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Abstract

In this thesis we employ various methods from network science, together with

epidemic modelling and extreme value theory, to build and analyse financial

crisis propagation models. We use stock price, geographical location, and eco-

nomic sector data for a set of 398 companies to construct multiplex networks

and propose a novel framework for modelling financial contagion using an

SIR (Susceptible–Infected–Recovered) epidemic model. We compare different

shock transmission models and explore their effectiveness in predicting the

spread of financial shock during the 2008 financial crisis and the 2020 finan-

cial crisis. To enhance the accuracy of our models, we introduce a change

point detection method to detect significant changes in historical crisis data

and integrate them into our models accordingly, improving their adaptability

to major market events. Additionally, we develop a model that prioritizes

recent observations under the assumption that they provide a more accurate

reflection of current market conditions and trends, assigning greater weight to

recent data while reducing the influence of older data. Our findings highlight

the importance of the multiplex network structure, differentiating between

various transmission pathways, and demonstrate the value of incorporating

change points and weighted observations for more accurate predictions of af-

fected companies, sectors and continents. In addition, there is no single model

that performs best in all scenarios. Hence, different predictions tasks, whether

forecasting the number of infected companies or making company-specific pre-

dictions, may require distinct approaches to achieve more accurate results.
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Chapter 1

Introduction

1.1 Research outline

The increasing frequency, magnitude and international scope of financial crises

has made global financial stability one of the key concerns of economic policy-

makers and decision-makers [71]. The global financial system is characterised

by extensive interconnectedness, where companies can be connected in mul-

tiple ways, such as via mutual claims and obligations [92], or through trans-

actions between them [25], forming a network structure. Understanding how

financial crises experienced by certain companies or sectors can spread, po-

tentially leading to wider crises, is self-evidently of interest to policy-makers,

investors and business owners, as even a small disruption in a single company

may cause long-term problems and significant losses, as well as a global finan-

cial crisis [155]. Given the impact of financial links on global economies, it

is no surprise that financial system analysis is of great importance. Insights

into how financial crises propagate across a network of companies would be

beneficial not only to current large organisations, but also to the development

of smaller businesses and the formation of new financial ties.
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1.1. RESEARCH OUTLINE

The network structure is important in determining how an initial shock prop-

agates across the system of companies. Hence, rather than being viewed as

a standalone entity, a company and the risk it faces should be evaluated in

conjunction with the network of companies with which it interacts and its

broader financial environment. Allen and Gale [11] study how network topol-

ogy influences the propagation of risk in financial systems. They emphasize

that the existence of network connections can create channels for contagion

spread, increasing the probability of risk transmission within the network.

Since the publication of this pivotal paper, network models have increasingly

been used in both theoretical and empirical studies of financial contagion.

The goal of this thesis is to build and analyse financial shock propagation

models. Our objective is to present novel methodologies and approaches for

modelling shock propagation in multiplex financial networks, integrating tech-

niques from network science, epidemiology and extreme value theory. In par-

ticular, we explore how network science can be used to model the spread of

financial contagion within a system of companies. Our main focus is on pre-

dicting what will happen in the future of a financial crisis, given events in

the preceding days of the crisis. This research is crucial for investors, busi-

nesses and policymakers, as it offers insights into predicting and mitigating

future risks. We demonstrate the effectiveness of our approach by consider-

ing the two most recent crises: the 2008 Global financial crisis and the 2020

COVID-19 crisis.
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1.2. MOTIVATION

1.2 Motivation

1.2.1 Why study financial crises?

Financial crises are the primary economic concern of our time [59]. As the

2008 Global financial crisis developed, the world received a reminder of the

significance of these events. Studying financial crises is crucial due to their

historical propensity to recur over time, their ability to affect both developed

and developing countries, and the severe and long-lasting harm they can do

to economies and societies.

The 2008 financial crisis is the most severe crisis in the global economy since

the Great depression (1929–1939). The crisis started in the United States in

2007 when the US housing market began to collapse and prices plummeted.

The subprime mortgage crisis quickly evolved into a financial catastrophe as

in 2008 two giant mortgage-lending companies, Fannie Mae and Freddy Mac,

filed for bankruptcy. Soon the banking sector began to struggle too as the

well-known bank Lehmann Brothers declared bankruptcy. The instability

surrounding the credit and equity markets further compounded the issues

already affecting the banking sector as a whole.

As the financial downturn in the US continued, the recession also started

spreading globally. In the last decades there has been a significant growth in

the interactions between banks, investors and companies, so the crisis was ac-

celerated by the increased global economic interdependence. As a result, the

entire stock market had a sharp decline in response to the crisis towards the

end of 2008. Numerous banks and subsidiaries were forced to close through-

out Europe; banks in Germany, for instance, experienced significant losses as

they had made huge investments in American real estate securities [111]. Fur-

thermore, Europe faced its own housing bubble, with home prices in Ireland,

3



1.2. MOTIVATION

Iceland, Spain and Denmark plummeting by up to 40% by the end of 2011.

In addition, the global trade declined by more than 15% from 2008 to 2009

[89]. The decline in exports in the US and Europe had an impact on suppliers

from China. Chinese manufacturers, who were heavily dependent on the US

market, experienced difficulties when their primary markets withdrew their

investment and decreased demand. As a consequence, more than 10 million

workers lost their jobs in China [89]. In Europe and the US the unemploy-

ment rates also increased significantly, reaching 10% at the end of the crisis,

the highest value since the 70’s [213]. Overall, as a result of the crisis the US

alone lost more than 8.7 million jobs, while worldwide more than 30 million

jobs were lost.

In addition, the 2008 financial crisis caused protests, riots and unrest world-

wide. The median family income in the US dropped from $126, 000 in 2007

to $77, 400 in 2010, leading to more than 46 million people approaching the

US government for food stamps and costing the treasury $75.7 billion dur-

ing 2011 [19]. Falling incomes caused unrest not only in the United States

but also in Europe. Numerous protests were organised around the world: on

November 16, 2011 thousands of angry US citizens protested against social in-

equality and poverty at Succoth (a park in New York); on November 4, 2011,

the Italian Premier, Mario Monti, announced radical measures to cut public

spending, increase tax rates and the retirement age limit, leading to a series

of protests continuing throughout the whole year 2012; on July 20, 2012 in

Spain a record number of people protested against cuts in wages, increases in

tax rates and reductions in the education and healthcare budgets [19]; in Oc-

tober 2009, Greece declared a financial emergency and required a e45 billion

bailout from the EU and the International Monetary Fund (IMF), leading to

cuts in wages and increases in taxes, which caused series of protests.

The above discussion has demonstrated that the 2008 crisis had a profound
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1.2. MOTIVATION

impact on lives, economies and politics worldwide. As financial crises become

increasingly common, it is crucial to understand their underlying mechanisms

and develop strategies to prevent and mitigate their effects.

1.2.2 Why use network science?

Over the past two decades, advancements in data collection and computing

power have increased the availability of data across many natural and man-

made systems [164]. This surge in data availability has led to the emergence

of network science, a multidisciplinary field in which researchers explore the

structural properties and characteristics of complex networks [163]. Within

this context, network science has become an increasingly popular framework

for modelling financial systems. As a result, many different financial network

models have been developed in recent years [83, 154, 221], all demonstrating

the effectiveness of the use of network theory approaches to model financial

systems.

The 2008 financial crisis illustrated how the global financial interconnected-

ness can lead to significant losses and global financial instability. The crisis

has emphasized the importance of studying network linkages and interactions

between financial institutions for understanding systemic risk [13]. In general,

a network is a collection of nodes and the links between them. In the finan-

cial context the nodes usually represent financial institutions and the links

between them can represent an interaction between them, such as common

investors or similar portfolios.

Network science offers many advantages for studying and modelling financial

crises. For instance, traditional financial models usually focus on individ-

ual institutions or markets, not considering their connections. However, by

5



1.2. MOTIVATION

taking into account the wider financial system and the complex network of

relationships among its individual components, network science offers a com-

prehensive perspective, which is crucial for identifying systemic risks that may

not be apparent when examining institutions individually. For example, Qiu

et al. [186] and Cai et al. [49] argue that using network science can enrich our

understanding of financial systems. They demonstrate the importance of the

network approach for evaluating financial stability and understanding how the

risk associated with a single institution can impact the entire system. In addi-

tion, network analysis provides tools to identify key institutions (nodes) and

connections (edges) that play a significant role in the stability of the financial

system. Regulators and policymakers can then develop strategies to protect

the most influential parts of the network, thereby enhancing overall resilience

[10]. In addition, financial crises often spread through contagion, where the

failure of one institution leads to a cascade of failures across the whole fi-

nancial system. Network models are particularly useful for simulating these

so-called spillover effects, allowing for better understanding and mitigation

of potential chain reactions in financial markets [178]. Allen and Babus [10]

argue that regulations that focus on individual institutions, while also con-

sidering vulnerabilities from network interconnections, can help prevent local

crises from spreading globally. All the advantages mentioned above, combined

with the growing body of research demonstrating its effectiveness in financial

modelling and the considerable potential for additional contributions to this

field, motivates the use of network science as a foundation for the research

presented in this thesis.
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1.3. THESIS STRUCTURE

1.3 Thesis structure

The remainder of the thesis is organised into seven chapters, whose content is

described in the following paragraphs.

Chapter 2 provides a review of the existing literature in the fields of network

science and epidemiology, focusing on their application to financial modelling.

Specifically, we review how the fundamental methods and concepts developed

in these fields can be used to model financial contagion. We explore some of

the key studies related to these topics and discuss their significant findings

and conclusions.

Then, in Chapter 3, we introduce an innovative framework for modelling the

spread of financial crises. Utilizing stock price, geographical location, and eco-

nomic sector data from 398 companies, we build a financial network and em-

ploy a Susceptible–Infected–Recovered (SIR) transmission model to simulate

the spread of financial shocks among the network of interconnected compa-

nies. Our findings highlight the importance of differentiating between various

transmission pathways. Additionally, the framework is versatile in nature and

can be applied to any financial crisis, whether within networks of companies,

countries or economic sectors. Most of the work presented in Chapter 3 is

published in [45].

In Chapter 4, we examine the use of change point detection techniques to

enhance the model’s responsiveness to major market events. External shocks,

like geopolitical tensions and natural disasters, can significantly impact stock

prices and market dynamics. Hence, it is crucial to build a model that can

quickly adapt to such changes. By using change point detection, we identify

and integrate these events into the model, enabling its predictions to adjust

to the changing market. The method illustrates the importance of considering

7



1.3. THESIS STRUCTURE

significant past events for achieving more accurate forecasts.

Chapter 5 presents a model that prioritizes recent observations under the

assumption that they provide a more accurate reflection of current market

conditions and trends. This approach assigns greater weight to recent data

while reducing the influence of older data. The results indicate that incor-

porating this weighting of past observations improves accuracy compared to

models that treat all past data equally important. In addition, we combine

the observations weighting approach with the model introduced in Chapter 4.

Specifically, we use both change point detection techniques and weighting of

past observations in order to build a more accurate model that can adapt to

significant market changes quickly and prioritizes recent observations simul-

taneously.

Chapter 6 offers a comprehensive comparison of the various models discussed

throughout the thesis. It evaluates each model based on its effectiveness in

addressing different types of predictions, including predicting the number of

infected companies, the continents and economic sectors that will be most

affected, and the specific companies that will be infected during future crisis

days. The chapter then identifies the most suitable model for each specific

prediction scenario.

In Chapter 7 we explore how different network and node characteristics can

influence risk propagation. In particular, we study the correlation between

different centrality measures and the probability of infection. We also analyse

if a company’s credit score can be used as a predictor how long it would

stay infected in a crisis. Finally, we conduct a simulation study of various

counterfactual crisis scenarios, such as initiating a crisis with the most central

nodes or varying the number of initially infected companies, demonstrating

the practical value of such studies.

8



1.3. THESIS STRUCTURE

Finally, Chapter 8 summarises the thesis, identifies existing research gaps and

outlines potential directions for future research.

9



Chapter 2

Literature review

In this chapter we conduct a comprehensive review of the relevant literature

on network science and epidemic modelling on networks, which are the two

main research areas of our thesis. Our aim is to outline the main methods

and concepts that will be used in this thesis. We review the key studies that

have been conducted on these topics and highlight the significant findings and

conclusions.

Specifically, in Section 2.1, we provide an overview of network science, high-

lighting its fundamental concepts and theories and its main contributions to

economics and finance. Then, Section 2.2 discusses the relevant literature on

modelling epidemics on networks and examine some of the significant find-

ings in the field of finance. Finally, in Section 2.3 we discuss some of the

research gaps in the existing literature and explain how our thesis addresses

these issues.

10



2.1. NETWORK SCIENCE

2.1 Network science

Technology and computation have improved dramatically in the twenty-first

century, resulting in a huge amount of data for a wide range of natural and

synthetic systems, including biological systems such as the human nervous

system, technological systems like the Internet, and social systems such as

friendship groups. The increased data availability has sparked the formation

of a new field of study known as network science (also called network theory),

in which researchers have developed various methods to model and understand

the behaviour of complex systems [164]. The goal of network science is to

create models that reflect the structural properties of real-world systems and

investigate how these structures are linked to network characteristics. In this

section, we discuss some of the key ideas, applications and recent developments

in network theory.

2.1.1 Background and history

Network theory, which apply concepts from graph theory, is a mathematical

approach to the study of complex systems and their relationships. Specifi-

cally, graph theory is a branch of mathematics that studies graphs as abstract

structures representing relationships between objects, while network theory

applies these concepts to real-world systems, focusing on their structure and

dynamics. The beginning of graph theory is considered to be in the 18th

century, when Leonard Euler published a paper providing the solution of the

Königsberg bridge problem [85]. The city of Königsberg includes four different

islands, connected by bridges (see left plot in Figure 2.1). The question was

if it is possible to walk through all the islands, without crossing any bridge

twice, and starting and finishing the walk on the same island. Euler repre-

11



2.1. NETWORK SCIENCE

Figure 2.1: The ‘Seven bridges of Königsberg’ problem illustrated in graphs.
A graph, as seen in the most-right plot, is represented by a set of points
called vertices or nodes, connected by a set of lines called edges. The image
is taken from https://en.wikipedia.org/wiki/Seven_Bridges_of_K%C3%

B6nigsberg .

sented the city as a graph (see right plot in Figure 2.1), where the islands are

represented as vertices (blue circles) and the bridges are represented as edges

(black lines) and proved that it would be possible only if all islands (vertices)

had an even number of bridges connected to them (even degree). He also

generalised this statement for any number of bridges and islands. His sketch

is one of the first examples of graphs.

Since then, graph theory has been constantly developed and extensively stud-

ied. In the last century, graph theory has evolved significantly, leading to

the introduction of a variety of definitions and methods for characterising

the structural aspects of graphs, which led to the development of network

theory. The first widely recognised examples of the application of graph the-

ory methods to the study of real-world networked systems occurred in the

field of social networks analysis in the early part of the 20th century [164].

This early research was primarily limited to small networks that could be

drawn by hand and the investigation of the attributes of individual vertices,

due to constraints in the availability of data and computing capacity at the

time. Jacob Moreno’s study on the number of friendships held by individuals

within friendship groups is an example of such research [152]. Since the late

1990s and early 2000s, network science has grown into a well-established and

productive field. Initial research relied on empirical networks and sought to

12
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2.1. NETWORK SCIENCE

Figure 2.2: Erdős–Rényi network models with 20 nodes and probability of an
edge existence p = 0.1, p = 0.5, p = 1 from left to right.

better understand how networks form and what qualities they have. Degree

heterogeneity (variation in the number of neighbours of each node) has been

discovered to be a common feature of many real-life networks, ranging from

biological to political and social networks [21]. As a result of better knowl-

edge of how real-world networks arise and evolve, a variety of theoretical and

synthetic network models have emerged. One of the most popular synthetic

network models was created by Erdős and Rényi in 1959 [97]. In this model,

a graph is created with a given number of nodes n, where each possible (undi-

rected) link between each pair of nodes is present with an equal probability p.

Figure 2.2 shows three different Erdős–Rényi network models, each with 20

nodes and each edge having a probability of being present p = 0.1, p = 0.5,

p = 1, respectively, independently of the other edges. In 1998 Watts and

Strogatz published a paper in which they proposed another very popular ran-

dom model used in network theory, called a small-world network model [225].

The small-world model is a network model constructed to ‘mimic’ properties,

which are found to be present in many real-life systems, such as social net-

works [184] and brain networks [28]. Such properties include small distances

between the nodes and a high level of clustering. Small-world networks are

constructed in the following way. The first step is creating a ring with N

nodes and connecting each node with its k nearest neighbours on each side.

Then each edge in the graph is randomly rewired to another node with a prob-

13



2.1. NETWORK SCIENCE

Figure 2.3: Illustration of the small-world network construction. Starting with
a ring lattice where each node is connected to its k = 2 nearest neighbours on
each side (left plot), the edges are rewired with probability p. The graph in
the middle shows a realisation with p = 0.1 and the right plot illustrates an
example where p = 1.

ability p. An example is shown in Figure 2.3. In 1999, Barabási and Albert

introduced their preferential attachment model [22]. The model begins with

a small graph of just a few nodes. New nodes are added sequentially, each

connecting to existing nodes with a probability proportional to their degrees

(‘rich-get-richer’ principle, based on the idea that highly connected nodes have

a greater ability to form new connections). This process continues until the

network reaches the desired size n. These models are typically used to repre-

sent social networks, where popular individuals can continue to make friends

via their pre-existing connections, while the less popular members of the net-

work remain isolated. An example is shown in Figure 2.4. It can be seen that

in comparison to the model where new nodes are attached to the existing ones

randomly (with equal probability of attachment), the preferential attachment

model produces a network, where most nodes have a low degree, but there are

a few highly connected nodes. This feature of the node degree distribution is

typically displayed by power-law distributions. All these theoretical models of

networked systems are valuable as they help uncover the fundamental mecha-

nisms driving the formation and development of networks found in real-world

scenarios.

In recent years network theory has become a common tool for analysing the
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Figure 2.4: The figure illustrates two models of network attachment. The
left plot represents an equal probability of attachment (each new node is
connected to an existing node randomly), while the right plot represents a
preferential attachment model (each new node is connected to an existing
node with probability proportional to node’s degree). The initial network
consists of 3 nodes. The size of each node is proportional to its degree.

connections in social [8, 224], biological [29, 84, 144, 205] and financial sys-

tems [11, 72, 93]. Previous work on social network analysis [224] has shown

that analysing community structures has important applications in market-

ing studies [75], homeland security [230] and epidemic modelling [84, 144]. In

addition, network theory is successfully applied in modelling interactions of

neurobiological systems [29], describing the protein connections in human cells

[205], flood risk assessment in rivers’ basins [82] and studying the topology of

World Wide Web networks [8].

Many complex networks are dynamic in nature. Usually, we say that a net-

work is ‘dynamic’ if its set of edges, and sometimes its set of vertices, change

with time. Alternatively, we can say that a network is ‘dynamic’ if the vertex

or edge attributes are functions of time. If both cases are present, then we

say that the network is ‘coevolving’ [131]. Edge-set dynamics is usually seen

in social networks. For example, in a social network friendship connections

form and break over time. Newcomb [161] used temporal data to study the

friendship creation processes in a group of males living in the same house.
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Also, Moody et al. [151] studied the romantic networks between the stu-

dents in a school, trying to model how sexually transmitted diseases spread.

For such networks it is important to capture how often a student changes a

partner. In addition, node and edge attribute dynamics is commonly seen in

neuroscience [199]. For example, during development or learning, an adjust-

ment of myelin thickness or internode length can influence conduction speed

of myelinated axons [14]. Other fields where the usage of dynamic networks is

very popular include biology and medicine [7, 40, 173]. Applications include

modelling protein interactions [6], cancer research [141, 210] and epidemiology

[20]. Dynamic networks are also used to model complex networks in covert

operations. One of the most famous examples where dynamic network was

used is the capture of Saddam Hussein [44] where cellular phone data was

used to study his location and contacts [98].

However, in practice most network analyses assume that the network of in-

terest is static. One reason is that the methodologies for analysing dynamic

networks are not as well developed as those for static networks. Also, in many

cases working with temporal networks is computationally expensive and it is

sometimes difficult to collect data over time. It is important to note, however,

that it is not always necessary to use dynamic networks, as a static network

can sometimes provide a sufficiently good approximation to the temporal sys-

tem [127]. Overall, modelling dynamic networks is not straightforward and

each different problem requires different techniques. Nowadays, there are still

not many models and methods for dynamic networks. However, the field of

dynamic networks is progressing fast, improving our understanding of inter-

connected systems and leading to significant advancements in many areas.

Network theory has become an increasingly important tool for analyzing the

world around us. The history of network theory reflects a long and rich tradi-

tion of using mathematical and computational tools to understand the struc-
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ture and function of complex systems. This overview has highlighted some of

the methods developed to construct and analyse network structures, theoret-

ical models to represent networks and empirical studies on real networks.

2.1.2 Multilayered networks

Real-life systems are usually too complicated to be described accurately by

a single-layered network. Frequently, the system of interest will contain dif-

ferent types of relations between the nodes and/or different types of nodes

for which a single-layered approximation may be inadequate. In such cases,

a multilayered network is required. In such networks, there are two types of

edges: intra-layer edges, that connect nodes within the same layer, and inter-

layer edges, which connect nodes in different layers (see Figure 2.5a). For

example, sometimes in a social network we might have different types of rela-

tionships, such as friendship, coworker, or family connections. Each of these

relationships can be defined in a distinct network layer. Networks in which

each edge is categorized by its type are called ‘multiplex’ or ‘multirelational’

networks [129]. In multiplex networks, each node is present in each layer and

the inter-layer links only connect instances of the same node in different lay-

ers. In other cases we might have the same connection types, but different

types of nodes, such as for example males and females in a social network.

Such network is called a ‘node-coloured’ network or a ‘network of networks’

[31]. In these networks each layer represents a set of nodes of the same type

(see Figure 2.5b).

Multilayered networks are employed in a variety of fields of study, such as neu-

roscience [64], ecology [179], biomedicine [106], epidemiology [118] and cancer

research [51]. Although their usage has become very popular in recent years,

there are relatively few models and analysis tools for multilayer networks. In
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Figure 2.5: The figure illustrates a) a multiplex (or edge-coloured) network,
where each layer consists of the same nodes, but represents a different type of
connection; b) a node-coloured network, where nodes in each layer are of the
same type, and nodes in different layers represent different types.
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fact, many of the methods used in multilayer network analysis have been de-

veloped from the methods used in the analysis of single-layered (monoplex)

networks. For example, the notions of node degrees [30], centrality measures

[69], clustering coefficients [62] and community structures [110] have been

generalised to multilayer networks. In many cases, analysis of a multilayer

network is undertaken by ‘overlapping’ it into a monoplex network (simplify-

ing it into a single-layer network by combining or merging the different layers

into one) and then using well-known methods for analysing single-layered net-

works. The negative consequence is that usually some important data is lost.

Nevertheless, the field of multilayered networks is developing quickly, as the

research interest in the area is constantly growing.

Overall, multilayered networks are a powerful tool for modelling complex sys-

tems that exhibit multiple types of interactions and dependencies. The ability

to represent and analyze multiple layers of interactions allows for a more ac-

curate and nuanced understanding of how different components of a system

are connected and how they interact. As the complexity of systems continues

to increase, multilayered networks will become increasingly important for un-

derstanding and managing complex systems. Further research in this area is

needed to develop more sophisticated methods and tools for analysing multi-

layered networks and to apply them to new domains and applications. Ulti-

mately, the continued development and application of multilayered networks

will contribute to a better understanding of complex systems and inform the

development of more effective strategies for their management and control.

2.1.3 Networks in finance

In his 1758 work, ‘Tableau Economique’ [187], François Quesnay conceptu-

alised the circular flow of financial funds in an economy as a network. This
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is considered to be the first publication on the topic of financial networks.

His fundamental idea has been employed in creating so-called financial flow

of funds accounts, which provide a statistical depiction of the movement of

money and credit within an economy [158]. Since then the application of net-

works in economy and finance has evolved and expanded. Many theoretical

models that focus on trade linkages [95], financial linkages [70], as well as

models on information asymmetries and investor behaviour [76] are among

those used in the economics and finance literature. The types of networks

in finance can be divided into two main categories: similarity-based networks

and direct interaction networks, as explained in [50]. In the first type a link

(or edge) between two nodes represents a similarity of the agents (companies,

industries, stocks, markets). In the second, the links represent a direct depen-

dence between agents (ownership, customer-supplier relationship, partnership,

money flow, transaction between agents). In Section 2.1.3.1 we discuss popu-

lar methods for constructing similarity-based networks, and in particular their

applications in finance. In Section 2.1.3.2 we discuss some of the existing lit-

erature related to direct interaction networks in finance. Finally, in Section

2.1.3.3 we describe the applications and importance of multiplex networks in

finance.

2.1.3.1 Similarity-based networks

A similarity-based network, or a similarity graph, is a network where a link

between two nodes (agents) indicates how similar they are. A typical similarity

measure used in literature is the correlation coefficient between two time series.

Different correlation measures have been used such as Pearson correlation,

Kendall’s tau and the Spearman rank coefficient [197]. Other popular methods

to construct similarity graphs include, but are not limited to, using Euclidean

distance [120], cosine similarity [231] and Hamming distance [169] between
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nodes. These distances are computed based on feature vectors associated

with each node, which quantify the characteristics or attributes of the nodes.

Typically, in similarity graphs a link between two nodes exists if there is a

strong similarity between them. In such cases one needs to construct a cri-

terion by which to decide if this similarity is strong enough, such that a link

exists between the agents [50]. In general, consider a system of N nodes, each

represented by a set of variables. These variables might be different proper-

ties of the nodes, or represent the values of the variables at different times (in

which cases each node will be represented as time series). A popular way to

create a similarity graph is to consider an N × N similarity matrix S, with

entries si,j representing the similarity between node i and node j. Then, if si,j

is larger than some threshold, there is a link between nodes i and j, typically

with weight associated with the value of si,j. However, choosing the threshold

is not straightforward. Therefore, an important topic in the study of similar-

ity networks is filtering the similarity matrix (or graph) such that only the

most ‘important’ entries (or edges) are kept. Some of the popular methods

for filtering the networks include the minimum spanning tree (MST) and pla-

nar maximally filtered graph (PMFG) approaches. The latter is the filtering

method chosen in this thesis. More information and detailed descriptions of

each of these methods are found in [50].

Similarity-based networks are popular in finance. One of the most popular

ways to construct similarity graphs in finance is using stock prices and mea-

suring different types of correlation between them. For example, Bonanno et

al. [42] investigated how the cross-correlation between pairs of 100 US stocks

depended on the time horizon used to compute the stock returns. The au-

thors found that clusters of economic sectors emerge in the network structure

as the time horizon gets larger. The correlation based similarity graph ap-
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proach has also been applied to stock indices and cryptocurrencies data. For

instance, the authors of [43] studied the correlation between 51 different coun-

tries’ stock indices and found that there are regional clusters of European and

Asian countries. In addition, [101] built a correlation-based similarity network

to study the transmission of price information among different bitcoin market

exchanges.

Correlation measures can be useful in modelling financial risks. For instance,

modern portfolio theory proposes that diversification can lessen the volatil-

ity of a portfolio’s returns, thereby reducing risk [133]. By examining the

correlation coefficient between historical returns, investors can determine if

incorporating a new investment into a portfolio will enhance its diversifica-

tion. Even though the traditional correlation measures mentioned above have

been extensively used in finance, they typically consider the entire distribution

of the time series. However, the dependence in the tail of the distribution can

differ significantly from that in its mid-range. When extreme realizations are

important, such as estimating the dependence between risky returns, extreme

value theory techniques are commonly used. More details are given in the

following section.

2.1.3.1.1 Tail dependence to model financial networks

Extreme value theory (EVT) is a statistical approach that is specifically de-

signed to analyse rare and extreme events. It has found a wide range of ap-

plications in fields such as climatology [107], hydrology [218], biomedical data

processing [192], sports [94], public health [214] and medicine [38]. While

there are many theoretical and statistical tools for univariate extremes (see

[32] for more information), techniques for high-dimensional and complex data

sets are still limited. Only recently have appropriate ideas of sparsity been
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created, as well as linkages to other fields such as machine learning, graphical

models and high-dimensional statistics [82]. Despite the fact that both EVT

and network science have been successful separately in modelling financial

and economic data, there has been limited research merging the two. Using

the concept of conditional dependence, recent work by Engelke and Hitz [81]

illustrates how to integrate the two by building graphical models on extremes.

Another recently developed class of extreme networks is the directed graphical

model for extremes. Although directed graphical models for extreme values

(also known as max-linear Bayesian networks) were only introduced in 2018

by Gissibl and Klüppelberg [100], they have already found use in hydrology

[219] and risk modelling [78].

In the last few decades, EVT gained popularity in the financial industry,

where it is used to model and manage financial risks associated with extreme

events such as stock market crashes, credit defaults and natural disasters [80].

Such events can have significant economic and social impacts. Hence, the

application of EVT in finance has become an important tool for financial

institutions in risk management and investment decision-making. In fact,

EVT has recently become very important in credit risk management [80].

Numerous studies have examined the dramatic fluctuations to which financial

markets are vulnerable, primarily as a result of currency crises, stock market

crashes and loan defaults [99]. More information about the opportunities that

EVT offers for risk management in finance, including the ability to estimate

tail risks more accurately, to model dependencies among tail events and to

incorporate time-varying risk parameters can be found in Diebold et al. [73].

