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Data	fusion	is	the	technical	process	which	can	provide	comprehensive	information	

about	an	object	by	combining	multiple	datasets	that	are	collected	by	different	sensors.	It	

has	 been	 employed	 for	 point	 cloud	 registration	 in	 the	 context	 of	 optical	 coordinate	

measurement,	an	important	subject	in	metrology.	Researchers	in	this	>ield	have	proposed	

numerous	methods	to	improve	the	performance	of	data	fusion,	which	can	be	categorised	

into	 user-dependent	 methods,	 including	 Gaussian	 process	 (GP)	 and	 weighted	 least-

squares	 (WLS)	 algorithms,	 and	 user-independent	methods	 such	 as	machine	 learning.	

Recent	research	has	shown	the	convenience	of	deploying	GP	and	WLS	and	the	>lexibility	

and	 autonomous	 functionality	 of	 machine	 learning	 solutions.	 However,	 the	 target	

scenarios	have	been	focused	on	point	clouds	 in	similar	sizes	and	point	densities.	This	

trend	leaves	room	for	further	innovation	in	point	cloud	registration.	

In	this	research	project,	a	new	algorithmic	pipeline,	which	is	capable	of	registering	

two	point	 clouds	with	 the	 following	characteristics	 contained	 in	a	maximum	working	

volume	of	500 × 500 × 500	mm,	is	proposed:	1)	the	two	point	clouds	are	collected	from	

an	engineered	object	via	two	separate	optical	measurement	systems,	i.e.	they	are	located	

in	 two	uncorrelated	 coordinate	 frames;	 2)	 the	 smaller	 point	 cloud	 shows	 the	 surface	

texture	on	a	small	area	on	the	engineered	object,	which	is	represented	by	the	larger	point	
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cloud;	3)	the	point	density	of	the	smaller	point	cloud	is	>	10	times	the	point	density	of	

the	larger	point	cloud.	The	challenge	lies	in	the	omission	of	training	data:	the	variation	of	

surface	 texture	 is	 in>inite	and	 the	area	on	 the	engineered	object	 cannot	be	 rigorously	

determined	by	the	user.	As	such,	the	thesis	proposes	a	statistical	method	to	register	two	

point	 clouds	 with	 aforementioned	 characteristics,	 which	 can	 be	 summarised	 as	 the	

“geometrical	similarity	comparison”.	In	the	step	of	detecting	the	target	area,	the	larger	

point	cloud	 is	subdivided	 into	equally	sized	subsections	(sub-clouds);	 the	geometrical	

similarity	between	each	sub-cloud	and	the	smaller	point	cloud	is	measured	via	principal	

component	analysis	(PCA).	The	comparison	based	on	PCA	will	result	in	the	smaller	point	

cloud	being	located	in	the	target	area	formed	by	the	selected	sub-clouds.	Afterwards,	the	

space	mutually	occupied	by	the	target	area	and	the	smaller	point	cloud	is	voxelised	so	

that	the	spatial	point	distributions	of	both	point	clouds	can	be	assessed.	The	orientation	

of	the	smaller	point	cloud	which	aligns	it	to	the	target	area	is	determined	as	the	correct	

orientation,	and	hence	completes	the	whole	registration	process.	

To	test	the	performance	of	this	algorithmic	pipeline,	three	experimental	cases	were	

designed	with	a	gradation	of	geometrical	complexity:	two	cases	include	synthetic	point	

clouds	generated	from	CAD	models	and	one	case	in	which	the	point	clouds	were	collected	

from	a	coin.	The	differences	of	point	densities	between	the	pair	of	point	clouds	in	these	

cases	are	in	the	range	of	10	to	10!.	The	results	indicate	that,	though	manual	double-check	

is	 needed	 as	 the	 geometries	 of	 the	 test	 object	 increases,	 the	 algorithmic	 pipeline	 is	

capable	of	detecting	the	location	in	the	larger	point	cloud	to	register	the	smaller	point	

cloud.	When	scanning	the	point	clouds	collected	from	the	coin,	the	most	geometrically	

complex	engineered	artefact	in	this	research,	the	pipeline	detected	the	top	0.73%	sub-
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clouds	(186	out	of	25,459)	which	potentially	formed	the	target	area	in	the	larger	point	

cloud	to	register	the	smaller	point	cloud.		

The	pipeline	is	adequate	of	detecting	the	most	optimised	orientation	to	register	the	

smaller	point	cloud	regardless	of	the	geometrical	complexity	of	both	point	clouds.	With	

a	 10°	 interval	 for	 360°	 orientation	 attempts,	 the	 optimal	 orientation	 achieves	 a	

registration	error	ranging	from	5%	to	0.15%,	based	on	the	mean	point-to-point	distance	

relative	to	the	smaller	point	cloud’s	dimensions.	

The	directions	left	for	future	work	are	increasing	the	accuracy	of	the	detection	of	the	

target	area	and	renovating	the	algorithm	to	reduce	the	computational	cost.	Additionally,	

big-picture	topics	questioning	the	empirical	methodology	of	this	research	are	discussed	

and	concluded.	
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This	research	is	aimed	at	proposing	a	novel	data	fusion	pipeline	which	is	a	capable	

of	registering	point	clouds	with	different	sizes	and	point	densities.	Data	fusion	has	been	

implemented	in	a	huge	diversity	of	technologies	and	industries,	ranging	from	healthcare	

to	defence	 [1–6].	Having	been	 aware	of	 the	 functionality	 and	potential	 of	 data	 fusion	

process,	I	foresaw	that	it	should	be	the	right	moment	to	introduce	data	fusion	into	the	

research	 of	metrology.	 In	 this	 chapter,	 the	 concepts	 and	 terms	 that	 are	 necessary	 to	

proceed	this	thesis	will	be	introduced	and	explained.	

1.1. Backgrounds	
Data	fusion	was	formally	de>ined	for	the	>irst	time	in	1987	by	the	Joint	Directors	of	

Laboratories	(JDL)	in	the	USA	(United	States	of	America)	[7].	In	1991,	the	JDL	de>ined	

data	fusion	as	a	general	technical	term	as	follows	[8]:	

Chapter 1  
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“A	process	dealing	with	the	association,	correlation,	and	combination	of	data	
and	 information	 from	 single	and	multiple	 sources	 to	achieve	 reEined	position	and	
identity	estimates,	and	complete	and	timely	assessments	of	situations	and	threats	as	
well	as	their	signiEicance.”	

Data	 fusion	 has	 been	 employed	 for	 research	 in	 various	 subjects,	 including	

metrology,	a	subject	on	the	measurement	of	the	external	shape	and	surface	texture	of	an	

engineered	component	[9–11].	The	most	widely	acknowledged	de>inition	of	data	fusion	

speci>ically	within	the	context	of	metrology	was	given	by	Weckenmann	et	al.	[12]	in	2009,	

stated	as	follows:	

“Multi-sensor	 data	 fusion	 in	 dimensional	 metrology	 can	 be	 deEined	 as	 the	
process	of	combining	data	from	several	information	sources	(sensors)	into	a	common	
representational	format	in	order	that	the	metrological	evaluation	can	beneEit	from	
all	available	sensor	information	and	data.	This	means	that	measurement	results	can	
be	determined,	which	could	not	–	or	only	with	worse	accuracy	–	be	determined	solely	
on	the	basis	of	data	from	an	individual	source	(sensor)	only.”	

From	this	de>inition,	the	advantages	of	using	data	fusion	in	metrological	contexts	

are	clear:	fusion	of	data	from	a	multi-sensor	system	can	be	used	to	acquire	information	

that	are	not	measurable	using	a	single-sensor	system	[13],	which	forms	the	motivation	

of	this	research	project.		

In	the	scope	of	this	particular	research	project,	“data	fusion”	refers	speci>ically	to	

the	registration	of	point	clouds	 in	 the	context	of	optical	 coordinate	metrology,	 i.e.	 the	

registered	 point	 clouds	 are	 collected	 from	 an	 engineered	 object	 using	 instruments	

equipped	with	optical	sensors.	The	term	“registration”	is	de>ined	by	Catalucci	et	al.	[14],	

based	on	the	de>inition	presented	in	ISO	10360	part	13	[15],	as	follows:	
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“Registration	 is	 the	 process	 that	 brings	 multiple	 point	 clouds	 taken	 from	
observations	 of	 the	 same	 scene	 in	 their	 correct,	 relative	 position	within	 a	 shared	
coordinate	system.”	

The	process	of	fusing	multiple	point	clouds	is	then	de>ined	by	Abdelazeem	et	al.	[16],	

based	on	the	de>inition	presented	in	ISO	10360	part	13	[15],	as	follows:		

“Data	fusion	is	the	process	of	combining	data	from	multiple	sensors	in	order	to	
obtain	better	3D	model	of	an	object	than	that	obtained	from	single	sensor	data.”	

An	example	point	cloud	that	is	the	result	of	the	fusion	of	multiple	scans	is	shown	in	

Figure	1.	A	review	of	latest	research	on	point	cloud	registration	(see	Chapter	2)	unveils	a	

popularity	of	registering	multiple	point	clouds	in	similar	point	densities	and	sizes.	This	

trend	provides	a	void	for	novel	research	on	registering	point	clouds	with	a	disparity	in	

point	density	and	size.	

	

Figure	1	Multiple	point	clouds	registered	in	the	same	coordinate	frame.	Each	individual	point	cloud	is	
represented	with	a	distinct	colour	(from	[17]).	
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In	the	designated	application	scenario	of	this	research	project,	the	two	input	point	

clouds	are	characterised	by	the	following	properties:	

1) The	 large-sparse	 point	 cloud	 is	 collected	 within	 a	 working	 volume	 of	

500 × 500 × 500 	mm,	 i.e.	 none	 of	 the	 object’s	 dimensions	 should	 exceed	 any	

dimension	of	this	working	volume.	

2) The	large-sparse	point	cloud	and	the	small-dense	point	cloud	do	not	share	the	

same	coordinate	system.	

3) The	precise	location	of	the	area	on	the	surface	of	the	engineered	part,	where	the	

small-dense	 point	 cloud	 is	 captured,	 cannot	 be	 determined	 via	 any	 technical	

device	or	method	because	the	coordinate	frame	of	the	instrument	used	to	capture	

the	small-dense	point	cloud	and	the	coordinate	frame	of	the	instrument	used	to	

collect	the	large-sparse	point	cloud	are	not	correlated.	

4) There	 is	 a	 considerable	 disparity	 in	 point	 densities	 in	 the	 two	 point	 clouds.	

Speci>ically,	 the	 difference	 in	 point	 density	 is	 supposed	 to	 be	 >	 1	 order	 of	

magnitude	(i.e.	the	small-dense	point	cloud	is	>	10	times	“denser”	than	the	large-

sparse	point	cloud).	

5) There	is	also	a	considerable	difference	in	the	sizes	of	the	datasets	(meaning	the	

dimensions	of	the	areas	captured	during	the	measurement).	It	is	assumed	that	

the	areas	covered	by	the	large-sparse	point	clouds	are	10	to	10!	times	the	areas	

covered	by	 the	 corresponding	 small-dense	point	 clouds,	 though	 the	 gap	 in	 an	

industrial	scenario	can	be	even	larger.	
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1.2. Objectives	
The	outcome	of	this	research	project	is	an	algorithmic	pipeline	(denoted	as	pipeline	

in	 the	 following	 texts)	which	 describes	 the	 steps	 for	 registering	 two	 individual	 point	

clouds	of	different	characteristics	 in	 the	same	coordinate	 frame.	 In	 this	work,	 the	test	

scenario	is	identi>ied	by	one	of	the	two	point	clouds	having	a	relatively	low	point	density	

and	 representing	 the	 external	 shape	 of	 an	 engineered	 object	 as	 a	whole	 (denoted	 as	

large-sparse	point	cloud	in	the	following	texts);	the	other	point	cloud	has	a	relatively	high	

point	density	and	represents	the	surface	texture	details	of	a	small	area	on	the	external	

surface	of	 this	engineered	object	 (denoted	as	small-dense	point	 cloud	 in	 the	 following	

texts).	Aiming	at	 the	goal	of	proposing	this	pipeline,	 this	 thesis	 includes	the	 following	

speci>ic	objectives:	

1) Review	the	data	fusion	algorithms	for	metrological	applications	published	since	

20172	and	summarise	the	critical	trends	and	popular	techniques	among	these	

latest	publications.	

2) De>ine	 the	 ideal	 output	 of	 this	 pipeline	 and	 dissemble	 the	 ultimate	 goal	 into	

individual	tasks	in	relatively	simpler	tasks,	i.e.	proposing	individual	algorithms	

to	be	linked	as	a	complete	pipeline.	

3) Determine	 the	 mathematical	 foundations	 on	 which	 this	 pipeline	 should	 be	

based.	

4) De>ine	the	application	scenarios	of	this	pipeline	in	industrial	contexts.	

	
2	The	 author	 regards	 the	Year	2017	 as	 the	point	where	machine	 learning	became	 a	 prevalent	 and	

ubiquitous	subject	widely	employed	 in	 industrial	and	academic	scenarios.	Moreover,	 the	 total	number	of	
publications	 on	 data	 fusion	 since	 its	 Virst-time	 appearance,	 which	 was	 in	 the	 1960s,	 exceeds	 100,000	
according	to	the	results	on	Google	Scholars,	which	is	beyond	a	human’s	ability	to	review	such	a	gargantuan	
among	of	materials.	
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5) Test	the	pipeline	with	points	of	a	real	engineered	part	to	assess	the	performance	

of	the	pipeline	in	industrial	scenarios.	

1.3. Research	questions	and	contributions	
To	attain	the	objectives	of	this	research	project,	this	thesis	will	answer	the	following	

questions:	

1) Reviewing	 existing	 data	 fusion	 algorithms	 applied	 to	 optical	 coordinate	

measurement	tasks,	how	do	they	differ	in	terms	of	the	underlying	mathematics,	

and	how	do	these	differences	in>luence	their	performance?	

2) Examining	the	methodology	in	testing	an	algorithm	among	existing	publications:	

are	there	any	common	trends	in	the	geometries	of	artefacts	chosen	to	test	them,	

and	what	are	the	common	geometric	characteristics	of	the	artefacts?		

3) When	 registering	 two	 point	 clouds	 collected	 by	 separate	 instruments	 in	

irrelevant	coordinate	frames,	how	can	the	computer	determine	the	target	area	

to	register	a	point	cloud?	Since	there	is	no	existing	correct	answer	(i.e.	training	

datasets)	available	to	the	computer,	how	can	the	computer	recognise	the	pattern	

of	a	dataset	(the	small-dense	point	cloud)	in	a	dataset	(the	large-sparse	point	

cloud)?		

4) After	the	small-dense	point	cloud	has	been	located	in	the	target	area	in	the	large-

sparse	point	cloud,	how	can	the	computer	search	for	the	correct	orientation	of	

the	small-dense	point	cloud	and	hence	adjust	 it	 to	align	with	 the	geometrical	

features	in	that	target	area?	



	

7 
	

5) How	 does	 the	 pipeline	 perform	 with	 point	 clouds	 having	 different	 levels	 of	

geometrical	complexity?	What	are	the	limitations	of	this	pipeline	shown	when	

different	geometrical	complexities	are	given?	

6) What	are	the	potential	application	scenarios	of	this	pipeline?	

By	answering	these	questions,	this	thesis	will	make	the	following	contributions	to	

the	science	community:	

1) A	new	taxonomy	of	 latest	peer	algorithms	will	be	proposed,	which	can	assist	

engineers	and	researchers	to	choose	and	design	adequate	algorithms	for	their	

speci>ic	application	scenarios	(section	2.1	and	section	2.2);	

2) A	novel	scenario	of	point	cloud	registration	will	be	explored	in	this	research.	As	

mentioned	in	section	1.1,	the	smaller	point	cloud	represents	the	geometries	of	

a	subsection	in	the	larger	point	cloud;	the	former	has	a	point	density	10	to	100	

times	that	of	the	later;	they	are	located	in	two	individual	3D	coordinate	systems,	

not	sharing	the	same	coordinate	system;	due	to	the	inter-independent	status	of	

the	instrumentation	systems	used	to	collect	these	two	point	clouds,	the	location	

of	 the	 observed	 spot	 on	 the	 object,	 where	 the	 small-dense	 point	 cloud	 is	

captured,		cannot	be	systematically	determined;	

3) A	new	algorithm	to	recognise	a	user-de>ined	3D	geometrical	pattern,	contained	

in	the	input	dataset,	in	another	3D	dataset,	which	has	a	point	density	10	to	100	

lower	 than	 that	 of	 the	 input	 dataset.	 This	 algorithm	will	 not	 learn	 the	 user-

de>ined	pattern	by	receiving	a	large	amount	of	training	data;	the	only	input	the	

algorithm	will	receive	is	the	point	cloud	data	inputted	by	the	user.	Moreover,	the	

functionality	of	this	algorithm	will	not	be	diminished	by	the	difference	of	point	
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densities	 between	 point	 clouds.	 As	 such,	 a	 novel	 technique	 to	 store	 the	

geometrical	information	of	the	input	point	cloud	will	be	proposed,	too	(section	

3.1	and	section	4.2).	

4) A	novel	algorithm	to	align	the	orientations	of	two	point	clouds	regardless	of	the	

gap	in	point	densities.	This	algorithm	will	assess	the	point	distributions	of	the	

two	 point	 clouds	 in	 the	 3D	 space,	 resistant	 to	 any	 interference	 from	 the	

difference	in	point	density	between	the	two	point	clouds	(section	3.2	and	section	

4.3).	

1.4. Thesis	outline	
The	rest	of	this	thesis	is	structured	as	follows:	

In	 Chapter	 2,	 the	 latest	 research	 since	 2017	 on	 the	 data	 fusion	 algorithms	 in	

metrological	contexts	is	reviewed	and	discussed.	In	Chapter	3,	the	theoretical	foundation	

of	the	pipeline	is	presented	and	explained,	leading	to	Chapter	4	where	the	full	structure	

of	 the	 pipeline,	 including	 the	 technical	 parameters,	 is	 listed.	 Chapter	 5	 presents	 the	

experimental	 studies	 of	 the	 pipeline	 applied	 to	 three	 point	 clouds	 with	 various	

geometrical	complexities,	the	outputs	of	which	are	assessed	and	discussed	in	Chapter	6.	

The	conclusions	are	drawn	in	Chapter	7,	together	with	the	hints	on	future	works.	

The	contents	of	this	chapter	are	partially	covered	by	the	following	publication	by	

the	author	of	this	thesis:		

Zhang	Z	M,	Catalucci	S,	Thompson	A,	Leach	R,	Piano	S	2023	Applications	of	data	

fusion	in	optical	coordinate	metrology:	a	review	J.	Adv.	Manuf.	Technol.	124	1341–56		
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In	 the	 previous	 chapter,	 there	 are	 seven	 questions	 listed	 to	 be	 answered	 in	 this	

thesis.	In	this	chapter,	I	will	answer	the	>irst	two	questions	by	reviewing	existing	research	

on	data	fusion	algorithms	proposed	since	2017,	with	a	particular	focus	on	fusion	of	two	

or	more	datasets	featuring	3D	coordinate	information	(i.e.	point	clouds)	of	engineered	

parts	measured	 by	 optical	 instruments.	 As	 de>ined	 in	 section	 1.1,	 data	 fusion	 strictly	

refers	to	the	registration	of	two	or	more	3D	point	clouds	and,	therefore,	research	on	data	

fusion	as	a	broader	term,	including	its	possible	applications,	is	out	of	the	scope	of	this	

chapter.	

In	 this	 review,	 I	 investigated	 the	 latest	 proposed	 algorithms	 by	 observing	 their	

underlying	 mathematics,	 as	 I	 wanted	 to	 propose	 a	 method	 for	 selecting	 the	 most	

appropriate	algorithm	for	an	optical	coordinate	measurement	task	[2].	In	the	reviewing	

process,	I	categorised	algorithms	based	on	the	same	mathematical	foundation	into	some	

category, where	algorithms	in	that	category	have	similar	advantages	and	limitations	in	

measurement	 applications.	 With	 such	 a	 taxonomy,	 researchers	 can	 choose	 the	 most	

Chapter 2  

Literature review 
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suitable	algorithm	for	a	given	data	fusion	task.	As	I	focus	on	the	overall	mathematics	of	a	

data	fusion	pipeline,	individual	techniques	embedded	in	an	algorithmic	pipeline	(such	as	

Kalman	Filters	[18]	and	its	variants,	such	as	recursive	>iltering	[19],	particle	>iltering	[20],	

inertial	measurement	unit	[21]	etc.)	are	not	included	in	this	discussion.	

This	chapter	is	structured	as	follows.	In	section	2.1.1,	the	taxonomy	of	existing	data	

fusion	algorithms	is	 introduced	and	explained.	In	this	taxonomy,	I	classify	the	existing	

algorithms	 into	 three	 types:	Gaussian	process	 (GP),	weighted-least-square	 (WLS)	and	

machine	learning	algorithms.	In	sections	2.1.2,	2.1.3	and	2.1.4,	the	mathematics	behind	

each	type	of	data	fusion	algorithms	is	presented	and	discussed.	In	section	2.2,	the	latest	

research,	 including	 experimental	 and	 simulation	 results,	 for	 each	 algorithm	 type	 is	

presented.	 In	 section	 2.3,	 the	 bene>its	 and	 limitations	 of	 each	 type	 of	 algorithm	 are	

discussed,	in	reference	to	the	information	presented	in	section	2.2.	The	main	discoveries	

from	the	literature	review	are	summarised	in	section	2.4.	

The	contents	of	this	chapter	are	included	in	the	following	publication	by	the	author	

of	this	thesis	with	updated	information:		

Zhang	Z	M,	Catalucci	S,	Thompson	A,	Leach	R,	Piano	S	2023	Applications	of	data	

fusion	in	optical	coordinate	metrology:	a	review	J.	Adv.	Manuf.	Technol.	124	1341–56	

2.1. Theoretical	background	
2.1.1. A new taxonomy of data fusion algorithms 

Since	 the	 late	 1980s,	 researchers	 have	 proposed	 many	 taxonomies	 classifying	

techniques	 for	 data	 fusion.	 One	 of	 the	 earliest	 and	 the	 most	 frequently	 quoted	
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classi>ications	is	Luo	and	Kay’s	“data-feature-decision”	three-layer	classi>ication	[22],	in	

which	the	authors	classi>ied	data	fusion	algorithms	into	three	types	according	to	the	level	

of	 analysis:	 data	 level,	 feature	 level	 and	 decision	 level.	 This	 taxonomy	 was	 later	

elaborated	 into	 >ive	 fusion	 classes	 in	 Dasarathy’s	 >ive-layer	 architecture	 [23]:	 in	 this	

taxonomy,	 the	 type	 of	 algorithm	 is	 classi>ied	 according	 to	 which	 of	 the	 three	 levels,	

proposed	in	[22],	the	input	and	output	data	belong.	A	similar	taxonomy	is	the	Durrant-

Whyte	architecture	[24],	which	consists	of	a	data	pre-processing	level,	data-re>inement	

levels	 and	 human-computer	 interactions.	 These	 taxonomies	 do	 not	 emphasise	 the	

differences	in	the	mathematical	basis	for	each	algorithm;	instead,	the	focus	is	placed	on	

the	structure	of	 the	data	 inputted	 into	 the	 fusion	system,	or	 the	connections	between	

datasets	or	data	fusion	steps.		

In	this	chapter,	a	new	methodology	for	classifying	data	fusion	algorithms	is	de>ined	

based	on	the	mathematical	principles	that	underpin	existing	data	fusion	algorithms.	The	

mathematical	basis	of	each	algorithm	classi>ication	is	as	follows:	

• GP	 algorithms:	 need	 a	 GP	 “governing	 equation”	 to	 describe	 the	 calculation	

process	 and	 the	 geometric	 features	of	 a	 surface.	GPs	 are	 a	mathematical	 tool	

used	 to	express	a	stochastic	process	with	Gaussian	distribution	equations.	As	

such,	 a	mathematical	 equation,	 or	 a	 set	 of	 equations,	must	be	de>ined	before	

applying	the	algorithm.	

• WLS	algorithms:	designed	to	reduce	 the	noise	when	applying	data	 fusion	by	

assigning	 weights	 to	 the	 measurement	 result,	 in	 the	 form	 of	 a	 matrix.	 The	

working	principles	of	WLS	algorithms	are	similar	to	those	for	GP	algorithms,	and	

similarly	require	a	governing	equation	to	start	the	data	fusion	process.	
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• Machine	 learning	 algorithms:	 able	 to	 learn	 patterns	 in	 the	 input	 datasets,	

instead	of	being	de>ined	by	mathematical	rules	in	advance.		

GP	and	WLS	algorithms	require	pre-de>ined	mathematical	expressions	before	being	

implemented,	while	machine	learning	algorithms	detect	patterns	in	data	autonomously.	

