
A COMPARATIVE ANALYSIS OF LANDSLIDE 

MAPPING TECHNIQUES USING EARTH OBSERVATION 

(EO) DATA 

 

 

by 

 

Lilian Akudo Akanazu 

 

 Under the supervision of 

 

Dr. Stephen Grebby and 

Dr. Alessandro Novellino (BGS) 

 

Submitted in Partial Fulfilment of the Requirements for the Degree of Master of 

Research 

in 

Geospatial Data Science 

in the 

 

Faculty of Engineering 

University of Nottingham 

 

6 January 2025 



ii 
 

Declaration of Authorship 

 

I hereby certify that this work is my own, except where otherwise stated, and 

that it has not been submitted previously for any degree at this, or any other University. 

 

Signed:  

Lilian Akudo Akanazu 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Acknowledgements 

I would like to express my gratitude to my supervisors, Dr. Stephen Grebby and Dr. 

Alessandro Novellino for their invaluable guidance and support throughout the course of this 

research.  

This research is funded by the Engineering and Physical Science Research Council (EPSRC) 

within the Geospatial Systems CDT (EPSRC Reference: EP/S023577/1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

A Comparative Analysis of Landslide Mapping Techniques 

using Earth Observation (EO) Data 

 

by Lilian Akudo Akanazu 

 

Abstract 

 

Landslides pose significant threats to human life, infrastructure, and the environment. 

Rapid accurate assessment and identification of these landslides within days to weeks of their 

occurrence are crucial for timely disaster management and effective emergency response 

strategies. This study evaluated the performance of freely accessible EO-based tools - 

HazMapper and Google Earth Engine (GEE), alongside manual delineation technique in the 

detection and rapid mapping of landslides in Glengyle. Recent landslides which typically 

leave visible scars on the landscape were primarily considered using two approaches applied 

by these EO-based tools: pixel-based analysis and SLIP algorithm for change detection. The 

integration of these methods provides a comprehensive assessment of landslide areas as they 

consider both changes in vegetation cover and topography. By comparing the pre- and post-

event composites of the study area, the landslides were detected based on the NDVI and 

landslide tracker binary raster image generated by HazMapper and GEE, while the manual 

technique employed the physical delineation of the landslides using satellite imagery. The 

performance metrics of these methods identified GEE as the best-performing method with an 

F1 score of 0.83 over HazMapper and manual technique’s 0.81 and 0.79 F1 scores 

respectively. The kappa value of 0.62 for GEE suggests that the tool’s efficacy in rapid 

landslide mapping performed substantially better than random chance. Replication of the 

GEE in the secondary (Rest and Be Thankful) and tertiary (Dortyol) study areas further 

assessed the tools efficacy in mapping other landslide types. With an F1 score of 0.82 and 

0.93 for the secondary and tertiary locations, GEE correctly identified a substantial number of 

landslides in these locations better than random chance. The results suggest that GEE is a 

robust tool for rapid landslide mapping in emergency situations. 
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1 Introduction 

1.1 Background and Rationale 

Landslides are among the most frequent natural disasters worldwide that pose severe threat to 

humans, infrastructures, and the natural environment (Nugroho et al., 2021). They cause 

significant damage to the landscape, hamper relief efforts in vulnerable locations, and rapidly 

redistribute sediments across the landscape (Milledge et al., 2021) which in turn result in other 

secondary hazards like flooding. They are often triggered by several factors which can be 

classified as either tectonic (e.g. Bennett et al., 2016), climatic (e.g. Moreiras, 2005) and/or 

human (Petley et al., 2007). In recent years, human influences (e.g. urbanisation) on the natural 

environment, and exacerbated by climatic conditions, has only but intensified landslide 

occurrences (Zhu et al., 2023).  

Notably, landslide events have severely impeded social developments in societies whether they 

appear close to inhabited areas, or far from them as seen in countries like China (Dieu Tien et 

al., 2018; Lin et al., 2021; Zhang et al., 2024), Japan (Ayalew, 2005; Wang et al., 2019; 

Lusiana, 2022), Greece (Bathrellos et al., 2024), Ethiopia (Shano et al., 2024), Italy (Guzzetti, 

2000; Conoscenti et al., 2015; Samia et al., 2017), Turkey (Tan et al., 2011; Demir et al., 2024) 

and of course the United Kingdom (Winter et al., 2006, 2008; Foster et al., 2011; Gibson et al., 

2013; Palamakumbura et al., 2021) amongst others.  

Landslide events are a primary contributor to topographic erosion and landscape evolution 

(Korup et al., 2010). These evolutions result in significant rock-bound and organic (soil and 

aboveground biomass) carbon modifications (Hilton et al., 2008) causing over 50,000 fatalities 

between 2004–2016 with billions (USD) in global losses and damaged-infrastructure costs 

(Froude & Petley, 2018; Emberson et al., 2020; Kirschbaum et al., 2015; Petley, 2012). 

According to the Global Fatal Landslide Database (GFLD), a total of 55,997 people were killed 

in 4,862 distinct landslide events between January 2004 and December 2016 (Zhong et al., 

2019). In the United States alone, annual losses to mass-wasting events exceed USD 3 billion 

(Spiker & Gori, 2003) while Sim et al., (2022) estimated landslide-related losses at USD 20 

billion annually on a global scale. These consequences to human life and the environment 

reflects why landslides are considered as natural disasters (Bathrellos et al., 2017).  

Relative to other natural disasters, the International Disaster Database (EM-DAT) suggests that 

landslides account for 4.9% of all natural disaster events, and 1.3% of all natural hazard 

fatalities between 1990 and 2015 (Froude & Petley, 2018), with 54% of these landslide events 
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occurring in Asia (Guha-Sapir et al., 2018). However, the effect of landslides on the society 

has been greatly underestimated in most global databases (Froude & Petley, 2018). For 

example, Petley (2012) showed that the EM-DAT database underestimated the number of fatal 

landslide events by ∼ 2000% and fatalities by 430% between 2004 and 2010, whilst 

Kirschbaum et al. (2015) showed that the EM-DAT database underestimated the number of 

fatal landslide events by ∼ 1400% and fatalities by 331% between 2007 and 2013. In most 

cases, this under-reporting of landslide impact is associated with the perception that landslides 

are secondary hazards, and causes of fatalities are recorded in connection with the primary 

hazard (e.g. an earthquake rather than a co-seismic landslide) rather than the actual cause of 

the loss (Froude & Petley, 2018). 

Owing to these consequences, a rapid response to landslides is needed to assess the damage 

caused and to help save lives (Nugroho et al., 2021). A lack of detailed information on the 

condition or location of the damaged regions immediately following a significant landslide 

event can disrupt disaster management procedures, resulting in even more fatalities than the 

actual event (Robinson et al., 2019). In addition to rapid response efforts, it is also essential to 

create an accurate landslide inventory in the weeks to the following months of landslide events 

(Froude & Petley, 2018). This detailed inventory helps to identify landslide-prone areas, 

providing crucial information for pinpointing future hotspots, and implementing preventive 

measures to reduce the risk of landslides (Nugroho et al., 2021). Even more important it is to 

create tools with freely available data that can be used to rapidly map these landslides and their 

levels of damage.  

Interest in quantifying landslide risk has developed since the attempt by the International 

Association of Engineering Geology (IAEG) Commission on Landslides to compile a list of 

worldwide landslide events for the UNESCO annual summary of information on natural 

disasters in 1971 (UNESCO,1973; Froude & Petley, 2018). Before now, traditional landslide 

inventories were generated from expensive time-consuming site visits (e.g. Warburton et al., 

2008), severely limiting the number of landslides that could be mapped in scale and size. 

Although valuable for small scale studies, this method was labour intensive and spatially 

limited, and therefore inadequate to aid rapid response efforts in emergency situations. 

Today, landslide mapping has undergone a transformative evolution with the advent of Earth 

Observation (EO) technologies, enabling the transition from traditional field-based surveys to 

more automated and scalable mapping processes. Landslides are now increasingly mapped 

remotely based on interpretation of satellite or aerial imagery, which enables much larger 

datasets to be analysed (e.g. Li et al., 2014; Roback et al., 2018). The integration of optical 
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satellite imagery, Synthetic Aperture Radar (SAR), and multispectral data has provided 

unparalleled opportunities to monitor and map landslides over large areas with high temporal 

and spatial resolution. However, these advancements are not without challenges. Cloud cover 

and dense vegetation, for instance, can obscure optical imagery, making it difficult to detect 

surface disturbances caused by landslides (Travelletti et al., 2012). On the other hand, SAR 

technology, while capable of penetrating clouds and vegetation, often struggles to capture rapid 

landslide events that occur between satellite orbits due to its revisit time, limiting its utility for 

dynamic processes (Moretto et al., 2021). 

Moreover, there are inherent challenges in detecting older or inactive landslides through 

conventional EO methods, particularly in regions where vegetation has regrown or where 

surface features indicative of past movement have been eroded or obscured (Zhong et al., 

2020). Although not of importance with respect to aiding rapid response efforts, mapping older 

landslides remains crucial for long-term hazard assessment. Similarly, in arid or semi-arid 

regions with sparse vegetation cover and minimal observable landscape modification, EO 

technologies may fail to differentiate landslide scars from other geomorphological features, 

such as natural erosion or human activities (Piratesh & Li, 2016). These limitations underscore 

the importance of critically comparing different landslide mapping techniques to evaluate their 

suitability to rapidly detect and map landslides for diverse terrain conditions and landslide 

types. 

Landslides, though often triggered by specific events such as extreme rainfall or earthquakes, 

can also be influenced by a range of other factors that reactivate older, seemingly stable slopes. 

These factors include progressive slope degradation, changes in land use, vegetation loss, and 

even human activities such as construction or excavation (Zhang et al., 2021a; Zhang et al., 

2023). Over time, geological processes like weathering can weaken the structural integrity of 

slopes, making them susceptible to failure when additional stresses, such as increased pore 

water pressure from rainfall, are introduced (Zhang et al., 2021b). In regions where landslides 

have been dormant for decades or centuries, these cumulative effects can bring them back into 

motion, posing a renewed threat to infrastructure and communities. 

In the United Kingdom, for example, many of the landslides recorded in the National Landslide 

Database (NLD) are ancient and inactive (British Geological Survey - BGS, 2024). However, 

periods of high rainfall have demonstrated the potential for these slopes to reactivate, as seen 

during the summers of 2012 and the winters of 2012–2016 (BGS, 2024). These rainfall events 

triggered numerous landslides across the country, many of which were relatively small in scale 

but had significant societal impacts. Fatal incidents, such as those in Burton Bradstock and 
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Beaminster in 2012 and in Looe in 2013, highlight the deadly potential of such occurrences, 

even when the landslides themselves are not large (BGS, 2024). These examples underscore 

the need for rapid landslide mapping, particularly during extreme weather events. The ability 

to quickly identify and monitor these events is crucial for supporting emergency response 

teams, issuing timely public warnings, and implementing risk mitigation measures. 

Furthermore, the reactivation of older landslides serves as a reminder that landslide 

susceptibility is not static but rather evolves over time, influenced by environmental, climatic, 

and anthropogenic factors (Zhang et al., 2021b). The predominance of relatively small 

landslides during such periods also raises challenges for traditional mapping methods. Their 

dispersed nature, temporary visibility, and potential obscuration by cloud cover highlight the 

importance of advancing EO-based tools for detecting landslides under various conditions and 

rapidly. 

Over the past decade, the availability of free and accessible EO data has revolutionized 

landslide research and hazard assessment. Satellite missions such as Sentinel-1 and Sentinel-2 

(launched by the European Space Agency under the Copernicus program) provide high-

resolution optical and radar data at no cost to the user, enabling researchers and practitioners 

to monitor and analyse large-scale environmental changes in near real-time (Drusch et al., 

2012). This abundance of freely available data has catalysed the development of various tools 

and methodologies for landslide detection and mapping, including Google Earth Engine 

(GEE), HazMapper, and other cloud-based geospatial platforms that streamline processing and 

analysis (Gorelick et al., 2017). These tools combine EO data with machine learning, remote 

sensing indices and terrain analysis to provide automated or semi-automated solutions for 

landslide mapping, significantly reducing the reliance on time-intensive manual techniques 

(Mondini et al., 2021). However, while these tools have shown great promise in supporting 

rapid landslide mapping responses, their performance can vary depending on the input 

parameters, resolution, and environmental conditions (e.g. vegetation cover, landslide type or 

landslide trigger). 

It is therefore based on this premise that this study seeks to carry out a comparative analysis of 

rapid landslide mapping techniques using EO methods, by evaluating the strengths and 

weaknesses of the several methods and to identify the approach that offers consistent 

performance in a variety of environments. Thus, this study will systematically evaluate and 

compare the performance of a selection of EO-based tools in accurately detecting landslides 

across diverse terrains including areas with diverse topography, climate and/or landslide type. 

The goal is to identify a rapid mapping technique that is universally applicable, adaptable, and 
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reliable across all terrains. By focusing on rapid mapping techniques to aid emergency response 

efforts, this study considers the mapping of recent landslides which typically leave visible scars 

on the environment. Identifying a universal approach would ensure a more timely and effective 

landslide detection, monitoring, and risk management worldwide, regardless of local 

constraints. 

 

1.2  Aim and Objectives 

The aim of this research is to: 

Evaluate and compare the capability of existing Earth Observation (EO) based approaches for 

rapid and accurate landslide mapping. 

To achieve this aim, four objectives have been developed as follows: 

1. Establish the traditional and state-of-the-art EO-based approaches to landslide 

mapping 

2. Investigate the application of freely available EO-based approaches to landslide 

mapping for a case study of Glengyle, Scotland 

3. Compare the efficiency and accuracy of these landslide mapping techniques, 

identifying their strengths and weaknesses 

4. Test the most efficient of the compared methods on another landscape to assess 

its transferability performance on different terrains with different landslide 

types. 

 

1.3  Thesis Structure 

This thesis is structured as follows:  

Section 2 is the literature review which discusses literature fundamental to the understanding 

of this research and a critical analysis of existing landslide mapping methods. Section 3 

explains the methods used in this research including descriptions of data and the landslide 

mapping techniques that were tested. Section 4 discusses the analyses performed and the results 

therein. Section 5 provides the discussion of the objectives set out in this study and 

interpretation of the results including their relationship with existing literature and limitations 

of the research. Section 6 presents the conclusions of the research and how the project 

addressed the aims and objectives as well as the researcher’s thoughts based on the findings 

from the study. Section 7 presents areas for future work to address the limitations in this 

research and extended study for research gaps not covered in this study. 
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2 Literature Review 

2.1  Defining Landslides 

There is a diversity of definitions for landslides which reflects the complexity of activities 

associated with the occurrence of this phenomenon, and in most cases, the term is used 

interchangeably with phrases such as ‘slope failures’, ‘mudslides’ or ‘mass movement’ 

(Highland & Bobrowsky, 2008). A landslide is a downslope movement of rock or soil, or both, 

occurring on the surface of rupture—either curved (rotational slide) or planar (translational 

slide) rupture—in which much of the material often moves as a coherent or semi-coherent mass 

with little internal deformation (Highland & Bobrowsky, 2008).  

Landslide is a general term used to describe the downslope movement of soil, rock, and organic 

materials under the effects of gravity (Highland & Bobrowsky, 2008). It occurs as gravitational 

forces exceed the strength of the material in the slope when water builds up in the slope usually 

due to rain, irrigation, or snow melt (Case, 2001). The water present thus increases the weight 

of the material on the slope, hydrates and expands the clay minerals that holds the particles 

together thereby decreasing the strength of the material and weakening the slope (Case, 2001). 

The result is the yielding of all or part of the slope through downslope movement of materials 

known as a landslide. In some cases, the pore pressure from ground water can be increased 

during vibration of large machines, earthquakes or rapid changes of water level, triggering 

landslides and reactivating dormant landslides when water penetrates old ground cracks (Case, 

2001). Vibrations from heavy machinery or seismic activity can disturb the soil structure, 

allowing groundwater to infiltrate more easily, especially through existing cracks (Case, 2001). 

Similarly, sudden changes in water levels, such as during heavy rainfall or dam releases, can 

cause water to rapidly penetrate the ground. This infiltration increases the pore water pressure, 

which reduces the effective stress that holds soil particles together, decreasing the slope's shear 

strength (Highland & Bobrowsky, 2008). In dormant landslides, old fractures or cracks provide 

pathways for water to seep deeper into the soil, reactivating instability and triggering renewed 

movement. These varying mechanics or triggering factors have informed the classification of 

landslides into different types based on the type of movement and materials involved (Highland 

& Bobrowsky, 2008). 
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2.2  Mechanisms of landslide formation 

Landslide formation is a complex and dynamic process influenced by a wide range of 

geological, hydrological, environmental, and anthropogenic factors (Li et al., 2020). At its core, 

a landslide occurs when the forces driving material downslope—primarily the force of 

gravity—exceed the resisting forces that maintain the slope’s stability, such as the material's 

shear strength and internal cohesion (Petley, 2012). However, while gravity is the fundamental 

force behind all landslides, the processes that destabilize slopes and trigger failures are highly 

variable and depend on site-specific conditions (Fidan et al., 2024). These mechanisms include 

long-term processes, such as weathering and progressive slope degradation, and short-term 

triggers, such as heavy rainfall, earthquakes, volcanic activity, or human disturbances (Fidan 

et al., 2024). 