Nowadays, crises continue to arise at various financial levels, both national

and international [132]. Scientists’ interest in this topic is growing and the

significant contributions to the study of the global economy have increased

considerably over the last decade. The study of extreme occurrences, such as
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the 2008 financial crisis, is a hot topic among investors [35]. EVT provides

methods and distributions that are able to fit such extreme events very ac-

curately [16]. One effective approach to studying financial crises, particularly

focusing on how they are transmitted, involves the use of tail dependence.

This method examines the extreme co-movements between financial assets or

institutions, providing insights into how distress in one entity can significantly

impact others during periods of severe market stress.

Tail dependence is a statistical concept that measures the strength of the

relationship between extreme events (tail events) in two or more variables.

In finance, tail dependence is used to model the interconnectedness and sys-

temic risk of financial networks, such as banks and other financial institutions.

By analyzing the tail dependence of different financial variables, analysts can

identify potential sources of systemic risk and quantify the potential impact

of extreme events on the overall financial system. The notion of tail depen-

dence was first introduced by Sibuya [200] and so far many parametric and

nonparametric measures of multivariate tail dependence have been introduced

[3, 138, 139, 177, 188].

The use of tail dependence to model financial networks is a relatively new

approach in the field of financial economics. It is based on the idea that

traditional correlation measures are not sufficient to capture the complex in-

terdependencies between financial institutions in times of stress, and that tail

dependence can provide a more accurate picture of the risks involved. Portfo-

lio theory, credit spread analysis and risk management, all rely on estimating

the dependency between risky asset returns [183], for which the quantification

of high losses in volatile market conditions is crucial. However, measuring the

dependency between risky asset returns is not a straightforward task. When

extreme realisations matter, the traditional correlation measures can be poor

indicators of dependency as the dependence in the tail of the distribution

24



2.1. NETWORK SCIENCE

might not be the same as the dependence in its mid-range. As an alternative,

tail dependence coefficients can be used to measure the dependence between

two or more random variables in their tails [138, 196].

One of the earliest studies on tail dependence to model financial networks was

conducted by Embrechts et al. [80], who proposed the use of copula func-

tions to model the dependence structure between different financial variables.

Copulas are statistical tools used for modelling the joint distribution of two

or more variables while capturing their dependence structure. The authors

showed that copulas could be used to model the tail dependence between fi-

nancial variables and demonstrated their use in analysing the risk of portfolio

losses. Since then, there has been a growing body of literature on tail depen-

dence and systemic risk in financial networks, with a focus on developing new

models and techniques to capture the complex and dynamic nature of these

networks.

For example, Danielsson et al. [67] studied the tail dependence of the joint

distribution of stock returns in the Swedish stock market and found evidence

that extreme events were more likely to occur simultaneously across different

stocks, suggesting the presence of systemic risk in the market. Gai et al.

[92] introduced a method to model tail dependence in financial networks by

incorporating ‘systemic importance’ as a measure that considers the potential

impact of institutions on the overall system during a shock. Their findings

suggested that systemic importance enhances predictions of contagion spread

in a network compared to models that only consider connectivity. Singh et

al. [201] analysed the tail dependency structure between the Australian and

five other international stock markets. They found that the Australian stock

market is more dependent on other major international markets for extreme

losses than for extreme profits. Moreover, they discovered that in the case

of extremely high gains, the Australian stock market is significantly more
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influenced by the stock markets of Japan and Hong Kong than the US market.

Similarly, Wang et al. [223] studied the tail dependence structure of the foreign

exchange market and discovered that the upper-tail dependence network and

the lower-tail dependence network each contain distinctive currency clusters,

cliques, and communities. They concluded that market participants should

consider various topological elements while deciding on investment or hedging

methods, depending on the market environment.

Tail dependence has also been used to analyse propagation of shocks across

financial networks. For example, Acemoglu et al. [2] proposed a model to

study the propagation of financial contagion in a network of interdependent

financial institutions. The authors focused on the role of tail dependence in

the transmission of shocks across the network. They found that the presence

of tail dependence can significantly amplify the impact of shocks on the net-

work, particularly when the network is highly interconnected. Also, Wen et

al. [226] examined the tail dependence relationships between 47 global stock

markets. They estimated tail dependence coefficients using the empirical cop-

ula method and constructed a financial network, finding that it exhibits a

small-world structure with strong tail dependence relationships between some

stock markets. They also applied the tail dependence network to portfolio

optimization and showed that incorporating tail dependence information can

significantly improve the performance of a global portfolio.

Overall, tail dependence has proven to be a valuable tool in modelling financial

networks and assessing contagion risk in the financial sector. It allows us to

analyse the extreme events and dependencies that occur when multiple assets

or institutions experience significant losses or gains simultaneously. Given its

success in modelling financial networks, tail dependence is becoming a popular

way to assess the interconnectedness of financial systems and identify potential

sources of systemic risk. In this thesis, we utilize tail dependence to build our
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similarity-based financial network model, focusing on extreme co-movements

of stock prices.

2.1.3.2 Direct interaction networks

Direct interaction networks are graphs, in which the links between the nodes

represent an interaction between them. In a financial context such interac-

tions may be a transaction between companies, percentage of ownership of

one company in another or the amount of debt of one company to another.

For example, the authors of [160] studied the corporate ownership network

in the automotive industry, constructed using shareholders data on the 30

largest automakers (ranked by production in 2016) and their largest hold-

ers (companies, banks, passive investment funds, mutual and pension funds

and governments). By studying the network properties they found that most

central financial institutions in the corporate ownership network are passive

investment funds, highlighting their influential role in the financial system. In

addition, Elliott et al. [79] built a financial network using equity claims be-

tween banks, while Jackson and Pernoud [117] included both debt and equity.

Other examples include customer-supplier networks [105, 191] and transaction

networks [115, 135]. However, the lack of publicly available financial data

makes it difficult to construct and analyse such interaction networks. This

challenge often requires the usage of incomplete datasets, which can limit the

comprehensiveness and accuracy of the studies. Nevertheless, the potential

for using direct interaction networks in financial modelling is growing with

the increasing data availability.
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2.1.3.3 The multiplex nature of finance

In finance, multiplex networks have been used to model the interconnectedness

of financial institutions and the risks associated with their interactions. The

applications of multiplex networks in finance include portfolio optimization,

risk management and contagion modelling. For example, the authors of [209]

presented a model for assessing the degree of diversification and systemic risk

in interbank networks. The model incorporates both the size and concentra-

tion of a bank’s lending portfolio, as well as the connectivity of the interbank

network. The authors demonstrated how the model can be used to analyse

the effects of different shock scenarios on the stability of the financial system.

Also, Del et al. [70] constructed a multiplex network where the nodes repre-

sent countries, the edges represent cross-country financial assets of different

types, and layers represent asset types. They then simulated different scenar-

ios of financial shocks in the network and measured the extent and speed of

contagion across the network. The authors found that the multiplex network

structure can both amplify and dampen the effects of financial shocks. In par-

ticular, they showed that the presence of different layers of relationships can

create pathways for contagion to spread quickly, but can also provide alter-

native routes for the flow of funds, which can mitigate the impact of shocks.

Also, the authors of [204] constructed a multiplex network that combines the

global trade network and the global investment network, and used network

analysis tools to investigate how the failure of a country or a company in one

network affects the other network and the global economy as a whole.

Numerous studies use various methods and approaches to compare multi-

plex and monoplex (single-layered) network models in the context of financial

contagion, including simulations, network metrics, and empirical analysis of

real-world financial networks. In [92] the authors investigated the dynamics
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of financial contagion in interbank lending networks using a model that in-

corporates both random and targeted shocks. They compared the impact of

these shocks in monoplex and multiplex network models and found that the

multiplex model can better capture the complexity of the interbank lending

structure and the potential for contagion to spread across different financial

markets. Also, Poledna et al. [182] examined the nature of systemic risk in

financial systems. The authors argued that financial systems are multilayered

networks, with layers representing different types of financial institutions and

interconnections between them. They showed that systemic risk is substan-

tially underestimated when computed on single layers only, as is the typical

approach. In addition, Bargigli et al. [24] used data of supervisory reports

on Italian banks to build multiplex networks. They investigated the struc-

ture and properties of interbank networks, which represent the connections

between banks through lending and borrowing relationships. The authors ar-

gued that interbank networks are not simple, one-dimensional structures, but

rather multiplex networks that consist of multiple layers of interbank lending

and borrowing relationships. They found that monoplex approaches poorly

depict interlinkages and may cause biased systemic risk estimation, with the

multiplex structure having important implications for stability. Bardoscia et

al. [23] compared the use of monoplex networks (which consist of a single layer

of interbank lending and borrowing relationships) to the use of multiplex net-

works (which consist of multiple layers of interbank lending and borrowing

relationships) in modelling financial instability and systemic risk. According

to the authors, employing multiplex networks offers a more accurate and de-

tailed understanding of the intricate connections and interrelationships among

financial institutions and markets. The authors of [125] also compared mul-

tiplex and monoplex networks by studying the dependency relations among

international stock market indices. They concluded that the multiplex net-

work approach is better suited for studying contagion and systemic risk in
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stock markets due to their ability to capture complex interactions.

All these studies demonstrate that multiplex network models offer a more

comprehensive and accurate depiction of systemic risk and contagion dynam-

ics compared to traditional monoplex (single-layered) models. Hence, it is

crucial to consider the different connections between financial institutions,

as each connection represents a potential pathway for contagion transmis-

sion. By modelling financial assets as nodes and representing various types of

relationships, such as correlations or co-movements, through distinct layers,

multiplex networks provide a more comprehensive and realistic representa-

tion of financial markets than traditional approaches. In addition, analysis

of the interconnectivity between different financial institutions can be used

to identify potential systemic risks and vulnerabilities in the financial sys-

tem, enabling regulators and policymakers to implement more effective risk

management strategies and prevent financial crises. In this thesis, we build a

multiplex network model to leverage these advantages. Specifically, we study

the spread of financial contagion within a multiplex network, allowing for a

more accurate assessment of systemic risk.

2.2 Epidemics on networks

The increasing use of methods from network science has resulted in a new

modelling paradigm that combines multiple fields of study, including physics,

mathematics, biology, and social sciences. Infectious illness transmission be-

tween nodes in a network has become an important area of research in recent

years, with many studies exploring the dynamics of disease transmission and

the impact of network structure on epidemic control. In this section we ex-

plore epidemics on networks and demonstrate their usefulness for modelling
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financial contagion on networks.

2.2.1 Background and history

Infectious diseases create a significant social burden. For example, globally,

the COVID-19 pandemic has, as of July 2024, claimed more than 7 million

lives. In addition to the human cost, the financial impact of the COVID-

19 pandemic has been huge [156]. For instance, the Congressional Budget

Office predicts a total of $7.6 trillion in lost output in the US during the

next decade [66]. New diseases emerge on a regular basis, while old ailments

remain. Mathematical models have been used to guide policymakers in the

response to the emergence of diseases such as SARS [166], influenza [170] and

Ebola [36]. Epidemic propagation has been mathematically modelled for more

than a century. The majority of epidemic models are based on a compart-

mentalisation of individuals or hosts dependent on their infection status [124].

The two most widely used compartmental models for the spread of infectious

diseases in populations, the SIR (Susceptible - Infected - Recovered) and the

SIS (Susceptible - Infected - Susceptible) epidemic models, were introduced

by Kermack and McKendrick in the 1920s [126]. The SIR model assumes that

once an individual has recovered it cannot get reinfected again, while the SIS

model assumes that once an individual recovers it is susceptible to the disease

again. Hence, the SIR model is commonly used to describe infectious diseases

that lead to a longlife immunity, such as measles [145]. The SIS model, on

the other hand, is mostly used for sexually transmitted diseases (STDs), as

individuals who recover can often become susceptible to reinfection [91].

The work of Kermack and McKendrick resulted in two standard sets of dif-

ferential equations, which serve as a foundation of almost all of mathematical
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Figure 2.6: Schematic representation of the a) SIR and b) SIS epidemic mod-
els. Boxes represent different compartments and the arrows indicate transi-
tions between compartments, based on their respective rates.

epidemiology [124]: the SIR model

dS

dt
= −β

SI

N
,

dI

dt
= β

SI

N
− γI,

dR

dt
= γI,

(2.1)

and the SIS model

dS

dt
= −β

SI

N
+ γI,

dI

dt
= β

SI

N
− γI.

(2.2)

In the above equations S = S(t), I = I(t) and R = R(t) are the number

of susceptible, infected and recovered individuals at time t, respectively, and

N is the population size, which is assumed to be constant over time, so no

new individuals are ‘born’ and no individuals ‘die’. Here, β is the rate at

which susceptible individuals become infected and γ is the rate at which each

infected individual recovers (in the SIR model) or becomes susceptible again

(in the SIS model) (see Figure 2.6). These models are based on the assumption

that each individual has an equal chance of coming into contact with any

other individual, also called a homogeneous-mixing population assumption. In
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practice individuals have different numbers of contacts, usually considerably

smaller than the population size, making the homogeneous mixing population

assumption unrealistic. Models which incorporate network structure avoid

the homogeneous mixing assumption and enable the calculation of the spread

of an epidemic across the entire population based on the infection patterns at

the individual level [124]. The concept of social networks and their impact on

disease transmission began to emerge in the late 20th century, with studies

such as the work of Granovetter [104] on the strength of weak ties in social

networks. Nonetheless, it was not until the late 1990s that the study of

epidemics on networks began to gain momentum with the advent of modern

computing. In the following section, we provide a comprehensive review of

various applications of epidemic modelling on networks.

2.2.2 Epidemics on networks: Applications

Directly transmitted infectious disease epidemiology and networks are funda-

mentally linked. The use of networks to model epidemics allows for realistic

infection contact patterns to be incorporated. For example, real-world data

can be used to parametrise network models that include high variability in

the number of contacts that an individual has, the higher probability that

individuals connect with individuals with similar properties or the tendency

of already connected individuals to share common contacts. The comprehen-

sive and objective examination of the transmission mechanism, as well as real

contact network data, support the use of networks in disease modelling [128].

One influential study in this field is the work of Watts and Strogatz [225],

who demonstrated that diseases can spread quickly through small-world net-

works, even if the network has only a small number of nodes with large degree.
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Another important development in the study of epidemics on networks was the

introduction of the network epidemic model (NE model) by Pastor-Satorras

and Vespignani [175]. This model extends the classic SIR model to include

the effect of network structure on disease transmission. In the NE model, in-

dividuals are represented as nodes in a network, and the edges between nodes

represent social connections. The probability of an individual becoming in-

fected depends on the infection rate of the disease and the number of infectious

neighbors they have. The probability of an infected individual recovering de-

pends on the recovery rate of the disease. The NE model also allows for the

study of different types of network structures. Through simulations, Pastor-

Satorras and Vespignani found that the NE model can be used to predict the

spread of epidemics in a variety of network structures, and can help identify

the most effective strategies for controlling the spread of infectious diseases.

Many other studies have also explored the impact of network structure on

disease transmission and the development of new epidemic models and con-

trol strategies. For example, Newman [162] showed that scale-free networks,

which have a few highly connected nodes and many weakly connected nodes,

are particularly vulnerable to the spread of epidemics. In addition, Berger et

al. [37] developed a novel epidemiology-based modelling framework to demon-

strate how network structure influences the spread of quality issues in supply

networks. By applying the model to 21 real-world networks, they found that

the magnitude of quality disruptions is strongly influenced by the origin node

and network topology. Also, Hiram et al. [109] discussed graph-based epi-

demiological models and showed how their use may significantly improve the

disease spreading control. The importance of studying epidemics on networks

has been underscored by the recent global health crisis brought about by the

COVID-19 pandemic, which highlighted the complex interplay of human in-

teractions and mobility patterns in the spread of pathogens. Researchers have
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used network models to study the impact of different interventions, such as

social distancing and vaccination, on disease transmission and to identify the

most effective strategies for controlling the spread of the virus [142, 180, 235].

Epidemic models are commonly used to study the spread of infectious diseases

in populations, but as indicated in [46], they offer a wide range of applications,

such as modelling social networks [55, 140], computer networks [143, 189] and

transportation networks [140]. In the next section we discuss the applications

of epidemic modelling on networks in the field of finance.

2.2.3 Financial epidemics on networks

The term ‘financial contagion’ first appeared in 1997 during the Asian crisis

but the first instances of the phenomenon must have occurred much earlier

in financial history [60]. Financial contagion refers to a shock (an unexpected

event that significantly disrupts financial markets, leading to widespread eco-

nomic impact, such as a group of large companies suddenly unable to pay

back their loans) that begins with a small number of financial institutions

and spreads to the entire financial system, often impacting economies across

multiple countries. The Asian crisis of 1997, the Russian default of 1998, and

the global financial crisis of 2008 are among the recent events that are thought

to be results of contagion spread [1].

Epidemic modelling has become an increasingly popular tool to study the

spread of financial contagion, particularly since the global financial crisis of

2008. The spread of financial contagion can be seen as similar to the spread

of an infectious disease, with the nodes of the network representing financial

institutions and the edges representing their interconnections [149]. In this

literature review, we examine some of the key studies that have explored this
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topic, highlighting the main findings and contributions of each.

One of the early studies in this area was conducted by Kleindorfer et al. [130]

who examined the interconnectedness of modern businesses and economies and

its impact on strategy, risk management and profitability. The book discusses

the use of epidemic models to study financial risk contagion in interconnected

networks, exploring network structure, contagion mechanisms and policy in-

terventions to mitigate contagion. Past financial crises are analysed, including

the 2008 global financial crisis, for which the authors compared the spread of

the SARS virus to the risk spread caused by the Lehman Brothers’ bankruptcy

and concluded that the infection conditions of both were compatible with virus

transmission characteristics in their respective networks. In another study,

Garas et al. [93] used an SIR epidemic model to study the spread of financial

crisis among different countries, where susceptible, infected and recovered in-

dividuals represented the healthy, financially distressed (lacking the necessary

income or revenue to fulfill their financial commitments and obligations) and

recovered economies, respectively. The authors validated their model using

data from the 2008 global financial crisis and demonstrated that it can accu-

rately capture the propagation of financial distress across countries. Similarly,

Huaihu et al. [113] proposed a complex network model to study banking crisis

contagion. The authors used an edge-dynamic weighted network to represent

interbank lending relationships and applied an SIR epidemic model to simu-

late contagion. The model is validated using data from the Chinese banking

system. The study suggests that early intervention and coordinated policy

responses are important for preventing the spread of banking crises. Toiva-

nen [216] also proposed an SIR epidemic model to study financial contagion

in the interbank network. The model is validated using Finnish interbank

network data and allows for policy intervention analysis. Also, Yuanyuan et

al. [232] studied crisis spreading in shareholding networks of businesses and
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their primary holders using data on ownership structure in Chinese stock mar-

kets. They created a correlation network based on stock price movements and

simulate crisis contagion using an SIR epidemic model. The characteristics

of shareholding networks are studied and the results show that if there are

some failures or attacks on highly connected vertices, the crisis will spread

quickly and create catastrophic harm. Demiris et al. [71] used an SIR model

to study the dynamics of financial crises in a network of countries, adapting

the epidemiological framework to model the spread of financial distress. The

method is illustrated on a number of currency crises. The empirical findings

point to a rising trend in global currency crisis transmission over time. Also,

the authors of [88] proposed a time delayed SIR model to study the credit risk

contagion in stock markets, where the time delay is the amount of time that

a bank has before it becomes defaultable. The model has been used to find

the steady states according to different bank support policies.

These studies highlight the usefulness of epidemic modelling for studying the

dynamics of various types of financial contagion. In general, epidemic mod-

elling is a popular tool for describing financial contagion because both phe-

nomena share some common characteristics, such as the spread of a distur-

bance through a network of interconnected units. While in epidemiology the

disturbance is a disease, in finance it usually is a financial crisis. In both

cases, the spread can be influenced by the network topology, the properties

of the units, as well as the interactions between them. The SIR model, in

particular, is chosen in this thesis for its effectiveness in capturing the essen-

tial dynamics of financial contagion. This model allows us to simulate how

financial distress propagates through interconnected financial institutions and

to assess the impact of various network structures and interaction patterns.
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2.3 Discussion and conclusion

This literature review provides a critical analysis of existing research, focusing

on the two primary research topics used in this thesis: network science and

epidemic modelling on networks. Insights from the topics discussed will be

utilized throughout the thesis to support the primary goal: modelling financial

crisis propagation using multiplex networks. Network science will form the

foundation of much of the research, in which we employ multiplex networks

and epidemic models on networks to study contagion in complex financial

systems.

In summary, modelling financial contagion on networks is a complex problem

that requires interdisciplinary expertise and advanced analytical techniques.

The application of network theory to the analysis of financial systems has

proven highly effective and holds great potential for the future. While signifi-

cant progress has been made in understanding how financial shocks propagate

through networks, the increasing availability and resolution of data suggest

that this research field is still in its early stages. Moreover, the network ap-

proach offers valuable insights into practical issues like portfolio optimization,

asset allocation, risk diversification and systemic risk [50]. Ultimately, im-

proving our understanding of financial contagion on networks can help us to

better prevent and mitigate the effects of future financial crises.

In this thesis we address several research gaps that are evident from the lit-

erature. Firstly, there has been limited research on studying the combination

of multiplex network structure and EVT methods. While multiplex networks

provide a richer representation of financial systems and EVT methods focus

on modelling the impact of extreme events, the intersection of these two ap-

proaches has remained limited. We address this gap by using the notion of

tail dependence for building one out of four layers in our proposed multiplex
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financial network. Secondly, the majority of studies do not consider the ‘pure

contagion’, which arises from global effects, rather than from specific, iden-

tifiable channels such as direct financial relationships [60]. In our network

we introduce a ‘global layer’, incorporating the ‘pure contagion’ assumption.

Thirdly, most of the literature fails to address the significance of exogenous

shocks (external events like natural disasters or geopolitical crises) in finan-

cial contagion spread. This thesis demonstrates the importance of detecting

such shocks and incorporating them into the model for more accurate pre-

dictions. In addition, unlike most static models in the literature, our model

is designed to be updated in real time. Moreover, the framework is univer-

sal in nature and could be applied to analyse any contagious financial crisis,

whether it involves networks of companies, countries or economic sectors. Fi-

nally, the majority of studies on econometric and empirical finance models

rely primarily on maximum likelihood methods for estimation [206]. Tradi-

tional maximum likelihood approaches assume that all sample observations

are weighted equally. However, we show that improvements can be made by

introducing a weighting scheme, which accounts for the importance of each

observation.
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Chapter 3

Modelling financial crisis

propagation as an epidemic on

multiplex networks

This chapter proposes a novel framework for modelling the spread of financial

crises in complex networks, combining financial data, extreme value theory

and an epidemiological transmission model. We accommodate two key aspects

of contagion modelling: fundamentals-based contagion, where the transmis-

sion is due to direct financial linkages, and pure contagion, where a crisis might

trigger additional crises due to global effects. We use stock price, geographi-

cal location and economic sector data for a set of 398 companies to construct

multiplex networks of four layers, on which a SIR transmission model is de-

fined, in order to model the spread of financial shocks between companies

by accounting for their interconnected nature. By utilizing stock price data

for the 2008 and 2020 financial crises, we investigate and assess the effective-

ness of our model in forecasting the propagation of financial shocks through

the network, where a shock is detected by measuring stock price volatility.
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The results suggest that the proposed framework is effective in predicting the

spread of financial crises. Our findings demonstrate the significance of each

layer of the multiplex network structure, which differentiates between various

transmission pathways, for predicting the number of affected companies, as

well as for company-, sector- or location-specific predictions.

3.1 Introduction

In this chapter we propose a novel framework for modelling financial contagion

that is based on an SIR epidemic model defined on a multiplex network con-

structed from financial data. We employ a stochastic epidemic transmission

mechanism in which financial crises can spread locally (to network neigh-

bours) as well as globally (to any company). Then, by considering their local

and global connectivity, we simulate how a financial shock spreads from the

original infected companies to the others. To demonstrate our approach we

construct two multiplex networks, representing the financial dependence of

398 companies in the 2008 and the 2020 financial crises, where each node

represents a company and each layer represents a different type of connection

between the companies. Both networks consist of four layers: a tail depen-

dence network layer, a continents layer, a sectors layer and a global layer.

The tail dependence layer measures the strength of dependence between two

companies using tail dependence coefficients, which are calculated using daily

stock price data. This weighted (complete) network is filtered via the planar

maximally filtered graph (PMFG) method [220], to remove weak and poten-

tially spurious links. The continents and sectors layers, respectively, connect

companies under the assumption that companies in the same continent or sec-

tor are more likely to be affected by a financial crisis simultaneously. Finally,

the global layer is a complete network, in which each company is connected to
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every other company. This layer corresponds to the ‘pure contagion’ assump-

tion that a crisis in any company may trigger a crisis in any other company.

In addition, in our model, a company may experience a financial shock not

just as a result of direct linkages to the initially infected company, but also as

a result of indirect connections within the network of companies, amplifying

the spread and impact of the financial shock. As a result, we allow for the so-

called ‘cascading effect’, a phenomenon where the impacts of a financial crisis

spread and intensify through interconnected channels, resulting in a broader

and more severe contagion than initially anticipated [102], which is commonly

overlooked in the literature.

We apply the model to two recent financial crises, the 2008 financial crisis and

the 2020 financial crisis, and investigate and evaluate its utility in predicting

the spread of financial shock across the network. We first identify which

companies have been ‘infected’ in each of the two crises using stock price

volatility. We then study how using the previous n crisis days in each of

the two crises can be used to predict the infections in the future k days for

different combinations of n and k. The results suggest that for each crisis a

different combination of n and k give the most accurate predictions. For both

crises the proposed model outperforms the homogeneous mixing population

approach in predicting the number of infected companies, the continents and

economic sectors that will be most affected, and the sets of specific companies

that will be infected during the future crisis days.

The rest of the chapter is organized as follows. Section 3.2 describes the data

set. Then, in Section 3.3 we describe the two parts of the modelling frame-

work: the multiplex network construction procedure and the transmission

mechanism. In Section 3.4 we apply the model to the 2008 and the 2020 fi-

nancial crises. We first define the concept of infection in a financial context and

then we study how the model can be used to predict future infections in each
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of the two crises, using past data. Finally, we assess the significance of each

layer within our multiplex network by conducting a comparative analysis of

its predictive accuracy on omission of various subsets of its layers. Section 3.5

concludes and discusses our findings, the limitations of our approach as well

as avenues for further research.

3.2 Data

The analysis in this paper is based on the closing daily stock price of 398

companies from 17/01/2002 to 18/07/2022 (inclusive), representing n = 5229

trading days. The data are collected from https://finance.yahoo.com/ and

the companies are selected such that for each company there are consistent

data going back as far as 17/01/2002, covering a sufficient time period before

the 2008 financial crisis. We separate the companies into groups, based on

the Bureau van Dijk1 company database. Firstly, we group the companies

according to the geographical location of their headquarters, resulting in six

groups: Africa (2), Asia (77), Europe (115), North America (194), Oceania

(9) and South America (1). The numbers in parentheses indicate the total

number of companies in each respective continent. The disparity in geograph-

ical representation arises from the distribution of available data meeting our

date span criteria. North America, for example, has a highly developed and

mature financial market and hosts numerous publicly traded companies, many

of which have extensive historical data available. This makes it easier to find

companies with consistent data spanning back to 2002. In contrast, some

regions, especially emerging markets in Africa or South America, may have

fewer publicly traded companies or less robust historical financial data, mak-

ing it more challenging to include a comparable number of companies from

1A significant business information publisher, Bureau van Dijk specialises in private
corporate data together with software for searching and analysing businesses.
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those regions in the dataset. Secondly, we separate the companies into 13

groups based on their primary economic sector, as defined by the Bureau van

Dijk dataset: Finance (47), Oil and gas industry (36), Pharmaceutical in-

dustry (36), Automotive industry (35), Airline industry (17), Food industry

(23), Mining activities (20), Electricity (17), Software industry (38), Electron-

ics (58), Telecommunications (10), Chemicals (8) and Others (53), with the

numbers representing the number of companies in each sector.

The stock price returns for each company i at day t for 2 ≤ t ≤ 5229 are

calculated by taking the logarithmic difference of successive closing prices as

follows:

xi,t = ln(pi,t) − ln(pi,t−1), (3.1)

where pi,t denotes the closing stock price of company i at day t for 1 ≤ t ≤

5229.

Tables 3.1 and 3.2 show the characteristics of the studied data for the peri-

ods prior to, and after, the 2008 financial crisis. We calculate the minimum,

maximum, mean and standard deviation of each company’s stock returns and

average them by continent and sector to highlight the characteristics of the

studied data. We can see that in all the cases the log-returns have mean

close to 0, with potentially asymmetric distributions. The asymmetry be-

comes particularly noticeable when examining the minimum and maximum

values within each dataset. For instance, in certain sectors or geographic re-

gions, the minimum and maximum log-return values differ notably in absolute

terms, indicating potential skewness or asymmetrical behaviour in the return

distribution. Positive skewness indicates that the distribution has a longer

tail on the positive side, implying that extreme positive values occur more

frequently than extreme negative values, which in financial contexts is gener-

ally associated with the potential for large gains. Negative skewness, on the
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other hand, refers to a distribution skewed towards the left and has a longer

tail on the negative side, indicating a higher frequency of extreme negative

values, highlighting the possibility of more frequent and severe losses.

