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A B S T R A C T

This thesis presents several optimal estimation strategies for quantum parameter
estimation, mostly applied to quantum Markov chains (QMCs) - discrete-time
quantum open systems. Chapter 4, based on [78], solves the problem of opti-
mal estimation of a QMC using adaptive measurements. This culminates in an
algorithm that determines the optimal measurement basis for the next step of
the QMC by tracking an object known as the measurement filter. Crucially, this
involves only local measurements on the environment of the QMC; a consider-
able simplification in comparison to other optimal strategies. Additionally, this
estimation scheme utilizes a coherent absorber. This is a secondary system that
we use to post-process the quantum Markov chain before measurement, which
we include to purify the stationary state of the QMC.

Chapter 5, based on [77], then examines another measurement scheme - null
measurements. A null measurement involves measuring the quantum system in
a basis that contains the system’s state. It has been claimed that this is an optimal
measurement for parameter estimation, but we demonstrate that this is not the
case through an independent identically distributed pure state model. This is due
to an identifiability issue that occurs when one attempts the naive implementa-
tion the null measurement. We then present a solution to this problem, where
we introduce some displacement into the null measurement. This removes the
identification issue and provides a proper statistical foundation to the estimation
scheme.

In chapter 6, based on [75], we apply this displaced null measurement to a
QMC; this provides a second optimal estimation scheme for QMCs. In particular,
the displaced null measurement is implemented through the coherent absorber
and a simple fixed measurement basis on the environment of the QMC. Therefore,
this estimation scheme can be implemented with considerably reduced measure-
ment complexity. The coherent absorber plays an essential, but very different,
role in this estimation scheme; it effectively reverses the evolution in each step of
the QMC when an initial estimate θ0 is equal to the true value of the parameters
θ. The environment of the QMC can then be modelled as a vacuum state, but
introducing some displacement results in ’excitation’ patterns in this vacuum
state. The chapter develops the mathematical theory of these patterns and the
culminates in an optimal estimator that utilizes the observed pattern counts.
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tum Markov chains using coherent absorber post-processing and pattern
counting estimator”. arxiv:2408.00626.

[2] Federico Girotti, Alfred Godley, and Mădălin Guţă. “Optimal estimation
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1
I N T R O D U C T I O N

In the last few decades, the field of quantum mechanics has moved beyond theo-
retical physics into practical applications, leading to the emergence of quantum
technologies. These technologies promise to revolutionize a wide range of fields
from computation to communication to sensing. Among these fields, quantum pa-
rameter estimation is worthy of significant attention, having already contributed
to several scientific advancements from gravitational wave detection [1, 2] to
high precision magnetometry [23, 122]. It focuses on the use of quantum systems
to estimate unknown parameters with high precision, often surpassing classical
limits. This process lies at the intersection of several exciting fields including
quantum information theory, statistics, and metrology.

This is a very fundamental problem as high-precision measurement forms the
cornerstone of many modern scientific disciplines. Moreover, industries are in-
creasingly reliant on high-precision measurements to develop and build modern
technology. As a third and final justification of its importance, it also provides a
fruitful avenue into better understanding quantum mechanics; by pushing the
limits of precision and exploiting quantum effects we can better understand quan-
tum mechanics. This may enable the discovery of new phenomena that could
then lead to advancements in both fundamental physics and applied quantum
technologies.

The core objective in quantum parameter estimation [25, 93, 95, 130] is to iden-
tify optimal strategies that maximize the information extracted from a quantum
state ρθ, which we assume is known up to an unknown parameter θ. The diffi-
culty lies in the probabilistic nature of measurements in quantum mechanics: the
outcome of a measurement is essentially a classical random variable with proba-
bility distribution specified by the system’s state and the choice of measurement.
Therefore, our primary objective is to optimise this choice of measurement. We
then have a classical statistical inference problem, where we need to design an
optimal estimator θ̂ that processes these outcomes.

The optimality of the estimation scheme is usually assessed through the
Cramér-Rao bound (CRB) [44], which provide a lower bound on the covariance of
an unbiased estimator. For a one-dimensional parameter this is

Var(θ̂) ≥ I−1
θ

when we have one copy of the quantum state, where I is the classical Fisher
information (CFI). The CFI is a property of the probability distribution associated
with the choice of measurement, so it depends both on this choice and the quan-
tum state. The quantum Cramér-Rao bound (QCRB) [13, 25, 93, 95] then replaces
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I N T R O D U C T I O N 2

the CFI with the quantum Fisher information (QFI), so for a one-dimensional
parameter we have

Var(θ̂) ≥ F−1
θ ,

where F is the QFI. This is an optimisation over all choices of measurement, so it
only depends on the quantum state. In quantum parameter estimation, the goal
is often to maximise the CFI by selecting an appropriate measurement, aiming
to make the CFI as close as possible to the QFI. With an optimal estimator, the
inequalities mentioned earlier can be transformed into equalities, resulting in the
variance being bounded by Var(θ̂) = F−1

θ . And together, the combination of an
optimal measurement choice and an optimal estimator defines an optimal esti-
mation strategy. From a quantum information perspective, this also conveniently
isolates the quantum aspects (measurement choice) from the classical aspects
(optimal estimator).

The nature of the optimal measurements is of significant interest to us; the
QCRB is formulated in terms of the symmetric logarithmic derivatives (SLDs),
which provide optimal observables for the estimation of each parameter. They are,
however, generally very complex operators that involve a collective measurement
on all subsystems of a multipartite quantum system. This can make them difficult
to implement, so we are interested in finding optimal schemes that use local
operations [182], where we measure each subsystem individually.

The optimal measurements often depend on the parameters of interest; a
consequence of this is that these bounds are often only saturable in an asymptotic
scenario [73, 92, 170], where we have n copies of the quantum state and we take
the limit as n → ∞. We can then use a vanishingly small proportion of the total
copies to localize the parameters to a small region around an initial estimate θ0,
and design strategies that are optimal in this region.

In multi-dimensional parameter scenarios [4, 5, 49, 69, 158], the quantum
Cramér-Rao bound (QCRB) is not generally attainable even in an asymptotic
framework due to incompatibility in the optimal measurements for each pa-
rameter component. Fortunately, there are other bounds that are asymptotically
achievable in multiparameter scenarios; the most common of which is the Holevo
bound. Therefore, our goal shifts to strategies that saturate these alternate bounds
instead.

Quantum parameter estimation is a broad church, covering a wide range of
applications. For instance, quantum sensing [47, 121, 186] alone encompasses all
uses of a quantum system to measure a physical quantity. This is done by first
preparing a system in a known initial state, then encoding the parameters into
the system via a mechanism that is known up to the parameters of interest. For
instance, this mechanism could be the system’s evolution and we’re interested
in some parameters of the Hamiltonian like the coupling constant of an interac-
tion term. We then design an estimation strategy to extract this information as
prescribed in quantum parameter estimation.

Quantum sensing includes fields such as gravitational wave detection [1, 2, 11,
168], quantum magnetometry [23, 28, 101, 159], quantum thermometry [46, 123,
145] and quantum clocks [26, 131, 156]. From a quantum information perspective,
this field is usually called quantum metrology [49, 72, 73, 151, 160] and the
focus is on designing strategies that are optimal in the sense outlined above,
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Figure 1.1: A quantum Markov chain: a series of input systems prepared in state |χ⟩
interact with the SOI once, then are measured.

whereas quantum sensing often focuses on strategies that are experimentally
implementable.

In this thesis we develop optimal estimation schemes in two different settings:
quantum Markov chains (QMCs) and independent identically distributed (IID)
pure state models. The main setting of this thesis is QMCs [83, 84, 144] - a type of
open quantum system involving a main system of interest (SOI) interacting with
a series of initially uncorrelated environment states, cf. figure 1.1. Let |ψ⟩ ∈ Cd

be the initial state of the main SOI, let |χ⟩ ∈ Ck be the initial state of each
environment state and let U be the unitary operation that describes the interaction.
Then after n interactions the total state is

ρtotal(n) = U(n) . . . U(1) |ψ ⊗ χ⊗n⟩ ⟨ψ ⊗ χ⊗n|U(1)∗ . . . U(n)∗,

where U(i) is the unitary applied to the SOI and ith environment state. If we fix
an orthonormal basis (ONB) {|i⟩ : i = 1, . . . , k} for the environment, then we can
express the reduced state of the SOI as

ρ(n) = ∑
i1,...,in

Kin . . . Kin |ψ⟩ ⟨ψ|K∗
i1 . . . K∗

in
= Tn(|ψ⟩ ⟨ψ|), (1.1)

where {Ki = ⟨i|U |χ⟩ : i = 1, . . . k} is a set of Kraus operators that satisfy nor-
malisation condition ∑i K∗

i Ki = 1, and T(·) = ∑k
i=1 Ki · K∗

i is a quantum channel.
The QMC consists of measuring the environment in this ONB, in which case, we
obtain a sequence of outcomes (i1, . . . , in) with ij ∈ {1, . . . , k}. Additionally, the
state of the SOI jumps with each measurement, e.g.,

|0⟩ ⟨0| → Ki1 |0⟩ |0⟩K∗
i1 → Ki2 Ki1 |0⟩ |0⟩K∗

i1 K∗
i2 → . . . ,

where these states need to be properly normalised. Crucially, the probabilities of
each possible jump ρ → KiρK∗

i and the state after each jump depend only on the
current state of the system.

To perform parameter estimation with a QMC, we simply let this unitary
depend on some parameter of interest: U = Uθ . Our aim is then to estimate
this parameter using these measurements on the environment. This is a partic-
ularly exciting setting for parameter estimation as it allows a more fluid form
of estimation: since we never measure the main system directly, we can simply
keep measuring the environment to gain more information about the parameters.
Additionally, this is a stark contrast to the standard parallel setting of quantum
metrology, where we have to prepare n systems in advance. Instead, we simply
prepare our system in some initial state, then repeatedly apply the quantum
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channel whilst measuring the environment. Finally, this describes many common
experimental setups such as a one-atom maser [91], quantum collision models
[42] or a discretised optical cavity setups [10, 177].

Quantum channels [30, 33, 34, 175] provide one of the most general descriptions
of quantum open systems and general quantum processes. We often utilize
several properties of quantum channels [30, 54] in order to simplify the estimation
problem. In particular, we often assume that the channel T(·) in equation (1.1) is
primitive, which ensures that repeated applications of the quantum channel cause
any initial state to converge to a fixed state ρ∗ of maximal rank - the stationary
state. We can then design our estimation protocol around this stationary regime.
Since this stationary state is of maximal rank, this also ensures that the state’s
rank does not change at any point, which is often an important technicality.

In this thesis we investigate two alternate measurement strategies, both of
which make use of an additional tool: a coherent absorber (CA). The CA [157]
is another system that interacts with the environment after the main system of
interest, where this interaction can be engineered. The total unitary in each step
is then

Wθ = Vθ0Uθ ,

where Vθ0 is the unitary for the interaction between an environment state and the
CA, and θ0 ∈ Θ is a fixed value. In [78], we introduced the absorber in order to
purify the system’s stationary state at θ = θ0, i.e.,

VθUθ |ψ̃⟩ ⊗ |χ⟩ = |ψ̃⟩ ⊗ |χ⟩ ,

where |ψ̃⟩ is the purified stationary state of the channel T(·). This ensures that
in an asymptotic scenario we can guarantee that the stationary state is pure.
However, the CA amounts to some post-processing of the state in general, so we
can use this as a mechanism to alter the measurement implemented - a common
feature in quantum information.

Our first optimal measurement scheme for a QMC adapts a local operations
and classical communication (LOCC) measurement strategy developed in [182]
to a QMC. This LOCC strategy utilized local, adaptive measurements on a pure
multipartite quantum system to achieve the CRB. Our strategy then consists
of an adaptive algorithm that determines each measurement inductively using
the results of previous measurements. This involves tracking an object called
the measurement filter through each estimation stage, which is updated after
every measurement. It is then used to determine the next measurement basis.
As mentioned in the previous paragraph, we introduced the CA to extend our
measurement strategy from just pure state to mixed states (that we purify).

The second measurement setting, IID pure states, consists of n repeated copies
of a pure state |ψθ⟩ from which we want to estimate the parameter θ ∈ Θ ⊆ Rk.
This simple setting was ideal for exploratory work involving displaced-null
measurements (DNMs), motivated by the work of Yang et al. [177]. This switch
away from QMCs allows us to develop the theory behind DNMs in a simplified
setting. Regular null measurements consist of measuring in a basis that contains
the system’s state, i.e., for a pure state |ψθ⟩ we measure in a basis containing this
state. This seems to be optimal as if we calculate the CFI of the state |ψθ0⟩ in the
limit θ0 → θ, then it is equal to the QFI. However, there is a procedural problem
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with this: we have to specify how we generate θ0 in the estimation scheme. And
once we’ve specified how we select this initial estimate, the null measurement
suffers from an identifiability problem locally around the initial estimate. This
diminishes the actual corresponding CFI, so the regular null measurement fails
to saturate the QCRB. Our second optimal estimation scheme is a solution to
this: displaced-null measurements (DNMs). DNMs utilize the CA to implement a
null measurement with |ψθ0+τ⟩, where τ is a suitable displacement. By carefully
selecting this displacement we can eliminate the identification problem, allowing
the estimation scheme to saturate the QCRB.

We then apply the displaced null measurement to a QMC. In this framework,
the CA effectively reverses the evolution of the stationary state in each time
step when θ0 = θ. The output state of the environment, which we assume is
2-dimensional, is then in its stationary state. Therefore, we regard it as a "vacuum
state"

|Ω⟩ = |0⟩⊗n

containing no information about the parameter. When we measure the envi-
ronment in the standard basis {|0⟩ , |1⟩}, a difference between θ0 and θ causes
"excitation patterns" in this vacuum state that start and end in a 1 (e.g.- α = 1,
11, 101, etc.). In particular, we include some displacement τ to eliminate the
identification problem found with a null measurement. We can calculate the
expected rate of occurrence of each pattern, so we use this to design an optimal
estimator based on the observed pattern counts.

This thesis consists of two parts. Part i functions as an introduction to the
necessary topics of this thesis, so may be familiar to some readers. This starts
with an introduction to the relevant quantum information theory in chapter 2,
beginning with the basic topics of states, observables, operators, multipartite
systems and continuous variable systems. It then introduces quantum channels in
section 2.2, focusing on their mathematical theory and some important properties.
Quantum channels are then related back to quantum open systems in section
2.3, with an introduction to quantum Markov chains included in section 2.3.1.
Chapter 3 introduces classical and quantum estimation theory. This begins with
the classical side in section 3.1, with a focus on asymptotic estimation theory and
LAN. It then introduces their quantum analogues in section 3.2, culminating with
QLAN in section 3.2.1.

With this background information out of the way, part ii presents the results
of this PhD. Chapter 4 focuses on results from the paper [78]. This includes our
first mention of a CA in section 4.4. The main result is presented in section 4.5,
where we discuss the adaptive measurement scheme that we introduced above.
The chapter then culminates with several numerical simulations in section 4.7,
which demonstrate that our measurement scheme does indeed saturate the QCRB
asymptotically.

In chapter 5, based on [77], we introduce the displaced null measurement
scheme in the context of IID pure state models. We begin by presenting the neces-
sary conditions to saturate the QCRB in Proposition 2. We then demonstrate why
the regular null measurement fails to saturate the QCRB in section 5.3, culmi-
nating with Theorem 16. Section 5.4 introduces the displaced null measurement
with Proposition 3 proving that this measurement scheme is optimal for one-
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parameter qubit models. Section 5.5 explains the asymptotic perspective of the
displaced null measurement through QLAN. Finally, section 5.6 generalizes all
this to arbitrary d-dimensional qudits, demonstrating that the null measurement
saturates the Holevo bound.

Finally, in chapter 6, based on [75], we apply the displaced null measurement
scheme to a quantum Markov chain. To this end, in section 6.3 we discuss the role
of the CA in this framework, mentioned above. In section 6.4 we formalize these
excitation patterns in terms of translationally invariant modes (TIMs): essentially
we can define "creation" A∗

α(n) and "annihilation" Aα(n) operators for the pattern,
which map the vacuum state to a superposition of states with the corresponding
pattern inserted in every available position, e.g., a state such as A∗

1(n) |0⟩⊗n =

n−1/2 ∑n
i=1 |0⟩⊗i−1 ⊗ |1⟩ ⊗ |0⟩n−i. Proposition 8 and Corollary 2 then demonstrate

that these operators define the Fock basis of a continuous variable system in the
asymptotic limit n → ∞. The main result is Theorem 19, which relates the rate of
occurrence of an excitation pattern back to its corresponding "quadratures"

Qα(n) =
1√
2
(Aα(n) + A∗

α(n)) and Pα(n) =
1√
2i
(Aα(n)− A∗

α(n)).

We then utilize this in section 6.7 to design an optimal estimator based off count-
ing the number of occurrences of each pattern in the output. In section 6.8 we
then confirm that this estimator is optimal through numerical simulations.

Finally, appendix A discusses the Python code used to generate the numerical
simulations, which can be found on GitHub at

https://github.com/AGodley/ThesisCode.

This mainly functions as a user’s guide and an overview of the important files.
There are several improvements that we would like to make to these files; mostly
around restructuring the current code to increase usability. Therefore, we will
include two folders: one as an archive of the current version of the code and one
that we may edit in the future.

https://github.com/AGodley/ThesisCode


Part I

P R E L I M I N A R Y T H E O R Y

In this part we introduce the necessary background quantum theory
required to understand the main content of this thesis, which is found
in part ii. Most of this content should be familiar to any reader with
a background in quantum information, so it largely functions to in-
troduce the notation used throughout this thesis. Towards the end of
chapter 2, we also introduce quantum channels and quantum Markov
chains in some depth - two topics that are considerably important
throughout the rest of the thesis. In particular, we aim to elucidate
some common properties of quantum channels that we utilize in part
ii.

As this thesis focuses on quantum parameter estimation, it also has
a large statistical element. Therefore, we spend considerable time
introducing (classic/quantum) estimation theory in chapter 3. This
focuses on defining the quantum estimation problem, where we want
to estimate some parameters that are encoded into a quantum state.
In particular, we highlight the conditions under which an estimation
scheme can be considered optimal. These revolve around saturat-
ing fundamental bounds on the variance of an unbiased estimator.
To this end, we also introduce several fundamental estimators and
demonstrate how they achieve the relevant bounds. These sections
ends with brief introductions to local asymptotic normality and its
quantum equivalent. These are powerful results that aid in the design
of optimal estimators.



2
Q U A N T U M I N F O R M A T I O N

In this chapter we review the necessary concepts from quantum mechanics
that are required to understand this thesis, starting with the basics in section
2.1. This section should be familiar to the reader and mostly functions as a
space to introduce the notation used throughout this thesis. We begin with the
common framework of quantum mechanics in sections 2.1.1 and 2.1.2, while
highlighting aspects of particular importance to quantum information theory. We
then discuss continuous variable systems in section 2.1.3 as they are necessary
for chapter 3. Additionally, they describe the state of light in quantum optics
[110]; a field that provides many of the most sophisticated experimental setups
available. We then move onto quantum channels in section 2.2, which represent a
general formalism for quantum open systems and noisy evolution. Essentially, a
quantum channel can be regarded as a black box that maps valid states onto valid
states in the Schrödinger picture, so they can be used to describe most processes
in quantum mechanics. The section ends with a discussion of some common
properties of quantum channels in section 2.2.2: ergodicity, mixing, irreducibility,
and primitivity. We assume our quantum channels are primitive in chapters 5-7,
so our primary aim for the chapter is to elucidate these properties. We then
discuss quantum Markov chains in section 2.3, which are the consequence of
measuring the environment of a discrete-time quantum open system. This results
in a stochastic quantum trajectory, where the system’s state jumps suddenly
with each measurement of the environment. We then end the chapter by briefly
discussing Lindbladian dynamics, which is the continuous time limit of a QMC.

2.1 B A S I C Q U A N T U M M E C H A N I C S

Quantum mechanics involves a mathematical framework that can be used to
predict what is observed in physical situations. All possible predictions are cal-
culated from the system’s current state. In particular, the physical quantities
that we can observe (energy, position, etc.) are described by mathematical oper-
ators known as observables; given a system’s state and an observable, we can
specify the possible outcomes of an experiment and their corresponding proba-
bilities. These are the topics of this section, starting with states, observables and
measurements.

8
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2.1.1 States, Observables and Measurements

Without further ado, we introduce the basic objects of quantum mechanics [127,
146]. Associated with every isolated (closed) physical system is a complex Hilbert
space H known as the state space. The system is then completely described by
its state, which is a unit vector from the Hilbert space. We make use of Dirac
notation, so a state is represented by a ket, say |ψ⟩ ∈ H. We will typically restrict
ourselves to finite-dimensional Hilbert spaces, H = Cd for some finite d < ∞,
so the theory will be presented in this context. However, the formalism can be
extended to infinite-dimensional Hilbert spaces, which is relevant to section 2.1.3
where we discuss continuous variable systems.

Associated with every ket |ϕ⟩ is a bra, denoted ⟨ϕ|, which is a linear map that
maps elements of the Hilbert space to complex numbers:

⟨ϕ| : H → C

|ψ⟩ 7→ ⟨ϕ|ψ⟩

Therefore, ⟨·|·⟩ specifies an inner product which satisfies the following properties:

1. Conjugate symmetric: ⟨ϕ|ψ⟩ = ⟨ψ|ϕ⟩ for all |ϕ⟩, |ψ⟩ ∈ H,

2. Linearity:
⟨ϕ|aψ1 + bψ2⟩ = a⟨ϕ|ψ1⟩+ b⟨ϕ|ψ2⟩

for all a, b ∈ C and |ϕ⟩, |ψ1⟩, |ψ2⟩ ∈ H

3. Positivity: ⟨ψ|ψ⟩ ≥ 0 for all |ψ⟩ ∈ H,

4. Non-degeneracy: ⟨ψ|ψ⟩ = 0 ⇔ ψ = 0,

where · denotes complex conjugation.
Two vectors |ψ⟩ , |ϕ⟩ ∈ H are orthogonal if ⟨ψ| ϕ⟩ = 0. An ONB for a Hilbert

space H = Cd is then a set of orthogonal unit vectors {|e1⟩ , ..., |ed⟩ ∈ H :
〈
ei|ej

〉
=

δij, ⟨ei|ei⟩ = 1} that span the Hilbert space, i.e., we can express any state |ψ⟩ ∈ H
as

|ψ⟩ =
d

∑
i=1

ai |ei⟩ (2.1)

for some ai ∈ C that satisfy ∑d
i=1 |ai|2 = 1. Here we made use of the Kronecker

delta δij. The corresponding bra is then ⟨ψ| = ∑d
i=1 ai ⟨ei|.

An example that is particularly relevant throughout quantum information
is qubits, which represents the simplest non-trivial quantum system, and is the
quantum equivalent of a classical bit taking binary values 0 or 1. Therefore, a
qubit is a two-level system H = C2 with standard ONB states |0⟩ :=

(
1
0

)
and

|1⟩ :=
(

0
1

)
. Since an arbitrary state is any unit vector from the Hilbert space, this

allows for superpositions such as

|+⟩ = 1√
2
(|0⟩+ |1⟩) = 1√

2

(
1

1

)
.

Superpositions are closely related to entanglement [127], which is a very impor-
tant concept in quantum information. Entanglement is introduced in section 2.1.2,
where we introduce multipartite quantum systems.



2.1 B A S I C Q U A N T U M M E C H A N I C S 10

The dual notion to a state is an observable, which is a self-adjoint (Hermitian)
operator. An operator A ∈ B(H) is a bounded linear map on the Hilbert space

A : H → H,

and the adjoint of an operator A ∈ B(H) is another operator A∗ ∈ B(H) such
that

⟨ψ|Aϕ⟩ = ⟨A∗ψ|ϕ⟩
for all |ψ⟩ , |ϕ⟩ ∈ H. Therefore, an observable is an operator A ∈ B(H) that also
satisfies A = A∗. Observables represent physical quantities (energy, position, etc.)
that we can measure in an experiment. By fixing an ONB again, we can represent
an operator as

A =
d

∑
i,j=1

Aij |ei⟩ ⟨ej| ,

where Aij = ⟨ei| A |ej⟩. The operator’s adjoint is then the conjugate transpose of
this: A∗ = ∑d

i,j=1 Āji |ei⟩ ⟨ej|.
Observables are the dual notion to states with respect to their expectation

value:
⟨A⟩|ψ⟩ = ⟨ψ| A |ψ⟩ = Tr(A |ψ⟩ ⟨ψ|)

Note: it is the operator P|ψ⟩ := |ψ⟩ ⟨ψ| that is important here, not the state |ψ⟩.
This implies that states are only defined up to an arbitrary phase eiθ , θ ∈ R, since

Peiθ |ψ⟩ = eiθe−iθ |ψ⟩ ⟨ψ| = P|ψ⟩.

Additionally, we will soon expand this notion to density matrices, which provide
a more general description.

This operator P|ψ⟩ is an example of an orthogonal projection; it projects a vector
|ϕ⟩ ∈ H onto its overlap with the vector |ψ⟩ ∈ H:

P|ψ⟩ |ϕ⟩ = ⟨ψ|ϕ⟩ · |ψ⟩ .

A general orthogonal projection P ∈ B(H) is defined by the property P2 = P =

P∗, where this last equality demonstrates that it is clearly an observable. It can be
expressed as P = ∑r

i=1 |ei⟩ ⟨ei| where r ≤ d and {|ei⟩ : i = 1, ..., d} forms an ONB
for the Hilbert space, i.e., an orthogonal projection is diagonal with respect to an
ONB. In particular, it projects a vector |ψ⟩ onto the subspace spanned by a subset
{|e1⟩ , ..., |er⟩} of the full ONB:

P |ψ⟩ =
r

∑
i=1

d

∑
j=1

|ei⟩ ⟨ei| aj |ej⟩ =
r

∑
i=1

ai |ei⟩ .

The number r specifies the dimension of the corresponding subspace, so the
projection P|ψ⟩ was an example of a rank-one projection with only one term in-
volving |e1⟩ = |ψ⟩. Two orthogonal projections Pi and Pj are mutually orthogonal
if PiPj = δijPi. In particular, a complete set of mutually orthogonal projections
{Pi : i = 1, .., r} for Hilbert space H = Cd should satisfy ∑i Pi = 1, where 1 is the
identity operator, so that

∑
i

Pi |ψ⟩ = 1 |ψ⟩ = |ψ⟩ ,
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i.e., we can decompose a state into a sum of its projections Pi |ψ⟩.
Any observable can be expressed in terms of orthogonal projections through

the spectral decomposition:

Theorem 1 (Spectral decomposition). Let A be an observable on Hilbert space H =

Cd. There exists a complete set of r ≤ d mutually orthogonal projections {Pi : i =

1, ..., r : ∑r
i=1 Pi = 1} and real numbers {ai ∈ R : i = 1, .., r} such that

A =
r

∑
i=1

aiPi. (2.2)

The real numbers ai are the eigenvalues of the observable. We expect d eigen-
values since the Hilbert space is d-dimensional, however, an eigenvalue may be
degenerate, i.e., repeated. Therefore, the orthogonal projection Pi corresponds
with the subspace spanned by a set of orthonormal vectors {|ei⟩} that share the
eigenvalue ai. In total, we have d orthonormal eigenvectors as expected so we
can equivalently write

A =
d

∑
i=1

ai |ei⟩ ⟨ei| ,

for some ONB {|ei⟩ : i = 1, ..., d}.
An important property of operators is positivity: an operator A ∈ B(H) is

positive, denoted A ≥ 0, if
⟨ψ| A |ψ⟩ ≥ 0

for all states |ψ⟩ ∈ H. Additionally, if ⟨ψ| A |ψ⟩ > 0 we say A is strictly positive.
Positivity implies that an operator is self-adjoint and has positive eigenvalues.
Additionally, any positive operator A ≥ 0 can be expressed as A = B∗B for an
operator B ∈ B(H).

We now have all the necessary elements to introduce density operators, which
describe scenarios where there is some statistical uncertainty in the state prepa-
ration. For instance, consider a scenario where we prepare a system in state
|ψ1⟩ ∈ H with probability p or state |ψ2⟩ with probability 1 − p. How would a
third party model this situation if we do not tell them what state we prepared?
The solution is to consider a mixture of the state’s projections

ρ = p |ψ1⟩ ⟨ψ1|+ (1 − p) |ψ2⟩ ⟨ψ2|

and this mixture is known as a density operator. We then replace the state’s
projection with this density operator, e.g., the expectation value of an observable
A ∈ B(H) is ⟨A⟩ρ = Tr(ρA). A complete definition of density operators is the
following:

Definition 1 (Density operators). A density operator ρ ∈ B(H) from a Hilbert space
H is an operator that satisfies the following properties:

1. Normalization: Tr(ρ) = 1

2. Positivity: ρ ≥ 0

We denote the space of density operators on the Hilbert space H as S(H).
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Each state |ψ⟩ ∈ H can be associated with a density operator ρ ∈ S(H) via the
rank-one projection ρ = |ψ⟩ ⟨ψ|. However, not all density operators correspond
with a rank-one projection: the space of density operators is convex, so a mixture
of density operators ρ1, ρ2 ∈ S(H) with form

ρ = pρ1 + (1 − p)ρ2, 0 < p < 1,

is also a valid density operator. The extremal points of this convex set are precisely
the rank-one projections, and their convex hull produces S(H). The density
operators that correspond with rank-one projections are known as the pure states
as there is this direct association to a state and, as a projection, they satisfy the
additional constraint ρ2 = ρ.

The degree of mixedness can be quantified through the purity of a density
operator ρ ∈ S(H):

γ := Tr(ρ2).

This is a real number in the region 1/d ≤ γ ≤ 1, where d is the dimension of the
corresponding Hilbert space. For a pure state, we find that γ = 1 since Tr(ρ2) =

Tr(ρ) = 1. Density operators satisfying γ = 1/d are known as maximally mixed.
To see why, consider their spectral decomposition: we have

ρ =
d

∑
i=1

pi |ei⟩ ⟨ei| ,

for some pi ∈ R. Since Tr(ρ) = 1, we know that ∑i pi = 1. Additionally, pi ≥ 0
since ρ ≥ 0, so pi represent valid probabilities. Minimising Tr(ρ2) = ∑d

i=1 p2
i

under these constraints results in pi = 1/d as expected. Therefore, maximally
mixed density operators correspond with an equal mixture of all states of an
ONB.

Returning to the example of a qubit, states have a nice visual representation in
terms of the Bloch sphere: the density matrix of any qubit can be expressed as

ρ =
1
2
(
1 + r · σ

)
, (2.3)

where r ∈ R3 is the Bloch vector and σ = (σx, σy, σz) is a vector of Pauli operators.
This Bloch vector satisfies |r| ≤ 1 to ensure positivity. The state of a qubit can then
be represented as the point given by its Bloch vector in a unit sphere - known as
the Bloch sphere. Points on the surface of the sphere represent the pure states,
whereas points within the sphere represent mixed states. This representation pro-
vides a very intuitive understanding of quantum qubit channels and operations
as we can simply look at their effect on points from the Bloch sphere. An example
point can be seen in figure 2.1.

We now discuss measurement in the context of measuring an observable; we
will return to more general descriptions of measurement later. When we perform
the measurement of an observable A with spectral decomposition as seen in
equation (2.2) on a system in state ρ, the observed outcome is equal to one of its
eigenvalues ai ∈ R, and occurs randomly with probability specified by Born’s
rule

p(i) = Tr(ρPi),
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Figure 2.1: The Bloch representation of the |+⟩ = 1√
2
(|0⟩+ |1⟩) state: (Green) The cor-

responding Bloch vector r = (1, 0, 0), (Blue) The point corresponding to the
state |+⟩.

where Pi is the projection corresponding with eigenvalue ai. Looking at the
expectation value of an observable A ∈ B(H) again and using its spectral decom-
position, we find

⟨A⟩ρ =
d

∑
i=1

aiTr(ρPi) =
d

∑
i=1

ai p(i)

so it is clearly the weighted average outcome.
The state directly after the measurement is

ρ′ =
PiρPi

Tr(ρPi)
,

so the measurement projects the state onto the space spanned by the eigenvalue ai
that was observed. This is another significant diversion from classical mechanics;
the act of measuring explicitly alters a system.

A consequence of this is that we cannot simultaneously measure two observ-
ables in general. Critically, since each measurement is disruptive, the order of
measurements matters. For instance, consider measuring the Pauli operators on a
qubit: if the qubit is initially in the σz eigenstate |0⟩, then measuring σz results in
observing outcome +1 with probability 1. Measuring σx then results in outcome
+1 or −1 with equal probability. Meanwhile, reversing the measurement order
results in either outcome +1 or −1 for the σx measurement. This measurement
changes the system’s state to an eigenvector of σx. The σz measurement then
results in either outcome +1 or −1 with equal probability. Therefore, reversing
the measurement order significantly altered the possible outcomes of the σz mea-
surement. For two observables A, B ∈ B(H) to be simultaneously measurable,
they must commute, i.e., [A, B] := AB − BA = 0. In which case, we can find a
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set of eigenvectors that are simultaneous eigenvectors for each observable, i.e.,
A |a, b⟩ = a |a, b⟩ and B |a, b⟩ = b |a, b⟩.

In a physical setting, the time evolution of a closed quantum system is deter-
mined by solving the Schrödinger equation

∂

∂t
|ψ(t)⟩ = − i

h̄
H(t) |ψ(t)⟩ ,

where the Hamiltonian H(t) ∈ B(H) is a Hermitian operator related to the energy
of the system. From a theoretical point of view this solution is specified by a
unitary operator: U ∈ B(H) such that U∗U = UU∗ = 1. For example, when H is
fixed the solution to the Schrödinger equation is

|ψ(t)⟩ = U(t) |ψ(0)⟩

where U(t) = exp(− i
h̄ Ht). From a mathematical point of view the objects of

interest are these unitary operations, so we can avoid worrying about the under-
lying dynamics. Instead, we focus on the effects of unitary operations applied to
quantum states.

Now that we’ve discussed the basics of states, measurement and dynamics, we
move onto multipartite quantum systems.

2.1.2 Multipartite Systems

A system consisting of multiple subsystems is described using the tensor product
⊗ of their respective Hilbert spaces [127, 175]. The tensor product of two Hilbert
spaces H1 and H2 combines them into a larger Hilbert space H12 = H1 ⊗H2.
Let {|ei⟩ : i = 1, ..., d1} and {| f j⟩ : i = 1, ..., d2} be orthonormal bases for
Hilbert spaces H1 = Cd1 and H2 = Cd2 respectively. Then H12 is the Hilbert
space spanned by the ONB {|ei⟩ ⊗ | f j⟩ : i = 1, .., d1; j = 1, ..., d2}. This ONB has
d1d2 elements, so the corresponding Hilbert space H12 clearly has dimension
dim(H12) = d1d2. Also, note: we often use the notation |ψ ⊗ ϕ⟩ := |ψ⟩ ⊗ |ϕ⟩ to
simplify expressions.

The inner product between two vectors |ψ1 ⊗ ψ2⟩ , |ϕ1 ⊗ ϕ2⟩ ∈ H12 is given by
the inner products for each subspace multiplied together:

⟨ψ1 ⊗ ψ2|ϕ1 ⊗ ϕ2⟩ = ⟨ψ1|ϕ1⟩⟨ψ2|ϕ2⟩.

Additionally, operators on a tensor product space can be expressed as linear
combinations of tensor products of operators on the individual subsystems. If
A ∈ B(H1) and B ∈ B(H2) then the tensor product A ⊗ B ∈ B(H1 ⊗H2) has
the following action on tensor product vectors:

A ⊗ B |ψ⟩ ⊗ |ϕ⟩ = A |ψ⟩ ⊗ B |ϕ⟩

By specifying both an operator and a state as a sums of product operators/states
we can then apply generic operators to generic states.

Crucially, the existence of superpositions in a Hilbert space results in states
that cannot be expressed as a simple tensor product, i.e., |Ψ⟩ ̸= |ψ⟩ ⊗ |ϕ⟩ for
|ψ⟩ ∈ H1, |ϕ⟩ ∈ H2. These states are called entangled states, whereas states
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that can be expressed as a direct tensor product are known as product states.
Entangled states exhibit correlations between the subsystems, which represent a
uniquely quantum resource. In the next few paragraphs we demonstrate what
we mean by correlations through a qubit-based example.

The standard basis in the space H = C2 ⊗ C2 of two qubits is

{|00⟩ , |01⟩ , |10⟩ , |11⟩},

where we use a different notation for simplicity, removing the tensor product
symbol entirely. An example of an entangled state is |Φ+⟩ := (|00⟩+ |11⟩)/

√
2,

which is one of the four maximally entangled Bell states that also form an ONB
for C2 ⊗ C2

{|Φ+⟩ :=
1√
2
(|00⟩+ |11⟩),

|Φ−⟩ :=
1√
2
(|00⟩ − |11⟩),

|Ψ+⟩ :=
1√
2
(|01⟩+ |10⟩),

|Ψ−⟩ :=
1√
2
(|01⟩ − |10⟩)}

A characteristic feature of maximally entangled states is that they produce per-
fectly correlated outcomes when certain observables are measured on each qubit.
For example, consider measuring the observable σi ⊗ σi with respect to the sin-
glet state |Ψ−⟩, where σi is a Pauli operator. The structure of the state ensures
that one always obtains opposite outcomes. This means that one can infer the
outcome of the measurement on one side without performing the corresponding
measurement, as long as the other side has been measured. This surprising fact
is at the root of the famous EPR paradox [52] and the modern understanding of
quantum non-locality as expressed by the Bell theory [9, 17].

An important result about bipartite states is the Schmidt decomposition.

Theorem 2 (Schmidt decomposition). Let |ψ⟩ be a pure state on the Hilbert space
H12 = H1 ⊗H2. Then there exists an ONB {|ei⟩} for H1 and an ONB {| fi⟩} for H2

such that

|ψ⟩ =
d

∑
i=1

√
ai |ei⟩ ⊗ | fi⟩ ,

where d = min(dim(H1), dim(H2)) and ai are non-negative real numbers satisfying
∑d

i=1 ai = 1. These numbers are known as the Schmidt coefficients.

Note that while any vector can be decomposed in a product basis as

|Ψ⟩ = ∑
ij

cij |ei⟩ ⊗ | f j⟩

the sum in the Schmidt decomposition runs over a single index and the Schmidt
vectors |ei⟩, | fi⟩ are determined by the state |Ψ⟩.
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If we want to consider the state of one of the subsystems, we use the partial
trace. For instance, let ρ ∈ S(H12), then the reduced state of the first subsystem is

ρ1 = Tr2(ρ) = ∑
i
⟨g(2)i | ρ |g(2)i ⟩ , (2.4)

where {|g(2)i ⟩} is an ONB for H2. Similarly, the reduced state of the other subsys-
tem is

ρ2 = Tr1(ρ) = ∑
i
⟨g(1)i | ρ |g(1)i ⟩ , (2.5)

where {|g(1)i ⟩} is an ONB for H1. Additionally, this can be generalized to an
arbitrary number of subsystems. The outcomes of measuring an observable on
a subsystem can then be calculated using the subsystem’s reduced state in the
normal fashion. For instance, the expected value of an observable A ∈ B(H1) is
⟨A⟩ρ1 = Tr(ρ1A).

With this in mind, we can relate the Schmidt decomposition back to the reduced
states: for ρ = |ψ⟩ ⟨ψ| with |ψ⟩ as defined in Theorem 2, we find

ρ1 = ∑
i

ai |ei⟩ ⟨ei|

and
ρ2 = ∑

i
ai | fi⟩ ⟨ fi| .

Therefore, the Schmidt vectors {|ei⟩} and {| fi⟩} are the eigenvectors for the
partial states and the eigenvalues are the corresponding Schmidt coefficients {ai}.
Overall, each reduced state is in its spectral decomposition.

A density operator ρ ∈ S(H12) is a product operator if

ρ = ρ1 ⊗ ρ2

for (possibly mixed) density operators ρ1 ∈ S(H1), ρ2 ∈ S(H2). A separable
density operator can be expressed as a sum of product operators, i.e.,

ρ = ∑
i

piρ
(1)
i ⊗ ρ

(2)
i

for ρ
(1)
i ∈ S(H1), ρ

(2)
i ∈ S(H2), pi ∈ R such that ∑i pi = 1. And, finally, a density

operator is entangled if it cannot be expressed as a convex combination in this
manner.

For a pure state |Ψ⟩ ∈ H12 there is a single meaningful entanglement measure:
the entropy of entanglement [139]:

Ent(|Ψ⟩ ⟨Ψ|) := S(ρ1) = S(ρ2),

where S(ρ) := −Tr(ρlog(ρ)) is the von-Neumann entropy, and ρ1, ρ2 are the
reduced states of |Ψ⟩ ⟨Ψ|. Using the Schmidt decomposition, we can see that

S(ρ) = −∑
i

ailog(ai).
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For mixed states there is a broad range of measures [139], none of which are clearly
superior to the others. There is, however, some very rich theory surrounding
them.

When applying an operator A ∈ S(H12) that is not a tensor product of two
operators, A ̸= A1 ⊗ A2, to a product vector, one may obtain an entangled one.
An example of this is the two qubits controlled-NOT (CNOT) gate:

CNOT = |0⟩ ⟨0| ⊗ 1 + |1⟩ ⟨1| ⊗ σx,

which flips the second qubit (through application of σx) if the first qubit is in the
|1⟩ state. To see that this can create entanglement, consider its application to the
product state |+⟩ ⊗ |0⟩ = 1√

2
(|0⟩+ |1⟩)⊗ |0⟩:

CNOT |+⟩ ⊗ |0⟩ = 1√
2
(|00⟩+ |11⟩),

which is precisely one of the maximally entangled Bell state that we introduced
earlier!

The final concept about bipartite quantum systems that we wish to present is
purification: Let ρ ∈ S(H) be a density operator with spectral decomposition

ρ = ∑
i

pi |i⟩ ⟨i| .

We can define a pure state

|ψ⟩ := ∑
i

√
pi |i⟩ ⊗ |i⟩

on the extended Hilbert space H⊗H such that

ρ = Tr2(|ψ⟩ ⟨ψ|).

This state is the purification of the mixed state ρ. So purification tells us that we
can imagine any mixed state as a pure state on an extended space. This highlights
the rich connection between quantum open systems and mixed states: we can
imagine the universe as a closed system in which we get nice unitary dynamics
involving pure states, but, in any physical experiment, we deal with a small part
of this closed system. This results in open dynamics with mixed states instead.

2.1.3 Continuous Variable Systems

In this section we outline the fundamentals of continuous variable (CV) quantum
systems [24, 110, 146]; the simplest of which is the simple harmonic oscillator.
These systems are particularly important in quantum mechanics as many physical
systems can be modelled as simple harmonics oscillators around their minimum
energy. Additionally, the state of light as described in quantum optics is expressed
in the same framework. Finally, they are particularly relevant to this thesis for
two reasons:

1. The quantum Markov chain, introduced in section 2.3.1, can be seen as a
discrete time version of a quantum optical system.
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2. The quantum local asymptotic normality (Quantum local asymptotic nor-
mality (QLAN)) theory introduced in section 3.2.1 shows that n copies of a
state |ψ⟩⊗n can be mapped into a continuous variable state in a statistical
sense. This theory is utilized in chapters 5 and 6.

This motivates their introduction.
The Hilbert space for a one-mode CV system is given by H = L2(R), where

L2(R) is the space of square-integrable functions. The one-mode system can
then be characterised in terms of two observables Q, P ∈ B(H), known as the
canonical coordinates, which satisfy the commutation relation [Q, P] = i. Physically,
these represent the position and momentum of a particle or an electromagnetic
field, where we have rescaled the coordinates so that they are dimensionless
for simplicity. An element from the Hilbert space then specifies a wavefunction
ψ(q) ∈ L2(R) and these operators can be defined by their action on a wavefunc-
tion:

Qψ(q) = qψ(q), Pψ(q) = −i
dψ

dq
(q).

The probability of finding the system in some region q1 ≤ q ≤ q2 is then given by

P
Q
ψ (q1 ≤ q ≤ q2) =

∫ q2

q1

|ψ(q)|2 dq.

To make a similar statement about P we would have to consider the Fourier
transform of the wavefunction ψ̃(p) ∈ H which swaps the roles of Q and P.

The canonical coordinates can be expressed in terms of the creation (a∗ ∈ B(H))
and annihilation (a ∈ B(H)) operators as

Q =
1√
2
(a + a∗), P =

−i√
2
(a − a∗), (2.6)

which satisfy the commutation relation [a, a∗] = 1. These operators generate an
ONB known as the Fock basis via the relations

a |n⟩ =
√

n |n − 1⟩ , a∗ |n⟩ =
√

n + 1 |n + 1⟩ ,

where n ∈ N and we identify |0⟩ with the ground state of the system. In quantum
optics a Fock state |n⟩ can be identified as the state with n photons (quanta of
energy), so the creation/annihilation operators effectively add/remove a photon
respectively. For general CV systems they add/remove excitations instead. The
wavefunction corresponding to a Fock state |n⟩ is

ψn(q) =
Hn(q)e−q2/2

(
√

π2mm!)1/2
,

where Hn are the Hermite polynomials.
Note that the creation and annihilation operators are not observables, so cannot

be measured. However, the number operator N := a∗a is self-adjoint by construc-
tion and so can be directly measured. Additionally, its eigenvectors are the Fock
states N|n⟩ = n|n⟩. Given a state |ψ⟩ = ∑∞

n=0 cn |n⟩ with ∑∞
n=0 |cn|2 = 1, the

probability of obtaining the outcome n (counting n photons in quantum optics)
is p(n) = |cn|2 and the expectation value of the number operator is the average
number of excitations in the system: ⟨N⟩ = ∑∞

n=0 |cn|2n.
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This defines the pure states of a CV system. We can then define density oper-
ators ρ ∈ S(H) in a similar manner to in section 2.1.1 by considering statistical
mixtures of pure density operators.

The most important states in quantum optics are the coherent states, which are
the eigenstates of the annihilation operator:

a |α⟩ = α |α⟩ , α ∈ C

and can be generated by applying the displacement operator D(α) := exp(αa∗ −
ᾱa) to the vacuum state, i.e., |α⟩ = D(α) |0⟩. In terms of the Fock basis, they can
be expressed as

|α⟩ = exp(−|α|2
2

)
∞

∑
n=0

αn
√

n!
|n⟩ .

When we measure the Number operator with respect to a coherent state, we find
the following:

1. The outcome n has distribution Pα(n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2
n! .

2. The expected value is ⟨N⟩α = |α|2.

3. The variance is equal to the expected value: Var(N) = |α|2.

These are all the hallmarks of a Poisson distribution with intensity |α|2, so, in
summary, photon counting with respect to a coherent state produces a Poisson
distributed number of photons.

To see why these states are useful, consider measuring the canonical coor-
dinates Q, P with respect to a coherent state. The expectation values of each
coordinate are

⟨Q⟩|α⟩ =
(α + ᾱ)√

2
=

√
2Re(α) (2.7)

⟨P⟩|α⟩ = −i
(α − ᾱ)√

2
=

√
2Im(α), (2.8)

where Re(·) and Im(·) denote the real and imaginary parts. Therefore, measuring
a canonical coordinate isolates the real or imaginary part of α. Additionally,

〈
Q2〉

|α⟩ =
1
2
〈
(a + a∗)2〉

|α⟩

=
1
2
〈

a2 + (a∗)2 + 1 + 2a∗a
〉
|α⟩

=
1
2
(α2 + (α)2 + 1 + |α|2)

=
1
2
(1 + 4Re(α)2),

〈
P2〉

|α⟩ =
1
2
(1 + 4Im(α2)),

where we use the commutation relation [a, a∗] = 1 on line 2 and the calculation for〈
P2〉

|α⟩ is similar to the first calculation. Therefore, the corresponding variances
are

Var|α⟩(Q) =
〈

Q2〉
|α⟩ − ⟨Q⟩2

|α⟩ =
1
2

, (2.9)

Var|α⟩(P) =
〈

P2〉
|α⟩ − ⟨P⟩2

|α⟩ =
1
2

. (2.10)
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The minimum variance of two observables A and B with respect to a state |ψ⟩ is
bounded by the Heisenberg uncertainty principle:

Var|α⟩(A)Var|α⟩(B) ≥ 1
4
| ⟨[A, B]⟩|ψ⟩ |2.

In this case, Var|α⟩(Q)Var|α⟩(P) ≥ 1
4 when we substitute in their commutation

relation. In fact, from the calculations above we know that this product satu-
rates this inequality. Therefore, coherent states represent states with minimal
uncertainty.

A convenient representation of CV states is in terms of their Wigner function
which plays the role of a joint probability distribution of Q and P. Since these
observables do not commute, they cannot be simultaneously measured. Therefore,
the Wigner function is not a bona fide joint probability distribution. Indeed, it can
take negative values in places, but shares other properties with a joint probability
distribution. In order to define the Wigner function, it is easier to first define the
characteristic function of a density operator ρ ∈ S(L2(R)):

W̃ρ(u, v) := Tr(ρ exp(−iuQ − ivP)).

This is the quantum Fourier transform of the density operator. The Wigner
function of a state ρ ∈ S(H) is then defined as the inverse Fourier transform of
this:

Wρ(q, p) :=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
W̃ρ(u, v)exp(iuq + ivp)dudv. (2.11)

A property that this shares with a joint probability density is we can recover the
marginal distributions for Q and P by integrating over the possible values of the
other operator. For instance,

⟨q|ρ|q⟩ =
∫ ∞

−∞
Wρ(q, p)dp.

To define Gaussian states, we typically group the canonical coordinates to-
gether as R = (Q, P) so that we can express the covariance matrix as

σkl(ρ) =
1
2
⟨{Rk, Rl}⟩ρ − ⟨Rk⟩ρ ⟨Rl⟩ρ .

The uncertainty principle can then be encoded in the condition

det(σ) ≥ 1
4

,

where det(·) denotes the determinant. Additionally, we define the expectation
value of R as ⟨R⟩ρ = (⟨Q⟩ρ , ⟨P⟩ρ). A state ρ is then Gaussian if its Wigner function
is a Gaussian probability density, i.e., it is of the form

Wρ(q, p) =
1

2π
√

det(σ(ρ))
e−

1
2 (r−⟨R⟩ρ)

Tσ−1(ρ)(r−⟨R⟩ρ), r = (q, p).

Gaussian states include coherent states, but also squeezed states and thermal
states. Squeezed states still saturate the uncertainty principle with det(σ) = 1

4 ,
but they ’squeeze’ the two variances Var(Q) and Var(P). This lowers one at
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the cost of raising the other, so they are often more useful when we are more
interested in one of the canonical coordinates over the other. Thermal states are
generally mixed states that do not saturate the uncertainty relation, but their
Wigner function still has a Gaussian shape around their mean.

If we want to consider a m-mode continuous variable system, then it generalises
quite naturally: the system is described by canonical coordinates Q1, ..., Qm, P1, ..., Pm ∈
B(H) that satisfy the commutation relations

[Qi, Pj] = iδij, [Qi, Qj] = [Pi, Pj] = 0.