Therefore,	the	major	difference	between	the	>irst	two	types	of	algorithms	and	machine	

learning	 algorithms	 is	 that	 the	 computing	 processes	 used	 in	 the	 >irst	 two	 are	 user-

dependent,	while	machine	learning	algorithms	do	not	require	manual	input	to	initiate	

the	data	analysis	process	[25].	Due	to	this	distinction,	in	this	review,	I	propose	classifying	

GP	 and	 WLS	 algorithms	 as	 “user-dependent	 algorithms”,	 while	 machine	 learning	

algorithms,	 together	with	other	arti>icial	 intelligence	 techniques	can	be	referred	 to	as	

“user-independent	algorithms”.	Here,	I	use	the	de>inition	of	machine	learning	de>ined	by	

Eastwood	et	al.	to	decide	whether	an	algorithm	should	be	classi>ied	as	a	machine	learning	

algorithm.	[25]:	

“Machine	 learning	 can	 be	 thought	 of	 as	 a	 system	 which	 is	 not	 speciEically	
programmed	to	solve	a	problem;	it	is	instead	told	what	problem	to	solve,	given	a	set	
of	training	data,	and	then	learns	how	best	to	solve	the	given	problem	on	its	own.”	
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	According	to	this	de>inition,	I	consider	any	statistical	learning	algorithms	relying	on	

pre-programmed	GP	and	WLS	models	 as	GP	and	WLS	algorithms,	 instead	of	machine	

learning.	The	proposed	taxonomy	is	shown	in	Figure	2.	

	

Figure	2	Taxonomy	of	data	fusion	algorithms.	

2.1.2. Gaussian process algorithms 

GP	algorithms	have	been	widely	explored	in	the	context	of	three-dimensional	(3D)	

point	 clouds,	 i.e.	 sets	 of	 𝑥, 𝑦, 𝑧	 positions	 in	 a	 3D	 coordinate	 space	 [26].	 GPs	 are	 a	

mathematical	tool	used	to	describe	normally	distributed	stochastic	processes	that	evolve	

in	time	according	to	probabilistic	laws	[27].	Each	GP	is	a	collection	of	random	variables,	

any	>inite	subset	of	which	obeys	a	joint	Gaussian	distribution	[28].	A	GP	is	de>ined	with	

the	expression	

	 𝐺𝑃(𝑿)	~	𝑁(𝜇(𝑿), 𝐾(𝑿, 𝑿)),	 (1)	
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where	𝑁	represents	a	normal	distribution	function	and	vector	𝑿	indicates	the	locations	

of	the	data	points	collected	by	the	sensor,	expressed	as	

	 𝑿 = [𝒙", 𝒙!, …	, 𝒙#],	 (2)	

where	𝜇(𝑿)	is	the	mean	function.	𝐾(𝑿,𝑿)	is	the	covariance	matrix,	de>ined	as	

	 𝐾(𝑿,𝑿)

=

⎣
⎢
⎢
⎢
⎡
𝑘(𝒙", 𝒙") 𝑘(𝒙", 𝒙!) 𝑘(𝒙", 𝒙$) ⋯ 𝑘(𝒙", 𝒙#)
𝑘(𝒙!, 𝒙") 𝑘(𝒙!, 𝒙!) 𝑘(𝒙!, 𝒙$) ⋯ 𝑘(𝒙!, 𝒙#)
𝑘(𝒙$, 𝒙") 𝑘(𝒙$, 𝒙!) 𝑘(𝒙$, 𝒙$) ⋯ 𝑘(𝒙$, 𝒙#)

⋮ ⋮ ⋮ ⋱ ⋮
𝑘(𝒙#, 𝒙") 𝑘(𝒙#, 𝒙!) 𝑘(𝒙", 𝒙$) ⋯ 𝑘(𝒙#, 𝒙#)⎦

⎥
⎥
⎥
⎤

	

(3)	

	

where	𝑘(𝒙% , 𝒙&)	is	the	covariance	kernel	function	[28].	

2.1.3. Weighted least-squares algorithms 

Algorithms	 using	 weighted	 least-squares	 (WLS)	 methods	 were	 introduced	 by	

Forbes	[29],	speci>ically	in	the	context	of	coordinate	metrology.	Forbes’s	work	aimed	at	

reducing	the	noise	in	data	by	applying	weights	to	each	dataset.	WLS	fusion	is	based	on	a	

linear	measuring	system	[29],	given	by	

	 𝒛 = 𝐻𝒙 + 𝜀,	 (4)	

where	𝒙	is	an	n-vector	comprised	of	the	model	parameters	to	be	measured,	𝐻	is	an	

m	 ×	 n	 (m	 >	 n)	 matrix	 of	 the	 measured	 points,	 𝒛 	is	 an	 m-vector	 representing	 the	

measurement	result	and	𝜀	is	a	noise	vector	independent	from	the	collected	data,	given	by	

𝜀~(𝟎, 𝜎!𝑰)	[29].	Assume	there	is	a	sample	set	with	K	samples,	given	by	{𝑧'}'∈) 	with	noise	

level	𝜀,	the	model	parameter	vector	𝒙	can	be	solved	by	minimising	the	weighted	squares	

cost	function	
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	 ∑ 𝑤'‖𝑧' −𝐻'𝒙‖!'∈) ,	 (5)	

where	𝑤' 	are	designed	scalar	weights	[30].	The	fusion	process	is	based	on	solving	

the	model	parameter	vector	𝒙	by	forcing	the	partial	differential	equation	of	this	weighted	

squares	 cost	 function	 to	 be	 zero.	 Existing	 research	 has	 so	 far	 focused	 on	 proposing	

different	methods	forcing	this	result.	Additionally,	researchers	have	been	exploring	new	

methods	of	designing	weights	𝑤' 	(see	section	2.2.2).	

2.1.4. Machine learning algorithms 

Machine	learning	has	been	an	active	research	area	in	academia	since	late	1950s,	but	

has	more	recently	become	an	industrial	focus	[31–33],	because	available	computational	

resources	 have	 signi>icantly	 increased	 in	 the	 past	 two	 decades	 [34].	 As	 such	 AI,	 and	

particularly	machine	learning,	has	become	an	ef>icient	tool	for	data-intensive	research	

[35],	especially	in	the	context	of	optical	coordinate	measurement.		

According	 to	 the	 de>inition	 given	 by	 Eastwood	 et	 al.	 [25]	 (section	 2.1.1),	 the	

computer	can	be	used	to	predict	trends	in	new	data	by	learning	patterns	in	existing	data	

(training	 data)	 with	 a	 pre-programmed	 logic.	 The	 central	 idea	 surrounding	machine	

learning	algorithms	is	to	create	an	autonomous	data	processing	system,	unlike	GP	or	WLS	

methods,	where	a	manually-de>ined	mathematical	description	is	required	[36].	As	such,	

machine	learning	algorithms	are	frequently	used	to	solve	problems	that	are	dif>icult	to	

model	with	prede>ined	mathematical	expressions	[36,37].	

There	are	three	categories	of	machine	learning,	with	each	category	depending	on	

how	the	original	data	is	pre-processed:	supervised	learning,	unsupervised	learning	and	

semi-supervised	learning	[38].	These	categories	are	as	follows:	
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• Supervised	learning:	If	 the	input	datasets	have	been	manually	 labelled,	then	

supervised	 learning	algorithms	are	used	 to	 learn	such	datasets.	Two	 types	of	

supervised	learning	are	most	frequently	used:	support	vector	machines	(SVMs)	

and	neural	networks	(NNs).	SVMs	are	used	to	realise	binary	classi>ication.	NNs,	

also	known	as	arti>icial	neural	networks	(ANNs),	learn	certain	parameters	of	a	

dataset	by	analysing	the	data	with	multiple	layers	of	neurons	(nodes),	each	of	

which	have	various	statistical	weights	de>ined	by	the	user	[39].		

• Unsupervised	 learning:	 In	 the	 case	 of	 unsupervised	 learning,	 the	 input	

datasets	are	unlabelled,	meaning	that	the	algorithms	learn	the	patterns	in	the	

data	without	direct	human	input.	Unsupervised	learning	algorithms	recognise	

the	hidden	patterns	 in	a	 given	dataset	by	 clustering	data	points.	 It	 should	be	

particularly	 noted	 that	 NNs	 and	 their	 variants	 can	 also	 be	 applied	 in	 an	

unsupervised	learning	case,	particularly	when	used	to	detect	or	extract	patterns	

in	 data	 [39–42].	 A	 typical	 example	 of	 NNs	 used	 as	 an	 unsupervised	 learning	

technique	is	discussed	in	section	2.2.3.	

• Semi-supervised	 learning:	 Semi-supervised	 learning	 algorithms	 process	

partially-labelled	 datasets	 [39].	 To	 our	 knowledge,	 in	 the	 context	 of	 optical	

coordinate	measurement,	no	work	has	been	published	using	semi-supervised	

learning	for	fusing	datasets	with	incomplete	labels.	As	such,	discussion	of	semi-

supervised	learning	research	is	not	included	in	this	review.	

In	addition	to	machine	learning,	there	are	other	>ields	under	the	broader	area	of	AI,	

some	of	which	are	shown	in	>igure	3,	but	discussion	of	these	areas	is	beyond	the	scope	of	

the	review.	
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Figure	3	Machine	learning	is	a	type	of	AI,	together	with	other	subjects	such	as	expert	systems	and	natural	
language	processing.	There	are	three	categories	of	machine	learning:	supervised	learning,	unsupervised	

learning,	and	semi-supervised	learning.	

2.2. Current	state	of	the	art	
In	 the	 following	 sections,	 I	 present	 recent	 research	 on	 the	 application	 of	 each	

algorithm	 type	 introduced	 in	 section	 2.1.	 The	 advantages	 and	 limitations	 of	 each	

algorithm,	 together	 with	 the	 general	 problems	 presented	 in	 existing	 research,	 are	

examined.	

2.2.1. GP algorithms 

Research	on	GP	algorithms	shows	a	broad	range	of	applications	in	optical	coordinate	

measurement,	separated	into	two	branches:	those	involving	fusion	of	datasets	collected	



	

18 
	

by	multiple	sensors	(this	is	the	most	common	branch),	and	those	involving	enhancement	

of	the	measurement	processes	to	improve	the	quality	of	datasets.		

Ji	 et	 al.	 [43]	 introduced	 the	 “adjustment	model”	 to	 supplement	GP	methods.	The	

adjustment	model	is	designed	to	fuse	inhomogeneous	data:	a	low-accuracy	dataset	(here,	

a	geometric	dataset	collected	by	an	optical	coordinate	measurement	system)	with	a	high-

accuracy	 dataset	 (here,	 a	 geometric	 dataset	 collected	 by	 contact	 coordinate	

measurement	 system).	 Before	 implementing	 the	 adjustment	 model,	 the	 external	

geometry	of	the	measured	surface	is	>irstly	predicted	by	applying	GP	to	the	low-accuracy	

dataset,	forming	a	model	of	the	surface	coordinates.	Then	the	adjustment	model	is	used	

to	describe	the	difference	between	the	model	of	the	surface	coordinates	and	the	high-

accuracy	 dataset.	 In	 this	 process,	 the	 high-accuracy	 dataset	 acts	 as	 the	 basis	 for	

correction.		

In	their	paper,	Ji	et	al.	[43]	chose	two	artefacts:	an	array	of	spherical	holes	(see	>igure	

4)	 and	 a	machined	 freeform	 surface.	 For	 each	of	 these	 artefacts,	 a	 low-accuracy	 (LA)	

dataset	 and	 a	 high-accuracy	 (HA)	 dataset	were	 collected	 by	 a	 contact	 and	 an	 optical	

coordinate	measurement	system.	The	authors	attempted	to	fuse	the	two	datasets	of	each	

of	 these	 two	artefacts	employing	 their	adjustment	model.	Results	showed	that	 the	GP	

method	with	the	adjustment	model	could	fuse	the	inhomogeneous	measurements	of	the	

complex	surfaces.	Additionally,	the	fusion	process	only	required	a	small	portion	of	the	HA	

dataset	 and	 one	 LA	 dataset,	 which	 improved	 the	 ef>iciency	 of	 the	measurement	 and	

fusion	processes.	
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Figure	4	Artefact	comprising	an	array	of	spherical	holes	used	in	[43].	

In	addition	to	the	work	presented	by	Ji	et	al.,	numerous	GP	algorithms	have	been	

proposed	over	the	past	>ive	years.	Ma	et	al.	[44]	developed	a	new	method	called	“fused	

Gaussian	process”	(FGP)	with	a	 two-component	covariance	structure.	Their	algorithm	

was	 designed	 to	 fuse	 large	 spatial	 datasets	 (e.g.	 remote	 sensing	 data).	 Yin	 et	 al.	 [45]	

introduced	 a	 similar	 GP	 regression	 algorithm	 speci>ically	 designed	 for	 multi-sensor	

systems	for	the	measurement	of	complex	surfaces.	Experimental	tests	indicated	that	the	

developed	algorithm	was	able	to	perform	intelligent	sampling	(i.e.	autonomous	selection	

of	effective	data	points	for	analysis)	when	fusing	datasets	from	various	sensors.		

2.2.2. WLS algorithms 

Many	algorithms	based	on	WLS	theory	have	been	proposed	in	the	past	few	years,	

aiming	at	improving	the	accuracy	and	ef>iciency	of	data	fusion.	The	most	common	WLS	

algorithms	are	those	developed	by	Forbes	[29]	and	Ren	et	al.	[46]	(see	>igure	5	for	the	

experimental	 settings	 in	 the	 research	by	Ren	et	al.).	The	 former	 introduced	a	general	

Bayesian	approach	in	order	to	balance	the	noise	parameters;	however,	this	solution	relies	

on	the	 >itting	accuracy	of	 the	 linear	surface	model,	and	 its	application	 in	multi-sensor	
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fusion	 is	 limited	 [46].	 To	 overcome	 this	 issue,	 the	 latter	 added	 a	 surface	 registration	

method	into	the	general	WLS	algorithm.	The	results	of	both	simulations	and	experiments	

indicated	that	their	new	method	could	improve	the	>idelity	of	the	reconstructed	surface,	

modelled	using	their	experimental	data	and	the	algorithm.	

	

Figure	5	Measurement	of	a	sinusoidal	structured	surface	using	an	optical	surface	topography	measurement	
system.	The	data	collected	by	the	measurement	system	is	used	to	test	the	WLS	algorithm	proposed	by	Ren	et	al.	

[46].	

Research	on	coordinate	measurement	has	also	highlighted	the	limitations	of	WLS	

algorithms	 in	 non-linear	 surface	 model	 and	 multi-sensor	 data	 fusion.	 Yu	 et	 al.	 [47]	

commented	 that,	 although	 the	 WLS	 method	 is	 capable	 of	 multi-sensor	 data	 fusion,	

showing	noticeable	reduction	of	the	measurement	uncertainty;	these	algorithms	are	still	

unable	 to	 provide	 comparable	 accuracy	 to	 GP	 algorithms,	 unless	 a	 large	 number	 of	

contact	points	have	been	measured,	which	limits	the	ef>iciency	of	the	algorithms.	Xiang	

et	al.	[48]	pointed	out	that	the	performance	of	WLS	algorithms	is	comparable	to	that	of	

GP	algorithms	only	when	processing	homogenous	datasets,	and	they	are	not	suitable	to	

fuse	datasets	collected	from	large-scale	surfaces	(e.g.	surfaces	of	major	parts	on	the	body	

of	an	aircraft	or	rocket	[49]).	Kong	et	al.	[50]	showed	that	WLS	algorithms	depend	on	



	

21 
	

linear	approximations	of	 the	geometry,	which	means	they	are	not	 ideal	 for	measuring	

objects	 of	 highly	 complex	 geometry	 (e.g.	 objects	 with	 sharp	 geometrical	 changes	 or	

smooth	surfaces	with	micro-structures	embedded).		

2.2.3. Machine learning algorithms 

A	 general	 review	 on	machine	 learning	 in	 data	 fusion	was	 recently	 presented	 by	

Meng	et	al.	[39].	In	their	review,	the	authors	noted	that	most	of	the	existing	research	is	

focused	on	stochastic	or	time-series	data	analyses,	covering	topics	such	as	autonomous	

vehicles,	the	Internet	of	Things	and	geographic	information	systems.	In	metrology,	the	

most	popular	application	is	the	fusion	of	3D	point	clouds	(the	relevant	de>initions	were	

given	in	section	1.1).	

To	apply	machine	learning	to	point	cloud	registration	and	fusion,	Wang	et	al.	[51]	

created	a	registration	and	fusion	pipeline	named	“deep	closest	point”	(DCP).	This	method	

is	proposed	as	an	alternative	to	the	iterative	closest	point	(ICP)	algorithm,	which	is	one	

of	 the	most	popular	 solutions	 for	point	 cloud	 registration	 [51–53].	 ICP	 is	 an	 iterative	

process	 that	 is	employed	to	minimise	 the	distance	between	two	point	clouds.	A	point	

cloud	(identi>ied	as	the	reference	or	target)	is	kept	>ixed,	while	the	second	one	(identi>ied	

as	the	source	or	moving	set)	is	transformed	to	best	match	the	reference	based	on	rigid	

motion	[17,51].	The	ICP	algorithm	can	fail	to	reach	the	global	minimum	due	to	its	non-

convexity,	i.e.	a	non-convex	function	may	have	multiple	local	minima	in	a	certain	range;	a	

local	minimum	found	in	a	certain	range	does	not	necessarily	correspond	to	the	global	

minimum	 [54].	 The	 methods	 presented	 in	 [55–57],	 which	 are	 all	 variants	 of	 ICP	

supplemented	with	various	statistical	optimisation	methods,	were	developed	to	address	

this	issue.	However,	in	some	cases	these	methods	have	not	been	proven	effective.	
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The	DCP	model	aims	to	provide	a	solution	to	the	local	minima	problem	with	ICP,	and	

consists	of	three	steps	[51]:		

1) Embed	 two	 individual	 point	 clouds	 into	 a	 common	 space	 and	 >ind	 the	

corresponding	points	in	two	clouds.		

2) Create	an	attention	module	combined	with	a	pointer	generation	layer	to	provide	

an	initial	matching,	i.e.	a	probabilistic	map	from	one	point	cloud	to	the	other.	

3) Extract	 the	 accurate	 alignment	 by	 analysing	 the	 results	 from	 step	 2)	 with	 a	

differential	singular	value	decomposition	(SVD)	layer.	

Here,	the	attention	module	is	a	machine	learning	mechanism	that	highlights	the	key	

data	points	to	increase	the	accuracy	of	prediction	[58].	A	pointer	is	the	core	element	of	a	

deep-learning	technique	called	“pointer	networks”,	which	uses	attention	as	pointers	to	

select	input	data	for	combinatorial	matching	[59].	In	this	research,	pointer	generation	is	

a	step	used	to	expose	matched	pairs	of	points	in	two	point	clouds	and	create	an	initial	

matching	[51].	The	matrix	of	 this	matching	 is	used	to	extract	 translation	and	rotation	

matrices	for	accurate	alignment	with	SVD	technique	[51].	

Wang	et	al.	[51]	compared	the	outcomes	of	DCP	and	ICP	algorithms	for	registration	

of	 multiple	 point	 clouds.	 The	 results	 of	 this	 comparison	 are	 shown	 in	 >igure	 6.	 The	

comparison	shows	that	ICP	assisted	by	DCP	can	converge	to	the	global	optimum,	and	DCP	

can	 increase	 the	 accuracy	 of	 alignment	when	 registering	 two	 point	 clouds	with	 poor	

initial	alignment	[51].	Additionally,	Wang	et	al.	drew	the	conclusion	that	DCP	is	a	capable	

algorithm	 for	 rigid	 registration	 tasks	 and	 can	 be	 used	 to	 replace	 ICP	 algorithms,	

considering	its	reduced	registration	errors.		
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Figure	6	The	fusion	of	two	point	clouds	by	DCP	and	ICP	[51].	

	

Later	research	by	Gojcic	et	al.	[60]	proposed	an	NN	model,	a	popular	technique	in	

machine	learning	(see	section	2.1.4),	to	fuse	two	multi-view	(i.e.	measurement	of	spatial	

coordinates	 through	 registration	 and	 fusion	 of	 multiple	 single-view	 measurements	 in	

different	 locations	 and	 orientations	 of	 the	 optical	 sensor	 relative	 to	 the	 workpiece,	 as	

de>ined	 in	 ISO	10360	part	 13	 [15]) datasets	 into	 a	 single	 point	 cloud.	 The	 algorithm	

models	the	registration	process	using	an	end-to-end	NN,	whose	accuracy	is	estimated	by	

a	speci>ically	designed	layer	within	the	NN.	In	[60],	Gojcic	et	al.	de>ined	the	problem	of	

aligning	 two	 point	 clouds	 as	 an	 iterative	 WLS	 problem,	 i.e.	 the	 3D	 transformation	

matrices	which	adjust	the	orientations	of	two	point	clouds	by	iteratively	re>ining	by	the	

NN	with	WLS	method	(see	section	2.1.3	for	WLS).	To	demonstrate	the	advantages	of	their	

NN	algorithm,	Gojcic	et	al.	tested	it	with	three	common	benchmark	datasets:	3Dmatch	

[61],	Redwood	[62]	and	ScanNet	[63].	Compared	to	non-machine	 learning	algorithms,	

the	NN	model	was	superior	in	terms	of	run	time,	rotational	error	and	translational	error	

[60].		
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In	 addition	 to	 the	 research	 discussed	 above,	 Zhang	 et	 al.	 [64]	 gave	 a	 general	

introduction	 to	 machine	 learning	 algorithms	 for	 data	 fusion	 in	 optical	 coordinate	

measurement.	 In	this	review,	Zhang	et	al.	categorised	all	machine	 learning	algorithms	

within	the	context	of	optical	coordinate	measurement	into	two	types:	machine	learning	

as	 a	 step	 added	 to	 a	 traditional	 measurement	 pipeline	 and	 a	 complete	 substitute	 of	

traditional	pipelines	using	machine	learning	technologies	[31].		

2.3. Discussion	on	existing	research	
2.3.1. Discussion on the state of the art 

In	this	section,	I	will	discuss	the	state	of	the	art	in	user-dependent	(i.e.	GP	and	WLS	

algorithms)	and	user-independent	(i.e.	machine	learning)	algorithms.	

In	 the	 studies	 on	 GP	 algorithms	 introduced	 in	 section	 2.2.1,	 researchers	 usually	

tested	an	algorithm	by	fusing	a	‘high-accuracy’	(HA)	dataset	with	a	‘low-accuracy’	(LA)	

dataset.	The	HA	data	were	collected	by	micro-scale	pointwise	measuring	sensors,	such	

as	coordinate	measuring	machines	(CMMs)	in	the	study	by	Yin	et	al.	[45].	The	LA	data	

were	collected	using	optical	inspection	sensors	such	as	fringe	projection	systems	[43].	

The	data	collection	ef>iciency	and	the	point	density	of	an	HA	dataset	are	low	due	to	the	

functionality	of	most	pointwise	measuring	instruments;	on	the	contrary,	data	collection	

for	 an	 LA	 dataset	 is	 rapid	 and	 its	 point	 density	 is	 high,	 but	 it	 cannot	 provide	 the	

coordinate	information	as	accurate	as	an	HA	data	[43,45].	The	bene>it	of	registering	an	

HA	dataset	with	an	LA	dataset,	therefore,	is	to	combine	the	accuracy	of	the	former	and	

the	ef>iciency	of	the	latter.	
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Existing	studies	in	GP	algorithms	usually	chose	one	of	the	following	two	paths	to	

fuse	an	HA	with	an	LA	dataset.	The	>irst	path	is	to	register	two	datasets	by	optimising	the	

point-to-point	distance	in	both	datasets.	In	the	GP	algorithm	research	discussed	in	this	

review,	the	most	typical	method	used	in	this	path	is	presented	in	Ji	et	al.	[43].	This	method	

fuses	two	datasets	by	unifying	the	coordinate	systems	through	optimisation	of	the	point	

distances.	The	other	path	 is	 to	propose	new	sampling	methods	based	on	GP	 for	data	

fusion.	 In	 this	 path,	 the	 LA	 dataset	 is	 >irst	 subsampled,	 then	 GP	 is	 applied	 to	 the	

subsampled	 dataset	 to	 reconstruct	 the	 surface	 geometry.	 Finally,	 the	 HA	 dataset	 is	

registered	with	the	reconstructed	surface.	The	key	to	this	research	path,	therefore,	is	the	

proposition	of	new	data	sampling	methods.	The	works	by	Yin	et	al.	[45]	and	Chen	et	al.	

[65]	are	typical	examples	of	this	path:	they	both	proposed	intelligent	adaptive	sampling	

methods	(i.e.	sampling	size	and	positions	vary	according	to	the	local	changes	in	surface	

geometry	[66])	based	on	GP	inference.	Chen	et	al.	particularly	discussed	scenarios	where	

the	measured	surface	has	sharp	geometrical	variations.	

Like	the	existing	studies	on	GP	algorithms,	typical	research	on	WLS	algorithms	such	

as	[46]	also	fused	an	HA	dataset	with	an	LA	dataset.	However,	as	mentioned	in	section	

2.2.2,	 WLS	 is	 not	 generally	 useful	 for	 fusing	 complex	 geometric	 data	 because	 of	 its	

reliance	on	linear	modelling	[43].	

Researchers	in	machine	learning	tend	to	test	their	algorithmic	pipelines	by	fusing	

two	or	more	datasets	representing	 the	same	3D	object.	For	example,	Wang	et	al.	 [51]	

tested	their	DCP	pipeline	by	fusing	multiple	pairs	of	point	clouds,	with	each	pair	of	point	

clouds	represented	a	3D	object	with	approximately	the	same	point	densities.	The	test	

datasets	in	[60],	as	another	example,	were	multiple	point	clouds	representing	a	building	
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interior.	Unlike	the	datasets	used	for	testing	GP	and	WLS	algorithms,	these	point	clouds	

did	not	contain	surface	texture	information,	instead	only	representing	the	general	shapes	

of	 the	object	or	building	 interior.	As	 such,	 existing	 research	has	not	 clari>ied	whether	

machine	 learning	 is	 effective	 for	 registering	 point	 clouds	 containing	 tiny	 and	 dense	

surface	 textures	 to	 large,	 sparse	 point	 clouds.	 Moreover,	 as	 the	 benchmark	 datasets	

usually	 had	 similar	 densities,	 the	 performance	 of	 machine	 learning	 in	 registering	

dissimilar	point	clouds	is	also	unknown.	Fusion	of	dissimilar	point	clouds	(e.g.	small-and-

dense	 point	 clouds	 to	 large-and-sparse	 point	 clouds)	 represents	 an	 area	 of	 future	

research.	

