

can use equations 1.4 and 1.5 with the principle of superposition to show that

if

E(ri) =
1

4πϵ0

M∑
j ̸=i

qj
|rij|2

=⇒ Fi =
qi

4πϵ0

M∑
j ̸=i

qj
|rij|2

r̂ij (1.7)

Particle i is excluded in both cases as a particle does not undergo a force due

to the presence of itself in the absence of external perturbation.

As a point charge would undergo a force due to its position within an electric

field, the conservation of energy states that at that point in space there exists

some potential energy associated with the point charge which it then loses (an

amount of) upon undergoing the force. To this end, we define a scalar field

ϕ(r, t) as the electric potential, such that

E = −∇ϕ, (1.8)

which is a function only of its position in space for the purpose of this work.

This is also consistent with the Maxwell-Faraday [6, 7, 12] equation of Maxwell’s

equations, such that

∇× E+
dB

dt
= 0 (1.9)

which in the absence of a time dependent magnetic field (as assumed through-

out the electrostatics discussion) becomes ∇× (−∇ϕ) which is zero if ϕ is any

continuously twice differentiable function such that ϕ ∈ C(R3). In the case of

a point charge, given equation 1.4 and 1.8, it can be seen the electric potential

due to a point charge q can be evaluated as
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ϕ = −
∫
C

E · dri = − q

4πϵ0

∫
C

1

r2
dr =

q

4πϵ0r
(1.10)

where r is the defined as the distance from the point charge. Physically, in the

case of a point charge q, ϕ can be interpreted as the amount of work required

to bring that point charge from infinity (where no such forces are present) to

its current position, and also what can be released without a restoring force

present.

1.1 Polarisation

Finite sized (charged) particles, considered as enclosed boundaries of a finite

volume, in the absence of an electric field, may possess a different surface

charge upon the introduction of an electric field, unlike the point charge, which

emanates the same electric field, regardless of external perturbation. Given

such a particle in an external electric field, the charges inside the boundary

may re-orientate or redistribute to a new equilibrium configuration relative to

the external field but constrained by either the boundary of the particle or the

molecular forces bounding the molecules within the material.

Upon the application of an electrical field, there exist two types of materials at

any given temperature: conductors and insulators (also known as dielectrics).

If the internal charges of the material inside the boundary undergo transla-

tional motion in the direction of the field such that a current is produced,

the material is a conductor. If no current is produced upon application of an

electric field then the material is considered a dielectric.

Although no current is produced via the application of an electric field to a

dielectric, the internal charges can still re-orientate themselves relative to the

applied field. This can be broken down into four main types of redistribution:

electronic, orientational, ionic and interfacial, which are illustrated in figure

1.1a, b, c and d, respectively. Electronic polarisation occurs when a positive
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Figure 1.1: Illustrations of different mechanisms of polarisation in a dielectric
caused by the interaction with an external electric field, of a direction as shown by
the dotted arrow; electronic polarisation (a), orientational polarisation (b), ionic
polarisation (c) and interface polarisation (d). The blue particles represent the neg-
ative substituent, where as the red represents the positive substituent.

atomic nucleus moves in the direction of an applied electric field, but in the

opposite direction to the negative electron cloud usually surrounding it, similar

to that of ionic polarisation in which positive and negative crystal constituents

move in opposing directions to cause a different separation, and hence altering

its surface charge distribution. Orientational polarisation occurs when molec-

ular multipoles (often assumed to be dipoles) rotate to align with the electric

field but do not undergo translation motion, and interfacial polarisation occurs

due to the presence of a boundary within a material.

Such reorientation of multiple charges within a material causes the outside of

the particle to appear charged with regard to the electric field they produce.

The charge that appears to reside on the surface under such conditions is known

as the bound charge due to its origin. This effect is illustrated in figure 1.1 such

that the systems illustrated in a, b and c will adopt a dipolar surface charge in

the presence of an electrical field, whereas system d, a particle composed of two

different dielectric materials with an interface between them, would appear as

mostly negatively charged due to opposing reorientations with the field either

side of the boundary. This effect is illustrated in full for the case of electronic
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Figure 1.2: An illustration of an otherwise neutral material (a), gaining a surface
charge, of elements ∂q, due to the electronic polarisation occurring inside the dielec-
tric material due to an electric field in the direction defined by the arrow E (b).

polarisation in figure 1.2.

As the charges within finite-sized dielectric particles are locally constrained,

the resultant surface charge of each particle in the system must be determined

in the presence of an external perturbation in order to calculate the force acting

on each particle in the system. Physically, the redistribution of the charge is

instantaneous in comparison to the movement of physical boundaries or the

applied electric field, which is an assumption made throughout this work2.

The ability of an atom to gain a dipole, as illustrated in figure 1.1a and figure

1.2 is dependent on the polarisability, α, of the atom. The polarisability of

an isotropic medium can be defined as the tendency of a charge density to

be distorted from its natural shape due to the presence of an electric field

and is further defined by the relationship between the dipole moment per unit

volume, P, induced by an electric field E as

P = αE (1.11)

where P is the vector describing the dipole moment for a given unit volume in

a material.

As discussed earlier, the permittivity of free space controls the response of the

electric field due to a charge, and as such one can write equation 1.11 as

2To remove the effects of a potential delay in the polarisation of two closely interacting
particles moving past one another at some velocity.
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P = ϵ0χeE (1.12)

where χe is the electric susceptibility of a given material. χe is a dimensionless

quantity that acts as a constant of proportionality to indicate the degree of

change between dipolar density per unit volume of a material given a permit-

tivity of free space (a vacuum). More commonly, this is expressed in terms of

the dielectric constant, κ, of the particle which is defined as

κ = χe + 1. (1.13)

The dielectric constant of a material is inherently a bulk property that is

defined as the ratio of the electric permittivity inside a material and the per-

mittivity of free space (ϵ/ϵ0). The field of a particle of a given free charge

density (so that the particle is charged) can be described by the dielectric

displacement vector D defined as

D = ϵ0E+P (1.14)

thus Gauss’s law states in each case

∇· E =
ρ

ϵ0
, ∇· P = −ρb, ∇· D = ρf (1.15)

and given equation 1.12 the dielectric displacement field can also be defined as

D = ϵ0E+P = ϵ0(1 + χe)E = ϵ0κE (1.16)

where ρf is the free charge density describing the formal charge of the particle,

and ρb is the bound charge describing the polarisation of the material due

to external perturbation. The dielectric displacement field lines always begin

and end at the particle’s surface, and only exist for a charged particle given

equation 1.15.
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1.2 Interacting Particles

Now that a formalism is in place to describe the effects an electric field has on

a particle, one can begin to evaluate the effect one charged particle will have on

another particle, plane or general dielectric object. Two methods are available

to us to describe such interactions: image charges and multipolar expansions.

The former will be considered initially in the following subsection whilst the

latter will follow and describe the use of associated Legendre polynomials to

describe the surface charge, which will prove essential to the entirety of the

following works.

It is clear from equation 1.15, and the Lorentz equation, there is a distinct

relationship between the force a polarised particle undergoes in an electric

field and the volume charge density ρ that includes the effects of polarisation,

ρb. Utilising Gauss’s law once again, as in equation 1.15, it can be seen that if

ϕ(r) is known, it is possible to calculate the force on a particle in the system.

This follows as

E = −∇ϕ, ρ

ϵ0
= ∇· E = ∇·(−∇ϕ) = −∇2ϕ (1.17)

showing that charge density is a solution to the Poisson equation of the form

−∇2ϕ =
ρ

ϵ0
(1.18)

It then follows that the potential at the boundary of two materials must be

known to calculate the charge density. As both the bound and free charges

reside on the surface of particles, the two-dimensional form is often favoured,

which is of the form

−∇2ϕ =
σ

ϵ0
(1.19)

where σ is the surface charge density. Whilst there exists an infinite number of

solutions to the Poisson equation, if the boundary of two materials follows a set
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of boundary conditions defining the potential on the surface of the boundary,

S, then a unique solution should exist.

1.2.1 Image Charges: The Interactions of Boundaries

with Charge

An image charge is a non-physical mathematical tool to evaluate the effect a

charged particle in a medium has on a nearby planar boundary between two

materials from within one of the media. This particular method, proposed by

Lord Kelvin [13], is used to describe systems of point charges above infinite,

smooth boundaries of materials.

It is clear from equations 1.18 and 1.19 that boundary conditions for ϕ are re-

quired to find the unique solution describing the interaction of a boundary with

an electric field. To this end, one can employ physical boundary conditions

dependent on the system being studied.[14]

Figure 1.3: An illustration of a point charge above a conducting surface with elec-
tric field lines emanating from the point charge and terminating at: the conducting
surface (left), the image charge (right). The vectors utilised in integration’s through-
out this chapter are illustrated on the boundary between the plane and the conductor.

Consider the case of a point charge above (z 0) a grounded, perfectly conduct-

ing material, as illustrated in figure 1.3 such that, the z-direction is defined as

perpendicular to the plane, and the point charge has coordinates r1 = (0, 0, d),
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where d is the plane-particle separation. The known behaviour of the con-

ductor and the point charge can be applied to provide the following boundary

conditions

• z = 0 : ϕ = 0 as the conductor is assumed to be in electrostatic equilib-

rium

• ϕ→ 0 with the distance from the point charge (source/sink)

It is clear that for the potential to be 0 at the boundary of a vacuum and a

grounded conductor, and for ϕ to be continuous yet emanating from a point

charge, a charge of the opposite sign placed equidistant from the surface in the

opposing z-direction such that r2 = (0, 0,−d) is a solution as this would act as

the sink to the field emanating from a positive point charge (or converging on

in the case of a negative charge).[6, 14] The non-real (unphysical) charge used

to describe such an interaction is an image charge. Therefore, the potential of

the system can be written as

ϕ(r0) =
1

4πϵ0

(
q

|r0 − r1|
− q

|r0 − r2|

)
(1.20)

which can also be seen to satisfy the condition that the potential due to the

point charge tends to 0 as d ( = (1/2)|r21|) tends to infinity. Furthermore, the

potential can take the more explicit form

ϕ(r0) =
1

4πϵ0

(
q

(x2 + y2 + d2)1/2
− q

(x2 + y2 − d2)1/2

)
(1.21)

from which it follows that the surface charge distribution of the grounded

conducting plane, due to the internal nature of the metals, can be evaluated

as

σ(x, y) = − qd

2π(x2 + y2 + d2)3/2
(1.22)

by considering the first derivative of equation 1.21 in the (x, y) direction.
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Due to the negative sign in equation 1.22, it can be seen that a grounded

conductor will always attract a point charge. It is worth noting that the

image charge method enables one to study the electric field and surface charge

distributions of planar environments; it is not a physical representation as it

assumes a constant medium, and no such image charges exists. [14]

When describing dielectric media, a similar method can be applied to find

a solution to the Laplace equation. However, due to the difference in the

physical nature of the interaction between a dielectric and a conductor, the

boundary conditions change. The electric field inside a dielectric is altered by

the presence of the dipoles with in it such that the potential is different either

side of the boundary

ϕ =


ϕ1(r), z > 0

ϕ2(r), z < 0

(1.23)

Like in the case of a conductor, and assuming the exact same physical set up

only with a dielectric in place of a conductor, in the case of z > 0 we can model

the potential as two point charges - one is the actual charge q whilst the other

is the image charge q′′ at the same position but placed at z = −d directly

beneath the actual charge as before. Unlike in the case of the conductor, one

must consider inside the boundary (ϕ1); since there are no physical charges

in this region, the only image charge that can be included in the function

describing the potential in this region is an image charge q′′ at the location of

the original charge. Whilst one could place a charge of equal magnitude this

would be assuming that no screening of the field originating from the z > 0

domain occurs, which is not clear at this point.

As such, it can be stated that

ϕ =


1

4πε1

(
q
R1

+ q′

R2

)
, z > 0.

1
4πε2

q′′

R1
, z < 0.

(1.24)
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in cylindrical coordinates (R1 =
√
x2 + y2 + (d− z)2, R2 =

√
x2 + y2 + (d+ z)2).

Gauss’s law in integral form for the dielectric displacement field shows that

upon consideration of a cylindrical volume split between the two media, such

that the top of the cylinder is one media and the bottom is in the other (this

techniques is illustrated in figure 1.3), the dielectric displacement field is dis-

continuous such that

∮
S

D.dA = σA = q (1.25)

from which it can be seen that upon limiting the area to an infinitesimal size

(dA), it can be seen that the the dielectric displacement is discontinuous such

that

ϵ1
∂ϕ1

∂nS

= ϵ2
∂ϕ2

∂nS

(1.26)

which forms the first boundary condition. The second boundary condition of

this system can be derived from the the curl of the electric field being zero due

to equation 1.9; as such, the line integral around a closed path is also zero.

Therefore, the electric field parallel to the boundary, in both media, must be

equal such that

E
∥
1 = E

∥
2 (1.27)

and the electrostatic potential is continuous across the boundary. [14]

Given the relationship between the dielectric displacement field and the electric

field (D = ϵE), it is possible to utilise these boundary conditions to find the

required values of our image charges (q′ and q′′) in terms of the real charge q

by evaluating the potential in equation 1.24 in terms of E and D. It is then

possible to evaluate equations 1.26 and 1.27 with the resultant expression, from

which it can be seen that
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q − q′ = q′′,
q + q′

ε1
=
q′′

ε2
(1.28)

respectively. Solving this system of equations yields the result that

q′ =

(
ε1 − ε2
ε1 + ε2

)
q (1.29)

q′′ =

(
2ε2

ε1 + ε2

)
q (1.30)

Allowing one to write the full form of the potential as

ϕ =


1

4πε1

(
q√

s2+(d−z)2
+ (ε1−ε2)

(ε1+ε2)
q√

x2+y2+(d+z)2

)
, z > 0.

1
4πε2

2ε2
(ε1+ε2)

q√
x2+y2+(d−z)2

, z < 0.

(1.31)

which can be converted to Cartesian coordinates via s2 = x2 + y2.

1.2.2 Interacting Particles of Finite Size

Whilst image charge methods provide a means to study the potential of and

field surrounding boundaries between various materials due to the presence of

free charges away from the boundary, in the case of interacting dielectric parti-

cles a Monte-Carlo search is required in order to solve the resultant equations

for the interaction energy and forces acting on the system.[15, 16] However, it is

important to provide a rigorous characterization and mathematical framework

of the exact solution, which contains no discretization errors or non-physical

charges. [17]

A physically well-founded approach to the interaction of two dielectric particles

was considered by Bichoutskaia et al[18], who developed such a solution to

calculate the force and interaction energy between two dielectric particles, of

radius (ai) and charge (qi), that may be composed of different materials as

defined by their dielectric constant (κi), as defined via equation 1.13. In this
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model, the particles are considered as dielectric such that the charge carrier

mobility is considered to be 0. [6, 7]

At the surface of a dielectric particle both the free and total charge density, as

in equation 1.26, can be described by a set of field discontinuities as described

by the boundary conditions defined in the previous section. As such, it is

assumed the free charge is distributed on the surface, the lowest energy con-

figuration of the free charge, and is immobile. As there are no volume charges

present within the particle, the surface charge distribution can be decomposed

such that

σ = σb + σf (1.32)

where σb is the surface charge distribution due to the movement of bound

charges in the system, in one of the possible ways discussed in figure 1.1, and

σf is the surface charge distribution due to free charge in the system which is

assumed to be of a specified and immobile charge distribution on the surface.

Legendre Rationale

Considering this system as one set of point charges {∂qi} spherically clustered

around a point Ω1, and another set {∂qj} spherically clustered around another

point Ω2, such that the spheres formed by the non-overlapping sets of point

charges make up the surface of a spherical particle. For a general vector rXY

= rY − rX , this can be stated as

|RΩ1Ω2| > |rBj − rAi| for all i, j. (1.33)

where R is a point outside the charge distribution, and ri and rj are the posi-

tions of the point charges being considered. This summation can be computed,

via the principle of superposition for the electric potential, such that
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ϕΩ1Ω2 =
1

4πϵ0

∑
i∈Ω1

∑
j∈Ω2

qiqj
|rj − ri|

. (1.34)

where 1
|rj−ri| can be rewritten as

1

∥rj − ri′∥
=

1√
r2 + (r′)2 − 2rr′ cos γ

=
1

r
√
1 + h2 − 2h cos γ

with h :=
r′

r
. (1.35)

which is the generating function of the Legendre polynomials [19]

1√
1 + h2 − 2h cos γ

=
∞∑
ℓ=0

hℓPℓ(cos γ) (1.36)

Calculating the Interaction

Returning to the problem of two dielectric spheres Ω1 and Ω2, as depicted in

figure 1.4, it is now clear that the potential at a point ri (i = 1, 2) is dependent

on a summation of the potential due to each charge ∂q1 modelled on the surface

of the respective particle. The particles geometry and composition is as defined

in figure 1.4, and the interaction is assumed to occur in a vacuum (κ = 1).

Figure 1.4: An illustration of the geometric parameters defining two interacting,
charged, spherical particles (Ω1 and Ω2) of radius, charge, dielectric constants, polar
angle, center-to-centre separation, surface-to-surface separation denoted by a1, a2,
q1, q2, κ1, κ2, β1, β2, s and h respectively.

Given equation 1.2.2, the potential due to the total surface charge on the

particles can be expressed as a finite set of Legendre polynomials in the form
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of the multipole expansion, assuming convergence of the summation before

ℓ = ∞. In such an expansion the coefficients of the various contributions to

the potential can be explicitly calculated as the multipole moments coefficients

(Ai,l∨m), and the dependence of each particle on the potential at a given point

is explicit.

As such, the general solution to the Poisson equation describing a system of

two charged dielectric particles (Ω1 and Ω2) could take the form

Φ(r1) =
∞∑
l=0

A1,l
rl1
a2l+1
1

Pl(cos β1)+

∞∑
l=0

∞∑
m=0

A2,m
(l +m)!

l!m!

rl1
hl+m+1

Pl(cos β1) for r1 < a1, (1.37)

Φ(r1) =
∞∑
l=0

A1,l
1

rl+1
1

Pl(cos β1)

+
∞∑
l=0

∞∑
m=0

A2,m
(l +m)!

l!m!

rl1
hl+m+1

Pl(cos β1) for r1 > a1, (1.38)

Φ(r2) =
∞∑
l=0

A2,l
rl2
a2l+1
2

Pl(cos β2)

+
∞∑
l=0

∞∑
m=0

A1,m
(l +m)!

l!m!

rl1
hl+m+1

Pl(cos β2) for r2 < a2, (1.39)

Φ(r2) =
∞∑
l=0

A2,l
1

rl+1
2

Pl(cos β2)

+
∞∑
l=0

∞∑
m=0

A1,m
(l +m)!

l!m!

rl2
hl+m+1

Pl(cos β2) for r2 > a2. (1.40)

where Pℓ are the Legendre polynomials to the order l, h is the centre-to-centre
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separation of the particles and β is the polar angle associated with the point

at which the potential is being calculated.[20] The potential is defined inside

and outside Ω1 and Ω2, centred at Ω1 and Ω2’s centres respectively, where the

interacting particles are as defined in figure 1.4. [18]

However, such a system of equations does not form the unique solution to the

Poisson equation that would describe the proposed system. To this end, the

following three boundary conditions are imposed on the system, such that

• Since E must be continuous tangentially to the particle (in the β direc-

tion),

1

ri

∂ϕ

∂β

∣∣∣∣
ri=a+i

− 1

ri

∂ϕ

∂β

∣∣∣∣
ri=a−i

= 0 (1.41)

• The normal component of the electric field E is discontinuous across the

surface of the particle due to the presence of a net charge on the particle

1

ri

∂ϕ

∂ri

∣∣∣∣
ri=a+i

− 1

ri

∂ϕ

∂rj

∣∣∣∣
ri=a−i

= 4πKσi (1.42)

• As the free charge causes the discontinuity in the electric field, the dis-

placement field D is also discontinuous across the boundary such that

1

ri

∂ϕ

∂ri

∣∣∣∣
ri=a+i

− κi
1

ri

∂ϕ

∂rj

∣∣∣∣
ri=a−i

= 4πKσi,f (1.43)

where a+i and a−i denote outside (ai < ri, κ = 1) and inside (ai > ri, κ = κi)

the particle. Hence, it is possible to evaluate the surface charge distribution

on each particle as

σi(β) =
1

4πK

∞∑
l=0

Ai,l
2l + 1

al+2
i

Pl(cos βi) for i = 1, 2; (1.44)

with multipolar coefficients dictated by

4πKa1σf,1δl,0 =
A1,l

al+1
1

+
(k1 − 1)l

(k1 + 1)l + 1

∞∑
m=0

A2,m

l!m!
(l +m)!

al1
hl+m+1

(1.45)
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4πKa2σf,2δl,0 =
A2,l

al+1
2

+
(k2 − 1)l

(k2 + 1)l + 1

∞∑
m=0

A1,m

l!m!
(l +m)!

al2
hl+m+1

(1.46)

which describe the mutual polarisation each particle undergoes upon interac-

tion.

Utilising a generalized form of the Coulomb equation can be formed to account

for the interaction of such spheres of charges (dielectric spheres where the

charges are considered the elements dq and dq′)

F12 = K

∫
dq1(r1)

∫
dq2(r2)

r1 − r2
|r1 − r2|3

, (1.47)

enables one to calculate the force on each particle, which following the rationale

utilized to derive equations 1.37—1.40, can be evaluated as

F12 = − 1

K

∞∑
l=0

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

, (1.48)

which upon consideration of σf ’s role in the third boundary condition (equation

1.43), as deduced in Bichoutskaia et al, can be explicitly written in the form

of

F12 = K
q1q2
h2

− q1

∞∑
m=1

∞∑
l=0

A1,l
(k2 − 1)m(m+ 1)

(k2 + 1)m+ 1

× (l +m)!

l!m!

a2m+1
2

h2m+l+3
− 1

K

∞∑
l=1

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

(1.49)

which is an analytical expression for the force acting between two dielectric

charged spheres. A convergent regime (ℓ → ∞) can be found for this expres-

sion which is controlled by the highest degree of the Legendre polynomials

utilised. The first term in equation 1.49 corresponds to the Coulomb force act-

ing between point charges at the centre of each particle. The second and third

term on the other hand, account for the contribution of the mutual polarisa-

tion of the two particles. As no material is less polarisable than the vacuum,

the second and third terms are always negative and hence cause an attrac-
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tive interaction between the particles. In the case of non-polarisable particles,

(κ1 = κ2 → 1 in a vacuum) the polarisation terms tend to zero and the solution

converges upon the point charge. It can be seen that given equation 1.49, like

charged particles may attract if the second and third term grow bigger than

the first - this is discussed in more detail further in the text.

Since the publication of Bichoutskaia et al’s work[18], it has been expanded

upon [17, 21–24] and utilised on a number of occasions in order to describe in-

teractions between more complex charged objects, in both naturally occurring

and novel systems both statistically and dynamically.[25–28]

1.3 Polarisabilities and the Casimir Force

Polarisation can occur in a plethora of environments, and, up to now, only

charge induced polarisation of classical particles has been considered. Polar-

isation between neutral bodies can also be seen to occur on both the molec-

ular level at angstrom separations (Å), and between macroscopic particles at

nanometre (nm) separations. One example of a polarisation dependent inter-

action is the instantaneous, and spontaneous, dipoles formed within a molecule

inducing/effecting instantaneous polarisation on a nearby molecule - the van

der Waals interaction. A generalisation of this for bulk macroscopic systems

was proposed by Lifshitz[29, 30], based on earlier work by Hendrik Casimir

[31, 32].

Casimir and Polder initially illustrated that quantum mechanics predicts an

interaction between a neutral atom and a perfectly conducting plane (zero

resistivity) as a generalization of the van der Waals interaction. Casimir then

derived the same expression by considering the allowed vacuum fluctuations

occurring in such a system; he later generalized this to the case of two perfectly

conducting infinite plates.[31, 32]

Casimir’s original derivation considered a cubic volume of side L, with the top

side of the cube missing, and all remaining sides composed of ideally conducting
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plates; he then introduced another square piece of ideal conductor, of side L,

placed at some distance a from the bottom internal face of the box (xy-plane).

The equations dictating the allowed wavelengths of standing waves between

the xy-plane and the perfect conductor (the cavity) are

0 ≤ λx ≤ L, 0 ≤ λy ≤ L, 0 ≤ λz ≤ a (1.50)

the wavelengths of which correspond to quantised frequencies/wave numbers

described by

kx = πnx/L, ky = πny/L, kz = πnz/a, n = 1, 2, 3...n (1.51)

The expectation value for the energy (the expected measurement of an experi-

ment) of the standing waves within such a cavity can be found via a summation

over all the standing waves formed in the cavity where there are n standing

waves, and therefore energies (En), present

⟨E⟩ = 1

2

∞∑
n=0

En, (1.52)

where the factor of a half is present due to the zero-point energy of each n’th

mode. Whilst this sum is divergent in nature, it can be used to calculate finite

expressions. Assuming the size of the plates is extremely large, kx and ky

can be treated as continuous variables, which utilising En = ℏωn and periodic

boundary conditions enables one to write the summation of equation 1.52 as

an integral of the form

1

2

∑
ℏωn =

ℏc
L2

π2

∫ ∞

0

∫ ∞

0

[
1

2

√
k2x + k2y +

∞∑
n=1

√
n2
π2

a2
+ k2x + k2y

]
dkx dky (1.53)

where the first integral is due to standing waves across the width of the box,

and the second is in the z-direction. Considering polar coordinates in the kxky
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plane, gives

1

2

∑
ℏω = ℏc · L

2

π2
· π
2

∞∑
0

′
∫ ∞

0

(√
n2
π2

a2
+ κ2

)
κdκ (1.54)

where κ2 = k2x + k2y, and the prime denotes the division of the first term by

two. If the inserted plate is far from the xy plane at the bottom of the box,

such that kx can be considered a continuous variable, the sum of the surface

modes can be computed as an integral as

1

2

∑
ℏω =

∫ ∞

0

∫ ∞

0

(√
k2z + κ2 κ dκ

)(a
π
dkz

)
. (1.55)

Therefore the difference in the energy between the two separations can be seen

as an interaction energy ∆E which is equal to

∆E = ℏc · L
2

π2
· π
2

∞∑
0

′
∫ ∞

0

(√
n2
π2

a2
+ κ2

)
κdκ

−
∫ ∞

0

∫ ∞

0

(√
k2z + κ2 κ dκ

)(a
π
dkz

)
(1.56)

Although this expression is not finite, it is not devoid of physical meaning as

if ∆E is non-zero, a force will be present in the system. By use of a regulatory

function by multiplication, one can then apply the Euler-Maclaurin formula to

the expression, obtaining

∆E

L2
=

∆E

A
= −ℏcπ2

720

1

a3
(1.57)

for the interaction energy per unit area, and

F

A
= −ℏcπ2

240

1

a4
(1.58)

for the force per unit area acting on the plate. [31]

With this formalism, Casimir illustrated the purely quantum mechanical inter-

action of the Casimir force that occurs between two neutral, ideally conducting
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plates due to the in-equivalence of vacuum states inside and outside the cavity.