Each mode has corresponding creation/annihilation operators satisfying

[ai, a∗j ] = δij, [ai, aj] = [a∗i , a∗j ] = 0

that generates a Fock basis {|n⟩ : n = (n1, ..., nm) ∈ Zm} via

ai |n⟩ =
√

ni |(n1, ..., ni + 1, ..., nm))⟩ ,

a∗i |n⟩ =
√

ni + 1 |(n1, ..., ni + 1, ..., nm)⟩ .

Finally, we can define a m-mode coherent state |α⟩ such that

ai |α⟩ = αi |α⟩ ,

which we can express as a tensor product of one-mode coherent states

|α⟩ = |α1⟩ ⊗ ... ⊗ |αm⟩

to recover an expression in terms of the Fock basis of each mode.
A n-mode Gaussian state generalizes simply from the one-mode example:

grouping together Qs and Ps as R = (Q1, P1, ..., Qn, Pn), we can write

W(r) =
1

(2π)n
√

det(σ)
e−

1
2 (r−⟨R⟩ρ)

Tσ−1(ρ)(r−⟨R⟩ρ)

with the constraint on the covariance det(σ) ≥ (1/4)n

2.2 Q U A N T U M C H A N N E L S

In this section we introduce quantum channels [30, 54, 94, 103, 127, 175], highlight-
ing the properties that are particularly relevant to this thesis. The first property
that we need to discuss is positivity: a linear map T : B(H) → B(H) is positive if
T(A) ≥ 0 for all A ≥ 0.

With this in mind, we can proceed with the definition of a quantum channel:

Definition 2 (Quantum channels). A quantum channel is a linear map T : B(H1) →
B(H2) that satisfies the following two conditions:

1. Trace preservation: Tr(T(ρ)) = Tr(ρ) = 1 for all ρ ∈ S(H1).

2. Complete positivity: T ⊗ idn is positive for all n ∈ N, where idn is the n-
dimensional identity channel.
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A linear map that satisfies both these conditions is called completely positive trace
preserving (CPTP).

We will assume that H = H1 = H2 for simplicity. Additionally, We will denote
the space of all quantum channels on Hilbert space H by CPTP(H).

Trace preservation and positivity ensure that if ρ ∈ S(H) then T(ρ) ∈ S(H).
That is, it maps valid density operators onto valid density operators. However, it
turns out that the map T ∈ CPTP(H1) is physical only if the stronger complete
positivity condition holds. Indeed consider applying the channel T to the left
side of the bipartite system H = H1 ⊗ Cn, while no action is taken on the right
side. Then the joint transformation is given by T ⊗ idn which needs to be positive
as well on physical grounds. In section 2.2.1 we discuss the Choi-Jamiolkowski
correspondence which provides a simple way to check whether a map is a
channel.

The standard example of a linear map that is positive but not completely
positive is the qubit transposition with respect to the standard basis.

T(·) =
1

∑
i,j=0

⟨j| · |i⟩ |i⟩ ⟨j| .

One can verify that if A is positive then T(A) is also positive as is has the same
eigenvalues as A.

However, consider applying the transpose to the first qubit of the Bell state
|Φ+⟩ = 1√

2
(|00⟩+ |11⟩). We then have

ρ = |ψ⟩ ⟨ψ| = 1
2




1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1




→ T ⊗ id2(ρ) =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




If we calculate the eigenvalues of this second matrix, we find one negative
eigenvalue −1. Therefore, T ⊗ id cannot be positive and so T is not completely
positive.

With this initial definition out of the way, we move onto discussing the common
representations of quantum channels.

2.2.1 Representations

The most common representation of a quantum channel is the well known Kraus
representation:

Theorem 3 (Kraus representation). Let T ∈ CPTP(H) be a quantum channel. For
some m ≤ d2, we can express T as

T(·) =
m

∑
i=1

Ki · K∗
i , (2.12)

where the Kraus operators {Ki ∈ B(H) : i = 1, ..., m} satisfy the condition ∑m
i=1 K∗

i Ki =

1.
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The structure of the Kraus representation ensures complete positivity, while
the condition on the Kraus operators ensures normalization as Tr(T(ρ)) =

∑m
i=1 Tr(ρK∗

i Ki) = Tr(ρ) = 1 for all ρ ∈ S(H).
This is the representation of a quantum channel in the Schrödinger picture,

with channels acting on density operators. However, we can also consider the
Heisenberg picture, where the channel acts on operators A ∈ B(H) instead. The
corresponding representation is then obvious from the properties of the trace

Tr(T(ρ)A) =
m

∑
i=1

Tr(KiρK∗
i A) =

m

∑
i=1

Tr(ρK∗
i AKi),

so the corresponding channel in the Heisenberg picture is given by T∗(·) =

∑r
i=1 K∗

i · Ki. Complete positivity is equivalent in both pictures, but the condition
for trace preservation in the Heisenberg picture is T∗(1) = 1. We denote the space
of all channels on a Hilbert space H in the Heisenberg picture as T∗(H).

There is a useful correspondence between quantum channels and operators on
a larger space, which is known as the Choi-Jamiolkowski isomorphism:

Theorem 4 (Choi-Jamiolkowski). The two equations

τ = (T ⊗ idd)(|Ω⟩ ⟨Ω|), Tr(AT(B)) = dTr(τA ⊗ BT)

provide a one-to-one correspondence between linear maps T : B(Cd) → B(Cd) and
operators τ ∈ B(Cd ⊗ Cd), for all A, B ∈ B(Cd) and the d-dimensional maximally
entangled state |Ω⟩ := 1√

d ∑d
i=1 |ii⟩. The maps T 7→ τ and τ 7→ T defined by these

equations are mutual inverses with the following correspondences:

1. Complete positivity: T∗ is CP iff τ ≥ 0

2. Trace preserving: T∗(1) = 1 iff Tr1(τ) = 1/d

In summary, as a linear map, a quantum channel can be represented as an
operator acting on a larger space of dimension d2, with this link provided by
the Choi-Jamiolkowski isomorphism. Additionally, this provides a much easier
method for checking whether a linear map T is completely positive; we just check
that τ is positive. Furthermore, the minimal number of Kraus operators is simply
the rank of this operator r := rank(τ). This is known as the Kraus rank, and must
satisfy r ≤ d2 since this is the dimension of the Choi state’s Hilbert space. This
minimal representation, however, is not unique. Additionally, in Theorem 3 we
specified that there is some m ≤ d2 corresponding to a Kraus representation, but
we can find a Kraus representation for any m ≥ r in general.

We have only included the correspondences that are relevant to quantum
channels here; for a full list, we refer to the lecture notes by M. Wolf [175].

Quantum channels can be related back to quantum open systems via the
Stinespring representation:

Theorem 5 (Stinespring representation). Let T ∈ CPTP(Cd) be a quantum channel
with Kraus rank r ≤ d2. Then for every m ≥ r there is an isometry V : Cd → Cd ⊗ Cm

such that
T(ρ) = TrE(VρV∗), ∀ρ ∈ S(Cd), (2.13)

where the partial trace is taken over the “environment” Cm. Alternatively, in the Heisen-
berg picture

T∗(A) = V∗(A ⊗ 1r)V, ∀A ∈ B(Cd). (2.14)
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Note: the isometry performs the role of both embedding the system into a larger
space and evolving the new system and environment with a unitary operator.
For instance, let m = r, then we can write

V |ψ⟩ = U |ψ⟩ ⊗ |χ⟩
for an environment state |χ⟩ ∈ Cr, unitary U ∈ B(Cd ⊗ Cm) and all states
|ψ⟩ ∈ Cd. This isometry must still preserve the trace of a density operator, so it
satisfies V∗V = 1d.

The Kraus representation can then be recovered from the Stinespring represen-
tation by specifying an ONB {|i⟩E : i = 1, ..., r} for the environment with

Ki = ⟨i|E U |χ⟩ .

If we perform a projective measurement on the environment with respect to
this ONB, we can specify it’s effect on our system: let ρ ∈ S(H) be the system’s
reduced state. Outcome i occurs with probability

p(i) = Tr(ρK∗
i Ki) (2.15)

and the posterior state of the system is

ρ′ =
KiρK∗

i
Tr(KiρK∗

i )
. (2.16)

In summary, a set of Kraus operators specify the effect on a system of a projec-
tive measurement on its environment. The outcome i ∈ {1, ..., r}, therefore, no
longer corresponds with the eigenvalue of an observable. Instead, it specifies the
Kraus operator that is applied to the system.

This is a very natural form of measurement for many realistic scenarios, where
we do not directly observe a system. Instead we couple the system to another
system that we refer to as the measurement device. This measurement device
acts as the environment, so these two systems evolve together according to a
unitary U. We then measure this measurement device to indirectly observe the
main system.

In equation (2.15), we can replace the product of Kraus operators with a positive
operator Mi = K∗

i Ki, where ∑i Mi = 1 from the normalization condition of the
Kraus operators. These operators still specify the probability of observing an
index i through

p(i) = Tr(ρMi).

However, we lose the connection to the Kraus operators, so we cannot specify
the posterior state. This is not a problem in many scenarios, where measurement
corresponds with our final action on a system. For instance, this is often the case
in parameter estimation, where we use the outcomes of a final measurement to
estimation some parameters. This idea generalizes to a positive operator-valued
measure (POVM):

Definition 3 (Positive operator-valued measure). Let M = {Mi ∈ B(H) : i =
1, . . . , m} be a set of positive operators on Hilbert space H satisfying the normalization
condition ∑m

i=1 Mi = 1. Then M specifies a final measurement on any state ρ ∈ S(H)

with outcomes i ∈ {1, . . . , m} and corresponding probabilities

p(i) = Tr(ρMi).
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This provides the most general description of a projective measurement on an
environment since we do not have to specify anything about the environment’s
structure or the projective measurement that we perform, we just specify the set
of postive operators. The following theorem then provides the connection back
to a projective measurement on some environment in manner to the Stinespring
representation:

Theorem 6 (Naimark theorem). Let {M1, ..., Mm} be a POVM. There exists a Hilbert
space H′, a projective measurement {P1, ..., Pm} and an isometry V : H → H′ such that

Mi = V∗PiV

for i = 1, ..., m.

That is, there exists a choice of embedding into an environment and a projective
measurement on said environment that can realise any POVM.

2.2.2 Common Properties

The following properties [8, 30, 54] all concern the fixed points of quantum
channels, which are related to the channel’s eigenvalues. Therefore, it is prudent
to first introduce these concepts in the context of quantum channels: the Choi-
Jamiolkowski isomorphism demonstrates that a quantum channel T : B(Cd) →
B(Cd) can be considered a linear map on a space of dimension d2, where this
linear map is the Choi state τ ∈ B(Cd ⊗ Cd). This is not the standard choice
of linear map however: the operators form a vector space with respect to the
Hilbert-Schmidt inner product:

Definition 4 (Hilbert-Schmidt inner product). For a Hilbert space H = Cd and
operators A, B ∈ B(Cd), the associated inner product is the Hilbert-Schmidt inner
product

⟨A, B⟩HS := Tr(A∗B),

where A∗ denotes the adjoint (conjugate transpose) of A and Tr(·) denotes the trace.

Provided this inner product, we can specify a orthonormal basis (ONB) on the
vector space as a set of operators {Ei; i = 1, ..., d2} that satisfy

〈
Ei, Ej

〉
HS = δij. We

can then vectorize the quantum channel as

T ij = Tr(E∗
i T(Ej)). (2.17)

The standard choice of ONB is Eα = |k⟩ ⟨l| for α = (k, l) and k, l = 1, ..., d, i.e.,
a matrix of zeroes with element α = (k, l) set to 1. Substituting this ONB and a
minimal Kraus representation {Ki; i = 1, ..., r} into equation (2.17), we find

T(k,l),(m,n) =
r

∑
i=1

⟨k|Ki |m⟩ ⟨n|K∗
i |l⟩

=
r

∑
i=1

⟨k|Ki |m⟩ ⟨l| K̄i |n⟩
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where the K̄i denotes entry-wise complex conjugation of Ki. This implies

T =
r

∑
i=1

Ki ⊗ K̄i. (2.18)

Having successfully vectorized the channel, its eigenvalues and eigenvectors can
be found as the solution to the characteristic equation

det(λ1 −
r

∑
i=1

Ki ⊗ K̄i) = 0,

where det(·) denotes the determinant.
In the language of linear algebra, it has at most d2 distinct eigenvalues λ ∈ C

with corresponding eigenvectors A ∈ B(H) that satisfy

T(A) = λA. (2.19)

Since the channel acts on operators, these eigenvectors are actually operators A ∈
B(Cd), not vectors |ψ⟩ ∈ H as would be the case for an operator or observable.
Therefore, we will instead refer to them as eigenoperators to avoid confusion.
Similarly, we use λ for the eigenvalues of a quantum channel in order to avoid
confusing them with the eigenvalues of an operator as introduced in section 2.1.1.

What values can these eigenvalues take? The answer in linear algebra is given
by Perron-Frobenius theory, so we are interested in its applications to the specific
case of quantum channels. In particular there are 3 key results, which we group
together for convenience:

Theorem 7 (Perron-Frobenius Results). For a quantum channel T ∈ CPTP(H) the
following results hold:

1. Density eigenoperator: The channel has a density operator ρ ∈ S(H) as an
eigenoperator with corresponding eigenvalue λ = 1,

2. Conjugate pairs: If λ is an eigenvalue of channel T ∈ CPTP(H) with eigenoper-
ator A ∈ B(H) then λ∗ is also an eigenvalue with corresponding eigenoperator
A∗,

3. Unit circle: The eigenvalues of a channel T ∈ CPTP(H) all satisfy |λ| ≤ 1.

The proof of 2. is obvious from the Kraus representation. Additionally, the proof
of 3. is obvious from the Stinespring representation. The proof of 1., however, is
not obvious and so is worth including [172]:

Proof. Let T ∈ CPTP(H) be our quantum channel. For every non-negative inte-
ger n, define a map ϕn ∈ CPTP(H) as

ϕn(A) =
1
2n

2n−1

∑
k=0

Tk(A)

for each A ∈ B(H), and define the set

Cn = {ϕn(ρ) : ρ ∈ S(H)}.
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As T is linear, positive and trace-preserving, so is ϕn. It then follows that Cn is a
compact and convex subset of S(H). By this convexity of the set Cn, it follows
that

ϕn+1(ρ) =
1
2

ϕn(ρ) +
1
2

ϕn(T2n
(ρ)) ∈ Cn

for every ρ ∈ S(H). Therefore, Cn+1 ⊆ Cn for every n. As each Cn is compact and
Cn+1 ⊆ Cn for all n, it follows that there must exist an element

ρ ∈ C0 ∩ C1 ∩ ... (2.20)

contained in the intersection of all of these sets.
Now, fix any choice of ρ satisfying (2.20). For an arbitrary non-negative integer

n, it holds that ρ = ϕn(σ) for some choice of σ ∈ S(H), and therefore,

T(ρ)− ρ = T(ϕn(σ))− ϕn(σ) =
T2n(σ)− σ

2n .

As the trace distance between two density operators cannot exceed 2, it follows
that

||T(ρ)− ρ||1 ≤ 1
2n−1 ,

where || · || is the trace distance. This bound holds for every n, which implies
||T(ρ)− ρ||1 = 0, and, therefore, T(ρ) = ρ as required.

With these three results in mind, we define the first potential property of a
quantum channel:

Definition 5 (Ergodicity). A quantum channel T ∈ CPTP(H) is ergodic if there exists
a unique eigenoperator ρ∗ ∈ B(H) with eigenvalue λ = 1.

That is, there is only one eigenoperator with eigenvalue 1. The following theorem
gives more insight into the properties of ergodic channels and could be used as
an alternative definition of ergodicity.

Theorem 8. A quantum channel T ∈ CPTP(H) is ergodic iff there exists a unique
fixed state ρ∗ ∈ S(H) such that

lim
N→∞

||ΣN(ρ)− ρ∗||1 = 0, ∀ρ ∈ S(H)

where

ΣN(ρ) :=
1

N + 1

N

∑
n=0

Tn(ρ)

and ||A||1 := Tr(
√

A∗A) is the trace norm.

This object ΣN(·) is a convex combination of quantum channels, so it is also a
valid quantum channel. The state ΣN(ρ) then represents the average state over
repeated applications of the channel, starting with initial state ρ ∈ S(H). This
alternative definition tells us that the average state converges to the fixed point
ρ∗. Accordingly, predictions about the average expectation value of an observable
A ∈ B(H) in the limit N → ∞ can be made from the fixed point alone since

lim
N→∞

Tr(ΣN(ρ)A) = Tr(ρ∗A),
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however, there is no guarantee that the actual state TN(ρ) converges to this fixed
point. In fact, for an arbitrary initial state we expect some periodic behaviour
that averages out to the fixed point. Of course, if we started in the fixed point we
would have Tn(ρ∗) = ρ∗ for all n ∈ N and the state would never change.

An example of an ergodic channel in terms of qubits is the following flipping
channel:

T(·) = ⟨0| · |0⟩ |1⟩⟨1|+ ⟨1| · |1⟩ |0⟩⟨0|.
This channel immediately kills all off-diagonal elements of a state ρ ∈ S(H),
but the diagonal elements keep flipping. In terms of the state’s Bloch vector, the
channel maps r = (rx, ry, rz) → (0, 0,−rz) with repeated applications continuing
to flip this rz component. Therefore, the dynamics never settle down for an
arbitrary initial state. Instead, the fixed point corresponds with Bloch vector r∗ =

(0, 0, 0) since there is no rz to flip. This is the density operator ρ∗ = 1
2 (|0⟩ ⟨0|+

|1⟩ ⟨1|). Additionally, any state with rz = 0 will converge to this stationary state
after a single application of the channel.

The next property then corresponds with the case where we get actual conver-
gence to the fixed point:

Definition 6 (Mixing). A quantum channel T ∈ CPTP(H) is mixing if the fixed point
ρ∗ ∈ S(H) is the only eigenoperator with eigenvalue λ such that

|λ| = 1.

In analogue to the alternative definition of ergodicity presented in Theorem 8,
we have

lim
n→∞

||Tn(ρ)− ρ∗||1 = 0

for all ρ ∈ S(H), so we often refer to the fixed point as the stationary state.
An example of a mixing quantum channel is a probabilistic state replacement

channel that replaces an initial state with a pure state ρ = |ψ⟩ ⟨ψ|, |ψ⟩ ∈ H, with
some probability p ∈ (0, 1)

T(·) = pTr(·)ρ + (1 − p)id(·)

This density operator ρ is clearly a fixed point. Additionally, since limn→∞ pn = 0,
the initial state is guaranteed to converge to ρ. Another common example is a
convex combination of an ergodic quantum channel T and the identity channel

T′(·) = pT(·) + (1 − p)id(·),

which one can show is mixing for all p ∈ (0, 1) [30].
The final two properties are then special cases of ergodicity and mixing respec-

tively, where we also insist that the fixed point is of maximal rank:

Definition 7 (Irreducibility). A quantum channel T ∈ CPTP(H) is irreducible if there
is no non-trivial subspace of H that is left invariant by its action. That is, if P ∈ B(H)

is an orthogonal projector such that

T(PS(H)P) ⊆ PS(H)P

then P ∈ {0, 1}.
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Irreducibility ensures there are no subspaces that ’trap’ the action of the quan-
tum channel, so repeated applications of the channel can explore the whole
space. This is best understood through the following corollary, which relates
irreducibility back to properties of the eigenvectors of the channel:

Corollary 1 (Irreducibility). An irreducible quantum channel T ∈ CPTP(H) is
ergodic with fixed point ρ∗ ∈ S(H) and this fixed point is strictly positive (faithful)
ρ∗ > 0.

So repeated applications of an irreducible channel may still result in some
transient behaviour, but the average state will converge to the fixed point as
before. Additionally, since there are no non-trivial subspaces, the fixed point
must be of maximal rank. This is equivalent to stating that the fixed point is
strictly positive, therefore, we can also specify the behaviour of the average
state’s rank in the asymptotic limit. The flipping channel that we presented as an
example for ergodicity is also irreducible since its fixed point clearly has maximal
rank.

Definition 8 (Primitivity). A quantum channel T : B(H) → B(H) is primitive if it
is mixing with stationary state ρ∗ ∈ S(H) and this stationary state is strictly positive
(faithful) ρ∗ > 0.

In summary, a primitive quantum channel has guaranteed convergence to
a stationary state ρ∗ and this stationary state is strictly positive ρ∗ > 0. This
corresponds with the state being maximal rank, which is useful in proofs as we
often rely on the state’s rank not spontaneously changing at any point. With a
primitive channel, we can guarantee the channel’s rank does not change in the
asymptotic limit.

An example of a primitive channel is the state replacement channel we used
as an example for a mixing channel, where we also require that ρ ≥ 0. Another
related example is the depolarizing channel, which replaces the state of a qubit
with the completely mixed state 1/2 with probability p:

T(·) = pTr(·)1
2
+ (1 − p)id(·). (2.21)

In terms of the qubit’s Bloch vector, this channel has the effect r = (rx, ry, rz) →
(1− p) · r, so repeated applications cause the Bloch vector to vanish. Additionally,
we can easily specify the channels corresponding Kraus operators: consider the
Bloch representation of an arbitrary qubit as introduced in equation (2.3). This
implies that

1
2
=

1
4
[
ρ + σxρσx + σyρσy + σzρσz

]

for arbitrary ρ ∈ S(C2). Utilizing this with equation (2.21), we find

T(ρ) =
p
4
[
ρ + σxρσx + σyρσy + σZρσz

]
+ (1 − p)ρ

= (1 − 3p
4
)ρ +

p
4
[
σxρσx + σyρσy + σzρσz

]
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from which we can identify

K1 =

√
1 − 3p

4
1, K2 =

√
p

2
σx

K3 =

√
p

2
σy, K4 =

√
p

2
σz.

Depolarization is a common form of noise in quantum systems, so this is a
particularly important example of a primitive channel.

2.3 O P E N Q U A N T U M S Y S T E M S A N D Q U A N T U M M A R K O V C H A I N S

In this section we introduce the setting used throughout this thesis: quantum
Markov chains (QMCs). These are discrete-time systems, so we then discuss how
we can take their continuous time limit to produce the Lindbladian description
of open quantum systems. This is followed by a brief description of some other
open quantum systems.

2.3.1 Quantum Markov Chains

A quantum Markov chain (QMC) is the quantum analogue of a classical Markov
chain. In a classical Markov chain, a system is described by a set of possible
states and transition probabilities between each state. Since it relies on transition
probabilities, this is a stochastic process, and the current state jumps from state to
state in each step. For example, consider a simple model of the weather: let wi be
the current state of the weather on day i with possible states W = {′Sun′,′ Rain′}.
For our transition probabilities, let us assume that if it rained today, then there
is a 20% chance it’ll be sunny tomorrow, and if it was sunny then there is a
40% chance it’ll rain tomorrow. What we observe is a sequence (wi) such as
(′Rain′,′ Rain′,′ Sun′,′ Sun′), and this is the classical Markov chain. Crucially, the
probabilities of each possible transition depend on only the current state of the
system; a stochastic process that satisfies this property is known as Markovian.

A QMC is a discrete-time input-output quantum system in which a succession
of input systems (noise units) identically prepared in state |χ⟩ ∈ Ck interact with
another SOI Cd. For clarity, we will refer to these input systems as input units. If
|ψ⟩ ∈ Cd is the initial state of the SOI, then the joint state after n interactions is

|Ψ(n)⟩ = U(n)...U(1) |ψ⟩ ⊗ |χ⟩⊗n ,

where U(n) is the unitary on Cd ⊗ Ck that describes the interaction between the
SOI and the n-th input unit.

This can be expressed as the following by specifying a basis {|ij⟩ ; ij = 1, ..., k}
for each noise unit:

|Ψ(n)⟩ = ∑
i1,...,in

Kin ...Ki1 |ψ⟩ ⊗ |i1 ⊗ ... ⊗ in⟩

where Kij = ⟨ij|U|χ⟩ specifies a Kraus operator. In general this ONB {|ij⟩} does
not have to be the same for each input unit, however, if we use the same ONB, we
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find that the reduced state of our SOI before measurement is given by a quantum
channel repeatedly applied to the SOI’s initial state:

ρ(n) = ∑
i1,...,in

Kin ...Ki1 |ψ⟩ ⟨ψ|K∗
i1 ...K∗

in
= Tn(|ψ⟩ ⟨ψ|),

where T is the quantum channel corresponding to Kraus operators Ki = ⟨i|U |χ⟩
with i = 1, . . . , k and Tn(·) represents n repeated applications of the channel.

At this stage everything can be described in terms of pure states, however,
we now want to measure the environment to indirectly observe the SOI. When
we perform this measurement with respect to the ONB specified above, the
(not-normalized) conditional state of our SOI given we observe i = (i1, ..., in) is

ρ(n, i) = Kin ...Ki1 |ψ⟩ ⟨ψ|K∗
i1 ...K∗

in

Additionally, the probability of observing this sequence i is Tr(ρ(n, i)).
If we consider a single step, then we have probabilities p(i1) = Tr(Ki1 ρ0K∗

i1),
i1 ∈ 1, ..., k, and corresponding (not-normalized) posterior states

ρ(1, i1) = Ki1 ρ0K∗
i1

as we found in section 2.2.1. If we now consider an additional step, we find

p(i1, i2) = Tr(Ki2 Ki1 ρ0K∗
i1 K∗

i2) = Tr(Ki2 ρ(1, i1)K∗
i2)

for i1, i2 ∈ 1, ..., k and

ρ(2, i1, i2) = Ki2 Ki1 ρ0K∗
i1 K∗

i2 = Ki2 ρ(1, i1)K∗
i2

Similarly, p(i) = Tr(Kin ρ(n − 1, i1, ..., in−1)K∗
in
) and

ρ(n, i) = Kin ρ(n − 1, i1, ..., in−1)K∗
in−1

Therefore, we can always calculate the probabilities and possible posterior states
of the next step from the current state.

This is where we see the Markovian structure emerge, so we refer to this as a
quantum Markov chain in analogy to the classical case. This setup is perfectly
Markovian by construction since a new input unit is introduced in each step; this
ensures that only the current state of the system influences the next state as we
expect.

We now want to consider a QMCs continuous limit to demonstrate that we can
recover the master equation for a Markovian quantum open system [27, 119, 144].
To this end, we take Kraus operators (up to the first order in ∆t) of the form [177]

K1 = 1 − iH∆t − 1
2 ∑

i
L∗

i Li∆t, (2.22)

Ki = Li
√

∆t i = 2, ..., r, (2.23)

for a Hamiltonian H ∈ B(H) and (not necessarily Hermitian) jump operators
Li ∈ B(H). Since these Kraus operators are only specified up to the first order,
they do not satisfy the normalization condition. We could, however, correct
this by specifying the higher order terms and lim∆t→0 ∑i K∗

i Ki = 1 as expected.
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Additionally, we could allow both the Hamiltonian and jump operators to depend
on time, but we ignore this here for simplicity.

To derive a master equation for the evolution, consider the reduced state of the
SOI after a single step:

ρ(t + ∆t) =
r

∑
i=1

Kiρ(t)K∗
i .

Substituting in the Kraus operators from equations (2.22) and (2.23), one can
show that

∂tρ(t) = lim
∆t→0

ρ(t + ∆t)− ρ(t)
∆t

(2.24)

= −i[H, ρ(t)]− 1
2 ∑

i
{L∗

i Li, ρ(t)}+ Liρ(t)L∗
i , (2.25)

which is the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equation
[27, 119, 144] for quantum open systems. In particular, the operators Li specify
stochastic interactions between the system and its environment.

To elucidate this further, consider grouping together the terms of order ∆t, we
obtain

Heff := H +
i
2 ∑

i
L∗

i Li.

This effective Hamiltonian describes the conditional evolution of the system
given that no jumps has been emitted. This gives rise to a good interpretation
of the master equation: the SOI evolves under this effective Hamiltonian and
this evolution is interspersed with stochastic exchanges with the environment
governed by the jump operators Li. In particular, these terms L∗

i Li regulate energy
transfer between the system and environment due to the stochastic jumps. The
evolution of a pure state |ψ⟩ ∈ H given that jumps (i1, ..., in) were observed at
times (t1, ..., tn) is then

|ψ(t, i)⟩ = e−iHeff(t−tn)Lin e−iHeff(tn−tn−1)Lin−1 ...Li1 e−iHeff(t1) |ψ⟩ , t ≥ tn

up to normalization. And to find the reduced state of the SOI before measuring
the environment, we’d have to consider the integral over all possible jumps
occurring at all possible times:

ρ(t) =
∞

∑
k=0

∑
i1,...,ik

∫
e−iHeff(t−tn)Lin ...e−iHeff(t2−t1)Li1 e−iHefft1 ρ0 (2.26)

· eiHefft1 L∗
i1 eiHeff(t2−t1)...L∗

in
eiHeff(t−tn)dtdt1...dtk,

(2.27)

where ρ0 = |ψ⟩ ⟨ψ|.
This is the most common formalism of open quantum systems, describing

systems that are coupled to an environment under some reasonable assumptions
[119]. In particular, we assume that three approximations hold:

1. Born approximation - the coupling between the system and environment is
weak,
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2. Markov approximation - correlations between the system and environment
build up slowly and decay quickly ensuring the dynamics are Markovian
for small time scales,

3. Rotating wave approximation - high frequency terms in the interaction
picture can be neglected.

We refer to [119] for more details. Therefore, it describes many experimental
settings well as they are designed with minimising noise in mind, often cooling
down the apparatus, shielding it from external fields, etc. Alternative formalisms
of quantum open systems all start with some unitary evolution between a system
and an environment, then make different assumptions about the nature of this
interaction and environment.



3
PA R A M E T E R E S T I M A T I O N

In this chapter we introduce the necessary theory from both classical and quan-
tum estimation required for this thesis. As discussed in section 3.2, quantum
estimation reduces to classical estimation after measurement, therefore, the brief
review of classical estimation found in section 3.1 is helpful. This allows us to
introduce the common ideas shared between both types of estimation - mainly
estimators and the Cramér-Rao bound. In particular, we highlight some key
statistics and how they fit into estimation theory. We then introduce asymptotic
estimation schemes, which provide many tools that help us to construct optimal
estimators. Section 3.1.1 gives a non-technical introduction to one of these tools:
local asymptotic normality (LAN). LAN demonstrates that a model described by
independent samples from a given distribution becomes statistically equivalent
to one described by a single sample from a normal distribution in the asymptotic
limit of large sample size. This is a fundamental result in asymptotic statistics and
can be used in constructing optimal estimators. local asymptotic normality (LAN)
can be proven through two different methods, so we focus on sketching out both
these different proofs.

Section 3.2 introduces the basics of quantum parameter estimation. In quantum
estimation we usually focus on the quantum aspects of the estimation problem,
optimizing the choice of measurements and quantum states involved. Therefore,
we focus on the quantum side of the problem. We then discuss some of the
common frameworks for quantum estimation. Finally, we introduce the quantum
analogue of LAN in section 3.2.1

3.1 C L A S S I C A L E S T I M AT I O N

We start by introducing the following standard problem [3, 108, 151, 152, 170]. We
are given a sample from a random variable X taking value in a measurable space
(Ω, Σ), and we would like to infer a property of its distribution. In particular, we
assume that the distribution is known up to some parameters θ = (θ1, ..., θk) ∈
Θ ⊆ Rk; otherwise, the problem is intractable. That is,

X ∼ Pθ ∈ P ,

where ∼ denotes that X is distributed according to distribution Pθ, Θ is the
parameter space, and P = {Pθ : θ ∈ Θ} is known as the statistical model.
Additionally, we assume the derivatives of Pθ with respect to the parameters
exist so that the statistical manifold is smooth.

34
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These are good assumptions in many physical situations, where the under-
lying distributions are well understood. For instance, the Poisson distribution
characterizes ’rare’ events well, such as the rate at which earthquakes occur or
wait times in a queue. Additionally, in many situations the family of distributions
is obvious from the process producing the random variable.

An illustrative example of this that we will refer back to often is a coin toss,
which is clearly a Bernoulli trial X ∼ B(q) with possible outcomes ’Heads’
H ≡ 1 and ’Tails’ T ≡ 0. The corresponding probabilities are then pq(1) :=
Pq(X = 1) = q and pq(0) = 1 − q respectively, and the statistical model is
P = {Pq : 0 ≤ q ≤ 1}.

In this section we will assume that the random variable (RV) has discrete
outcomes for simplicity, but the theory can be extended to continuous random
variables. In a similar manner to the coin flip, the probability of obtaining outcome
x ∈ Ω in a general scenario is then pθ(x) := Pθ(X = x). We can define the
expected value of a real-valued function f (X) as

E( f (X)) := ∑
x∈Ω

p(x) f (x).

In particular the expected value of X is E(X) and the variance of X is Var(X) =

E(X2)− E(X)2.
If we have repeated access to the probability distribution, i.e., a random variable

X = (X1, ..., Xn) ∼ Pn
θ with

Pn
θ(X1 = x1, ..., Xn = xn) = Pθ(X1 = x1) · · ·Pθ(Xn = xn),

then we can generate an IID sample x = (x1, ..., xn) ∈ Ωn from which we want
to estimate the parameters. Our sample space Ωn for the coin toss would be
collections of individual flips, i.e., Ω2 = {HH, HT, TH, TT}.

From the random variable, we then calculate a statistic [3, 151]:

Definition 9 (Statistic). A statistic Z(X) is a measurable function that maps outcomes
x from the sample space Ω to values in another space Ω′, i.e., Z : Ω → Ω′

If we are interested in using a statistic to estimate the parameters, then Ω′ should
be the same as the parameter space Θ, but this does not have to be the case in
general. And this certainly is not the case outside of estimation; most statistics
are used to gain some insight about the underlying data. For instance, if the data
represents a population census, then we may want to calculate statistics such as
the proportion of the population over the age of 60 in order to inform healthcare
policy. Another example is hypothesis testing, where we would have Ω′ = {0, 1}
corresponding with whether we reject or approve some hypothesis.

Some examples of statistics are the sample mean X̄ := 1/n ∑n
i=1 Xi, the sample

variance 1/n ∑n
i=1(Xi − X̄)2 or a random function like Z(X1, ..., Xn) = X1 + X2,

but these are not necessarily insightful. In particular, this last statistic does not
even utilize all the data available. This leads us onto a key concept for statistics -
sufficiency [3, 151]:

Definition 10 (Sufficiency). A statistic Z(X) is sufficient for the parameters θ if the
conditional probability distribution given the value of the statistic

Pθ(X = x|Z(X) = z)
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does not depend on the parameters.

And the following theorem [3] is very useful for proving when a statistic is
sufficient:

Theorem 9 (Fisher-Neyman factorization). A statistic Z(X) is sufficient for θ iff for
all θ ∈ Θ,

Lθ(x) = f (Z(x), θ)g(x),

where Lθ(x) := Pθ(X = x) is the likelihood of sample x ∈ Ω, the function f (·) depends
on θ and the statistic Z(X), and the function g(·) does not depend on θ.

In particular, for IID random variables the likelihood is

Lθ(X) :=
n

∏
i=1

Pθ(Xi)

and for the coin toss we have

Lq(X) = q∑i Xi(1 − q)n−∑i Xi = qnX̄(1 − q)n(1−X̄),

so X̄ is a sufficient statistic for the coin toss by Theorem 9 with fq(X̄, X) =

qnX̄(1 − q)n(1−X̄) and g(X) = 1.
For a random variable X and sufficient statistic Z, we can write

Pθ(X = x) = P(X = x|Z = Z(x))Pθ(Z = Z(x)),

where P(X = x|Z(X) = Z(x)) does not depend on θ by the definition of a
sufficient statistic. Therefore, all the dependence on the parameters is captured in
the probability distribution of the sufficient statistic. In particular, if we know the
value of the sufficient statistic, then we capture all available information about
the unknown parameters. It is in this sense that a sufficient statistic is equivalent
to the original data. Additionally, to recreate a sample from the sufficient statistic
Z(X) = z, we could draw from the distribution P(X|Z(X) = z) which does
not depend on θ and so does not contain any information. The entire sample
is always trivially a sufficient statistic, but one can also show that many other
statistics are also sufficient.

This provides a natural progression onto estimators [3, 151, 170]:

Definition 11 (Estimators). An estimator θ̂ is a statistic that maps samples x from
the sample space Ω to values in the parameter space Θ. In addition, we call θ̂(x) =

(θ̂1(x), ..., θ̂k(x)) an estimate of θ.

Therefore, an estimator is simply a statistic that we would like to use to estimate
the parameters θ. Now, this definition leaves a lot to be desired:

1. It does not characterise the performance of the estimator at all.

2. It does not describe how to construct ’good’ estimators.

For instance, consider the coin toss again: an arbitrary estimator that assigns q̂ = 1
if X1 = 1 and q̂ = 0 if X1 = 0 is valid by this definition, but this clearly cannot
be optimal for all possible q since the estimator will never predict the correct
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value for 0 < q < 1. It also only utilizes the first outcome, so any information
about q contained in X2, ..., Xn is lost by this estimator. Therefore, we first need
to establish what criteria makes an estimator ’good’ in some sense, tackling this
first problem before considering how to construct estimators. A natural starting
point is to expect that ’good’ statistics are sufficient so that they capture all the
available information about the parameters. We also typically desire estimators
that are unbiased [3, 151, 170]:

Definition 12 (Unbiased Estimators). An estimator θ̂ for parameters θ ∈ Θ and
sample space Ω ⊆ Rk corresponding to a statistical model P is unbiased if

E(θ̂) := ∑
x∈Ω

pθ(X = x)θ̂(x) = θ

where E(·) denotes the expectation value.

An example of an unbiased estimator for the coin toss is the sample mean X̄ since
E(X̄) = n

n q + n
n (1 − q) = q. However, unbiasedness does not characterise the

estimator’s performance in any meaningful way. The error can be characterised
by the mean square error (MSE)

[MSE(θ̂)]ij := E
[
(θ̂i − θi)(θ̂j − θj)

]
,

which corresponds to the covariance matrix for an unbiased estimator:

[Cov(θ)]ij := E
[
(θ̂i − E(θi))(θ̂j − E(θj))

]
.

The Cramér-Rao bound [49, 108, 151] then provides the optimal performance of
an unbiased estimator through a lower bound on its covariance:

Theorem 10 (Cramér-Rao Bound). For a statistical model P with parameters θ ∈ Θ
and IID sample of size n, the covariance of an unbiased estimator θ̂(x) can be bounded by

Cov(θ̂) ≥ 1
n

I−1
θ ,

where (Iθ)ij := ∑x∈Ωn pθ(x) ∂θi logpθ(x) ∂θj logpθ(x) is the CFI of P .

This implies an estimator is optimal if its covariance is given by the inverse
of the CFI matrix. Note: for a single parameter this is simply a bound on the
variance of the estimator: Var(θ̂) ≥ 1/nIθ ; additionally, we presented the CRB
for an IID RV, but we could just as well formulate it for an arbitrary RV X with
[Cov(θ̂)]ij ≥

(
I−1
θ

)
ij

instead. The formulation in terms of an IID RV simply

highlights the scaling of the CFI with respect to the sample size n of the IID
RV, i.e- Iθ ∝ n. A consequence of this is that with a sufficiently large sample
we can estimate the parameters up to any desired accuracy. Additionally, the
CFI is a property of the probability distribution, therefore, it depends on the a
priori unknown value of θ. This can make calculating the CFI difficult in practical
applications.

The CRB is not generally saturable for a statistical model P . There is, however,
a special class of models for which the CRB can be saturated by a single RV:
exponential models. These include many of the most common distributions
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such as the normal distribution, the Poisson distribution, etc. The probability
distribution of an exponential random variable for parameters θ = (θ1, ..., θk) has
form

pθ(x) = h(x)exp [η(θ) · T(x)− A(θ)] ,

where h(x) is a non-negative real-valued function, A(θ) is a real-valued function
and T(x) = (T1(x), ..., Tk(x)), η(θ) = (η1(θ), ..., ηk(θ)) for real-valued functions
Ti(x), ηi(θ).

To see how they can saturate the CRB, consider a Gaussian model - one example
of a exponential model. A random variable X = (X1, ..., Xk) with sample space
Ω = Rk is Gaussian if its probability density p := dP

dµ with respect to the Lebesgue
measure µ has the form of a multidimensional normal distribution:

p(x) =
1

(2π)k/2 det(Γ)−1/2exp
[
−1

2
(x − ν)TΓ−1(x − ν)

]
,

where the parameters are its expected value ν = E(X) and its covariance Γ =

Cov(X). In the one-dimensional case, this is simply

p(x) =
1√
2πΓ

exp
[
− 1

2Γ
(x − ν)2

]
.

Note: this distribution is completely specified by two parameters, therefore, we
will denote it by N(ν, Γ). We consider a normal distribution with fixed Γ, so in
the one-dimensional case we can easily identify

h(x) =
1

(2π)k/2 det(Γ)−1/2exp(− 1
2Γ

x2),

A(ν) = exp(
1

2Γ
ν2),

η(ν) = ν,

T(x) = −2x.

The Gaussian shift model is then

G = {N(ν, Γ) : ν ∈ Rk, fixed Γ}.

Consider a scenario where we want to estimate ν from a Gaussian RV: the data
is automatically an unbiased estimator for itself since E(X) = ν by definition.
Additionally, if we set Γ = I−1

ν , the data is also an optimal estimator for itself
since its variance is now specified by the inverse of the CFI.

For models that are not exponential, the CRB is generally unattainable. It is,
however, attainable in the asymptotic limit of large IID sample, which we discuss
after introducing a few important statistics. The first is the score function [170]: an
alternative expression for the CFI is

(Iθ)ij := E(ℓ̇θ,i ℓ̇θ,j), (3.1)

where ℓ̇θ,i := ∂
∂θi
ℓθ are the score functions and ℓθ := log(pθ) is the log-likelihood.

To start, let’s assume that the there is only one parameter θ for simplicity. If the
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probability density is correctly normalized, then we have ∑x pθ(x) = 1. This
implies that

∑
x

ṗθ(x) = 0 and ∑
x

p̈θ(x) = 0.

One can also show

ℓ̇θ =
ṗθ

pθ
, ℓ̈θ =

p̈θ

pθ
−
(

ṗθ

pθ

)2

by directly differentiating the log-likelihood ℓθ = log(pθ). Putting these together,
one can easily demonstrate that

E(ℓ̇θ) = 0, E(ℓ̈2
θ) = −I(θ). (3.2)

And finally,

E(ℓ̇2
θ) = E

(
p̈θ

pθ
− ℓ̈θ

)
= I(θ). (3.3)

All together, we have shown that the score function has mean E(ℓ̇θ) = 0 and
variance Var(ℓ̇θ) = I(θ). If we scale a RV X by a constant a ∈ R, then the resultant
RV aX has mean E(aX) = aE(X) and variance Var(aX) = a2Var(X). Utilizing
this we can construct an estimator

θ̂(X) = θ +
1
Iθ
ℓ̇θ(X), (3.4)

which is unbiased and saturates the CRB by construction, i.e., it is an optimal
estimator! This has little operational value since it requires the circular logic of
knowing θ to estimate θ. Suppose that we know that θ is in a small neighbourhood
of some fixed θ0 ∈ Θ, then the estimator

θ̂(X) = θ0 +
1
Iθ0

ℓ̇θ0(X)

is an optimal estimator for θ up to first order. Additionally, we can make this
localisation argument rigorous in an asymptotic scenario.

The second statistic is the log-likelihood ratio process [170]; this requires the
Radon-Nikodym derivative of one probability distribution with respect to an-
other, so we will assume that both distributions have probability densities with
respect to the same measure µ for all θ ∈ Θ so that this is well defined.

Definition 13. Let P be a statistical model for random variable X with parameters
θ ∈ Θ ⊆ Rk. Then the log-likelihood ratio process is the map

LLRP : θ → log
(

d Pθ

d Pθ0

(X)

)
= log

(
pθ

pθ0

(X)

)
, ∀θ ∈ Θ, (3.5)

where θ0 ∈ Θ is a fixed reference parameter. In particular the random variable

log
(

pθ

pθ0

(X)

)

takes values in Rk for all θ ∈ Θ.
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This is a process as it defines a statistic for all possible values of θ, and these
statistics all take values in a real space with the same dimension as θ. Additionally,
we will show that this statistic is sufficient, so it captures all the information
about the parameters. Therefore, it can be used to compare models. Moreover,
two models are equivalent if their corresponding log-likelihood ratio processes
are equal.

Let us denote the statistic as

LLRθ(X) := log
(

pθ

pθ0

(X)

)

From the definition of sufficiency, we require that

P(X = x|LLRθ(X) = f (τ))

does not depend on θ, where f (θ) is a real-valued function of θ ∈ Θ. However,
from the definition of the statistic, we know that if LLRθ(X) = f (θ), then

pθ = pθ0 e f (θ).

Therefore, if LLRθ(x) = f (θ)

Pθ(X = x|LLRθ(X) = f (θ)) =
Pθ(X = x)

Pθ(LLRθ(X) = f (θ))

=
pθ0(x)e f (θ)

∫
x:LLRθ(x)= f (θ) pθ0(x)e f (θ)

=
pθ0(x)∫

x:LLRθ(x)= f (θ) pθ0(x)
,

which clearly no longer depends on θ, so LLRθ(X) is a sufficient statistic. This
holds for all θ ∈ Θ, so the process provides a sufficient statistic for any θ ∈ Θ.

For example, consider again the coin toss: since Ω = {0, 1} with 0/1 corre-
sponding with Tails/Heads, we can write

pq(X) = qX(1 − q)1−X.

The corresponding log-likelihood ratio process is then

log
(

pq

pq0

(X)

)
= Xlog

(
q
q0

)
+ (1 − X)log

(
1 − q
1 − q0

)
.

Additionally, for an IID sample of coin tosses, we have

log

(
pn

q

pn
q0

(X)

)
=

n

∑
i=1

[
Xilog

(
q
q0

)
+ (1 − Xi)log

(
1 − q
1 − q0

)]

= nX̄log
(

q
q0

)
+ (1 − nX̄)log

(
1 − q
1 − q0

)
.

This is a one-to-one function of a sufficient statistic, so it is clearly still a sufficient
statistic as we expect.

We now proceed to asymptotic estimation: in asymptotic estimation theory we
consider an IID sample X1, ..., Xn ∼ Pθ as introduced in the previous section, but
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now we’re interested in the limit where we let the sample size n tend to infinity.
Therefore, we now denote the random variable as Xn ∼ Pn

θ , a sample as xn and
an estimator as θ̂n(Xn) so that the size n is explicit at every stage. Since the FI
scales linearly with the sample size, we can in theory estimate the parameters up
to arbitrary accuracy by going to a sufficiently large n while utilizing powerful
asymptotic results. Our aim is to perform this estimation in an optimal manner
as described in section 3.1, i.e., we want to attain the CRB.

The first of asymptotic result is that we can reduce the problem to a local
estimation problem: since we have access to a very large amount of data in the
asymptotic limit, we can simply use a vanishingly small proportion of the data in
some sub-optimal initial estimation producing an estimate θ0. We can then write

Xi ∼ Pθ0+h

for some small parameter h ∈ Rr that we now want to estimate. In our work this
involves using n1−ϵ of the samples in the initial estimation for some small ϵ > 0.
Crucially, the proportion n1−ϵ vanishes relative to n in the asymptotic limit, and,
with some reasonable assumptions on the initial estimator (see section 5.3.1),
it allows us to localize the estimation to a region |h| ≤ n−1/2+ϵ. Additionally,
since the proportion vanishes in the asymptotic limit it also does not effect
the estimation performance. We then define a local parameter u := h

√
n for

convenience so that |u| ≤ nϵ. Our task is now to estimate u using IID samples
from a random variable X ∼ Pθ0+u/

√
n.

This also aids us in the construction of unbiased estimators as we can relax
the unbiased condition and instead look for locally unbiased estimators θ̂n, which,
as the name suggests, are unbiased around a fixed parameter value θ = θ0 (the
value found during our sub-optimal initial estimation). This corresponds with
the following conditions often used in the quantum metrology literature:

∑
xn∈Ωn

pθ0(xn)θ̂n(xn) = θ0, ∑
xn∈Ωn

∇|θ=θ0 pθ(xn)θ̂n(xn)
T = 1, (3.6)

where ∇ denotes the gradient with respect to the parameters θ.
One can show that many common estimators are locally unbiased in the asymp-

totic limit, such as the maximum likelihood estimator (MLE) or the method of
moments estimators [170]. In particular, we make use of the MLE in chapter 4,
so it is worth covering briefly; this estimator is given by the parameters θ that
maximise the likelihood Lθ(xn) := ∏n

i=1 pθ(xi) for a sample x:

θ̂(xn) := argmaxθ{Lθ(xn)}.

This is a very natural estimator to consider as if Lθ1(xn) > Lθ2(xn) for a sample
xn ∈ Ωn, then the parameters θ1 were more likely to produce the observed
sample xn than the parameters θ2. Additionally, the natural logarithm log(·) is a
non-decreasing function, therefore, maximising the likelihood is equivalent to
maximising the log-likelihood

ℓθ(xn) := log(Lθ(xn)) =
n

∑
i=1

log(pθ(xi))

that we introduced previously. This converts a product into a sum, so is often
much easier to implement in practice.
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A key result in asymptotic statistics is LAN [170], which shows that the lo-
cal model with probability distribution Pn

θ0+u/
√

n converges to a Gaussian shift

model G with normal distribution N(u, I−1[θ0]) in the asymptotic limit under
some reasonable assumptions [88, 170]. This allows us to describe the compli-
cated behaviour of an IID sample through a single normally distributed random
variable. To formulate this, we first have to introduce the concept of convergence
of statistical models [170], which can be defined in several ways. Two of these
require a notion of distance between pairs of samples (x, y) - say the Euclidean

distance d(x, y) = ||x − y|| =
√

∑i x2
i − y2

i :

Definition 14 (Convergence). A sequence of random variables Xn converge in distri-

bution to a random variable X, denoted Xn
D
⇝ X, if

P(Xn ≤ x) → P(X ≤ x)

as n → ∞ for every x at which the distribution function x 7→ P(X ≤ x) is continuous.

They converge in probability to X, denoted Xn
P
⇝ X, if

P(d(Xn, X) > ϵ) → 0

as n → ∞ for all ϵ > 0.
Finally, they converge almost surely to X, denoted Xn

a.s.
⇝ X, if

P( lim
n→∞

d(Xn, X) = 0) = 1.

Convergence in distribution is the most general form of convergence as it only
depends on the distribution functions, not the probability spaces of the random
variables. The two other forms of convergence only make sense if the random
variables are defined on the same probability space; they do, however, provide a
hierarchy of convergence with almost sure convergence implying convergence in
probability, which in turn implies weak convergence.

Two useful theorems [3, 170] that rely on these ideas of convergence are the
law of large numbers and the central limit theorem (CLT):

Theorem 11 (Law of large numbers). Let Xn = (X1, ..., Xn) be an IID random
variable with Xi ∼ P. If E(X1) < ∞, then

X̄n =
1
n

n

∑
i=1

Xi
a.s.
⇝ E(X1)

as n → ∞, that is, the sample mean converges to the true mean almost surely.