Before the 2008 crisis After the 2008 crisis

Mean Min Max Sd Mean Min Max Sd
Finance 1.97e-04 -0.2555 0.1836 0.0231 -2.79e-05 -0.3288 0.3219 0.0256

Oil and gas industry 3.71e-04 -0.4108 0.3361 0.0336 2.67e-05 -0.3476 0.3705 0.0293
Pharmaceutical industry -3.12e-05 -0.3289 0.3053 0.0298 1.98e-04 -0.3336 0.3831 0.0274

Automotive industry 2.26e-04 -0.2357 0.1864 0.0271 2.16e-04 -0.2454 0.2878 0.0269
Airline industry 1.98e-04 -0.4155 0.2829 0.0286 7.27e-05 -0.3342 0.2418 0.0261
Food industry 1.74e-05 -0.2281 0.1281 0.0212 1.85e-04 -0.2472 0.1994 0.0216

Mining activities 4.25e-05 -0.5125 0.1565 0.0309 -1.11e-04 -0.3303 0.2526 0.0310
Electricity 3.43e-04 -0.2966 0.2475 0.0241 4.94e-05 -0.2076 0.1563 0.0191

Software industry -3.55e-04 -0.4669 0.2713 0.0402 4.85e-04 -0.2231 0.2037 0.0229
Electronics industry -4.64e-04 -0.4841 0.2382 0.0368 2.41e-04 -0.3531 0.4159 0.0311

Telecommunications industry 1.85e-04 -0.1610 0.1599 0.0265 1.85e-04 -0.3495 0.3160 0.0232
Chemicals -6.83e-05 -0.1939 0.1310 0.0205 2.01e-04 -0.2450 0.2262 0.0225

Others 5.61e-05 -0.2859 0.1625 0.0267 3.23e-04 -0.3682 0.4089 0.0257

Table 3.1: Descriptive statistics of stock returns, with the minimum, maxi-
mum, mean and standard deviation calculated for each company’s stock re-
turns. The columns display these values, averaged by sector. The statistics
are provided for two distinct periods: before and after the 2008 financial crisis.

Before the 2008 crisis After the 2008 crisis

Mean Min Max Sd Mean Min Max Sd
Asia 1.11e-04 -0.3523 0.3134 0.0353 9.77e-05 -0.2815 0.3356 0.0273

Europe 1.53e-05 -0.2607 0.2052 0.0208 -3.94e-05 -0.3299 0.3203 0.0262
North America 1.19e-04 -0.4107 0.2044 0.0307 3.69e-04 -0.3245 0.3291 0.0265

Others 3.96e-04 -0.3439 0.2459 0.0254 -1.58e-04 -0.2466 0.2080 0.0270

Table 3.2: Descriptive statistics of stock returns, with the minimum, maxi-
mum, mean and standard deviation calculated for each company’s stock re-
turns. The columns display these values, averaged by continent. The statistics
are provided for two distinct periods: before and after the 2008 financial crisis.

Our objective is to model financial contagion using two different data sets:

daily stock prices from the period 17/01/2002 to 30/06/2007, to model con-

tagion during the 2008 financial crisis, and from 17/01/2002 to 29/02/2020

to do so in the 2020 crisis following the onset of the COVID-19 pandemic.

We emphasise that here, and in all subsequent occurrences, datasets defined

over stated date ranges are understood to be inclusive of start and end dates.

The following section gives a detailed explanation of the network construction

approach used in our analyses.
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3.3 Model formulation

Our primary focus is on modelling the process of financial contagion that can

spread to a specific population of companies. Specifically, we aim to predict

which companies, financial sectors, and continents are most likely to be af-

fected in the future, using information based on the past days of the crisis.

Our modelling framework comprises two main parts. We first build a mul-

tiplex financial network, where the nodes correspond to companies and the

edges in each layer represent different types of connections between compa-

nies. By incorporating multiple network layers, we can capture the various

ways in which financial contagion may spread between companies. We then

employ an SIR epidemic model on each network layer. The model’s key pa-

rameters are the transmission probabilities (i.e., the probability of an infected

node transmitting the infection to a susceptible node on a given day) and

the recovery probabilities (i.e., the probability that an infected node becomes

recovered on a given day), which we estimate using a maximum likelihood

approach by fitting the model to past crisis data. Then, by simulating the

spread of financial contagion using the SIR model with the estimated parame-

ters, we can identify the companies, financial sectors, and continents that are

predicted to be most vulnerable to future contagion events.

3.3.1 Network model

We construct a multiplex network (see Figure 3.1), where each node represents

a company and each layer represents a different type of connection between

the companies. We construct four layers: a tail dependence network layer,

a continents layer, a sectors layer and a global layer. The motivation for,

and method for construction of, these networks are detailed in the following
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subsections.

3.3.1.1 Tail dependence network layer

The relationship between tail dependence and the propagation of financial

crisis risk is highlighted by a number of studies [1, 5, 215]. Tail dependence is

used to study the likelihood of joint tail events, where the occurrence of ex-

treme movements in one asset’s return is associated with a higher likelihood of

extreme movements in another. This phenomenon reflects the interconnect-

edness of financial markets, whereby shocks or disruptions in one asset class

or market segment can trigger correlated movements in other assets. The

tail dependence coefficient is a common measure of financial dependence be-

tween two companies. For example, the concept of marginal expected shortfall

(MES), a widely recognized risk measure that evaluates the potential losses

of a company given that another experiences an extreme loss, is intricately

linked to tail dependence coefficients, thereby underscoring the relevance of

tail dependence in capturing the tail behavior of financial assets [48]. To study

how likely it is that two companies experience extreme losses together we con-

struct complex financial networks, via the following two-step process. Firstly,

we calculate the tail dependence strength between each pair of companies’

stock returns. Secondly, we filter the edge information required for network

building using the PMFG approach.

3.3.1.1.1 Tail dependence estimation

Let {(−xi,t,−xj,t) : t = 1, 2, . . . N} be the realisations of the bivariate negative

stock return (Xi, Xj), where xi,t is as defined in (3.1). We assume through-

out that Xi and Xj have continuous distribution functions. For each pair of
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negative stock returns (Xi, Xj) of companies i and j, the marginal aspects of

the joint distribution can be removed by transforming the bivariate negative

returns into unit Fréchet marginals (Si, Sj) by using the following transfor-

mation:

Si = −1/ lnFi(Xi) and Sj = −1/ lnFj(Xj), (3.2)

where Fi and Fj are the marginal distribution functions of Xi and Xj, respec-

tively. In practice, the functions Fi and Fj used in (3.2) are estimated by the

empirical marginal distribution functions of the two random variables. This

transformation does not affect the dependence structure of the bivariate joint

distribution, so (Si, Sj) possesses the same dependence structure as (Xi, Xj).

Since we are interested in the probability that one company experiences an

extreme financial loss, given an extreme loss in another (the likelihood of crisis

transmission), for each pair (Si, Sj) we estimate the upper tail dependence

coefficient (upper TDC) χU
i,j, defined as

χU
i,j = lim

q→1−
P(Fj(Sj) > q | Fi(Si) > q).

Hence the upper TDC corresponds to the likelihood that one margin will

surpass a high threshold if the other margin also exceeds this threshold. The

coefficient χU
i,j takes values in the range [0, 1], describing the strength of the tail

dependence between Si and Sj: χU
i,j = 0 means that the two variables Si and

Sj are upper tail independent and χU
i,j > 0 indicates upper tail dependence.

The TDC can also be defined using the concept of a copula, introduced

by Sklar [202]. A fundamental result shown in [202] states that Fi,j, the

joint distribution function of (Xi, Xj), can be represented as Fi,j(si, sj) =

Ci,j(Fi(si), Fj(sj)), where Ci,j is a copula function (a bivariate distribution
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function with uniform margins). Then, as shown in [61],

χU
i,j = lim

q→1−

1 − 2q + Ci,j(q, q)

1 − q
.

In practice we estimate the strength of tail dependence for each pair (Si, Sj)

and threshold q ∈ (0, 1) as follows:

χ̂U
i,j = χ̂U

i,j(q) =
1 − 2q + Ĉi,j(q, q)

1 − q
, (3.3)

where Ĉi,j, the empirical counterpart of Ci,j, is computed via

Ĉi,j(u, v) =
1

N

N∑
n=1

1
(
rni ≤ N − ⌊N(1 − u)⌋, rnj ≤ N − ⌊N(1 − v)⌋

)
.

Here, rni and rnj are the ranks (the index of the element in an ascending list) of

the nth observations of Si and Sj, respectively. Note that the transformation

in (3.2) is monotonically increasing, so that the rank of an observation from

Si is the same as that for the corresponding Xi.

The analysis in the remainder of the chapter is based on the estimated upper

tail dependence coefficients χ̂U
i,j(0.95) which use a threshold of q = 0.95. This

choice is consistent with the existing literature using tail dependence to build

financial networks [54, 137, 201]. Moreover, in this chapter we construct sep-

arate networks employing all the data in our set prior to the 2008 and to the

2020 crises, respectively. We use the values of the upper TDC between each

pair of companies i and j to measure the strength of dependence between the

companies in our dataset, and are key to our construction of complex finan-

cial networks and our SIR model for financial contagion: the higher the upper

TDC between two companies, the higher the probability of crisis transmission.
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3.3.1.1.2 Planar maximally filtered graph

The PMFG method was first introduced in [220]. The primary goal is to

filter complex networks by retaining only the most important links that do

not break planarity [168]. By doing so PMFGs can assist with eliminating spu-

rious (weak) connections, thereby emphasizing topological properties such as

communities and easing computational burden. Moreover, planarity ensures

easier network visualisation. PMFGs are maximally filtered, which means

that they are constructed in such a way that the number of connections be-

tween nodes is maximized while still maintaining planarity. This property

ensures that the PMFG captures the most important relationships between

the nodes, making it a useful tool for analyzing complex networks [148].

PMFGs constructed from financial datasets have been used to detect funda-

mental market changes and community structures [157], to study the spread

of financial risk [185] and to analyse financial networks describing correlations

(or other dependencies) between financial assets [18, 90, 220]. In addition, the

authors of [203] show that PMFGs can be used to reduce the complexity and

dimensionality of financial networks, while keeping the clustering structure.

Prior to the study of [203], the two most popular tools for filtering the edge

information in complex financial networks were the minimum spanning tree

(MST) algorithm [18, 146] and the correlation coefficient threshold method

[41]. However, the latter is extremely dependent on the threshold decision

[229]; for the former, the key advantage of the PMFG algorithm is that it

preserves more information: the MST has n − 1 edges, while the PMFG has

3(n−2) edges (compared to n(n−1)/2 of the complete network with n nodes).

Furthermore, the PMFG always contains the MST, so it is a connected net-

work.

To construct the two PMFG financial networks we employ the procedure
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described in Algorithm 1. For clarity, we specify that this method is applied

only to the tail dependence layer.

Algorithm 1 Construct PMFG layer

1. Start with the graph G = (V,E), where V is the set of all companies,
represented by the nodes and E = ∅.

2. For each pair Si and Sj (i < j) calculate χ̂U
i,j(0.95) via equation (3.3)

and sort those values in a list L from greatest to smallest.

3. Add edge (i, j) to E if χ̂U
i,j is the first element of L and the network G

is still planar after adding the edge.

4. Remove χ̂U
i,j from L and go back to Step 3.

5. Continue the procedure until the graph has 3 × (n− 2) edges.

3.3.1.2 Additional layers

In addition to the tail dependence network (hereafter denoted the PMFG for

brevity) layer, we include layers to incorporate other known relations between

the companies and describe other possible crisis transmission channels.

3.3.1.2.1 Sector and continents layers

The 2008 financial crisis demonstrated the importance of interconnectedness

as it quickly spread from the subprime mortgage market in the United States

to the wider financial sector, causing significant losses for institutions, leading

to a decline in consumer spending and demand for goods and services [211].

On the other hand, sectors such as healthcare and technology did relatively

well [227]. In addition, the 2008 global financial crisis provides an example

of how different continents can be affected by a crisis at different time peri-

ods [136]. The crisis originated in the United States with the collapse of the

subprime mortgage market, which led to a wave of defaults and foreclosures.
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After that, the crisis expanded to other regions of the world, such as Europe,

Asia and South America, although the timing and intensity of its effects dif-

fered between continents. Ireland and Spain, two countries in Europe that had

recently had huge property market booms and had significant exposure to the

US subprime mortgage sector, were among the first to be affected by the crisis.

As the crisis expanded, countries with close ties to the financial industry, such

as the United Kingdom and Switzerland, were also affected [212]. Some Asian

countries also experienced a slowdown in economic development and a fall in

exports but Asia was generally protected from the worst of the crisis because

of its comparatively strong banking sector [39]. In Latin America the crisis led

to a decline in commodity prices and a decrease in demand for exports, which

affected countries such as Brazil and Mexico [114]. The financial crisis of 2008

hence showed how various economic sectors and continents might experience

a crisis at various times, based on their susceptibility to the underlying causes

of the crisis and their resilience to external shocks.

Furthermore, in the early stages of the 2020 financial crisis, initiated by the

COVID-19 pandemic, the healthcare sector was the most directly affected, as

it had to respond rapidly to the surge in demand for medical services and

supplies. At the same time, the travel and tourism industry was severely im-

pacted, as travel restrictions and lockdown measures were put in place, which

caused a sharp decline in demand for air travel, hotels, and other related ser-

vices. As the pandemic continued to spread and the global economy went

into recession, other sectors also began to feel the impact [171]. For example,

the closure of non-essential businesses and social distance initiatives had a

substantial negative impact on the retail and restaurant industries, resulting

in significant decreases in employment and sales. Also, disruptions to global

supply networks and a decline in consumer demand have had an impact on

manufacturing [15]. The pandemic struck Asia early and hard; in an effort

52



3.3. MODEL FORMULATION

to stop the virus’s spread, China experienced massive lockdowns and travel

restrictions. Several Asian nations, including South Korea and Japan, were

also affected early and took severe precautions to limit the epidemic [58]. In

Europe, the pandemic hit in late February and early March of 2020, with

an especially bad outbreak in Italy that overwhelmed its healthcare system.

Other European countries, including Spain, France, and the United Kingdom,

also experienced high levels of transmission and implemented strict lockdown

measures to control the spread of the virus [181]. The epidemic hit the Amer-

icas later than it did Asia and Europe, with a spike in cases and fatalities in

the United States in the spring and summer of 2020.

To account for these features, we add undirected ‘sectors’ and ‘continents’

layers in which companies are connected if they are in the same sector or

continent, respectively. Hence, each connected component in the sector and

continents layers is a complete network.

3.3.1.2.2 Global layer

In addition to the ‘fundamentals-based contagion’ embedded in the above

network layers, we additionally allow for ‘pure contagion’, whereby crises may

spread due to global effects that are not explicitly accounted for within the

connectivity so far defined. Hence, we add a complete network, denoted the

‘global layer’. Figure 3.1 presents a schematic representation of our multiplex

network.

3.3.2 Contagion Model

We employ a discrete-time SIR epidemic model defined on the network of

n companies to simulate financial crisis propagation. At each time step a
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  PMFG layer Continents layer Sectors layer Global layer

Figure 3.1: Schematic diagram of the 4-layer multiplex network described
in Section 3.3.1, comprising a weighted PMFG layer and binary continents,
sectors and global layers. The inter-layer links are only between the same
node, as well as between each pair of layers.

company is either susceptible (S), infected (I) or recovered (R). Let the integer-

valued functions S, I and R represent the number of companies that are in

the state S, I and R, respectively, at time t.

The process starts at day t = 0, with m ≥ 1 initially infected companies

(I(0) = m) and the remainder being susceptible (S(0) = n −m, R(0) = 0).

Then at each day t = 1, 2, 3, ..., an infected company i infects each susceptible

neighbour j on layer α independently with probability w
[α]
i,j , after which each

infected company i recovers independently with probability p. Once recovered,

a company cannot be reinfected again. Infection or recovery of a node occurs

simultaneously on all layers. The process continues until there are no more

infected companies.

We model the transmission probabilities per edge (i, j) in each layer α ∈

{1, 2, 3, 4}, where the values α = 1, 2, 3, 4 correspond to the PMFG, conti-

nents, sectors and global layers respectively, as

w
[α]
i,j =


χ̂U
i,j × β1, α = 1,

βα, α ∈ {2, 3, 4},
(3.4)
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where χ̂U
i,j is defined in (3.3) and βα for 1 ≤ α ≤ 4 are parameters to be

estimated (see Section 3.4.2.2) using the definition of ‘infection’ in a financial

context that is provided in Section 3.4.1.

3.4 Application to financial crises

In this section we fit the model to the 2008 and to the 2020 financial crises.

In Section 3.4.1, we define what is meant for a company in the data set to

be ‘financially infected’. We then build and compare two different networks

representing the financial dependency between the companies in the periods

prior to the 2008 financial and to the 2020 financial crises. We study how

the model can be used to predict future infections in each case, using recent

infection data. We finally assess the importance for predictive accuracy of

each layer within our network.

3.4.1 Infection

We define a company in the data set to be infected whenever the volatility

of its stock returns over a given period exceeds a predetermined threshold

(meaning that the company’s stock price is unstable) and its average stock

return for the same period is negative.

The volatility for a time horizon T > 1 of company i at day t is defined as

the standard deviation of the stock returns in the prior T trading days and is

calculated as follows:

Vi,t =

√√√√ 1

T

t−1∑
j=t−T

(xi,j − µi,t)2, (3.5)
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where µi,t is the mean stock return over the same period and xi,j is defined in

(3.1). Then a company i is defined to be infected at day t whenever Vi,t ≥ σi

and µi,t < 0. In the following analysis we use T = 21 trading days (one

trading month) and the threshold σi to be the 90% quantile of the (empirical)

volatility distribution over the whole period for each company.

Using a rolling window of historical returns over the past 21 days is common

in risk analysis [9, 134, 198] and suitable for estimating volatility for daily data

because it strikes a balance between capturing recent changes in volatility and

incorporating sufficient historical data to generate a stable estimate. This bal-

ance is especially important given our focus on identifying ‘infection’: longer

periods could include stock price fluctuations whose effect on the market has

passed, while short periods are likely to be sensitive to noise. Our choice of

σi is determined by the 90% quantile of the (empirical) volatility distribution;

however, it should be acknowledged that in practice, determining this thresh-

old at a specific time without knowledge of future volatility values may not

be feasible. Therefore, the quantile threshold is primarily used as a bench-

marking tool to compare and analyse volatility levels across companies in a

historical context. An example of a particular company’s volatility curve is

shown in Figure 3.2a. The red horizontal line corresponds to 90% threshold

line. We can see that with a higher threshold σi, the final, post-2020 ‘infection

period’ (high volatility period) would not be captured.

Figure 3.2b illustrates the number of infected companies per day, as deter-

mined using the procedure described above. It can be seen that the highest

peaks in the numbers of infections are in two periods: from the year 2008

to the year 2010 (in orange), corresponding to the 2008 financial crisis, and

from the beginning of 2020 until July 2021 (in purple), corresponding to the

COVID-19 crisis. Furthermore it can be seen that the other infection peaks

also correspond to different financial crises including the early 2000s recession
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(in blue). Around 2012 we can see a growth in infections (in green) which

corresponds to the period during the Cypriot financial crisis and shortly after

the start of the Greek government debt crisis. Finally, we can see a slight

growth in the number of infections during the period of 2015–2016 (in red),

which includes a stock market sell-off when the value of stock prices declined

globally.

Figures 3.3a and 3.3b illustrate the number of infected companies in the 2008

and 2020 crises, respectively, along with significant events that occurred dur-

ing these periods. It can be seen that in the 2008 crisis after the Lehman

Brothers’ bankruptcy in September 2008 (red vertical line on Figure 3.3a),

there is a substantial increase in the number of infected companies. Subse-

quently, after the TARP (Troubled Asset Relief Program) was implemented

in October 2008, the rate at which the companies become infected decreases

(purple vertical line on Figure 3.3a) and after the ARRA (American Recovery

and Reinvestment Act) was signed into law in February 2009, the compa-

nies start recovering (green vertical line on Figure 3.3a). In the 2020 crisis,

shortly after the WHO (World Health Organization) declared a global health

emergency in March 2020 (blue vertical line on Figure 3.3b), accompanied

by national lockdown measures in many countries2, the number of infected

companies increases sharply in a short time period. When the USA and UK

governments started offering stimulus packages3, the rate at which the infec-

tions spread declined (around the red vertical line on Figure 3.3b). Finally, in

2National emergency was declared in the US on March 13, 2020; the United Kingdom
went into lockdown on March 23, 2020; a national lockdown in Italy was imposed on March
9, 2020; nationwide lockdown in France started on March 17, 2020; from March 13, 2020,
German states mandated school and kindergarten closures and travel restrictions were put in
place in Austria, Denmark, France, Luxembourg and Switzerland; Japan officially declared
the COVID-19 outbreak as a national emergency on March 19, 2020.

3The Main Street Lending Program (April 9, 2020), Primary Market Corporate Credit
Facility (March 23, 2020), CARES Act (March 27, 2020), and Paycheck Protection Program
Liquidity Facility (April 9, 2020) were launched in the USA; the Coronavirus Job Retention
Scheme (March 1, 2020), Self-Employment Income Support Scheme (March 26, 2020), and
Coronavirus (Large) Business Interruption Loan Scheme (March 23, 2020) were launched
in the UK
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Figure 3.2: (a) Volatility curve (in blue) and 90% quantile threshold line (in
red) for an example company from the dataset. The volatility at day t for the
period from 07/02/2002 to 29/02/2020 is calculated using the formula in (3.5)
using a rolling window of T = 21 trading days; (b) Total number of infected
companies per day for the period from 07/02/2002 to 29/02/2020. The five
main peaks from left to right correspond to Early 2000s recession, the Great
Recession, the Cypriot financial crisis, the 2015-16 stock market selloff and
the COVID-19 recession. It can be seen that the highest volatility periods in
(a) correspond to the highest peaks in (b).
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most of the countries the lockdown restrictions were eased between June and

July 2020 (the period around the purple vertical line on Figure 3.3b), leading

to recoveries. However, a month later (green vertical line on Figure 3.3b),

COVID-19 cases started increasing worldwide4. In summary, the analysis of

Figures 3.3a and 3.3b reveals the impact of these events on the spread and

recovery of infected companies during the 2008 and 2020 crises, and indicates

the suitability of our empirical definition of ‘infection’.

3.4.2 Predicting future infections

It is of key importance to be able to predict future infections, given past data,

for risk prevention and mitigation purposes. This is essential for a number of

reasons. Firstly, it enables decision-makers and market participants to make

necessary adjustments before the crisis fully unfolds, which can help minimize

the damage caused by the crisis, thereby reducing its impact on financial

markets, the economy, and society as a whole. Secondly, understanding the

potential risks and vulnerabilities in the financial system can allow policymak-

ers and investors to take steps to mitigate these risks such as implementing

regulations or reducing exposure to risky assets. Lastly, predicting and pre-

venting financial crises is crucial for ensuring the stability and health of the

global financial system, which is vital in protecting investors and promoting

sustainable economic growth. By being able to anticipate future infections,

we can take the necessary steps to prevent their spread and minimize their

impact on the economy and society.

Our study aims to investigate whether it is possible to predict future events

4The US confirms more than 50,000 new COVID-19 cases in one day for the first time,
the Australian city of Melbourne goes back into lockdown for six weeks after a second
outbreak, Florida reports a record 11,458 daily COVID-19 cases, Texas records more than
10,000 daily cases of COVID-19 for the first time, India becomes the third country to record
one million cases of COVID-19, the WHO says the Middle East is at a ‘critical threshold’
with over one million COVID-19 cases.
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Figure 3.3: The total number of infected companies within our dataset, as
defined in Section 3.4.1, during (a) the 2008 financial crisis and (b) the 2020
financial crisis. The vertical lines show the dates of significant events during
each crisis.
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during a crisis by analysing transmission and recovery probabilities in the

preceding days. Specifically, we examine the accuracy of our model to estimate

the number of infected companies in the future, given data from the past n

days of the crisis. We evaluate the accuracy of predictions in terms of the

total number of infected companies, the number per sector and continent,

and identifying the specific companies most likely to be affected.

We construct and compare two distinct networks, one for the 2008 and one

for the 2020 financial crises, that represent the dependence structure preced-

ing each crisis, as described in Section 3.4.2.1. These networks are then used

to simulate future infections during the corresponding crises. The empirical

results shown in Sections 3.4.2.2–3.4.2.4 suggest that the choice of n appre-

ciably impacts the fidelity of prediction, with optimal choice depending on

the specific crisis period and the performance metric being considered. In

addition, the findings indicate that the multiplex network model is more ac-

curate than the homogeneous mixing model in predicting the future course of

a crisis, supporting our assumption that incorporating network structure in

the financial network is critical for precise predictions of future financial dis-

tress outbreaks. Additionally, the consistent superiority of the full model over

the homogeneous mixing model implies that taking into account the various

types of connections is crucial to capture the intricate connections between

firms that lead to financial crises.

3.4.2.1 The 2008 and the 2020 financial networks

As explained in section 3.3.1, the first network is constructed using all available

data before the 2008 financial crisis, which includes the data from 17/01/2002

to 30/06/2007. The second network employs all available data before the 2020

financial crisis, i.e., from 17/01/2002 to 29/02/2020.
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We now compare the community structure of the two PMFG networks. For

each of the networks we divide the nodes into communities by maximizing

the modularity [165] of the network via the Louvain algorithm [153]. More

details can be found in Appendix A. Then, for the two sets of communities we

estimate the similarity between them using the adjusted mutual information

(AMI) score [228]. The AMI takes a value of 1 when the two partitions are

identical (perfectly matched), while random partitions, having an expected

AMI around 0 on average, can occasionally yield negative values (see Ap-

pendix A). The AMI score between the clusterings of the two PMFG net-

works is 0.2568, suggesting that the community structures of the two graphs

are substantially different.

We then perform a clique analysis by adopting the n-clique algorithm of [172]

to analyse the community structures. A clique in a graph G is a complete

subgraph of G. A clique, in other words, is a subset of a network in which the

nodes are more intensively linked to one another than to other members of the

network. The maximal clique in a PMFG network consist of 4 nodes, and is

also called a 4-clique. By detecting cliques, we can uncover natural clusters or

communities of companies that have strong connections or similarities. Table

3.3 shows the structure of the different 3- and 4-cliques in the two PMFGs

based on companies’ continents and sectors, respectively. The analysis shows

that in both networks communities based on continents are more likely to form

than communities based on sectors. In addition, the high number of 3- and 4-

cliques in which all the companies are in the same continent indicates a strong

tendency for continent-based communities. Figures 3.4a and 3.4b illustrate

the PMFG networks for the 2008 and 2020 financial crises, respectively, where

the companies are coloured by continent. In both figures it can be seen that

companies in the same continents tend to form clusters, indicating that the

local level transmission is more likely to happen between companies in the
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Figure 3.4: PMFG (tail dependence network) layers in the (a) 2008 and (b)
2020 financial networks, where the companies are coloured by continent. The
two networks are constructed by the procedure described in Section 3.3.1.1
using stock price data for the periods from 16/01/2002 to 30/06/2007 and
from 16/01/2002 to 29/02/2020, respectively.
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same continent. The analysis of these data also suggests that communities

based on sectors are more likely to form in the 2020 PMFG than in the 2008

PMFG, due to the higher occurrence of 4-cliques with all nodes in the same

sector or three of the nodes in the same sector.

Clique type
Continents Sectors
2008 2020 2008 2020

3-cliques

total number of 3-cliques 25 4 25 4
all nodes in same continent/sector 14 4 4 0
two nodes in same continent/sector 11 0 10 2

all nodes in different continent/sector 0 0 11 2

4-cliques

total number of 4-cliques 372 392 372 392
all nodes in same continent/sector 174 252 24 58

three nodes in same continent/sector 133 93 53 91
two nodes in same continent/sector 63 47 194 162

all nodes in different continent/sector 2 0 101 81

Table 3.3: Clique analysis of the PMFG networks showing the cliques structure
based on the sector or continent in which each company is based.

3.4.2.2 Prediction of the number of infected companies

Our study evaluates the model’s accuracy in predicting the number of com-

panies that will be infected or recovered in the future k crisis days, based on

the infection data from the past n days, utilizing a ‘sliding window’ technique.

Firstly, we fit the model to the initial data window (data window 1), com-

prising data from day 1 to n + 1, obtaining maximum likelihood estimates β̂i

of the layer transition probabilities βi for 1 ≤ i ≤ 4 and p̂ for the recovery

probability p. The detailed methodology for estimating the transmission and

recovery probabilities is described in Sections 3.4.2.2.1 and 3.4.2.2.2, respec-

tively. Next, we simulate N = 10,000 realisations of the estimated SIR model

for the upcoming k days (from day n + 2 to day n + k + 1, denoted predic-

tion window 1), with the initial data being that from day n + 1. After each

simulation, we record the total number of infected companies, the number
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of newly infected companies, and the number of newly recovered companies,

and calculate the mean of all simulations as the prediction. We then ‘slide

the window’ forward by one day and refit the model to the period from day

2 to day n + 2 of the crisis (data window 2), re-estimating β̂i for 1 ≤ i ≤ 4

and p̂ for the new window. We repeat the above steps for each subsequent

data window, with the final prediction window covering the period from day

L−k+1 to L, where L is the length of the crisis in days. The entire procedure

is explained step-by-step in Algorithm 2 step 3a).