2.3.2. Advantages and limitations of user-dependent and user-

independent algorithms 

As	the	most	popular	type	used	in	optical	coordinate	metrology,	GP	algorithms	are	

relatively	simple	to	implement	and	can	be	used	for	>lexible	nonparametric	inference	(i.e.	

inferring	 the	 unknown	 quantities	 in	 the	 data	 while	 making	 as	 few	 assumptions	 as	

possible)	 [67–69].	 GP-based	 methods	 have	 these	 advantages	 because	 GP	 is	 the	

mathematical	basis	of	many	statistical	 learning	algorithms	[69].	However,	most	of	 the	

research	on	GP	methods	is	limited	to	tests	and	applications	performed	on	objects	with	

simple	geometries.	Consequently,	whether	these	algorithms	are	capable	of	dealing	with	

multiscale	 complex	 surfaces	 is	 not	 yet	 clear	 [26,45,70–72].	 Additionally,	 the	

implementation	of	GP	algorithms	simpli>ies	the	real	modelling	process	into	a	set	of	GP	

equations	 [67].	 In	 industry,	however,	 the	measurement	and	data	 fusion	processes	are	

more	complex	than	a	set	of	equations	can	describe	and	predict	(e.g.	due	to	the	continuous	

change	of	environmental	conditions)	[73,74].		
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As	user-dependent	algorithms,	both	GP	and	WLS	algorithms	rely	on	user-de>ined	

mathematical	expressions	to	process	the	external	geometry	and	surface	topography	data.	

Essentially,	when	 applying	 these	 algorithms,	 it	 is	 assumed	 that	 the	 engineered	 part’s	

geometry	can	be	described	with	a	set	of	GP	or	WLS	equations.	However,	the	measured	

part	can	have	highly	complex	geometric	features;	more	complex	than	those	that	GP	and	

WLS	 algorithms	 are	 able	 to	 model.	 This	 limitation	 is	 particularly	 notable	 in	 the	

implementation	 of	WLS	 algorithms,	 as	 presented	 in	 section	 2.2.2	 by	 [47,48,50].	 The	

surface	geometries	can	be	far	more	complex	than	the	mathematical	equations	can	model,	

which	is	the	general	limitation	for	user-dependent	algorithms,	as	[73,74]	indicate.		

As	user-independent	algorithms,	machine	learning	algorithms	de>ine	a	model	that	

allows	 learning	of	 the	patterns	 in	 the	data	autonomously	after	being	 trained	with	 the	

training	datasets,	instead	of	using	pre-de>ined	mathematical	expressions.	Consequently,	

machine	 learning	 solutions	 potentially	 provide	 more	 >lexibility	 than	 GP	 and	 WLS	

algorithms,	 particularly	 when	 measurement	 tasks	 cannot	 be	 modelled	 with	 speci>ic	

equations.			

Recent	research	has	shown	the	potential	of	machine	learning	algorithms.	The	Elman	

ANN	 algorithm	 has	 been	 shown	 to	 be	 capable	 of	 nonlinear	 predictions	 in	 practical	

applications,	for	instance	in	the	determination	of	the	position	of	an	object	in	3D	space	

[75].	 Fahmy	 et	 al.	 [76]	 indicate	 that	 machine	 learning-enhanced	 techniques	 can	

overcome	 data	 imperfection	 better	 than	 GP	 and	 WLS	 algorithms.	 Tong	 et	 al.	 [77]	

demonstrated	that	machine	learning	showed	robustness	against	noise	compared	to	GP	

algorithms.	Shu	et	al.	[78]	demonstrated	that	a	machine	learning	model	was	robust	in	

fusing	 datasets	 that	 had	 ambiguity	 and	 noise.	 A	 later	 work	 by	 Wang	 et	 al.	 [79]	
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demonstrated	the	ef>iciency	and	stability	of	machine	learning	algorithms	with	an	object-

tracking	task.	Alyannezhadi	et	al.	[80]	proposed	a	clustering	algorithm	to	fuse	datasets	

whose	characteristics	could	not	be	identi>ied	by	mathematical	equations.		

While	 the	 machine	 learning	 methods	 discussed	 were	 not	 all	 applied	 within	 the	

context	of	metrology,	researchers	have	demonstrated	that	machine	learning	is	capable	of	

complex	tasks	and	is	robust	against	noise	and	data	imperfections,	which	are	important	

advantages	for	applications	in	metrology.	One	of	the	directions	of	future	research	is	to	

explore	machine	learning	models	that	can	fuse	dense	point	clouds.	As	Wang	et	al.	[51]	

discuss,	the	latest	machine	learning	models	are	only	successful	with	point	clouds	of	500	

to	5	000	points;	ideal	machine	learning	models	should	be	able	to	process	up	to	300	000	

points.	

Regarding	the	precision	of	these	algorithms	and	evaluation	of	their	contributions	to	

measurement	 uncertainty,	 the	 published	 research	 has	 not	 included	much	 discussion,	

instead	only	comparing	new	machine	learning	algorithm	performance	with	other	earlier	

algorithms,	 such	 as	 ICP	 and	 fast	 global	 registration	 (FGR)	 [81].	 In	 optical	 coordinate	

metrology,	 comparison	 with	 non-machine	 learning	 algorithms	 using	 the	 same	

benchmark	datasets	 is	 also	 rarely	 seen	 in	 the	 literature.	Because	of	 these	 issues,	 it	 is	

dif>icult	to	comment	on	methods	for	evaluation	of	uncertainty	and	precision	of	existing	

machine	 learning	algorithms,	particularly	when	compared	with	non-machine	 learning	

algorithms.		

To	decrease	errors,	existing	research	on	new	machine	learning	methods	commonly	

proposes	 iterative	 re>inement,	 or	 “Multiple	 Run”	 [51,60,82].	 These	 experimental	

outcomes	indicate	that	multiple	runs	could	improve	accuracy	after	initial	registration.	To	
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our	knowledge,	researchers	have	not	proposed	more	techniques	particularly	aimed	at	

improving	 uncertainty	 and	 precision	 of	 machine	 learning.	 As	 such,	 examination	 of	

methods	 for	 evaluating	 the	 contribution	 to	 measurement	 uncertainty	 from	 these	

algorithms	is	a	ripe	area	for	future	research.	

Another	constraint	inherent	to	machine	learning	is	its	dependence	on	existing	data	

(training	data)	for	predicting	trends	or	identifying	patterns	within	datasets,	as	indicated	

by	the	de>inition	of	machine	learning	[25].	As	of	the	completion	of	this	thesis,	to	the	latest	

knowledge	of	the	author,	machine	learning	algorithms	for	point	cloud	registration	within	

metrological	contexts	without	reliance	on	training	data	have	not	been	identi>ied.	

Table	1	Summary	of	the	characteristics	of	all	algorithms	

Types	 Method	 Advantages	 Limitations	 Literature	
sources	

User-
dependent	

GP	

Simple	to	implement	and	
can	be	used	for	flexible	
nonparametric	inference	
[70,71,83]		

Replying	on	user-
defined	mathematical	
models	[83];	
ineffective	for	fusing	
data	of	complex	
geometries[72–
74,84].	

Ji	et	al.	[43]	
Ma	et	al.	[44]	
Yin	et	al.	[45]	
Chen	et	al.	[65]	
Wang	et	al.	[84]	
Yang	et	al.	[85]	

WLS	
Simple	to	implement	
[29].	

Low	efficiency	[47];	
incapable	of	large-
scale	data	fusion	[48];	
not	ideal	for	fusing	
data	of	highly	
complex	surface	[50].	

Forbes	[29]	
Ren	et	al.	[46]	

User-
independent	

Machine	
learning	

Does	not	require	user-
defined	mathematical	
models,	as	it	learns	the	
patterns	in	the	input	data	
autonomously	[86];	able	
to	fuse	data	that	cannot	

Applications	
particularly	in	
external	coordinate	
measurement	are	
rare;	it	has	not	been	
tested	with	highly	

Wang	et	al.	[51]	
Gojcic	et	al.	[60]		
Kolanowski	et	al.	
[75]	
Fahmy	et	al.	[76]	
Tong	et	al.	[77]	
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be	described	with	user-
defined	mathematical	
models	[80];	robust	
against	noise	in	data	
fusion	[78];	high	
effectiveness	[64].	

dense	point	clouds	
[51].	

Shu	et	al.	[78]	
Wang	et	al.	[79]	
Alyannezhadi	et	
al.	[80]	
	

 

The	advantages	and	limitations	of	all	types	of	algorithms	are	summarised	in	Table	

1,	 using	 the	 taxonomy	 I	 proposed	 in	 section	 2.1.1.	 In	 this	 summary,	 user-dependent	

algorithms	rely	on	user-de>ined	mathematical	models	to	learn	the	geometrical	patterns	

in	the	input	data	and	then	fuse	the	input	data	based	on	the	user-de>ined	models.	This	

feature	makes	user-dependent	algorithms	easy	to	deploy	but	also	dif>icult	to	fuse	data	of	

complex	geometries,	because	the	surface	geometries	can	be	more	complex	than	those	

that	GP	and	WLS	are	able	to	describe,	as	[73,74]	indicate.		

User-independent	algorithms,	such	as	machine	learning,	can	recognise	geometrical	

patterns	without	user-de>ined	mathematical	models.	These	algorithms	use	techniques,	

such	as	NNs,	to	detect	the	patterns	autonomously.	This	feature	makes	user-independent	

algorithms	effective	in	fusing	data	of	complex	geometries	that	are	dif>icult	to	analytically	

model.	However,	as	existing	research	is	still	relatively	rare,	more	experimental	studies	

are	in	need	to	prove	the	effectiveness	and	reliability	of	machine	learning	used	in	optical	

coordinate	measurement,	as	stated	in	section	2.3.1.	

2.3.3. Problems with experimental studies in existing research 

The	geometries	of	the	test	artefact	have	rarely	been	discussed	in	existing	reviews.	

In	 the	 literature	 collection	 process,	 I	 have	 noted	 that	 there	 are	 certain	 trends	 in	 the	

selections	and	designs	of	the	test	artefacts	in	existing	research.	In	the	research	presented	
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in	sections	2.2.1.	2.2.2	and	2.2.3,	the	artefacts	or	virtual	surfaces	that	were	used	to	test	

the	 algorithms	 usually	 had	 simple	 geometries.	 These	 artefacts	 and	 virtual	 surfaces	

generally	exhibited	the	following	characteristics:	the	virtual	surfaces	were	de>ined	using	

periodic	mathematical	patterns,	i.e.	the	de>initions	of	the	surface	used	in	each	paper	are	

usually	in	form	of	𝑧 = sin(𝐴𝑥) + cos(𝐵𝑦) , 𝐴, 𝐵 ∈ ℝ.	Similarly,	artefacts	used	were	either	

periodically	 patterned	 or	 had	 simple	 curvature.	 For	 example,	 artefacts	 with	 highly	

symmetrical	geometries	were	frequently	used	for	testing	the	newly	proposed	algorithms	

(see	examples	in	Figure	4,	Figure	5	and	Figure	7).	

	
	

(a)	 (b)	

	

Figure	7	Test	examples	of	recently	developed	algorithms:	(a)	shows	a	simulated	surface	generated	by	a	
mathematical	equation	in	form	of	𝑧 = 𝑠𝑖𝑛(𝐴𝑥) + 𝑐𝑜𝑠(𝐵𝑦) , 𝐴, 𝐵 ∈ ℝ	(from	[28]),	and	(b)	is	an	artefact	
with	relatively	smooth	geometry,	with	the	yellow	dots	representing	the	data	points	collected	by	the	

measurement	instrument	(from	[30]).	

As	discussed	in	section	2.3.1,	the	geometries	of	engineered	parts	are	likely	to	be	

more	 complex	 than	 the	 geometries	 of	 simulated	 surfaces	 and	 custom-designed	

artefacts	 in	 laboratories.	Therefore,	 in	addition	 to	simulated	surfaces	and	artefacts,	

common	 objects	 and	 engineered	 parts	 used	 in	 industry	 should	 be	 employed	 in	
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industrial	 and	 research	 activities	 to	 test	 different	 measurement	 techniques.	 For	

instance,	coins	represent	inexpensive	examples	of	metal	freeform	surfaces	that	can	be	

used	for	detection	of	defects	in	surface	topography	measurement	[87].		

Common	objects	used	in	practical	circumstances,	such	as	a	coin,	can	challenge	an	

algorithm	 more	 than	 a	 simulated	 surface	 or	 a	 specifically	 manufactured	 artefact.	

Taking	a	coin	as	an	example,	the	patterns	on	it,	e.g.	motto,	legend,	mint	mark,	display	

many	convex	and	concave	geometries,	which	are	characterised	by	a	wide	dimensional	

range	(see	figure	8).	As	such,	a	coin	can	provide	various	opportunities	to	challenge	the	

capability	of	a	coordinate	measurement	technique,	 including	data	fusion	algorithms	

used	 in	 this	 process	 [88].	 Additionally,	 coins	 with	 different	 materials	 and	 worn	

surfaces	lead	to	different	optical	reflectivity	conditions,	which	can	influence	the	data	

collected	by	optical	sensors	[89].	Therefore,	a	coin	is	also	an	effective	object	to	test	the	

robustness	 and	 stability	 of	 a	 data	 fusion	 algorithm	 in	 coordinate	 measurement	

processes.	
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(a)	 (b)	

Figure	8	An	example	of	surface	profile	of	a	part	of	a	coin	(1	zł,	Poland)	adapted	from	[88],	showing	
complex	geometric	features:	(a)	the	colour	map	of	height,	in	which	the	authors	mark	geometric	features	
including	design,	legend	and	mint	mark.	The	dot	line	marked	with	“Profile”	is	where	the	authors	of	[88]	
used	for	further	research	in	their	work	on	surface	proliferation;	(b)	3D	model	of	the	same	area	on	the	

coin,	rendered	with	data	shown	in	(a).	

In	 terms	of	 geometric	 complexity,	 a	 simulated	 surface	may	also	display	highly	

complex	geometry	if	its	mathematical	expressions	have	numerous	items,	as	Eastwood	

et	al.	[90]	and	Todhunter	et	al.	[91]	indicated	in	their	work.	If	a	3D	model	is	constructed	

with	such	polynomials	and	inputted	into	an	additive	manufacturing	system,	a	highly	

complex	artefact	can	be	manufactured	for	testing	data	fusion	algorithms.	However,	the	

more	complex	the	surface,	the	higher	the	computational	cost.	

Another	popular	type	of	object	used	for	metrological	research	is	aspherical	lenses	

[92,93]	(see	figure	9).	Aspherical	lenses	have	become	increasingly	common	in	industry	

because	 of	 the	 progress	 of	 manufacturing	 technology	 and,	 therefore,	 they	 are	

frequently	 used	 in	 medical	 imaging,	 optical	 systems,	 astrophysics,	 lithography,	

automotive	 and	metrology	 [94].	 The	 broad	 range	 of	 applications	 in	 high-precision	

optical	 fields	 demands	 better	 techniques	 for	 coordinate	 measurement	 in	
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manufacturing,	designing	and	 testing	aspherical	 lenses	 [95,96].	As	such,	 coordinate	

measurement	of	an	aspherical	lens	challenges	the	accuracy	of	data	fusion	algorithms	

used	in	this	process	[97].	

	 	

(a)	 (b)	

Figure	9	(a)	A	photo	of	two	example	aspherical	lenses,	(b)	schema	of	an	asphere	[92,98].	
	

2.4. Summary	
This	chapter	has	reviewed	a	broad	array	of	data	fusion	algorithms	used	for	optical	

coordinate	 measurement	 proposed	 since	 2017	 and	 de>ined	 a	 new	 taxonomy	 for	 the	

classi>ication	 of	 existing	 algorithms	 based	 on	 their	mathematical	 backgrounds:	 user-

dependent	 algorithms	 (GP	 methods	 and	 WLS	 methods)	 and	 user-independent	

algorithms	(machine	learning	algorithms).	The	critical	points	are:	

1) User-dependent	 algorithms	 are	 relatively	 easy	 to	 implement,	 as	 these	

algorithms	assume	that	the	geometry	of	a	surface	can	be	described	by	a	series	

of	 mathematical	 equations.	 However,	 these	 algorithms	 are	 not	 capable	 of	

modelling	 highly	 complex	 surfaces.	 Recent	 research	 on	 user-independent	
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algorithms	represented	by	machine	learning	and	its	derivatives	such	as	deep	

learning	 is	 relatively	 scarce,	 but	 the	 results	 have	 already	 demonstrated	 its	

potential	and	value	for	further	exploration.		

2) Virtual	 surface	 plus	 an	 engineered	 object	 is	 generally	 used	 to	 test	 the	

algorithms.	The	problem	with	virtual	surfaces	is	that	they	are	usually	created	

using	simple	mathematical	expressions,	consisting	of	a	sine	and	a	cosine	term.	

The	 problem	with	 engineered	 artefacts	 is	 that	 there	 is	 commonly	 a	 lack	 of	

complex	geometric	features	on	their	surfaces,	e.g.	sharp	changes	in	height	and	

irregular	scratches.		

3) User-independent	 algorithms	 can	 recognise	 geometrical	 patterns	 without	

preprogrammed	mathematical	models,	detecting	geometrical	patterns	in	point	

clouds	autonomously.	However,	the	autonomous	pattern	recognition	of	user-

independent	 algorithms	 is	 based	 on	 training	 datasets,	 which	 are	 existing	

correct	answers	as	inputs	to	the	algorithms.	Moreover,	existing	research	and	

experimental	studies	on	user-independent	algorithms	in	metrological	contexts	

are	still	relatively	rare	in	recent	research.	

These	>indings	indicate	the	following	knowledge	gaps	that	this	research	ought	to	>ill:	

1) The	new	algorithmic	pipeline	should	be	capable	of	processing	point	clouds	with	

complex,	 irregular	 geometries,	 which	 cannot	 be	 described	 with	 analytical	

mathematics	 such	 as	 Gaussian	 process	 and	 weighted	 least	 square.	 This	

contribution	 will	 be	 critical	 for	 real-world	 industrial	 contexts,	 because	

mathematically	 modelling	 real-world	 surface	 textures,	 such	 as	 irregular	

scratches	caused	in	usage	and	>laws	caused	by	manufacturing	processes,	can	be	
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a	perplex	and	daunting	task,	which	makes	the	point	cloud	registration	process	

less	ef>icient.	

2) The	 existing	 studied	 introduced	 in	 sections	 2.2	 and	 2.3	 are	 focused	 on	

registering	point	clouds	with	similar	point	densities	and	spatial	coverages	(i.e.	

sizes).	To	the	author’s	latest	knowledge,	there	has	not	been	a	study	particularly	

focusing	on	registering	point	clouds	with	a	considerable	level	of	point	density	

difference,	e.g.	the	point	density	of	one	point	cloud	is	more	than	10	times	higher	

than	that	of	the	other	one,	and	size	difference,	i.e.	the	area	represented	by	one	

point	cloud	is	merely	a	small	part	of	the	object	represented	by	the	other	one;	

3) The	 geometries	 of	 real-world	 surface	 textures	 are	 in>initely	 diverse,	 but	 the	

scenarios	contained	in	the	training	dataset	for	a	machine	learning	algorithm,	no	

matter	how	massive	and	inclusive	it	is,	are	always	limited	by	the	imagination	of	

the	researchers	who	train	the	machine	learning	model;	when	there	is	a	new	task	

showing	 a	 geometrical	 feature	 outside	 the	 scope	 of	 the	 training	 dataset,	 the	

machine	learning	algorithm	will	be	stumped	by	the	geometrical	novelty.	As	such,	

the	new	pipeline	should	be	established	on	a	new	logic,	by	which	the	pipeline	can	

recognise	 any	 geometrical	 pattern	 in	 a	 point	 cloud	 without	 depending	 on	

massive	training	data.	

	

The	 literature	 review	 has	 provided	 nourishment	 to	 designing	 a	 new	 data	 fusion	

procedure	 for	 optical	 coordinate	 measurement,	 but	 more	 importantly	 it	 unveils	 the	

uniqueness	 of	 the	 scenario	 in	 this	 thesis.	 As	 such,	 in	 the	 next	 chapter,	 a	 data	 fusion	
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pipeline	which	 functions	 speci>ically	 for	 the	 scenario	 in	 this	 research	 project	will	 be	

proposed.	Its	mathematical	principles	will	be	particularly	explained.	
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In	Chapter	1,	section	1.2,	the	characteristics	of	the	point	cloud	registration	pipeline	

proposed	in	this	research	are	stated.	The	strategy	is	to	register	two	point	clouds	which	

have	 considerably	 different	 sizes	 and	 point	 densities	 and	 do	 not	 share	 the	 same	

coordinate	 frame.	Based	on	our	knowledge,	 there	 is	no	existing	database	with	correct	

answers	 as	 input	 of	 the	 pipeline	 as	 training	 data.	 The	 literature	 review	 in	 Chapter	 2	

indicates	that,	despite	the	diversity	of	mathematical	principles	and	application	scenarios,	

the	 latest	presented	algorithms	cannot	be	 suitably	employed	 for	 the	 registration	 task	

investigated	in	this	research	project:	 they	either	 fail	 in	registering	point	clouds	with	a	

disparity	in	size	and	point	density,	or	not	applicable	to	analyse	a	given	pattern	in	point	

clouds	if	not	trained	with	pre-existing	training	data.	As	such,	a	new	method,	which	can	

overcome	these	challenges,	has	to	be	proposed.	

According	to	the	characteristics	of	the	designated	point	cloud	registration,	the	steps	

in	this	pipeline	can	be	concisely	planned	as:		

Chapter 3  
A statistical-based 
pipeline 
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1)	>ind	the	target	area	in	the	large-sparse	point	cloud	where	the	small-dense	point	

cloud	should	be	located;		

2)	move	the	small-dense	point	cloud	into	the	target	area	in	the	frame	of	the	large-

sparse	point	cloud;		

3)	detect	the	correct	orientation	of	the	small-dense	point	cloud;		

4)	change	the	pose	of	the	small-dense	point	cloud	to	the	correct	one.		

The	pivotal	points	are	steps	2)	and	3):	how	to	>ind	the	target	area	and	the	correct	

orientation	to	register	the	small-dense	point	cloud,	without	training	data	available?	The	

solution	provided	in	this	thesis	is	to	compare	the	geometrical	similarities	between	two	

point	clouds:	 the	area	 in	the	 large-sparse	point	cloud	which	displays	the	most	similar	

geometrical	characteristics	in	statistical	terms	is	determined	as	the	target	area	to	locate	

the	small-dense	point	cloud;	the	orientation	of	the	small-dense	point	cloud	which	gives	

the	most	similar	spatial	point	distribution	to	the	target	area	is	determined	as	the	correct	

orientation.	The	question	 is:	 how	 to	measure	 the	geometrical	 similarity	between	 two	

point	clouds	in	3D	space?	

The	solutions	provided	by	this	research	are	principal	component	analysis	(PCA)	and	

cross-sectional	geometrical	comparison.	The	area	in	the	large-sparse	point	cloud	which	

shows	the	most	similar	PCA	results	to	the	small-dense	point	cloud	is	determined	as	the	

target	area	to	locate	the	latter.	The	orientation	in	which	the	cross-sectional	geometry	of	

the	small-dense	point	cloud	is	most	similar	to	that	of	the	target	area	is	determined	as	the	

correct	orientation.	The	mathematical	 foundations	behind	 the	 two	 techniques	will	 be	

discussed	in	sections	3.1	and	3.2.		
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3.1. Principal	component	analysis	(PCA)	
PCA	is	widely	used	in	data	analysis	for	complexity	reduction.	In	point	clouds,	the	

principal	 components	 (PCs)	 correspond	 to	 the	 axes	 along	which	 the	 data	 points	 are	

distributed	 [99].	 It	 should	 be	 noted	 that	 there	 are	 techniques	 for	 data	 dimension	

reduction	other	than	PCA,	which	are	widely	implemented	in	complex	data	analysis	tasks.	

The	typical	examples,	which	can	be	potentially	applied	to	the	scenarios	in	this	research,	

are	t-distribution	stochastic	neighbour	embedding	(t-SNE),	linear	discriminant	analysis	

(LDA)	 and	 independent	 component	 analysis	 (ICA).	 However,	 due	 to	 the	 congenital	

characteristics	of	these	techniques	and	the	idiosyncrasies	of	the	context	of	this	research,	

PCA	is	still	the	winner	over	its	potential	alternatives.	

3.1.1. Why PCA? 

The	potential	competitors	against	PCA	have	their	limitations	for	the	scenario	in	this	

research,	which	are	exposited	as	follows:	

1) T-SNE:	 a	non-linear	dimensionality	 reduction	 technique	which	 is	particularly	

effective	 for	 complex	data	visualisation.	 It	 is	not	a	 suitable	 candidate	 for	 this	

research	because	it	 is	a	non-linear,	stochastic	method,	which	gives	a	different	

output	 in	 each	 new	 run.	 More	 importantly,	 it	 is	 focused	 on	 preserving	 local	

geometrical	 structures	 and	 hence	 potentially	 distorts	 global	 geometrical	

relationships	 crucial	 for	 detecting	 geometrical	 similarities	 in	 point	 clouds.	