Physically, this can be justified as the cavity causing an increase in the number

of virtual photons interacting between the two plates as certain states become

inaccessible as the cavity tends to zero volume.

Lifshitz extended this formalism in 1961 by considering the eigenvalues of

the Hamiltonian describing a system of two real solids separated by some

distance. In their work, Dzyaloshinskii, Lifshitz and Pitaevskii decomposed

the Hamiltonian describing the electromagnetic waves in the system into those

of a similar wavelength to atomic distances, and those larger - considering

those larger as a perturbation to the system.[30] This formalism utilised the

Matsuabra technique[33] to evaluate the perturbative Hamiltonian as Green’s

functions in the fictitious ’imaginary time’ regime. This can be seen to result

in the free energy of the system G(l, iξn) being described by

G(ℓ, iξn) =
kBT

2πc2

∞∑
n=0

ϵm(iξn)ξ
2
n

∞∫
1

p ln[D(ℓ, iξn)]dp (1.59)

where kB is the Boltzmann constant, T is the temperature and c is the speed of

light.[34] The dielectric function of a material, ϵ(iξn), is defined at the relevant

Matsubara frequencies

ξn =
2πnkBT

ℏ
,

where ℏ is the reduced Planck constant.

The function D(ℓ, iξn) includes the dielectric properties of the boundaries of

the cavity (Am and Bm, where A and B are the boundaries and m is the

medium) as
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D(ℓ, iξn) = (1−∆Am(iξn)∆Bm(iξn)e
−2ρmℓ), (1.60)

ρm =

√
ϵm(iξn)ξn
c

p

where 1 ≤ p < ∞; ∆(iξn) varies depending on the geometry of the problem

and, in the simplest case of a single composition half-space, such as the planar

boundaries shown earlier in figure 1.3, it takes the following form for the surface

A

∆Am =
sAϵm − smϵA
sAϵm + smϵA

, (1.61)

sA = (p2 − 1 + (ϵA/ϵm))
1/2, sm = p

where ϵA = ϵA(iξn) is the dielectric function of the surface A at a given complex

frequency iξn and sA is the corresponding component of the radial wave vector

at the same frequency. A separate expression for ∆Bm is derived by replacing

A for B in equation (1.61). [34]

Whilst imaginary frequencies as shown in equation (1.60) may appear unphys-

ical in nature, they can be well justified here by their use as the argument of

the materials dielectric permittivity, which is a function of frequency and can

take complex values[29, 30], such that

ϵ(ω) = ϵ′(ω) + iϵ′′(ω) (1.62)

where ϵ′′ is always positive and determines the dissipation of the energy of

an electromagnetic wave propagating in the medium to which it corresponds.

Given the Kramers-Kronig relation [35], it can be seen that for complex argu-

ments, ϵ(iω), evaluated at the relevant Matsubara frequencies, ξn
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ϵ(iξ) = 1 +
2

π

∫ ∞

0

ω ϵ′′(ω)

ω2 + ξ2
dω (1.63)

has real positive values.

Given Lifshitz presented formalism, it can be shown that it is possible to

extend this formalism to account for inhomogeneous boundaries. Given the

nature of his derivation, its of no surprise that this formalism has proven to

model experiments incredibly accurately, given a suitable choice of ϵ(ω).[36, 37]

1.4 Conclusion

Electrostatic and electrodynamics interactions occur readily between various

materials, many of which fundamentally rely on the polarisation of the media

present. This can be seen to be the case for all the interactions studied thus

far, including but not limited to a point charge polarising a plane, two particles

polarising each other, or the attraction of two neutral plates via the Casimir

effect.

By correctly adapting and adopting the various formalisms presented through-

out this (brief) introduction, it is possible to extend and apply such ideas to

both natural and novel environments for technological application and scien-

tific discovery. This can be seen by the varied and numerous extensions and

applications to Bichoutskaia et al’s two particle formalism[17, 21–28], and the

abundance of recent research into the Casimir interaction.[38–46]
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Modelling Charge Induced,

Many-Body Interactions

2.1 Introduction

Charge induced many-body interactions occur in a plethora of natural and

novel environments [26, 47–49], but are rarely accounted for due to their com-

plexity and computational cost. Lindgren et al[49] developed an efficient im-

plementation of a numerical method to determine the interaction between N

dielectric particles. This framework employed a Galerkin approximation of

an integral equation formulation that generally describes the boundary condi-

tions of the surface charge of dielectric particles. In particular, this formalism

[49] is able to account for interactions in any continuous, non-electrolyte, so-

lution to accurately predict the behaviour of many-body systems embedded

within various media. All the particles within this formalism are assumed to

be spherical, and are described by their radii, relative dielectric permittivity

and surface charge.

The algorithmic complexity of such a system is high and as such a method to

increase the computational efficiency of such a solution was required. To this

end, Lindgren et al[49] employed an adaptation of the fast multipole method

(FMM) to increase the efficiency of the evaluation of such a framework, the use

26
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of which causes the method to scale linearly with N , and to third power with

respect to the number of spherical harmonics; this is in contrast to the fourth

order cost without FMM. This is possible due to the equivalence between a

surface charge represented by a truncated series of spherical harmonics, and a

corresponding multipole located at the centre of each particle. This method

shows exponential convergence to achieve a smooth solution of the surface

charge, and, hence, a numerically stable interaction energy as is required upon

evaluation of charged particle interactions. There is no inherent error associ-

ated with the geometry of the system since no meshing is required. If azimuthal

symmetry is present, as is common in two-body interactions, the scaling can

be reduced to quadratic with respect to the number of spherical harmonics

required due to the symmetric nature of the polarization.

This solution was shown [48, 49] to provide an accurate quantitative descrip-

tion of the interaction of N charged dielectric particles, whilst maintaining its

computational efficiency. Also, as this particular solution converges up to the

point where the particles touch, it can be employed as a force field in particle

dynamics as shown in the literature [49] and throughout this work.

The framework developed by Lindgren et al, although efficient, is only ap-

plicable to interactions between particles with homogeneous (uniform) surface

charge distributions, in the absence of externally applied electric fields. This is

a consequence of the nature of the boundary conditions defined by Lindgren et

al as the inclusion of such features changes the boundary conditions describing

the potential, and hence the surface charge, of a polarisable dielectric particle

in the presence of other particles.

Many particulates, especially within the nanometre size range, can possess an

inhomogenous surface charge distribution which is often analogous to that of

a single point charge localized on the surface of an otherwise neutral dielectric

particle. This can occur due to small molecule termination of nanoparticles at a

single site, or via ionisation events that could cause immobile charges/defects

on the surface of a particle.[50, 51] Such systems are extremely orientation



Chapter 2. Introduction 28

dependent, and as such require formalisms such as those proposed by Lindgren

et al to be modified in order to be utilised to calculate the interactions within

populations of such particles.[49]

The effect of external electric fields on the surface charge distribution of dielec-

tric particles has been well studied throughout the literature[52–54], however,

the interaction between such particles is often approximated as the interaction

between dipoles or multipoles which are inherently different from a polarisable,

spherical, charged particle.

2.1.1 Aims and Objectives

To develop an extension to a current many-body formalism [49], and exten-

sively test the new formalism to show that it is an accurate description of

charge induced polarisation of particles with various surface charges, in the

presence of external electric fields. This methodology will then be used to

describe the electric field induced destabilisation of highly charged colloidal

crystals, with experimental comparison. This work was published in [17] in

collaboration with Prof. Benjamin Stamm, Dr Mohammad Hassan and Dr

Stefanie Braun, formerly of RWTH Aachen in conjunction with Prof. Elena

Besley, Dr Joshua Baptiste. The derivation of this formalism is reproduced

here for completeness and understanding, and the finer mathematical details

can be found in appendix A.1 and A.2.
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2.2 Formulation of the electrostatic many-body

framework

A physical system of N non-overlapping dielectric spherical particles is defined

herein by their radii {ri}Ni=1, centres {xi}Ni=1, and dielectric constants {κi}Ni=1,

immersed in a background medium (solvent) which has dielectric constant

κ0 > 0. The many-body system is considered at rest. The spherical particles

are described as open balls denoted by {Ωi}Ni=1 with surfaces {∂Ωi}Ni=1. The

surfaces of the dielectric particles represent the boundary ∂Ω between the

interior Ω− and the exterior Ω+ of the particles. We assume that this surface

∂Ω carries a given free charge distribution σf and that there is no charge

in the interior of the particles, i.e., in Ω− (See appendix A.1 for a precise

mathematical description of these quantities). To account for the point-charge

contribution to the surface free charge, the free charge σf is split into two

contributions

σf = σs + σp. (2.1)

Here, σs ∈ L2(Ω) corresponds to the square-integrable part of the surface

charge, whereas σp is defined as the point-charge contribution to the free charge

represented by a linear combination of one or several Dirac delta distributions

per particle, dependent on the system under investigation:

σp :=
N∑
j=1

Nj
p∑

k=1

qj,kδzj,k , where qj,k ∈ R, zj,k ∈ ∂Ωj (2.2)

and for all j = 1, . . . , N k = 1, ..., N .

The external potential, due to the presence of an external electric field, is

defined as Φext with associated external electric field Eext := −∇Φext, which
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is not limited by the constraint that Φext tends to zero at infinity. Here,

the external potential is considered to be harmonic, i.e., ∆Φext = 0, so that

the charges creating the external field are not considered within the system.

Furthermore, the electric field Eext is not restricted to be uniform. Finally, it

is assumed that the system of dielectric particles does not affect the external

field Eext, for instance, through polarisation, which justifies the use of our

terminology external.

To this extent, the aim is to determine the total surface charge on each dielec-

tric particle after taking into account both the free charge σf , and the bound

charges resulting from polarisation effects due to the presence of charged neigh-

bouring particles, and the effects of an external electric field. Using the total

surface charge, it is possible to deduce other physical quantities of interest

such as the electrostatic forces and energy resulting from the interaction of N

charged dielectric spheres both with each other and with an external electric

field.

In order to determine the total surface charge, one must first derive equations

governing the total electrostatic potential. It is shown here, as in [17], that the

total electrostatic potential can be used to deduce the required total surface

charge as well as the subsequent physical quantities of interest. The main

challenges in achieving such evaluations lie in the singular nature of the point-

charges σp and the external potential Φext, which does not decay to zero at

infinity.

2.2.1 Formulation based on partial differential equations

The problem of the electrostatic interaction between N charged dielectric

spheres can be described by a partial differential equation (PDE)- based trans-

mission problem. Defining the total potential Φtot := Φext + Φ, gives that the

corresponding total electric field is Etot := Eext+E, where E is the perturbation

of Eext due to the presence of dielectric charged particles, and Φ is the corre-
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sponding perturbation potential so that E = −∇Φ. Standard arguments from

the theory of electrostatics in dielectric media imply that the total potential

Φtot satisfies the following transmission problem:

−∆Φtot = 0 in Ω− ∪ Ω+,

JΦtotK = 0 on ∂Ω,

Jκ∇ΦtotK = σf on ∂Ω.

(2.3)

Here, κ is the dielectric function which takes the value of κi on the spheri-

cal particle Ωi and κ0 on Ω+ (medium), and JΦtotK and Jκ∇ΦtotK are jump

discontinuities defined by

JΦtotK(x) :=Φtot(x)|Ωi
− Φtot(x)|Ω+ , for x ∈ ∂Ωi

Jκ∇ΦtotK(x) :=κi∇Φtot(x)|Ωi
· η(x)− κ0∇Φtot(x)|Ω+ · η(x) for x ∈ ∂Ωi,

where η(x) is the normal unit vector at x ∈ ∂Ω pointing towards the exterior

of the particles.

In general, Equation (2.3) is ill-posed as can be seen, for instance, by observing

that if σf ≡ 0, then any constant function Φtot will satisfy this equation. In

order to obtain the correct total potential Φtot, the relation Φtot = Φext+Φ can

be employed to first derive a well-posed equation for the perturbed electrostatic

potential Φ. Using decomposition (2.1), elementary algebra shows that Φ

satisfies the following transmission problem

−∆Φ = 0 in Ω− ∪ Ω+,

JΦK = 0 on ∂Ω,

Jκ∇ΦK = σs + σp − (κ− κ0)∂nΦext on ∂Ω,

|Φ| → 0 as |x| → ∞,

(2.4)

where ∂nΦext denotes the normal derivative of Φext on the boundary ∂Ω.

PDEs similar to the transmission problem (2.4) have previously been consid-



Chapter 2. Formulation of the electrostatic many-body framework 32

ered in the literature (see, e.g., [49, 55]), but the key novelty of Equation

(2.4) is the addition of contributions due to an external electric field and the

presence of point-charges on the surface of dielectric particles. These addi-

tional terms require significant modifications to earlier definitions [55–57] of

the electrostatic force and interaction energy for the N -body charged dielec-

tric spheres, and they present additional challenges in the efficient numerical

implementation.

In addition to the presence of the highly non-regular point-charge term σp, an-

other difficulty in solving the transmission problem described in equation (2.4)

is the fact that the equation is posed on the entire space R3. Indeed, since the

potential Φ a priori decays only as |x|−1, a naive truncation of the computa-

tional domain in an effort to use classical algorithms, such as the finite element

method, leads to significant errors. The usual approach to circumventing this

problem is to appeal to the theory of integral equations and reformulate the

transmission problem (2.4) as a so-called boundary integral equation (BIE)

posed on the interface ∂Ω. This is the subject of the next subsection.

2.2.2 Formulation based on boundary integral equations

In order to describe fully the integral equation-based approach to the problem

of electrostatic interaction between charged dielectric spheres, additional no-

tions are required. First, the single layer potential of some density ν, denoted

Sν, is defined as a mapping with the property that

(Sν)(x) :=
∫
∂Ω

ν(y)

4π|x− y|
dy, ∀x ∈ Ω− ∪ Ω+. (2.5)

It can be shown that for any density ν, Sν is a harmonic function in Ω− ∪Ω+,

which additionally satisfies the following jump conditions

JSνK = 0; J∇SνK = ν.
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As a consequence, it is possible to consider a restriction of the single layer

potential defined through Equation (2.5) on the boundary ∂Ω and thereby

define the so-called single layer boundary operator, denoted V as the improper

integral

(Vσ)(x) :=
∫
∂Ω

ν(y)

4π|x− y|
dy, ∀x ∈ ∂Ω.

Note, that occasionally it will be necessary to consider the “local” single

layer potential and boundary operators defined on an individual sphere i ∈

{1, . . . , N}. These will be denoted as Si and Vi respectively. One should also

note that V is an invertible operator.

The surface electrostatic potential λ := Φ|∂Ω is now described by the following

BIE:

λ− V
(
κ0 − κ

κ0
DtNλ

)
=

1

κ0
V
(
σs + σp

)
+
κ0 − κ

κ0
V(∂nΦext). (2.6)

Here, the notation DtN is used to denote the local Dirichlet-to-Neumann (DtN)

map on the surface ∂Ω (see Appendix A for further details).

An equivalent reformulation of the BIE (2.6) for the induced surface charge

can be achieved by applying V−1 to both sides of the equation, and defining

ν := V−1λ which yields the following BIE

ν − κ0 − κ

κ0
DtNVν =

1

κ0

(
σs + σp

)
+
κ0 − κ

κ0
(∂nΦext). (2.7)

In Equation (2.7), the quantity of interest ν, i.e. induced surface charge, repre-

sents (up to a scaling factor) the total surface charge on each dielectric particle

after taking into account both the free charge σf and the bound charge result-

ing from polarisation effects due to the presence of any remaining charged

particles and the effect of an external electric field. More precisely,
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• σf represents the free charge on each particle;

• σb := (κ0 − κ)
(
DtNVν + ∂nΦext

)
represents the bound

charge on each particle;

• κ0ν = σf +σb represents the total surface charge on each

particle.

A simple manipulation of Equation (2.7) yields the following relation between

the surface charge ν and the surface electrostatic potential λ:

ν =
κ0 − κ

κ0
DtNλ+

1

κ0

(
σs + σp

)
+
κ0 − κ

κ0
(∂nΦext). (2.8)

Equation (2.8) implies that once λ is known, the charge distribution ν can

be computed using the purely local DtN map. It should also be noted here

that the relation between the PDE (2.4) and the BIE (2.6) representations

of the electrostatic potential can be clearly established since λ is simply the

restriction (more precisely the Dirichlet trace) of the electrostatic potential Φ

on the boundary ∂Ω. Thus, for any point x ∈ Ω− ∪ Ω+, we have Φ(x) =(
SV−1λ

)
(x) = (Sν)(x), and therefore Φtot(x) = Φext(x) + (Sν)(x).

As emphasised above, an important technical difficulty in the analysis of Equa-

tion (2.6) is the presence of the low-regularity point-charge term σp, which re-

quires special treatment in the design of efficient numerical methods. The BIE

(2.6) has previously been the subject of extensive analysis in a simpler case

when surface point-charges and the external field are absent, i.e., when σp ≡ 0

and Φext ≡ 0. Firstly, this methodology is briefly summarised, before explain-

ing how the BIE (2.6) can be solved in this simple case before considering (in

Section 2.3) the more complex problem of describing surface point-charges and

an external electric field.
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2.2.3 Methodology in the absence of surface point-charge

and external field

In the absence of both the point-charge contribution to the surface free charge

and an external electric field, the boundary integral equation (2.6) reads as

λ̃− V
(
κ0 − κ

κ0
DtNλ̃

)
=

1

κ0
Vσs. (2.9)

Equation (2.9) is solved using a Galerkin discretisation with an approximation

space constructed from the span of finite linear combinations of local spherical

harmonics on each sphere ∂Ωi (exact definitions of the spherical harmonics

and the approximation space W ℓmax can be found appendix A.1), as in [49].

More precisely, the Galerkin discretisation of the BIE (2.9) reads as follows:

let ℓmax be a fixed discretisation parameter, we seek the Galerkin solution

λ̃ℓmax ∈ W ℓmax which satisfies for all test functions ψℓmax ∈ W ℓmax the equation

(
λ̃ℓmax − V

(
κ0 − κ

κ0
DtNλ̃ℓmax

)
, ψℓmax

)
L2(∂Ω)

=
1

κ0
(Vσs, ψℓmax)L2(∂Ω) . (2.10)

The Galerkin solution λ̃ℓmax and the test function ψℓmax can be expanded as a

finite linear combination of basis functions. This ansatz allows us to reduce the

Galerkin discretisation (2.10) to a linear system of equations for the unknown

expansion coefficients of λ̃ℓmax . Equation (2.10) thus yields the linear system

Aλ̃ = F̃ , (2.11)

where the solution matrix A and the vector F̃ are defined as

[Aij]
mm′

ℓℓ′ :=

(
Yj

ℓ′m′ − V
(
κ0 − κ

κ0
DtNYj

ℓ′m′

)
,Y i

ℓm

)
L2(∂Ωi)

,

[F̃i]
m
ℓ :=

1

κ0

(
Vσs,Y i

ℓm

)
L2(∂Ωi)

,

(2.12)

where Y i
ℓm denotes the spherical harmonic of degree ℓ and order m on the
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sphere ∂Ωi and the indices i, j ∈ {1, . . . , N}, ℓ, ℓ′ ∈ {0, . . . , ℓmax} and |m| ≤

ℓ, |m′| ≤ ℓ′. A more detailed definition of Y i
ℓm can be found in appendix

A.1, and a detailed explanation of how to compute the entries in the solution

matrix A and vector F̃ can be found in Lindgren et al. [49] Here, it is simply

remarked that apart from the diagonal terms (i = j), computing the entries

of the solution matrix and vector F̃ requires evaluating a double integral on

the unit sphere. This typically requires the use of numerical quadrature, for

which purpose Lebedev grid points are used.

Due to the form of (2.12), it is also possible to use a modification of the

classical FMM to speed up computation of the vector F̃ and matrix-vector

products involving the dense solution matrix A. The FMM allows computing

the action of the single layer boundary operator V on an arbitrary element of

the approximation space with linear scaling computational cost (with respect

to N). Since the DtN map is a purely local operator (diagonal in the basis of

local spherical harmonics), the solution matrixA does not need to be explicitly

computed and stored, and its action on an arbitrary vector can be calculated

with linear scaling cost. Further details on the FMM implementation can be

found in Lindgren et al. [49]

Once the vector F̃ has been computed and the procedure for applying the

solution matrix A to an arbitrary vector in the approximation space is set up,

the linear system (2.11) can be solved using a Krylov subspace solver such as

GMRES (see Bramas et al [56] for a detailed convergence analysis of GMRES

as applied to this linear system).

The approximate electrostatic interaction energy of a dielectric N -body system

is given by

Ẽ ℓmax
int :=

1

2

(
σs, λ̃ℓmax

)
L2(∂Ω)

− 1

2

N∑
j=1

(
σs,j, λ̃

jj
ℓmax

)
L2(∂Ωj)

, (2.13)

where σs,j = σs|∂Ωj
and λ̃jjℓmax

∈ W ℓmax(∂Ωj) is the approximate self-potential
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generated by the free charge σs,j on sphere ∂Ωj in the absence of other spheres.

More precisely, it is defined as the solution to the local Galerkin discretisation

(
λ̃jjℓmax

− VjDtNj

(
κ0 − κj
κ0

λ̃jjℓmax

)
, ψjj

ℓmax

)
L2(∂Ωj)

=

(
1

κ0
Vjσs,j, ψ

jj
ℓmax

)
L2(∂Ωj)

.

In definition (2.13) of the electrostatic interaction energy, the first term can

be interpreted as the total electrostatic energy of the system whilst the second

term, involving the summation, can be seen as the self energy.

Next, an expression for the approximate electrostatic forces is derived; as a first

step, if λ̃ℓmax denotes a solution to the Galerkin discretisation (2.10) for a given

free charge σs, then we define the approximate induced surface charge ν̃ℓmax

as the unique element of the approximation space W ℓmax (defined in appendix

A.1) that satisfies

(
V ν̃ℓmax , ψℓmax

)
L2(∂Ω)

=
(
λ̃ℓmax , ψℓmax

)
L2(∂Ω).

(2.14)

This shows that, ν̃ℓmax is simply an approximation of the exact induced surface

charge ν, which physically represents the total surface charge on the dielectric

spheres that includes polarisation effects. As such, ν̃ℓmax is utilised to derive

an expression for the approximate electrostatic force acting on the dielectric

particles.

In practice, ν̃ℓmax is not determined using Equation (2.14), which requires the

computationally expensive inversion of the single layer boundary operator V .

Instead, a careful examination of the Galerkin discretisation (2.10) reveals that

ν̃ℓmax satisfies the relation (c.f., Equation (2.8))

ν̃ℓmax =
κ0 − κ

κ0
DtNλ̃ℓmax +

1

κ0
σℓmax
s , (2.15)

where σℓmax
s is the best approximation of σs in the approximation space W ℓmax .

Consequently, once the linear system (2.11) has been solved, only purely local

operations involving the Dirichlet-to-Neumann operator are required to obtain



Chapter 2. Formulation of the electrostatic many-body framework 38

ν̃ℓmax .

The approximate electrostatic force acting on the dielectric particle is now

given by

F̃ ℓmax
i := κ0

(
ν̃ℓmax ,E

i
exc

)
L2(∂Ωi)

. (2.16)

Ei
exc is the i-excluded electric field generated by the approximate induced sur-

face charge ν̃ℓmax , i.e., the vector field given by

Ei
exc(x) = −∇

(
S ν̃ℓmax − Siν̃i,ℓmax

)
(x), (2.17)

where ν̃i,ℓmax := ν̃ℓmax|∂Ωi
, and ∇ denotes the usual gradient taken with respect

to Cartesian coordinates. The i-excluded electric field Ei
exc is the part of the

total electric field generated by the approximate induced charge ν̃ℓmax that

interacts with (i.e., exerts a net electrostatic force on) the dielectric particle

Ωi. A description of how to practically compute Ei
exc in the current boundary

integral framework can be found in [57].

Considering definitions (2.13) and (2.16) of the approximate electrostatic in-

teraction energy and force, respectively, a key result [57] establishes that these

are related by the identity

−∇xi
Ẽ ℓmax
int = F̃ ℓmax

i ,

where ∇xi
denotes the gradient taken with respect to the location of the centre

xi of the sphere ∂Ωi.

The Galerkin nature of the method presented here allows for a precise mathe-

matical analysis in terms of accuracy with respect to ℓmax and complexity with

respect to N , which was previously discussed in Hassan et al [55–57] and also

included the detailed description of the linear scaling of the method and the

accuracy of predictions for the electrostatic energy and forces.[57] However, the

model is limited to the assumptions made at the beginning of Section 2.2.3,



Chapter 2. Formulation of the electrostatic many-body framework 39

namely, it does not account for the presence of surface point-charge and the

effect of an external electric field. This extension and generalisation is the

subject of the following section.

2.2.4 Extension to include an external electric field and

surface point-charges

The external charge is defined as σext := −(κ − κ0)∂nΦext, which is simply

the external electric field contribution to the right-hand side of the boundary

integral equation (2.6). The Galerkin discretisation of the BIE (2.6) can be

written as

(
λℓmax − V

(
κ0 − κ

κ0
DtNλℓmax

)
, ψℓmax

)
L2(∂Ω)

=

1

κ0

(
V
(
σs + σext + σp

)
, ψℓmax

)
L2(∂Ω)

. (2.18)

As before, this Galerkin discretisation (2.18) yields a linear system of equations

for the unknown local spherical harmonics expansion coefficients of λℓmax of the

form

Aλ = F , (2.19)

where the solution matrix A is defined precisely as before through Equa-

tion (2.12) and

[λi]
m
ℓ :=

(
λℓmax , Y i

ℓm

)
L2(∂Ωi)

, (2.20)

for i ∈ {1, . . . , N}, ℓ ∈ {0, . . . , ℓmax} and |m| ≤ ℓ. Determining the new

vector F requires some additional work due to the presence of the point-charge

term σp. To this end, let zj ∈ ∂Ωj ⊂ ∂Ω. The definition of the single layer

boundary operator V implies that for any q ∈ R and all x in ∂Ω with x ̸= zj
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we have

V(qδzj)(x) =
∫
∂Ωj

qδzj(y)

|x− y|
dy =

q

|x− zj|
.