Figures 3.5, 3.6 and 3.7 display the model predictions (coloured lines) along-

side the observed infections (black lines) at selected time points. Predictions

are computed from the mean of all N = 10,000 simulations for the future

k ∈ {10, 20, 30} days of each crisis, respectively, given infection data on the

previous n ∈ {1, 30} days. In both figures it can be seen that fitting the model

to the previous n = 1 crisis days gives the largest error between the actual

and the predicted total number of infected individuals after k days for both

values of k. For choices of n > 1, with greater prediction accuracy, we nev-

ertheless observe large errors at those time points where significant changes

in infection or recovery occur. This is natural since predictions are based on

data prior to these change-points; it is important to note, however, that such

events are often due to extrinsic factors, such as government intervention that

could in principle be accommodated within the model. For example, substan-

tial errors are observed in recovery prediction during periods associated with

ARRA (2008; see Figs 3.3a, 3.5, 3.6, 3.7) and stimulus packages and lockdown

restrictions (2020; see Figs 3.3b, 3.5, 3.6, 3.7). For all other periods in both

crises, we obtain good prediction accuracy for suitable choices of k and n, as

confirmed by further analysis. The most precise forecasts were observed with

k = 10, while the least precise predictions were observed with k = 30.

In order to compare the predicted and actual numbers of newly infected, to-
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Algorithm 2 Model predictions for the future k days
1. Set t = 1.
2. Fit the model to the period from day t to day t + n (window t) and
estimate β̂i (1 ≤ i ≤ 4) and p̂ by maximizing Lt,t+n (see equation (3.10))
and Lp

t,t+n (see equation (3.12)), respectively.
3. Run N = 10,000 SIR simulations on the network from day t + n + 1 to
day t + n + k (i.e. predict infections in the next k days) using the values of
β̂i (1 ≤ i ≤ 4) and p̂ estimated in Step 2.

(a) Predict the number of infected (recovered) companies

• Count the number of newly infected (recovered, respectively) com-
panies in each simulation and take the mean number of the newly
infected (recovered, respectively) companies over all N simula-
tions as a prediction for the number of newly infected (recovered,
respectively) companies in the period t + n + 1 ≤ t ≤ t + n + k
(prediction window t).

• Count the total number of infected companies at the end of each
simulation and take the mean total number of infected companies
over all N simulations as a prediction for the total number of
infected companies on the final day of the prediction window t.

(b) Predict the infected companies’ continents/sectors

• Collect a multiset (set allowing multiple instances of the same
element) containing the continents/economic sectors of newly in-
fected companies in each simulation and take it as a prediction
for which continents/sectors are likely to be infected in predic-
tion window t. For each simulation compare the predicted to the
observed continents/sectors multiset using the Sørensen–Dice sim-
ilarity coefficient (3.14). The mean over all N simulations is then
used as an indicator of prediction quality for prediction window t.

(c) Predict the infected companies

• Collect a list of newly infected companies in each simulation and
record the proportion of the N simulations in which each company
was infected. Then, for every company, consider this proportion
as the probability of infection during prediction window t of the
crisis.

4. Update t = t + 1.
5. If t > L− k − n stop. Else go back to Step 2.
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Figure 3.5: The curves (in colours) show the predicted mean total number
of infected companies for each sliding window for the next k = 10 days over
N = 10,000 simulations, fitting the model to the previous n crisis days for
the 2008 financial crisis (left column) and 2020 financial crisis (right column),
respectively. The black lines show the observed number of infected companies
as determined in Section 3.4.1, providing a reference for comparison with the
model predictions.

tal infected and newly recovered companies for each sliding window i (where

1 ≤ i ≤ L−k−n), we calculate the absolute difference between the predicted

and actual values in each simulation and then we take the average. To en-

sure accurate evaluation of the model’s performance in predicting the number

of newly infected (recovered, respectively) companies, we measure predictive

accuracy during specific time periods in which these processes occur. Specifi-

cally, we consider the period encompassing newly infected (recovered, respec-

tively) companies, which corresponds to the time before (after, respectively)

day 600 during the 2008 financial crisis, and before (after, respectively) day

120 in the case of the 2020 financial crisis. The results are shown in Figures

3.8, 3.9 and 3.10. The figures display the distribution of the absolute differ-

ence between the predicted and actual number of total infected (row 1), newly
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Figure 3.6: The curves (in colours) show the predicted mean total number
of infected companies for each sliding window for the next k = 20 days over
N = 10,000 simulations, fitting the model to the previous n crisis days for
the 2008 financial crisis (left column) and 2020 financial crisis (right column),
respectively. The black lines show the observed number of infected companies
as determined in Section 3.4.1, providing a reference for comparison with the
model predictions.

infected (row 2) and newly recovered (row 3) companies when the model is fit-

ted to the 2008 financial crisis (left column) or the 2020 financial crisis (right

column). The white dots connected by white lines indicate the mean absolute

difference over all sliding windows. We present results for prediction horizons

of k = 10, 20 and 30 days, respectively. It can be seen that the trends in

mean accuracy are similar for all choices of k. The results indicate that the

optimal window size for predicting future infections varies depending on the

crisis being analysed. Specifically, for the 2008 financial crisis, the optimal

window size is n = 10 for predicting both the future total number of infected

and number of newly infected companies after k days, while for the 2020 fi-

nancial crisis, the optimal window size is n = 3 for predicting the future total

number of infected companies, and n = 10 for predicting the future number
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Figure 3.7: The curves (in colours) show the predicted mean total number
of infected companies for each sliding window for the next k = 30 days over
N = 10,000 simulations, fitting the model to the previous n crisis days for
the 2008 financial crisis (left column) and 2020 financial crisis (right column),
respectively. The black lines show the observed number of infected companies
as determined in Section 3.4.1, providing a reference for comparison with the
model predictions.

of newly infected companies. In contrast, a window size of n = 1 day for the

2008 crisis and a window size of n = 30 days for the 2020 crisis result in the

worst predictions. Interestingly, when predicting the number of newly recov-

ered companies in the future k days, for both crises, the worst predictions

are obtained when the window size is the largest, i.e. n = 30, while the best

predictions are obtained when the window size is the smallest, i.e. n = 1; we

note, however, that the variation with n is not large.

3.4.2.2.1 Estimating the transmission probabilities

In this section we explain the maximum likelihood procedure for estimating

the transmission and recovery probabilities. Let us denote the set of infected
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Figure 3.8: Heatmaps showing the distribution of the absolute difference be-
tween predicted and actual total number of infected companies after k = 10
days (top row), number of newly infected companies in the future k = 10 days
(middle row) and number of newly recovered companies in the future k = 10
days (bottom row) for the 2008 (left column) and the 2020 (right column)
financial crises, using the infections data from the previous n days. The white
dots indicate the mean absolute difference over all sliding window predictions.

neighbours in layer α of a susceptible company j at time t as Iαj (t). We know

that the probability that company i ∈ Iαj (t) does not infect company j through

layer α is 1−w
[α]
i,j . Therefore, the probability that company j does not become

infected at time t + 1 is the probability that none of its infected neighbours
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Figure 3.9: Heatmaps showing the distribution of the absolute difference be-
tween predicted and actual total number of infected companies after k = 20
days (top row), number of newly infected companies in the future k = 20 days
(middle row) and number of newly recovered companies in the future k = 20
days (bottom row) for the 2008 (left column) and the 2020 (right column)
financial crises, using the infections data from the previous n days. The white
dots indicate the mean absolute difference over all sliding window predictions.

in any of the layers 1 ≤ α ≤ 4 at time t infects j:

P(j does not get infected at time t + 1)

=
4∏

α=1

∏
i∈Iαj (t)

P(i does not infect j on layer α) =
4∏

α=1

∏
i∈Iαj (t)

(1 − w
[α]
i,j ).

(3.6)
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Figure 3.10: Heatmaps showing the distribution of the absolute difference
between predicted and actual total number of infected companies (top row),
number of newly infected companies (middle row) and number of newly recov-
ered companies (bottom row) for the 2008 (left column) and the 2020 (right
column) financial crises, using the infections data from the previous n days
and at a prediction horizon of k = 30 days. The white dots indicate the mean
absolute difference over all sliding window predictions.

It follows that the probability that company j gets infected at day t + 1 is

P(j gets infected at time t + 1) = 1 −
4∏

α=1

∏
i∈Iαj (t)

(1 − w
[α]
i,j ). (3.7)

Let St be the set of susceptible companies at time t and SIt+1 denote the
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subset of companies which get infected at time t+ 1, so that St+1 = St \SIt+1.

Then the likelihood for the observed infections from time t to time t + 1 is

Lt,t+1 =
∏

j∈SIt+1

P(j gets infected at time t + 1)

×
∏

j∈St+1

P(j does not get infected at time t + 1).

(3.8)

Substituting (3.6) and (3.7) into (3.8) we get

Lt,t+1 =

{ ∏
j∈SIt+1

(
1 −

4∏
α=1

∏
i∈Iαj (t)

(1 − w
[α]
i,j )

)}{ ∏
j∈St+1

4∏
α=1

∏
i∈Iαj (t)

(1 − w
[α]
i,j )

}
.

(3.9)

Suppose we want to estimate the parameters βi, 1 ≤ i ≤ 4 for a period of n

days (window length n) from day d to day d+n. By substituting w
[α]
i,j with its

representation in terms of βi, 1 ≤ i ≤ 4 (see (3.4)), and writing the likelihood

of the observations as

Ld,d+n =
d+n−1∏
t=d

Lt,t+1, (3.10)

where Lt,t+1 = Lt,t+1(β1, β2, β3, β4) is defined in (3.9), a maximization of (3.10)

numerically with respect to (β1, β2, β3, β4) leads to the maximum likelihood

estimate (β̂1, β̂2, β̂3, β̂4) of (β1, β2, β3, β4).

3.4.2.2.2 Estimating the recovery probability

Suppose that each company recovers on day t with probability p. Let us

denote by IIt+1 and IRt+1 the set of companies which were infected at time t

and did not recover at time t+1 and the set of companies which were infected

at time t but recovered at time t+ 1, respectively. Then the likelihood for the

recoveries is

Lp
t,t+1 = (1 − p)|IIt+1| × p|IRt+1|. (3.11)
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Hence, the recovery likelihood from day d to day d + n is

Lp
d,d+n =

d+n−1∏
t=d

Lp
t,t+1 = (1 − p)

d+n−1∑
t=d

|IIt+1|
× p

d+n−1∑
t=d

|IRt+1|
. (3.12)

The maximum likelihood estimate p̂, namely the value of p which maximises (3.12),

is then

p̂ =

d+n−1∑
t=d

|IRt+1|

d+n−1∑
t=d

(|IIt+1| + |IRt+1|)
=

d+n−1∑
t=d

|IRt+1|

d+n−1∑
t=d

|It|
, (3.13)

where It is the set of infected companies at time t.

3.4.2.3 Geographic- and sector-specific predictions

In this section, we investigate the model’s ability to predict the geographical

location and economic sector of the infected companies in the next k days,

based on the previous n days’ infection data. Rather than counting the num-

ber of infected companies, for each simulation we construct a multiset (i.e., a

set allowing for multiple instances of each of its elements) that includes the

continents or sectors corresponding to the predicted infected companies in

that simulation. We then compare each multiset to the observed continents

or sectors multiset using the Sørensen–Dice similarity coefficient for multisets,

defined as

D(A,B) =
2|A ∩B|
|A| + |B|

. (3.14)

Here A and B are multisets, not both empty, |A| and |B| denote the number

of elements in A and B, respectively, and if an element appears in both A

and B, it is included in the intersection A ∩ B with its minimal number of

occurrences observed in A and B. The Sørensen–Dice coefficient takes values

D ∈ [0, 1] with D = 1 indicating identical multisets, and D = 0 complete

dissimilarity.
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By calculating the mean Sørensen–Dice coefficient from all simulations we

obtain a measure of performance that reflects the overall effectiveness of the

method for each prediction. Figures 3.11, 3.12 and 3.13 illustrate the distribu-

tion of Sørensen–Dice coefficients when comparing the predicted and actual

continents and economic sectors of newly infected companies in the future

k = 10, 20 and 30 days, respectively, for different values of n. The left col-

umn presents the results when the model is fitted to the 2008 financial crisis,

while the right column shows the results for the 2020 financial crisis. The

results in each case indicate rather different optimal choices: for 2008, the

least accurate predictions are obtained when using only the most recent data

(n = 1), while for the 2020 crisis, smaller windows are in general preferable

with n = 30 giving the worst predictions. However, apart from these worst

cases, the dependence on n is not strong: for the 2008 data, very little varia-

tion in prediction accuracy as a function of n is observed, while for 2020, all

choices 1 ≤ n ≤ 10 give similar results. The results for all studied values of k

are similar, indicating that the model’s ability to predict future infected con-

tinents and sectors remains stable for most values of the size n of the sliding

window.

3.4.2.4 Predicting which specific companies will be infected

In this section, we investigate the performance of the model in predicting

which specific companies are likely to be infected in the future k days, using

data from the past n days. Predicting which specific companies will be infected

is an inherently challenging task, which arises from the intricate interplay of

various factors and uncertainties involved in identifying individual companies

that may be affected.

To evaluate the accuracy of the model, we employ Algorithm 2 with step 3c.
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Figure 3.11: Heatmap for the distribution of the mean Sørensen–Dice coeffi-
cient between predicted and actual continents (top row) and sectors (bottom
row) of newly infected companies in the future k = 10 days for the 2008 (left
column) and the 2020 (right column) financial crises, using the infections data
from the previous n days. The white dots indicate the mean over all sliding
window predictions.

That is, for each prediction window, we compute the proportion of the N re-

alisations of our model, in which each company is infected. These proportions

are then used as estimates of the probabilities of infection for each company

during the prediction period t.

To evaluate the accuracy of the model, we employ two different measures:

Accuracy and F1-score. It is important to consider both performance metrics,

rather than relying on a single metric, because each metric provides valuable

insights into different aspects of the model’s performance. The Accuracy is

defined as

Accuracy =
TP + TN

TP + FP + FN + TN
,

where TP and TN denote the numbers of true positive and true negative pre-

76



3.4. APPLICATION TO FINANCIAL CRISES

2008 financial crisis 2020 financial crisis

C
on

ti
n
en
ts

1 2 3 4 5 6 7 8 9 10 20 30
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sø

re
ns

en
-D

ice
 c

oe
ffi

cie
nt

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 20 30
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sø

re
ns

en
-D

ice
 c

oe
ffi

cie
nt

0.00

0.05

0.10

0.15

0.20
S
ec
to
rs

1 2 3 4 5 6 7 8 9 10 20 30
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

M
ea

n 
Sø

re
ns

en
-D

ice
 c

oe
ffi

cie
nt

0.05

0.10

0.15

0.20

0.25

1 2 3 4 5 6 7 8 9 10 20 30
n

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0
M

ea
n 

Sø
re

ns
en

-D
ice

 c
oe

ffi
cie

nt

0.00

0.05

0.10

0.15

0.20

0.25

Figure 3.12: Heatmap for the distribution of the mean Sørensen–Dice coeffi-
cient between predicted and actual continents (top row) and sectors (bottom
row) of newly infected companies in the future k = 20 days for the 2008 (left
column) and the 2020 (right column) financial crises, using the infections data
from the previous n days. The white dots indicate the mean over all sliding
window predictions.

dictions, respectively (i.e., the numbers of specific correctly predicted com-

panies to become infected or to remain uninfected, respectively), and FP

and FN denote the numbers of false positive and false negative predictions,

respectively (i.e., the numbers of companies predicted wrongly to become in-

fected or to remain uninfected, respectively). Hence, the Accuracy indicates

the ratio of correctly predicted observations to the total observations. The

F1-score is a commonly used performance metric to evaluate the accuracy of

a binary classifier or model and is defined as

F1 =
2 × Recall × Precision

Recall + Precision
=

2TP

2TP + FN + FP
,
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2008 financial crisis 2020 financial crisis
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Figure 3.13: Heatmap for the distribution of the mean Sørensen–Dice coeffi-
cient between predicted and actual continents (top row) and sectors (bottom
row) of newly infected companies in the future k = 30 days for the 2008 (left
column) and the 2020 (right column) financial crises, using the infections data
from the previous n days. The white dots indicate the mean over all sliding
window predictions.

where

Precision =
TP

TP + FP
and Recall =

TP

TP + FN
.

In other words, Recall measures the proportion of actual positive cases cor-

rectly identified as positive, while Precision assesses the ratio of correctly

predicted positive cases to the total predicted positive cases. The F1-score

combines both Recall and Precision into a single metric to balance the trade-

off between correctly identifying positive cases and minimizing false positives.

An F1-score of 1 indicates perfect classification, and a score of 0 indicates that

the model does not classify any observation into its correct class.

Later we examine the effect of the window length n on the model’s perfor-

mance, according to the two measures introduced above. Figures 3.20, 3.21
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and 3.22 illustrate the mean over all sliding windows of the two different mea-

sures for different values of n when the method is applied to the 2008 (left

column) or the 2020 (right column) financial crisis for the future k = 10, 20

and 30 days, respectively. It can be seen that for both financial crises the

Accuracy of the model decreases as n increases. Conversely, the F1-score is

higher for larger window lengths in general (though with similar values being

obtained for window choices 4 ≤ n ≤ 30). In addition, while the Accuracy for

the 2008 financial crisis is approximately 5% higher than the Accuracy in the

2020 financial crisis for all values of n, the F1-score for the 2008 financial crisis

is around 15% lower than the one for 2020 financial crisis. The reason for this

difference in performance metrics could be attributed to changes in the char-

acteristics and complexity of the two financial crises, as well as variations in

the data available for modelling. In particular, having less data for the 2008

financial crisis may limit the model’s ability to capture relevant dynamics and

dependencies between the companies, leading to lower predictive accuracy.

Overall, our findings suggest that the optimal window length n depends on

the specific performance metric that is being considered. Choosing an ap-

propriate window length can impact the model’s ability to predict financial

crises. For instance, a longer window, while providing valuable historical con-

text and potentially enhancing the F1-score, may exhibit lower Accuracy in

predicting rapidly evolving crises. As a result, it is essential for practitioners

and researchers to consider thoughtfully their goals and prioritize the specific

metric that holds the most significance when customizing the window length

for their models.
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3.4.3 Assessing the importance of the layers

In this section we study the importance of each layer within our model, as

defined by w
[α]
i,j , α ∈ {1, 2, 3, 4} in (3.4). We compare the performance of six

different networks: (i) the full network, comprising the PMFG, continents,

sectors and global layer; (ii) the network without PMFG, i.e., α ∈ {2, 3, 4};

(iii)–(v) duplex networks comprising the global layer and one other, i.e., α ∈

{1, 4}, α ∈ {2, 4}, or α ∈ {3, 4}; (vi) the global layer only, i.e., α = 4. We

remark that the latter corresponds to the homogeneous mixing population

case, which assumes that the probability of transmission is the same between

all companies.

We first compare in Figures 3.14, 3.15 and 3.16 how the different multiplex

networks perform, compared to the global layer only, in predicting the total

number of infected companies in the future k = 10, 20 and 30 days, respec-

tively. For each of the six networks, we compute the mean absolute difference

between the predicted and actual total number of infected companies after k

days, averaged over all sliding windows. The calculation is performed across

different values of n. To assess the ‘improvement’ achieved by each network in

comparison to the homogeneous mixing population model (which comprises

only the global layer), we compute the difference in average absolute discrep-

ancies between the predicted and actual total number of infected companies

for each n comparing the global layer network with each of the other five net-

works. Our results demonstrate that for both financial crises the full network

outperforms the other network structures and gives the highest improvement

in predicting the total number of infected companies after k days, for all

studied values of k, compared to the homogeneous mixing population model.

Using the global layer alone (homogeneous mixing population model) gives

the least accurate predictions since each other network produces positive im-
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provements. Moreover, the second best results are achieved when using the

network comprising of the global and PMFG layers, indicating the importance

of the PMFG layer. We remark that the six network models display similar

accuracy of prediction in the case of new-recoveries, as is to be expected, since

the recovery probability is independent of network structure (data not shown).
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Figure 3.14: Comparison between the total number of infected companies at
a prediction horizon of k = 10 days for the 2008 financial crisis (left column)
and the 2020 financial crisis (right columns), using the infections data from
the previous n days, in comparison to the homogeneous mixing population
model.

We then employ the same methodology as described in Section 3.4.2.3 and

compare accuracy of the results obtained from fitting all six models, accord-

ing to the Sørensen–Dice coefficient. Figures 3.17, 3.18 and 3.19 illustrate

the comparison between the mean Sørensen–Dice coefficient over all sliding

windows between predicted and actual continents (top row) and sectors (bot-

tom row) of newly infected companies in the future k = 10, 20 and 30 days,

respectively, for both the 2008 (left column) and the 2020 (right column) fi-

nancial crises. The results demonstrate that for all studied values of k and

n, the full model, containing all four layers, consistently yields the highest

mean Sørensen–Dice coefficient for predicting both the continents and sectors

in which newly infected companies will emerge. Conversely, employing only
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Figure 3.15: Comparison between the total number of infected companies at
a prediction horizon of k = 20 days for the 2008 financial crisis (left column)
and the 2020 financial crisis (right columns), using the infections data from
the previous n days, in comparison to the homogeneous mixing population
model.
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Figure 3.16: Comparison between the total number of infected companies at
a prediction horizon of k = 30 days for the 2008 financial crisis (left column)
and the 2020 financial crisis (right columns), using the infections data from
the previous n days, in comparison to the homogeneous mixing population
model.

the global layer produces the lowest mean Sørensen–Dice coefficients across

all combinations of n and k. Furthermore, the second-best results for all

combinations of n and k are consistently observed when utilizing the network

comprising only the global and PMFG layers. Adding each of the continents

and sectors layers, in addition to the global layer, improves the quality of the

predictions. This means that each of the layers within our model, and par-
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ticularly the PMFG layer, includes information which improves the model’s

predictive power.
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Figure 3.17: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 30 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using six dif-
ferent network models.

We then compare the two different scores introduced in Section 3.4.2.4: Ac-

curacy and F1- score. Figures 3.20, 3.21 and 3.22 illustrate the comparison

of the mean scores over all sliding windows for different values of n when

k = 10, 20 and 30, respectively, for all six networks. The results demonstrate

that the full model consistently outperforms the homogeneous mixing popula-

tion model in all scenarios. In particular, when examining the 2020 financial

crisis, the full model’s Accuracy surpasses that of the homogeneous mixing

population model by nearly 10%.
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Figure 3.18: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 30 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using six dif-
ferent network models.

Similar trends are observed when examining the mean F1-score. Specifically,

in the 2008 financial crisis the mean F1-score of the full model improves that

of the random model by around 5%, while an increase of nearly 10% is ob-

served in the 2020 financial crisis. Furthermore, the network’s performance is

substantially improved when the model includes both the global and PMFG

layers, resulting in the second highest scores. The results are consistent for

all values of k, which demonstrates the superiority of the full model over the

homogeneous mixing population model, but also highlights the importance

of incorporating the PMFG network for achieving more accurate predictions.

The maximum F1-score is achieved when k = 30 and for the 2008 financial

crisis it reaches the value of 0.08, whereas during the 2020 financial crisis,
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Figure 3.19: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 30 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using six dif-
ferent network models.

it reaches 0.24. These values are, of course, too low for practical prediction:

our work constitutes a proof-of-concept rather than an immediately applicable

method in this context. In addition, the observed improvements in Accuracy

and F1-score suggest that the additional information incorporated through the

multilevel structure holds potential for enhancing predictive models in future

research efforts.

Finally, we compare the models’ computational run-time. We compare both

the time for estimating the MLE parameters and also the computational time

per simulation. Figure 3.23 shows two plots: the left plot illustrates the

average time in seconds per iteration for the MLE estimation for different

values of n and the right plot shows the average time per simulation in seconds
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Figure 3.20: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 10 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous
n days to predict the set of individual infected companies when using six
different network models.

when simulating the SIR model for the future k days for different values of

k. It can be seen that in all cases using the full network requires the most

computational time, while using only the global layer takes the least time.

The computational time is based on the 2020 financial crisis.

To determine which model provides the best trade-off between accuracy and

computational time, we define the model’s Efficiency as the ratio of its per-

formance, in terms of the relevant accuracy measure (Accuracy or F1-score),

to its computational time5 (per MLE iteration or simulation). Figure 3.24

illustrates the Efficiency of the six different networks when the MLE compu-

tational time (left column) and the time per SIR simulation (right column)

5Computations were performed on a machine with an AMD Ryzen 5 processor and 8
GB RAM.
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Figure 3.21: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 20 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous
n days to predict the set of individual infected companies when using six
different network models.

are taken into account, that is mean Accuracy per iteration/simulation and

mean F1-score per iteration/simulation. Note that the computational time of

the SIR simulations does not depend on n, just on k, so to estimate the Effi-

ciency we use the mean Accuracy and F1-score results and the computational

time per simulation for k = 30.

It can be seen that while if we consider Accuracy (top row) the homogeneous

mixing population model shows highest Efficiency score for all n, the second

best model for the trade-off between computational time and Accuracy is

the model including the global and the PMFG layers. In addition, when we

consider the F1-score, we can see that the model consisting of the global and

the PMFG layer yields highest Efficiency. Overall, the optimal choice of model
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Figure 3.22: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 30 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous
n days to predict the set of individual infected companies when using six
different network models.
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Figure 3.23: The average computational time (in seconds) per iteration for
MLE estimation fitting the model to the n previous crisis days (left plot) and
per simulation for the future k crisis days (right plot) for the six different
networks.
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MLE estimation Simulations
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Figure 3.24: Comparison between the mean Accuracy (top row) and mean F1-
score (bottom row) per computational time for MLE iteration (left column)
and for one simulation (right column).

depends on whether one prioritizes accuracy or computational efficiency. If

the model’s predictive power is the main interest, then the full network and

the network including the global and the PMFG layers give the best results.

In addition, if one is interested in computational efficiency, while preserving

high accuracy, the network consisting of the global and PMFG layers might

again be the best choice.

3.5 Discussion and conclusion

This chapter proposes a novel framework to analyse the spread of financial

crises. We integrate stock price, geographical, and economic sector data to

provide a four-layer multiplex network on which a discrete-time SIR model
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is simulated, so as to predict the spread of financial risk through intercon-

nections between companies. Specifically, by fitting infection and recovery

parameters on each layer of our network to historic stock data through a

maximum likelihood approach, we predict future infection dynamics.

We investigate and evaluate the utility of our approach through application

to two recent financial crises: the 2008 crisis, initiated by the subprime mort-

gage market and the 2020 crisis, associated with the COVID-19 pandemic. In

each case, we examine the ability of our model to estimate dynamically fu-

ture infection risk over a horizon of k days, given data from the prior n days.

Using a range of accuracy measures, we analyse the dependence of prediction

accuracy on k and n, in terms of total number of infections, as well as sector-

and location-specificity. Thereby we demonstrate that interactions among

companies within and across sectors and continents in the financial network

play a substantial role in the spread of financial crises and their incorporation

into the model improves the prediction of future outbreaks of financial dis-

tress. By comparison with a homogeneous mixing assumption in particular,

we highlight the importance of understanding and accounting for the complex

interdependencies between companies in financial systems for risk prediction.

While our model offers valuable insights into the spread of financial crises, it

is essential to recognize its limitations and constraints. One significant limi-

tation of our model is its reliance on historical stock price data, which only

gives an incomplete view of the financial stability of a company. The accu-

racy and reliability of our predictions heavily depend on the availability and

quality of the data, which may vary across different companies, sectors, and

regions. Moreover, our model operates under several basic assumptions, such

as the division into susceptible, infected, and recovered companies. While

these assumptions simplify the complexity of financial contagion dynamics,

they also impose constraints on the model’s applicability and may not fully
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capture the nuances of real-world scenarios. Despite incorporating multiple

layers representing stock prices, geographical locations, and economic sectors,

our model overlooks other potentially important factors influencing financial

contagion, such as macroeconomic indicators, regulatory policies, investor sen-

timent, and systemic risk factors. We emphasize that the primary goal of this

research is to present our novel framework combining extreme value theory, fi-

nancial network construction and SIR modeling for the spread of financial risk

in networks rather than to undertake comprehensive prediction. Despite its

limitations, the incorporation of the multilevel network structure has shown

potential in enhancing prediction power and capturing the interdependencies

among companies driving financial contagion dynamics.

Overall, our results suggest that the proposed framework is effective in pre-

dicting risk spread, this information potentially being useful in terms of risk

prevention and mitigation. In particular, our predictive approach updates in

real time as new data become available, making it potentially useful in crisis

management as the crisis unfolds. Moreover, the framework is universal in

nature and hence could be applied to analyse any contagious financial crisis,

not only in a network of companies but also in a network of countries and

economic sectors. In addition, our results agree with the existing research

which consistently shows the importance of including economic sector [147]

and geographical location [53] information in predicting a company’s future

performance. However, [86] suggests that industry-level analysis may not

always provide a quantity of information that results in substantial improve-

ment of future profitability, therefore suggesting that efficiently incorporating

further, more granular information might be difficult.

As we highlight in our analyses, predictive accuracy suffers during periods of

rapid change. We note, however, that such events are typically associated with

extrinsic factors, such as government financial stimulus packages or lockdown
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periods. Natural future work includes incorporating such significant changes

into the model. In the next chapters, we address this by using a change point

detection approach, as well as observations weighting approach, where more

recent data have higher importance than an older data.
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Chapter 4

Enhancing financial crisis

prediction: Integrating change

point detection for exogenous

event identification

As noted previously, our model’s predictive accuracy suffers during and shortly

after significant events, such as lockdowns or major economic policy changes

like stimulus packages. This chapter explores the integration of change point

detection (CPD) techniques to improve the model’s adaptability to major

market events. Exogenous shocks, such as geopolitical tensions and natural

disasters, can lead to substantial changes in stock prices and market dynam-

ics. By implementing the ChangeFinder [208] algorithm for change point

detection, we aim to identify and incorporate such events, so that the model

can adapt quickly. Once a change point is detected, the model adjusts by

re-estimating its parameters based on the data following the detected change.