As previously mentioned, water plays a particularly critical role in landslide formation, as it 

can both increase the weight of slope materials and reduce their shear strength through the 

buildup of pore water pressure (Polemio & Petrucci, 2000). Similarly, seismic activity can 

weaken slope stability by inducing ground shaking and disrupting the internal structure of the 

mass of substrate (Gariano & Guzetti, 2016). Also, erosion, whether caused by rivers, waves, 

or human activities, often undercuts slopes, removing material that supports the overburden, 

creating conditions that are prone to failure (Malamud et al., 2004). Anthropogenic factors, 

such as deforestation, construction and excavation, further exacerbate these natural processes, 

altering the delicate balance of forces on a slope (Vasantha & Bhagavanulu, 2008). The 

mechanisms leading to landslides often interact in complex ways. For example, prolonged 

weathering can weaken a slope over decades, while a single intense rainfall event or earthquake 

may act as the immediate trigger for failure (Calcaterra & Parise, 2010). In some cases, the 

absence of vegetation, whether due to natural processes like wildfires or human-induced 

deforestation, removes the root systems that help bind soil and reduce erosion, leaving slopes 

more vulnerable to sliding (Vasantha & Bhagavanulu, 2008). Understanding these mechanisms 

is essential not only for predicting when and where landslides might occur but also for 

developing targeted mitigation strategies that address both long-term susceptibility and short-

term triggers. 

Landslides are generally controlled by the slope morphology, geology, soils, and 

moisture conditions (Ohlmacher, 2000). These specific factors contribute to landslide 

formation and interconnected with the hydrology, topography, vegetation, climate, and 
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seismology of each location, they play pivotal roles in influencing not only where landslides 

are likely to occur but also their frequency, magnitude, and potential impact (Malamud et al., 

2004). 

2.2.1 Slope morphology 

Slope is the gradient or steepness of the land surface typically referring to the inclination of 

land or terrain relative to a horizontal plane (Harist et al., 2018). Slope morphology refers to 

the shape, structure, and configuration of a slope, including its angle, curvature, and overall 

profile (Wang et al., 2020). The combination of slope angle, shape, and aspect, slope 

morphology plays a primary role in landslide occurrence.  

Steeper slopes are inherently more prone to landslides due to the gravitational force acting on 

slope materials, which increases with angle (Turel & Frost, 2011). A steep slope demonstrates 

how large the shear stress is and how low the security factor is for slope (Nourani, et al., 2014). 

This is because as slope increases, tangential stress increases in the residual or consolidated 

soil covering, axial tension decreases and stability deteriorates (Çellek, 2020). Thus, with the 

increase of the slope, the block-creation potential of the material increases, and this leads to 

the increase in the weight of rock blocks at the top of the mass. As a result, slope does not only 

affect stress distribution within masses but also affects the magnitude of shear and normal stress 

on shear surfaces (Çellek, 2020). 

Slopes with angles exceeding the material's angle of repose (e.g. typically 25–45° for loose 

debris) are particularly unstable (Zhuang et al., 2016). The shape of the slope also influences 

landslide susceptibility. Concave slopes tend to accumulate water and loose sediments, creating 

zones of high stress that are more prone to failure (Turel & Frost, 2011). Conversely, convex 

slopes may shed water and sediment more easily but are vulnerable to surface erosion that 

could destabilize them. Aspect, or the direction a slope faces, determines exposure to climatic 

factors like sunlight and wind. South-facing slopes in the Northern Hemisphere, for instance, 

often experience greater weathering and vegetation loss due to higher solar radiation, 

potentially reducing stability (Çellek, 2020). In addition, terrain irregularities such as ridges, 

cliffs, and overhangs can create localized stress concentrations, further influencing slope 

stability (Çellek, 2020). 
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2.2.2 Geology 

Geology, which includes the composition, structure, and physical properties of Earth materials, 

is a critical factor influencing landslide susceptibility (Lee et al., 2002). The type of rock and 

soil in an area determines its mechanical strength, weathering potential, and ability to resist 

external forces (Ohlmacher, 2020). Variations in geological characteristics can significantly 

alter the stability of slopes, making an understanding of geology essential for landslide risk 

assessment and management (Lee et al., 2002). The type of rock present on a slope plays a 

fundamental role in its stability. Hard rocks such as granite and basalt are generally strong and 

resistant to deformation (Stead & Wolter, 2015). However, when these rocks are heavily 

fractured or weathered, their strength diminishes, making them more prone to failure (Stead & 

Wolter, 2015). In contrast, softer rocks like shale, siltstone and sandstone are weaker and more 

susceptible to landslides, especially under conditions of prolonged weathering and erosion 

(Guzzetti et al, 1996). Shale is more vulnerable due to its fine laminations, which allows it to 

break easily along bedding planes (Stead, 2015; Rosly et al., 2022). Unconsolidated materials, 

including volcanic ash and glacial till, lack cohesive strength and are especially vulnerable to 

failure when saturated with water, making them common contributors to landslide events 

(Guzzetti et al, 1996). 

Geological structures such as faults, joints, and bedding planes create inherent weaknesses 

within the rock mass, often serving as sliding surfaces during slope failures (Guerriero et al., 

2021). Fault zones are particularly hazardous because they contain fractured and weakened 

rocks, which allow water infiltration that reduces slope stability (Lee et al., 2002). Joints and 

fractures similarly act as conduits for water, promoting chemical weathering and further 

destabilizing the slope (Stead & Wolter, 2015). Bedding planes in sedimentary rocks are 

especially significant when they dip parallel to the slope, as they provide a natural surface along 

which sliding can occur (Guerriero et al., 2021). Structural features such as folds also influence 

stability, with anticlines creating zones of tension and synclines accumulating water that can 

weaken the slope materials (Rosly et al., 2022). 

 

2.2.3 Soil 

Soil plays a critical role in determining slope stability and is a key factor influencing the 

occurrence and characteristics of landslides. The properties of soil, including its composition, 

structure, and hydrological behaviour, significantly impact how slopes respond to external 

stresses such as rainfall, seismic activity, or human intervention (Iverson et al., 2000). Different 
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soil types exhibit varying levels of shear strength and cohesion, making some soils more prone 

to landslides than others. The composition and texture of soil are fundamental in controlling its 

stability. Soils with a high proportion of clay are particularly susceptible to landslides due to 

their unique mineralogical properties (Mugagga et al., 2012). Clay minerals have a plate-like 

structure that allows them to absorb water, causing swelling and a reduction in shear strength 

(Yalcin, 2007). When saturated, clay-rich soils can transform into a viscous mass, leading to 

rapid slope failure (Yalcin, 2007). In contrast, sandy soils which are more granular exhibit 

higher permeability and allow water to drain more easily (Acharya et al., 2009). However, 

sandy soils may also lose stability during intense rainfall events or under high pore water 

pressure, especially if they are poorly compacted (Acharya et al., 2009). Loamy soils, which 

consist of a mixture of sand, silt and clay, tend to have intermediate stability, but their 

behaviour under stress varies depending on the relative proportions of these components 

(Temme, 2021). 

Soil structure, or the arrangement of soil particles and pores, is another critical determinant of 

slope stability (Chen & Martin, 2002). Well-structured soils with stable aggregates are more 

resistant to erosion and mass wasting, while poorly structured soils are prone to collapse under 

stress (Chen & Martin, 2002). Soils with a high degree of porosity can absorb and retain 

significant amounts of water, which may increase their weight and decrease their strength 

during heavy rainfall or flooding (Temme, 2021). Conversely, compacted soils with low 

porosity may shed water more rapidly but can also become destabilized when underlying layers 

become saturated, leading to shallow landslides or debris flows (Sunbul et al., 2021). Organic 

content within soils also influences their stability. Soils rich in organic matter, such as peat, 

tend to have low bulk density and high water-holding capacity (Błońska et al., 2018). While 

this can support vegetation and reduce erosion, it also makes the soil prone to instability when 

saturated. Peaty soils, common in certain high-altitude and wetland environments, are 

particularly prone to landslides due to their compressibility and weak structure when wet. In 

contrast, mineral-rich soils often exhibit higher strength but are more susceptible to weathering 

and erosion over time (Cerri et al., 2020). 

The hydrological properties of soil, including its permeability and drainage capacity, are key 

factors in landslide formation. Permeable soils, such as sandy or gravelly soils, allow water to 

infiltrate rapidly, reducing surface runoff but increasing the risk of subsurface instability (Chen 

& Martin, 2002). On the other hand, impermeable soils, such as those rich in clay, can trap 

water near the surface, creating perched water tables that add weight to the slope and reduce 

its stability. The interaction between soil layers of differing permeability, known as 
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stratification, can also exacerbate instability by concentrating water flow along specific 

horizons, leading to increased pore water pressure and slope failure (Chen & Martin, 2002). 

 

2.2.4 Moisture conditions 

Moisture conditions influence landslide susceptibility by altering the mechanical properties of 

soil and rock, directly impacting slope stability. The presence of water within slope materials 

can either enhance or diminish stability, depending on the extent and distribution of moisture. 

In moderate amounts, water can provide cohesion in granular soils like sands through surface 

tension, which helps particles bind together (Wicki et al., 2020). However, when water levels 

increase significantly, such as during prolonged rainfall or snowmelt, saturation occurs. 

Saturation reduces the frictional resistance between particles and increases the weight of slope 

materials, creating conditions that favour slope failure (Whiteley et al., 2019). This dual role 

of water makes it one of the most influential factors in landslide initiation.  

A critical mechanism through which moisture destabilizes slopes is the increase in pore water 

pressure. Pore water pressure refers to the pressure exerted by water within the void spaces of 

soil or rock (Matsuura et al., 2008). When water infiltrates a slope and fills the pores, it 

effectively "floats" the particles, reducing their ability to interlock and resist shear forces 

(Matsuura et al., 2008). As a result, the shear strength of the material decreases, making it more 

prone to failure. This phenomenon is particularly severe in fine-grained soils, such as clays or 

silts, which are less permeable and retain water for longer periods (Błońska et al., 2018). In 

contrast, coarse-grained soils like sands or gravels drain more effectively, reducing the 

likelihood of prolonged waterlogging but remaining susceptible to rapid failures during 

extreme rainfall events (Acharya et al., 2009). 

The interaction between moisture conditions and geological or topographical factors further 

amplifies landslide risks. In layered soils or rock formations, differences in permeability can 

lead to water accumulation along less permeable layers, creating perched water tables and 

zones of high pore water pressure (Matsuura et al., 2008). Additionally, slopes undercut by 

rivers, waves, or human activities are particularly vulnerable, as water infiltration further 

destabilizes the already weakened base (Matsuura et al., 2008). Moisture also contributes to 

the weathering of slope materials, as repeated cycles of wetting and drying weaken soil and 

rock over time. These processes underscore the complex relationship between moisture 

conditions and landslides, emphasizing the need for careful monitoring and management of 

water dynamics in landslide-prone areas (Whiteley et al., 2019). 
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2.3  Triggering factors to landslide formation 

The triggering factors of landslide formation refer to the immediate conditions or events that 

initiate the movement of soil, rock, or debris down a slope. While the inherent instability of a 

slope may result from predisposing factors such as geology, topography or soil properties, a 

triggering factor acts as the catalyst that converts potential instability into active failure (Jaafari, 

2024). These triggers can be natural, such as intense rainfall, rapid snowmelt, earthquakes, or 

volcanic activity; or anthropogenic, including construction activities, deforestation, or changes 

in drainage patterns. Often, a combination of these factors work together to overwhelm the 

stability of a slope, particularly in areas already susceptible to landslides. Highland and 

Bobrowsky (2008) identified two primary categories of factors that trigger landslide formation 

as being natural and human factors, and in some cases, a combination of both factors. These 

factors typically act on slopes already predisposed to instability due to their geological, 

morphological, or hydrological characteristics. However, human activities, including 

construction, deforestation, and land-use changes, increasingly contribute to landslide 

occurrences by accelerating or compounding natural processes. 

 

2.3.1 Water 

Water is a primary cause of landslides through slope saturation which can occur in the form of 

intense rainfall, snowmelt, changes in ground-water levels, and surface-water level changes 

along coastlines, earth dams, etc. (Polemio & Petrucci, 2000). Intense or prolonged rainfall 

increases the water content in soil and rock, leading to saturation and a rise in pore water 

pressure (Polemio & Petrucci, 2000). This process reduces the shear strength of the landmass, 

destabilizes slopes causing shallow landslides or debris flows. Similarly, rapid snowmelt 

introduces large volumes of water into the subsurface, saturating the soil and triggering 

landslides in high-altitude regions or during spring thaw (Moreiras et al., 2012). Water’s 

erosive power also undermines slope stability by scouring riverbanks, coastal cliffs, and road 

cuttings, removing support at the base of slopes and initiating failures. The role of water is 

particularly significant in tropical regions, where monsoons or cyclonic storms can dump large 

volumes of rain in a short time, overwhelming natural drainage systems and leading to 

catastrophic landslides (Amarasinghe et al., 2024). 
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2.3.2 Seismic activity  

Many mountainous areas that are vulnerable to landslides have also experienced at least 

moderate rates of earthquake activity in recorded times (Lenti & Martino, 2012). Earthquakes 

in steep terrain greatly increase the likelihood that landslides will occur due to ground shaking, 

liquefaction of susceptible sediments, or shaking-induced dilation of soil materials, which 

allows rapid infiltration of water (Keefer, 2002). However, the relationship between 

earthquakes and landslides depends on several factors, including the magnitude of the 

earthquake, the distance from the epicentre, geological conditions, topography, and weather 

conditions prior to the event (Lenti & Martino, 2012). For instance, the 1964 Great Alaska 

earthquake in the United States caused widespread landsliding and other ground failure, which 

led to most of the monetary loss attributed to the earthquake (Plafker, 1965; Page, 1968). Also, 

the 2018 Hokkaido Eastern Iburi Earthquake (magnitude 6.6) triggered over 6,000 landslides, 

primarily in Atsuma town. The event was notable for its devastating impact, killing over 40 

people and causing widespread infrastructure damage (Wang et al., 2019). In Nepal, the 2015 

Gorkha Earthquake (magnitude 7.8) triggered thousands of landslides across central Nepal, 

severely impacting rural communities (Goda et al., 2015). 

Seismic activity thus remains a primary trigger for landslides in tectonically active regions 

because of the unique ability of earthquakes to destabilize slopes through intense ground 

shaking (Keefer, 2002). This destabilization emphasizes the need for rapid landslide mapping 

by quickly identifying the affected areas which is crucial for guiding emergency response, 

allocating resources effectively, and planning relief efforts. Timely mapping also helps rescue 

teams access impacted zones, prevents further casualties by identifying secondary hazards, and 

supports long-term recovery by informing stabilization and rebuilding efforts. 

 

2.3.3 Volcanic activity  

Landslides due to volcanic activity represent some of the most devastating types of failures. 

Volcanic lava may melt snow rapidly, which can form a mass of rock, soil, ash, and water that 

accelerates rapidly on the steep slopes of volcanoes, devastating everything in its path (Barbano 

et al., 2014). These volcanic debris flows can reach great distances after they leave the flanks 

of the volcano and can also damage structures in flat areas surrounding the volcanoes (Korup 

et al., 2019). Volcanic edifices are young, unconsolidated, and geologically weak structures 

that in many cases can collapse and cause rockslides, landslides, and debris avalanches (Blahůt 

et al., 2019). Many islands of volcanic origin experience periodic failure of their perimeter 
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areas (due to the weak volcanic surface deposits), and masses of soil and rock slide into the 

ocean or other water bodies, such as inlets (Blahůt et al., 2019). Such collapses may create 

massive sub-marine landslides that may also rapidly displace water, subsequently creating 

deadly tsunamis that can travel and do damage at great distances, as well as locally (Pistolesi 

et al., 2020). 