Hence,

V(σp)(x) =
N∑
j=1

Nj
p∑

k=1

qj,k
|x− zj,k|

,

and therefore the vector F in Equation (2.19) can be defined as

[Fi]
m
ℓ :=

1

κ0

(
V
(
σs + σext

)
+ V(σp) , Y i

ℓm

)
L2(∂Ωi)

. (2.21)

Since the solution matrix A is exactly as before (see Section 2.2.3), one can use

the same linear solver routine to approximate the solution to Equation (2.19).

Having solved the underlying linear system, we can now compute further (ap-

proximate) physical quantities of interest.

In computing the approximate electrostatic forces, if λℓmax denotes a solution

to the Galerkin discretisation (2.18) for a given free charge σf = σs + σp and

external electric field Eext then the approximate induced surface charge νℓmax

can be defined, as in Equation (2.14), which generates the surface electrostatic

potential λℓmax as the solution to

(
Vνℓmax , ψℓmax

)
L2(∂Ω)

=
(
λℓmax , ψℓmax

)
L2(∂Ω)

. (2.22)

In practice, νℓmax can be determined again using the following relation (c.f.,

Equation (2.15)), which can be deduced from the Galerkin discretisation (2.18):

νℓmax =
κ0 − κ

κ0
DtNλℓmax +

1

κ0

(
σℓmax
s + σℓmax

p + σℓmax
ext

)
, (2.23)

where σℓmax
s , σℓmax

p , and σℓmax
ext are the best approximations or projections (in

the L2-sense) of σs, σp, and σext in the approximation space W ℓmax defined in
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appendix A.1. The approximate net electrostatic force acting on the dielectric

particle described by the open ball Ωi, i ∈ {1, . . . , N} is now given by

F ℓmax
i := κ0

(
νℓmax ,E

i
exc + Eext

)
L2(∂Ωi)

, (2.24)

where Ei
exc is the i-excluded electric field, which is defined analogously to Equa-

tion (2.17). Here Ei
exc can practically be computed by adapting the procedure

stated in [57] to the current setting of surface point charges and external elec-

tric field.

In contrast to the definition of the electrostatic forces, the definition of the

electrotatic interaction energy is not straightforward in the current setting.

On the other hand, in the chemical literature, the net force acting on a given

dielectric particle is frequently defined as the negative-sphere centred gradient

of the interaction energy. Keeping this relation in mind, the approximate elec-

trostatic interaction energy of the system that corresponds to the approximate

electrostatic force (2.24) is given by

E ℓmax
int :=

1

2

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

+
(
σs + σp, λ

ℓmax
ext

)
L2(∂Ω)

+
1

2

(
σext, λ

ℓmax
ext

)
L2(∂Ω)

− 1

2

N∑
j=1

(
σs,j + σp,j, λ

jj
ℓmax

)
L2(∂Ωj)

,
(2.25)

where σs,j = σs|∂Ωj
, σp,j := σp|∂Ωj

and where λℓmax
ext is the best approximation

of λext := Φext|∂Ω and λjjℓmax
∈ W ℓmax(∂Ωj) for the approximate self-potential

on sphere ∂Ωj in the absence of the external field Eext and all other spheres.

The latter quantity is formally defined as the solution to the local Galerkin

discretisation

(
λjjℓmax

− VjDtNj

(
κ0 − κj
κ0

λjjℓmax

)
, ψjj

ℓmax

)
L2(∂Ωj)

=

(
1

κ0
Vj

(
σs,j + σp,j

)
, ψjj

ℓmax

)
L2(∂Ωj)

.

With definitions (2.24) and (2.25) of the approximate electrostatic interaction

force and energy, respectively, one can demonstrate that the electrostatic forces
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are indeed realised as the negative sphere-centred gradients of the interaction

energy.

Theorem 2.2.1 Let E ℓmax
int denote the approximate interaction energy and F ℓmax

i ,

denote the approximate electrostatic force acting on the dielectric particle Ωi

as given by Definitions (2.27) and (2.24) respectively. Then it holds that

−∇xi
E ℓmax
int = F ℓmax

i , (2.26)

where ∇xi
denotes the gradient taken with respect to the location of the centre

xi of the sphere ∂Ωi.

The proof of Theorem 2.2.1 can be found in appendix A.2. It is important to

emphasise that in this form

E ℓmax
int :=

1

2

N∑
j=1

(
σs,j + σp,j, λℓmax − λjjℓmax

)
L2(∂Ωj)

+
1

2

(
σext, λℓmax

)
L2(∂Ω)

+
(
σs + σp, λ

ℓmax
ext

)
L2(∂Ω)

+
1

2

(
σext, λ

ℓmax
ext

)
L2(∂Ω)

, (2.27)

E ℓmax
int includes both the energy due to the interaction between the dielectric

particles themselves as well as the energy arising from the interaction of par-

ticles with the external electric field.

Also, equation (2.27) has an interpretation in terms of the total and self elec-

trostatic energies. The combination of the first three terms in equation (2.27)

can be interpreted as the total electrostatic energy of the system whilst the

fourth term can be seen as the self electrostatic energy of the system. It should

be emphasised that, due to the presence of the point-charge contribution σp,

both the total energy and the self-energies are infinite as in the case of fixed

Coulomb point-charges. However, when writing the interaction energy as in

equation (2.27) each of the terms is finite and thus the interaction energy is a

well-defined quantity.
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Finally, it is possible to re-write Equation (2.27) for the electrostatic interac-

tion energy in a more physically intuitive form in terms of the electric fields

that appear in the PDE formulations (2.3) and (2.4) leading to the following

theorem.

Theorem 2.2.2 Let λext denote the restriction of Φext to ∂Ω, and let λ denote

the solution to the boundary integral equation (2.6) for a given free charge

σf = σs+σp and external electric field Eext. Then for any open ball Br of radius

r > 0 which is large enough to contain Ω−, the exact electrostatic interaction

energy of the system, denoted Eint, satisfies the relation

Eint :=
1

2

(
σs + σp + σext, λ

)
L2(∂Ω)

+
(
σs + σp, λext

)
L2(∂Ω)

+
1

2

(
σext, λext

)
L2(∂Ω)

− 1

2

N∑
j=1

(
σs,j+σp,j, λ

jj
)
L2(∂Ωj)

(2.28)

=
1

2

∫
Br

κ(x)Etot(x) · Etot(x) dx− 1

2

N∑
j=1

∫
Br

κ(x)Ejj(x) · Ejj(x) dx

− 1

2

∫
Br

κ0Eext(x) · Eext(x) dx+
1

2

∫
∂Br

κ0 (E(x) · η(x) Φ(x)

−
N∑
j=1

Ejj(x) · η(x) Φjj(x)) dx+

∫
∂Br

κ0E(x) · η(x) Φext(x) dx. (2.29)

Here, λjj is the exact self-potential only on sphere ∂Ωj in the absence of an

external field Eext and all other spheres, and it is defined as the solution to the

local BIE

λjj − VjDtNj

(
κ0 − κj
κ0

λjj
)

=
1

κ0
Vj

(
σs,j + σp,j

)
.

Moreover, Ejj and Φjj are the “self electric field” and “self electrostatic po-

tential” respectively of the j-th dielectric particle, i.e., the electric field and

potential respectively produced only due to sphere ∂Ωj in the absence of both
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the external field Eext as well as the other spheres. The proof of Theorem 2.2.2

can be found in appendix A.2.

The five terms in Equation (2.29) which constitute Eint all have physical in-

terpretations. The first integral can be understood as the total electrostatic

energy associated with an electric field Etot. The second integral can be inter-

preted as the self-energy associated with the free charge σf = σs + σp on the

particle surface, whilst the third term is the self energy of the external electric

field Eext. Finally, the last two terms can be interpreted as the boundary terms

that, in general, may not vanish at infinity but yield an expression indepen-

dent of the positions of the particles. Theorem 2.2.2 establishes that in the

exact case, i.e. when the discretisation parameter ℓmax → ∞, the definition of

the interaction energy, derived from the integral equation formalism and given

by Equation (2.27), coincides with the definition of the interaction energy (up

to some additional boundary terms) in any open ball Br that is large enough

to contain Ω− as derived from the PDE picture and given through Equation

(2.29).

Considering once again Equation (2.24) that defines the net electrostatic force

acting on dielectric particle Ωi, it is possible that one could be interested only

in a portion of this electrostatic force without the so-called ‘self-force’. The

‘self-force’ is the force that acts on the dielectric particle Ωi in the absence of

all other interacting particles but still in the presence of the external field Eext,

i.e., the force that would act on the particle if it were the only one exposed

to the external field. Mathematically, this new approximate net electrostatic

force acting on the dielectric particle Ωi, i ∈ {1, . . . , N} is given by

F̂ ℓmax
i := κ0

(
νℓmax ,E

i
exc + Eext

)
L2(∂Ωi)

− κ0
(
ν̂iiℓmax

,Eext

)
L2(∂Ωi)

, (2.30)

where ν̂iiℓmax
is the total surface charge (including polarisation effects) on ∂Ωi in

the absence of all other interacting particles but in the presence of the external
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electric field. Mathematically (c.f., Equation (2.23)),

ν̂iiℓmax
=
κ0 − κ

κ0
DtNiλ̂

ii
ℓmax

+
1

κ0

(
σℓmax
s,i + σℓmax

p,i + σℓmax
ext,i

)
,

where λ̂iiℓmax
is the solution to the local Galerkin discretisation

(
λ̂iiℓmax

− ViDtNi

(
κ0 − κ

κ0
λ̂iiℓmax

)
, ψii

ℓmax

)
L2(∂Ωi)

=
( 1

κ0
Vi (σs,i + σp,i + σext,i) , ψ

ii
ℓmax

)
L2(∂Ωi)

.

Corresponding to the approximate net electrostatic force given by Equation

(2.30), we have the following approximate interaction energy

Ê ℓmax
int :=

1

2

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

− 1

2

N∑
j=1

(
σs,j + σp,j + σext,j, λ̂

jj
ℓmax

)
L2(∂Ωj)

.

(2.31)

The force (2.30) subtracts the force that each single particle would be exposed

to due to the external field in absence of the other particles, from the net force

on the particle. The corresponding energy expression (2.31) is then such that

the force (2.30) equals minus the sphere-centreed gradients of the energy (2.31)

following similar arguments as used in the proof of Theorem 2.2.1.

2.3 Physical Applicability of the Framework

A bench-marking of the methodology developed in section 2.2 is required in

order to justify the framework’s physical applicability. Initially, the effects

of an external electric field acting on a single particle will be tested, before

increasing the complexity to two and three particles sequentially.
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2.3.1 Single Particle Physical Applicability

A charged, smooth, spherical, dielectric particle possesses equal surface charge

density (uniformly spread) over its surface in the absence of any external per-

turbations as a result of Gauss’s law. Given the decomposition of the surface

charge shown in equation 2.1, the polarisation of a dielectric particle due to an

external electric field is bench-marked for a neutral particle exposed to increas-

ing external electric fields by comparison to classical methodologies describing

isolated particles in such environments.

Stone [52] shows that under the presence of an external electric field, a neutral

particle will gain a dipole of the form

p := 4πϵ0
ϵ− 1

ϵ+ 2
r3Eext, (2.32)

where r is the particle radius, ϵ0 is the permittivity of free space, and ϵ is

the relative dielectric permittivity of the particle with respect to the medium

(ϵ = κ/κ0). The dipole (as in equation 2.32) can be represented by the surface

charge distribution as

σext = 3ϵ0
ϵ− 1

ϵ+ 2
cos(α)Eext (2.33)

where α is the angle as defined in figure 2.1. A charged particle would also

experience a force acting in the direction of the applied field, [52] and, in the

case of an inhomogeneous distribution of free surface charge, the particle will

rotate to minimise the interaction energy with the field.[10]

Due to the opposing force acting on positive and negative charges in the pres-

ence of an electric field, a neutral particle as shown in figure 2.1a would gain

a sinusoidal surface charge as predicted by Stone [52] via equation 2.33, whilst

not undergoing a net force. The calculations presented in figure 2.1b are in

complete agreement with Stone in the convergent regime for an isolated par-
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Figure 2.1: a) Surface charge density on a neutral dielectric particle (κ = 10, r =
5µm) placed in an external electrical field of |Eext| = 1000 V/m; b) Surface charge
density on the neutral particle (a) calculated at different external electrical field
strengths: |Eext| = 600 V/m, 1000 V/m, and 2000 V/m; c) Surface charge density
on the particle (a) with a model surface point charge of 0.2e placed at α = π/2, as
indicated by a small dotted circle.

ticle.

Upon the introduction of a point charge to the surface of the neutral particle,

as discussed previously, the direction of the electric field relative to the point

charge on the sphere has to be carefully considered. Here, we consider the case

of a point charge placed at α = π/2, as shown in figure 2.1a by the dotted

circle. Although this configuration could be considered the most unstable

due to the fact it would have maximal rotational force and equal translation

forces compared to other configurations of the surface charge in an external

field, in the presence of an external field the cost of calculating the surface

charge distribution in this case is much lower due to the absence of charge on

the equator of the particle in figure 2.1a. As such, this is the case primarily

discussed throughout this text.

As expected, the surface charge distribution of a particle with a point charge

on the surface perpendicularly to the field (geometry illustrated in figure 2.1a

and surface charge distribution shown in figure 2.1c) is analogous to the surface

charge distribution shown in figure 2.1b, when α ̸= π/2. However, when

α → π/2 the surface charge density reaches a maximum in a fashion similar

to that of the dirac-delta function. This is due to the sinusoidal nature of the

polarisation of a neutral sphere via a uniform external field (shown in equation
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2.33) as cosα = 0 at α = π/2. At critically low values of external electric field

size or dielectric permittivity, some competition may occur between the self-

polarization of the particle due to the point charge and the nodal behaviour of

the external field polarization, but we observe no such competition given the

field’s strength considered in figure 2.1.

Although the width of the maxima at α = π/2 should ideally be infinitesimally

small to accurately describe a point charge (or at least (sub-)atomic in size), it

does not appear as such in figure 2.1. This is due to the truncation of ℓmax to

a finite value in the second term of equation 2.29 given the overall dependence

of equation 2.13 on ℓmax. Therefore, the width of the maximum narrows and

grows larger in amplitude as ℓmax increases.

2.3.2 Two-Body Physical Applicability

As a neutral, isolated, dielectric particle will gain a dipolar surface charge that

is independent of the particles’ location (due to the uniform nature of the field),

two interacting particles in a uniform external electric field can be treated as

two interacting dipoles (p1 and p2) at some centre-to-centre separation R, the

interaction energy of which is defined as

Eint(p1,p2) =
R2(p1 · p2)− 3(p1 ·R)(p2 ·R)

4πϵ0κ0R5
, (2.34)

However, it is convenient to express the direction of the dipoles p1 and p2 with

respect to the vector R using polar coordinates such that

pi ·R = piR cos(θi) (2.35)

and

p1 · p2 = p1p2(cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ2 − φ1)). (2.36)
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from which, Eint can be rewritten as

Eint(p1,p2) = − p1p2
4πϵ0κ0R3

(2 cos θ1 cos θ2 − sin θ1 sin θ2 cos(φ2 − φ1)) (2.37)

where θi is the angle of the dipole with respect to the axis R, whilst φ is the

angle the dipole is rotated about the axis R.

This classical result shows the dependence of the interaction energy on the

direction of the induced dipoles, and as such shows the interaction energy’s

dependence on the direction of the external (uniform) electric field. If the par-

ticles are aligned along the direction of the electric field (such that the vectors

R and Eext are parallel), then sin θ1 = sin θ2 = 0 and cos θ1 = cos θ2 = 1 (or

-1), the interaction energy (E ||
int) is negative, and the interaction is attractive.

However, in the opposing case when the particles are aligned perpendicularly

to the field, i.e. when R and Eext are orthogonal, the interaction energy (E⊥
int)

is positive and indicative of a repulsive interaction. As such,

E ||
int(p1,p2) = − p1p2

2πϵ0R3
, E⊥

int(p1,p2) =
p1p2

4πϵ0R3
, (2.38)

As such, it can be deduced that the classical dipolar interaction energy is of

a greater magnitude, but opposing sign, in the attractive case (E ||
int) than the

repulsive case (E⊥
int) due to the factor of two inside the bracket in equation 2.37.

In both cases, the interaction energy decays as 1/R3 and if the field strength

is halved, the interaction energy is reduced by a factor of four. However, the

classical formalism utilised from Stone’s[52] work, as discussed throughout this

section thus far, negates the interaction of one particle with another (polar-

isation), the interaction of which would be expected to heavily influence the

resultant surface charge distribution on the particle, and hence the force acting

on the particle given equation 2.24.

To account for the polarization of each particle due to the presence of another

particle, a formalism such as that derived throughout this chapter is required.

However, as the formalism derived throughout section 2.2.3 is reliant on the
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truncation of the infinite sum over ℓmax in equation 2.13, a convergent value of

ℓmax must be determined such that the interaction can be deemed as physically

accurate. This can be achieved graphically by inspection or numerically with

a tolerance, both of which are employed throughout this chapter depending on

the cost of the computations involved as although this method scales linearly

with the number of particles, it scales quadratically with respect to ℓmax, for

the evaluation of E ℓmax
int , as in Lindgren’s original formalism.[58]

Figure 2.2: The interaction energy and the error in the interaction energy as a
function of ℓmax to determine the convergence; the interaction energy as a function
of ℓmax for two particles where R is parallel to Eext in an electrical field of 2000
kV/m as shown in the inset (a), the total absolute error in the calculation of the
system depicted in the inset of a for external electrical fields of 600, 1000, and 2000
kV/m (b), the interaction energy as a function of ℓmax for two particles where R
is orthogonal to Eext in an electrical field of 2000 kV/m as shown in the inset (c),
the total absolute error in the calculation of the system depicted in the inset of c for
external electrical fields of 600, 1000, and 2000 kV/m (d). The particles simulated
have a dielectric constant of 10, in a vacuum (κ0 = 0), with a radius of 5 µm at
0.01 µm surface-to-surface separation.

Figure 2.2 shows the variation in the accuracy of the formalism presented

throughout this section for a given ℓmax in various electrical fields, for the

cases of maximum repulsion and attraction, utilising the interaction energy of
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the system to assess the accuracy. Whilst the surface charge distribution can

also indicate convergence of equation 2.13 via its smoothness, the interaction

energy is used in this capacity throughout for both simplicity and its physical

importance in the analysis/evaluation. An interaction energy deemed to be

accurate (ℓmax = 30) was used as a benchmark to calculate the total absolute

error of the system.

It can be seen from figure 2.2a that the interaction energy has converged for

the case of two dielectric particles in an external electric field parallel to R of

2000 V/m in size when ℓmax = 25, and ℓmax = 15 if R is orthogonal to Eext.

These parameters were chosen given an at least 1% error from the previous

point. This difference in the rate of convergence can be physically justified as

a consequence of the increased separation between the areas of highest surface

charge in the orthogonal case compared to the parallel case, as illustrated via

the insets in figures 2.2a and c.

As the magnitude of the external electric field is increased, higher values of ℓmax

are required to achieve convergence as shown by figures 2.2b and d. This is due

to the increased quantity of charge at the poles of the particles in increasing

electric fields causing the polarization on the neighbouring particle to be much

greater. As such, the degree of the spherical harmonics required to describe

the polarization increases with electric field size.

Given a convergent and computationally affordable regime, ℓmax = 35, the

interaction energy as a function of surface-to-surface separation can be calcu-

lated for the systems depicted in the insets figure 2.2a and c. As such, the

interaction energy as a function of separation can be determined, as shown

in figure 2.3 alongside the interaction of two dipoles, the size of which are

determined using equation 2.32.

The results shown in figure 2.3 show that in the case of attraction, the in-

teraction energy between particles can be twice as large as that predicted by

the approximation of fixed dipoles (2.37). Consequently, at short separation

distances, a quantitatively accurate account of the interaction energy (and the
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Figure 2.3: The interaction energy between two neutral dielectric particles (r1 =
r2 = 5 µm and κ1 = κ2 = 10) in an applied electric field as a function of the
separation distance. Dashed line: approximation of two fixed dipoles as defined by
Equation (2.37); solid line: calculation using Equation (2.27) taking into account
the separation-dependent particle polarisation. The strength of the applied electric
field is 100 kV/m (red), 200 kV/m (blue) and 300 kV/m (black). The interaction
takes place in vacuum, i.e. κ0 = 1.

force) can only be achieved through a realistic description of surface charge

polarisation, i.e a description beyond the induced dipole ℓmax = 1 approxima-

tion as we describe here, where in the case of Figure 2, ℓmax = 30 with 1454

Lebedev integration points used.

Figure 2.4: The interaction energy between two neutral particles (r1 = r2 = 5 µm)
in an external electric field of 200 kV/m as a function of their dielectric constant.
Dashed line: approximation of two fixed dipoles as defined by Equation (2.37); solid
line: calculation using Equation (2.27). The surface-to-surface separation distance
is 10−3 µm (a), 5 µm (b), 100 µm (c). The interaction takes place in a medium
with κ0 = 10. Note change of scale along the y-axis.

The nature of the attraction at short separations is also critically influenced
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by the polarisation of the medium, as shown in Figures 2.4 and 2.5. When

the dielectric constant of the medium κ0 is greater than that of the particles

κi, shielding by the medium reduces the strength of the attractive interac-

tion between particles. Figure 2.4a shows the most pronounced case of such

a shielding effect at 10−3µm surface-to-surface separation. At a large separa-

tion, as shown in Figure 2.4c, the shielding effect becomes negligible. When

κ0 < κi, the interaction is much stronger when particle polarisation is taken

into account, as confirmed in Figures 2.4a and 2.5a, and also in Figure 2.3. Fig-

ure 2.5 supplements these observations with calculations of the inter-particle

interaction energy for a large range of values of the dielectric constant of the

medium - from 1 (vacuum) to 100. The simulations in both Figure 2.4 and

2.5 required spherical harmonics of the 30th degree (i.e., ℓmax = 30) with 1454

Lebedev integration points for the evaluation of equation 2.31.

Figure 2.5: The interaction energy between two neutral particles (r1 = r2 = 5 µm
and κ1 = κ2 = 10) in an external electric field of 200 kV/m as a function of the
dielectric constant of medium: a) κ0 ranging from 1 (vacuum) to 100; b) expansion
of the region for κ0 values between 10 and 45, highlighting minor extrema. Dashed
line: approximation of two fixed dipoles as defined by Equation (2.37); solid line:
calculation using Equation (2.27). The surface-to-surface separation is 10−3 µm.

The special case of a neutral surface containing a point charge has been dis-

cussed in Filippov et al, [50] where the four extreme orientations of two point

surface charges were considered in several different chemical scenarios; this



Chapter 2. Physical Applicability of the Framework 54

work[50] is in excellent agreement with the method presented here. For the

general case κi κ0, the orientation of the particles shown in Figure 2.6 is the

most attractive scenario in the absence of an external electric field. Further-

more, an inhomogeneous surface charge distribution, such as a point charge

placed on a neutral sphere, breaks the axial symmetry (except for a few specific

cases) thus presenting a more complex system.

Figure 2.6: The interaction energy between two dielectric particles (r1 = r2 = 5µm)
containing a surface point charge of 50e as a function of the strength of the applied
external field: κ1 = κ2 = 20 (solid line), κ1 = κ2 = 5 (dashed line), κ1 = 20 and
κ2 = 5 (dotted line), and κ1 = 5 and κ2 = 20 (dot-dashed line). The interaction
takes place in a dielectric medium with κ0 = 10 at the surface-to-surface separation
of 10−3µm. Illustrations alongside each graph show the orientation of the external
electric field: parallel with (a and c) and perpendicular to (b) the alignment of the
interacting particles.
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As illustrated in Figure 2.3, the interaction between two particles in the pres-

ence of an external electric field has a strong directional dependence. If the

strength of the applied electric field is high, the interaction between particles

containing surface point charge follows the trends seen in Figure 2.3. In this

case, the dominant contribution to the interaction energy/force comes from

a field-induced dipole-dipole interaction. When both particles have the same

dielectric constant (solid and dashed lines in Figures 2.6a-and c), a strong

attractive interaction occurs when the field is acting parallel to particle align-

ment (Figures 2.6a; θ = 0 and 2.6c; θ = π); however, if κ0 > κi (dashed line)

the dipole-dipole interaction is reduced due to the medium shielding effect. In

Figure 2.6b where the applied field acts in the direction perpendicular to parti-

cle alignment (θ = π/2), the interaction is driven by the repulsive dipole-dipole

interaction.

Figure 2.7: The interaction energy between two particles (r1 = r2 = 5 µm) in an
external electric field of 200 kV/m as a function of the angle of the field rotation:
left) neutral dielectric particles; right) dielectric particles with a point surface charge
of 50e, as shown in Figure 2.6. Dashed line: κ1 = κ2 = 5; solid line: κ1 = κ2 = 20;
dot-dashed line: κ1 = 20, κ2 = 5; dotted line: κ1 = 5, κ2 = 20. The interaction
takes place in a medium with κ0 = 10 at the surface-to-surface separation of 10−3

µm. Note that in the case of uniform surface charge distribution (a) the cases of
κ1 = 20, κ2 = 5 and κ1 = 5, κ2 = 20 are identical.

If κ1 < κ0 < κ2 (dot-dashed lines) or κ2 < κ0 < κ1 (dotted lines), the domi-

nant dipole-dipole interaction is repulsive when the field is parallel to particle

alignment, and it is attractive when the field is perpendicular to the particle

alignment as in the latter case the dipoles point in opposite directions. At
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smaller magnitude of applied electric field, an additional contribution to the

interaction energy from the surface point charges becomes significant leading

to more subtle effects. The strength of the interaction in this case is governed

by the total surface charge represented by fixed point charges and induced

surface charge. This behaviour can be understood through Equation (2.27)

by realising that σℓmax
p ⩾ σℓmax

ext for weak external fields and σℓmax
p ⩽ σℓmax

ext for

strong external fields. However, as these studies refer to charged particles, the

interaction energies in both Figures 2.6 and 2.7 are calculated via the evalua-

tion of Equation (2.31) in order to only study the interaction of the particles

with one another.

With the addition of a point charge to the surface of each particle, the inter-

action energy described by Equation (2.27) is again driven by the total sur-

face charge density having both σℓmax
ext and σℓmax

p components. For the case of

κ1 = κ2 = 20, polarisation due to the point charge leads to a more attractive

interaction at θ = π where the total surface charge at 10−3µm surface-to-

surface separation (s) increases due to the applied field; the interaction is less

attractive at θ = 0 as the total charge at the closest s decreases due to the

field. The same reasoning can be applied to the case of κ1 = κ2 < κ0 but with

the opposite overall effect. Similarly, in the case of κ1 < κ0 < κ2, the general

shape can be attributed to the effects captured in Figure 2.7 (left) for neutral

particles. The deviation in the interaction energy at θ = 0 and θ = π for the

cases where κ2 ̸= κ1 is due to the polarisation caused by the point charge on

the surface of the neighbouring particle.