The process involves continuously monitoring the data for anomalies. When a
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change point is identified, the model discards the older data before the change

point and focuses on the more recent data. Compared to the model introduced

in the previous chapter, incorporating change points enhances forecasts in pre-

dicting the number of affected companies, as well as in company-, sector-, or

location-specific predictions. The results suggests that incorporating change

points into the model generally yields better performance, particularly in im-

proving the predictions of the number of infected companies.

4.1 Introduction

Detecting significant changes in financial time series data is a critical aspect

of quantitative analysis, especially in understanding the dynamics of market

behavior and mitigating financial risks. Financial markets are highly suscep-

tible to various exogenous and endogenous events that can cause abrupt shifts

in asset prices, volatility, trading patterns and investor decisions [57]. Accu-

rately identifying these changes is critical for investors, financial institutions

and policymakers as it allows them to adjust their approaches in response to

changing market circumstances.

Many events during the 2008 and the 2020 financial crises had significant

effects on the financial markets. For instance, in the 2008 financial crisis,

governments worldwide implemented various decisions and interventions to

stabilize financial markets and mitigate impact of the crisis. In the United

States, central banks, including the Federal Reserve, implemented aggres-

sive interest rate cuts to stimulate economic activity and ease borrowing costs

[26]. Lower interest rates aimed at encouraging spending, investment and bor-

rowing to stimulate economic growth [213]. During the 2020 financial crisis,

government decisions regarding lockdowns, travel restrictions and quarantine
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measures significantly impacted various industries, leading to market disrup-

tions, supply chain interruptions and shifts in consumer behaviour. Sectors

like travel, hospitality, entertainment and retail experienced substantial de-

clines in revenue during the crisis, impacting stock prices and overall market

performance [96]. In response to the market tension, governments globally

introduced massive fiscal stimulus packages, providing financial support to

individuals, businesses and industries severely affected by lockdowns and eco-

nomic disruptions [233].

Other events, such as wars and geopolitical tensions [47], natural disasters

[87] and protests [56] can also influence the financial market significantly. For

example, the terrorist attacks on September 11, 2001, led to a temporary clo-

sure of financial markets in the United States [4, 52, 167, 207]. When the

markets reopened, there was a significant drop in stock prices. The attacks

led to increased volatility in the global financial market, particularly affect-

ing airline-, insurance- and tourism-related stocks. In addition, following the

earthquake and tsunami in Japan in 2011, the Fukushima nuclear disaster led

to widespread disruptions in Japan’s economy [17]. Japanese stocks and the

yen experienced severe volatility as concerns about nuclear safety, economic

damage and supply chain disruptions appeared. Industries such as technol-

ogy, automotive and manufacturing were particularly affected by disruptions

in the supply chain [123]. Brexit, the United Kingdom’s decision to leave the

European Union (EU), also had a substantial impact on the financial markets

[112]. The uncertainty surrounding Brexit negotiations led to significant fluc-

tuations in the value of the British pound (GBP). In addition, UK-focused

stocks, particularly those reliant on EU trade or with substantial exposure to

the domestic economy, were especially sensitive to Brexit developments [34].

These examples demonstrate how non-financial events such as wars, natural

disasters, geopolitical tensions and pandemics can have profound effects on
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financial markets, leading to increased volatility, changes in asset prices, as

well as disruptions across various industries and sectors. In this chapter we

enhance the model introduced in Chapter 3 by incorporating change point

detection techniques. The approach introduced in this chapter enables the

dynamic integration of significant events in real time, contributing to a more

robust and adaptive model. By utilizing change point detection, we can au-

tomatically identify and adapt to these significant changes as soon as they

happen, allowing our model to incorporate their impact. This approach en-

ables us to capture and account for the effects of these events as they occur,

enhancing the model’s ability to adapt to evolving market conditions and

improve its predictive capabilities in a dynamic and automated manner.

The remainder of the chapter is organized as follows. In Section 4.2 we in-

troduce the ChangeFinder algorithm, used for online change point detection.

Then in Section 4.3 we incorporate change point detection into the model

using the ChangeFinder algorithm to detect significant changes and adapt

to them in real time, and then compare these predictions with the model

introduced in Chapter 3. Finally, in Section 4.4 we discuss our results, the

limitations of our research and provide directions for future developments.

4.2 Change point detection

Change point detection is a technique for identifying the points at which

the probability distribution of a time series change. Change point detection

algorithms are usually classified as ‘online’ or ‘offline’. The ‘offline’ algorithms

take into account the whole available data series at once, where the main goal

is to detect all change points. ‘Online’, or real-time, algorithms, on the other

hand, operate concurrently with the activity they are monitoring, analysing

96



4.2. CHANGE POINT DETECTION

each data point as it becomes available with the aim of identifying a change

point as soon as possible after it occurs, ideally before the next data point

arrives. In practice, no change point detection algorithm can actually work in

real time, since it must first examine the new data before determining whether

a change point happened between the old and new data points. In our study

we utilize an online change point detection algorithm, called ChangeFinder

[208].

4.2.1 ChangeFinder

Change point detection has been employed in statistical analysis and data

mining for a number of functions, including trend analysis [12], edge detec-

tion in image processing [217] and anomaly detection [195]. Since the au-

toregressive (AR) models constitute the simplest widely-used class of models

to represent time series, we begin this section by describing a typical change

point detection method based on the AR model.

4.2.1.1 AR Model

Autoregressive (AR) models are an essential concept in time series analysis

and forecasting. They are widely used in many fields, including economics and

finance [190]. AR models represent the relationship between an observation

and previous observations in a time series. The fundamental principle is that

the current value of a time series can be expressed as a linear combination of

its past values and some random noise.

Let (z1, ..., zn) be a time series with mean 0. Then, the k-th order AR model,
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denoted by AR(k) can be defined as

zt =
k∑

i=1

αizt−i + ϵt, (4.1)

where αi are the regression parameters, which indicate the degree with which

zt is correlated with zt−i, and ϵt are independent identically distributed (iid)

random variables generated from a Normal distribution with mean 0 and

variance σ2. Let x1:n = (x1, ..., xn) be the time series that we observe, where

xt = zt + µ. Let x1:t = (x1, ..., xt) and xt+1:n = (xt+1, ..., xn) denote the time

series before (and including) and after time t, respectively. Then, assuming

the k-th order AR model, the conditional probability density function of xt is

given by

P (xt|xt−k:t−1, θ) =
1√
2πσ

exp

[
−(xt − ωt)

2

2σ2

]
. (4.2)

Here, ωt is given as follows:

ωt =
k∑

i=1

αi(xt−i − µ) + µ, (4.3)

and θ = (α1, α2, ..., αk, µ, σ) are the model parameters. Then, if ω̂t is the

estimated value of ωt obtained by substituting the estimated model parameters

θ̂ = (α̂1, ..., α̂k, µ̂, σ̂) in (4.3), the model-fitting error for x1:n is given by

I(x1:n) =
n∑

t=1

(xt − ω̂t)
2. (4.4)

Here, the model fitting error I(x1:t) is calculated using maximum likelihood on

the data only from time 1 to time t, i.e. the parameter θ is estimated given the

observations sequence x1:t. Hence, if I(x1:t) + I(xt+1:n) is significantly smaller

than I(x1:n), then t is a change point. In other words, the procedure assesses

if it is significantly better to fit two separate models, one from time 1 to t and

the other from time t+1 to n, than a simpler full model from time 1 to time n.
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Although the algorithm is simple, it has a computational complexity of O(n2),

so it is impractical for online change point detection, especially for large time

series, where data arrives sequentially and the algorithm needs to process it in

real-time [116]. Moreover, in the above formulation we assume that we have

only one change point, with time series being stationary before and after it.

However, this assumption can be overly simplistic and unrealistic. The SDAR

model, which we introduce in the following section, deals with the situation

in which we have multiple change points, with stochastic processes between

them changing slowly [208].

4.2.1.2 SDAR Model

The SDAR (Sequentially Discounting Auto Regression model learning) algo-

rithm can be used to address the computational problem mentioned above

[208]. The SDAR algorithm is employed for adapting and discounting data in

an online fashion, utilizing the AR model. For an estimate θt of θ given x1:t,

the SDAR algorithm is employed to calculate in an online manner the value

of θ that maximizes the following quantity:

t∑
i=k+1

(1 − r)t−i logP (xi|xi−k:i−1, θ), (4.5)

where r ∈ (0, 1) is a discounting factor. A smaller r indicates a stronger

impact from past data. For values of t < k + 1, default values of θt are

assumed. As mentioned in [116], incorporating the discounting of older data,

the SDAR algorithm is useful for real-time learning with non-stationary time

series data. Furthermore, its computation cost is O(n), making it a favourable

choice for online change point detection.
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4.2.1.3 ChangeFinder algorithm

The ChangeFinder algorithm utilizes the SDAR algorithm to detect change

points in real time. It consists of a two-step learning process which combines

the detection of outliers and change point detection in a time series. The first

learning step of the algorithm uses the SDAR method to calculate an outlier

score for each data point, which shows how much it deviates from the learned

model, where a higher score suggests a higher likelihood of being an outlier (see

Step 2 in Algorithm 3). In more detail, a series of probability density functions

{Pt = P (xt|xt−k:t−1)|t = k + 1, k + 2, . . . }, learned incrementally every time

a new data point xt is input, are constructed by the ChangeFinder algorithm

as follows. Firstly, estimates θt, of θ, given x1:t, are obtained by maximizing

equation (4.5), where P is defined in (4.2). For each input xt (t ≥ k + 1)

an outlier score S(xt) is then calculated by taking the logarithmic loss score

S(xt) = − logP (xt|xt−k:t−1, θt−1). Then the outlier scores over a fixed-length

window T are calculated and as the window moves along the data, the scores

within each window are averaged. This process generates a new time series

{yt} of these averaged scores. In this way the influence of isolated outliers in

the time series is reduced (see step 3 in Algorithm 3). The second learning

step involves repeating the same procedure on the new time series {yt}. That

is, calculate an outlier score S(yt) for each yt by using the SDAR method to

estimate θt. Then estimate the change point or anomaly score, showing the

probability of a change point, by taking the average over a sliding window

with fixed length T (see step 4 in Algorithm 3). Figures 4.1 and 4.2 illustrate

a flowchart and an illustration of the two learning phases of the ChangeFinder

algorithm, respectively. The step-by-step method is described in Algorithm

3.
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Figure 4.1: Flowchart of ChangeFinder. Adopted from [116].

Figure 4.2: Two phase learning ChangeFinder. Image taken from [116]. The
plot on the left illustrates the sequence {yt}, as defined in equation (4.7),
while the plot on the right illustrates the anomaly scores {at}, as defined in
equation (4.9).
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Algorithm 3 ChangeFinder algorithm

1. Receive a new data point xt at time t.

2. For each t ≥ k + 1, the outlier score S(xt) at xt is calculated,

S(xt) = − logP (xt|xt−k:t−1, θt−1), (4.6)

where the values of θt−1 are estimated using the SDAR method, maxi-
mizing equation (4.5), with P given in (4.2). Here, a higher score S(xt)
indicates that xt is an outlier with higher probability.

3. For each t, a rolling mean of the outlier scores within a time window
with fixed length T is computed. In other words, a sequence of moving
averages of the outlier scores yt for t = T + 1, T + 2, . . . is computed:

yt =
1

T

t∑
i=t−T+1

S(xi). (4.7)

Dummy values are chosen for yt, where t ≤ T . This process is needed in
order to reduce the influence of isolated outliers contained in the time
series (x1, ..., xt).

4. For each t, an outlier score S(yt) at yt is calculated,

S(yt) = − logP (yt|yt−k:t−1, θt−1), (4.8)

where θt−1 is estimated using the SDAR method, maximizing equation
(4.5), with P given in (4.2).

5. A smoothing step is applied to get a sequence of moving averages at for
t = 0, 1, 2, ...:

at =
1

T

t∑
i=t−T+1

S(yi). (4.9)

Here, at represents the change point or anomaly score at time t. A
higher value of at indicates a higher possibility of change point.
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4.3 Incorporating change points into the model

In this section we focus on implementing the ChangeFinder algorithm within

our model framework. Our goal is to identify and assimilate abrupt shifts

or significant events in real-time data and adjust the model’s parameters ac-

cordingly by considering only the data after a change point is detected and

disregarding the data before. By doing so, we allow the model to identify and

react to significant shifts, such as market crashes or other economic events,

ensuring timely updates and more reliable predictions. The results, shown in

Section 4.3.3, indicate that compared to the model without change point de-

tection, our enhanced model demonstrates improved predictive accuracy. The

predictions are especially improved when predicting the number of infected

companies. In particular, while the model without change point detection per-

forms poorly during and after significant events, incorporating change points

into the model significantly enhances the results around these critical mo-

ments. In the next section we show how we can incorporate such significant

changes into the model, yielding higher prediction accuracy.

4.3.1 Change point detection

In this section we incorporate the ChangeFinder algorithm into our model. Let

I(t) denote the total number of infected companies on day t in each of the two

crises. To detect significant changes in the probability of infection and incor-

porate them into the model, we examine the time series {I(1), I(2), ..., I(L)},

where L is the length of the studied crisis in days. We fit the ChangeFinder

algorithm with order k = 1, discounting rate r = 0.5 and rolling window with

length T = 7 for the smoothing steps, to both the 2008 and the 2020 finan-

cial crises. In particular, the parameter k = 1 is chosen because, firstly, it
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keeps the computational burden low. Secondly, with k = 1 the model adapts

quickly to sudden changes, or in other words, if a sudden spike or drop in the

time series happens, the ChangeFinder algorithm can detect it with minimal

latency. In addition, when T is small, outliers and change points can be de-

tected immediately after they appear, but might be difficult to discriminate

from one another. On the other hand, if T is large, it leads to time delay

for detecting change points, but outliers are filtered. Choosing the parameter

T = 7 strikes a balance between time delay and outlier filtering. Finally, a

moderate r value balances between sensitivity to changes and noise in the

results.

For completeness, Figures 4.3 and 4.4 present the anomaly scores for dif-

ferent combinations of the ChangePoint parameters r ∈ {0.1, 0.5, 0.9} and

T ∈ {3, 7, 30}, when the algorithm is run on the 2008 and the 2020 finan-

cial crises, respectively. The solid red vertical lines illustrate points with high

probability of being a change point, whereas the other vertical lines correspond

to the significant events that happened during each of the two crises. It can be

seen that the smaller the window size T and the larger the discount rate r, the

noisier the anomaly scores get. In addition, when T = 30 we lose important

data from the beginning of the crisis as the ChangeFinder algorithm is then

not able to detect changes in the first 30 days of the crisis. Also, in the 2020

financial crisis, when T = 3 or when r = 0.9 it can be seen that in all cases

there is no change point detected after governments offer stimulus packages

(vertical red dotted line) and after the significant increase of COVID-19 cases

(vertical green line). Hence, the value of r = 0.5 is chosen such that reduces

the noise in the anomaly scores while still allowing for the detection of critical

events.

Using the values k = 1, r = 0.5 and T = 7 we obtain the results shown in

Figures 4.5a and 4.5b, for the 2008 and 2020 financial crises, respectively. The
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Figure 4.3: The figures illustrate the anomaly scores output, using the
ChangeFinder algorithm with different combinations of the discounting rate
r and the rolling window size T . The ChangeFinder algorithm is run on the
2008 daily infections data. The solid red vertical lines illustrate points with
high probability of being a change point, whereas the other vertical lines cor-
respond to the significant events that happened during the crisis.

top plot in each figure shows the total number of infected companies in black

and the solid red vertical lines indicate the days where a high probability of

a change point is detected by the ChangeFinder algorithm, or in other words

the days with highest anomaly scores, illustrated in the bottom plot in each

figure. The other coloured vertical lines correspond to significant events that

happened during each crisis. In both figures it can be seen that most of the

time shortly after the real events, a high probability of a change point has been

detected. This demonstrates the effectiveness of the ChangeFinder algorithm

in identifying significant changes in the data.
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Figure 4.4: The figures illustrate the anomaly scores output, using the
ChangeFinder algorithm with different combinations of the discounting rate
r and the rolling window size T . The ChangeFinder algorithm is run on the
2020 daily infections data. The solid red vertical lines illustrate points with
high probability of being a change point, whereas the other vertical lines cor-
respond to the significant events that happened during the crisis.

4.3.2 Reestimating the parameters

While in the previous chapter we studied the effect of the sliding window size

on the prediction accuracy, here we introduce a way to reestimate the model’s

parameters immediately after a change point is detected. In the previous

chapter we fitted the model to the previous n crisis days for different values

of n. However, here, utilizing the ChangeFinder algorithm, we can detect a

significant change in a time series a day after it occurs. Instead of fitting

the model to all the previous n crisis days, if a change point is detected

during the past n days of a crisis, we discard the data before the change
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Figure 4.5: Change point detection on the total number of infected compa-
nies in the a) 2008 and b) 2020 financial crises, respectively. The bottom
plots illustrate the anomaly scores, as defined in (4.9). The solid red vertical
lines show the highest anomaly scores, while the other coloured vertical lines
indicate some of the most important events during both crises. It can be seen
that often change points (corresponding to high anomaly scores) are detected
shortly after a real-life event has happened.
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point has happened and fit the model exclusively to the days following (and

including) the change point, utilizing Algorithm 4. If more than one change

point is detected during the past n days, we discard all the data before the last

(most recent) change point. In the following section we evaluate the model

incorporating change points (we henceforth denote this as the change point

model) and compare its performance with that of the model from the previous

chapter.

4.3.3 Evaluating the change point model

In this section we compare the model introduced in Chapter 3 with the change

point model. We first compare in Figures 4.6, 4.7 and 4.8 how the change

point model performs, in comparison with the original model from Chapter 3,

in predicting the total number of infected companies (top row), the number

of newly infected companies (middle row) and the number of newly recovered

companies (bottom row) in the future k = 10, k = 20 and k = 30 days,

respectively, for different values of n. The results reveal that the model incor-

porating the change point detection algorithm (shown in orange) consistently

outperforms the model without the change points (shown in blue), with higher

improvement for higher values of n. Notably, when n = 1, both models yield

similar performance, since a change point can be detected at least one day af-

ter its occurrence. Consequently, when n = 1, a detected change point aligns

with the first day of the sliding window. In addition, Figure 4.9 illustrates

the mean absolute difference between actual and predicted total number of

infected companies per prediction window, when the two models are fitted to

the past n = 30 crisis days of the a) 2008 and b) 2020 financial crises. Each

prediction window has length k = 30 days, so the first prediction window

starts at day 31 and ends at day 60 (with model fitted to the first n = 30
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Algorithm 4 Model predictions for the future k days: CPD included

1. Set t = 1; set threshold value T
2. Set tc = t (tc is used to record and update the change points’ times)
3. For i ∈ {t, ..., t + n} calculate the anomaly score ai, using the
ChangeFinder algorithm. If ai is a local maxima and ai > T (if the anomaly
score is over the threshold T ), then i is classified as a change point. Set
tc = i.
4. Fit the model to the period from day tc (disregard all data points before
the change point) to day t + n (window t) and estimate β̂i (1 ≤ i ≤ 4) and
p̂.
5. Run N = 10,000 SIR simulations on the network from day t + n + 1 to
day t + n + k (i.e. predict infections in the next k days) using the values of
β̂i (1 ≤ i ≤ 4) and p̂ estimated in Step 4.

(a) Predict the number of infected companies

• Count the number of newly infected (recovered, respectively) com-
panies in each simulation and take the mean number of the newly
infected (recovered, respectively) companies as a prediction for the
number of newly infected (recovered, respectively) companies in
the period from day t+n+ 1 to day t+n+ k (prediction window
t).

• Count the total number of infected companies at the end of each
simulation and take the mean total number of infected companies
as a prediction for the total number of infected companies on the
final day with a prediction window t.

(b) Predict the infected companies’ continents/sectors

• Collect a multiset (set allowing multiple instances of the same
element) containing the continents/economic sectors of newly in-
fected companies in each simulation and take it as a prediction
for which continents/sectors are likely to be infected in predic-
tion window t. For each simulation compare the predicted to the
observed continents/sectors multiset using the Sørensen–Dice sim-
ilarity coefficient (3.14). The mean over all N simulations is then
used as an indicator of prediction quality for prediction window t.

(c) Predict the infected companies

• Collect a list of newly infected companies in each simulation and
record the proportion of the N simulations in which each company
was infected. Then, for every company, consider this proportion
as the probability of infection during prediction window t of the
crisis.

6. Update t = t + 1.
7. If t > L− k − n stop. Else go back to Step 2.
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crisis days and SIR simulations running from day 31 to day 60). It can be seen

that while the model without change point detection performs poorly during

and after significant events, denoted by vertical lines, incorporating change

points into the model significantly enhances the results, specifically around

these critical moments.
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Figure 4.6: Comparison between the full model from Chapter 3 and the change
point detection model of the absolute difference after k = 10 days between
predicted and actual total number of infected companies (top row), number of
newly infected companies (middle row) and number of newly recovered com-
panies (bottom row) for the 2008 (left column) and the 2020 (right column)
financial crises, using the infections data from the previous n days.

We next compare how the two models perform in predicting the infected

companies’ continents and sectors. Figures 4.10, 4.11 and 4.12 illustrate the
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Figure 4.7: Comparison between the full model from Chapter 3 and the change
point detection model of the absolute difference after k = 20 days between
predicted and actual total number of infected companies (top row), number of
newly infected companies (middle row) and number of newly recovered com-
panies (bottom row) for the 2008 (left column) and the 2020 (right column)
financial crises, using the infections data from the previous n days.

comparison between the mean Sørensen–Dice coefficient over all sliding win-

dows between predicted and actual continents (top row) and sectors (bottom

row) in the future k = 10, k = 20 and k = 30 days, respectively, for dif-

ferent values of n. It can be seen that for all values of k (10, 20, and 30

days into the future) and high values of n, the change point model performs

consistently better than the model without change point detection incorpo-

rated, with higher improvement for higher values of n. This suggests that
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Figure 4.8: Comparison between the full model from Chapter 3 and the change
point detection model of the absolute difference after k = 30 days between
predicted and actual total number of infected companies (top row), number of
newly infected companies (middle row) and number of newly recovered com-
panies (bottom row) for the 2008 (left column) and the 2020 (right column)
financial crises, using the infections data from the previous n days.

integrating change point detection improves the model’s ability to accurately

predict the geographical and sectoral spread of infection when the number of

observations (n) is sufficiently large. The improvement is more pronounced

for higher values of n, indicating that the change point model benefits from

more data to detect significant shifts and adjust parameters accordingly. In

addition, for small n there is little to no gain by ignoring part of the data as

there is little amount of data anyway. However, it can also be seen that for
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Figure 4.9: Comparison between the full model from Chapter 3 (in blue) and
the change point detection model (in orange) of the mean absolute difference
between predicted and actual total number of infected companies for the future
k = 30 days per prediction window of the a) 2008 and b) 2020 financial crises.
The models have been fitted to the past n = 30 days, hence the first day
of the first prediction window is 31. The coloured vertical lines indicate the
important events during each crisis.
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smaller values of n, the change point model sometimes yields a lower mean

Sørensen–Dice coefficient compared to the model without change point detec-

tion. The reason for this could be that when the model is fitted to a smaller

window (i.e., a smaller number of data points n), detecting a change point

within this window can result in the exclusion of a substantial portion of data.

Consequently, a significant amount of information is lost, which can adversely

affect the model’s accuracy and predictive performance. Overall, while the

change point model shows clear advantages for larger values of n, its perfor-

mance can be less reliable with smaller n. This highlights the importance

of considering the window size n when choosing to incorporate change point

detection into the model.
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Figure 4.10: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 10 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using the full
model from Chapter 3 and the change point detection model.

We finally compare the Accuracy and the F1-scores, introduced in Section
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Figure 4.11: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 20 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using the full
model from Chapter 3 and the change point detection model.

3.4.2.4. Figures 4.13, 4.14 and 4.15 show that for all considered values of k

the change point model has higher Accuracy for almost all values of n. This

indicates that the change point model is generally better at correctly predict-

ing the infected companies when looking at the overall proportion of correct

predictions. However, when considering the F1-scores for smaller values of n

the model without change points consistently outperforms the change point

model. The lower F1-scores for the change point model suggest that while it

may make accurate overall predictions (reflected in higher Accuracy), it might

struggle more with correctly identifying the true positive cases. The explana-

tion for this is that The F1-score is, as explained earlier in Section 3.4.2.4, a

harmonic mean of precision (the proportion of predicted infected companies

that are actually infected) and recall (the proportion of actual infected com-

panies that the model predicts as infected). For larger values of n the change
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Figure 4.12: Comparison between the mean Sørensen–Dice coefficient, aver-
aged over all prediction windows, between predicted and actual continents
(top row) and sectors (bottom row) of newly infected companies in the future
k = 30 days for the 2008 (left columns) and the 2020 (right column) financial
crises, using the infections data from the previous n days when using the full
model from Chapter 3 and the change point detection model.

point model generally yields higher F1-score values. The results suggest that

in certain instances information preceding a detected change point may hold

significant relevance for future predictions.

4.4 Discussion and conclusion

In this chapter, we introduced and incorporated the ChangeFinder algorithm

into our model for change point detection in real time. Through a compar-

ative analysis, we demonstrated the enhanced predictive performance of the

change point model over the original model from the previous chapter. The

improvement across various metrics affirms the effectiveness of integrating

change points for a more accurate and adaptive predictive model.
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Figure 4.13: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 10 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous n
days to predict the set of individual infected companies when using change
point detection model (in orange) vs the model without incorporating change
points (in blue).

While the integration of change points proves advantageous, it is important

to acknowledge the potential drawbacks. Firstly, the necessity to choose a

threshold (step 1 in Algorithm 4) could impact the algorithm’s sensitivity to

change points. Another drawback of the model is that it does not consider

data prior to a detected change point meaning that potentially valuable in-

formation present in older data may be overlooked. While the model’s focus

on recent data aids in capturing immediate trends, and change points in par-

ticular, the omission of historical insights may impact its ability to discern

more persistent patterns. To address these limitations, in the next chapter,

we introduce an observation weighting approach, which assigns higher weights

to more recent observations while still retaining and incorporating older data

to a lesser extent. This method aims to balance the need to quickly respond

to new data with keeping valuable historical information, leading to higher
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Figure 4.14: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 20 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous n
days to predict the set of individual infected companies when using change
point detection model (in orange) vs the model without incorporating change
points (in blue).

predictive accuracy.
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Figure 4.15: Comparison between the mean a) Accuracy and b) F1-score in
the future k = 30 days for the 2008 financial crisis (left column) and the 2020
financial crisis (right column), using the infections data from the previous n
days to predict the set of individual infected companies when using change
point detection model (in orange) vs the model without incorporating change
points (in blue).
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Chapter 5

Observation weighting in

predictive modelling

5.1 Introduction

Many time series models from econometrics and empirical finance primarily

employ maximum likelihood methods for estimation. The conventional max-

imum likelihood principle assumes equal weight for all sample observations.

However, adjustments of the weighting scheme can improve forecast accu-

racy. For instance, in the modelling of financial time series, assigning greater

weight to recent observations, as opposed to the default equal weights, has

been shown to enhance risk prediction [206]. This concept arises naturally

and is not new to the existing body of literature. The method of time-based

weighted maximum likelihood (TiWML) has been used to forecast financial

returns [150]. It is particularly useful in forecasting of financial time series as

financial markets are dynamic in nature, with trends and patterns changing

over time. Giving more weight to recent data allows the models to adapt to

shifts in market conditions. In addition, the TiWML technique has found
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various applications in risk management and financial modelling [174], par-

ticularly in scenarios of market volatility, as recent volatility shocks are well

recognised to be good indicators of volatility in subsequent periods, or rapid

change, as previous data might become obsolete [206].

In this chapter we aim to enhance the model’s predictive accuracy by applying

different weighting schemes to the original model introduced in Chapter 3. In

particular, in Section 5.2 we employ two popular TiWML schemes, geometric

and hyperbolic, in place of the MLE method described in Chapter 3. The

resulting model is applied to the 2020 financial crisis. The results indicate

that introducing both weighting schemes improves the model’s accuracy when

predicting the number of infected companies. In particular, the geometric

weighting scheme consistently outperforms the hyperbolic weighting scheme,

leading to substantially higher improvement in predictive accuracy, especially

for higher values of the window length n.

Then, in Section 5.3 we combine the change point detection model (CPD

model), introduced in Chapter 4, and the hyperbolic and geometric TiWML

schemes. In particular, we first detect change points in the data using the

procedure described in the previous chapter, discarding all the data preceding

the change point. We then weight the data after (and including) the change

point using either of the two weighting schemes. The results indicate that

the CPD + TiWML model gives more accurate predictions for the number of

infected companies, particularly when using the geometric weighting scheme.

5.2 TiWML

The TiWML approach is based on the assumption that recent observations

may better reflect the current market conditions and trends. Hence, the
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5.2. TIWML

method gives higher weight to recent data and lower weight to older data.

