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Abstract

Since the turn of the century, metamaterials have garnered significant attention

for their ability to exhibit exotic properties such as cloaking and perfect lensing.

This has led to a growing need for reliable mathematical models capable of de-

scribing these materials’ complex behaviors. While various modeling techniques

exist for studying and engineering metamaterials, this thesis introduces a novel ap-

proach based on the scattering formalism of quantum graph theory. The flexibility

and mathematical simplicity of this framework make it an ideal tool for designing

metamaterials with unique band structures and for exploring complex multi-layer

configurations. This thesis begins by extending quantum graph theory’s scatter-

ing formalism to study wave propagation in complex periodic and finite quantum

systems. Green’s functions on quantum graphs are developed using a scattering

approach, offering a powerful method for analyzing wave behavior on both closed

and open graphs. Next, we apply this formalism to study acoustic metamaterials

modeled as networks of interconnected waveguides, confirming the model’s predic-

tions through both simulations and experiments. Finally, the thesis explores the

design of an angular Fourier filter using a periodic quantum graph with beyond-

nearest-neighbor connections, demonstrating that quantum graphs can be used to

model resonant wave transmission at discrete angles. The results were verified using

COMSOL simulations in the acoustic regime, showing excellent agreement between

theory, simulation, and experiment. This work establishes quantum graph theory as

a new paradigm for metamaterial design, offering a versatile and intuitive framework

for modeling wave behavior and guiding the development of future metamaterial

technologies.
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1 Introduction and Literature Review

This literature review begins by introducing the historical development of metama-

terials, highlighting several key applications that have shaped the field. We will

then explore various modeling techniques employed in metamaterial research, with

a primary focus on lattice-based models, discussing their advantages and current

limitations. With that as motivation, we will introduce the quantum graph theory

literature, demonstrating how this field offers innovative approaches and potential

advancements in the modeling and design of metamaterials.

1.1 Metamaterials

Figure 1: Illustration of different kinds of metamaterials. a) Illustrates how the

choice of refractive index nj between material 1 and 2 affects the transmission angle.

b) Illustrates a reflective metasurface designed to reflect incident waves at custom

angles. c) Illustrates a metamaterial filter, designed to reflect and transmit waves at

custom angles. d) Illustrates a metamaterial applied to fluid mechanics, where the

submerged metamaterial is designed to adjust the wave speed.

A metamaterial is an artificial structure engineered to exhibit unique and extraor-

dinary physical properties, enabling precise control over electromagnetic and me-
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chanical waves [1, 2, 3]. Its history began with Veselago’s groundbreaking paper in

1968, where he investigated the wave properties of a material with simultaneously

negative values of permeability and permittivity [4]. Such a material would possess

a negative refractive index, resulting in electromagnetic waves having anti-parallel

phase and group velocities. Consequently, Snell’s law, the Doppler effect, and the

Vavilov–Cherenkov effect are reversed. This change of refractive index is illustrated

in Figure 1 a). These intriguing results were considered purely theoretical, as no

such material was known to exist. That changed at the turn of the century when

Pendry’s revolutionary work demonstrated a practical application of such a ”double

negative” material. In his study [5], Pendry showed that a material with a negative

refractive index in a medium with an equal and opposite index could perfectly focus

light, overcoming the diffraction limit of traditional lenses. To realize such material

properties, Pendry proposed a periodic arrangement of unit cells made from wires

and C-shaped metal elements or ”split-ring resonators” illustrated in Figure 2 a).

This arrangement results in an effective negative refractive index over a certain fre-

quency range. Smith later experimentally validated this [6], and the phenomenon

has since been demonstrated in various domains [7, 8, 9, 10, 11].

Metamaterials function due to the interplay between the wavelength and the scale

of the unit cell [2]. For wavelengths of the order of, or less than, that of the unit

cell, the waves undergo Bragg scattering [12], interacting directly with each resonant

element. However, in the long-wavelength regime, the material appears continuous,

with properties owing to the underlying structure. These exotic wave effects arise

from the structure’s periodicity and the unit cell’s resonant properties. Periodicity

gives rise to spectral or band gaps, which have been extensively studied in photonic

crystals [13, 14]. Band gaps represent frequencies at which energy propagation is

forbidden. The presence of band gaps forces what would typically be high-frequency

effects into the low-frequency regime, which can be utilized for controlling and ma-

nipulating light [15, 16, 17, 18, 19]. Additionally, the opening of band gaps can be
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Figure 2: a) Illustrates a metallic split-ring resonator engineered to give negative

µ at resonant frequencies. b) Illustrates the transmission line model equivalent

with electrical parameters of Resistance R, inductance L, and capacitance C. c)

Illustrates the acoustic Helmholtz resonator with internal volume V and neck length

l. d) Illustrates the spring-mass equivalent with free parameters of mass m and

spring constant γ.

achieved through the construction of subwavelength resonant elements [20] or phase

modulators [21], which can be either active or passive [22, 21]. In the examples

above, the resonant properties of the split-ring resonator depend on the gap width α

and the dimensions of the rings β, r—illustrated in Figure 2 a). The capacitance of

the resonator is determined by the gap width, while the inductance is determined by

the radius and width of the rings, thus allowing one to tune the resonant frequency.

An equivalent circuit design is illustrated in Figure 2 b). Naturally, there are a

great number of alternative unit cells that can be designed, and these have found

numerous applications in improved imaging resolution [23], communication across

large distances [24], and complex environments [25, 26].

The presence of subwavelength resonant elements allows for a broad range of wave

properties, even in non-periodic structures. Perhaps the most exotic proposed ef-

fect in the field of metamaterial research is cloaking or invisibility. Cloaking can be

achieved using metamaterials by engineering material properties that bend electro-

magnetic waves around an object, rendering it undetectable at certain frequencies

13
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[27]. Typical modeling techniques use transformation optics [28, 29, 30] to deter-

mine the material properties required at various locations within the cloak. This

formulation applies across different wave regimes [31, 32].

Metamaterial research is not, however, restricted to electromagnetism. Due to the

similarities in the governing equations that model wave transport in parallel fields,

metamaterials have found numerous applications in acoustics [33, 34], elastodynam-

ics [35, 36, 37], hydrodynamics [38], and quantum mechanics [39]. In acoustics and

elastics, periodic metamaterials also exhibit spectral or band gaps [40, 41, 42, 43], as

in phononic crystals [13]. The band gaps can be engineered through the presence of

subwavelength resonant elements [44, 45] or unique scattering geometries [46, 47]. A

commonly used example is the Helmholtz resonator illustrated in Figure 2 c), where

the resonances are determined by a cavity of volume V connected by a channel of

length l. The air within the cavity oscillates as if it were a mass and spring, as

illustrated in Figure 2 d) with equivalent parameters of mass m and spring constant

γ.

As in the electromagnetic case, the manipulation of these resonant elements can

similarly give rise to a wide range of non-trivial wave effects, such as attenuation

[48, 49], absorption [50, 51, 52, 53], damping [54], isolation [55], focusing [56, 57],

self-collimation [58, 59], phase control [60], imaging [61, 62, 63], and detection [64].

In the context of elastic waves, the concept analogous to the negative refractive index

found in optics is a negative effective mass. It is possible to design resonant unit cell

configurations that give rise to negative effective mass over some frequency domain,

as well as to engineer non-reciprocal wave propagation [65, 66]. A key application of

this work is in seismic wave control [67]. Seismic metamaterials [68] and barriers [69]

are designed to manipulate seismic waves, providing protection against earthquakes

by directing or dampening incident waves. Various unit cell configurations have been

investigated both theoretically [70, 71, 72, 73] and experimentally [35] in order to
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redirect seismic energy. Similar to optics, the exotic property of wave cloaking can

also be formulated and demonstrated in the acoustic and elastic regimes [74, 75, 76,

77], where this effect is achievable over a broad frequency range [75, 78, 79], as well

as in different media [80, 81].

Much like engineering effective refractive index or mass, one can also engineer effec-

tive mechanical material properties, like the Poisson’s ratio [82] and stiffness [83, 84].

Such mechanical metamaterials [85] are engineered to have unique properties under

different loading conditions [86, 87, 88], for custom deformation, impact [51], and

failure mechanisms [89, 90, 86].

Hydrodynamic metamaterials allow for the manipulation of water waves by building

on principles from metamaterial and phononic crystal research. Both theoretical and

experimental investigations, such as those conducted in [91], have demonstrated that

non-trivial wave effects can be achieved through engineered structures submerged

below the water surface, as illustrated in Figure 1 d). It has been shown that dif-

ferent submerged geometries, such as periodically structured ridges [92], pillars [93],

partially or fully submerged boundaries [38, 94], and floating bodies [95], can give

rise to an array of non-trivial wave effects. These engineered devices have allowed

for negative refraction [38], and for custom reflective properties for applications in

coastal protection [96], and energy harvesting through graded boundaries [94].

Outside of the domain of oscillatory wave equations, metamaterials have found ap-

plications in thermodynamics [97]. Thermal metamaterials are engineered to control

and manipulate heat flow in ways that are not possible with natural materials. The

manipulation of heat flow is achieved through engineered material compositions and

geometries [98, 99]. One can determine the required material geometry through

transformation thermodynamics [100, 101], as well as other methods [102], which

can be used to achieve thermal cloaking both theoretically [103] and experimentally

[97, 100]. Other applications include heat flux shielding and focusing [104, 102].
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Metasurfaces, a category of metamaterials, are engineered to exhibit non-trivial

scattering properties and are illustrated in Figure 1 b) and c). For an overview, see

[105], and for a general formalism, see [106]. These structures have revolutionized

wavefront manipulation, enabling precise control over reflection and transmission

angles for various advanced applications. A few key functionalities include frequency-

selective, absorbing, polarizing, beam-forming, and focusing surfaces, as well as

allowing for holograms. Frequency-selective and absorbing surfaces [107] allow for

the isolation or exclusion of waves in single or multiple frequency bands [108, 109,

110, 111, 112], across a wide range of angles [113, 114]. These functionalities are

crucial for modern telecommunication systems [108, 115, 116, 25, 26, 21].

The ability of metasurfaces to create holograms and complex wavefronts was demon-

strated by Ni et al. [117], showing potential applications in augmented reality and

data storage. Reconfigurable and tunable metasurfaces, reviewed by Chen et al.

[118], use materials like liquid crystals and MEMS to adapt to dynamic operational

requirements, enhancing their utility in communication systems and adaptive op-

tics. Additionally, acoustic metasurfaces utilizing coiled waveguides [33] expand the

scope of metasurfaces into sound manipulation. In reflection-specific contexts, mate-

rials engineered for anomalous reflection [119] are critical for wireless communication

through complex environments [21]. Emerging technologies, such as the Quantum

Optimisation of reconfigurable Surfaces [25] and reconfigurable intelligent surfaces in

wireless environments [26], underscore the transformative potential of metasurfaces

in shaping the future of communication and signal processing.

Metasurfaces have also gained significant attention for their ability to manipu-

late electromagnetic waves, particularly in the context of transmission applications.

These planar structures, composed of sub-wavelength-spaced elements, enable pre-

cise control over wavefronts by tailoring their optical transfer functions (OTFs). A

key area of interest is the design of metasurfaces as Fourier filters, which selectively
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transmit or block specific frequency components of an input signal, facilitating ad-

vanced signal processing tasks.

Fourier filters are indispensable in various domains, including optics, acoustics, and

electronics, where they operate in the frequency domain to modify the spectral con-

tent of signals. Metasurfaces designed as Fourier filters utilize structured arrays of

elements to achieve specific OTFs, enabling operations such as differentiation and

integration. Davis et al. [120] demonstrated the use of metasurfaces with asym-

metric OTFs for optical signal processing, highlighting their potential in performing

complex mathematical operations on incident light. Similarly, Kildishev et al. [121]

and Zhao et al. [122] discussed the advancements in planar photonics with meta-

surfaces, emphasizing their role in enhancing imaging systems and communication

networks.

In optical communications, metamaterial Fourier filters play a crucial role by en-

abling selective transmission and filtering of optical signals, thereby improving net-

work performance. Su et al. [123] discussed the fabrication and applications of

optical metasurfaces, noting their ability to reduce signal degradation and enhance

data integrity. The ability to dynamically tune metasurface responses, as reviewed

by Zhang et al. [124], further broadens their applicability in reconfigurable and tun-

able systems. Silva et al. [125] illustrated the use of metamaterials for performing

mathematical operations, including optical computation of the Laplace operator us-

ing phase-shifted Bragg gratings [126]. These capabilities are essential for developing

adaptive optical filtering systems.

The field of metamaterials continues to advance rapidly, uncovering a wealth of

complex phenomena and enabling innovative applications. Alongside this, advance-

ments in precision manufacturing techniques, such as 3D printing, have facilitated

the development of intricate designs tailored for specific functionalities, including

vibration attenuation in 3D-printed structures [127, 128]. These developments un-
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derscore the growing need for robust mathematical models capable of efficiently and

accurately predicting wave transport in both natural and engineered materials. The

following section explores various modelling techniques employed to analyse wave

propagation in complex systems, with a particular focus on lattice-based structures.

1.2 Modelling Techniques

Figure 3: a) shows an array of masses coupled to their nearest neighbour by springs.

b) shows an array of masses coupled both to their nearest neighbour as well as its

beyond nearest neighbour via an additional mass. c) shows a hidden spring mass

configuration within a given mass of an array that allows for resonant conditions.

Modeling periodic systems via lattices is exceptionally useful due to its mathemat-

ical simplicity and explanatory power - see [129] for an introduction and overview.

Not only can lattices approximate a continuum in the long-wavelength regime as

demonstrated by Kaplunov and Craster [130], but they also possess and allow for

unique properties, such as flat bands [131], and configurations, such as beyond-

nearest-neighbour connections [132, 133, 134, 135, 136, 137], which add additional

degrees of freedom for potential metamaterial properties. Indeed, lattices have found

a great number of applications in mechanical [138], elastodynamic, and acoustic re-

search [139].

One of the first and most fundamental models in this context is the Kronig-Penney

model, presented in 1931 [140]. This model describes the scattering of electrons in

a one-dimensional periodic potential, allowing for the analysis of electronic band
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structures in crystalline solids. By providing a simple yet powerful analytic formu-

lation, the Kronig-Penney model enables researchers to gain intuitions about how

the potential affects the wave properties of a lattice. This model can be used to

engineer a lattice to exhibit a variety of properties by merely adjusting the periodic

potential. A lattice version of the Kronig-Penney model was introduced by Exner

in 1995 [141]. This approach, seen as an early version of periodic quantum graph

theory, retains the simplicity of the original Kronig-Penney model while extending

it to higher dimensions in a straightforward manner. This method overcomes some

of the limitations of traditional scattering techniques and provides a powerful tool

for understanding wave behavior in periodic systems.

Another significant lattice-based model is the spring-mass model [142], which de-

scribes a lattice of arbitrary dimension formed of masses coupled by springs. This

model is particularly useful for studying mechanical waves in materials. It allows for

a straightforward formulation to model a material’s properties based on the chosen

lattice topology, masses, and spring constants. The spring-mass model is exten-

sively used in the study of metamaterials, especially in the contexts of acoustics and

elasticity [143, 144]. By permitting multiple masses within a unit cell [145], this

model can account for complex scattering effects, leading to resonant material char-

acteristics [65, 66]. However, the spring-mass model has its shortcomings. Modeling

open systems that can be excited externally is difficult without using Green’s func-

tions, leading to tedious mathematics when considering the scattering properties of

interfaces between meshes or defects.

In the electromagnetic regime, the transmission line model [146] offers a different

approach. This model describes wave scattering through transmission lines, which

can be arranged to form a mesh in multiple dimensions. It is extensively used in

microwave engineering and RF circuit design. The transmission line model allows for

the modeling of material properties as a function of lattice topology and electrical
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parameters such as resistance, inductance, and capacitance. Including resonant

unit cell circuitry enables the study of non-trivial wave effects [147, 11, 148]. A key

advantage of this model is its ability to model open systems through the introduction

of leads, allowing for direct analytical expressions for scattering at boundaries and

defects. However, the transmission line model is rooted in classical electromagnetism

and is not easily applicable to acoustics or elasticity, limiting its utility in other areas

of metamaterial study.

Finite element analysis (FEA) [149] is by far the most successful numerical technique

for investigating the wave properties of materials and metamaterials [150]. FEA has

been applied across a wide array of wave regimes, including acoustics, elasticity,

and electromagnetism. The technique involves dividing a CAD structure into sim-

ple elements connected at nodes, forming a mesh. Each element is analysed using

equations that describe its behavior in response to some forcing. The results from

all elements are then assembled to approximate the overall response of the entire

structure. FEA has proven to reproduce experimental results with great accuracy,

with the precision of the model improving as the mesh is refined. However, FEA

is computationally intensive and provides little to no mathematical intuition about

the effects being computed.

Despite the strengths of numerical methods like FEA, there is a need to find a mid-

dle ground between analytical and numerical models. Researchers seek a model that

is applicable to arbitrary scalar fields, mathematically simple in N-dimensions, and

capable of studying open systems and analyzing non-trivial resonant elements and

boundaries, while also being able to reproduce continuum solutions in some limit.

For this, quantum graph theory offers a promising approach. Quantum graph theory

uses the framework of graph theory to model quantum mechanical systems, provid-

ing a way to bridge the gap between discrete and continuous models and offering

insights into the wave behavior of complex and periodic systems in a mathematically
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tractable manner.

1.3 Quantum Graph Theory

Figure 4: Illustrates how a network of thin channels of width ϵ, connected by junc-

tions of volume Vϵ converge to a simple graph structure in the thin channel limit.

Quantum graphs, defined as metric graphs endowed with differential operators, have

a long history in mathematics, physics, and both theoretical chemistry and biol-

ogy [151, 152, 153, 154, 155, 156, 157, 158]. The theory describes networks con-

structed from vertices connected by one-dimensional edges (bonds), which allow for

wave propagation [159]. This theory can be viewed as the limiting case of net-

works formed of channels, such as waveguides, where the differential operator on

the manifold converges to the one-dimensional graph operator in the thin channel

limit ϵ → 0 [160, 161, 162], as illustrated in Figure 4. This perspective is crucial

for studying wave propagation in thin, often mesoscopic or nanoscale network do-

mains [160]. Within such systems, wave transport on the network depends on the

chosen topology, edge lengths or metric, and the choice of vertex matching condi-

tions. In the case of thin channels connected by junctions, as shown in Figure 4,

the vertex matching conditions depend on the volume Vϵ, which models different

matching conditions based on the rate of convergence, as shown in [163]. The most

general vertex matching conditions were first derived by Kostrykin and Schrader
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[164], with different vertex conditions leading to a variety of spectral properties

[165, 166, 167, 168, 169, 170]. Typically, the metric is considered static; however,

early work on graph solutions with time-varying edge lengths [171] offers promising

avenues for diverse applications. The model’s simplicity allows for a rigorous treat-

ment of spectral theory topics usually related to the study of self-adjoint partial

differential operators, as introduced in [172].

The theory has been applied to the study of waveguides, previously investigated in

the acoustic setting by Adams, Craster, and Guenneau [173, 174] who analyzed Bloch

waves in periodic multilayered acoustic waveguides, as well as quantum wires and ca-

bles [175, 176, 177]. The graph topology and junctions are carefully chosen to design

devices with customizable group velocities [178] and quantum switching capabilities

[179, 180]. Such proposed wave devices have been designed for customizable fre-

quency transmission properties [181, 182, 166, 183] for a broad range of applications,

including quantum computing [184, 185]. This was demonstrated for integrated pho-

tonic networks [186] and in the study of spectral control of network lasers [187, 188].

The theory has found applications in superconductivity in finite disordered networks

[189, 190] and demonstrated Anderson localization [191, 192, 193, 194, 195]. Fur-

thermore, the theory has been applied to quantum walks [196, 197], quantum search

algorithms [198] and quantum chaos [199, 200]. Quantum chaos has been experi-

mentally demonstrated in networks of microwave coaxial cables [201, 202, 203]. In

Chemistry and Biology, the theory can be used to study nerve impulse transmission

[158] and model various protein [204, 205] and molecular structures [206, 207]. Be-

yond operators that provide oscillatory wave solutions, quantum graphs have also

been used to model heat flow in networks [208, 209].

The spectrum of finite [210] and infinite [211] periodic quantum graphs depends on

the chosen lattice topology. Various lattice topologies have been investigated, in-

cluding ladder [212], square periodic [213], hexagonal [214, 215, 216, 217], and Cairo
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Figure 5: Illustrates four periodic graph structures. a) shows a ladder graph. b)

shows a square periodic graph. c) shows a hexagonal periodic graph. d) shows a

Cairo lattice graph.

lattices [218], which resemble the street tiling found in Cairo, Egypt. These different

graph topologies are illustrated in Figure 5. Natural applications of spectral analysis

of periodic structures can be found in photonic [219] and phononic crystals [220],

as well as in the study of carbon nanotubes [206, 221]. The graphs’ periodicity

opens spectral or band gaps [222, 223], which can be manipulated by the choice

of vertex matching conditions. This was previously investigated by Kuchment et

al. [211], where vertex scattering conditions were made frequency-dependent by the

”decoration” (attachment) of subgraphs. These decorations allowed for resonant

conditions, much like the subwavelength resonant elements found in metamaterial

research. Pavel et al. demonstrated that the spectrum of the graph Hamiltonian

converges to the corresponding Schrödinger operator on Euclidean space in the con-

tinuum limit [224, 225], proving the lattice representation as an ideal model for

studying wave transport in complex systems. This procedure was also applied to

the heat equation [226].

A particular formalism of interest for this work is the scattering approach to quantum
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graph theory, introduced by Kottos and Smilansky in 1997 [227]. In this approach,

graph vertices are treated as point scatterers that map incident waves to outgoing

waves on connected edges, from which stationary solutions (energy eigenstates) are

constructed. One advantage of the scattering approach is that eigenvalue conditions

can be written in terms of a secular equation involving the determinant of a unitary

matrix of finite dimension N , where N typically equals twice the number of edges

on the graph. Similarly, the scattering matrix of open quantum graphs can be given

in terms of a closed-form expression involving finite-dimensional matrices of size N

[228, 229]. This simplicity allows one to express the Green’s function in a closed

form [230], instead of a rather complicated sum over trajectories [229, 231].

Given the rich mathematical history and the broad array of applications, quan-

tum graph theory stands out as an ideal model for studying metamaterials. The

scattering approach, with its simplified eigenvalue conditions, further enhances the

utility of quantum graph theory. The theory’s flexibility in accommodating different

topologies and vertex matching conditions allows for precise modeling of both finite

and infinite periodic systems. This is particularly evident in its ability to manipu-

late spectral or band gaps through lattice topology and vertex matching conditions,

with the inclusion of resonance, as is significant in its application to photonic and

phononic crystals. With that, we propose a quantum graph approach to metamate-

rial design.

1.4 Thesis Structure

This thesis is structured as follows: Chapter 2 introduces the fundamentals of quan-

tum graph theory, explaining how to construct quantum graphs and the role of

boundary conditions in shaping wave propagation in finite closed, open, and infi-

nite periodic quantum graphs. Chapter 3 presents a detailed exploration of Green’s

functions on quantum graphs, providing a framework for analysing wave behaviour
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on both closed and open graph systems via a novel three-step procedure that al-

lows the Green’s function to be expressed in closed form. This formulation is then

extended to a square periodic quantum graph, where the lattice Green’s function

for edge excitation is shown for the first time. Chapter 4 applies quantum graph

theory to the modelling of metamaterials, demonstrating non-resonant negative re-

fraction, which is then compared to both numerical simulations and experiment in

the acoustic regime. Chapter 5 focuses on the design and analysis of Fourier filters

using the scattering language of quantum graph theory, demonstrating the transmis-

sion properties of non-local vertex connections. Finally, Chapter 6 summarises the

main findings of the thesis and highlights the potential for future work in quantum

graph-based metamaterial design.
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2 Constructing Quantum Graphs

To construct a quantum graph we first consider a metric graph G(V , E , L). Here, E

is the set of edges, V the set of vertices, and L = {ℓe : e ∈ E} is the graph metric

containing a set of real positive edge lengths ℓe > 0. Edges with finite length will

be called bonds B and edges with infinite length will be called leads L. Naturally,

one may write the edge set as a union E = L ∪ B. With the number of leads being

NL = |L| and the number of bonds being NB = |B|, giving the total edge number

as NE = NB + NL. For each bond e ∈ B we use a coordinate ze ∈ [0, ℓe] with some

arbitrary yet fixed choice of direction. Note the use of standard coordinate notation

(x, y) is preserved for the Euclidean space the graph is embedded in which will be

come relevant later. The graph coordinate defines a position on an edge such that

ze = 0 and ze = ℓe correspond to the vertices connected by the bond. For a lead

e ∈ L coordinates ze ∈ [0,∞) are defined such that ze = 0 corresponds to the vertex

where the lead is attached. A point on the graph is a pair z = (e, ze) of an edge and

a coordinate.