In conclusion, the results presented in Figures 2.3 - 2.7 agree with the classical

picture of interaction between two fixed-size dipoles, whilst showing varia-

tions in the strength of such interaction due to particle polarisation, which

are substantial when the inter-particle separation is comparable to the size of

the particles. A quantitative description of charged particles with inhomoge-

nous surface charge distributions interacting in an external electric field can

be obtained readily using the formalism presented in Section 2.2.4.
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2.3.3 Three-Body Physical Applicability

Given the difficulties that arise upon trying to calculate the effect of three

bodies interacting, test cases are formulated to understand the effect of polar-

ization on such systems.

Filippov et al [50] showed that two particles with a surface charge distribution

including a point charge could attract one another, even if the point charges

are of the same sign due to the polarization such a concentrated charge causes

for certain linear arrangements of particles.

Given an accurate many-body formalism, such studies can be extended to

determine the forces acting on longer (N = 3) linear arrangements of particles

possessing a point charge of their surface. Although, the particles would also

undergo a torque in response to several of the orientations investigated, only

the net force acting on the particle is considered here.

Figure 2.8a illustrates the geometric arrangement of three particles in a chain

and defines the variable describing orientation of the central smaller particle

in the chain, as studied in figure 2.8b. Given the findings of Filippov et al,

it is expected that upon alignment of the point charge on the central sphere

with either of the two outer particles charge-axis, the particle will undergo a

maximum force in the direction of the point charges nearest neighbour (F||)

due to this position inducing the maximum polarisation between the particles.

Given such an orientation, there would also be zero force acting in the direc-

tion perpendicular to the alignment of the particles (F⊥). This was observed

throughout our simulations, as seen in figure 2.8b.

Given the symmetry of the system, it would also be expected that when the

point charge is placed directly atop the central particle in the chain (θ = π/2),

F|| = 0. This is due to the fact that both particles provide an equal force

component parallel to the direction of alignment, but in opposite directions,

hence cancelling each other out. The framework presented in this section agrees

well with this physical justification, as can be seen by the local maxima at θ
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Figure 2.8: An investigation of the force acting on the central particle, parallel
(orange) and perpendicularly (black) to the point charge alignment. The particles
have radii of 0.8, 0.5 and 0.8 nm from left to right and are placed at 0.1 nm surface-
to-surface separation, with a point charge of 1e placed on each of the surfaces with the
two larger spheres at opposite orientations. Each particle has a dielectric constant
of 37.5 and exists in a vacuum. (a) shows the system under investigation where F||
is the force acting parallel to particle alignment, F⊥ is the force acting perpendicular
to the point charge alignment, whilst θ is the angle from the axis of charge alignment
such that 0 ≤ θ ≥ 2π. (b) shows the variation of F|| and F⊥ with θ.

= π/2.

The maximum component of the force experienced by the central particle in

such a configuration, according to figure 2.8b, does not occur at one of the

limiting geometries previously discussed. Due to the maximum polarisation of

the system occurring upon alignment of the central point charge with the axis

of particle alignment, the maximum force experienced by the particle in either

of the directions defined by F|| and F⊥ occurs as θ → 0 and θ → π/2. This

is due to the restoring force of the system attempting to restore the system to

its most stable state (θ → 0 and θ → π (maximum attraction), as investigated
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in the two-body case by Filippov et al [50].

2.3.4 Melting ionic colloidal crystals in external electric

fields

A better understanding of opposite-charge colloidal interactions could facil-

itate the controlled production of binary crystals with nanometre sized con-

stituent particles, which will ultimately find applications in advanced photonic

materials[59]. Leunissen et al. [47] investigated the formation of apolar col-

loidal crystals consisting of polymethyl methacrylate (PMMA) particles with

opposite, dissimilar charges and different sizes suspended in a density match-

ing mixture of cyclohexyl bromide (CHB) and cis-decalin. The particle charge

was regulated by the addition of tetrabutyl- ammonium bromide (TBAB) salt,

which also controlled the Debye screening length. This electrolyte could act

as a screening agent, stabilising the crystal given its large excess-charge. The

authors [47] reported that for a broad range of particle sizes and charges, the

PMMA particles formed body centred cubic type (Caesium Chloride) crystals,

which could be reversibly destabilised by the application of an electric field.

The latter behaviour can be explained by calculating the electrostatic force

that charged particles experience in an external electric field. A force acting

in the direction of the applied field can be understood as a consequence of a

surface charge distribution different from that in the absence of the field (see

Figure 2.1). When exposed to a sufficiently high electrical field, the dipolar

nature of the surface charge distribution leads to repulsion between particles

in the plane perpendicular to the direction of the field,[52] behaviour similar

to that shown in Figure 2.3.

If the movement of surface charge causes a colloidal crystal to destabilise then

the energy required could be of significant practical interest, which would re-

quire the evaluation of Equation (2.27), however here we evaluate Equation

(2.31). In the subsequent numerical results, the interaction energy between
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Figure 2.9: The interaction energy of PMMA colloidal crystal (κPMMA = 3, r1 =
1.08 µm, r2 = 0.99 µm, lattice parameter al = 2.4 µm) as a function of the applied
electric field. The PMMA crystal is suspended in vacuum (κ0 = 1) and in solvent
(κ0 = 5). The charge on PMMA particles is ±100e (a), ±10e (b), ±1e (c). In the
absence of the external electric field, the interaction energy of the PMMA crystal is
small but negative in all three cases.

particles in the crystal only has the electrostatic component as described in

Section 2.2.3. A vanishingly small osmotic pressure, such that the crystals

are self-supported by the cohesive energy is also assumed; indeed, these were

experimental conditions adopted by Leunissen et al.[47]

Figure 2.9 presents the electrostatic energy of a PMMA crystal both in vacuum

and in the presence of a solvent. The dielectric constant of the latter (κ0 = 5)

matches that reported in experiments by Leunissen et al. [47] The model

crystal used in simulations contains 1024 particles making it smaller than single

crystals formed in experiments. Due to the negative value of the electrostatic

interaction energy, the PMMA crystals in vacuum are predicted to be stable

over a wide range of charge on the constituent particles. An interesting result

from the calculations presented is that in vacuum the crystal can be stabilised

even further with an increase of the strength of the applied field. This model

also predicts that the PMMA crystal is stable in solvents in the absence of the

applied electric field, but its structure can be destabilised by application of

the field. Therefore, this model implies that if the solvent is more polarisable

than the colloidal particles, then the crystal becomes unstable with increasing

strength of the external field, as also seen in the experiments reported in

Leunissen et al, [47] where κ0 = 5 was greater than κPMMA = 3.
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If the external field is switched on, the average electrostatic forces on oppositely

charged particles act in opposite directions along the applied field, eventually

causing the crystal structure to break apart and melt (see Figure 2.10). A more

subtle change in the electrostatic force due to polarisation occurs in directions

perpendicular to the applied field. Figure 2.10a exhibits several interesting

features, including the value of the field strength at which the average force on

a particle in the direction of the applied field is zero and the point at which

it crosses forces acting in the two directions perpendicular to the field. As

Figure 2.10 shows, in the absence of an external field all three components of

the net force on each particle have the same magnitude. At low field strength,

the three components of the force are comparable in magnitude, and when

the net force in the direction of the field is zero, the crystal particles still

experience opposing and equal forces acting in the perpendicular directions

(Figures 2.10b,c). Eventually, the direction of the force components parallel to

the field change sign and become dominant with a further increase in the field

strength, causing displacement of the oppositely charged particles in opposite

directions along the field.

Experimental studies [47] have reported observations of PMMA crystal melt-

ing through the application of an electrical field. At low values of the field

strength, approximately 7 kV/m, a large CsCl-type crystal was found to be

generally disordered. However, with the increase of the field strength to about

20 kV/m, lane formation was observed. These findings can be explained using

the calculations presented here using spherical harmonics of the 13th degree

with 266 Lebedev integration points in a compromise of accuracy for compu-

tational cost. Disorder and melting of crystals occurs in the range of electric

field values which are greater than the field strength corresponding to zero in-

teraction energy in Figure 2.9 (positive interaction energies indicate unstable

structures) but less than the value of the field at which the force components

in Figure 2.10a are all equal in magnitude. Lane formation, in which channels

of like-charged particles segregate into groups perpendicular to the field, is
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Figure 2.10: The average force acting on PMMA particles in the crystal (z1,2 =
±10e, r1 = 1.08 µm; r2 = 0.99 µm) suspended in solvent (κ0 = 5): a) in the direction
of the applied field (solid lines) and in the directions perpendicular to the field (dashed
lines), b) and c) scale up of the forces acting in the directions perpendicular to the
field. The force on negative particles is depicted in blue and on positive particles in
red.

observed at much higher fields, exceeding the value at which the force compo-

nents in Figure 2.10a are equal. In this case, strong average forces acting on

each particle, either in the direction of the field (positively charged particles)

or anti-parallel to the field (negatively charged particles), cause their spatial

separation and lane formation.

2.3.5 Conclusion

Initially, an extension to the framework developed by Lindgren et al[49] was de-

rived and implemented in MATLAB. The physical applicability of this frame-

work was then tested against the arguments posed by Lindgren et al, general

physical justifications, and classical formalisms from throughout the literature.[50,

52] Excellent agreement was found in all comparative test cases, with any devi-

ation found to be physically well justified. The formalism was then applied to

qualitatively describe the destabilisation of colloidal crystals within a relatively
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highly polarisable medium. Such simulations found good agreement with the

experiments of Leunnisen et al., and hence confirmed their findings. Given the

novelty of such systems, the presented formalism was used to determine the

nature in which such crystals destabilise due to the presence of an electric field

for the first time.



Chapter 3

Coalescence of Ice and Dust in

the Atmosphere

3.1 Introduction

A significant fraction of the cosmic dust and meteoroid material that hits the

Earth remains in the atmosphere for extended periods of time and is a source

of solid dust particles, referred to as meteoric smoke particles (MSP) [60, 61].

MSP are formed by an ablation process, whereby meteoroids colliding with

atmospheric particles experience strong deceleration and are heated to evap-

oration temperatures. Meteoric and atmospheric species form an expanding

column of partially ionised gas behind the meteoroid, which is observed as

a meteor, see e.g. [62]. Part of the meteoroid material vaporises, and the

released small solid particles and gaseous species are incorporated into the

atmosphere where they grow further to form MSP, see e.g. [60, 63]. The

coalescence or condensation mechanisms leading to dust agglomerates is con-

sidered to be an important aspect of atmospheric physics and chemistry. A

better understanding of these mechanisms could help to establish the signifi-

cance of particles containing refractory materials that are present in the upper

mesosphere and lower thermosphere (MLT), which in short, is the region of

60 to 130 km. These small solid particles could also play a role in the for-

64
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mation of ice clouds by providing a core for heterogeneous condensation that

is more effective than homogeneous nucleation. During summer, at high and

mid latitudes the temperature near the mesopause reaches a minimum and can

fall below the freezing point of water [64], and clouds of ice particles, polar

mesospheric clouds (PMC), can form at heights of 80 to 85 km [65]. These

are also observed from Earth after sunset and are known as noctilucent clouds

(NLC). Because NLC may be an indicator of climate change [66], it is impor-

tant to understand the possible role of meteoric smoke in the coalescence of

ice particles, although the growth of the meteoric smoke is an interesting topic

of research in itself.

Models of coagulation [60, 63, 67] take into consideration the convection of dust

particles in global atmospheric circulation, the influence of gravitational force,

and Brownian motion. The models also assume that particles stick together

after a collision, which is not always the case. The outcome can depend on

the relative velocity of the colliding particles and the elasticity of a collision

as defined by the ratio of the particle speeds after and before the collision

(coefficient of restitution), which can vary according to the composition of a

particle. Dust charging, which can cause particles to experience either strong

attractive or repulsive forces, could also play a role in the growth process. This

consideration has not previously been included in modelling the collisional dust

growth in the MLT, but has been studied for droplets in tropospheric clouds

[68].

In this work, the influence of surface charge on particle agglomeration processes

is investigated utilising the formalism developed in chapter 2, alongside sta-

tistical mechanics protocols presented by [69] and [50]. These theories predict

collision outcomes according to the variables of particle size, charge, dielectric

constant, relative kinetic energy, collision geometry and the coefficient of resti-

tution. The presence of negative, positive and neutral particles in the MLT

region implies that Coulomb forces between oppositely charged objects are the

main attractive component of any electrostatically-driven dust agglomeration
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process. However, in addition to the strong attractive interaction between

oppositely charged particles, attractive interactions between particles of the

same sign of charge can also take place at small separation distances, leading

to the formation of stable aggregates. This attractive force is governed by

the polarisation of surface charge, leading to regions of negative and positive

surface charge density close to the point of contact between colliding parti-

cles [21]. The strength of the resulting attractive electrostatic force depends

on particle composition as the value of the dielectric constant determines the

extent of polarisation of bound surface charge. Previously, the model has suc-

cessfully explained the effects of like-charge attraction in a range of coalescence

processes such as agglomeration of single particles and small clusters derived

from a metal oxide composite [70], aerosol growth in the atmosphere of Titan

[71] and self-assembly behaviour of charged micro-colloids [72]. Interactions

between pairs of neutral and charged particles also depend on the polarisation

of surface charge, but these take place in the absence of a Coulomb barrier (see

below). In atmospheric science, the method of image charges is routinely used

to study collision outcomes if particles can be approximated by conducting

spheres (or having the dielectric constant greater than 80). The image charge

model can also be applied to study qualitatively the interaction between di-

electric particles if the value of the image charge is corrected as q′ = ϵ1−ϵ2
ϵ1+ϵ2

q,

where ϵ1 and ϵ2 are the dielectric constants, q′ is image charge, and q is real

charge. [73] In contrast, quantitatively accurate theoretical studies of inter-

acting dielectric spheres began only quite recently.

The focus of this work is on aggregation processes relevant to mesospheric

conditions and in particular at high latitudes. The MLT region offers unique

conditions in terms of the electrostatic environment, composition and physical

parameters such as temperature and pressure. The pressure at 60 km is less

than 100 Pa and decreases further with increasing altitude; therefore, particles

interact essentially in vacuum, and, consequently in these simulations, the di-

electric constant of the surrounding medium is taken to be one. To investigate
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the growth of meteoric smoke particles, both charged and neutral metal oxide

particles are considered, with radii ranging from 0.2 nm to 5 nm as shown in

Table 3.1. To simulate the growth of ice onto the meteoric smoke, interactions

between metal oxide particulates and large ice particles ranging in size from 10

nm to 100 nm and with charges 0 to -5 e are examined. As these particles typ-

ically possess a low charge (or a single charge arising, for example, from either

a photoionisation event that removes a single electron from a molecule on the

particle or the attachment of an ambient ion) the charge distribution is best

represented by a point free charge residing on the surface. For this case, the

numerical method developed in chapter 2 is utilised to allow for a description

of particle charge in the form of point charge(s) residing on its surface, similar

to a solution proposed in [50]. Comparisons with a uniform distribution of free

surface charge, as described in [69], shows that for particles with radii greater

than 10 nm, the choice of a specific form of surface charge distribution does

not affect the calculated electrostatic energy between particles; however, the

difference does become important for sub-nanometer particles.

Table 3.1: Common particulates found in the MLT region which are considered in
this study.

Particle Dielectric Density / Size range / Charge /
Constant g/cm3 nm e

Ice, H2O 100 0.92 3 - 100 0, -1 to -5
Silicon Dioxide, SiO2 3.9 2.65 0.2 - 5 0, -1, -2

Magnesium Oxide, MgO 9.6 3.58 0.2 - 5 0, -1, -2
Iron Oxide, FeO 14.2 5.74 0.2 - 5 0, -1, -2

The remaining parts of this chapter are organised as follows. In section 3.2,

we describe the ionospheric dusty plasma in the region where we study dust

growth. In section 3.3, the range of relative velocities for collisions leading to

aggregation is calculated for all collision scenarios that are considered suitable

to describe the interactions between ice and dust particles in the mesosphere.

These velocity ranges are subsequently used to calculate the percentage ag-

gregation outcome. The orientational geometry of the collisions is discussed,
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and a quantitative estimation of the electrostatic interaction energy profile is

presented for collisions between like-charged particles. Section 4 focuses on

specific cases of aggregation between like-charged dust and ice particles, and

section 5 deals with aggregation between small charged dust particulates. A

brief discussion of the results is provided separately in section 6.

3.1.1 Aims and Objectives

The aim of this study is to accurately describe the collision mechanics and

charge induced polarization between ice and meteoric dust particles in the

mesosphere and lower thermosphere. This data will be utilised alongside ex-

perimental findings to evaluate the probability of particulate growth in these

environments. Factors including particulate size, composition and charge are

to be considered.

3.2 Collision Mechanics

Temperatures close to the mesopause at high latitudes fall during summer to

the range of 130 K to 150 K, but observational studies have shown this to be

variable [64]. Such low temperatures have a significant effect on the nature

of water droplets, as according to the appropriate phase diagram [74, 75], ice

particles are in a ‘soft ice’ state and may absorb some of the kinetic energy

present during a collision. This possibility has implications for the outcome of

all collisions between small metal oxide particulates and ice particles, which

at short separation distances can exhibit a strong attraction, even when both

particles have a charge of the same sign [69]. However, for like-charged particles

with low velocities, this attractive region is largely inaccessible due to the

presence of a large repulsive Coulomb energy barrier (ECoul) which prevents

their aggregation. In addition to the Coulomb barrier, other factors affect

aggregation during a collision; these include the binding energy as defined by

the interaction energy at the point of contact (E0), the coefficient of restitution
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(kr), the Maxwell-Boltzmann distribution of particle velocities at a defined

temperature, and the composition of colliding particles (as defined by the

dielectric constant and particle density).

The total kinetic energy of a system containing two colliding particles is the

sum of the relative kinetic energy with respect to the centre of mass (Krel) and

the kinetic energy of the centre of mass (Kcm)

Ktot =
1

2
µv2rel +

1

2
Mv2cm (3.1)

where µ = m1m2

m1+m2
is the reduced mass of the colliding particles, M = m1+m2,

vrel = v1 − v2, and vcm =
∑

mjvj
M

(j = 1, 2). The kinetic energy of the centre of

mass is unaffected by changes in the inter-particle interaction energy, but due

to the law of conservation of energy, the loss or gain of electrostatic interaction

energy between the colliding particles leads to corresponding changes in the

relative kinetic energy. At the point where the electrostatic interaction energy

is at the maximum (ECoul), the relative kinetic energy of the colliding pair is at

the minimum. Once over the barrier and immediately before the collision the

kinetic energy is at its highest, i.e. Kbefore
rel = K initial

rel − E0, and in an inelastic

collision, it is reduced to Kafter
rel = kr

2×Kbefore
rel . If kr = 1, the collision is elastic

and the kinetic energy does not change during the collision. The minimum

relative initial velocity colliding particles require to overcome the Coulomb

barrier is therefore

vmin
rel =

√
2ECoul

µ
. (3.2)

If the loss of kinetic energy during a collision (Kbefore
rel −Kafter

rel ) is greater than

the excess kinetic energy as compared to the Coulomb barrier (K initial
rel −ECoul),

then the particles are trapped behind the barrier. The maximum relative

initial velocity (vmax
rel ), above which coalescence is not possible, is derived from

the situation where, during a collision, insufficient kinetic energy is removed

through the action of the coefficient of restitution and the particles fly apart.
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Figure 3.1: Possible outcomes for a collision between like charged particles. The
total energy is schematically split into two components: the electrostatic interaction
energy (solid) and the relative kinetic energy (dashed). The electrostatic interaction
energy profile is calculated for a collision between ice particle (r1 = 3 nm) and SiO2

particle (r2 = 0.5 nm) both carrying the charge of q1 = q2 = -1e.

This maximum initial velocity is given by:

vmax
rel =

√
2[(ECoul − E0)/kr

2 + E0]

µ
. (3.3)

Such collision scenarios are illustrated in Figure 3.1 based on an example case

of a small SiO2 particle colliding with a larger ice particle both carrying a

negative charge of q1 = q2 = −1e. Three possible outcomes are described. If

the relative kinetic energy of the colliding particles is smaller than the height

of the Coulomb barrier (KRel < ECoul) then the particles always repel one

another without energy loss. If the particles collide inelastically with a relative

kinetic energy sufficient to overcome the Coulomb barrier, the loss of kinetic

energy during a collision may prevent their subsequent separation and lead to

the formation of a stable, or metastable, aggregate (KRel > ECoul, k
2
rKRel <

ECoul−E0). If the energy loss during such a collision is not sufficient to stabilise
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Figure 3.2: Aggregation probability, indicated by the shaded area, for a collision
between SiO2 particle (r2 = 0.2 nm, q2 = -1e) and ice particle (r1 = 30 nm) as
defined by the Maxwell-Boltzmann distribution of the relative velocity at T = 150 K:
(a) the case of neutral ice particle (q1 = 0), the probability of aggregation is one
as P (vrel) is integrated in the velocity range of [0,1192] ms−1; (b) q1 = -1e, the
probability of aggregation is 0.293 as P (vrel) is integrated in the velocity range of
[295,1219] ms−1; (c) q1 = -2e, the probability of aggregation is 0.034 as P (vrel) is
integrated in the velocity range of [450,1260] ms−1. The values of vmin

rel and vmax
rel are

taken from Table 2.

the pair, the particles rebound and separate (k2rKRel > ECoul−E0). The latter

case may be applicable in warmer regions of the atmosphere where particles

move with higher velocities. In this work, we consider a wide range of particle

velocities in order to identify a wide range of possible collision outcomes. The

probability distribution for the relative velocity of two colliding particles in the

form of a Maxwell-Boltzmann distribution at temperature T is given by [76]

P (vrel) =

√
2

π

( µ

kT

)3/2
v2rele

−µv2rel
2kT . (3.4)

assuming the direction of the velocity of the three-dimensional particles’ is

along the axis of particle alignment.

In Figure 3.2, representative examples for the Maxwell-Boltzmann distribu-

tion of the relative velocities are shown for collisions between SiO2 particles

carrying a charge of q2 = -1e and ice particles with q1 = 0, -1e, and -2e at

T= 150 K. If the surface charge is represented by a point charge residing on

the particle’s surface then the orientational geometry of a collision becomes

important. Figure 3.3 shows the geometries considered in this study, both for
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Figure 3.3: Position of the point charge on the surface of colliding particles depicted
by a small open circle: (a) ice particle (1) and small oxide particulate (2); (b) and
(c): both particles (1 and 2) are oxides.

collisions between ice particles and small metal oxide particulates (Figure 3a)

and for collisions between metal oxide particles (Figures 3b and 3c).

Bichoutskaia et al.[69] have shown conclusively that, between like-charged at-

traction between particles is strongly size-dependent, such that particles car-

rying the same amount of charge should have dissimilar sizes. This effect

becomes more noticeable with the increase of the ratio of particle radii, r1/r2;

as the ratio increases, surface charge polarisation becomes more pronounced,

leading to strong attraction at short separation distances and a reduction of

the Coulomb barrier. This effect is illustrated in Figure 3.4a, which shows

electrostatic interaction energy profiles as a function of separation distance for

collisions between like charged ice and SiO2 particles (q1 = q2 = -1e) as the

size of the ice particle varies between r1 = 10 nm, 20 nm and 30 nm. As the ice

particle becomes larger, the height of the Coulomb barrier decreases, which in

turn can affect the outcome of a collision. Note that Figure 3.4 refers to a col-

lision geometry shown in Figure 3.3a which favours the attractive interaction

between two particles, each with a point charge located on their surface.

In this example, SiO2 particle approaches the ice particle from the direction

opposite the location of the point charge on the latter, and this collision cor-
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Figure 3.4: Electrostatic interaction energy as a function of the separation distance
between an ice particle and a SiO2 particle (r2 = 0.2 nm, q2 = -1e) in the geometry
shown in Figure 3.3a. Horizontal lines indicate the value of the Coulomb energy
barrier obtained using the uniform surface charge model: (a) the charge of the ice
particle is q1 = -1e, and the radius varies as r1 = 10 nm (line 1), 20 nm (line 2)
and 30 nm (line 3); (b) the radius of the ice particle is r1 = 30 nm, and the charge
varies as q1 = -1e (line 3), -2e (line 4) and -5e (line 5). Note the change of scale
on the y-axis.

responds to the least repulsive interaction. An equivalent scenario has been

considered assuming a uniform distribution of surface charge on both particles,

following the approach described in [69]. The height of the Coulomb barrier

obtained using a uniform distribution of surface charge is depicted in Figure 3.4

by horizontal lines. For the size of particles considered in this work, these two

approximations give very similar results. Although the height of the Coulomb

barrier is strongly influenced by the size of the large ice particle (Figure 3.3a),

it shows no change with variation in sizes of SiO2 particles considered here.

The height of the Coulomb barrier is affected even more greatly when the

charge of colliding particles is changed. In the case considered in Figure 3.4b,

the charge on ice particle was increased from q1 = −1e to −5e to show almost

linear dependence of the barrier on charge variation, in accordance with the

leading Coulomb energy term E ∝ q1q2
s
. The variation of the electrostatic
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energy with particle size shown in Figure 3.4a is a more subtle effect related

to surface charge polarisation (note in Figure 3.4b the change of scale along

y-axis).

3.3 Modelling Ice and Mesospheric Dust

Table 3.2 shows values of vmin
rel and vmax

rel calculated using equations 3.1 and 3.3

with kr = 0.9 upon the collision between an SiO2 MSP and and ice particle.

Integrating the probability distribution shown in Figure 3.2 between these

limits gives the probability that the particles in questions will possess the

required velocity for aggregation. The results are presented in Table 3.2, where

aggregation is expressed as a percentage of all collisions. Table 3.2 summarises

results for the aggregation of a metal oxide particle, with a fixed size and

charge, with ice particles of varying size and charge. These data show that

large ice particles with low charge have the highest probability of coalescence

with like-charged metal oxide particles. However, in many cases the Coulomb

barrier prevents aggregation of particles with the kinetic energies typically

found in the MLT region (kT = 12.9 meV at T = 150 K), assuming that

thermal motion is the predominant contribution to velocity. The barrier can

be overcome by a small number of high kinetic energy particles found in the

tail of the Maxwell-Boltzmann distribution of molecular speeds at 150K. For

these particular interactions, the free charge on the surface of both colliding

particles is described by a point charge with the geometry shown in Figure 3.3a,

and the change in electrostatic interaction energy is due to a redistribution of

bound charge (polarisation effects). Note that for ice particles with higher

charges, a uniform distribution of free charge might be more appropriate. As

mentioned previously, if the initial relative velocity of the incoming particles is

smaller than vmin
rel the two like charged particles repel (case 1 shown in Figure

3.1), however if it is greater than vmax
rel the particles do not coalesce but instead

fly apart due to the residual excess kinetic energy (case 3). Therefore, only
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collisions with a relative initial velocity greater than vmin
rel and smaller than vmax

rel

lead to coalescence. In these examples, a change of the coefficient of restitution,

kr, would not affect the probability of aggregation as kr only reduces vmax
rel , and

values of the latter that fall within the temperature range appropriate for these

calculations have extremely low probabilities.