To implement the weighting scheme a vector of weights (τ1, ..., τn) is chosen,

such that
∑n

i=1 τi = 1, where n is the window size (the number of previous

crisis days we use to fit the model), as introduced in Chapter 3. Then, each

component of the log-likelihood function, associated with day t is multiplied

by τt. In particular, the likelihood function of the observed new infections,

associated with the period of the crisis from day d to day d + n, introduced

in equation (3.10), becomes

Ld,d+n =
d+n−1∏
t=d

(Lt,t+1)
τt , (5.1)

where Lt,t+1 is defined in (3.9). Therefore, the log-likelihood function becomes

ℓd,d+n = logLd,d+n =
d+n−1∑
t=d

τt logLt,t+1. (5.2)

Similarly, the recovery likelihood function, introduced in equation (3.12), be-

comes

Lp
d,d+n =

d+n−1∏
t=d

(Lp
t,t+1)

τt , (5.3)

where Lp
t,t+1 is defined in (3.11). Then, the recovery log-likelihood function

becomes

ℓpd,d+n = logLp
d,d+n =

d+n−1∑
t=d

τt logLp
t,t+1. (5.4)

In this section we will study two of the most popular weighting schemes used

in the literature [150], namely geometric weighting, for which τt ∝ ρn−t, and

hyperbolic, given by τt ∝ (n − t + 1)ρ−1. Here the parameter ρ indicates

the strength of the more recent observations in comparison with older ones.

In particular, a value of ρ > 1 (ρ < 1) indicates that more recent observa-

tions have greater (less) relative importance than past observations. A value

of ρ = 1 indicates that all observations have the same weight. Figure 5.1
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Figure 5.1: a) Hyperbolic and b) geometric weighting schemes for window
length n = 30 and different values of ρ. The day/observation furthest in the
past (-30) has the lowest weight (importance), while the most recent day/ob-
servation (-1) is given the highest weight (importance) depending on the value
of ρ.

illustrates the hyperbolic and geometric weighting schemes for window size

n = 30 and different values of ρ > 1. It can be seen that hyperbolic weight-

ing assigns weights that decrease gradually with distance in time, ensuring

all observations retain some influence, whereas geometric weights drop off

rapidly, potentially reducing the contribution of distant observations to near

insignificance. In the following section we will employ both weighting methods

and study how the value of ρ influences the model’s predictive power. The

step-by-step procedure is described in Algorithm 5.

5.2.1 TiWML: Evaluation and comparison

5.2.1.1 Prediction of the number of infected companies

In this section we compare how the hyperbolic and geometric weighting schemes

influence the model’s accuracy in predicting the number of infected compa-

nies in the future k crisis days, where the model is fitted to the previous n

crisis days, similarly to the fitting procedures shown in Chapters 3 and 4. We

present results for a prediction horizon of k = 10, k = 20 and k = 30 days in

Figures 5.2, 5.3 and 5.4 display the absolute difference between the predicted

123



5.2. TIWML

Algorithm 5 Model predictions for the future k days: TiWML

1. Set t = 1; set weighting parameter ρ; choose a weighting scheme
2. For i ∈ {t, ..., t + n− 1} calculate the weighting coefficients τi, based on
the chosen weighting scheme and the value of ρ, such that

∑t+n−1
i=t τi = 1.

3. Fit the model to the period from day t to day t + n (window t) and
maximizing the weighted likelihood functions Lt,t+n (see (5.1)) and Lp

t,t+n

(see (5.3)) estimate β̂i (1 ≤ i ≤ 4) and p̂, respectively.
4. Run N = 10,000 SIR simulations on the network from day t + n + 1 to
day t+n+ k (i.e., predict infections in the next k days) using the values of
β̂i (1 ≤ i ≤ 4) and p̂ estimated in Step 3.

(a) Predict the number of infected companies

• Count the number of newly infected (recovered, respectively) com-
panies in each simulation and take the mean number of the newly
infected (recovered, respectively) companies as a prediction for the
number of newly infected (recovered, respectively) companies in
the period from day t+n+ 1 to day t+n+ k (prediction window
t).

• Count the total number of infected companies at the end of each
simulation and take the mean total number of infected companies
as a prediction for the total number of infected companies on the
final day with a prediction window t.

(b) Predict the infected companies’ continents/sectors

• Collect a multiset (set allowing multiple instances of the same
element) containing the continents/economic sectors of newly in-
fected companies in each simulation and take it as a prediction
for which continents/sectors are likely to be infected in predic-
tion window t. For each simulation compare the predicted to the
observed continents/sectors multiset using the Sørensen–Dice sim-
ilarity coefficient (3.14). The mean over all N simulations is then
used as an indicator of prediction quality for prediction window t.

(c) Predict the infected companies

• Collect a list of newly infected companies in each simulation and
record the proportion of the N simulations in which each company
was infected. Then, for every company, consider this proportion
as the probability of infection during prediction window t of the
crisis.

5. Update t = t + 1.
6. If t > L− k−n, where L is the number of crisis days, stop. Else go back
to Step 2.
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and actual number of total infected (row 1), newly infected (row 2), and newly

recovered (row 3) companies for different values of ρ ∈ [1, 1.9], using the hy-

perbolic (left column) and geometric (right column) weighting schemes, for a

prediction horizon of k = 10, k = 20 and k = 30 days, respectively. It can be

seen that introducing both weighting schemes leads to more accurate predic-

tions, with higher values of ρ consistently leading to greater improvement in

predictions, compared to the non-weighted scenario (ρ = 1) for all values of

k. In particular, the highest improvement for all three metrics of interest is

achieved when ρ = 1.9. Specifically, for all values of k, when ρ = 1.9, the hy-

perbolic weighting scheme yields around 20% improvement, compared to the

non-weighted scenario, in predicting the number of newly infected companies

for large values of n. In contrast, the geometric weighting scheme improves

the predictions by approximately 80%. In addition, the hyperbolic weighting

scheme achieves its highest improvement in predicting the number of newly

recovered companies when k = 30 and ρ = 1.9, leading to 30% improvement.

However, the geometric weighting scheme outperforms it notably, achieving

more than 200% improvement at the higher values of ρ and n. Similarly,

for all values of k, with large n and ρ, the geometric weighting consistently

achieves more than 110% improvement in predicting the total number of in-

fected companies. The hyperbolic weighting scheme on the other hand does

not exceed 20% improvement. In addition, in comparison with the hyperbolic

weighting, the geometric weighting scheme results in substantially better pre-

dictions, even for small values of ρ. Moreover, one can notice that for higher

values of ρ, the prediction accuracy of the model when using the geometric

weighting scheme is nearly independent of n. Figures B.1, B.2 and B.3 in

Appendix B present a visual representation of the percentage improvements

mentioned above.
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Figure 5.2: The plots illustrate the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis, using the hyperbolic (left column) and ge-
ometric (right column) weighting schemes on the infections data from the
previous n days and at a prediction horizon of k = 10 days.

5.2.1.2 Geographic- and sector-specific prediction

In this section, we study how the two weighting schemes perform in predicting

the infected companies’ continents and sectors. Figures 5.5, 5.6 and 5.7 illus-

trate the results for k = 10, k = 20 and k = 30, respectively. It can be seen

that while in Section 5.2.1.1 introducing both weighting schemes was beneficial

for predicting the number of infected companies, in the prediction of infected

companies’ continents and sectors for most integer values of n ∈ [1, 10] it
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Figure 5.3: The plots illustrate the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis, using the hyperbolic (left column) and ge-
ometric (right column) weighting schemes on the infections data from the
previous n days and at a prediction horizon of k = 20 days.

consistently leads to a lower mean Sørensen–Dice coefficient, compared to the

original model from Chapter 3. In more detail, the greatest improvement over

the non-weighted model from Chapter 3 in predicting the infected companies’

continents and sectors is around 4% for the hyperbolic and roughly 10% for the

geometric weighting scheme. For a visual representation of these percentage

improvements, refer to Figures B.4 , B.5, and B.6 in Appendix B. In addition,

highest improvements are achieved when n = 30 for both weighting schemes,
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Figure 5.4: The plots illustrate the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis, using the hyperbolic (left column) and ge-
ometric (right column) weighting schemes on the infections data from the
previous n days and at a prediction horizon of k = 30 days.

with more accurate results achieved using the geometric weighting scheme.

Overall, while in predicting the number of infected companies we could see

a clear pattern, with higher values of ρ leading to greater improvement, here

there is not such a consistent trend.
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Figure 5.5: The plots show a comparison between the mean Sørensen–Dice co-
efficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 10 days for the the 2020 financial crisis, using the infections
data from the previous n days when using hyperbolic (left column) and geo-
metric (right column) weighting schemes.

5.2.1.3 Predicting the specific infected companies

In this section we compute the Accuracy and the F1-scores, as introduced

in Section 3.4.2.4, for the hyperbolic and geometric weighting schemes across

different values of ρ. Figures 5.8, 5.9 and 5.10 display the mean Accuracy (top

row) and the mean F1-score (bottom row), averaged over all sliding windows,

for a prediction horizon of k = 10, k = 20 and k = 30 days, respectively. It

can be seen that for all values of k and large values of n, when considering

the mean Accuracy of the predictions, applying either weighting scheme leads

to higher Accuracy, in comparison with the original model from Chapter 3

(equivalent to ρ = 1). In particular, higher values of ρ yield higher Accuracy.

Specifically, the highest relative improvement in Accuracy achieved by the

hyperbolic weighting scheme, in comparison with the non-weighted scenario,
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Figure 5.6: The plots show a comparison between the mean Sørensen–Dice co-
efficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 20 days for the the 2020 financial crisis, using the infections
data from the previous n days when using hyperbolic (left column) and geo-
metric (right column) weighting schemes.

is the modest 0.4% when k = 20 and n = 30. In contrast, the geometric

weighting scheme results in a higher relative improvement of 1.2% under the

same conditions.

However, when comparing the mean F1-scores, there is no consistent trend.

Specifically, when k = 10, higher values of ρ lead to worse predictions for

most values of n. When k = 20 and k = 30 introducing either weighting

scheme generally leads to poorer predictions for n ≤ 7, obviously so with the

geometric weighting scheme. On the other hand, for n ≥ 8 using a weighting

with higher ρ results in better predictions, with higher ρ typically producing

higher F1-scores. In particular, for k = 30 and n ≥ 8, the relative improve-

ment in the F1-score increases progressively, starting at 2% for n = 8 and

rising to 6% for n = 30. A similar trend can be observed for k = 20 with
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Figure 5.7: The plots show a comparison between the mean Sørensen–Dice co-
efficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 30 days for the the 2020 financial crisis, using the infections
data from the previous n days when using hyperbolic (left column) and geo-
metric (right column) weighting schemes.

improvement starting from 1% for n = 8 and reaching more than 4% when

n = 30. These observations suggest that the benefit of applying weighting

schemes is more apparent when there is a sufficient amount of historical data

(larger n). Overall, the results suggest that the choice of ρ and n should be

carefully chosen based on the specific prediction horizon k and the metric of

interest. For completion, Figures B.7, B.8 and B.9 in Appendix B present the

percentage improvement in Accuracy and F1-scores when using the TiWML

model with hyperbolic and geometric weighting schemes for different values of

ρ > 1, compared to the results for ρ = 1 (the original model from Chapter 3).
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Figure 5.8: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 10 days for the
the 2020 financial crisis, using the infections data from the previous n days
when using hyperbolic (left column) and geometric (right column) weighting
schemes.

5.3 Combining CPD and TiWML

In this section we combine the CPD method from Chapter 4, with the TiWML

approach introduced in Section 5.2 as follows. Whenever a change point is

detected during the past n days of a crisis, we discard the data before the

change point has happened. However, while in Chapter 4 all the observations

after a detected change point were weighted equally, in this section we instead

apply the hyperbolic and geometric weighting schemes to the data after the

change point and fit the model accordingly. If no change point is detected,

we weight all past n observations. The step-by-step procedure is described in

Algorithm 6.
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Algorithm 6 Model predictions for the future k days: CPD + TiWML

1. Set t = 1; set threshold value T ; set weighting parameter ρ
2. Set tc = t (tc is used to record and update the change-points times)
3. For i ∈ {t, ..., t + n} calculate the ‘anomaly’ score ai, using the
ChangeFinder algorithm. If ai is a local maxima and ai > T (if the
‘anomaly’ score is over the threshold T ), then i is classified as a change-
point. Set tc = i.
4. Discard all data points before the change-point tc and estimate the
weighting coefficients τtc , ..., τt+n−1, based on the chosen weighting scheme
and the value of ρ, such that

∑t+n−1
i=tc

τi = 1.
5. Fit the model to the period from day tc to day t + n (window t) and
maximizing the weighted likelihood functions Ltc,t+n (see (5.1)) and Lp

tc,t+n

(see (5.3)) estimate β̂i (1 ≤ i ≤ 4) and p̂, respectively.
6. Run N = 10,000 SIR simulations on the network from day t + n + 1 to
day t+n+ k (i.e., predict infections in the next k days) using the values of
β̂i (1 ≤ i ≤ 4) and p̂ estimated in Step 5.

(a) Predict the number of infected companies

• Count the number of newly infected (recovered, respectively) com-
panies in each simulation and take the mean number of the newly
infected (recovered, respectively) companies as a prediction for the
number of newly infected (recovered, respectively) companies in
the period from day t+n+ 1 to day t+n+ k (prediction window
t).

• Count the total number of infected companies at the end of each
simulation and take the mean total number of infected companies
as a prediction for the total number of infected companies on the
final day with a prediction window t.

(b) Predict the infected companies’ continents/sectors

• Collect a multiset (set allowing multiple instances of the same
element) containing the continents/economic sectors of newly in-
fected companies in each simulation and take it as a prediction
for which continents/sectors are likely to be infected in predic-
tion window t. For each simulation compare the predicted to the
observed continents/sectors multiset using the Sørensen–Dice sim-
ilarity coefficient (3.14). The mean over all N simulations is then
used as an indicator of prediction quality for prediction window t.

(c) Predict the infected companies

• Collect a list of newly infected companies in each simulation and
record the proportion of the N simulations in which each company
was infected. Then, for every company, consider this proportion
as the probability of infection during prediction window t of the
crisis.

7. Update t = t + 1.
8. If t > L− k−n, where L is the number of crisis days, stop. Else go back
to Step 2.
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Figure 5.9: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 20 days for the
the 2020 financial crisis, using the infections data from the previous n days
when using hyperbolic (left column) and geometric (right column) weighting
schemes.

5.3.1 Predicting the number of infected companies

We present the results in Figures 5.11, 5.12 and 5.13 for predicting the to-

tal number of infected companies (top row), the number of newly infected

companies (mid row) and the number of newly recovered companies (bot-

tom row) in the future 10, 20 and 30 days, respectively. We apply the

CPD+TiWML method with the hyperbolic (left column) and geometric (right

column) weighting schemes. It can be seen that for all values of k and under

both weighting schemes, increasing the parameter ρ results in more accu-

rate predictions across large window sizes n ∈ {10, 20, 30}, with most accu-

rate predictions for larger n. Notably, for all combinations of n and k, the

CPD+TiWML model with geometric weighting and parameter ρ = 1.9 yields

the most accurate results in predicting the number of newly recovered com-
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Figure 5.10: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 30 days for the
the 2020 financial crisis, using the infections data from the previous n days
when using hyperbolic (left column) and geometric (right column) weighting
schemes.

panies. Specifically, the greatest improvement, compared to the non-weighted

change point model, introduced in Chapter 4, is observed for k = 30 and

n = 30, yielding more than 100% improvement. In addition, the greatest im-

provement in forecasting the total number of infected companies is achieved

when k = 30 and n = 30, using geometric weighting with ρ = 1.9, leading

to more than 50% improvement of the CPD+TiWML model, in comparison

with the change point model from Chapter 4. In contrast, when predicting

the number of newly infected companies for values of n ∈ [2, 10], larger val-

ues of ρ lead to poorer predictions under both weighting schemes, compared

to the non-weighted CPD model. Figures illustrating the relative percentage

improvement achieved by incorporating the hyperbolic and geometric weight-

ing schemes, compared to using only the change point model (introduced in

Chapter 4) can be found in Appendix B.
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Figure 5.11: The plots show the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis. The predictions are generated using the
CPD+TiWML combination (see Algorithm 6), based on infection data from
the previous n days and with a prediction horizon of k = 10 days. The left
column shows the differences for the hyperbolic weighting scheme, while the
right column shows the differences for the geometric weighting scheme, for
various values of ρ > 1.

5.3.1.1 Sector- and continent-specific predictions

In this section we present a comparison of the model’s accuracy in predicting

the continents and the sectors of the infected companies in the future k = 10,

k = 20 and k = 30 days. The results are shown in Figures 5.14, 5.15 and 5.16,

respectively. It can be seen that while in the preceding section introducing
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Figure 5.12: The plots show the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis. The predictions are generated using the
CPD+TiWML combination (see Algorithm 6), based on infection data from
the previous n days and with a prediction horizon of k = 20 days. The left
column shows the differences for the hyperbolic weighting scheme, while the
right column shows the differences for the geometric weighting scheme, for
various values of ρ > 1.

a weighting scheme in addition to the change point model improved predic-

tions of the number of infected companies, here applying either hyperbolic or

geometric weighting schemes leads to a lower mean Sørensen–Dice coefficient

between the actual and predicted continents and sectors. Moreover, higher

values of ρ consistently lead to poorer predictions across all values of k. In

particular, for most values of n, the least accurate predictions are achieved
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Figure 5.13: The plots show the absolute difference between predicted and
actual total number of infected companies (top row), number of newly infected
companies (middle row) and number of newly recovered companies (bottom
row) for the 2020 financial crisis. The predictions are generated using the
CPD+TiWML combination (see Algorithm 6), based on infection data from
the previous n days and with a prediction horizon of k = 30 days. The left
column shows the differences for the hyperbolic weighting scheme, while the
right column shows the differences for the geometric weighting scheme, for
various values of ρ > 1.

with geometric weighting and ρ = 1.9. Additionally, as n increases, predic-

tion accuracy declines for both continents and sectors. Specifically, using the

CPD+TiWML model with geometric weighting and large n results in more

than 10% decline in mean Sørensen–Dice coefficient for both continents and

sectors across all k. In addition, in Section 5.2.1.2 we observed that introduc-

ing either of the two weighting schemes, but without change point detection,
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5.3. COMBINING CPD AND TIWML

consistently led to more accurate predictions for n ∈ {20, 30}. In contrast,

here, the larger the n, the poorer the predictions (see Appendix B for figures

illustrating the relative percentage improvement in comparison to the change

point model from Chapter 4). One possible explanation for larger n leading

to poorer predictions is that when the model incorporates change point de-

tection, data is already discarded and the weighting schemes are applied to

a smaller number of days. Hence, the weighting scheme cannot successfully

balance recent information with the broader historical data, leading to poorer

predictions and loss of important data. Overall, the CPD+TiWML model

works well for predicting the number of infected companies, but not for pre-

dicting the infected continents and sectors, suggesting that when it comes to

predicting the spread across continents and sectors, historical data likely plays

a more significant role.
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Figure 5.14: The plots show a comparison between the mean Sørensen–Dice
coefficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 10 days for the the 2020 financial crisis, using the infections
data from the previous n days when using the CPD+TiWML model with
hyperbolic (left column) and geometric (right column) weighting schemes.
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Figure 5.15: The plots show a comparison between the mean Sørensen–Dice
coefficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 20 days for the the 2020 financial crisis, using the infections
data from the previous n days when using the CPD+TiWML model with
hyperbolic (left column) and geometric (right column) weighting schemes.

5.3.1.2 Predicting the specific infected companies

In this section we evaluate the CPD+TiWML model’s performance in predict-

ing the specific infected companies. As in previous analyses, we calculate the

mean Accuracy and F1-scores by applying the CPD+TiWML with hyperbolic

and geometric weighting schemes for different values of ρ. Figures 5.17, 5.18

and 5.19 present the mean a) Accuracy and b) F1-score for different values

of n and predicting the infected companies in the future k = 10, k = 20 and

k = 30 days, respectively. The results suggest that, similarly to the TiWML

model discussed earlier, introducing either the hyperbolic or geometric weight-

ing schemes improves the Accuracy for most values of n, in comparison to the

change point model from Chapter 4. Moreover, higher ρ yields higher Accu-

racy, implying that the CPD+TiWML model which emphasizes recent data
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Figure 5.16: The plots show a comparison between the mean Sørensen–Dice
coefficient, averaged over all prediction windows, between predicted and actual
continents (top row) and sectors (bottom row) of newly infected companies
in the future k = 30 days for the the 2020 financial crisis, using the infections
data from the previous n days when using the CPD+TiWML model with
hyperbolic (left column) and geometric (right column) weighting schemes.

more outperforms the change point model, which weights all the observations

after a detected change point equally (ρ = 1). However, we should note that

the highest improvement in Accuracy, compared to the non-weighted case, is

only 0.6%, and is obtained with geometric weighting and ρ = 1.9 when k = 30

and n = 20.

Additionally, when n ≤ 20 incorporating either weighting scheme in addition

to the change point model typically leads to a lower F1-score. On the other

hand, n ∈ {20, 30} combined with a large ρ leads to an improvement. Specif-

ically, when k = 10 the highest improvement of nearly 4% in the F1-score,

compared to the non-weighted change point model from Chapter 4, is observed

using hyperbolic weighting with ρ = 1.9 and n = 30. When k = 20 and k = 30

the highest improvements of 4% and 2%, respectively, are observed applying
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geometric weighting with ρ = 1.9 and n = 30. Figures B.16 , B.17, and B.18

in Appendix B offer a visual representation of these percentage improvements.
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Figure 5.17: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 10 days for the
the 2020 financial crisis, using the infections data from the previous n days
when applying the CPD+TiWML model with hyperbolic (left column) and
geometric (right column) weighting schemes.

5.4 Discussion and conclusion

In this chapter we introduced the TiWML and the CPD+TiWML models,

aimed to enhance the model’s predictive accuracy by applying different weight-

ing schemes to the original model introduced in Chapter 3 and the change

point model from Chapter 4, respectively. In particular, we employed two pop-

ular TiWML schemes, geometric and hyperbolic, in place of the conventional

maximum likelihood method, where all observations are weighted equally. The

models were evaluated based on the 2020 financial crisis simulation results.

We observed the largest improvements when predicting the number of infected
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Figure 5.18: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 20 days for the
the 2020 financial crisis, using the infections data from the previous n days
when applying the CPD+TiWML model with hyperbolic (left column) and
geometric (right column) weighting schemes.

companies. Specifically, in both the TiWML and CPD+TiWML models, the

geometric weighting scheme consistently outperformed the hyperbolic weight-

ing scheme, yielding substantially higher improvement in predictive accuracy,

especially for higher values of the window length n.

While the TiWML and CPD+TiWML models showed clear improvements

in many cases, there are several limitations and drawbacks that should be

mentioned. Firstly, prioritising recent data might be beneficial in some cases,

such as when predicting the number of infected companies, but in other cases

it may overlook long-term trends or patterns that could be relevant, lead-

ing to poorer performance, as it was seen when applying the CPD+TiWML

model for continent- and sector-specific predictions. In addition, the mod-

els’ performance is heavily dependent on the choice of weighting scheme and

the parameter ρ. While this chapter demonstrates the effectiveness of the
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Figure 5.19: Comparison between the mean a) Accuracy and b) F1-score in
predicting the specific infected companies in the future k = 30 days for the
the 2020 financial crisis, using the infections data from the previous n days
when applying the CPD+TiWML model with hyperbolic (left column) and
geometric (right column) weighting schemes.

observation-weighting approach using two popular weighting schemes, intro-

ducing an alternative weighting criterion could potentially lead to more ac-

curate predictions. Hence, a future research direction is investigating other

weighting strategies, such as adaptive or data-driven approaches that dynam-

ically adjust weights based on changing patterns in the data. Additionally,

combining different weighting schemes might further enhance model perfor-

mance.
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Chapter 6

The optimal model

In this chapter we compare all models introduced in the thesis: the original

model from Chapter 3, the change point model from Chapter 4, the time-

based weighted maximum likelihood (TiWML) model from Section 5.2 and

the combination of the change point and the time-based weighted maximum

likelihood (CPD+TiWML) model from Section 5.3. We assess each model for

its performance across various prediction scenarios, such as forecasting the

number of infected companies, the continents and economic sectors that will

be most affected, and the specific companies most likely to be infected during

future crisis days. The most effective model for each type of prediction is then

identified based on the 2020 financial crisis simulation results.

6.1 Predicting the number of infected compa-

nies

In this section, for each combination of n and k, we present the model which

yields most accurate predictions out of all models introduced in this thesis.

145



6.1. PREDICTING THE NUMBER OF INFECTED COMPANIES

Figures 6.1, 6.2 and 6.3 show the most appropriate model choices for predicting

a) the total number of infected companies, b) the number of newly infected

companies and c) the number of newly recovered companies in the future

k = 10, k = 20 and k = 30 days, respectively. The marker shapes represent

the models as follows: circles for the TiWML model with hyperbolic weighting,

crosses for the TiWML model with geometric weighting, triangles for CPD +

TiWML model with hyperbolic weighting, squares for CPD + TiWML model

with geometric weighting, a star for the change point model and a ring for

the original model from Chapter 3. The marker colours represent different

values of the parameter ρ. We remark that for n = 1 the results for all models

are the same. As noted previously, a change point can be detected at least

one day after its occurrence. Consequently, when n = 1, a detected change

point aligns with the first day of the sliding window and hence no data will be

discarded, equivalent to using the original model from Chapter 3. Similarly,

having only one data observation, weighting is not feasible. Hence, for n = 1,

we plot the predictions generated using the original model.

Figures 6.1a, 6.2a and 6.3a show that when predicting the total number of

infected companies for all values of k and large values of n the most appropriate

model choice is the CPD + TiWML model with geometric weighting and

ρ = 1.9. For smaller values of n, however, there is not a consistent trend.

In more detail, when k = 10, the most accurate predictions are achieved for

n ≥ 4, with best result yielded for n = 4 in combination with the CPD

+ TiWML model with geometric weighting and ρ = 1.1. When k = 20,

the optimal choice is n ∈ {10, 20, 30}, combined with the CPD + TiWML

model with geometric weighting and ρ = 1.9. Finally, when k = 30, the most

accurate predictions are obtained when n ≥ 3, with best model choice being

n = 3 with CPD + TiWML model with hyperbolic weighting and ρ = 1.4.

Additionally, Figures 6.1b and 6.3b illustrate the optimal model choices for
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predicting the number of newly infected companies in the future k = 10 and

k = 30 days, respectively. For both values of k, when n ∈ {20, 30}, the

optimal model choice is the CPD + TiWML model with geometric weighting,

while for medium values, n ∈ [6, 10], the optimal choice is the CPD + TiWML

model with hyperbolic weighting. However, when k = 20 (see Figure 6.2b)

for most values of n the optimal model choice is the TiWML model with

geometric weighting scheme and ρ = 1.9. Overall, for all values of k, more

accurate predictions are achieved when n ≥ 4. Specifically, for k = 10, the

most accurate predictions are achieved when n = 7 with the CPD + TiWML

model with hyperbolic weighting and ρ = 1.3. For k = 20, the best result is

yielded when n = 4, in combination with the TiWML model with hyperbolic

weighting and ρ = 1.8. Finally, for k = 30, the most accurate predictions

are achieved when n = 20 with the CPD + TiWML model with geometric

weighting and ρ = 1.6.

Finally, we present the most appropriate model choices for predicting the

number of newly recovered companies in the future k = 10 (Figure 6.1c),

k = 20 (Figure 6.2c) and k = 30 (Figure 6.3c) days. Notably, for all values of

k and n ≥ 3, the best results are achieved with the CPD + TiWML model

with geometric weighting and ρ = 1.9. In addition, for all k, larger values of

n lead to less accurate predictions, with best results achieved when n = 1.

6.2 Sector- and continent-specific predictions

In this section we present the optimal model choices when predicting the

infected companies’ continents and sectors. Figure 6.4 displays the models

which lead to highest mean Sørensen–Dice coefficient between predicted and

actual continents (left column) and sectors (right column) of the newly in-
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Figure 6.1: The figure presents the optimal model choices for predicting a)
total number of infected, b) newly infected and c) newly recovered companies
in the future k = 10 days for each value of n. The marker shapes represent
the models as follows: circles for hyperbolic weighting, crosses for geometric
weighting, triangles for CPD + hyperbolic weighting and squares for CPD +
geometric weighting. The marker colours correspond to different ρ values.