 

2.3.4 Human activities 

Human activities have increasingly emerged as significant contributors to landslide initiation, 

often exacerbating natural triggers (Li et al., 2020; Sun et al., 2021). Deforestation, for instance, 

removes vegetation that stabilizes slopes by anchoring soil and intercepting rainfall. Without 

this protective cover, soil becomes exposed to erosion, infiltration, and weathering, 

dramatically increasing landslide susceptibility (Vasantha & Bhagavanulu, 2008). Similarly, 

construction activities, including road building, mining, and urban expansion, alter the natural 

slope profile, reduce material strength, and add extra load to slopes (Salmi et al., 2017). These 

modifications often disturb the equilibrium of slopes, making them more vulnerable to external 

triggers such as heavy rainfall or seismic events. Improper drainage systems, often associated 

with poorly planned infrastructure, can lead to water accumulation and localized slope failures 

(Kazmi et al., 2016). In agricultural areas, over-irrigation or poor land management practices 

can also saturate soils, destabilizing slopes and leading to landslides (Lacroix et al., 2020). 

The interaction between natural and human factors often creates a compounded effect, 

amplifying landslide risks. For instance, deforestation in mountainous regions can lead to 

increased runoff during heavy rainfall (Vasantha & Bhagavanulu, 2008), while poorly managed 

construction on unstable slopes can trigger landslides during earthquakes (Wang et al., 2014). 

The increasing impact of climate change further complicates these dynamics, as more intense 

and frequent rainfall, rising temperatures, and melting glaciers are expected to intensify 

landslide activity worldwide (Li et al., 2020). Understanding the complex interplay between 

these natural and human triggers is crucial for developing effective strategies to mitigate 

landslide risks and protect vulnerable communities. 

 

2.4  Landslides based on type of movement 

2.4.1 Falls 

A fall usually begins with the detachment of soil or rock, or both, from a steep slope along a 

surface on which little or no shear displacement of the material has occurred (Highland & 
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Bobrowsky, 2008). The detached material subsequently descends mainly by falling, rolling, or 

bouncing, depending on the type of material for example rockfalls. The primary feature of this 

type of landslide is the absence of interaction between the detached material and any other 

material on the landscape as the detached material falls freely (Parise, 2001). This type of 

landslide is usually common on very steep or vertical slopes such as along coastal areas, with 

differing velocity depending on the slope steepness (Case, 2001). In most cases, it is the result 

of a progressive crack or detachment of the material from underneath the slope either by natural 

processes such as streams or rivers, or by human activities such as excavation (Highland & 

Bobrowsky, 2008). Rock falls however, particularly those involving small volumes, have 

received less attention than many other types of landslides (Parise, 2001), as focus is primarily 

dedicated to catastrophic rockfall avalanches. Moreover, rock falls are the most abundant type 

of landslide triggered by earthquakes, as shown by historical worldwide earthquake-induced 

landslide data compiled by Keefer (1984), and by numerous landslide inventories from post-

earthquake investigations (e.g. Keefer, 2000). A schematic of rockfalls has been illustrated in 

Figure 2.1. 

 

Figure 2.1: A schematic of a rockfall. Credit: (Highland & Bobrowsky, 2008) 

 

2.4.2 Topples 

Topples are recognized as the forward rotation out of slope of a mass of soil or rock around a 

point or axis below the centre of gravity of the displaced mass (Highland & Bobrowsky, 2008). 

The primary feature of this landslide type is that the material tilts or tips over before falling. 

Toppling is sometimes driven by gravity exerted by the weight of material upslope from the 

displaced mass (Parise, 2001). Geological and structural landscapes which are the most prone 
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to toppling failures are also highly susceptible to rock falls and, topples generally lead to falls 

of the displaced mass (de Freitas & Watters, 1973; Caine, 1982). Sometimes toppling is due to 

water or ice in cracks in the mass and can consist of rock, debris (coarse material), or earth 

materials (fine-grained material) (Highland & Bobrowsky, 2008). They are known to occur 

globally and prevalent in columnar-jointed volcanic terrain, as well as along stream and river 

courses where the banks are steep (Highland & Bobrowsky, 2008). Their velocity varies from 

extremely slow to extremely rapid, sometimes accelerating throughout the movement 

depending on distance of travel (Parise, 2001). A schematic of topples is provided in Figure 

2.2. 

 

 

Figure 2.2: A schematic of Topples. Credit: (Highland & Bobrowsky, 2008). 

 

2.4.3 Slides 

A slide is a downslope movement of a soil or rock mass occurring on surfaces of rupture or on 

relatively thin zones of intense shear strain (Highland & Bobrowsky, 2008). The mass 

movement does not initially occur simultaneously over the whole of what eventually becomes 

the surface of rupture, as the volume of displacing material enlarges from an area of local 

failure (Xie et al., 2020). Slides are generally classified as rotational or translational, depending 

on the surface of rupture. Rotational landslides (slumps) occur most frequently in homogeneous 

materials found in fills (Highland & Bobrowsky, 2008), with the surface of rupture curved 

upward (spoon-shaped) and the slide movement rotational about an axis that is parallel to the 

contour of the slope (Xie et al., 2020). In translational landslides, the mass moves out, or down 

and outward, along a relatively planar surface with little rotational movement or backward 

tilting (Highland & Bobrowsky, 2008). This type of slide may progress over considerable 
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distances if the surface of rupture is sufficiently inclined, in contrast to rotational slides, which 

tend to restore the slide equilibrium (Xie, et al., 2020). The material in the slide may range 

from loose, unconsolidated soils to extensive slabs of rock, or both. Translational slides 

commonly fail along geologic discontinuities such as faults, joints, bedding surfaces, or the 

contact between rock and soil (Highland & Bobrowsky, 2008). A schematic of rotational and 

translational landslides has been presented in Figure 2.3a and Figure 2.3b. 

 

 

Figure 2.3a: Rotational Landslide   Figure 2.3b: Translational Landslide 

Credit: (Highland and Bobrowsky, 2008) 

 

2.4.4 Spreads 

Usually occurring on very gentle slopes, spreads are an extension of a cohesive soil or rock 

mass combined with the general subsidence of the fractured mass of cohesive material into 

softer underlying material (Highland and Bobrowsky, 2008) often in association with 

liquefaction or weakened soils. They are characterized by the lateral extension and movement 

of large masses of soil or rock across a horizontal or gently sloping surface (Figure 2.4) usually 

less than 6o (Chung et al., 2014). Spread landslides often occur near river valleys or coastal 

areas where sediments are loosely compacted, and groundwater or tidal forces may contribute 

to weakening the soil (Highland and Bobrowsky, 2008).  

 



18 
 

 

Figure 2.4: A schematic of spread landslide. (Credit: Highland and Bobrowsky, 2008). 

 

2.4.5 Flows 

A flow (see Figure 2.5) is a spatially continuous movement in which the surfaces of shear are 

short-lived, closely spaced, and usually not preserved (Highland and Bobrowsky, 2008). It 

often begins as a slide forming on a surface of rupture, but then continues moving over a long 

distance (Hungr et al., 2001). Often, there is a gradation of change from slides to flows, 

depending on the water content of the material and mobility, (Highland and Bobrowsky, 2008) 

causing the component velocities in the displacing mass of a flow resemble those in a viscous 

liquid. Occasionally, as a rotational or translational slide gains velocity and the internal mass 

loses cohesion or gains water, it may evolve into a flow. Hence, they have been informally and 

inappropriately called “mudslides” due to the large quantity of fine material that may be present 

in the flow (Highland and Bobrowsky, 2008).  

 

 

Figure 2.5: A schematic of flow landslide. Credit: (Highland and Bobrowsky, 2008). 
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2.5  Landslide mapping approaches 

Systematic reviews of the literatures on landslide detection and mapping techniques have been 

published over the last 20 years, considering several input materials and mapping techniques 

such as geomorphological mapping, topographic maps, and aerial photography (Parise, 2001). 

Similarly, reviews of the application of spaceborne, airborne, and terrestrial remote sensing 

technologies (Guzzetti et al., 2012), Synthetic Aperture Radar (SAR; Modini et al., 2021) and 

multitemporal interferometric SAR (Schlögl et al., 2022; Novellino et al., 2024) have also been 

conducted. Landslide mapping has also been commonly implemented using several 

methodologies such as post-event aerial photo analysis and plotting (Cardinali et al., 2000), 

manual or automatic identification based on the use of high-resolution digital elevation models 

(DEMs) obtained from airborne lidar surveys conducted after the event (Avanzi et al., 2015; 

Giordan et al., 2018) or traditional geomorphological field surveys (Pepe et al., 2019). 

Traditionally, landslide mapping relied on field surveys where geologists visited affected sites, 

manually identify landslide features, and recorded their characteristics (Warburton et al., 2008). 

With the advent of remote sensing technology, landslide mapping began to incorporate aerial 

photography and satellite imagery (Giordan et al., 2018). These methods allowed for broader 

coverage and identification of landslides in areas that were previously inaccessible.  

With the increase in satellite images in recent years, even shallow landslides have been detected 

(Lu et al., 2019; Martha, 2010), thanks to the robust improvement of satellite resolution which 

enabled more accurate and widespread landslide detection. Techniques such as the Normalized 

Difference Vegetation Index (NDVI), change detection analysis, and machine learning 

algorithms have further enhanced the ability to detect and predict landslides on a large scale 

(Guzzetti et al., 2012). Tools like Google Earth Engine (GEE) and HazMapper now allow 

researchers to process vast amounts of EO data quickly for the whole planet, providing near 

real-time monitoring and mapping capabilities, making them crucial for rapid response efforts.  

Generally, there are two widely used remote sensing techniques for landslide mapping broadly 

classified into active and passive systems based on how they collect data from the Earth’s 

surface. Passive sensors rely on natural energy, primarily sunlight, to detect and measure 

reflected or emitted radiation from the Earth’s surface. These sensors capture data in the visible, 

near-infrared, shortwave infrared, and thermal infrared portions of the electromagnetic 

spectrum; examples include optical sensors on satellites like Sentinel-2, Landsat, and MODIS 

(Stumpf, 2013). Optical remote sensing involves the use of satellite or airborne sensors to 

capture images of the Earth's surface in various bands of the electromagnetic spectrum, 
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primarily in the visible, near-infrared (NIR), and shortwave infrared (SWIR) (Stumpf, 2013). 

Image processing techniques for the analyses of optical data comprise image classification, 

feature and change detection, which in principle allow rapid landslide mapping.  

The capabilities of optical remote sensing systems are determined by features of the sensors, 

the supporting platforms and the image analysis techniques used to extract information 

(Pradhan & Lee, 2007). It begins with the capture of multispectral or hyperspectral images of 

the Earth's surface by optical sensing platforms such as Sentinel-2, Landsat, or commercial 

satellites like WorldView or SPOT (Pradhan & Lee, 2007). The image is pre-processed by 

atmospheric correction, georeferenced, and cloud-masked to removed cloud-covered areas 

(Stumpf, 2013). In cases where multiple images cover the region of interest, a composite of the 

image is generated by combining the images to create a single image of the region of interest. 

An inherent limitation of optical imaging is its dependence on direct sight contact with the 

targeted object which does in general limit the investigating of landslides under dense 

vegetation and limits the frequency of spaceborne observations in high latitudes and the tropics 

where cloud cover is more persistent throughout the year (Stumpf, 2013).  

Active sensors, in contrast, generate their own energy to illuminate the target area and measure 

the reflected or backscattered signal. Examples include Synthetic Aperture Radar (SAR), Light 

Detection and Ranging (LiDAR), and radar altimeters (Mondini et al., 2021). SAR remote 

sensing from airborne and satellite platforms exploits active emissions of electromagnetic 

radiation in the microwave spectral range (Mondini et al., 2021). SAR operates by emitting 

radar waves from an orbiting satellite or aircraft and measuring the reflected signals to generate 

high-resolution images of the Earth's surface (Meyer, 2019). The systems capture images by 

emitting radar signals that bounce off the Earth's surface as echoes. The strength of the echo 

depends on the properties of the scattering ground surface in relation to the radiation frequency 

(e.g., the dielectric constant, the terrain roughness), the distance between the antenna and the 

ground, and the satellite view angle (Mondini et al., 2021), and it is recorded in the “amplitude” 

of the electromagnetic wave (Meyer, 2019).  

The time it takes for the signal to return is recorded, and from this, high-resolution images are 

generated (Mondini et al., 2021) by calculating the distance between the satellite and the Earth's 

surface at each point, allowing for precise mapping of surface features and terrain deformations 

(Meyer, 2019). Since active radar sensors do not require illumination from the sun, and 

microwaves penetrate the clouds, SAR imagery can – in principle – capture the occurrence (or 

recurrence) of landslides all day long, even in areas where clouds obstruct optical sensors 
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(European Space Agency, 2020). This makes SAR imagery a potentially ideal solution for the 

detection and mapping of landslides compared to passive optical remote sensing techniques.  

Some studies have applied SAR technology in landslide detection and mapping (Burrows et 

al., 2020; Rodriguez et al., 2002; Herrera et al., 2009), but notable constraints have been 

highlighted by Maconi (2019) when used for operational monitoring and anomaly detection 

over regional scales. Since SAR relies greatly on the amplitude of return of signals, there is the 

risk of misdetection when applied in mountainous regions. Thus, SAR is often paired with 

interferometric techniques (InSAR), which allows for the measurement of ground displacement 

between two or more SAR images taken at different times (Mondini et al., 2021). 

The following sub-sections explore both the traditional and widely used modern earth 

observation-based techniques for landslide mapping. 

 

2.5.1 Field Surveys  

Field surveys are one of the earliest and most direct methods of landslide mapping. Field survey 

relies heavily on the use of various close observation and measurement equipment, such as 

clinometers, displacement metres, stress metres, water level gauges, global navigation satellite 

system (GNSS) receivers, and Time Domain Reflectometry (TDR) (Zhong et al., 2019). This 

approach involves on-site investigations where experts physically assess the affected area, 

documenting landslide features such as scarp faces, debris flow paths, and deposits. During 

these surveys, tools like Global Positioning Systems (GPS), drones, or total stations are often 

used to map landslide boundaries and measure slope angles, elevations, and distances (Zhong 

et al., 2019). However, this approach is inefficient for mapping landslides over a large area 

since it requires considerable time, materials, and labour; and it is impossible to identity all the 

parts of a landslide (e.g. the scarp face, boundary, and deposits) accurately where the 

topography is hummocky and/or the vegetation is tall or dense (Santangelo et al., 2010). Even 

though the results of spectral analysis with high resolution imageries are preferable when 

mapping landslides over large areas (Dou et al., 2015), field work is still conducted when it is 

necessary to map single landslides in detail for a specific event, or to validate maps prepared 

using remote sensing techniques (Santangelo et al., 2010). The difficulty of this method stems 

from several causes, including: (i) the size of the landslide, often too large to be seen completely 

in the field, (ii) the viewpoint of the investigator, often inadequate to see all parts of a landslide 

(e.g., the scarp, lateral edges, deposit, toe) with the same detail, and (iii) the fact that old 

landslides are often partially or totally covered by forest, or have been partly dismantled by 
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other landslides, erosion processes, and human actions, including agricultural and forest 

practices (Guzzetti et al., 2012). This technique however is more efficient in mapping a single 

landslide or small group of landslides triggered by a specific event (e.g. Santangelo et al., 

2010), or to validate inventory maps prepared using other techniques. 

 

2.5.2 Manual delineation 

Traditionally, manual visual image interpretation for landslide recognition has been based on 

aerial photographs and recently extended to high resolution (HR) and very high resolution 

(VHR) optical satellite imagery (e.g., WorldView-2/3, QuickBird) (Scaioni et al., 2014) and is 

still the most widely used method for landslide detection and inventory preparation (Holbling 

et al., 2017). This remains widely adopted because a trained geomorphologist can readily 

recognize and map landslides on the aerial photographs, aided by the vertical exaggeration 

introduced by stereoscopic vision (illusion of depth) (Guzzetti et al., 2012).  However, unlike 

automated or semi-automated approaches, manual mapping relies on human expertise to detect 

landslide features based on knowledge of terrain, vegetation patterns, and changes in landscape 

morphology such as those described in section 2.2.1 (Scaioni et al., 2014). The first step in 

manual landslide mapping is the selection of the appropriate high-resolution satellite or aerial 

imagery (Holbling et al., 2017), that covers both pre-event and post-event time frames to allow 

for comparison. Using GIS software like QGIS, the manual mapping process involves visually 

inspecting the satellite images for specific indicators of landslides like visible vegetation loss, 

scar faces or terrain disruption (Scaioni et al., 2014). Once these features are identified, the 

next step is to manually digitize or draw polygons around the landslide areas. Even though it 

allows for a detailed, high-accuracy representation of landslide events, manual delineation is 

time-consuming and labour-intensive, making it unsuitable for large-scale mapping projects. 

Also, due to the large variability of landslide phenomena, not all landslides are clearly and 

easily recognizable in the field, from the aerial photographs or the satellite images (Guzzetti et 

al., 2012). Thus, this method is best applied immediately after a landslide event when individual 

landslides are “fresh” and usually clearly recognizable as the boundaries between the failure 

areas (i.e., depletion, transport and deposition areas) and the unaffected terrain are usually 

distinct, making it relatively simple for the geomorphologist to identify and map the landslide. 