Table 3.2: Energetic considerations and the percentage of aggregation for SiO2 -
ice collisions at T = 150K and kr = 0.9 (the surface point charge model). SiO2

particle has the fixed radius and charge (r2 = 0.2 nm, q2 = -1e), and the size and
charge of ice particle is varied. The collision geometry is shown in Figure 3.3a. The
interactions of MgO and FeO particles with ice show the same trend (see Tables in
appendix B).

Ice ECoul, vmin
rel , vmax

rel , Aggregation
Particle meV ms−1 ms−1 %

r1 = 30 nm; q1 = 0 0 0 1192 100
r1 = 30 nm; q1 = -1e 23.8 293 1219 29.9
r1 = 30 nm; q1 = -2e 55.3 447 1260 3.57
r1 = 20 nm; q1 = 0 0 0 1235 100
r1 = 20 nm; q1 = -1e 35.7 361 1275 13.7
r1 = 20 nm; q1 = -2e 82.9 547 1333 0.50
r1 = 10 nm; q1 = 0 0 0 1251 100
r1 = 10 nm; q1 = -1e 71.3 511 1330 1.15
r1 = 10 nm; q1 = -2e 165.8 780 1441 0

Figure 3.5 shows coalescence results where the size of the ice particle has been

increased to 100 nm. These data reinforce the fact that, for like-charge colli-

sions, an increase in the size of the ice particle from 10 nm to 100 nm can lead to

an order of magnitude increase in the probability of aggregation. Also given in

Figure 5 are data calculated for a charge of -2e on the ice particle. In this case,

the probability of aggregation is increased from zero (for r1 < 20 nm) to more

than 40% (for r1 ≈ 100 nm), thus providing a mechanism whereby ice particles

can increase their charge, but still participate in aggregation processes.

The results in Table 3.2 and Figure 3.5 demonstrate that there are several

routes whereby ice particles can become contaminated by both neutral and

like-charged MSPs. These calculations on the coalescence of ice particles and

dust are supported by the experimental observations of [77], who have identi-

fied the presence of meteoric smoke in ice particles. Our results also point to
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Figure 3.5: Aggregation probability, presented as percentage, for a collision between
SiO2 particle (r2 = 0.2 nm, q2 = -1e) and ice particle (q1 = -1e and q1 = -2e) whose
size varies from r1 = 1 nm to 100 nm.

coagulation rather than condensation as a possible growth mechanism. Further

studies are however required to help understanding how the collision probabil-

ities influence the magnitudes of rate coefficients for coagulation.

3.4 Aggregation of metal oxide and silica par-

ticles

The abundant presence of metal oxide and silica particles in meteoric smoke

in the MLT region [78] leads to a possibility that these may also aggregate,

and with radii ranging from 0.2 nm to 5 nm, these are amongst the smallest

particles found in this region of atmosphere. Their size means that if the point

charge approximation is used to describe the surface charge, then the exact

location of the point charge on the surface of each colliding particle becomes

very important because, as shown previously by [50], collision geometry can

alter the strength of the electrostatic interaction. This statement does not
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apply to most like-charged interactions because, as shown in Table 3.3, the

height of the Coulomb barrier prevents very small like-charged particles (less

than 5 nm radius) from aggregating. Note that collisions between like-charged

silica particles have lower energy barriers than those calculated for collisions

between iron oxide particles. For collisions involving larger particles (r1 =

5 nm), despite the lower energy barriers the minimum initial velocity (vmin
rel )

required to overcome the barriers for SiO2 are still higher for than those for

FeO particles. These effects arise from differences in density and mass.

Table 3.3: Energetic considerations and the percentage of aggregation for SiO2 -
SiO2 and FeO - FeO collisions at T = 150K and kr = 0.9 (the surface point charge
model). Particle 2 has the fixed radius and charge (r2 = 0.2 nm, q2 = -1e), and the
size and charge of particle 1 is varied. The collision geometry is shown in Figure 3b.

SiO2 - SiO2 ECoul, vmin
rel , vmax

rel , Aggregation,
meV ms−1 ms−1 %

r1 = 0.2 nm; q1 = 0 0 0 8112 100
r1 = 1.0 nm; q1 = 0 0 0 3914 100
r1 = 5.0 nm; q1 = 0 0 0 2187 100
r1 = 0.2 nm; q1 = -1e 2889 4566 9168 0
r1 = 1.0 nm; q1 = -1e 622 1504 4156 0
r1 = 5.0 nm; q1 = -1e 125 671 2273 0.02

FeO - FeO
r1 = 0.2 nm; q1 = 0 0 0 2876 100
r1 = 1.0 nm; q1 = 0 0 0 1811 100
r1 = 5.0 nm; q1 = 0 0 0 1307 100
r1 = 0.2 nm; q1 = -1e 3056 3175 4150 0
r1 = 1.0 nm; q1 = -1e 679 1068 2055 0
r1 = 5.0 nm; q1 = -1e 136 476 1376 0.03

For collisions between charged and neutral particles the Coulomb barrier is

always zero, and their aggregation is driven by polarisation effects. Again,

orientation of the particles becomes important and here two limiting cases are

considered. Table 3.3 corresponds to the case where the point charge on the

surface of particle 2 faces the neutral particle 1 (geometry shown in Figure

3.3b, but we now assume that particle 1 is neutral). In this configuration,

there is strong attraction as the point charge approaches the neutral particle

leading to a re-distribution (polarisation) of surface charge on the latter. This
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leads to a significant increase in the binding energy between the particles (E0)

and results in coalescence through the subsequent action of the coefficient of

restitution. Irrespective of particle composition, the absence of a Coulomb

barrier results in aggregation for all of the examples examined in Table 3.3.

The data displayed in Table 3.4 correspond to the case least favourable to

aggregation between neutral and charged particles. Here, the point charge on

the surface of particle 2 faces away from the neutral particle 1 (geometry shown

in Figure 3.3c but particle 1 is neutral). In this orientation, collisions with the

smallest charged particles (r2 = 0.2 nm) strongly favour aggregation often

resulting in a 100% coalescence outcome, even though the maximum relative

initial velocity of colliding particles required for coalescence is significantly

lower. When the charged particle is very small, the interaction resembles a

point charge - neutral particle case which is always attractive. Note that

the aggregation remains almost complete (100%) even when both charged and

neutral particles are extremely small (r1 = r2 = 0.2 nm) and highly polarisable

(FeO, MgO). In general, there are distinct differences between the aggregation

outcomes for SiO2 particles and the more polarisable FeO particles, with the

FeO collisions consistently having higher percentage aggregation and MgO

particles lie somewhere between the two. For the geometry shown in Figure

3.3c, the aggregation percentage drops very significantly as the size of the

charged particle 2 grows. This is because any surface polarisation response on

the neutral particle due to the presence of a point charge on the surface of

particle 2 is now hindered by the volume of the charged particle itself. Finally,

when the charged particle is large and the neutral one is very small, surface

polarisation effects on the neutral particle are negligible and aggregation does

not occur. This can be illustrated by comparing two examples: if r2/r1 = 10

(radius of charged particle is ten time bigger than that of neutral particle) the

aggregation is 0%, and if r1/r2 = 10 (radius of neutral particle is ten time

bigger than that of charged particle) the aggregation is 100% (Table 3.4).
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Finally, if the results given in Table 3.3 and 3.4 for percentage aggregation are

compared, it can be seen that there are differences that depend on how the

point charges are orientated on these particles, all of which have comparatively

low dielectric constants. In all instances where a charge is pointing towards a

large polarisable particle (Table 3, when q1 = 0 and q2 = −1e), aggregation

is 100%. However, when in Table 4 the charge is located at 180o from the

adjacent particle (case 3c in Figure 3), aggregation drops to 58% when in the

least polarisable particle pair, SiO2, the neutral particle has a radius of 0.2 nm.

As the dielectric constant increases on moving to MgO and FeO the particles

become more polarisable and the percentage aggregation increases.

3.5 Conclusion

This work is focused on the description of basic principles underpinning the

coalescence of ice and dust particles in thermal motion. Specific examples

considered in this study examine coalescence between particles, commonly

found in the mesosphere, at the temperature T = 150 K which is typical to

this region of atmosphere. Pair interactions of charged particulates follow

the Coulomb law with an additional contribution from the attraction between

like-charged and neutral-charged pairs driven by induced polarisation of the

particle surface charge. The latter interactions can be significant at short

separation distances between interacting particles. Low temperatures in the

MLT region imply that the colliding particles are not very energetic, and for

a like-charged pair, the relative kinetic energy is often insufficient to overcome

the Coulomb barrier. However, the high energy tail of the Maxwell-Boltzmann

distribution of the relative velocity at T = 150 K provides an adequate amount

of collisions leading to aggregation both between like-charged particles of ice

and dust, and between dust particulates themselves.

Like-charged attraction is more common (and stronger) between particles with

low charge. This collision scenario can be described by a localised, point
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surface charge model and one where the charge is assumed to be uniformly

distributed over the entire surface of a particle. An earlier study by Filippov

et al. [50] of the interaction between positively charged particles showed that

for particles with low dielectric constants, there is a difference in predicted

behaviour between these two models. As the dielectric constant increases in

value, results from the two models became equivalent. Similarly, differences in

orientational geometry of a collision (extreme scenarios are shown in Figures

3.3b and 3.4c) were also found to be evident at low dielectric constants; but

again these disappeared as the value of the dielectric constant increased. The

presented results provide a basis for future work to estimate the coagulation

rates between particles of a given size and charge and their variation with

temperature.



Chapter 4

The Importance of Polarisation

in Volcanic Ash Clouds

4.1 Introduction

Volcanic ash clouds are of great interest due to both the destruction they

have caused throughout history, and the disruption they cause in the present

day.[79–84] Due to their high density, and consequential opaqueness, their

sudden appearance can cause major disruptions to international travel, the cli-

mate and even human health.[81, 85, 86] As such, understanding the transport

mechanism of volcanic ash is of crucial importance, and given that these ash

clouds are high-temperature environments dense with charged particulates[87–

90], understanding the nature of their growth and nucleation is pertinent.

Volcanic ash clouds are composed primarily of silicate, SiO2,[90, 91] along

with other trace elements such as zinc, vanadium, copper, mercury and even

uranium. The exact composition of trace elements can be unique to a par-

ticular volcano or eruption, as can the characteristics of the silicate particles.

[88, 90, 91] Recent analysis has found that in contrast to this, the particles

have minimum density variation from site to site, and are thought to be of a

similar enough geometry to undergo similar fluidization.[90, 92]

During their transport, these silicate particles readily undergo tribocharging

82
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(the charging of materials through contact), aggregation and de-cumulation,[88,

90, 93] causing a large variation of particulate sizes, charges and charge densities.[90]

With such variation in the properties of the ash particles, polarisation could

pose a significant contribution to the charge-charge interactions in the system,

which also experiences various temperatures throughout the eruption process.

Given the lack of magnetic material present in the ash and its macroscopic na-

ture, such systems can be investigated via statistical analysis as done for the

aggregation of meteoric dust and ice particles in chapter 3.[94] However, given

the various contributions to the particles’ velocity in such an atmosphere, an

understanding of the particles’ behaviour independent of temperature is also

required.[93, 95]

Collisional cross-sections are utilised across physics in various capacities to

study the influence of long range interactions on the trajectories of particles.[96–

98] The definition of the collisional cross section varies from case to case, how-

ever, the scalar definition as utilised in [98] has been shown to be particularly

versatile with applications in both molecular and particulate systems.[98–100]

This also allows one to directly see the variation in the system in comparison to

that of non-interacting models, as utilised throughout the literature.[101–103]

In this chapter, the aggregation of silicate ash particles is investigated. Firstly,

a detailed breakdown of the composition of an ash cloud is presented from data

sourced in literature, before the introduction of a dynamic method utilising the

framework developed in chapter 2 to determine the collisional cross section of

a particle.[98] Initially, the statistical method utilised in chapter 3 [94] is ap-

plied to investigate the effect of temperature on the aggregation of the system,

before a dynamic investigation of the collisional cross section of volcanic ash

is presented.
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4.2 Methods

4.2.1 Composition

After volcanic ash clouds have dispersed and fallen to the Earth’s surface, the

particulates can be collected and examined.[81, 90, 91] Such studies compare

these particles, showing variation in their size and composition. The trace

elements present in these particulates is also unique to the location and possibly

even the individual eruption.[104, 105] However, given the primary component

of their composition is silicate, here we assume pure silicate composition, with a

dielectric constant of 8 given the exact composition of the sample.[90, 106, 107]

Figure 4.1: The relative frequency of occurrence of the detection of surface charge
density (a) and Diameter (b) of volcanic ash samples from the Lawetlat la (blue),
Tonaltepetl (red) and Tungurahua (yellow).

Although the particles from each eruption are observed to be approximately

uniform in composition,[90, 91] they can vary widely in charge, charge distri-

bution and radius.[90] Harper and Dufek [90] observed this by recreating the

ejection of volcanic ash under laboratory conditions with samples collected

from various ash sites; this was done in an effort to study the lightning often

reported during volcanic eruptions. The recreation was required due to the

charging mechanism of tribocharging in ash clouds. As such, all samples were

analysed after 10 minutes of charging/ejection when a steady state of charge
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can be assumed. A small asymmetry in the sign of charge was also observed

by Harper and Dufek, [90] with them reporting a 1-4% more negative grains

than positive charge.

The probability distributions of surface charge and radius can be seen in figure

4.1. Using these distributions, two particle sizes and surface charge distribu-

tions can be randomly chosen to determine the parameters required to inves-

tigate the particles nucleation both statistically and dynamically. Given the

nearly equal split in the sign of the charged particles, both like charged and

oppositely charged interactions are considered.

4.2.2 Collisional Cross-Section

The collisional cross section (CCS) is defined throughout this work as

CCS = πb2max (4.1)

where bmax is the maximum distance above the centre of one particle from

which a successful collision will occur at a given velocity (the impact parame-

ter), as illustrated in figure 4.2, in which all the particles have the same initial

velocity.

Figure 4.2: Illustration of like-charge attraction causing a collision with particles as
further than sum of their radii, and their relation to bmax using a set of trajectories,
each of different offset, evaluated with a dynamics implementation the framework
extended in 2.

In the hard sphere approximation it is assumed that particles only interact via
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collision and undergo no long range interactions - this approximation can be

seen to be accurate at sufficiently high velocity/temperature. It is therefore

possible to directly and quantitatively compare the CCS with that of the sum

of the radii (r1 and r2) of two non-interacting particles, such that

CE =
b2max

(r1 + r2)2
(4.2)

Collisional cross section is largely dependent on the velocity of the incoming

particle, a consequence of the particles environment. As such, it is possible to

investigate the nature of such collisions in a range of environments, and not

just due to thermal motion as in chapter 3.

To conclude, the impact parameter of a system is determined here by the simu-

lation of two particles of varying radius and charge density, as determined from

a population of particles, separated by a distance at which their interaction is

negligible, are propelled towards one another with some offset from the direct

collisions as considered in figure 4.2. These simulations are evaluated via a

dynamics implementation of the many body framework that was extended in

chapter 2. The maximum offset that leads to a collision is determined to be

the impact parameter bmax.

4.3 Results and Discussion

The statistical approach to determine the percentage of velocities able to cause

aggregation requires the parameters of two particles - as a distribution of sizes

and surface charges were measured by Harper and Dufek, [90] the choice of

particle parameters for simulation is a non-trivial. As Harper and Dufek [90]

present the properties of volcanic ash (charge, charge distribution and size)

from three volcanic eruptions, an average was taken of three distributions for

each measured parameter.

Whist the charge density of such particulates belongs to a distribution of var-
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ious densities, each with a corresponding probability of occurring, the mean

free path of a larger particle is much smaller than that of a smaller particle.

As such, tribocharging of the larger particles is often assumed to occur more

readily leading to more larger particles with a higher than average surface

charge density.[108, 109]

Given the distribution of parameters as measured by Harper and Dufek, [90]

three particle radii were chosen to investigate the possibility of like charge

attraction in these systems, and the effect it could have on aggregation. Each

particle was then assigned a randomly chosen surface charge density from

the average distribution reported in [90], where the the smaller particle is

modelled with the smallest surface charge density, the largest particle has the

largest surface charge density and the median sized particle has the median,

randomly chosen, surface charge density.

Particle Radius / µm σ / µC/m2 Mass / ng Charge / fC
Smallest 50 0.0200 13 0.006
Median 100 0.1585 104.3 1.99
Largest 150 1 352 282.7

Table 4.1: The parameters of the particles modelled given a randomly chosen particle
size, and an assigned but randomly chosen surface charge density.

The interaction energy as a function of separation was then determined for

each possible set of asymmetric particle pairs; the smaller particle interacting

with the larger, the larger interacting with the median, and the median inter-

acting with the smaller. The free charge of each particle was assumed to be

uniformly spread over the particle’s surface; this was chosen as given the mag-

nitude of the charges investigated, it is unlikely that charges of the magnitude

considered here will be concentrated on a single point. However, given the

smaller size discrepancy observed between volcanic ash particles compared to

ice and meteoric dust, less like-charge attraction could be expected to occur.

Figure 4.3a shows that particles of the largest and smallest sizes investigated

can undergo like-charge attraction, hence forming the most stable state of the

system given the global energy minimum as the surface-to-surface separation
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Figure 4.3: The interaction energy of two uniformly charged particles as a function
of surface-to-surface separation. The particles have radii: 50 µm and 150µm (a),
50 µm and 100µm (b), and 100 and 150 µm (c).

tends to zero. In contrast, the combination of the smallest or larger particle

with the median particle (figures 4.3b and c respectively), can be seen to have

a local energy minimum at the same point as the global minimum in figure

4.3a.

Given the presence of a minimum at close separation, all the systems shown

in figure 4.3 are capable of aggregating due to their charged nature; after a

certain separation all systems studied here will undergo a force pushing the

particles together. However, for the system shown in figure 4.3a the barrier to

cluster destruction is greater than that of particle formation, which is not the

case in figure 4.3. Given that such systems are subject to random fluctuations,

such as those due to temperature, these metastable states are expected to have

a shorter lifetime than their stable counter parts.

Volcanic ash clouds are subject to a range of temperature conditions, ranging

from 1000oC when inside the volcano and just after ejection, to the temperature

of the ground upon deposition. Unlike most charged particle environments,

several examples of which are given throughout this work, volcanic eruptions

have a time and location dependent background temperature. Given the varia-

tion of the size and charge of the particles in this environment, and the presence

of a theoretical maximum charge density as calculated by Harper and Dufek,

[90] it is unknown if the particles, such as those investigated in figure 4.3, can

self-assemble at certain temperatures to form larger particles. By considering

the Boltzmann distribution of each pair of particles, the percentage of particles
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at velocity able to cause aggregation can be considered.

Figure 4.4: The Boltzmann distribution of probability density as a function of veloc-
ity, for the largest -small (r = 50, 150µm) (a), smallest-median (r = 50, 100µm)(b)
and median-largest (r = 100, 150µm) (c) particle pairs at: 373.15 K (blue), 673.15
K (red), 973.15 K (yellow) and 1273.15 K (purple). Note the change in scale of the
both axis.

Figure 4.4a and b show that the possible velocities of particles are extremely

similar for the big-small and small-median sized particle pairs but much smaller

for the median-large particle pair (figure 4.4c). This is due to the Boltzmann

distributions dependence on the reduced mass of the system, which is the only

difference between variations a-c of figure 4.4. As the reduced mass of the

system tends to the smaller of the values being combined in its evaluation,

this is to be expected for the pairs that contain particles of the smallest size in

figure 4.4. Velocities in the micrometer per second regime are shown to be a

regular occurrence at many temperatures in figure 4.4, and as the particles are

of a micrometer size, this implies that at such temperatures the particles are

mobile (in a manner comparable to their size over a second) due to thermal

fluctuations. Although the particles appear to be of a comparable size when

considering their radii, due to the cubic scaling of the volume with respect to

the radius, the mass of the largest and median particle is 27x and 8x that of

the smaller particle respectively, hence justifying the change in scale of the

x-axis in figure 4.4.

However, such thermal fluctuations should be carefully considered as these par-

ticles are extremely charged and will undergo a repulsive force for the majority

of their approach towards one another given the range of their interaction, not-
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ing the use of the log scale on the axis of figure 4.3, and considering that the

Boltzmann distribution assumes the particles only interact via collisions. How-

ever, upon comparison of figure 4.4 and table 4.2, it can be seen that percentage

of particles with sufficient velocity to overcome any of the Coulomb barriers

shown in figure 4.3 is approximately zero. This can be seen upon inspection

of figure 4.4 as every minimum velocity shown in table 4.2 would be to the far

right of its corresponding Boltzmann distribution, with the maximum velocity

able to cause aggregation of an even greater magnitude.

Pair Reduced ECoul / fJ E0 / fJ vrelmin vrelmax

Mass / ng / mm/s / mm/s
Smallest-Largest 1.257 2.768 -17.8 2.1 82.7
Median-Largest 8.046 27.28 24.98 2.6 7.40
Median-Smallest 0.4618 1 0.3446 0.8927 7.50

Table 4.2: The parameters of the particles modelled given a randomly chosen particle
size, and an assigned but randomly chosen surface charge density.

This absence of aggregation due to thermal fluctuations is not conclusive proof

that the like-charge attraction does not occur in such environments as many

other perturbations that could drive the these particles close enough to attract,

such as turbulent flow, initial ejection, falling under gravity, and weather effects

such a wind. Such perturbations cannot be modelled as consistently due to the

specific environmental factors they depend on. Therefore, given the violence

of such eruptions, and the drastic winds and lightning caused as a result of the

eruption, the particles may still possess a great enough velocity to overcome

the Coulomb barrier.

If one assumes that there is some probability a smaller particle can gain a

higher surface charge density, and that the use of surface charge density already

adequately scales the charge each particle with respect to its size, then the more

favourable interaction of a highly charged smaller particle interacting with a

larger particle can be realised. Given the various possible values of both the

radii and surface charge density, two were selected at random from the average

distributions of each and assigned accordingly, as shown in table 4.3.
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Particle Radius / µm σ / µC/m2 Mass / µg Charge / fC
Smallest 57.05 1.74 0.401 71.2
Largest 156.7 0.0473 1.94 14.6

Table 4.3: The parameters of the particles modelled given a randomly chosen particle
size and surface charge density.

Figure 4.5 shows that the Coulomb barrier is of a comparable size to those

shown in figure 4.3, and as such no thermal motion is likely to overcome the

barrier at temperatures ranging up to 1000 oC. However, there does appear

to be an increased in stability of this system (deeper minimum) than those

studied in figure 4.3.

Figure 4.5: The interaction energy as a function of surface-to-surface separation
between the smallest particle in table 4.3( q = 71.2 fC, r = 57.05 µm) and the largest
(q = 14.6 fC, r = 156.7 µm).

To investigate the range of the interaction of these particles, given a fluctuation

of great enough magnitude to propel the particles toward one another, the

impact parameter, bmax, was determined via a dynamics implementation of

the mathematical framework extended in chapter 2. bmax was determined

by considering multiple trajectories of the smaller particle towards the larger

particle at a given velocity. Given an offset less than or equal to bmax, and

a great enough velocity to overcome the Coulomb barrier, the particles will
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collide. However, offsets greater than bmax will cause the particles not to

collide. As such, it is possible to determine bmax dynamically by trial and

error. This was investigated for several incident velocities as seen in figure 4.6.

As figure 4.5 enables one to determine E0 and ECoul, and consequently vrelmin and

vrelmax, one can also test the accuracy of this method of investigation against the

statistical method utilised in chapter 3, as the first non-zero impact parameter

should occur close to vrelmin (-0.0051 m/s).

Figure 4.6: Particle trajectories of the smallest particle (q = 71.2 fC, r = 57.05 µm)
approaching the largest particle (q = 14.6 fC, r = 156.7 µm), for which vrelmin = 0.0051
m/s, with relative velocities 0.005 m/s (a), 0.0052 m/s (b), 0.011 m/s (c), and 0.065
m/s (d). The centre circle shows the combined radius of the two particles, i.e. the
location of smallest particles centre location upon collision. Each simulation was
modelled using a timestep of 0.1µs.

As expected, if the particle has a velocity less than that of the critical veloc-



Chapter 4. Results and Discussion 93

ity, no successful collisions can occur in the dynamic simulation, and all the

particles are strongly repelled, as seen in figure 4.6. It is worth noting that

although the particles do not collide directly, the scattering angle of the system

appears large for even small offsets. As such, if the particles in an ash cloud

were moving at this velocity although no particles would ever collide, particles

would still undergo various accelerations due to long-range interactions.

As the velocity of the trajectories is increased, the more central of the trajec-

tories (as seen in figure 4.6b) begin to overcome the Coulomb barrier, enabling

the particles to accelerate towards one another and collide. The effect of re-

pulsion between the particles can also be observed in figure 4.6b, as seen by

the curvature of the off-centre trajectories. It is worth noting that for the

velocities considered in figure 4.6b, any particles that collide would eventually

stick together if no other perturbation occurs, as would any collision below 9.5

mm/s (vrelmax) but greater than 5.1 mm/s.

The collisional cross section of a particle can be greater than the sum of the

two radii, even if they are like-charged as shown by figure 4.6c, in which the

velocity at which the maximum impact parameter occurs is illustrated by the

highest trajectory to result in a collision. Therefore, the two ash particles (as

in table 4.3) with velocity 0.011 m/s have the maximum probability of colliding

with one another with respect to their velocity. However, as this is more than

9.5 mm/s (vrelmin) many of these particles will not aggregate.