The metric graph is turned into a quantum graph by the addition of a self-adjoint dif-

ferential operator Ĥ together with a set of boundary conditions on the graph vertices.

The self-adjointness in physical terms ensures conservation of the probability cur-

rent at the vertex. For this we consider the Hilbert space L2(G) ≡
⊕

e∈E L
2([0, ℓe])

of square integrable complex-valued functions Φ(z) = {ϕe(ze)}e∈E . The most fre-

quently studied operators of interest act as follows:

The negative Laplacian,

ϕe(ze)→ −
d2

dz2e
ϕe(ze), (1)

the Schödinger operator

ϕe(ze)→
(
− d2

dz2e
+ Ve(ze)

)
ϕe(ze), (2)
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the more general magnetic Schödinger operator

ϕe(ze)→

[(
1

i

d

dze
− Ae(ze)

)2

+ Ve(ze)

]
ϕe(ze). (3)

Here Ae(ze) is the vector potential associated with an imposed magnetic field and

Ve(ze) is the standard scalar potential. The operator is made complete by restricting

the domain of the operator in Hilbert space to piecewise differentiable functions that

satisfy matching conditions at each vertex v that preserve the self-adjointness of the

operator. Put simply, we choose functions that are differentiable on each piece of

the chosen domain.

The most general vertex matching conditions that preserve self-adjointness, and

therefore energy flux, were first derived by Kostrykin and Schrader [164]. To briefly

summarise their findings, let us define the set of edges attached to v as S(v) that

defines a star of degree (the number of connected edges) d(v), with d(v) = |S(v)|. We

consider the edge coordinate to be ze = 0 for all e ∈ S(v). Matching conditions at

the vertex v may be written in the most general form by

A(v)Φ(v)(0) +B(v)Φ(v)′(0) = 0. (4)

Where Φ(v) and Φ(v)′ are the vectors of all square integrable complex-valued func-

tions on the edges in S(v) and its spacial derivative respectively. Note that the

gradient is taken on each edge in the direction of increasing ze, giving the eth vector

element
[
Φ(v)′

]
e

= dϕe(ze)/dze for all e ∈ S(v). Here A(v) and B(v) are two complex

valued square matrices of dimension d(v) which preserve self-adjointness if and only

if the two following conditions are satisfied:

1. The set of equations need to be independent, resulting in the matrix
(
A(v),B(v)

)
having full rank.

2. The product A(v)B(v)† = B(v)A(v)† is a hermitian matrix.
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Here the matrix
(
A(v),B(v)

)
is simply a rectangular d(v) × 2d(v) matrix formed by

horizontally stacking A(v) and B(v).

The self-adjointness of the chosen operator implies a unitary evolution in time, such

that Φ(z, t) = e−iωtΨ(z) gives |Φ(z, t)|2 = |Ψ(z)|2. Here ω represents the real valued

frequency and we choose the convention that it is strictly positive. From this the

stationary solution satisfies the homogeneous eigen-problem

(
Ĥ − k2

)
Ψ(z) = 0 , (5)

where k represents the wave number. The relationship between k and ω depends on

the physical system being modelled. For quantum mechanics the time evolution is

given by the operator i∂/∂t with free space quadratic dispersion k2 ∝ ω. While in

classical mechanics the time evolution is given by the operator ∂2/∂t2 with linear

free space dispersion k ∝ ω. Note any dimensional constant is set to unity.

For this work we consider problems governed by the operator defined by the negative

Laplacian as in equation (1), representing some arbitrary scalar field. This choice

makes the formulation applicable to a broad class of problems, such as in acoustics,

optics or indeed single particle quantum mechanics where Ae(ze) = Ve(ze) = 0. This

choice of operator gives the governing equation of this work, as the Helmholtz wave

equation, [(
Ĥ − k2

)
Ψ(z)

]
e

= −
(
d2

dz2e
+ k2

)
ψe(ze) = 0 . (6)

The wave function is expressed as a superposition of counter propagating plane

waves,

ψe(ze) =aine−e
−ikze + aoute+

eikze

=aoute− e
−ik(ze−ℓe) + aine+e

ik(ze−ℓe)

=aine−e
−ikze + aine+e

ik(ze−ℓe) .

(7)
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Here, a
in/out
e± is the complex wave amplitude on edge e propagating in the direction

of increasing (+) or decreasing (−) ze, heading in or out of a vertex. If e is a lead

only the amplitudes a
in/out
e± at ze = 0 are used.

2.1 Vertex Scattering

The following scattering formalism was first introduced in 1997 [227] and describes

how the vertex matching conditions can be expressed as a vertex scattering matrix

Σ(v) that performs the mapping,

a(v),out = Σ(v)a(v),in (8)

Above a(v),in/out are d(v) dimensional vectors that collect all incoming/outgoing am-

plitudes of plane waves on the edges e ∈ S(v). By decomposing the wave function

in (6) into counter propagating vectors of incoming and outgoing wave amplitudes

as in (7), it is trivial to show the most general scattering matrix according to the

matching conditions defined in (4) takes the form,

Σ(v)(k) = −
(
A(v) + ikB(v)

)−1 (
A(v) − ikB(v)

)
. (9)

For real k this is a well-defined unitary matrix due to the conditions on A(v) and

B(v) which requires that A(v)− ikB(v) is invertible. Note however that neither A(v)

nor B(v) need to be invertible by themselves (in general neither is) and one needs

to take care at for instance at k = 0 that it remains well defined in the limit.

2.1.1 Special Cases of Vertex Scattering

While one is free to define any scattering matrix at a vertex, provided the above

conditions are met, we consider for this work a few special cases - namely Kirchhoff-

Neumann, Dirichlet and δ-type boundary conditions, as outlined in [172]. For these
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matching conditions the edge solutions must satisfy the following relations:

1. Kirchhoff-Neumann matching conditions

ψe(0) = ψe′(0) and
∑

e∈S(v)

∂ψe

∂ze
(0) = 0 (10)

2. Dirichlet matching conditions

ψe(0) = 0 (11)

3. δ-type matching conditions

ψe(0) = ψe′(0) and
∑

e∈S(v)

∂ψe

∂ze
(0) = λ(v)ψe′(0). (12)

To derive the scattering matrices of each of the conditions above, we consider the

vertex of δ-type and choose the coupling parameter λ(v) appropriately to reproduce

both Kirchhoff-Neumann and Dirichlet matching conditions. For this, consider the

conditions in equation (12) and sum over the function on all d(v) edges in the star

of the vertex, ∑
e∈S(v)

aoute+
+

∑
e∈S(v)

aine− = d(v)ψe′(0), (13)

similarly, the same can be done for the derivative,

∑
e∈S(v)

aoute+
−

∑
e∈S(v)

aine− =
λ(v)

ik
ψe′(0). (14)

By combining equation (13) and (14) we can solve for ψe′(0) in terms of the incoming

wave amplitudes,

ψe′(0) =
2ik

ikd(v) − λ(v)
∑

e∈S(v)
aine− , (15)
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which naturally leads to the outgoing solutions on an arbitrary edge e′ being related

to all other incoming wave amplitudes on e,

aoute′+
=

2ik

ikd(v) − λ(v)
∑

e∈S(v)
aine− − a

in
e′−
. (16)

This gives d(v) simultaneous equations, which we use to construct the vertex scat-

tering matrix,

Σ(v)(k) =
2ik

ikd(v) − λ(v)
Ed(v) − I. (17)

where I is the identity matrix and Ed(v) is the matrix of dimension d(v) with all

entries equal to one. By choice of λ(v), it is easy to arrive at the other scattering

conditions given by (10) and (11),

λ(v) =


0, Neumann-Kirchhoff,

∞, Dirichlet.

(18)

Notice that for Neumann-Kirchhoff matching conditions the k dependence drops

out, and for Dirichlet matching conditions communication between the edges at the

vertex is forbidden. The role that λ(v) plays in the scattering at a vertex is illustrated

in several examples in Figure 6 a) - e).

Now that we have formulated the scattering condition at a single vertex, one may

combine all vertex scattering matrices into a single (directed) edge scattering matrix

Σ, such that

aout = Σ ain. (19)

Here ain/out is a 2NB+NL dimensional vector that collects all the incoming/outgoing

amplitudes for all graph bonds and leads. The scattering matrix elements are ex-

pressed in terms of the individual vertex scattering matrices Σ(v) such that (ordering
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Figure 6: These diagrams illustrate the role of the parameter λ(v1) in the scattering

of waves at a given vertex as defined by equation 17. a) Shows the set up and

illustrates a single vertex of degree 2, with both attached edges e1 and e2 being

leads, with the choice of coordinate labelled. Additionally the incident wave aine1−

is labelled along with both the reflected and transmitted waves aoute1+
and aoute2+

. b)

Shows the resulting real component of the wave function for λ(v1) = 0, representing

Kirchhoff-Neumann boundary conditions. c) λ(v1) = 5. d) λ(v1) = 50. Finally d)

shows λ(v1) =∞, representing Dirichlet boundary conditions.

the directed edges in appropriate way)

Σ = Π



Σ(1) 0 . . . 0

0 Σ(2) . . . 0

...
...

. . .
...

0 0 . . . Σ(NV )


= ΠΣ̂ (20)

Here, Π is a permutation matrix, that appropriately re-orders the diagonal scattering

matrix to act correctly on the matrices stacked to form ain/out in equation (19).

2.2 The Harmonics of a Finite Closed Quantum Graph

Having now understood and illustrated how waves scatter at a given vertex, the

eigen-solutions of a closed or compact quantum graph are now derived. For this we
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consider a graph formed of bonds only. In this case ain/out ≡ a
in/out
B , where a

in/out
B

is a vector of length 2NB that collects the wave amplitudes on every bond B of

the graph. Naturally the bond wave amplitudes can be mapped to one another by

the square 2NB dimensional matrix P(k) that takes account of the phase difference

between wave amplitudes across all bonds.

ain
B = P(k) aout

B , (21)

with matrix elements vv′ given by the condition,

[P(k)]vv′ =


eikℓe , if vertex v and v′ are connected by edge e,

0, otherwise.

(22)

The two relations (19) and (21) combine to give the 2NB dimensional quantum map

U(k) = P(k)Σ(k) which performs the mapping,

ain
B = U(k) ain

B . (23)

Non-trivial solutions to (23) exist for wave numbers k for which the quantum map

U has a unit eigenvalue, that is, for wave numbers that satisfy the secular equation

ξ(k) ≡ det (I−U(k)) = 0 . (24)

The positive (discrete) spectrum of the quantum graph corresponds one-to-one to

the zeros of ξ(kn) with kn > 0 [227, 164]. The corresponding eigenstates can be

obtained from (23) and (19). To understand this formalism better, let us consider a

few simple examples.
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2.2.1 Worked Example - The Interval Graph

Consider the simple problem of an interval graph G(V , E , L) formed of two vertices

V = {v1, v2} with enforced Dirichlet boundary conditions, connected by a single

edge E = {e1} with metric L = {ℓ1} - As illustrated in Figure 7.

Figure 7: Shows a plot of the n = 3 eigen function solution of the interval graph

with enforced Dirichlet boundary conditions at each vertex.

Here the edge propagation matrix, given by condition (22), takes the form

P (k) =

 0 eikℓ1

eikℓ1 0

 , (25)

while the scattering matrix, defined in (17) with λ(v1) = λ(v2) =∞ takes the form,

Σ =

−1 0

0 −1

 . (26)

By substitution of (25) and (26) into (24), it is trivial to show analytically that the

eigen-solutions are given by

kn = n
2π

ℓ1
for n ∈ N, (27)

with wave amplitudes given by determining the eigen vector of equation (23) - plotted

in Figure 7.
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2.2.2 Worked Example - A Star Graph

Consider now a star graph G(V , E , L) formed of four vertices V = {v1, v2, v3, v4}

connected by three edges E = {e1, e2, e3} with metric L = {ℓ1, ℓ2, ℓ3}. All three edges

are connected at a central vertex v1 with enforced Kirchhoff-Neumann boundary

conditions, while all other vertices vj ̸=1 have Dirichlet boundary conditions.

Figure 8: Shows a plot of the n = 5 eigen function solution of a compact star graph

with enforced Dirichlet boundary conditions at the vertex of degree d(v) = 1 and

Kirchhoff-Neumann for d(v) = 3.

Here the propagation matrix, as defined in (22), is given by

P (k) =



0 eikℓ1 0 0 0 0

eikℓ1 0 0 0 0 0

0 0 0 eikℓ2 0 0

0 0 eikℓ2 0 0 0

0 0 0 0 0 eikℓ3

0 0 0 0 eikℓ3 0


. (28)

While the scattering matrix, defined in (17) for λ(v1) = 0 and λ(vj ̸=1) =∞, takes the
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form,

Σ =



−1
3

0 2
3

0 2
3

0

0 −1 0 0 0 0

2
3

0 −1
3

0 2
3

0

0 0 0 −1 0 0

2
3

0 2
3

0 −1
3

0

0 0 0 0 0 −1


. (29)

By substitution of (28) and (29) into (24), the discrete set of solutions kn can be

determined by the zeros of ξ(kn) = 0. This process is performed numerically with

wave amplitudes given by solving (23) and plotted in Figure 8.

Let us now consider the continuous spectrum of solutions that exist for graphs that

include leads, the so called open quantum graph.
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2.3 The Spectrum of an Open Quantum Graph

Next let us consider the positive energy states for open quantum graphs. Generically

these consist of an NL-fold degenerate continuum of scattering states. Physically the

NL-fold degeneracy is obvious from the ability to choose NL independent incoming

plane waves along the leads. To describe the scattering states let us write the unitary

edge scattering matrix in block form

Σ(k) =

Σ(k)LL Σ(k)LB

Σ(k)BL Σ(k)BB

 =

I 0

0 Π

 Σ̂(k) (30)

where the block-indices B and L refer to 2NB directed bonds and NL leads. The

second equality is expressed explicitly in terms of the matrix Σ̂(k) defined in (20)

which is formed of the block-diagonal arrangement of each vertex scattering matrix

up to permutations defined by Π on all bond amplitudes. Let us also introduce the

unitary quantum map for an open graph also expressed in block form

U(k) ≡

U(k)LL U(k)LB

U(k)BL U(k)BB

 =

 Σ(k)LL Σ(k)LB

P(k)Σ(k)BL P(k)Σ(k)BB

 . (31)

The scattering states are spanned by the NL-dimensional vector ain
L of incoming

plane wave amplitudes on the leads. The outgoing amplitudes aout
L and the incom-

ing amplitudes on the directed bonds ain
B then result from solving the set of linear

equations a(k)outL

a(k)inB

 =

U(k)LL U(k)LB

U(k)BL U(k)BB


 ain

L

a(k)inB

 (32)

which follows again from (19) and (21). Solving these equations, one obtains for the

outgoing amplitudes on the leads

a(k)outL = σ(k)ain
L (33)
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where the unitary graph scattering matrix is given as

σ(k) = U(k)LL + ULB [I−UBB(k)]−1U(k)BL . (34)

The plane wave amplitudes on the directed bonds can be expressed as

a(k)inB = ρ(k)ain
L (35)

with the rectangular 2NB ×NL matrix

ρ(k) = [I−UBB(k)]−1U(k)BL . (36)

The scattering matrix σ(k) is related to the matrix ρ(k) via

σ(k) = U(k)LL + U(k)LB ρ(k) . (37)

One may rightfully question whether the matrix I−U(k)BB can always be inverted as

required in equations (34) and (36). This is related to the existence of bound states

in the continuum (a pure point spectrum in mathematical terms). In the absence

of such bound states U(k)BB does not have a unit eigenvalue and the expression is

valid for all wave numbers k > 0. We will return to the discussion of this expression

in the presence of bound states, also known as perfect scars, later in section 3.3.1.

For now we will consider some examples of the spectrum of open quantum graphs

and comment on the instances where the matrix may not be well defined.
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2.3.1 Worked Example - Open Star Graph

Figure 9: A 3-star with one lead consists of a central vertex v1 connecting three

edges E = {e1, e2, e3}. Here, e1 is a lead and the other two edges ej ̸= 1 are bonds

of lengths ℓ2 and ℓ3 ending at vertices v2 and v3.

Consider the quantum graph G(V , E , L) that represents an open T-junction as illus-

trates in Figure 9. Here there are three vertices V = {v1, v2, v3} and three edges

E = {e1, e2, e3} with metric L = {∞, ℓ2, ℓ3}. We choose the coordinates such that

zj = 0 for j = 1, 2, 3 at the central vertex v1 with zj = ℓj at vertices vj, j = 2, 3. We

enforce Kirchhoff-Neumann boundary conditions at the central vertex v1 as defined

by (17) for λ(v1) = 0 and Dirichlet boundary conditions for all other vertices, as

defined by (17) for λ(vj) = ∞ for j = 2, 3. This graph has scattering properties

defined by the quantum map,

U(k) =



−1
3

0 0 2
3

2
3

2eikℓ2
3

0 0 − eikℓ2
3

2eikℓ2
3

2eikℓ3
3

0 0 2eikℓ3
3

− eikℓ3
3

0 −eikℓ2 0 0 0

0 0 −eikℓ3 0 0


≡

 ULL ULB

U(k)BL U(k)BB

 . (38)
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Computing the scattering matrix in the scattering approach require that one inverts

the matrix I−U(k)BB which is given as,

I
I−U(k)BB

=

1

D



3− e2ikℓ3 −2eik(ℓ2+ℓ3) −(1 + e2ikℓ3)eikℓ2 2eikℓ2

−2eik(ℓ2+ℓ3) 3− e2ikℓ2 2eikℓ3 −(1 + e2ikℓ2)eikℓ3

−(3− e2ikℓ3)eikℓ2 2eik(2ℓ2+ℓ3) 3− e2ikℓ3 −2e2ikℓ2

2eik(ℓ2+2ℓ3) −(3− e2ikℓ2)eikℓ3 −2e2ikℓ3 3− e2ikℓ2


,

(39)

where

D = 3− e2ikℓ2 − e2ikℓ3 − e2ik(ℓ2+ℓ3) . (40)

Note that for e2ikℓ2 = e2ikℓ3 = 1, one has D = 0 making the inverse not well defined.

This can only happen if the bond lengths are rationally related, then giving rise to

a set of bound states in the continuum that vanish on the lead and are a sinusoidal

wave along the two bonds with a node on the vertex v1. The scattering states are

then given by

ψe1(z1) =e−ikz1 + σ(k)eikz1 , (41a)

ψe2(z2) =ρ(k)2+1e
ik(z2−ℓ2) + ρ(k)2−1e

−ikz2 (41b)

ψe3(z3) =ρ(k)3+1e
ik(z3−ℓ3) + ρ(k)3−1e

−ikz3 (41c)

where

ρ(k) =
I

I−U(k)BB
U(k)BL =

2

D



eikℓ2
(
1− e2ikℓ3

)
eikℓ3

(
1− e2ikℓ2

)
−e2ikℓ2

(
1− e2ikℓ3

)
−e2ikℓ3

(
1− e2ikℓ2

)


(42)
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and

σ(k) = ULL + ULBρ(k) =
D̄

D
e2ik(ℓ2+ℓ3) . (43)

Where D̄ represents the complex conjugate of D. Assuming the condition D ̸= 0,

the scattering states are then given as

ψe1(z1) =e−ikz1 +
D̄

D
eik(z1+2ℓ2+2ℓ3), (44a)

ψe2(z2) =
2(1− e2ikℓ2)(1− e2ikℓ3)

D

sin(k(ℓ2 − z2))
sin(kℓ2)

, (44b)

ψe3(z3) =
2(1− e2ikℓ2)(1− e2ikℓ3)

D

sin(k(ℓ3 − z3))
sin(kℓ3)

. (44c)

These solutions are plotted in Figure 9. The scattering matrix is continuous due

to 1 + σ(k) = 2(1−e2ikℓ2 )(1−e2ikℓ3 )
D

. It is straight forward to check that the scattering

states also behave well near e2ikℓ2 = e2ikℓ3 = 1.

2.4 Spectrum of a Periodic Quantum Graph

Figure 10: a) Illustrates a square periodic quantum graph, constructed of vertices

connected by edges of variable length. The unit cell is further decorated by an

additional sub-graph emerging out of the plane. b) Shows a top-down view of a

given unit cell with the wave amplitudes a
in/out
e illustrated around a given vertex.
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In this section, we extend the theory of scattering on quantum graphs formulated in

section 2.2 to include periodic quantum graphs. Consider an infinite square periodic

arrangement of vertices embedded in a 2D Euclidean space with period ℓ. The space

has horizontal and vertical continuous coordinates x and y, while the vertices are

positioned on a discrete grid with coordinates n and m. Each vertex is connected

to its neighboring vertices to the left (l), right (r), down (d), and up (u) by finite

edges. Although the graph contains an infinite number of edges and vertices, we

only concern ourselves with a finite set within the unit cell. Where the unit cell is

the smallest repeating structure that forms the lattice.

Let us define the set of edges attached to a given vertex as S = {l, r, d, u}, which

forms the star of the vertex. The edges that make up this star are assigned the

metric L = {ℓx, ℓx, ℓy, ℓy}. Note that this metric does not necessarily equal the

vertex period ℓ, allowing for space-coiled channels, as illustrated in Figure 10. For

each edge e ∈ S, we introduce an edge coordinate that exists within the domains

znm,l ∈ [0, ℓx], znm,r ∈ [0, ℓx], znm,d ∈ [0, ℓy] and znm,u ∈ [0, ℓy], with znm,e = 0 at the

vertex.

As before, we endow each edge with a differential operator, chosen to be the 1D

Laplacian, leading to the Helmholtz wave equation:

(
d2

dz2nm,e

+ k2
)
ψnm,e(znm,e) = 0. (45)

Here, ψnm,e is the wave function at vertex nm on edge e, which has a general solution

as a superposition of counter-propagating plane waves:

ψnm,e(znm,e) = aoutnm,ee
ikznm,e + ainnm,ee

−ikznm,e . (46)

In this expression, a
out/in
nm,e represent the complex wave amplitudes on edge e around

vertex nm. As there are an infinite number of unknown wave amplitudes to solve
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for, we exploit the periodicity of the structure to reduce the problem’s dimension to

2|S|. This is achieved by applying Bloch’s theorem [13], a method first introduced

in the context of quantum wires by [232] and later expanded upon in [141].

Bloch’s Theorem: In a periodic potential or structure, the wavefunction ψ(r) of

a particle or wave can be expressed as the product of a plane wave and a periodic

function. Specifically,

ψκ(r) = eiκ·ruκ(r), (47)

where κ is the wave vector, eiκ·r is a plane wave, and uκ(r) is an envelope function

that has the same periodicity as the underlying lattice:

uκ(r) = uκ(r + R), (48)

where r = (x, y)T is the position vector, and R = (nℓ,mℓ)T is the lattice vector.

The periodicity of the structure enforces a unitary spatial evolution of the wave

function over the period ℓ:

|ψnm,e(ℓ)|2 = |ψnm,e(0)|2. (49)

In quantum mechanics, this implies that the probability distribution associated with

the particle’s position is identical in each unit cell of the periodic structure. Conse-

quently, the solution in one unit cell can be expressed in terms of those in neighboring

cells, up to a phase factor known as the Bloch phase, parameterized by the length

scale ℓ.

For the entire structure, the wave function at a given vertex can be related to the
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solutions at neighboring vertices:

ψnm,l(ℓx) = e−iκxℓψnm,r(0),

ψnm,r(ℓx) = eiκxℓψnm,l(0),

ψnm,d(ℓy) = e−iκyℓψnm,u(0),

ψnm,u(ℓy) = eiκyℓψnm,d(0),

(50)

where κx and κy represent the quasi-momenta in the x and y directions.