This is particularly true for small, shallow landslides, such as soil slides or debris flows 

(Guzzetti et al., 2012).  
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2.5.3 Indexing or Pixel-based technique 

This approach identifies landslides based on thresholds applied to individual pixels of remotely 

sensed imagery. These thresholds can be determined either manually (supervised) or 

automatically (unsupervised) and are designed to classify pixels as belonging to landslides or 

not (Novellino et al., 2024). The core assumption of these techniques is that landslides are more 

likely to occur under conditions that mirror past events. For instance, areas with similar 

vegetation loss, topographic characteristics, or soil moisture changes are flagged as susceptible 

to landslides (Novellino et al., 2024). This makes these methods particularly useful in areas 

where the triggering conditions for landslides are well understood. 

Common parameters used in pixel-based mapping include indices such as the Normalized 

Difference Vegetation Index (NDVI), which helps detect vegetation loss often associated with 

landslides, as noted by Fiorucci et al. (2019). Additionally, topographic parameters such as 

slope, aspect, and curvature, as described by Scheip and Wegmann (2021), are critical in 

identifying unstable terrain. SAR data, specifically backscatter values, are also utilized for 

detecting changes in surface roughness and soil moisture, as highlighted by Burrows et al. 

(2020). These parameters are widely available in remote sensing datasets, making the pixel-

based approach versatile and applicable across different landscapes. 

Despite its advantages, pixel-based techniques involve significant human intervention, 

particularly in selecting the parameters and defining the threshold values. This introduces a 

level of subjectivity, which can influence the accuracy and reproducibility of the results. 

Furthermore, these methods often struggle with the “salt-and-pepper effect”, where individual 

pixels are classified as landslides in isolation, leading to a scattered or noisy output (Holbling 

et al., 2017). Although post-processing filters can reduce this effect, it remains a limitation, 

especially in areas with heterogeneous landscapes. 

 

2.5.4 Object-based Image Analysis (OBIA) 

While the pixel-based method uses the spectral information of single pixels and has been 

successfully used to map landslides (Mondini et al., 2017, 2011; Nichol and Wong, 2005), 

OBIA uses segmentation to convert homogenous pixels into objects (Amatya et al., 2021). 

These objects are defined by their shared spectral, textural, morphological, and topographical 

characteristics. By moving away from artificial square cells, segmentation provides a more 

realistic representation of landscape features, addressing one of the key limitations of pixel-

based methods (Novellino et al., 2024). Landslide detection using OBIA consists of two 
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important steps - segmentation and classification (Amatya et al., 2019). The main challenge in 

implementing a segmentation algorithm is determining the segmentation parameters that 

defines the size of the objects (Martha et al., 2012). The goal of image segmentation is to 

produce objects that are internally homogenous and externally heterogenous from its 

neighbours (Espindola et al., 2006). OBIA divides the image into segments or "objects" based 

on their spectral, spatial, and textural characteristics, such as colour, shape, size, and texture. 

These segments represent homogeneous areas in the imagery, which could either be parts of a 

landslide or a stable terrain (Martha et al., 2012). After the segmentation, the algorithm is 

trained to classify the objects into different land cover types or features (Figure 2.6).  

 

Figure 2.6: a) landslide in study area b) segmented objects (Credit: Amatya et al., 2021) 

For landslide mapping, it can distinguish between landslide-affected areas and stable terrain by 

analysing the features of the objects, such as slope, soil texture, and surface roughness (Martha 

et al., 2012). The segmentation rulesets are then developed using site-specific characteristics 

and manual thresholding of diagnostic features such as slope and elevation (Novellino et al., 

2024). Various studies have applied OBIA in mapping landslides around the world, e.g. Amatya 

et al. (2019, 2021) Martha et al. (2012, 2016), Rau et al. (2014) and Sun et al. (2017). However, 

Stumpf and Kerle (2011) tested various landslide diagnostic features in different part of the 

world and found it to be site specific. Thus, various features must be segmented for each site 

studied as rule-based approaches like the OBIA provide very limited transferability. 

 

2.5.5 Change detection approach 

This approach relies on fundamental principles of image interpretation to identify and map 

landslide events by comparing imagery from before and after a triggering event, such as heavy 
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rainfall or seismic activity (Novellino et al., 2024). The mapping is performed manually or 

automatically using advanced tools like Google Earth Engine, where analysts look for 

distinctive geomorphological features associated with landslides, such as scarps, trenches, 

bulging toes, and double ridges, which indicate slope failures and subsequent ground 

displacement (Psomiadis et al., 2020). Typically, this method involves the use of pre- and post-

event imagery to detect and map changes caused by landslides. For example, an analyst might 

compare satellite or aerial images from before a heavy rainfall event with those captured 

afterward to locate newly formed landslides (Novellino et al., 2024). The differences in terrain, 

surface features, or vegetation patterns between the two time points help identify areas affected 

by slope failures. Studies such as Psomiadis et al. (2020), have demonstrated the effectiveness 

of this approach for detailed landslide mapping in specific areas. However, while the change 

detection approach was widely adopted during the 2000s and early 2010s, particularly when 

high-resolution imagery became more accessible, it has notable limitations (Novellino et al., 

2024). Specifically, the process is time-consuming and labour-intensive, making it unsuitable 

for mapping landslides across large spatial extents or regions with frequent or widespread 

landslide activity. Additionally, the accuracy of this approach depends on the availability of 

high-resolution imagery, as coarse-resolution images may not capture the fine-scale change 

features necessary for identifying landslides (Novellino et al., 2024). Furthermore, the method 

involves a degree of subjectivity since it relies on human interpretation, which can vary 

depending on the analyst's experience and expertise. 

 

2.5.6 Artificial Intelligence (AI) 

The rise of AI in this domain is largely attributed to the growing availability of satellite data 

over recent years. AI-based approaches leverage this abundance of data to train models capable 

of automatically identifying landslides by learning patterns from a combination of diverse 

features. These features include both the causes and effects of landslides, such as scarps, 

vegetation loss, geological factors, slope steepness, weather conditions, and satellite imagery 

(Novellino et al., 2024). By analyzing these features together, AI models can effectively map 

landslides without requiring predefined physical or numerical models. 

The AI training process is fundamentally data-driven, relying on relationships learnt between 

existing landslide inventories and derived features (Novellino et al., 2024). This adaptability 

eliminates the need for strict physical equations or rules, allowing AI systems to generalize 

based on patterns present in the data. Studies, such as Prakash et al. (2020), have shown that 
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AI-based techniques offer better accuracy compared to traditional methods, making them one 

of the most promising approaches for landslide detection. Since 2020, AI has become the 

dominant technique in landslide mapping, demonstrating significant advancements in both 

precision and efficiency (Novellino et al., 2024). 

While earlier data-driven algorithms like principal component analysis (Đurić et al., 2017) and 

maximum likelihood classification (Modini et al., 2017) have been applied to landslide 

mapping, there has been a notable shift toward deep learning models such as the U-Net 

Convolutional Neural Network (CNN). U-Net, in particular, has gained prominence for its 

ability to perform automatic image segmentation by classifying individual pixels as either 

landslide or non-landslide (Novellino et al., 2024). Unlike traditional neural networks, U-Net 

is highly flexible and can work with both small datasets (e.g., hundreds of landslide events) 

and large-scale datasets, making it ideal for diverse applications. By extracting the most 

effective features from input imagery, U-Net models provide highly accurate results for 

landslide mapping (Amankwah et al., 2022). Despite their potential, AI methods do have 

limitations. Most AI techniques, including U-Net, require large, high-quality training datasets 

to achieve optimal performance. Additionally, the computational power needed for training 

and processing deep learning models can be significant, which may limit their accessibility for 

some users or regions (Novellino et al., 2024). 

The following sections discusses two main tools that have been used in the application of these 

techniques in landslide mapping. These tools are freely accessible and are particularly valuable 

for rapid landslide mapping, playing a critical role in supporting swift disaster response efforts. 

By providing timely and accurate information, these tools enable emergency teams to identify 

hazardous areas, prioritize rescue operations, and allocate resources effectively, ultimately 

reducing the impact of landslide disasters on affected communities. 

 

2.6  Google Earth Engine (GEE) 

Google Earth Engine (GEE) is a cloud-based platform designed for planetary-scale geospatial 

analysis. It allows users to access large collections of satellite imagery and real-time 

environmental data without the need for local computing resources (Notti et al., 2023). This 

platform supports a range of data formats, including optical, radar, and elevation data, making 

it particularly suitable for multi-sensor landslide mapping (Handwerger et al., 2022). It 

amplifies geospatial analyses by improving the accessing and processing of geospatial data. 

GEE provides instant access to 37 years of satellite images, with many publicly available 
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geospatial datasets, including optical image collections (e.g., MODIS, Landsat, and Sentinel-

2), SAR data from Sentinel-1, land cover classifications, and precipitation data (Notti et al., 

2023). 

A commonly used landslide mapping technique in GEE is the change detection approach, using 

multi-temporal images to create composites of the landscape (Notti et al., 2023). The advantage 

of multi-temporal images for change detection is that they reduce noise, compared with bi-

temporal images, thus allowing for clearer visualisation of changes on the earth’s surface 

(Handwerger et al., 2022).  It also allows for the generation of a pre- and post-event image of 

the landscape, using different parameters peculiar for change analysis in each location (Nowak 

et al., 2021) to detect landslides. As landslides result in vegetation loss, GEE uses the 

Normalised Difference Vegetation Index (NDVI) for landslide detection and mapping. Thus, 

for optical images, it applies the greenest-pixel method which selects the maximum value 

NDVI pixel within the stack to produce an aggregate image (Notti et al., 2023). This effectively 

removes cloudy pixels and smoothens over temporarily reduced NDVI signals from 

agricultural activity.  

For landslides, images showing the relative difference in the normalised difference vegetation 

index (rdNDVI) calculated from cloud-free composites using Sentinel-2 or Landsat images can 

be used to map landslides (Lindsay et al., 2022). The versatility of this platform in geospatial 

analysis and monitoring landscape changes makes it a more preferred choice in landslide 

mapping as evident in various research e.g. Nowak et al. (2021), Notti et al. (2023) and Lindsay 

et al. (2022) among others. These studies indicate that manual or automated landslide detection 

could be significantly improved with multi-temporal image composites using freely available 

earth observation images from GEE (Lindsay et al., 2022), as it allows the replication of this 

method in new areas, which can be helpful for reducing spatial bias in landslide databases. 

In GEE, two other commonly used algorithms for landslide detection are the SLIP (Sudden 

Landslide Identification Product) and the DRIP (Detecting Real-Time Increased Precipitation) 

models (Fayne et al., 2019). These algorithms work together to identify landslides leveraging 

a range of geospatial datasets to provide accurate and reproducible results. SLIP utilizes optical 

data from the Landsat-8 Operational Land Imager sensor, elevation data from the Shuttle Radar 

Topography Mission (SRTM), and precipitation data from the Global Precipitation 

Measurement (GPM) mission (Fayne et al., 2019). It applies change detection algorithms to 

identify where landslides may have occurred based on vegetation loss, which is a key indicator 

of slope failures in vegetated regions. SLIP's ability to integrate multiple data sources makes it 
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a spatially customizable tool for landslide identification, providing reproducible results tailored 

to specific study areas. 

DRIP, on the other hand, complements SLIP by identifying the timing of potential landslide 

events. It uses near-real-time precipitation data to detect extreme rainfall events and correlates 

them with SLIP's spatial landslide detections (Fayne et al., 2019). This model provides 

suggested dates for landslide occurrences, helping refine the temporal accuracy of SLIP 

detections. Additionally, DRIP's capability to identify extreme rainfall in near-real time 

enhances its utility in forecasting and disaster management by suggesting where potential 

landslide-prone areas may be located (Fayne et al., 2019). 

Together, SLIP and DRIP form a powerful combination for landslide detection, combining 

spatial and temporal analysis to improve the accuracy and reliability of landslide mapping 

efforts. These models showcase the potential of GEE in integrating multi-sensor datasets for 

hazard detection and monitoring.  

 

2.7 HazMapper 

HazMapper (Hazard Mapper) is an open-access application developed in Google Earth Engine 

for the rapid characterization of natural disasters (Scheip & Wegmann, 2021). It allows users 

to derive map and GIS-based products from Sentinel or Landsat datasets without the time and 

cost-intensive resources required for traditional analysis. While the underlying mathematics 

are not novel, HazMapper applies multi-spectral satellite data processing for the evaluation of 

natural hazards by leveraging the accessibility and computational power of Google Earth 

Engine (Scheip & Wegmann, 2021). HazMapper is useful for monitoring landscape changes 

that results in the removal or recovery of terrestrial vegetation associated with a natural disaster 

or human activities. Thus, the platform is not currently suitable for use in non-vegetated 

environments (e.g., polar, high-altitude, or desert regions).  

The source code for HazMapper initiates data processing on remote servers without requiring 

any specialized or licensed software and can be performed on any internet-connected device 

(Scheip & Wegmann, 2021), allowing users to quickly evaluate spatially expansive hazards by 

panning or zooming without downloading any data. The user can modify some variables such 

as the dataset type (Landsat 7, Landsat 8, Sentinel-2), the event date (known date of the hazard 

occurrence), the pre-event and post-event time windows, maximum cloud cover for analysis, 

and the slope thresholds according to landscape type (Table 1). 
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Table 1: HazMapper input variables, definitions and examples. (Source: Scheip & Wegmann, 

2021). 

 

The layers on the interface can be toggled on/off and their transparency modified with a slider 

to help with visualization (Scheip & Wegmann, 2021). The data download function allows for 

the further analysis of processing results, including incorporation into emergency operation 

mapping platforms and advanced scientific analysis or visualization. The user can download 

the (1) rdNDVI image, (2) pre-event and (3) post-event greenest-pixel composite images, (4) 

elevation and hill shade images derived from the global 30m SRTM dataset, and/or (5) any 

user-digitized geometries delineating points or areas of interest (Scheip & Wegmann, 2021). 

These layers are downloaded as raster files or .kml for further analysis on Google Earth or GIS 

environment. 

2.8 Summary 

Landslides can occur in different ways whether they fall, flow, slide, spread, or topple 

depending on the terrain and what triggers them, like heavy rain, earthquakes, or even human 

activities. Each type behaves differently, but they all share one thing in common: they can 

cause serious damage to both the environment and infrastructure. All landslides, no matter how 

they occur, are a threat, thus understanding and mapping them correctly is crucial for 

minimizing their impact on the environment. Landslides also occur in a variety of environments 

(Figure. 2.7), characterized by either steep or gentle slope gradients, from mountain ranges to 

coastal cliffs, and even underwater (Kirschbaum et al., 2010).  
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Figure 2.7: Global distribution of landslide occurrence between 2003-2008. (Credit: 

Kirschbaum et al., 2010) 

Geologically, weathered rock, sheared, fissured, or jointed rock material, contrasting earth 

materials, and the low adhesiveness of the rock are known causes of landslides (Alexander, 

1992). Morphologically, all forms of erosion, such as fluvial, wave, and glacial, along a slope 

may cause landslides and other types of flows, while deposition and weathering are also major 

triggers of landslides (Lee, 2007). In general, gravity has been known to be the primary driving 

force for a landslide (Kirschbaum et al., 2010). In many cases, the landslide is triggered by a 

specific event such as a heavy rainfall, an earthquake, a volcanic eruption, a slope cut to build 

a road, or other human activities exposing the surface of the earth (Zhong et al., 2019). 

However, one factor is commonly present in all landslide occurrence – the presence of moisture 

on the landscape (Lee, 2007).  

Given the widespread occurrence of landslides across different regions and terrains, it becomes 

essential to develop effective ways to understand and monitor them. In some cases, landslides 

may not have distinguishable spectral, spatial, or temporal characteristics, as they may be 
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covered by other land cover types (Amatya et al. 2019). Also, the surface features of a landslide 

can vary greatly, affected by the different geological, geomorphological, and hydrological 

factors as well as weather conditions, and other factors. These differences in the surface 

features are often remarkable and non-negligible, and thus it is difficult to identify a landslide 

with only a few simple criteria (Martha et al., 2012).  

Thus, satellite imagery is considered as one viable tool for landslide detection and mapping 

using primarily aerial and satellite optical imagery interpreted visually or processed by semi-

automatic or automatic procedures or algorithms (Mondini et al., 2021). While previous 

methods discussed above have demonstrated effectiveness, they also present certain limitations 

in mapping landslides. Comparisons have also been made between different satellite products 

and their ability to detect landslides. In a study conducted by Mondini et al. (2021), 48% of the 

case studies in 58 articles across 32 nations used SAR imagery to detect landslides in most 

geological settings. This is without limitation though as Nugroho et al. (2021) asserted that 

utilising SAR requires large amounts of data downloaded to the local system to be processed 

on a local computer. In their comparison between Sentinel-1 SAR and Sentinel-2 optical 

imagery using the Google Earth Engine (GEE) cloud-based computing system, Nugroho et al. 