At extremely high impact velocities, the ash particles would behave according

to the hard sphere approximation - almost independently of their charge, as

shown in figure 4.6d. A small amount of scattering is observed in figure 4.6d

for closest trajectory to the surface of the particle, showing that such like-

charge attraction can be observed within a relatively small space due to the

strength of the interaction. This is supported by the steeper gradient left of

the Coulomb barrier compared to the right where F = −dU/ds, where s is the

surface to surface separation and U is the interaction energy. If the particles do

not deform in these collisions, then it is suspected that none of the trajectories
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in figure 4.6d would result in nucleation. However, given the low coefficient

of restitution of ash (0.69) and its malleable nature these particles may still

aggregate due to deformation upon impact.

Given such variation of the impact parameter, and consequently the prob-

ability of particles colliding upon perturbation, with the particle velocity, in

conjunction with bmax quadratic effect on the collision efficiency in the systems

as illustrated by equation’s 4.1, polarisation could be key to the behaviour of

these fast moving particles, and therefore their aggregation and nucleation. As

such both bmax and CCS should be considered to be a function of velocity.

Figure 4.7: The impact parameter (a) and collisional cross section (b) as a function
of relative the velocity of the smallest particle in table 4.3(q = 71.2 fC, r = 57.05
µm) approaching the largest particle (q = 14.6 fC, r = 156.7 µm), with (red) and
without (blue) polarisation accounted for compared to the hard sphere approximation
(grey).

It can be seen in figure 4.7 that although these particles have the same sign of

charge, the impact parameter determined here is still 9% larger than that of

the particle pair when polarisation is not accounted for. As such, the collisional

cross section of this system has increased by 19%.

Figure 4.7 also highlights the drastic difference of accounting for polarisation

in comparison to using purely Coulombic models. Not only is there a 40%

increase in the initial velocity able to cause an impact in the simulation as

seen in the inset, but by accounting for polarisation, it can be seen that the

particle pair is most likely to undergo such a collision (maximum bmax) with
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a relative velocity of 0.0330 m/s, as the sum of the radii of the particles has

increased by 19% . In comparison, the impact factor and CCS as determined by

the Coulombic simulation (blue line) are still less than half of the hard-sphere

case at the same velocity.

Figure 4.8: The collision efficiency of the particles undergoing the collision, as
a function of relative the velocity of the smallest particle in table 4.3(q = 71.2 fC,
r = 57.05 µm) approaching the largest particle (q = 14.6 fC, r = 156.7 µm), with
(red) and without (blue) polarisation accounted for compared to the hard sphere ap-
proximation (grey), and upon a change in sign of the smallest particle in table 4.3,
the outcome of the same analysis with (yellow) and without (cyan) polarisation.

The collision efficiency as defined in equation 4.2, enables graphical compari-

son of the requirement for polarisation, as it illustrates the large discrepancy

caused by accounting for polarisation, from the methods utilised in previous

granular models,[110, 111] and how much more likely the particle is to undergo

such collisions under such conditions in direct comparison to the Coulombic

case, with the collisional efficiency of 1.19 at 0.0330 m/s accounting for the

polarisation of the system, in comparison to a collision efficiency of 0.45 at the

same velocity.

Although only the like-charged case has been studied thus far, it is clear from

figure 4.8 that polarisation is of equal importance in the interactions between

oppositely charged particles which with polarisation has a 69% greater colli-

sion efficiency than without. In the case of oppositely charged particles, the

maximum collision efficiency of the system, in both cases considered in figure
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4.8, occurs at 0 surface-to-surface separation, in complete contrast to the like-

charged case. As such, it can be seen that nucleation in such an environment

could occur readily in the oppositely charged case, and at an even greater rate

than Coulombic models or hard-sphere models would suggest.

4.4 Conclusion

In conclusion, we have found that for particulates within volcanic ash clouds,

there exists a relative velocity able to induce collision and aggregation in the

case of both the oppositely and like-charged particle pairs due to the polarisa-

tion interactions between them. The capacity of polarisation to accelerate this

aggregation in comparison to the pure Coulombic or hard-sphere approxima-

tions has also been realised via a novel application of the formalism developed

upon in chapter 2. Whilst the velocities required for such collisions cannot

originate from thermal fluctuations for any of the cases considered through-

out this chapter, the aggregation of volcanic ash remains not impossible given

the violent winds and ejections associated with a volcanic eruption and the

findings of this chapter.



Chapter 5

Electrostatic Interactions in Dry

Powder Inhalers

5.1 Introduction

Electrostatic tribocharging of pharmaceutical powders can adversely affect for-

mulation and aerosolisation processes, manufacture and handling procedures,

and alter the properties of powder flow. [112–115] Finding solutions to control

the effects caused by particle charging in various powder delivery systems, such

as the metered dose inhaler (MDI) or the dry powder inhaler (DPI), could of-

fer the potential to improve device dosing consistency and targeted deposition

in the respiratory system. [116–118] In pharmaceutical DPIs, active particles,

both in-flow and on surfaces, possess a bipolar charge distribution, which may

influence their aggregation and deposition onto the large permeable membrane

of the lungs. [117, 119, 120] A number of the experimental techniques devel-

oped to measure the electrostatic charge of powders [121–125] are based on

the Faraday-well; a well-known method for measuring the net charge of bulk

powders. However, with regard to DPIs, these measurements are often con-

ducted in an uncontrolled environment, leading to limited reproducibility and

insight into the electrostatic characteristics of dispersed aerosols, the dynamics

of dose emission, and the effects of agglomeration. In particular, the net charge
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of the powder does not provide information regarding the bipolar nature of the

charge on individual particles or agglomerates, both of which directly affect

particulate behaviour and consequently product performance.

It is currently understood that particles with an aerodynamic diameter of less

than 5 µm are most likely to reach and deposit in the pulmonary regions of

the lungs, but according to the literature particles with a diameter of 0.5 to

10 µm can still penetrate into the lungs.[126–128] The aerosolisation process

within a DPI is understood to be complex, but is conventionally viewed as the

dispersion of the powder dose into the air-stream and further separation of ag-

glomerates largely due to shear forces, turbulence and wall collisions occurring

before the powder has left the device. It is not typically viewed as a dynamic

process of both de-aggregation and re-aggregation. The bipolar charge state

of particles, following their transmission through a DPI, suggests that any ag-

gregation is dominated by Coulomb forces as each drug dose released by a DPI

consists of a wide range of particle sizes and charges. During in-flow collisions,

the varied composition of a particle stream has been shown to promote ad-

ditional attractive interactions at short separations, even between particles of

the same sign of charge; the latter process being driven by polarisation effects.

[49] In inelastic collisions, often present in fine powders, like-charged particles

with the initial velocity sufficient to overcome the Coulomb barrier. As seen

previously in this work and in [48, 49, 129], attractive interactions between

like-charged particles can play a significant role in particle aggregation, some-

times leading to undesirable growth (’charge scavenging’) prior to deposition.

Previous analysis [48, 129] also indicates that collision velocity plays a key role

in these inelastic, electrostatically driven aggregation processes.

A Dekati bipolar charge analyser BOLAR™ [130] was utilised to measure the

net and bipolar charge distribution of aerosolised lactose (the primary ingredi-

ent in many DPIs) as a function of particle size, under controlled conditions of

temperature and humidity. [131] In order to better understand the behaviour

of charged particles in an emitted stream, the experimental measurements of
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the BOLAR have been utilised in a computational model of agglomeration

under conditions analogous to those present in a DPI. As such, many-body

electrostatic methods, [17, 49] suitable for describing charge induced interac-

tions including polarisation effects, combined with classical particle dynamics

are able to simulate fine powder streams travelling through an inhaler or hu-

man airway. DPIs are highly diverse in design and operation - products with

two or more active components (combination products) have recently prolif-

erated. Some devices separate active components to either enhance product

shelf life or to facilitate the manufacture of products with multiple variations

in such combinations. These products may therefore have dual rather than

single airflow paths within the device.

Possible outcomes of particle aggregation in single and dual stream devices

have been analysed in this work, with the role of the larger highly charged

particles -’potential scavengers’ formed from carrier particles - investigated in

detail. The nature of the charge scavengers has been described previously.

[95, 132, 133] If such particles are present in a stream, even after the ’de-

coating’ precautions described in [132], then they may be able to re-adsorb

smaller particulates. Simulations of this nature, supported by experimental

data, could provide valuable insight for the development of inhalers designed

with improved drug powder flow.

5.2 Dekati BOLAR™ measurements of charge

in dry powders

In a Dekati BOLAR™, a collection of particles or droplets, e.g. a drug dose or

drug analogue, may be aerosolised at a typical flow rate of 60 L/min and is split

equally by the flow divider for aerodynamic size differentiation and filtration by

the impaction stages (Figure 5.1a). The dose, now divided into six fractions,

travels beyond the impaction stages and is separated by the bipolar charge
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detection tubes; the inner detector (ID) surfaces are charged to +1kV, which

attract negatively charged particles and the outer detector (OD) surfaces, held

at ground potential, attract positively charged particles. Electrical signals from

the particles interact with the corresponding detection surfaces such that the

total positive and negative charge of a single size fraction can be measured, in

addition to the total mass collected on each electrode. [130]

Figure 5.1: Dekati BOLAR™ showing the effective cut-off diameter (ECD) of the
particles collected in the detector tubes.

Lactose-based DPI formulations, known to exhibit bipolar charge characteris-

tics, have been used in these experiments. The total bipolar charge, measured

in picoCoulombs, was observed to be largely comparable across a range of

operating conditions.

Table 5.1: The size distribution and average radius of particles in five detector tubes
of Dekati BOLAR™.

detector radius range / µm average radius, ā / µm

1 0.00− 0.48 0.24

2 0.48− 1.30 0.89

3 1.30− 2.13 1.72

4 2.13− 3.61 2.87

5 3.61− 5.83 4.72
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Dose to dose variability of the total charge was also found to be similar across

the detector tubes and formulations throughout the experiments. A small net

positive charge was observed for the total charge covering all size ranges (detec-

tors), due to an overall higher charge on the positive particles in comparison

to that on the negative particles. Charge distributions similar to that ob-

served and reported in table 5.2 have been presented previously. [134] Whilst

other particles, such as carrier particles or scavengers, will be present in a

DPI stream, these are less likely be included in the collected mass as they are

usually too large to enter any size fraction of the apparatus.

Table 5.2: The mass, charge, and distribution of the particles collected by the outer
(OD1 - OD5) and inner (ID1 - ID5) BOLAR™ detectors: m̄d is the total average mass
collected by a detector; q̄d is the total average charge collected by a detector. The
average mass of a particle, m̄p, is calculated using the average radius of a particle
within a detector (r̄p, Table 5.1) and the density of lactose of 1.52 g/cm3; n is the
number of particles in a detector and q̄p is the average particle charge.

positively charged particles negatively charged particles

detector OD1 OD2 OD3 OD4 OD5 ID1 ID2 ID3 ID4 ID5

m̄d / µg 0.13 3.64 7.93 16.64 14.77 0.14 3.99 8.27 21.23 14.47

q̄d / pC 29.54 510.9 337.7 325.5 156.9 -9.543 -462.2 -304.0 -297.8 -144.1

m̄p / pg 0.0088 4.49 31.0 150 667 0.0088 4.49 31.0 150 667

n,×103 1477 811 255.8 111.1 22.1 1590.6 888.9 266.7 141.8 21.9

n̄/% 26.44 14.52 4.58 1.99 0.40 28.47 15.91 4.77 2.54 0.39

q̄p / fC 0.02 0.63 1.32 2.93 7.10 -0.006 -0.52 -1.14 -2.10 -6.58

The average mass of the collected particles is m̄ = 91.21± 5.91 µg which is concen-

trated predominantly in detectors OD4 and OD5 (positive particles) and detectors

ID4 and ID5 (negative particles). However, the average combined percentage of

particles in the stream from detectors OD5 and ID5 is less than 0.8%, and from

detectors OD4 and ID4 is less than 2.6% , as shown in Table 5.2. This suggests

that the population of larger particles in the stream is negligible. Although de-

tectors OD5 and ID5 contain particles of the largest size and the highest charge,

the highest total average charge, q̄d, has been collected by detectors OD2 and ID2.

This is due to a significant number of charged particles in the size range of 0.48
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µm to 1.30 µm present in the stream (see Table 5.2). The experimental results also

show that, numerically, the majority of particles in a DPI stream are of the smallest

size, with an average radius of 0.24 µm, which constitute 26.4% of the positively

charged stream and 28.5% of the negatively charged stream. Further details of the

composition of each stream expelled from the DPI can be seen in Table 5.2.

Figure 5.2: The average particle charge as a function of the average particle radius
calculated using the data presented in Table 5.2. The magnitude of charge on the
positively (red crosses) and negatively (blue crosses) charged particles scales as the
square the radius (solid line) with an R2 of 0.99. For comparison, the scaling as
radius cubed is shown by the dashed line.

The charge on each particle, q̄p, has been estimated using the values for the overall

collected charge, q̄d, and the number of particles collected on a detector, n. The

results show that the absolute value of q̄p scales with the square of the radius of a

particle (last line in Table 2 and Figure 5.2). This suggests that charge resides on

the particle’s surface and no charge is present within the internal volume. In this

work, we model the agglomeration of particles in the stream using a mathematical

formalism [17] which accounts quantitatively for the surface charge and polarisation

of particles during a collision.
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5.3 Computational methodology and justifica-

tion

In this work, the many-body framework outlined in chapter 2[17] has been used in

conjunction with Verlet classical particle dynamics with an adapted NVE ensemble

(constant number of particles, volume and energy) to study the effect of many-

body electrostatic interactions within a stream; it was adapted such that energy

could be lost during collisions. A single stream of DPI particles has been modelled

as a collection of hard spheres with dimensions and charges described in Table 5.2,

initially moving with a constant velocity vStream (Figure 5.3). Following earlier work

[135], the particles were assigned a coefficient of restitution of 0.8 to allow for the

energy loss via inelastic collisions. No interactions with the walls were considered

as a DPI stream was assumed to be much narrower than human airways.

The interacting particles in a stream cause the induction of non-uniform surface

charge distributions due to distance dependent many-body electrostatic interactions.

Utilising the fast multipole method, as described in chapter 2,[17] these interactions

can be accurately described at a linearly scaling computational cost with respect to

the number of particles, and the solution yields the interaction energy, the surface

charge distribution and the force acting on each particle. Lindgren et al. [49] shows

that it is possible to combine such a solution with classical dynamics simulations to

study the propagation of a many-body system of colliding particles as a function of

time. The convergence of these solutions for the particulates studied here was found

to occur at ℓmax = 15, and all simulations were carried out within this regime with

a timestep of 0.01µs.

We first consider single collision events taking place in a stream, which had previously

been shown to affect particle coalescence in air; for example, in the agglomeration

of charged ice and dust particles in the mesosphere and lower thermosphere as in

chapter 3. [94] In the collision scenarios considered in this work, a pair of particles

form a cluster only if they carry opposite charge, and any like-charge aggregation

as described in [136] is negligible as no stable state exists beyond the Coulomb

barrier. As the BOLAR results show, the majority of particles emerging from a DPI
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Figure 5.3: Illustration of a typical single stream of particles moving with a constant
initial velocity: a is the radius, Ω is the volume, and k is the dielectric constant of
a particle. The interactions take place in vacuum k0 = 1.

are collected in OD1 and ID1 detectors, therefore clusters containing pairs of the

smallest particles (a < 0.48 µm) are expected to be common.

Figure 5.4: Relative velocity as a function of time for a positive (red) and a negative
(blue) particle in a small cluster colliding with the large negatively charged particu-
late: a) the incoming relative velocity is 3.5 m/s, b) the incoming relative velocity
is 1.2 m/s. The cluster is composed of two particles of the smallest size fraction
(a+,− = 0.24 µm, q+ = 0.02 fC, q− = -0.006 fC); the large particle is typical of that
identified in the ID5 detector (a = 4.72 µm, q = -6.58 fC).

The dynamics of an interaction between a small cluster with one of the larger par-

ticles in a DPI stream is depicted in Figure 5.4 to highlight a potential scavenging

mechanism [132] that could occur in the stream, given a flow rate of 60 L/min and
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the particle parameters shown in Table 5.2.

The incoming relative velocity of a small cluster during a collision with a large

particle plays a critical role in the dynamic behaviour. Collisions shown in Figure

5.4 destroy the small pair and provide a route to the formation of a larger bipolar

cluster. This coalescence step could be critical in cluster formation in a DPI stream,

making the product of the collision - a pair of oppositely charged particles with

drastically different sizes - even more abundant than the original small pair.

Figure 5.5: The role of the large (lactose) particle (a = 4.72 µm, q = 7.10 fC)
in scavenging smaller charged particles (a = 0.24 µm, q = -0.006 fC): a) snapshots
of the particle dynamics simulation at 2µs, 8µs, 12.5µs, and 20µs, (b), (c) and (d)
velocity of the smaller particles during the scavenging process. Particle 3 has initial
relative velocity of 0.3 m/s. The insets in (b) and (c) depict the velocity for the first
5 µs seconds of the simulation. The red and blue depict positive and negative charge
respectively.

One pathway for the formation of individual triplets and quartets (clusters contain-

ing three or four particles, respectively) is shown in Figure 5.5. Two small negative

particles 1 and 2 are stabilised initially on the surface of the large positively charged

(lactose) carrier through the dissipation of kinetic energy in the first few microsec-

onds of a simulation (inset in Figures 5.5b and 5.5c). The residual velocity at times

shorter than 5 µs indicates a slow transition into a more stable configuration where

the negative particles 1 and 2 move further apart. This relaxation process is orders

of magnitude faster than the corresponding kinetic energy of the incoming particle

3, which has an initial absolute velocity of 0.3 m/s and then accelerates towards the
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cluster driven by attraction to the highly charged large carrier.

Upon collision, particle 3 is also stabilised on the surface leading to further cluster

growth. The incoming trajectory of this particle has been chosen to represent the

most repulsive case and yet such a collision still leads to cluster growth. Given the

correct conditions, this cluster growth process, known as charge scavenging, will

persist in a DPI stream.

5.4 Cluster growth in a single stream

Particles of larger size occasionally enter a DPI stream. Initially, these large carriers

(or charge scavengers) aid the smaller active pharmaceutical ingredients (API) in

gaining the velocity and direction required for inhalation and release into the stream.

Subsequently, they are often ejected through collisions with the walls before entering

the mouth or trachea; [132] however, given the size and charge of the scavengers,

[117, 126] further interactions between particles in the stream could lead to re-

adsorption of the API onto the scavenger and prevent deposition into the lungs.

To understand the mechanisms leading to re-adsorption of the API within a DPI

stream, a more complete particle dynamics simulation of the stream containing

potential charge scavengers has been undertaken.

The scavenging effect has been investigated using the computational setup described

in chapter 2. In this computation, a charge scavenger passes at a speed of 6.5 m/s

through a DPI cloud consisting of 300 particles each with a dielectric constant of

2.9 (100 negatively and 100 positively charged particles where a = 0.24 µm, 40

negatively and 40 positively charged particles where a = 0.89 µm, and 10 negatively

and 10 positively charged particles where a = 1.72 µm). The simulation time has

been increased to 200 µs. The size of the scavenger (a = 10 µm) corresponds to

one of the smaller carrier particles found within a commercial DPI stream [126].

The relative velocity used in the simulation corresponds to a DPI flow of 60 L/min

through an outlet of 1.4 cm in diameter. All interactions are assumed to take place

in a vacuum (dielectric constant of 1) at room temperature, and random velocities

are assigned to the stream particles following the Maxwell-Boltzmann distribution

determined by collisions.
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Figure 5.6: Aggregation outcome for a scavenger (a = 10 µm, q = -38.5 fC) passing
through a cloud containing 300 particles: 200 particles with a = 0.24 µm (blue), 80
particles with a = 0.89 µm (red) and 20 particles with a = 1.72 µm (green) showing
the number of particles in a cluster (a) and the total accumulated charge (b). The
population of each sized particles is equally bipolar.

As Figure 5.6 shows, if a large particle is present within a stream a spontaneous

aggregation of smaller API particles on the charge scavenger readily occurs, thus

preventing the active API from reaching the lung membrane. For a negatively

charged scavenger (q = -38.5 fC in this case), all the particles that aggregate onto

the surface have positive charges. As figure 5.6 also shows, the majority of particles

aggregated on the scavenger are of the smallest size fraction (Figure 5.6a), and the

percentage uptake of 0.24 µm and 0.89 µm particles is similar. The aggregation

rate is mainly determined by the change in the total charge of the scavenger (Figure

5.6b) as the added mass makes a very small contribution to its size. On average,

30 % of 0.24 µm and 0.89 µm particles and 10 % of 1.72 µm particle have been

adsorbed onto the scavenger.

Figure 5.7 shows that if the charge on the scavenger is halved (q = -19.3 fC) half the

amount of aggregation occurs within a stream. This decrease is due to a 2.5 times

lower aggregation rate as compared to the case shown in Figure 5.6. The simulations

also show that the aggregation outcome for a positively charged scavenger with q =

46.3 fC is halved in comparison to the data shown in Figure 5.6. The decrease in

the amount of charge scavenging on the positive scavenger can be attributed to the

skewed bipolar nature of the stream (see table 2). Positively charged particles that

aggregate onto the negative scavenger (Figure 5.6) carry 3.5 times more charge than

their negative counterparts. In larger streams, the shape of the agglomerates remains

predominantly spherical (Figure 5.8a) as the scavenger continues to adsorb particles

to its surface in size order - from smallest to largest - as seen by the gradients of
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Figure 5.7: A comparison of the percentage of OD/ID 1 (a = 0.24 µm) particles
aggregated onto one of three scavenger particles over the entire 200 µs dynamic
simulations; whereas scavenging particles with a = 10 µm I (q = −38.5fC, black)
and II (q = −19.3fC, blue), and III (q = +46.3fC, red). Each plot shows the mean
and standard deviation for the sample size.

the curves in Figure 5.6. Other smaller assemblies are also formed, two of which are

shown in Figures 5.8b and 5.8c. These clusters could also become too large to be

adsorbed into the lungs, and their formation in the stream should be minimised.

Figure 5.8: Examples of large clusters formed in a single simulation of a DPI
stream containing a charge scavenger and 1500 smaller particles (500 negatively and
positively charged particles where a = 0.24 µm , 200 negatively and positively charged
particles where a = 0.89 µm, and 50 negatively and positively charged particles where
a = 1.72 µm. The simulation time is 200 µs.

In conclusion, even for the smallest carrier particle used in dry powder inhalers

(a = 10 µm), charge scavenging may cause re-adsorption of API particulates and

reduce the required amount of the API during inhalation leading to the use of higher

doses. This effect will be even more pronounced for the larger carriers. As charge

scavenging has been shown to remove more than a quarter of the stream particles

of smaller size fractions, the elimination of charge scavengers from the DPI stream

before entering the mouth/trachea should be considered. Additionally, reducing the
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rate of higher energy collisions between particles would help to avoid the formation

of larger clusters shown in Figures 5.8b and 5.8c.

5.5 Possible solutions to reducing charge scav-

enging: dual stream

In order to prevent particles from becoming too large to permeate the lung mem-

brane, one may consider altering the stream configuration to reduce the high energy

collisions and charge scavenging and to manipulate the size range of the particles in

the stream. Multiple propulsions of less dense streams could also reduce the number

of collisions and hence clustering. This can be realised in two adjacent DPI streams

composed of particles of the smallest three size fractions and directed towards the

target at a small angle. A simple schematic of such a design can be seen in figure

5.9.

Figure 5.9: Definition of the angle (2θ) between stream 1 (red) and stream 2 (blue)
for two streams angled equally (by θ in opposing directions) towards a common target
perpendicular to their midpoint, where each stream has a velocity such that the speed
of each flow is the same magnitude (|νstream| = |vj |).

Dual stream dynamics has been investigated for two streams of particles represent-

ing the three smallest radii. The two streams were directed at a target at a 6◦

angle and with a velocity of 6 m/s. These simulations were carried out under the

same conditions as described in the previous section. In the dual stream, particle

growth appears to be significantly reduced, as shown in Figure 5.10. The majority

of particles do not aggregate, with only about 6% of particles forming clusters after
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100 µs of simulation time; a significant reduction in comparison to 25% in the case

of a single stream (Figure 5.6).

Figure 5.10: Composition of the dual stream averaged over 10 runs, initially con-
taining 125 negatively and positively charged particles where a = 0.24 µm, 50 neg-
atively and positively charged particles where a = 0.89 µm, and 13 negatively and
positively charged particles where a = 1.72 µm. The stream are directed at the target
at 6◦ angle. The stream contains a) pairs (blue), triplets (red), quartets (green), and
the total percentage of particles in clusters is shown in black; b) the aggregated pairs
are big-small with a1 = 1.72 µm, a2 = 0.24 µm (blue), medium-small with a1 = 0.89
µm, a2 = 0.24 µm (green), big-medium with a1 = 1.72 µm, a2 = 0.89 µm (cyan),
like-sized particles (red), alongside the total number of pairs is shown in black. The
shaded regions indicate the standard error of the obtained results.

Particles that do form clusters in the dual stream are typically organised in pairs,

with some small presence of triplets and even fewer instances of clusters containing

four particles. The aggregated pairs frequently feature the attachment between a

larger particle and a smaller particle (Figure 5.10b). A small contribution from

surface polarisation effects, fully accounted in the computational setup as shown in

Supporting Information, is expected to increase the stability of the pairs containing

dissimilar size particles compared to like-size configurations. [136] All pairs were

found to contain oppositely charged particles, as expected, given the bipolar nature

of the stream and low polarisability of the constituent particles. Triplets formed

in the stream are composed of one larger particle and two smaller particles with

charge opposite to that of the larger particle, similar to the initial geometry shown

in Figure 5.5. The rarely occurring quartets are formed following the mechanism

described in Figure 5.5. This shows that although charge scavenging is limited in

the dual stream, it still occurs. Given that the majority of particles emerging from
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an API are very small, the conclusions cited in reference [126] would suggest their

aggregation into larger units could be beneficial providing the final particle remains

smaller than 10 µm in diameter.

5.6 Conclusions

In summary, our simulations have shown that using two or more streams aimed at a

common target and filtering out charge scavengers could enable more efficient drug

delivery for users of DPI. Within a single stream a charge scavenger present can

re-adsorb up to 25% of API particles, hence reducing the API reaching the lungs.

An inhaler designed more than one stream and a smaller size range of particles has

been shown to limit aggregation growth over a similar time period such that all

the particles formed could reach the lungs and as such, the aerosolisation process

in DPIs is shown here to be a dynamic combination of both deaggregation and

reaggregation. The development of efficient DPI products has historically focused on

maximising deaggregation. This study has shown the importance of also minimising

reaggregation.