Additionally,	it	is	computationally	intensive	for	massive	spatial	datasets	in	the	

scale	of	the	ones	in	this	research	[100].	
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2) LDA:	a	 linear	technique	which	works	by	reducing	data	dimensions	by	>inding	

feature	combinations	that	best	separate	classes	within	labelled	data.	It	can	only	

be	implemented	for	classi>ication	tasks,	which	require	labelled	input	datasets	

[101].	

3) ICA:	 a	 technique	 works	 by	 separating	 a	 multivariate	 signal	 into	 additive,	

independent	components.	Its	most	popular	application	is	signal	processing.	ICA	

assumes	 statistical	 independence	 of	 components,	 which	 does	 not	 work	

effectively	with	the	3D	spatial	correlations	in	point	clouds	[102].	

4) Deep	Learning:	Deep	Learning	programmes	utilise	neural	networks	 to	 learn	

representations	 from	data.	 Its	pattern	recognition	ability	 is	based	on	training	

data,	which	is	unfeasible	in	this	research	[103].	

In	addition	to	the	idiosyncrasies	of	the	scenario	in	this	research,	PCA	also	exhibits	

the	following	advantages	for	this	task	compared	to	aforementioned	options:	

1) PCA	 is	straightforward	to	 implement	and	computationally	ef>icient,	making	 it	

suitable	for	massive	3D	point	clouds	with	different	point	densities.	

2) It	does	not	require	labelled	data,	aligning	well	with	the	unsupervised	nature	of	

the	detection	of	geometrical	similarities.	

3) It	effectively	>igures	out	the	principal	axes	(principal	components)	of	variance,	

capturing	the	global	geometrical	structure	in	the	point	cloud	that	is	necessary	

for	geometrical	similarity	detection.	

4) By	focusing	on	the	overall	variance,	PCA	can	handle	considerable	differences	in	

point	density,	facilitating	the	geometrical	similarity	comparison	between	large-

sparse	and	small-dense	point	clouds.	
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3.1.2. How PCA works in this task?  

As	preliminary	step,	the	selection	of	the	sub-sections	in	the	large-sparse	point	cloud	

showing	the	most	similar	geometrical	characteristics	to	the	small-dense	point	cloud	is	

done	with	PCA,	used	in	two	folds.	First,	the	two	dominant	PCs	(PC	1	and	PC	2)	are	used	

to	create	a	plane	and	then	calculate	the	absolute	distances	between	points	and	the	PC-

plane	(as	demonstrated	in	Figure	10	(a));	the	statistical	patterns	of	the	point-to-PC-plane	

distances	are	plotted	 into	histograms	(as	demonstrated	 in	Figure	10	(b)),	used	as	 the	

evidence	to	measure	the	geometrical	similarities.	Figure	11	shows	that	the	difference	in	

geometrical	 characteristics	 of	 a	 point	 cloud	 causes	 the	 variation	 of	 the	 distribution	

pattern	of	the	point-to-PC-plane	distances:	the	3D	models	in	panels	(a)	and	(b)	feature	

the	exact	same	geometry	but	 in	different	orientations;	 the	resulting	point-to-PC-plane	

distances	histograms	appear	 similar.	A	 third	model	 shown	 in	panel	 (c)	with	different	

geometrical	 features	 on	 the	 top	 surface	 has	 been	 simulated	 to	 test	 changes	 in	 the	

distribution	pattern	of	the	point-to-PC-plane	distances	(i.e.	its	histogram	is	recognisably	

different	compared	to	those	of	models	(a)	and	(b)).	
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Figure	10	A	visual	demonstration	of	using	point-to-PC-plane	distances	as	a	statistical	information	of	a	point	
cloud.	In	image	(a),	the	grey	plane	is	formed	by	PC	1	and	PC	2.	The	lengths	of	the	dotted	lines	illustrate	the	
absolute	distances	from	points	to	the	PC	plane.	The	distribution	of	the	absolute	distances	is	plotted	into	a	

histogram	for	this	point	cloud	like	image	(b).	

	

 

Figure	11	The	three	images	in	the	lower	row	are	the	histograms	of	the	point-to-PC-plane	distances	of	the	
point	clouds	representing	the	CAD	models	in	the	upper	row.	There	are	1,000	points	in	each	point	cloud.	The	
red	lines	in	the	upper	row	images	represent	the	top	two	PCs	for	each	point	cloud.	The	3D	models	in	panel	(a)	

and	(b)	are	the	same,	obviously	different	from	the	model	in	column	(c).	
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Second,	for	the	candidate	sub-sections	selected	in	the	>irst	fold	and	the	small-dense	

point	cloud,	the	angles	between	local	norm	vectors	relative	to	the	PC-plane	of	the	point	

cloud	are	calculated	within	the	range	of	]0°, 90°_.	Similarly	to	the	processing	of	the	point-

to-PC-plane	distances,	the	angles	of	local	norm	vectors	are	sorted	and	visualised	into	a	

histogram.	As	shown	in	Figure	12	(a),	the	blue	arrows	emitted	from	the	points	represent	

the	local	norm	vectors;	in	Figure	12	(b),	the	angles	between	local	norm	vectors	and	the	

PC-plane	 are	 plotted	 into	 a	 histogram	 for	 this	 point	 cloud.	 Point	 clouds	with	 similar	

geometrical	 characteristics	 have	 similar	 local-norm-to-PC-plane	 angles	 distribution	

patterns,	as	 it	can	be	seen	 in	Figure	13:	 the	histograms	of	 the	 local-norm-to-PC-plane	

angles	of	models	in	panels	(a)	and	(b)	are	the	same,	even	if	their	position	and	orientation	

are	different.	The	geometrical	characteristics	of	the	model	in	panel	(c)	are	different	from	

(a)	and	(b),	and	its	histogram	shows	once	again	a	different	distribution.	In	conclusion,	

the	sub-sections	in	the	large-sparse	point	cloud	selected	at	this	stage	as	best	candidates	

are	determined	as	the	correct	location	for	registration	of	the	small-dense	point	cloud.	

 

Figure	12	A	visual	demonstration	of	using	local-norm-to-PC-plane	angles	as	a	statistical	information	of	a	
point	cloud.	In	image	(a),	the	grey	plane	is	formed	by	PC	1	and	PC	2.	The	arrows	from	the	points	represent	the	
local	norm	vectors	at	these	points.	The	distribution	of	these	angles	is	plotted	into	a	histogram	for	this	point	

cloud	like	image	(b).	
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Figure	13	The	three	images	in	the	lower	row	are	the	histograms	of	the	local-norm-to-PC-plane	angles	of	the	
point	clouds	representing	the	CAD	models	in	the	upper	row.	The	3D	models	in	column	(a)	and	(b)	are	the	same,	

obviously	different	from	the	model	in	column	(c).	

As	 introduced	 above,	 to	 detect	 the	 potentially	 matched	 sub-clouds	 in	 the	 large-

sparse	 point	 cloud,	 there	 are	 two	 folds	 of	 PCA	 implementation:	 the	 >irst	 time	 is	 to	

examine	the	distribution	of	point-to-PC-plane	distances;	the	second	time	is	to	assess	the	

local-norm-to-PC-plane	angles.	For	the	rationale	behind	this	two-fold	PCA,	consider	the	

following	situation	visualised	in	Figure	14:	there	are	two	3D	point	clouds	with	rotational	

symmetrical	geometries,	whose	side	views	are	shown	in	Figure	14	(a)	and	(b).	Regarding	

the	geometrical	symmetry	displayed	by	these	two	point	clouds,	the	distributions	of	their	

point-to-PC-plane	 distances	 appear	 similar.	 However,	 their	 geometries	 are	 obviously	

different.	As	such,	solely	point-to-PC-plane	distance	is	not	suf>iciently	safe	to	detect	the	

target	sub-clouds	which	are	potentially	matched	with	the	small-dense	point	cloud.	The	

assessment	of	local-norm-to-PC-plane	angles	is	a	necessary	complement.	
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Figure	14	The	side	view	of	two	3D	point	clouds,	both	of	which	are	of	rotational	symmetrical	shapes	in	3D.	The	
red	dotted	 lines	are	 their	PC	planes.	Their	histograms	of	point-to-PC-plane	distances	will	 appear	ostensibly	
similar,	but	they	are	apparently	not	matched	in	terms	of	geometrical	characteristics.	

3.2. Cross-sectional	geometrical	comparison	
PCA	can	help	determine	 the	correct	 location	(i.e.	 in	 this	work,	 the	best-matching	

sub-section	of	the	large-sparse	point	cloud)	for	optimal	registration	but,	in	this	pipeline,	

it	appears	as	independent	to	the	orientation	of	the	datasets.	For	this	reason,	to	determine	

the	correct	orientation	of	the	small-dense	point	cloud	with	respect	to	the	large-sparse,	

an	additional	statistical	analysis	has	been	performed	to	complete	registration.	Although	

the	iterative	closest	point	(ICP)	algorithm	and	its	variants	have	shown	promising	results	

for	orientation	determination,	their	application	scenarios	are	restricted	to	point	clouds	

with	 similar	 point	 densities	 [104–107].	 As	 such,	 an	 orientation-searching	 algorithm	

designed	speci>ically	for	datasets	with	signi>icant	disparity	in	point	density	is	proposed.	

The	 algorithm	 searches	 for	 geometrical	 similarities	 in	 cross-sections	 of	 the	 selected	

geometry.	The	outline	is	as	follows:	
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1) Determine	the	z-axis	of	the	small-dense	point	cloud:	the	direction	of	the	z-axis	

is	perpendicular	to	the	PC-plane	of	the	small-dense	point	cloud;	the	origin	of	the	

z-axis	overlaps	the	geometrical	centroid	of	the	small-dense	point	cloud	(it	is	also	

the	geometrical	centroid	of	the	target	area	in	the	large-sparse	point	cloud).	The	z-

axis	of	the	small-dense	point	cloud	will	be	used	for	orientation	changing.	

2) Voxelise	 the	 space:	 after	 locating	 the	 small-dense	 point	 cloud	 into	 the	 target	

area,	the	space	mutually	occupied	by	the	small-dense	point	cloud	and	the	target	

area	 is	 subdivided	 into	 equal-size	 boxes	 (i.e.	 voxels),	 as	 Figure	 15	 (a)	

demonstrates.	 The	 directions	 in	 which	 the	 space	 is	 voxelised	 are	 de>ined	 as	

temporary	x-	and	y-axis.	The	voxels	on	the	same	z-height	form	a	“level”	along	the	

z-axis,	as	Figure	15	(b)	shows.	

3) Count	the	points	in	each	voxel:	For	both	point	clouds,	the	points	falling	into	each	

voxel	are	counted.	Then,	the	number	of	points	in	each	voxel	is	converted	into	the	

percentage	relative	to	the	total	number	of	points	in	each	point	cloud.	This	process	

is	shown	in	Figure	15	with	a	simpli>ied	example:	a	3D	point	cloud	(red	object	in	

(a))	is	voxelised	into	a	grid	of	(2 × 2 × 3)	voxels.	Along	the	z-direction,	there	are	

three	levels	of	voxels	each	containing	(2 × 2)	voxels.	The	statistical	result	of	point	

distribution	in	Level	1	is	shown	in	(b):	the	number	of	points	falling	into	each	voxel	

is	converted	into	a	percentage,	indicated	as	A	%,	B	%,	C	%	and	D	%	in	this	>igure.	

This	 process	 can	 be	 generalised	 to	 more	 complex	 shaped	 point	 clouds	 and	

voxelisations	in	real	cases.	

4) Compare	the	percentages	in	each	voxel:	the	percentages	of	points	in	each	voxel	

belonging	to	the	small-dense	and	the	target	area	in	the	large-sparse	clouds	are	

compared.	If	the	percentages	of	these	two	point	clouds	in	a	voxel	are	similar,	this	
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voxel	 is	 marked	 as	 “matched”	 voxel.	 The	 number	 of	 matches	 on	 each	 level	 is	

denoted	as	𝑛+,-,+:	the	larger	the	𝑛+,-,+ 	value,	the	more	similar	the	cross-sectional	

shapes	in	this	level	of	z-height.		

5) Assess	the	level	of	geometrical	similarity:	with	all	levels	of	voxels	assessed,	the	

similarity	score	between	the	small-dense	point	cloud	in	this	speci>ic	orientation	

and	the	target	sub-section	of	the	large-sparse	point	cloud	is	determined	as:	

	 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦	𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑛%𝑊%
	𝓃!
%0" ,	 (6)	

where	𝑖 	is	 the	 level	 index,	 	𝓃1 	is	 the	 total	 number	 of	 levels	 and	𝑊% 	is	 the	

weight	for	each	level.	The	values	of	the	weights	are	customised	by	the	user.	In	this	

speci>ic	research	project,	weights	are	assigned	in	the	open	interval	(0, 1).	

6) Find	the	optimal	orientation:	rotate	the	small-dense	point	cloud	about	its	z-axis	

determined	 in	 Step	 1)	 for	 a	 constant	 user-de>ined	 angle,	 giving	 the	 next	

orientation	of	the	small-dense	point	cloud;	repeat	Step	2)	to	5)	for	this	orientation	

to	obtain	a	similarity	score.	After	all	orientations	have	been	assessed,	compare	all	

similarity	 scores;	 the	 orientation	 that	 results	 in	 the	 highest	 similarity	 score	 is	

determined	as	the	correct	one	for	registration.	
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Figure	15	This	is	a	visual	demonstration	of	the	point	cloud	voxelisation	process.	(a)	The	3D	visualisation	of	
voxelisation	of	the	space	occupied	by	a	point	cloud	(red	object).	(b)	The	percentages	of	points,	relative	to	the	

total	number	of	points	in	the	red	point	cloud,	in	the	voxels	in	Level	1.	

In	abstract,	the	pillar	idea	of	this	spatial	geometrical	similarity	algorithm	is	to	assess	

the	point	distributions	of	the	two	point	clouds	in	3D	space.	It	should	also	be	noted	that	

the	 number	 of	 orientations	 attempted,	 i.e.	 the	 degrees	 between	 two	 consecutive	

orientations,	is	de>ined	by	the	user;	the	more	orientations	are	de>ined	(i.e.	the	smaller	

the	 angle	 between	 two	 consecutive	 orientations	 is),	 the	 more	 accurate	 the	 >inal	

registration	becomes.	However,	it	is	also	worth	noting	that	a	large	number	of	orientations	

requires	a	higher	computational	cost.		

3.3. Summary	
In	 this	 chapter,	 the	 methods	 to	 determine	 the	 target	 area	 and	 orientation	 of	

registration	 were	 introduced.	 By	 converting	 the	 point	 distributions	 in	 3D	 space	 into	

histograms	based	on	PCA,	the	comparison	between	two	3D	datasets	is	converted	into	a	

comparison	between	two	histograms.	This	 theory	can	construct	a	pattern	recognition	

algorithm	without	relying	on	massive	training	data.	By	voxelising	the	mutually	occupied	

3D	space	by	two	point	clouds	into	identically	sized	voxels,	and	converting	the	number	of	
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points	 falling	 into	 each	 voxel	 into	 a	 percentage	 relative	 to	 the	 total	 points	 in	 the	

corresponding	 point	 cloud,	 the	 detection	 of	 the	 optimal	 orientation	 becomes	 robust	

against	disparity	in	point	density.	

The	 mathematical	 foundation	 has	 been	 established,	 but	 there	 is	 a	 gap	 between	

mathematics	and	practicable	computer	algorithms.	In	the	next	chapter,	this	gap	will	be	

>illed.	
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In	Chapter	3,	the	theoretical	methods	to	detect	the	correct	area	and	orientation	to	

register	 the	small-dense	point	 cloud	were	 founded.	 In	 this	 chapter,	 the	 theory	will	be	

engineered	 into	 an	 algorithmic	 pipeline	 which	 is	 programmable.	 The	 >low	 of	 whole	

registration	pipeline	consists	of	 the	steps	shown	in	Figure	16.	The	technical	details	of	

these	algorithms	will	be	introduced	in	sections	4.1,	4.2	and	4.3.	

Chapter 4  

Structure of the pipeline 
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Figure	16	The	structure	of	the	algorithmic	pipeline.	

	

4.1. Initial	data	processing	
First	of	all,	within	working	volume	for	this	pipeline	is	a	500 × 500 × 500	mm	cubic	

space,	the	large-sparse	point	cloud	is	collected	by	an	optical	measurement	instrument	

while	 the	 small-dense	 point	 cloud	 is	 captured	 by	 another	 optical	 measurement	

instrument.	Regarding	the	general	con>iguration	of	the	optical	instruments	utilised	for	

surface	texture	capturing	tasks	(such	as	the	facility	in	the	laboratory	employed	for	this	

research	as	speci>ied	in	section	5.1),	the	𝑥	and	𝑦	dimensions	of	the	captured	small-dense	

point	cloud	are	always	equal.	The	input	point	clouds	should	be	noise-free.	The	z-direction	

of	the	small-dense	point	cloud	should	be	roughly	aligned	with	the	z-direction	of	the	area	

on	 the	 engineered	 object	 from	which	 the	 small-dense	 point	 cloud	 is	 captured;	 the	 z-

direction	is	determined	by	the	norm	vector	of	the	PC-plane.	In	other	words,	it	is	assumed	
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that	 the	user,	who	used	optical	 instruments	 to	capture	 the	 two	point	clouds	 from	the	

engineered	object,	remembers	from	which	surface	of	the	engineered	object	the	small-

dense	point	cloud	is	captured.	It	is	assumed	that	the	input	point	clouds	have	been	pre-

processed	according	to	the	aforementioned	assumptions.	

After	the	input	point	cloud	datasets	have	been	loaded	into	the	pipeline,	the	two	point	

clouds	are	processed	 in	 two	 independent	coordinate	systems.	The	sizes	of	both	point	

clouds	are	measured	and	determined.	Then,	the	large-sparse	point	cloud	is	subdivided	

equally	into	sub-sections,	called	“sub-clouds”	from	this	point	onwards.	Each	sub-cloud	

has	the	same	dimensions	as	the	small-dense	point	cloud.	The	large-sparse	point	cloud	is	

not	divided	in	a	grid	pattern,	as	it	will	decompose	the	potential	target	area	into	several	

separate	 sub-clouds	 and	 hence	 make	 the	 pipeline	 miss	 the	 target	 area.	 Instead,	 the	

neighboured	sub-clouds	share	overlapped	areas	(i.e.	there	are	points	contained	in	both	

neighbouring	sub-clouds):	the	distance	between	two	consecutive	areas	is	denoted	as	𝑠.	

Figure	17	shows	the	technical	details	of	the	subdivision	process	in	2D	on	the	x-y	plane:	

the	red	square	represents	the	size	of	the	corresponding	small-dense	point	cloud	and	the	

starting	location	of	the	subdivision	process,	i.e.	the	>irst	sub-cloud	divided	from	the	large-

sparse	point	cloud	(the	grey	object).	The	orange	square	in	dotted	lines	represents	the	

area	covered	by	the	neighbouring	sub-cloud	to	the	red	one	along	the	x-direction.	The	step	

size	between	these	two	sub-clouds	is	𝑠2 .	The	purple	square	in	dotted	lines	represents	the	

area	covered	by	the	neighbouring	sub-cloud	to	the	red	one	along	the	y-axis.	The	step	size	

between	these	two	sub-clouds	is	𝑠3 .	The	same	subdivision	method	is	repeated	in	the	z-

direction.	As	Figure	17	demonstrates,	neighbouring	sub-clouds	share	overlapped	areas.	
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The	trivial	sub-clouds	(sub-clouds	with	few	or	no	point)	are	automatically	detected	and	

deleted	by	the	pipeline	after	the	subdivision.	

It	should	be	noted	that	the	values	of	𝑠2 ,	𝑠3	and	𝑠1	are	de>ined	by	the	user	based	on	

their	preference	of	accuracy:	the	smaller	these	steps	are,	the	larger	the	area	overlapped	

between	 two	neighbouring	 sub-clouds,	 and	hence	 the	detection	of	 the	borders	of	 the	

correct	target	area	in	future	steps	becomes	more	accurate.	However,	smaller	subdivision	

steps	also	lead	to	a	larger	amount	of	sub-clouds,	and	hence	the	computational	cost	for	

analysing	and	comparing	them	can	increase	rapidly.	

 

Figure	17	2D	visualisation	of	the	subdivision	on	x-y	plane	of	a	large-sparse	point	cloud	(grey).	The	area	
enclosed	by	the	red	square	is	the	[irst	sub-cloud	divided	from	the	large-sparse	point	cloud.	The	area	enclosed	
by	the	dotted	orange	square	covers	the	sub-cloud	neighbouring	the	[irst	one	along	x-axis.	The	area	enclosed	by	

the	dotted	purpose	square	covers	the	sub-cloud	neighbouring	the	[irst	one	along	y-axis.	
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4.2. Detect	the	target	area		
Suppose	there	are	𝑁	sub-clouds	generated	from	the	large-sparse	point	cloud.	These	

sub-clouds	are	fed	into	the	similarity	comparison	stage	using	PCA,	as	discussed	in	section	

3.1.	Their	geometrical	characteristics	are	 >irstly	compared	to	those	of	 the	small-dense	

point	cloud	using	the	point-to-PC-plane	distances.	When	generating	the	histograms	for	

the	point-to-PC-plane	distances,	considering	the	difference	 in	point	densities	between	

point	 clouds,	 the	number	of	points	on	 the	y-axis	of	 the	histogram	 is	 converted	 to	 the	

percentage	 of	 points	 relative	 to	 the	 total	 number	 of	 points	 in	 the	 point	 cloud	 under	

comparison	(for	the	convenience	of	expression,	it	will	be	called	“the	percentage	of	point”	

in	the	following	text).	As	such,	the	height	of	each	bin	represents	the	percentage	of	points	

falling	into	it.		

When	comparing	the	histograms	of	the	point-to-PC-plane	distances,	the	algorithm	

>irstly	plots	histograms	with	𝑇" 	(𝑇" ∈ ℤ4)	bins	 for	each	pair	of	 sets,	with	x-axis	as	 the	

point-to-PC-plane	 distances	 and	 y-axis	 as	 the	 percentage	 of	 points.	 The	 sum	 of	 bin	

heights	 is	1	(i.e.	100%	of	 the	points	 in	 the	point	cloud).	The	heights	of	 these	bins	are	

denoted	as	lℎ",%n%06,",…,8" .	The	positions	of	these	bins	in	their	histogram	are	determined	

by	their	mid	x-location,	i.e.		

	 𝑥",% =
2",$,%&'()*+&,-./)042",$,,11()*+&,-./)0

!
, 𝑖 = 	0, 1, … , 𝑇".		

	

	(7)	

	

Then,	the	𝑇"	bins	in	the	histogram	of	the	sub-cloud	and	those	in	the	histogram	of	the	

small-dense	point	cloud	are	compared.	Among	all	𝑇"	bins	in	both	histograms,	if	there	are	

exactly	or	more	than	𝑇"9	(𝑇"9 ≤ 𝑇")	bins	that	satisfy		
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q
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≥ p:",$2"
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q
;BC++>A,#;,

× 𝛿;BC++ ,	

𝑓𝑜𝑟	𝑖 = 1, 2, … , 𝑇"9 − 1	;	

(8)	

	

	

and	

	 {𝑥",%};<=>?+@<A ≤ {𝑥",%};BC++>A,#;, × 𝜀+CDE, 	and	
	{𝑥",%};<=>?+@<A ≥ {𝑥",%};BC++>A,#;, × 𝜀;BC++ ,	

𝑓𝑜𝑟	𝑖 = 1, 2, … , 𝑇"9,	

(9)	

	

	

then	this	sub-cloud	will	be	selected	as	a	candidate	for	potential	matching	with	the	

small-dense	point	cloud	(𝛿+CDE, , 𝛿;BC++ , 𝜀+CDE, 	and	𝜀;BC++ 	are	called	tolerance	parameters,	

with	𝛿+CDE, > 𝛿;BC++ 	and	, 𝜀+CDE, >	𝜀;BC++).	The	mathematics	in	this	comparison	step	can	

be	intuitively	explained	as	follows:	I	compare	the	ratios	between	the	heights	of	each	two	

neighbouring	 bins	 in	 the	 two	 histograms;	 then	 I	 compare	 the	 x-locations	 of	

corresponding	 bins	 in	 the	 two	 histograms.	 If	 the	 comparison	 results	 satisfy	 the	

thresholds	listed	above,	these	two	histograms	are	determined	as	similar	and	hence	the	

sub-cloud	is	selected	as	a	candidate	for	further	comparison.	The	mathematical	principle	

for	the	step	below	(the	second	round	of	PCA)	is	 in	the	same	manner.	Here,	 it	 is	worth	

noting	that	this	step	is	not	an	iterative	process	as	it	is	not	aimed	to	converge	to	a	certain	

static	value.	This	is	a	comparison	step	between	two	sets	of	ratios	re>lecting	the	relative	

heights	between	each	two	neighbouring	bins	in	two	histograms:	one	of	a	sub-cloud,	the	

other	of	the	small-dense	point	cloud.	

All	sub-clouds	are	then	fed	into	the	next	round	of	PCA	comparison,	which	is	based	

on	 the	 local-norm-to-PC-plane	 angles	 (section	 3.1).	 The	 algorithm	 >irstly	 plots	
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histograms	 with	𝑇!	(𝑇! ∈ ℤ4) 	bins	 for	 each	 candidate	 sub-cloud	 and	 the	 small-dense	

point	cloud,	with	x-axis	as	the	local-norm-to-PC-plane	angles	in	degree	and	y-axis	as	the	

percentage	of	points.	The	sum	of	bin	heights	equals	to	1.	Then,	the	top	𝑇!9	bins	(i.e.	bins	

with	the	largest	𝑇!9	heights,	𝑇!9 ≤ 𝑇!)	are	found	by	the	algorithm.	The	positions	of	these	

top	bins	in	their	histogram	are	determined	by	their	mid	x-location,	i.e.	