Using Bloch’s theorem, the problem dimension reduces to 2|S|, with the unknowns

now being the wave amplitudes in the vicinity of a given vertex. Consequently, we

drop the unnecessary indexing nm, simplifying the notation: a
out/in
nm,e → a

out/in
e and

znm,e → ze. The general solution in equation (46) then becomes:

ψnm,e(ze) = ei(κxn+κym)ℓ
(
aoute eikze + aine e−ikze

)
. (51)

To determine the remaining 2|S| unknown wave amplitudes and thus the eigen-

function solutions of the quantum graph, we use the scattering theory introduced

in Section 2.2. The equations in (50) relate the outgoing wave amplitudes aout =

(aoutl , aoutr , aoutd , aoutu )T to the incoming wave amplitudes ain = (ainl , a
in
r , a

in
d , a

in
u )T as:

ain = P (k, κx, κy)a
out, (52)

where

P =



0 ei(kℓx−κxℓ) 0 0

ei(kℓx+κxℓ) 0 0 0

0 0 0 ei(kℓy−κyℓ)

0 0 ei(kℓy+κyℓ) 0


. (53)

The full system is then determined by the choice of vertex boundary conditions,
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which define the vertex scattering matrix S, performing the mapping:

aout = S(k)ain. (54)

Here, S can represent a general scattering matrix, not limited to single-vertex bound-

ary conditions. It can also be defined by a lead scattering matrix S(k) = σ(k), as

in Equation (34), to represent some unit cell substructure, which will be considered

in subsequent sections.

By substituting equation (54) into equation (53), we derive an eigenvalue condition

involving the quantum map U = PS:

[I−U (k, κx, κy)] a
in = 0. (55)

The dispersion curves are obtained from the secular equation:

det [I−U(k, κx, κy)] = 0. (56)

The remaining unknown wave amplitudes aout can then be found by applying equa-

tion (54) to the eigenvector ain from equation (55).

In the following section, we examine the simplest example of a square periodic quan-

tum graph with Kirchhoff-Neumann vertex boundary conditions and then analyze

the lattice spectrum in the presence of vertex resonances.

2.4.1 Worked Example - A Square Lattice

To begin, we consider the simplest graph configuration illustrated in Figure 11a).

In this case, the edge metric is set equal to the lattice spacing, ℓx = ℓy = ℓ, and

the vertex boundary conditions are chosen to be Kirchhoff-Neumann. The vertex

scattering matrix for this configuration is given by S = Σ, as defined in equation
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(17) for λ = 0:

Spq =
1

2
− δpq. (57)

Substituting S into equation (56), the spectrum of the quantum graph given as:

2 cos(kℓ) = cos(κxℓ) + cos(κyℓ). (58)

This result is well-known; in fact, the dispersive properties of any simply connected,

square-periodic quantum graph in dimension D, with Kirchhoff-Neumann boundary

conditions, can be expressed as:

cos(kℓ) =
1

D

D∑
j=1

cos(κjℓ), (59)

as shown in [232, 141]. Equation (58) is referred to as the ”free space solution” as in

the limit of small edge lengths, 0 < ℓ ≪ 1, it is straightforward to show, via series

expansion, that this equation reproduces the dispersive properties of free space:

κ2 ≈ κ2x + κ2y, (60)

where κ = k/
√

2 is a rescaled frequency term, with the factor
√

2 begin given by the

dimension of the problem. For further details, see [224].

Figure 11 presents various representations of the spectrum derived from equation

(58). Each representation offers unique insights into the system’s properties. The

resulting surface, or band, is shown in Figure 11b) and is periodic in κ-space over

the Brillouin Zone (BZ), defined as BZ ∈ [−π
ℓ
, π
ℓ
]2. The shape of the band depends

on the square-periodic graph topology and the chosen scattering matrix. In the

long-wavelength regime (small values of k), the surface approximates a cone around

the Γ-point, thereby reproducing the circularly dispersive nature of free space as

described by equation (60). As the wavelength decreases (i.e., as k increases), the

46



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

Figure 11: a) Illustrates the neighborhood of a vertex within a 2D square periodic

quantum graph with period ℓ. b) Shows the band diagram over a frequency domain

of k ∈ [0, π/ℓ]. c) Displays a contour plot within the Brillouin Zone, with the points

of symmetry Γ, X, M, and N labeled and connected by an orange line. d) Represents

the momentum solutions between the points of symmetry within the Brillouin Zone.

lattice topology becomes more apparent, resulting in the diamond-shaped contours

visible in the iso-frequency contour representation in Figure 11c).

Figure 11d) displays the momentum solutions between the high-symmetry points

Γ, X, N, and M within the Brillouin Zone. This method of representation predates

modern computational techniques and was traditionally used in solid-state physics

for its trivial solvability and its clarity in depicting both group and phase velocity

information along lines of symmetry. However, a key drawback of this historical

approach is the potential loss of information regarding non-trivial wave effects that

may occur between these lines of symmetry [233].

To construct the lattice solutions, consider a single frequency k = 1/ℓ, which corre-

sponds to a discrete ring of κ = (κx, κy)
T solutions on an iso-frequency contour. By

selecting a specific point on this contour, one can construct the full wave solutions
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Figure 12: Left, the Iso-frequency contour of Figure 11b) at k = 1/ℓ with wave vector

κ = (1
ℓ
, 1
ℓ
)T emphasised with the blue arrow. Right, the resulting real component of

the eigen function solution ψnm,e(ze; k, κx, κy)

using the corresponding eigenfunction from equation (55), as illustrated in Figure

12.

2.4.2 Wave Function Visualization - Plotting Solutions

As a brief interlude, it is worth mentioning how the solutions were plotted, as shown

in Figure 12. The wave functions on the graph were visualized by solving the eigen-

value equation in (55), where the dispersion relation κx(k, κy) is implicitly defined

by the determinant condition in equation (56). This approach reduces the problem

to two variables, k and κy. The associated eigenvector ain(k, κy) is computed either

analytically or numerically, depending on the complexity of the problem, and the

associated outgoing wave amplitudes aout(k, κy) are determined by equation (54).

This provides the complete set of wave amplitudes at the vertex. The eigenvector is

then evolved along the graph bonds and across all vertices using the general solution

of the graph differential operator, as described in equation (51), yielding the wave

amplitude at every point on the graph.

To plot this data, a matrix of spatial coordinates and the corresponding real part

48



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

of the wave function was constructed in Python. Each wave function value was

assigned a specific color, and a scatter plot was generated to represent the wave

function in space. This procedure was applied to all wave function plots throughout

this thesis.

2.4.3 Vertex Resonances - Engineering Band Gaps

This section acts as a key point of motivation for applying quantum graph theory

to metamaterial design. We introduce a non-trivial vertex scattering matrix using

the method from Section 2.3, drawing inspiration from Kuchment et al. [211]. The

introduction of a vertex decoration leads to a frequency-dependent scattering matrix

with resonances at specific frequencies, which are understood as the poles of an

inverse operator. These poles result in spectral or band gaps in the secular equation

(56), creating frequency ranges where wave propagation is forbidden. As discussed

in the introduction, the formation of band gaps shifts what would traditionally

be high-frequency effects into the low-frequency domain, enabling the existence of

(meta)materials with non-trivial wave properties.

To demonstrate this, consider the vertex decoration illustrated in Figure 13a). This

decoration acts as a sub-wavelength resonant element, consisting of a single edge of

length ℓres that scatters waves between the four edge directions {l, r, d, u}. In this

example, the scattering matrix that governs the interactions between all four edges

is a 4× 4 frequency-dependent matrix S = σres, with elements pq given by:

[σres(k, ℓres)]pq =
1

2 + 1
2i

tan(kℓres)
− δpq. (61)

This matrix is derived following the method in Section 2.3 with Equation (34).

The transmission coefficient is tres(k, ℓres) =
[
2 + 1

2i
tan(kℓres)

]−1
, which exhibits

zeros at kn = (2n+1)π
2ℓres

. Figure 13b) shows the transmission amplitude Tres(k, ℓres) =

|tres(k, ℓres)|2 and reflection amplitude Rres(k, ℓres) = |rres(k, ℓres)|2 for various values
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Figure 13: a) Shows a decorated vertex that forms the unit cell of the lattice. The

decoration is a single edge of length ℓres, representing a sub-wavelength resonator.

Illustrated is an incident wave of amplitude 1 that scatters into a green reflected wave

of amplitude rres and a blue transmitted wave of amplitude tres. b) Shows both

the transmission amplitude Tres(k, ℓres) = |tres(k, ℓres)|2 and reflection amplitude

Rres(k, ℓres) = |rres(k, ℓres)|2 for various resonator lengths.

of ℓres. It is evident that at these resonant frequencies, transmission is forbidden,

i.e., Tres(kn, ℓres) = 0. For ℓres = 0, the scattering coefficients reduce to those of the

Kirchhoff-Neumann case in equation (57).

The spectrum of the entire graph is then obtained by substituting this modified

scattering matrix S into the secular equation (56), resulting in:

2 cos(kℓ)− 1

2
sin(kℓ) tan(kℓres) = cos(κxℓ) + cos(κyℓ). (62)

The resulting band diagram for ℓres = ℓ is plotted in Figure 14. In Figure 14a),

we illustrate the neighborhood of a vertex in a 2D square periodic quantum graph,

including a vertex decoration of length ℓres = 1. Figures 14b) and 14c) display

contour plots of the first and second bands within the Brillouin Zone, with the

points of symmetry Γ, X, N, and M labeled and connected by an orange line.
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Figure 14: a) Illustrates the neighborhood of a vertex within a 2D square periodic

quantum graph with period ℓ, with a vertex decoration consisting of a single edge

of length ℓres = 1. b) Shows a contour plot of the first band within the Brillouin

Zone, highlighting the points of symmetry Γ, X, N, and M. c) Displays the contour

plot of the second band. d) Presents the band diagram over a frequency domain

of k ∈ [0, π/ℓ]. e) Shows the momentum solutions between the points of symmetry

within the Brillouin Zone, highlighting a band gap in blue.

The band diagram in Figure 14d) shows the domain k ∈ [0, π/ℓ], where a band gap

is evident. This band gap, highlighted in blue in Figure 14e), represents a frequency

range in which no real values of κ exist, indicating that wave transport through

the mesh is prohibited. The presence of this gap results directly from the vertex

resonance introduced in the system.

Additionally, the introduction of the resonance shifts the position of the diamond

contour. In the isotropic case (Figure 11b and 11c), the diamond contour occurs at

k = π/2ℓ. However, with the vertex resonance, it shifts to k = 3π/8 in Figure 14b

and 14c). This effect illustrates how high-frequency phenomena can be manipulated

into the low-frequency domain, providing a mechanism for designing metamaterials
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with tailored wave properties.

2.5 Chapter Summary

This chapter introduced the scattering formalism of quantum graph theory, where

vertices act as point scatterers defined by variable boundary conditions. Special cases

of vertex scattering, such as Kirchhoff-Neumann, Dirichlet, and δ-type boundary

conditions, were explored to illustrate their impact on wave propagation at the

vertices. As an example, the harmonics of a closed finite quantum graph were

determined through the eigenvectors of the quantum map, which takes into account

the graph’s topology, metric, and boundary conditions.

The formalism was then extended to the spectrum of an open quantum graph, where

scattering between leads was derived using an inverse operator related to a specific

matrix block of the quantum map. Particular attention was given to cases where

this matrix inverse leads to poles, resulting in instances where scattering between

leads is not well-defined. Building on this, the scattering formulation was further

extended to infinite periodic quantum graphs, revealing that the eigenvectors of the

quantum map correspond to plane waves propagating within the lattice.

It was shown that introducing frequency-dependent vertex boundary conditions,

constructed via finite open graphs attached at each lattice point, leads to resonant

conditions that prohibit wave transport within the mesh. These spectral or band

gaps arise as a direct consequence of the poles in the inverse operator defined by

a sub-graph’s quantum map, effectively driving high-frequency effects into the low-

frequency regime.

The key learning outcomes of this chapter include understanding how boundary

conditions and lattice geometry influence the band structure of quantum graphs,

how resonant vertex conditions can be engineered to create band gaps, and the crit-

ical role of scattering matrices in describing wave propagation. These concepts set
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the foundation for the next chapter, which focuses on Green’s functions on quan-

tum graphs, where the challenge of dealing with scattering at resonant frequencies

becomes particularly significant.
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3 Green’s Functions on Quantum Graphs

In this chapter, based on the published work by Lawrie et al. [230], we present a com-

prehensive three-step procedure for deriving a closed-form expression of the Green’s

function for both closed and open finite quantum graphs with general self-adjoint

matching conditions. Unlike in the previous chapter, where the interpretation of

the field ψ was left open for various wave fields, we explicitly consider the operator

on the graph to be the Schrödinger operator, with k2 = E representing the energy.

Whilst of course, this formalism is applicable to other wave fields it is more natural

to consider the graph harmonics in relation to the energy spectrum.

We begin by generalizing and simplifying the approach developed by Barra and

Gaspard [229], before discussing the validity and application of the resulting explicit

expressions. For compact graphs, we show that this expression is equivalent to the

spectral decomposition, forming a sum over poles at the discrete energy eigenvalues,

with residues containing the projector kernel onto the corresponding eigenstates.

Our derivation employs a scattering approach, where each vertex or subgraph is

treated as a scattering site described by a scattering matrix. This matrix is formu-

lated in a simple closed form, allowing for the subsequent derivation of the Green’s

function. We then address the fact that these scattering matrices involve inverse op-

erators that become singular at specific wave numbers associated with bound states

in the continuum. We explore the regularization of these singularities, related to

bound states or perfect scars, and express the Green’s functions or scattering matri-

ces as a sum of regular and singular components, with the singular part encapsulating

the projection kernel onto the perfect scar.

In the latter part of the chapter, we extend our analysis to periodic quantum graphs,

introducing new results on the Green’s function for infinite periodic systems.
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3.1 Motivation

For a comprehensive introduction to solving partial differential equations, including

foundational concepts and techniques not covered in detail in this chapter, readers

are referred to the work of Renardy and Rogers [234]. For now, we motivate the

importance of the Green function in the context of forcing. Throughout the previous

chapter, we have primarily focused on solving the homogeneous differential equation,

(
E − Ĥ

)
ψ(z) = 0. (63)

The eigenvector solutions ψ(z) describe the stationary states of the system, which,

in free space, can generally be expressed as a superposition of counter-propagating

plane waves. This formulation has allowed us to understand the properties of quan-

tum graphs through band diagrams, using plane wave representations. However,

to apply the quantum graph model to physical systems, we must consider the sys-

tem’s response to external forces. This is modeled by inhomogeneous terms in the

governing equation:

(E − Ĥ)ϕ(z) = f(z). (64)

Here, ϕ(z) represents the system’s response to some external forcing f(z). In general,

finding a solution for ϕ(z) can be challenging, and thus we rely on well-established

techniques in differential calculus, particularly Green’s function.

Green’s function is a fundamental tool in mathematical physics for solving linear

differential equations, especially in cases involving point sources or external forcing

functions [235]. The Green’s function can be interpreted as a special solution to

equation (64), where the forcing function is a Dirac delta function, f(z) = δ(z− z′).

The delta function is defined to be zero everywhere except at z = z′, while having a
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unit integral:

1 =

∫ ∞
−∞

δ(z − z′) dz, (65)

The Green’s function, therefore, satisfies the inhomogeneous differential equation:

(E − Ĥ)G(z, z′) = δ(z − z′). (66)

This reduces to the homogeneous case in (63) everywhere except at the point of

excitation, z = z′, allowing the Green function to be written as a superposition of

counter propegating plane waves. The solution ϕ(z) to equation (64) can then be

expressed as an integral over the source function f(z′) using the Green function:

ϕ(z) =

∫
G(z, z′)f(z′) dz′. (67)

To see why this holds, we apply the operator (E− Ĥ) to both sides of the equation:

(E − Ĥ)ϕ(z) = (E − Ĥ)

∫
G(z, z′)f(z′) dz′. (68)

Since the operator (E − Ĥ) acts only on z, we can move it inside the integral,

(E − Ĥ)ϕ(z) =

∫
(E − Ĥ)G(z, z′)f(z′) dz′, (69)

which from equation (66) naturally simplifies to,

(E − Ĥ)ϕ(z) =

∫
δ(z − z′)f(z′) dz′. (70)

Due to the properties of the delta function as defined in equation (65), the integral
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only gives non-zero values when z = z′, thus recovering the original inhomogeneous

differential equation (64). This powerful method demonstrates the importance of

Green’s functions in solving differential equations with arbitrary forcing terms.

In 2001, Barra and Gaspard [229] used the scattering approach to express the Green’s

function of a quantum graph as a sum over trajectories in the spirit of semiclassical

quantum mechanics. At the time, it was not yet clear within the physics community

how scattering matrices are connected to matching conditions related to a well-

defined self-adjoint Schrödinger operator on the metric graph. We generalize and

simplify the approach [229] by using a simple three step procedure that leads to the

Green’s function for general self-adjoint matching conditions for closed and open

graphs with a finite number of edges. This directly provides a number of closed

form expressions that, to the best of our knowledge, have not been given before

(though implied in [229], see also [231], where closed form expressions are given for

a few simple examples). These closed forms are of great practical advantage when

dealing with explicit graphs as they sum all relevant trajectories. Moreover, they

are the starting point of an analysis of the validity and convergence of the Green’s

function when expressed as a sum over trajectories. We thus hope to provide a more

straightforward way of computing Green’s functions on graphs. This could lead to

helpful insight into the growing literature on applications for Green’s functions on

graphs that often require relatively cumbersome sums over trajectories, see [236,

237, 238] and references therein.

We also discuss in some detail cases where the sum over trajectories fails to converge

while closed form expressions may be regularized. Indeed, when evaluating the scat-

tering matrix on open graphs, such as those used in the construction of the Green’s

function, one must take great care at frequencies corresponding to bound states in

the continuum. These states vanish necessarily on the scattering leads and poten-

tially lead to singular behaviour when considering the Green’s function. Scarring of
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eigenfunctions is a well-known semiclassical phenomenon in more general systems

[239]. It has been known since the work of Schanz and Kottos [240] that quantum

graphs allow for a much stronger scarring mechanism than in more general wave sys-

tems. These so-called perfect scars are non-vanishing only on a finite subset of the

edges and vanish exactly in the remainder of the graph. They are easily constructed,

for example, in certain quantum graphs with standard (Neumann-Kirchhoff) vertex

matching conditions. For open graphs, bound states in the continuum are examples

of perfect scars. Perfect scars lead to singularities in some inverted matrices that

are used in the construction of scattering matrices and Green’s function and this

implies non-convergence of the related sums over trajectories at the corresponding

wave number. We will explain that both the scattering matrix and the Green’s

function (outside the domain of the perfect scar) stay regular at these frequencies

and give suitable regularised equations. These regularized expressions may be of

practical importance even if there are no perfect scars on the graph. This is due to

the far more generic phenomenon of almost perfect scars which was also described

in [240]. These are states where the conditions for a perfect scar on a subgraph

are fulfilled up to small terms leading to states which are only slightly coupled to

outgoing channels. In the scattering matrix, almost perfect scars lead to what is

known as topological resonances [241, 242]. In this context, a simplified variant of

the regularization scheme we describe here has been used to derive the tails in the

distribution of resonance widths [241].

This chapter is structured as follows: In Section. 3.2.1, a three step procedure for

generating a closed form expression for the Green’s function is introduced via the

scattering approach formulated in Chapter 2. This formalism is then extended to

include open quantum graph in Section 3.2.2. It is assumed that the graph scattering

matrix is non-singular and well defined. In Section 3.3.1, a formal definition is given

for a scar state in terms of the quantum map. It is shown that the block component

of the quantum map that refers to the compact portion of the graph is non-invertible.
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It is shown through a regularization of the scattering approach, that the full solution

is indeed regular as it is evaluated within a reduced space. Further analysis of the

scattering states for eigen energies approaching a scar state are investigated D. In

Section. 3.4, we generate the Green’s function in the presence of scars for the open

lasso. This formalism is then extended to the infinite periodic quantum graph in

Section 3.5. We finally conclude this work in section 3.6 with a brief summary this

chapter.

3.2 Green’s Functions on Quantum Graphs

The Green’s function may be considered as the integral kernel of the resolvent op-

erator (E − Ĥ)−1 which has singularities at the spectrum of Ĥ. It has poles at the

discrete spectrum and a branch cut along the continuous spectrum.

For a given (complex) energy E = k2 and two points z = (e, ze) and z′ = (e′, z′e′)

on a quantum graph, the Green’s function G(z, z′, E) satisfies the inhomogeneous

equation (
E − Ĥ

)
G(z, z′, E) = δ(z, z′) ≡


δ(ze − z′e′) if e = e′

0 if e ̸= e′
, (71)

where Ĥ acts on z. The solution of this differential equation (71) with given self-

adjoint matching conditions at the vertices may not be unique or not exist at all. The

latter happens when the energy E belongs to the discrete real eigenvalue spectrum.

For complex energies with a non-vanishing imaginary part, one can always find a

unique square integrable solution and this then coincides with the integral kernel

of the resolvent operator. The relation to the resolvent operator gives rise to the

symmetry

G(z, z′;E) = G(z′, z;E∗)∗ . (72)

We focus on the Green’s function G+(z, z′, E) ≡ G(z, z′, E+) with positive real and

imaginary parts: E+ = k2+ = Er + iEi with 0 < Er ∈ R and 0 < Ei ∈ R. For
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real energies that are not in the (discrete or continuous) eigenvalue spectrum, we

allow the imaginary part to vanish, that is, Ei = 0, as the Green’s function is well

defined in that case. Solutions at real energies in the continuous spectrum require

the limit Ei → 0+ which is always implied. If Er belongs to the discrete eigenvalue

spectrum, the Green’s function has a pole G(z, z′;E) ∼ P (z,z′)
Ei

(with a non-vanishing

function P (z, z′)) preventing the existence of the limit Ei → 0+. For brevity we

write E = E+ and k = k+ during the following derivations.

To construct the Green’s function, we exploit the fact that for all z ̸= z′ the solutions

to equation (71) are solutions to the homogeneous wave equation in (5). This allows

one to express the solutions again as a linear superposition of counter propagating

plane waves as express in (7). The set of unknown coefficients are then chosen to

satisfy the imposed vertex boundary conditions as well as the appropriate boundary

conditions at the delta function excitation z = z′. This procedure is detailed via a

scattering approach in the following.

3.2.1 Green’s Function of a Closed Finite Quantum Graph

The Green’s function on a graph can be constructed in a three step procedure as

illustrated in Figure 15.

Figure 15: This three step procedure is described in detail below.

Step 1. Define the graph and the coordinate of the delta function excitation z′ =

(e′, z′e′). The delta function acts as a source which we model by creating

an auxiliary open scattering graph by “cutting out” the excited edge e′ and

replacing it with two auxiliary leads.
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Step 2. Treat the auxiliary graph as a scattering site and construct a lead scattering

matrix for energy E+. This allows one to determine the two outgoing lead

wave amplitudes in terms of the two incoming wave amplitudes which are free

parameters.

Step 3. Take the scattering solution on the auxiliary leads at distances z′e′ and

ℓe′ − z′e′ from the vertices and ”glue” these solutions together such that the

differential equation (71) is satisfied yielding a Dirac δ-function at the position

z′. This determines all free parameters and results in the Green’s function

G(z, z′;E+).

Let us now go through these steps in detail:

Step 1. Consider a compact quantum graph G(V , E , L) as defined in section 2 which

we wish to excite with a delta function at location z′ = (e′, z′e′) ∈ G. Let us denote

the vertex at ze′ = 0 as the ’tail’ vertex vT and the vertex at ze′ = le′ as the

’head’ vertex vH . We begin by cutting the excited edge e′ and replacing it by

two leads attached at vT and vH , respectively, thus creating the auxiliary open

scattering graph Gaux,e′ = Gaux,e′(V , Eaux,e′ , Laux,e′), where Eaux,e′ = Laux,e′ ∪ (B \ {e′})

and Laux,e′ = L \ {ℓe′}. The coordinates on the leads are set to be zT = zH = 0 at

the vertices vT and vH , respectively. On each lead, the solutions are defined as

ψT (zT ) = ainT e
−ik+z

T + aoutT eik+z
T ,

ψH(zH) = ainHe
−ik+z

H + aoutH eik+z
H .