Chapter 6

Casimir Force in Layered

Materials and Control of the

Stable Equilibrium

6.1 Introduction

A visionary theoretical prediction, known as the Casimir effect, [31] that two un-

charged dielectric or conducting interfaces experience an attractive interaction at

very close separations is purely quantum mechanical in nature, as discussed in sec-

tion 1.3. It stems from the permanent existence of fluctuating fields on either side

of a nanometre-size cavity created between the interfaces, which are present even in

a perfect vacuum and can be suppressed or enhanced inside the cavity. Whilst free

space outside the cavity is filled with a continuous sequence of electromagnetic fluc-

tuations at all wavelengths, inside a Casimir cavity only fluctuations at half-integer

wavelengths are present (these are defined by the separation distance between the

interfaces) and the fluctuations at longer wavelengths get pushed out. This cre-

ates a slight discrepancy in the energy density inside and outside the cavity and, if

the interfaces are made from the same material, a net attractive force is produced

which is independent of the exact shape of the interacting bodies and their dielectric

properties. [137]

Due to the lack of sophisticated instrumentation capable of measuring these subtle
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changes at such close separations, the Casimir effect remained experimentally elu-

sive for almost 50 years, drawing little interest outside the theoretical community.

With the first unambiguous measurements by Lamoreaux in 1997, [138] experimen-

tal evaluations of the attractive Casimir force between metal plates and spheres have

become more common and have been realised in a range of geometries. [139–141]

Despite many subsequent measurements of the attractive Casimir force in cavity

quantum electrodynamics, physical interpretation of this important nanoscale effect

is often lacking in the literature.

The Lifshitz theory of van der Waals forces [142] states that the Casimir force

can change from attractive to repulsive through a suitable choice of interacting

materials immersed in a fluid. First experimental evidence confirming the general

Lifshitz theory was reported by Munday et al. [37] They showed that repulsive

Casimir interactions can be also realised and measured if the walls of the cavity are

composed of materials with different dielectric response functions, ϵ1 and ϵ2, when

the dielectric response function of the medium, ϵm separating the walls satisfies the

following criterion

ϵ1 > ϵm > ϵ2. (6.1)

Although the measured repulsive force was found to be weaker than the attrac-

tive one, the magnitude of both forces increases with decreasing surface separa-

tion, in a complete agreement with the Lifshitz theory. The existence of repulsive

Casimir–Lifshitz force has been further confirmed, and several interesting experimen-

tal setups provided to probe these repulsive interactions [43, 143–147] and optical

properties of the interfaces. [148]

The various possible applications of the Casimir effect have become apparent with

the rise of research in plasmonics and metamaterials, in which the Casimir force has

shown to be manipulated and investigated at the level of accuracy and versatility

inaccessible to conventional surfaces. [149–154] Nanopatterning of metallic surfaces

opens up opportunities for exploring novel phases that emerge at the interfaces af-

fected by the Casimir force. [155–157] The Casimir effect can also be exploited in

this regard to deliver room temperature, low cost precision measurements conducted

in the deep sub-micron regime. The developments of micro- and nano- electrome-
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chanical systems will probe the existence of repulsive and zero Casimir forces and

make these measurements imminently possible. [140, 158–162]

In the era of miniaturisation of integrated electronic devices, unlocking the potential

of the Casimir force in practical quantum measurements can not be underestimated.

However, this progress depends on our ability to control the Casimir effect and re-

quires the fine tuning of the attractive and repulsive interactions, leading ultimately

to a high-precision manipulation of the Casimir equilibrium. For example, the switch

between attraction and repulsion has been realised in external magnetic fields in fer-

rofluids. [163, 164] Whilst the nature of the Casimir force can be controlled via

external perturbations, the force - distance profile is largely defined by the materials

involved. Experiments by Zhao et al. [165] achieved a stable Casimir equilibrium for

a gold nanoplate suspended in ethanol above a Teflon-coated gold surface (quantum

entrapment of the nanoplate at a fixed height above the surface). Note that if the

permittivity relation in equation 6.1 is satisfied, two interfaces repel at all separation

distances, as also demonstrated by the measurements of the repulsive Casimir force

between Teflon and gold surfaces in cyclohexane. [43, 143]

These systems, and their superpositions, are investigated here by quantitatively ac-

curate predictions of the Casimir effect in layered materials of increasing complexity,

with evidence to show that in some instances the Casimir force can be made repulsive

by a simple manipulation of the order of the layers. Given the excellent agreement of

our calculations with existing experimental data for a range of complex systems, this

formalism is utilised to propose layered systems suspended in a range of media that

exhibit both attractive and repulsive Casimir effects thus allowing for a fine control

of the equilibrium separation and quantum entrapment. A better understanding

through quantitatively accurate experimental and theoretical predictions will bring

us closer to achieving a full dynamic control over this interesting and indispensable

phenomenon.
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6.2 Fundamental concepts behind the method-

ology

Quantum mechanical formalisms of the Casimir interactions [165–167] are princi-

pally different to the description of weak intermolecular forces, given the nanometre

dimensions of the quantum cavity formed between the interfaces and the nature of

the interactions taking place. Following Parsegian [166], two interacting surfaces A

and B are modelled as two half-spaces separated by a medium with the dielectric

function, ϵm(iξn), and thickness, ℓ, as shown in figure 6.1.

Figure 6.1: Two semi-infinite half spaces A and B, separated by a distance ℓ:
(top) bulk materials A and B described by the complex dielectric functions ϵA(iζn)
and ϵB(iζn) at the complex Matsubara frequency.

In the non-relativistic limit, the Casimir interaction free energy (per unit area) can

be defined in terms of the summation of the free energies of the allowed surface

modes, n, of the fluctuating electric fields as

G(ℓ, iξn) =
kT

2πc2

∞∑
n=0

ϵm(iξn)ξ
2
n

∞∫
1

p ln[D(ℓ, iξn)]dp (6.2)

where k is the Boltzmann constant, T is the temperature, c is the speed of light, as

discussed in section 1.3.[166] The dielectric function of a material, ϵ(iξn), is defined

at the relevant Matsubara frequencies

ξn =
2πnkT

ℏ
, (6.3)

where ℏ is the reduced Planck constant, and the Matsuabra frequencies correspond

to the energies at which thermal agitation leads to charge fluctuation, as can be seen

by a simple rearrangement of equation 6.3.
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The function D(ℓ, iξn) includes the dielectric properties of the boundaries Am and

Bm as

D(ℓ, iξn) = (1−∆Am(iξn)∆Bm(iξn)e
−2ρmℓ), (6.4)

ρm =

√
ϵm(iξn)ξn

c
p

where 1 ≤ p <∞; ∆(iξn) varies depending on the geometry of the problem and, in

the simplest case of a single composition half-space, it takes the following form for

the surface A

∆Am =
sAϵm − smϵA
sAϵm + smϵA

, (6.5)

sA = (p2 − 1 + (ϵA/ϵm))1/2, sm = p

where ϵA = ϵA(iξn) is the dielectric function of the surface A at a given complex

frequency iξn and sA is the corresponding component of the radial wave vector

at the same frequency. The complex frequency is a result of the consideration of

exponential behaviour of the frequency, accounting for loss/dissipation. A separate

expression for ∆Bm is derived by replacing A for B in equation (6.5).

As the summation in equation (6.2) is taken over positive values of n only, the

n = 0 term needs to be multiplied by 1/2 to avoid double counting of this term.

As commonly accepted [37, 143, 165, 168], the magnetic dependence of the Casimir

energy is neglected here and it is assumed that the relative magnetic permittivity

of the interacting materials is unity (all materials studied here are non-magnetic).

However, a rigorous procedure for calculating the Casimir attraction with arbitrary

magnetic and dielectric properties using the Minkowski energy–momentum tensors

can be found in Ellingsen et al. [169]

Some accurate oscillator models [166, 167] calculate ϵ(iξ) directly, where the dielec-

tric function takes the general form of
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ϵ(iξ) = 1 +
∑
l

dl
1 + ξτl

+
∑
k

fk
ω2
k + gkξ + ξ2

. (6.6)

The oscillator form of equation (6.6) considers a damped harmonic oscillator model,

where the first summation (over l) describes the Debye dipolar relaxation; τl is

the relaxation time, and dl is analogous to the oscillator strength. Higher order

frequency terms are accounted for in the second summation (over k) in a damped -

oscillator form. The constants fk and gk in equation (6.6) have been determined for

many well studied materials and have shown excellent agreement with the literature.

[166, 167]

Alternative oscillator models include [143]

ϵ(iξ) = 1 +
∑
l

Cl

1 + (ξ/ωl)2
(6.7)

where ωl is the resonance frequency and Cl is the oscillator strength. In this study,

oscillator models (6.6) and (6.7) have been used along with the recently optimised

oscillators by Gudarzi and Aboutalebi [170], which have been shown to accurately

reproduce experimental results.

The formalism of [166], describing the Casimir effect, has been adopted here to de-

scribe the interactions between materials with multiple layers of arbitrary thickness.

Sernelius [171] proposed an alternative solution for calculating the Casimir effects in

systems containing two-dimensional (2D) layers such as graphene and 2D electron

gases. Tomaš [172] extended the Lifshitz formalism to account for the presence of

layered media.

Figure 6.2: Schematic of two semi-infinite half spaces A and B with a layer A1

and B1 of thickness a1 and b1 atop each material forming a cavity of size ℓ (a), and
with two added layers, A1 and A2, B1 and B2, of the corresponding thickness a1 and
a2, b1 and b2 (b), where all materials are described by their corresponding complex
dielectric functions ϵA(iζn) and ϵB(iζn).
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If a layer A1 with thickness a1 is added to the interface described by the half-space

A, then ∆Am in equation (6.4) is transformed to ∆̄Am as follows

∆̄Am =
∆AA1e

−2ρA1
a1 +∆A1m

1 + ∆A1m∆AA1e
−2ρA1

a1
(6.8)

where

ρA1 = (ρ2m + (ξn/c)
2(ϵA1 − ϵm))1/2.

Adding another layer, A2, with the thickness of a2 (Figure 6.2) requires ∆AA1 in

equation (6.8) to be replaced with

∆AA2e
−2ρA2

a2 +∆A2A1

1 + ∆AA2∆A2A1e
−2ρA2

a2
(6.9)

The subsequent addition of layers proceeds by induction so that with each added

layer the functions ∆AAi get transformed as

∆AAi+1e
−2ρAi+1

ai+1 +∆Ai+1Ai

1 + ∆AAi+1∆Ai+1Aie
−2ρAi+1

ai+1
. (6.10)

Once again, similar expressions need to be derived for the surface B.

The form (6.2) for the Casimir interaction free energy is convenient for obtaining

the Casimir force numerically, as the differential with respect to the cavity size, ℓ,

following F (ℓ) = dG(ℓ)/dℓ. However, in earlier experimental works the Derjaguin

approximation has been widely used to relate the Casimir energy and force. [37, 143,

165–168, 170] In atomic force microscopy (AFM) and surface force apparatus (SFA)

experiments, the Casimir force is often scaled to reduce the problem to a sphere -

plane solution (in AFM) or a perpendicular cylinder - cylinder solution (in SFA) as

follows [166–168]

Fsphere−plane(ℓ) = Fcyl⊥cyl(ℓ) = 2πReffG(ℓ). (6.11)
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Here, Reff is the radius of the sphere or cylinder, or
√
R1R2 if the cylinders are of

a different size. The Derjaguin approximation (as shown in equation 6.11) can be

used in cases where the interaction is purely repulsive or attractive, however, in more

sophisticated scenarios where the Casimir equilibrium is established its treatment

can be non-trivial, such as in quantum entrapment experiments given the planar

nature of Zhao et al’s work.[165]

In the following, the changing nature of the Casimir effect in layered materials is

investigated, and it is shown that the control of the Casimir equilibrium can be

achieved by simple compositional changes in the layered materials and the medium.

A rigorous testing of the methodology using a variety of experimental setups reported

in the literature is also presented. All calculations were performed using MATLAB

and associated solvers [173] using the tolerance of 10−6, as deemed appropriate

through benchmarking the convergence of the Casimir energy using equation (6.2).

The value n of the surface modes of the fluctuating electric field was set to 212 to

achieve 1% convergence of the energy within the n → ∞ limit, however higher n

will be required for systems with four layers and more.

6.3 Results and discussion

Munday et al. [37] used AFM to demonstrate the effect of the dielectric function

of the interacting surfaces and medium on the overall Casimir interaction. They

presented two examples: attractive Casimir force acting between two gold interfaces

(Au AFM tip - Au surface) and repulsive Casimir force between gold and silica in-

terfaces (Au AFM tip - SiO2 surface), both measured in bromobenzene (see Figure

6.3). The interaction energy for these systems was then evaluated utilizing oscilla-

tors to describe the permittivity as defined by van Zwol et al. [143]. The Derjaguin

approximation was then applied, as in [37], to evaluate the Casimir force. Figure

6.3 shows excellent agreement, within the experimental error, between our compu-

tational predictions and the experiments of Munday et al. [37] down to the surface

separation distances of 20 nm. Some deviation from experiment at these very short

separations is to be expected as retardation effects are not accounted for.

Previously, Ederth [167] also reported a strong attractive Casimir force (of the order
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Figure 6.3: The Casimir force acting between single layer interfaces in bromoben-
zene; (a) Illustration of AFM experiment computational setup (planar surfaces), (b)
Au - Au interface, (c) and Au - SiO2 interface, and (d) the Casimir force as a
function of the separation distance (d) showing the results of the experimental AFM
measurements [40] (open circles) and calculated in this work (solid line) using equa-
tion (6.2) and the Derjaguin approximation (equation 6.11).

of µN per metre) measured in air between two identical gold surfaces with a more

complex double layer structure containing a hydrocarbon layer on top of gold. These

measurements were carried out using SFA illustrated in Figure 6.4a. The two per-

pendicular cylinders with radius of Reff = 2 cm were coated with a gold layer of 200

nm thickness and a thin a1 = 2.1 nm overlayer of hydrocarbon (hexadecanethiolate)

(Figure 6.4b). The Casimir interactions in this double-layer system were calculated

by representing the cylinders as semi-infinite gold half-spaces with a hydrocarbon

layer on top. The dielectric functions for gold and hydrocarbon are taken from ref-

erences [166] and [167], respectively. Our calculations, shown in Figure 6.4c, are in

excellent agreement with the measurements [167], in which the Casimir forces were

used to estimate the surface roughness.

Generally, the Casimir force between two ideal parallel conducting interfaces is pro-

portional to the cross-sectional area of the interfaces, and it varies with the separa-
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Figure 6.4: The Casimir force acting between double layer Au - hydrocarbon in-
terfaces in air. Illustration of SFA experiment (a); computational setup (b); the
Casimir force as a function of the separation distance (c) showing the results of the
experimental SFA measurements [168] (open circles), calculated in this work (solid
line), and the case of two ideal conductors (dashed line).

tion distance as F (ℓ) ∝ 1/ℓ4. Apart from this, the force depends only on fundamental

values such as Planck’s constant and the speed of light. Following the Derjaguin

approximation as in 6.11, the geometry of Ederth’s experiments [167] can be, in

principle, reduced to a sphere - plane solution in which the Casimir force is defined

as F = −CReff/ℓ
3, where C = π3ℏc/360. However, the approximation of ideal

conductors is not accurate at short separation distances (see Figure 6.4), despite

being widely used in earlier works in the field. [138, 174, 175] It is also worth noting

that the calculations carried out in this work show an even larger discrepancy with

the limiting case of two perfect conducting plates than that demonstrated by the

dashed line in [167].

The quantitatively accurate computational method presented here makes it possible

to discuss more delicate scenarios where the attractive and repulsive Casimir forces

are kept in balance and a stable equilibrium is maintained. This has been demon-
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strated recently by Zhao et al. [165] who reported a stable equilibrium, maintained

by the Casimir forces, in which a thin, µm-wide gold flake suspended in ethanol

(EtOH) was trapped at a fixed height above a double-layer surface composed of gold

and a thin overlayer of polytetrafluoroethylene (PTFE). In this case, the equilibrium

(quantum trapping) is maintained by competing short-range repulsion between the

gold flake and PTFE and long-range attraction between the gold surfaces. The dou-

ble layer PTFE - Au interface was also utilised to investigate quantum trapping of

the gold flake whilst varying the thicknesses of the PTFE overlayer. A linear re-

lationship was established to show that in EtOH the equilibrium trapping distance

remains approximately half the thickness of the PTFE layer. [165]

Figure 6.5: The interaction energy, per unit area, as a function of the separation,
ℓ, between gold surface and a PTFE - gold double layer in cylcohexane (a) and
ethanol (b). The thickness of the top PTFE layer is 10 nm (blue), 20nm (red), 30
nm (yellow), 40 nm (purple), 50 nm (green), 60 nm (light blue), 70 nm (maroon),
80 nm (dark blue) and 90 nm orange. The minimum of each energy curve in (a) and
(b), defined as the trapping distance, is shown in (c) as a function of the thickness,
a1, of PTFE overlayer (a1) for ethanol (black) and cyclohexane (red).

Excellent agreement was found with both the AFM and Fabry-Perot experiments

[165] confirming not only the presence of the stable equilibrium but also the observed

relationship between the equilibrium trapping distance and thickness, a1, of the top

PTFE layer (Figure 6.5c black line). Figure 6.5c also shows that the equilibrium

trapping distance in cyclohexane will be close to the thickness of the PTFE layer

(red line). For example, for a1 = 50 nm, the equilibrium separation between a Au

surface and a double layer PTFE - Au interface is ℓeq = 23 nm in EtOH and ℓeq =

46 nm in cyclohexane.

Generally, the rate of increase of the equilibrium separation with the thickness of

the top PTFE layer doubles in cyclohexane, as indicated by the gradient of the
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straight lines in Figure 6.5 of 0.98 (±0.014) for cyclohexane (solid line) and 0.49

(±0.047) for EtOH (dashed line) and the location of the minima in figures 6.5a and

b. This conclusion is also supported by the observations of Van Zwol and Palasantzas

[143] that in cyclohexane the repulsion between gold and PTFE interfaces doubles

compared to that in ethanol. It is interesting to note that if the PTFE layer is only

10 nm thick both lines converge at the same equilibrium separation of 6 nm. The

Casimir interaction energy profiles from which the data in Figure 6.5c was extracted

can be seen in Figure 6.5a and b, with a specific example shown in figure 6.6.

Figure 6.6: The Casimir interaction free energy, per unit area, as a function of
the separation distance (g) between gold surface and a range of interfaces (a-f) in
ethanol (dashed line) and cyclohexane (solid line) calculated using equation (6.2).
The thickness of the layers are a1 = 60 nm (c), a1 = 10 nm (d), a1 = 60 nm and
a2 = 90 nm (e), a1 = 70 nm and a2 = 90 nm (f). The oscillator models are taken
from [171].

Figure 6.6 gives a general overview of our computational predictions for the Casimir

interaction energy, G, as a function of the separation distance, ℓ, between the gold

surface and a range of other interfaces with an increased layer complexity, which are

shown in Figures 6.6 (a-f). These interactions take place in ethanol and cyclohexane.

It is shown that in the experimental setup of Zhao et al. [165] (case (c), dashed line

in Figure 6.6), where the top PTFE overlayer is 60 nm thick, a stable equilibrium in

ethanol is formed at ℓeq = 28 nm. The interaction energy in this case is not affected

by the number of layers (compare cases (c) and (e), which give the same results in
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both solvents), and it is independent of the thickness of the gold layer. Note that

pure PTFE bulk repels gold surface at all separation distances (case (b)).

Furthermore, if the PTFE and gold layers are swapped so that the gold layer is

on top of a double- or triple- layer material (cases (d) and (f) in Figure 6.6), only

attractive interactions can be established, identical to the case (a) of two pure gold

surfaces. Once again, despite the layer thickness being explicitly present in the

formalism, the strength of the attractive Casimir interaction in the case of gold-

terminated interface does not change with the thickness of top layer (calculations

were ran in the range of 10 nm to 1 µm). Figure 6.6 also shows that changing solvent

to cyclohexane would double the equilibrium separation between gold and a PTFE -

gold double layer interface as well as between gold and a PTFE - gold - PTFE triple

layer interface (cases (c) and (e), solid line in Figure 6.6). As a result, the Casimir

interaction energy at the equilibrium is about three times weaker than in ethanol.

Figure 6.7: (a) The dielectric functions calculated as a combination of the oscil-
lator models describing cyclohexane and ethanol as a function of iξn; cyclohexane
is illustrated by the dark blue line (0:1), pure ethanol is depicted by the purple line
(1:0), with the intermediate cases labelled accordingly. (b) The interaction energy,
per unit area, between gold surface and a PTFE - gold double layer (the thickness
of PTFE a1 = 70 nm); EtOH = 0.1 C6H12 = 0.9 (red), EtOH = 0.2 C6H12 = 0.8
(dark yellow), EtOH = 0.3 C6H12 = 0.7 (purple), EtOH = 0.4 C6H12 = 0.6 (green),
EtOH = 0.5 C6H12 = 0.5 (light blue), EtOH = 0.6 C6H12 = 0.4 (maroon), EtOH =
0.7 C6H12 = 0.3 (dark blue), EtOH = 0.8 C6H12 = 0.2 (orange) and EtOH = 0.9
C6H12 = 0.1 (yellow). PTFE and EtOH were modelled using oscillators taken from
[167], with gold modelled using an oscillator taken from [171].

Given the great difference in the dielectric constants of ethanol (ϵ = 24.3) and cyclo-

hexane (ϵ = 2.02), it is encouraging to see that a strong stable Casimir equilibrium

and quantum trapping can be established in a variety of solvents.

Using the dielectric functions of ethanol and cyclohexane as the upper and lower



Chapter 6. Conclusions 125

bounds for the known substances that could enable quantum entrapment, it is pos-

sible to consider additional dielectric functions that could also enable quantum en-

trapment as a summation ϵEtOH and ϵC6H12 with normalizing/weighted prefactors

(w1 and w2); ϵm = w1ϵEtOH +w2ϵC6H12 (see Figure 6.7a). Although the ordering of

the dielectric functions can be seen to switch at around 18 eV, all solvents for which

the interaction was calculated can be seen to possess an equilibrium separation. Fig-

ure 6.7b shows that by varying the dielectric function of the medium between those

described by ϵEtOH and ϵC6H12 , one can gain a soft control of the equilibrium sepa-

ration with 11 possible equilibrium separations predicted between gold and a PTFE

- gold interface. Given the various binary mixture models [176, 177] and the vastly

different dielectric nature of the considered solvents, it is reasonable to assume that

quantum entrapment can occur in a wide range of solvents.

Whilst the PTFE - gold interaction is largely effected by the change of the medium,

attraction between gold terminated interfaces remains almost the same in cycloxe-

hane as in ethanol. This can be attributed to a much greater value of the dielectric

function of gold compared to PTFE and the solvents, which makes the gold - gold

interaction dominant in any medium.

6.4 Conclusions

In conclusion, this is a comprehensive quantitative analysis of the experimental

AFM and SFA measurements of the Casimir force between layered materials in

solvents. The complexity of the problem has been extended here to include triple

layer interfaces, whilst the effect of the compositional changes on the Casimir effect

have also been investigated.

In the context of the quantum entrapment experiments [165], it has been shown that

a delicate control of the position of the Casimir equilibrium can be achieved between

the gold nanoplate and a PTFE - gold double layer interface through a variation of

the thickness of the PTFE overlayer. This has been further extended here, such that

if the gold layer is on top, only attractive Casimir interactions can be established,

regardless of the chosen solvent, number of layers in the interface, and the thickness

of the top gold layer. The equilibrium separation and the strength of the Casimir
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interaction also depend critically on the the dielectric function of the medium.

All these findings might have significant implications in self-assembly of layered

materials and design of future quantum entrapment experiments, given various ex-

perimentally viable layered interfaces. [178]



Chapter 7

Conclusion

In conclusion, theoretical descriptions of charged induced polarisation and dispersion

forces between materials have been extended and applied to study a range of natural

and novel environments. A mathematical framework previously established to de-

scribe many-body interactions between charged dielectric particles[48] was extended

to include the effects of inhomogeneous surface charge distributions and externally

applied electric fields.[17] This extension was rigorously tested against both clas-

sical results and physical justifications, all of which it found excellent agreement

with. It was then further justified via providing a platform for the investigation of

large, novel, and experimentally realised many-body systems of colloidal particles.

In such systems, we found excellent agreement with the experimental observations

of colloidal crystal breakdown above certain electric field strengths, which were pre-

viously unconsidered, hence proving evidence that the breakdown of such materials

in external electric fields is due to the charged induced interactions between the

particles.

The framework was then applied to study the effect of surface charge density and

polarisation on the interactions between like-charged particles in noctilucent clouds

via statistical methods. Previously, like-charge attraction between particles was

shown to promote nucleation of particles via thermal fluctuations in the atmosphere

of Titan.[25] Such aggregation was hypothesized and investigated in chapter 3, in the

context of ice particles and meteoric dust nucleating; this could possibly contribute

to noctilucent cloud formation.[129].

127
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Volcanic ash was then initially investigated in a similar context at the various

temperatures it would experience throughout an eruption. However, all aggrega-

tion states were shown to be inaccessible via thermal motion given the size of the

Coulomb barrier between the particles. However, these results did show that like-

charge induced aggregation of volcanic ash particles could still be possible due to

non-thermal perturbations. This was investigated by considering the collisional cross

sections of the clouds constituents via a particle dynamics adaptation of the frame-

work described in chapter 2; such investigations found that like-charge attraction

can increase the collisional cross section by up to 19%.

Particle dynamics was then further utilised to study the aggregation driven ineffi-

ciencies of dry powder inhalers; although it was shown that no like charge attraction

occurs within the stream expelled from an inhaler, the many-body interactions be-

tween oppositely charged particles were found to enable uncontrolled cluster growth.

This uncontrolled nucleation was further investigated, and it was found that the

product of such growth mechanisms are ineffective as pharmaceuticals due to bio-

logical size restrictions imposed throughout the bronchial tract. A method to limit

such particle growth was proposed in the form of a filtered dual stream device, which

given the results of this work would alleviate the growth of such particulates.