	 𝑥!,% = (𝑥!,%,+@F,D>=@<#ACD3 + 𝑥!,%,<GG,D>=@<#ACD3)/2, 𝑖 = 0, 1, 2, … , 𝑇!9.		

	

(10)	

	

If	the	two	histograms	show	top	bins	which	satisfy	

	 {𝑥!,%};<=>?+@<A ≤ {𝑥!,%};BC++>A,#;, × 𝜃+CDE, 	and	
{𝑥!,%};<=>?+@<A ≥ {𝑥!,%};BC++>A,#;, × 𝜃;BC++ ,	

𝑓𝑜𝑟	𝑖 = 1, 2, … , 	𝑇!9	,	

(11)	

	

then	 this	sub-cloud	will	be	selected	as	a	match	with	 the	small-dense	point	cloud	

(𝜃+CDE, 	and	𝜃;BC++ 	are	tolerance	parameters,	with	𝜃+CDE, >	𝜃;BC++).	The	positions	of	the	

candidates	selected	in	this	step	are	then	compared	to	the	positions	of	the	ones	selected	

in	the	previous	step,	the	analysis	based	on	the	point-to-PC-plane	distances.	If	one	sub-

cloud	 selected	 in	 the	 assessment	 of	 local-norm-to-PC-plane	 angles	 is	 identical	 or	

neighbouring	a	sub-cloud	selected	in	the	assessment	of	the	point-to-PC-plane	distances,	

both	sub-clouds	will	be	considered	matches	to	the	small-dense	point	cloud.	

As	the	matched	sub-clouds	selected	by	two	analysis	based	on	PCA	are	anticipated	to	

be	closely	neighbouring	and	partially	overlapping	each	other,	forming	a	target	area	in	the	

large-sparse	point	cloud,	the	location	for	registering	the	small-dense	point	cloud	is	the	

geometrical	centroid	of	the	target	area	covered	by	the	matched	sub-clouds,	i.e.	the	small-

dense	point	cloud	will	be	translated	to	the	mutual	geometrical	centroid	of	all	matched	
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sub-clouds.	The	location	of	the	geometrical	centroid	of	the	small-dense	point	cloud	will	

be	at	 the	geometrical	 centroid	of	 the	 target	area.	The	coordinate	of	 the	 target	area	 is	

calculated	as	

	
𝑅𝑒𝑔𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛	𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 =

∑ (𝑥% , 𝑦% , 𝑧%)𝒩
%0"

𝒩
	 (12)	

where	𝒩	is	the	total	number	of	unique	points	covered	in	the	matched	sub-clouds	

and	(𝑥% , 𝑦% , 𝑧%) 	are	 the	 coordinates	 of	 the	 unique	 points	 covered	 in	 the	matched	 sub-

clouds	(as	the	sub-clouds	have	overlapped	points,	a	unique	point	is	counted	only	once).	

4.3. Determine	the	correct	orientation	
After	the	small-dense	point	cloud	has	been	translated	to	the	registration	location	in	

the	 large-sparse	 point	 cloud,	 the	 next	 round	 of	 similarity	 comparison	 is	 aimed	 at	

determining	 the	 correct	 orientation	 of	 the	 former.	 The	 small-dense	 point	 cloud	 is	

duplicated	into	𝛰	(𝛰 ∈ ℤ4)	copies,	with	each	rotated	anticlockwise	for	|$I6
J
} °	from	the	

previous	 one	 about	 the	 z-axis	 through	 its	 geometrical	 centroid.	 The	 parameter	𝛰 	is	

de>ined	by	the	user,	depending	on	the	level	of	accuracy	of	>inal	registration	they	desire.	

As	 one	 can	 see,	 the	 larger	 the	 number	 of	 positions	𝛰 ,	 the	 smaller	 the	 difference	 in	

orientations	 between	 each	 two	 neighbouring	 positions	 and	 hence	 more	 optimal	 the	

registered	 orientation.	 However,	 a	 larger	 number	 of	 attempts	 also	 lead	 to	 higher	

computational	costs.	As	such,	it	is	reasonable	to	say	that	the	user	should	con>igure	the	

value	of	𝛰	as	larger	as	possible	observing	the	computational	capability	they	have.	

For	 the	 small-dense	 point	 cloud	 in	 each	 orientation,	 denoted	 as	 𝑆𝐷K		(𝜊 =

1, 	2, 	 … 	, 	𝛰),	 the	small-dense	point	cloud	and	the	target	area	 in	the	 large-dense	point	
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cloud	covered	by	the	dimensions	of	the	small-dense	point	cloud	are	both	voxelised	into	

the	same	number	of	voxels	along	x-,	y-	and	z-	directions.	For	both	the	small-dense	point	

cloud	and	the	target	area	in	the	large-sparse	point	cloud,	the	numbers	of	voxels	on	x-,	y-	

and	z-directions	are	denoted	 respectively	as	𝓃2 ,	𝓃3 	and	𝓃1 .	As	 such,	 there	are	 totally	

𝓃2 × 𝓃3 × 𝓃1	voxels	for	each	point	cloud.	The	values	of	𝓃2 ,	𝓃3	and	𝓃1	are	user-de>ined;	

the	more	 voxels	 are	 divided	 in	 the	 3D	 space,	 the	more	meticulous	 the	 assessment	 of	

spatial	point	distribution	will	be.	However,	the	user	is	advisedly	reminded	that	the	more	

voxels	they	generated	in	this	stage,	the	more	computational	cost	will	be	generated,	too.	

In	addition,	when	the	difference	of	point	density	between	two	point	clouds	is	suf>iciently	

large	and	the	number	of	voxels	is	suf>iciently	large,	a	phenomenon	will	occur:	the	number	

of	points	contained	in	the	large-sparse	point	cloud	falling	into	each	voxel	will	be	minimal	

and	hence	the	statistical	meaning	of	 this	procedure	will	be	 lost.	This	 is	what	 the	user	

should	be	aware	when	implementing	this	step.	

To	 make	 this	 rotation-and-voxelisation	 process	 more	 approachable,	 there	 is	 a	

simpli>ied	visual	demonstration	given	in	Figure	18	in	a	2D	scale	observed	from	the	z-axis:	

the	red	square	in	solid	lines	represents	the	orientation	and	location	of	the	small-dense	

point	cloud;	the	blue	square	in	dotted	lines	represents	the	space	that	is	voxelised	for	both	

the	small-dense	point	cloud	and	the	large-sparse	point	cloud	(grey	object).	For	the	small-

dense	point	cloud	in	orientation	(a),	the	space	for	voxelisation	is	the	same	as	the	space	

enclosed	by	the	red	square.	However,	when	the	small-dense	point	cloud	is	in	orientation	

(b),	the	space	for	voxelisation	is	the	space	enclosed	by	the	blue	square,	which	is	different	

from	the	space	enclosed	by	the	dimensions	of	the	small-dense	point	cloud.	
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Then,	as	illustrated	and	explained	in	section	3.2,	for	both	𝑆𝐷K	and	the	target	area,	

the	percentage	of	points	falling	into	each	voxel	is	counted	and	calculated.	The	𝑆𝐷B,	i.e.	

the	small-dense	point	cloud	that	is	rotated	for	(𝑚 − 1) × |$I6
J
} °	about	the	z-axis	from	its	

initial	orientation,	which	gives	the	highest	similarity	score	(to	review	the	mathematics	of	

similarity	score,	please	see	section	3.2)	in	this	comparison	process	is	determined	as	the	

correct	orientation	for	registration.	

Finally,	the	small-dense	point	cloud	with	the	registered	location	and	orientation	is	

exported	as	a	text	>ile	with	three	columns	of	(x,	y,	z)	coordinates	of	the	points.	It	can	be	

displayed	 together	with	 the	 coordinate	dataset	of	 the	 large-sparse	point	 cloud	 in	 any	

visualisation	software	tool.	The	user	can	visualise	the	detailed	surface	information	on	the	

area	covered	by	the	small-dense	point	cloud.	

	 	

(a)	 (b)	

Figure	18	The	area	for	voxelisation	changes	with	the	orientation	of	the	small-dense	point	cloud,	as	the	area	in	
the	large-sparse	point	cloud	covered	by	the	dimensions	of	the	small-dense	point	cloud	in	a	different	

orientation	is	different.	From	(a)	to	(b),	the	small-dense	point	cloud	(red	square)	is	rotated	from	an	angle,	and	
hence	the	area	for	voxelisation	(dotted	blue	square)	is	changed.		
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4.4. Overview	of	the	pipeline	
To	give	a	big-picture	view	of	how	each	algorithm	is	integrated	into	this	pipeline,	as	

stated	in	Chapter	3	and	sections	4.2	and	4.3	in	this	chapter,	all	parameters	in	this	data	

fusion	pipeline	are	 listed	in	Table	2.	A	visual	explanation	of	the	coordination	between	

algorithms	 is	 shown	 in	 Figure	 19,	 in	which	 the	 reader	 can	 see	 the	 stage	where	 each	

mathematical	equation	mentioned		sections	4.2	and	4.3	is	implemented.	
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Table	2	Parameters	of	the	data	fusion	pipeline*	

*	The	parameters	are	listed	in	the	order	of	first	appearances	in	this	paper.	

**	the	index	𝑖	of	𝑊3	is	enumerated	from	the	lowest	z-coordinate	in	the	point	cloud.	

***	Please	be	aware	of	the	difference	between	𝒩	and	𝑁	in	terms	of	calligraphy.	

Parameters If defined by user? Explanation 

𝑊4  ** Y The weight for calculating the similarity score for 
each level of voxels. 

𝑛4  N The number of matched pairs of voxels in each 
level of voxels. 

𝑠5 , 𝑠6, 𝑠7 Y 
The sizes of steps of subdividing the large-sparse 
point cloud into sub-clouds on x-, y- and z-
directions. 

𝑁 N The number of sub-clouds. 

𝑇% Y The number of bins in the histograms of the point-
to-PC-plane distances. 

𝑇%8 N 
The number of bins that are matched in the 
histograms of the point-to-PC-plane distances for 
the two point clouds. 

'ℎ%,4)4(),%,*,…,9!  N The heights of the bins in the histograms of the 
point-to-PC-plane distances. 

'𝑥%,4)4(),%,*,…,9!  N 
The locations (the midlines on the x-axis) of the 
bins in the histograms of the point-to-PC-plane 
distances. 

𝛿:;<=> , 𝛿?@;::  Y 
The tolerance parameters for comparing the bin 
height ratios in the histograms of the point-to-PC-
plane distances 
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𝜀:;<=> , 𝜀?@;::  Y 
The tolerance parameters for comparing the bin 
locations in the histograms of the point-to-PC-
plane distances 

𝑇* Y The number of bins in the histograms of the local-
norm-to-PC-plane angles.  

𝑇*8 Y 
The number of bins with the largest heights (top 
bins) in the histograms of the local-norm-to-PC-
plane angles. 

'𝑥*,4)4(),%,*,…,9"$  N The locations of the top bins in the histograms of 
the local-norm-to-PC-plane angles. 

𝜃:;<=> , 𝜃?@;::  Y 
The tolerance parameters for comparing the 
locations of the top bins in the histograms of the 
local-norm-to-PC-plane angles. 

𝒩*** N 
The total number of unique points in the matched 
sub-clouds (target area in the large-sparse point 
cloud selected with PCA) 

𝛰 Y The number of orientations of the small-dense 
point cloud. 

𝜊 N The index of the small-dense point cloud in a 
certain orientation. 

𝓃5 , 	𝓃6, 	𝓃7
 Y The numbers of voxels on x-, y- and z-directions. 
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Figure	19	A	detailed	[lowchart	of	the	pipeline.	All	mathematical	equations	mentioned	in	this	chapter	are	
shown	on	this	[lowchart	at	their	functioning	stages.	 	
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4.5. Summary	
In	 this	 chapter,	 the	 theories	 and	 concepts	 introduced	 in	 Chapter	 3	were	 further	

exposited	 in	 a	 concrete	manner,	 i.e.	 how	 these	 new	 theories	 and	 concepts	 should	 he	

implemented	with	mathematical	expressions	so	that	a	computer	can	understand.	More	

importantly,	 in	 this	 chapter,	 the	 theoretical	 solution	 introduced	 in	 Chapter	 3	 was	

translated	 into	 a	 pipeline	 with	 systematically	 structured	 algorithms	 and	 steps;	 the	

practical	 assumptions	 and	 application	 settings	 were	 stated.	 In	 the	 next	 chapter,	 the	

performances	of	this	pipeline	in	synthetic	point	clouds	and	real	engineered	parts	will	be	

introduced	and	visualised.		
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In	history,	I	have	frequently	witnessed	the	tedious	outcomes	of	beautiful	theories	in	

practical	scenarios;	and	this	sort	of	catastrophe	what	should	be	avoided	in	this	research.	

Before	getting	implemented	in	a	real	commercial	case,	the	performance	of	this	pipeline	

must	be	tested	and	assessed	in	various	complexities.	In	this	chapter,	the	design	of	test	

artefacts	and	the	outputs	will	be	presented.	

5.1. Experimental	setup	
To	prove	the	performance	of	the	algorithmic	pipeline,	three	experimental	tests	were	

proposed,	featuring	test	cases	with	different	geometrical	complexities.	The	>irst	two	test	

artefacts	(indicated	as	Case	I	and	II)	are	point	clouds	generated	from	synthetic	3D	models	

designed	in	CAD	software.	Between	these	two	3D	models,	 the	one	in	the	>irst	study	is	

geometrically	simpler	than	the	one	in	the	second	study.	The	third	case	study	(indicated	

as	Case	III)	is	a	real	measurement,	more	speci>ically	the	external	shape	coordinates	and	

surface	texture	point	clouds	of	a	20	pence	coin	issued	by	the	Royal	Mint	(UK,	1989)	[6,18].	

Chapter 5  

Experimental study 
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5.1.1. 3D model design 

The	purpose	of	testing	the	pipeline	with	synthetic	3D	models	>irst	(Case	I	and	II)	is	

to	 prove	 its	 feasibility	 and	 potential	 for	 real	 industrial	 scenarios.	 The	 proposed	 case	

studies	are	characterised	by	fundamental	geometrical	primitive	features,	such	as	tapered	

cylinders,	 cones,	 pyramid-like	 shapes,	 sharp	 edges,	 chamfers	 and	 >illets.	 Given	 the	

designated	working	volume	of	this	pipeline,	the	dimensions	of	the	3D	model	are	always	

within	the	cubic	space	of	500 × 500 × 500	mm.			

The	models	are	converted	into	point	clouds	(i.e.	the	surface	of	the	models	is	sampled	

into	3D	points)	of	large	size	and	low	point	density	(i.e.	sparse).	For	each	case,	a	small	area	

in	the	3D	model	is	isolated	and	used	to	generate	the	synthetic	small-dense	point	cloud,	

simulating	a	surface	texture	measurement.	However,	CAD	models	have	smooth	surfaces	

(i.e.	surfaces	without	textures	generated	during	manufacturing	procedures),	which	is	an	

unrealistic	scenario.	To	make	the	experimental	study	as	close	to	reality	as	possible,	the	

CAD	software	was	used	to	generate	patches	of	synthetic	engineered	surface	patterns	and	

paste	them	on	the	surface	of	the	selected	area	in	the	3D	model	(as	will	be	introduced	in	

section	5.1.2).	As	such,	the	small-dense	point	cloud	generated	from	this	surface-texture-

covered	 area	 can	 better	 imitate	 the	 geometrical	 features	 of	 the	 surface	 texture	 point	

cloud	of	a	real	engineered	part.	

5.1.2. Software 

The	 3D	 models	 were	 designed	 and	 exported	 with	 Autodesk®	 Fusion	 360	 for	

Education	 [108].	 The	 synthetic	 surface	 texture	 patches	 were	 generated	 with	

Image2Surface,	an	add-in	to	Fusion	360	[109].	The	add-in	converted	a	surface	texture	
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image	to	a	3D	model	of	surface	texture,	which	could	be	attached	to	the	surface	of	a	3D	

model.	An	example	of	image-converted	surface	texture	model	is	demonstrated	in	Figure	

20.		

After	the	3D	models	had	been	joined	with	the	synthetic	surface	textures	patches,	the	

completed	models	were	exported	as	.OBJ	>iles,	and	then	sampled	as	point	clouds	(.PLY	

format)	with	CloudCompare	[110],	also	used	to	visualise	and	analyse	the	outputs	of	the	

registration	attempts.	

 

Figure	20	An	image	of	a	metal	surface	texture	(left)	is	converted	to	a	3D	surface	texture	(right)	by	
Image2Surface	[109].	

	

5.1.3. Measuring instruments 

For	the	real	case	scenario	(Case	III),	the	instrument	used	to	collect	the	coordinate	

data	points	of	the	coin	is	GOM	ATOS	Core	300.	Its	technical	speci>ications	are	listed	in	

Table	3,	as	provided	by	the	manufacturer.	Because	of	the	small	size	of	the	coin,	 it	was	

captured	at	20	different	poses	to	get	a	detailed	result	(i.e.	the	>inal	point	cloud	is	the	result	

of	 20	 consecutive	 scans,	 stitched	 together	 by	 the	 commercial	 software	 paired	 to	 the	

instrument).		
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Table	3	Technical	details	of	GOM	ATOS	Core	300	

Parameter Value 

Field of View (FoV) (300 x 230) mm 

Probing Error Form (σ) 0.006 mm 

Probing Error Size 0.027 mm 

Sphere Spacing Error 0.020 mm 

Length Measurement Error 0.047 mm 

	

The	 surface	 texture	 data	 of	 the	 coin	 was	 collected	 by	 Zygo	 NexView	 NX2,	 a	

commercial	coherence	scanning	interferometer.	Its	technical	speci>ications	are	listed	in	

Table	4,	as	provided	by	the	manufacturer.	The	original	data	collected	by	Zygo	NexView	

NX2	is	in	form	of	2.5D,	i.e.	the	data	points	are	distributed	homogeneously	in	a	2D	grid,	

and	 each	 point	 is	 given	 a	 height	 value	 on	 the	 observed	 surface,	 mathematically	𝑧 ⇐

𝑓(𝑥, 𝑦)).	The	data	were	converted	into	a	3D	point	cloud	before	further	processes.	The	

surface	texture	point	cloud	of	the	coin	was	collected	with	1.4×	magni>ication,	giving	an	

area	of	observation	of	(6318.986	×	6318.986)	μm2.	
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Table	4	Technical	details	of	Zygo	NexView	NX2	

Parameter Value 

Surface Topography 
Repeatability 0.06 nm (for all magnifications) 

Repeatability of the RMS 0.005 nm 

Tilt ± 4° 

Sphere Spacing Error 0.020 mm 

Capacity 20 lbs 

	

5.2. Case	I:	a	relatively	simple	3D	model	
5.2.1. Geometrical features 

The	synthetic	3D	model,	from	which	the	large-sparse	and	small-dense	point	clouds	

are	generated,	 is	displayed	 in	Figure	21:	 the	model	 in	 (a)	 is	 converted	 into	 the	 large-

sparse	point	cloud.	The	maximum	z-height	in	this	model	is	marked	with	point	A,	where	

the	z-coordinate	is	3.14	mm.	The	area	in	(a)	for	generating	the	small-dense	point	cloud	

is	enclosed	in	the	red	square,	which	is	displayed	in	(b)	on	the	right-hand	side.	The	square	

patches	on	the	surface	of	the	model	in	(b)	are	synthetic	surface	textures	(section	5.1.2).	

The	properties	of	the	point	clouds	generated	from	the	model	are	in	Table	5.	
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Figure	21	The	dimensions	of	the	3D	model	used	to	generate	point	clouds	for	Case	I	(Length	unit:	mm).	(a)	is	
the	CAD	model	of	the	whole	engineered	part,	(b)	is	the	CAD	model	of	the	interested	region	in	(a),	which	is	

enclosed	by	a	red	square.	Point	A	marks	the	highest	altitude	of	the	model.	

	

Table	5	The	properties	of	the	point	clouds	in	Case	I	

*	The	point	clouds	only	represent	the	external	geometries	of	an	
engineered	part,	which	means	the	points	are	on	the	surface	
area	of	this	object.	Same	for	the	point	densities	of	the	point	
clouds	in	Case	II	and	Case	III.	

Point clouds Point count Point density*   
/mm2 

Large-sparse 49,992 44 

Small-dense 99,677 4,375 
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5.2.2. Pipeline parameters 

The	user-de>ined	parameters	of	the	pipeline	for	Case	I	are	listed	in	Table	6	(to	review	

the	parameters	of	this	pipeline,	please	see	section	4.4).	

Table	6	User-defined	parameters	of	the	data	fusion	pipeline	in	Case	I	

*	The	small-dense	point	cloud	is	rotated	10°	for	each	attempt.	

Parameters Values 

𝑊4  

𝑊% 35 

𝑊* 35 

𝑊A 15 

𝑊B 10 

𝑊C 5 

𝑠5 , 𝑠6, 𝑠7 

𝑠5  0.5 mm 

𝑠6 0.5 mm 

𝑠7 0.5 mm 

𝑇% 8 

𝑇%′ 4 

𝛿:;<=> , 𝛿?@;::  
𝛿:;<=>  1.18 

𝛿?@;::  0.82 

𝜀:;<=> , 𝜀?@;::  
𝜀:;<=>  1.276 

𝜀?@;::  0.724 

𝑇* 8 

𝑇*8 2 

𝜃:;<=> , 𝜃?@;::  
𝜃:;<=>  1.0964 

𝜃?@;::  0.9036 

𝛰 36 * 

𝓃5 , 	𝓃6, 	𝓃7
 

𝓃5  10 

	𝓃6 10 

	𝓃7 5 
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5.2.3. Registration 

With	 the	 parameters	 given	 in	 section	 5.2.2,	 the	 algorithm	 subdivided	 the	 large-

sparse	point	cloud	into	7,201	sub-clouds,	two	of	which	were	detected	as	the	target	sub-

clouds	for	registration.	These	two	target	sub-clouds	are	adjacent,	forming	a	continuous	

neighbouring	 area	 that	 covers	 the	 matched	 region	 in	 the	 large-sparse	 point	 cloud,	

marked	as	the	area	enclosed	by	a	white	rectangle	in	Figure	22	(for	the	convenience	of	

visualisation,	 the	 area	 covered	 by	 the	 detected	 sub-clouds	 is	 marked	 on	 the	 CAD	

modelled	used	for	generating	the	large-sparse	point	cloud,	same	for	the	following	case	

study).	As	explained	in	section	4.2,	 the	mutual	geometrical	centroid	of	 these	two	sub-

clouds	is	the	centroid	of	the	registered	small-dense	point	cloud.	The	best	orientation	of	

the	small-dense	point	cloud	was	detected	with	the	procedure	presented	in	section	3.2.	

	

Figure	22	The	target	area	for	registration	in	the	large-sparse	point	cloud	formed	by	the	two	target	sub-clouds	
detected	by	the	algorithm	in	Case	I	(enclosed	in	the	white	rectangle).	

The	 results	 of	 the	 registration	 can	 be	 seen	 in	 Figure	 23	 (the	white	 object	 is	 the	

registered	small-dense	point	cloud	onto	the	surface	of	the	3D	model)	and	the	colourmap	

of	the	deviations	after	registration	is	displayed	in	Figure	24	(i.e.	colourmap	of	the	point	
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to	surface	signed	distances).	The	smaller	the	value	of	the	absolute	deviations,	the	better	

the	registration	is.	The	histogram	of	the	signed	distances	at	each	point	in	the	small-dense	

point	cloud	is	displayed	in	Figure	25.	

	

Figure	23	The	registration	result	of	Case	I.	For	a	better	visualisation,	I	use	the	CAD	model	to	represent	the	
large-sparse	point	cloud	(same	for	the	following	chapters).	Due	to	the	high	point	density	of	the	small-dense	

point	cloud,	geometrical	features	cannot	be	seen	in	this	image.	
	

	

Figure	24	The	colourmap	of	the	deviations	from	the	3D	model	(i.e.	signed	distances	between	the	points	in	the	
small-dense	point	cloud	and	the	surface	of	the	3D	model).	The	unit	is	mm	(same	for	the	peer	image	in	sections	

5.3.3).	
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Figure	25	Histogram	of	the	signed	distances	in	Case	I.	Mean	value:	0.15	mm;	standard	deviation:	0.09	mm.	

5.3. Case	II:	a	3D	model	with	more	
geometrical	features	

5.3.1. Geometrical features 

The	 synthetic	 3D	model	 in	 Case	 II	 is	 displayed	 in	 Figure	 26:	 the	model	 in	 (a)	 is	

converted	 into	 the	 large-sparse	 point	 cloud.	 The	maximum	 z-height	 of	 this	model	 is	

marked	with	point	A,	where	the	z-coordinate	is	3.25	mm.	The	area	in	(a)	to	generate	the	

small-dense	 point	 cloud	 is	 enclosed	 in	 the	 red	 square,	which	 is	 displayed	 in	 (b).	 The	

square	patches	on	 the	 surface	of	 the	model	 in	 (b)	 are	 synthetic	 surface	 textures.	The	

properties	of	the	point	clouds	generated	from	the	model	are	in	Table	7.	
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Figure	26	The	dimensions	of	the	3D	model	used	to	generate	point	clouds	for	Case	II.	(a)	shows	the	external	
shape	of	the	model	represented	by	the	large-sparse	point	cloud;	(b)	is	the	surface	area	represented	by	the	

small-dense	point	cloud.	
	