(73)

Step 2. Next, we construct the scattering states on the auxiliary graph. The quan-

tum map of the auxiliary graph can then be written in the form equation (31) and

only differs from the quantum map (23) of G by excluding the rows corresponding to

the excited edge e′. The wave amplitudes on the two leads are mapped from incom-

ing to outgoing wave amplitudes by the graph scattering matrix σ(k+) as defined in
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(33) with matrix elements

aoutH

aoutT

 =

σ(k+)HH σ(k+)HT

σ(k+)TH σ(k+)TT


ainH
ainT

 . (74)

The incoming wave amplitudes ainH and ainT are at this stage free parameters.

Step 3. We project the set of scattering solutions from the auxiliary graph onto the

original graph by cutting the leads H and T at zT = z′e′ and zH = ℓe′ − z′e′ , then

”gluing” the two ends together forming a single bond. The solution on e′ is then

ψe′(ze′) =


ainTe

−ik+ze′ +
(
σTHa

in
H + σTTa

in
T

)
eik+ze′ for ze′ < z′e′ ;

ainHe
−ik+(ℓe′−ze′ ) +

(
σHHa

in
H + σHTa

in
T

)
eik+(ℓe′−ze′ ) for ze′ > z′e′ .

(75)

One determines ainH and ainT by fulfilling equation (71) at ze′ = z′e′ ; this leads to the

following conditions:

i. continuity at ze′ = z′e′

lim
α→0+

[ψe′(z
′
e′ + α)− ψe′(z

′
e′ − α)] = 0; (76)

ii. a discontinuity of the derivatives of the form

lim
α→0+

[
dψe′ (z

′
e′ + α)

dze′
− dψe′ (z

′
e′ − α)

dze′

]
= 1 . (77)

These two conditions result in a non-homogeneous system of linear equations for the

62



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

two incoming scattering amplitudes. The unique solution of this system is

ainT =
eik+ℓe′

(
e−ik+(ℓe′−z′e′ ) + σHHe

ik+(ℓe′−z′e′ ) − σTHe
ik+z′

e′

)
2ik+ [(1− eik+ℓe′σHT)(1− eik+ℓe′σTH)− e2ik+ℓe′σHHσTT)]

=
1

2ik+

[
eik+z′

e′

[
I

I−U(k+)

]
e′−e
′
−

+ eik+(ℓe′−z′e′ )
[

I
I−U(k+)

]
e′−e
′
+

]
(78a)

ainH =
eik+ℓe′

(
e−ik+z′

e′ + σTTe
ik+z′

e′ − σHTe
ik+(ℓe′−z′e′ )

)
2ik+ [(1− eik+ℓe′σHT)(1− eik+ℓe′σTH)− e2ik+ℓe′σHHσTT)]

=
1

2ik+

[
eik+(ℓe′−z′e′ )

[
I

I−U(k+)

]
e′+e′+

+ eik+z′
e′

[
I

I−U(k+)

]
e′+e′−

]
. (78b)

The derivation of the expressions involving (I−U(k+))−1, the resolvent matrix of the

quantum map, can be found in Appendix A. Inserting (78) into (75) and extending

the solution to the entire graph using (35), the Green’s function of the compact

graph G can finally be written in the form

G(z, z′, E+) =
1

2k+i

[
δee′e

ik+|ze−z′e′ | + eik+(ze−z′e′−ℓe+ℓe′ )
[

U(k+)
I−U(k+)

]
e+e′+

+e−ik+(ze−z′e′ )
[

U(k+)
I−U(k+)

]
e−e′−

+eik+(ze+z′
e′−ℓe)

[
U(k+)

I−U(k+)

]
e+e′−

+ e−ik+(ze+z′
e′−ℓe′ )

[
U(k+)

I−U(k+)

]
e−e′+

]
. (79)

Here of course δij represents the Kronecker delta, where δij = 0 for i ̸= j and δij = 1

for i = j. This is our main result in this section. We give here for the first time a

closed form expression of the Green’s function on a graph following the recipe from

Barras and Gaspard [229].

By formally expanding U
I−U =

∑∞
n=1 U

n, one may express the Green’s function as a

sum over paths p on the metric graph starting at z′ and ending at z, that is,

G(z, z′, E+) =
1

2k+i

∑
p

Ap(k+)eiLpk+ . (80)
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Here, Lp is the metric length of the path and the amplitude Ap is the product of

all scattering amplitudes along the trajectory. If e = e′, the direct path between

ze′ and z′e′ has length Lp = |ze′ − z′e′| and Ap = 1. Equation (80) is the starting

point for the investigations in [229], which, however, makes it necessary to do an

explicit summation over all possible paths - in general a cumbersome task. Note

also that this expansion converges only if the imaginary part of k+ is positive and

these expressions thus require a limit if used for real wave numbers. This is all well

known for similar expansions into sums over paths in trace formulae and scattering

systems, we refer to the textbook [172] and references therein.

Finally, let us briefly discuss the pole structure of the Green’s function. For a

compact graph, the eigenvalue spectrum is a discrete countable set {E0, E1, . . . }.

Let us assume that there are no degeneracies and all eigenvalues are positive, that

is, En > 0. The spectral decomposition of the Schrödinger operator Ĥ allows us to

write the resolvent operator as

(E+ − Ĥ)−1 =
∞∑
n=0

P n

E+ − En

(81)

where P n is the projection operator onto the subspace spanned by the n-th eigen-

vector. For the Green’s function this implies

G(z, z′, E+) =
∞∑
n=0

Pn(z, z′)

E+ − En

(82)

where Pn(z, z′) is the integral kernel of P n. Let us now show that (79) and (82)

are indeed equivalent. We start by considering the limit E+ → En for some given

eigenvalue En = k2n and by showing that the singular part of the Green’s function

(79) in this limit is given by Pn(z,z′)
E+−En

. Let us extract first the singular part of the

matrix

U(k+)

I−U(k+)
∼ P

−i(k+ − kn)C
. (83)
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Here, P = binbin† is the projection matrix with matrix elements on the correspond-

ing unit eigenvector U(kn)bin = bin and

C = bin† [knL + sin(knL)Π]bin > 0 (84)

is a positive constant and L is a 2NB dimensional diagonal matrices with diagonal

entries ℓe. We refer to Appendix B for a detailed derivation of (83) and (84). With

2k+(k+ − kn) ∼ E+ − En one then finds

G(z, z′, E+) ∼

(
aine−e

−iknze + aine+e
ikn(ze−ℓe)

)∗(
aine′−

e−iknze′ + aine′+
eikn(ze′−ℓe′ )

)
C(E+ − En)

=
Pn(z, z′)

E+ − En

, (85)

where the last equality requires that the constant C gives the correct normalization of

the projection kernel Pn(z, z′). This is equivalent to
∑

e∈E
∫ ℓe
0
Pn((e, ze), (e, ze))dze =

1 which is easily checked by direct calculation. Repeating this calculation for E+

near all other energy eigenvalues shows that expressions (79) and (82) have the same

poles and the same residues. Both expressions can be continued analytically to the

lower half plane where the imaginary part of the energy is negative. They are thus

equivalent up to an entire function F (E), (i.e., it is analytic in the whole complex

plane). As both (79) and (82) vanish in the limit Ei → ±∞, the same must be true

for their difference F (E). The entire function that vanishes in these limits for all Er

is F (E) = 0.

3.2.2 Green’s Function of an Open Finite Quantum Graph

The construction of the Green’s function on an open scattering graph follows anal-

ogously. In this case, our assumption that the energy has a positive imaginary part

together with the requirement of square integrability leads to outgoing boundary

conditions along the leads. That is, the amplitudes of incoming plane waves need to
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vanish, as these would lead to exponentially increasing contributions. These condi-

tions are straight forward to implement and we can go through the same construction

as for the compact graph. A short-cut is obtained by first replacing each lead e ∈ L

by an edge of finite length with a dangling vertex of degree one and choosing some

self-adjoint boundary conditions at the dangling vertices. This results in an aux-

iliary compact quantum graph as described in the previous section. The Green’s

function of the auxiliary quantum graph is then given by (79). Clearly, the solution

depends on the lengths that have been introduced for the leads as parameters. Next,

one sends the introduced edge lengths to infinity. Because the imaginary part of the

wave number is positive Im k+ > 0 the corresponding phase factors then decay as

eik+ℓe → 0 as ℓe → ∞. In this limit any dependence on the arbitrary choice of

boundary conditions at the dangling vertices disappears and what remains is the

Green’s function of the open graph. We refer to Appendix C for the details of the
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calculation which results in

G(z, z′, E+) =
1

2k+i
×

δe,e′ e
ik+|ze−z′e′ | + eik+(ze+z′

e′ )
[
U(k+)LL + U(k+)LB

I
I−U(k+)BB

U(k+)BL

]
ee′

if e, e′ ∈ L,

eik+(ze−z′e′+ℓe′ )
[
U(k+)LB

I
I−U(k+)BB

]
ee′+

+ eik+(ze+z′
e′ )

[
U(k+)LB

I
I−U(k+)BB

]
ee′−

if e ∈ L and e′ ∈ B,

e−ik+(ze−z′e′ )
[

I
I−U(k+)BB

U(k+)BL

]
e−e′

+ eik+(ze+z′
e′−ℓe)

[
I

I−U(k+)BB
U(k+)BL

]
e+e′

if e ∈ B and e′ ∈ L,

δee′ e
ik+|ze−z′e′ | + eik+(ze−z′e′−ℓe+ℓe′ )

[
U(k+)BB

I−U(k+)BB

]
e+e′+

+ e−ik+(ze−z′e′ )
[

U(k+)BB
I−U(k+)BB

]
e−e′−

+ eik+(ze+z′
e′−ℓe)

[
U(k+)BB

I−U(k+)BB

]
e+e′−

+ e−ik+(ze+z′
e′−ℓe′ )

[
U(k+)BB

I−U(k+)BB

]
e−e′+

if e, e′ ∈ B.

(86)

If the energy spectrum of the graph is continuous these expressions are regular and

the limit Im k+ → 0+ can be performed by just choosing k+ → k ∈ R. A similar

expression for energies E2
− = k2− with negative imaginary parts may be obtained in

the same way. More directly, it can be obtained from the symmetry (72). Note that

it will have a different limit as k− approaches the real axis.

We note, the form of the Green function in equation (86) under the condition that

we consider both the measured and excited edge on the bond, e, e′ ∈ B, takes a

similar form to the Green function of a cavity in [243] for equation (4). Indeed,

future work would be to represent the formulism above in a similar manner to that

found in [243].
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The energy spectrum of an open graph may contain a discrete set {E0, E1, . . . } of

bound states in the continuum. These have square integrable eigenfunctions and

they thus vanish on the leads. The Green’s function for E close to any of these

energy eigenvalues will have poles just as in the compact case that we discussed in

the previous section. And the calculation there applies here as well. If either z or z′

is chosen on a lead the expression for the Green’s function should remain regular as

E → En = k2n which is not obvious from the given explicit expressions above which

contain the inverse (I− U(k+)BB)−1. We will show regularity explicitly if both z and

z′ are on the leads. In that case the expression above reduces to

G(z, z′, E+) =
1

2k+i

[
δe,e′ e

ik+|ze−z′e′ | + eik+(ze+z′
e′ )σ(k+)e,e′

]
. (87)

We will show in the following section that the scattering matrix is indeed analytic

as k → kn for at a bound state. Regularity in the case that one point is on a lead

and the other on a bond can be shown as well using essentially the same tools but

we will leave this to the reader.
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3.3 Regularisation schemes for perfect scars

3.3.1 Bound states in the continuum

The eigenstates of a quantum graph are generally supported on all edges of a graph

as long as the graph is fully connected. However, it is not too difficult to construct

graphs which have eigenstates that are non-zero exclusively on a compact subgraph

S, but vanish exactly on the rest R of the edges. We call such an eigenstate a

perfect scar of the graph. These states exist, for example, on quantum graphs with

Kirchhoff-Neumann conditions where the subgraph S is a cycle on which all edge

lengths are rationally dependent. In that case, the cycle edge lengths are an integer

multiple of a minimal length ℓe = neℓ0. At wave number k̃ = 2π/ℓ0 (or any integer

multiple of it), one may then set

ψe(ze) =


± sin(k̃ze) if e belongs to the cycle of S;

0 if e belongs to R.
(88)

Here the signs ± can be chosen to satisfy the flux conservation condition.

Since the union of S and R make up the total graph G, it is natural to express the

quantum map in the block-form

U(k) =

U(k)RR U(k)RS

U(k)SR U(k)SS

 (89)

with appropriate permutations applied. In general there is perfect scar on the sub-

graph S at energy E = k2 > 0, if the block U(k)SS has an eigenvector ain
S with unit

eigenvalue U(k)SSa
in
S = ain

S . The unitarity of the full quantum map then implies

that U(k)RSa
in
S = 0 vanishes. One may extend ain

S to an eigenvector of the full map

by setting ain
R = 0 resulting in the vanishing of wave amplitudes on edges that do

not belong to S.
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For open graphs, a perfect scar at a wavenumber k0 > 0 is a bound state in the

continuum and this situation is again straight forward to construct, such as by

using the cycle example above. In this case, one may take R to contain all leads

and S to be a sub-graph containing a sub-set of the finite bonds.

Throughout the previous sections, we assumed that the matrix I−U(k)BB is invert-

ible, which is generically the case as U(k)BB is a block of a unitary matrix. However,

a perfect scar exists, if and only if U(k)BB has an eigenvalue one at the wave number

k = k0. Even in the case of “almost” perfect scars (with small nonzero entries for

ain
R), matrix inversion may cause large numerical errors when inverting I−U(k)BB.

To deal with this issue, we describe a regularisation scheme of the scattering matrix

in the following section. This is important when dealing with open quantum graphs

and when constructing Green’s function both in the compact and open case. The

approach may also be used to find the regular part of the Green’s function in com-

pact quantum graphs when the energy is in the eigenvalue spectrum. (By regular

part, we refer to the Green’s function where the contribution from the pole at the

energy has been removed). We will focus on the regularization of the scattering

matrix, as the other applications can all be derived from there when needed.

3.3.2 Regularization of the scattering approach at a bound state

We will show in this section that scattering solutions of the form (33) are well defined

at k = k0 even in the presence of a bound state at that wave number. We show

in Appendix D that the scattering matrix can be regularised across a k interval

containing k0.

Consider a non-degenerate bound state at wave number k = k0 with wave amplitudes

bin
B such that,

U(k0)BB b
in
B = bin

B . (90)
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As discussed in the previous section, the unitarity of the quantum map U(k) implies

U(k0)LBb
in
B = 0 and bin

B
†
U(k0)BL = 0, (91)

that is, incoming waves ain
L in the leads can not couple into the bound state bin

B

and the bound state can not couple back out. Let us assume for simplicity that

the perfect scar described by bin
B is not degenerate and introduce the idempotent,

Hermitian 2NB × 2NB projection matrix

P ≡ bin
Bb

in
B
†

(92)

and its orthogonal complement

Q = I−P . (93)

The methods below can be generalised to situations where more than one perfect scar

exists at the same wave number k0, such as, if all edge lengths are rationally related

in a large graph with Neumann-Kirchhoff matching conditions. Writing equation

(35) in the form

(I−U(k)BB) ain
B = U(k)BLa

in
L , (94)

we find that the solution ain
B is not unique at k = k0 as both

P (I−U(k0)BB) = 0 and PU(k0)BL = 0, (95)

which follows directly from (91). This implies, that for any solution ain
B of equation

(94), ain
B + αbin

B , α ∈ C, is also a solution. However, a unique solution ãin
B exists for

the reduced system of equations

YQ(k0) ã
in
B = U(k0)BL a

in
L with YQ(k0) = Q (I−U(k0)BB)Q. (96)
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As YQ(k0)b
in
B = 0, its standard inverse does not exist. One may perform a pseudo

inverse in the subspace orthogonal to bin
B . Let us define (with mild abuse of notation)

YQ(k0)
−1 = Q

I
I−QU(k0)Q

Q (97)

as the unique 2NB × 2NB matrix with by YQ(k0)
−1YQ(k0) = Q = YQ(k0)YQ(k0)

−1

and YQ(k0)
−1P = 0 = PYQ(k0)

−1. As U(k0)LBP = 0, one obtains a well-defined

scattering solution for equation (33), that is,

a(k)outL = U(k0)LB ã
in
B . (98)

We may thus write the scattering matrix (34) in the form

σ(k0) = U(k0)LL + U(k0)LBYQ(k0)
−1U(k0)BL . (99)

For an in-depth discussion of the regularity of the scattering matrix as k → k0, see

Appendix D.
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3.4 Worked examples - Open Lasso

Figure 16: An open lasso graph constructed from two edges e1 and e2 where e1 is

a lead and e2 is an bond. Both edges are connected to the same vertex v1 where

edge e2 has both ends connected forming a loop wherein bound states can exist in

the continuum. The real component of the Green function has been plotted for an

excitation on the edge as in a), and the lead as in b).

Consider the open lasso quantum graph illustrated in figure 16. The coordinate

z1 ≥ 0 runs along the lead with z1 = 0 at the vertex v1 and the coordinate z2 ∈ [0, ℓ2]

runs along the loop such that z2 = 0 and z2 = ℓ2 are the endpoints at the vertex

v1. At the vertex, we enforce Neumann boundary conditions, as expressed in (17)

for λ(v) = 0, leading to the quantum map written in block form as

U(k) =


−1

3
2
3

2
3

2eikℓ2
3

2eikℓ2
3

− eikℓ2
3

2eikℓ2
3

− eikℓ2
3

2eikℓ2
3

 ≡
 ULL ULB

U(k)BL U(k)BB

 . (100)

In the construction of the scattering matrix and the Green’s function, one needs to

invert the matrix I−U(k)BB which yields

I
I−U(k)BB

=


3−2eikℓ2

(eikℓ2−1)(eikℓ2−3)
− eikℓ2

(eikℓ2−1)(eikℓ2−3)

− eikℓ2

(eikℓ2−1)(eikℓ2−3)
3−2eikℓ2

(eikℓ2−1)(eikℓ2−3)

 (101)
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and is well defined as long as eikℓ2 ̸= 1, that is, if k ̸= kn = 2πn/ℓ2 for n = 1, 2, . . ..

The reason for this is the existence of perfect scars on the loop which here lead

to bound states in the continuum of scattering states. These bound state wave

functions are given as

ψ1(z1) =0, (102a)

ψ2(z2) =

√
2

ℓ2
sin(knz2) . (102b)

The continuum of scattering states exists for all wave numbers k > 0 and is given

by

ψe1(z1) =e−ikz1 + σ(k)eikz1 , (103a)

ψe2(z2) =ρ(k)2+1e
ik(z2−ℓ2) + ρ(k)2−1e

−ikz2 . (103b)

where

ρ(k) =
I

I−U(k)BB
U(k)BL =

 2eikℓ2

3−eikℓ2

2eikℓ2

3−eikℓ2

 (104)

and

σ(k) = ULL + ULBρ(k) =
3eikℓ2 − 1

3− eikℓ2
. (105)

While the matrix I
I−U(k)BB

is used to find ρ(k) and σ(k) in the scattering approach

the poles at k = kn have disappeared in the final results. This is a unique conse-

quence of chosen example where the bound states and scattering states are trivially

orthogonal due to their symmetry under z2 7→ ℓ2 − z2 (which can be viewed as a

mirror symmetry of the lasso). The bound states are odd under this symmetry as

ψe1(z1) = 0 and ψ2(z2) = −ψe2(ℓ2 − z2) at wave numbers kn. The scattering states

are even under this symmetry for all wave numbers k > 0 as

ψ2(z2) =
4eikℓ2/2

3− eikℓ2
cos

(
k

2z2 − ℓ2
2

)
= ψ2(ℓ2 − z2). (106)

74



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

While in this example it is trivial to show analytically that the poles in equation (101)

disappear, we may consider more complicated examples, where the matrix I
I−U(k)BB

has to be solved numerically, leading to a large error in the scars of the lasso k = kn.

For completeness, let us evaluate the same problem at a pole corresponding to a

scar of the lasso and show that the formulism in Section 3.3 for equation (99) gives

the equivalent reflection coefficient in equation (105).

To begin, we determine the bond quantum map at resonance k = kn:

U(kn)BB =

 2
3
−1

3

−1
3

2
3

 , (107)

and determine it corresponding eigen vector:

bin
B =

 1√
2

− 1√
2

 . (108)

From here, it is trivial to determine the idempotent projection matrix from equation

(92) as well as its orthogonal complement from equation (93),

P =
1

2

 1 −1

−1 1

 and Q =
1

2

1 1

1 1

 . (109)

From here Q can be substituted into equation (97) to give a well-defined inverse in

the presence of poles. Explicitly:

YQ(kn)−1 =
3

4

1 1

1 1

 , (110)

which when substituted into equation (99) gives unit reflection σ(kn) = 1, which

agrees directly with the result in equation (105).
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Having fully defined the lead scattering matrix in the presence of scars, in both

presented methodologies, we give the full Green function for this example below,

where ze (or z′e′) are either on the lead (e = e1) or on the loop (e = e2). Following

on from the last line in (86), one obtains, using the expressions in (100) and (101),

Glasso(z, z
′, E+) =

1

2k+i
×

eik+|ze1−z
′
e1
| + eik+(ze1+z′e1 ) 3e

ik+ℓ2−1
3−eik+ℓ2

if e = e1 and e′ = e1,

2

3−eik+ℓ2
eik+ze1

(
eik+z′e2 + e−ik+(z′e2−ℓ2)

)
if e = e1 and e′ = e2,

2

3−eik+ℓ2
eik+z′e1

(
eik+ze2 + e−ik+(ze2−ℓ2)

)
if e = e2 and e′ = e1,

eik+|ze2−z
′
e2
| + α

[
(2− eik+ℓ2) cos(k+(ze2 − z′e2))

− cos(k+(ze2 + z′e2 − ℓ2))
]

if e = e2 and e′ = e2.

(111)

Where α = 2eik+ℓ2

(eik+ℓ2−1)(eik+ℓ2−3) . The real component of the Green’s function is plotted

for each case in Figure 16 a) and b).

Having now derived a closed form expression for the Green’s function of both a

closed and open finite quantum graph, we now extend this formalism to consider

periodic quantum graphs.
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3.5 Green’s Function of a Periodic Quantum Graph

As early as the 1880s, the properties of periodic systems were explored in the works

of Lord Rayleigh and Lord Kelvin. Rayleigh’s analysis of random walks and small

vibrations, along with Kelvin’s observations on wave propagation in diatomic lat-

tices, laid the foundation for understanding the properties of periodic media. While

Green’s functions were not formalized in their work, their insights laid the ground-

work for the mathematical tools that would later emerge. It was not until the mid-

20th century that lattice Green’s functions became integral to the study of lattice

vibrations (see [244, 245] and the references therein). In these works, Maradudin et

al. made significant contributions by using Green’s functions to analyze the effects

of point defects on lattice vibrations. These investigations revealed localized and

resonance modes that critically influence material properties [245].

A critical step in defining Green’s functions on a lattice involves the use of lattice

sums, which represent summations over the periodic structure of the lattice. These

sums encode the geometric and topological information of the lattice, playing a piv-

otal role in calculating Green’s functions for periodic systems. Watson’s integrals,

developed in a broader context of mathematical physics, were later adapted to lat-

tice problems by Glasser and Zucker [246], who provided exact expressions for these

lattice sums. Their work offered a framework for evaluating properties of square

lattices, enabling precise calculations of lattice transport properties. While these

summations facilitate the determination of a lattice’s Green’s function, they often

involve integrals that become challenging to solve, particularly in higher-dimensional

problems or for complex lattice geometries. To address these challenges, various

methodologies have been developed to enhance computational efficiency. Notably,

Martinsson et al. [247] derived asymptotic expansions for Green’s functions in lat-

tices. Additional work by Linton employed techniques such as Ewald’s method to

transform slowly convergent series into computationally viable forms, thereby en-
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abling the practical application of Green’s functions in complex periodic systems

[248].