Finally, the electronic interaction between neutral materials at close separation was

investigated in the context of the Casimir force. Initial bench-marking of a suitable

mathematical formalism to describe layered interfaces[166] found unprecedented ac-

curacy with experimental literature at low computational cost when utilising newly

optimised oscillator models to describe the materials. As such, new systems in which

quantum levitation/entrapment can occur were then proposed via consideration of

the relative size of the dielectric function describing each material; this was possible

given the low cost of the evaluation of the implemented formalism. Such systems

included triply layered substrates and potential new mediums of interaction. Given

the (newly found) mediums of interaction able to cause such levitation, the possi-

bility of equilibrium control via the mixing of dielectrics was also realised as a way

to fine-tune the equilibrium separation between the two bodies, unlike the drastic

changes that were found to occur upon variation of the interface.
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7.1 Future Work

Given the many-body formalism presented in this work, many other physically rel-

evant particles/environments can be described; these include but are not limited to

the inclusion of a dielectric plane interacting with N spheres, the effect of magnetic

perturbations on such system, and the effects of electrolytes on the system. The for-

malism presented in chapter 2, although able to describe the interaction of particles

in volcanic ash clouds and dry powder inhalers, was only able to undergo limited

analysis given the lack of temperature dependence on the systems studied. As such,

if further external perturbations in such systems were better described mathemati-

cally, one could calculate the nucleation within them. Finally, if a suitable dielectric

mixing model is utilised, it could be possible to fine tune the equilibrium separation

in systems which undergo quantum levitation, hence enabling one to choose the

height of their desired levitation - this could also be possible for various solvents

not considered in this work, all of which would enable a wider range of possible

interactions and, therefore, applications.
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[152] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen, “Dynami-
cal casimir effect in a Josephson metamaterial,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 110, pp. 4234–4238,
2013.

[153] M. Camacho, T. Gong, B. Spreng, I. Liberal, N. Engheta, , and J. N. Mun-
day, “Engineering casimir interactions with epsilon-near-zero materials,” Phys.
Rev. A, vol. 105, p. L061501, 2022.

[154] W. M. R. Simpson, Surprises in Theoretical casimir Physics: Quantum Forces
in Inhomogeneous Media. New York: Springer, 2015.

[155] F. Intravaia, S. Koev, W. A. Jung, A. A. Talin, P. S. Davids, R. S. Decca,
V. A. Aksyuk, D. A. R. Dalvit, and D. López, “Strong casimir force reduction
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Appendix A

General Derivations of
Many-Body Framework

A.1 Mathematical considerations

This section contains some additional mathematical considerations such as more
details about our mathematical assumptions, the properties of the mathematical
objects used in this article and a precise definition of the Galerkin approximation
space that we use.
To begin with, we assume that the external harmonic potential we consider sati-
fies Φext ∈ H1

loc(R3) with the associated external electric field Eext := −∇Φext ∈
L2
loc(R3), where L2

loc(R3) and H1
loc(R3) denote the spaces of locally square integrable

functions and locally square integrable functions with locally square integrable first
derivatives, respectively. Next, we emphasise that, as is common in the mathemati-
cal literature, the solution to the PDE (4), i.e., the perturbed electrostatic potential
Φ, is typically understood as an element of the space H1(Ω−) ∪ H1(Ω+) and is
therefore not, in general, continuous. Strictly speaking therefore, the transmission
conditions in Equation (4) must be understood in the sense of so-called Dirichlet

and Neumann traces in the Sobolev spaces H
1
2 (∂Ω) and H− 1

2 (∂Ω) respectively. A
detailed description of trace operators and fractional Sobolev spaces is beyond the
scope of this article and can, for instance, be found in [179].
Concerning the mapping properties of the single layer potential and boundary op-
erators, it can be shown that for any s ∈ R, the mapping S extends as a bounded
linear map from the Sobolev space Hs(∂Ω) to Hs+32

loc (R3) and the operator V extends
as an invertible, bounded linear map from Hs(∂Ω) to Hs+1(∂Ω) (see, e.g., [179] for
a concise exposition on Sobolev spaces and for precise definitions and properties of
the single layer potential). “Local” versions of the single layer potential and bound-
ary operators which we have used frequently in this article are formally defined as
follows: For each i ∈ {1, . . . , N}, we have

(Siνi)(x) :=

∫
∂Ωi

νi(y)

4π|x− y|
dy, ∀x ∈ Ωi ∪ R3 \ Ωi, ∀νi ∈ Hs(∂Ωi), s ∈ R,

(Viνi)(x) :=

∫
∂Ωi

νi(y)

4π|x− y|
dy, ∀x ∈ ∂Ωi, ∀νi ∈ Hs(∂Ωi), s ∈ R.

In addition, we have used extensively in this article, the so-called Dirichlet-to-
Neumann map, denoted DtN. Mathematically, the map DtN: Hs(∂Ω) → Hs−1(∂Ω),
s ∈ R is defined as follows: Given some boundary function λ ∈ Hs(∂Ω), let uλ de-
note the harmonic extension of λ in Ω−. Then DtNλ ∈ Hs−1(∂Ω) is the normal
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derivative (more precisely, the Neumann trace) of uλ on the boundary ∂Ω. We em-
phasise that in contrast to the single layer potential and boundary operator, the
DtN map is a purely local operator, i.e., for any λ ∈ Hs(∂Ω), DtNλ|∂Ωi

depends
only on λ|∂Ωi

.
Concerning the regularity of solutions to the BIE (6), we recall from Equation (2)
that the point-charge contribution σp to the free surface charge is assumed to be
a linear combination of Dirac delta distributions. It is possible to show therefore
that σp is an element of the Sobolev space Hr(∂Ω) for every r < −1. In view of the
regularising property of the single layer boundary operator V, we can conclude that
the right-hand side of the BIE (6) is, in general, an element of Hr(∂Ω) for every
r < 0. This implies in particular that solutions to the BIE (6) are not, in general,
square integrable functions. On the other hand, we recall that σs ∈ L2(∂Ω) by
assumption so that solutions to the BIE (9) can be readily understood as elements
of the Sobolev space H1(∂Ω).
Finally, let us state the definition of the approximation space used in the proposed
Galerkin discretisation.
Definition (Spherical Harmonics) For every integer ℓ ∈ N ∪ {0} and m ∈
{−ℓ, . . . , ℓ} we define Ym

ℓ : S2 → R as the real-valued L2-orthonormal spherical
harmonic of degree ℓ and order m on the unit sphere S2 (see [180] for a precise,
constructive definition).
The set of spherical harmonics is dense in L2(S2) and is therefore well-suited for the
choice of basis functions in the Galerkin discretisation of BIE (9).
Definition (Approximation Spaces) Let ℓmax ∈ N be a discretisation parameter.
First, on each sphere ∂Ωi, i = 1, . . . , N we define a local approximation space
W ℓmax(∂Ωi) as

W ℓmax(∂Ωi) :=
{
u : ∂Ωi → R such that u(x) =

ℓmax∑
ℓ=0

m=+ℓ∑
m=−ℓ

[u]mℓ Y i
ℓm(x)

}
,

with [u]mℓ ∈ R, and where we introduced for notational convenience the basis func-
tions Y i

ℓm : ∂Ωi → R as

Y i
ℓm(x) := Ym

ℓ

(
x− xi

|x− xi|

)
∀x ∈ ∂Ωi.

Next, we define the global approximation space W ℓmax as

W ℓmax :=
{
u : ∂Ω → R such that ∀i ∈ {1, . . . , N} : u|∂Ωi

∈W ℓmax(∂Ωi)
}
.

A.2 Mathematical Proofs of Theorems 2.1 and

2.2

In this section we provide proofs of Theorems 2.2.1 and 2.2.2 from Section 2.2.4. For
technical reasons, it is useful to begin with the proof of Theorem 2.2. This result
shows that the definition of the interaction energy that we have provided in this
article using quantities of interest from the integral equation (6) is consistent with
the electric field-based definition of the interaction energy as derived directly from
the PDEs (3) and (4). Throughout this section, we will use the notation and setting
introduced in Sections 2.1, 2.2 and 2.4.
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A.2.1 Proof of Theorem 2.2

Let j ∈ {1, . . . , N} and let Br be an open ball large enough so that Ω− ⊂ Br.
We begin by defining precisely Ejj , i.e., the electric field produced only due to the
sphere ∂Ωj in the absence of both the external field Eext as well as the other spheres.
Maxwell’s equations imply that Ejj := −∇Φjj where the self-potential Φjj satisfies
the PDE (c.f., Equation (4))

−∆Φjj = 0 in Ωj ∪ R3 \ Ωj

JΦjjK = 0 on ∂Ωj ,

Jκ∇ΦjjK = σs,j + σp,j on ∂Ωj ,

|Φjj | → 0 as |x| → ∞,

(A.1)

where we remind the reader that σs,j := σs|∂Ωj
and σp,j := σp|∂Ωj

.

Next, to aid the subsequent exposition, we define the auxiliary quantity

Er
PDE,int :=

∫
Br

κ(x)Etot(x) ·Etot(x) dx−
N∑
j=1

∫
Br

κ(x)Ejj(x) ·Ejj(x) dx

−
∫
Br

κ0Eext(x) ·Eext(x) dx. (A.2)

We may now use simple algebra and the fact that Φtot = Φ+ Φext (see Section 2.1)
to deduce that

Er
PDE,int =

∫
Br

κ(x)
∣∣∇Φ(x)

∣∣2 dx+ 2

∫
Br

κ(x)∇Φ(x) · ∇Φext(x) dx

−
N∑
j=1

∫
Br

κ(x)
∣∣∇Φjj(x)

∣∣2 dx+

∫
Br

(κ(x)− κ0)
∣∣∇Φext(x)

∣∣2 dx.
Next, we recall from the PDEs (3) and (4) that Φ is harmonic on Ω− ∪ Ω+, Φext is
harmonic on R3, and Φjj is harmonic on Ωj ∪ (R3 \Ωj). Therefore we can appeal to
Green’s first identity to simplify the above integrals.
Recalling the interface conditions from the PDEs (4) and (A.1), we can further
simplify several of these integral as∫

∂Ω
Jκ∇ΦK(x)Φ(x) dx =

(
σs + σp + σext,Φ

)
L2(∂Ω)

,

2

∫
∂Ω

Jκ∇ΦK(x)Φext(x) dx =2
(
σs + σp + σext,Φext

)
L2(∂Ω)

,

N∑
j=1

∫
∂Ωj

(κj − κ0)∂nΦ
jj(x)Φjj(x) dx =

N∑
j=1

(
σs,j + σp,j ,Φ

jj
)
L2(∂Ωj)

,∫
∂Ω

(κ(x)− κ0)∂nΦext(x)Φext(x) dx =−
(
σext,Φext

)
L2(∂Ω)

,

where we remind the reader that σext = −(κ − κ0)∂nΦext. Using the fact that
λ, λext and λ

jj are the restrictions on the spheres of the potentials Φ,Φext, and Φjj

respectively, we can deduce that
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Er
PDE,int =

(
σs + σp + σext, λ

)
L2(∂Ω)

+ 2
(
σs + σp, λext

)
L2(∂Ω)

+

(
σext, λ

ℓmax
ext

)
L2(∂Ω)

−
N∑
j=1

(
σs,j + σp,j , λ

jj
)
L2(∂Ωj)

+

∫
∂Br

κ0

∂nΦ(x)Φ(x)− N∑
j=1

∂nΦ
jj(x)Φjj(x)

 dx+

2

∫
∂Br

κ0∂nΦ(x)Φext(x) dx = Eint.

Comparing this final expression with Equation (A.2) allows us to deduce the re-
quired result (28).

Next, we will prove Theorem 2.1 which shows that Definition (24) of the approximate
electrostatic forces is consistent with the usual notion in the chemistry literature of
the forces as the negative sphere-centered gradients of the electrostatic interaction
energy. In order to present a concise and well-structured proof, we will first prove
two lemmas.
Lemma A.2.1 Let λℓmax denote the solution to the Galerkin discretisation (18) for
a given free charge σf = σs + σp and external electric field Eext. Additionally, let
νℓmax denote the approximate induced surface corresponding to λℓmax and let Ei

exc, i ∈
{1, . . . , N} denote the i-excluded electric fields generated by νℓmax as defined through
Definition (17). Then for each i ∈ {1, . . . , N} it holds that

1

2
∇xi

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

= −κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

+
(
∇xiσext, λℓmax

)
L2(∂Ωi)

.

Proof: Let i ∈ {1, . . . , N} be fixed. A simple application of the product rule
yields that

1

2
∇xi

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

=
1

2

(
∇xi (σs + σp + σext) , λℓmax

)
L2(∂Ω)

+
1

2

(
σs + σp + σext,∇xiλℓmax

)
L2(∂Ω)

.

Using the fact that both σs and σp are independent of changes in the locations

{xi}Ni=1 of the sphere centres locations, [180] we further obtain that

1

2
∇xi

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

=
1

2

(
∇xiσext, λℓmax

)
L2(∂Ω)

+
1

2

(
σs + σp + σext,∇xiλℓmax

)
L2(∂Ω)

.

Finally, it is straightforward to see that in fact

1

2

(
∇xiσext, λℓmax

)
L2(∂Ω)

=
1

2

(
∇xiσext, λℓmax

)
L2(∂Ωi)

so that we obtain the expression

1

2
∇xi

(
(σs + σp + σext) , λℓmax

)
L2(∂Ω)

=
1

2

(
∇xiσext, λℓmax

)
L2(∂Ωi)

(A.3)

+
1

2

(
(σs + σp + σext) ,∇xiλℓmax

)
L2(∂Ω)

.

(A.4)
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Consequently, it remains to compute the sphere-centred gradient of λℓmax . This is a
slightly technical task so to aid the subsequent exposition, we first introduce some
additional notation.

Notation: We define the vectors and matrices σ,σext,DtNκ and V as

[σi]
m
ℓ :=

(
σs + σp,Y i

ℓm

)
L2(∂Ωi)

,

[σext
i ]mℓ :=

(
σext,Y i

ℓm

)
L2(∂Ωi)

,

[DtNκ
ij ]

mm′
ℓℓ′ :=δij

(
κj − κ0
κ0

DtNYj
ℓ′m′ ,Y i

ℓm

)
L2(∂Ωi)

,

[Vij ]
mm′
ℓℓ′ :=

(
VYj

ℓ′m′ ,Y i
ℓm

)
L2(∂Ωi)

,

where i, j ∈ {1, . . . , N}, ℓ, ℓ′ ∈ {0, . . . , ℓmax} and |m| ≤ ℓ, |m′| ≤ ℓ′. Additionally,
we recall that the Galerkin discretisation (18) is equivalent to the linear system of
equations

Aλ := (I − V DtNκ)λ = F , (A.5)

where λ and F are defined by (20) and (21) respectively.
Equipped with the notation introduced above, we now take the gradient on both
sides of Equation (A.5). Using the product rule together with the fact that the
Dirichlet-to-Neumann map is independent of changes in the locations {xi}Ni=1 of the
sphere centers, we obtain that

∇xiλ+
(
∇xiV

)
DtNκλ+ V DtNκ∇xiλ =

1

κ0

(
∇xiV

)(
σ + σext

)
+

1

κ0
V ∇xiσ

ext,

or equivalently, after collecting terms

A∇xiλ =
1

κ0

(
∇xiV

)(
σ + σext − κ0DtNκλ

)
+

1

κ0
V ∇xiσ

ext. (A.6)

Next, recalling that νℓmax satisfies Equation (23), it is easy to deduce that

1

κ0

(
∇xiV

)(
σ + σext − κ0DtNκλ

)
=
(
∇xiV

)
ν,

where

[νi]
m
ℓ :=

(
νℓmax , Y i

ℓm

)
L2(∂Ωi)

,

with indices i ∈ {1, . . . , N}, ℓ ∈ {0, . . . , ℓmax} and |m| ≤ ℓ. We therefore conclude
from Equation (A.6) that

∇xiλ = A−1
((
∇xiV

)
ν
)
+

1

κ0
A−1

(
V ∇xiσ

ext
)
.

Recalling now the last term on the right-hand side of Equation (A.3), we deduce



Chapter A. Mathematical Proofs of Theorems 2.1 and 2.2 148

that 1
2

(
σs + σp + σext,∇xiλℓmax

)
L2
(∂Ω) is equal to

=
1

2

(
σ + σext,A−1

((
∇xiV

)
ν
) )

ℓ2
+

1

2

(
σ + σext,

1

κ0
A−1

(
V ∇xiσ

ext
))

ℓ2

=
1

2

((
AT
)−1(

σ + σext
)
,
(
∇xiV

)
ν
)
ℓ2
+

1

2

1

κ0

((
AT
)−1(

σ + σext
)
,V ∇xiσ

ext
)
ℓ2
.

Next, a direct calculation and comparison with the Galerkin discretisation (18)
reveals that (

AT
)−1(

σ + σext
)
= κ0ν.

Using the definition of νℓmax as given by Equation (22), we obtain that 1
2

(
σs + σp +

σext,∇xiλℓmax

)
L2(∂Ω)

is equal to

=
1

2
κ0

(
ν,
(
∇xiV

)
ν
)
ℓ2
+

1

2

(
ν,V ∇xiσ

ext
)
ℓ2

=
1

2
κ0

(
ν,
(
∇xiV

)
ν
)
ℓ2
+

1

2

(
λ,∇xiσ

ext
)
ℓ2

=
1

2
κ0

(
νℓmax ,

(
∇xiV

)
νℓmax

)
L2(∂Ω)

+
1

2

(
λℓmax ,∇xiσext

)
L2(∂Ω)

=
1

2
κ0

(
νℓmax ,

(
∇xiV

)
νℓmax

)
L2(∂Ω)

+
1

2

(
λℓmax ,∇xiσext

)
L2(∂Ωi)

(A.7)

Finally, a direct but tedious computation can be used to show that[57, 180]

1

2
κ0

(
νℓmax ,

(
∇xiV

)
νℓmax

)
L2(∂Ω)

= −κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

. (A.8)

Combining therefore the developments (A.7) and (A.8) with Equation (A.3) now
completes the proof.

Lemma A.2.2 For a given external electric field Eext = −∇Φext ∈ L2
loc(R3), let

σext = −(κ − κ0)∂nΦext, and let ψ ∈ H
1
2 (∂Ω) be arbitrary. Then for each i ∈

{1, . . . , N} it holds that

(∇xiσext,Ψ)L2(∂Ωi)
= −(κi − κ0) (∇xiλext,DtNΨ)L2(∂Ωi)

. (A.9)

Proof: Recall the notation λext := Φext|∂Ω ∈ H
1
2 (∂Ω) and let [λext,i]

m
ℓ and [Ψi]

m
ℓ ,

ℓ ∈ N0, |m| ≤ ℓ denote the local spherical harmonics expansion coefficients of λext
and Ψ on the sphere ∂Ωi. Since Φext is harmonic in R3 and therefore in particular
on Ωi, it follows that we can write

(∇xiσext,Ψ)L2(∂Ωi)
= −(κi − κ0) (∇xi∂nΦext,Ψ)L2(∂Ωi)

= −(κi − κ0) (DtNλext,Ψ)L2(∂Ωi)

= −(κi − κ0)r
2
i

ℓ=∞∑
ℓ=0

m=+ℓ∑
m=−ℓ

(
∇xi

ℓ

ri
[λext,i]

m
ℓ

)
[Ψi]

m
ℓ

= −(κi − κ0)r
2
i

ℓ=∞∑
ℓ=0

m=+ℓ∑
m=−ℓ

(
∇xi [λext,i]

m
ℓ

)( ℓ
ri
[Ψi]

m
ℓ

)
= −(κi − κ0) (∇xiλext,DtNΨ)L2(∂Ωi)

.
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A.2.2 Proof of Theorem 2.1

We are now ready to state the proof of Theorem 2.1. Before proceeding to the proof,
let us simply remark that the relation (26) in Theorem 2.1 remains true if exact
quantities are considered, i.e., if the force defined by (24) is built upon the exact
induced charge ν being solution to the BIE (7) and where the energy corresponds
to Eint as defined by (27).
Let i ∈ {1, . . . , N} be fixed. By the definition of the approximate electrostatic
interaction energy, we have

−∇xiE
ℓmax
int =−1

2
∇xi

(
σs + σp + σext, λℓmax

)
L2(∂Ω)︸ ︷︷ ︸

:=(I)

−∇xi

(
σs + σp, λ

ℓmax
ext

)
L2(∂Ω)︸ ︷︷ ︸

:=(II)

−1

2
∇xi

(
σext, λ

ℓmax
ext

)
L2(∂Ω)︸ ︷︷ ︸

:=(III)

+
1

2
∇xi

N∑
j=1

(
σs,j + σp,j , λ

jj
ℓmax

)
L2(∂Ωj)︸ ︷︷ ︸

:=(IV)

.

We now simplify each of the terms (I), (II), (III), and (IV). First, we observe that
the self energy term (IV) is defined entirely through functions that are independent
of changes in the location of the center xi of the sphere ∂Ωi, even in the case j = i.
This can be seen by noticing that

(
σs,i + σp,i, λ

ii
ℓmax

)
L2(∂Ωi)

remains constant as one

displaces xi by any translation. Consequently, we obtain that (IV) ≡ 0.

The term (I) can be simplified using Lemmas A.2.1 and A.2.2 as

(I) = −1

2
∇xi

(
σs + σp + σext, λℓmax

)
L2(∂Ω)

= κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

−
(
∇xiσext, λℓmax

)
L2(∂Ωi)

(Lemma A.2.1)

= κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)︸ ︷︷ ︸

:=(IA)

+(κi − κ0)
(
∇xiλext,DtNλℓmax

)
L2(∂Ωi)︸ ︷︷ ︸

:=(IB)

. (Lemma A.2.2)

(A.10)

Next, we simplify the term (IB). Indeed, a direct calculation shows that

(IB) = (κi − κ0)
(
∇xiλext,DtNλℓmax

)
L2(∂Ωi)

= (κi − κ0)

∫
∂Ωi

(∇xiΦext)DtNλℓmax dx

= (κi − κ0)

∫
∂Ωi

(∇xΦext)DtNλℓmax dx = −(κi − κ0)

∫
∂Ωi

EextDtNλℓmax dx

= −(κi − κ0)
(
DtNλℓmax ,Eext

)
L2(∂Ωi)

, (A.11)

where the second line follows from a similar calculation as done to obtain Equation
(A.8).

In order to simplify the term (II), we again recall that the free charges σs, σp are inde-
pendent of changes in the location of the centre xi of the sphere ∂Ωi. Consequently,
we obtain that II is

−∇xi

(
σs + σp, λ

ℓmax
ext

)
L2(∂Ω)

= −
(
σs + σp, ∇xiλ

ℓmax
ext

)
L2(∂Ω)

= −
(
σs + σp, ∇xiλ

ℓmax
ext

)
L2(∂Ω)i

. (A.12)
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Therefore, using a calculation similar to the one used to obtain Equation (A.11), we
deduce that

(II) = −
(
σs + σp, ∇xiλ

ℓmax
ext

)
L2(∂Ωi)

=
(
σℓmax
s + σℓmax

p , Eext

)
L2(∂Ωi)

, (A.13)

where σℓmax
s and σℓmax

p are the best approximations inW ℓmax of σs and σp respectively.

Next, we attempt to simplify the term (III). A simple application of the product
rule together with Lemma A.2.2 yields that

(III) =− 1

2
∇xi

(
σext, λ

ℓmax
ext

)
L2(∂Ω)

= −1

2
∇xi

(
σext, λ

ℓmax
ext

)
L2(∂Ωi)

=− 1

2

(
∇xiσext, λ

ℓmax
ext

)
L2(∂Ωi)

− 1

2

(
σext, ∇xiλ

ℓmax
ext

)
L2(∂Ωi)

=(κi − κ0)
(
DtNλext,∇xiλ

ℓmax
ext

)
L2(∂Ωi)

− 1

2

(
σext, ∇xiλ

ℓmax
ext

)
L2(∂Ωi)

=−
(
σext, ∇xiλ

ℓmax
ext

)
L2(∂Ωi)

.

Once again, a direct calculation of the form used to obtain Equation (A.11) allows
us to conclude that

(III) = −
(
σext, ∇xiλ

ℓmax
ext

)
L2(∂Ωi)

=
(
σℓmax
ext , Eext

)
L2(∂Ωi)

. (A.14)

Combining now Equations (A.10), (A.11), (A.13), and (A.14) we obtain that

−∇xiE
ℓmax
int = (IA) + (IB) + (II) + (III)

= κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

− (κi − κ0)
(
DtNλℓmax ,Eext

)
L2(∂Ωi)

+
(
σℓmax
s + σℓmax

p , Eext

)
L2(∂Ωi)

+
(
σℓmax
ext , Eext

)
L2(∂Ωi)

= κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

+(
− (κi − κ0)DtNλℓmax + σℓmax

s + σℓmax
p + σℓmax

ext ,Eext

)
L2(∂Ωi)

= κ0
(
νℓmax ,E

i
exc

)
L2(∂Ωi)

+ κ0
(
νℓmax ,Eext

)
L2(∂Ωi)

.

where the last equality follows from Equation (23). This completes the proof.



Appendix B

Aggregation Data

Table B.1: Energetic considerations and the percentage of aggregation for FeO - ice
collisions at T = 150 K and kr = 0.9 (the surface point charge model). FeO particle
has the fixed radius and charge (r2 = 0.2 nm, q2 = -1e), and the size and charge of
ice particle is varied. The collision geometry is shown in Figure 3a.

ice particle Coulomb barrier, vmin
rel , ms−1 vmax

rel , ms−1 aggregation, %
ECoul, meV

r1 = 30 nm; q1 = 0 0 0 1007 100
r1 = 30 nm; q1 = -1e 23.7 199 987 34.7
r1 = 30 nm; q1 = -2e 55.3 303 1012 5.2
r1 = 20 nm; q1 = 0 0 0 1094 100
r1 = 20 nm; q1 = -1e 35.7 244 1059 17.4
r1 = 20 nm; q1 = -2e 82.9 372 1092 0.91
r1 = 10 nm; q1 = 0 0 0 1267 100
r1 = 10 nm; q1 = -1e 71.3 345 1165 1.91
r1 = 10 nm; q1 = -2e 165.9 526 1225 0

Table B.2: Energetic considerations and the percentage of aggregation for MgO -
ice collisions at T = 150 K and kr = 0.9 (the surface point charge model). MgO
particle has the fixed radius and charge (r2 = 0.2 nm, q2 = -1e), and the size and
charge of ice particle is varied. The collision geometry is shown in Figure 3a.

ice particle Coulomb barrier, vmin
rel , ms−1 vmax

rel , ms−1 aggregation, %
ECoul, meV

r1 = 30 nm; q1 = 0 0 0 1341 100
r1 = 30 nm; q1 = -1e 23.7 252 1311 29.9
r1 = 30 nm; q1 = -2e 55.3 384 1340 3.57
r1 = 20 nm; q1 = 0 0 0 1481 100
r1 = 20 nm; q1 = -1e 35.7 309 1425 13.7
r1 = 20 nm; q1 = -2e 82.9 470 1465 0.50
r1 = 10 nm; q1 = 0 0 0 1776 100
r1 = 10 nm; q1 = -1e 71.3 436 1607 1.15
r1 = 10 nm; q1 = -2e 165.9 665 1676 0
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