Table	7	The	properties	of	the	point	clouds	in	Case	II	

Point clouds Point count Point density  
/mm2 

Large-sparse 24,990 36 

Small-dense 34,904 768 

	

5.3.2. Pipeline parameters 

The	 user-de>ined	 parameters	 of	 the	 pipeline	 for	 Case	 II	 are	 listed	 in	 Table	 8	 (to	

review	the	parameters	of	this	pipeline,	please	see	section	4.4).	
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Table	8	User-defined	parameters	of	the	data	fusion	pipeline	in	Case	II	

*	The	small-dense	point	cloud	is	rotated	10°	for	each	attempt.	

Parameters Values 

𝑊4  

𝑊% 0.05 

𝑊* 0.05 

𝑊A 0.1 

𝑊B 0.2 

𝑊C 0.6 

𝑠5 , 𝑠6, 𝑠7 

𝑠5  1 mm 

𝑠6 1 mm 

𝑠7 0.1 mm 

𝑇% 10 

𝑇%′ 4 

𝛿:;<=> , 𝛿?@;::  
𝛿:;<=>  3.5 

𝛿?@;::  0.4 

𝜀:;<=> , 𝜀?@;::  
𝜀:;<=>  1.18 

𝜀?@;::  0.82 

𝑇* 10 

𝑇*8 2 

𝜃:;<=> , 𝜃?@;::  
𝜃:;<=>  1.0041215 

𝜃?@;::  0.998785 

𝛰 36 * 

𝓃5 , 	𝓃6, 	𝓃7
 

𝓃5  10 

	𝓃6 10 

	𝓃7 5 

	

5.3.3. Registration 

With	 the	 parameters	 given	 in	 section	 5.3.2,	 the	 algorithm	 subdivided	 the	 large-

sparse	point	cloud	into	2,164	sub-clouds,	six	of	which	were	detected	as	the	target	sub-
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clouds	 for	 registration.	 These	 detected	 sub-clouds	 form	 two	 continuous	 areas	 in	 the	

large-sparse	point	cloud:	three	of	them	form	the	area	containing	the	designated	target	

area	whereas	the	other	three	fall	into	the	irrelevant	space	as	erroneous	anomalies.	These	

two	areas	are	shown	in	Figure	27	(1	and	2).	

The	general	visualisation	of	the	registration	can	be	seen	in	Figure	28	(white	point	

cloud	 onto	 the	 surface	 the	 3D	 model)	 and	 the	 colourmap	 of	 the	 deviations	 after	

registration	is	displayed	in	Figure	29.	The	histogram	of	the	signed	distances	at	each	point	

in	the	small-dense	point	cloud	is	displayed	in	Figure	30.	

	

Figure	27	The	algorithm	detected	six	potentially	correct	(matching)	sub-clouds	in	Case	II,	forming	two	
continuous	areas.	Three	of	them	form	area	1	(red),	which	contains	the	correct	registration	area.	The	other	

three	form	area	2	(blue),	which	is	an	anomaly	and	should	be	ruled	out	via	manual	selection.	

	

Figure	28	The	registration	result	of	Case	II.	The	white,	rectangular	object	is	the	registered	small-dense	point	
cloud;	due	to	its	high	point	density,	its	geometrical	features	cannot	be	seen	in	this	image.	
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Figure	29	The	colourmap	of	the	deviations	from	the	3D	model	(i.e.	signed	distances	between	the	points	in	the	
small-dense	point	cloud	and	the	surface	of	the	3D	model).	The	unit	is	mm.	

	

	

Figure	30	Histogram	of	the	signed	distances	in	Case	II.	Mean	value:	0.07	mm;	standard	deviation:	0.04	mm.	
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5.4. Case	III:	a	coin	
As	Case	III,	real	measurements	of	a	20	pence	coin	were	obtained.	As	mentioned	in	

section	5.1.3,	the	large-sparse	point	cloud	of	the	coin	and	the	small-dense	point	cloud	of	

a	certain	area	on	the	coin	were	collected	by	two	different	instruments.	As	such,	it	is	worth	

pointing	 out	 that	 the	 precise	 location	 of	 the	 surface	 texture	measurement	 across	 the	

entire	 shape	 of	 the	 part	 is	 hard	 to	 de>ine;	 it	 is	 possible	 to	 estimate	 an	 approximate	

location	of	the	undertaken	measurements	based	on	the	operator’s	observation,	as	it	is	

normally	done	in	routine	practice.	The	same	strategy	mentioned	previously	is	adopted	

for	the	proposed	pipeline,	however	another	limitation	in	real	case	scenarios	is	added	as	

the	large	quantity	of	sub-clouds	created	by	the	proposed	algorithm	(the	number	of	sub-

clouds	subdivided	in	the	large-sparse	point	cloud	will	be	introduced	in	section	5.4.3).	It	

is	impossible	to	plot	all	sub-clouds	in	an	acceptable	time	window	to	check	which	ones	

among	 them	 are	 indeed	 located	 in	 the	 target	 registration	 area	 but	 missed	 by	 the	

geometrical	comparison	algorithm.	A	manual	examination	of	all	the	outputs	generated	is	

beyond	human	capacity.	As	 such,	once	 receiving	 the	outputs	 from	 the	pipeline,	 I	 only	

manually	 examined	 the	 candidate	 sub-clouds	 selected	 by	 the	 pipeline	 and	 determine	

which	ones	were	correctly	located	in	the	target	area	in	the	large-sparse	point	cloud.		

The	 method	 to	 examine	 the	 generated	 outputs	 in	 this	 case	 is	 as	 follows:	 after	

receiving	the	candidates	selected	by	the	pipeline,	the	location	of	each	selected	sub-cloud	

was	manually	checked,	picking	only	the	ones	that	fall	into	the	target	area	(as	subjectively	

observed).	The	continuous	area	in	the	large-sparse	point	cloud	which	was	formed	by	the	

manually	picked	sub-clouds	was	de>ined	as	the	target	area	for	the	registration.	
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Before	introducing	the	technical	information	about	Case	III,	it	is	worth	noting	that,	

due	to	the	default	con>igurations	of	the	optical	instruments	used	in	this	experiment	(for	

the	 details	 of	 these	 instruments,	 please	 review	 section	 5.1.3),	 the	 unit	 of	 length	 is	

micrometre	(μm).		

5.4.1. Geometrical features 

The	coin	selected	in	this	case	study	is	shown	in	Figure	31:	the	location	of	the	surface	

texture	measurement	 (red	square)	on	 the	coin	 is	an	estimate	because	 the	 instrument	

does	not	provide	the	coordinate	system	relative	to	the	whole	coin.	The	small-dense	point	

cloud	was	processed	with	Mountains®	(right-hand	side	in	Figure	31)	[111].	In	this	case	

study,	only	the	tail	side	and	the	edges	of	the	coin	were	scanned	to	generate	the	large-

sparse	point	cloud.	The	properties	of	the	point	clouds	collected	from	the	coin	are	in	Table	

9.	
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Figure	31	The	image	of	the	20	pence	coin	in	Case	III.	The	small-dense	surface	texture	point	cloud	is	collected	
from	the	area	enclosed	by	the	red	square,	which	is	shown	in	the	image	on	the	right-hand	side.	The	colour	scale	

in	the	image	of	the	small-dense	point	cloud	is	in	μm.		

	

Table	9	The	properties	of	the	point	clouds	in	Case	III	

*	The	scanned	areas	of	both	point	clouds	are	reconstructed	by	
CloudCompare.	Hence,	the	point	densities	are	calculated	
according	to	the	reconstructed	areas.	

Point clouds Point count Point density*  
/mm2 

Large-sparse 210,303 502 

Small-dense 1,000,000 23,159 
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5.4.2. Pipeline parameters 

The	user-de>ined	parameters	of	the	pipeline	for	Case	III	are	listed	in	Table	10	(to	

review	the	parameters	of	this	pipeline,	please	see	section	4.4).	

Table	10	User-defined	parameters	of	the	data	fusion	pipeline	in	Case	III	

*	1	μm	=	10-3	mm	

**	The	small-dense	point	cloud	is	rotated	10°	for	each	attempt.	

Parameters Values 

𝑊4  

𝑊% 0.05 

𝑊* 0.05 

𝑊A 0.1 

𝑊B 0.2 

𝑊C 0.6 

𝑠5 , 𝑠6, 𝑠7 

𝑠5  1000 μm* 

𝑠6 1000 μm 

𝑠7 10 μm 

𝑇% 10 

𝑇%′ 3 

𝛿:;<=> , 𝛿?@;::  
𝛿:;<=>  1.048 

𝛿?@;::  0.952 

𝜀:;<=> , 𝜀?@;::  
𝜀:;<=>  1.3 

𝜀?@;::  0.7 

𝑇* 10 

𝑇*8 2 

𝜃:;<=> , 𝜃?@;::  
𝜃:;<=>  1.0060898 

𝜃?@;::  0.9939102 

𝛰 36** 

𝓃5 , 	𝓃6, 	𝓃7
 

𝓃5  5 

	𝓃6 5 

	𝓃7 5 
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5.4.3. Registration 

With	 the	 parameters	 given	 in	 section	 5.4.2,	 the	 algorithm	 subdivided	 the	 large-

sparse	point	cloud	into	25,459	sub-clouds,	186	of	which	were	detected	by	the	pipeline	as	

the	 target	 sub-clouds	 for	 registration.	 After	manual	 assessment,	 22	 out	 of	 these	 186	

candidates	were	veri>ied	as	the	correct	ones	locating	in	the	target	area.	The	22	correctly	

detected	sub-clouds	have	their	major	parts	fallen	into	the	estimated	target	area	observed	

by	the	CSI	instrument,	which	can	be	visualised	in	Figure	32.	The	results	of	the	registration	

(in	the	form	of	signed	distances)	is	displayed	in	Figure	33	in	the	length	unit	of	μm.	The	

histogram	of	the	deviations	is	shown	in	Figure	34.	

 

Figure	32	The	sub-clouds	covering	the	target	area	in	the	large-sparse	point	cloud.	The	grey	points	form	the	
large-sparse	point	cloud	representing	the	shape	of	the	coin.	The	22	veri[ied	sub-clouds	are	coloured	in	white.	

The	estimated	target	area	is	enclosed	in	the	red	square.	The	unit	is	μm.	
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Figure	33	The	colourmap	of	the	deviations	(i.e.	signed	distances	between	the	points	of	the	surface	texture	
measurement	and	the	point	cloud	captured	with	fringe	projection).	The	unit	is	µm.		

	

 

Figure	34	Histogram	of	the	signed	distances	in	Case	III.	Mean	value:	9.37	μm;	standard	deviation:	38.61	μm.	
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5.5. Summary	
In	this	chapter,	the	output	of	each	registration	attempt	was	presented	in	numerical	

and	visual	manners.	The	data	fusion	pipeline	visioned	in	Chapter	3	and	Chapter	4	was	

challenged	by	three	pairs	of	3D	point	clouds	at	different	levels	of	geometrical	complexity.	

The	outputs	of	registration	shown	in	sections	5.2.3,	5.3.3	and	5.4.3	demonstrated	that	1)	

the	algorithm	introduced	in	sections	3.1	and	4.2,	which	is	based	on	PCA,	is	adequate	in	

detecting	 the	 sub-clouds	which	potentially	 form	 the	 target	 area	 to	 register	 the	 small-

dense	 point	 cloud,	 and	 2)	 the	 algorithm	 introduced	 in	 sections	 3.2	 and	 4.3,	 which	

assesses	the	spatial	distribution	of	points	in	a	point	cloud	with	voxelisation,	is	effective	

in	detecting	the	most	optimal	orientation	of	 the	small-dense	point	cloud.	As	such,	 the	

three	 experiments	 demonstrated	 in	 this	 chapter	 have	 exhibited	 the	 functionality	 and	

potential	of	this	data	fusion	pipeline.	

In	the	next	chapter,	these	outputs	together	with	the	con>igurations	of	the	pipeline	

will	be	discussed.		
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As	presented	in	Chapter	5,	the	pipeline	was	challenged	by	three	pairs	of	point	clouds	

with	a	diversity	of	geometrical	complexity	and	outputted	a	diversity	of	results.	Now,	it	is	

time	to	numerically	analyse	the	registrations	and	discuss	the	results.	To	provide	a	clear	

overview	of	the	registrations,	the	numerical	information	is	summarised	in	Table	11.	To	

have	 an	 initial	 perception	 of	 the	 registration	 accuracy,	 a	 new	 parameter	 “mean	

distance/side	 length”	 is	 listed	 in	 this	 table.	 A	 declining	 ratio	 between	 mean	 signed	

distance	versus	the	size	of	the	small-dense	point	cloud	shows	an	increase	in	registration	

accuracy,	though	the	point	density	of	the	point	clouds	and	the	sizes	of	the	geometrical	

features	are	also	critical	factors.		

	

	

	

Chapter 6  

Discussion 



	

89 
	

Table	11	Statistical	summary	of	the	experimental	study	in	Chapter	5	

*	For	each	study	case,	the	[irst	row	refers	to	the	large-sparse	point	cloud,	the	second	row	refers	to	the	small-
dense	point	cloud.	Same	for	the	“Point	density”	column.	

**	The	small-dense	point	cloud	is	always	a	square	shape	on	the	x-y	plane.	This	is	the	length	of	its	sides	on	
the	x-y	plane.	

***	The	length	originally	collected	by	the	instrument	is	6318.986	µm.	

Case Point 
count* 

Point 
density 

/mm2 

Mean 
distance 

mm 

Standard 
deviation 

mm 

Side 
length** 

mm 

Mean distance / side 
length 

I 
49,992 44 

0.15 0.090 3.0 0.05 
99,677 4,374 

II 
24,990 36 

0.070 0.040 4.5 0.016 
34,904 768 

III 
210,303 502 

0.0094 0.039 6.3*** 0.0015 
1,000,000 23,159 

	

6.1. Requirements	on	the	object	and	point	
clouds	

The	 designated	 working	 volume	 for	 this	 pipeline	 is	 a	 cubic	 space	 dimensioned	

500 × 500 × 500	mm.	Within	this	space,	there	is	no	speci>ic	requirement	on	the	size	of	

the	 object	 and	 corresponding	 point	 clouds.	 There	 is	 also	 no	 speci>ic	 numerical	

requirement	on	the	characteristics	of	the	point	clouds	collected	from	this	object,	but	two	

principles	must	be	observed:	
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1) The	point	density	of	the	large-sparse	point	cloud	should	be	high	enough	to	show	

its	fundamental	geometrical	features	on	the	surface	of	the	object,	though	not	on	

the	level	of	detail	like	the	small-dense	point	cloud	shows;	

2) The	difference	 in	point	density	between	 the	 two	point	 clouds	 should	be	 in	 a	

range	that	the	average	point-to-point	distance	in	the	large-sparse	point	cloud	is	

smaller	 than	the	x-y	dimensions	of	 the	small-dense	point	cloud.	As	Figure	35	

demonstrates,	the	large	point-to-point	distances	in	the	large-sparse	point	cloud	

let	few	points	(the	blue	dots)	fall	into	the	space	covered	by	the	small-dense	point	

cloud	 (turquoise	 square).	 As	 such,	 it	 will	 be	 impossible	 to	 measure	 the	

geometrical	similarity	between	this	area	in	the	large-sparse	point	cloud	and	the	

small-dense	point	cloud	with	the	algorithm	explained	in	sections	3.1	and	4.2.	

	

Figure	35	A	visual	demonstration	of	a	[lawed	input.	The	blue	dots	are	the	points	in	the	large-sparse	point	
cloud;	the	turquoise	square	represents	the	x-y	dimensions	of	the	small-dense	point	cloud.	In	this	

demonstration,	there	are	two	few	(only	two)	points	in	the	large-sparse	point	cloud	falling	in	the	space	covered	
by	the	small-dense	point	cloud.	The	unreasonably	large	point-to-point	distances	in	the	large-sparse	point	

cloud	makes	the	geometrical	similarity	comparison	impossible	to	proceed.	
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6.2. Plane	alignment	in	manual	pre-
processing	

As	stated	in	section	4.1,	it	is	assumed	that	the	user	remembers	from	which	surface	

of	the	engineered	object	the	small-dense	point	cloud	is	captured;	as	such,	before	feeding	

the	point	cloud	datasets	into	the	pipeline,	the	user	has	to	coarsely	align	the	small-dense	

point	cloud	and	the	corresponding	surface	of	the	engineered	object,	which	is	formed	of	

the	points	in	the	large-sparse	point	clouds,	along	z-axis.	Unlike	a	CAD	model,	there	is	no	

“solid”	surface	in	a	point	cloud.	As	such,	the	alignment	of	the	small-dense	point	cloud	and	

the	corresponding	surface	on	the	measured	object	relies	on	the	subjective	observation	of	

the	 user.	 This	 step	 naturally	 leads	 to	 uncertainty:	 there	 are	 complicated	 geometrical	

features	on	the	small-dense	point	cloud,	including	but	not	limited	to	arti>icial	designs	and	

scratches	due	to	long-term	use.	As	such,	>inding	a	standardised	or	analytical	method	to	

align	 the	 small-dense	 point	 cloud	with	 the	 corresponding	 “surface”	 on	 the	measured	

object	 and	 a	 standard	 to	measure	 how	 “well”	 the	 small-dense	 point	 cloud	 is	 aligned	

becomes	unfeasible.	At	the	moment,	the	only	method	to	align	the	small-dense	point	cloud	

and	the	corresponding	“surface”	on	the	large-sparse	point	cloud	is	to	trust	the	subjective	

judgement	of	the	user.	

6.3. ConQiguration	of	parameters	
It	is	worth	noting	that	the	author	of	this	work,	at	the	moment,	has	not	managed	to	

propose	 an	 analytical	 method	 to	 determine	 the	 value	 of	 each	 parameter.	 The	

con>iguration	 of	 the	 tolerance	 parameters	 (𝛿+CDE, , 𝛿;BC++ , 𝜀+CDE, 	and	𝜀;BC++ )	 relied	 on	

manual	adjustment:	an	arbitrary	value	was	given	to	each	parameter,	then	I	observed	the	
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output;	if	there	were	falsely	detected	sub-clouds	in	the	output,	the	values	of	parameters	

would	be	adjusted	in	small	increments	until	the	lowest	number	of	redundantly	detected	

sub-clouds	 was	 observed.	 For	 different	 cases,	 parameters,	 especially	 the	 tolerance	

parameters,	need	different	values.	

6.4. Accuracy	vs	complexity	
Regarding	 the	 three	 cases	 introduced	 in	 sections	 5.2,	 5.3	 and	5.4,	 a	 trend	 in	 the	

detection	 of	 the	 correct	 sub-clouds	 can	 be	 noted:	 the	 performance	 of	 the	 proposed	

pipeline	is	affected	as	the	geometrical	complexity	of	the	point	cloud	increases.	This	trend	

is	summarised	in	Table	12.	To	measure	the	accuracy	of	target	area	detection,	the	rate	of	

correct	detection,	which	is	equal	to	the	number	of	correctly	detected	sub-clouds	divided	

by	the	total	number	of	sub-clouds	detected	by	the	pipeline,	is	proposed.	From	Case	I	to	

III,	as	the	geometrical	complexity	increases,	there	are	also	increasingly	more	redundant	

sub-clouds,	i.e.	the	sub-clouds	detected	by	the	pipeline	as	falling	in	the	target	area	in	the	

large-sparse	point	cloud	but	actually	not,	detected	by	the	pipeline.	As	such,	it	is	necessary	

for	the	user	to	assess	the	automatic	outputs	of	the	sub-cloud	selection	algorithm	in	this	

pipeline	before	proceeding	into	the	registration	stage,	as	not	all	sub-clouds	selected	by	

the	pipeline	are	correct,	i.e.	falling	into	the	target	area	in	the	large-sparse	point	cloud.	
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Table	12	A	numerical	demonstration	of	the	accuracy	of	target	area	detection	in	all	study	cases	

*	Rate	of	correct	detection	=	(Number	of	sub-clouds	correctly	selected	by	the	pipeline)	/	(Total	number	of	
sub-clouds	selected	by	the	pipeline)	

Case 
Total number of sub-

clouds selected by the 
pipeline 

Number of sub-
clouds correctly 
selected by the 

pipeline 

Rate of correct detection* 

I 2 2 100% 

II 6 3 50% 

III 186 22 12% 

	

6.5. Computational	cost	
The	computational	cost	of	a	successful	run	of	this	pipeline	depends	on	the	quantity	

of	 points	 in	 the	 small-dense	 point	 clouds	 (in	 our	 cases,	 it	 ranges	 from	3.5 × 10L 	to	

1.0 × 10I),	the	number	of	sub-clouds	subdivided	in	the	large-sparse	point	cloud	(in	our	

cases,	 it	 ranges	 from	10$	to	10M),	 the	number	of	orientations	of	 the	small-dense	point	

cloud	 to	assess	 (in	our	 cases,	 there	are	36	orientations	 to	assess)	 and	 the	number	of	

voxels	generated	for	the	orientation	detection	(in	our	cases,	the	number	of	voxels	for	each	

orientation	 to	 compare	 is	 between	 10! 	to	 10$ ).	 Additionally,	 the	 geometrical	

complexities	of	the	point	clouds	also	in>luence	the	time	of	running.		

There	is	the	art	in	balancing	accuracy	and	ef>iciency:	the	more	sub-clouds	that	are	

subdivided	 from	 the	 large-sparse	 point	 cloud	 (i.e.	 the	 smaller	 the	 step	 between	 two	
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neighbouring	sub-clouds	is),	the	higher	the	accuracy	of	target	area	detection	can	be;	the	

more	 orientations	 of	 the	 small-dense	 point	 cloud	 that	 are	 tried	 (i.e.	 the	 smaller	 the	

rotational	 angle	 between	 two	 neighbouring	 orientations),	 the	more	 accurate	 that	 the	

ultimate	registration	will	be.	However,	this	will	lead	to	more	iterations	of	calculations	and	

hence	higher	computational	cost.	

6.6. Noise	
Due	to	the	functional	characteristics	of	the	instruments	used	in	this	research,	there	

is	no	conspicuous	noise	in	the	point	clouds.	As	such,	the	user	is	required	to	feed	point	

clouds	without	conspicuous	noise	points	into	the	pipeline.	However,	it	should	be	noticed	

that	the	large-sparse	point	cloud	of	the	coin,	as	per	investigated	in	section	5.4,	shows	a	

mild	level	of	noise	on	the	“basin	areas”	between	artistic	patterns.	This	was	caused	by	the	

small	size	of	the	coin	compared	to	the	designated	working	volume	of	ATOS	GOM,	and	the	

light	re>lection	on	smooth	areas.	With	a	low	level	of	noise	as	such,	this	pipeline	exhibited	

the	robustness	in	recognising	the	geometrically	similar	area.	

6.7. Summary	
In	this	chapter,	the	performances	of	the	pipeline	in	the	cases	detailed	in	Chapter	5	

were	discussed.	The	requirements	of	the	input	were	stated	and	explained	in	sections	6.1	

and	6.2.	The	limitations	and	dif>iculties	re>lected	by	experimental	cases	were	noted	in	

sections	6.3,	6.4	and	6.5.	 In	section	6.6,	 the	question	about	potential	noise	points	was	

speci>ically	 discussed:	 the	 instruments	 used	 in	 this	 research	 did	 not	 generate	
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conspicuous	noise	points,	and	hence	the	future	user	should	expect	to	input	their	point	

clouds	without	signi>icant	noise.	

The	 discussion	 in	 this	 chapter	 can	 answer	 the	 question	 about	 the	 functionality,	

reliability	 and	 robustness	 of	 this	 pipeline.	 In	 summary,	 that	 is:	 although	 further	

improvements	are	waiting,	this	pipeline	has	displayed	its	capability	of	detecting	certain	

geometrical	 patterns	 in	 a	 geometrically	 complex	 point	 cloud,	 and	 register	 two	 point	

clouds	in	different	sizes,	spatial	coverages,	point	densities	and	initial	orientations.		

In	the	next	chapter,	the	research	outcomes	will	be	comprehensively	summarised	and	

concluded.	 In	 addition,	 two	 big-picture	 questions	 about	 general	 methodology,	 which	

were	frequently	raised	by	scholarly	who	had	paid	attention	to	this	research	project,	will	

be	discussed	and	concluded.	
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The	progresses,	diversi>ication	and	expansion	of	the	research	on	data	fusion	have	

been	witnessed	in	both	academia	and	industrial	applications	 in	the	past	decades.	The	

scope	of	its	applications	is	still	expanding	as	this	thesis	was	penned	down.	By	combining	

sensor-collected	data	re>lecting	different	physical	properties	or	observation	angles	of	an	

object,	researchers	and	users	can	acquire	comprehensive	information	about	this	object.	

The	 power	 of	 data	 fusion	 de>ines	 it	 a	 >ield	 with	 immense	 potentials	 for	 further	

exploration,	including	its	applications	in	metrology.	In	this	chapter,	the	questions	raised	

in	section	1.3	will	have	solid	answers.		