(2021) concluded that Sentinel-2 imagery performed better in landslide detection compared to 

Sentinel-1.  

Despite the robustness of satellite imagery in landslide mapping, slides and flows have been 

noted to be the most common landslide type analysed using EO data (Novellino et al., 2024). 

In a review comparing landslide mapping using EO data from 40 different satellites, Novellino 

et al. (2024) identified that slides and flows were analysed using 30 satellites, falls 6 satellites, 

complex landslides 3, and deep-seated gravitational slope deformation (DSGSD) one. This is 

because flows and slides remain the easiest types of landslides to detect from space mainly due 

to their size and characteristic shape of the landscape area affected (Novellino et al., 2024). 

Falls and topples are more challenging to identify unless high-resolution satellite data is 

available. This is due to their small footprint on the environment and tendency to occur on steep 

slopes which might be in the shadow of the satellite line of sight (Novellino et al., 2024). 

Conversely, DSGSD despite being large events are usually very slow and do not leave visible 

markers in the environment as vegetation can quickly cover the unstable area (Novellino et al., 

2024). 

Based on these findings and the limitations posed by certain landslide mapping techniques, 

landslide types, and the goal of this study to assess freely accessible EO-based tools for 
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landslide mapping, this study will evaluate three freely accessible rapid landslide mapping 

approaches, focusing on their accuracy and replicability across different regions in terms of 

topography and landslide types. This comparative analysis of the selected techniques will not 

only assess their performance in mapping landslides but also emphasize their potential 

applicability in regions with diverse environmental conditions and landslide types. Moreso, 

because the focus of this study is on rapid landslide mapping approaches to aid emergency 

disaster response strategies within days to weeks following a landslide event, newer landslides 

with visible scars on the landscape will be primarily considered. 
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3 Research Methods 

3.1 Study area 

This study employs a three-tiered approach to evaluate and validate rapid landslide mapping 

techniques across different landscapes using three distinct study areas – primary, secondary 

and tertiary, to ensure the comprehensive evaluation and robustness of the results. These 

distinct study areas were selected because of the difference in terrain types and landslides 

present in these areas, to satisfy the goal of this research which as stated earlier, is to identify a 

rapid landslide mapping technique using EO data, that is universally acceptable, adaptable, and 

reliable across all terrains, thereby ensuring more effective landslide detection regardless of 

local constraints.  

 

3.1.1 Glengyle 

The primary study area of this research is Glengyle, a low valley plain in Western Stirling, 

Scotland, United Kingdom precisely at 56° 17' 9.09" N and 4° 40' 58.25" (Figure 3.1). It lies 

in the northwest shore of the Loch Katrine, a freshwater lake that plays significant role in the 

supply of drinking water to Glasgow and the Glengyle distillery (Gilen, 2013). Situated in the 

Scottish Highlands, a region renowned for its complex geological history shaped by tectonic 

movement, volcanic activity and glaciation (Ballantyne & Gordon, 2021), it is said to be 

prominently dominated by slopes of the Silurian formation (Gilen, 2013). This area lies near 

the Highland boundary fault which demarcates the transition between the ancient metamorphic 

rocks of the highlands and the ancient sedimentary rocks of the lowlands (Ballantyne & 

Gordon, 2021).  

The general landscape of Britain has been classified into a series of Quaternary Domains that 

reflects a combination of the landscape morphology, assemblages of superficial sediment and 

the range of Quaternary geological processes that has shaped its formation (Booth et al., 2015). 

Glengyle falls within the ‘mountain and valley’ sub-domain in the glaciated province which 

refers to landscapes that have been modified by successive glaciations and accelerated 

paraglacial processes (Ballantyne, 2002). Landscapes in the mountain and valley domain 

comprises deeply of dissected mountains and extensive upland plateaus, precipitous slopes, 

and glaciated troughs with lower slopes and valley bottoms filled with superficial sediments, 

variously reworked by river and slope processes (Booth et al., 2015). The valley bottom and 
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lower slope deposits consist of till, moraine and glaciofluvial sands and gravels (65%) that are 

highly variable, compact and commonly fissile (in areas of schist and slate bedrock) (Booth et 

al., 2015). Formed as a result of series of glaciated events, the high energy inputs from the very 

steep antecedent relief to the high precipitation and the powerful physical processes operating 

over the higher ground in this domain, a number of geomorphological processes are active and 

result in rock topples, severe debris flow activity, flash flood events landslips and other 

gravitational mass movement (Booth et al., 2015). Thus, these areas have been mapped as 

‘significantly susceptible’ to landslides according to the BGS GeoSure landslide database of 

the United Kingdom (Figure 3.2). 

 

 

Figure 3.1: Map of Primary and Secondary study areas 
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Figure 3.2: Primary and secondary study areas showing landslide susceptibility 

Characterised by steep narrow U-shaped valleys carved by glaciers, Glengyle’s topography is 

often unstable and, when combined with heavy rainfall, can become prone to slope failure 

(Ballantyne & Gordon, 2021). Glengyle experiences a temperate maritime climate with high 

annual rainfall due to its location in the highlands, which acts as a barrier to moisture-laden 

winds from the Atlantic Ocean (Ballantyne, 2019). The frequent and intense rainfall 

significantly increases the likelihood of rainfall-triggered landslides, as water infiltrates the soil 

and rock, reducing slope stability (Palamakumbura et al., 2021). This vulnerability and the high 

occurrence of landslides made this location a compelling choice for this study. 

3.1.2 Rest and be Thankful  

Deriving its name from travellers who would stop, rest and be thankful for reaching the top of 

their climb, the secondary study area Rest and Be Thankful valley is located on the A83 in 

Argyll and Bute, between Arrochar and Inveraray (Figure 3.1). The stretch of road is over 240 

metres above sea level and passes through Glen Croe (BEAR Scotland, 2020). The main slope 

at the Rest and be Thankful sits at a gradient of 32°–33° with some slope regions towards the 

top of the slope more than 40° (Sparkes et al., 2017). The underlying slope is comprised 
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principally of fine-grained schists such as perlite, with an overlying cover of glaciogenic 

sediment and soil up to several metres in thickness (Sparkes et al., 2017). Some exposures of 

schist on the slope appear to be highly weathered and extremely degraded and therefore 

represent a likely source of progressive pedogenesis, therefore altering the hydraulic 

transmissivity of the soil over time and contributing towards reductions in shear strength, 

termed ‘ripening’ by Nettleton et al. (2004). The cross profile of the landscape plotted by 

Sparkes et al., (2017) shows a large concavity which characterises the top of the slope. This 

topographic depression appears to concentrate drainage towards the centre of the slope, as 

opposed to the convex margins where bedrock outcrops are more common. Such convergence 

of hydrogeological flow would explain the greater propensity of slope failures in this location 

as discussed in section 2.2.1 above. 

It has also been classified in the ‘mountain and valley’ sub-domain but with slightly higher 

slope angles consisting of glacially eroded troughs scouring the valley bottom to form U-

shaped valleys (Winter et al., 2024). The UK National Landslide Database (NLD) (Foster et 

al., 2012) also indicates that although the ‘Mountain and Valley’ domain is five times larger 

than the ‘Ice-scoured Montane’ domain, it contains almost 30 times more recorded debris flows 

events. Due to its location in the landslide active sub-domain, around 20 debris flows have been 

recorded at the Rest and be Thankful since 2007, resulting in around 11 road closures, equating 

to an average of roughly one road closure per year (Sparkes et al., 2017). More so, Argyll & 

Bute is one of the wettest areas of the UK, thus contributing significantly to the rate of slope 

activity in this location (Sparkes et al., 2017). 

3.1.3 Dörtyol 

The third study area is Dörtyol, located in the South of Türkiye at the northern edge of the 

province Hatay, some 80km north of Antakya (Figure 3.3). Bounded by the Amanos Mountains 

to the East and the Mediterranean Sea to the West, the plain elevations range from 0 to 200 m 

above sea level, but a 20m high vertical step interrupts the smooth plain close to the southwest 

coast (Brehme et al., 2011). This area comprises of two major geological sections - the 

Precambrian to Mesozoic units of the Amanos Mountains and the quaternary deposits on the 

coastal plain (Brehme et al., 2011). The oldest units are clastic rocks from Precambrian and 

Palaeozoic while the Mesozoic units are mostly limestones (Brehme et al., 2011). The transition 

zone to the coastal plain is composed of serpentinites while a cross-section through the plain 
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shows tertiary conglomerates underlying the quaternary alluvium (Turkmen et al., 1974), with 

the coastal plain characterised by seasonal and perennial marsh (Brehme et al., 2011).  

 

Figure 3.3 Tertiary study area – Dörtyol with landslides shown in red polygons 

Türkiye and its surroundings, which are exposed to compressional tectonic processes under the 

influence of the Eurasian, Arabian and African plates, are located on the highly seismically 

active Anatolian plate, where major earthquakes have occurred throughout history (McKenzie 

1972; Şengör and Yilmaz 1981). The most crucial fault zones in the Anatolian region are The 

North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), which show 

strike-slip characteristics (Brehme et al., 2011). These fault zones cause the movement of the 

Anatolian plate to the West in a counterclockwise direction, and as a result of this activity, 
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destructive earthquakes have occurred in Anatolia and its immediate surroundings (Barka and 

Kadinsky-Cade 1988; Duman and Emre 2013). According to the records of the Disaster and 

Emergency Presidency of Türkiye (AFAD), on February 6, 2023, two earthquakes with 

magnitudes of 7.7 (focal depth=8.6 km) and 7.6 (focal depth=7 km) occurred at 04:17 

(GMT+3) and approximately 9 hours later at 13:24, respectively. As a result of the earthquakes, 

damages were experienced in the provinces and districts of Kahramanmaraş, Hatay, Gaziantep, 

Adiyaman, Malatya, Kilis, Adana, Diyarbakir, Osmaniye, Elazig, and Sanliurfa affecting a total 

population of more than 15 million people (AFAD 2023). Between these two severe 

earthquakes, one more aftershock with a moment magnitude of 6.6 occurred at the epicentre of 

Nurdagi District of Gaziantep. That aftershock has been the largest recorded in the region. 

Afterward, another aftershock with a magnitude of 6.4 occurred in Yayladagi district of Hatay 

province on February 20, 2023, at 20:04 (GMT+3) (AFAD 2023) which triggered several co-

seismic landslides in Hatay.  

This site was chosen in Turkey because the province of Hatay where this location lies had the 

most landslides (according to the BGS landslide inventory) totalling 275 pre- and co-seismic 

landslides, the most recorded in a single location. Due to its unique topography comprising of 

low plains in the West and elevated plateau to the East, most of the landslide occurrence in this 

region typically occur in the East (Appendix I) with the most common landslide types being 

slides and rockfalls (AFAD 2023). The complexities of these landslides make this location 

suitable to assess the performance of the best performing method in landslide mapping, to 

confirm if other types of landslides such as topples and rockfalls present in this region can be 

mapped even in complex terrains different from the primary study area. 

3.1.4 Rationale for selection 

The selection of the three locations for this study was designed to systematically evaluate the 

performance, consistency, and generalizability of rapid landslide mapping methods under 

varying geological and environmental conditions. Owing to its high concentration of mapped 

debris flows, the primary area serves as the baseline for testing the methods to identify the 

optimum rapid landslide mapping approach. The secondary area, Rest and Be Thankful, was 

selected to evaluate the consistency of the best-performing method when applied to a new 

location with slightly different geology. This location experiences regular debris flow events 

triggered by seasonal rainfall, making it an ideal site to test the transferability of the detection 

thresholds and workflow derived from the primary area. This dual testing approach allows for 
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an evaluation of whether the selected method can consistently detect the same landslide type 

(debris flow) across locations with minor geological variations. By controlling for landslide 

type, the focus remains on testing the method's ability to adapt to differences in terrain geology 

and hydrology without introducing additional complexity. Successful detection in both areas 

demonstrates the robustness of the method for debris flows in diverse but related environments. 

The tertiary study area was selected to evaluate the generalizability of the best-performing 

method to identifying different landslide types under different geological conditions. Unlike 

the primary and secondary areas, the tertiary area includes a range of landslide types (e.g., rock 

falls and slides) a different climate setting (temperate with dry and hot summers) and is 

characterized by distinct geological formations and triggering mechanisms (e.g., tectonic 

activity, rainfall, and anthropogenic disturbances). By applying the method to different 

landslide types, this phase evaluates whether the selected technique is capable of detecting 

other morphologies beyond debris flows, addressing its applicability to diverse landslide types. 

The geological differences between the tertiary area and the other study areas allow for an 

assessment of the method’s potential for universal application in regions with varying terrain 

and environmental conditions. Success in this area indicates that the method is not overly 

specialized to specific conditions but has the versatility needed for broader usage. This strategy 

of progressing from controlled to diverse environments ensures a rigorous assessment of the 

best-performing method, ensuring that the findings are not limited to a single landslide type or 

geological setting, providing insights into the method’s performance under real-world 

complexities, and its potential for widespread adoption. 

3.2 Data 

3.2.1 Satellite imagery 

This study uses Sentinel-2 harmonized imagery from the Copernicus constellation. Sentinel-2 

has a high visit frequency of every 5 days across the equator, enabling the monitoring of 

dynamic events such as landslides, through observing changes before and after events. With a 

spatial resolution of 10m, it allows for the detailed mapping of subtle land changes, such as 

vegetation cover (Fayne et al., 2019) that might indicate a potential landslide event on the 

landscape. The harmonized data from the Sentinel-2 in GEE was used because it is pre-

processed with atmospheric correction which ensures consistency across different dates, in this 

case, before and after a landslide event. It also ensures consistency in data quality and accuracy, 

which is vital for comparative analyses across different time periods and regions. The Sentinel-
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2 satellite imagery was also used in the manual mapping technique (Appendix II) to delineate 

the landslide polygons following the visible scars on the landscape. This consistency is 

particularly important in validating the findings of this research and assessing the performance 

of different landslide mapping techniques.  

3.2.2 Landslide inventory 

The landslide inventory compiled manually by BGS provides a comprehensive dataset of 

landslide occurrences across various locations, including our study areas. This shapefile, 

consisting of polygons representing individual landslides, has attributes such as landslide type, 

triggering factors, slope angle, elevation, geographic location, and the area of coverage (Figure 

3.4). These details make the inventory particularly useful for our study, as they offer valuable 

ground truth data for validating the performance and accuracy of the landslide mapping 

techniques compared in this study. 

 

Figure 3.4: Screenshot of the attribute table of the landslide inventory 

The inventory’s broad coverage and thorough documentation ensure that a diverse range of 

landslide events is captured, giving us a strong foundation to compare our results with. The 

fact that this inventory was manually mapped by BGS adds an additional layer of reliability, as 

human experts carefully identified and outlined landslide boundaries. This inventory for the 

three study locations chosen for this study was provided by BGS. The relevant data for the 

study areas was extracted using QGIS by filtering the relevant place names for e.g. ‘Glengyle’, 

utilizing it as a benchmark for evaluating our methods. This dataset enabled the assessment of 



41 
 

how well each technique, particularly the automated ones, performed in replicating or 

identifying the same landslides, ensuring that the accuracy of the research could be cross 

validated. Important to note is that the landslide type observed in the primary study area 

Glengyle is confirmed to be debris flow as seen in the landslide inventory (Figure 3.4). 

However, in the inventory for the tertiary study area Dortyol, the landslide types were only 

classified as either pre-seismic or co-seismic slides (Appendix III) with no further 

differentiation between the landslide types (e.g. rockfalls or slides). The unavailability of this 

information limited the further analysis on this landscape to assess the performance of the 

optimal method in identifying specific types of landslides, and if some types are better 

identified than the others using this method. The only basis for the conclusion whether the 

method will identify other landslide types or not, is the knowledge according to AFAD (2023) 

that the common types of landslides in this location are slides and rockfalls. 

3.3 Comparison of landslide mapping approaches 

3.3.1 Manual Mapping technique 

First, a manual mapping technique was employed using Sentinel-2 satellite imagery and 

Google Earth to detect and delineate landslides. This approach allowed for a more direct and 

detailed identification of landslides based on visual inspection of the landscape, capturing 

changes such as vegetation loss, scar faces, and other signs of terrain disruption typically 

associated with landslides. This method was considered particularly useful because the primary 

study area is on a small scale, and it is of interest to compare the efficiency of traditional 

mapping technique in landslide mapping. Creating a manual landslide inventory was necessary 

to evaluate the performance and limitations of traditional mapping techniques in comparison 

to automated methods in the study area. While the BGS inventory provided a reliable validation 

dataset, it was essential to develop a separate inventory to simulate a manual mapping 

workflow and assess its feasibility, accuracy, and efficiency when applied to the same region. 