This is the strong law of large numbers as it relies on almost sure convergence, al-
though, the weak law of large numbers that relies on convergence in distribution
is often more useful.

Theorem 12 (Central limit theorem). Let Xn = (X1, ..., Xn) be an IID random variable
with Xi ∼ P. If E(X1) < ∞ and E(X2

1) < ∞, then
√

n(X̄n − E(X1))
D
⇝ N(0, Cov(X1)),

that is, the rescaled and shifted sample mean converges to a normally distributed random
variable with mean 0 and variance given by the covariance of X1.
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This theorem provides additional insight into unbiased estimators as well: we can
consider an estimator θ̂(X) for X ∼ Pθ as a random variable itself. The estimator
(θ̂(X1), . . . , θ̂(Xn)) corresponding to an IID random variable Xn = (X1, . . . , Xn),
Xi ∼ Pθ is then itself an IID random variable. For an unbiased estimator, theorem
12 then guarantees that the mean estimate

¯̂θn(Xn) :=
1
n

n

∑
i=1

θ̂(Xi)

converges to a normally distributed random variable around θ. That is, the
estimator ¯̂θ(Xn) will concentrate around θ.

3.1.1 Local Asymptotic Normality

We now proceed with a non-technical statement of LAN for IID random variables:

Local asymptotic normality: Let Pn = {Pn
θ : θ ∈ Θ ⊆ Rk} be a sequence of

statistical models for corresponding IID random variables Xn = (X1, ..., Xn)

with Xi ∼ Pθ, θ = θ0 + u/
√

n for fixed θ0 and u ∈ Rk. Under reasonable
smoothness assumptions about the parametrisation map θ 7→ pθ, one can
show that the models

Pn
θ0+u/

√
n and N(u, I−1

θ0
),

where Iθ0 is the CFI of Pθ0 , are statistically equivalent in the limit n → ∞.

In this thesis we will not include a formal proof of this statement. Instead, we
will outline the two formulations and the methods used to prove them, and
discuss the nature of the equivalence of the two models. It can be demonstrated
in two ways - either through the log-likelihood ratio process that we introduced
in section 3.1 or through randomizations (the classical analogue of a quantum
channel). It is the second of these methods that can be more readily generalized
to quantum statistics, so it is of more relevance to us. We will, however, discuss
both methods in the following pages.

The first method focuses on the convergence of the log-likelihood ratio process
[170]

log

(
d Pn

θ0+u/
√

n

d Pn
θ0

(Xn)

)
= log

(
Πn

i=1
pθ0+u/

√
n

pθ0

(Xi)

)
(3.7)

to the log-likelihood ratio process of the Gaussian shift model N(u, I−1[θ0]) under
the condition that the first and second derivatives of the log-likelihood exist. The
statement also holds under a weaker condition called differentiability in quadratic
mean [170].

For an intuitive idea of this convergence [170], we will assume the weaker
condition that both ℓ̇θ,i and ℓ̈θ,i exist. We will also assume that the parameter is
one-dimensional for simplicity. Provided this, one uses a Taylor expansion to
obtain

log
(

Πn
i=1

pθ0+u/
√

n

pθ0

(Xi)

)
=

n

∑
i=1

[
u√
n
ℓ̇θ0(Xi) +

1
2

u2

n
ℓ̈θ0(Xi)

]
+ Remn,
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where the remainder term Remn is negligible in the limit n → ∞. Recalling
equations (3.2) and (3.3), ∑n

i=1 n−1ℓ̈θ0(Xi) converges to −I(θ0) by Theorem 11.
Additionally, n−1/2 ∑n

i=1 ℓ̇θ0(xi) converges to a normally distributed random vari-
able ∆θ0 ∼ N(0, I(θ0)) by Theorem 12. Therefore, in the asymptotic limit, we
have

log

(
d Pn

θ0+u/
√

n

d Pn
θ0

(Xn)

)
D
⇝ u∆θ0 − u2 I(θ0)

2
. (3.8)

For a normally distributed random variable X ∼ N(u, I(θ0)−1), the correspond-
ing probability density is

pu(X) = exp(
−(X − u)2 I(θ0)

2
),

so the log-likelihood ratio process is

log
(

pu

p0
(X)

)
= log

[
exp(

−(X − u)2 I(θ0) + X2 I(θ0)

2
)

]

= uXI(θ0)− u2 I(θ0)

2

= u∆θ0 − u2 I(θ0)

2
, (3.9)

where we use that Var(aX) = a2Var(X), E(aX) = aE(X). Therefore, we have
shown that equation 3.8 and equation 3.9 are identical in the asymptotic limit.
Furthermore, since the ratio process is a sufficient statistic, the convergence im-
plies both distributions capture all available information about the parameters
and it is in this sense that the two models (Pn

θ0=h/
√

n) and N(u, I(θ0)−1) are statis-
tically equivalent. Since this method is based on the convergence in distribution
(weak) of the log-likelihood process, the statement is usually referred to as weak
local asymptotic normality.

The second method for proving LAN is through randomizations [88]:

Definition 15 (Randomization). A randomization is a positive linear map

R : L1(Ω1, Σ1, µ1) → L1(Ω2, Σ2, µ2),

where L1(Ω, Σ, µ) is the space of absolutely integrable functions on Ω.

Informally, they represent maps that transform outcomes from one random vari-
able X1 with probability space (Ω1, Σ1, µ1) into outcomes from another random
variable X2 with probability space (Ω2, Σ2, µ2). This can be implemented by
means of a statistic, or a randomised statistic where one makes use of an addi-
tional random variable with a given distribution. Indeed if f : Ω1 → Ω2 is a
statistic, then this induces a map R̃ f : P1 7→ P2 on the level of probability distri-
butions. Assuming that Pi is absolutely continuous with respect to the measure
µi, this in turn gives rise to the randomisation R f : p1 7→ p2 where pi is the
probability density of Pi with respect to the measures µi.

Definition 16 (Statistical equivalence of models). Let P1 = {P
(1)
θ : θ ∈ Θ} and

P2 = {P
(2)
θ : θ ∈ Θ} be statistical models where P

(i)
θ are probability distributions
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on (Ωi, Σi), and assume that P
(i)
θ is absolutely continuous with respect to the measure

µi with density p(i)θ , for i = 1, 2. The models are called statistically equivalent if there
exists randomizations R : L1(Ω1, Σ1, µ1) → L1(Ω2, Σ2, µ2) and S : L1(Ω2, Σ2, µ2) →
L1(Ω1, Σ1, µ1) such that

R(p(1)θ ) = p(2)θ , S(p(2)θ ) = p(1)θ

for all θ ∈ Θ.

To compare the two models in this context we use the deficiency, or, more
accurately, the Le Cam distance:

Definition 17 (Deficiency and Le Cam distance). Let P1 = {P
(1)
θ : θ ∈ Θ} and

P2 = {P
(2)
θ : θ ∈ Θ} be two statistical models, and assume that P

(i)
θ are absolutely

continuous with respect to reference distributions µ(i) with densities p(i)θ . The deficiency
of P1 with respect to P2 is

δ(P1,P2) := inf
R

sup
θ

||R(p(1)θ )− p(2)θ ||1,

where the infimum is taken over all randomizations R.
The Le Cam distance between P1 and P2 is simply

∆(P1,P2) := max(δ(P1,P2), δ(P2,P1)).

An illustrative example is very useful here [89]: consider the coin toss again, but
now let Xi ∼ P0.5+u.n−1/2 . So we want to estimate some small bias u in the coin.
LAN predicts that this is statistically equivalent to a random variable with normal
distribution N(u, I−1

0.5 ). We’ve already seen that the sample mean X̄n is a sufficient
statistic, and, indeed, we know that

√
nX̄n converges to a normally distributed

random variable N(u, I−1
0.5 ) by Theorem 12. But how do we formalize this in

terms of a randomization? For sample size n, the sample mean has corresponding
sample space Ω = { 1

n , 2
n , ..., n

n}. This only includes rational values between 1
n

and 1, whereas the distribution that we want to map it onto is a continuous
Gaussian. Therefore, the randomization R(·) takes this sufficient statistic and
adds a Gaussian with small variance to obtain something with density with
respect to the Lebesgue measure on R. In this manner we can demonstrate
convergence with respect to the Le Cam distance.

The strong version of LAN [170] states that the Le Cam distance between
the sequence of IID statistical models Pn = {Pn

θ0+n−1/2u : ∥u∥ ≤ nϵ} and the

sequence of Gaussian shift models Gn = {N(u, I−1
θ0

) : ∥u∥ ≤ nϵ} converges to
0 in the limit of large n. The parameter ϵ is a small constant ϵ > 0 that bounds
the local parameter u for fixed n; a technical detail that is necessary for the proof.
Since this holds uniformly over local parameters ∥u∥ ≤ nϵ, this result can be
used to establish asymptotically optimal estimation procedures and convergence
rates; this involves a two step procedure where a small sample n1−ϵ is used to
localise the parameter, while the remaining data is mapped via an appropriate
randomisation into a model that is approximately Gaussian, whose mean is then
estimated in a simple way. The full procedure goes beyond the scope of the thesis
but this philosophy will be applied for devising optimal estimation procedures
for pure states in chapter 5.
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3.2 Q U A N T U M E S T I M AT I O N

In quantum parameter estimation [49, 130, 151, 152] we assume the parameter of
interest θ is encoded in a quantum state, that is we are given a system prepared
in a state ρ = ρθ depending on the unknown parameter θ. Our task is to measure
this state to extract information about the parameter. In particular, the analogous
setup to a classical statistical model is the quantum statistical model:

Definition 18 (Quantum statistical model). Given a quantum system described by a
Hilbert space H, a quantum statistical model Q is a family of states in S(H) labelled by
m real parameters θ ∈ Θ ⊂ Rm:

Q = {ρθ : θ ∈ Θ},

where the parametrization map θ → ρθ is injective.

The key aspect of the quantum estimation problem is the choice of the mea-
surement. By performing a measurement with POVM M = {Mi : i = 1, . . . , k},
we obtain a random outcome X ∈ {1, . . . , k} with probability distribution pθ

pθ(i) := Tr(ρθMi).

Therefore, once we have specified the measurement we are back in the realm of
classical estimation. In particular, the choice of measurement has classical FI

Iij(ρθ;M) = ∑
m

pθ(m) ∂θi logpθ(m) ∂θj logpθ(m),

where we have explicitly highlighted that the FI depends on both the state ρθ and
the measurement M. The Cramér-Rao bound then provides the ultimate limits
on any unbiased estimator θ̂ based off this measurement as introduced in section
3.1.

For pure state models we often exploit a state’s global phase to simplify calcu-
lations. For instance, we often assume ⟨ψ|ψ̇⟩ = 0 in this thesis, where |ψ̇⟩ again
denotes the derivative of |ψ⟩ with respect to a parameter θ. This can always
be achieved by replacing the state |ψ⟩ with |ψ̃⟩ = eiφ(θ) |ψ⟩, where eiφ(θ) is a
parameter dependant phase such that φ̇ = i ⟨ψ|ψ̇⟩.

If we have access to multiple copies of the state, say ρ⊗n
θ , then we can derive the

equivalent to an IID sample: the quantum statistical model is Qn = {ρ⊗n
θ : θ ∈ Θ},

and the same POVM should be performed on each copy of the state so that the
collective POVM is of the form

Mn = {Mi1,...,in := Mi1 ⊗ ... ⊗ Min : (i1, . . . , in) ∈ Ωn}.

We can then construct an unbiased estimator θ̂(i) for outcomes i := (i1, ..., in)

that is limited by the Cramér-Rao bound with FI I(ρ⊗n
θ ;Mn) = nI(ρθ;M), so we

achieve the same linear scaling as we expect for an IID sample.
There are, however, much more general measurements we could implement

in this scenario. We could, for instance, perform a different POVM on each
copy of the state; this is closely aligned with the measurement scheme that we
use in chapter 4, where we also allow the results of previous measurement to
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inform the next POVM. The most general measurement scheme though will
also include highly entangled POVMs that cannot be expressed as a tensor
product on individual copies. This means that they correspond to a collective
measurement on multiple copies of the state ρθ at once. Additionally, this is
equally true for a system with multiple subsystems instead: the optimal POVM
may involve collective measurements on multiple subsystems at once instead of
measurements on each individual subsystem. Therefore, measurements may be
highly entangled even when we have a single copy of the state - a sharp contrast
to what is possible in classical estimation.

In order to identify the optimal measurement scheme we need to optimize
over this more complex space of POVMs; the result is the quantum Cramér-Rao
bound [49, 151]:

Theorem 13 (Quantum Cramér-Rao Bound). For a quantum statistical model Q =

{ρθ : θ ∈ Θ} with Θ ⊂ Rk, the covariance of an unbiased estimator θ̂ can be bounded
by

Cov(θ̂) ≥ F−1(ρθ),

where
Fij(ρθ) :=

1
2

Tr(ρθ{Lθi ,Lθj}) (3.10)

is the quantum Fisher information (QFI) of Qθ and the operators Lθi , i = 1, ..., k, are the
symmetric logarithmic derivatives (SLDs) defined by the equations

∂θi ρθ =
1
2
{ρθ,Lθi} (3.11)

where {A, B} = AB + BA is the anti-commutator.

A proof of the quantum Cramér-Rao bound for a single parameter can be seen
in section 5.2, where we pay close attention to the necessary conditions for when
it is attainable.

The SLD is the quantum analogue of the score function; it also provides an
optimal estimator [55] for local estimation of a one-dimensional parameter θ ∈ R:

θ̂(X) = θ̂0 +
1

F(ρθ0)
X

where X is the outcome of measuring observable Lθ0 and F(ρθ0) is the QFI of
state ρθ0 . Since it depends on the parameters of interest, we are once again reliant
on asymptotic techniques, where we first to localise the parameter around an
initial estimate θ̂0. Proving that this estimator is optimal then follows the exact
same argument as we saw for equation (3.4).

For a pure state ρθ = |ψθ⟩ ⟨ψθ|, calculating the SLDs is a simple affair: pure
states satisfy ρ2 = ρ, so, taking the derivative with respect to a parameter θi, we
find

∂θi ρ
2
θ = (∂θi ρθ)ρθ + ρθ(∂θi ρθ).

Comparing this to equation 3.11, we can infer that Li = 2(∂θi ρ). However, cal-
culating the SLD for arbitrary states is difficult and often relies on numerical
methods.
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There are a few problems with the SLDs: firstly, the SLDs are generally complex
observables that contain entanglement between each subsystem of a multipartite
system. For instance, if the system consists of n qubits, the SLD generally involves
a collective measurement on all the qubits at once. While this may theoretically
saturate the QCRB, it may not be practically implementable in an experimental
quantum device as many modern devices still have severe limitations in the im-
plementable operations. Or often the subsystems are separated by a considerable
distance like in satellite-based optical interferometers, so we can only interact
with them locally at each satellite. Secondly, for the multi-parameter scenarios
each SLD is still the optimal observable to measure for each parameter, but these
SLDs may not commute with each other. Therefore, we cannot necessarily simul-
taneously measure the SLDs; the consequence of this is that the QCRB may not
be achievable in the multi-parameter scenario and so is not tight.

This first point motivates an interest in alternate measurement schemes [72,
73, 182] that still saturate the QCRB, but use a simplified class of measurements.
Since we want to address issues around measurement complexity in multipartite
systems, a natural choice is measuring each subsystem separately. The overall
POVM can then be expressed as a tensor product of POVMs for each subsystem,
say

M = {Mi1 ⊗ Mi2}
for a two-partite quantum system. This involves only local operations performed
on each subsystem, so seems to solve the issue with the SLDs. However, we
can utilise some classical information to improve this: if we measure each sub-
system individually, i.e., one at a time, then we can use the result of previous
measurements to fine-tune the next choice of measurement. The POVM then has
the form

Mi1 ⊗ Mi1,i2 ⊗ Mi1,i2,i3 ⊗ ... ⊗ Min ,

where in = (i1, ..., in). This extra step involves only some classical communica-
tion, so this new measurement strategy is referred to as a local operations and
classical communication (LOCC) measurement scheme. In particular, it has been
demonstrated [182] that this scheme can saturate the QCRB.

Since the QCRB is not achievable, one focuses instead on a cost - a type of MSE
given by

Tr(WCov(θ̂)),

where W is a positive weight matrix. This weight matrix effectively allows us to
specify how important each parameter is to us. The cost is then a single number,
so replacing the covariance matrix with costs converts matrix inequalities into
scalar inequalities that can be optimized. The main bound that addresses the
issues around achievability is the Holevo bound [49, 95]:

Theorem 14 (Holevo Bound). For a quantum statistical model Q = {ρθ : θ ∈ Θ}
with Θ ⊂ Rk, the cost C of a locally unbiased estimator θ̂ can be bounded by

C = Tr(W · Cov(θ̂)) ≥ min
X,V

(
Tr(WV) : V ≥ Z[X], Tr(∇ρθXT = 1)

)
,

where X = [X1, ..., Xk]
T is a vector of Hermitian operators Xi ∈ B(H), V is a k × k

real matrix, Z[X] := Tr(ρθXXT) is a k × k complex matrix and W is a real, symmetric
cost matrix.
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In general Z[X] is a complex matrix, but taking the trace of its product with
a real matrix W results in some information being lost. Therefore, this final
optimization over V ≥ Z[X] is done to ensure that this information is captured
as well.

This introduces the main field of quantum parameter estimation. Within this
field there are many subfields that largely depend on the application of quantum
parameter estimation and how the parameters are encoded into the quantum
state. We will now introduce a selection of them that were prevalent throughout
this thesis.

The main field relevant to this thesis is quantum metrology, in which we want
to use quantum systems to measure physical quantities with high precision. To
this end, we begin by preparing our system, which we will refer to as a probe, in
some initial state ρ0. The parameters we want to estimate are then encoded into
the probe’s state through the state’s evolution described by unitary evolution or,
more generally, by a quantum channel T ∈ CPTP(H). An example of this is a
Hamitonian identification problem [129, 151], where the probe evolves due to
a system’s Hamiltonian H(θ) that is dependant on the parameter θ that we’re
interested in. We then have

ρθ(t) = e−iH(θ)tρ0eiH(θ)t,

where t is some known fixed time. Once the parameters are encoded, we’re in the
realm of quantum parameter estimation. Therefore, we can use its techniques,
optimising the estimator and measurement in order to saturate the QCRB or
Holevo bound in the multiparameter case.

To see another advantage of quantum metrology, consider a scenario with
multiple probes. If we initialise each probe in the same initial state ρ0 and assume
the operation encoding the parameters is a unitary operator Uθ, then the final
state is

ρIID
θ = ρ⊗n

θ , (3.12)

where ρθ = Uθρ0U∗
θ . This provides us with the quantum analogue of an IID

sample since each probe is in the same state ρθ. We can, however, find better
initial states than this: if each probe has Hilbert space H, then the combined
Hilbert space is H⊗n. A general initial state is then any ρ0 ∈ S(H⊗n), which
allows for entanglement between each system. This provides another aspect
that we can optimize over, enabling strategies that beat all available separable
strategies. The corresponding final state is then

ρ
gen
θ = U⊗n

θ ρ0U⊗n∗
θ

We are now back in the realm of quantum parameter estimation and can focus on
optimizing the estimator and choice of measurement as normal.

Note: the setup described in the previous paragraph is known as a parallel
setup since all the probes have the parameters encoded at the same time. There
is, however, an equivalent sequential scheme [73, 184] that utilizes a single
probe with some ancillas, n encoding steps and control operations between each
encoding step.

One of the main goals in quantum metrology is to design strategies that achieve
the so-called Heisenberg limit (HL) scaling of the Fisher information [41, 50,
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72, 73]: F(ρgen
θ ) ∝ n2. This represents a quadratic improvement in the Fisher

information over an IID strategy, which is limited by the standard quantum
limit (SQL): F(ρIID

θ ) ∝ n. Crucially, this requires inherently quantum resources in
the probe state [72, 73], so highlights the advantage of using quantum systems.

For a simple demonstration of this HL scaling, consider a phase estimation
problem where we want to estimate a phase ϕ ∈ R that is encoded in a qubit
using the unitary Uϕ = exp(−iϕσz). If we initialise a qubit in the state |+⟩ =

(|0⟩+ |1⟩)/
√

2, then an IID scheme produces output state

|Ψϕ⟩ =
(

1√
2

)n

(e−iϕ |0⟩+ eiϕ |1⟩)⊗n.

For pure states, one can show that the QFI is

F(|Ψϕ⟩ ⟨Ψϕ|) = 4
〈
Ψ̇ϕ|Ψ̇ϕ

〉

when
〈
Ψϕ|Ψ̇ϕ

〉
= 0. This holds in this case, so we have

F(|Ψϕ⟩) = 4n.

This QFI has the SQL scaling, so any estimation scheme is restricted to SQL
scaling. If we use a GHZ state |GHZ⟩ = (|0⟩⊗n + |1⟩⊗n)/

√
2 as our initial state

instead, we find

Ψ̃ϕ =
1√
2

(
e−inϕ |0⟩⊗n + einϕ |1⟩⊗n

)

and this state has corresponding QFI

F(|Ψϕ⟩) = 4n2.

Therefore, a phase estimation scheme that utilizes a GHZ initial state can achieve
the HL scaling instead.

Quantum metrology encompasses most experimental frameworks, so its appli-
cations are widespread. When the emphasis is more about measuring physical
quantities using quantum systems and less focused on the estimation sensitivity,
it is often referred to as quantum sensing [47]. One of the most active areas of
metrology is quantum magnetometry [23, 28, 29, 101, 159], where we want to mea-
sure a magnetic field. Even within magnetometry, there are several competing
devices in development from N-V centres in diamond [159] to ensembles of atoms
[23] to optical setups [28]. Other fields of quantum metrology include quantum-
enhanced imaging [4], thermometry [46, 123], clocks [47, 50] and gravitational
wave detection [1, 40, 168], many of which have already been implemented in
experiments [39, 101, 125, 168].

Unfortunately, the quantum resources that the HL relies upon are very suscep-
tible to noise: when we introduce an effect such as decoherence to the state ρθ the
entanglement between different subsystems can be quickly destroyed, which, in
turn, destroys the HL scaling of the CFI. Therefore, there is considerable interest
in applying quantum error correction to a metrological setup [79, 107, 169, 181,
184], allowing this noise to be identified and corrected to restore the HL scaling.

The work in this thesis can be considered quantum metrology, however, the
quantum Markov chain framework does not facilitate HL scaling. Since we



3.2 Q U A N T U M E S T I M AT I O N 51

estimate parameters from the output of a single QMC, we do not have access to
the necessary entanglement between multiple probes. We also don’t assume that
we can optimise the initial state since we rely on the primitivity of the QMC’s
corresponding channel. It does, however, model many practically implementable
experimental setups from atom masers [91] to quantum collision models [42]
to discrete-time optical detectors [10, 61, 171]. Therefore, the motivation of the
estimation schemes that we present is that they are practically implementable.
Part of this is that we don’t need to initialize the probes in some complex initial
state, which is a very difficult task in its own right. Additionally, a QMC does not
require us to specify the available resources before the experiment. Instead, we
can keep monitoring the environment until we achieve some desired tolerance
level.

Overall, the breadth of applications discussed here highlights the importance
of quantum parameter estimation. Measurement - or, more accurately, estimation
- is a very fundamental problem, so improving its efficiency causes many knock-
on improvements elsewhere. In particular, these improvements may allow us
to measure phenomena that were undetectable until now such as gravitational
wave detection [1, 40, 168].

3.2.1 Quantum Local Asymptotic Normality

In this section we introduce the quantum analogue of local asymptotic normality
(LAN). As we saw in section 3.1.1, LAN demonstrates that a sequence of local
statistical models, Pn = {Pn

θ0+u/
√

n : u ∈ Rk, fixed θ0 ∈ Rk}, converges to a

Gaussian shift model G = {N(u, I−1
θ0

) : u ∈ Rk} in the limit n → ∞. And this
convergence could be proven through two different methods: strong convergence
via randomizations or the weak convergence of the log-likelihood ratio process.
Its analogue, quantum local asymptotic normality (QLAN), demonstrates that a
sequence of local IID quantum statistical models

Qn = {ρ⊗n
θ0+u/

√
n : fixed θ0 ∈ Θ ⊆ R2k, u ∈ R2k},

converges to a continuous variable Gaussian state model G = {ϕu : u ∈ Rk},
where we have highlighted that the Gaussian state ϕu has k-modes for a 2k-
dimensional parameter u ∈ R2k.

There is a general statement of QLAN for arbitrary finite-dimensional mixed
states [88, 89, 102], but there is also a similar statement specific to quantum
Markov chains (QMCs) [37, 83, 84, 86]. We will focus on IID pure state models for
simplicity, which ensure we can present the quantum analogue of both weak and
strong convergence. Weak convergence cannot be generalised for arbitrary mixed
states, so focusing on IID pure states allows us to draw more parallels the theory
of classical LAN, which we introduced in section 3.1.1.

For example, consider an pure qubit model [83] with

|ψθ⟩ := exp(
i√
2
(θ2σx − θ1σy)) |0⟩ , θ = (θ1, θ2) ∈ R2.

In terms of a qubit’s Bloch sphere, the |0⟩ state corresponds with the sphere’s
north pole, i.e., an extremal point on the σz-axis with Bloch vector r = (0, 0, 1).
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This state corresponds with a rotation of this point around the σx and σy axes by
angles θ1/

√
2 and θ2/

√
2 respectively, where this factor of

√
2 has been chosen

for later convenience. We consider a local model again, so θ = θ0 + u · n−1/2

for local parameter u ∈ R2 that we want to estimate. We fix θ = (0, 0) so that
u = (0, 0) corresponds with the |0⟩ state. This could be achieved by reversing the
rotation due to the known parameter θ0, so this results in no loss of generality.
The corresponding IID pure state model is then

Qn := {|ψn
u⟩ = |ψu/

√
n⟩⊗n : u ∈ R2}

And the corresponding Gaussian state model is

G = {|u1 + iu2⟩ : u ∈ R2},

i.e., a one-mode coherent state |α⟩ with u1 = Re(α) and u2 = Im(α).
To see this convergence, consider the collective spin observables

Sx(n) :=
1√
2n

n

∑
i=1

σ
(i)
x

and

Sy(n) :=
1√
2n

n

∑
i=1

σ
(i)
y

where σ
(i)
j is the Pauli operator applied to the ith qubit with the identity operator

applied elsewhere.
One can show through the quantum equivalent of the central limit theorem

[135] that the distribution of these observables converge in distribution to normal
distributions

Sx(n)
D
⇝ N(u1,

1
2
),

Sy(n)
D
⇝ N(u2,

1
2
).

This is the expected distribution of canonical coordinates Q and P with respect to
a coherent state |u1 + iu2⟩, so this effectively shows that Qn can be approximated
by the coherent state model G as expected.

Another way to capture this convergence between the two models |ψn
u⟩ and

|u⟩ is through an inner product:

lim
n→∞

⟨ψn
u |ψn

v⟩ = ⟨u|v⟩ .

This is equivalent to the weak convergence in classical LAN. However, it can
only be defined for pure states, so it is less general than in LAN.

To define the stronger form of equivalence, we have to introduce the quantum
equivalent of the Le Cam distance, which replaces randomizations with quantum
channels:

Definition 19 (Quantum Le Cam distance). Let Q1 = {ρ
(1)
θ ∈ H1 : θ ∈ Θ} and

Q2 = {ρ
(2)
θ ∈ H2 : θ ∈ Θ} be two quantum statistical models for θ ∈ Θ. The deficiency

of Q1 with respect to Q2 is defined as

δ(Q1,Q2) = inf
T

sup
θ∈Θ

||ρ(1)θ − T(ρ(2)θ )||1,
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where the infimum is taken over all quantum channels T : H2 → H1. The Le Cam
distance between Q1 and Q2 is then

∆(Q1,Q2) := max(δ(Q1,Q2), δ(Q2,Q1)).

The strong theory of QLAN then demonstrates that there exists two series of
quantum channels Tn and Sn such that

lim
n→∞

sup
||u||≤C

||ϕu − Tn(ρ
n
u)||1

D
⇝ 0, (3.13)

lim
n→∞

sup
||u||≤C

||Sn(ϕu)− ρn
u||1

D
⇝ 0, (3.14)

where || · ||1 is once again the trace norm and C is a suitable limit on u, which we
often take as nϵ for a small ϵ > 0. That is, there exists channels that can map the
Gaussian state into the IID quantum statistical model for all suitable u and vice
versa.



Part II

R E S U L T S

In this part we present the main results of this thesis. This comprises
of three optimal estimation schemes, two of which apply to quantum
Markov chains (QMC). The first, see Chapter 4, comprises of an adap-
tive measurement scheme applied to a QMC. This scheme utilizes
local measurements on the QMC’s output that we tailor based on
the results of previous measurements. In particular, we demonstrate
that this scheme is optimal through numerical simulations. Addi-
tionally, this chapter introduces the absorber for the first time, which
we use to post-process the QMC’s output before measurement. This
post-processing is key to both this estimation scheme and the scheme
presented in chapter 6.

Chapter 5 focuses on a different measurement scheme - displaced
null measurements. A null measurement refers to measuring a sys-
tem using an orthonormal basis containing the system’s state itself.
Operationally, we cannot implement a true null measurement since
it requires knowledge of the state’s parameter θ beforehand. Instead,
we have to measure an approximate null measurement with θ0 close
to θ. This is expected to be optimal, but in this chapter we demon-
strate that this is not the case using independent identically prepared
pure state models. In particular, the method through which one speci-
fies the initial estimate leads to an identification problem when we
perform the null measurement. We then present the displaced null
measurement - our solution to this problem. This involves displacing
the parameter θ0 → θ0 + τ used in the null measurement to remove
this identification problem.

Chapter 6 applies this null measurement scheme to a QMC. In par-
ticular, the absorber is used here to implement the displaced null
measurement. We demonstrate that the expected output is a vacuum
state when θ0 = θ. A difference in these parameters |θ0 − θ| > 0 then
results in binary excitation patterns in the output of the QMC. We
develop the theory behind these excitation patterns and demonstrate
that we can calculate the rate of each pattern in the asymptotic limit.
This is then used to design an optimal estimator, which relies on the
counts of each pattern.



4
A D A P T I V E M E A S U R E M E N T F I L T E R : E F F I C I E N T
S T R A T E G Y F O R O P T I M A L E S T I M A T I O N O F Q U A N T U M
M A R K O V C H A I N S

4.1 I N T R O D U C T I O N

The quantum input-output formalism is an effective framework for describing the
evolution, monitoring and control of Markovian quantum open systems [43, 66,
174]. In this setting, the interaction with the environment is modelled by coupling
the system of interest with a quantum transmission line (channel) represented
by a Gaussian bosonic field. The output field carries information about the
open system’s dynamics which can be accessed by performing continuous-time
measurements, and the corresponding conditional system evolution is described
in terms of stochastic Schrödinger or filtering equations [16, 22, 35, 45, 173].

While these theories are key to quantum engineering applications, they rely
on the precise knowledge of the system’s dynamical parameters (e.g.- Hamilto-
nian of field coupling), which are often uncertain, or completely unknown, and
therefore need to be estimated from measurement data. The input-output (I-O)
formalism is ideally suited for this statistical inference task, and more generally
for implementing online system identification methods [116]. Unlike direct mea-
surement techniques which require repeated system re-preparations and fast
control operations [18, 48, 50, 53, 97, 155, 184], the parameters can be estimated
continuously from the output measurement trajectory, even if the system is not
directly accessible or it is involved in an information processing task. The first in-
vestigation in parameter estimation for continuously-observed quantum systems
considered the estimation of the Rabi frequency of an atom in a cavity mode,
while a photon counting measurement is performed on the cavity output [117].
Subsequent works have addressed a variety of related problems including the
dependence on measurement choice [62], adaptive estimation [20, 140] filtering
with uncertain parameters [142], particle filters for estimation [38, 154] achieving
Heisenberg scaling [6, 7, 118], sensing with error correction [138], Bayesian esti-
mation [64, 105, 126, 143, 180], quantum smoothing [82, 161, 165, 166], waveform
estimation [163, 167] estimation of linear systems [68, 85, 112, 113], classical and
quantum Fisher informations of the output channel [37, 64, 65, 68, 83, 84, 86, 104].

An upshot of these studies is that standard measurements such as counting,
homodyne or heterodyne generally do no achieve the ultimate limit given by
the quantum Cramér-Rao bound [25, 93, 95], while the optimal measurement
prescribed by the symmetric logarithmic derivative requires collective operations
on the output state. In this work we make a first step towards addressing the key
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issue of devising realistic and statistically effective measurement strategies within
the framework of the I-O theory. By realistic we mean procedures which involve
sequential continuous-time measurements (as opposed to general non-separable
measurements on the output state), possibly combined with more advanced but
theoretically well understood operations such as series connections and feedback
[81].

For conceptual clarity we focus primarily on discrete-time dynamics, but we
will indicate how the techniques may be extended to continuous-time. In the
discrete-time setting, the I-O dynamics consists of a d-dimensional system of
interest interacting sequentially with a chain of k-dimensional ‘noise’ input units,
which are identically and independently prepared in a state |χ⟩, cf. Figure 4.1.
We assume that the interaction unitary Uθ acting on Cd ⊗ Ck depends on a

Cd
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Figure 4.1: Quantum input-output discrete-time dynamics with θ dependent unitary
interaction Uθ .

parameter θ ∈ R, which we would like to estimate by measuring the output
after n evolution steps. In principle, this can be done by applying the adaptive,
separable measurement scheme developed in [183] to the joint pure system-
output state; indeed this has been shown to attain the quantum Cramér-Rao
bound (QCRB). However, while theoretically applicable, the algorithm involves
manipulating multi-partite operators, making it unsuitable for processing output
states with a large number n of noise units. In addition, it is not clear how the
algorithm can be applied to continuous-time dynamics.

Our main contribution is to eliminate these drawbacks by devising a scheme
which exploits the intrinsic Markovian structure of the problem. Concretely, we
propose an algorithm which finds optimal measurement bases for each of the
output units by only performing computations on the space of a doubled-up
system and a noise unit, i.e., Cd ⊗ Cd ⊗ Ck. Our algorithm has a similar structure
to that of the quantum state filter describing the system’s conditional evolution,
and can be run in real-time without having to specify the time length n in advance.

While our general algorithm requires measurements on both the output and
system in order to achieve finite sample optimality, in Proposition 1 we prove
that by measuring only the output we incur a loss of Fisher information which
is bounded by a constant, independent of the time n. Since the quantum Fisher
information scales linearly in time, this implies that the output measurement is
optimal in the leading contribution to the quantum Fisher information (QFI).

We now describe our scheme in more detail. In the first stage of the protocol
we use a small proportion of the output units (of sample size ñ ≈ n1−ϵ with small
ϵ) in order to compute a preliminary ‘rough estimator’ θ0 of the true parameter
θ, by performing a standard sequential measurement. This step is necessary in
any quantum estimation problem in which the optimal measurement depends on
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the unknown parameter [71]. In particular, this means that strictly speaking one
can only attain optimality in the limit of large sample sizes, as θ − θ0 decays as
n−(1−ϵ)/2 thanks to the preliminary estimation stage. In the second (main) stage

Cd
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Figure 4.2: Adaptive measurement filter: the output units undergo post-processing with a
coherent quantum absorber, followed by applying an adaptive measurement
computed with the algorithm.

of the protocol we use θ0 to design a sequential measurement which achieves the
output QFI at θ = θ0. Since the first stage insures that θ − θ0 decays and the QFI
is continuous with respect to θ, we find that the overall scheme is asymptotically
optimal at any parameter value θ.

The second stage is illustrated in Figure 4.2: each output unit undergoes a
physical transformation (which we call ‘quantum post-processing’) followed
by an adaptive projective measurement whose basis is computed according
to the ‘measurement filter’ algorithm described below. More specifically, after
interacting with the system, the post-processing consists in applying a unitary
Vθ0 to the output noise unit together with an additional ancilla of the same size d
as the system. The system and ancilla can be regarded as a single open system
(denotes ‘s+a’) of dimension D = d2 coupled to the noise units via the unitary
Wθ = Vθ0Uθ . The unitary Vθ0 is chosen such that s+a has a pure stationary state
|ψ⟩ ∈ CD at θ = θ0, and the output state is identical to that of the input. This is a
discrete-time analogue of the notion of coherent quantum absorber introduced in
[157], and it insures that the ‘reference’ output state at θ = θ0 is the same as the
product input state (the ‘vacuum’), while deviations from θ0 produce ’excitations’
in the output. After the interaction with the ancilla (absorber), the noise unit
is measured in a basis determined by a simple iterative algorithm detailed in
section 4.5.

The iterative step consists of using the current value of a certain ‘filter operator’
on system+absorber to determine the next measurement basis, and then using
the measurement outcome to update the filter operator. This simplification relies
on the fact that the output is uncorrelated from system (and absorber), which is
not the case in the original dynamical setup of Figure 4.1.

In section 4.7 we describe the results of two numerical investigations testing
our theoretical results. The first investigation focuses on a simplified model where
the system plus absorber are represented by a two-dimensional system with a
pure stationary state. While this sidesteps the preliminary estimation stage of
the protocol, it allows us to specifically test the key features of the adaptive mea-
surement algorithm with a reasonably large trajectory length and a high number
of repetitions. For this model, we can explicitly compute the system-output QFI
(cf. Lemma 4), while the classical Fisher information of any output measurement
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strategy can be estimated by sampling techniques. The results confirm that the
adaptive measurement attains the QFI when the system is measured at the end,
while the output-only strategy is only worse by a constant independent of tra-
jectory length. On the other hand, simple measurements (same fixed basis for
each unit) perform strictly worse even when the measurement basis is optimised.
While the improvement here is not dramatic, our preliminary investigations indi-
cate that the gap increases significantly with the system dimension, depending
on the chosen model. We further test the performance of the maximum likeli-
hood estimator and find that its mean square error approaches the inverse of the
classical Fisher information in the long-time limit, which agrees broadly with
the Cramér-Rao bound. The second numerical investigation implements the full
two-stage adaptive measurement algorithm including the use of the coherent
absorber.

Finally, we note that our scheme can be extended to continuous-time dynamics
by using standard time-discretisation techniques [111, 128]. Although we do not
treat this in detail here, we comment on this extension at the end of the chapter.

The chapter is organised as follows. In section 4.2 we briefly review the adap-
tive algorithm for optimal separable measurements developed in [183]. Section 4.3
introduces the Markov dynamics setting and reviews a key result on the asymp-
totic QFI of the output. Section 4.4 explains how the use of ‘post-processing’ by
quantum absorber reduces the general estimation problem to one concerning a
system with a pure stationary state. This is then used in section 4.5, which details
the adaptive measurement procedure including the key ‘measurement filter’ algo-
rithm. In section 4.6.2 we show that the proposed adaptive output measurement
achieves the optimal QFI rate even if the system is not measured. We also devise
a scheme to estimate the classical Fisher information of the measurement process
by sampling over trajectories. Section 4.7 presents simulation results using an
elaboration of an amplitude decay qubit model.

4.2 O P T I M A L S E PA R A B L E M E A S U R E M E N T S

In this section we review a result by Zhou, Zou and Jiang [183] concerning optimal
parameter estimation for multipartite pure states, using separable measurements
(local measurements and classical communication). Their method will then be
applied to the problem of estimating parameters of discrete time quantum input-
output systems. By exploiting the Markovian nature of the dynamics, we will
show that the algorithm can be recast in a simpler procedure akin to that of a
quantum state filter.

Consider a one parameter quantum statistical model {ρθ : θ ∈ R} where ρθ is a
state on a Hilbert space H which depends smoothly on the unknown parameter
θ. To estimate θ we perform a measurement on the state ρθ and compute an
estimator θ̂ based on the measurement outcome. According to the QCRB [25, 93,
95], the variance of any unbiased estimator θ̂ is lower bounded as

Var(θ̂) = E
[
(θ̂ − θ)2] ≥ F−1

θ

where Fθ is the quantum Fisher information defined as F(θ) = Tr(ρθL2
θ), and Lθ is

the symmetric logarithmic derivative satisfying d
dθ ρθ =

1
2{Lθ , ρθ}. In general, for
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any given parameter value θ0, the QCRB is saturated1 by measuring the symmetric
logarithmic derivative (SLD) Lθ0 and constructing a locally unbiased estimator
θ̂ = θ0 + X/F(θ0) where X is the measurement outcome.

While for full rank states the optimal measurement is essentially unique, for
rank deficient states this is not the case and a necessary and sufficient condition
for a measurement to saturate the QCRB has been derived in [25]. This has
practical relevance for multipartite systems where the measurement of the SLD
may not be easy to implement. Motivated by this limitation, the saturability
condition has been further investigated in [183] where it is shown that the QCRB
for pure states of multipartite systems is achievable using separate measurements
constructed in an adaptive fashion which we now proceed to describe.

Consider the pure state model ρθ = |ψθ⟩ ⟨ψθ | with |ψθ⟩ ∈ H. We denote
|ψ̇θ⟩ = d

dθ |ψθ⟩ and assume that ⟨ψθ |ψ̇θ⟩ = 0. This can generally be arranged by
choosing the (unphysical) phase of |ψθ⟩ to have an appropriate dependence on θ.
In particular, in this case we have |ψ⊥

θ ⟩ := (1 − |ψθ⟩ ⟨ψθ |) |ψ̇θ⟩ = |ψ̇θ⟩. Under this
assumption the QFI is given by

Fθ = 4∥ψ̇θ∥2. (4.1)

Further, we define the operator M which will play a key role in the analysis

M = |ψθ⟩ ⟨ψ̇θ | − |ψ̇θ⟩ ⟨ψθ | . (4.2)

The authors of [183] note that if a projective rank-one measurement {Ei = |ei⟩⟨ei|}
satisfies the conditions

⟨ei|M|ei⟩ = 0, and pθ(i) = |⟨ei|ψθ⟩|2 = 1/k, k = dim(H) (4.3)

then it fulfils the general criteria of [25] and therefore it achieves the QCRB. In
fact, the second condition can be relaxed to p(i) ̸= 0 for all i, but we will stick
to the chosen expression for concreteness. The achievability can be understood
as follows. The conditions ⟨ei|M|ei⟩ = 0 implies that ⟨ei|ψθ⟩⟨ψ̇θ |ei⟩ is real, so that
the phase of the basis vectors |ei⟩ can be chosen such that both ⟨ei|ψθ⟩ and ⟨ei|ψ̇θ⟩
are real for all i. Together with the condition pθ(i) ̸= 0, this means that in the first
order of approximation, the quantum model is described by vectors with real
coefficients with respect to the measurement basis. In this case the classical and
quantum informations coincide

Iθ = ∑
i

pθ(i)
(

d log pθ(i)
dθ

)2

= 4 ∑
i

(Re⟨ei|ψθ⟩⟨ψ̇θ |ei⟩)2

⟨ei|ψθ⟩⟨ψθ |ei⟩

= 4 ∑
i

|⟨ei|ψθ⟩⟨ψ̇θ |ei⟩|2
⟨ei|ψθ⟩⟨ψθ |ei⟩

= 4 ∑
i
|⟨ei|ψ̇θ⟩|2 = 4∥ψ̇θ ||2 = Fθ .

We now assume that we deal with a multipartite system such that H = H1 ⊗
H2 ⊗ · · · ⊗ Hn, with dim(Hi) = ki, and follow [183] to show that a separable
measurement satisfying the above conditions can be constructed by using the

1 This achievability argument can be made rigorous in an asymptotic setting where the experi-
menter has an ensemble of n independent, identically prepared systems and employs an adaptive
procedure for ‘locating’ the parameter [49, 71].
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algorithm outlined below. For any set of indices A ⊂ {1, . . . , n} we denote its
complement by Ac and by ρA = TrAc(ρθ) the partial state of the sub-systems with
indices in A. For m > 1 we denote by m the set {1, . . . , m}. Similarly, we denote
MA = TrAc(M) and for single sub-systems (A = {i}) we use the notation ρi and
Mi.

We measure the sub-systems sequentially, such that each individual measure-
ment basis depends on the outcomes of the previous measurements, as follows.
In the first step, the measurement basis {|e[1]i ⟩}k1

i=1 of system H1 is chosen such
that 〈

e[1]i

∣∣∣M1

∣∣∣e[1]i

〉
= 0 and p1(i) =

〈
e[1]i

∣∣∣ ρ1

∣∣∣e[1]i

〉
=

1
k1

.

The existence of such a basis can be established by induction with respect to
dimension, cf. proof of Lemma 1 in [183]. The concrete construction in two
dimensions is described in section 4.7.

After this, the following procedure is applied sequentially to determine the
measurement basis for system j + 1 with j = 1, . . . , n − 1: given the outcomes

ij := {i1, . . . , ij} of the first j measurements, we choose the basis
{
|e[j+1]

i ⟩
}k j+1

i=1
in

Hj+1 such that 〈
e[j+1]

i

∣∣∣Mj+1(ij)
∣∣∣e[j+1]

i

〉
= 0

and
pj+1(ij, i) =

〈
e[j+1]

i

∣∣∣ ρj+1(ij)
∣∣∣e[j+1]

i

〉
=

1
k1 · k2 · · · · k j+1

for all i = 1, . . . , k j+1, where

Mj+1(ij) =

〈
e
[j]
ij

∣∣∣∣Mj+1

∣∣∣∣e
[j]
ij

〉
, ρj+1(ij) =

〈
e
[j]
ij

∣∣∣∣ ρj+1

∣∣∣∣e
[j]
ij

〉
,

and ∣∣∣∣e
[j]
ij

〉
=
∣∣∣e[1]i1

〉
⊗ · · · ⊗

∣∣∣e[j]ij

〉

Note that the second condition means that for each j the outcome ij is independent
of the others and has equal probabilities 1/k j.

After n steps we have defined in an adpative fashion a product measurement
basis ∣∣∣e[n]in

〉
=
∣∣∣e[1]i1

〉
⊗ · · · ⊗

∣∣∣e[n]in

〉

and one can verify that such a measurement satisfies the general condition (4.3).

4.3 D I S C R E T E Q U A N T U M M A R K O V C H A I N S A N D T H E O U T P U T Q F I

In the input-output formalism the dynamics of a discrete-time quantum open
system Hs ∼= Cd is modeled by successive unitary interactions with independent
‘noise units’, identically prepared in a state |χ⟩ ∈ Hu ∼= Ck. This can be pictured
as a conveyor belt where the incoming ‘noise units’ constitute the input, while
the outgoing ‘noise units’ make up the output of the process, cf. Figure 4.1. If
|ϕ⟩ ∈ Hs is the initial state of the system, and U is the unitary on Hs ⊗ Hu
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describing the interaction between system and a noise unit, then the state of the
system and output after n time units is

|Ψ(n)⟩ = U(n)|ϕ ⊗ χ⊗n⟩ = U(n) · · · · · U(2) · U(1)|ϕ ⊗ χ⊗n⟩ ∈ Hs ⊗H⊗n
u (4.4)

where U(i) is the unitary acting on the system and the i-th noise unit. From
equation (4.4) we find that the reduced state of the system at time n is given by

ρ(n) := Trout(|Ψ(n)⟩⟨Ψ(n)|) = Tn(ρin), ρin = |ϕ⟩⟨ϕ|,

where the partial trace is taken over the output (noise units), and T : T1(Hs) →
T1(Hs) is the Markov transition operator

T : ρ 7→ Tru(U(ρ ⊗ τ)U∗), τ := |χ⟩⟨χ|.

Fixing an orthonormal basis {|1⟩, . . . , |k⟩} in Hu, we can express the system-
output state as a matrix product state

|Ψ(n)⟩ =
k

∑
i1,...,in=1

Kin . . . Ki1 |ϕ⟩ ⊗ |i1⟩ ⊗ · · · ⊗ |in⟩ (4.5)

where Ki = ⟨i|U|χ⟩ are the Kraus operators of T, so that T(ρ) = ∑i KiρK∗
i .

Now, let us assume that the dynamics depends on a parameter θ ∈ R which we
would like to estimate, so that U = Uθ and |Ψ(n)⟩ = |Ψθ(n)⟩. In the input-output
formalism it is usually assumed that the experimenter can measure the output
(noise units after the interaction) but may not have access to the system. In this
case the relevant quantum statistical model is that of the (mixed) output state
given by

ρout
θ (n) = Trs(|Ψθ(n)⟩⟨Ψθ(n)|).

The problem of estimating θ in this formulation has been investigated in both
the discrete time [83, 86] and the continuous time [37, 65, 84] settings. For our
purposes, we summarise here the relevant results of [83]. We will assume that the
Markov chain is primitive, i.e., the transition operator T has a unique full-rank
steady state ρss (i.e.- T(ρss) = ρss) , and is aperiodic (i.e.- the only eigenvalue
of T on the unit circle is 1). In particular, for any initial state ρin, the system
converges to the stationary state Tn(ρin) → ρss in the large n limit. Therefore,
for the asymptotic analysis we can assume that the dynamics is in the stationary
regime and focus on the large time properties of the stationary output state.
The following theorem shows that the output QFI scales linearly with time and
provides an explicit expression of the rate.

Theorem 15. Consider a primitive discrete time Markov chain as described above, whose
unitary depends smoothly on a one-dimensional parameter θ, so that U = Uθ . The
quantum Fisher information Fθ(n) of the output state ρout

θ (n) scales linearly with n and
its rate is equal to

lim
n→∞

1
n

Fθ(n) = fθ = 4
k

∑
i=1

[
Tr
[
ρssK̇∗

i K̇i
]
+ 2Tr

[
Im(KiρssK̇∗

i ) · R(Im ∑
j

K̇∗
j Kj)

]]

(4.6)
where R is the Moore-Penrose inverse of Id − Tθ .
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Following standard quantum Cramér-Rao theory [25, 93, 95], the theorem
implies that the variance of any (unbiased) output-based estimator is bounded
from below by n−1/ f (θ) for large n. A more in depth analysis [83] shows that the
output model satisfies the property of local asymptotic normality which pertains
to a certain quantum Gaussian approximation of the output state and implies
that there exists an estimator θ̂n which achieves the Cramér-Rao bound (CRB)
asymptotically and has normally distributed errors:

√
n
(
θ̂n − θ

)
−→ N(0, f (θ)−1)

where the convergence is in distribution to a normal variable with variance
f (θ)−1. Below, we will make use of an extension of Theorem 15 which shows that
the same result holds for rank-deficient stationary states of ergodic chains, and in
particular for pure states [106].

Having identified the output QFI rate, we would like to investigate measure-
ment schemes which can provide good accuracy for estimating the parameter θ.
As noted before, the QCRB can be achieved by measuring the SLD of the statistical
model. However, the SLD of the output state is generally a complicated operator
whose measurement requires collective operations on the noise units. On the
other hand, one can consider separate measurements of the same observable on
the different noise units and system. The average statistic may provide an efficient
estimator and its (asymptotic) Fisher information can be computed explicitly [37].
However, such measurements are in general not optimal. Here would would like
to ask the more fundamental question: is it possible to achieve the QCRB using
simpler ‘local’ manipulation of the output units which involve operations on
single, rather than multiple units.