These methodologies for determining the Green’s function of a lattice have been

applied to a wide range of lattice configurations and operators. Examples include

applications in electromagnetics [249], waveguide problems, diffraction by periodic

structures, and the analysis of phononic band gaps [250, 251].

The key methodology relevant to this work constructs the Green’s function of the lat-

tice from the periodic Green’s function via a Fourier transform [252]. This approach

is widely used in the literature but has been typically applied to lattice vibrations

governed by a discrete Laplacian operator at each unit cell, akin to a spring-mass

model. Unlike the existing literature, the quantum graph formalism developed here

considers the full Laplacian operator acting on the finite bond domain that couples

lattice sites. This approach allows for excitations on the lattice bonds themselves,

providing a richer and more versatile representation of wave dynamics in lattice

systems. This formalism offers unique insights compared to traditional methods by

capturing additional dynamic behaviors intrinsic to the bonds. To the best of our

knowledge this work presents the Green’s function of a periodic quantum graph for

the first time.

This method applies to any lattice topology, but for this work, we consider the

square periodic graph with edge metric equal to the lattice period, ℓx = ℓy = ℓ, as

discussed in Sections 2.4.1 and 2.4.3. The vertex boundary conditions are considered

arbitrary and are represented by the scattering matrix Σ(1)(k), as defined in Section

2.1. We consider a point of excitation at an arbitrary vertex R′ = (n′ℓ,m′ℓ)T in

direction e′, where e′ ∈ {l, r, d, u}. While the graph is translationally symmetric, we

keep the excitation point variable to address future applications involving lattices

with boundaries.

The Green function G̃ of the periodic quantum graph satisfies the inhomogeneous
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Figure 17: a) Left: Illustrates the neighborhood of a vertex within a 1D periodic

quantum graph. Middle: Shows the unit cell of length ℓ at some arbitrary location n,

serving as the building block of the lattice. Right: An auxiliary finite quantum graph

is formed from the unit cell, with a spectrum equivalent to that of the infinite system,

modeled via the addition of a phase matrix Σ(2)(κx). b) Equivalent construction for a

lattice in 2D, where the finite auxiliary quantum graph contains two phase matrices,

Σ(2)(κx) and Σ(3)(κy). c) Equivalent construction for a lattice in 3D, where the

finite auxiliary quantum graph contains three phase matrices, Σ(2)(κx), Σ(3)(κy),

and Σ(4)(κ-z).

differential equation:

(
d2

dz2nm,e

+ E

)
G̃(znm,e, z

′
n′m′,e′ ; k) = δ(znm,e − z′n′m′,e′). (112)

In the methodology for finite quantum graphs, we introduced an auxiliary graph

by cutting the excited edge e′ and treating it as a pair of leads. This allows one
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Figure 18: a) Shows a top-down view of the real component of the Green’s function

for k = 0.5/ℓ, along with the equivalent iso-frequency contour. b) Shows a top-down

view of the real component of the Green’s function for k = 1.7/ℓ with the equivalent

iso-frequency contour.

to derive the Green function G in a closed form through the inversion of a 2NB

dimensional matrix, as seen in equation (79). For an infinite lattice, however, this

approach would require inverting an infinite-dimensional matrix. To avoid this, we

consider the periodic Green function of the lattice, which defines the wave response

to periodic excitation, and via Fourier transform, construct the Green function of

the graph. The periodic Green function satisfies the equation,

(
d2

dz2nm,e

+ E

)
G(znm,e, z

′
nm,e′ ,κ; k) = δ(znm,e − z′nm,e′), (113)

where the point of excitation e′ exists in every unit cell nm. To determine the

periodic Green function, we again construct an auxiliary finite closed graph with a

spectrum equivalent to that of the infinite lattice, as illustrated in Figure 17 for a
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1D, 2D and 3D square periodic graph. Here, the Bloch decomposition is modeled

via the introduction of vertex scattering vertices Σ(v)(κj) that take account of the

Bloch phase accumulated by a wave traveling throughout the lattice in direction j.

Here,

Σ(v)(κj) =

eiκjℓ 0

0 e−iκjℓ

 . (114)

Note the difference in sign, which defines waves traveling in the increasing (+) or

decreasing (−) j-direction. As in Chapter 2.2 the graph scattering matrix is then

given by a diagonal block matrix formed of each vertex scatterer. Explicitly,

Σ = Π



Σ(1)(k) 0 0 . . .

0 Σ(2)(κx) 0 . . .

0 0 Σ(3)(κy) . . .

...
...

...
. . .


= ΠΣ̂, (115)

where Π is a permutation matrix that orders the matrix elements correctly. The

phase information accumulated as waves travel between vertices is given by the

matrix P (k), with elements vv′ given by,

[P(k)]vv′ =


eikℓ/2, if vertex v and v′ are connected,

0, otherwise.

(116)

The quantum map of the auxiliary graph is constructed by multiplying equations

(116) and (115) as,

U(k, κx, κy) = P (k)Σ(k, κx, κy). (117)

Having determined the quantum map of the auxiliary compact quantum graph with

equivalent lattice spectrum, we determine Green’s function G by substitution of

equation (117) into equation (79). The Green function of the periodic quantum

graph G̃ is then obtained by performing a Fourier transform on both sides of equation
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Figure 19: Shows the real component of the Green function in a cross-section of

all m at location n′ around the point of excitation at vertex m′ with coordinate

z′n′m′,u′ = ℓ/4.

(113), which naturally gives,

G̃nm(znm,e, zn′m′,e′ , k) =

(
ℓ

2π

)2 ∫ π
ℓ

−π
ℓ

∫ π
ℓ

−π
ℓ

eiκ·(R−R′)G(z, z′,κ; k)dκxdκy. (118)

This integral sums over all possible Bloch phases, thus reconstructing the Green

function for the infinite lattice from its finite counterpart.

Figure 19 shows a cross section of the quantum graph at the point of excitation with

the real component of Green’s function plotted. Of key interest is the asymmetry of

the Green function that is a consequence of the point of excitation on the edge not

being symmetrical. This is a unique consequence of the graph topology, which is not

found in other lattice models, such as the spring mass model [252]. Additionally in

Figure 18 we show a top down view of the real component of the Green function for

both k = 0.5/ℓ and k = 1.7/ℓ. As one would expect the solution in the long wave-

length regime, where the graphs wave properties are circularly disipitive, we restore

solutions reminiscent of the Hankel function that describes the free space Green’s

function in 2D [235]. As the frequency is then changed to k = 1.7/ℓ we see the

square periodic mesh topology present in the wave field, as high wave calumniation

appears for all diagonal directions.
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3.6 Chapter Summary

We present a simple three-step procedure for generating the Green’s function on

both closed and open finite quantum graphs. The procedure exploits the standard

scattering approach, wherein the infinite sum of trajectories between a given source

point and a receiver point on the graph involves the inverse of a block component

of the matrix that defines the graph’s quantum map. Generally, this matrix is

sub-unitary, and its inverse is well-defined. Using this scattering representation, a

closed-form expression for the Green’s function is provided here for the first time.

We also discuss the possibility of perfect scars and bound states in the continuum,

which cause divergence in existing trajectory-based approaches. We demonstrate

that our closed-form expressions can be regularized in these cases. This regular-

ization scheme is important on a practical level, as scattering matrices of generic

quantum graphs with Kirchhoff-Neumann matching conditions may have resonances

that are arbitrarily close to bound states, even if they do not possess exact bound

states. If not treated with care, these resonances can lead to significant errors in

numerical investigations.

After thoroughly investigating the scattering conditions in both closed and open

finite quantum graphs, we extend the formalism to periodic quantum graphs by

introducing an equivalent closed auxiliary graph with imposed scattering matrices

that yield an equivalent lattice spectrum. The solutions of the finite graph were

then determined via the proposed three-step procedure, resulting in the periodic

Green’s function. Through a Fourier transform, this produced the desired lattice

Green’s function. We show through examples that the Green’s function can be

asymmetric due to the underlying graph topology. Moreover, in the long-wavelength

regime, the solutions closely resemble those of the Hankel function, which describes

the free-space Green’s function in 2D. With this we have developed the scattering

language of quantum graph theory to a point where we may apply it to the study of
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metamaterials. In the following, we consider both theoretically and experimentally

a quantum graph approach to metamaterial design.
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4 Modeling Metamaterials on Quantum Graphs:

Theory and Experiment

In this chapter, we present and build on two works by Lawrie et al. [253, 254] that

use quantum graph theory to model metamaterials. The first study [253] develops

a theoretical scattering framework for periodic layered quantum graphs as a model

for a 2D metamaterial, demonstrating phenomena such as positive and negative

refraction, total internal reflection, and beam steering. The second study [254] vali-

dates this model to a high accuracy in the acoustic regime through both numerical

simulations and experiment.

4.1 Motivation

A key motivation for this chapter arises from the work of Veselago [4] and Pendry

[5], discussed in Chapter 1.1. Their studies on materials with a negative (effective)

refractive index showed that waves can possess anti-parallel phase and group veloci-

ties, leading to effects such as the reversal of Snell’s law. Pendry’s work also proposed

the concept of a perfect lens, capable of focusing light beyond the diffraction limit.

These ideas inspired extensive research into modeling and designing metamaterials,

as discussed in Section 1.2, with various techniques presenting both advantages and

challenges.

In previous chapters, we developed the scattering formalism of quantum graph theory

for finite closed, open, and infinite periodic quantum graphs, and formulated the

Green’s function for quantum graphs in a closed form. We extended this formalism

to infinite periodic quantum graphs, where the mesh Green’s function resembled

free-space solutions in the long-wavelength regime. By varying the vertex scattering

properties, spectral gaps could be engineered, aligning with the findings of Kuchment

et al. [211]. These results demonstrate that the wave properties of a graph are
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inherently influenced by its topology and boundary conditions. Building on this

foundation, we now apply quantum graph theory to the modeling of metamaterials,

with the goal of engineering wave transport properties such as negative refraction

within these complex structures.

We begin by considering the eigen-spectrum of a trivially connected square periodic

quantum graph as a representation of free space, as discussed in Section 2.4. This

serves as a baseline model from which more intricate behaviors can be engineered.

By altering the edge metrics to represent space-coiled waveguides [255], we introduce

anisotropic properties into the system, thereby modifying the relationship between

phase and group velocities.

These changes in material properties are demonstrated by the scattering of a Gaus-

sian beam incident on an interface between two semi-infinite quantum graphs with

different edge metrics. We demonstrate positive and negative refraction as well as

total internal reflection. This framework also allows us to explore beam steering

across multiple layers of metamaterials using the Transfer Matrix Method.

To validate these findings, we consider the graph wave function as an acoustic pres-

sure field, with the graph’s edges modeling thin tubes through which the acous-

tic waves propagate. This analogy closely maps to the networks of interconnected

waveguides commonly found in acoustic metamaterials [256]. We examine the prop-

erties of these networks using numerical simulations in COMSOL Multiphysics [254]

and experimental measurements of the pressure field within a network of intercon-

nected thin tubes. The validity of the quantum graph approach is confirmed through

comparison with numerical and experimental results. We show a clear agreement

between the quantum graph model and COMSOL simulations, particularly below

the cut-off frequency. Furthermore, these properties are experimentally verified with

high accuracy, emphasising the robustness of quantum graph theory as a design tool

for metamaterials.
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This chapter is structured as follows: Section 4.2 provides a brief overview of the

scattering formulation for periodic quantum graphs, and shows the relationship be-

tween wave group and phase velocity as a function of graph edge metric. Negative

refraction is shown and the group velocity is investigated in terms of edge flux in

Section 4.3. To demonstrate both group and phase properties of a graph, Gaussian

beams are constructed in Section 4.4. In Section 4.6, we explore boundary problems

involving interfaces between two metamaterials, where the graph material proper-

ties are demonstrated in terms of the scattering profiles of incident Gaussian beams

on the interface. Section 4.6.1 extends this formalism to N -layered metamaterials

using the Transfer Matrix Method, showcasing beam steering across three-layered

structures. Finally, Sections 4.7 assess the validity of the quantum graph approach

through numerical simulations and experiment in the acoustic regime.

4.2 Mesh Solutions - A Recap

In order to construct solutions on a lattice as a model for a metamaterial, let us

briefly recap the key equations derived in Section 2.4 for modeling plane waves on

periodic quantum graphs. Plane waves on periodic quantum graphs are described

by the following system of equations:

ψnm = ei(κxn+κym)ℓ
[
eikẑΣ + e−ikẑI

]
ain (119)

Here, ψnm = (ψnm,l, ψnm,r, ψnm,d, ψnm,u)T is the vector of edge solutions to the

left(l), right(r), down(d), and up(u) of vertex nm. The edge phase is given by

ẑ = diag(zl, zr, zd, zu), which is a diagonal matrix of local edge coordinates, with

ze ∈ [0, ℓe], where ℓe is the metric of edge e within the star of the vertex S =

{l, r, d, u}. The vertex scattering matrix Σ fixes the boundary conditions, which we
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set to be Kirchhoff-Neumann as in equation (120),

Σpq =
1

2
− δpq. (120)

The vector ain = (ainl , a
in
r , a

in
d , a

in
u )T represents the incoming wave amplitudes at a

vertex within the lattice, given as the eigenvector of the graph quantum map as in

equation (55). Finally the lattice or ”crystal” phase is given by ei(κxn+κym)ℓ where

the relationship between the horizontal and vertical Bloch momentum κx and κy is

given by the secular equation of the quantum map as in equation (56). For a simply

connected square periodic quantum graph where the edge metric L = {ℓx, ℓx, ℓy, ℓy}

is equal to the vertex period ℓx = ℓy = ℓ, we define the relationship as,

κx(k, κy) = ±1

ℓ
arccos(2cos(kℓ)− cos(κyℓ)). (121)

This space of solutions can be thought of as ”free space” in the long wavelength

regime as discussed in section 2.4 and shown in Figure 11 with a given solution

within the BZ being demonstrated in a plane wave representation in Figure 12. As

will become apparent, the direction of phase and group, as defined by the flux, do

not necessarily have to be in parallel. To investigate this further, let us formulate

the relationship between group and phase in the following.

4.3 Phase and Flux

The phase of the resulting eigenfunction is determined by the chosen Bloch wave

vector κ = (κx, κy)
T , while the energy flow is given by the Poynting vector J =

(Jx, Jy)
T , which is normal to the iso-frequency contour. To explicitly construct the

components of J , we evaluate the flux on the graph edges. The 1D flux J of the
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Figure 20: Iso-frequency contour of Figure 11b) at k = 1
ℓ

with possible wave vectors

κ = (κ→x , κ
′
y)

T = (1
ℓ
, 1
ℓ
)T in a) and κ = (κ←x , κ

′
y)

T = (−1
ℓ
, 1
ℓ
)T in b), both shown in

green, with the corresponding Poynting vector J = (Jx, Jy)
T and J = (−Jx, Jy)T

normal to the contour shown in blue. The resulting real components of the eigen-

function solutions ψ⇌
nm,e(ze; k, κ

⇌
x , κy) for the wave vectors used in a) and b) are also

shown.

wave function ψnm,e is given by:

J(ψnm,e(ze)) := ℜ
(
ψ̄nm,e(ze)

1

i

∂ψnm,e(ze)

∂ze

)
= k(|aoute |2 − |aine |2), (122)

where ψ̄ denotes the complex conjugate of ψ. The horizontal and vertical compo-

nents of the Poynting vector can then be evaluated in terms of the waves on edges
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right (r) (or left (l)) and up (u) (or down (d)), respectively:

J =

Jx
Jy

 := k

|aoutr |2 − |ainr |2

|aoutu |2 − |ainu |2

 ≡ k

|ainl |2 − |aoutl |2

|aind |2 − |aoutd |2

 . (123)

This equivalence condition between the flux to the left and right of the vertex and

the flux to the down and up of the vertex is a property of the underlying Bloch waves

basis that states the solutions in the neighborhood of the vertex, can be expressed

in terms of one another, as in the system of equations in (50).

In the example shown in Figure 12, for each value of κy, there are two corresponding

values of κx. The choice of κx determines the direction of energy flow. To distinguish

between waves traveling in opposite horizontal directions, we introduce the following

notation: eigenfunction solutions with a Poynting vector heading to the right are

indexed with →, while those with a Poynting vector heading to the left are indexed

with ←. Explicitly:


ψ→nm(ze; k, κy) = ei(κ

→
x n+κym)

(
a→,out
e eikze + a→,in

e e−ikze
)
, Jx > 0,

ψ←nm(ze; k, κy) = ei(κ
←
x n+κym)

(
a←,out
e eikze + a←,in

e e−ikze
)
, Jx < 0.

(124)

Choosing the value of κx (κ→x or κ←x ) thus inherently determines the wave direc-

tion. For this reason, the κx dependence is omitted in the final notation of the

eigenfunctions.

4.4 Constructing Gaussian Beams

As was formulated above, plane wave solutions travel in the direction of the wave

vector κ, which does not necessarily agree with the direction of energy flow given by

the Poynting vector J in (123). This can be observed when considering Gaussian

beam solutions constructed via Fourier series with the eigenfunctions, shown above,
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as a basis. The solution of the Gaussian beam with focal point at n = n′, expressed

in components Φnm(z) = (Φnm,l(z),Φnm,r(z),Φnm,d(z),Φnm,u(z))T , is given as,

Φnm(z; k) =
1√
2π

∫
Ω

αn′(κy; k)ψ→nm(z, κy; k)dκy, (125)

where the integral is performed over the domain Ω = Ω(k) of the iso-frequency

contour. Solutions outside Ω are evanescent and so contribute nothing in the far

field. The expansion coefficients αn′ describing the beam profile at the focal point

in terms of the eigenfunctions, given by the inverse transform,

αn′(κy; k) =
1√
2π

∞∑
m=−∞

{∫ l

0

ψ̄→n′m,u(z, κy; k)Φn′m,u(z;κy)dz

}
. (126)

Here, ψ̄→n′m,u is the complex conjugate of the right moving eigenfunction expressed

for all m at horizontal location n = n′ along the upward edges u and Φn′m,u(z) is

the beam profile for all m with focal point n = n′ expressed on edge u. We choose

the beam profile to be Gaussian, such that

Φn′m,u(z) =
1√
σ
√
π
e
−
(

z+ml√
2σ

)2

eiκ
′
yl, (127)

where σ is the width of the beam and the phase eiκ
′
yl determines the tilt angle of

the beam with respect to the horizontal axis of the lattice. Since the space on the

graph is discretised, so too are the integrals. Figure 21 illustrates how varying the

parameters σ and κ′y affects the shape and direction of the resulting Gaussian beam

for a given iso-frequency contour Ω(k).
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Figure 21: Iso-frequency contour for a square periodic quantum graph with equivi-

lent edge lengths ℓ = ℓx = ℓy and Kirchhoff-Neumann vertex boundary conditions.

The frequency is set at k = 1/l together with the expansion coefficients αn′=0 in

equation (126) and the resulting real components of the Gaussian beam profile Φnm

with focal point set to n′ = 0. The beam profiles, equation (127), shown here are

characterised by the parameters κ′y = 0, 0 and 1/l and beam widths σ = 2.2l, 6.6l

and 6.6l for a), b) and c), respectively.
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4.5 Engineering Negative Refraction

Figure 22: a) Illustrates the neighbourhood of a given vertex within a 2D square

periodic quantum graph with period ℓ, with a vertex decoration formed of a single

edge of length ℓres = 1. b) shows a contour plot of the first band within the Brillouin

Zone with the points of symmetry Γ, X, N, M labeled and connected by an orange

line. c) shows the contour plot of the second band. d) shows the band diagram over

a frequency domain of k ∈ [0, π/ℓ]. e) shows the momentum solutions between the

points of symmetry within the BZ as well as a bandgap highlighted in blue.

In this section we demonstrate non-resonant negative refraction by manipulating

the underlying graph edge metric, rather than the vertex scattering matrix - as in

section 2.4. Each vertex is connected horizontally and vertically by finite edges to

the left(l), right(r), down(d) and up(u) of the vertex, with metric L = {ℓx, ℓx, ℓy, ℓy}.

Here we consider the properties of a lattice where the edge metric is not equal to the

lattice period, ℓx ̸= ℓy ̸= ℓ, such that the waves can accumulate an arbitrary phase

when propagating between vertices - See Figure 22 a). The edges within the star

of the vertex e ∈ S are given a local edge coordinate that exist within the domains
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zl ∈ [0, ℓx], zr ∈ [0, ℓx], zd ∈ [0, ℓy] and zu ∈ [0, ℓy], with ze = 0 at the vertex. For this

construction the dispersive properties of the graph are given by solving the secular

equation (56) which gives,

sin(k(ℓx + ℓy)) = sin(kℓy)cos(κxℓ) + sin(kℓx)cos(κyℓ), (128)

Here the horizontal and vertical edge lengths ℓx and ℓy represent free variables that

allow us to engineer the graphs disipitive properties. Key to this formulation that

separates it from previous lattice configurations (as in Figure 11 and 14) is the

freedom to break the rotational symmetry of the lattice by independently varying

ℓx and ℓy. This is equivalent to varying the wave speed on a given edge as for

a wave to travel throughout the lattice, it now has to travel a larger distance to

cover the same number of lattice points. Naturally this leads to a large difference

between the group and phase velocities of a solutions within the lattice leading in

some cases to hyperbolic dispersion curves, as illustrated in by the second band

in Figure 22 c) and d). At frequencies within the second band, clear anti-parallel

phase and group velocity is observed, as described by Pendry and Veselago [5, 4].

To demonstrate these engineered properties, let us consider the scattering profile of

an incident Gaussian beam on a metamaterial that posses the wave properties of

anti-parallel phase and group velocity.

4.6 Modeling Metamaterial Interfaces

To exemplify the engineered refractive properties, consider two semi-infinite square

periodic quantum graphs connected to span the infinite domain where each graph

has variable edge lengths as illustrated in Figure 23. The two materials are con-

nected along the y direction and material 1 exists for the set of unit cells N 1 =

(−∞, ...,−2,−1} and material 2 exists for the set of unit cells N 2 = {0, 1, ...,∞).

The full wave solution Ψnm = (Ψnm,l,Ψnm,r,Ψnm,d,Ψnm,u)T across the two materials
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Figure 23: Illustrates two semi-infinite square periodic quantum graphs connected

at an interface between n = 0 and n = 1. The right graph has hyperbolic dispersive

properties given by the anisotropy of edge metric as defined by equation 128.

can be constructed by a linear superposition of counter propagating eigenfunction

solutions ψ⇌
j,nm in material j = 1 and 2, as expressed in equation (124), that is,

Ψnm(z, κy; k) =H1(n)
[
A1(κy; k)ψ→1,nm(z, κy; k) +B1(κy; k)ψ←1,nm(z, κy; k)

]
+

H2(n)
[
A2(κy; k)ψ→2,nm(z, κy; k) +B2(κy; k)ψ←2,nm(z, κy; k)

]
,

(129)

where Hj(n) is a discrete top hat function, that gives,

Hj(n) =


1, ∀n ∈N j

0, ∀n /∈N j

(130)

for j = 1, 2 and the coefficients Aj and Bj are associated with left and right moving

waves, respectively. Thus, solutions with coefficients A1 and B2 represent waves

incident on the interface, while solutions with coefficients B1 and A2 represent waves

scattered from the interface. To determine the coefficients, we must satisfy the

boundary conditions at the material interface. Naturally the wave solutions are

given for a single value of k between the two materials enforcing k1 = k2 = k.

As the system stays periodic in the y direction, the Bloch phase tangential to the

interface also remain constant across the interface leading to the boundary condition
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Figure 24: Boundary region between metamaterials 1 and 2, understood as all

right(r) edges for n = −1 and all left (l) edges for n = 0. Here, wave scatter-

ing from the boundary is divided into event I and II, where rp and tp represent

reflection and transmission amplitudes for event p = I or II.

κ1,y = κ2,y = κy. The remaining unknowns are then the wave vectors normal to the

interface κ⇌j,x(k, κy) which is obtained from the dispersion curve for each material.