The Sentinel-2 satellite imagery with a spatial resolution of 10m was downloaded for from the 

Copernicus website, capturing the region after a significant landslide event.  The date range to 

access the data was set from August 6 2019, to October 30 2019 for an event date of August 5 

2019. This window period was selected because of the limited availability of cloud-free images 

for the study area when the window period was constrained to just one month (August 2019). 

In QGIS software, the imagery was carefully analysed for visible indicators of landslides. The 

primary signs included large areas of vegetation loss, which was evident in the satellite data 
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where vibrant green areas turned to shades of brown or grey, indicating where the landscape 

had been stripped of vegetation. The visible landslide scars were delineated by creating 

polygons of landslides using QGIS tools. 

To delineate the landslides, a threshold-based approach was used based on changes to 

vegetation. Using the identify tool in QGIS, pixels with values greater than 0.2 were selected 

as the value of the image pixels ranged from 0 (no vegetation loss) to 0.69 (severe vegetation 

loss). These represented areas where significant vegetation loss had occurred, corresponding 

to potential landslide zones. These pixels were manually digitized on QGIS to create polygons 

of landslides in the study area. To improve the mapping accuracy, the results were cross-

referenced using Google Earth imagery. Google Earth allowed for a closer inspection of the 

terrain, providing a high-resolution, near-ground view of the areas identified as landslides in 

the Sentinel-2 imagery. This comparison helped verify that the changes detected in the satellite 

images, such as bare slopes or scar faces, were indeed associated with landslide events. The 

combination of both tools provided a more comprehensive validation, ensuring that the manual 

delineation was both precise and accurate. 

The spatial distribution of the landslides, concentrated along steeper slopes, was further 

validated using SRTM imagery, which provided topographic data to confirm the correlation 

between landslides and slope steepness. This demonstrated the significant influence of terrain 

on landslide occurrence, highlighting that steep slope, particularly those with gradients above 

15 degrees, were most susceptible to slope failures. 

3.3.2 HazMapper 

Traditional remote sensing landslide mapping is performed by observing changes in aerial 

photographs (e.g., Malamud et al., 2004) which relies on a single pre- and post-event scenes 

that could be hampered when unfavourable atmospheric conditions exists (Scheip & Wegmann, 

2021) for example rainfall triggering mass wasting or volcanic eruptions. To overcome this 

challenge caused by atmospheric conditions, HazMapper capitalizes on a technique within 

Google Earth Engine to generate and perform calculations on a greenest-pixel composite. This 

compositing method utilizes data from many images, reducing noise present from clouds and 

other aerosol particles in a given single image. The greenest-pixel composite is a single 

composite or tiled image generated from all images within the user-defined pre- and post-event 

window that records the pixel with the highest NDVI result, or the “greenest” pixel (Eq. 1).  
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         (1)  

where NIR is the near-infrared response and Red is the visible red band. 

HazMapper relies on a relative difference in the NDVI technique (rdNDVI, Eq. 2). Instead of 

differencing true colour composites (i.e., red, green, and blue bands), HazMapper exploits 

changes in surface vegetation by developing and differencing an NDVI band from the greenest-

pixel composite images:  

        (2)  

where NDVIpre and NDVIpost are the NDVI images of the pre- and post-event greenest-pixel 

composites, respectively. The results of the processing routine indicate a normalized percentage 

of the NDVI gained or lost. The result is an illustration of the areas on the landscape that have 

either gained (increase in NDVI pixel values) or lost (decrease in NDVI pixel values) 

vegetation across the event as constrained by the pre-event window and post-event window 

date ranges. The three resulting data layers (greenest-pixel composite from pre- and post-event 

and rdNDVI) and SRTM-derived 30m resolution hill shade layer are added to the standard 

layer pane.  

Recognizing that in forested areas landslides denude the landscape of vegetation, NDVI change 

detection methods have been used for identifying landslides in many mid-latitude regions 

(Huang et al., 2020; Tsai et al., 2010; Mondini et al., 2011; Lu et al., 2019; Yang et al., 2013). 

This approach was applied in this study using the NDVI to assess areas that have been affected 

by landslides. The landslide mapping process using HazMapper began by focusing on a known 

landslide event in Glengyle that occurred after a heavy rainfall on August 5, 2019, as reported 

by the Daily Mail on August 7, 2019. This event was chosen because it coincided with 

significant landslide activity in the study area. The satellite imagery window covered a period 

of 3 months before and after the event, allowing for a comprehensive analysis of the landscape 

before and after the rainfall-induced landslides. 

To ensure clarity in the satellite data, the imagery used was filtered to have a maximum cloud 

cover of 10%, reducing the interference from clouds and providing a clearer view of the land 

surface. In addition, a slope threshold of 15° was applied during the mapping process. This 

specific slope angle was chosen based on research by Fan et al. (2017), which indicated that 
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landslides occurring in the Silurian layer (as found in our study area) are typically found on 

slopes with angles between 15° and 35°. The 15° threshold ensured that the focus remained on 

accounting for all areas with susceptibility to slope failure. Once these parameters were set, the 

HazMapper tool was used to identify potential landslide areas as revealed by vegetation loss 

according to the rdNDVI (Figure 3.5).  

 

Figure 3.5 – Screenshot of HazMapper interface showing rdNDVI panel, visible landslide scar 

and panel to adjust parameters according to landscape. 

The focus is on the visible landslide scars in Figure 3.5, showing obvious downslope movement 

materials. The output from HazMapper was downloaded as a raster image and imported into 

QGIS for further analysis, where it was overlaid with additional data to refine the landslide 

identification. The use of QGIS allowed for a more detailed analysis, including comparison 

with topographic data and other mapping layers, to ensure the identified landslides were 

accurately captured. 

3.3.3 Google Earth Engine 

The process of monitoring landslides using GEE involved a series of detailed steps, beginning 

with the acquisition and analysis of Sentinel-2 satellite imagery. In this study, the SLIP 

algorithm (discussed in section 2.6) was applied as it represents an important first attempt at 

developing an automated framework for medium-resolution regional landslide detection. An 

earth engine code developed by the BGS using the SLIP algorithm for landslide detection was 

adapted and modified to fit the specific study area. First, separate pre- and post-event image 

collections were produced by filtering the entire Sentinel-2 level 2A harmonised collection, by 

location and date. Next, the NDVI bands were added to all images in the filtered collection. 
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Then, ‘greenest pixel’ pre- and post-event composite images were created by taking the 

maximum NDVI value for each pixel, within the image collection, using the quality mosaic 

function. Finally, a difference image (rdNDVI) was produced by subtracting the pre-event 

composite from the post-event composite. For the event date of August 4 2019, four sets of 

dates were chosen for the satellite imagery to provide a robust temporal analysis: two dates for 

the start and end before the landslide event, and two dates for the start and end after the event. 

This allowed for a comparison of the landscape before and after the landslide occurred. These 

images were then processed into median composites, a method where multiple satellite images 

taken over a specific time period are combined (Figure 3.6). In each composite, the value of 

each pixel is determined by calculating the median reflectance value from all corresponding 

pixels across the images. This helps to reduce noise, such as temporary cloud cover, and 

provides a clearer image of the land surface both before and after the landslide. 

 

Figure 3.6 A schematic of composite image creation in GEE (Credit: Lindsay et al., 2022) 

A Digital Elevation Model (DEM) of the study area was added to the Sentinel-2 baseline 

collections, which were split into two sets: pre-event and post-event. This elevation data helped 

enhance the analysis by highlighting the slopes and terrain variations that could affect landslide 

occurrence. The median composites of these collections were used to identify significant 

changes in the landscape, particularly in areas where vegetation loss or soil disturbance was 

apparent. By assessing reflectance changes, the composites revealed the effects of the landslide 

event on the landscape, particularly in regions with steep slopes or altered vegetation cover. 

To further refine the analysis, a landslide tracker image was generated. This tracker focused on 

key parameters such as vegetation loss, soil moisture, and slope angles—all crucial factors in 
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detecting and mapping landslides. By evaluating these variables, areas with significant changes 

were highlighted, indicating potential landslide occurrences. The resulting imagery provided a 

clear visualization of landslide-prone zones and areas where the event had the most substantial 

impact. Once the analysis was complete, the images and results were downloaded for further 

analysis in QGIS. This allowed for a detailed comparison of the identified landslide areas with 

other data, including manual delineations and ground-truth information, helping to verify the 

accuracy and completeness of the GEE mapping technique.  

3.4 Data Pre-processing 

The initial step in data processing involved creating a bounding box for the region of interest 

(ROI) by obtaining the coordinates for the study area using the ‘bbox’ online tool to draw a 

rectangle around the areas of interest. Using a python code, the coordinates derived from the 

bounding box were converted into a shapefile of the study area to facilitate further analysis.  

In GEE, the study area shapefile was added as the region of interest (roi) together with the 

SRTM data from the US Geological Survey. The SRTM was clipped to the roi, and the imagery 

filtered by selecting dates corresponding to pre- and post-event periods of landslide activity. A 

cloud-masking algorithm was applied to eliminate cloudy pixels, ensuring that only clear 

satellite data was used. Bands corresponding to the NDVI (red and NIR) were extracted, 

followed by the calculation of red reflectance changes, soil moisture variation, and NDVI 

changes. The resulting data were then binarized, classifying the landscape into areas of likely 

landslide occurrence and non-landslide zones.  

3.5 Accuracy assessment  

The accuracy of the three landslide mapping approaches—GEE, HazMapper, and manual 

delineation—was systematically evaluated by comparing their performance in identifying 

landslide occurrences using the landslide inventory of BGS. First, the results from all three 

methods were overlaid in QGIS for a visual comparison. This allowed for a side-by-side 

analysis of the spatial distribution of landslides identified by each method, providing an initial 

sense of how well they aligned. 

To further quantify the differences between the methods, a differential analysis was performed. 

This involved subtracting the landslide image from the landslide inventory to highlight areas 

where their results did not match. Mismatched pixels—those representing landslides in one 

method but not in another—were visually inspected to understand where the method fell short 
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in detecting landslides. Furthermore, statistical matrices were generated to test the performance 

of each method in mapping landslides accurately. 

3.5.1 Confusion Matrix  

This matrix compared the predicted landslide occurrences against the actual occurrences 

recorded in the BGS landslide inventory. The confusion matrix was generated by converting 

the BGS landslide inventory to binary raster of 1 and 0, with every pixel outside the landslide 

polygon assigned the value 0, signifying no landslide occurrence. Because the manual 

technique had the landslides in vector format, these landslide polygons were also converted to 

raster pixels to enable the extraction of landslides from the BGS binary raster.  

To polygonise the GEE landslide raster imageries to vector for overlay analysis, the values of 

the pixels in the areas with high vegetation loss were examined using the identify tool in QGIS, 

comparing the values between the areas of high and low vegetation loss. The raster value 

ranged between 0-255 so a threshold of 70 was chosen such that from 0-69 was reclassified to 

0 (no landslide) while 70-255 was reclassified as 1 (landslide). For the HazMapper raster 

image, the value of the after-event raster image showed values ranging from -66 to 43, 

reflecting the changes in vegetation cover. To focus on potential landslide areas, the data was 

filtered and pixels with values between -23 and -66 were selected and classified as 1, indicating 

landslide occurrence, while all other values were set to 0. This filtering process allowed the 

isolation of areas where significant vegetation loss had occurred, pointing to slope failure. 

The confusion matrix was calculated using the raster calculator to subtract the landslide values 

of the GEE/Manual/HazMapper raster from the BGS landslide raster in the following format:  

True Positive (TP) = (“Model binary raster = 1”) AND (“BGS binary raster = 1)  

False Positive (FP) = (“Model binary raster = 1”) AND (“BGS binary raster = 0)  

True Negative (TN) = (“Model binary raster = 0”) AND (“BGS binary raster = 0)  

False Negative (FN) = (“Model binary raster = 0”) AND (“BGS binary raster = 1) 

The matrix helped in calculating key metrics such as true positives (correctly identified 

landslides), false positives (non-landslide areas identified as landslides), true negatives, and 

false negatives. Using the values from the confusion matrix, the accuracy and precision of each 

method were calculated, providing a detailed performance assessment. 
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3.5.2 Accuracy 

Accuracy is a simple and widely used metric that provides an overall measure of the correctness 

of a classification model. In this context, accuracy helps determine how well each method 

identifies landslide events and distinguishes them from non-landslide areas, providing a 

baseline for comparing different techniques. Ranging between 0 and 1, higher accuracy 

generally indicates that the method is more reliable, but it should be interpreted alongside other 

metrics, especially in cases where the dataset is imbalanced (e.g., when non-landslide areas 

dominate the region). It is calculated with the formula: 

Accuracy  =   TP + TN                                                        (3)          

        TP + TN + FP + FN 

where: 

TP (True Positive): Correctly identified landslides (pixels correctly classified as landslides). 

TN (True Negative): Correctly identified non-landslides (pixels correctly classified as non-

landslides). 

FP (False Positive): Non-landslides incorrectly classified as landslides. 

FN (False Negative): Landslides incorrectly classified as non-landslides. 

 

3.5.3 Kappa Coefficient 

To assess whether the results of the mapping technique happened by chance (randomly) or due 

to the efficacy of the method applied, the Cohen’s Kappa coefficient was calculated. This 

statistic measures the agreement between the detected landslide and the actual landslide beyond 

what would be expected by chance. In this case, the Kappa values were used to evaluate the 

agreement between the landslide areas and the ground-truth BGS landslide inventory. It is 

calculated using equation 3 below: 

k = Po – Pc / 1 – Pc          (4)  

where: 

Po is proportion of correctly classified instances calculated as TP + TN / N; where N is the 

number of observations and TP and TN defined above. 

Pc is the expected agreement that could occur by chance, calculated based on the marginal 

probabilities of the actual and predicted classes as; 
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Pc = ((TP+FN)*(TP+FP))/N2 + ((FP+TN)*(FN+TN))/N2 

where: 

(TP+FN) is the total number of actual positives. 

(FP+TN) is the total number of actual negatives. 

(TP+FP) is the total number of predicted positives. 

(FN+TN) is the total number of predicted negatives. 

These values were substituted in the Kappa’s formula above to derive the Kappa value of each 

method applied in landslide mapping. The results usually range from 0 – 1 with 0 representing 

poor agreement between the method and the actual observation (indicating more occurrence by 

chance and not due to the method’s efficacy), and 1 indicating stronger agreement reflecting 

the reliability of the mapping technique. Kappa values can therefore be interpreted as: 

Table 2: Kappa values explained (Sim & Wright, 2005) 

Kappa value Interpretation 

< 0.00 Poor agreement (worse than random chance) 

0.00–0.20 Slight agreement 

0.21–0.40 Fair agreement 

0.41–0.60 Moderate agreement 

0.61–0.80 Substantial agreement 

0.81–1.00 Almost perfect agreement 

 

However, Kappa has limitations which includes its sensitivity to class imbalance. For example, 

if non-landslide areas are more abundant in the binary raster, the Kappa value would be low 

even if the landslide areas have been correctly classified. This would result in a biased 

interpretation of the method’s performance as low Kappa values indicates random performance 

due to chance and does not reflect the actual performance of the method. To overcome this 

potential bias, complementary statistics like the precision and the recall were further calculated 

to provide further evaluation to the methods’ performance. 
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3.5.4 Precision 

This metric measures the accuracy of the positive predictions made by the method by 

quantifying the proportion of the correctly predicted positive cases (landslides) out of all cases 

classified as positive by the method. It is calculated with the formula: 

Precision  =   TP                                                        (5)          

            TP + FP 

Precision is a very important metric in this analysis especially as false positives carry 

significant consequences. In which case, a false positive may mean that areas mapped as 

landslides may not necessarily be at risk resulting in false alarm and waste of resources. The 

value of precision ranges between 0 and 1 with 1 indicating a perfect performance by the 

method in correctly identifying landslides. For example, a precision value of 0.7 means that 

the method’s positive predictions are correct 70% of the time. 

3.5.5 Recall 

Recall measures how well the methods identify all positive cases, in this case, actual landslides. 

It does this by calculating the proportion of correctly identified landslides out of all the actual 

landslides both correctly and incorrectly classified. Ranging from 0-1, it estimates the 

correctness of the method in identifying actual landslides such that a recall value of 0.8 for 

example, means that method correctly identified 80% of actual landslides. It is calculated as: 

Recall  =          TP                 (6) 

       TP +FN 

This metric is particularly useful in this case particularly as missed landslides could result in 

significant consequences, as it ensures that vulnerable areas are properly identified. Recall 

could be traded off with precision in some instances and the choice to choose between precision 

and recall depends on the application of the model. However, high recall is important in 

applications involving safety, but in this case, we aim to strike a balance between both metrics 

by calculating the F1 score to get a single measure that considers both aspects of each method’s 

performance.  