7.1. The	review	of	existing	research	
In	 the	 past	 decade,	 researchers	 in	 different	 academic	 paths	 have	 proposed	

numerous	algorithms	to	explore	how	data	fusion	can	be	effectively	implemented	in	tasks	

of	 optical	 coordinate	 measurement.	 These	 algorithms	 can	 be	 categorised	 into	 three	

families	observing	their	mathematical	foundations:	GP,	WLS	and	machine	learning;	the	

>irst	two	can	be	further	categorised	as	user-dependent	algorithms	and	the	latter	is	user-

Chapter 7  
Conclusions  
and future work 
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independent.	Among	these	three	grand	categories,	GP	is	the	mathematical	basis	of	the	

most	prevalent	algorithms	in	recent	years.	Its	popularity	is	mainly	based	on	its	mature	

mathematics	 and	 convenience	 of	 implementation.	 Compared	 to	 GP	 algorithms,	 WLS	

algorithms	have	not	been	frequently	implemented	in	data	fusion	in	the	context	of	optical	

coordinate	measurement	due	to	its	limitations	in	geometrical	complexity.	Nonetheless,	

as	user-dependent	algorithms,	they	have	similar	drawbacks,	particularly	their	reliance	

upon	pre-programmed	models	to	acquire	the	geometrical	patterns	in	given	datasets.	This	

makes	them	impotent	when	being	applied	to	complex	geometries	which	are	beyond	the	

scope	of	the	pre-programmed	model,	such	as	sharp	edges	and	irregular	surface	textures.	

Machine	learning,	as	a	trendy	technique	under	the	umbrella	of	arti>icial	intelligence,	

has	shown	enormous	functionality	in	a	vast	range	of	scenarios,	though	its	potential	in	

optical	 coordinate	 metrology	 is	 still	 at	 a	 fermentation	 stage.	 As	 a	 type	 of	 user-

independent	algorithm,	machine	learning	can	learn	the	patterns	in	training	datasets	and	

then	 detect	 similar	 patterns	 in	 a	 newly	 given	 dataset.	 However,	 a	 machine	 learning	

algorithm	 is	 unable	 to	 detect	 a	 desired	 pattern	 in	 a	 new	 input	 if	 this	 pattern	 is	 not	

included	 in	 its	 training	datasets,	 i.e.	 it	 cannot	 recognise	a	new	pattern	 that	 it	has	not	

trained	for.		

Now,	back	to	the	designated	scenarios	of	this	research	project.	The	purpose	of	this	

research	is	to	propose	a	data	fusion	algorithmic	pipeline	which	can	register	a	small-dense	

point	cloud	into	the	right	position	in	a	large-sparse	point	cloud	with	a	correct	orientation.	

The	two	point	clouds	waiting	be	to	be	registered	are	1)	of	different	sizes,	2)	of	different	

point	densities	and	3)	in	two	separate	and	irrelevant	coordinate	systems	(i.e.	measured	

with	two	individual	instruments).	A	speci>ic	example	of	the	large-sparse	point	cloud	is	
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the	 global	 point	 cloud	 showing	 the	 external	 coordinate	 of	 an	 engineered	 object;	

correspondingly,	the	small-dense	point	cloud	represents	the	surface	texture	details	of	a	

small	area	on	the	surface	of	that	engineered	object.	This	scenario	is	obviously	beyond	the	

capability	of	GP,	WLS	and	machine	learning	techniques.	A	new	algorithmic	pipeline	was	

consequently	proposed.	

7.2. Two	coordinate	frames;	no	training	data	
The	 pipeline	 must	 face	 three	 challenges:	 1)	 determine	 the	 correct	 location	 to	

register	the	small-dense	point	cloud,	2)	determine	the	correct	orientation	of	the	small	

point	 cloud,	 and	 3)	 there	 is	 no	 training	 data,	 i.e.	 existing	 correct	 answers,	 to	 train	 a	

machine-learning	neural	network	for	patter	recognition	in	a	dataset.		

The	 methods	 proposed	 by	 this	 thesis	 to	 surmount	 these	 two	 challenges	 is	

geometrical	similarity	comparison,	a	theory	based	on	statistics.	The	large-sparse	point	

cloud	 is	 subdivided	 into	 equally	 sized	 sub-clouds;	 the	geometrical	 similarity	between	

each	sub-cloud	and	the	small-dense	point	cloud	is	assessed	by	PCA,	including	the	point-

to-PC-plane	 distances	 and	 the	 local-norm-to-PC-plane	 angles.	 The	 sub-clouds	 which	

exhibit	the	most	similar	PCA	to	the	small-dense	point	cloud	and	form	a	continuous	area	

in	 the	 large-sparse	 point	 cloud	 are	 determined	 as	 the	 target	 area	 for	 registration.	 To	

detect	the	correct	orientation	to	align	the	small-dense	point	cloud	with	the	target	area,	

the	spatial	point	distributions	of	both	are	examined	by	counting	the	percentages	of	points	

falling	into	each	voxel;	the	orientation	which	gives	the	small-dense	point	cloud	the	most	

similar	spatial	point	distribution	is	determined	as	the	correct	orientation.	In	summary,	
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the	 theory	on	which	 this	pipeline	 is	 constructed	 is	 focused	on	 the	 comparison	of	 the	

spatial	point	distributions	of	two	point	clouds.	

7.3. Performances	with	various	geometrical	
complexities	

To	prove	the	functionality	of	this	pipeline	and	the	theory	of	geometrical	similarity	

comparison,	 three	 pairs	 of	 point	 clouds	 in	 various	 geometrical	 characteristics	 and	

complexities	were	designed:	the	>irst	two	cases	were	synthetic	point	clouds	generated	

from	3D	CAD	models;	the	last	one	consisted	of	two	point	clouds	collected	from	a	20-pence	

coin	by	real	optical	instruments.	The	synthetic	point	clouds,	also	their	CAD	prototypes,	

had	 relatively	 regular	 and	 simple	 geometrical	 features,	with	synthetic	 surface	 texture	

patches	 covering	 their	 surfaces.	 The	 coin,	 as	 a	 real	 engineered	 object,	 had	 irregular	

surface	textures	such	as	scratches	and	complex	aesthetical	designs	such	as	>lowers.	The	

successes	and	drawbacks	hinted	by	the	three	study	cases	are	summarised	as	follows:	

1) The	pipeline	 is	capable	of	detecting	the	target	area	for	registering	the	small-

dense	point	cloud	by	examining	each	sub-area	of	the	large-sparse	point	cloud,	

though	 manual	 reassessment	 is	 necessary	 when	 there	 is	 a	 considerable	

geometrical	 complexity	 in	 both	 point	 clouds.	 As	 shown	 in	 section	 6.4,	 the	

mistakenly	 detected	 sub-clouds	 increased	 along	 with	 the	 increasing	

geometrical	complexity;	the	rate	of	correct	detection	decreased	from	100%	to	

12%.	In	other	words,	in	industrial	practices,	the	user	is	required	to	handpick	

which	areas	detected	by	the	pipeline	are	correctly	the	target	area.	However,	the	
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pipeline	did	not	miss	the	sub-clouds	which	were	genuinely	located	inside	the	

target	area;	

2) With	 signed	 distances	 as	 the	 standard	 of	 measurement,	 the	 pipeline	 can	

register	the	small	point	cloud	with	an	acceptable	level	of	accuracy	in	terms	of	

the	registered	orientation	(i.e.	the	values	of	mean	distances	/	side	length	are	

remarkably	small,	varying	from	0.0015	to	0.05).	However,	 it	should	be	noted	

that	 the	 value	 of	 mean	 distances	 /	 side	 length	 can	 decline	 because	 of	 the	

increase	of	point	density.	Additionally,	a	point	cloud	with	small	surface	textures	

(the	heights	of	the	surface	textures	are	ignorable	relative	to	the	overall	size	of	

the	engineered	object)	can	also	lead	to	small	mean	distances	/	side	length	value;	

3) Given	 the	 steps	 and	 mechanism	 in	 this	 pipeline,	 the	 requirements	 on	 the	

computing	device	can	be	demanding.	The	philosophy	of	this	pipeline	is	a	brute-

force	methodology,	 i.e.	 examining	 every	 single	 sub-section	 of	 a	 large-sparse	

point	 cloud	 and	 detect	 the	 ones	 that	 are	matched	 to	 the	 small-dense	 point	

cloud;	then	attempting	every	single	orientation	of	the	small-dense	point	cloud	

until	 a	 correct	 one	 is	 found.	 The	 computational	 cost	 will	 be	 dramatically	

massive	when	the	quantity	of	points	and	the	number	of	sub-clouds	is	huge.	As	

such,	at	this	early	stage,	this	pipeline	is	not	applicable	to	any	ad-hoc	missions.	

On	the	contrary,	it	is	a	tool	suitable	for	post-measurement	data	processing.	

In	conclusion,	the	proposed	pipeline	has	potential	for	further	improvements	and	a	

wider	scope	of	application	scenarios.		

	



	

101 
	

7.4. Contributions	to	science	
The	 concepts,	 theories	 and	 experimental	 outcomes	 have	 supplied	 the	 following	

novelties	to	the	science	community:	

The	taxonomy	of	the	existing	data	fusion	algorithms	in	the	context	of	metrology	and	

advanced	manufacturing,	which	was	proposed	based	on	mathematical	principles,	

has	 provided	 a	 structured,	 rational	 guideline	 for	 researchers	 and	 engineers	 to	

design	 and	 choose	 algorithms	 for	 their	 application	 scenarios.	 In	 summary,	 for	

measured	 surfaces	 with	 geometrical	 characteristics	 which	 can	 be	 analytically	

modelled	with	Gaussian	distribution	or	weighted	least	square	method,	one	should	

choose	user-dependent	algorithms	for	their	adequacy,	maturity	and	ef>iciency;	for	

the	 surfaces	 with	 geometrical	 characteristics	 which	 cannot	 be	 modelled	 with	 a	

mathematical	 formula,	 one	 should	 refer	 to	 user-independent	 methods	 such	 as	

machine	 learning,	 though	 training	 data	 showing	 similar	 geometrical	 patterns	

should	be	prepared.	

1) The	characteristics	and	challenges	in	a	novel	point	cloud	registration	scenario,	

where	a	small-dense	point	cloud	represents	a	detailed	view	of	a	certain	part	of	

a	large-dense	point	cloud	and	there	is	a	point	density	gap	larger	than	10	times,	

have	been	investigated	in	this	research.	By	the	time	this	thesis	was	completed,	

to	the	latest	knowledge	of	the	author,	this	scenario	has	not	been	investigated	by	

researchers	 in	 the	 science	 community.	 The	 motivation	 to	 explore	 this	 novel	

scenario	was	induced	by	its	potential	application	contexts,	which	will	be	stated	

in	section	7.5.	
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2) A	novel	pattern	recognition	for	3D	dataset	has	been	proposed	by	this	research,	

proving	 a	 unique	 view	 that	 pattern	 recognition	 without	 training	 data	 (i.e.	

prepared	correct	answers)	is	possible.	As	mentioned	in	Chapter	1,	this	is	due	to	

the	 speci>ic	 application	 settings	 of	 this	 research,	 where	 a	 large	 amount	 of	

correctly	 registered	point	 cloud	pairs	 is	 impossible	 to	 obtain.	 To	 recognise	 a	

user-de>ined	3D	geometrical	pattern	in	a	massive	3D	dataset,	the	pipeline	has	to	

store	 the	 user-de>ined	 pattern,	 which	 is	 contained	 in	 the	 small-dense	 point	

cloud,	in	a	simple,	effective	format	based	on	the	statistical	characteristics	in	this	

user-de>ined	pattern.	My	solution	 is	PCA:	 the	geometrical	 characteristics	 in	a	

point	cloud	is	simpli>ied	as	histograms	showing	the	point-to-PC-plane	distances	

and	 the	 local-norm-to-PC-plane	 angles.	 The	 comparison	 of	 geometrical	

similarity	 is	reduced	to	 the	comparison	of	2D	histograms,	which	makes	 large	

amount	of	training	data	unnecessary.	

3) An	 orientation	 alignment	 algorithm	 to	 align	 two	 3D	 point	 clouds	 with	

considerably	different	point	densities.	As	such,	this	algorithm	is	point-density-

difference-proof.	By	analysing	the	3D	point	distribution	of	the	two	point	clouds,	

based	on	the	technique	of	space	voxelisation	(section	3.2	and	section	4.3),	the	

algorithm	 can	 detect	 the	 speci>ic	 orientation	 of	 the	 small-dense	 point	 cloud	

which	enables	it	to	have	the	most	similar	spatial	point	distribution	to	the	target	

area	in	the	large-sparse	point	cloud.	As	the	number	of	points	falling	into	each	

voxel	 is	 converted	 to	 a	 percentage,	 which	 is	 calculated	 relative	 to	 the	 total	

number	of	points	in	the	corresponding	point	cloud,	this	method	is	robust	against	

the	difference	of	point	density	between	the	two	point	clouds.	
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7.5. Application	scenarios	
There	 are	 two	 potential	 application	 scenarios	 of	 this	 data	 fusion	 pipeline	 in	

precision	 manufacturing	 industry.	 The	 >irst	 one	 is	 a	 “map	 of	 surface	 texture”	 of	 an	

engineered	object,	such	as	a	metal	component	on	a	piece	of	aircraft	or	spacecraft.	This	

pipeline	is	capable	of	registering	multiple	small-dense	point	clouds,	covering	the	surface	

textures	in	different	areas,	onto	a	single	large-sparse	point	cloud.	The	output	of	multiple	

inputs	will	be	a	surface	map	of	an	engineered	object.	It	can	be	immensely	informative	to	

examine	the	quality	of	surface	processing	in	precision	manufacturing.	

The	second	application	scenario	is	the	detection	of	imperfections	and	damages	on	

the	external	surface	of	an	engineered	object.	The	>laws	on	the	surface	can	be	tiny;	the	

user	who	recognises	an	imperfection	on	the	surface	using	instruments	such	as	CSI	may	

not	be	able	to	recognise	the	location	of	the	imperfection	due	to	its	minuscule	size.	With	

this	data	fusion	pipeline,	the	user	can	>ind	the	location	of	the	imperfection	or	damage	on	

the	surface.	

Sections	7.1,	7.2,	7.3,	7.4	and	7.5	are	aimed	at	 answering	 the	 research	questions	

de>ined	in	section	1.3.	However,	there	are	two	big-picture	questions	that	need	ultimate,	

clear	 answers.	 These	 two	 big-picture	 questions	 are	 not	 enclosed	 to	 the	 scope	 of	 this	

research,	 but	 to	 the	 author’s	 knowledge,	 they	 have	 been	 frequently	 propounded	 to	

question	the	methodology	of	this	pipeline.	As	such,	it	is	the	author’s	duty	to	respond	to	

these	frequent	enquiries.	
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7.6. The	bigger	picture	I:	the	most	accurate	
solution	in	theory	and	why	it	is	practically	
unfeasible	

The	 proposed	method	 to	 determine	 the	most	 appropriate	 location	 in	 the	 large-

sparse	 point	 cloud	 of	 the	 small-dense	 cloud	 is	 an	 area-by-area	 brute-force	 searching	

approach,	based	on	the	geometrical	similarities	between	datasets.	As	the	experimental	

studies	proposed	in	this	work	have	shown,	this	method	has	potential,	but	its	limitations	

increase	 with	 the	 complexity	 of	 geometrical	 features.	 In	 theory,	 the	 most	 accurate	

method	to	determine	the	location	should	be	proceeded	as	follows:	

Suppose	the	numbers	of	points	in	the	large-sparse	and	small-sparse	point	clouds	

are	denoted	as	𝑁N	and	𝑁;	respectively.	The	points	in	each	point	cloud	are	denoted	as	set	

ΣN	and	set	Σ;	respectively.	As	such,	I	have	|ΣN| = 𝑁N	and	|ΣO| = 𝑁O.	The	areas	covered	by	

the	 large-sparse	 and	 small-sparse	point	 clouds	 are	denoted	 as	𝐴N 	and	𝐴O 	respectively.	

Now,	 I	 randomly	 select	 a	 group	 of	 points	 in	 the	 large-sparse	 point	 cloud,	 with	 each	

selection	contains	the	points	denoted	with	the	set	Γ ∈ ΣN;	the	number	of	points	contained	

in	each	selection	 is	always	 the	same,	denoted	as	|Γ| ≡ P4Q5
P5

.	Between	any	 two	random	

selections,	 there	must	be	at	 least	one	point	 in	each	selection	does	not	belong	 to	 their	

intersection,	denoted	as	�Γ% △ Γ&� ≥ 2.	All	selections	are	then	stored	in	a	set	denoted	as	

	
𝕆 = {Γ", Γ!, Γ$, ⋯ , ΓR}, 𝑡 = 𝐶Q5

P4Q5
P5 	 (13)	

In	 other	words,	 the	 total	 number	 of	 possible	 unique	 selection	 is	𝐶Q5

6475
65 ,	 or	|𝕆| =

𝐶Q5

6475
65 .	



	

105 
	

Then,	 there	 is	 a	 function	 𝐺 	for	 storing	 the	 3D	 geometrical	 pattern	 of	 point	

distribution	of	a	point	cloud,	which	can	be	a	neural	network	in	engineering	scenarios.	For	

instance,	the	distribution	in	the	3D	space	of	the	small-dense	point	cloud	is	denoted	by	

𝐺(ΣO).	The	similarity	of	the	point	distribution	in	the	3D	space	between	two	point	clouds	

is	measured	by	a	 function	𝔇(𝐺% , 𝐺&).	Among	all	 selections	 in	 the	 set	𝕆,	 there	must	be	

exactly	one	selection,	denoted	as	Γ' ,	which	satis>ies	the	following	condition:	

	 ∃! Γ' ∈ 𝕆		𝔇�𝐺(ΣO), 𝐺(Γ')� > 𝔇�𝐺(ΣO), 𝐺(Γ%)�, Γ% ∈ ∁𝕆Γ' 	 	(14)	

Ideally,	the	points	in	Γ' 	are	concentrated	in	the	target	area	for	registration,	where	

the	geometrical	pattern	of	the	point	distribution	is	exactly	the	same	as	that	of	the	small-

dense	point	cloud.	As	such,	the	next	step	is	to	determine	the	geometrical	centroid	of	Γ' 	

and	locate	the	small-dense	point	cloud	accordingly.	 In	theory,	the	algorithmic	pipeline	

described	 above	 should	 have	 the	 best	 accuracy	 of	 location	 determination	 and	 >inal	

registration.		

However,	I	must	not	celebrate	the	victory	of	mathematics	too	early	as	the	feasibility	

of	 this	 theory	 is	 restricted	 by	 realistic	 technical	 limitations.	 To	 give	 a	 concrete	

comprehension	 of	 the	 computational	 load	 and	 complexity	 of	 this	 ideal	 algorithmic	

pipeline,	 I	 will	 proceed	 some	 basic	 arithmetic	 calculations	 with	 the	 data	 in	 the	

experimental	study	Case	I,	the	geometrically	simplest	case	in	this	research.	If	I	register	

the	 two	 point	 clouds	 in	 Case	 I	 via	 this	 theoretical	 pipeline,	 given	 the	 values	 of	 the	

parameters	mentioned	in	section	5.2.1,	I	should	have	925	points	in	each	selection	and	

the	 total	 number	 of	 selections	 will	 be	 𝐶LTTT!T!M ≈ 8.06 × 10"TTU ,	 i.e.	 there	 will	 be	

8.06 × 10"TTU 	iterations	 of	 comparisons	 and	 calculations.	 There	 is	 no	 necessity	 to	

proceed	into	further	calculations	to	understand	the	computational	cost	of	this	theoretical	
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pipeline,	 because	 I	 should	 note	 that	 there	 are	 only	 approximately	10U6 	atoms	 in	 the	

whole	 universe	 (known	 as	 Eddington	 Number)	 [112,113].	 As	 such,	 the	 area-by-area	

scanning	 method,	 though	 may	 lead	 to	 erroneous	 detection	 of	 the	 target	 area	 and	 is	

ostensibly	awkward	in	theory,	is	an	effective	and,	most	importantly,	practicable	method	

for	 the	point	cloud	registration	 tasks	of	 the	 type	described	 in	our	experimental	study	

cases.	

For	the	detection	of	 the	point	cloud	orientation,	 the	most	established	and	widely	

used	method	for	registration	is	the	ICP	algorithm.	However,	ICP	and	its	variants	are	more	

successful	when	used	to	register	two	point	clouds	with	similar	point	density	and	equal	

shape	[105,114].	In	the	context	of	the	presented	work,	there	is	a	relatively	large	disparity	

of	point	densities	between	the	two	point	clouds.	For	instance,	in	the	three	experimental	

study	cases,	the	differences	in	point	densities	between	the	inputted	point	clouds	range	

from	a	magnitude	of	1	to	2,	i.e.	10"	to	10!.	

7.7. The	bigger	picture	II:	why	machine	
learning	is	unapplicable		

Machine	learning	and	its	variants	have	exhibited	their	faces	ubiquitously	in	object	

detection	and	pattern	recognition.	As	such,	when	tackling	problems	such	as	recognising	

a	 geometrical	 pattern	 in	 a	 point	 cloud,	 training	 a	machine	 learning	 programme	with	

abundant	training	data	will	be	the	>irst	tactic	occurring	to	researchers’	minds.	However,	

researchers	are	 frequently	 forgetting	a	 fact:	 the	 learning	ability	of	a	machine	 learning	

programme	is	based	on	“training”;	the	neural	network	must	be	“fed”	with	a	large	quantity	

of	labelled	data	(i.e.	correct	answers)	before	it	is	enabled	to	recognise	a	certain	pattern	
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in	a	new	input.	This	nature	of	machine	learning	makes	it	an	unfeasible	method	for	target	

area	detection	in	our	pipeline.	The	reasons	are	explained	as	follows:	

Firstly,	it	is	impossible	to	get	a	large	quantity	of	“correct	answers”	in	our	designated	

scenarios	to	train	a	machine-learning	neural	network.	Researchers	using	CSI	devices	are	

unable	 to	know	where	exactly	and	precisely	on	 the	observed	part	 the	surface	 texture	

point	cloud	(small-dense	point	cloud)	is	collected,	though	they	can	roughly	recognise	the	

area	from	which	the	small-dense	point	cloud	is	collected.	This	is	exactly	the	situation	of	

Case	III:	the	red	square	in	Figure	31	marks	the	estimated	area	where	the	CSI	looked	at,	

but	it	is	impossible	for	us	to	reassure	that	this	area	is	precisely	where	the	CSI	collected	

the	surface	texture	data;	because,	as	I	have	to	repeat	here,	the	CSI	system	employed	to	

collect	surface	texture	data	and	the	device	employed	to	collect	the	coordinate	point	cloud	

are	unrelated.		

Secondly,	machine	learning	can	recognise	a	category	of	objects	(objects	sharing	a	

same	range	of	properties	or	creatures	belonging	to	a	single	species)	from	an	assorted	

dataset.	 Contrastingly	 different	 from	 this	 application	 scenario,	 in	 our	 case,	 the	

algorithmic	pipeline	has	to	recognise	the	area	in	the	large-sparse	point	cloud	which	is	

exactly	the	same	or	similar	to	the	small-dense	point	cloud.	In	more	colloquial	words,	this	

pipeline	 is	to	determine	the	exact	one	object	given	only	one	dataset	about	this	object,	

instead	of	recognising	a	category	of	objects	after	being	trained	with	a	large	quantity	of	

data	describing	the	mutual	properties	of	the	objects	this	category.	

As	 such,	 given	 the	 reality	 that	 there	 is	 no	 (and	 it	 is	 impossible	 to	 have)	 a	 large	

amount	of	“correctly	registered	point	clouds”	as	training	datasets,	machine	learning	is	

not	an	option	for	our	application	context.	



	

108 
	

7.8. Future	work	
Future	tasks	awaiting	further	exploration	and	investigation	can	be	categorised	into	

theoretical	and	industrial	sides.	For	theorists,	the	following	tasks	should	be	delved	in:	

1) There	 should	 be	 a	 systematic	 and	 analytical	 method	 to	 determine	 the	

parameters	 of	 this	 pipeline,	 particularly	 the	 tolerance	 parameters,	 for	 each	

individual	registration	task.		

2) More	statistical	methods	for	comparing	the	geometrical	similarity	between	the	

small-dense	point	cloud	and	the	sub-clouds	of	the	large-sparse	point	clouds	can	

be	 explored.	 As	 the	 study	 cases	 have	 re>lected,	 measuring	 the	 geometrical	

similarity	between	two	point	clouds	based	on	PCA	will	only	lead	to	false	outputs	

when	there	is	a	high	level	of	geometrical	complexity.	

3) The	working	volume	of	this	pipeline	can	be	expanded	into	a	space	larger	than	

500 × 500 × 500 	mm.	 This	 volume	 expansion	 will	 be	 particularly	 critical	 for	

large-scale	 machinery	 productions,	 such	 as	 the	 manufacturing	 aerofoils	 and	

fuselages.	 Future	 researchers	 are	 advised	 to	 investigate	 unforeseeable	

challenges	 in	 this	 pipeline	 after	 its	 working	 volume	 has	 been	 massively	

extended.	

4) As	mentioned	 in	 section	 6.6,	 the	 instruments	 used	 in	 this	 research	 provided	

“clean”	point	clouds	as	the	input.	However,	facilities	in	other	contexts	might	not	

provide	point	clouds	free	from	noise.	As	such,	future	researchers	are	advised	to	

propose	 new	 algorithms	 to	 detect	 the	 “true”	 geometries	 of	 a	 point	 cloud	

surmounting	the	interference	from	noise.	
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5) Future	researchers	are	encouraged	to	rewire	the	algorithmic	structures	of	this	

pipeline	to	optimise	the	computational	cost.	