4.4 O U T P U T P O S T- P R O C E S S I N G U S I N G Q U A N T U M C O H E R E N T A B S O R B E R

In this section we introduce a key tool which will allow us to recast the estimation
problem for a general primitive Markov chain ( which typically has a mixed
stationary state) into one concerning a Markov chain with a ‘doubled-up’ system
having a pure stationary state. The construction is a discrete-time adaptation on
the concept of coherent quantum absorber introduced in [157] for continuous-time
dynamics. In section 4.5 we then show how the absorber can be used to compute
an adaptive, separable measurement in a simple recursive algorithm.

Consider the input-output system of section 4.3 characterised by a unitary U
on Hs ⊗Hu. We now modify the setup as illustrated in Figure 4.2 by inserting an
additional physical d-dimensional system Ha called absorber which interacts with
each of the noise units via a fixed unitary V on Ha ⊗Hu, applied immediately
after U. This can be seen as a type of quantum post-processing of the output prior
to the measurement. The original system and the absorber can be considered a
single open system with space Hs ⊗Ha which interacts with the same conveyor
belt of noise units via the unitary Wθ = V · U where V, U are now understood
as the ampliations of the unitaries to the tensor product Hs ⊗ Ha ⊗ Hu. The
following lemma shows that for certain choices of V the auxiliary system forms
a pure stationary state together with the original one, and the noise units pass
unperturbed from input to output. This explains the ‘absorber’ terminology,
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which was originally introduced in the context of continuous-time input-output
dynamics [157].

Lemma 1. Any given primitive quantum Markov chain with unitary U can be extended
to a quantum Markov chain including an absorber with unitary V, such that the doubled-
up system has a pure stationary state |ψ̃⟩ ∈ Hs ⊗Ha and

W : |ψ̃⟩ ⊗ |χ⟩ 7→ |ψ̃⟩ ⊗ |χ⟩, W = VU.

In particular, if the initial state of the doubled-up system is |ψ̃⟩, then the n-steps output
state of the doubled-up system is identical to the input state |χ⟩⊗n.

Proof. Let ρss = ∑i λi| fi⟩⟨ fi| be the spectral decomposition of the stationary state
of the original system with unitary U. We construct the purification

|ψ̃⟩ = ∑
√

λi| fi⟩ ⊗ | fi⟩ ∈ Hs ⊗Ha

which will play the role of stationary state of the extended system. Let |ϕ⟩ :=
U|ψ̃ ⊗ χ⟩ ∈ Hs ⊗Ha ⊗Hu be the state after applying U. We therefore look for
unitary V on Ha ⊗Hu (ampliated by identity on Hs) such that V reverts the
action of U

V : |ϕ⟩ 7→ |ψ̃ ⊗ χ⟩.
Since Tra(|ψ̃⟩⟨ψ̃|) = ρss this means that the reduced state of the system after

applying U is still the stationary state, so that

|ϕ⟩ = ∑
i

√
λi| fi⟩ ⊗ |gi⟩

where |gi⟩ are mutually orthogonal unit vectors in Ha ⊗Hu. We now choose a
unitary V such that V|gi⟩ = | fi ⊗ χ⟩, for all i, which is always possible due to
orthogonality.

4.5 A D A P T I V E M E A S U R E M E N T A L G O R I T H M

In this section we describe our adaptive output measurement protocol for esti-
mating an unknown one-dimensional dynamical parameter θ of a discrete time
quantum Markov chain with unitary Uθ , as described in section 4.3. The proto-
col has two stages. In the first stage we use a small proportion (e.g.- ñ = n1−ϵ,
with 0 < ϵ ≪ 1) of the output units in order to compute a preliminary ‘rough
estimator’ θ0 of the true parameter θ by performing a standard sequential mea-
surement. This step is necessary in any quantum estimation problem in which
the optimal measurement depends on the unknown parameter [49, 71], and will
inform the second stage of the protocol. In the second stage we use θ0 to design a
optimal sequential measurement for θ = θ0, i.e., one that achieves the output QFI

at θ = θ0. Since δθ = θ − θ0 = O(n−1/2+ϵ) [37], this implies that the procedure
is asymptotically optimal for any parameter value θ, in that the classical Fisher
information has the same linear scaling as the QFI Fθ(n). This stage has two key
ingredients (cf. Figure 4.2): a quantum ‘post-processing’ operation on output
units immediately after interacting with the system, followed by an adaptive
projective measurement whose basis is computed according to a ‘measurement
filter’ algorithm inspired by [183]. We now describe the two steps in detail.
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Quantum post-processing. After the interaction Uθ with the system, the output
units interact sequentially with a d-dimensional ancillary system, cf. Figure 4.2.
The interaction unitary Vθ0 is chosen such that the ancillary system is a coherent
quantum absorber for θ = θ0, see section 4.4 and Lemma 1 for construction. This
means that the system plus absorber (s+a) can be regarded as a single D = d2

dimensional open system with associated unitary Wθ = Vθ0Uθ , which has a pure
stationary state at θ = θ0 denoted |ψ⟩ ∈ CD, and whose output state is identical
to the input. The general estimation problem for Uθ has been reduced to a special
one for a doubled-up system with unitary Wθ which features a pure stationary
state at θ = θ0.

Remark 1. Since the absorber transformation Vθ0 does not depend on θ and is applied
after Uθ , the overall effect over an n steps interval is to rotate the absorber plus output
state by a fixed unitary V(n)

θ0
. . . V(1)

θ0
. This means that the total QFI does not change by

introducing the absorber.

Adaptive measurement algorithm. We will assume for simplicity that the initial
state of s + a is the stationary state |ψ⟩ such that the full (s+a)-output state is
|Ψθ(n)⟩ = Wθ(n)|ψ ⊗ χ⊗n⟩ as defined in (4.4). One could obtain similar results
for different initial states by simply waiting long enought for the system and
absorber to converge to the stationary state |ψ⟩. In principle we could now apply
the algorithm described in section 4.2 to construct and adaptive measurement
whose classical Fisher information is equal to the system-output QFI. In fact
we could have done this without using the absorber. However, this procedure
has some drawbacks. Indeed, in order to compute the measurement bases one
needs to work with large dimensional spaces which becomes unfeasible in an
asymptotic setting. Secondly, it is not clear a priori whether the output units can
be measured immediately after the interaction with the system, and whether the
measurements depend on the length of the output (sample size). In addition, the
procedure requires a final measurement on the system, which may be impractical
in the context of input-output dynamics. We will show that all these issues can
be addressed by taking into account the Markovian structure of our model, and
exploiting the pure stationary state property. Let us denote W = Wθ0 , Ẇ = dW

dθ

∣∣∣
θ0

and

A1 = M(1) = Ẇ|ψ ⊗ χ⟩⟨ψ ⊗ χ|W∗ − W|ψ ⊗ χ⟩⟨ψ ⊗ χ|Ẇ∗

= ẆPψ⊗χ − Pψ⊗χẆ∗,

and
B1 = Trs+a A1 = KPχ − PχK∗, with K = ⟨ψ|Ẇ|ψ⟩.

In section 4.5.1 we show that the adaptive measurement of [183] reduces to the
following iterative algorithm which is conceptually similar to quantum state
filtering [16, 22], and involves individual measurements on the output units im-
mediately after the interaction with the system, and computations with operators
on CD ⊗ Ck at each step.

Initialisation step (j=1). The first measurement basis
{
|e[1]i ⟩

}
in Ck is chosen

such that the following conditions are fulfilled:
〈

e[1]i

∣∣∣ B1

∣∣∣e[1]i

〉
= 0, and

∣∣∣⟨e[1]i |χ⟩
∣∣∣
2
=

1
k

, for all i = 1 . . . , k.
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The first noise unit is measured in this basis and the outcome X1 = i1 is obtained.
The filter at time j = 1 is defined as the (trace zero) s+a operator

Π1 =
〈

e[1]i1

∣∣∣ A1

∣∣∣e[1]i1

〉
.

Iterative step. The following step is iterated for j = 2, . . . , n. Given the filter
operator Πj−1 of the previous step, we define

Aj =
1

Dj−1 A1 + W
(
Πj−1 ⊗ Pχ

)
W∗, Bj = Trs+a Aj

The j-th measurement basis
{
|e[j]i ⟩

}
is chosen to fulfill the conditions

〈
e[j]i

∣∣∣ Bj

∣∣∣e[j]i

〉
= 0, and

∣∣∣⟨e[j]i |χ⟩
∣∣∣
2
=

1
k

, for all i = 1, . . . k. (4.7)

We measure the j-th noise unit in the basis
{
|e[j]i ⟩

}
and obtain the result Xj = ij.

The filter at time j is updated to

Πj =
〈

e[j]ij

∣∣∣ Aj

∣∣∣e[j]ij

〉
.

Final s+a measurement. This is an optional step which involves a final joint

measurement on system and absorber. The basis
{
|e[s+a]

i ⟩
}D

i=1
is determined by

the following conditions

〈
e[s+a]

i

∣∣∣Πn

∣∣∣e[s+a]
i

〉
= 0, p(i|i1, . . . , in) =

∣∣∣⟨e[s+a]
i |ψ⟩

∣∣∣
2
= 1/D.

The system and absorber are measured in this basis and the outcome X = i0 is
obtained.

The output measurement record {i1, . . . , in, i0} is collected and used for esti-
mating the parameter θ. The likelihood function is given by

pθ(i1, . . . in, i0) =
∣∣∣
〈

e[s+a]
i0

⊗ e[1]i1
⊗ · · · ⊗ e[n]in

|Ψθ(n)
〉∣∣∣

2
. (4.8)

For later use, we denote by pθ(i1, . . . in) the marginal distribution of the output
measurement record only.

4.5.1 Derivation of the measurement filter

In this section we provide the derivation of the measurement filter: we start by
applying the algorithm [183] to our estimation problem. The natural setup is to
measure the noise units in the order in which they emerge in the output, followed
by a final measurement on the system+absorber. For simplicity we refer to the
latter as the system. We start by defining

M(n) := |Ψ(n)⟩ ⟨Ψ̇(n)| − |Ψ̇(n)⟩ ⟨Ψ(n)| , (4.9)

where the index n keeps track of the output length. In this section we will use the
label 0 for the system, and 1, . . . , n for the noise units of the output. The algorithm
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prescribes measurement bases
{
|e[l]i ⟩

}k

i=1
for each of the output units l = 1, . . . , n

in an adaptive, sequential fashion. The first basis satisfies the equations

〈
e[1]i

∣∣∣M(n)
1

∣∣∣e[1]i

〉
= 0 and

∣∣∣
〈

e[1]i

∣∣∣ χ
〉∣∣∣

2
=

1
k

, for all i.

where M(n)
1 = Tr0,2,...,n M(n). The second equality follows from the fact that at θ0

we have |Ψ(n)⟩ = |ψ ⊗ χ⊗n⟩. The next basis depends on the outcome i1 of the
first measurement and satisfies the constraints

〈
e[2]i

∣∣∣M(n)
2 (i1)

∣∣∣e[2]i

〉
= 0 and

∣∣∣
〈

e[2]i

∣∣∣ χ
〉∣∣∣

2
=

1
k

, for all i

where
M(n)

2 (i1) = Tr0,3,...,n

〈
e[1]i1

∣∣∣M(n)
∣∣∣e[1]i1

〉
.

Assuming the first j < n units have been measured and a measurement record
ij := {i1, . . . , ij} has been obtained, we denote

M(n)(ij) :=
〈

e[1]i1
⊗ e[2]i2

⊗ · · · ⊗ e[j]ij

∣∣∣M(n)
∣∣∣e[1]i1

⊗ e[2]i2
⊗ · · · ⊗ e[j]ij

〉
,

M(n)
j+1(ij) := Tr0,j+2,...,n M(n)(ij).

The measurement basis
{∣∣∣e[j+1]

i (ij)
〉}

for unit j + 1 is then obtained by solving
the constraints
〈

e[j+1]
i (ij)

∣∣∣M(n)
j+1(ij)

∣∣∣e[j+1]
i (ij)

〉
= 0 and

∣∣∣
〈

e[j+1]
i (ij)

∣∣∣ χ
〉∣∣∣

2
=

1
k

, for all i.

The last step consists of measuring the system using the same procedure as for
the output units.

A priori, the procedure depends on the size n of the output. The following
lemma shows that the optimal bases obtained for different output sizes coincide.

Lemma 2. Let j, n be two output lengths with j < n and consider applying the above
procedure to the corresponding states |Ψ(j)⟩ and respectively |Ψ(n)⟩. The optimal mea-
surement bases {|e[l]i ⟩} for the units l = 1, . . . , j satisfy the same constraints and can be
chosen to be the same. In addition we have

M(n)
j (ij−1) = M(j)

j (ij−1).

Proof. Recall that |Ψ(n)⟩ = W(n) . . . W(1)|ψ ⊗ χ⊗n⟩, and let us denote

P(n) :=
∣∣ψ ⊗ χ⊗n〉 〈ψ ⊗ χ⊗n∣∣ = |Ψθ0(n)⟩⟨Ψθ0(n)|.

Then

|Ψ̇(n)⟩ =
n

∑
i=1

W(n) . . . Ẇ(i) . . . W(1)|ψ ⊗ χ⊗n⟩

=
n

∑
i=1

W(n) . . . Ẇ(i)|ψ ⊗ χ⊗n⟩

where we used the fact that W leaves |ψ ⊗ χ⟩ invariant.
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We first show that the matrix M(n)
1 does not depend on n, and therefore the

first measurement basis does not depend on the length of the output.

M(n)
1 = Tr0,2,...,n

[
M(n)

]
(4.10)

= ∑
i

Tr0,2,...,n

[
W(n) · · ·W(i) · · ·W(1)P(n).

.W(1)∗ · · · Ẇ(i)∗ · · ·W(n)∗ − c.c
]

= ∑
i

Tr0,2,...,n

[
W(n) · · ·W(i)P(n)Ẇ(i)∗ · · ·W(n)∗ − c.c

]

= ∑
i

Tr0,2,...,n

[
W(i)P(n)Ẇ(i)∗ − c.c

]

= Tr0

[
W(1)P(1)Ẇ(1)∗ − c.c

]
+ ∑

i=2
Tr0,2,...,n

[
W(i)P(n)Ẇ(i)∗ − c.c

]

= Tr0

[
M(1)

]
= M(1)

1 , (4.11)

where c.c, denotes the adjoint term. In the third equality we used

Tr0,2[W0,2 A0,1,2W∗
0,2] = Tr0,2[A0,1,2]

where W0,2 is a unitary acting on subsystems 0, 2 of a tripartite system, and A0,1,2

acts on subsystems 0, 1, 2. In the last equality we used our assumption

⟨ψ ⊗ χ|W∗Ẇ |ψ ⊗ χ⟩ = 0.

Let
{∣∣∣e[1]i

〉}
be the measurement basis determined from M1 = M(n)

1 = M(j)
1 .

We now show that, conditional on the outcome i1 of this measurement, the second
basis

{∣∣∣e[2]i

〉}
does not depend on the length of the output, which can be take to

be equal to 2.

M(n)
2 (i1) = Tr0,3,...,n

[
M(n)(i1)

]

= ∑
i

Tr0,3,...,n

[〈
e[1]i1

∣∣∣W(n) · · ·W(i) · · ·W(1)P(n).

.W(1)∗ · · · Ẇ(i)∗ · · ·W(n)∗
∣∣∣e[1]i1

〉
− c.c

]

= Tr0,3,...,n

[〈
e[1]i1

∣∣∣W(n) · · ·W(1)P(n)Ẇ(1)∗ · · ·W(n)∗
∣∣∣e[1]i1

〉
− c.c

]

+ Tr0,3,...,n

[〈
e[1]i1

∣∣∣W(n) · · ·W(2)W(1)P(n).

.W(1)∗Ẇ(2)∗ · · ·W(n)∗
∣∣∣e[1]i1

〉
− c.c

]

+
n

∑
i=3

Tr0,3,...,n

[〈
e[1]i1

∣∣∣W(n) · · ·W(i) · · ·W(1)P(n).

.W(1)∗ · · · Ẇ(i)∗ · · ·W(n)∗
∣∣∣e[1]i1

〉
− c.c

]

= Tr0

[
W(2)

〈
e[1]i1

∣∣∣W(1)P(2)Ẇ(1)∗
∣∣∣e[1]i1

〉
W(2)∗ − c.c

]

+
1
k

Tr0

[
W(1)P(1)Ẇ(1)∗ − c.c

]

= Tr0

[
W(2)

(〈
e[1]i1

∣∣∣M(1)
∣∣∣e[1]i1

〉
⊗ Pχ

)
W(2)∗

]
+

1
k

Tr0

[
M(1)

]
= M(2)

2 (i1).
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The equalities follow in the same way as in (4.11), and in addition we used∣∣∣⟨e[1]i1
|χ⟩
∣∣∣
2
= 1

k in the third equality.
Using the same techniques as above we obtain the general statement

M(n)
j (ij−1) = Tr0,j+1,...,n

[
M(n)(ij−1)

]
(4.12)

=
1

kj−1 Tr0

[
M(1)

]

+ Tr0

[
W(j)

(
⟨e[j−1]

ij−1
| M(j−1)(ij−2) |e

[j−1]
ij−1

⟩ ⊗ Pχ

)
W(j)∗

]

= Tr0

[
M(j)(ij−1)

]
= M(j)

j (ij−1). (4.13)

Next, we show that we can express M(j)(ij−1) in terms of M(1), M(j−1)(ij−2)

and |e[j−1]
j−1 ⟩. Indeed by writing W(j) = W(j)W(j − 1) we have

M(j)(ij−1) :=
〈

e
[j−1]
ij−1

∣∣∣∣M(j)
∣∣∣∣e

[j−1]
ij−1

〉

=

〈
e
[j−1]
ij−1

∣∣∣∣W(j)W(j − 1)P(j)W∗(j − 1)Ẇ(j)∗
∣∣∣∣e

[j−1]
ij−1

〉
− c.c

+

〈
e
[j−1]
ij−1

∣∣∣∣W(j)W(j − 1)P(j)Ẇ(j − 1)∗W(j)∗
∣∣∣∣e

[j−1]
ij−1

〉
− c.c

=
1

kj−1 M(1) + W(j)
(〈

e[j−1]
ij−1

∣∣∣M(j−1)(ij−2)
∣∣∣e[j−1]

ij−1

〉
⊗ Pχ

)
W(j)∗ (4.14)

This can then be used to determine the next measurement basis, producing the
iterative procedure described in section 4.5, which consists in updating the ‘filter’
that determines the optimal basis at each time step using the last measurement
outcome |e[j]ij

⟩.
Let A1 = M(1) and Aj := M(j)(ij−1) for j > 1, and denote

Πj :=
〈

e[j]ij

∣∣∣ Aj

∣∣∣e[j]ij

〉
=
〈

e[j]ij

∣∣∣M(j)(ij−1)
∣∣∣e[j]ij

〉

Then equation (4.14) can be written as

Aj =
1

kj−1 A1 + U(j) (Πj−1 ⊗ Pχ

)
U(j)∗

The optimal measurement is obtained by applying the conditions to the operator
Bj := Tr0Aj.

4.6 F I S H E R I N F O R M AT I O N S C O N S I D E R AT I O N S

In this section we investigate the relationship between the classical Fisher infor-
mation of the output adaptive measurement process and the system-output QFI.
We prove that both scale with the same rate and the latter may be larger than the
former by at most a constant, independent of time.

We also provide an expression of the CFI of sequential (adaptive or standard)
output measurements, which is amenable to estimation by sampling. This tool
will be used to confirm the optimality of our adaptive algorithm in numerical
simulations.
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4.6.1 Achievability of the QFI with adaptive output measurements

The adaptive measurement scheme described in section 4.5 insures the CFI of the
full measurement (output and s+a) is equal to the QFI of the full pure state model

I(s+a+o)
θ0

(n) = F(s+a+o)
θ0

(n) = F(s+o)
θ0

(n) (4.15)

where the last equality follows from the fact that the absorber acts as an addi-
tional rotation which does not change the QFI, cf. Remark 1. However, in certain
physical implementations the system may not be accessible for measurements, so
the more interesting scenario is that in which only the output state is measured. In
this case the CFI will generally be strictly smaller that the QFI, and the question is
whether by measuring only the output we incur a significant loss of information.
In proposition 1 we show that this is not the case: the difference between the
QFI and the output CFI is bounded by a constant, so for large times the loss
of information is negligible compared to both QFI and output CFI, which scale
linearly with time. In section 4.7 we will illustrate the result on a specific model.

Proposition 1. Consider the setup described in section 4.5, and let F(n) be the system-
absober-output QFI, and I(o)(n) be the output CFI for the optimal adaptive measurement,
at θ = θ0. Then F(n)− I(o)(n) < c for all n where c is a constant depending only on
the model Uθ . Consequently,

lim
n→∞

1
n

I(o)(n) = lim
n→∞

1
n

F(n) = f > 0

where f = fθ0 is the QFI rate (4.6).

The proof of Proposition 1 can be found in section 4.9.

4.6.2 Computing the classical Fisher information of the output

The classical Fisher information of the output measurement process at θ0 is

I(o)(n) = Eθ0

(
d log pθ

dθ

)2

= ∑
i1,...,in

pθ0(i1, . . . in)
−1

(
dpθ(i1, . . . , in)

dθ

∣∣∣∣
θ0

)2

where the sum runs over indices such that pθ(i1, . . . , in) > 0. In general

I(o)(n) ≤ F(o)(n) ≤ F(s+o)(n)

where the successive upper bounds are output and system-output QFIs respec-
tively.

In our simulation study we will be interested to study to what extent these
bounds are saturated in the adaptive and non-adaptive scenarios, and in particu-
lar, to verify the prediction of Proposition 1. Since the classical Fisher information
is difficult to compute for long trajectories, we will recast it as an expectation
which can be estimated by sampling measurement trajectories. In Lemma 3 be-
low, we will use the fact that at θ = θ0 the vector |ψ⟩ is the stationary state, and
therefore

K[j]
i |ψ⟩ = c[j]i |ψ⟩ (4.16)

for any Kraus decomposition K[j]
i = ⟨e[i]j |W|χ⟩ (for simplicity we use the same

notation for s+a Kraus operators as in section 4.3).
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Lemma 3. Consider the setup described in section 4.5. The output CFI at θ = θ0 is
given by

I(o)(n) = Eθ0( f 2) = ∑
i1,...,in

pθ0(i1, . . . , in) f 2(i1, . . . , in) (4.17)

where f is the function

f (i1, . . . , in) = 2Re
n

∑
j=1

⟨ψ|K[n]
in

. . . K[j+1]
ij+1

K̇[j]
ij
|ψ⟩

c[j]ij
. . . c[n]in

and the constants c[j]ij
are defined by equation 4.16. In particular, I(o)(n) can be estimated

by computing the empirical average of f 2 over sampled trajectories.

Proof. The CFI of any output measurement can be computed explicitly by writing

d
dθ

pθ(i1, . . . in)

∣∣∣∣
θ0

=
d
dθ

∥∥∥K[n]
in

· · ·K[1]
i1

ψ
∥∥∥

2
∣∣∣∣
θ0

= 2Re
n

∑
j=1

⟨ψ|K[1]∗
i1

· · ·K[n]∗
in

K[n]
in

· · · K̇[j]
ij
· · ·K[1]

i1
|ψ⟩

=
∣∣∣c[1]i1

· · · c[n]in

∣∣∣
2
· 2Re

n

∑
j=1

⟨ψ|K[n]
in

. . . K[j+1]
ij+1

K̇[j]
ij
|ψ⟩

c[j]ij
. . . c[n]in

Therefore

I(out)
θ0

(n) = ∑
i1,...,in

∣∣∣c[1]i1
· · · c[n]in

∣∣∣
2


2Re

n

∑
j=1

⟨ψ|K[n]
in

. . . K[j+1]
ij+1

K̇[j]
ij
|ψ⟩

c[j]ij
. . . c[n]in




2

= ∑
i1,...,in

pθ0(i1, . . . , in) f 2(i1, . . . , in) = Eθ0( f 2) (4.18)

where f is the function

f (i1, . . . , in) = 2Re
n

∑
j=1

⟨ψ|K[n]
in

. . . K[j+1]
ij+1

K̇[j]
ij
|ψ⟩

c[j]ij
. . . c[n]in

We now consider the case where a (projective) measurement {P(s+a)
i } is per-

formed on s+a, after obtaining the output measurement record (i1, . . . , in). We
denote the additional outcome by i0. The CFI of the full process is

I(s+a+o)(n) = Eθ0

(
d log pθ

dθ

∣∣∣∣
θ0

)2

where
pθ(i1, . . . , in, i0) =

∥∥∥P(s+a)
i0

K[n]
in

. . . K[1]
i1

ψ
∥∥∥

2

is the likelihood function of a trajectory augmented by the system measurement
outcome i0. The relevant upper bound in this case is

I(s+a+o)(n) ≤ F(s+a+o)(n) = F(s+o)(n). (4.19)
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A similar computation to that of Lemma 3 gives the system-output classical
Fisher information

I(s+a+o)(n) = Eθ0( f̃ 2)

where f̃ is the function

f̃ (i1, . . . , in, i0) = 2 Re
n

∑
j=1

⟨ψ|P(s)
i0

K[n]
in

. . . K[j+1]
ij+1

K̇[j]
ij
|ψ⟩

c[j]ij
. . . c[n]in

For fixed (non-adaptive) measurements, the bound (4.19) is generally not satu-
rated except for special models (e.g.- if the state coefficients in the measurement
basis are real for all θ). In contrast, the system-absorber-output classical Fisher in-
formation for adaptive measurements is equal to the QFI thanks to the optimality
of the adaptive measurement procedure (4.15). This is confirmed by our simu-
lation study which also investigates the performance of the fixed measurement
scenario.

4.7 N U M E R I C A L S I M U L AT I O N S

We now test the key properties of the adaptive measurement scheme developed
in section 4.5, in two separate numerical investigations.

The first investigation described in subsections 4.7.1 and 4.7.2 employs a sim-
plified Markov model which bypasses stage-one of the scheme (computing a
rough estimator θ0) and simulates data at θ = θ0. This allows us to directly
study the performance of the algorithm itself (stage two), rather than that of the
combination of the two stages. The second simplification of this investigation
is that we choose a system which has a pure stationary state at θ0; this means
that no absorber is required, so the system can be seen as a surrogate for the
system+absorber in the general scheme. The reason for this is mainly practical,
as it allows us to use a two-dimensional system while system+absorber would
have dimension at least four.

The second numerical investigation consists of a full simulation study includ-
ing the use of the coherent absorber and the two stage estimation procedure,
and its results are presented in subsection 4.7.3. Here we can see the overall
performance of the estimation method, but it is harder to estimate the Fisher
information of the measurement process and to separate the contribution of the
two stages in the overall estimation error.

4.7.1 Simplified Markov model for the first numerical investigation

We consider a dynamical model consisting of a two-dimensional system coupled
via a unitary Uθ to two dimensional noise units in state |χ⟩ = |0⟩. The input state
and the unitary are designed such that the stationary state at θ0 = 0 is |ψ⟩ = |0⟩.
Since the input is prepared in a fixed state, we only need to define the action of
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Uθ on the basis vectors |0⟩ ⊗ |0⟩ and |1⟩ ⊗ |0⟩. The following choice has unknown
parameter θ and two known parameters λ and ϕ

Uθ : |00⟩ −→ cos(θ)
√

1 − θ2 |00⟩+ i sin(θ)
√

1 − θ2 |10⟩+ θ |11⟩ ,

Uθ : |10⟩ −→ i sin(θ)
√

1 − λ |00⟩+ cos(θ)
√

1 − λ |10⟩+
√

λeiϕ |01⟩ . (4.20)

A non-zero value of the phase parameter ϕ ensures that the system-output state
does not have real coefficients in the standard basis, in which case the standard
basis measurement would be optimal. Note that at θ0 the dynamics provides a
simple model for ‘photon-decay’ with decay parameter λ.

We compare two measurements scenarios. In the first, non-adaptive scenario,
the noise units are measured in a fixed orthonormal basis

{| f0⟩ = (|0⟩+ |1⟩)/
√

2, | f1⟩ = (|0⟩ − |1⟩)/
√

2}

while in the second scenario they are measured adaptively following the al-
gorithm described in section 4.5. In both cases, given the measurement record
{i1, . . . , in} ∈ {0, 1}n, the conditional state of the system is

|ψn(i1, . . . in)⟩ =
K[n]

in
. . . K[1]

i1
|ψ⟩

∥K[n]
in

. . . K[1]
i1

ψ∥
(4.21)

where the Kraus operators are {K0 = ⟨ f0|U|χ⟩, K1 = ⟨ f1|U|χ⟩} in the first sce-
nario, and K[j]

i = ⟨e[j]i |U|χ⟩ in the second one. The likelihood of the output
measurement trajectory is

pθ(i1, . . . in) = ∥K[n]
in

. . . K[1]
i1

ψ∥2. (4.22)

Recall that the optimal measurement basis needs to satisfy the conditions (4.7)
in section 4.5. For two dimensional noise units the computation reduces to the
following scheme. We express the traceless, anti-Hermitian matrix Bj defined in

section 4.5 as Bj = ir [j] · σ where r [j] = (r[j]x , r[j]y , 0) is its Bloch vector, and simi-

larly, we let ±s [j] be the Bloch vectors of the basis vectors {|e[j]1 ⟩, |e[j]2 ⟩} satisfying
the conditions (4.7). Then one finds that the conditions (4.7) are satisfied if s [j] is
taken to be s [j] = (r[j]y ,−r[j]x , 0).

We study both the scenario where system of interest is measured after obtaining
the output trajectory, as well as the one where only the output measurement is
considered. In the former case, the algorithm guarantees that the classical Fisher
information of the full measurement record is equal to the QFI of the system-
output state. This claim is verified numerically by comparing the estimated
classical Fisher information computed using the method described in section
4.6.2 with the quantum Fisher information of the system-output state. In the latter
scenario, Proposition 1 insures that the loss of information compared to a ‘full
measurement’ is bounded by a constant which does not depend on time.

As shown in Theorem 15, the system-output QFI scales linearly with time, i.e.,

F(s+o)
θ (n) = n fθ + o(n)
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where the QFI rate is given by the equation (4.6) and the o(n) term depends on
the specific system parameters. Applying this to our model we obtain

fθ0 =
8

1 −
√

1 − λ
. (4.23)

However, it turns out that for this specific model and parameter value, the QFI can
be computed explicitly for any fixed n. The proofs of (4.23) and of the following
lemma can be found in section 4.10.

Lemma 4. The system-output QFI at θ = θ0 is given by the formula

F(s+o)
θ (n) = =

8n
1 − a

+ 4
[

2(a2 − an)

(1 − a)2 − 2
b2(a − an)

(1 − a)3 +
2(a2 − a2n)

b2

]
(4.24)

where a =
√

1 − λ and b =
√

λ. In particular, the leading term in n is given by (4.23)
while the remaining terms are bounded.

4.7.2 Simulation studies for the simplified model

We now present the results of our first numerical investigation consisting of 3
simulation studies using the simplified Markov model described above.

The first simulation study focuses on the comparison between the different
notions of Fisher information: the system-output QFI, the CFI of the output
trajectory in the non-adapted and adapted scenarios, and the CFI of the system-
output measurement process in the adapted measurement scenario. The QFI
is computed using the formula in Lemma 4 while the CFIs are estimated by
sampling using the expression in Lemma 3.

The results are illustrated in Figure 4.3 where the different informations are
plotted as a function of time (trajectory length) n, for λ = 0.8, ϕ = π/4. The
simulation confirms the fact that the adaptive algorithm achieves the QFI when
the system is measured together with the output, while the CFI of the output
trajectory (without measuring the system) provides a close approximation which
only differs by a constant factor. In contrast, the CFI of the standard measurement
has a smaller rate of increase; additional numerical work shows that the CFI rate
can be improved by optimising the basis of the standard measurement but it does
not achieve the QFI.

The second simulation study focuses on the ‘measurement trajectory’, i.e.,
the sequence of measurement settings produced in the adaptive measurement
scenario. Since all measurement bases consist of vectors in the equatorial plane
on the Bloch sphere, one can parametrise each basis by the polar coordinate φ of
the basis vector (|0⟩ ± eiφ|1⟩)/

√
2 for which φ belongs to a specified interval of

length π. This is illustrated in the left panel of Figure 4.4. This parametrisation
has the disadvantage that it does not reproduce the topology of the space of
measurements which is that of a circle, leading to some jumps in measurement
angles appearing to be larger than the actual ‘distance’ between measurement
bases. To remedy this, in the right panel of Figure 4.4 we plot 2φ on circles of
radius increasing linearly with time. We note that the initial steps of the trajectory
show large variations which then ‘stabilise’ around a certain range of values. This
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Figure 4.3: Fisher informations as function of output length n: quantum Fisher infor-
mation (blue), classical Fisher information for the adaptive measurement
with/without system measurement (orange/green), classical Fisher informa-
tion for a regular (non-adaptive) measurement (red).

has to do with the fact that the initial angle can be chosen arbitrarily in this model
as B1 = 0, cf. section 4.5. Understanding the nature of this stochastic process
remains an interesting topic of future research.

The third simulation study concerns the performance of the maximum like-
lihood estimator (MLE) in an adapted and non-adapted output measurement
scenarios. The MLE is defined by

θ̂n := arg max
τ

pτ(i1, . . . in).

where the likelihood pτ(i1, . . . in) is computed as in equation (4.22). In numerics,
we maximise the log-likelihood function which can be computed as the sum

log pτ(ii, . . . in) =
n

∑
j=1

log ∥K[j]
ij

ψ(i1, . . . ij−1)∥2

where ψ(i1, . . . ij−1) is the system’s state conditional on the output trajectory
(filter), cf. equation (4.21). The MLE accuracy is quantified by the mean square
error (MSE) E(n) = Eθ(θ̂n − θ)2, which is estimated empirically by averaging
over a number of simulations runs to obtain Ê(n). To verify that the MSE scales
as n−1 we plot the inverse empirical error Ê−1(n) as a function of time. Figure
4.5 shows the inverse error for the adaptive and non-adaptive measurements
together with the QFI (which is equal to the CFI of the adaptive measurement)
and the CFI of the non-adaptive measurement. We note that for small values of n
the inverse error is significantly lower that the corresponding Fisher information,
but it approaches the latter for larger values of n. This suggests that the MLE
achieves the Cramér-Rao bound asymptotically, which is not surprising since
the MLE is known to be asymptotically optimal for independent samples as well
as for certain classes of hidden Markov chains [21, 108]. However, proving its
optimality for the adaptive measurement process remains an open problem. In
addition to the mean square error, we looked at the distribution of the MLE.
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Figure 4.4: Adaptive measurement trajectory with basis angle φ on left and φ plotted on
the circle on the right.

Figure 4.6 shows a histogram of the MLE based on N = 10000 simulations with
n = 200, and it indicates that the MLE is approximately normally distributed.
Based on this, it is reasonable to conjecture that the MLE is an efficient estimator
[21, 108] (i.e.- it has asymptotically normal distribution with variance equal to
the inverse of the Fisher information).

4.7.3 The second numerical investigation using the full adaptive protocol

In this section we present the results of the second numerical investigation which
implements the full estimation scheme proposed in this chapter, including the
preliminary estimation stage and the use of the coherent absorber. We use the
same input-output model as described by the unitary in equation (4.20), but the
data will be simulated at a true value of θ = 0.2 instead of θ = 0. While at θ = 0
the system has a pure stationary state and the coherent absorber is not needed,
away from this value the stationary state is mixed and we will apply the full
protocol described in section 4.4.

In the first stage of the adaptive estimation procedure we use a fixed proportion
q of the total sample size n to obtain a preliminary estimator θ0 of θ by measuring
each output unit in the standard basis. The parameter is estimated using the
maximum likelihood method. In the second stage we apply the adaptive scheme
with an absorber ‘tuned’ to the parameter value θ0 (cf. section 4.4). The system
and absorber are prepared in the pure stationary state at θ0, the dynamics is
run for time (1 − q)n and the output is measured according to the adaptive
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Figure 4.5: Comparison of different Fisher informations of the output state as function
of trajectory length n, obtained by averaging over N = 10000 trajectories,
at λ = 0.8, φ = π/4. The quantum Fisher information (QFI) (blue) and the
classical Fisher information (CFI) of adapted measurement (green) completely
overlap due to optimality. The inverse MLE error of the adapted measure-
ment (orange) approaches the QFI for large n. Similarly, for the standard
measurement, the inverse MLE error (red) approaches the CFI (purple) for
large n.

measurement filter algorithm. The maximum likelihood estimator for the stage
one and two data is then computed.

For comparison, we also run a non-adaptive scheme where the output is mea-
sured in the standard basis for the whole duration n, without using an absorber.
The maximum likelihood estimator is again computed from the measurement
data. In both experiments, the mean square error of the MLE is estimated by
averaging over 1000 repetitions.

Unlike the setup of the previous numerical study, the estimation of the classical
Fisher information of the adaptive measurement process was too costly and is not
included in the study. As a proxy for the classical Fisher information we plot the
average value of the observed Fisher information for each of the two simulations. For
a given measurement run (i1, . . . in), the observed Fisher information is defined
as the second derivative of the log-likelihood function evaluated at the maximum
likelihood estimator θ̂n:

Iobs(i1, . . . in) = − d2 log pθ(i1, . . . in)

dθ2

∣∣∣∣
θ=θ̂n

While a full theoretical justification of Iobs goes beyond the scope of this chapter,
we note that the use of the observed Fisher information for independent identi-
cally distributed data is well grounded in statistical methodology and is closely
relate to the asymptotic normality property [51].

Figure 4.7 shows the results of the numerical experiments, for two values
q = 0.15 and q = 0.25 of the proportion of samples used in the preliminary
estimation stage. As before, we plot the inverse of the estimated mean square
error for the simple measurement (green line) and the adaptive measurement
(blue line). In addition we plot the leading contribution to the quantum Fisher
information n f (θ) (purple line) computed using the results in Theorem 15, which
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Figure 4.6: Histogram of the MLE distribution in the adaptive measurement scenario,
with n = 200, θ = 0 and 10000 samples, at λ = 0.8, φ = π/4.

Figure 4.7: Comparison of different Fisher informations of the output state as function
of trajectory length n, in the fully adaptive numerical investigation, for two
proportions of samples used in the preliminary stage: q = 0.15 (top panel) and
q = 0.25 (bottom panel). The results are obtained by averaging over N = 1000
trajectories, at θ = 0.2 and λ = 0.8, φ = π/4. We plot: the asymptotic QFI
(purple line), observed Fisher information for adaptive measurement (orange
line) and simple measurement (red line), inverse MSE of the MLE for adaptive
measurement (blue line) and simple measurement (green line).
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provides the asymptotic slope of the actual output quantum Fisher information.
The average observed Fisher information is plotted for both the simple (red
line) and adaptive (orange line) measurement setups. We note a good agreement
between the inverse mean square error of the MLEs and the observed Fisher
informations. For the adaptive measurements, the observed Fisher information
also shows the same slope as the asymptotic Fisher information, as expected.
We also note that in the adaptive measurement, the mean square error does not
quite achieve the (observed) quantum Fisher information for the range of times
we considered, although it gets closer to it in the case q = 0.25 (right panel). We
speculate that this may be related to a number of factors such as the choice of
q for different sample sizes, the details of the actual measurement procedure
implemented in practice (in contrast to the theoretical prescription) and even
the implementation of the MLE. For instance, in practice it may be beneficial to
implement several adaptive estimation stages where the preliminary estimator is
gradually improved and used in tuning the absorber in the next stage. All these
remain interesting questions which are worth investigating in more detail and
on a case by case basis. However, these are somewhat separate issues from that
of designing adaptive measurements that achieve the QFI, which was the main
focus of this work.

4.8 C O N C L U S I O N S A N D O U T L O O K

In this chapter we developed an efficient iterative algorithm for optimal estima-
tion of dynamical parameters of a discrete-time quantum Markov chain, using
adaptive sequential measurements on the output. The algorithm builds on the
general measurement scheme of [183] which achieves the quantum Fisher in-
formation for pure state models of multipartite systems with one dimensional
unknown parameters. However, unlike the scheme of [183] which requires ma-
nipulations involving the full multipartite state, the proposed algorithm only
involves computations on d2 · k-dimensional systems where d and k are the di-
mensions of the open system and noise unit respectively. Therefore, the method
can be readily applied to Markov parameter estimation for large output sizes.
The algorithm exploits the Markovian structure of the dynamics to sequentially
compute optimal measurement bases in terms of a single time-dependent ‘mea-
surement filter’ operator, which is updated in a way that is reminiscent of a
state filter. One of the key ingredients of the proposed scheme is the use of a
coherent quantum absorber [157] which reduces the estimation problem to one
concerning a system with a pure stationary state. We considered both output and
output-system measurements scenarios and we showed that while the former
achieves the full quantum Fisher information, the latter is short of this by just
a fixed constant, and in particular both have the same scaling with time. Our
theoretical results are confirmed by numerical simulations using a simplified
model related to the amplitude decay channel. We also presented results from
‘full simulation’ studies involving the use of the coherent absorber.

Our discrete-time procedure raises interesting questions about the possibil-
ity to design realistic optimal sequential measurements in continuous-time dy-
namics. In principle the scheme can be applied to continuous time by using
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time-discretisation techniques [111, 128]. Although we did not treat this in detail
here, we can readily make several observations in the special case of a single
Bosonic I-O channel. For small enough time intervals δt, the field can be approx-
imated by a noise unit C2 with basis vectors representing the vacuum and a
one-photon state respectively. The proposed measurements consist of projections
whose corresponding Bloch vectors are in the equatorial plane; loosely speaking,
this corresponds to an adaptive homodyne measurement with a time-dependent
angle. Our preliminary investigations indicate that the behaviour of the time-
dependent angle ranges from deterministic evolution to a noisy stochastic process
which does not appear to be of diffusive type. This raises the question whether
the remaining freedom in choosing the measurement bases can be used to im-
prove the adaptive algorithm and produce a more regular measurement process.
Indeed, the second defining condition for the measurement vectors can be re-
laxed, allowing for more general classes of optimal measurements, which may
be more suitable for continuous-time detection. This will be the topic of a future
investigation.

Another important open question concerns the extension to chains with mixed
input states, or more multiple inputs, of which only some are observed. We
speculate that for small departures from the current scheme, the algorithm will
be quasi-optimal for some time interval but will be sub-optimal in the long time
limit. In this case, restarting the evolution and measurement filter at regular
intervals may be more efficient.

From a theoretical viewpoint, it is important to understand the mathematical
properties of the stochastic processes introduced here, the adaptive measurement
and the measurement trajectory. Finally, it is intriguing to consider to what extent
the proposed method can adapted to multi-parameter estimation and to general
(time-dependent) matrix product states, as opposed to stationary output states of
Markov processes.

4.9 P R O O F O F P R O P O S I T I O N 1

We start by using a general Fisher information identity for bipartite systems.
Consider a generic pure state model |ψθ⟩ ∈ Hs ⊗Ho and let {|eo

i ⟩} and {|es
j ⟩}

be optimal bases in the ‘output’ and ‘system’ subsystems, for estimating θ at
a particular value θ0, as prescribed by [183]. Assume we perform the ‘output’
measurement and let X denote the outcome whose distribution is

Pθ(X = i) = ⟨ψθ |1 ⊗ Pi|ψθ⟩, Pi = |eo
i ⟩⟨eo

i |.
The conditional state of the ‘system’ given X = i is

|ψθ(i)⟩ =
1 ⊗ Pi|ψθ⟩
∥1 ⊗ Piψθ∥

and this state contains the ‘remaining’ information about θ. The following in-
equality bounds the total available information as

Iθ(X) + EX F(ψθ(X)) ≤ Fθ

where the first term on the left side is the classical Fisher information of the
outcome distribution Pθ and the second is the expected QFI of the conditional
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state |ϕi
θ⟩. Consider now the second measurement |es

j ⟩ on the system and let Y be
its outcome. Then

Fθ = Iθ(X) + EX Iθ(Y|X) ≤ Iθ(X) + EX F(ψθ(X)) ≤ Fθ

where the first equality is due to measurement optimality, while the second is the
inequality between classical and quantum information. This implies that

Fθ − Iθ(X) = EX Fθ(ψθ(X)). (4.25)

We now consider the Markov setup in which the system+absorber play the
role of ‘system’ while the n noise units are the ‘output’. We assume that the
output and the system+absorber are measured according to the optimal scheme
presented in section 4.5. The joint state is given by

|Ψθ(n)⟩ = W(n)
θ · · · · · W(1)

θ |ψ ⊗ χ⊗n⟩

and the conditional states are

|ψθ(i1, . . . , in)⟩ =
K[n]

θ,in
. . . K[1]

θ,i1
|ψ⟩

√
pθ(i1, . . . in)

.

We will show that at θ = θ0 the left side of (4.25) is bounded by a constant which
does not depend on n. For simplicity, whenever possible we will use the compact
notations such as

Ki := K[n]
θ,in

. . . K[1]
θ,i1

, and |ei⟩ = |e[n]in
⊗ · · · ⊗ e[1]i1

⟩.

Recall that by design the following condition holds Wθ0 |ψ ⊗ χ⟩ = |ψ ⊗ χ⟩, which
implies |Ψθ0(n)⟩ = |ψ ⊗ χ⊗n⟩ and also K[j]

ij
|ψ⟩ = c[j]ij

|ψ⟩ for some constants c[j]ij
.

Recall that for a pure state model |ψθ⟩ the QFI is given by

Fθ = 4
(
∥ψ̇θ∥2 − |⟨ψ̇θ |ψθ⟩|2

)
= 4∥ψ⊥

θ ∥2, |ψ⊥
θ ⟩ = |ψ̇θ⟩ − Pψθ

|ψ̇θ⟩.

Therefore, the expected system QFI on the left side of (4.25) is given by

Fs(θ0) = 4 ∑
i

p(i)∥ψ⊥
θ0
(i)∥2 (4.26)

where
|ψ⊥

θ0
(i)⟩ = |ψ̇θ0(i)⟩ − Pψ|ψ̇θ0(i)⟩

For simplicity we now drop the subscript θ0 and we have

|ψ̇(i)⟩ = K̇i|ψ⟩√
p(i)

− 1
2

Ki|ψ⟩
p3/2(i)

ṗ(i) =
K̇i|ψ⟩√

p(i)
− 1

2
c(i) ṗ(i)
p3/2(i)

|ψ⟩

and therefore
|ψ⊥(i)⟩ = 1√

p(i)

(
I − Pψ

)
K̇i|ψ⟩.

Equation (4.26) becomes

Fs(θ0) = 4 ∑
i

∥∥∥P⊥
ψ K̇iψ

∥∥∥
2
= 4

∥∥∥(P⊥
ψ ⊗ I)Ψ̇(n)

∥∥∥
2

.
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Now

|Ψ̇(n)⟩ =
n

∑
j=1

W(n) . . . W(j+1)Ẇ(j)W(j−1) . . . W(1)|ψ ⊗ χ⊗n⟩

=
n

∑
j=1

W(n) . . . W(j+1)Ẇ(j)|ψ ⊗ χ⊗n⟩

and by triangle inequality

Fs(θ0) ≤ 4

(
n

∑
j=1

∥∥∥(P⊥
ψ ⊗ I)W(n) . . . W(j+1)Ẇ(j)ψ ⊗ χ⊗n

∥∥∥
)2

Let |Ψ̇(1)⟩ := Ẇ|ψ ⊗ χ⟩ and let τ := Tr1(Ψ̇(1)⟩⟨Ψ̇(1)|). Then
∥∥∥(P⊥

ψ ⊗ I)W(n) . . . W(j+1)Ẇ(j)ψ ⊗ χ⊗n
∥∥∥

2

= Tr0,1,...n−j

(
(P⊥

ψ ⊗ I)W(n−j) . . . W(1)τW(1)∗ . . . W(n−j)∗
)

= Tr0(P⊥
ψ Tn−j(τ))

where in the last equality we have used the definition of the transition operator
T of the system+absorber. Assuming that T is ergodic we have

Tn(τ) → Pψ

exponentially fast with n so that

Tr0(P⊥
ψ Tn−j(τ)) ≤ a2(n−j)

for some a < 1. Therefore

Fs(θ0) ≤ 4

(
n

∑
j=1

an−j

)2

≤ 4
1

(1 − a)2

Note that if the spectral gap of T becomes small then the convergence to station-
arity is slower and the upper bound increases.

4.10 C O M P U TAT I O N O F F I N I T E T I M E S Y S T E M - O U T P U T Q F I

From (4.5) and (4.1) we have

F(s+o)
θ (n) = 4∥Ψ̇θ(n)∥2

= 4 ∑
i1,...in

∥∥∥∥∥
n

∑
j=1

Kin . . . K̇ij . . . Ki1 ψ

∥∥∥∥∥

2

(4.27)

where Ki are the (fixed) Kraus operators with respect to the standard basis, and
|ψ⟩ = |0⟩. Our specific model has the feature that both Ki and K̇i map the basis
vectors into each other:

K0|0⟩ = |0⟩ K̇0|0⟩ = i|1⟩ K0|1⟩ =
√

1 − λ|1⟩ K̇0|1⟩ = i
√

1 − λ|0⟩
K1|0⟩ = 0 K̇1|0⟩ = |1⟩ K1|1⟩ =

√
λeiϕ|0⟩ K̇1|1⟩ = 0
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This allows to compute the QFI explicitly by noting the terms in the sum (4.27)
with more that two indices equal to 1 have zero contribution. The remaining
terms can be computed as follows. The term with only zero indices is

F(0) = 4

∥∥∥∥∥
n

∑
j=1

K0 . . . K̇0 . . . K0|0⟩
∥∥∥∥∥

2

= 4

∣∣∣∣∣
n

∑
j=1

ian−j

∣∣∣∣∣

2

= 4
(

1 − an

1 − a

)2

(4.28)

where a =
√

1 − λ.
Consider now a sequence (0, . . . , , 0, 1, 0, . . . 0) with a single one on position l.

Since K0 . . . K̇0 . . . K1 . . . K0|0⟩ = 0 the only contributing terms will be those with
derivative on the first (l − 1) K0s or on K1. This gives

F(1) = 4
n

∑
l=2

∥∥∥∥∥i
l−1

∑
r=1

eiϕal−1−rb|0⟩+ an−l |1⟩
∥∥∥∥∥

2

+ 4∥an−1|1⟩∥2

= 4
n

∑
l=2

(
b2 1 − al−1

1 − a
+ a2(n−l)

)
+ 4a2(n−1)

= 4(n − 1)
b2

(1 − a)2 + 4
a2 − a2n

(1 − a)2

− 8
b2(a − an)

(1 − a)3 + 4
1 − a2(n−1)

b2 + 4a2(n−1) (4.29)

where b =
√

λ.
Finally, consider the sequences of the type (0, . . . 0, 1, 0, . . . 0, 1, 0 . . . 0) with 1s

on positions 1 ≤ i < k ≤ n. In this case the nonzero contributions come from
terms where the derivative is on positions j = i. The Fisher contribution is

F(2) = 4 ∑
1≤i<k≤n

∥eiϕ
√

λ(1 − λ)(k−i−1)/2|0⟩∥2

= 4 ∑
1≤i<k≤n

b2a2(k−i−1) = 4(n − 1)− 4
a2 − a2n

b2 . (4.30)

Adding together the contributions (4.28), (4.29) and (4.30) we obtain the total QFI

F(s+o)
θ (n) = F(0) + F(1) + F(2)

=
8n

1 − a

+ 4

[(
1 − an

1 − a

)2

− b2

(1 − a)2 +
a2 − a2n

(1 − a)2

−2
b2(a − an)

(1 − a)3 +
1 − a2(n−1)

b2 + a2(n−1)

]

− 4
[

1 +
a2 − a2n

b2

]
(4.31)

where the leading term is consistent with the QFI rate formula (4.23).