To determine the scattering coefficients Aj and Bj, we normalise the eigenfunction

solutions of each material such that the magnitude of the horizontal flux of each

component is equal given κ⇌j,x ∈ Re, that is to say,

J(ψ→1,nm,l) = J(ψ→2,nm,l) = 1

J(ψ←1,nm,l) = J(ψ←2,nm,l) = −1

, (131)

Equally, the same condition can be enforced on the right edges, r. With the scaling

choice (131), flux conservation across the interface

J
(
A1ψ

→
1,0m,l +B1ψ

←
1,0m,l

)
= J

(
A2ψ

→
2,0m,l +B2ψ

←
2,0m,l

)
(132)

reduces to

|A1|2 + |B2|2 = |B1|2 + |A2|2 (133)
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and wave scattering at the interface can then be described in terms of a unitary

scattering process. The corresponding interface scattering matrix S1,2 performing

the mapping, B1

A2

 = S1,2

A1

B2

 (134)

can then be constructed by decomposing the interface scattering into two events.

Event I describes a wave incident from material 1 onto material 2 with amplitude

A1 = 1 and B2 = 0, producing a reflected and transmitted wave with respective

amplitudes rI and tI . Event II describes a wave incident from material 2 onto

material 1 with amplitude B2 = 1 and A1 = 0, producing a reflected and transmitted

wave with respective amplitudes rII and tII , see Figure 24. The interface scattering

matrix takes on the form

S1,2 =

rI tII

tI rII

 . (135)

To evaluate the matrix elements, consider first event I. For simplicity we choose to

evaluate the waves at location n = 0, at coordinate zl = 0. Of course, the same

condition can be evaluated anywhere on the boundary edge. Since the phase κy is

the same in both materials, it is sufficient to evaluate the solutions at m = 0. Here,

Ψ(∀n≤−1)0,l(0)|n=0 =
(
a→,out
1,l + a→,in

1,l

)
+ rI

(
a←,out
1,l + a←,in

1,l

)
Ψ(∀n≥0)0,l(0)|n=0 = tI

(
a→,out
2,l + a→,in

2,l

)
.

(136)

Ψ(∀n≤−1)0,l(0)|n=0 and Ψ(∀n≥0)0,l(0)|n=0 both exist on the same edge in the boundary

region, so to stay consistent, there must be an equivalence between the incoming

and outgoing wave amplitudes of these solutions, that is,

tIa
→,out
2,l = a→,out

1,l + rIa
←,out
1,l

tIa
→,in
2,l = a→,in

1,l + rIa
←,in
1,l .

(137)

97



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

This can be solved to give

rI =
a→,out
2,l a→,in

1,l − a
→,in
2,l a→,out

1,l

a→,in
2,l a←,out

1,l − a←,in
1,l a→,out

2,l

t1 =
a→,in
1,l a←,out

1,l − a←,in
1,l a→,out

1,l

a→,in
2,l a←,out

1,l − a←,in
1,l a→,out

2,l

.

(138)

Exactly the same procedure can be done for event II where

Ψ(∀n≤−1)0,l(0)|n=0 = tII

(
a←,out
1,l + a←,in

1,l

)
Ψ(∀n≥0)0,l(0)|n=0 =

(
a←,out
2,l + a←,in

2,l

)
+ rII

(
a→,out
2,l + a→,in

2,l

)
,

(139)

which yields the equivalence condition

tIIa
←,out
1,l = a←,out

2,l + rIIa
→,out
2,l

tIIa
←,in
1,l = a←,in

2,l + rIIa
→,in
2,l

(140)

with solutions

rII =
a←,out
1,l a←,in

2,l − a
←,in
1,l a←,out

2,l

a→,out
2,l a←,in

1,l − a
→,in
2,l a←,out

1,l

tII =
a→,out
2,l a←,in

2,l − a
→,in
2,l a←,out

2,l

a→,out
2,l a←,in

1,l − a
→,in
2,l a←,out

1,l

.

(141)

The results of this unitary interface scattering is shown in Figure 25 for a Gaussian

beam incident from material 1 with amplitude A1 = 1 and no incident beam from

material 2, that is, B2 = 0. The Gaussian source point is set to n′ = −60 and m′ = 0,

coming from the lower left of the figure. The beam solutions are constructed from

the plane wave basis following the procedure in Section 4.4, where the wave function

within the integrand of equation (125) is replaced by the incident and scattered

field from equation (129). As before the solutions are plotted using the scatter plot

outlined in section 2.4.2.
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Figure 25: Shows the scattering of an incident Gaussian beam from metamaterial 1

onto metamaterial 2, where the scattering angles and amplitudes are a function of

the graph metric. The metric that is varied is ℓy in metamaterial 2 as is stated in

the inset of the iso-frequency contour. a) shows the case of a wave traveling between

two identical metamaterials. b) shows positive refraction. c) shows total internal

reflection. d) shows negative refraction 99
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4.6.1 Modeling N-Layered Metamaterials

Figure 26: A system of N layered metamaterials with wave amplitudes, Aj and Bj,

noted at each interface.

Consider now a system of N layered metamaterials as shown in Figure 26, each with

their own properties as defined above. Each material spans a domain defined by the

set of unit cells N j. Here the wave function across all N materials is expressed as a

linear superposition of counter propagating eigenfunction solutions of each material,

that is,

Ψnm(x, κy; k) =
N∑
j=1

Hj(n)
[
Aj(κy; k)ψ→j,nm(x, κy; k) +Bj(κy; k)ψ←j,nm(x, κy; k)

]
.

(142)

To evaluate the full wave function across all N materials, one must determine the

coefficients Aj and Bj that satisfy the boundary conditions at all material interfaces.

This is done by the Transfer Matrix Method [257]. In the previous section, the wave

amplitudes between two materials were determined by constructing a scattering

matrix mapping incoming to outgoing wave amplitudes between the metamaterials

1 and 2 as defined in equation (134). This matrix can be rearrange to give a transfer

matrix that maps wave amplitudes from material 1 to material 2, S̃1,2.

A2

B2

 = S̃1,2

A1

B1

 =

tI − rIrII
tII

rII
tII

− rI
tII

1
tII


A1

B1

 . (143)
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This procedure can be generalised to any arbitrary materials j and j + 1 giving

Aj+1

Bj+1

 = S̃1,2

Aj

Bj

 . (144)

Waves propagating across a given material j accumulate a Bloch phase which can

be expressed in terms of the matrix

P j(κy; k) =

eiκ→j,x(κy ;k)Wj 0

0 eiκ
←
j,x(κy ;k)Wj

 , (145)

where Wj = (max(N j) − min(N j))l is the width of material j. Having now for-

mulated both scattering and propagation, one can express the wave amplitudes in

material N in terms of the wave amplitudes in material 1.

AN

BN

 = S̃N−1,N

(
PN−1S̃N−2,N−1

)
...
(
P 3S̃2,3

)(
P 2S̃1,2

)A1

B1

 := S̃1,N

A1

B1

 .

(146)

We can now rearrange this transfer operator S̃1,N such that the entire system of

layered materials acts as a single point scatterer by introducing the scattering matrix

S1,N defined as B1

AN

 = S1,N

A1

BN

 . (147)

Now by setting the incident wave amplitudes A1 and BN , we determine the am-

plitudes of the scattered field by direct substitution into equation (147). Knowing

the wave amplitudes in material 1, A1 and B1, it is trivial to determine all other

amplitudes using P j−1S̃1,2. The results of this procedure is plotted in Figure 27 for

a three layered material.
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Figure 27: Top: The iso-frequency contours of three metamaterials with properties

defined in Figure 25 for k = 1/l. Bottom: The real component of a Gaussian beam

Φnm incident from material 1 constructed from the full wave field Ψnm for an incident

wave from metamaterial 1, A1 = 1, and no incident wave from material 3, B3 = 0.

Having now demonstrated that the scattering language of quantum graph theory

can be used to give wave properties of anti-parallel phase and group velocity, we

validate this methodology using more traditional numerical modeling techniques as

well as demonstrate the effect experimentally.
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4.7 Numerical and Experimental Validation

Figure 28: Comparisons of graph model and finite element dispersion curves. a)

A section of the infinite isotropic graph structure (ℓx = ℓy = ℓ). Vertices connect

to nearest neighbours in a mesh of edges of length ℓ. The unit cell is shown as a

rectangle around the central vertex. b) Corresponding dispersion curves along the

Irreducible Brillouin Zone (IBZ) (directions marked in a)). c) Corresponding FEM

dispersion curves for acoustic waves in a pipe network with pipes of radius 2 mm

and ℓx = ℓy = ℓ = 20 mm; the unit cell is shown in the inset. d) Anisotropic graph

counterpart to a), such that ℓx = ℓ, ℓy = 4ℓ. e) Corresponding dispersion curves. f)

Anisotropic counterpart to c), with coiled path in y such that ℓy = 4ℓ.

The above analytic solutions of the quantum graph model can be related to wave

solutions of quasi 1D scalar fields. This is demonstrated in the by comparing with

numerical solutions obtained via the finite element method (FEM) using COMSOL

Multiphysics [258] for an acoustic field, see Figure 28 c) and f). Here, we set up

an equivalent physical system of connected acoustic pipes in both the isotropic and

anisotropic configuration. An edge in the graph model now corresponds to a pipe

(of fixed radius) and a vertex corresponds to an intersection of pipes. The change in

impedance at the connecting region serves as the scattering site which qualitatively
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agrees with the Kirchhoff-Neumannboundary condition (57) in the graph model,

providing we operate below the first cut-off frequency of the pipes. The graph struc-

tures accurately model the acoustic wave propagation in analogous pipe networks

solved via FEM, as can be seen from comparing Figure 28 b) and e) with Figure 28

c) and f). Deviations start to occur with increasing frequency as expected, as we ne-

glect spatial inhomogeneities such as bends in the graph model and other finite size

effects [259]. This can be seen when comparing the upper bands in Figure 28(c) and

(f). The graph model (in this form) is insensitive to the geometry of the anisotropic

path, as it is parameterised only in terms of it’s length, ℓy. Sharp bends can however

be included in the graph model as in [260] and it can, of course, be recast to corre-

spond directly to the acoustic pressure field p i.e. ψ 7→ p such that k = ω/c where

ω is radian frequency and c the speed of sound. Entries in the scattering matrix are

then scaled with the characteristic acoustic impedance to relate the pressure and

velocity wave amplitudes in the time-harmonic regime [261]. Given the intricacies

that arise in the experimental measurement we proceed with the generalised case.

To see the effect of negative refraction, we couple the two materials at a common

interface along the y-direction as shown in Figure 23 with results presented in the

next section. In the graph case, the coupling conditions can be given analytically by

satisfying an equivalence condition between the eigenstates of the different lattices

on the edges across the interface [253].

4.7.1 Characterising the metasurfaces

Experimentally characterising such a mesh would however require (potentially many)

embedded microphones in the mesh; we are limited by the closure of the system

i.e. there are no radiative loss channels to the surrounding free space. However,

motivated by the graph model we open the system by connecting the underlying

graph structure to a surface through a cavity - the pipe network now being embedded

beneath the surface, shown in Figure 29 a), b) and c) for isotropic and anisotropic
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configurations respectively. The open mouths of the waveguide pipes at the interface

provide experimental access to probe the acoustic waveguide modes propagating

within the waveguide. This structure is imbued with the dispersive characteristics of

the underlying graph topology that we detect using scanning microphone techniques.

Acoustic characterisations are performed by measuring the evolution of an acoustic

pulse along the surface of two samples. The samples are manufactured by CNC

milling/drilling of several aluminium plates, creating the acoustic path of the fluid

(air); the plates have grooves of square cross section and cylindrical holes that allow

the meandering graph topology to be achieved without altering the unit cell length.

To obtain the dispersive properties (dispersion curves and isofrequency contours),

samples are excited by a tweeter (TFD Near-Field Loudspeaker) mounted adjacent

to the side holes of the sample. The loudspeaker is driven by an arbitrary waveform

generator (Keysight 33500B), producing single-cycle Sine-Gaussian pulses centred

at fc = 5 kHz, and a broadband amplifier (Cambridge Topaz AM5).

The acoustic pressure field is measured with a small aperture microphone (Brüel

& Kjær Probe Type 4182 near-field microphone, with a preconditioning amplifier)

positioned approximately 1 mm above the sample(s). Acoustic data are recorded

by an oscilloscope (Picoscope 5000a) at sampling frequency fs = 312.5 kHz. The

microphone is mounted on a motorised xyz scanning stage (in-house with Aerotech

controllers, a schematic of which is shown in Figure 30 c)), to spatially map the

acoustic signal along an xy area of 34 × 25 unit cells, with 3 points per unit cell

step-size. An average was taken over 20 measurements at each spatial position to

improve the signal-to-noise ratio.

Acoustic data are analysed using Fourier techniques; the fast-Fourier Transform

(FFT, operator F) of the measured signal, voltage V (x, t) returns the real Fourier

amplitude in terms of the wavenumber k = (kx, ky) and frequency f , Fx(|Ft(V (x, t))|);

time-gated windowing is used to exclude reflected signals with zero-padding by a fac-
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tor of 2 used in the spatial Fourier transform. The resultant experimental Fourier

spectra are shown in Figure 29, along with predictions from the infinite 2D lattice

from FEM simulations. The isotropic configuration (Figure 29 a)) has an acoustic

surface wave spectra that closely follows (58), as seen in Figure 29 e) whilst, at

the same frequency, the anisotropic configuration (Figure 29 c)) has a hyperbolic

contour shown in Figure 29 f). The phase and group velocities are not co-linear,

confirmed through the complex FFT which only shows wave solutions where energy

propagates away from the source [262].

4.7.2 Engineering an Interface: Negative Refraction of Acoustic Sur-

faces Waves

Armed with the isofrequency contours (experimental, analytical, and numerical), it

is possible to design refraction at an interface between two media in the conventional

way through conservation of the tangential component of the wavevector to the inter-

face (Snell’s law); the direction of energy propagation is normal to the isofrequency

contours in the direction of positive gradient with respect to wavevector. In this

section we demonstrate negative refraction of acoustic waveguide modes using the

graph model.

We create an interface between the isotropic and anisotropic configurations, labelled

I and II respectively in Figure 30. The loudspeaker is mounted above a hole in sam-

ple I and the xy scanning area is 24×18 unit cells, with the source centred 5 unit cells

away from the interface. Pyramidal absorbing foam is included to reduce reflections.

The anisotropic sample is formed of two plates, as shown in Figure 30. We perform

Fourier analysis outlined above and show comparisons between a frequency domain

FEM simulation (the ‘numerical experiment’ with perfectly matched layer (PML)

boundaries and monopole point source) and the experimental spatial response at

fixed frequency. We show both the real pressure amplitude and phase of the solu-

tions from FEM simulations and the experiment in Fig 30 a) and b) respectively.
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Figure 29: Unit Cell Schematics and Normalised Experimental Fourier Spectra. a)

schematic of pipe network i.e. fluid path (blue regions) and milled plates. The

graph network is fashioned from a square cross-section of width w = 4mm = d,

the cavity radius connecting to the surface (height h1 = 5 mm). The unit cell

pitch is a = 20 mm. b) Experimental Fourier spectra, normalised per wavenumber

along each path in the IBZ. Overlaid are FE solutions below the sound cone. Note

the axis is rotated to be consistent with the experimental stage (i.e. X ↔ N).

c) Anisotropic counterpart to a), with additional dimensions h2 = 12.5 mm and

t = 7 mm. The exploded view of the plate shows the combination of milling/drilling

(plates highlighted by curly brackets are one). d) Corresponding Fourier spectra

to c). e) and f) Numerical isofrequency contours obtained at 4.2 kHz (dashed line

in b), c) and d)) for the configurations in a), b) and c) respectively. g) and h)

Experimental counterparts - dotted circles show the sound cone and dashed lines

show the analogous contours from the scaled graph model (closed system).

The negative refraction is shown through the interference of the wavefronts from

the point source, highlighted by the discontinuities in phase; the refracted angles for

each incident wavevector given by the direction of the group velocity, vg, obtained

from the dispersion curves [263]. The resulting wave patterns are similar to other

hyperbolic metamaterials [264, 265]. In Figure 29 e) and f) we shown this by con-

serving the tangential component of an example incident wavevector whose phase

velocity vp is parallel to this direction, shown by the blue arrows. The green arrows
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Figure 30: Comparisons of simulation and experiment. a) Frequency domain simula-

tion with point source excitation and PML boundaries with normalised real pressure

field (left) and phase (right) shown at 4.2 kHz. b) Experimental results (temporal

Fourier transform) of normalised real pressure field (left) and phase (right) 4.2 kHz.

c) Schematic of scanning stage and plate systems (I) and (II) that are aligned so the

holes are in the same plane. Example spatial scan at 4.6 kHz is shown to highlight

the scan area.

that are normal to the isofrequency contours and show the direction of the group

velocity vg. This is made obvious in Figure 31 a) where we show the absolute field

calculated by point-source excitation at the vertex positions, for a similar set-up to

the numerical and physical experiment. Figure 31 b) shows the equivalent absolute

pressure field extracted from the FEM simulation at the intersection points between

the square sections of milled plates that are not accessible with the microphone in

the experiment, clearly showing negative refraction and demonstrating the utility of

the graph model.

4.8 Chapter Summary

We have successfully applied quantum graph theory to the design of acoustic meta-

materials as a network of interconnected space-coiled waveguides. We purposefully
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Figure 31: Comparison of graph model and FEM. a) Absolute field from graph model

at vertices corresponding to plots in Figure 30. b) Normalised absolute pressure field

from FEM solution extracted at equivalent vertex positions (intersections of square

paths).

retain the generality of the model highlighting its usefulness all scalar wave regimes

that can be reduced to systems of coupled 1D propagation problems. The analytic,

or semi-analytic, nature of the graph model allows for rapid calculations and simu-

lations, even when considering a large parameter space, providing valuable insight

into the dispersive properties of mesh-like metamaterials. The graph properties were

experimentally verified, by extending the model geometry to include an open system

by way of connecting the structure to an acoustic metasurface of coupled resonant

cavities, characterising two classes of structures (isotropic and anisotropic). We

demonstrate negative refraction by engineering hyperbolic dispersion surfaces by

varying bond lengths as entirely motivated by similar phenomena observed in the

closed graph.

Connecting to free space introduces a radiative regime in which the waveguides

leak. At the presented design frequency there is a region inside the first Brillouin

Zone, the sound cone (dashed circle in Figure 29), in which the waveguide modes

couple radiatively and thus we do not see the contour of the surface in this region.

This is one limitation of the graph model utilised here, although lossy systems (i.e.
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non-unitary scattering matrices) can be incorporated to address this. As such we

anticipate exciting extensions and applications of the quantum graph model, forging

a paradigm towards metamaterial design.

5 Modeling Fourier Filters via Quantum Graph

Theory

Manipulating wave signals in the Fourier domain is a crucial technique in optical

imaging. In this work, we introduce a novel component to this toolbox by describ-

ing a metamaterial that functions as an angular filter, capable of achieving perfect

transmission at specific, customizable angles of incidence. This filter enables the

selection of distinct wave-number components from an incoming wave-field within

arbitrarily narrow windows. The underlying mechanism of the filter is based on in-

ducing a resonance condition at an interface plane, which results in total reflectivity

except at selected angles, where the interface becomes fully transparent.

The metamaterial is constructed using beyond-nearest-neighbor interactions be-

tween lattice sites in the interface plane. Here, we model this system using an

infinite periodic quantum graph, where vertices are connected by edges of variable

length.

5.1 Motivation

Recent advances in metamaterial design and manufacturing processes have greatly

expanded the potential of wave-based analogue computing [266, 267]. These de-

velopments have enabled the implementation of mathematical operations such as

differentiation and integration through the transmission functions of metamateri-

als and thin-film interfaces, reinvigorating interest in optical information processing

[268]. Both Fourier domain manipulations using traditional 4f -systems [269] and
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direct manipulations in the object plane have been tested and applied. A key area

of interest is edge detection, a fundamental task in autonomous image analysis that

identifies and highlights object boundaries within an image. This technique has

wide-ranging applications in fields such as medical imaging [270], remote sensing

[271], surveillance [272], and autonomous vehicle navigation [273]. Unlike conven-

tional software-based edge detection methods [274], wave-based analogue operations

with filtering or modulation devices occur in real time, providing faster computation

while reducing the noise inherent in digital image processing algorithms.

Fourier filters are essential tools in signal processing, designed to selectively transmit

or block specific frequency components of an input signal. These filters operate in

the frequency domain, performing operations akin to mathematical transformations

that modify the spectral content of signals. In metasurfaces designed as Fourier

filters, structured arrays of sub-wavelength spaced elements achieve precise control

over wavefronts by tailoring their optical transfer functions (OTFs). This capability

enables advanced operations such as differentiation and integration on incident light,

facilitating complex signal processing tasks [120, 121, 122]. Fourier filters have broad

applications in optics, acoustics, and electronics, including enhancing image contrast

and resolution in imaging systems and improving signal processing in communication

networks [123]. These filters are particularly valuable in optical communications,

where they allow selective transmission and filtering of optical signals, reducing

signal degradation and improving data integrity [124].

All wave-based techniques share a reliance on carefully designed filtering and mod-

ulation processes in the Fourier domain. In these methods, specific wavenumber

components of an incoming signal are either filtered through an optically Fourier-

transformed image or modified directly in the object plane by tuning the wavenum-

ber or angle of incidence. Here, we present a novel metamaterial design capable of

performing arbitrarily narrow filtering in wavenumber (or k-space), providing a key
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building block for wave-number space analogue computing as well as other applica-

tions.

The key to the k-space filter’s functionality is the introduction of beyond-nearest-

neighbor connections between vertices in the 1D interface, which forms the filter.

This concept draws inspiration from Brillouin’s work on spring-mass models [275],

where beyond-nearest-neighbor interactions have been applied to metamaterials for

3D bulk materials [276]. These interactions lead to Roton-like dispersion relations

[276], which allow energy to flow in opposite directions at the same frequency. How-

ever, the transmission and reflection behavior of such structures in lower-dimensional

settings has not been fully explored. By adapting this approach for a 1D interface,

we can introduce novel filtering properties that have not been observed in previous

works.

This chapter is structured as follows: In Section 5.2, we introduce the k-space filter

within the scattering formalism of quantum graph theory. In Section 5.2.1, we con-

sider the scattering environment initially as a square periodic quantum graph, with

the lattice eigenfunctions acting as both the incident and scattered fields. The filter,

or boundary, dividing two semi-infinite square periodic quantum graphs is formu-

lated in Section 5.2.2, and the boundary’s scattering properties and resulting graph

solutions are analyzed and plotted in Section 5.3.1. At this stage, we acknowledge

that a square periodic quantum graph is not an accurate representation of free space

when considering higher and higher frequencies. To address this, we propose a new

homogenization scheme as an open question in Section 5.4, which allows regions of

the graph to be homogenized between existing lattice structures. Motivated by this

potential scheme, we demonstrate in Section 5.5 that the scattering properties are

maintained when considering various continuous scattering environments via FEM

simulations, as well as a future application of the filter.
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5.2 The k-space filter: A quantum graph formulation

Figure 32: a) Two periodic half-spaces with an interface: the unit cell of the envi-

ronment and the filter are shown in red and blue, respectively. b) The unit cell of

the environment with local wave amplitudes a
out/in
D at a specific vertex. c) The unit

cell of the filter with local wave amplitudes b
out/in
D at an interface vertex.

In this section, we describe the k-space filter using the formalism of quantum graphs.

The overall setup is illustrated in Figure 32a). The system consists of two half-

spaces—the environment—separated by an interface that functions as the filter. For

simplicity, we focus on 2D lattices and 1D interfaces, although generalization to 3D is

straightforward. The interface shown in Figure 32 breaks the horizontal periodicity,

and its coupling to the environment will be treated using a scattering approach in

section 5.2.2. It is important to note that the interface couples beyond-nearest-

neighbor sites in the vertical direction.

5.2.1 The environment: Eigenfunction solutions of a periodic quantum

graph

We briefly summarize the key equations for modeling wave transport on square

periodic quantum graphs, using Kirchhoff-Neumann vertex boundary conditions to

model free space. The plane waves on the mesh are described by the following
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equation:

ψj,nm(ẑ, k, κy) =Aje
i(κ→x n+κym)ℓ

[
eikẑΣ + e−ikẑI

]
a→,in+

Bje
i(κ←x n+κym)ℓ

[
eikẑΣ + e−ikẑI

]
a←,in.