3.5.6 F1 Score 

The F1 score is a performance metric for binary classification models as is evident in this study 

for landslides occurrence, that combines both the precision and recall of the model or method, 
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into one single metric. Used in situations where the costs of false alarms (false positives and 

false negatives) are not equal, this metric is best fit in this scenario as it helps us to determine 

the strength of each method tested. For the purpose of coherence and to identify the best 

performing method without bias, we assessed these methods using a single metric - the F1 

score, rather than choosing between precision and recall or to trade off one for the other. By 

balancing precision and recall, the F1 score provides a comprehensive measure of model 

performance, ensuring fair evaluation in complex and imbalanced classification problems. The 

F1 score is calculated using the formula below: 

F1 Score = 2 x      precision x recall         (7) 

      precision + recall 

The F1 score ranges between 0 and 1, with 1 ranked as the best possible score suggesting that 

the model performs well in identifying positive cases while minimizing both false positives 

and false negatives. 

3.5.7 Validation 

The comparison between the three methods provided a baseline to assess the accuracy of each 

method in detecting actual landslide occurrences. Following from the accuracy assessments by 

comparing the results from the GEE, manual delineation, and HazMapper methods, the results 

of these methods were validated using the BGS landslide inventory for the location. The 

method with the best performance (highest metric) was then applied to the secondary and 

tertiary study area to evaluate its effectiveness across a different landscape. Following the 

replication of the best performing method in the other landscapes, the performance metric of 

the method was also derived to compare the method’s performance in these new landscapes, to 

ensure it robustness in terrain application and replicability. These subsequent replications on 

the secondary and tertiary landscapes were also validated using the BGS landslide inventory 

for these locations to compare the performance of the method in mapping landslide in these 

new locations.  
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4. Analysis and Results 

4.1 Glengyle manual mapping results 

From the manual mapping technique, a total of 54 landslides primarily debris flows were 

identified in the study area. These landslides were observed to run from the top to the bottom 

of the slopes in seemingly parallel lines, indicating a consistent downslope movement of 

material. This pattern is typical of gravity-driven landslide processes, where steeper gradients 

increase the likelihood of slope failure. When compared with SRTM imagery (Figure 4.1), the 

spatial distribution of the 54 landslides identified displayed a clear pattern along slopes with 

angles greater than 15o. The SRTM data, which provided detailed elevation information, 

confirmed that the majority of the detected landslides occurred in areas with significant 

topographic variation. The combination of steep slopes and the parallel arrangement of the 

landslide paths suggests that these areas are highly susceptible to slope failure due to 

gravitational forces acting on the loose or unstable material. 

 

Figure 4.1 – Manually mapped landslides overlayed on SRTM imagery 

The confusion matrix was generated for this method (Table 3) using the rasterised image of the 

manually delineated landslides. 
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Table 3: Confusion matrix for Glengyle manual mapping results 

 

Predicted 

landslide 

Predicted no 

landslide 

Actual landslide 0.53 0.18 

Actual no 

landslide 0.09 0.20 

 

From the confusion matrix, the metrics of accuracy for this method (Accuracy, Kappa value, 

precision, recall and F1 scores) were determined using equations 3, 4, 5, 6 and 7 above. 

With an overall accuracy of 0.73, the manual method was able to correctly classify over half 

of the total observed landslides. This indicates that while some areas were successfully mapped, 

a significant portion of landslides went undetected, which highlights the need for more robust 

methods or improvements in manual mapping. On the other hand, the precision of the manual 

delineation method was 0.85. This relatively good precision highlights the method's reliability 

in avoiding false positives, particularly as the false negatives were the least at 0.09. However, 

this level of precision may also suggest a degree of conservatism in the technique, as it might 

have missed mapping less obvious landslide features which were not visibly distinct from other 

areas in the landscape, contributing low false positive rates.  

The recall calculated at 0.74 indicates that using the manual technique, 74% of the actual 

landslides in the study area were correctly identified, while the F1 score calculated at 0.79 

indicates a good balance in this method’s performance in identifying actual landslides and 

avoiding no landslide areas (false alarms). The kappa value was calculated at 0.399. Using the 

Kappa value interpretation in Table 2 above, this indicates that there is a fair agreement between 

the method’s prediction of landslides and their true classifications. This means that the method 

performed better than random chance but could be better improved as it still has misclassified 

areas. 

The manually mapped landslides were further compared with the BGS landslide inventory and 

a clear difference in the total mapped area is observed in Figure 4.2 below.  
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Figure 4.2 – Manually mapped landslides overlayed with BGS landslide inventory 

The manually mapped landslides covered an area of 0.356 km², whereas the BGS landslide 

inventory identified a total area of 0.569 km². This discrepancy highlighted a significant 

difference of 0.432 km², suggesting that the manual delineation method missed or failed to 

capture a considerable portion of the landslide-affected area. However, it is important to note 

that the area of discrepancy accounted for the total area where both datasets (BGS inventory 

and manual landslides) do not match. Thus, the combination of both areas of mismatches 

(Figure 4.2) amounted to 0.432km2 instead of 0.213km2 when calculated mathematically (that 

it, 0.569 – 0.356). 

4.2 Glengyle GEE results 

The median composite of the study area from Google Earth Engine analysis revealed 

significant changes in the landscape before and after the landslide event. The composite 

imagery clearly displayed areas where vegetation loss occurred, indicated by stark scar faces 

in the terrain (Figure 4.3) where the land had shifted. These scar faces, typically visible after 

landslides, pointed to regions of significant instability and material displacement.  
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Figure 4.3: a) pre-event composite b) post-event composite 

By analysing the temporal imagery, distinct differences between the pre-event and post-event 

conditions were identified, with the most notable feature being the exposed soil surfaces in the 

affected areas, typically associated with debris flow landslides. As landslides often involve the 

sudden removal of topsoil and vegetation, leaving behind exposed soil and rock, and this was 

evident in the scarred terrain observed in the post-event images. These scar faces offered direct 

visual evidence of the slope failure. 

Along with the composite imagery, a landslide tracker image was produced, providing a binary 

classification with pixel values of 1 and 0 representing landslide and no landslide, respectively. 

This layer allowed for a more refined analysis, enabling clear identification of where the 

landslides occurred. The binary classification helped validate the areas of vegetation loss by 

comparing them with the BGS landslide inventory for the study area (Fig 4.4).  

 

Figure 4.4: BGS landslide inventory overlayed on GEE landslide tracker results 
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The results from the confusion matrix allowed for the calculation of precision and accuracy of 

the GEE method (Table 4). The accuracy was determined to be 0.81, meaning that the GEE 

method correctly classified 81% of all observations, whether they were landslides or non-

landslide areas. Essentially, four out of five observations made by the GEE method were 

correctly identified. 

Table 4: Confusion matrix of GEE landslide mapping results 

 

Predicted 

landslide 

Predicted no 

landslide 

Actual landslide 0.52 0.02 

Actual no 

landslide 0.19 0.37 

 

On the other hand, the precision was calculated at 0.73, which represents the method’s ability 

to correctly classify landslides when it predicted a landslide. In other words, 73% of the areas 

that GEE identified as landslides were actually landslides, while the remaining 26.8% were 

falsely classified. The recall calculated at 0.96 and the F1 score at 0.83 indicates that this 

technique correctly identified 96% of all the landslides and has a very good balance between 

correctly classifying landslides and avoiding errors. Nonetheless, some false classifications 

were still made. This highlights some limitations of the GEE method in differentiating actual 

landslides from non-landslide features, especially in areas where the landscape may share 

similar characteristics. Finally, the kappa value was calculated at 0.620 indicates a substantial 

level of agreement between this technique’s predictions and the ground truth, beyond what 

would be expected by chance.  

4.3 Glengyle HazMapper results 

The pre- and post-event composites of the location generated with HazMapper (Figure 4.5) 

revealed visible scars on the landscape relating to downslope movement of materials due to 

mass wasting. The rdNDVI (Figure 4.6) image on the other hand shows severe vegetation loss 

in the areas where these parallel scars are located on the landscape. This image was further 

used to calculate the confusion matrix of the method (Table 5) to test the method’s performance 

in mapping landslides. 
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Figure 4.5: a) pre-event composite b) post-event composite 

 

Figure 4.6: HazMapper rdNDVI results showing areas with vegetation loss 

The confusion matrix for this method is presented in the table below. 

Table 5: HazMapper confusion matrix results 

 

Predicted 

landslide 

Predicted no 

landslide 

Actual landslide 0.55 0.09 

Actual no 

landslide 0.17 0.19 

 

The results from the confusion matrix allowed for the calculation of precision and accuracy of 

the method. The accuracy was determined to be 0.74, this means that the HazMapper tool 

correctly classified 74% of all observations whether they were landslides or non-landslide 

areas. Also, the precision was calculated at 0.76, which represents the tool’s ability to correctly 

classify landslides when it predicted a landslide. The recall and F1 score were calculated at 

0.85 and 0.81 respectively. This indicates that HazMapper successfully identified 85% of all 
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the actual landslides in the study area and had a good balance in avoiding errors (non-landslide 

areas). The kappa value of 0.407 suggests that this technique had a moderate agreement 

between its performance in mapping landslides and the actual landslides present in the location. 

4.4 Summary of Results 

From the analysis and results presented above, the three landslide mapping methods have been 

applied to assess their performance in landslide mapping in the primary study area, Glengyle. 

For clarity of purpose and easy comparison, the performance metrics of the three methods are 

summarised in the table below: 

Table 6: Summary of performance metrics for the three methods 

Method Accuracy Precision Recall 

Kappa 

value 

 F1 

Score 

Manual 0.73 0.85 0.74 0.399  0.79 

GEE 0.81 0.73 0.96 0.620  0.83 

HazMapper 0.74 0.76 0.859 0.407  0.81 

 

The manual mapping technique had greater precision compared with the other two methods, 

because the pixels were carefully selected using the identify tool during digitisation. However, 

it had the lowest F1 score which relates to the balance between the accuracy and precision of 

the method. The change-adjusted kappa values of 0.399, 0.620 and 0.407 shows that the 

performance of these three methods varies. With GEE scoring the highest, this highlights the 

superiority of GEE in landslide mapping over the other two methods that is, the landslides 

mapped using this technique are less likely to be detected randomly by chance. Also, with the 

GEE having the highest F1 score showing a good balance both in identifying the landslides and 

avoiding errors more than the other methods, GEE was further applied in the secondary and 

tertiary study areas – Rest and Be Thankful valley and Dortyol, Turkey – to assess its 

performance for different locations and landslide types, respectively.  

4.5 Rest and Be Thankful valley results 

The GEE method was applied in Rest and Be Thankful valley using the same GEE procedure, 

adjusting the parameters to fit the study area. Similar results were obtained for further analysis 

such as the pre- and post-event composites and in particular the landslide tracker image (Figure 

4.7), which shows a binary classification of debris flow landslides in the study area. The binary 

raster was also used to calculate the confusion matrix, which provides a comprehensive 
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overview of the predictive performance of the mapping technique in this new study area (Table 

7). 

Table 7: GEE confusion matrix for Rest and Be Thankful 

 

Predicted 

landslide 

Predicted no 

landslide 

Actual landslide 0.53 0.03 

Actual no 

landslide 0.20 0.23 

 

From this matrix, the calculated the precision and accuracy of the method was found to be 

0.726 and 0.767 respectively. The precision of 0.726 indicates that out of all the areas 

predicted as landslides, about 72.6% were correctly identified as actual landslides. This result 

shows that while this method can reasonably map landslides accurately, there is a moderate 

rate of false positives (20%), meaning that a significant number of areas were incorrectly 

classified as landslides. With the recall calculated at 0.94, it indicates that 94% of the actual 

landslides were identified by GEE in this new location with only a small proportion missed 

(5.36%). The F1 score at 0.82 suggests that GEE had a good balance between correctly 

identifying landslides and avoiding error in Rest and Be Thankful. Albeit the lower precision 

indicates that some areas were misclassified as landslides. The kappa value was calculated at 

0.504. This indicates a moderate agreement between the mapped landslide and the actual 

landslides observed in the study area.  

 

Figure 4.7 – Landslide tracker for Rest and Be Thankful valley 
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From the figure above, visible vegetation loss signifying potential landslides can be seen in 

bright red colours, showing more landslides than the BGS inventory. This is because the BGS 

inventory are mapped manually based on reported landslides, therefore, since GEE results are 

compared with the reported landslides mapped in the BGS inventory and not all the landslide 

occurring in the location, this explains why the GEE has more landslides than the inventory 

resulting in low performance in the metrics for this location (See Appendix IV). 

4.6 Dortyol results 

GEE was also applied to the tertiary study area using the same GEE code and procedure and 

adjusting the parameters to fit the study area, to evaluate the tool’s ability to rapidly detect and 

map other landslide types. The pre- and post-event composites and the landslide tracker image 

which shows a binary classification of the landslides in the study area was generated (Figure 

4.8). The landslide tracker raster image was used to calculate the confusion matrix of the 

method in this study area to evaluate the methods performance in landslide mapping in this 

new location (Table 8). 

Table 8: GEE Confusion matrix for Dortyol 

 

Predicted 

landslide 

Predicted no 

landslide 

Actual landslide 0.68 0.02 

Actual no 

landslide 0.08 0.22 
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Figure 4.8 - Landslide tracker image of Dortyol showing identified landslides overlayed with 

BGS landslides 

Using the confusion matrix, further metrics such as the precision, accuracy, recall and F1 score 

were also calculated. The accuracy and precision were calculated at 0.9 and 0.894 

respectively. This indicates that GEE identified 90% of all landslides present in this location, 

and of all the landslides identified, 89% of them were correctly classified. The recall calculated 

at 0.971 demonstrates that GEE identified almost all the actual landslides present in this 
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location missing out a small proportion of 2.86%. With the precision at 89% and the recall at 

97%, the F1 score calculated as 0.93 suggests a great balance by the method in correctly 

identifying landslides and avoiding errors. However, with the lower precision value, some areas 

were misclassified as landslides with suggests for possible improvement. The kappa value of 

0.74 indicates substantial agreement between the model's predictions and the actual data, even 

after accounting for chance agreement. This value shows that the model is not only accurate 

due to the distribution of class labels but is making meaningful predictions that align closely 

with the observed ground truth. While there is still some room for improvement, this Kappa 

value signifies that the model is fairly consistent in mapping the landslides beyond what would 

have been mapped by chance. 

Moreso, since it has been previously established in section 3.2.2 that the landslides common in 

this location are slides and rockfalls, the performance of GEE to correctly identify 90% of the 

landslides in this location suggests that GEE can be applied in the identification and mapping 

of other landslide types besides debris flows. 
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5 Discussion 

5.1 Objective 1 – Establishing the traditional and state-of-the-art landslide 

mapping methods: 

The first objective of this research was to establish a clear understanding of both traditional 

and state-of-the-art Earth Observation (EO) methods for landslide mapping. Through an 

extensive literature review showing practical application of these methods, this objective has 

been successfully achieved, highlighting the evolution of landslide detection techniques from 

manual field-based approaches to cutting-edge, automated methods. Historically, manual 

mapping and field surveys have been the foundation of landslide detection. These methods 

involve direct observation and on-the-ground analysis by experts, making them highly accurate 

in local contexts. However, despite their reliability in specific areas, these approaches are 

inherently time-consuming, labour-intensive, and limited in scale. Manual methods also 

introduce a level of subjectivity, with the quality of the output dependent on the surveyor's 

expertise and the visibility of landslide evidence in the field. 

The introduction of optical remote sensing marked the first major shift towards broader and 

more efficient landslide detection. Using satellite-based imagery, such as that from the Landsat 

and Sentinel missions, researchers were able to monitor changes in land cover associated with 

landslides across larger areas. However, these optical methods are not without limitations, most 

notably their susceptibility to cloud cover, which restricts their applicability in many regions 

which in turn has driven the development of more advanced EO techniques. The review further 

highlighted the transition from optical remote sensing technologies to more sophisticated 

platforms such as SAR and InSAR, which have expanded the possibilities for large-scale, real-

time monitoring of landslides. 

This study also identified and discussed different techniques that can be used in mapping 

various landslide types as well as the state-of-the-art methods in landslide detection, 

specifically OBIA and machine learning and other tools such as GEE and HazMapper which 

represent the future of rapid landslide mapping. These methods go beyond the limitations of 

earlier approaches by leveraging automation, object-based segmentation, and predictive 

modelling to enhance detection accuracy, especially in complex and diverse terrains. The 

ability of machine learning models to integrate various environmental variables and learn from 
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historical events makes them particularly valuable for future landslide monitoring and 

prediction. 