5
O P T I M A L E S T I M A T I O N O F P U R E S T A T E S W I T H
D I S P L A C E D - N U L L M E A S U R E M E N T S

5.1 I N T R O D U C T I O N A N D M A I N R E S U LT S

As we’ve seen in the previous chapters, a common feature of many quantum
estimation problems is that ‘optimal’ measurements depend on the unknown
parameter, so they can only be implemented approximately, and the optimality is
at best achieved in the limit of large ‘sample size’. This raises the question of how
to interpret theoretical results such as the QCRB [15, 25, 93, 95, 124, 179] and how
to design adaptive measurement strategies which attain the optimal statistical
errors in the asymptotic limit. When multiple copies of the state are available,
the standard strategy is to use a sub-sample to compute a rough estimator and
then apply the optimal measurement corresponding to the estimated value.
Indeed this works well for the case of the symmetric logarithmic derivative
[71], an operator which saturates the quantum Cramér-Rao bound (QCRB) for
one-dimensional parameters. However, the QCRB fails to predict the correct
attainable error for quantum metrology models which consist of correlated states
and exhibit Heisenberg (quadratic) scaling for the mean square error [80]. This
is due to the fact that in order to saturate the QCRB one needs to know the
parameter to a precision comparable to what one ultimately hopes to achieve.

In this chapter we uncover a somewhat complementary phenomenon, where
the usual adaptive strategy fails precisely because it is applied to a ‘good’ guess of
the true parameter value. This happens in the standard multi-copy setting when
estimating a pure state by means of ‘null measurements’, where the experimenter
aims to measure in a basis that contains the unknown state. While this can only
be implemented approximately, the technique is known to exhibit certain Fisher-
optimality properties [115, 136, 137] and has the intuitive appeal of ‘locking’
onto the correct value as outcomes corresponding to other measurement vectors
become more and more unlikely.

In Theorem 16, which is our first main result, we show that the standard adap-
tive strategy in which the parameter is first estimated on a sub-sample and then
the null-measurement for this rough value is applied to the rest of the ensemble,
fails to saturate the QCRB, and indeed does not attain the standard rate of preci-
sion. Our result shows the importance of accompanying mathematical properties
with clear operational procedures that allow us to draw statistical conclusions;
this provides another example of the limitations of the ‘local’ estimation approach
based on the quantum Cramér-Rao bound [164]. Indeed the reason behind the
failure of the standard adaptive strategy is the fact that null-measurements suffer

83
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from non-identifiability issues when the true parameter and the rough prelim-
inary estimator are too close to each other, i.e., when the latter is a reasonable
estimator of the former.

Fortunately, it turns out that the issue can be resolved by deliberately shift-
ing the measurement reference parameter away from the estimated value by a
vanishingly small but sufficiently large amount to resolve the non-identifiabilty
issue. Using this insight we devise a novel adaptive measurement strategy which
achieves the Holevo bound for arbitrary multi-parameter models, asymptotically
with the sample size. This second main result is described in Theorem 17. In
particular our method can be used to achieve the quantum Cramér-Rao bound
for models where this is achievable, which was the original theme of [115, 136,
137]. The validity of the displaced-null strategy goes beyond the setting of the
estimation with independent copies and has already been employed for optimal
estimation of dynamical parameters of open quantum systems by counting mea-
surements [177]. The extension of our present results to the setting of quantum
Markov chains will be presented in a forthcoming publication [75]. In the rest of
this section we give a brief review of the main results of this chapter.

The quantum Cramér-Rao bound and the symmetric logarithmic derivative

As we saw in Chapter 3, the quantum estimation problem is formulated as
follows: given a quantum system prepared in a state ρθ which depends on an
unknown (finite dimensional) parameter θ ∈ Θ, one would like to estimate θ by
performing a measurement M and constructing an estimator θ̂ = θ̂(X) based
on the (stochastic) outcome X. The Cramér-Rao bound [170, 185] shows that
for a given measurement M, the covariance of any unbiased estimator is lower
bounded as Cov(θ̂) ≥ I−1

M (θ) where IM(θ) is the classical Fisher information (CFI)
of the measurement outcome.

Optimising over all possible measurements, the CFI IM(θ) is upper bounded by
the quantum Fisher information (QFI) F(θ) - an intrinsic property of the quantum
statistical model {ρθ}θ∈Θ. By combining the two bounds we obtain the celebrated
quantum Cramér-Rao bound (QCRB) [15, 25, 93, 95, 124, 179] Cov(θ̂) ≥ F−1(θ).
For one dimensional parameters the QFI can be (formally) achieved by measuring
an observable Lθ called the symmetric logarithmic derivative (SLD), defined as
the solution of the Lyapunov equation dρθ

dθ = 1
2 (ρθLθ + Lθρθ). However, since

the SLD depends on the unknown parameter θ, this measurement cannot be
performed without its prior knowledge, and the formal achievability is unclear
without further operational specifications.

Fortunately, this apparent circularity issue can be solved in the context of
asymptotic estimation [92]. In most practical applications one does not measure
a single system but deals with (large) ensembles of identically prepared systems,
or multi-partite correlated states as in quantum enhanced metrology [129, 184]
and continuous time estimation of Markov dynamics [63, 83, 84, 177]. Here one
considers issues such as the scaling of errors with sample size, collective versus
separable measurements, and whether one needs fixed or adaptive measurements.
In particular, in the case of one-dimensional models, the QCRB can be achieved
asymptotically with respect to the size n of an ensemble of independent identically
prepared systems, by using a two steps adaptive measurement strategy [71]. In
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the first step, a preliminary ‘rough’ estimator θ̃n is computed by measuring a
sub-ensemble of ñ = o(n) systems, after which the SLD for parameter value
θ̃n (our best guess at the optimal observable Lθ) is measured on each of the
remaining systems. In the limit of large sample size n, the preliminary estimator
θ̃n approaches θ and the two step procedure achieves the QCRB in the sense that
the mean square error (MSE) of the final estimator scales as (nF(θ))−1.

By implicitly invoking the above adaptive measurement argument, the quan-
tum estimation literature has largely focused on computing or estimating the QFI
of specific models, or designing input states which maximise the QFI in quantum
metrology settings. However, as shown in [80], the adaptive argument breaks
down for models exhibiting quadratic (or Heisenberg) scaling of the QFI where
the achievable MSE is larger by a constant factor compared to the QCRB prediction,
even asymptotically. In this work we show that similar care needs to be taken
even when considering standard estimation problems involving ensembles of
independent quantum systems and standard error scaling.

Null measurements and their standard adaptive implementation

Specifically, we revisit the problem of estimating a parameter of a pure state model
{|ψθ⟩}θ∈Θ and analyse a measurement strategy [115, 136, 137], which we broadly
refer to as null measurement. The premise of the null measurement is the obser-
vation that if one measures |ψθ⟩ in an orthonormal basis B(θ) := {|v1⟩, . . . , |vd⟩}
such that |v1⟩ = |ψθ⟩ then the only possible outcome is X = 1 and all other out-
comes have probability zero. Since θ is unknown, in practice one would measure
in a basis B(θ̃) corresponding to an approximate value θ̃ of the true parameter
θ, and exploit the occurrence of low probability outcomes X ̸= 1 in order to
estimate the deviation of θ from θ̃. This intuition is supported by the follow-
ing property which is a specialisation to one-dimensional parameters of a more
general result derived in [115, 136, 137]: as θ̃ approaches θ, the classical Fisher
information Iθ̃(θ) associated with B(θ̃) converges to the QFI F(θ). This implies
that null measurements can achieve MSE rates scaling as n−1 with constants that
are arbitrarily close to F−1(θ), by simply measuring all n systems of an ensemble
in a basis B(θ̃) with a fixed θ̃ that is close to θ:

nEθ [(θ̂n − θ)2] → I−1
θ̃

(θ) ≈ F−1(θ).

Do null measurements actually achieve the QCRB (asymptotically) or just ’come
close’ to it? In absence of a detailed multi-copy operational interpretation in
[115, 136, 137], the most natural strategy is to apply the same two step adaptive
procedure which worked well in the case of the SLD measurement. A preliminary
estimator θ̃n is first computed by measuring ñ systems and the rest of the ensem-
ble is subsequently measured in the basis B(θ̃n). Since Iθ̃n

(θ) converges to F(θ)
as θ̃n approaches θ, it would appear that the QCRB is achieved asymptotically.
One of our main results is to show that this adaptive procedure actually fails to
achieve the QCRB even in the simple qubit model

|ψθ⟩ = cos θ|0⟩+ sin θ|1⟩, (5.1)

thus providing another example where caution is needed when using arguments
based on Fisher information, see [164] for other examples.
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Figure 5.1: The figure illustrates the non-identifiability problem occurring with null
measurement (first row) and how it is fixed by displaced-null measurement
(second row). In the first column the red arc on the xz Bloch sphere circle (in
blue) represents the set of parameters after localisation (confidence interval),
the green disk represents the true parameter value θ = θ+ and the blue
disk (panel a) is the parameter θ− which is indistinguishable from the true
one, in the null basis. The black arrow represents the chosen measurement
basis. The second column displays a plot of the single count probability as a
function of the parameter: in the null measurement case such a function is not
injective on the set of parameters determined after the localisation (panel b).
The third column shows the phase space of a Gaussian model consisting of
coherent states with unknown displacement along the Q axis: the red interval
is the parameter space, the black dot corresponds to the number operator
measured, the green disk to the true coherent state and the blue disk (panel c)
is the coherent state which is indistinguishable from the true one in the null
measurement case. The last column plots the intensity of the number operator
as a function of the coherent state amplitude.
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More precisely, we show that if the preliminary estimator θ̃n is reasonably
good (cf. section 5.3 for precise formulation), any final estimator θ̂n computed
from the outcomes of the null measurement B(θ̃n) is not only suboptimal but
does not even achieve the standard n−1 estimation MSE rate. The reason for
the radically different behaviors of the SLD and null meaurement settings is
that the latter suffers from a non-identifiability problem when the parameter θ̃

(which determines the null basis) is close to θ. Indeed, since at θ̃ = θ the null
measurement has a deterministic outcome, for θ̃ ≈ θ the outcome probabilities
are quadratic in ϵ = θ − θ̃ and therefore, the parameters θ± = θ̃ ± ϵ cannot be
distinguished (at least in second order). If θ̃n is a reasonably good estimator, then
ϵn = |θ − θ̃n| is of the order ñ−1/2, so the error in estimating θ is at least of the
order of the distance |θ+ − θ−| between the two undistinguishable candidate
parameters θ± = θ̃n ± ϵn, which scales as ñ−1/2 instead of n−1/2. Since ñ = o(n)
the mean square error decreases slower that the standard rate n−1. This argument
is illustrated in Figure 5.1a. for the simple case of the qubit rotation model (5.1)
which is discussed in detail in section 5.3.

Asymptotic optimality of displaced-null measurements

Fortunately, the above explanation offers an intuitive solution to the non-identifiability
problem. Assuming that the preliminary estimator θ̃n satisfies standard concen-
tration properties (e.g.- asymptotic normality), one finds that θ belongs (with high
probability) to a confidence interval In centered at θ̃n, whose length is slightly
larger than the estimation uncertainty ñ−1/2. Therefore by displacing θ̃n by a
(vanishingly small) amount δn > 0 that is larger than this uncertainty, we can
make sure that In lies at the left side of θ′n := θ̃n + δn and therefore measuring
in the basis B(θ′n) circumvents the non-identifiability issue. This is illustrated in
panels e. and f. of Figure 5.1.

The main aim of the chapter is to investigate this method which we call a
displaced-null measurement strategy and derive asymptotic optimality results
for the resulting estimators. In section 5.4.1 we show that the displaced-null
measurement achieves the QCRB in the one-parameter qubit model for which the
standard adaptive procedure failed; the corresponding second stage estimator is
a simple average of measurement outcomes and satisfies asymptotic normality,
thus allowing practitioners to define asymptotic confidence intervals.

In section 5.6 we extend the null-measurement strategy to multi-parameter
models of pure qudit states. In this case, the QCRB is typically not attainable
even asymptotically due to the incompatibility of optimal measurements cor-
responding to different parameter components. However, we show that the
Holevo bound [95] can be achieved asymptotically. We first consider the task of
estimating a completely unknown pure state with respect to the Bures (fidelity)
distance. In this case we show that the Holevo bound can be achieved by using
two separate displaced-null measurements, for the real and imaginary parts of
the state coefficients with respect to a basis containing |ψθ′n⟩ as a vector. The
second task is to estimate a general m-dimensional model with respect to an
arbitrary locally quadratic distance on the parameter space. Here we show that
the Holevo bound is achievable by applying displaced-null measurements on
copies of the systems coupled with an ancilla in a fixed state. The proof relies
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on the intuition gained from quantum local asymptotic normality theory and its
use in establishing the achievability of the Holevo bound [49, 70] by mapping
the ensemble onto a continuous variables system. However, unlike the latter,
the displaced-null technique only involves separate projective measurements on
system-ancilla pairs.

Finally, in section 5.6.6 we show that for multiparameter models where the
QCRB is achievable, this can be done using displaced-null measurements. This
puts related results of [115, 136, 137] on a firm operational basis.

Local asymptotic normality perspective

The theory of quantum local asymptotic normality (QLAN) [70, 88, 89, 102] offers
an alternative perspective on the displaced-null measurements strategy outlined
above. In broad terms, QLAN is a statistical tool that allows us to approximate
the independent identically distributed (IID) model describing the joint state of
an ensemble of systems, by a single continuous variables Gaussian state whose
mean encodes information about the unknown parameter (cf. sections 5.5.1 and
5.6.2 for more details). By applying this approximation, the null measurement
problem discussed earlier can be cast into a Gaussian version formulated as
follows. Suppose we are given a one-mode continuous variables system prepared
in a coherent state |u⟩ with unknown displacement u ∈ R along the Q axis, and
assume that |u| ≤ an for some bound an which diverges with n. At u = 0, the
system state is the vacuum, and the measurement of the number operator N is a
null measurement (see Figure 5.1c.). However, for a given u ̸= 0 the number oper-
ator has Poisson distribution with intensity |u|2, and therefore cannot distinguish
between parameters u± := ±u, cf. Figure 5.1d. This means that any estimator
will have large MSEs of order a2

n for large values of u. In contrast, measuring
the quadrature Q produces (optimal) estimators with fixed MSE given by the
vacuum fluctuations. However, the non-identifiability problem of the counting
measurement can be lifted by displacing the coherent state along the Q axis
by an amount ∆n > an and then measuring N. Equivalently, one can measure
the corresponding displaced number operator on the original coherent state as
illustrated in panels g. and h. of Figure 5.1. In this case the intensity (u − ∆n)2 is
in one-to-one correspondence with u so the parameter is identifiable. Moreover,
for large n, the counting measurement can be linearised and becomes equivalent
to measuring the quadrature Q, a well known fact from homodyne detection
[109].

QLAN shows that the Gaussian problem discussed above is the asymptotic
version of the one-parameter qubit rotation model (5.1) which we used earlier
to illustrate the concept of approximate and displaced null measurements. The
coherent state |u⟩ corresponds to all qubits in the state |ψu/

√
n⟩ (assuming for

simplicity that θ̃n = 0 and writing θ = u/
√

n). The number operator corresponds
to measuring in the standard basis, which is an exact null measurement at u = 0.
On the other hand, the displaced number operator corresponds to measuring in
the rotated basis with angle δn = n−1/2∆n.

The same Gaussian correspondence is used in section 5.6 for more general
problems involving multiparameter estimation for pure qudit state models and
establishing the achievability of the Holevo bound, cf. Theorem 17. The general
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strategy is to translate the IID problem into a Gaussian one, solve the latter by
using displaced number operators in a specific mode decomposition and then
translate this into qudit measurement with respect to specific rotated bases.

This chapter is organised as follows. Section 5.2 reviews the QCRB and the
conditions for its achievability. In section 5.3 we show that null measurements
based at reasonable preliminary estimators fail to achieve the standard error
scaling. In section 5.4.1 we introduce the idea of displaced-null measurement and
prove its optimality in the paradigmatic case of a one-parameter qubit model. In
section 5.6 we treat the general case of d dimensional systems and show how the
Holevo bound is achieved on general models, and deal with the case where the
multi-parameter QCRB is achievable.

5.2 A C H I E VA B I L I T Y O F T H E Q U A N T U M C R A M É R - R A O B O U N D F O R P U R E

S TAT E S

In this section we review the quantum Cramér-Rao bound (QCRB) and the condi-
tions for its achievability in the case of models with one-dimensional parameters,
which will be relevant for the first part of the chapter.

The estimation of multidimensional models and the corresponding Holevo
bound is discussed in section 5.6.

Consider a quantum statistical model given by a family of d-dimensional
density matrices ρθ which depend smoothly on an unknown parameter θ ∈ R.
Let M be a measurement on Cd with positive operator-valued measure (POVM)
elements {M0, . . . , Mp}. By measuring ρθ we obtain an outcome X ∈ {0, . . . , p}
with probabilities

pθ(X = i) = pθ(i) = Tr(Miρθ), i = 0, . . . , p.

The classical Cramér-Rao bound states that the variance of any unbiased estimator
θ̂ = θ̂(X) of θ is lower bounded as

Var(θ̂) := Eθ [(θ̂ − θ)2] ≥ IM(θ)−1 (5.2)

where IM(θ) is the classical Fisher information (CFI)

IM(θ) = Eθ

[(
d log pθ

dθ

)2
]
= ∑

i:pθ(i)>0
p−1

θ (i)
(

dpθ(i)
dθ

)2

. (5.3)

The CFI associated to any measurement is upper bounded by the quantum Fisher
information (QFI) [25, 26]

IM(θ) ≤ F(θ) (5.4)

where F(θ) = Tr(ρθL2
θ) and Lθ is the symmetric logarithmic derivative (SLD)

defined by the Lyapunov equation

dρθ

dθ
=

1
2
(Lθρθ + ρθLθ).

By putting together (5.2) and (5.4) we obtain the quantum Cramér-Rao bound
(QCRB) [93, 95]

Var(θ̂) := Eθ [(θ̂ − θ)2] ≥ F(θ)−1. (5.5)
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which sets a fundamental limit to the estimation precision. A similar bound
on the covariance matrix of an unbiased estimator holds for multidimensional
models, cf. section 5.6.

An important question is which measurements saturate the bound (5.4), and
what is the statistical interpretation of the corresponding QCRB (5.5). For com-
pleteness, we state the exact conditions in the following Proposition whose
formulation is adapted from [184].

Proposition 2. Let ρθ be a one-dimensional quantum statistical model and let M :=
{M0, . . . , Mp} be a measurement with probabilities pθ(i) := Tr(ρθ Mi). Then M
achieves the bound (5.4) if and only if the following conditions hold:

1) if pθ(i) > 0 there exists λi ∈ R such that

M1/2
i ρ1/2

θ = λi M1/2
i Lθρ1/2

θ (5.6)

2) if pθ(i) = 0 for some i then Tr(MiLθρθLθ) = 0.

Proof. Here we present a proof of the quantum Cramér-Rao bound, paying close
attention to the necessary and sufficient conditions for a quantum Cramér-Rao
bound saturating POVM. This is based on the proof by Zhou et al [184], and
the aim is to highlight the features that allow this POVM to saturate the bound,
producing Proposition 2. The classical Fisher information corresponding to the
measurement M = {Mi} is given by

IM(θ) = ∑
i:Tr(Miρθ) ̸=0

(Tr(Mi∂θρθ))
2

Tr(Miρθ)

= ∑
i:Tr(Miρθ) ̸=0

(Re[Tr(MiLθρθ)])
2

Tr(Miρθ)
,

where we have used the Lyapunov equation and identified that the resulting
term corresponds to the above real component. Clearly

∑
i:Tr(Miρθ) ̸=0

(Re[Tr(MiLθρθ)])
2

Tr(Miρθ)

≤ ∑
i:Tr(Miρθ) ̸=0

|Tr(MiLθρθ)|2
Tr(Miρθ)

,

where we have equality when Im[Tr(MiLθρθ)] = 0. We now use the Cauchy-

Schwarz inequality to cancel the denominator, identifying the terms M
1
2
i ρ

1
2
θ and

M
1
2
i Lθρ

1
2
θ within the expression above, finding

∑
i:Tr(Miρθ) ̸=0

|Tr(MiLθρθ)|2
Tr(Miρθ)

≤ ∑
i:Tr(Miρθ) ̸=0

Tr(MiLθρθLθ). (5.7)

The equality holds if

M
1
2
i ρ

1
2
θ = λi M

1
2
i Lθρ

1
2
θ (5.8)
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for all i such that Tr(Miρθ) ̸= 0 for some λi ∈ C. Finally, since Mi represents a
POVM we have

∑
i:Tr(Miρθ) ̸=0

Tr(MiLθρθLθ) ≤ Tr(L2
θρθ) ≡ F(θ). (5.9)

where F(θ) is the quantum Fisher information. Equality is achieved when

Tr(MiLθρθLθ) = 0

for all i such that Tr(Miρθ) = 0. Note: this ensures that all the information on the
parameter is contained in measurable outcomes with non-zero probabilities.

In summary, to achieve the QFI the POVM {Mi} needs to satisfy the 3 following
conditions:

1. If Tr(Miρθ) > 0 then Im[Tr(MiLθρθ)] = 0,

2. If Tr(Miρθ) > 0 then M
1
2
i ρ

1
2
θ = λi M

1
2
i Lθρ

1
2
θ ,λi ∈ C,

3. If Tr(Miρθ) = 0 then Tr(MiLθρθLθ) = 0.

We can combine conditions 1. and 2. into the following condition:

4. If Tr(Miρθ) > 0 then M
1
2
i ρ

1
2
θ = λi M

1
2
i Lθρ

1
2
θ , λi ∈ R.

One can check that the conditions in Proposition 2 are satisfied, and hence the
bound (5.4) is saturated, if M is the measurement of the observable Lθ . However,
in general this observable depends on the unknown parameter, so achieving
the QFI does not have an immediate statistical interpretation. Nevertheless, one
can provide a meaningful operational interpretation in the scenario in which
a large number n of copies of ρθ is available. In this case one can apply the
adaptive scheme presented in the introduction: using a (small) sub-sample to
obtain a ‘rough’ preliminary estimator θ̃ of θ and then measuring Lθ̃ on the
remaining copies. This adaptive procedure provides estimators θ̂n which achieve
the Cramér-Rao bound asymptotically in the sense that (see, e.g., [70, 71])

nEθ [(θ̂n − θ)2] → F−1(θ).

Pure state models. While for full rank states (ρθ > 0) the second condition in
Proposition 2 is irrelevant, this is not the case for rank deficient states, and in
particular for pure state models.

Indeed let us assume that the model consists of pure states ρθ = |ψθ⟩⟨ψθ | and
let us choose the phase dependence of the vector state such that ⟨ψ̇θ |ψθ⟩ = 0
(alternatively, one can use |ψ⊥

θ ⟩ := |ψ̇θ⟩ − ⟨ψθ |ψ̇θ⟩|ψθ⟩ instead of |ψ̇θ⟩ in the
equations below). Then

Lθ = 2(|ψ̇θ⟩⟨ψθ |+ |ψθ⟩⟨ψ̇θ |), and F(θ) = 4∥ψ̇θ∥2.

Let M to be a projective measurement with Mi = |vi⟩⟨vi| where

B := {|v0⟩, . . . , |vd−1⟩}
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is an orthonormal basis (ONB). Without loss of generality we can choose the phase
factors such that ⟨vi|ψθ⟩ ∈ R at the particular value of interest θ. Equation (5.6) in
Proposition 2 becomes ⟨vi|ψ̇θ⟩ ∈ R, i.e., in the first order, the statistical model is
in the real span of the basis vectors. Condition 2 requires that if ⟨vi|ψθ⟩ = 0 then
⟨vi|ψ̇θ⟩ = 0. Intuitively, this implies that, in the first order, the model is restricted
to the real subspace spanned by the basis vectors with positive probabilities. For
example if

|ψθ⟩ := cos θ|0⟩+ sin θ|1⟩ ∈ C2, (5.10)

then any measurement with respect to an ONB consisting of superpositions of
|0⟩ and |1⟩ with nonzero real coefficients achieves the QCRB at θ = 0, and no other
measurement does so. This model will be discussed in detail in sections 5.3 and
5.4.

Null measurements. We now formally introduce the concept of a null measurement
which will be the focus of our investigation. The general idea is to choose a
measurement basis such that one of its vectors is equal or close to the unknown
state. In this case, the corresponding outcome has probability close to one while
the occurrence of other outcomes can serve as a ‘signal’ about the deviation from
the true state. Let us consider first an exact null measurement, i.e., one in which
the measurement basis B = B(θ) is chosen such that |v0⟩ = |ψθ⟩, e.g., in the
example in equation (5.10) the null measurement at θ = 0 is determined by the
standard basis. Such a measurement does not satisfy the conditions for achieving
the QCRB. Indeed, we have pθ(i) = δ0,i and condition 2 implies ⟨vi|ψ̇θ⟩ = 0 for
all i = 1, . . . , d − 1. Since B is an ONB, we then expect ⟨v0|ψ̇θ⟩ ̸= 0. This creates
a contraction as we already assumed that ⟨ψ̇θ |ψθ⟩ = 0. Therefore, the exact null
measurement cannot achieve the QFI. In fact, the exact null measurement has zero
CFI, which implies that there exists no (locally) unbiased estimator. Indeed, since
probabilities belong to [0, 1], and pθ(i) is either 0 or 1 for a null measurement, all
first derivatives at θ are zero so the CFI (5.3) is equal to zero, i.e., IB(θ)(θ) = 0.

One can rightly argue that the exact null measurement as defined above is not
an operationally useful concept and cannot be implemented experimentally as it
requires the exact knowledge of the unknown parameter. However, in a multi-
copy setting the measurement can incorporate information about the parameter,
as this can be obtained by measuring a sub-ensemble of systems in a preliminary
estimation step, similarly to the SLD case. It is therefore meaningful to consider
approximate null measurements, which satisfy the null property at θ̃ ≈ θ, i.e.,
we measure in a basis B(θ̃) = {|vθ̃

0⟩, . . . , |vθ̃
d−1⟩} with |vθ̃

0⟩ = |ψθ̃⟩. Interestingly,
while the exact null measurement has zero CFI, an approximate null measurement
B(θ̃) ‘almost achieves’ the QCRB in the sense that the corresponding classical
Fisher information IB(θ̃)(θ) converges to F(θ) as θ̃ approaches θ [115, 136, 137].
This means that by using an approximate null measurement we can achieve
asymptotic error rates arbitrarily close (but not equal) to the QCRB, by measuring
in a basis B(θ̃) with a fixed θ̃ close to θ.

The question is then, is it possible to achieve the QCRB asymptotically with
respect to the sample size by employing null measurements determined by an
estimated parameter value, as in the case of the SLD measurement? References [115,
136, 137] do not address this question, aside from the above Fisher information
convergence argument.
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To answer the question we allow for measurements which have the null prop-
erty at parameter values determined by reasonable preliminary estimators based
on measuring a sub-sample of a large ensemble of identically prepared systems
(cf. section 5.3 for precise definition). We investigate such measurement strategies
and show that the natural two step implementation – use the rough estimator as
a vector in the second step measurement basis – fails to achieve the standard rate
n−1/2 on simple qubit models. We will see that this is closely related to the fact
that the CFI of the exact null measurement is zero, unlike the SLD case.

Nevertheless, in section 5.4.1 we show that a modified strategy which we call a
displaced-null measurement does achieve asymptotic optimality in the simple qubit
model discussed above. This scheme is then extended to general multidimen-
sional qudit models in section 5.6 and shown to achieve the Holevo bound for
general multiparameter models.

5.3 W H Y T H E N A I V E I M P L E M E N TAT I O N O F A N U L L M E A S U R E M E N T

D O E S N O T W O R K

In this section we analyse the null measurement scheme described in section 5.2,
for the case of a simple one-parameter qubit rotation model. The main result is
Theorem 16 which shows that the naive/natural implementation of the null-fails
to achieve the QCRB.

Let
|ψθ⟩ = e−iθσy |0⟩ = cos(θ)|0⟩+ sin(θ)|1⟩ (5.11)

be a one-parameter family of pure states which describes a circle in the xz plane
of the Bloch sphere. To simplify some of the arguments below we will assume
that θ is known to be in the open interval Θ = (−π/8, π/8), but the analysis can
be extended to completely unknown θ. The quantum Fisher information is

F(θ) = 4Var(σy) = 4⟨ψθ |σ2
y |ψθ⟩ − 4⟨ψθ |σy|ψθ⟩2 = 4.

We now consider the specific value θ = 0, so |ψ0⟩ = |0⟩ and |ψ̇0⟩ = |1⟩. According
to Proposition 2 any measurement with respect to a basis consisting of real
combinations of |0⟩ and |1⟩ achieves the QCRB, with the exception of the basis
{|0⟩, |1⟩} itself. Indeed, let

|vτ
0⟩ = exp(−iτσy)|0⟩, |vτ

1⟩ = exp(−iτσy)|1⟩ (5.12)

be such a basis (τ ̸= 0) , then the probability distribution is

pθ(0) = cos2(θ − τ), pθ(1) = sin2(θ − τ)

and the classical Fisher information is

Iτ(θ = 0) = Eθ=0

[(
d log pθ

dθ

)2
]
= 4.

However, at τ = 0 we have I0(θ = 0) = 0 in agreement with the general fact that
exact null measurements have zero CFI. This reveals a curious singularity in the
space of optimal measurements, and our goal is to understand to what extent
this is a mathematical artefact or it has a deeper statistical significance.
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To start, we note that the failure of the standard basis measurement can also
be understood as a consequence of parameter non-identifiability around the pa-
rameter value 0. Indeed, for τ = 0 we have pθ(i) = p−θ(i) so this measurement
cannot distinguish θ from −θ. A similar issue exists for τ ̸= 0, if θ is assumed
to be completely unknown, or in an interval containing τ, cf. Figure 5.1. On the
other hand, if θ is known to belong to an interval I and τ is outside this interval,
then the parameter is identifiable and the standard asymptotic theory applies. For
instance, measuring σx leads to an identifiable statistical model for our quantum
qubit model.

Consider now the following two step procedure, which arguably is the most
natural way of implementing approximate-null measurements. A sub-ensemble
of ñ systems is used to compute a preliminary estimator θ̃n, and subsequently
the remaining samples are measured in the null-basis at angle τ = θ̃n. For
concreteness we assume that ñ = n1−ϵ for some small constant ϵ > 0, but our
results hold more generally for ñ = o(n) and ñ → ∞ with n.

To formulate our theoretical result, we use the language of Bayesian statistics
which we temporarily adopt for this purpose. We consider that the unknown
parameter θ is random and is drawn from the uniform prior distribution π(dθ) =
4
π dθ over the parameter space Θ. Adopting a Bayesian notation we let p(dθ̃n|θ) :=
pθ(dθ̃n) be the distribution of θ̃n given θ. The joint distribution of (θ, θ̃n) is then

p(dθ, dθ̃n) = π(dθ)p(dθ̃n|θ) = p(dθ̃)π(dθ|θ̃n)

where π(dθ|θ̃n) is the posterior distribution of θ given θ̃n.
Reasonable estimator hypothesis: we assume that θ̃n is a reasonable estimator in
the sense that the following conditions are satisfied for every n ≥ 1:

1. π(dθ|θ̃n) has a density π(θ|θ̃n) with respect to the Lebesgue measure;

2. For each n there exist a set An ⊆ Θ such that P(θ̃n ∈ An) > c for some
constant c > 0, and the following condition holds: for each θ̃n ∈ An, the
positive symmetric function

gn,θ̃n
(r) := min{π(θ̃n + r|θ̃n), π(θ̃n − r|θ̃n)}

satisfies ∫

r≥τn

gn,θ̃n
(r)dr ≥ C (5.13)

where τn := n−1/2+ϵ/4 and C > 0 is a constant independent on n and θ̃n.

Condition 2. means that the posterior distribution has significant mass on both
sides of the preliminary estimator θ̃n, at a distance which is larger than n−1/2+ϵ/4,
as illustrated in Figure 5.2. Since standard estimators such as maximum likeli-
hood have asymptotically normal posterior distribution with standard deviation
ñ−1/2 = n−1/2+ϵ/2 ≫ n−(1−ϵ/2)/2, condition 2. is expected to hold quite gener-
ally, hence the name reasonable estimator. The following lemma shows that the
natural estimator in our model is indeed reasonable.

Lemma 5. Consider the measurement of σx on a sub-ensemble of ñ = n1−ϵ systems,
and let θ̃n be the maximum likelihood estimator. Then θ̃n is a reasonable estimator.
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Proof. The outcomes X1, . . . , Xñ have probabilities

pθ(0) = cos2(θ − π/4), pθ(1) = sin2(θ − π/4).

The maximum likelihood estimator is θ̃n = π/4+ f−1(X̄n) where X̄n = 1
ñ ∑ñ

i=1 Xi
and f (x) = sin2(x) (which is invertible on (−π/2, 0)).

For every k = 0, . . . , ñ and θ ∈ [−π/8, π/8], the density of the posterior at
time n is given by

π(θ|θ̃n = π/4 + f−1(k/ñ)) =

sin2k(θ − π/4) cos2(ñ−k)(θ − π/4)
∫ π

8
− π

8
sin2k(ζ − π/4) cos2(ñ−k)(ζ − π/4)dζ

(5.14)

and the unconditional distribution of θ̃n is given by

P(θ̃n = π/4 + f−1(k/ñ)) =

4
π

(
ñ
k

) ∫ π
8

− π
8

sin2k(θ − π/4) cos2(ñ−k)(θ − π/4)dθ.

Consistency of θ̃n and the dominated convergence theorem imply that for every
Borel set

lim
n→+∞

P(θ̃n ∈ A) =
4
π

∫ π
8

− π
8

χA(θ)dθ.

This allows us to consider for instance An := (−π/8, π/8). Moreover, we can
rewrite equation (5.14) as

e−ñH(sin2(θ̃n−π/4), sin2(θ−π/4))

∫ π
8
− π

8
e−ñH(sin2(θ̃n−π/4), sin2(ζ−π/4))dζ

where H(p, q) = −p log(q)− (1− p) log(1− q). Notice that if θ̃n ∈ (−π/8, π/8),
then H(sin2(θ̃n −π/4), sin2(θ −π/4)) admits a unique minimum in [−π/8, π/8]
at θ = θ̃n where it vanishes and where the value of the second derivative is equal
to 4. Therefore, for n big enough (uniformly in θ̃n ∈ (−π/8, π/8)) one has that

∫ θ̃n+
√

ñ

θ̃n+τn

e−ñH(sin2(θ̃n−π/4), sin2(θ−π/4))dθ

≥
∫ θ̃n+ñ−1/2

θ̃n+τn

e−
5ñ(θ−θ̃n)2

2 dθ

=
1√
ñ

∫ 1

n−ϵ/4
e−

5θ2
2 dθ
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Figure 5.2: For a reasonable estimator θ̃n, the posterior distribution of θ is centred around
θ̃n, and has width of order n−(1−ϵ)/2. The assumption amounts to the fact that
the posterior has non-vanishing mass on either side of θ̃n at distance larger
than n−(1−ϵ/2)/2 which is much smaller that the typical standard deviation.

and analogously for the integral in the interval [θ̃n −
√

ñ, θ̃n − τn]. Moreover

∫ π
8

− π
8

e−ñH(sin2(θ̃n−π/4), sin2(ζ−π/4))dζ

=
∫

|ζ−θ̃n|≥n−1/2+ϵ
e−ñH(sin2(θ̃n−π/4), sin2(ζ−π/4))dζ

+
∫

|ζ−θ̃n|≤n−1/2+ϵ
e−ñH(sin2(θ̃n−π/4), sin2(ζ−π/4))dζ

≤ e−3nϵ/2 +
∫ θ̃n+n−1/2+ϵ

θ̃n−n−1/2+ϵ
e−

3ñ(ζ−θ̃n)2
2 dζ

= e−3nϵ/2 +
1√
ñ

∫ n−ϵ/2

−n−ϵ/2
e−

3ζ2
2 dζ

and we are done, since we just proved that for n big enough (uniformly in
θ̃n ∈ (−π/8, π/8)), one has

P(θ ≥ θ̃n ± τn)

≥
∫ 1

n−ϵ/4 e−
5θ2

2 dθ
√

ñe−3nϵ/2 +
∫ n−ϵ/2

−n−ϵ/2 e−
3ζ2

2 dζ
≥ c > 0

for some c independent on n and θ̃n. This method can be extended to a wide class
of estimators, since it essentially relies on assumptions which are quite standard
in usual statistical problems.

The next theorem is the main result of this section and shows that if a rea-
sonable (preliminary) estimator is used as reference for a null measurement on
the remaining samples, the MSE of the final estimator cannot achieve the QCRB,
indeed it cannot even achieve standard scaling.

Theorem 16. Assume that θ̃n is a reasonable estimator as defined above, obtained by
measuring a sub-ensemble of size ñ := n1−ϵ. Let θ̂n be an estimator of θ based on
measuring the remaining n − n1−ϵ sub-ensemble in the basis corresponding to angle θ̃n.
Then

lim
n→∞

nRπ(θ̂n) = ∞
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where
Rπ(θ̂n) =

∫

Θ
π(dθ)Eθ [(θ̂n − θ)2]

is the average mean square error risk.

Proof. Taking into account the two step procedure we write

Eθ [(θ̂n − θ)2] =
∫

R
p(dθ̂n|θ)(θ̂n − θ)2

=
∫

R2
p(dθ̃n|θ)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2

where p(dθ̃n|θ) is the distribution of the preliminary estimator at θ and p(dθ̂n|θ, θ̃n)

is the distribution of the final estimator given θ and θ̃n. Since the final estimator is
obtained by measuring at angle θ̃n, its distribution depends only on r = |θ̃n − θ|,
so p(dθ̂n|θ̃n, θ) = pr(dθ̂n).

The Bayesian risk of the final estimator θ̂n is

Rπ(θ̂n) = E[(θ̂n − θ)2]

=
∫

Θ×R2
π(dθ)p(dθ̃n|θ)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2

=
∫

R
p(dθ̃n)

∫

Θ×R
π(dθ|θ̃n)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2

We have
∫

Θ

∫

R
π(dθ|θ̃n)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2

=
∫

r≥0
dr
∫

R
pr(dθ̂n)×

[π(θ̃n + r|θ̃n)(θ̂n − θ̃n − r)2 +

π(θ̃n − r|θ̃n)(θ̂n − θ̃n + r)2]

By assumption, π(θ̃n ± r|θ̃n) ≥ gn,θ̃n
(r) and since

(θ̂n − θ̃n − r)2 + (θ̂n − θ̃n + r)2 ≥ 2r2

we get that for every θ̃n ∈ An

∫

Θ×R
π(dθ|θ̃n)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2

≥
∫

|r|≥n−(1/2−ϵ/4)
gn,θ̃n

(r)2r2dr
∫

R
pr(dθ̂n)

≥ 2Cn−1+ϵ/2,

where the last inequality follows from point 2. in the definition of the reasonable
estimator. Finally, since P(θ̃n ∈ An) ≥ c, we get

Rπ(θ̂n) ≥ 2cCn−1+ϵ/2

which implies the result.
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The fact that a reasonable estimator has a ‘balanced’ posterior was key in
obtaining the negative result in Theorem 16. This encodes the fact that the null
measurement cannot distinguish between possible parameter values θ = θ̃n + τn

and θ = θ̃n − τn leading to errors that are larger than n−1/2. In section 5.4 we
show how we can go around this problem by deliberately choosing the reference
parameter of the null measurement to be displaced away from a reasonable
estimator θ̃n by an amount δn that is large enough to insure identifiability, but
small enough to still be in a shrinking neighbourhood of θ.

In the proof of Theorem 16 we made use of the fact that, for the statistical model
defined in equation (5.11), the law of the measurement in the basis containing
|ψθ̃n

⟩ could not distinguish between θ̃n ± r. Although for general pure state
models this might not be the case, in section 5.8 we show that under some mild
additional assumptions, the result of Theorem 16 extends to weaker notions of
non-identifiability.

5.3.1 Parameter localisation via a two step adaptive procedure

Here we discuss in more detail the general parameter localisation principle to
which we refer repeatedly in this chapter. The principle is formulated for one-
dimensional models, but can be extended staightforwardly to multidimensional
ones.

Suppose we are given a large number n of independent, identically prepared
systems in the state ρθ , depending smoothly on a parameter θ which lies in an
open set Θ ⊂ R. To avoid pathological cases we assume that F(θ) > f > 0 for all
θ ∈ Θ. Even though the set Θ is a priori ‘large’, we can ‘localise’ the parameter
and subsequently perform measurements adapted to the parameter value, by
using the following two step procedure.

Consider a measurement M such that θ is identifiable, i.e., no two different
parameters produce outcomes with identical probability distributions. In the first
step we apply M to each system belonging to a vanishingly small proportion
ñ = o(n) of the samples, with ñ growing with n. For concreteness we assume
that ñ = n1−ϵ ≪ n, with ϵ > 0 a small number, but the arguments hold for a
generic choice. Using the data obtained from measuring this sub-ensemble we
construct a preliminary rough estimator θ̃n of θ.

Naturally, one would like the estimator θ̃n to be ‘pretty good’ (given the used
sample size), but not necessarily optimal. There are several properties that could
embody this requirement; for example one could require that the mean square
error (MSE) scales at the standard rate ñ−1 = n−1+ϵ and θ̃n is asymptotically
normal, i.e., it concentrates around θ at rate ñ−1/2 with

√
ñ(θ̃n − θ) −→ N(0, Vθ)

where the convergence to the normal distribution holds in law as n → ∞ and the
variance satisfies Vθ ≥ F(θ)−1. Standard estimators such as maximum likelihood
typically satisfy this property [185]. In particular, this implies that the (confidence)
interval

In = (θ̃n − n−1/2+ϵ, θ̃n + n−1/2+ϵ)
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contains θ with probability converging to one exponentially fast. This follows
from the fact that the ratio between the size of In and the standard deviation of
θ̃n − θ diverges as |In|/n(−1+ϵ)/2 = nϵ/2.

On the other hand, if one adopts a Bayesian viewpoint and assumes the exis-
tence of a prior distribution on Θ with density π(θ), then it is natural to require
the asymptotic normality of the posterior density

p(θ|θ̃n) :=
π(θ)p(θ̃n|θ)

p(θ̃n)

where p(θ̃n|θ) = pθ(θ̃n) and p(θ̃n) =
∫

p(θ̃n|θ)π(dθ). Intuitively this follows
from the asymptotic normality of θ̃n. Indeed if the prior π(θ) and the variance Vθ

are sufficiently regular with respect to θ and Vθ is bounded away from zero, then
p(θ|θ̃n) ∝ exp(−ñ(θ̃n − θ)2/2Vθ) concentrates around θ̃n with approximately
normal distribution. For more details on asymptotic normality theory we refer
to [170, 178]. For our purposes, it will suffice to assume that θ̃n is a ‘reasonable’
estimator in the sense that the posterior distribution is ‘balanced’ with respect
to θ̃n in a sense that is precisely defined in section 5.3. In particular, this means
that we exclude ‘dishonest’ estimators for which the mass of the posterior distri-
bution lies largely on one side of the estimator. For instance, taking a reasonable
estimator θ̃n and adding a constant δn such that δn/ñ−1/2 → ∞ for large n would
be an example of a dishonest estimator. As we will see later this distinction
becomes important since the preliminary estimator enters the definition of the
second stage estimator, and the performance of null measurements based on
reasonable/dishonest estimators is radically different.

Adaptive step. We pass now to the second step of the estimation procedure
in which one measures the remaining n′ = n − ñ systems, taking into account
the information provided by the first step. We distinguish two measurement
strategies, the SLD measurement and the approximate null measurement.

For one-dimensional parameters, an optimal procedure is to measure the SLD
Lθ̃n

separately on each system and then construct the (final) estimator θ̂n = θ̃n +

X̄n/F(θ̃n) where X̄n = 1
n′ ∑n′

i=1 Xi is the average of the measurement outcomes.
Assuming that the preliminary estimator is consistent (i.e.- θ̃n → θ for large n),
we obtain that θ̂n achieves the multicopy (asymptotic) version of the QCRB in the
sense that

lim
n→∞

nEθ [(θ̂n − θ)2] = F(θ)−1.

Moreover, θ̂n is asymptotically normal
√

n(θ̂n − θ) −→ N(0, F(θ)−1)

thus providing us with simple asymptotic confidence intervals.
Let us consider now the case of null measurements. In section 5.2 we showed

that if we measure in a basis B(θ) = {|v1⟩, . . . , |vd⟩} such that |v1⟩ = |ψθ⟩ then
the classical Fisher information is zero. However, at θ̃ ≈ θ (θ̃ ̸= θ) the approximate
null measurement with respect to a basis B(θ̃) has classical Fisher information
IB(θ̃) ≈ F(θ). As anticipated in section 5.2, the adaptive strategy used for the SLD
measurement does not work in the case of null measurements when the initial
estimator is reasonable. Proving this will be the subject of section 5.3.
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Finally, let us briefly consider the case of multidimensional parameter mod-
els. In this setting, separate measurements may not be optimal in the second
step due to non-commutativity of the SLD operators for different parameter
components. However, using the information contained in θ̃n, we can devise
collective measurements procedures which are asymptotically optimal in the
sense of achieving the Holevo bound [95]. This can be understood by employing
the local asymptotic normality (LAN) theory [88, 89, 102], which we briefly recall
in section 5.6.2.

Note that since step one uses a vanishing proportion of the samples, the
asymptotic result remains the same if we assume that n samples are available in
the second step. Therefore, in order to simplify notation, in what follows we will
replace n′ = n − ñ by n.

5.4 D I S P L A C E D - N U L L E S T I M AT I O N S C H E M E F O R O P T I M A L E S T I M A -
T I O N O F P U R E Q U B I T S TAT E S

In section 5.3 we showed that a null measurement that uses a reasonable pre-
liminary estimator as reference parameter is sub-optimal. We will now show
that one can achieve the asymptotic version of the QCRB (5.5) by employing a
null measurement at a reference parameter that is deliberately shifted away from
the reasonable estimator by a certain amount. We will call these displaced-null
measurements.

5.4.1 The displaced-null measurement for one parameter qubit models

We consider the one parameter model |ψθ⟩ defined in equation (5.11) and assume
that we are given n identical copies of |ψθ⟩. We apply the usual two step adaptive
procedure: in the first step we use a vanishingly small proportion of the samples
containing ñ = n1−ϵ copies (where ϵ > 0 is a small parameter) to perform a
preliminary (non-optimal) estimation producing a reasonable estimator θ̃n. For
concreteness we assume that θ̃n is the estimator described in Lemma 5. Using
Hoeffding’s bound we find that θ̃n satisfies the concentration bound

Pθ(|θ̃n − θ| > n−1/2+ϵ) ≤ Ce−nϵr (5.15)

for some constants C, r > 0. This means that with high probability, θ belongs to
the confidence interval In = (θ̃n − n−1/2+ϵ, θ̃n + n−1/2+ϵ) whose size shrinks at
a slightly slower rate than n−1/2.

In the second step we would like to measure all remaining qubits in a basis
which contains a vector that is close to |ψθ⟩. However, as argued in section 5.3,
the null measurement basis {|vθ̃n

0 ⟩, |vθ̃n
1 ⟩} satisfying |vθ̃n

0 ⟩ = |ψθ̃n
⟩ is suboptimal.

More generally, for any angle τ ∈ In, the basis defined by equation (5.12) suffers
an identifiability problem as illustrated in panels a. and b. of Figure 5.1. For this
reason, in the second step we choose the reference value

θ′n := θ̃n + δn, δn := n−1/2+3ϵ,

such that θ′n is well outside In but nevertheless, θ′n → θ for large n (assuming ϵ <

1/6). The 3ϵ factor in the exponent is chosen such that the result of Proposition
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3 below holds, but any factor larger than 2ϵ suffices. We measure all remaining
samples in the basis {|vθ′n

0 ⟩, |vθ′n
1 ⟩} (cf eq. (5.12)) to obtain outcomes X1, . . . , Xn ∈

{0, 1} with probability distribution

P(n)
θ = (1 − p(n)θ , p(n)θ ), p(n)θ = sin2(θ − θ′n).

Proposition 3. Assume that Θ is bounded and ϵ < 1/10 is fixed, and let θ̃n be the
preliminary estimator based on ñ = n1−ϵ samples.

Let θ̂n be the estimator

θ̂n := θ̃n +
n−1/2+3ϵ

2
− n1/2−3ϵ

2
p̂n

where p̂n is the empirical estimator of p(n)θ , i.e.,

p̂n =
|{i : Xi = 1, i = 1, . . . , n}|

n
. (5.16)

Then θ̂n is asymptotically optimal in the sense that

lim
n→∞

nEθ [(θ̂n − θ)2] = F−1(θ) =
1
4

.

Moreover, θ̂n is asymptotically normal, i.e.,

√
n(θ̂n − θ) → N

(
0,

1
4

)

where the convergence holds in distribution.

The proof of Proposition 3 can be found in section 5.9. Note that we chose to
identify n and n′ = n − n1−ϵ in order to simplify the notation and the proofs, but
it is immediate to adapt the reasoning in order to deal with this technicality. We
also remark that the assumption ϵ < 1/10 is not essential and could be removed
at the price of using more involved analysis of the concentration properties of θ̃n

and the definition of the displacement parameter δn.

5.5 D I S P L A C E D - N U L L M E A S U R E M E N T S I N T H E A S Y M P T O T I C G A U S -
S I A N P I C T U R E

In this section we cast the null-measurement problem into a companion Gaussian
estimation problem which arises in the limit of large sample sizes. The Gaussian
approximation is described by the theory of quantum local asymptotic normality
(QLAN) developed in [70, 88, 89, 102]. For reader’s convenience we review the
special case of pure qubit states in section 5.5.1.

5.5.1 Brief review of local asymptotic normality for pure qubit states

The QLAN theory is closely related to the quantum central limit theorem (QCLT)
and shows that for large n the statistical model describing ensembles of n identi-
cally prepared qubits can be approximated (locally in the parameter space) by a
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single coherent state of a one-mode continuous variable (CV) system, whose mean
encodes the unknown qubit rotation angle. We refer to [87, 89] for mathematical
details and focus here on the intuitive correspondence between qubit ensembles
and the CV mode.