148



6.2. SECTOR- AND CONTINENT-SPECIFIC PREDICTIONS

1 2 3 4 5 6 7 8 9 10 20 30
n

3.4

3.6

3.8

4.0

4.2

M
ea

n 
di

ffe
re

nc
e 

be
tw

ee
n 

ac
tu

al
 a

nd
 p

re
di

ct
ed

 
to

ta
l n

um
be

r o
f i

nf
ec

te
d 

co
m

pa
ni

es

Geometric weighting  : = 1.9
Geometric weighting  : = 1.4
CPD + Geometric  : = 1.9
CPD + Hyperbolic  : = 1.7
CPD + Hyperbolic  : = 1.9

(a)

1 2 3 4 5 6 7 8 9 10 20 30
n

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

M
ea

n 
di

ffe
re

nc
e 

be
tw

ee
n 

ac
tu

al
 a

nd
 p

re
di

ct
ed

 
nu

m
be

r o
f n

ew
ly

 in
fe

ct
ed

 c
om

pa
ni

es

Original model
Geometric weighting  : = 1.2
Hyperbolic weighting  : = 1.8
Geometric weighting  : = 1.9

(b)

1 2 3 4 5 6 7 8 9 10 20 30
n

1.30

1.35

1.40

1.45

1.50

1.55

M
ea

n 
di

ffe
re

nc
e 

be
tw

ee
n 

ac
tu

al
 a

nd
 p

re
di

ct
ed

 
nu

m
be

r o
f n

ew
ly

 re
co

ve
re

d 
co

m
pa

ni
es

Original model
CPD + Hyperbolic  : = 1.9
CPD + Geometric  : = 1.9

(c)

Figure 6.2: The figure presents the optimal model choices for predicting a)
total number of infected, b) newly infected and c) newly recovered companies
in the future k = 20 days for each value of n. The marker shapes represent
the models as follows: circles for hyperbolic weighting, crosses for geometric
weighting, triangles for CPD + hyperbolic weighting and squares for CPD +
geometric weighting. The marker colours correspond to different ρ values.
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Figure 6.3: The figure presents the optimal model choices for predicting a)
total number of infected, b) newly infected and c) newly recovered companies
in the future k = 30 days for each value of n. The marker shapes represent
the models as follows: circles for hyperbolic weighting, crosses for geometric
weighting, triangles for CPD + hyperbolic weighting, squares for CPD +
geometric weighting and a star for the change point model. The marker
colours correspond to different ρ values.
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fected companies in the future k = 10 (top row), k = 20 (middle row) and

k = 30 (bottom row) days for the the 2020 financial crisis, using the infections

data from the previous n days. It can be seen that, in comparison with pre-

dicting the number of infected companies, where the most appropriate models

include weighting with higher values of ρ, indicating greater importance of

more recent data, here in almost all cases the values of ρ range from 1.1 to

1.3. In addition, when predicting the number of infected companies in many

cases the optimal model includes the geometric weighting scheme, usually in

combination with the change point detection. In contrast, here the optimal

combination in most cases consists of the hyperbolic weighting and the change

point detection. The findings suggest that incorporating a wider range of his-

torical data after a change point, rather than focusing solely on recent trends,

is more effective for geographic- and sector-specific predictions. In addition,

for k = 10 the best result for both continents and sectors is obtained with

n = 30, with the optimal model choices being the change point model and

the TiWML model with hyperbolic weighting and ρ = 1.1, respectively. In

contrast, when k = 20 or k = 30, values of n ∈ {20, 30} lead to a decrease in

the mean Sørensen–Dice coefficient. For k = 20 the most accurate predictions

are obtained with n = 10, with optimal models being the CPD+TiWML with

hyperbolic weighting and ρ = 1.4 and ρ = 1.3, respectively, for predicting the

continents and sectors. In addition, for k = 30 the highest mean Sørensen–

Dice coefficients are obtained when n = 9, combined with CPD+TiWML

model with hyperbolic weighting and ρ = 1.3 and ρ = 1.2, when predicting

continents and sectors, respectively. For all values of k, the least accurate pre-

dictions are obtained for n = 1, highlighting that a single day’s worth of data

is insufficient for reliable predictions. Overall, the consistent success of the

CPD+TiWML model with hyperbolic weighting and a small ρ indicates that

while incorporating change point detection and discarding the data prior to

it is beneficial for sector- and continent-specific predictions, much of the data
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after the change point remains valuable. Rather than heavily prioritising the

most recent data, a balanced weighting of post-change point data contributes

to more accurate predictions in these contexts.
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Figure 6.4: The plots show the model resulting in the highest mean Sørensen–
Dice coefficient, averaged over all prediction windows, between predicted and
actual continents (left column) and sectors (right column) of the newly in-
fected companies in the future k = 10 (top row), k = 20 (middle row) and
k = 30 (bottom row) days for the the 2020 financial crisis, using the infections
data from the previous n days. The marker shapes represent the models as
follows: circles for hyperbolic weighting, crosses for geometric weighting, tri-
angles for CPD + hyperbolic weighting, squares for CPD + geometric weight-
ing, a star for the change point model and a ring for the original model. The
marker colours correspond to different ρ values.
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6.3 Predicting the specific infected companies

We now present the models which perform best in predicting the specific

infected companies in the future k = 10, k = 20 and k = 30 crisis days. Figure

6.5 shows the optimal model choice based on the Accuracy (left column) and

F1-score (right column) for the prediction horizons of k = 10 (top row), k = 20

(middle row) and k = 30 (bottom row) crisis days. For each studied value of

n we show the model yielding the highest Accuracy and F1-score. It can be

seen that across all values of k and most values of n the highest Accuracy is

achieved with the CPD+TiWML model with geometric weighting and ρ = 1.9.

In contrast, when comparing the models based on F1-score there is no obvious

pattern. However, notably for n ∈ {20, 30}, each optimal model, based on

both Accuracy and F1-score, uses parameter ρ = 1.9, while for smaller n,

lower values of ρ are preferred. Overall, across all values of k the highest

Accuracy is consistently achieved by the original model from Chapter 3 with

n = 1, with decreasing Accuracy as n increases. On the other hand, the same

model yields lowest F1-scores, with higher values of n generally improving

the F1-score. The results show that incorporating more historical data might

give important information to the model, hence improving the F1-score, while

using only recent data including discarding the data prior to a detected change

point, a large ρ and a small n enhances Accuracy.

6.4 Discussion and conclusion

This chapter presented the most effective models, based on the 2020 financial

crisis simulation results, for predicting the number of infected companies, as

well as for continents-, sectors- and company-specific predictions, among all

models introduced in this thesis. Overall, the results indicate that in many
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Figure 6.5: The plots show the model resulting in highest mean Accuracy
(left column) and F1-score (right column) when predicting the specific infected
companies in the future k = 10 (top row), k = 20 (middle row) and k = 30
(bottom row) days for the the 2020 financial crisis, using the infections data
from the previous n days. The marker shapes represent the models as follows:
circles for hyperbolic weighting, crosses for geometric weighting, triangles for
CPD + hyperbolic weighting, squares for CPD + geometric weighting, a star
for the change point model and a ring for the original model. The marker
colours correspond to different ρ values.

cases the optimal model choice is dependent on k (the prediction horizon) and

n (the amount of historical data used), as well as on the metric of interest.

One of the key takeaways is that there is no single model that performs best

in all scenarios. Hence, the model choice should be tailored based on the pre-

dictions of interest. This implies that different prediction tasks, whether pre-

154



6.4. DISCUSSION AND CONCLUSION

dicting the number of infected companies or sector- , continent- or company-

specific predictions, may require distinct approaches to achieve more accurate

forecasts. In addition, it is important to select models that strike a balance

between various performance metrics to achieve optimal results. In this con-

text, a direction for future research will be to develop adaptive models which

can adjust based on the specific nature of the task or achieving a trade-off

between different prediction objectives.
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Chapter 7

The impact of network and

node characteristics on risk

propagation

7.1 Introduction

Studying the effect of network structure and node characteristics on risk prop-

agation has been a hot research topic in the past few years [65]. Centrality

measures and the role of highly connected nodes in a network has become a

key research area, as they provide insights into how risk spreads [68]. In this

chapter we explore these topics, studying different node characteristics and

their influence on crisis propagation. Specifically, in Section 7.2 we introduce

the notion of contagion distance and contagion centrality, closeness centrality

and betweenness centrality and study their correlation with the probability of

a company becoming infected. The results show that there is indeed a positive

correlation between centrality and the probability of infection, indicating that

more central nodes are more likely to be infected. Then, in Section 7.3, we
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analyse the relationship between various company’s characteristics, including

credit scores from the Bureau van Dijk dataset, and the length of time a com-

pany remained infected during the 2020 financial crisis. The findings suggest

that a credit score of a company can be indicative of how long it would be

infected during the crisis, but a previous infection is not. Finally, Section 7.4

presents several simulation studies exploring various counterfactual scenarios,

such as different lockdown strategies during the 2020 financial crisis, start-

ing a crisis with the most central nodes and changing the number of initially

infected companies. The simulations highlight the crucial role that initial

conditions and intervention strategies play in financial crises propagation.

7.2 The impact of node centrality on infection

probability

The interconnectedness of companies within complex financial networks can

amplify the impact of a crisis, as highly connected nodes can spread the risk

to a broader range of companies [193]. In this context, node centrality has

emerged as one of the key concepts in the analysis of complex financial net-

works, providing insights into which entities are of key importance for the

propagation of risk [27]. In this section we explore the correlation between

a company’s resilience to financial shocks and different node centrality mea-

sures. Specifically, we focus on the notions of contagion distance and conta-

gion centrality (7.2.1), closeness centrality (7.2.2) and betweenness centrality

(7.2.3), and analyse their correlation with the probability of a company be-

coming infected. The determination of the most central agents is particularly

challenging in systems with multiple types of interactions, resulting in inter-

connected multilayer networks, such as our network structure, introduced in
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Chapter 3. In this section, we first introduce a mathematical framework for

calculating centrality within multiplex networks. We then rank the nodes

based on their centrality, thereby identifying the most influential companies.

By understanding these centrality measures, we gain insights into how the

position and influence of a company within the network affect its ability to

withstand and recover from disruptions. The findings suggest that nodes with

higher contagion and closeness centrality are more likely to be infected, while

betweenness centrality shows a weaker correlation with infection probability.

7.2.1 Contagion distance and contagion centrality

In this section we present two measures introduced for single-layered networks

in [1], contagion distance and contagion centrality. In particular, in Section

7.2.1.1 we introduce the notion of contagion distance and we extend its appli-

cation to multiplex networks. We then study the contagion distance between

pairs of companies grouped by continent and sector, with results revealing

that companies within the same continent and sector have lower contagion

distance between each other, implying a higher probability of transmitting in-

fection to one another. Then, in Section 7.2.1 we define contagion centrality,

indicating how close a node is to the rest of the network in terms of contagion

distances, and study its correlation with infection probability. The results

show a moderate positive correlation for both the 2008 and the 2020 financial

crises, indicating that nodes with higher contagion centrality are in general

more likely to become infected during the crisis.
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7.2.1.1 Contagion distance

The contagion distance dc(i, j) between two nodes i and j in a network is the

distance on the path γi,j that finds a tradeoff between these two factors: min-

imizing the length H(γi,j) of the path γi,j and maximizing the log probability

of shock transmission along the path γi,j, that is:

min
γi,j

H(γi,j) −
∑

(ic−1,ic)∈Eγi,j

logwic−1,ic

 . (7.1)

Here wic−1,ic is the weight on the edge (ic−1, ic) (i.e., the probability of trans-

mission on the edge (ic−1, ic)), H(γi,j) is the number of edges on the path γi,j

and Eγi,j is the set of edges on the path γi,j. In more detail, the path γi,j is an

ordered sequence of H(γi,j) + 1 distinct nodes Vγi,j = {i = i0, . . . , iH(γi,j) = j},

connected by H(γi,j) edges between them Eγi,j = {(i = i0, i1), . . . , (iH(γi,j)−1, iH(γi,j) =

j)}, where each edge links a pair of consecutive nodes in the sequence.

The reasoning behind the definition of contagion distance is that if node ic−1

transmits to node ic through an edge (ic−1, ic) with probability wic−1,ic , then

the log probability that an infection transmits through the whole path γi,j is

the log of the product of the probabilities on all edges on the path γi,j, that

is:

log

 ∏
(ic−1,ic)∈Eγi,j

wic−1,ic

 =
∑

(ic−1,ic)∈Eγi,j

logwic−1,ic . (7.2)

The notion of contagion distance can be easily generalised for multiplex net-

works with l layers by representing them as single-layered as follows. For

each node i in layer α of the multiplex network, create a new node i[α] in

the single-layered network. This transformation is done for every node and

layer combination. Hence, the set of of nodes in the single-layered network is

V ′ = {i[α] | i ∈ V, α ∈ {1, . . . , l}}, where V is the set of nodes in the original
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Figure 7.1: Representation of a multiplex network as a single layered network.

multiplex network. Then, for each edge (i, j) in layer α, create an edge be-

tween i[α] and j[α] in the single-layered network. Additionally, for inter-layer

connections, if there is an edge between i in layer α and j in layer β, create an

edge between i[α] and j[β] in the single-layered network. An example is shown

in Figure 7.1.

The contagion distance dc(i
[α], j[β]) between each pair of nodes i[α] and j[β] for

1 ≤ α, β ≤ l is calculated using equation (7.1). The contagion distance dc(i, j)

between nodes i and j in the multiplex network can then be found by taking

the minimum of the contagion distances between all pairs of nodes i[α] and j[β]

in the single-layered network, that is, dc(i, j) = min{dc(i[α], j[β])|1 ≤ α, β ≤ l}.

Contagion distances are calculated based on the underlying multiplex network

structure, introduced in Chapter 3. We first represent the multiplex network

as a single-layered one using the procedure described above. We then apply

Dijkstra’s shortest path algorithm [74] to find a shortest path from each node

i[α] to every other node j[β], where 1 ≤ α, β ≤ 4, by minimising the contagion

distance as per equation (7.1). The edge weights are determined using the

daily transmission probabilities, as introduced in Chapter 3. That is, we fit

the model to the period from day t to day t+ 1 (window length n = 1) to get

160



7.2. THE IMPACT OF NODE CENTRALITY ON INFECTION
PROBABILITY

estimates of β̂i(t) (1 ≤ i ≤ 4) for each day 1 ≤ t ≤ L−1 where L is the length

of the crisis in days. Therefore, for each layer 1 ≤ α ≤ 4, we get daily weights,

as defined in (3.4). In other words, we end up with a dynamic network with

edge weights changing over time.

We calculate the contagion distance between each pair of companies for each

day of the 2008 and 2020 financial crises. Figures 7.2a and 7.2b show heatmaps

of the mean contagion distance between each pair of companies, averaged over

all sliding windows, and grouped by sector, in the 2008 and 2020 financial

crises, respectively. In the 2020 financial crisis the shortest contagion distances

(highest probability of contagion) occur between companies in the same sector,

in the 2008 financial crisis there is no clear pattern to be seen. This indicates

that during the 2020 financial crisis, economic sector played a more significant

role in contagion spread than during the 2008 financial crisis. Furthermore,

in the 2008 crisis, the greatest contagion distances are between companies in

the Chemicals sector, suggesting that these companies were the least likely to

spread the infection to each other.

Similar heatmaps, but for the companies grouped by continent, are presented

in Figures 7.3b and 7.3b. It can be seen that in both financial crises the

shortest contagion distances are between companies in the same continent,

while the highest average contagion distances are between pairs of companies,

for which one of the companies is in Asia. This observation suggests that

companies on the same continent are more likely to transmit infection between

each other, whereas companies in Asia were least likely to spread infection to

or be infected by companies in other continents.
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Figure 7.2: Heatmaps showing the mean contagion distance, averaged over
all crisis days, in the (a) 2008 and (b) 2020 financial networks, grouped by
sectors. Each cell in the heatmap represents the average contagion distance
over all crisis days and all pairs of distinct nodes where one node is from the
sector indicated by the row and the other is from the sector indicated by the
column.
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Figure 7.3: Heatmaps showing the mean contagion distance, averaged over
all crisis days, in the (a) 2008 and (b) 2020 financial networks, grouped by
continents. Each cell in the heatmap represents the average contagion distance
over all crisis days and all pairs of distinct nodes where one node is from the
continent indicated by the row and the other is from the continent indicated
by the column.

7.2.1.2 Contagion centrality

The contagion centrality of node i, as defined in [1] is:

CCi =
1√

µ2
i + σ2

i

, (7.3)

where

µi =

∑
j ̸=i dc(i, j)

N − 1
and σi =

√∑
j ̸=i(dc(i, j) − µi)2

N − 2
. (7.4)

Here N is the number of nodes in the network, µi and σi are the sample

mean and sample standard deviation of contagion distances dc(i, j) of node

i to all other nodes j. The contagion centrality measure defined in equation

(7.3) indicates the closeness of that node to the rest of the network in terms

of contagion distances. A more central node has higher contagion centrality

value and is highly effective at spreading the shock while also being more

vulnerable to shocks itself.

For each company we estimate the probability of it becoming infected in each
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Figure 7.4: Histograms showing the Pearson correlation between probability
of a company becoming infected and its contagion centrality in the a) 2008 and
b) 2020 financial crises. The dashed vertical line marks the mean correlation
across all companies.

crisis day, using the procedure described in Section 3.4.2.2.1 and we also calcu-

late its contagion centrality. We then, for each company, compute the Pearson

correlation [176] between the estimated probability of infection and its con-

tagion centrality. The results for both crises are shown in Figure 7.4. The

dashed vertical line illustrates the mean correlation across all companies. It

can be seen that in both crises there is a moderate positive correlation between

the probability of a company being infected and its contagion centrality, with

most values lying in the interval between 0.4 and 0.6.

7.2.2 Closeness centrality

The closeness centrality of node i, as defined in Salter-Townshend et al. [194],

is given by

C(i) =
N − 1∑N
j=1 d(i, j)

, (7.5)

where N is the number of nodes and d(i, j) denotes the geodesic distance (the

length of the shortest path) between nodes i and j. Specifically, the shortest

path between nodes i and j is the one with the minimum sum of edge weights

among all paths starting from i and ending at j. Since, d(i, j) is finite if and
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only if nodes i and j are connected (for two vertices that are not connected in

a graph, the geodesic distance is defined as infinite), the closeness centrality

measure is meaningful only for connected networks.

We transform the weights in our network using the following transformation

w
[α]
i,j = 1 − logw

[α]
i,j , where w

[α]
i,j denotes the weight of edge (i, j) in layer α,

(i[α], j[α]) (see Section 3.3.2 for more details). This transformation ensures

that the weight w
[α]
i,j reflects the inverse relationship between infection proba-

bility and distance, where a higher probability of infection between two nodes

corresponds to a shorter distance between them. With this transformation,

the contagion distance measure dc(i, j) (see equation (7.1)), between nodes

i and j, is equivalent to the geodesic distance d(i, j) between nodes i and j.

Therefore, the closeness centrality measure C(i) can be written as C(i) = 1/µi,

where µi was introduced in (7.4). Hence, the closeness centrality of node i can

be considered as the inverse of the average contagion distance from node i to

all other nodes. The higher the average contagion distance, the less central

the node is within the network.

Figure 7.5 shows a histogram illustrating the Pearson correlation between

company’s closeness centrality and its probability of becoming infected. The

results show that in both crises, there is a strong positive correlation, with

average correlation around 0.57 in the 2008 financial crisis and 0.69 in the

2020 financial crisis. These findings suggest that closeness centrality plays a

role in susceptibility to infection. In particular, more central nodes seem to

be more likely to get infected.
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Figure 7.5: Histograms showing the Pearson correlation between probability
of a company becoming infected and its closeness centrality in the a) 2008 and
b) 2020 financial crises. The dashed vertical line marks the mean correlation
across all companies.

7.2.3 Betweenness centrality

The betweenness centrality of node i shows how important the node is for

connecting other nodes in the network, and is given by:

CB(i) =
∑
j ̸=k

σjk(i)

σjk

1(
N
2

) (7.6)

where σjk is the number of shortest paths between j and k and σjk(i) is the

number of shortest paths between j and k that contain i [194]. We study if the

betweenness centrality of a node is correlated with its probability of becoming

infected. Figure 7.6 illustrates a histogram of the Pearson correlation between

company’s betweenness centrality and its probability of becoming infected. It

can be seen that, compared to Figures 7.4 and 7.5, the correlation between

betweenness centrality and infection probability is more dispersed, with a

mean value near 0.3 in both crises. Moreover, unlike the correlations between

infection probability and the contagion and closeness centrality measures, in

Figure 7.6 there is also some negative correlation, indicating that nodes with

high betweenness centrality do not always correspond to higher probability of

infection.

166



7.3. COMPANY’S CHARACTERISTICS AND RECOVERY TIME
DURING FINANCIAL CRISES

0.0 0.2 0.4 0.6
Correlation

0

10

20

30

40

Fr
eq

ue
nc

y

(a)

0.0 0.2 0.4 0.6 0.8
Correlation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

(b)

Figure 7.6: Histograms showing the Pearson correlation between probability of
a company becoming infected and its betweenness centrality in the a) 2008 and
b) 2020 financial crises. The dashed vertical line marks the mean correlation
across all companies.

7.3 Company’s characteristics and recovery time

during financial crises

In this section we examine potential indicators that might be related to the

duration of a company’s infection during a crisis. We first study whether

the duration a company remained infected during the 2008 financial crisis is

related to how long it stayed infected during the 2020 financial crisis. For each

company that was infected in both crises we compare the time (in days) from

the first day of infection to recovery. Figure 7.7 shows the number of days from

infection to recovery in the 2020 financial crisis (x-axis) and 2008 financial

crisis (y-axis) for each company that was infected in both crises. It can be

seen that there is no obvious correlation between the recovery period in 2008

and 2020 financial crisis, as indicated by a Pearson correlation coefficient of

−0.1408. The weak negative correlation shows that the duration of recovery in

one crisis does not reliably predict the duration of recovery in the other crisis.

This suggests that the factors influencing a company’s ability to rebound from

a financial crisis in 2008 may not be the same as those affecting its recovery

in the 2020 financial crisis.
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Figure 7.7: The number of days from infection to recovery in the 2020 financial
crisis (x-axis) and 2008 financial crisis (y-axis) for each company that was
infected in both 2008 and 2020 financial crisis. The companies are coloured
by a) continent and b) sector.
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We now study the relationship between different companies’ characteristics

given in the Bureau van Dijk dataset and see if any of them can be used as

a predictor of a company’s healthiness during a specific crisis. As the Bu-

reau van Dijk dataset goes as back only as far as 2019, the following analysis

considers only the 2020 financial crisis. Specifically, we study if each specific

company’s performance before the start of the crisis is indicative of how long it

is likely to be infected during the crisis. We consider two different credit score

measures: the MORE (multi objective rating evaluation) credit score and the

VPI (Vadis predictive indicator) propensity to become bankrupt score. The

MORE credit score is an assessment of the credit-worthiness of a company.

It grades companies based on how well they can meet their financial com-

mitments. The VPI score measures the likelihood of a company to declare

bankruptcy in the next 18 months. The indicator is calculated for nearly 15

million companies worldwide and regularly extended. Both credit scores are

qualitative. The MORE credit score ranges from AAA (‘healthy’ companies)

to D (‘risky’ companies), whereas the VPI bankruptcy score ranges from 1

(least likely to declare bankruptcy) to 5 (highest risk of bankruptcy). Figure

7.8 shows boxplots of the distribution of the recovery period per company as-

sociated with the different scores. The green line indicates the mean recovery

time per group, while the orange lines mark the median of each group. It can

be seen in both plots that companies which have better MORE and VPI scores

are on average more likely to recover quickly than companies with worse such

scores. Therefore, a company’s performance before the 2020 financial crisis is

indicative of its financial stability and the speed of its recovery.
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Figure 7.8: Boxplots showing the number of days from infection to recovery
for companies with different (a) MORE credit score and (b) VPI- Propensity
to become bankrupt score. The green line illustrates the mean, while the
orange line illustrates the median.

170



7.4. COUNTERFACTUAL SCENARIOS: FACTORS INFLUENCING
CRISIS SPREAD

7.4 Counterfactual scenarios: Factors influ-

encing crisis spread

In this section we study different factors that can potentially influence crisis

spread. In particular, in Section 7.4.1 we study how node centrality can in-

fluence crisis propagation. We then, in Section 7.4.2, explore how the number

of initially infected companies impacts the spread of a crisis. Finally, Section

7.4.3 presents a simulation study exploring how the timing of lockdowns dur-

ing the 2020 financial crisis could affect its spread. The results indicate that

both company’s centrality and the number of initially infected companies have

a notable impact on the epidemic spread. In addition, implementing timely

lockdowns is crucial for reducing infection spread and enabling faster recovery.

7.4.1 Impact of node centrality on crisis spread

In this section we present a simulation study exploring how starting a financial

crisis from the most (least) influential nodes influences its spread. Specifically,

the crisis begins with the same number of initially infected companies as orig-

inally (five in the 2008 financial crisis and six in the 2020 financial crisis), but

these are chosen to be the most (least) influential ones based on the three

centrality measures introduced in Section 7.2. For this simulation study we

use the estimated daily probabilities of infection and recovery as per Chapter

3. The step-by-step procedure is described in Algorithm 7.

Based on 10, 000 SIR simulations, Figure 7.9 shows the distribution of the

total number of companies that are infected at any day during the simulated

crisis for the (a) 2008 crisis and (b) 2020 crisis, respectively. The orange

histograms correspond to the scenario in which the simulations begin with
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the least central companies initially infected, while for the blue histograms

the crisis is initiated from the most central companies. The blue and orange

vertical lines indicate the mean total number of infected companies, averaged

across all simulations. The green solid lines show the total number of infected

companies in each financial crisis that is actually observed in the data set. The

figure demonstrates, as expected, that starting from the least (most) central

companies results in a lower (higher) total number of infected companies in

both crises. In particular, in the 2008 financial crisis, initiating the crisis

with the least central nodes results in nearly 25 fewer infected companies

on average compared to starting with the most central nodes. In the 2020

financial crisis this difference increases to 50. This finding suggests that the

centrality of the initially infected companies plays a crucial role in the spread

of financial crises. Note that the sets of the five/six (the number of initially

infected companies in the 2008/2020 financial crisis) companies with highest

or lowest contagion, closeness and betweenness centrality are identical. Hence,

the results are similar regardless of the centrality measure used, so we display

only one set of results.

Algorithm 7 SIR simulations

1. Set t = 1, N = 0 (Start from the first crisis day and set N = 0 to be the
number of simulations).
2. Fit the model to the period from day t to day t+1 (window length n = 1)
and estimate β̂i(t) (1 ≤ i ≤ 4) and p̂(t) for day t.
3.. If t < L, update t = t + 1 and go back to Step 2. Else, go to Step 4.
4. Choose the initially infected companies.
5. Run an SIR simulation on the network from day 1 to day L (the whole
crisis period) using the values of β̂i(t) (1 ≤ i ≤ 4) and p̂(t) for each day
1 ≤ t ≤ L, estimated in Step 2.
6. Update N = N + 1. If N < 10, 000, go back to Step 4. Else, stop.
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Figure 7.9: Histograms showing the distribution of the total number of in-
fected companies out of 10, 000 SIR simulations (as per Algorithm 7) in the
(a) 2008 and (b) 2020 financial crises, where the simulations have started with
the (a) five and (b) six most central initially infected companies (in blue) and
the least central ones (in orange). The dashed vertical lines, in blue and
orange, respectively, illustrate the mean averaged over all simulations. The
green solid lines illustrate the actual total number of infected companies in
each of the crises.

173



7.4. COUNTERFACTUAL SCENARIOS: FACTORS INFLUENCING
CRISIS SPREAD

7.4.2 Impact of the number of initially infected compa-

nies on crisis spread

In this section we study how the number of initially infected companies can

influence the spread of the crisis. Using Algorithm 7, we simulate an SIR

epidemic, initiating each of the 2008 and 2020 financial crises with a different

number of infected companies. We first choose the number of initially infected

companies and then, for each SIR simulation, we choose uniformly at random

a subset of all the nodes of the required size to be initially infected. Fig-

ures 7.10a and 7.10b illustrate the distribution of the total number of infected

companies, over 10, 000 simulations, in the 2008 and 2020 financial crises, re-

spectively. The dashed horizontal line indicates the actual total number of

infected companies in each of the two crises, while the star’s x-coordinate de-

notes the initial number of infected companies in each crisis. It can be seen

that starting the crisis with lower number of initially infected companies leads

to a higher variability in the results, including some cases where the epidemic

dies out early. Also, in each of the crisis, higher number of initially infected

companies leads to higher average total number of infected companies, with

highest jump when comparing scenarios with one and five initial infections.

This jump might indicate the so-called ‘threshold effect’, which entails that af-

ter a particular number of companies is infected, the crisis spreads rapidly and

becomes difficult to manage. Therefore, the results indicate that understand-

ing the thresholds that lead to rapid contagion is important for minimizing

the overall impact of financial crises. Some important results on the threshold

behaviour of the stochastic SIR model, outside the scope of this thesis, can

be found in [119].
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(a)

(b)

Figure 7.10: Boxplots showing the distribution of the total number of infected
companies out of 10, 000 SIR simulations (as per Algorithm 7) in the (a)
2008 and (b) 2020 financial crises, where the simulations have started with
different number of initially infected companies. The dashed red horizontal
lines indicate the total number of infected companies in each of the two crises
and the star in the each plot indicates the initial number of infected companies
in each crisis, i.e. 5 initially infected companies in the 2008 financial crisis and
6 in the 2020 financial crisis. The dashed green line in each separate boxplot
indicates the mean, while the solid orange line indicates the median out of all
10, 000 simulations.
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7.4.3 Impact of lockdown timing on the 2020 financial

crisis spread

In this section we simulate the possibility of a lockdown starting or end-

ing earlier (later). Around significant events such as lockdowns the model’s

parameters change significantly, as illustrated in Figure 7.11, which shows

the estimated parameters for each crisis day. It can be seen that when the

COVID-19 was declared a global pandemic and lockdowns were imposed, the

transmission probabilities βi, 1 ≤ i ≤ 4, jump significantly. In addition, af-

ter governments ease lockdown restrictions the daily recovery probability p

increases substantially. However, this increase is followed by a sharp drop

corresponding to a surge in COVID-19 cases.

To simulate lockdown starting earlier or later, we adjust the timing of the

parameter change in the model. For example, β1 jumped from 1.3775 × 10−5

in the day before lockdown (t = 25) to 2.35243 × 10−1 in the day in which

lockdown was imposed (t = 26). Then, to simulate lockdown starting one

day earlier we shift this change to day 25. Figure 7.12 shows the output of

100 simulations, where the lockdown has been simulated to a) start one day

earlier, b) start one day later, c) end 10 days earlier and d) end 10 days later.