5.2 Objective 2 – Investigating free EO-based tools for landslide mapping in 

Glengyle: 

The second objective of this research was to investigate the efficacy of free Earth Observation 

(EO)-based tools for landslide mapping in the study area of Glengyle. With this research 

focusing on debris flow mapping as prevalent in the study area, vegetation loss was considered 

a key indicator of landslide occurrence in the study area thus, techniques that can detect 

vegetation loss using the NDVI index were primarily considered. This objective has been 

successfully achieved by testing two widely used free EO platforms—Google Earth Engine 

(GEE) and HazMapper— applying mainly change detection and pixel-based analysis 

techniques and comparing their results with those of traditional manual mapping methods. 

Through this process, the research has provided valuable insights into the strengths and 

limitations of each approach, particularly in the context of a smaller study area like Glengyle. 

Google Earth Engine (GEE) and HazMapper were employed to detect landslides in Glengyle, 

leveraging their free access to multi-temporal satellite imagery and automated processing 

capabilities.  

GEE, with its extensive datasets and advanced analytical tools, allowed us to apply indices 

such as the Normalized Difference Vegetation Index (NDVI) and assess soil moisture changes, 

which are important indicators of landslide activity. The analysis successfully detected 

landslides in the study area, and GEE proved to be an efficient and scalable tool for landslide 

mapping. HazMapper, another EO-based tool designed specifically for hazard mapping, also 

performed well in detecting landslides. By using NDVI values and slope as key parameters, 

HazMapper identified areas likely to have experienced landslides. However, similar to GEE, 

HazMapper displayed limitations when applied to a smaller study area like Glengyle. Its 

reliance on slope as a primary factor led to instances of over-prediction, where steep, non-

landslide zones were mistakenly classified as landslide-affected areas. This reflects the tool's 

automated nature, which, while effective on a larger scale, may lack the fine-tuned precision 

needed for small, complex landscapes. 

In addition to the EO-based tools, manual mapping was tested to determine whether it could 

provide more precise results in a smaller area like Glengyle. The manual mapping method, 

while precise, did not outperform the EO-based tools in terms of discovering additional 
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landslides. However, it did contribute to mapping more landslides than those included in the 

pre-existing landslide inventory by using satellite imagery as a base. This suggests that while 

manual methods offer a valuable complement to EO-based approaches, the efficiency and 

scalability of tools like GEE and HazMapper make them highly suitable for both small and 

large-scale studies.  

5.3 Objective 3 – Comparing the efficiency and accuracy of these techniques 

applied to identify their strengths and weaknesses: 

The third objective of this research was to evaluate the performance and accuracy of the 

selected landslide mapping methods in the context of our study area. This involved assessing 

the ability of each method to detect landslides, comparing the accuracy of their results against 

an existing landslide inventory provided by the British Geological Survey (BGS), and 

analysing their performance using statistical metrics such as precision, accuracy, and confusion 

matrices. The aim was to provide a comprehensive understanding of how well these methods 

function in detecting landslides and identifying potential limitations in their application. 

Following from the results presented in Table 5 above, GEE performed better than the other 

two methods, producing an accuracy of 0.81, a precision of 0.73, and an F1 score of 0.83 

indicating a reasonably strong performance. The precision of 0.73 reflects this method's ability 

to correctly identify landslides among its predictions, while the 0.81 accuracy showed that a 

significant portion of both landslides and non-landslide areas were classified correctly. These 

values underscore GEE's effectiveness in integrating soil moisture and vegetation indices (such 

as NDVI) to detect landslides. GEE’s kappa value of 0.620 also indicates that the method 

performed substantially well in mapping landslides, better than random occurrence. 

These results of the other methods reflect on their limitation in landslide mapping, particularly 

in comparison to GEE. HazMapper, while a valuable tool for assessing landslide susceptibility, 

has limitations that affected its overall performance compared to the GEE, one of which is its 

reliance on predefined algorithms and models that may not capture the full complexity of 

landslide events (Scheip et al., 2021). Also, HazMapper utilises only slope as a consideration 

factor in determining landslide occurrence, which, in reality, is not the only determinant of 

landslide occurrence especially for spreads, where the slope angle is very low (Roush, 2024). 

While slope is an important factor in landslide susceptibility, relying solely on it can result in 

significant overestimation of landslide-affected areas. The simplicity of this approach limits 

HazMapper’s ability to account for other critical factors influencing landslides, which may 
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contribute to its lower accuracy compared to GEE which incorporates additional factors such 

as soil moisture and vegetation indices. 

The manual mapping technique on the other hand is primarily constrained by time and resource. 

It is labour-intensive, requiring experts to analyse satellite imagery visually, which can lead to 

human error and subjectivity in identifying landslides (Warburton et al., 2008). This method 

often results in incomplete inventories, as it may miss smaller or less obvious landslides due to 

the subjective nature of human interpretation (Warburton et al., 2008). Additionally, manual 

mapping is less scalable; as the area of interest increases, the feasibility of conducting thorough 

manual analyses diminishes (Scaioni et al., 2014). The reliance on expert judgment can also 

introduce variability in results, as different analysts may have differing thresholds for 

identifying landslides (Guzzetti et al., 2012). Remarkably, 85% of the landslides identified 

through the manual mapping process matched those already recorded in the inventory. This 

high level of agreement demonstrates the reliability of the manual detection process (Holbling 

et al., 2017), affirming that most of the significant landslide events were captured accurately. 

However, despite this high match rate, some landslides recorded in the inventory were not 

identified during the manual mapping process. This could be due to several factors, such as the 

limitations of the 10-meter spatial resolution of the Sentinel-2 imagery, which might not 

capture smaller or more subtle landslide events. Additionally, manual methods are inherently 

subjective (Holbling et al., 2017), and the reliance on visible indicators like vegetation loss or 

scar faces may have led to the omission of landslides that either did not exhibit these features 

prominently or were masked by other landscape elements. 

These discrepancies highlight the need for a complementary approach that combines manual 

inspection with automated methods to ensure a more exhaustive landslide detection process. 

The difference in the mapped areas indicates the challenges of manual identification methods, 

where subtle or less visible landslides may be easily overlooked. The Maximum Difference of 

0.058 km² between individual landslide polygons further emphasizes this challenge, as some 

landslide events may be substantially under- or over-estimated during manual digitization, 

compared to the more comprehensive BGS inventory. 

It is important to note that the BGS landslide inventory was mapped manually and some of the 

polygons mapped as landslides in the inventory were not actual landslides but landcover change 

(Appendix II). This is an evident limitation of the manual delineation technique and explains 

the significant disparity in the difference analysis between the manual delineation and BGS 
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inventory discussed in section 4.1 above. These differences can be attributed to the limitations 

of the manual process, such as the reliance on visual interpretation, the resolution of the satellite 

imagery used, and the subjectivity of the operator in delineating landslide boundaries. Also, 

because the BGS inventory was mapped based on reported landslides, landslides that were not 

reported were not accounted for. This comparison underlines the importance of integrating 

multiple methods, such as combining manual techniques with automated tools like HazMapper 

or GEE, to improve the accuracy and comprehensiveness of landslide mapping efforts. The 

substantial difference in the total area covered suggests that manual mapping alone may not be 

sufficient for capturing the full extent of landslide hazards in a region. 

Finally, besides having the best F1 score, GEE also incorporated other factors such as slope 

and soil moisture, that play key roles in determining landslides. Apparently, since not all 

vegetation loss means the presence of landslides, the incorporation of soil moisture gives more 

context to the cause of vegetation loss, that is the presence of moisture, relating it to possible 

landslide occurrence. This explains why GEE mapped more landslides than the BGS inventory 

and HazMapper, and also performed better than the two methods as it accounted for the change 

in soil moisture within the landscape. 

5.4 Objective 4 – Testing the most efficient method on other landscapes: 

The fourth objective of this research aimed to test the most efficient landslide detection method 

identified GEE on a different landscape to evaluate its performance in varying terrain 

conditions. After proving effective in the primary study area of Glengyle, the GEE approach 

was applied to a secondary location, the Rest and Be Thankful valley, known for its recurring 

landslide events particularly during winter, and Dortyol which experienced severe landslides 

after an earthquake event in 2023. This step was crucial in assessing the transferability and 

robustness of the method across different landscapes, particularly those with different slope 

angles and different environmental conditions. When tested in the Rest and Be Thankful valley, 

the GEE method showed a slight decrease in performance. The accuracy dropped to 0.77 while 

the precision was consistent at 0.73. While the overall performance remained relatively strong, 

the decrease in accuracy indicates that this method encountered some challenges in this new 

terrain. This difference could be attributed to the specific characteristics of the Rest and Be 

Thankful valley, such as the unique topography or the lack of cloudless imagery during the 

period under analysis, which limited the temporal resolution of the study. 
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Also, the kappa value reduced from 0.62 in Glengyle to 0.50 in Rest and be Thankful which 

may be attributed to the difference in slope angles and topography. Moreso, the BGS landslide 

inventory was more robust for Glengyle than for Rest and be Thankful, which allowed for 

better comparison in Glengyle. This lack of sufficient ground truth data for the latter landscape 

may create a limitation in the number of pixels with which the confusion matrix was generated 

for this region, thereby reducing the performance of the method in this region. 

Similar patterns were observed in Dortyol with GEE correctly identifying 90% of all landslides 

present in the location with a precision of 89%. This location features different types of 

landslides, such as rock falls and topples, highlighting the tool's ability to detect various 

landslide mechanisms accurately. This was the highest recorded so far in a single location 

which affirms the importance of well-documented landslide inventory for validation purposes 

(Guzzetti et al., 2012). However, despite these strong results, the lower precision value suggests 

that some non-landslide areas were incorrectly classified as landslides, indicating a potential 

area for improvement in future analysis. 

 

5.5 Summary of Discussion 

EO-based rapid landslide mapping approaches such as those considered in this study has 

proven to be a powerful tool in disaster management, providing critical insights for emergency 

relief efforts. Current capabilities, such as those offered by Sentinel-2 with its 10-meter 

resolution and 5-day revisit cycle, enable timely identification of landslide-affected areas, 

allowing rescue teams to prioritize responses and allocate resources efficiently. However, 

future advancements in satellite technology, including higher spatial and temporal resolutions 

from upcoming missions and private constellations, hold the potential to significantly enhance 

response times. These improvements could enable near-real-time monitoring, critical for 

reducing casualties and supporting rapid recovery efforts. Additionally, EO techniques 

contribute to long-term recovery by continuously monitoring landslide-prone regions and 

informing mitigation strategies. 

Despite these advancements, EO-based approaches face limitations. The spatial resolution of 

Sentinel-2 (10m) restricts the detection of smaller landslides compared to higher-resolution 

satellites like WorldView or PlanetScope which are available at 1m resolutions. Furthermore, 

the reliance on vegetation changes as a primary indicator limits the applicability of these 
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techniques in barren landscapes or densely forested regions. Current methods are also more 

effective in detecting recent landslides than older or more subtle ones with minimal visible 

surface changes. Overcoming these challenges requires integrating EO data with 

complementary technologies, such as radar systems like Sentinel-1, which can detect landslides 

in non-vegetated or cloud-covered areas, and multi-sensor approaches combining optical, 

radar, and LiDAR data for enhanced detection. 

Looking ahead, the incorporation of AI and machine learning holds promise for improving the 

accuracy and speed of landslide detection across diverse terrains. Enhanced satellite 

technology, including near-daily revisit cycles and higher resolutions, will address limitations 

in response time and the detection of smaller-scale events. Moreover, the wider applicability 

of EO-based techniques can be achieved by adapting them to different geomorphological 

conditions and landslide types, reducing reliance on vegetation signals and incorporating multi-

temporal analyses to capture older events. These advancements, combined with EO's scalability 

for large, remote areas, will ensure that landslide mapping continues to play a vital role in 

disaster preparedness and relief efforts worldwide. 
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6 Conclusion 

This study examined landslide mapping by comparing two automated approaches to rapid 

landslide mapping: change detection and pixel-based analysis using HazMapper and the SLIP 

algorithm on Google Earth Engine, complementing these with manual delineation. Each 

method was assessed to determine its accuracy, efficiency, and effectiveness in identifying and 

mapping landslide occurrences. The primary goal was to evaluate how these techniques 

compare when applied to the same study area. The findings show that both HazMapper and 

GEE offer scalable and efficient solutions for landslide detection, with GEE emerging as the 

most accurate method overall. GEE's integration of multi-temporal satellite data, combined 

with the options to add more parameters to detect landscape change, allowed for a more precise 

identification of landslide-affected areas. Although, HazMapper also provided a robust, user-

friendly interface for rapid mapping, though with slightly less accuracy than GEE. 

The manual delineation technique, though effective, came with significant drawbacks. It is a 

labour-intensive process requiring significant time and effort, especially when working with 

large areas. One of the main limitations observed in the manual approach is its scalability—

manual delineation is not practical for large study areas due to the substantial amount of time 

and effort required which makes it unsuitable for rapid mapping for emergency purposes. 

Additionally, this method relies heavily on the quality of the imagery and the expertise of the 

operator, which introduces variability. The use of medium-resolution satellite imagery of 30m 

in the manual mapping of landslides in this study may result in missing smaller landslides or 

failing to capture subtle changes in terrain that can indicate landslide activity. Despite this, 

manual mapping can still provide valuable localized insights and serve as a useful method for 

cross-validation. 

On the other hand, HazMapper and GEE offer more automated and scalable solutions, with 

GEE showing a distinct advantage in terms of accuracy. As GEE leverages global satellite data 

archives and cloud computing, it allows for the rapid processing of high volumes of data, 

making it particularly suitable for large-scale studies. The result of this study also confirms that 

GEE can be applied to landslide mapping in different terrain conditions and for different 

landslide types, however, care must be taken to adjust certain parameters according to the 

landscape features. 

In light of these findings, this study highlights the importance of selecting appropriate methods 

depending on the scale and characteristics of the study area. While manual delineation may be 
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suitable for small, detailed analyses, HazMapper and GEE provide better options for larger 

areas where speed and accuracy are essential. Looking ahead, future research will aim to 

enhance this framework, particularly by developing an automated landslide detection algorithm 

using GEE. The goal is to integrate higher-resolution satellite data, which can improve 

detection of smaller or more subtle landslides, and apply machine learning algorithms to further 

increase accuracy, especially in areas with complex terrain. Such developments could 

revolutionize landslide mapping, making it faster, more precise, and applicable on a global 

scale. 
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7 Future Work 

The methods applied in this study successfully achieved the goal of the research in comparing 

three landslide mapping techniques. However, some limitations could be significantly reduced 

by considering the following: 

1. Using a better resolution satellite imagery for manual delineation. Given that the 

imagery used in this study was 10m resolution, would the performance of the manual 

technique be enhanced if better resolution was used in detecting and mapping landslide 

scar faces? 

2. Incorporating other landslide parameters in the GEE code to further refine the result 

and improve performance of this tool 

3. Automatically selecting the best thresholds for the input parameters (e.g. slope angle) 

for the HazMapper tool to test the sensitivity of this tool in different slopes 

4. Developing a code for HazMapper to allow for parametric adjustments rather than using 

the online tool. 

5. Integrating deep learning (DL) algorithms using advanced libraries in python (e.g. 

TensorFlow or PyTorch) which allows for the deployment of DL models like 

convolution neural networks (CNN) and offers significant advantage in landslide 

detection by automatically learning site-specific landslide features. While GEE excels 

in processing large-scale EO datasets and implementing conventional machine learning 

techniques, it currently lacks the extensive libraries and frameworks required for this 

advanced deep learning applications. 
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Appendix I - Screenshot anomalous layer of Dortyol showing 

landslides. 

 

This anomalous layer of Dortyol generated using the GEE code shows the occurrence of 

landslides on the East of Dortyol where elevation is greater than 80m above sea level, compared 

to the West, along the coast with lower elevation. 

Appendix II – Satellite imagery from Copernicus 

 

Screenshot of satellite imagery for Glengyle downloaded from Copernicus website used in the 

manual mapping of landslides in the study location. 
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Appendix III - Screenshot of Dortyol landslide inventory 

 

Screenshot of Dortyol landslide inventory in QGIS showing landslide types classified as only 

pre- and co-seismic landslides. This minimal classification limited the further analysis in this 

area to assess the performance of the optimal method in identifying each specific type of 

landslide in this location. Hence, the generalisation of the methods performance in identifying 

landslides prevalent in this location. 

Appendix IV – Satellite imagery for Rest and Be Thankful 

 

The satellite imagery from Copernicus website showing actual landslides in  Rest and Be 

Thankful, confirming GEE’s efficiency in identifying more landslides in the area more than 

BGS manually mapped landslides based on reported cases. 