We start with a completely unknown pure qubit state described by a one-
dimensional projection P = |ψ⟩⟨ψ|. In the first step we measure a sub-sample of
ñ = n1−ϵ systems and obtain a preliminary estimator P̃n = |ψ̃n⟩⟨ψ̃n|. We assume
that P̃n satisfies a concentration bound similar to the one in equation (5.15) so
that P lies within a ball of size n−1/2+ϵ around P̃n with high probability. For more
about the localisation procedure we refer to section 5.3.1.

We now choose the ONB {|0⟩, |1⟩} such that |0⟩ := |ψ̃n⟩.
Thanks to parameter localisation we can focus our attention on ‘small’ rotations

around |0⟩ whose magnitude is of the order n−1/2+ϵ where n is the sample size
and ϵ > 0 is small. We parametrise such states as

|ψu/
√

n⟩ := U
(

u√
n

)
|0⟩ = e−i(u1σy−u2σx)/

√
n|0⟩,

where u = (u1, u2) is a two-dimensional local parameter of magnitude |u| < nϵ.
The joint state of the ensemble of n identically prepared qubits is then

|Ψn
u⟩ = |ψu/

√
n⟩⊗n.

We now describe the Gaussian shift model which approximates the IID qubit
model in the large sample size limit. A one mode CV system is specified by
canonical coordinates Q, P satisfying [Q, P] = i1. These act on a Hilbert space H
with a orthonormal Fock basis {|k⟩ : k ≥ 0}, such that a|k⟩ =

√
k|k − 1⟩, where a

is the annihilation operator a = (Q + iP)/
√

2. The coherent states are defined as

|z⟩ := e−|z|2/2
∞

∑
k=0

zk
√

k!
|k⟩, z ∈ C

and satisfy ⟨z|a|z⟩ = z. In the coherent state |z⟩, the canonical coordinates Q, P
have normal distributions N

(√
2Re(z), 1

2

)
and N

(√
2Im(z), 1

2

)
, respectively.

In addition, the number operator N := a∗a has Poisson distribution with intensity
|z|2.

We now outline two approaches to QLAN embodying different ways to express
the closeness of the multiqubits model {|Ψn

u⟩ : |u| ≤ nϵ} to the quantum Gaussian
shift model {|u1 + iu2⟩ : |u| ≤ nϵ}. By applying the QCLT [135], one shows that
the collective spin in the ‘transverse’ directions x and y have asymptotically
normal distributions

1√
2n

Sx(n) :=
1√
2n

n

∑
i=1

σ
(i)
x → N

(√
2u1,

1
2

)

1√
2n

Sy(n) :=
1√
2n

n

∑
i=1

σ
(i)
y → N

(√
2u2,

1
2

)

where the arrows represent convergence in distribution with respect to |Ψn
u⟩.

In fact the convergence holds for the whole ‘joint distribution’ which we write
symbolically as

(
1√
2n

Sx(n),
1√
2n

Sy(n) : |Ψn
u⟩
)
→ (Q, P : |u1 + iu2⟩) .
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So, in what concerns the collective spin observables, the joint qubit state converges
to a coherent state whose displacement is linear with respect to the local rotation
parameters.

An alternative way to formulate the convergence to the Gaussian model is to
show that the two models can be mapped into each other by means of physical
operations (quantum channels) with asymptotically vanishing error, uniformly
over all local parameters |u| ≤ nϵ. Consider the isometric embedding of the
symmetric subspace Sn = (C2)⊗

n
s of the tensor product (C2)⊗n into the Fock

space

Vn := Sn → H
|k, n⟩ 7→ |k⟩

where |k, n⟩ is the normalised projection of the vector |1⟩⊗k ⊗ |0⟩⊗n−k onto Sn.
The following limits hold [89]

lim
n→∞

sup
|u|≤n1/2−η

∥Vn|Ψn
u⟩ − |u1 + iu2⟩∥ = 0,

lim
n→∞

sup
|u|≤n1/2−η

∥|Ψn
u⟩ − V∗

n |u1 + iu2⟩∥ = 0.

where η > 0 is an arbitrary fixed parameter. In particular, for η < 1/2 − ϵ the
supremum is taken over regions that contain all |u| < nϵ, which means that the
Gaussian approximation holds uniformly over all values of the local parameter
arising from the preliminary estimation step.

We now move to describe the relationship between qubit rotations and Gaus-
sian displacements in the QLAN approximation. Let Un(∆) := U(n−1/2∆)⊗n be
a qubit rotation by small angles δ := n−1/2∆ and let D(∆) = exp(−i

√
2(∆1P −

∆2Q)) be the corresponding displacement operator. Then the following commu-
tative diagram shows how QLAN translates (small) rotations into displacements
(asymptotically with n and uniformly over local parameters)

|Ψn
u⟩

Vn−−−→ |u1 + iu2⟩yUn(−∆)

yD(−∆)

|Ψn
u−∆⟩

Vn−−−→ |u1 − ∆1 + i(u2 − ∆2)⟩
Notice that also the vertical arrow on the left of the diagram is true asymptoti-

cally with n and has to be intended as limn→+∞ ∥Un(−∆)|Ψn
u⟩ − |Ψn

u−∆⟩∥ = 0.
Finally, we note that while the transverse spin components Sx, Sy converge

to the canonical coordinates of the CV mode, the collective operator related to
the total spin in direction z becomes the number operator N. Indeed if En :=
(n1 − Sz)/2 then En|k, n⟩ = k|k, n⟩ so En = V∗

n NVn. This correspondence can be
extended to small rotations of such operators. Consider the collective operator

Nn
∆ := Un(∆)(n1 − Sz)Un(−∆)

which corresponds to measuring individual qubits in the basis

|vδ
0⟩ = U(δ)|0⟩, |vδ

1⟩ = U(δ)|1⟩
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and adding the resulting {0, 1} outcomes. In the limit Gaussian model, this
corresponds to measuring the displaced number operator N∆ = D(∆)ND(−∆).
More precisely, the binomial distribution p(n)u,∆ of Nn

∆ computed in the state |Ψn
∆⟩

converges to the Poisson distribution of N∆ with respect to the state |u1 + iu2⟩

lim
n→∞

p(n)u,∆(k) = e−∥u−∆∥2 ∥u − ∆∥2k

k!
, k ≥ 0.

5.5.2 Asymptotic perspective on displaced-null measurements via local asymptotic
normality

We now offer a complementary picture of the displaced-null measurement
schemes outlined in section 5.4.1, using the QLAN theory of section 5.5.1. In
the Gaussian limit, the qubits ensemble is replaced by a single coherent state
while the qubit null measurement becomes the number operator measurement.
The Gaussian picture will illustrate why the null measurement does not work
and how this problem can be overcome by using the displaced null strategy.

Consider first the one dimensional model given by equation (5.11), and let us
assume for simplicity that the preliminary estimator takes the value θ̃n = 0. The
general case can be reduced to this by a rotation of the block sphere.

We write θ in terms of the local parameter u as θ = θ̃n + u/
√

n = u/
√

n with
|u| ≤ nϵ. By employing QLAN we map the IID model |Ψn

u⟩ (approximately)
into the limit coherent state model |u⟩. At θ̃n = 0 the null measurement for
an individual qubit is that of σz (standard basis). On the ensemble level this
translates into measuring the collective spin observable Sz, which converges to
the number operator N in the limit model, cf. section 5.5.1. Indeed, at u = 0 the
coherent state is the vacuum which is an eigenstate of N.

As in the qubit case, the number measurement suffers from the non-identifiabilty
issue since both | ± u⟩ states produce the same Poisson distribution (see panels c.
and d. in Figure 5.1).

We now interpret the displaced-null measurement in the QLAN picture. Recall
that if we measure each qubit in the rotated basis

|vδn
0 ⟩ = U((δn, 0))|0⟩, |vδn

1 ⟩ = U((δn, 0))|1⟩,
then the non-identifiability is lifted and the parameter can be estimated optimally.
The collective spin in this rotated basis is

Nn
(∆n,0) := Un((∆n, 0))(1 − Sz)Un((−∆n, 0)).

where ∆n = n1/2δn = n3ϵ and by the QLAN correspondence it maps to the
displaced number operator

N(∆n,0) = D((∆n, 0))ND((−∆n, 0)).

In this case the distribution with respect to the state |u⟩ is Poisson(|∆n − u|2),
and since ∆n = n3ϵ ≫ |u|, the model is identifiable, i.e., the correspondence
the intensity |∆n − u|2 and u is one-to-one (see panels g. and h. in Figure 5.1).
Moreover, for large n the measurement provides an optimal estimator of u. Indeed
by writing

N(∆n,0) = (a − ∆n1)∗(a − ∆n1) = a∗a − ∆n(a + a∗) + ∆2
n1 (5.17)



5.6 M U LT I PA R A M E T E R E S T I M AT I O N F O R P U R E Q U D I T S TAT E S 105

and noting that the term a∗a is O(n2ϵ) (for |u| ≤ nϵ) we get

1
2

∆n −
1

2∆n
N(∆n,0) =

Q√
2
+ o(1) (5.18)

where we recover the well known fact that quadrature (homodyne) measurement
can be implemented by displacement and counting. By measuring the operator
on the lefthand side of (5.18) we obtain an asymptotically optimal estimator of u,
which corresponds to the qubit estimator constructed in section 5.4.1.

5.6 M U LT I PA R A M E T E R E S T I M AT I O N F O R P U R E Q U D I T S TAT E S

In this section we discuss the general case of a multidimensional statistical model
for a d-dimensional quantum system (qudit).

The first two subsections review the theory of multiparameter estimation and
how QLAN is used to establish the asymptotic achievability of the Holevo bound.
This circle of ideas will be helpful in understanding the results in the following
sections which deal with displaced-null estimation of qudit models. In particular
we show that displaced-null measurements achieve the following:

1. The Holevo bound for completely unknown pure state models where the
figure of merit is given by the Bures distance (Proposition 4);

2. The quantum Cramér-Rao bound in statistical models where the parameters
can be estimated simultaneously (Proposition 5), providing an operational
implementation for the results in [115, 136, 137];

3. The Holevo bound for completely general pure state models and figures of
merit (Theorem 17).

Since the two stage strategy is discussed in detail in section 5.3.1, we do not give
a detailed account of the preliminary stage and assume that the parameter has
been localised in a neighbourhood of size n−1/2+ϵ around a preliminary estimator
with probability that converges to 1 exponentially fast in n.

5.6.1 Multiparameter estimation

Let us consider the problem of estimating the parameter θ belonging to an open
set Θ ⊆ Rm given the corresponding family of states ρθ of a d-dimensional
quantum system. Given a measurement with POVM M := {M0, . . . , Mp}, the CFI

matrix is given by

IM(θ)ij = Eθ

[
∂ log pθ

∂θi

∂ log pθ

∂θj

]
.

The QFI matrix is F(θ)ij = 1
2 Tr(ρθ{Li

θ,Lj
θ}) where Lj

θ are the SLDs satisfying

∂iρθ = 1
2{L

j
θ, ρθ} and {·, ·} denotes the anti-commutator again. If θ̂ is an unbiased

estimator then the multidimensional QCRB states that its covariance matrix is
lower bounded as

Covθ(θ̂) := Eθ[(θ̂− θ)(θ̂− θ)T] ≥ IM(θ)−1 ≥ F(θ)−1. (5.19)
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In general, the second lower bound is not achievable even asymptotically. Roughly,
this is due to the fact that the optimal measurements for estimating the different
components of θ are incompatible with each other. The precise condition for the
achievability of the QCRB is [49, 141]

Tr(ρθ[Li
θ,Lj

θ]) = 0, i, j = 1, . . . , m. (5.20)

which in the case of a pure statistical model |ψθ⟩ becomes

Im(⟨∂θi ψ|∂θj ψ⟩) = 0, i, j = 1, . . . , m. (5.21)

When the QCRB is not achievable, one may look for measurements that optimise
a specific figure of merit. The simplest example is that of a quadratic form with
positive weight matrix W

RW(θ̂, θ) = Eθ [(θ̂− θ)TW(θ̂− θ)]

This choice is not as restrictive as it may seem since many interesting loss func-
tions have a local quadratic approximation which determines the leading term of
the asymptotic risk. A straightforward lower bound on RW can be obtained by
taking the trace with W in (5.19) but this bound is not achievable either. A better
one is the Holevo bound [95]

Tr(WCovθ(θ̂)) ≥ HW(θ) (5.22)

:= min
X

Tr(Re(Z(X))W) + Tr
∣∣∣W1/2Im(Z(X))W1/2

∣∣∣

where the minimum runs over m-tuples of selfadjoint operators X = (X1, . . . , Xm)T

acting on the system, which satisfy the constraints Tr(∇θρθXT) = 1, and Z(X)
is the m × m complex matrix with entries Z(X)ij = Tr(ρθXiXj). Unlike the multi-
dimensional QCRB, the Holevo bound is achievable asymptotically in the IID
scenario [49, 70]. In the next two section we will give an intuitive explanation
based on the QLAN theory.

5.6.2 Gaussian shift models and QLAN

Quantum Gaussian shift models play a fundamental role in quantum estima-
tion theory [95]. Such models are fairly tractable in that the Holevo bound is
achievable with simple linear measurements. More importantly, Gaussian shift
models arise as limits of IID models in the QLAN theory, which offers a recipe for
constructing estimators which achieve the Holevo bound asymptotically in the
IID setting.

For the purposes of this work, the asymptotic Gaussian limit offers a clean
intuition about the working of the proposed estimators, but is not explicitly used
in deriving the mathematical results. We therefore keep the presentation on a
intuitive level and refer to the papers [32, 49, 70] for more details.

In this subsection we recall the essentials of multiparameter estimation in a
pure quantum Gaussian shift model and of QLAN theory for pure states of finite
dimensional quantum systems, extending what we already presented in the case
of qubits in Section 5.5.
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5.6.2.1 Achieving the Holevo bound in a pure Gaussian shift model

Consider a CV system consisting of (d − 1) modes. The corresponding Hilbert
space H is the multimode Fock space which will be identified with the ten-
sor product of d − 1 copies of the single mode spaces, with ONB given by the
Fock vectors |k⟩ := |k1⟩ ⊗ · · · ⊗ |kd−1⟩, with k = (k1, . . . , kd−1) ∈ Nd−1. The
creation/annihilation operators, canonical coordinates and number operator of
the individual modes are denoted a∗i , ai, Qi = (ai + a∗i )/

√
2, Pi = (ai − a∗i )/(

√
2i)

and Ni = a∗i ai for i = 1, . . . , d − 1.
We denote by |z⟩ = |z1⟩ ⊗ · · · ⊗ |zd−1⟩ the multimode coherent states with z =

(z1, . . . , zd−1) ∈ Cd−1, so that Qi and Pi have normal distribution with variance
1/2 and mean

√
2Re(zi) and

√
2Im(zi), respectively, while Ni have Poisson distri-

butions with intensities |zi|2. We denote by R := (Q1, . . . , Qd−1, P1, . . . , Pd−1)
T the

vector of canonical coordinates which satisfy commutation relations [Ri, Rj] =

iΩij where Ω is the 2(d − 1)× 2(d − 1) symplectic matrix

Ω =

(
0 1

−1 0

)
.

Let u ∈ Rm be an unknown parameter and let G be the quantum Gaussian shift
model

G := {|Cu⟩ : u ∈ Rm}
where C : Rm → Cd−1 is a linear map. The goal is to estimate u optimally for a
given figure of merit.

Denoting the entries of C as Ck,j = cq
kj + icp

kj for k = 1, . . . , d− 1 and j = 1, . . . , m,

we call D the real 2(d − 1)× m matrix with elements Dk,j =
√

2cq
kj, Dk+(d−1),j =√

2cp
kj with k = 1, . . . d − 1; notice that Eu[R] = Du. We remark that u is identifi-

able if and only if D has rank equal to m. The quantum Fisher information matrix
is independent of u and is given by F = 2DTD > 0.

Let us first consider the case when the QCRB is achievable (in which case it leads
to the Holevo bound by tracing with W). Condition (5.21) amounts to C∗C being
a real matrix which is equivalent to DTΩD = 0 and the fact that the generators of
the Gaussian shift model G

Sj =
d−1

∑
k=1

cq
kjPk − cp

kjQk = (DTΩR)j, j = 1, . . . m

commute with each other.
An optimal unbiased measurement consists of simultaneously measuring the

commuting operators Z = Σ−1DTR, where Σ := DTD = F/2. Indeed

• [Z, ZT] = Σ−1DTΩDΣ−1 = 0 (commutativity),

• Eu[Z] = Σ−1DTDu = u (unbiasedeness),

• Covu(Z) = Σ−1/2 (achieves the QCRB).

Consider now the case when the QCRB is not achievable. For a given positive
weight matrix W, the corresponding Holevo bound is given by

Tr(Covu(û)W) ≥ HW(G) (5.23)

:= min
B

1
2

(
Tr(WBBT) + Tr(|

√
WBΩBT

√
W|)

)
,
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where û is an unbiased estimator and the minimum is taken over real m ×
2(d − 1) matrices B such that BD = 1. The Holevo bound can be saturated by
coupling the system with another ancillary (d − 1)-dimensional CV system in
the vacuum state and with position and momentum vector that we denote by
R′ = (Q′

1, . . . , Q′
d−1, P′

1, . . . , P′
d−1)

T. In order to estimate u, we consider a vector
of quadratures of the form Z = BR + B′R′ for B, B′ real m × (d − 1) matrices and
we require that Z is unbiased and belongs to a commutative family:

• B′ΩB′T = −BΩBT (commutativity of the Zi’s),

• ⟨Cu ⊗ 0|Z|Cu ⊗ 0⟩ = u ⇔ BD = 1 (unbiasedeness).

The corresponding risk is

RZ =
1
2

(
Tr(WBBT) + Tr(WB′B′T)

)

and by minimizing over B and B′ one obtains the expression of the Holevo bound
in Equation (5.23). Therefore, given a minimiser (B⋆, B′⋆), the corresponding
vector of quadratures Z⋆ is an optimal estimator for any u.

To summarise, in the pure Gaussian shift model there always exists a set of
commuting quadratures Z⋆ of a doubled up system that achieves the Holevo
bound; in the case when the QCRB is achievable, one does not need an ancilla.

For the discussion in section 5.6.4 it is useful to consider the following imple-
mentation of the optimal measurement. Let (Q̃1, . . . , Q̃2(d−1), P̃1, . . . , P̃2(d−1)) be
a choice of vacuum modes of the doubled-up CV system such that Z⋆ = TQ̃
where Q̃ = (Q̃1, . . . , Q̃m)T for some m × m invertible matrix T with real entries.
Up to classical post-processing, measuring Z1, . . . , Zm is equivalent to measuring
Q̃1, . . . , Q̃m. If we denote the outcomes of the latter by q̃ := (q̃1, . . . q̃m) then an
optimal unbiased estimator of u is given by û = Tq̃.

5.6.2.2 QLAN for IID pure qudit models

The idea of QLAN is that the states in a shrinking neigbourhood of a fixed state
can be approximated by a Gaussian shift model. In the next section we will show
how this can be used as an estimation tool, but here we describe the general
structure of QLAN for pure qudit states.

We choose the centre of the neighbourhood to be the first vector of an ONB
{|0⟩, . . . , |d − 1⟩}, and parametrise the local neighborhood of states around |0⟩ as

|ψu/
√

n⟩ = exp

(
−i

d−1

∑
k=1

(uk
1σk

y − uk
2σk

x)/
√

n

)
|0⟩ (5.24)

for u = (u1, u2) ∈ R2(d−1), ∥u∥ ≤ nϵ, σk
y = i |k⟩ ⟨0| − i |0⟩ ⟨k| and σk

x = |k⟩ ⟨0|+
|0⟩ ⟨k|. As in the qubit case, the appropriately rescaled collective variables con-
verge to position, momentum and number operators in ‘joint distribution’ with
respect to |Ψn

u⟩ := |ψu/
√

n⟩⊗n

(
1√
2n

Sk
x(n),

1√
2n

Sk
y(n), n1 − Sk

z(n) : |Ψn
u⟩
)

→ (Qk, Pk, Nk : |z = u1 + iu2⟩) ,
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where Sk
α(n) = ∑n

l=1(σ
k
α)

(l) for α ∈ {x, y, z}. More generally, we have a (real)
linear map between the orthogonal complement of |0⟩ and Gaussian quadratures:
for every vector |v⟩ = ∑d−1

k=1(v
k
x + ivk

y) |k⟩ we construct the corresponding Pauli
operator σ(v) = |v⟩ ⟨0|+ |0⟩ ⟨v| and the following central limit theorem (CLT)
holds (

1√
2n

Sv(n) : |Ψn
u⟩
)
→ (X(v) : |z = u1 + iu2⟩) (5.25)

where Sv(n) := ∑n
l=1 σ(v)(l) and X(v) := ∑n

k=1 vk
xQk + vk

yPk.
In addition to the QCLT, the following strong QLAN statement holds: the

statistical model {|Ψn
u⟩} can be approximated by a pure Gaussian shift model in

the sense that

lim
n→∞

sup
|u|≤n1/2−η

∥Vn|Ψn
u⟩ − |u1 + iu2⟩∥ = 0, (5.26)

lim
n→∞

sup
|u|≤n1/2−η

∥|Ψn
u⟩ − V∗

n |u1 + iu2⟩∥ = 0 (5.27)

for any fixed 0 < η < 1/2. Vn is the isometric embedding of the symmetric
subspace S (n)

d :=
(
Cd)⊗sn into a (d − 1)-mode Fock space H (cf. previous section)

characterised by

Vn : S (n)
d → H

|k; n⟩ 7→ |k⟩ (5.28)

where |k; n⟩ denotes the normalised vector obtained by symmetrising

|1⟩⊗k1 ⊗ · · · ⊗ |d − 1⟩⊗kd−1 ⊗ |0⟩⊗(n−(k1+···+kd−1)) .

As in the qubits case, the Gaussian approximation maps small rotations into
displacements of the coherent states. Consider collective qubit rotations by small
angles δ := n−1/2∆

Un(∆) :=

(
exp

(
−i

d−1

∑
k=1

(n−1/2∆k
1σk

y − n−1/2∆k
2σk

x)

))⊗n

and the corresponding displacement operators

D(∆) = exp

(
−i

d−1

∑
k=1

(∆k
1Pk − ∆k

2Qk)

)
.

The diagram below conveys the asymptotic correspondence between rotations
and displacements, where the arrows should be interpreted in the same way as
the strong convergence equations (5.26) and (5.27)

|Ψn
u⟩

Vn−−−→ |u1 + iu2⟩yUn(−∆)

yD(−∆)

|Ψn
u−∆⟩

Vn−−−→ |u1 − ∆1 + i(u2 − ∆2)⟩
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A similar correspondence holds for measurements with respect to rotated bases
and displaced number operators

|Ψn
u⟩

Vn−−−→ |u1 + iu2⟩yNi
∆(n)

yNi
∆

pn(u, ∆)
Vn−−−→ Poisson(∥u1 − ∆1 + i(u2 − ∆2)∥2)

More precisely, suppose we measure the commuting family of operators
{Ni

∆(n), i = 1, . . . , d − 1} given by

Ni
∆(n) := Un(−∆)(n1 − Si

z(n))U
n(∆) i = 1, . . . , d − 1,

which amounts to measuring individual qudits in the basis

|vδ
i ⟩ = U(δ)|i⟩ i = 0, . . . , d − 1

and collecting the total counts for individual outcomes in {0, . . . , d − 1}. In the
Gaussian model this corresponds to measuring the displaced number operators
Ni

∆ = D(−∆)NiD(∆), and by QLAN, the multinomial distribution pn(u, ∆) of
Ni

∆(n) converges to the law of the vector of Poisson random variables obtained
by measuring Ni

∆ with respect to the state |u1 + iu2⟩.

5.6.3 Achieving the Holevo bound for pure qudit states via QLAN

We will now treat a general pure states statistical model and show how one can
use QLAN to achieve the Holevo bound (5.22) asymptotically with the sample
size. Let |ψθ⟩ be a statistical model where θ = (θ j)m

j=1 belongs to some open set
Θ ⊂ Rm with m ≤ 2(d − 1) and the parameter is assumed to be identifiable.
Given an ensemble of n copies of the unknown state, we would like to devise
a measurement strategy and estimation procedure which attains the smallest
average error (risk), asymptotically with n. For mixed states, a general solution
has been discussed in [49] where it is shown how the Holevo bound can be
achieved asymptotically using the QLAN machinery. Here we adapt this method
to the case of pure state models.

In brief, the procedure involves three steps. We first use ñ = n1−ϵ samples
to produce a preliminary estimator θ̃n and write θ = θ̃n + u/

√
n where u is

the local parameter satisfying ∥u∥ ≤ nϵ (with high probability). We chooose an
ONB {|0⟩, . . . |d − 1⟩} such that |ψθ̃n

⟩ = |0⟩ and use the QLAN isometry Vn (cf.
equation 5.28) to map the remaining qubits |Ψn

u⟩ := |ψθ̃n+u/
√

n⟩⊗n approximately
into the Gaussian state |Cu⟩. We then use the method described in section 5.6.2.1
to estimate the unknown parameter and achieve the Holevo bound.

We start by expressing the local states as small rotations around |0⟩

|ψθ̃n+u/
√

n⟩ (5.29)

= exp

(
−i

d−1

∑
k=1

(
f q
k

(
u√
n

)
σk

y − f p
k

(
u√
n

)
σk

x

))
|0⟩
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where f q
k and f p

k are real functions and σk
y and σk

x are the Pauli matrices of equation
(5.24). We now ‘linearise’ the generators of the rotations and define

|ψ̃u/
√

n⟩ := exp

(
−i

m

∑
j=1

ujSj/
√

n

)
|0⟩ (5.30)

where

Sj =
d−1

∑
k=1

(cq
kjσ

k
y − cp

kjσ
k
x), cq,p

kj = ∂j f q,p
k (u)

∣∣
u=0 .

We denote the ensemble state of the linearised model |Ψ̃n
u⟩ := |ψ̃u/

√
n⟩⊗n. The

following lemma shows that the original and the ‘linearised’ models are locally
undistinguishable in the asymptotic limit.

Lemma 6. With the above notations if ϵ < 1/6 one has

lim
n→∞

sup
∥u∥≤nϵ

∥|Ψn
u⟩⟨Ψn

u| − |Ψ̃n
u⟩⟨Ψ̃n

u|∥1 = 0

where ∥ · ∥1 denotes the trace distance.

Proof. In the present section we want to show that the statistical models |Ψn
u⟩ and

|Ψ̃n
u⟩ (which are the ensemble states corresponding to the models in Equations

(5.29) and (5.30)) become equivalent in Le Cam distance when the neighbourhood
of parameters considered shrinks around θ̃n. Let us first compute the overlaps
between states corresponding to the same local parameter u in the single copy
scenario: expanding the unitary rotations one obtains

⟨ψ̃u/
√

n|ψθ̃n+u/
√

n⟩ =
〈

0
∣∣∣∣
(

1 + i
S(u)√

n
− S(u)2

2n
+ o

(
1
n

))
·

·
(

1 + i
S(u)√

n
− i

T(u)√
n

− S(u)2

2n
+ o

(
1
n

)) ∣∣0
〉

= 1 − i⟨0|T(u)0⟩/
√

n + o(1/n) = 1 + o(1/n),

where

S(u) =
m

∑
j=1

ujSj,

T(u) = ∑
i,j=1

uiuj

d−1

∑
k=1

∂ij f q
k (0)σ

k
y − ∂ij f p

k (0)σ
k
x .

Notice that the last equality in the computation of the overlap is true because
T(u) has zero expectation in |0⟩. We remark that the error remains of the order
of o(1/n) and is uniform in u if ∥u∥ ≤ nϵ with ϵ < 1/6. Now we can conclude
easily using the expressions of the trace norm between two pure states in terms
of the overlap of two representative vectors, and noticing that

⟨Ψ̃n
u|Ψn

u⟩ = ⟨ψ̃u/
√

n|ψθ̃n+u/
√

n⟩n = (1 + o(1/n))n → 1

uniformly in ∥u∥ ≤ nϵ.
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Thanks to such uniform approximation results, one can replace the original
model with the linearised one without affecting the asymptotic estimation analy-
sis. We denote the latter by

Qn := {|Ψ̃n
u⟩ : u ∈ Rm, ∥u∥ ≤ nϵ}.

Let us now consider the second ingredient of the estimation problem, the risk
(figure of merit). We fix a loss function L : Θ × Θ → R+, so that the risk of an
estimator θ̂n at θ is R(θ̂n, θ) = Eθ[L(θ̂n, θ)]. We assume that the loss function is
locally quadratic around any point and in particular

L(θ̃n + u, θ̃n + v) ≈
m

∑
i,j=1

wij(θ̃n)(ui − vi)(uj − vj)

for a strictly positive weight matrix function θ′ 7→ W(θ′) = (wij(θ
′)) (which we

assume to be continuous in θ′). In asymptotics, θ̃n → θ and the loss function
can be replaced by its quadratic approximation at the true parameter θ without
affecting the leading contribution to the estimation risk. We denote W := W(θ).

Returning to the original estimation problem, we now show how QLAN can be
used to construct an estimator which achieves the Holevo bound asymptotically.

We couple each system with a d-dimensional ancillary system in state |0′⟩ and
fix an ONB for the ancilla B′ = {|0′⟩ , . . . , |d − 1′⟩}. The extended IID statistical
model is |Ψn

u⟩ ⊗ |0′⟩⊗n. By quantum LAN, the joint ensemble can be approxi-
mated by a pure Gaussian shift model coupled with an ancillary (d − 1)-modes
CV system prepared in the vacuum: |Cu⟩ ⊗ |0⟩ where C is the (d − 1)× m com-
plex matrix with entries Ckj = cq

kj + icp
kj; more precisely we map the two qudit

ensembles into their Fock spaces by means of a tensor of isometries as in equation
(5.28) and we consider the 2(d − 1) modes which correspond to the linear space
L := Lin{|0⟩ ⊗ |i′⟩, |i⟩ ⊗ |0′⟩ : i = 1, . . . d − 1} (which contains {|ψθ⟩ ⊗ |0′⟩}θ∈Θ).
Alternatively, one can map the original ensemble to the CV space and then add a
second CV system in the vacuum state. The reason we chose to add an ancillary
ensemble at the beginning is because this same setup will be used in the next
section in the context of displaced-null measurements.

We now apply the optimal measurement for the Gaussian shift model |Cu⟩
with weight matrix W, as described in section 5.6.2.1. This involves measuring
commuting quadratures of the doubled up CV system, such that the resulting
estimator ûn achieves the Gaussian Holevo bound (5.23) in the limit of large n.

Thanks to the parameter localisation and LAN, the asymptotic (rescaled) risk
of the corresponding ’global’ estimator θ̂n = θ̃n + ûn/

√
n satisfies

lim
n→∞

nR(θ̂n, θ) = HW(G).

Finally we note that the expressions of the Holevo bound (5.22) in IID model
|ψθ⟩ with loss function L, and the corresponding Gaussian shift model |Cu⟩
with weight matrix W coincide: HW(θ) = HW(G). Indeed, since ρθ = |ψθ⟩⟨ψθ|
is a pure state, the minimisation in (5.22) can be restricted to operators X =

(X1, . . . , Xm) such that PXiP = P⊥XiP⊥ = 0 where P = ρθ, P⊥ = 1 − P. In
this case the two Holevo bounds coincide after making the identification Bj,k =√

2Re⟨k|Xj|0⟩, Bj+d−1,k =
√

2Im⟨k|Xj|0⟩.
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5.6.4 Achieving the Holevo bound with displaced-null measurements

In this section we show how displaced-null measurements offer an alternative
strategy to the one presented in the previous section, for optimal estimation in
a general finite dimensional pure statistical model |ψθ⟩ with θ ∈ Θ ⊂ Rm. As
before, we assume that the risk function L : Θ × Θ → R+ has a continuous
quadratic local approximation given by the matrix valued function W(θ).

The first steps are the same as in the estimation procedure in section 5.6.3:
we use ñ = n1−ϵ samples to produce a preliminary estimator θ̃n and we write
θ = θ̃n + u/

√
n where u is the local parameter such that ∥u∥ ≤ nϵ with high

probability. We choose an ONB B = {|0⟩ , . . . , |d − 1⟩} such that |0⟩ := |ψθ̃n
⟩

and apply Lemma 6 to approximate the local model as in equation (5.30). We
couple each system with an ancillary qudit in state |0′⟩. By QLAN, the joint
model is approximated by the Gaussian shift model consisting of coherent states
|Cu⟩ ⊗ |0⟩ of a 2(d − 1)-modes CV system.

As detailed in section 5.6.2.1, the Holevo bound for the Gaussian shift can be
attained by measuring a certain set of canonical coordinates Q̃ := (Q̃1, . . . , Q̃m)

of the doubled-up systems. In turn, this provides an asymptotically optimal
measurement for the IID qudit model as explained in section 5.6.3. Instead of
measuring these quadratures, here we adopt the displaced-null measurements
philosophy used in section 5.4, which achieves the same asymptotic risk. This
means that one measures the commuting set of displaced number operators
Ñ j

∆n
= D(−∆n)Ñ jD(∆n) where Ñ j = ã∗j ãj is the number operator corresponding

to the mode (Q̃j, P̃j) and

D(∆n) = exp

(
−i∆n

m

∑
k=1

P̃k

)
, ∆n =

√
nδn = n3ϵ.

We note that

Ñ j
∆n

= (ãj − n3ϵ1)∗(ãj − n3ϵ1) = n6ϵ1 −
√

2Q̃jn3ϵ + Ñ j,

so for large n, measuring Ñ j
∆n

is equivalent to measuring Q̃j. We recall that by
measuring Z⋆ := TQ̃ we obtain an optimal unbiased estimator of u, where T is
the invertible matrix defined at the end of section 5.6.2.1. Therefore, using the
above equation we can construct an (asymptotically) optimal estimator given by
the outcomes of the following set of commuting operators

m

∑
k=1

Tjk

(
n3ϵ

√
2

1 − n−3ϵ

√
2

Ñk
∆n

)
≈ Zi

We are now ready to translate the above CV measurement into its correspond-
ing projective qudit measurement using the correspondence between displaced
number operators measurements and rotated bases, described in section 5.6.2.2.

Using the general CLT map (5.25), we identify vectors {|1̃⟩ , . . . , |m̃⟩} in the
orthogonal complement of |0̃⟩ = |0⟩ ⊗ |0′⟩ such that their corresponding limit
quadratures are X(|k̃⟩) = Q̃k, for k = 1, . . . , m. By virtue of the CLT the vectors
|0̃⟩, |1̃⟩ , . . . , |m̃⟩ are normalised and orthogonal to each other, so we can complete
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the set to an ONB B̃ := {|0̃⟩, . . . |d̃2 − 1⟩} of Cd ⊗Cd where the remaining vectors
are chosen arbitrarily. Now let B̃n be the rotated basis

|vδn
j ⟩ = U(δn)| j̃⟩ = exp

(
−iδn

m

∑
k=1

σ(ik̃)

)
| j̃⟩

for δn = n−1/2+3ϵ and σ(ik̃) := −i|0̃⟩⟨k̃|+ i|k̃⟩⟨0̃|. Note that B̃n is a small rota-
tion of the basis B which contains the reference state |0̃⟩ = |0⟩ ⊗ |0′⟩, so the
corresponding measurement is of the displaced-null type.

We measure each of the qudits in the basis B̃n and obtain IID outcomes
X1, . . . , Xn taking values in {0, . . . , d2 − 1}, and let p(n)u be their distribution:

p(n)u (j) = |⟨ψu/
√

n ⊗ 0′|vδn
j ⟩|2, j = 0, . . . , d2 − 1.

The following theorem is one of the main results of the chapter and shows that
the Holevo bound can be attained by using displaced-null measurements.

Theorem 17. Assume we are given n samples of the qudit state |ψθ⟩ where θ ∈ Θ ⊂ Rm

is unknown. We further assume that Θ is bounded and ϵ < 1/10. Using ñ = n1−ϵ

samples, we compute a preliminary estimator θ̃n, and we measure the rest of the systems
in the ONB B̃n, as defined above. Let

θ̂n := θ̃n + ûn/
√

n

be the estimator with

ûj
n =

m

∑
k=1

Tjk

(
n3ϵ

√
2
− n1−3ϵ

√
2

p̂n(k)
)

, j = 1, . . . , m

where p̂n(j) is the empirical estimator of p(n)u (j), i.e.,

p̂n(j) =
|{i : Xi = j, i = 1, . . . , n}|

n
,

for j = 1, . . . , m.
Then θ̂n is asymptotically optimal in the sense that for every θ ∈ Θ

lim
n→∞

nRn(θ̂n, θ) = HW(θ)(θ)

Moreover,
√

n(θ̂n − θ) converges in law to a centered normal random variable with
covariance given by TTT/2.

The proof of Theorem 17 can be found in section 5.10.
Our measurement has been obtained by modifying the optimal linear measure-

ment for the limiting Gaussian shift to displaced counting one, and translating
this to a qudit and ancilla measurement with repect to a displaced-null basis.
Interestingly, this resulting measurement is closely connected to the optimal
measurement described in [120]. The connection is discussed in section 5.11.



5.6 M U LT I PA R A M E T E R E S T I M AT I O N F O R P U R E Q U D I T S TAT E S 115

5.6.5 Estimating a completely unknown pure state with respect to the Bures distance

In this section we consider the problem of estimating a completely unknown
pure qudit state, when the loss function (figure of merit) is defined as the squared
Bures distance

d2
b(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = 2(1 − |⟨ψ|ϕ⟩|).

In this particular case, we will show that one can asymptotically achieve the
Holevo bound using displaced-null measurement without the need of any ancil-
lary system.

We parametrise a neighbourhood of the preliminary estimator |0⟩ := |ψ̃n⟩ as

|ψu/
√

n⟩ = exp

(
−i

d−1

∑
k=1

(uk
1σk

y − uk
2σk

x)/
√

n

)
|0⟩

where u = (u1
1, u1

2, . . . , ud−1
1 , ud−1

2 ) ∈ R2(d−1) satisfies ∥u∥ ≤ nϵ with high proba-
bility.

For small deviations from |0⟩ the Bures distance has the quadratic approxima-
tion

d2
b

(
|ψ u√

n
⟩⟨ψ u√

n
|, |ψ u′√

n
⟩⟨ψ u′√

n
|
)
=

1
n
∥u − u′∥2 + o(n−1+2ϵ)

which determines the optimal measurement and error rate in the asymptotic
regime.

The Gaussian approximation consists in the model |u1 + iu2⟩ and the optimal
measurement with respect to the identity cost matrix would be to measure
the Qk’s and Pk’s. In order to estimate u, instead of using an ancilla, we split
the ensemble of n qudits in two equal sub-ensembles and perform separate
‘displaced-null’ measurements on each of them in the following bases which are
obtained by rotating {|0⟩, . . . |d − 1⟩} by (small) angles of size δn = n−1/2+3ϵ

|vδn
j ⟩ = U1(δn)|j⟩ = exp

(
−iδn

d−1

∑
k=1

σk
y

)
|j⟩ (5.31)

|wδn
j ⟩ = U2(δn)|j⟩ = exp

(
iδn

d−1

∑
k=1

σk
x

)
|j⟩. (5.32)

Therefore in the asymptotic picture, the proposed measurements are effectively
joint measurements of {Qi, i = 1, . . . d − 1} and respectively {Pi, i = 1, . . . d − 1}
which are known to be optimal measurements for the local parameter u in the
Gaussian shift model when performed on two separate copies of |(u1 + iu2)/

√
2⟩

obtained from the original state by using a beamsplitter.
Let X1, . . . , Xn/2 and Y1, . . . , Yn/2 be the independent outcomes of the two types

of measurements, taking values in {0, . . . , d − 1}, and let p(n)u and q(n)u be their
respective distributions

p(n)u (j) = |⟨ψu/
√

n|vδn
j ⟩|2, q(n)u (j) = |⟨ψu/

√
n|wδn

j ⟩|2. (5.33)

Proposition 4. Assume ϵ < 1/10 and let

|ψ̂⟩ := |ψû/
√

n⟩
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be the state estimator with local parameter ûn defined as

ûj
1 =

n3ϵ

2
− n1−3ϵ

2
p̂n(j),

ûj
2 =

n3ϵ

2
− n1−3ϵ

2
q̂n(j), j = 1, . . . , d − 1,

where p̂n, q̂n are the empirical estimator of p(n)u and q(n)u , respectively, i.e.,

p̂n(j) =
|{i : Xi = j, i = 1, . . . , n/2}|

n/2
,

q̂n(j) =
|{i : Yi = j, i = 1, . . . , n/2}|

n/2
,

for j = 1, . . . , d − 1.
Then under Pu,

√
n(ûn − u) is asymptotically distributed as a centered Gaussian

random vector with covariance 1/2 and |ψ̂n⟩ is asymptotically optimal in the sense that
it achieves the Holevo bound:

lim
n→∞

nE|ψ⟩[d
2
b(|ψ⟩⟨ψ|, |ψ̂n⟩⟨ψ̂n|)] = d − 1.

The proof of Proposition 4 can be found in section 5.12.

5.6.6 Achieving the QCRB with displaced-null measurements

We now consider quantum statistical models for which the QCRB is (asymptoti-
cally) achievable. In contrast to models discussed in sections 5.6.4 and 5.6.5, in
this case all parameter components can be estimated simultaneously at maximum
precision. We will provide a class a displaced-null measurements which achieve
the QCRB asymptotically.

Let us consider the statistical model {|ψθ⟩}, θ ∈ Θ ⊂ Rm with m ≤ 2(d − 1)
and assume that the parameter is identifiable and that the QCRB is achievable for
all θ ∈ Θ. This is equivalent to condition (5.21) for all θ ∈ Θ. The QFI is given by

F(θ)ij = 4⟨∂iψθ|∂jψθ⟩ − 4⟨ψθ|∂jψθ⟩⟨∂iψθ|ψθ⟩,

for i, j = 1, . . . , m. Let |0⟩ := |ψθ̃n
⟩ be the preliminary estimator. We write θ =

θ̃n + u/
√

n with u the local parameter satisfying ∥u∥ ≤ nϵ with high probability.
We assume that the phase of |ψθ⟩ has been chosen such that ⟨ψ̇i|0⟩ = 0 for all i,
and denote ψ̇i := ∂iψθ̃n

.
We now describe a class of measurements that will be shown to achieve the

QCRB asymptotically. We choose an orthonormal basis B := {|0⟩, |1⟩, . . . , |d− 1⟩}
whose first vector is |0⟩ and the other vectors satisfy

cki := ⟨k|ψ̇i⟩ ∈ R, i = 1, . . . , m, k = 1, . . . , d − 1. (5.34)

This condition is similar to equation (7) in [137], but unlike this reference we do
not impose additional conditions for the case when ⟨k|ψ̇i⟩ = 0 for all i = 1, . . . , m.
If we assume that the parameter θ is identifiable, then the matrix C = (cki) needs
to have rank m.



5.6 M U LT I PA R A M E T E R E S T I M AT I O N F O R P U R E Q U D I T S TAT E S 117

We will further rotate B with a unitary U = exp(−iδnG) where δn = n−1/2+3ϵ

and

G =
d−1

∑
k=1

gkσk
y , σk

y = −i |0⟩ ⟨k|+ i |k⟩ ⟨0|

where gk ̸= 0 are arbitrary real coefficients. We obtain the ONB {|vδn
0 ⟩, . . . |vδn

d−1⟩}
with

|vδn
k ⟩ = U|k⟩, k = 0, . . . d − 1.

We measure all the systems in the basis B̃ and obtain IID outcomes X1, . . . , Xn ∈
{0, . . . , d− 1} and denote by p̂n the corresponding empirical frequency. We denote
by T = (Tij) the m × (d − 1) matrix defined as

T = (CTC)−1CT.

Proposition 5. Assume that Θ be bounded and ϵ < 1/10. Let θ̂n = θ̃n + ûn/
√

n be
the estimator determined by

ûj
n =

d−1

∑
k=1

Tjk

(
gkn3ϵ

2
− n1−3ϵ

2gk
p̂n(k)

)
.

Then θ̂n achieves the QCRB, i.e.,

lim
n→∞

nEθ[(θ̂n − θ)(θ̂n − θ)T] = F(θ)−1.

The proof of Proposition 5 can be found in section 5.13.
We now give a QLAN interpretation of the above construction. The fact that

cki are real implies that the linearisation of the model around the preliminary
estimation is given by

|ψ̃u/
√

n⟩ = exp

(
−i

m

∑
j=1

ujSj/
√

n

)
|0⟩

with

Sj =
d−1

∑
k=1

ckjσ
k
y , ckj = ⟨k|ψ̇j⟩.

By QLAN, the corresponding Gaussian model consists of coherent states |Cu⟩ of
a (d − 1)-modes CV system where C : Rm → Cd−1 is given by the real coefficients
ckj = ⟨k|ψ̇j⟩. This means that each of the (d − 1) modes is in a coherent state
whose displacement is along the Q axis, so ⟨Cu|Pk|Cu⟩ = 0 for all k, while

qk := ⟨Cu|Qk|Cu⟩ =
√

2
m

∑
j=1

ckjuj.

As we mentioned in Section 5.6.2.1, the QCRB is achievable for the limit model
too and the simultaneous measurement of all Qk is optimal. This is asymptotically
obtained by the counting in the rotated basis.
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5.7 C O N C L U S I O N S A N D O U T L O O K

In this chapter we showed that the framework of displaced-null measurements
provides a general scheme for optimal estimation of unknown parameters θ ∈ Rm

of pure states models |ψθ⟩ ∈ Cd. In particular, displaced-null measurements
achieve the quantum Cramér-Rao bound (QCRB) for models in which the bound
is achievable, and the Holevo bound for general qudit models.

Our method is related to previous works [115, 136, 137] that deal with the
achivebility of the QCRB for pure state models |ψθ⟩. These works exhibit a class of
parameter-dependent orthonormal bases B(θ̃) whose associated classical Fisher
information Iθ̃(θ) converges to the quantum Fisher information F(θ) of |ψθ⟩ as θ̃

approaches the true unknown state parameter θ. The measurement basis B(θ̃)
has the special feature that it contains the state |ψθ̃⟩ as one of its elements, so that
at θ̃ = θ the measurement has only one outcome, while for θ̃ ≈ θ the occurrence
of other outcomes can be interpreted as signaling the deviation from the reference
value θ̃. With this in mind we called such measurements, null measurements.

However, the references [115, 136, 137] do not provide an explicit operational
implementation of a strategy that achieves the QCRB. The naive solution would
be to choose the reference parameter as a preliminary estimator θ̃n obtained by
measuring a sub-sample of ñ ≪ n systems, and to apply the approximate null
measurement Bθ̃n

to the rest of the systems. Surprisingly, it turned out that this
adaptive strategy fails to achieve the QCRB, and indeed does not even reach
the standard n−1 scaling of precision, when the preliminary estimator satisfies
certain natural assumptions. This is due to the fact that θ̃n lies in the interior
of a confidence interval of θ and the measurement cannot distinguish positive
and negative deviations from the reference since probabilities depend on the
square of the deviations. This is an important finding which shows the pitfalls of
drawing statistical conclusions based solely on Fisher information arguments.

To avoid this issue, we proposed to displace the preliminary estimator by
a small amount δn which is however sufficiently large to ensure that the new
reference parameter θ̃n + δn is outside the confidence interval of θ. Building
on this idea we showed the achievability of the QCRB in the setting of [115,
136, 137]. Furthermore, for general pure state models and locally quadratic loss
functions, we devised displaced-null measurements which achieve the Holevo
bound asymptotically for arbitrary qudit models.

The theory of quantum local asymptotic normality (QLAN) has played an im-
portant role in our investigations. The QLAN machinery translates the multi-copy
estimation problem into one about estimating the mean of a multi-mode coherent
state. In the latter case, counting measurements are paradigmatic example of null-
measurements, while appropriately displacing the number operators provides
the basis for displaced-null measurements. Using the QLAN correspondence,
this translates into a simple prescription for rotating a basis containing the prelim-
inary estimator |ψθ̃n

⟩ into that of the displaced-null measurement. Interestingly,
the obtained measurement turned out to be closely related to the parameter-
dependent measurements proposed by Matsumoto in [120], and our approach
offers an alternative asymptotic perspective on this work.

An exciting area of applications for displaced-null measurements is that of
optimal estimation of dynamical parameters of open systems [37, 56, 62, 65, 83,
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84, 86, 98]. Recent works [78, 177] have shown out that quantum post-processing
by means of coherent absorbers allows for optimal estimation of such param-
eters. In particular [177] pointed out that a basic measurement such as photon
counting constitutes a null-measurement, thus opening the route for devising
optimal measurements for multidimensional estimation of Markov dynamics.
An asymptotic analysis of displaced null measurements in this context will be
the subject of a forthcoming publication [75].

Another area of future interest is to extend the method to models consisting
of mixed states. While this may not work for arbitrary mixed states, the ideas
presented here may be useful for models consisting of states with a high degree
of purity which is the relevant setup in many quantum technology applications.
Another important extension is towards refining the methodology for optimal
estimation in the finite sample rather than asymptotic regime. Finally, we would
like to better understand how displaced-null measurements can be used in the
context of quantum metrology and interferometry [90, 148].

5.8 P R O O F O F T H E O R E M 1 6 F O R W E A K E R N O T I O N S O F U N I D E N T I F I A -
B I L I T Y

As we already mentioned, in the proof of Theorem 16 we made use of the fact that
for the statistical model defined in equation (5.11), the law of the measurements
in the basis containing |ψθ̃n

⟩ could not distinguish between θ̃n ± r.
In the qubit case, we can still prove Theorem 16 for a wider class of one-

parameter models under two additional assumptions. The first one is asking
that unidentifiable parameters concentrate around the preliminary estimate at
the same speed on both sides; more precisely, let us consider a general (smooth)
one parameter model |ψθ̃n+r⟩ for r ∈ (−a, a); the corresponding probabilities
describing the measurement in the θ̃n-null-basis are given by

pr(1) = |⟨ψθ̃n
|ψθ̃n+r⟩|2 = 1 − pr(0).

In general, there is no reason why pr = p−r, however at r = 0 the function
pr(1) has a global minimum and we can pick a neighborhood (−a′, b′) such that

1. pr(1) is invertible on (−a′, 0] and [0, b′),

2. pr(1) maps both (−a′, 0] and [0, b′) onto the same interval.