(148)

Here, ψj,nm = (ψj,nm,l, ψj,nm,r, ψj,nm,d, ψj,nm,u)T is the vector of edge solutions to the

left (l), right (r), down (d), and up (u) of vertex nm, with index j = {1, 2} denot-

ing the material number. A and B are complex wave amplitudes corresponding to

right- or left-traveling plane waves, and ẑ = diag(zl, zr, zd, zu) denotes a diagonal

matrix of local edge coordinates, where ze ∈ [0, ℓ]. The matrix Σ defines the vertex

scattering matrix, which is set to be Kirchhoff-Neumann as in equation (120). The

vector a⇌,in = (a⇌,in
l , a⇌,in

r , a⇌,in
d , a⇌,in

u )T represents the incoming wave amplitudes

at a vertex within the lattice, given as the eigenvector of the graph quantum map,

given in equation (55). The space of allowed solutions on the lattice lies on the band

defined by the secular equation associated with the quantum map, given by equa-

tion (58), which, for Kirchhoff-Neumann boundary conditions, yields the horizontal

wavenumber κx as:

κ⇌x (k, κy) = ±1

ℓ
arccos(2cos(kℓ)− cos(κyℓ)). (149)

The +/− solutions represent right- and left-traveling waves, respectively, as dis-

cussed in section 4.3. We will now explore how these plane waves scatter from a

boundary connecting two semi-infinite half-spaces.

5.2.2 The beyond-nearest-neighbor interface

Consider the scattering of an open, infinitely periodic quantum graph as a model for

the interface, as illustrated in Figure 32c). This graph consists of vertices with the

same period ℓ as the environment, and Kirchhoff-Neumann boundary conditions are
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applied (120). The key difference from the bulk is that vertex m is not connected to

its nearest neighbors m± 1, but rather to vertices m± µ by edges of varying length

ℓµ. The wave solution on a given edge e is:

ψm,e = eiκymℓ
(
boute eikze + bine e

−ikze
)
, (150)

where b
out/in
e are complex wave amplitudes, and the domain of the coordinates on

each edge is zd ≡ zu ∈ [0, ℓµ] and zl ≡ zr ∈ [0,∞).

The goal is to first determine the interface scattering matrix and then couple this

matrix to the environment to determine the relationship between the incident (A1,

B2) and scattered (B1, A2) fields at the interface. We begin by expressing the vertex

scattering using equation (120) in block form:

boutl

boutr

 =

−1/2 1/2

1/2 −1/2


binl
binr

 +

1/2 1/2

1/2 1/2


bind
binu

 , (151)

and

boutd

boutu

 =

1/2 1/2

1/2 1/2


binl
binr

 +

−1/2 1/2

1/2 −1/2


bind
binu

 . (152)

The edge and Bloch phase dynamics in the vertical direction are given by:

bind
binu

 =

 0 ei(kℓµ−κyµℓ)

ei(kℓµ+κyµℓ) 0


boutd

boutu

 . (153)

Substituting equation (153) into equation (152) generates the coupling matrix ρµ,

which performs the mapping:
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bind
binu

 = ρµ

binl
binr

 , (154)

where

ρµ =
1

2 (e−ikℓµ − cos(κyµℓ))

e−iκyµℓ − eikℓµ e−iκyµℓ − eikℓµ

eiκyµℓ − eikℓµ eiκyµℓ − eikℓµ

 , (155)

Substituting equation (154) into (151) yields the interface scattering matrix Sµ:

boutl

boutr

 = Sµ

binl
binr

 =

rµ tµ

tµ rµ


binl
binr

 , (156)

where the filter transmission coefficient is given by:

tµ =
isin(kℓµ)

cos(κyµℓ)− e−ikℓµ
, (157)

and the filter’s reflection coefficient is conveniently given in terms of the transmission

coefficient,

rµ = tµ − 1. (158)

With the interface scattering matrix determined, we can now embed the interface

into the environment and analyze the scattered field.

5.3 The Full System

With the interface scattering matrix Sµ derived, we can now couple the wave dy-

namics between the environment and the interface to solve for the scattered field.

The leads extending from the interface are truncated to a finite length and attached

at the midpoint, zr = zl = ℓ/2, of the horizontal edges of the environment, as shown

116



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

in Figure 32a). On the connecting edges, the eigenfunctions of the mesh act as the

inputs and outputs for the interface scattering matrix. Specifically, we have:

boutl = e−ikℓ/2
[
A1a

→,in
r +B1a

←,in
r

]
, (159a)

binl = e−ikℓ/2
[
A1a

→,out
r +B1a

←,out
r

]
, (159b)

boutr = e+ikℓ/2
[
A2e

iκ→x ℓa→,in
l +B2e

iκ←x ℓa←,in
l

]
, (159c)

binr = e+ikℓ/2
[
A2e

iκ→x ℓa→,out
l +B2e

iκ←x ℓa←,out
l

]
. (159d)

By substituting the above expressions into equation (156), we can obtain the full in-

terface scattering matrix embedded within the environment. This matrix is referred

to as the filter scattering matrix, SF , which performs the mapping:

B1

A2

 = SF

A1

B2

 , (160)

where

SF =
[
SµM

→,out − e−ikℓM→,in
]−1

[
e−ikℓM←,in − SµM

←,out
]
,

(161)

and

M⇌,out/in =

a⇌,out/in
l 0

0 eiκ
⇌
x ℓa

⇌,out/in
r

 . (162)

The scattering matrix SF thus determines how incoming plane wave eigenfunctions

of the bulk, with fixed parameters (k, κy), are coupled into outgoing eigenfunctions

for the same set of parameters.

117



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

Figure 33: Left: The real-space lattice with a boundary formed by beyond-nearest-

neighbor connections, where vertex m is connected to vertex m ± µ. Left-Middle:

The condition space for unit transmission given by equation (166), where the choice

of edge length ℓµ is plotted in red. The points of intersection define the values of κy

(angles) that allow unit transmission. Middle-Right: The iso-frequency contour of

the lattice with resonant angles projected (blue arrows). Right: The transmission

and reflection amplitudes as functions of κy, shown in red and green, respectively.

a) shows the condition for µ = 4 and ℓµ = 2πℓ. b) shows the condition for µ = 4

and ℓµ = 3πℓ. c) shows the condition for µ = 7 and ℓµ = 4πℓ.
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5.3.1 The interface acting as a filter in κy space - results

The scattering properties of the beyond-nearest-neighbor metamaterial forming the

interface exhibit unique characteristics that allow it to act as a perfect filter in κy

space under certain conditions. Specifically, the transmission coefficient tµ at the

interface behaves like a Kronecker-delta function at specific κy values, whenever the

interface edge connections of length ℓµ are a half-integer multiple of the wavelength.

In this case, the transmission coefficient is given by:

tµ =


1, if kℓµ = pπ and κy = κ

(q)
y = qπ/µℓ

0, if kℓµ = pπ and κy ̸= κ
(q)
y ,

(163)

where p, q ∈ Z, and κ
(q)
y represents a discrete set of tangential wave vectors. To

understand this, consider the transmission coefficient in equation (157). When

kℓµ = pπ, the numerator in equation (157) vanishes, leading to total reflection.

This represents a resonance in the beyond-nearest-neighbor connection. The solu-

tion at the connecting vertices can be found by solving equation (150) with Eqs.

(153) and (154), leading to:

ψm,d(0) = ψm,u(0) = 0. (164)

These represent Dirichlet boundary conditions for the standing wave solutions on

the edges of length ℓµ, causing the resonances in these edges to decouple from the

overall wave dynamics. This pipe harmonic is plotted in Figure 34 a). The vertices

forming the filter thus act as a barrier for wave transmission, preventing energy from

flowing between the two half-spaces.

However, if κy = qπ/µℓ, the numerator and denominator cancel, resulting in discrete

cases of unitary transmission, i.e.,
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isin(kℓµ)

cos(κyµℓ)− e−ikℓµ
= 1, (165)

or equivalently,

cos(kℓµ) = cos(κyµℓ). (166)

In this case, the connecting vertices have wave amplitudes given by:

ψm,d(0) = ψm,u(0) = eiκymℓ
(
binl + binr

)
, (167)

which results in a shift from Dirichlet to periodic boundary conditions for the reso-

nance states, allowing energy transmission. The fields within the filter are plotted

in Figure 34 b).

Notably, the number of angular values that can be filtered, as well as which values

are filtered, can be controlled by adjusting the beyond-nearest-neighbor parameter

µ and the length ℓµ, thus altering k. The conditions for unit transmission are

illustrated graphically in Figure 33 for various values of µ and ℓµ.

According to standard Fourier analysis, the width of solutions allowed through the

filter is inversely proportional to the width of the transmission coefficient. In other

words, the filter only allows plane waves at resonance (where the amplitude van-

ishes). However, if we consider wave solutions near resonance, i.e., kℓµ = pπ±ϵ with

ϵ small, the transmission peak broadens, allowing for the transmission of beams with

finite widths. Results for different values of µ, ℓµ, and ϵ are shown in Figure 35.

In each case, a relatively broad beam enters from the left, with most waves being

reflected at the interface.

In Figure 35a), we explore the case of next-to-nearest-neighbor connections (µ = 2),
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Figure 34: Field plots (a) and (b) show the real component of the wave field

ℜ{ψm,e(zm,e)} within the filter bonds for µ = 4 and ℓµ = 3π at a frequency k = 1/ℓ.

(a)/(b) show the field off/on resonance respectively

which results in solutions for κy = 0 (i.e., q = 0) only. Note that the κy values

are constrained to the real contour defined by equation (149). Solutions outside

this contour represent evanescent modes that do not carry energy away from the

boundary. By increasing µ from µ = 4 in Figure 35b) to µ = 7 in Figure 35c), more

angles can be transmitted.

5.4 A Continuous Model and An Open Question

The Fourier filter described so far has been formulated within the discrete scattering

framework of quantum graph theory. In this setup, the scattering environment is
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Figure 35: Left: Reflection R = |B1|2 and transmission T = |A2|2 coefficients,

shown in green and blue respectively, as functions of the incident phase angles θ =

arctan(κy/κx). Middle: Filter configuration used. Right: Resulting wave field for

parameters a) µ = 2, ℓµ = 2π− ϵ, ϵ = 0.05; b) µ = 4, ℓµ = 3π− ϵ, ϵ = 0.1; c) µ = 7,

ℓµ = 4π − ϵ, ϵ = 0.3.

modeled using a square periodic quantum graph, which approximates a 2D real

space in the long-wavelength regime, as shown in Figure 36a). The filter itself is

modeled through beyond-nearest-neighbour connections between vertices, allowing

for a resonant effect that selectively permits wave transmission at specific angles

while blocking all others. Although the quantum graph formalism is an elegant

and effective mathematical tool, it remains an approximation of the continuous
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Figure 36: a) The well-known homogenisation procedure for a single lattice of con-

stant period ℓ, which allows for the correct reproduction of the Hamiltonian on

Euclidean space in the limit ℓ→ 0 [224]. b) The yet unknown homogenisation pro-

cedure for determining the continuum limit solutions of a graph that maintains a

given period throughout homogenisation.

systems encountered in the real world. The real world is not strictly discrete, and

understanding how quantum graph models relate to continuous wave phenomena is

essential for practical applications.

To bridge this gap, it is necessary to develop a homogenisation scheme that tran-

sitions from the quantum graph framework to real-space solutions, allowing the

scattering properties to be studied in a continuous domain. Currently, the process

of homogenising a quantum graph while retaining the beyond-nearest-neighbour

connections—critical for the filter’s resonance effect—remains an open question, as

illustrated in Figure 36b). The mathematical tools required for such a homogenisa-

tion process have not yet been developed, but they would provide valuable insights

into the behavior of the filter in continuous media.

In the absence of a formal homogenisation process, computer simulations offer a

powerful alternative for exploring how the quantum graph-inspired Fourier filter

behaves in real-world continuous systems.
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5.5 Implementation - FEM Simulations

WG WG

(a) (b) (c)

Figure 37: Discrete and continuous spaces, coupled by the filter. (a) A square

periodic lattice with period ℓ with the filter attached at the midpoint of the lattice as

helices that facilitate BNN connections - one helix is highlighted in black resembling

the bond in Fig. 23(a). (b) Two rectangular acoustic waveguides coupled by a

grating of thin tubes with period ℓ, coupled at the midpoint to the filter. (c) A

rectangular acoustic waveguide with periodic holes spaced by length ℓ, the openings

of which are coupled to the filter.

Having formulated the scattering properties of the quantum graph k-space filter, we

turn to an equivalent network of acoustic pipes [254]; we consider the wave field to

correspond directly to an acoustic pressure field ψ 7→ p such that k = ω/c with c

the speed of sound. The parameters of the acoustic pipe directly incorporate the

non-dimensional form of the graph model such that ℓ = 1 m, and we choose the

pipe radius to be r = 0.078 m; we choose these purely for convenience and note that

the resonant frequencies scale linearly with the length scale. An edge in the graph

model thereby corresponds to a pipe of fixed radius, and a vertex corresponds to an

intersection of pipes as in [254].

We first focus on a description of the environment in which the filter is coupled to

a discrete square mesh, in-line with a graph formalism as employed above and in

[253, 277, 254]. The network of pipes considered is illustrated in Fig. 37(a); the

filter is comprised of µ = 4 helices of length ℓµ = 3π m. They are connected by

small tubes (of height h = 0.1 m, r = 0.078 m) to the underlying pipe network at a

distance ℓ/2 between vertices. We utilise the Finite Element Method (FEM) using
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(f)(d)

(g) (i)

(c)(a)

(e)

(h)

(b)

45 90

Figure 38: Graph and FEM simulations. (a,b) FEM simulations of a discrete lattice

with point source excitation at the frequencies marked by horizontal dashed lines

in (c). The interface is marked by the vertical dashed black line. (c) Transmission

coefficient as a function of frequency and angle as predicted from the graph model.

(d,e) as (a,b), but for the continuous waveguides joined by the filter (Fig. 37(b)). (f)

as (c) but from FEM predictions. (g,h,i) as (d,e,f) but for the continuous waveguide

(Fig. 37(c)).
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COMSOL Multiphysics [258] to perform scattering simulations in a finite domain

(with absorbing outer boundaries). A 60ℓ × 120ℓ domain is generated and a fre-

quency domain simulation is performed under point source excitation at (−15ℓ, 0),

over a range of frequencies. The resulting discrete angle transmission is shown in

Fig. 38 (a,b) at two different frequencies where we note the effect of discrete angle

transmission for both one and two angles. We compare this with the predicted trans-

mission coefficient as a function of angle and frequency from a pure graph model as

shown in Fig. 38(c) and find excellent agreement.

A reasonable criticism of the lattice representation may be that the square periodic

graph does not truly represent free space and that this model will break down

for frequencies at which the properties of the lattice dominate the scattered field.

We propose simply replacing the discrete lattice on either side of the filter with a

continuous acoustic waveguide. The motivation being that, the filter shall couple

the solutions on either side of the interface, irrespective of the underlying dispersive

properties of the media. The design illustrated in Fig. 37(b), which is comprised of

two semi-infinite acoustic rectangular waveguides (of thickness r). The waveguides

are coupled via a periodic array of tubes (of radius r, separation ℓ), with the helical

BNN filter placed atop at ℓ/2, reminiscent of a diffraction grating. Here, we consider

frequencies well below the grating diffraction limit, such that the transmitted field

across the grating supports only one mode i.e. the grating is non-diffractive at

the frequencies considered. We show in Fig. 38(d,e) FEM simulations for this

configuration. The scattering properties of the filter still dominate the transmission

profile, leading to both single and double angle transmission at resonant frequencies.

Note the slight change in direction for the double angle transmission, which is due

to the difference in dispersive properties of the slab waveguide when compared to

the dissipative properties of the square periodic lattice. Figure 38(f) shows the

transmission coefficient |T (f, θ)|2 as a function of frequency and angle, obtained

numerically from FEM simulations with incident plane waves at single frequencies.
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Finally we push the model yet further and propose a fully continuous, infinite acous-

tic rectangular waveguide that supports an acoustic pressure field. In the waveguide

there is a periodic array of holes in the top layer, connected to the filter, shown in

Fig. 37(c). This allows for unperturbed wave transmission throughout the waveg-

uide. Despite the graph model not incorporating a continuous medium between

the vertices of the filter, a similar transmission profile is indeed present within this

device; transmission across the array is still governed by the resonant characteris-

tics of the filter. The main difference is that the effective Dirichlet conditions at

the junctions (as shown in Fig. 23) leading to full reflection are not enforceable at

all frequencies. On resonance, however, we see full transmission at similar angles

and frequencies to the discrete cases. Figure 38(g,h) shows point source simulations

at frequencies similar to Fig. 38(d,e) and Fig. 38(i) shows |T (f, θ)|2 evaluated in a

similar manner to Fig. 38(f).

To this end, we propose a continuous model of the filter, which we simulate using

COMSOL Multiphysics. The 2D real space is modeled as a 3D waveguide formed by

two slabs with Neumann boundary conditions, allowing acoustic waves to propagate

freely between them. To mimic the quantum graph topology, a periodic arrangement

of holes is introduced in the top slab, spaced by a distance ℓ. These holes are

connected by thin tubes, which approximate 1D wave transport below the cut-off

frequency, thus emulating the beyond-nearest-neighbour connections found in the

discrete graph. This setup mirrors the discrete scattering system with a continuous-

space analog.

The CAD design of this device, was implemented and simulated in COMSOL, yield-

ing remarkable results. In the long-wavelength regime, the simulations revealed the

same angular selectivity for wave transmission, confirming the resonance effect of

the Fourier filter. This demonstrates that the Fourier filter effect, initially predicted

using quantum graph theory, persists in real-world continuous environments. More

127



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

importantly, it validates the quantum graph model as a powerful tool for predicting

wave behavior in metamaterials. Moreover, these simulations open new possibili-

ties for designing wave devices in continuous systems, where principles derived from

quantum graph theory can guide the development of novel materials and filtering

mechanisms.

5.5.1 A Proposed Application

Fourier filters are widely used in image processing tasks such as edge detection,

where the primary goal is to highlight sharp transitions corresponding to object

boundaries. A novel application of a specialized Fourier filter, which selectively

allows wave transmission at specific angles while blocking others, can be utilized to

infer the geometry of hidden objects. By illuminating an object with a wave source

and filtering the scattered waves based on their angles, the object’s contours can

be reconstructed, as illustrated in Figure 39. This method is particularly valuable

in scenarios requiring high angular precision, offering an alternative to traditional

isotropic Fourier filters, which affect all directions uniformly [274].

In medical diagnostics, this approach can complement existing Fourier-based tech-

niques employed in MRI and CT scans, where edge detection is critical for identi-

fying structures such as tissues, blood vessels, or tumors. Traditional filters often

face challenges in detecting edges at specific orientations, but an angularly selective

filter could enhance precision by isolating scattered waves at particular angles, thus

improving the clarity of geometrically complex features [278]. This method holds

promise not only for non-invasive medical imaging but also for industrial applica-

tions, offering improved capabilities for both fields.
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Figure 39: An object of unknown geometry illuminated by a wave source, with the

resulting wave scattering shown as a ray diagram. The Fourier filter, placed above

the object and wave source, allows only waves at particular angles to pass through

to the detector plate. By rotating either the object or the filter, the geometry of the

hidden object can be inferred.

5.6 Chapter Summary

We introduce a novel angular filter and demonstrate its functionality via a quantum

graph approach designed for wave transmission at customizable angles. The filter

maintains unit reflectivity due to a resonance condition that switches off at a set of

discrete angles (or κy values). The chapter treats the wave problem as an infinite

square periodic quantum graph, whose eigenfunction solutions represent both the

incident and scattered fields in free space. The filter is constructed from an infi-

nite 1D periodic interface with non-local vertex connections. The coupling of the

environment and the interface is explored via a scattering approach, allowing one

to determine the reflection and transmission coefficients of the filter for different

parameter configurations. The filtering effect can be traced back to a change in

the effective boundary condition for the resonant state switching from Dirichlet to
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periodic at specific wave angles. While formal homogenisation of a periodic quan-

tum graph, with additional non-local vertex connections remains an open question,

COMSOL simulations of a continuous waveguide system confirm that the filter’s

resonance effect persists even in the continuum. This confirmation makes the pro-

posed device practical for real world implementation. We envisage that the proposed

filter will find applications in optical computing and edge detection with benefits for

medical imaging, remote sensing, surveillance, and autonomous vehicle navigation,

among others.

6 Conclusion

This thesis has extended the discrete scattering formalism of quantum graph theory

to explore wave propagation in complex finite and infinite periodic systems. By

demonstrating that periodic quantum graphs can be structured to produce non-

trivial wave phenomena analogous to those observed in metamaterials, this work

highlights the potential of quantum graphs as a powerful tool for metamaterial

design. The effectiveness of this scattering approach was validated through numeri-

cal simulations and experimental results in the acoustic regime, establishing a new

paradigm for the modeling and study of metamaterials across scalar wave systems.

In Chapter 2, we established the foundation of the scattering formalism in quantum

graph theory. By treating vertices as point scatterers with tunable boundary con-

ditions, we demonstrated how wave behavior could be controlled by manipulating

vertex properties. Special cases such as Kirchhoff-Neumann, Dirichlet, and δ-type

boundary conditions were analysed to show their impact on wave propagation and

the eigenstructure of the graph. Additionally, we extended the formalism to infinite

periodic quantum graphs, showing how frequency-dependent boundary conditions

lead to resonant effects and the creation of band gaps. These concepts laid the

groundwork for the remainder of the thesis by illustrating how lattice geometry and
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boundary conditions can influence wave transmission, providing key insights into

band structure engineering.

In Chapter 3, we introduced a novel three-step procedure to generate the Green’s

function for both closed and open quantum graphs. This procedure capitalized on

the scattering approach, enabling the closed-form calculation of Green’s functions

even in the presence of complex resonances. The results provided new insights into

bound states, perfect scars, and scattering properties in quantum graphs, addressing

challenges posed by divergent trajectory-based methods. We extended this approach

to periodic graphs and derived the Green’s function for infinite lattice systems,

showcasing its versatility in modeling periodic structures. The method proved to

be a powerful analytical tool, bridging the gap between finite and periodic systems,

and setting the stage for its application to the study of metamaterials.

In Chapter 4, we applied quantum graph theory to the design of acoustic metamate-

rials, demonstrating how the network of interconnected waveguides could be modeled

as a graph with space-coiled wave propagation. The flexibility and efficiency of the

model allowed for the exploration of large parameter spaces and dispersive proper-

ties, and its predictions were experimentally verified using an acoustic metasurface

connected to the graph structure. Notably, we designed a system that exhibited

negative refraction without explicitly requiring a negative refractive index, driven

entirely by the hyperbolic dispersion observed in the anisotropic configuration. This

chapter underscored the practical utility of quantum graphs in modeling metamate-

rials, while also highlighting a limitation of the current approach when considering

radiative losses, pointing towards future improvements involving lossy systems.

In Chapter 5, we presented a novel angular filter designed using quantum graph the-

ory. This filter allows wave transmission at customizable angles while maintaining

unit reflectivity, a result of the resonance conditions engineered into the periodic

quantum graph structure. By coupling an infinite 1D periodic interface with non-
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local vertex connections, we demonstrated the filter’s selective wave transmission

and reflection properties, driven by a shift in boundary conditions from Dirichlet

to periodic at specific angles. Although formal homogenization of such structures

remains an open question, COMSOL simulations of a continuous waveguide system

confirmed that the quantum graph filter’s functionality persisted in continuous sys-

tems, making it a promising candidate for real-world applications. The proposed

filter is expected to have significant impact in fields such as optical computing, edge

detection, medical imaging, and autonomous navigation, among others.

This thesis makes several important contributions to both the theory and application

of quantum graphs. First, it extends the mathematical framework of quantum graph

theory, offering new tools for analyzing scattering and resonance phenomena in both

finite and periodic systems. The development of the Green’s function procedure and

the study of vertex boundary conditions were particularly notable in advancing the

theoretical understanding of quantum graphs. Second, we applied these theoretical

insights to the design of metamaterials and wave filtering devices, demonstrating

their practicality in real-world scenarios. The acoustic metamaterial and angular

wave filter presented in this work showcase the potential of quantum graphs in

innovative waveguide and filtering technologies.