For	professionals	 in	 industrial	 circumstances,	 the	 following	application	scenarios	

deserve	more	attention:	

1) This	 pipeline	 is	 potentially	 capable	 of	 improving	 the	 level	 of	 intelligence	 in	

industrial	robots;	an	industrial	robot	installed	with	this	pipeline	can	recognise	a	

user-input	 object	 without	 referring	 to	 a	 large	 amount	 of	 training	 data.	 This	

application	requires	the	microcomputer	in	the	robot	to	proceed	this	pipeline	at	

a	fast	speed	in	order	to	achieve	a	live	motion.	Additionally,	the	pipeline	in	such	a	

robot	should	be	re-programmed	to	work	parallel	with	a	proper	computer	vision	

system.	

2) For	the	assessment	of	the	quality	of	the	engineered	surface,	this	pipeline	can	also	

help	to	determine	the	location	of	the	>lawed	area,	which	is	usually	observed	via	

microscopic	 observation	 and	hence	unable	 to	 precisely	 be	 located	by	natural	

eyes.	In	this	context,	this	pipeline	can	help	the	user	to	locate	the	defects	whose	

details	are	collected	by	a	microscopic	observation	instrument.	The	locations	of	

defects	 can	 convey	 rich	 information	 about	 the	 problems	 in	 manufacturing	

processes.	However,	to	make	this	pipeline	function	impeccably	in	this	scenario,	

the	precision	and	accuracy	of	this	pipeline	should	be	further	improved.	

3) For	geoscientists,	this	pipeline	can	be	employed	for	terrestrial	observation.	For	

instance,	 it	can	 locate	a	certain	type	of	 landscape	geometries,	particularly	the	

one	which	are	formed	after	natural	disasters.	This	application	is	important	for	

geomorphological	research.		
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[11]	Saha	S,	Foryś	P,	Martusewicz	J,	Sitnik	R	2020	Approach	to	analysis	the	surface	

geometry	change	in	cultural	heritage	objects	ICISP	2020,	Marrakesh,	Morocco	3–

13	

[12]	Weckenmann	A,	Jiang	X,	Sommer	K	D,	Neuschaefer-Rube	U,	Seewig	J,	Shaw	L,	Estler	

T	2009	Multisensor	data	fusion	in	dimensional	metrology	CIRP	Ann	Manuf	

Technol	58	701–21	

[13]	Xu	B	J,	Willomitzer	F,	Yeh	C	K,	Li	F,	Gupta	V,	Tumblin	J,	Walton	M,	Cossairt	O	2019	

3D	Surface	Measurement	and	Analysis	of	Works	of	Art	Conf.	Rec.	Asilomar	Conf.	

Signals.	Syst.	Comput.,	PaciEic	Grove,	USA	1779–82	

[14]	Catalucci	S,	Senin	N	2020	State-of-the-art	in	point	cloud	analysis.	In:	R	K	Leach	

Advances	in	Optical	Form	and	Coordinate	Metrology	(IOP	Publishing)	2-1-2–48	

[15]	ISO	10360-13:2021	Geometrical	product	speciEications	(GPS)	—	Acceptance	and	

reveriEication	tests	for	coordinate	measuring	systems	(CMS)	—	Part	13:	Optical	3D	

CMS	2–6	

[16]	Abdelazeem	M,	Elamin	A,	A>i>i	A,	El-Rabbany	A	2021	Multi-sensor	point	cloud	data	

fusion	for	precise	3D	mapping	Egypt.	J.	Remote	Sens.	Space	Sci.	835–44	



	

112 
	

[17]	Catalucci	S,	Senin	N	2020	State-of-the-art	in	point	cloud	analysis.	In:	R	K	Leach	

Advances	in	Optical	Form	and	Coordinate	Metrology	(IOP	Publishing)	2-1-2–48	

[18]	D’Errico	G	E	2012	Az 	la	Kalman	>iltering	for	metrology	tool	with	application	to	

coordinate	measuring	machines	IEEE	Trans.	Ind.	Electron.	59	4377–82	

[19]	Amamra	A,	Aouf	N,	Stuart	D,	Richardson	M	2016	A	recursive	robust	>iltering	

approach	for	3D	registration	Signal	Image	Video	P.	10	835–42	

[20]	Sandhu	R,	Dambreville	S,	Tannenbaum	A	2010	Point	set	registration	via	particle	

>iltering	and	stochastic	dynamics	IEEE	Trans.	Pattern	Anal.	Mach.	Intell.	32	1459–

73	

[21]	Chen	Z,	Li	Q,	Li	J,	Zhang	D,	Yu	J,	Yin	Y,	Lv	S,	Liang	A	2022	IMU-Aided	Registration	of	

MLS	Point	Clouds	Using	Inertial	Trajectory	Error	Model	and	Least	Squares	

Optimization	Remote	Sens.	(Basel)	14	1365	

[22]	Luo	R	C,	Kay	M	G	1989	Multisensor	integration	and	fusion	in	intelligent	machines	

and	systems	IEEE	Trans.	Syst.	Man.	Cybern.	901–31	

[23]	Dasarathy	B	V	1997	Sensor	fusion	potential	exploitation-innovative	architectures	

and	illustrative	applications	Proc.	IEEE	85	24–38	

[24]	Luo	R	C,	Yih	C	C,	Su	K	L	2002	Multisensor	fusion	and	integration:	Approaches,	

applications,	and	future	research	directions	IEEE	Sens.	J.	2	107–19	

[25]	Eastwood	J,	Sims-Waterhouse	D,	Piano	S	2020	Machine	learning	approaches.	In:	R	

K	Leach	Advances	in	Optical	Form	and	Coordinate	Metrology	(IOP	Publishing)	6-

1-6–20	



	

113 
	

[26]	Colosimo	B	M,	Pacella	M,	Senin	N	2015	Multisensor	data	fusion	via	Gaussian	

process	models	for	dimensional	and	geometric	veri>ication	Precis	Eng	40	199–

213	

[27]	Hida	T,	Hitsuda	M	1993	Gaussian	processes	(Providence,	R.I.,	American	

Mathematical	Society)	

[28]	Ren	M	J,	Cheung	C	F,	Xiao	G	B	2018	Gaussian	process	based	bayesian	inference	

system	for	intelligent	surface	measurement	Sensors	(Switzerland)	18	4069	

[29]	Forbes	A	B	2012	Weighting	observations	from	multi-sensor	coordinate	measuring	

systems	Meas.	Sci.	Technol.	23	025004	

[30]	Wang	J,	Pagani	L,	Leach	R	K,	Zeng	W,	Colosimo	B	M,	Zhou	L	2017	Study	of	weighted	

fusion	methods	for	the	measurement	of	surface	geometry	Precis.	Eng.	47	111–21	

[31]	Eastwood	J,	Sims-Waterhouse	D,	Piano	S	2020	Machine	learning	approaches.	In:	R	

K	Leach	Advances	in	Optical	Form	and	Coordinate	Metrology	(IOP	Publishing)	6-

1-6–20	

[32]	Nilsson	N	J	1965	Learning	Machines:	Foundations	of	Trainable	Pattern-Classifying	

Systems	(McGraw-Hill	Companies)	

[33]	Samuel	A	L	1959	Some	studies	in	machine	learning	using	the	game	of	checkers	IBM	

J.	Res.	Dev.	3	210–29	

[34]	Alippi	C,	Ferrero	A,	Piuri	V	1998	Arti>icial	intelligence	for	instrument	&	

measurement	applications	IEEE	Instrum.	Meas.	Mag.	1	9–17	



	

114 
	

[35]	Halevy	A,	Norvig	P,	Pereira	F	2009	The	unreasonable	effectiveness	of	data	IEEE	

Intell.	Syst.	24	9–12	

[36]	Liu	S,	Zhang	L,	Yan	Z	2018	Predict	pairwise	trust	based	on	machine	learning	in	

online	social	networks:	A	survey	IEEE	Access	6	51297–318	

[37]	Wei	L,	Luo	W,	Weng	J,	Zhong	Y,	Zhang	X,	Yan	Z	2017	Machine	learning-based	

malicious	application	detection	of	android	IEEE	Access	5	25591–601	

[38]	Jing	W,	Kang	J,	Liu	M	2018	Mining	taxi	trajectories	for	most	suitable	stations	of	

sharing	bikes	to	ease	traf>ic	congestion	IET	Intell.	Transp.	Sys.	12	586–93	

[39]	Meng	T,	Jing	X,	Yan	Z,	Pedrycz	W	2020	A	survey	on	machine	learning	for	data	fusion	

Inform.	Fusion	57	115–29	

[40]	Lin	K	C,	Lin	C	H	and	Lin	V	C	2009	A	planar	multiband	antenna	with	parasitic-

element	design	for	multistandard	mobile	terminals IEEE	Antennas	Propag.	Soc.	

AP	S.	Int.	Symp.	1–4	

[41]	Julisch	K	2003	Clustering	intrusion	detection	alarms	to	support	root	cause	analysis	

ACM	T.	Inform.	Syst.	Se.	6	443–71	

[42]	Völker	C,	Shokouhi	P	2015	Data	aggregation	for	improved	honeycomb	detection	in	

concrete	using	machine	learning–based	algorithms	Int.	Symp.	NDT-CE	(Berlin)	

[43]	Ji	D,	Liu	Q,	Bai	M,	Sun	P	2020	A	multisensor	data	fusion	method	based	on	gaussian	

process	model	for	precision	measurement	of	complex	surfaces	Sensors	

(Switzerland)	20	278–93	



	

115 
	

[44]	Ma	P,	Kang	E	L	2020	A	Fused	Gaussian	Process	Model	for	Very	Large	Spatial	Data	J.	

Comput.	Graph.	Stat.	29	479–89	

[45]	Yin	Y,	Ren	M	J,	Sun	L	2017	Dependant	Gaussian	processes	regression	for	intelligent	

sampling	of	freeform	and	structured	surfaces	CIRP	Ann.	Manuf.	Technol.	66	511–

4	

[46]	Ren	M	J,	Sun	L	J,	Liu	M	Y,	Cheung	C	F,	Yin	Y	H,	Cao	Y	L	2017	A	weighted	least	square	

based	data	fusion	method	for	precision	measurement	of	freeform	surfaces	Precis.	

Eng.	48	144–51	

[47]	Yu	Z,	Wang	T,	Wang	P,	Tian	Y,	Li	H	2019	Rapid	and	precise	reverse	engineering	of	

complex	geometry	through	multi-sensor	data	fusion	IEEE	Access	7	165793–813	

[48]	Xiang	B,	Li	Y,	Chen	G,	Liu	X,	Yang	W	2020	Multi-source	integrated	fusion	for	surface	

measurement	Int.	J.	Adv.	Manuf.	Technol.	109	1815–23	

[49]	Zhou	G,	Li	Y,	Liu	C,	Hao	X	2018	A	posture	adjustment	optimization	method	of	the	

laser	inspection	device	for	large	complex	surface	parts	Proc.	Inst.	Mech.	Eng.	B	J.	

Eng	Manuf.	2375–85	

[50]	Kong	L	B,	Ren	M	J,	Xu	M	2017	Development	of	data	registration	and	fusion	

methods	for	measurement	of	ultra-precision	freeform	surfaces	Sensors	17	01110	

[51]	Wang	Y,	Solomon	J	2019	Deep	closest	point:	Learning	representations	for	point	

cloud	registration	Proc.	IEEE	Int.	Conf.	Comput.	Vis.	(Soeul,	South	Korea)	3523–32	

[52]	Besl	P	J,	McKay	N	D	1992	A	Method	for	Registration	of	3-D	Shapes	IEEE	Trans.	

Pattern	Anal.	Mach.	Intell.	14	239–56	



	

116 
	

[53]	Segal	A	V,	Haehnel	D,	Thrun	S	2009	Generalized	ICP	In:	J	Trinkle,	Y	Matsuoka,	J	A	

Castellanos	Proc.	Robot.:	Sci.	Syst.	(MIT	Press:	Seattle)	21	

[54]	Boyd	S,	Vandenberghe	L	2004	Convex	Functions.	In:	Boyd	S,	Vandenberghe	L	

Convex	Optimization	(Cambridge	University	Press:	New	York)	67–113	

[55]	Fitzgibbon	A	W	2003	Robust	registration	of	2D	and	3D	point	sets	Image	Vis.	

Comput.	1145–53	

[56]	Rusinkiewicz	S,	Levoy	M	2001	Ef>icient	variants	of	the	ICP	algorithm	Proc.	Internat.	

Conf.	3DIM	(Quebec	City,	QC,	Canada)	145–52	

[57]	Yan	J,	Yin	X	C,	Lin	W,	Deng	C,	Zha	H,	Yang	X	2016	A	short	survey	of	recent	advances	

in	graph	matching	Proc.	ACM	ICMR,	New	York,	USA	167–74	

[58]	Zhang	H,	Zhang	Q,	Shao	S,	Niu	T,	Yang	X	2020	Attention-based	LSTM	network	for	

rotatory	machine	remaining	useful	life	prediction	IEEE	Access	8	132188–99	

[59]	Vinyals	O,	Fortunato	M,	Jaitly	N	2015	Pointer	networks	Proc.	NIPS	(Montreal,	

Canada)	2692–2700	

[60]	Gojcic	Z,	Zhou	C,	Wegner	J	D,	Guibas	L	J,	Birdal	T	2020	Learning	Multiview	3D	Point	

Cloud	Registration	Proc.	IEEE	Comput.	Soc.	Conf.	Comput.	Vis.	Pattern	Recognit.	

(Seattle)	1756–66	

[61]	Zeng	A,	Song	S,	Nießner	M,	Fisher	M,	Xiao	J,	Funkhouser	T	2017	3DMatch:	Learning	

local	geometric	descriptors	from	RGB-D	reconstructions	Proc.	IEEE	Comput.	Soc.	

Conf.	Comput.	Vis.	Pattern	Recognit.	2017,	Honolulu,	USA	199–208	



	

117 
	

[62]	Choi	S,	Zhou	Q	Y,	Koltun	V	2015	Robust	reconstruction	of	indoor	scenes	Proc.	IEEE	

Comput.	Soc.	Conf.	Comput.	Vis.	Pattern.	Recognit.,	Boston,	USA	97–104	

[63]	Dai	A,	Chang	A	X,	Savva	M,	Halber	M,	Funkhouser	T,	Nießner	M	2017	ScanNet:	

Richly-annotated	3D	reconstructions	of	indoor	scenes	Proc.	IEEE	Comput.	Soc.	

Conf.	Comput.	Vis.	Pattern	Recognit.	2017,	Honolulu,	USA	5828–39	

[64]	Zhang	Z,	Dai	Y,	Sun	J	2020	Deep	learning	based	point	cloud	registration:	an	

overview	Virtual	Real.	Intell.	Hardw.	2	222–46	

[65]	Chen	Y,	Peng	C	2017	Intelligent	adaptive	sampling	guided	by	Gaussian	process	

inference	Meas.	Sci.	Technol.	28	105005	

[66]	Wang	J,	Jiang	X,	Blunt	L	A,	Leach	R	K,	Scott	P	J	2012	Intelligent	sampling	for	the	

measurement	of	structured	surfaces	Meas.	Sci.	Technol.	23	085006	

[67]	Rasmussen	C	E,	Williams	C	K	I	2008	Gaussian	processes	for	machine	learning	(MIT	

Press:	Cambridge)	

[68]	Park	C,	Huang	J	Z,	Ding	Y	2011	Domain	decomposition	approach	for	fast	Gaussian	

process	regression	of	large	spatial	data	sets	J.	Mach.	Learn.	Res.	12	1697–728	

[69]	Corder	G	W,	Foreman	D	I	2014	Nonparametric	Statistics:	An	Introduction.	In:	

Corder	G	W,	Foreman	D	I	Nonparametric	Statistics	for	Non-Statisticians:	A	Step-

by-Step	Approach	(John	Wiley	&	Sons,	Inc:	Hoboken,	New	Jersey)	1–10	

[70]	Song	X,	Jiang	X,	Gao	J,	Cai	Z	2019	Gaussian	process	graph-based	Discriminant	

Analysis	for	hyperspectral	images	classi>ication	Remote	Sens.	(Basel)	11	2288	



	

118 
	

[71]	Dumas	A,	Echard	B,	Gayton	N,	Rochat	O,	Dantan	J	Y,	Van	Der	Veen	S	2013	AK-ILS:	

An	active	learning	method	based	on	Kriging	for	the	inspection	of	large	surfaces	

Precis.	Eng.	37	1–9	

[72]	Richardson	R	R,	Osborne	M	A,	Howey	D	A	2017	Gaussian	process	regression	for	

forecasting	battery	state	of	health	J.	Power	Sources	357	209–19	

[73]	Lázaro-Gredilla	M,	Titsias	M	K,	Verrelst	J,	Camps-Valls	G	2014	Retrieval	of	

biophysical	parameters	with	heteroscedastic	Gaussian	processes	IEEE	Geosci.	

Remote	S.	Lett.	11	838–42	

[74]	Ghaffari	Jadidi	M,	Valls	Miro	J,	Dissanayake	G	2018	Gaussian	processes	autonomous	

mapping	and	exploration	for	range-sensing	mobile	robots	Auton.	Robots	42	273–

90	

[75]	Kolanowski	K,	S�wietlicka	A,	Kapela	R,	Pochmara	J,	Rybarczyk	A	2018	Multisensor	

data	fusion	using	Elman	neural	networks	Appl.	Math.	Comput.	319	236–44	

[76]	Fahmy	M	S,	Atiya	A	F,	Elfouly	R	S	2008	Biometric	fusion	using	enhanced	SVM	

classi>ication	Proc.	-	2008	4th	IIH-MSP,	Harbin,	China	1043–8	

[77]	Tong	W	G,	Li	B	S,	Jin	X	Z,	Yang	Y	Q,	Zhang	Q	2006	A	study	on	model	of	multisensor	

information	fusion	and	its	application	Proc.	2006	ICMLC,	Dalian,	China,	3073–7	

[78]	Shu	H,	Wang	Y,	Jiang	J	2007	Multi-rada	data	fusion	algorithm	based	on	K-central	

clustering	Proc.	FSKD	2007,	Haikou,	China	4406311	



	

119 
	

[79]	Wang	H,	Liu	T,	Bu	Q,	Yang	B	2016	An	algorithm	based	on	hierarchical	clustering	for	

multi-target	tracking	of	multi-sensor	data	fusion	Chinese	Control	Conference,	

Chengdu,	China	5106–11	

[80]	Alyannezhadi	M	M,	Pouyan	A	A,	Abolghasemi	V	2017	An	ef>icient	algorithm	for	

multisensory	data	fusion	under	uncertainty	condition	J.	Electr.	Syst.	Inf.	Technol.	

4	269–78	

[81]	Zhou	Q	Y,	Park	J,	Koltun	V	2016	Fast	global	registration	ECCV	2016,	Amsterdam,	The	

Netherlands	766–82	

[82]	Agamennoni	G,	Fontana	S,	Siegwart	R	Y,	Sorrenti	D	G	2016	Point	Clouds	

Registration	with	Probabilistic	Data	Association	IEEE	Int.	Conf.	Intell.	Robots	Syst.,	

Daejeon,	South	Korea	4092–8	

[83]	Rasmussen	C	E,	Williams	C	K	I	2006	Gaussian	processes	for	machine	learning	(MIT	

Press:	Cambridge)	

[84]	Wang	X,	Qian	X	2018	Gaussian	process	model	for	touch	probing	ASME	2018	13th	

Internat.	MSEC	2018,	College	Station,	Texas,	USA	MSEC2018-6548,	V002T07A003	

[85]	Yang	C,	Peng	C,	Chen	Y,	Luo	T,	Chu	J	2018	Space->illing	scan	paths	and	Gaussian	

process-aided	adaptive	sampling	for	ef>icient	surface	measurements	Precis.	Eng.	

54	412–9	

[86]	Ongsulee	P	2018	Arti>icial	intelligence,	machine	learning	and	deep	learning	Int.	

Conf.	ICT	Knowl.	Eng.,	Bangkok,	Thailand	17	



	

120 
	

[87]	Ekberg	P,	Su	R,	Leach	R	2017	High-precision	lateral	distortion	measurement	and	

correction	in	coherence	scanning	interferometry	using	an	arbitrary	surface	Opt.	

Express	18703–12	

[88]	Kapłonek	W,	Sutowska	M,	Ungureanu	M,	Çetinkaya	K	2018	Optical	pro>ilometer	

with	confocal	chromatic	sensor	for	high-accuracy	3D	measurements	of	the	

uncirculated	and	circulated	coins	J.	Mech.	Energy	Eng.	2	181–92	

[89]	Parra	Escamilla	G	A,	Kobayashi	F,	Otani	Y	2017	Three-dimensional	surface	

measurement	based	on	the	projected	defocused	pattern	technique	using	imaging	

>iber	optics	Opt.	Commun.	390	57–60	

[90]	Eastwood	J,	Newton	L,	Leach	R,	Piano	S	2022	Generation	and	categorisation	of	

surface	texture	data	using	a	modi>ied	progressively	growing	adversarial	network	

Precis.	Eng.	74	1–11	

[91]	Todhunter	L,	Senin	N,	Leach	R,	Lawes	S,	Blateyron	F,	Harris	P	2018	A	

programmable	software	framework	for	the	generation	of	simulated	surface	

topography	EUSPEN	2018	138400	

[92]	Arezki	Y,	Zhang	X,	Mehdi-Souzani	C,	Anwer	N	and	Nouira	H	2018	Investigation	of	

minimum	zone	assessment	methods	for	aspheric	shapes	Precis.	Eng.	52	300–7	

[93]	Arezki	Y,	Nouira	H,	Anwer	N,	Mehdi-Souzani	C	2018	A	novel	hybrid	trust	region	

minimax	>itting	algorithm	for	accurate	dimensional	metrology	of	aspherical	

shapes	Measurement	(London)	127	134–40	

[94]	Karow	H	H	2004	Fabrication	Methods	for	Precision	Optics	(Wiley-Interscience	:	

Hoboken,	NJ)	



	

121 
	

[95]	Wang	Z,	Qu	W,	Yang	F,	Tian	A,	Asundi	A	2017	Absolute	measurement	of	aspheric	

lens	with	electrically	tunable	lens	in	digital	holography	Opt.	Lasers	Eng.	313–8	

[96]	Shao	G,	Hai	R,	Sun	C	2020	3D	Printing	Customized	Optical	Lens	in	Minutes	Adv.	Opt.	

Mater.	1901646	

[97]	Adams	D,	Ament	S	2018	Understanding	aspheric	lenses:	key	speci>ications	and	

their	impact	on	performance	Optik	&	Photonik	60–3	

[98]	ISO	10110	2007	-	Part12,	Optics	and	photonics	–	Preparation	of	drawings	for	optical	

elements	and	systems		

[99]	Lever	J,	Krzywinski	M,	Altman	N	2017	Points	of	Signi>icance:	Principal	component	

analysis	Nat.	Methods	14	641-2	

[100]	Van	Der	Maaten	L,	Hinton	G	2008	Visualizing	data	using	t-SNE	Journal	of	Machine	

Learning	Research	9	2579-605	

[101]	Fisher	R	A	1936	The	use	of	multiple	measurements	in	taxonomic	problems	Ann.	

Eugen.	7	179-188	

[102]	Hyvärinen	A,	Oja	E	2000	Independent	component	analysis:	Algorithms	and	

applications	Neural	Networks	13	411-430	

[103]	Guo	Y,	Wang	H,	Hu	Q,	Liu	H,	Liu	L,	Bennamoun	M	2021	Deep	Learning	for	3D	Point	

Clouds:	A	Survey	IEEE	Trans.	Pattern	Anal.	Mach.	Intell.	43	4338-64	

[104]	Segal	A	V,	Haehnel	D,	Thrun	S	2009	Generalized	ICP.	In:	J	Trinkle,	Y	Matsuoka,	J	A	

Castellanos	Proc.	Robot.:	Sci.	Syst.	(MIT	Press:	Seattle)	21	



	

122 
	

[105]	Rusinkiewicz	S,	Levoy	M	2001	Ef>icient	variants	of	the	ICP	algorithm	Proc.	

Internat.	Conf.	3DIM,	Quebec	City,	Canada	145–52	

[106]	Zhang	Z	M,	Catalucci	S,	Thompson	A,	Leach	R,	Piano	S	2022	Applications	of	data	

fusion	in	optical	coordinate	metrology:	a	review	Int.	J.	Adv.	Manuf.	Technol.	2023	

1341-56	

[107]	Wang	Y,	Solomon	J	2019	Deep	closest	point:	Learning	representations	for	point	

cloud	registration	Proc.	IEEE	Int.	Conf.	Comput.	Vis.,	Soeul,	South	Korea	3523–32	

[108]	Autodesk	Fusion	360	for	Education	

https://www.autodesk.co.uk/products/fusion-360/education	

[109]	Image2Surface	https://github.com/hanskellner/Fusion360Image2Surface	

[110]	CloudCompare	https://www.danielgm.net/cc/	

[111]	Mountains®	2023	https://www.digitalsurf.com/	

[112]	Vopson	M	M	2021	Estimation	of	the	information	contained	in	the	visible	matter	of	

the	universe	AIP	Adv.	11	105317	

[113]	Aoyama	T,	Hayakawa	M,	Kinoshita	T,	Nio	M	2012	Tenth-Order	QED	Contribution	

to	the	Electron	g-2	and	an	Improved	Value	of	the	Fine	Structure	Constant	Phys.	

Rev.	Lett.	109	111807	

[114]	Pomerleau	F,	Colas	F,	Siegwart	R	2015	A	review	of	point	cloud	registration	

algorithms	for	mobile	robotics	Found.	Trends	Robotics	4	1–104	

	