A priori, the neighborhood depends on θ̃n, but if the preliminary estimator takes
value in a compact set, we can find a nonempty neighborhood (−a′, b′) that
works for every value of θ̃n. If we denote by r′(r) the unique value in (−a′, 0]
such that pr′(r)(1) = pr(1) for r ∈ [0, b′), we require

r 7→ r′(r) and its inverse to be Lipschitz with a

Lipschitz constant L that is uniform in θ̃n.
(5.35)

The second assumption consists in replacing the condition in equation 5.13
with

min
{∫ τ′

n

τn

gn,θ̃n
(r)dr,

∫ Lτ′
n

τn/L
gn,θ̃n

(r)dr
}

≥ C (5.36)
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where τn := n−(1−ϵ+α)/2, τ′
n := n−(1−ϵ−β)/2 for some α, β such that τ′

n = o(1),
and C > 0 is a constant independent on n. The additional requirement is that
the posterior measure concentrates around the preliminary estimator. Under
assumptions (5.35) and (5.36), the proof of Theorem 16 can be adapted quite
straightforwardly. This reparametrisation trick, however, cannot be repeated in
the qudit case.

More generally, if instead of conditions 5.13 and 5.36, we assume that

∫ τ′
n

τn

gn,θ̃n
(r)dr ≥ C (5.37)

where τn, τ′
n and C > 0 satisfy the same conditions above and, moreover, we

require the preliminary estimator to be enough accurate, i.e., ϵ < 1/3 − (2α +

5β)/3, we can prove Theorem 16 without any assumption on the statistical model.
We will make use of the fact that the conditional law of the measurements in
the θ̃n-null basis conditional to the parameter θ = θ̃n + r does not distinguish
between θ = θ̃n ± r locally (which is the condition equivalent to have zero Fisher
information), i.e.,

ṗ0(0) = ṗ0(1) = 0,

where the derivative is taken with respect to r.

Proposition 6. Consider any one-parameter qudit model {|ψθ⟩} and assume that θ̃n

is a reasonably good estimator satisfying condition (5.37), obtained by measuring a
sub-ensemble of size n1−ϵ with ϵ < 1/3 − (2α + 5β)/3. Let θ̂n be an estimator of θ

based on measuring the remaining n − n1−ϵ sub-ensemble in a basis containing |ψθ̃n
⟩.

Then
lim
n→∞

nRπ(θ̂n) = ∞.

Proof. First notice that

E[(θ̂n − θ)2] ≥ P(|θ̂n − θ| > τ′
n)τ

′2
n

+ E
[
χ|θ̂n−θ|≤τ′

n
(θ̂n − θ)2

]
.

Moreover we can write
∫

|θ̂n−θ|≤τ′
n

π(dθ|θ̃n)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2 ≥
∫

τn≤|θ−θ̃n|≤τ′
n

|θ̂n−θ|≤τ′
n

π(dθ|θ̃n)p(dθ̂n|θ, θ̃n)(θ̂n − θ)2 ≥
∫

τn≤r≤τ′
n

|θ̂n−θ|≤τ′
n

gn,θ̃n
(r)(pr(dθ̂n)(θ̂n − θ̃n − r)2+

p−r(dθ̂n)(θ̂n − θ̃n + r)2) =
∫

τn≤r≤τ′
n

|θ̂n−θ|≤τ′
n

gn,θ̃n
(r)(pr(dθ̂n) + p−r(dθ̂n))((θ̂n − θ̃n)

2 + r2))+

− 2
∫

τn≤r≤τ′
n

|θ̂n−θ|≤τ′
n

gn,θ̃n
(r)(pr(dθ̂n)− p−r(dθ̂n))(θ̂n − θ̃n)r
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The first addend can be lower bounded by
∫

τn≤r≤τ′
n

|θ̂n−θ|≤τ′
n

gn,θ̃n
(r)(pr(dθ̂n) + p−r(dθ̂n))τ

2
n .

The second addend will be negligible in the final analysis. Indeed, we have that

∑
x∈{0,1}n

|Πn
k=1 pr(xk)− Πn

k=1 p−r(xk)| ≤

n

∑
l=1

∑
x∈{0,1}n

p−r(x1) · · · p−r(xl−1)|pr(xl)− p−r(xl)|·

· qr(xl+1) · · · qr(xn) =

n ∑
x=0,1

|pr(xl)− p−r(xl)| ≲ nτ′3
n ,

where in the last inequality we used that

p0(x)− p0(x) = ṗ0(x) + ṗ0(x) = p̈0(x)− p̈0(x) = 0

for x = 0, 1 and the symbol ≲ means that the left hand side is less or equal
than a constant times the right hand side. Therefore, the second term can be
upper bounded by a constant times nτ′5

n = n−3/2+5(ϵ+β)/2, which is o(τ2
n) if

ϵ < 1/3 − (2α + 5β)/3. To sum up, one has that

E[(θ̂n − θ)2] ≥ P(|θ̂n − θ| > τ′
n)τ

′2
n +

∫
τn≤r≤τ′

n
|θ̂n−θ|≤τ′

n

π(dθ̃n)gn,θ̃n
(r)(pr(dθ̂n) + p−r(dθ̂n))τ

2
n + o(τ2

n) ≥
∫

τn≤r≤τ′
n

π(dθ̃n)gn,θ̃n
(r)(pr(dθ̂n) + p−r(dθ̂n))τ

2
n + o(τ2

n) ≥

cCτ2
n + o(τ2

n).

We remark that, if all the derivatives of pr up to the 2s − 1-th order for some
s ≥ 1 vanish at 0, then we get that

∑
x=0,1

|pr(x)− p−r(x)| ≲ τ′2s+1
n

and we obtain the statement under the assumption that ϵ < (2s − 1)/(2s + 1)−
(2α + (2s + 3)β)/(2s + 1). Notice that in general we can pick α and β arbitrarily
small, hence the restriction on ϵ effectively becomes ϵ < (2s − 1)/(2s + 1), which
does not preclude any value in the limit s → +∞.

5.9 P R O O F O F P R O P O S I T I O N 3 O N O P T I M A L I T Y O F D I S P L A C E D N U L L

M E A S U R E M E N T S

Since this measurement setting depends on n, we need to look in more detail at
the asymptotic behaviour of the estimation problem.

We start by assuming that θ ∈ In and at the end of the proof we treat the case
θ /∈ In by employing the concentration bound in equation (5.15).
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Since θ ∈ In, we can write θ = θ̃n + u/n1/2 with local parameter u satisfying
|u| ≤ nϵ. Then

θ − θ′n = un−1/2 − n−1/2+3ϵ = O(n−1/2+3ϵ)

and

p(n)θ = sin2(θ − θ′n) = (θ − θ′n)
2 + O(n−2+12ϵ)

= n−1(u − n3ϵ)2 + O(n−2+12ϵ).

From this we get that

u =
n3ϵ

2
− n1−3ϵ

2
p(n)θ + O(n−ϵ) (5.38)

where the u2 term is negligible compared to un3ϵ and the remainder is O(n−ϵ)

for ϵ < 1/10.
The probability p(n)θ can be estimated by the empirical frequency (5.16) whose

distribution is the binomial Bin(p(n)θ , n). Taking into account that θ = θ̃n + u/n1/2

and using (5.38) we define the estimator

θ̂n = θ̃n +
n−1/2+3ϵ

2
− n1/2−3ϵ

2
p̂n (5.39)

with p̂n as in (5.16). Now from (5.38) we get

√
n(θ̂n − θ) =

n1−3ϵ

2
(p(n)θ − p̂n) + O(n−ϵ).

Conditional to a certain value of θ̃n, p̂n has a binomial distribution with parame-
ters p(n)θ and the term O(n−ϵ) is deterministic, hence

nE[(θ̂n − θ)2|θ̃n] =
n2−6ϵ

4
p(n)θ (1 − p(n)θ ) =

1
4
+ o(1).

In order to study the convergence in law of
√

n(θ̂n − θ), one can consider the
conditional characteristic function of n1−3ϵ(p(n)θ − p̂n)/2 instead (conditional to
θ̃n, they only differ by a deterministic vanishing quantity):

Eθ

[
exp(ian1−3ϵ( p̂n − p(n)θ )/2)|θ̃n

]

= Eθ

[
exp

(
ian−3ϵ

n

∑
i=1

(Xi − p(n)θ )/2

)∣∣∣∣∣ θ̃n

]

= Eθ

[
exp(ian−3ϵ(X1 − p(n)θ )/2|θ̃n

]n

=

(
1 − a2

8
n−6ϵ p(n)θ (1 − p(n)θ ) + o(n−1)

)n

=

(
1 − a2

8n
+ o(n−1)

)n

= e−a2/8 + o(1).

Notice that for every a ∈ R

Eθ [eia
√

n(θ̂n−θ)] = e
−a2

8 P(θ ∈ In)

+
∫

θ∈In

p(dθ̃n|θ)(Eθ [eia
√

n(θ̂n−θ)|θ̃n]− e
a2
8 )

+
∫

θ /∈In

p(dθ̃n|θ)Eθ [eia
√

n(θ̂n−θ)|θ̃n].
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Since Pθ(θ /∈ In) goes to zero, the first term goes to e
−a2

8 and the third one vanishes.

The second term vanishes because |(Eθ [eia
√

n(θ̂n−θ)|θ̃n]− e
a2
8 )|χ{θ∈In} can be upper

bounded uniformly in θ̃n by a sequence converging to 0. Therefore we obtain
the convergence of

√
n(θ̂n − θ) to the normal, in distribution. For the convergece

of the rescaled MSE we note that since θ, θ̃n are bounded, equation (5.39) shows
that the square error n(θ̂n − θ)2 does not grow more than n2; using the fact that
Pθ(θ /∈ In) decays exponentially fast, one can remove the conditioning also in the
convergence of the MSE.

5.10 P R O O F O F T H E O R E M 1 7

We first assume that θ ∈ In where

In = {θ ∈ Rm : ∥θ− θ̃n∥ ≤ n−1/2+ϵ}.

Recall that |0⟩ = |ψθ̃n
⟩ is the preliminary estimator, and we denote |0̃⟩ :=

|0⟩ ⊗ |0′⟩ the first basis vector of an ONB B̃ := {|0̃⟩, . . . , |d̃2 − 1⟩} in Cd ⊗ Cd

which is chosen such that |1̃⟩, . . . , |m̃⟩ are vectors corresponding to the canonical
variables Q̃1, . . . , Q̃m which span the elements of the optimal unbiased set of

observables Z∗. Without loss of generality we can assume that {|1̃⟩, . . . , |2̃d − 1⟩}
form an ONB of the subspace L := Lin{|0⟩ ⊗ |i′⟩, |i⟩ ⊗ |0′⟩ : i = 1, . . . d − 1}. The
local state (of system and ancilla) can be written as

|ψ̃θ̃n+u/
√

n⟩ = e−i ∑
2(d−1)
k=1

(
f̃ k
1

(
u√
n

)
σ̃k

y− f̃ k
2

(
u√
n

)
σ̃k

x

)
|0̃⟩.

where f̃ k
1,2 are smooth real valued functions and σ̃k

x,y are the Pauli operators for
the vectors in the basis B̃.

From the definition of the basis B̃, the subspace L and of the matrix T defined
at the end of section 5.6.2.1 we have

(T−1)kj =
√

2∂j f̃ k
1 (0) for j = 1, . . . , m.

In particular, we note that

1
2

Tr(()W(θ̃n)TTT) = HW(θ̃n)(θ̃n). (5.40)

Expanding the unitary rotation, one has

|ψ̃θ̃+u/
√

n⟩ = |0̃⟩+ 1√
2

m

∑
k=1

(
m

∑
j=1

T−1
kj

uj√
n

)
|k̃⟩+

i
m

∑
k=1

(
m

∑
j=1

∂j f k
2 (0)

uj√
n

)
|k̃⟩+ (5.41)

+ O(n−1+2ϵ).
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The Taylor expansion for the vectors in the rotated basis is

|vδn
j ⟩ = exp

(
−iδn

(
m

∑
k=1

σ̃k
y

))
| j̃⟩ (5.42)

=




| j̃⟩ − δn |0̃⟩+ O(n−1+6ϵ) if j = 1, . . . , m

| j̃⟩ otherwise
.

Therefore one obtain the following expression for the outcome probability mea-
sure

p(n)u (k) =
1
n

(
m

∑
j=1

T−1
kj√
2

uj − n3ϵ

)2

+

1
n

(
m

∑
j=1

∂j f k
2 (0)uj

)2

+ O(n−3/2+9ϵ)

if k = 1, . . . , m and p(n)u (k) = O(n−1+2ϵ) otherwise. Using the fact that ∥u∥ ≤ nϵ

one can neglect the quadratic terms in u and write

uj =
m

∑
k=1

Tjk

(
n3ϵ

√
2
− n1−3ϵ

√
2

p(n)u (k)
)
+ O(n−ϵ).

Moreover, from explicit computations one can see that for every j ̸= k = 1, . . . , m

n2−6ϵ

2
Eθ[( p̂n(j)− p(n)u (j))2|θ̃n] =

n1−6ϵ

2
p(n)u (j)(1 − p(n)u (j)) =

1
2
+ o(1),

and

n2−6ϵ

2
Eθ[( p̂n(j)− p(n)u (j))( p̂n(k)− p(n)u (k))|θ̃n] =

− n1−6ϵ

2
p(n)u (j)p(n)u (k) = 0 + o(1).

Therefore

nEθ[L(θ, θ̂n)
2|θ̃n]

= Eθ[Tr((ûn − u)TW(θ̃n)(ûn − u))|θ̃n] + o(1)

=
n2−6ϵ

2

m

∑
j,k=1

(TTW(θ̃n)T)kj·

· Eθ[( p̂n(j)− p(n)u (j))( p̂n(k)− p(n)u (k))|θ̃n])

+ o(1)

=
1
2

Tr(W(θ̃n)TTT) = HW(θ̃n)(θ̃n) + o(1).
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In order to derive the asymptotic normality result for
√

n(θ̂ − θ), we first
consider the characteristic function of n1−3ϵ( p̂n − p(n)θ )/

√
2: for every a ∈ Rd−1,

one has

Eθ

[
exp(in1−3ϵa · ( p̂n − p(n)θ )/

√
2)|θ̃n

]

= Eθ

[
exp

(
in−3ϵ

n

∑
i=1

a√
2
· (Xi − p(n)θ )

)∣∣∣∣∣ θ̃n

]

= Eθ

[
exp

(
in−3ϵ a√

2
· (X1 − p(n)θ )

) ∣∣∣∣∣θ̃n

]n

=

(
1 − ∥a∥2

4
n−6ϵ p(n)θ (1 − p(n)θ ) + o(n−1)

)n

=

(
1 − ∥a∥2

4n
+ o(n−1)

)n

= e−∥a∥2/4 + o(1).

Indeed, using that
√

n(θ̂ − θ) = n1−3ϵT( p̂n − p(n)θ )/
√

2, one has that for every
a ∈ Rm

Eθ[exp(i
√

na · (θ̂− θ))|θ̃n] = e−
aT ·TTT ·a

4 + o(1).

We can now remove the conditioning with respect to the preliminary estimate
and take the limit for n → +∞ (we will only show the computations for the risk,
but they are the same in the case of the characteristic function):

nEθ[L(θ, θ̂n)
2] = HW(θ)(θ)Pθ(θ ∈ In)

+
∫

θ∈In

p(dθ̃n|θ)(HW(θ̃n)(θ̃n)−HW(θ)(θ))

+
∫

θ∈In

p(dθ̃n|θ)(nEθ[d(θ, θ̂n)
2|θ̃n]−HW(θ̃n)(θ̃n))

+
∫

θ /∈In

p(dθ̃n|θ)nEθ[d(θ, θ̂n)
2|θ̃n].

The first term in the sum tends to HW(θ), while all the other ones tend to 0
because of the continuity of HW(θ), the fact that nEθ[L(θ, θ̂n)2|θ̃n]−HW(θ̃n)(θ̃n)

is uniformly bounded by a vanishing sequence on In and that the last term can
be upper bounded by a constant times nPθ(θ /∈ In). The same reasoning shows
unconditional asymptotic normality.

5.11 C O M PA R I S O N W I T H E S T I M AT O R S D E V E L O P E D I N [ 1 2 0 ]

In this section we elucidate the connection between the measurement strategy
that we propose and the optimal measurement for pure statistical models pointed
out in [120]. Theorems 1 and 2 in [120] show that for every parameter value
θ, there exists a measurement basis that allows to attain the Holevo bound at
θ in one shot: given the optimal estimator Z of the limit Gaussian model at θ,
one needs to consider the corresponding vectors |z1⟩ , . . . , |zm⟩ via QCLT (see Eq.
(5.25)) and pick any orthonormal basis {|bk⟩}m

k=0 of spanR{|ψθ⟩ , |z1⟩ , . . . , |zm⟩}
such that ⟨bk|ψθ⟩ ̸= 0 for every k. The measurement in any orthonormal basis
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containing |bk⟩m
k=0 is optimal and the estimator achieving the Holevo bound is

given by
ˆ̂θi =

⟨bk|zi⟩√
2⟨bk|ψθ⟩

+ θi

if k is observed for k = 0, . . . , m and 0 otherwise.
As in the case of the SLD, such an optimal measurement depends on the true pa-

rameter; in order to come up with a concrete estimation strategy, one needs a two
step procedure. After producing a preliminary estimate θ̃n of the parameter, one
would then choose an orthonormal basis {bk}m

k=0 of spanR{|ψθ̃n
⟩ , |z1⟩ , . . . , |zm⟩}

such that ⟨bk|ψθ̃n
⟩ ̸= 0 for every k and measure in any orthonormal basis contain-

ing {bk}m
k=0. The final estimator would be given by

ˆ̂θi
n =

m

∑
k=0

⟨bk|zi⟩√
2⟨bk|ψθ̃n

⟩
p̂n(k) + θ̃i

n, (5.43)

where p̂n(k) is the empirical probability of observing k.
However, Theorem 16 shows that if {bk}m

k=0 is too close to be a null-basis, such
a strategy does not even achieve a standard scaling due to identifiability prob-
lems. The basis {|vδn

k ⟩}m
k=0 that we propose satisfies the assumptions above for

being optimal at θ̃n and ensures an asymptotically optimal estimation precision;
moreover, in this case ˆ̂θn and θ̂n are equivalent in the following sense.

Proposition 7. Let ˆ̂θn and θ̂ the estimators defined in Eq. (5.43) and Theorem 17,
respectively. Then the following holds true:

lim
n→+∞

nEθ[(
ˆ̂θn − θ̂n)

2] = 0.

Proof. First we condition on θ̃n ∈ In, where

In = {θ ∈ Rm : ∥θ− θ̃n∥ ≤ n−1/2+ϵ)}.

Using Eq. (5.42) and |zi⟩ = ∑m
k=1 Tik |k̃⟩, one has that

⟨bk|zi⟩ = Tik −
δ2

n
2

m

∑
j=1

Tij + O(n−3/2+9ϵ),

⟨bk|ψθ̃⟩ = −δn + O(n−3/2+9ϵ)

for k = 1, . . . , m and

⟨b0|zi⟩ = δn

m

∑
j=1

Tij + O(n−3/2+9ϵ),

⟨b0|ψθ̃⟩ = 1 + O(n−1+6ϵ).
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Therefore we can write

ˆ̂θi
n − θ̃i

n =
m

∑
k=1

⟨bk|zi⟩√
2⟨bk|ψθ̃n

⟩
p̂n(k)

=
n−1/2+3ϵ

√
2

m

∑
k=1

Tik p̂n(0)−
n1/2−3ϵ

√
2

m

∑
k=1

Tik p̂n(k)

+
m

∑
j=1

n−1/2+3ϵ

4
Tij

m

∑
k=1

p̂n(k) + R

= θ̂
i
n − θ̃

i
n + R

+
n−1/2+3ϵ

√
2

m

∑
k=1

Tik( p̂n(0)− 1) (I)

+
m

∑
j=1

n−1/2+3ϵ

4
Tij

m

∑
k=1

p̂n(k) (I I),

where R is a random variable whose standard deviation is O(n−3/2+9ϵ). Moreover,
both (I) and (I I) are negligible too: indeed, for every k = 0, . . . , m

Eθ[( p̂n(k)− p(n)θ (k))2|θ̃n] = o(1/n)

and
p(n)θ (k) = δ0k + O(n−1+6ϵ).

The statement follows removing the conditioning can be shown with the same
technique as in the proof of Theorem 17.

5.12 P R O O F O F P R O P O S I T I O N 4

We denote by In the set of states

{|ψ⟩ : db(|ψ⟩ ⟨ψ| , |ψ̃n⟩ , ⟨ψ̃n|) ≤ n(1−ϵ)/2}

and we assume that |ψ⟩ belongs to In (the converse can be dealt with as in the
proof of Theorem 17). Therefore, we can write

|ψ⟩ = exp

(
−i

d−1

∑
k=1

(uk
1σk

y − uk
2σk

x)/
√

n

)
|ψ̃n⟩

for some u = (u1
1, u1

2, . . . , ud−1
1 , ud−1

2 ) ∈ R2(d−1) that satisfies ∥u∥ = O(nϵ). Notice
that for j = 1, . . . , d one has

p(n)u (j) = |⟨ψu/
√

n|vδn
j ⟩|2

=

∣∣∣∣∣

〈
j

∣∣∣∣∣exp

(
iδn ∑

k=1
σk

y

)
·

· exp

(
−i

d−1

∑
k=1

(uk
1σk

y − uk
2σk

x)/
√

n

)∣∣∣∣∣ ψ̃n

〉∣∣∣∣∣

2

= (uj
1/

√
n − δn)

2 + (uj
2/

√
n)2 + O(n−2+12ϵ),
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where the last equality is obtained expanding the matrix exponential. Analo-
gously one obtains

q(n)u (j) = (uj
1/

√
n)2 + (uj

2/
√

n − δn)
2 + O(n−2+12ϵ)

for j = 1, . . . , d − 1. This implies that

uj
1 =

n3ϵ

2
− n1−3ϵ

2
p(n)u (j) + O(n−ϵ)

and

uj
2 =

n3ϵ

2
− n1−3ϵ

2
q(n)u (j) + O(n−ϵ).

Moreover, for every j ̸= k = 1, . . . , d − 1 one has

n2−6ϵ

4
E|ψ⟩[( p̂n(j)− p(n)u (j))2| |ψ̃n⟩] =

n1−6ϵ

2
p(n)u (j)(1 − p(n)u (j)) =

1
2
+ o(1),

and
n2−6ϵ

4
E|ψ⟩[( p̂n(j)− p(n)u (j))( p̂n(k)− p(n)u (k))| |ψ̃n⟩] =

− n1−6ϵ

2
p(n)u (j)p(n)u (k) = 0 + o(1).

Another consequence is that for a ∈ Rd−1 one has

E|ψ⟩
[
exp(in1−3ϵa · ( p̂n − p(n)u )/2)| |ψ̃n⟩

]

= E|ψ⟩

[
exp

(
in−3ϵ

n/2

∑
i=1

a · (Xi − p(n)u )

)∣∣∣∣∣ |ψ̃n⟩
]

= E|ψ⟩
[
exp(in−3ϵa · (X1 − p(n)u )| |ψ̃n⟩

]n/2

=

(
1 − ∥a∥2

2
n−6ϵ p(n)u (1 − p(n)u ) + o(n−1)

)n/2

=

(
1 − ∥a∥2

2n
+ o(n−1)

)n/2

= e−∥a∥2/4 + o(1).

The same can be proved for the other batch. Notice that

ndb(|ψ⟩ ⟨ψ| , |ψ̂n⟩ , ⟨ψ̂n|)2 = ∥û − u∥2 + o(1) =

n2−6ϵ

4

d−1

∑
j=1

( p̂n(j)− p(n)u (j))2 + (q̂n(j)− q(n)u (j))2 + o(1).

Therefore, if |ψ⟩ ∈ In

E|ψ⟩[db(|ψ⟩ ⟨ψ| , |ψ̂n⟩ , ⟨ψ̂n|)2| |ψ̃n⟩] = d − 1 + o(1)

and for every a ∈ R2(d−1)

E|ψ⟩[e
ia·(û−u)| |ψ̃n⟩] = e−∥a∥2/4 + o(1).

The rest of the proof is similar to the one of Proposition 3.
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5.13 P R O O F O F P R O P O S I T I O N 5

In order to avoid confusion and conversely to the main text, in this proof we
stress the dependence of C and B on the preliminary estimator θ̃n.

As usual, we assume that θ ∈ In, where

In = {θ ∈ Rm : ∥θ− θ̃n∥ ≤ n−1/2+ϵ)};

then one can write θ = θ̃n + u/
√

n for some u such that ∥u∥ ≤ nϵ and the
probability law of the Xj’s is given by

p(n)u (k) =

(
m

∑
j=1

ckj(θ̃n)θ
j − gkδn

)2

+ O(n−3+9ϵ)

= g2
kn−1+6ϵ − 2n−1+3ϵ

(
m

∑
j=1

ckj(θ̃n)uj

)
gk + O(n−1+2ϵ)

for k = 1, . . . , d − 1. Equivalently, using that B(θ̃n)C(θ̃n) = 1, we can write

uj =
d−1

∑
k=1

bjk(θ̃n)

(
gkn3ϵ

2
− n1−3ϵ

2gk
p(n)(k)

)
+ O(n−ϵ).

Therefore

nEθ[(θ̂n − θ)T(θ̂n − θ)|θ̃n] = Eθ[(ûn − u)T(ûn − u)|θ̃n]

=
n2−6ϵ

4
BGEθ[( p̂n − p(n)u )( p̂n − p(n)u )T|θ̃n]GBT + o(1),

where G is the diagonal matrix with entries given by (1/gk)
d−1
k=1 . Explicit compu-

tations show that

n2−6ϵ

4
GEθ[( p̂n − p(n)u )( p̂n − p(n)u )T|θ̃n]G = 1/4 + o(1).

Therefore

nEθ[(θ̂n − θ)(θ̂n − θ)T|θ̃n] = B(θ̃n)B(θ̃n)
T/4 + o(1).

Notice that B(θ̃n)B(θ̃n)T/4 = F(θ̃n)−1: indeed, using the explicit expression of
B(θ̃n)

B(θ̃n)B(θ̃n)
T = (C(θ̃n)

TC(θ̃n))
−1 = 4F(θ̃n).

The rest of the proof is the same as in the one of Theorem 17 and uses the
continuity of F(θ̃n).
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E S T I M A T I N G Q U A N T U M M A R K O V C H A I N S U S I N G
C O H E R E N T A B S O R B E R P O S T - P R O C E S S I N G A N D
PA T T E R N C O U N T I N G E S T I M A T O R

6.1 I N T R O D U C T I O N

In this chapter we apply the displaced-null measurement (DNM) strategy pre-
sented in the previous chapter to a quantum Markov chain (QMC), cf. Chapter
2 and Figure 6.1 a). As discussed, this is an alternative to the usual approach
that measures the symmetric logarithmic derivative (SLD). For one-dimensional
parameters, this SLD measurement is optimal in the sense that it attains the
quantum Cramér-Rao bound (QCRB) in the limit of many copies. However, when
dealing with complex models involving correlated states of many-body systems,
it may be hard to compute and implement in practice, and in the case of pure
states (and more generally, rank deficient states) such a measurement is highly
non-unique. Therefore, it is particularly important to devise realistic measure-
ment schemes which allow the estimation of unknown parameters with close to
optimal precision, by means of computationally efficient estimators.

The QMC setup used here is similar to Haroche’s photon-box one-atom maser
[91] and to that used in quantum collision models [42], and provides a physical
mechanism for generating versatile many-body states such as matrix product
states [132, 149] and finitely correlated states [57, 58]. By discretising time, QMCs
can be used to model continuous-time dynamics of a Markovian open system
coupled with Bosonic input-output channels [10, 61, 171].

For clarity, it is useful to distinguish between two mainstream approaches to
parameter estimation in quantum open systems. In the setting of [18, 48, 79, 97,
150, 155, 184], the quantum system undergoes a noisy evolution depending on
an unknown parameter, and the experimenter tries to extract information about
the parameter by repeatedly applying instantaneous direct measurements and
control operations while the system is evolving. In contrast, the setting adopted
in this chapter is commonly used in quantum optics and input-output theory
[43, 66, 81, 174] where the experimenter does not have direct access to the system
but can measure the output field of an environment channel coupled to the
system. This allows the experimenter to track the conditional state of the system
by means of stochastic filtering equations [16, 22, 35, 45, 173] and control it using
feedback. As these techniques require full knowledge of the system’s dynamical
parameters, it is important to devise tools for estimating such parameters from the
stochastic trajectory of the measurement record. Since the early works [62, 117],
many aspects of continuous-time estimation have been investigated, including
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C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Cd

<latexit sha1_base64="h2Ci21Peg6bqLPOr/adciy1FWJg=">AAAB9XicbVBNT8JAFHzFL8Qv1KOXjWDiibREo0ciF4+YCJhAIdvtFjZst83uVkMa/ocXDxrj1f/izX/jFnpQcJJNJjPv5c2OF3OmtG1/W4W19Y3NreJ2aWd3b/+gfHjUUVEiCW2TiEfywcOKciZoWzPN6UMsKQ49TrvepJn53UcqFYvEvZ7G1A3xSLCAEayNNKj2Q6zHnpc2ZwO/OixX7Jo9B1olTk4qkKM1LH/1/YgkIRWacKxUz7Fj7aZYakY4nZX6iaIxJhM8oj1DBQ6pctN56hk6M4qPgkiaJzSaq783UhwqNQ09M5mFVMteJv7n9RIdXLspE3GiqSCLQ0HCkY5QVgHymaRE86khmEhmsiIyxhITbYoqmRKc5S+vkk695lzULu/qlcZNXkcRTuAUzsGBK2jALbSgDQQkPMMrvFlP1ov1bn0sRgtWvnMMf2B9/gDeuZIb</latexit>

U✓

<latexit sha1_base64="d/X4lj7R5SEj7t5gw+Fmly9vwQo=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8FW8FSSouix6MVjBdMWmlI222m7dPPB7kQooV78K148KOLVf+HNf+M2zUFbHww83pvZ2Xl+LLhC2/42Ciura+sbxc3S1vbO7p65f9BUUSIZuCwSkWz7VIHgIbjIUUA7lkADX0DLH9/M/NYDSMWj8B4nMXQDOgz5gDOKWuqZR5XUy15JfZHA1O15OAKk00rPLNtVO4O1TJyclEmORs/88voRSwIIkQmqVMexY+ymVCJnAqYlL1EQUzamQ+hoGtIAVDfNdk+tU630rUEkdYVoZerviZQGSk0CX3cGFEdq0ZuJ/3mdBAdX3ZSHcYIQsvmiQSIsjKxZHFafS2AoJppQJrn+q8VGVFKGOrSSDsFZPHmZNGtV57x6cVcr16/zOIrkmJyQM+KQS1Int6RBXMLII3kmr+TNeDJejHfjY95aMPKZQ/IHxucP07mXIg==</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Input Output

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

0

<latexit sha1_base64="jTv5q5KyndZYI1eeVR5SlGzWEnM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2W33CuW3Io7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF77E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8ygo0W</latexit>

1

<latexit sha1_base64="PclTwuE1cfDPbZycev6scydsXHE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoeyVe8WSW3HnIKvEy0gJMtR7xa9uP2ZphNIwQbXueG5i/AlVhjOB00I31ZhQNqID7FgqaYTan8xPnZIzq/RJGCtb0pC5+ntiQiOtx1FgOyNqhnrZm4n/eZ3UhNf+hMskNSjZYlGYCmJiMvub9LlCZsTYEsoUt7cSNqSKMmPTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz80B40X</latexit>

Cd

<latexit sha1_base64="h2Ci21Peg6bqLPOr/adciy1FWJg=">AAAB9XicbVBNT8JAFHzFL8Qv1KOXjWDiibREo0ciF4+YCJhAIdvtFjZst83uVkMa/ocXDxrj1f/izX/jFnpQcJJNJjPv5c2OF3OmtG1/W4W19Y3NreJ2aWd3b/+gfHjUUVEiCW2TiEfywcOKciZoWzPN6UMsKQ49TrvepJn53UcqFYvEvZ7G1A3xSLCAEayNNKj2Q6zHnpc2ZwO/OixX7Jo9B1olTk4qkKM1LH/1/YgkIRWacKxUz7Fj7aZYakY4nZX6iaIxJhM8oj1DBQ6pctN56hk6M4qPgkiaJzSaq783UhwqNQ09M5mFVMteJv7n9RIdXLspE3GiqSCLQ0HCkY5QVgHymaRE86khmEhmsiIyxhITbYoqmRKc5S+vkk695lzULu/qlcZNXkcRTuAUzsGBK2jALbSgDQQkPMMrvFlP1ov1bn0sRgtWvnMMf2B9/gDeuZIb</latexit>

V✓abs

<latexit sha1_base64="Ge5lmt68XWB1wNT29X1Ub/injAI=">AAACDHicbVDLTgIxFO3gC/GFunTTCCauyAzR6JLoxiUmAiYMIZ1ygYbOI+0dEzKZD3Djr7hxoTFu/QB3/o1lmIWCJ2l6cs69t7fHi6TQaNvfVmFldW19o7hZ2tre2d0r7x+0dRgrDi0eylDde0yDFAG0UKCE+0gB8z0JHW9yPfM7D6C0CIM7nEbQ89koEEPBGRqpX65UEzebkigYpO1+4uIYkJlb+ZR5Ok3Tqqmya3YGukycnFRIjma//OUOQh77ECCXTOuuY0fYS5hCwSWkJTfWEDE+YSPoGhowH3QvydZI6YlRBnQYKnMCpJn6uyNhvtZT3zOVPsOxXvRm4n9eN8bhZS8RQRQjBHz+0DCWFEM6S4YOhAKOcmoI40qYXSkfM8U4mvxKJgRn8cvLpF2vOWe189t6pXGVx1EkR+SYnBKHXJAGuSFN0iKcPJJn8krerCfrxXq3PualBSvvOSR/YH3+AK5fnAQ=</latexit>

0

<latexit sha1_base64="jTv5q5KyndZYI1eeVR5SlGzWEnM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2W33CuW3Io7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF77E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8ygo0W</latexit>

System Absorber 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

d)c)

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Cd

<latexit sha1_base64="h2Ci21Peg6bqLPOr/adciy1FWJg=">AAAB9XicbVBNT8JAFHzFL8Qv1KOXjWDiibREo0ciF4+YCJhAIdvtFjZst83uVkMa/ocXDxrj1f/izX/jFnpQcJJNJjPv5c2OF3OmtG1/W4W19Y3NreJ2aWd3b/+gfHjUUVEiCW2TiEfywcOKciZoWzPN6UMsKQ49TrvepJn53UcqFYvEvZ7G1A3xSLCAEayNNKj2Q6zHnpc2ZwO/OixX7Jo9B1olTk4qkKM1LH/1/YgkIRWacKxUz7Fj7aZYakY4nZX6iaIxJhM8oj1DBQ6pctN56hk6M4qPgkiaJzSaq783UhwqNQ09M5mFVMteJv7n9RIdXLspE3GiqSCLQ0HCkY5QVgHymaRE86khmEhmsiIyxhITbYoqmRKc5S+vkk695lzULu/qlcZNXkcRTuAUzsGBK2jALbSgDQQkPMMrvFlP1ov1bn0sRgtWvnMMf2B9/gDeuZIb</latexit>

U✓

<latexit sha1_base64="d/X4lj7R5SEj7t5gw+Fmly9vwQo=">AAACAXicbVBNS8NAEN3Ur1q/ol4EL8FW8FSSouix6MVjBdMWmlI222m7dPPB7kQooV78K148KOLVf+HNf+M2zUFbHww83pvZ2Xl+LLhC2/42Ciura+sbxc3S1vbO7p65f9BUUSIZuCwSkWz7VIHgIbjIUUA7lkADX0DLH9/M/NYDSMWj8B4nMXQDOgz5gDOKWuqZR5XUy15JfZHA1O15OAKk00rPLNtVO4O1TJyclEmORs/88voRSwIIkQmqVMexY+ymVCJnAqYlL1EQUzamQ+hoGtIAVDfNdk+tU630rUEkdYVoZerviZQGSk0CX3cGFEdq0ZuJ/3mdBAdX3ZSHcYIQsvmiQSIsjKxZHFafS2AoJppQJrn+q8VGVFKGOrSSDsFZPHmZNGtV57x6cVcr16/zOIrkmJyQM+KQS1Int6RBXMLII3kmr+TNeDJejHfjY95aMPKZQ/IHxucP07mXIg==</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Input Output

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

0

<latexit sha1_base64="jTv5q5KyndZYI1eeVR5SlGzWEnM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2W33CuW3Io7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF77E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8ygo0W</latexit>

1

<latexit sha1_base64="PclTwuE1cfDPbZycev6scydsXHE=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJaPZpygH9GB5CFn1FjpoeyVe8WSW3HnIKvEy0gJMtR7xa9uP2ZphNIwQbXueG5i/AlVhjOB00I31ZhQNqID7FgqaYTan8xPnZIzq/RJGCtb0pC5+ntiQiOtx1FgOyNqhnrZm4n/eZ3UhNf+hMskNSjZYlGYCmJiMvub9LlCZsTYEsoUt7cSNqSKMmPTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzhPPivDsfi9ack80cwx84nz80B40X</latexit>

0

<latexit sha1_base64="jTv5q5KyndZYI1eeVR5SlGzWEnM=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIph4IrtEo0eiF48Y5ZHAhswOszBhdnYz02tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIJHCoOt+O7m19Y3Nrfx2YWd3b/+geHjUNHGqGW+wWMa6HVDDpVC8gQIlbyea0yiQvBWMbmd+64lrI2L1iOOE+xEdKBEKRtFKD2W33CuW3Io7B1klXkZKkKHeK351+zFLI66QSWpMx3MT9CdUo2CSTwvd1PCEshEd8I6likbc+JP5qVNyZpU+CWNtSyGZq78nJjQyZhwFtjOiODTL3kz8z+ukGF77E6GSFLlii0VhKgnGZPY36QvNGcqxJZRpYW8lbEg1ZWjTKdgQvOWXV0mzWvEuKpf31VLtJosjDydwCufgwRXU4A7q0AAGA3iGV3hzpPPivDsfi9ack80cwx84nz8ygo0W</latexit>

Systema)

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Cd

<latexit sha1_base64="h2Ci21Peg6bqLPOr/adciy1FWJg=">AAAB9XicbVBNT8JAFHzFL8Qv1KOXjWDiibREo0ciF4+YCJhAIdvtFjZst83uVkMa/ocXDxrj1f/izX/jFnpQcJJNJjPv5c2OF3OmtG1/W4W19Y3NreJ2aWd3b/+gfHjUUVEiCW2TiEfywcOKciZoWzPN6UMsKQ49TrvepJn53UcqFYvEvZ7G1A3xSLCAEayNNKj2Q6zHnpc2ZwO/OixX7Jo9B1olTk4qkKM1LH/1/YgkIRWacKxUz7Fj7aZYakY4nZX6iaIxJhM8oj1DBQ6pctN56hk6M4qPgkiaJzSaq783UhwqNQ09M5mFVMteJv7n9RIdXLspE3GiqSCLQ0HCkY5QVgHymaRE86khmEhmsiIyxhITbYoqmRKc5S+vkk695lzULu/qlcZNXkcRTuAUzsGBK2jALbSgDQQkPMMrvFlP1ov1bn0sRgtWvnMMf2B9/gDeuZIb</latexit>

C2

<latexit sha1_base64="up7ateF5kfroA2rcYxxu5+17rBw=">AAAB9XicbVDLTgIxFL2DL8QX6tJNI5i4IjMEo0siG5eYyCOBgXRKBxo6nUnb0ZAJ/+HGhca49V/c+Td2YBYKnqTJyTn35p4eL+JMadv+tnIbm1vbO/ndwt7+weFR8fikrcJYEtoiIQ9l18OKciZoSzPNaTeSFAcepx1v2kj9ziOVioXiQc8i6gZ4LJjPCNZGGpT7AdYTz0sa80G1PCyW7Iq9AFonTkZKkKE5LH71RyGJAyo04VipnmNH2k2w1IxwOi/0Y0UjTKZ4THuGChxQ5SaL1HN0YZQR8kNpntBoof7eSHCg1CzwzGQaUq16qfif14u1f+MmTESxpoIsD/kxRzpEaQVoxCQlms8MwUQykxWRCZaYaFNUwZTgrH55nbSrFadWubqvluq3WR15OINzuAQHrqEOd9CEFhCQ8Ayv8GY9WS/Wu/WxHM1Z2c4p/IH1+QOSv5Hp</latexit>

Input Output

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i

<latexit sha1_base64="gnKh4KlUGbhnuj2Q5W0RYv8OdLA=">AAAB8nicbVBNSwMxEJ2tX7V+VT16CbaCp7JbFD0WvXisYD9gu5Rsmm1Ds8mSZIWy9md48aCIV3+NN/+NabsHbX0w8Hhvhpl5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbGmnAnaMsxw2k0UxXHIaScc3878ziNVmknxYCYJDWI8FCxiBBsr+dUnt6ewGHJa7Zcrbs2dA60SLycVyNHsl796A0nSmApDONba99zEBBlWhhFOp6VeqmmCyRgPqW+pwDHVQTY/eYrOrDJAkVS2hEFz9fdEhmOtJ3FoO2NsRnrZm4n/eX5qousgYyJJDRVksShKOTISzf5HA6YoMXxiCSaK2VsRGWGFibEplWwI3vLLq6Rdr3kXtcv7eqVxk8dRhBM4hXPw4AoacAdNaAEBCc/wCm+OcV6cd+dj0Vpw8plj+APn8wdzI5C3</latexit>

|0i
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Figure 6.1: Basic elements of the pattern counting estimator. Panel a) A quantum Markov
chain as a system interacting sequentially with the environment via a pa-
rameter dependent unitary Uθ . The first stage estimator θ̃n is obtained by
performing a standard sequential measurement on the output and equating
empirical and expected counts. Panel b) Post-processing the output using a
coherent absorber. When system and absorber parameters match, the output
is identical to the input (vacuum) Panel c) After the first estimation stage the
absorber is fixed at a value θabs = θ̃n − δn where θ̃n is the preliminary estima-
tor and δn is the parameter shift required by the displaced-null measurement
theory [76]. The output generated by the system and absorber dynamics
with unitary Vθabs

Uθ is measured sequentially in the standard basis. Panel d)
Given a measurement trajectory, excitation patterns are identified as binary
sequences starting and ending with a 1 separated by long sequences of 0s.
The final estimator is a correction to the preliminary estimator which depends
only on the total number of patterns ∑α Nα,n, the QFI f at θ̃n and the displace-
ment parameter τn.

adaptive estimation [20, 140] filtering methods [38, 142, 154], Heisenberg scaling
[6, 7, 98, 118], sensing with error correction [138], Bayesian estimation [64, 105,
126, 143, 180], quantum smoothing [82, 161, 165, 166], estimation of linear systems
[68, 85, 112, 113], central limit and large deviations theory for trajectories [31, 36,
67, 96], concentration bounds for time averaged observables [19, 74], estimation
with feedback control [56].

However, a major problem in this area has been that standard measurement
protocols such as counting and homodyne do not achieve the ultimate precision
limit prescribed by the QCRB in terms of the quantum Fisher information (QFI) of
the output state [37, 65, 68, 83, 84, 86].

Two recent papers [78, 177] have addressed this problem by introducing the
idea of quantum post-processing of the output state using a quantum coherent ab-
sorber (CA) [157]. For a given QMC reference dynamics, the absorber takes the
system’s output as its own input and is characterised by the property that it
“reverts” the action of the system, so that its output is a trivial product state (vac-
uum in continuous-time dynamics), cf. Figure 6.1 b). In the statistical estimation
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framework, the absorber is set to a particular reference parameter of the QMC
dynamics, so that a small deviation of the true parameter from this value will
lead to non-trivial output statistics which can be used to estimate the deviation
as illustrated in Figure 6.1 c). In [78], two of the present authors proved that the
QCRB can be achieved by performing sequential, adaptive measurements on the
output units, after the interaction with the coherent absorber. In addition, the
adaptive measurement can be implemented efficiently in a Markovian fashion.
The work [177] deals with the same problem but in the continuous-time setting,
and proposes to perform a standard counting measurement (instead of an adap-
tive one) in conjunction with post-processing using the coherent absorber. In both
papers the final estimator was computed from the measurement trajectory using
the maximum likelihood method, which becomes inefficient for long trajectories.

The strategy proposed here is similar to that of [177], albeit in discrete rather
than continuous time, but strengthens it in several important aspects. Firstly,
we employ the technique of displaced-null measurements [76] to provide a precise
recipe for choosing the coherent absorber parameter. As we explain below, this
is an important technical detail, as the intuitive choice of parameters fails to
achieve the QCRB in the limit of long trajectories. Secondly, our strategy employs
a two step adaptive procedure which allows us to compute the final estimator
as a simple linear transformation of the total number of “pattern counts” which
can be easily extracted from the measurement trajectory, cf. Figure 6.1 d). This
circumvents the computational issues associated with the maximum likelihood
estimator. Thirdly, we provide strong theoretical evidence that the final estimator
achieves the QCRB in the limit of large times. This is based on a novel representa-
tion of the output in terms of translationally invariant modes which are shown to
satisfy the quantum local asymptotic normality property [32, 87, 89, 102].

We now give a brief summary of the two steps estimation strategy proposed
here and the related mathematical results. We consider a QMC whose dynamics
depends on a one-dimensional parameter θ which we aim to estimate by mea-
suring the output state produced after n time steps. In the first stage we run the
QMC dynamics with the unknown parameter θ for 1 ≪ ñ ≪ n time steps and
measure the noise units in a fixed basis, cf. Figure 6.1 a). From the total counts
statistics we construct a rough estimator θ̃n by matching the empirical frequency
to its expected value. In general this estimator is not optimal but its mean square
error has the standard 1/ñ scaling ([74]). In the second stage we run the system
and absorber QMC for the remaining n − ñ time steps and measure the output in
the standard basis. If the absorber parameter matched the true system parameter
θ, this measurement would produce a string of 0s (corresponding to no counts
in continuous-time) cf. Figure 6.1 b). Therefore, it would seem natural to choose
the absorber parameter to be θ̃n, our best guess at the unknown parameter θ.
However, this choice is unsuitable since for small deviations ∆n = θ − θ̃n, the
counting statistics depends quadratically on ∆n, which prevents the estimation
of θ at standard 1/n rate. This non-identifiability issue is explained in detail in
[76], which also provides the solution to this problem. We deliberately set the
absorber parameter at θabs = θ̃n − δn, which is away from the best guess by a
small “displacement” δn ↓ 0 chosen to be larger than the uncertainty |∆n|. This
allows us to unambiguously identify θ from counts statistics. Stage two of the
estimation procedure is illustrated in Figure 6.1 c).
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We turn now to the question of estimating θ from the counts trajectory ω =

(ω1, ω2, . . . , ωn) of the second stage measurement (setting n − ñ to n for simplic-
ity). Since θ − θabs is vanishingly small (even with the extra displacement), ω will
typically contain a small number of 1s while most of the outcomes will be 0, cf.
Figure 6.1 d). This allows us split the trajectory into long sequences of 0s and in
between them, binary “excitation patterns” starting and ending with a 1. For each
pattern α (e.g.- 1, 11, 101 etc.) we count the number of occurrences Nα,n. In Theo-
rem 20 we show that in the limit of large n the counts Nα,n become independent
Poisson variables whose intensities are λαu2 where u =

√
n(θ − θ̃abs) is the “local

parameter” and λα is a model dependent coefficient. Moreover the total Fisher
information of the Poisson variables is equal to the output QFI, which shows that
the pattern counts statistics capture the full information of the output state. Using
this asymptotic behaviour, we construct a simple estimator θ̂n (cf. equations (6.23)
and (6.22)) which is linear in the total pattern count, and we argue why it should
achieve the QCRB in the limit of large n. To summarise, the two step procedure
provides a computationally and statistically efficient estimation method which
involves only standard basis measurements and a minimal amount of “quantum
post-processing” implemented by the coherent absorber.

For a more in-depth understanding of why the excitation pattern counts have
asymptotically Poisson distributions, we refer to sections 6.4 and 6.5 where we de-
velop a theory of translationally invariant modes (TIMs) of the output. These modes
turn out to capture all statistical information about the unknown parameter, and
can be measured simultaneously and optimally by performing the sequential stan-
dard output measurement. For each excitation pattern α = (α1, . . . , αk) ∈ {0, 1}k

we define the creation operator A∗
α(n) on the output chain of length n. This

consists of a running average

A∗
α(n) =

1√
n

n−k+1

∑
i=1

σα
i

where σα
i is the tensor product of the the type σα = σα1 ⊗ · · · ⊗ σαk where σ0 =

1 and σ1 = σ+ = |1⟩⟨0|, with first tensor acting on position i of the output
chain. In Proposition 8 and Corollary 2 we show that asymptotically with n,
by applying the creation operators to the reference (vacuum) state |0⟩⊗n, we
obtain Fock-type states with different excitation pattern numbers. The creation
and annihilation operators satisfy the Bosonic commutation relations with each
excitation pattern being an independent mode. For large n, a Fock state is a
superposition of basis states consisting of long sequences of 0s interspersed
with the corresponding patterns appearing in any possible order. One of our
key results, Theorem 19 shows that when the gap between system and absorber
parameters scales as θ − θabs = u/

√
n, the quadratures of the excitation pattern

modes satisfy the Central Limit Theorem and the corresponding joint state is a
product of coherent states whose amplitudes are linear in the local parameter u.
The total QFI of this multimode coherent state is equal to the output QFI, showing
that the TIMs contain all statistical information about the dynamics. We also
prove separately, that the number operators of the TIMs have asymptotic Poisson
distributions, as expected for a coherent state. Together with the result of Theorem
20, this completes a circle of ideas, which played a crucial role in formulating our
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estimation strategy. In a nutshell, when looking at the output from the perspective
of the TIMs, one deals with a simple Gaussian estimation problem. Using the
displaced-null method, we can achieve the QCRB by measuring the number
operators of the TIMs and such a measurement can be implemented by simple
sequential counting measurements followed by the extraction of pattern counts
from the measurement trajectory ω.

The chapter is organised as follows. In section 6.2 we give a brief review of
quantum estimation theory and the displaced-null measurement technique de-
veloped in [76]. In section 6.3 we introduce the notion of QMC and the estimation
problem, together with the idea of quantum post-processing using a coherent ab-
sorber. In section 6.4 we define the translationally invariant modes of the output
and establish their Fock space properties. In section 6.5 we show that the restric-
tion of the output state to the TIMs is a coherent state whose amplitude is linear
in the local parameter and whose QFI is equal to the output QFI (cf. Theorem
19 and Corollary 3). In section 6.6 we establish that the excitation pattern counts
obtained from the sequential output measurement have asymptotically Poisson
distribution (cf. Theorem 20). In section 6.7 we formulate our measurement and
estimation strategy and define the "pattern counts" estimator. Finally in section
6.8 we present results of a simulation study confirming the earlier theoretical
results.

6.2 Q U A N T U M E S T I M AT I O N A N D T H E D I S P L A C E D N U L L M E A S U R E -
M E N T T E C H N I Q U E

In this section we give a brief overview of the quantum parameter estimation
theory [4, 12, 49, 92, 130, 153, 160] used in this chapter, with an emphasis on
asymptotic theory and the displaced-null measurement technique [76] developed
in the previous chapter. In particular, we explain why this method is asymptoti-
cally optimal, by employing the Gaussian approximation technique called local
asymptotic normality [32, 59, 60, 70, 87–89, 102, 176]. Later on, this picture will
guide our intuition when dealing with the Markov estimation problem. For our
purposes it suffices to discuss the case of one-dimensional parameters, and we
refer to [76] for the multi-dimensional setting.