Several open questions remain, particularly regarding the formal homogenization of

quantum graphs with non-local vertex connections. Future work should explore the

integration of lossy systems to better model radiative regimes, as well as the experi-

mental realization of quantum graph-based devices in other scalar wave regimes such

as electromagnetism. The groundwork laid by this thesis will serve as a foundation

for future advancements in quantum graph theory and its applications to complex

wave systems, with potential to impact a wide range of technological fields.
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A Derivation of coefficients in the Green’s func-

tion in terms of the resolvent matrix of the

quantum map

For any given edge e ∈ E , we will denote its complement as

Ee ≡ E \ {e} . (168)

Analogously, we write Be = B \ {e} if e ∈ B or Le = L \ {e} if e ∈ L. For any

given edge e, we may now write the quantum map in block form (after appropriate

reordering of the directed edges), that is,

U =

Uee UeBe

UBee UBeBe

 , (169)

where Uee, UeBe , UBee and UBeBe are matrices of dimension 2 × 2, 2 × 2(NB − 1),

2(NB−1)×2 and 2(NB−1)×2(NB−1), respectively. Eliminating the ain
B components

in (23), we can write the quantization condition with the help of the unitary 2 × 2

matrix U(k)red,e defined as

Ured,e = Uee + UeBe (I−UBeBe)
−1UBee. (170)

We also define an alternative reduced secular function

ξ(k)red,e ≡ det
(
I−U(k)red,e

)
, (171)

which is related to ξ(k) defined in (24) through the identity

ξ(k) = ξ(k)red,e det (I−U(k)BeBe) . (172)
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The relation above is obtained using the decomposition

I−U =

I−Ured,e −UeBe (I−UBeBe)
−1

0 I


 I 0

−UBee I−UBeBe

 . (173)

Note that the reduced quantum map Ured,e is related to the quantum scattering

matrix σ(k) introduced in equation (74) by

Ured,e =

Ured,e
e+e+ Ured,e

e+e−

Ured,e
e−e+ Ured,e

e−e−

 = eikℓe

σTH σTT

σHH σHT

 . (174)

In order to obtain the second line in (78), we note that the denominator in these

expressions can be written in terms of the reduced secular function of the compact

graph, that is,

[
(1− eikℓe′σHT)(1− eikℓe′σTH)− e2ikℓe′σHHσTT

]
= ξ(k)red,e

′
, (175)

where we use the e′ notation as in section 3.2.1.

By writing out the resolvent of the reduced 2× 2 quantum map, that is,

I
I−Ured,e′

≡

1−Ured,e′

e′+e′+
−Ured,e′

e′+e′−

−Ured,e′

e′−e
′
+

1−Ured,e′

e′−e
′
−


−1

=
1

ξred,e′

1−Ured,e′

e′−e
′
−

Ured,e′

e′+e′−

Ured,e′

e′−e
′
+

1−Ured,e′

e′+e′+

 ,

(176)

we can relate the terms in (78) to matrix elements of the inverse of the reduced

quantum map using again (174). The expressions as given in equation (78) are now

obtained observing in addition

I
I−Ured,e′

=

[
I

I−U

]
e′e′

, (177)

which follows, for example, from the decomposition (173).
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B Details on the pole contribution to the Green’s

function in compact graphs

In this appendix, we want to give a detailed derivation of equations (83) and (84)

that define the pole contribution of the Green’s function at an energy eigenvalue

En = k2n. With the orthogonal projector Q = I−P let us start by writing

U(k+)

I−U(k+)
=− I +

1

χ(k+)
P

+ P
I

I−U(k+)
Q + Q

I
I−U(k+)

P + Q
I

I−U(k+)
Q (178)

where

χ(k+) =

(
bin† I

I−U(k+)
bin

)−1
(179)

and we have used that P = binbin† is a rank one projector. We will show that, as

k+ → kn, the only singular term in (178) is contained in 1
χ(k+)

P. Writing

I
I−U(k+)

(P + Q) (I−U(k+)) = I , (180)

and multiplying it from left and right with either P or Q results in four equations

that may be solved for

χ(k+) =bin†
[
I−U(k+)−U(k+)Q

I
I−QU(k+)Q

QU(k+)

]
bin (181a)

P
I

I−U(k+)
Q =

1

χ(k+)
PU(k+)Q

I
I−QU(k+)Q

Q (181b)

Q
I

I−U(k+)
P =

1

χ(k+)
Q

I
I−QU(k+)Q

QU(k+)P (181c)

Q
I

I−U(k+)
Q =Q +

1

χ(k+)
Q

I
I−QU(k+)Q

QU(k+)PU(k+)Q
I

I−QU(k+)Q
Q

(181d)
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using standard properties of orthogonal projectors such as P2 = P, Q2 = Q, and

PQ = QP = 0. Now let us write k = kn + δk and consider δk → 0 using the Taylor

expansion

U(kn + δk) = U(kn) +
dU

dk
(kn) δk +O((δk)2) . (182)

The derivative of the quantum map U(k) can be performed explicitly. The latter

depends on the wave number via phases eikℓe on each edge e, and in general also via

an explicit k dependence of the vertex scattering matrices. For the vertex scattering

matrices of the form (9), one finds, using standard matrix algebra,

d

dk
Σ(v)(k) =

1

2k

(
I−Σ(v)(k)2

)
. (183)

Then the derivative of U(k) = eikLΠΣ gives

dU

dk
(k) = iLU(k) +

1

2k

[
eikLΠ−U(k)e−ikLΠU(k)

]
. (184)

At this stage we may identify that the constant C stated in (84) is just

C =
1

i
bin† dU

dk
(kn)bin . (185)

The expressions (182) and (184) have the following implications

PU(k + δk)Q =O(δk) (186a)

QU(k + δk)P =O(δk) (186b)

χ(k + δk) =− iCδk +O((δk)2) (186c)

such that P I
I−U(k)

Q, Q I
I−U(k)

P and Q I
I−U(k)

Q are not singular in the limit δk → 0

and we are left with the singular part

U(kn + δk)

I−U(kn + δk)
=

1

−iCδk
P +O((δk)0) (187)
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which is equivalent to the equation (83) we wanted to prove in this appendix.

C Details of the derivation of the Green’s func-

tion in open scattering graphs

In this appendix, we give details how the Green’s function (86) for an open scattering

graph G can be derived from the Green’s function (79) of an auxiliary compact graph

Gaux by sending the edge lengths of those edges turning into leads to infinity. Note

that one has to send the lengths to infinity while the imaginary part of k+ is positive.

The auxiliary graph Gaux is obtained from the open graph G by replacing each lead by

an edge of finite length with a vertex of degree one at the other end. For simplicity,

we will put Neumann-Kirchhoff conditions at the vertices of degree one, the final

results will not depend on this choice. For the sake of this derivation, we will bend

the use of notation and continue to refer to ‘leads’ and ‘bonds’ of the auxiliary graph.

Let us also introduce the NL-dimensional diagonal matrix LL = diag(ℓe : e ∈ L) that

contains the edge lengths of the leads. We start from the Green’s function for the

auxiliary graph (79). It contains four matrix elements of the matrix R = Uaux

I−Uaux

where we denote the (2(NB+NL)-dimensional) quantum map of the auxiliary graph

by Uaux in order to distinguish it from the (2NB+NL-dimensional) quantum map U

of the open graph. We suppress the dependence on k+ here, as it can be reintroduced

easily at the end of the calculation. The standard way to continue the calculation

would be to decompose the involved matrices into blocks that correspond to three

sets of directed edges: directed bonds B, outgoing leads L+ and incoming leads L−.

For the quantum map of the auxiliary graph the structure of the graph then implies

Uaux =


Uaux
L+L+ Uaux

L+L− Uaux
L+B

Uaux
L−L+ Uaux

L−L− Uaux
L−B

Uaux
BL+ Uaux

BL− Uaux
BB

 =


0 TLULL TLULB

TL 0 0

0 UBL UBB

 (188)
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where four blocks vanish due to the connectivity of the auxiliary graph, the other

four blocks can been identified with corresponding blocks of the quantum map of

the open graph and we introduced TL ≡ eik+LL , an NL-dimensional diagonal matrix

that contains the auxiliary lengths of the leads in the phase. Note, that TL → 0 as

the auxiliary lengths are sent to infinity. Writing the identity Uaux = R−UauxR in

terms of its blocks one may express the blocks of R in the form

R =


RL+L+ RL+L− RL+B

RL−L+ RL−L− RL−B

RBL+ RBL− RBB



=


TLσ

I
I−T2

Lσ
TL TLσ

I
I−T2

Lσ
TL

I
I−σT2

L
ρout

I
I−T2

Lσ
TL

T2
Lσ

I−T2
Lσ

T2
L

I
I−σT2

L
ρout

ρin I
I−T2

Lσ
TL ρin I

I−T2
Lσ

UBB
I−UBB

+ ρinT2
L

I
I−σT2

L
ρout


(189)

where σ ≡ ULL + ULB
I

I−UBB
UBL is the scattering matrix of the open graph, ρin =

I
I−UBB

UBL and ρout = ULB
I

I−UBB
.

To proceed one chooses two points z = (ze, e) and z′ = (ze′ , e
′) on the auxiliary

graph Gaux and expresses the Green’s function (79) of Gaux in terms of appropriate

matrix elements of R and then performs the limit TL → 0. Let us do this explicitly

for e, e′ ∈ L and write (79) for this case in the form

2k+i G
aux(z, z′, E+) =δe,e′ e

ik+|ze−z′e′ | + eik+(ze−z′e′ )
[
T−1L RL+L+TL

]
ee′

+ e−ik+(ze−z′e′ )
[
RL−L−

]
ee′

+ eik+(ze+z′
e′ )

[
T−1L RL+L−

]
ee′

+ eik+(ze+z′
e′ )

[
RL−L+TL

]
ee′

=δe,e′ e
ik+|ze−z′e′ | + eik+(ze−z′e′ )

[
σT2

L
I− σT2

L

]
ee′

+ e−ik+(ze−z′e′ )
[

T2
Lσ

I−T2
Lσ

]
ee′

+ eik+(ze+z′
e′ )

[
σ

I
I−T2

Lσ

]
ee′

+ eik+(ze+z′
e′ )

[
I

I−T2
Lσ

T2
L

]
ee′

(190)
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where we may now send the edge lengths of the leads to infinity TL → 0. This

results in

2k+i G(z, z′, E+) = δe,e′ e
ik+|ze−z′e′ | + eik+(ze+z′

e′ )σee′ (191)

which is equivalent to the given expression for the open Green’s function (86) if

both points are on the leads. The other cases can be derived in the same way. This

calculation is equivalent to formally expanding the Green’s function of the auxiliary

graph as a sum over trajectories. Sending the lengths of the leads to infinity is

equivalent to only summing over trajectories that never travel through any lead

from one end to the other - summing just these trajectories then gives back (86).

D Regularity of the scattering matrix σ at a bound

state in the continuum

Following on from the discussion in section 3.3, we show here that the singularity of

the scattering matrix σ(k) and the coupling matrix ρ(k), Eqs. (34) and (36), in the

presence of a perfect scar (described by the eigenvector b0) can be lifted and that

the solution is regular across a whole k interval containing k0.

D.1 Closed expressions for Pρ(k)

First, we decompose the internal graph amplitudes of a scattering solution (35), that

is, a(k)inB = ρ(k)ain
L , into components parallel and orthogonal to b0,

Pa(k)inB + Qa(k)inB = (Pρ(k) + Qρ(k)) ain
L , (192)
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where the projection operator and its orthogonal component are defined in (92) and

(93). Starting from equation (94), we write

P (I−U(k)BB) (P + Q) ain
B = PU(k)BL a

in
L ,

Q (I−U(k)BB) (P + Q) ain
B = QU(k)BL a

in
L ,

which yields

(
bin
B
†
(I−U(k)BB)bin

B

)
·Pain

B −PU(k)BBQain
B = PU(k)BL a

in
L , (193a)

−QU(k)BBPain
B + YQ(k)Qain

B = QU(k)BL a
in
L , (193b)

where YQ(k) has been defined in (96) We have defined YQ(k)−1 in (97) as the inverse

on the reduced space spanned by Q. Note that these definitions are here extended

to wave numbers close to k0 while P and Q do not depend on k. We used the general

relation PAP =
(
bin
B
†
Abin

B

)
·P for a square matrix A. After rearranging (193b) by

multiplying with YQ(k)−1 and replacing a(k)inB by ρ(k) ain
L , we obtain

Qρ(k) = YQ(k)−1U(k)BBPρ(k) + YQ(k)−1U(k)BL . (194)

Given that bin
B
†
(I−U(k)BB)bin

B in (193a) is a scalar and after replacing Qain
B by

Qρ(k) ain
L using (194), one obtains after some further manipulations

Pρ(k) = P
I + U(k)BBYQ(k)−1

bin †
B [I−U(k)BB −U(k)BBYQ(k)−1U(k)BB]bin

B
U(k)BL. (195)

In order to analyse the scattering solutions in the vicinity of the bound state, we

consider wave numbers k close to k0 in the limit δk ≡ k−k0 → 0 in the matrices σ(k)

and ρ(k). By construction we have YQ(k)bin
B = 0 and YQ(k)−1 has been defined

on the subspace spanned by the projector Q in order to remove the pole at k0. For

wave numbers k sufficiently close to k0 this definition remains well defined due to
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the (assumed) non-degeneracy of U(k) as the matrix is then free of poles.

D.2 Expansion of Pρ(k) around k = k0

We will show in the following that, as k → k0 in (195), the denominator,

bin †
B

[
I−U(k)BB −U(k)BBYQ(k)−1U(k)BB

]
bin
B , (196)

vanishes but so does the numerator. We will show this for vertex scattering matrices

of the form (9) by performing a Taylor expansion of both expressions around k = k0.

For this, we need to find explicit expressions for the derivative of the blocks of the

quantum map U(k). The calculation of these is similar to the one performed in

Appendix B using equation (183). When this equation is applied here to the full

quantum map U, one obtains

d

dk
U(k) =

0 0

0 iL

U(k) +
1

2k


I 0

0 eikLΠ

−U(k)

I 0

0 e−ikLΠ

U(k)

 ,

(197)

where L and exp(−ikL) are 2NB- dimensional diagonal matrices with diagonal en-

tries ℓe and exp(−ikℓe), respectively. Setting k = k0 + δk, we find the expansions

U(k0 + δk)BB =U(k0)BB + iδkLU(k0)BB

+
δk

2k0

(
eik0LΠ−U(k0)BBe

−ik0LΠU(k0)BB
)

− δk

2k0
U(k0)BLU(k0)LB +O((δk)2) (198a)

U(k0 + δk)BL =U(k0)BL + iδkLU(k0)BL

− δk

2k0
U(k0)BBe

−ik0LΠU(k0)BL

− δk

2k0
U(k0)BLU(k0)LL +O((δk)2) . (198b)
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As bin
B is a normalized eigenvector of U(k0)BB with eigenvalue one and as U(k0)LBb

in
B =

0, bin
B
†
U(k0)BL = 0 due to the unitarity of U(k0), one gets

bin
B
†
U(k0 + δk)BBb

in
B = 1 + iδkbin

B
†
(
L +

sin(k0L)

k0
Π

)
bin
B +O((δk)2) (199)

and

bin
B
†
U(k0 + δk)BBYQ(k0 + δk)−1U(k0 + δk)BBb

in
B = O((δk)2). (200)

The last two equations together give

bin
B
† [I−U(k)BB −U(k)BBYQ(k)−1U(k)BB

]
bin
B

= −iδk bin
B
†
[
L +

sin(Lk0)

k0
Π

]
bin
B + O((δk)2) . (201)

Analogously one finds

PU(k0 + δk)BL = iPLU(k0)BLδk −P
δk

2k0
e−ik0LΠU(k0)BL +O((δk)2) (202)

and

PU(k0 + δk)BBQ =

δk P

[
iLU(k0)BB +

1

2k0
Π

(
eik0L − e−ik0LU(k0)BB

)]
Q +O((δk)2) (203)

which together yield

P(I + U(k)BBYQ(k)−1)U(k)BL =

iδk P

[
L− 1

2k0i
Πe−ik0L

]
U(k0)BL

+iδk P

[(
LU(k0)BB + Π

eik0L − e−ik0LU(k0)BB
2k0i

)
YQ(k0)

−1
]
U(k0)BL+O((δk)2) .

(204)
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Finally, we show that the term bin
B
†
(
L + 1

k0
sin(k0L)Π

)
bin
B in (201) does not vanish.

This is essential for the limit limδk→0Pρ(k + δk) to be well defined (and finite).

Indeed one has

bin
B
†
(
L +

sin(k0L)

k0
Π

)
bin
B =

∑
e∈B

ℓe(|be+ |2 + |be− |2) +
sin(k0ℓe)

k0

(
b∗e+be− + b∗e−be+

)
(205)

which is a sum over positive terms as (for k0 > 0)

∣∣∣∣sin(k0ℓe)

k0ℓe

(
b∗e+be− + b∗e−be+

)∣∣∣∣ <
∣∣(b∗e+be− + b∗e−be+

)∣∣ ≤ |be+|2 + |be−|2

using the Cauchy-Schwartz inequality.

This means that the limit Pρ(k0) ≡ limδk→0Pρ(k0 + δk) is well defined and we

obtain to leading order

Pρ(k0) =
P
[

1
2i
Πe−ik0L − k0L−

(
k0LUBB + Π eik0L−e−ik0LUBB

2i

)
Y−1Q

]
bin
B
†
[k0L + sin(k0L)Π]bin

B

U(k0)BL.

(206)

For quantum graphs with vertex matching conditions leading to vertex scattering

matrices not depending on the wave number, (such as Neumann- Kirchhoff boundary

conditions), this simplifies further to

Pρ(k0) = −PL
I + U(k0)BBYQ(k0)

−1

bin
B
†
L bin

B

U(k0)BL . (207)

Likewise, it can be shown that Qρ in (194) and the scattering matrix in (37) are

also well defined in an interval containing k0. In the limit k → k0, we obtain for the

latter the result (99) as expected.

In this regularization, we have explicitly used equation (183) which is valid precisely

for scattering matrices that come from a self-adjoint matching condition. So one may
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wonder whether it is valid for the large amount of physical quantum graph models

that define the quantum graph in terms of arbitrary prescribed scattering matrices

(as for instance in [229]). In most of these physical cases, the scattering matrices are

assumed to be constant with respect to k which implies that the right-hand side of

equation (183) vanishes. It is easy to see that this leads to some simplifications in

the following formulas and leads to a well-defined regularized scattering matrix. If

one prescribes scattering matrices with some dependency on the wave number then

the regularity of the scattering matrices in the presence of bound states cannot be

guaranteed in general. However if the scattering matrix is an effective description

derived from a more detailed self-adjoint system (whether that is a graph or a

different type of model), then there exists a well-defined scattering matrix both

physically and mathematically basically because the spectral decomposition of self-

adjoint operators is always based on orthogonal projections, such that scattering

states are always orthogonal to bound states. Showing the regularity in this case will

require an analogous projection method but will generally require its own analysis.

Vice versa a non-regular scattering matrix may be an indicator that a model is not

physical in all respects (which does not necessarily mean that the model is bad as

long as its limitations are known).

Our assumption that the perfect scar is non-degenerate may also be lifted but leads

to more cumbersome calculations – if the perfect scars do not overlap, one may

regularise by first regularizing the scattering matrices of the corresponding non-

overlapping subgraphs and then build up the full scattering matrix from there.

Otherwise the rank one projector P needs to be replaced by higher rank projec-

tors.
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169



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

in serial-structure geometric scatterers. Journal of Mathematical Physics,

42(9):4050–4078, 2001.

[211] Peter Kuchment. Quantum graphs: II. some spectral properties of quantum

and combinatorial graphs. Journal of Physics A: Mathematical and General,

38(22):4887–4900, may 2005.

[212] Bérangère Delourme, Sonia Fliss, Patrick Joly, and Elizaveta Vasilevskaya.

Trapped modes in thin and infinite ladder like domains. part 1: existence

results. Asymptotic analysis, 103(3):103–134, 2017.

[213] B. Heinand G. Tanner. Wave communication across regular lattices. Physical

review letters, 103(26):260501, 2009.

[214] Bérangère Delourme and Sonia Fliss. Guided modes in a hexagonal periodic

graph like domain. arXiv preprint arXiv:2309.02023, 2023.

[215] Alex Figotin and Peter Kuchment. Spectral properties of classical waves

in high-contrast periodic media. SIAM Journal on Applied Mathematics,

58(2):683–702, 1998.

[216] Wally Axmann, Peter Kuchment, and Leonid Kunyansky. Asymptotic meth-

ods for thin high-contrast two-dimensional pbg materials. Journal of Lightwave

Technology, 17(11):1996, 1999.

[217] Claudio Amovilli, Frederik E Leys, and Norman H March. Electronic energy

spectrum of two-dimensional solids and a chain of c atoms from a quantum

network model. Journal of mathematical chemistry, 36:93–112, 2004.

[218] Marzieh Baradaran and Pavel Exner. Cairo lattice with time-reversal non-

invariant vertex couplings. Journal of Physics A: Mathematical and Theoreti-

cal, 2023.

170



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

[219] Peter Kuchment and Leonid Kunyansky. Differential operators on graphs and

photonic crystals. Advances in Computational Mathematics, 16:263–290, 2002.

[220] Alex Figotin and Peter Kuchment. Band-gap structure of spectra of peri-

odic dielectric and acoustic media. i. scalar model. SIAM Journal on Applied

Mathematics, 56(1):68–88, 1996.

[221] Peter Kuchment and Olaf Post. On the spectra of carbon nano-structures.

arXiv preprint math-ph/0612021, 2006.

[222] JE Avron, P Exner, and Y Last. Periodic schrödinger operators with large

gaps and wannier-stark ladders. Physical review letters, 72(6):896, 1994.

[223] Jeffrey H Schenker and Michael Aizenman. The creation of spectral gaps by

graph decoration. Letters in Mathematical Physics, 53:253–262, 2000.

[224] Pavel Exner, Shu Nakamura, and Yukihide Tadano. Continuum limit of the

lattice quantum graph hamiltonian. Letters in Mathematical Physics, 112(4),

aug 2022.

[225] Shu Nakamura and Yukihide Tadano. On a continuum limit of discrete

schrödinger operators on square lattice. Journal of Spectral Theory, 11(1):355–

367, 2021.

[226] Georgi S Medvedev. The nonlinear heat equation on dense graphs and graph

limits. SIAM Journal on Mathematical Analysis, 46(4):2743–2766, 2014.

[227] T. Kottos and U. Smilansky. Quantum chaos on graphs. Physical Review

Letters, 79:4794–4797, 1997.

[228] T. Kottos and U. Smilansky. Chaotic scattering on graphs. Physical review

letters, 85(5):968, 2000.

[229] F. Barra and P. Gaspard. Transport and dynamics on open quantum graphs.

Phys. Rev. E, 65:016205, Dec 2001.

171



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

[230] Tristan Lawrie, Sven Gnutzmann, and Gregor Tanner. Closed form expressions

for the green’s function of a quantum graph—a scattering approach. Journal

of Physics A: Mathematical and Theoretical, 56(47):475202, 2023.

[231] Alexandre G M Schmidt, Bin Kang Cheng, and M G E da Luz. Green function

approach for general quantum graphs. Journal of Physics A: Mathematical and

General, 36(42):L545–L551, oct 2003.

[232] Yshai Avishai and Jean-Marc Luck. Quantum percolation and ballistic con-

ductance on a lattice of wires. Physical Review B, 45(3):1074, 1992.

[233] RV Craster, Tryfon Antonakakis, Maria Makwana, and Sébastien Guen-
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main. Analogue computing with metamaterials. Nature Reviews Materials,

6:207–225, 2021.

[267] L Wesemann, T Davis, and A Roberts. Meta-optical and thin film devices for

all-optical information processing. Applied Phytsics Reviews, 8:031309, 2021.

175



A Quantum Graph Approach to Metamaterial Design Tristan Matthew Lawrie

[268] Alexandre Silva, Francesco Monticone, Giuseppe Castaldi, Vincenzo Galdi,
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