The results indicate that the timing of lockdown can influence the spread

of infections among companies during the 2020 financial crisis. Starting the

lockdown even one day earlier can result in nearly 40 more infected companies

(see Figure 7.12a), while delaying it by one day leads to approximately 10

fewer infected companies (see Figure 7.12a). In addition, the timing of ending

the lockdown has minimal impact on the number of infected companies but

affects the speed of recovery (see Figures 7.12c and 7.12d). Consequently,

implementing timely lockdowns and carefully considering their duration can

be critical for minimizing the spread of infections and facilitating quicker
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Figure 7.11: The figure illustrates the daily (n = 1) estimated model’s param-
eters as per the procedure described in 3.4.2.2.1. The most significant events
during the 2020 financial crisis are denoted by the coloured vertical lines.
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recovery for companies. However, it is important to note that this study

does not account for the human impact, such as the socioeconomic effects on

employees and communities, which can be crucial for companies health. For

example, if a lockdown is not imposed on time, more people might become

infected by COVID-19. As a result, customer spending could decrease as

people avoid shopping, dining out and traveling. In addition, the workforce

might be significantly reduced due to illness, causing disruptions in production

and supply chains and healthcare costs for companies could rise. However, our

simulations are based on the assumption that if, for example, lockdown starts

later, the transmission rates before the lockdown remain unchanged, just as

if the lockdown had started earlier. However, delaying a lockdown in reality

could lead to increased economic difficulties for companies as more employees

become sick and fewer customers are available to purchase goods and services.

7.5 Discussion and conclusion

In this chapter we explored the relationship between node centrality measures

and the probability of infection within the 2008 and 2020 financial networks.

The work illustrated that contagion and closeness centrality are positively cor-

related with the probability of infection, indicating that companies positioned

closer to others or with higher potential to spread infection are more likely to

become infected themselves. However, betweenness centrality does not exhibit

a strong correlation with infection probability, suggesting that being a bridge

between other nodes does not necessarily increase a company’s likelihood of

becoming infected in a crisis. These findings can be potentially valuable for

identifying highly vulnerable companies and taking proactive measures to mit-

igate the spread of financial contagion. For example, companies with high
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Figure 7.12: Each grey curve illustrate a single SIR simulation output out
of 100 SIR simulations, while the red curve shows the average result from
all simulations. In each of the plots lockdown is simulated to start a) one
day earlier and b) one day later, and to end c) 10 days earlier and d) 10
days later. The black lines show the observed number of infected companies
as determined in 3.4.1, providing a reference for comparison with the model
predictions.
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contagion or closeness centrality might be prioritised for early interventions,

such as increased monitoring or support.

We then studied the connections between credit scores and the duration of

infection, highlighting how a company’s financial health impacts its recovery.

This information might be valuable in future modelling choices, as different

recovery probabilities might be chosen depending on the credit score of a

company. In addition, strategies to support the most vulnerable companies

might be developed to enhance the resilience of financial systems.

We finally performed various simulation studies analysing multiple scenarios

including different lockdown strategies, starting a crisis with the most central

nodes and changing the number of initially infected companies. The results

showed that starting a crisis at more central nodes can lead to a higher crisis

spread, again indicating that early interventions might be preferable for com-

panies with higher centrality. In addition, the significant jump between the

total number of infected companies, when starting the crisis with five infected

companies, compared with a single infected company, suggests that early in-

terventions are important for mitigating the epidemic spread. Simulating

what-if scenarios, such as those performed in this chapter, can be informative

for the potential impact of different decision-makers interventions. However,

simulations often require simplifying assumptions (such as our synthetic lock-

down scenarios) to make the model manageable, sometimes leading to invalid

and unreliable results. In addition, simulations are typically based on existing

data, so they can only predict outcomes within the scope of those data and

unprecedented events may not be accurately modelled. In this context, it is

important to node that the simulation studies in this chapter are intended

to illustrate how such models are of value, rather than to provide realistic

predictions.
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Chapter 8

Discussion and conclusion

8.1 Thesis summary

In this thesis, we have presented and compared different models for financial

crisis propagation. We employed different methods, such as network theory,

extreme value theory and time series analysis, to create and analyse various

financial contagion propagation models. In this section we summarise the

contributions of this thesis to the understanding of financial contagion.

Firstly, Chapter 3 used stock price, geographical and economic sector data

for a set of 398 companies to construct a multiplex network. We proposed a

novel framework for modelling financial contagion using a discrete-time SIR

epidemic model on the network. The findings suggested that each of the layers

in the multiplex network structure provides important information for enhanc-

ing prediction power and capturing the interdependencies among companies

driving financial contagion dynamics.

Secondly, in Chapter 4 we used the ChangeFinder algorithm for detecting

significant changes in past crisis data and incorporating them into our model
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accordingly. We achieved this by continuously monitoring the data for anoma-

lies, and as soon as a change point was identified, we discarded the prior data

and used only data subsequent to the change point to inform model predic-

tions. The results indicated that incorporating change points into the model

improved prediction accuracy, compared to the model from Chapter 3.

Chapter 5 further enhanced the model’s predictive accuracy by applying weight-

ing schemes to the models introduced in Chapters 3 and 4. In particular, in

Section 5.2 we used the geometric and hyperbolic weighting schemes to weight

the observed data, where more recent data has more relative importance com-

pared to older data. The resulting model was applied to the 2020 financial

crisis, with results showing that introducing both weighting schemes improves

the model’s accuracy, compared to the original model of Chapter 3. Then,

in Section 5.3 we combined the change point model, introduced in Chapter 4

with the two weighting schemes, leading to an improved predictive accuracy.

In Chapter 6 we compared all proposed models in this thesis, including the

original model (Chapter 3), the change point model (Chapter 4), the time

weighted maximum likelihood (TiWML) model (Section 5.2) and the com-

bination of the change point and the time weighted maximum likelihood

(CPD+TiWML) model (Section 5.3). Each model was assessed for its per-

formance across various prediction scenarios, such as forecasting the number

of infected companies, the continents and economic sectors that will be most

affected, and the specific companies most likely to be infected during future

crisis days. We identified the most effective model for each type of prediction,

offering guidance on which model to use based on the specific forecasting

needs.

Finally, Chapter 7 studied the impact on different network characteristics,

such as node centrality, on financial crisis spread. The results indicated that
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node centrality is positively correlated with the likelihood of infection. We

also presented different counterfactual simulation scenarios, including starting

a crisis with the most central nodes or altering the number of initially infected

companies. The findings suggested that the initial conditions of the crisis play

crucial role for its spread.

Overall, the work presented in this thesis offers valuable insights into contagion

modelling. While the main body of the thesis focuses on detailed analysis and

specific findings, the models presented could also be useful in real-life applica-

tions. The models in the thesis are based on the data of only 398 companies,

offering an informative snapshot but not fully capturing the diversity of the

real-world network of companies. For these models to be applied effectively,

they should be tested on larger and more diverse datasets. Hence, we recom-

mend conducting additional studies that include thousands of companies to

validate and refine the models. Although incorporating a significantly larger

number of nodes into the network could lead to a higher computational bur-

den, recent advances in statistical procedures for modelling processes on large

networks have made it feasible to manage large networks effectively. For ex-

ample, graph reduction techniques [108] and clustering-based approaches [63]

have been developed to handle the challenges of scaling up networks.

Additionally, the thesis highlights an important insight: no single model con-

sistently outperforms others across all prediction scenarios. Hence, a real-

life applications would require establishing criteria for when to use different

models. Alternatively, implementing a system that automatically selects or

combines models based on the task at hand can optimize performance across

different situations.

We finally demonstrated the usefulness of such models in counterfactual sce-

narios. In real-life scenarios such studies can be used for evaluating different
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strategic decisions. For example, companies can use these models in supply

chain management, simulating how changes to suppliers or disruptions in the

supply chain might have played out. In addition, companies might simulate

different possible strategies, such as merging or breaking connections with

other businesses or putting new regulations into place. However, the models

presented in the thesis are currently too simple to be applied in a real-world

scenarios. Hence, we recommend adding more variables to the model, such

as external economic factors, industry-specific information, supply chain dy-

namics and market trends.

8.2 Research gaps

While there has been considerable progress in modelling financial contagion

on networks, there are still several research gaps that need to be addressed.

1. Lack of standardised methodology: Despite the rapid advance-

ments in complex network theory in recent years, there remains no

standardised methodology for modelling stochastic processes, includ-

ing financial contagion, on networks. Different studies use different ap-

proaches for building network structures, as well as different contagion

measures, making it difficult to compare results and draw meaningful

conclusions. For example, different definitions of contagion are found in

the financial literature [122]. While [11] defined contagion to be a simple

transmission of shocks between countries, Bekaert et al. [33] defined it

as unexplained increases in residual correlations. In addition, many pa-

pers have proposed quantitative measures of contagion [33, 77, 121]. The

differing methodologies and focus areas highlight the challenges in estab-

lishing a unified framework. The lack of standardisation in constructing
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network models, as well as in defining and measuring contagion leads to

significant variability in findings, making it difficult to compare studies

directly and to draw universally applicable insights.

2. Lack of data: One of the biggest challenges in modelling financial

contagion on networks is the lack of comprehensive data on financial

institutions and their interconnections. Most of the existing academic

research on financial contagion relies on low frequency data such as

monthly, quarterly or yearly data instead of high frequency, such as

minute-by-minute or intra-day data [122]. Nevertheless, high-frequency

data is essential for understanding how financial shocks propagate. For

instance, using high-frequency data allows for the early detection of

financial shocks and contagion events, as well as identification of the

rapid spread of financial contagion and capture of short-term interac-

tions and reactions within the market. However, such data is often dif-

ficult to obtain. While there are several data sources available, such as

https://finance.yahoo.com/ and https://www.kaggle.com/, they

are often incomplete or inaccurate. In addition, most of the finan-

cial data available pertains to financial markets of developed countries

rather than emerging or developing countries [122]. Hence, the majority

of existing studies have focused on modelling financial contagion among

developed countries. To improve our understanding, future research

should incorporate data from emerging and developing markets, leading

to more comprehensive and globally applicable financial models.

3. Empirical validation: While there are numerous studies on financial

contagion on networks, there is a need for more empirical validation.

For example, many theoretical models suggest how shocks in one part

of the financial network can propagate and impact other parts, but there

is a lack of real-world data to confirm these mechanisms. In addition,
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many of the mentioned studies in this literature review study counter-

factual scenarios, where the authors simulate different scenarios on the

network and analyse the results. However, usually these scenarios are

not empirically validated.

4. The ‘human factor’: The ‘human factor’ in financial network studies

refers to the behaviours, decisions and psychological biases of individ-

uals and institutions participating in financial markets. Humans are

prone to various biases, such as overconfidence, herd behaviour and loss

aversion, which can lead to irrational market movements and contagion

effects that are difficult to predict with traditional models. For exam-

ple, each company is directed by a group of people, who are responsible

to make decisions related to the company. Individual and institutional

decision-making processes are often influenced by factors such as expe-

rience, risk tolerance and expectations about future market movements.

These subjective elements can introduce difficulties in predicting future

market movements. In addition, political movements and public figures

influence financial markets and institutions. For example, on August 7,

2018, Elon Musk tweeted,‘Am considering taking Tesla private at $420.

Funding secured.’, which caused Tesla’s stock price to spike initially due

to the potential buyout at a significant premium. However, the stock

price later experienced volatility as doubts emerged about the feasibility

of the plan and regulatory scrutiny followed. Another popular example

involving Cristiano Ronaldo occurred in July 2021 when he removed

two bottles of Coca-Cola from his sight during a press conference for

the Euro 2020 football tournament. Following this action, Coca-Cola’s

stock price declined significantly, reportedly losing billions of dollars in

market value. Overall, ‘the human factor’ adds a layer of complexity

to financial network modelling, making it challenging to develop models
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that can accurately predict future market behavior. Incorporating be-

havioral economics can help address these challenges and improve the

predictive power of financial contagion studies.

8.3 Future work

The modelling framework from Chapter 3 provides several directions that

might form a basis for future research. The first natural extension to the model

is considering specific transmission and recovery rates for each continent and

sector. Even though this might lead to more accurate results, it is important

to recognise that it will inevitably lead to higher computational complexity

and may result in overparameterization. Secondly, as already mentioned in

Chapter 3, the framework is universal in nature and hence could be applied

to analyse any contagious financial crisis, not only in a network of companies

but also in a network of countries and economic sectors. Lastly, as previously

mentioned, our model operates under several basic assumptions, such as the

division into susceptible, infected and recovered companies. Possible extension

will be adding more complexity to the model, such as introducing additional

stages of infection or recovery. In addition, the underlying network structure

used throughout this thesis is considered to be static. Future work might

involve using a dynamic network structure. For example, in real-life situations

companies might break or develop financial ties, such as loans, investments

or supply-chain contracts. Moreover, companies might merge, resulting in

the integration of two or mode nodes into a single one, or new companies

might emerge, leading to additional nodes. Therefore, developing a dynamic

network structure could better capture the evolving nature of interactions

within financial systems [159].
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The change point detection model, introduced in Chapter 4 also provides a

natural direction for future research. In this thesis the change point detection

was performed on the time series of infections. However, an alternative choice

might be performing change point detection on the time series of the estimated

model’s parameters. In this approach, detecting a change point would indicate

a significant shift in a specific model parameter. This method would also give

the opportunity to incorporate different change points for the different layers,

as opposed to the current approach where detecting a change point in the

infection time series leads to reestimating all parameters.

Chapter 5 provides a natural extension for combining the change point de-

tection model and the TiWML approach. While the TiWML approach is a

popular tool in financial time series forecasting, the existence of outlier obser-

vations (which are frequent in many scientific areas) may provide a valuable

information about underlying market dynamics. In financial time series out-

liers sometimes represent significant events or market shifts, and can offer

crucial insights that may improve the performance of forecasting models. In

other cases, the outliers are just noisy data points, which can disproportion-

ately influence the results of statistical models. Hence, instead of using the

hyperbolic or geometric weighting schemes, one could use a weighting based

on the outlier scores, introduced in Chapter 4. In particular, one could de-

cide to give lower weight to outliers, hence minimizing their influence, or give

higher weight when outliers are believed to provide valuable information about

significant changes or events.

Chapter 6 demonstrates that there is no single model that excels in all scenar-

ios, whether predicting the number of infected companies or making company-

specific predictions. Hence, each prediction task may require a distinct model

to achieve accurate forecasts. For example, models that perform well in pre-

dicting the numbers of companies are not necessarily effective at predicting
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individual company outcomes and vice versa. Therefore, it is important to se-

lect models that strike a balance between various performance metrics. Given

these challenges, a straightforward direction for future research will be devel-

oping adaptive models which can adjust based on the specific nature of the

task, achieving a trade-off between different prediction objectives. In addition,

future evaluation of model predictions could be enhanced by incorporating

additional (probabilistic) distance measures, commonly referred to as scoring

rules. The scoring rules provide measures for the evaluation of probabilistic

forecasts by assigning a numerical score, based on the event being predicted

[103]. Unlike point-based measures such as the Accuracy and F1-score used

in this thesis, scoring rules assess the full probabilistic forecast, providing in-

sights on both model’s predictive accuracy and uncertainty. Furthermore, as

crises evolve, the optimal model may change, requiring dynamic adaptation

in the model selection process. Identifying how to efficiently choose an opti-

mal model in response to changing conditions presents a significant challenge.

Hence, future research should involve developing adaptive models that can be

adjusted in real-time.

Finally, Chapter 7 provides examples of how the model could be used to study

different counterfactual scenarios. An important area of further work is using

such simulations to study possible strategies for minimizing crisis spread. In

addition, as discussed in this chapter, some credit scores are correlated with

the duration a company stays infected during a crisis. This provides a natural

extension of the model, where recovery probabilities could be dependent on

a company’s credit score. Similarly, subject to data availability, additional

company-specific attributes can be incorporated, such as size or operating

revenue, to model how different characteristics affect susceptibility or recovery

rates.
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impact of a recent natural disaster on the Japanese financial markets:

Empirical evidence. Journal of Competitiveness, 10(2):56, 2018.

[88] V. Fanelli and L. Maddalena. A nonlinear dynamic model for credit risk

contagion. Mathematics and Computers in Simulation, 174:45–58, 2020.

[89] C. Ferguson. Inside job: The financiers who pulled off the heist of the

century. Simon and Schuster, 2012.

[90] P. Fiedor. Networks in financial markets based on the mutual informa-

tion rate. Physical Review E, 89(5):052801, 2014.

[91] E. C. Gabrick, E. Sayari, D. L. Souza, F. S. Borges, J. Trobia, E. K.

Lenzi, and A. M. Batista. Fractal and fractional SIS model for syphilis

data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 33(9),

2023.

199



[92] P. Gai and S. Kapadia. Contagion in financial networks. Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences,

466(2120):2401–2423, 2010.

[93] A. Garas, P. Argyrakis, C. Rozenblat, M. Tomassini, and S. Havlin.

Worldwide spreading of economic crisis. New journal of Physics,

12(11):113043, 2010.

[94] D. Gembris, J. G. Taylor, and D. Suter. Trends and random fluctuations

in athletics. Nature, 417(6888):506–506, 2002.

[95] S. Gerlach and F. Smets. Contagious speculative attacks. European

Journal of Political Economy, 11(1):45–63, 1995.

[96] I. Gigauri et al. Influence of COVID-19 crisis on human resource man-

agement and companies’ response: the expert study. International Jour-

nal of Management Science and Business Administration, 6(6):15–24,

2020.

[97] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics,

30(4):1141–1144, 1959.

[98] F. Gilbert, P. Simonetto, F. Zaidi, F. Jourdan, and R. Bourqui. Com-

munities and hierarchical structures in dynamic social networks: analy-

sis and visualization. Social Network Analysis and Mining, 1(2):83–95,

2011.

[99] M. Gilli et al. An application of extreme value theory for measuring

financial risk. Computational Economics, 27(2):207–228, 2006.
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volatility following the September 11 attacks: Evidence from 53 equity

markets. International Review of Financial Analysis, 17(1):27–46, 2008.

[168] T. Nishizeki and N. Chiba. Planar graphs: Theory and algorithms.

Elsevier, 1988.

[169] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance

metric learning. Advances in neural information processing systems, 25,

2012.

[170] D. Osthus, K. S. Hickmann, P. C. Caragea, D. Higdon, and S. Y.

Del Valle. Forecasting seasonal influenza with a state-space SIR model.

The annals of applied statistics, 11(1):202, 2017.

[171] A. Pak, O. A. Adegboye, A. I. Adekunle, K. M. Rahman, E. S. McBryde,

and D. P. Eisen. Economic consequences of the COVID-19 outbreak:

the need for epidemic preparedness. Frontiers in public health, 8:241,

2020.
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Appendix A

Additional details

A.1 Modularity

Modularity, as defined in [165], is ‘up to a multiplicative constant, the number

of edges falling within groups minus the expected number in an equivalent

network with edges placed at random.’ Mathematically, the modularity can

be expressed as:

Q =
1

4m

n∑
i=1

n∑
j=1

[
Ai,j −

kikj
2m

]
δ(i, j), (A.1)

where n is the number of nodes in a network, Ai,j is the i, j-th entry of the

adjacency matrix A, ki and kj are the degrees of nodes i and j, respectively, m

is the total number of edges in the network, and δ(i, j) = 1 if i and j are in the

same cluster and 0 otherwise. The intuition behind the formula in equation

(A.1) is that the expected number of edges between i and j, given random

placement of edges, is kikj/2. Hence, the modularity is the sum Ai,j − kikj/2

over all pairs of nodes. The factor of 1/4m is included for compatibility with

previous definitions of modularity.
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A.2 Louvain community algorithm

The Louvain algorithm is a hierarchical clustering method, which extracts

non-overlapping communities from networks. Its core principle involves itera-

tively placing nodes into different groups in order to maximize the modularity

of the community partition, ultimately achieving the optimal community divi-

sion. Algorithm 8 shows the step-by-step procedure of the Louvain algorithm.

More details can be found in [234].

Algorithm 8 Louvain community algorithm

1. Place each node i into its own separate community ci.

2. For each node i, find all the communities connected to it and calculate
the change of modularity after moving the node to each neighboring
community. Place node i in the community which gives highest gain
in modularity score. If no increase is possible, then node i stays in its
original community.

3. Merge each community in step 2 into a single node. Edges connecting
nodes between the different communities are likewise reduced to a single
weighted edge.

4. If after a complete iteration the modularity of the graph has not in-
creased, terminate the algorithm. Else, return to step 2.

A.3 Adjusted mutual information

Let S be a set of n elements and U = {U1, U2, . . . , Um} and V = {V1, V2, . . . , Vp}

be partitions of S with m and p clusters, respectively. The partitions are as-

sumed to be so-called ‘hard clusters’, i.e. Ui∩Uj = ∅ = Vi∩Vj for all i ̸= j, and

complete, i.e. ∪m
i=1Ui = ∪p

j=1Vj = S. The mutual information (MI) between

U and V is defined as:

MI(U, V ) =
m∑
i=1

p∑
j=1

PU,V (i, j) log

(
PU,V (i, j)

PU(i)PV (j)

)
, (A.2)
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where PU(i) = |Ui|/n, PV (i) = |Vi|/n and PU,V (i, j) = |Ui ∩ Vj|/n. The

entropy, associated with clustering U , is then defined as:

H(U) = −
m∑
i=1

PU(i) logPU(i). (A.3)

The baseline value of mutual information between two random clusterings is

not constant and tends to increase when both partitions contain a greater

number of clusters (while the total number of elements n remains fixed). The

expected MI can be computed by adopting a hypergeometric model of ran-

domness, as shown in [222], and takes the following form:

E[MI(U, V )] =
m∑
i=1

p∑
j=1

min(ai,bj)∑
nij=max(ai+bj−n,0)

ni,j

n
log

(
n · nij

aibj

)
×

ai!bj!(n− ai)!(n− bj)!

n!nij!(ai − nij)!(bj − nij)!(n− ai − bj + nij)!
,

(A.4)

where ai =
∑p

j=1 ni,j and bj =
∑m

i=1 ni,j. The AMI is then defined as:

AMI(U, V ) =
MI(U, V ) − E[MI(U, V )]

max(H(U), H(V )) − E[MI(U, V )]
. (A.5)

While the MI measures the information shared between two clusterings with-

out considering the possibility of agreement by chance, the AMI adjusts MI

by subtracting the expected mutual information between random clusterings,

thus taking into account the baseline level of agreement that can be expected

by chance alone. By using AMI, we can obtain a measure that not only cap-

tures the shared information between clusterings but also considers the level of

agreement that is likely to occur randomly, which makes AMI a more suitable

measure when evaluating and comparing clusterings in practice.
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Figure B.1: The plots indicate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes for
different values of ρ > 1, compared to the results when ρ = 1 (equal weighting
for all observations). These improvements are measured in predicting the total
number of infected companies (top row), newly infected companies (middle
row), and newly recovered companies (bottom row) during the 2020 financial
crisis, using infection data from the previous n days with a prediction horizon
of k = 10 days.
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Figure B.2: The plots indicate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes for
different values of ρ > 1, compared to the results when ρ = 1 (equal weighting
for all observations). These improvements are measured in predicting the total
number of infected companies (top row), newly infected companies (middle
row), and newly recovered companies (bottom row) during the 2020 financial
crisis, using infection data from the previous n days with a prediction horizon
of k = 20 days.
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Figure B.3: The plots indicate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes for
different values of ρ > 1, compared to the results when ρ = 1 (equal weighting
for all observations). These improvements are measured in predicting the total
number of infected companies (top row), newly infected companies (middle
row), and newly recovered companies (bottom row) during the 2020 financial
crisis, using infection data from the previous n days with a prediction horizon
of k = 30 days.
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Figure B.4: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the hyperbolic (left column) and geometric (right
column) weighting schemes for different values of ρ > 1, compared to the
results for ρ = 1 (equal weighting for all observations). The improvements
are measured in predicting the continents (top row) and the sectors (bottom
row) of the newly infected companies during the 2020 financial crisis, using
infection data from the previous n days with a prediction horizon of k = 10
days.
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Figure B.5: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the hyperbolic (left column) and geometric (right
column) weighting schemes for different values of ρ > 1, compared to the
results for ρ = 1 (equal weighting for all observations). The improvements
are measured in predicting the continents (top row) and the sectors (bottom
row) of the newly infected companies during the 2020 financial crisis, using
infection data from the previous n days with a prediction horizon of k = 20
days.

225



Hyperbolic weighting Geometric weighting

C
on

ti
n
en
ts

2 3 4 5 6 7 8 9 10 20 30
n

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2 3 4 5 6 7 8 9 10 20 30
n

0.04

0.02

0.00

0.02

0.04

0.06

0.08

0.10

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

S
ec
to
rs

2 3 4 5 6 7 8 9 10 20 30
n

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

2 3 4 5 6 7 8 9 10 20 30
n

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Figure B.6: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the hyperbolic (left column) and geometric (right
column) weighting schemes for different values of ρ > 1, compared to the
results for ρ = 1 (equal weighting for all observations). The improvements
are measured in predicting the continents (top row) and the sectors (bottom
row) of the newly infected companies during the 2020 financial crisis, using
infection data from the previous n days with a prediction horizon of k = 30
days.
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Figure B.7: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the TiWML model with hyperbolic (left column)
and geometric (right column) weighting schemes for different values of ρ > 1,
compared to the results for ρ = 1 (equal weighting for all observations). The
improvements are measured for the 2020 financial crisis, using infection data
from the previous n days with a prediction horizon of k = 10 days.
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Figure B.8: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the TiWML model with hyperbolic (left column)
and geometric (right column) weighting schemes for different values of ρ > 1,
compared to the results for ρ = 1 (equal weighting for all observations). The
improvements are measured for the 2020 financial crisis, using infection data
from the previous n days with a prediction horizon of k = 20 days.
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Figure B.9: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the TiWML model with hyperbolic (left column)
and geometric (right column) weighting schemes for different values of ρ > 1,
compared to the results for ρ = 1 (equal weighting for all observations). The
improvements are measured for the 2020 financial crisis, using infection data
from the previous n days with a prediction horizon of k = 30 days.
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Figure B.10: The plots illustrate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes in
the CPD+TiWML model for different values of ρ > 1, compared to the results
when using the change point model, introduced in Chapter 4. These improve-
ments are measured in predicting the total number of infected companies (top
row), newly infected companies (middle row), and newly recovered companies
(bottom row) during the 2020 financial crisis, using infection data from the
previous n days with a prediction horizon of k = 10 days.
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Figure B.11: The plots illustrate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes in
the CPD+TiWML model for different values of ρ > 1, compared to the results
when using the change point model, introduced in Chapter 4. These improve-
ments are measured in predicting the total number of infected companies (top
row), newly infected companies (middle row), and newly recovered companies
(bottom row) during the 2020 financial crisis, using infection data from the
previous n days with a prediction horizon of k = 20 days.
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Figure B.12: The plots illustrate the percentage improvement when using the
hyperbolic (left column) and geometric (right column) weighting schemes in
the CPD+TiWML model for different values of ρ > 1, compared to the results
when using the change point model, introduced in Chapter 4. These improve-
ments are measured in predicting the total number of infected companies (top
row), newly infected companies (middle row), and newly recovered companies
(bottom row) during the 2020 financial crisis, using infection data from the
previous n days with a prediction horizon of k = 30 days.
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Figure B.13: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured in predicting the continents (top row) and
the sectors (bottom row) of the newly infected companies during the 2020
financial crisis, using infection data from the previous n days with a prediction
horizon of k = 10 days.
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Figure B.14: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured in predicting the continents (top row) and
the sectors (bottom row) of the newly infected companies during the 2020
financial crisis, using infection data from the previous n days with a prediction
horizon of k = 20 days.
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Figure B.15: The plots show the percentage improvement in the Sørensen–
Dice coefficient when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured in predicting the continents (top row) and
the sectors (bottom row) of the newly infected companies during the 2020
financial crisis, using infection data from the previous n days with a prediction
horizon of k = 30 days.

235



Hyperbolic weighting Geometric weighting

a)

2 3 4 5 6 7 8 9 10 20 30
n

0.0002

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3

1.4
1.5
1.6

1.7
1.8
1.9

2 3 4 5 6 7 8 9 10 20 30
n

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3

1.4
1.5
1.6

1.7
1.8
1.9

b)

2 3 4 5 6 7 8 9 10 20 30
n

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3

1.4
1.5
1.6

1.7
1.8
1.9

2 3 4 5 6 7 8 9 10 20 30
n

0.06

0.04

0.02

0.00

0.02

Pe
rc

en
ta

ge
 im

pr
ov

em
en

t

1.1
1.2
1.3

1.4
1.5
1.6

1.7
1.8
1.9

Figure B.16: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured for the 2020 financial crisis, using infection
data from the previous n days with a prediction horizon of k = 10 days.
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Figure B.17: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured for the 2020 financial crisis, using infection
data from the previous n days with a prediction horizon of k = 20 days.
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Figure B.18: The plots show the percentage improvement in the a) Accuracy
and b) F1-score when using the CPD+TiWML model with hyperbolic (left
column) and geometric (right column) weighting schemes for different values of
ρ > 1, compared to the results for ρ = 1 (equal weighting for all observations).
The improvements are measured for the 2020 financial crisis, using infection
data from the previous n days with a prediction horizon of k = 30 days.
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