Let ρθ ∈ S(Cd) be a family of quantum states depending smoothly on a one-
dimensional parameter θ. Consider a measurement described by a positive oper-
ator valued measure {M1, . . . , Mk} and let X be the measurement outcome with
probability distribution pθ(X = i) = Tr(ρθ Mi). As we have seen, the quantum
Cramér-Rao bound (QCRB) [15, 25, 26, 93, 95, 179] states that the variance of any
unbiased estimator θ̂ = θ̂(X) is lower bounded as

Var(θ̂) = Eθ(θ̂ − θ)2 ≥ F−1
θ

where Fθ is the quantum Fisher information (QFI) and Lθ is the SLD. In general,
the QCRB is not achievable when only a single copy of ρθ is available. However,
the bound is attainable in the asymptotic limit of large number of samples by
the following two step adaptive procedure [71]. Given n copies of ρθ one can
use a small proportion of the samples (e.g.- ñ = n1−ϵ for a small ϵ > 0) to
compute a preliminary (non-optimal) estimator θ̃n of θ; reasonable estimators
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will concentrate around θ such that |θ̃n − θ| = O(n−1/2+ϵ) with high probability,
which will be assumed throughout. In the second step, one measures the SLD
operator Lθ̃n

on each of the remaining copies. If X1, . . . , Xn′ are the outcomes of
these measurements (with n′ = n − ñ) then the estimator

θ̂n := θ̃n +
1

Fθ̃n
n′

(
n′

∑
i=1

Xi

)
(6.1)

is asymptotically optimal in the sense that

nEθ(θ̂n − θ)2 → F−1
θ (6.2)

in the limit of large n and in addition θ̂n is asymptotically normal, i.e.,
√

n(θ̂n − θ)

converges in distribution to the normal N(0, F−1
θ ).

However, for certain models including that considered in this chapter, measur-
ing the SLD may not be feasible experimentally. Instead, we will use a different
method called displaced-null measurement [76], which aims to estimate the param-
eter of a pure state model ρθ = |ψθ⟩⟨ψθ | by measuring each copy in a basis that
contains the vector |ψθ̃⟩ with θ̃ close to the true parameter θ. The Fisher infor-
mation of such a measurement is known to converge to the QFI as θ̃ approaches
θ [115, 136, 137]. This suggests that the QCRB can be achieved asymptotically
by using a two-step strategy similar to the SLD case: one first obtains a prelimi-
nary estimator θ̃n and then measures each copy in a basis containing the vector
|ψθ̃n

⟩. However, it turns out that this “null measurement" strategy fails due to
the fact that for small deviations from θ̃n, the outcome probabilities depend on
(θ − θ̃n)2 and one cannot distinguish between left and right deviations from
θ̃n, cf. [76] for the precise mathematical statement. This non-identifiability issue
can be sidestepped by deliberately changing the reference parameter from θ̃n to
θ0 := θ̃n − δn where δn = n−1/2+3ϵ, so that θ = θ0 + (u + τn)/

√
n with τn = n3ϵ.

The choice of τn is not unique but we refer to [76] for the general requirements.
Since |θ − θ̃n| = O(n−1/2+ϵ) ≪ δn, it means that θ lies on the right side of θ0

and can be unambiguously identified from the outcomes of a measurement in
a basis {|e0⟩, . . . , |ed−1⟩} such that |e0⟩ ≡ |ψθ0⟩. In addition, as θ0 approaches θ

in the limit of large n, the displaced-null measurement exhibits the optimality
properties of the “null measurements" without sharing their non-identifiability
issues.

Let X1, . . . , Xn′ ∈ {0, 1, . . . , d− 1} be the independent outcomes of basis {|e0⟩, . . . , |ed−1⟩}
measurements performed on the remaining n′ = n − ñ systems, and let Nj,n de-
note the counts of the outcome j = 0, . . . d− 1. The displaced-null estimator based
on the two-stage measurement strategy is defined as follows

θ̂n := θ̃n + ûn/
√

n

with local parameter estimator

ûn =
2

τn f

d−1

∑
j=1

Nj,n −
τn

2

where f = 4∥ψ̇θ̃n
∥2 is the QFI at θ̃n. The estimator θ̂n is asymptotically optimal in

the sense of equation (6.1) and asymptotically normal.
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6.3 Q U A N T U M M A R K O V C H A I N S A N D P O S T- P R O C E S S I N G U S I N G C O -
H E R E N T A B S O R B E R S

We start this section by reviewing the problem of estimating dynamical parame-
ters of quantum Markov chains (QMCs). We then introduce the notion of quantum
coherent absorber, which will play a key role in designing an optimal sequential
measurement strategy.

A quantum Markov chain consists of a system interacting successively with
a chain of independent "noise units" (the input) modelling the environment. In
this chapter the system’s space is taken to be Cd while the "noise units" are two
dimensional systems prepared in the state |0⟩ where {|0⟩, |1⟩} is the standard
basis in C2. We expect that the theory developed here works for general finite
dimensional inputs, but we restrict here to this minimal setup which can be used
to represent a discretised version of a continuous-time Markovian model with a
single Bosonic field [10].

At each time step the system interacts with the input unit via a unitary U on
Cd ⊗ C2. If the system is initially prepared in a state |φ⟩, the joint state of system
and noise units (output) after n times steps is

|Ψn⟩ = Un|φ ⊗ 0⊗n⟩ (6.3)

= U(n) · · · · · U(2) · U(1)|φ ⊗ 0⊗n⟩ ∈ Cd ⊗
(
C2)⊗n

where U(i) is the unitary acting on the system and the i-th noise unit. By expand-
ing the state (6.3) with respect to the standard product basis in the output we
have

|Ψn⟩ = ∑
i1,...,in∈{0,1}

Kin . . . Ki1 |φ⟩ ⊗ |i1⟩ ⊗ · · · ⊗ |in⟩ (6.4)

where Ki = ⟨i|U|0⟩ are Kraus operators acting on Cd.
From equation (6.3) it follows that the reduced system state of the system at

time n is given by

ρ
sys
n := Trout(|Ψn⟩⟨Ψn|) = Tn

∗ (ρ
sys
in ), ρ

sys
in = |φ⟩⟨φ|,

where the partial trace is taken over the output noise units, and T∗ : S(Cd) →
S(Cd) is the Markov transition operator (Schrödinger picture)

T∗ : ρ 7→ ∑
i∈{0,1}

KiρK∗
i

whose dual (Heisenberg picture) will be denoted by T.
On the other hand, the reduced state of the output is

ρout
n := Trsys(|Ψn⟩⟨Ψn|) (6.5)

= ∑
i,j∈{0,1}n

⟨φ|K∗
j Ki|φ⟩ · |i⟩⟨j|

where Ki := Kin . . . Ki1 for i = (i1, . . . in).

Hypothesis 1. Throughout the chapter we will assume that the dynamics is primitive
in the sense that T∗ has a unique stationary state ρss > 0 so that T∗(ρss) = ρss and it is
aperiodic, i.e., the only eigenvalue of T∗ with unit absolute value is 1.
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Estimation of dynamical parameters We investigate the following quantum estima-
tion problem: assuming that the dynamics depends smoothly on an unknown
parameter θ ∈ R, we would like to estimate θ by performing measurements on
the output state ρout

n generated after a number n of interaction steps. In particular,
we are interested in designing measurement strategies which achieve the highest
possible precision, at least in the limit of large times.

Let θ 7→ Uθ be a smooth map describing how the dynamics depends on an
unknown parameter θ, which is assumed to belong to an open bounded interval
Θ of R. We use similar notations |Ψθ,n⟩, Kθ,i, Tθ to denote the dependence on θ of
the system-output state, Kraus operators, transition operator, etc. Two sequences
of quantum statistical models indexed by time are of interest here: the system-
output state SOn := {|Ψθ,n⟩ : θ ∈ Θ} defined in equation (6.3) and the output
state On := {ρout

θ,n : θ ∈ Θ} defined in equation (6.5). While the former is more
informative than the latter and easier to analyse, we are particularly interested
in estimation strategies which involve only measurements on the output, hence
the importance of the model On. The following Theorem [83] shows that for
primitive dynamics the QFI of both models scale linearly with n with the same
rate, so having access to the system does not change the asymptotic theory. To
simplify the expression of the QFI rate (6.7) we assume the following "gauge
condition"

∑
j

Tr(ρss
θ K̇∗

θ,jKθ,j) = 0. (6.6)

The condition (6.6) means that ∑j K̇∗
θ,jKθ,j belongs to the subspace {X : Tr(ρss

θ X) =

0} ⊆ B(Cd) on which the resolvent Rθ := (Id − Tθ)
−1 is well defined as the

Moore-Penrose inverse. The condition can be satisfied by choosing the complex
phase of the Kraus operators appropriately, or equivalently the phase of the
standard basis in the noise unit space C2.

Theorem 18. Consider a primitive discrete time Markov chain whose unitary Uθ depends
smoothly on θ ∈ Θ ⊂ R, and assume that condition (6.6) holds true. The QFI Fs+o

n (θ)

of the system and output state |Ψθ,n⟩ and the QFI Fout
n (θ) of the output state ρout

θ,n scale
linearly with n with the same rate:

lim
n→∞

1
n

Fs+o
θ (n) = lim

n→∞

1
n

Fout
θ (n) = fθ (6.7)

= 4
k

∑
i=1

Tr
[
ρss

θ K̇∗
θ,iK̇θ,i

]

+ 8
k

∑
i=1

Tr

[
Im(Kθ,iρ

ss
θ K̇∗

θ,i) · Rθ(Im ∑
j

K̇∗
θ,jKθ,j)

]

where Rθ is the Moore-Penrose inverse of Id − Tθ .

In the following, we will always assume that fθ > 0 for every θ ∈ Θ. In general,
the classical Fisher information associated to simple repeated measurements
(measuring the same observable on each output unit) does not achieve the QFI
rate fθ . However, the class of available measurements can be enlarged by unitarily
"post-processing" the output before performing a standard measurement, so that
effectively one measures the original output in a rotated basis. While this shifts
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the difficulty from measurement to "quantum computation", it turns out that
the post-processing can be implemented with minimal computational cost by
employing the concept of a coherent absorber introduced in [157]. Indeed [78]
demonstrated that the QFI rate is achievable by combining post-processing by a
coherent absorber with a simple adaptive sequential measurement scheme. Fur-
thermore, [177], argued that one can also achieve the QFI by performing simple
counting measurements in the output, without the need for adaptive measure-
ments. Our goal is to revisit this scheme and to provide a new, computationally
and statistically effective estimation strategy.

6.3.1 Quantum postprocessing with a coherent absorber

The working of the coherent absorber (CA) is illustrated in Figure 6.1 b). Consider
a QMC with a fixed and known unitary U. After interacting with the system, each
output noise unit interacts with a separate d dimensional system (the coherent
absorber), via a unitary V. The system and absorber can now be regarded as a
single doubled-up system which interacts with the input via the unitary W := VU
on Cd ⊗ Cd ⊗ C2, where U acts on first and third tensors and V on second and
third. The defining feature is that the system plus absorber have a pure stationary
state. One can arrange this by requiring

VU : |χss⟩ ⊗ |0⟩ 7→ |χss⟩ ⊗ |0⟩

where |χss⟩ ∈ Cd ⊗ Cd is a purification of the system stationary state, i.e.,
ρss = Trabs(|χss⟩⟨χss|). This implies that in the stationary regime the output
is decoupled from system and absorber, and is in the "vacuum" state |0⟩⊗n. We
briefly recall a few expressions related to the construction of V that will be useful
later on, and refer to Lemma 4.1 in [78] for more details; for clarity, in the follow-
ing we will use the labels S, A, N to indicate system, absorber and noise unit. Let
us consider a spectral representation of ρss and the corresponding purification:

ρss =
d

∑
i=1

λi |iS⟩ ⟨iS| , |χss⟩ =
d

∑
i=1

√
λi |iS⟩ ⊗ |iA⟩ .

For simplicity we assume that the eigenvalues λi are strictly positive and are
ordered in decreasing order; one can check that the following vectors are or-
thonormal:

|vi⟩ =
1

∑
k=0

d

∑
j=1

√
λj

λi
⟨iS|Kk |jS⟩ |jA⟩ ⊗ |kN⟩ , i = 1, . . . , d.

For any choice of vd+1, . . . , v2d such that {v1, . . . , v2d} is an orthonormal basis
for Cd ⊗ C2 (the Hilbert space corresponding to the absorber and the ancilla), a
suitable choice for V is given by

V = 1S ⊗
(

d

∑
i=1

|iA ⊗ 0N⟩ ⊗ ⟨vi|+
2d

∑
i=d+1

|iA ⊗ 1N⟩ ⊗ ⟨vi|
)

.

Note that V is not uniquely defined: there is freedom in the spectral resolution
of ρss if there are degenerate eigenvalues and in picking vd+1, . . . , v2d. The Kraus
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operators corresponding to the reduced dynamics W = VU of the system and
the absorber together are given by the following expression:

K̃k : = ⟨k|W|0⟩ =
1

∑
l=0

⟨kN |V |lN⟩ ⟨lN |U |0N⟩

=
1

∑
l=0

Kl ⊗ Vkl

where Vkl and Kl are the Kraus operators of V and U considered without ampli-
ation. The following Lemma prescribes the structure of the blocks Vkl . We first de-
fine the “recovery” channel [14, 133, 134] with Kraus operators K′

i =
√

ρK∗
i

√
ρ−1

and note that they satisfy the normalisation condition and the recovery channel
has ρ as invariant state.

Lemma 7. The absorber operators Vkl are of the following form. The blocks V0l are
determined as V0l = K′T

l where the transpose is taken with respect to the eigenbasis of
ρ. Assuming that 1 − |V00|2 and 1 − |V01|2 are strictly positive, then the V1l blocks are
determined up to an overall arbitrary unitary u

V10 = u|V10|, V11 = uw|V11|

where |V10| =
√

1 − |V00|2, |V11| =
√

1 − |V01|2 are fixed, as well as the unitary
w = −|V10|−1V∗

00V01|V|−1
11 .

Proof. From the definition of |vi⟩ we have

V0k =
d

∑
i,j=1

√
λj

λi
⟨jS|K∗

k |iS⟩ |iA⟩ ⟨jA| = K′T
k .

which proves the first statement. From the fact that V is unitary we obtain

V∗
00V00 + V∗

10V10 = 1

V∗
01V01 + V∗

11V11 = 1

from which we get

|V10| =
√

1 − |V00|2, |V11| =
√

1 − |V01|2

which means that the absolute values of V10, V11 are fixed. Let V10 = U0|V10| and
V11 = U1|V11| be their polar decompositions. Then from

V∗
00V01 + V∗

10V11 = 0

we get V∗
10V11 = −V∗

00V01 and

U∗
0 U1 = |V10|−1V∗

10V11|V11|−1 = −|V10|−1V∗
00V01|V11|−1

which is a fixed unitary w. This proves the claim.
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Later on we will require that the system and absorber transition operator
T̃(·) = ∑k K̃∗

k · K̃k is primitive, in addition to the system’s transition operator
T satisfying the same property. At the moment we are not able to establish
what is the connection between the two properties. However we performed
extensive numerical simulations with randomly chosen QMC dynamics and
corresponding absorbers which indicate that “generically” with respect to the
original dynamics, for every primitive T there exists a corresponding absorber
such that T̃ is primitive. In fact, a stronger statement seems to hold, which is that
the spectral gap of T̃ is smaller or equal to that of T and one can always choose
the absorber such that the two are equal. For more details on the absorber theory
we refer to the recent paper [162].

Returning to the parameter estimation setting where U = Uθ depends on the
unknown parameter θ, we note that one cannot implement a CA which precisely
matches the system dynamics. Instead, one can implement the absorber for an
approximate value θ0 of θ and try to estimate the offset θ − θ0 by measuring the
output. This setting is closely related to that of displaced null measurements
discussed in section 6.2. Indeed, the joint state of system, absorber and output
is pure for all θ and at θ = θ0 it is of the product form |χss

θ0
⟩ ⊗ |0⟩⊗n, assuming

that system and absorber are initially in the stationary state. Therefore, repeated
standard basis measurements on the output units constitute a null measurement
(in conjunction with a final appropriate measurement on system and absorber).

The exact procedure for determining θ0 will be described in section 6.7 and
follows the important displacement prescription outlined in section 6.2. For the
moment it suffices to say that θ0 will be informed by the outcome of a preliminary
estimation stage involving simple (non-optimal) measurements on the output
(without post-processing), and it will converge to θ in the limit of large n. While
for θ0 = θ the output state is the "vacuum", for θ ̸= θ0 the output could be seen
as carrying a certain amount of "excitations" which increases with the parameter
mismatch |θ − θ0|.

In section 6.4 we show how these "excitations" can be given a precise meaning
by fashioning the output Hilbert space into a Fock space carrying modes labelled
by certain "excitation patterns". In section 6.5 we show that from this perspective,
the output state converges to a joint coherent state of the excitation pattern modes
whose displacement depends linearly on θ − θ0. This will allow us to devise a
simple "pattern counting" algorithm for estimating θ in section 6.7.

6.4 T R A N S L AT I O N A L LY I N VA R I A N T M O D E S I N T H E O U T P U T

In this section we introduce the concept of translationally invariant modes (TIMs)
of a spin chain. We show that in the limit of large chain size, certain translationally
invariant states acquire the characteristic Fock space structure, and that the corre-
sponding creation and annihilation operators satisfy the bosonic commutation
relations. This construction will then be used in analysing the stationary Markov
output state in section 6.5.

Let
(
C2)⊗n be a spin chain of length n and let |Ωn⟩ := |0⟩⊗n be the reference

“vacuum” state. For every pair of integers (k, l) with 1 ≤ l ≤ k we define an
excitation pattern of length k and number of excitations l to be an ordered sequence
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α := (α1, . . . αk) ∈ {0, 1}k such that α1 = αk = 1 and ∑k
i=1 αi = l. For instance, for

k = 1, 2 the only patterns are 1 and respectively 11 while for k = 3 the possible
patterns are 111 and 101.

For each pattern α of length k we define ‘creation and annihilation’ operators

A∗
α(n) =

1√
n

n−k+1

∑
i=1

σα
i , Aα(n) =

1√
n

n−k+1

∑
i=1

σα∗
i

where σα
i = ∏k−1

j=0 σ
αj+1
i+j , with σ0 := 1, σ1 := σ+ := |1⟩⟨0| and the index i denotes

the position in the chain.
In particular for α = 1 we have

A∗
1(n) =

1√
n

n

∑
i=1

σ+
i , A1(n) =

1√
n

n

∑
i=1

σ−
i .

We further define the “canonical coordinates” and “number operator” of the
“mode” α as

Qα(n) =
Aα(n) + A∗

α(n)√
2

, (6.8)

Pα(n) =
Aα(n)− A∗

α(n)√
2i

, (6.9)

Nα(n) = A∗
α(n)Aα(n). (6.10)

We now introduce “Fock states” obtained by applying creation operators to the
vacuum.

Let P denote the ordered set of all patterns, where the order is the usual
one when regarding patterns as integer numbers in binary representation. Let
n : P → N be pattern counts n = (nα)α∈P such that all but a finite number of
counts are zero, and let n! := ∏α∈P nα! and |n| := ∑α nα the total number of
patterns.

We define the approximate Fock state associated to the set of counts n as

|n; n⟩ :=
1√
n! ∏

α∈P
A∗

α(n)
nα |Ωn⟩, n ≥ 1, (6.11)

where the product is ordered according to the order on P . For example, the state
|n101 = 1; n = 5⟩ is

|n101 = 1; n = 5⟩ = 1√
5
[|10100⟩+ |01010⟩+ |00101⟩] .

For any fixed n these vectors are not normalised or orthogonal to each other,
and indeed they are not linearly independent since the Hilbert space is finite
dimensional; however, Proposition 8 shows that the expected Fock structure
emerges in the limit of large n. Let us first illustrate this with a simple example.
The state containing 2 patterns α = 1 is given by

|n1 = 2; n⟩ :=
1√
2
(A∗

1(n))
2 |Ωn⟩

=
1√
2n

n

∑
i ̸=j=1

|0 . . . 010 . . . 010 . . . 0⟩
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where i ̸= j indicate the positions of the excitations, while the state containing a
single 11 pattern is

|n11 = 1; n⟩ := A∗
11(n)|Ωn⟩

=
1√
n

n−1

∑
i=1

|0 . . . 0110 . . . 0⟩.

Now it is easy to check that as n → ∞

⟨n1 = 2; n|n1 = 2; n⟩ =
1

2n2
4n(n − 1)

2
→ 1,

⟨n11 = 1; n|n11 = 1; n⟩ =
n − 1

n
→ 1,

⟨n1 = 2; n|n11 = 1; n⟩ =
2(n − 1)

2
√

nn
= O

(
1√
n

)
.

This is generalised in the following Proposition which establishes the familiar
structure of the bosonic Fock space in the limit of large n.

Proposition 8. Let |n; n⟩ be the "Fock states" defined in equation (6.11). In the limit of
large n the "Fock states" become normalised and are orthogonal to each other

lim
n→∞

⟨n; n|m; n⟩ = δn,m.

Moreover, the order of the creation operators in (6.11) becomes irrelevant in the limit of
large n.

The proof of Proposition 8 can be found in section 6.10. From Proposition 8
we obtain the following Corollary which shows that the action of the creation
operators on the "Fock states" converges to that of a bosonic creation operator in
the limit of large n.

Corollary 2. Let β be a pattern and let δ(β) be the counts set with δ
(β)
α = δα,β. Let

|n; n⟩ be a "Fock state" as defined in equation (6.11). In the limit of large n the action of
creation and annihilation operators A∗

β(n) and Aβ(n) satisfy

A∗
β(n)|n; n⟩ =

√
nβ + 1|n + δβ; n⟩+ o(1) (6.12)

Aβ(n)|n; n⟩ =
√

nβ|n − δβ; n⟩+ o(1) (6.13)

The proof of Corollary 2 can be found in section 6.10.

6.5 L I M I T D I S T R I B U T I O N O F Q U A D R AT U R E S A N D N U M B E R O P E R AT O R S

In this section we analyse the structure of the output state obtained by post-
processing the output of a QMC with a coherent absorber, as described in section
6.3.1. Motivated by the fact that the statistical uncertainty scales as 1/

√
n we

choose the absorber parameter θ0 to be fixed and known, and write the system
parameter as θ = θ0 + u/

√
n, where u is an unknown local parameter.

Since the output state becomes stationary for long times, it is natural to focus
on the state of the translationally invariant modes introduced in section 6.4. In
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Theorem 19 we show that asymptotically with n, the restricted state of these
modes is a joint coherent state whose amplitude depends linearly on u, i.e., a
Gaussian shift model. Moreover, Corollary 3 shows that the QFI of this model
is equal to the QFI rate fθ0 of the output state characterised in Theorem 18. This
means that the TIMs capture the entire QFI of the output. Together with Theorem
20 of section 6.6, these results will be the theoretical underpinning the estimator
proposed in section 6.7.

We consider the system and absorber together as an open system with space
CD = Cd ⊗ Cd with D = d2, interacting with the noise units. The corresponding
unitary is Wθ = Vθ0Uθ where the absorber parameter is a fixed value θ0 (which
later will be determined based on a preliminary estimation procedure) and θ is the
unknown parameter to be estimated. We distinguish between the system Kraus
operators Kθ,i = ⟨i|Uθ |0⟩ ∈ B(Cd) and the system and absorber Kraus operators
K̃θ,i = ⟨i|Wθ |0⟩ ∈ B(CD), and similarly between the system transition operator
Tθ and the system and absorber transition operator T̃θ(X) = ∑1

i=0 K̃∗
θ,iXK̃θ,i.

We will be interested in the probabilistic and statistical properties of the output
state ρ̃out

θ of the system and absorber dynamics, for parameters θ in the neigh-
bourhood of a given θ0. For clarity we state the precise mathematical properties
we assume throughout.

Hypothesis 2. The following properties of the system-absorber QMC are assumed to be
true:

1. T̃θ has a unique faithful invariant state ρ̃ss
θ and is aperiodic for θ in a neighborhood

of θ0;

2. The Kraus operators K̃θ,i and the stationary state ρ̃ss
θ are analytic functions of θ

around θ0;

3. At θ0 the stationary state is pure ρ̃ss
θ0
= |χss

θ0
⟩ ⟨χss

θ0
| and K̃θ0,i|χss

θ0
⟩ = (1 − i)|χss

θ0
⟩

for i = 0, 1.

To formulate the result we use the local parametrisation θ = θ0 + u/
√

n where
u is to be seen as a local parameter to be estimated from the output of length n.
To simplify the notation, we denote the derivatives at θ0 as

K̇i :=
dKθ,i

dθ

∣∣∣∣
θ0

, ˙̃Ki :=
dK̃θ,i

dθ

∣∣∣∣
θ0

,

and drop the subscript θ0 in Kθ0,i =: Ki, K̃θ0,i =: K̃i, etc.; we also use the local
parameter instead of θ, e.g., Kθ0+u/

√
n,i =: Ku,i.

Note that properties 1. and 2. in Hyothesis 2 imply that ˙̃ρss = R̃∗ ˙̃T∗(ρ̃ss) where
R̃ is the Moore-Penrose inverse of Id − T̃. In addition, K̃0 |χss⟩ = K̃∗

0 |χss⟩ =

|χss⟩. Indeed by construction K̃0|χss⟩ = |χss⟩ and K̃1|χss⟩ = 0, and by applying
K̃∗

0 K̃0 + K̃∗
1 K̃1 = 1 to |χss⟩ we get K̃∗

0 |χss⟩ = |χss⟩.
Since for large n the dynamics reaches stationarity, we consider the output

state corresponding to the system starting in the stationary state ρ̃ss
u

ρ̃out
u,n = ∑

i,j∈{0,1}n

Tr
[
ρ̃ss

u K̃∗
u,jK̃u,i

]
|i⟩ ⟨j| (6.14)
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To formulate our results below we need to introduce several superoperators
acting on the system and absorber space. For x ∈ B(CD), we define

Ai(x) =





T̃(x) i = 0

K̃∗
1 xK̃0 i = 1

K̃∗
0 xK̃1 i = −1,

(6.15)

and
Ȧ1(x) = ˙̃K∗

1 xK̃0 + K̃∗
1 x ˙̃K0

Furthermore, for every pattern α of length l, we denote

Aα = Aα1 · · · Aαl and Ãα = Ȧ1Aα2 · · · Aαl .

With a slight abuse of notation we will denote the expectation with respect to a
density matrix ρ as ρ(X) = Tr(ρX).

Theorem 19. Let θ0 be a fixed parameter and assume that the dynamics satisfies the
assumptions in Hypothesis (2). Let θ = θ0 + u/

√
n be the system parameter with fixed

local parameter u. Let α be a fixed pattern and let z = β + iγ ∈ C with |z| = 1. Then
the following convergence in distribution hold in the limit of large n with respect to the
output state ρ̃out

u,n as defined in equation (6.14).

i) The quadratures (6.8) and (6.9) of the TIM mode α satisfy the joint Central
Limit Theorem

βQα(n) + γPα(n)
L−→ N(uµα,z, 1/2),

where N(µ, V) denotes the normal distribution with mean µ and variance V and
µα,z =

√
2ℜ(z̄µα) with

µα = ρ̃ss(( ˙̃TR̃Aα + Ãα)(1)). (6.16)

ii) The number operator (6.10) of the TIM mode α satisfies the Poisson limit:

Nα(n)
L−→ Poisson(u2λα),

where λα := |µα|2.

The proof of Theorem 19 can be found in section 6.11.
We now provide a simpler expression for the parameters µα in terms of Kraus

operators and their first derivatives. As a by-product we show that the sum of
all (limiting) QFIs of the Gaussian modes (Qα(n), Pα(n)) is the QFI rate of the
output state. This means that the TIMs capture all the QFI of the output state.

Lemma 8. Let α be any excitation pattern and let µα be the constant defined in (6.16).
Then µα can also be expressed as

µα = ⟨K̃α|α| · · · K̃α1(1 − K̃0)
−1 ˙̃K0χss|χss⟩

+ ⟨K̃α|α| · · · K̃α2
˙̃K1χss|χss⟩. (6.17)

Moreover with λα = |µα|2, one has

∑
α

λα = ∥(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss∥2. (6.18)



6.6 L I M I T T H E O R E M F O R C O U N T I N G T R A J E C T O R I E S 145

The proof of Lemma 8 can be found in section 6.11.

Corollary 3. Asymptotically with n, the total QFI of the TIMs is equal to the QFI rate
of the output state (6.7), that is

4 ∑
α

λα = 4∥(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss∥2 = fθ0 .

The proof of Corollary 3 can be found in section 6.12.
The upshot of this section is that (asymptotically in n) the statistical information

of the output state is concentrated in the TIMs and the state’s restriction to the
TIM Bosonic algebra is a coherent state. Formally, in order to optimally estimate
the parameter, one would only need to measure the appropriate quadrature of
the Gaussian shift model, as explained in section 6.2. However, it is not obvious
how to perform such a measurement, and the theoretical insight does not seem to
help on the practical side. Surprisingly, it turns out that the standard sequential
counting measurement is an effective joint measurement of all the TIMs’ number
operators! This will be the main result of the next section, which in conjunction
with the displaced null strategy provides the ingredients of a counting-based
estimation strategy.

6.6 L I M I T T H E O R E M F O R C O U N T I N G T R A J E C T O R I E S

In this section we continue to investigate the probabilistic properties of the output
state and consider the distribution of the stochastic process obtained measuring
the output units sequentially in the canonical basis {|0⟩ , |1⟩}. We consider the
system and absorber dynamics with fixed absorber parameter θ0 and system
parameter θ = θ0 + u/

√
n for a fixed local parameter u. The output state is given

by equation (6.14). The probability of observing a sequence ω = (ω1, . . . , ωn) ∈
{0, 1}n as the outcome of the first n measurements is given by

νu,n(ω) := ρss
u (Bu,ω1 · · · Bu,ωn(1)) (6.19)

where

Bu,j(x) =





K̃∗
u,1xK̃u,1 j = 1

K̃∗
u,0xK̃u,0 j = 0

.

In order to state the main result of this section, we need to introduce a collection
of events: first of all we define

B0(n) = {(0, . . . , 0)} ⊂ {0, 1}n.

Let us fix any real number 0 < γ < 1. Let m = {mα}α∈P be a set of pattern excita-
tion counts where all occupation numbers are zero except (mα(1) , . . . , mα(k)), and
define Bm(n) as the empty set for every n strictly smaller than ∑k

i=1 mα(i) |α(i)|+
(k − 1)nγ (|α| is the length of the pattern α), otherwise Bm(n) is the set of all
binary sequences obtained concatenating mα(1) copies of α(1)s, up to mα(k) copies
of α(k)s in any order, and inserting 0s before, between and after them in order to
reach a total length of n and making sure that between two consecutive patterns
there are at least nγ 0s.
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The following Theorem shows that the distribution of the pattern counts m
converges to a product of Poisson distributions with the same intensities as those
of the number operators of the TIM in Theorem 19. This means that performing
a standard output measurement and extracting the pattern counts provides an
effective joint measurement of the number operators of the TIMs. This finding is
essential in constructing an optimal estimator in section 6.7.

Theorem 20. For every positive constant C > 0 and finite collection of excitation
patterns counts m = (mα(1) , . . . , mα(k)), the following limit holds true:

lim
n→+∞

sup
|u|<C

∣∣∣∣∣νu,n (Bm(n))− e−λtotu2
k

∏
i=1

(
λα(i)u

2)m
α(i)

mα(i) !

∣∣∣∣∣ = 0. (6.20)

where

λtot := −1
2
⟨χss| (2Ḃ0∗R0∗Ḃ0∗ + B̈0∗)(|χss⟩ ⟨χss|) |χss⟩

= −ℜ(⟨χss, (2 ˙̃K0(1 − K̃0)
−1 ˙̃K0 +

¨̃K0)χ
ss⟩). (6.21)

Moreover,
∑
α

λα = λtot.

The Proof of Theorem 20 can be found in section 6.13.
The previous result has some relevant consequences. Let us define the “pattern

extraction” function which associates to each trajectory ω ∈ {0, 1}n a set of
pattern counts {Nα,n(ω) : α ∈ P} ∈ NP , which is uniquely determined by
the condition that ω is a maximal union of contiguous patterns separated by
sequences of 0s of length at least nγ with a fixed 0 < γ < 1; moreover, let us
consider the stochastic process given by the infinite collection of independent
random variables {Nα : α ∈ P} where Nα is a Poisson random variable with
parameter λαu2.

Corollary 4. For every u ∈ R the law of the stochastic process {Nα,n : α ∈ P} under
the measure νu,n converges to the one of {Nα : α ∈ P}. Moreover, for every α ∈ P ,
p ≥ 1 one has

lim
n→+∞

E[Np
α,n] = E[Np

α ].

The Proof of Corollary 4 can be found in section 6.14.
However, in the following we will be interested in local parameters with

growing size, i.e., |u| ≤ nϵ′ for some 0 < ϵ′ < 1/2. In this case we can show the
following result.

Proposition 9. For 0 < ϵ′ < 1/6 and for every finite collection of excitation patterns
counts m the following holds true:

lim
n→+∞

sup
|u|≤nϵ′

∣∣∣∣∣∣∣
νu,n (Bm(n))

e−λtotu2 ∏k
i=1

λ
mi
α(i)

u2mi

mi !

− 1

∣∣∣∣∣∣∣
= 0.

The Proof of Proposition 9 can be found in section 6.13 as well. Upgrading this
result to a weak convergence one similar to Theorem 20 remains the subject of
future research.
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6.7 PAT T E R N C O U N T I N G E S T I M AT O R

In this section we describe our adaptive estimation scheme which exploits the
asymptotic results presented in sections 6.5 and 6.6. The scheme involves four
key ingredients:

i) perform a simple output measurement (no absorber) to compute a prelimi-
nary estimator;

ii) set the absorber parameter by using the displaced-null measurement tech-
nique developed in [76] and run the system-absorber dynamics for the
remainder of the time;

iii) perform a sequential counting measurement in the output and extract
counts for the TIMs from the outcomes trajectory;

iv) construct a simple estimator expressed in terms of total counts of patterns
for different TIM modes.

The first step of the adaptive protocol is to use ñ := n1−ϵ ≪ n output units
to produce a rough preliminary estimator θ̃n. This can be done by performing a
repeated standard basis measurement on the output (without using an absorber).
Typically, the estimator θ̃n will have variance scaling with the standard rate
ñ−1 = n−1+2ϵ, and ñ1/2(θ̃n − θ) will satisfy the central limit theorem and a
concentration bound ensuring that |θ̃n − θ| = O(n−1/2+ϵ) with high probability.
For instance, one can define θ̃n by equating the empirical counting rate with the
theoretical rate nτ := Tr(ρss

τ K∗
τ,1Kτ,1), see [37, 74].

In the second step we set the absorber at a parameter value θ0 and run the
system-absorber quantum Markov chain for the reminder of the time n′ = n − ñ.
The naive choice for θ0 is our best guess θ̃n about θ, based on the first stage
measurement. However, with this choice, the counting measurement suffers from
the non-identifiability issue described in section 6.2. This can be resolved by
further displacing the absorber parameter by an amount δn := τn/

√
n where

τn = n3ϵ so that θabs := θ̃n − δn. As usual we write θ = θ̃n + un/
√

n where un is a
local parameter satisfying |un| ≤ nϵ, so that θ = θabs + (un + τn)/

√
n.

In the third step we perform standard basis measurements in the output of the
modified dynamics which includes the absorber. For simplicity, in the discussion
below we ignore the fact that we have n′ = n − ñ rather than n output units,
which does not affect the error scaling of the estimator. Let ω = (ω1, . . . , ωn) be
the measurement outcome with distribution (6.19), where the local parameter un

is replaced by un + τn to take into account the displacement.
We now describe the construction of the estimator from the outcomes of this

last stage measurement. The estimator will be built using the “pattern extraction”
function {Nα,n(ω) : α ∈ P} ∈ NP that we defined in the previous section; we
recall that it associates to each trajectory ω ∈ {0, 1}n a set of pattern counts, which
is uniquely determined by the condition that ω is a maximal union of contiguous
patterns separated by sequences of 0s of length at least nγ with a fixed 0 < γ < 1,
cf. Figure 6.1 d) for illustration. This means that the algorithm will not detect any
pattern which contains a sequence of zeros of length larger than nγ, since this
would be seen as being made up of several identified patterns. We now introduce
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the final estimator using an intuitive argument based on extrapolating the results
of Theorem 20 from fixed to slowly growing local parameters un + τn. This means
that Nα,n(ω) is approximately distributed as Poisson((un + τn)2|µα|2), for large n;
since τn = n3ϵ is larger than un = O(nϵ), the intensity of the Poisson distribution
diverges with n, and the distribution can be approximated further by the normal
N((un + τn)2|µα|2, (un + τn)2|µα|2) with the same mean and variance. Using

1
τn

(un + τn)
2 = 2un + τn + o(1)

1
τ2

n
(un + τn)

2 = 1 + o(1)

we obtain that

Yα,n :=
1

|µα|

(
Nα,n

τn
− τn|µα|2

)

has approximate distribution N(2un|µα|, 1). A simple computation shows that
the optimal estimator of un based on the (approximately) normal variables Yα,n is
the linear combination

ûn := Yn :=
2

fθabs
∑
α

|µα|Yα,n =
2

fθabs τn
∑
α

Nα,n −
τn

2
(6.22)

where fθabs = 4 ∑α |µα|2 is the quantum Fisher information rate of the output
by Corollary 3. Note that Yn depends only on the total number of patterns of the
trajectory ω, not to be confused with the total number of 1s.

Since Yα,n is approximately normal with distribution N(2un|µα|, 1), we obtain
that ûn has approximate distribution N(un, f−1

θabs
). The final estimator of θ is

θ̂n := θ̃n +
ûn√

n
. (6.23)

and it attains the QCRB in the sense that
√

n(θ̂n − θ) converges in distribution to
N(0, f−1

θ ).
At the moment we only have a rigorous proof of this statement assuming a

stronger version of Proposition 9, which we were not able to obtain; however, we
point out that Theorem 2 in [76] establishes a similar optimality result in the case
of multi-parameter estimation with independent, identical copies.

Before proceeding, we need to introduce some more notations. Let us consider
the following collection of random variables:

Nn,θ,θ̃ ∼ Poisson(λtot(θ̃)(
√

n(θ − θ̃) + τn)
2),

where n ∈ N, and θ̃, θ ∈ Θ. We recall that τn = n3ϵ is the displacement size. Let
us define

Yn,θ,θ̃ :=
1

2τnλtot(θ̃)
Nn,θ,θ̃ −

τn

2
.

Theorem 21. Let fix θ ∈ Θ at which fθ is continuous and let θ̃n be a preliminary
estimator which uses ñ := n1−ϵ samples with ϵ small enough, such that it satisfies the
concentration bound

Pθ(|θ̃n − θ| > n−1/2+ϵ) ≤ Ce−nϵr (6.24)
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for some constants C, r > 0. Let

θ̂n := θ̃n +
Yn√

n
,

be the final estimator as defined in (6.22) and (6.23).
If for every a ∈ R one has

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

|Eθ [eiaYn |θ̃n = θ̃]− E[eiaYn,θ,θ̃ ]| = 0, (6.25)

then θ̂ is asymptotically optimal and asymptotically normal, i.e., the following conver-
gence in law holds for large n

√
n(θ̂n − θ)

Lθ−→ N
(

0,
1
fθ

)
.

The proof of the following theorem and the relationship between the extra
hypothesis in Eq. (6.25) and Proposition 9 can be found in section 6.15.

In the following section we illustrate our method with results of numerical
simulations on a qubit model.

6.8 N U M E R I C A L E X P E R I M E N T S

In this section we illustrate the estimation protocol through numerical simula-
tions, using a qubit model inspired by the previous work [76]. The simulations
are implemented in Python using the QuTiP package [99, 100].

The quantum Markov chain model consists of a two-dimensional system
coupled to two-dimensional noise units by a unitary Uθ with unknown parameter
θ ∈ R, where the noise units are all prepared in the same initial state |0⟩. Since
the system interacts with a fresh noise unit at each step, it suffices to specify the
action of Uθ on the states |00⟩ and |10⟩, and we define

Uθ : |00⟩ → cos(θ)
√

1 − θ2 |00⟩
+i sin(θ)

√
1 − θ2 |10⟩+ θ |11⟩ ,

Uθ : |10⟩ → i sin(θ)
√

1 − λ |00⟩
+ cos(θ)

√
1 − λ |10⟩+

√
λeiϕ |01⟩ ,

where λ, ϕ are known parameters. In simulations we used ϕ = π/4, λ = 0.8 and
θ = 0.2 for the true values of the parameter.

In a first simulation study we verify the predictions made in Corollary 4. We
run the dynamics for a total of n = 6 × 105 time steps, with absorber parameter
θabs = θ0 (cf. section 6.3.1) and system parameter θ = θ0 + u/

√
n such that

θ = 0.2 and the local parameter is u = 2.
For each run we perform repeated measurements in the standard basis of

the output units, to produce a measurement record ω = (ω1, . . . , ωn). For each
such trajectory, the pattern counts Nα,n(ω) are obtained by identifying patterns
(sequences starting and ending with a 1) which are separated by at least nγ 0s
and no pattern contains more than nγ 0s, where γ > 0 is a small parameter. This
can be done by combing through the sequence and identifying occurrences of a
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given such pattern padded by nγ 0s to the left and right (taking care of the special
case of the first and last patterns). Note that for any given n this procedure will
not count patterns with more than nγ successive 0s. Since the mean counts for
each pattern α is |µα|2u2 and |µα|2 decays exponentially with |α|, we find that
patterns of such length are unlikely to occur for large n. The results of N = 2000
independent repetitions of the experiment are illustrated in Figure 6.2 which
shows a good match between the counts histograms corresponding to several
patterns (in blue) and the theoretical Poisson distributions Poisson(|µα|2u2) (in
orange) , as predicted by Corollary 4.

Figure 6.2: (Blue) Counts histograms for patterns α = 1, 11, 101, 111 from N=2000 trajec-
tories. (Orange line) The Poisson distribution with intensity given by |µα|2u2

matches well the empirical counts distribution, as prescribed by Corollary 4.

In a second simulation study we use system parameter θ = 0.2 and set the
absorber at θabs = θ − δn, with displacement δn = n−1/2τn for n = 6 × 105 and
τn = 7. We perform the same measurement as above and extract the pattern
counts Nα,n(ω) for each trajectory ω. We then use the pattern counts estimator
(6.23) to estimate θ, taking θ̃n = θ. This amounts to assuming that the first stage of
the general estimation procedure outlined in section 6.7 gives a perfect estimator,
which is then used in setting the absorber parameter in the second step. While
this procedure cannot be used in a practical situation, the study has theoretical
value in that it allows us to study the performance of the pattern counts estimator
in its own right, rather than in conjunction with the first step estimator. Figure 6.3
shows that the final estimator θ̂n has Gaussian distribution with variance closely
matching 1/(n fθ), thus achieving the QCRB in this idealised setup. This can also
be seen by comparing the “effective” Fisher information Feff := (n(θ̂n − θ)2)−1



6.8 N U M E R I C A L E X P E R I M E N T S 151

where the mean square error is estimated from the data, with the QFI rate fθ ; the
former is equal to Feff = 13.8 while the latter is fθ = 13.5.

Figure 6.3: (Blue) Histogram of the final estimator θ̂n from N=1000 trajectories with no
first stage estimation (θ = θ̃n). The effective Fisher information (inverse of
rescaled estimated variance) Feff ≈ 13.8 matches closely the QFI fθ = 13.5.
(Orange line) For comparison we plot the density of the normal distribution
with mean θ̄ = 0.2 and variance σ2 = (n fθ)

−1.

In the third simulations study we implement the full estimation procedure
described in section 6.7 including the first stage estimator. In the first step we
fix θ = 0.2, and run the Markov chain (without the absorber) for ñ = 4 × 105.
We then perform sequential measurements in the standard basis on the output
noise units to obtain a measurement trajectory from which we compute θ̃n by
equating the empirical mean (the average number of 1 counts) with the stationary
expected value cτ := Tr(ρss

τ K∗
τ,1Kτ,1), where Kτ,i are the system’s Kraus operators.

The effective Fisher information of this estimator is Feff = 4.06, significantly lower
than the QFI fθ = 13.5.

We then set the absorber to θabs = θ̃n − n−1/2τn where τn = 25.5 and n =

6.6 × 106 and we run the system and absorber chain for n′ = n − ñ steps. The
system and absorber is initialised in the pure stationary state corresponding to
θ̃n, but since the system and absorber dynamics is assumed to be primitive, any
other initial state will result in equivalent asymptotic results. We then perform the
counting measurement as in the previous simulation studies to obtain a trajectory
ω ∈ {0, 1}n′ and extract the pattern counts Nα,n′(ω).

From these average counts we compute the estimator (6.23), where the Fisher
information f is computed at θ̃n and multipled by n′/n to account for the smaller
number of samples used in the last step. The results are illustrated in Figure
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Figure 6.4: (Blue) Histogram of final estimator θ̂n from N=1070 trajectories; the effective
Fisher information is Feff = 10.8 compared to the QFI fθ = 13.5. (Orange
line) The density of the normal distribution with mean θ̄ = 0.2 and variance
σ2 = (n fθ)

−1.
.

6.4 which compares the histogram of θ̂n (in blue) with the density of a normal
distribution with mean θ and variance 1/(n fθ). We find that there is a good fit
with the normal distribution but less accurate that that of the second simulation
study, cf. Figure 6.3. This is expected, since the final estimator is based on a
two stage estimation process and does not use any prior information about θ. A
more accurate measure of the protocol’s performance is given by the effective
Fisher information which works out as Feff = 10.8 compared to the QFI rate
fθ = 13.5, while the effective Fisher information of the first stage was only 4.06.
These simulation results are in agreement with the theoretical arguments put
forward in section 6.7 which indicate that the two stage estimator attains the
QCRB asymptotically.

6.9 C O N C L U S I O N S A N D O U T L O O K

In this chapter we developed a computationally efficient strategy to estimate
dynamical parameters of a quantum Markov chain and provided strong theoreti-
cal evidence that the estimator achieves the quantum Cramér-Rao bound in the
large time limit. In addition, we established asymptotic results pertaining to the
mathematical structure of the output state which are of more general interest.

The estimation strategy consisted of two estimation stages. In the first stage a
rough estimator is computed from outcomes of simple output measurements by
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using a fast but non-optimal procedure, e.g. equating the empirical counts with
the expected value at the estimated parameter. In the second stage, we used a
coherent quantum absorber [157] to post-process the output [78, 177]. When tuned
to the true value of the system parameter, the absorber “reverts” the evolution
such that, in the stationary regime, the post-processed output is identical to the
input “vacuum” product state. On the other hand, small mismatches between
system and absorber parameters lead to slight rotations away from this product
state, which can be detected by simple sequential measurements on the output
“noise units”. To achieve the perfect “null” setup it would seem natural to use
the first stage estimator as absorber parameter, but as shown in [76], this leads to
non-identifiability issues and sub-optimal final estimators. Instead, we applied
the displaced-null technique [76] which prescribes an extra parameter shift,
calibrated to remove the non-identifiability issue while preserving the optimality
of the sequential measurement.

The key theoretical contributions of this work are related to the understanding
of the output state and the stochastic measurement process. We introduced the
concept of translationally invariant modes (TIMs) of the output and showed how
they generate a Bosonic algebra in the asymptotic limit. Each mode is labelled by
a binary sequence called a “pattern” and its creation operator is an average of
shifted blocks consisting of tensor products operators. We then showed that when
the mismatch between system and absorber parameter scales at the estimation
rate n−1/2, the restriction of the output state to the TIMs becomes a multi-mode
coherent state whose displacement depends linearly on the mismatch (quantum
Gaussian shift model). Moreover, we showed that the TIMs carry all the quantum
Fisher information of the output state and are therefore the relevant quantum
statistics of the problem. While homodyne is the standard optimal measurement
for such models, in the presence of the additional parameter displacement the
modes amplitudes become large and counting measurements become effectively
equivalent to homodyne. Surprisingly, we discovered that the sequential counting
measurement acts as a joint measurement of all TIMs number operators. Due to
the proximity to the vacuum state, typical trajectories consist of a relatively small
number of patterns separated by long sequences of 0s. We showed that for large
times the patterns counts distribution converges to the Poisson distribution of
the TIMs coherent state. These insights allowed us to devise a simple “pattern
counting” estimator for estimating the unknown parameter.

Our discrete-time results open the way for fast and optimal continuous-time
estimation strategies based on coherent absorber post-processing [177] and sim-
ple pattern counting estimation, as opposed to expensive maximum likelihood
methods. Interesting and important topics for future investigations concerns the
robustness of the pattern counting method with respect to various types of noises,
improving the estimation accuracy for short times, extensions to multi-parameter
models and the relationship between the general theory of quantum absorbers
[162] and quantum estimation.



6.10 P R O O F S O F P R O P O S I T I O N 8 A N D C O R O L L A R Y 2 154

6.10 P R O O F S O F P R O P O S I T I O N 8 A N D C O R O L L A R Y 2

Proof of Proposition 8. Let α = (α(1), . . . , α(p)), β = (β(1), . . . , β(q)) be the patterns
with non-zero counts for n and respectively m; let (n1, . . . , np) and (m1, . . . , mq)

be their counts, and let M be the maximum length of all patterns in α and β.
Since pattern creation operators A∗

α(n) involve sums of σα
i for different posi-

tions i, the Fock state |n; n⟩ is a superposition of vectors obtained by applying
the following type of ordered products to the vacuum

np

∏
k=1

σα(p)

ip,k
· · ·

n1

∏
k=1

σα(1)

i1,k

where ij,k is the index marking the location of the left end of the k-th pattern α(j),
with j ∈ {1, . . . , p} and k ∈ {1, . . . , nj}. In general, some of these operators may
‘overlap’ (act on the same spin) and the computation of the superposition becomes
cumbersome. However, since the total length of the patterns is finite, for large n,
the main contribution in the superposition comes from arrangements in which
there are no overlapping patterns. Even more, we can restrict to arrangements
where the patterns are separated by at least M zeros, in which case each pattern
in the sequence of zeros and ones can be identified unambiguously.

Therefore

|n; n⟩

=
1√
n|n|

1√
n!

∑
i∈I(n;n)

p

∏
j=1

nj

∏
k=1

σα(j)

ij,k
|Ωn⟩+ o(1)

=
1√
n|n|

1√
n!

∑
i∈I(n;n)

|ω(i, n)⟩+ o(1) (6.26)

where n! := n1! . . . np! and I(n; n) is the subset of locations i = {ij,k} leading to
non-overlapping patterns with counts set n, such that all patterns are at distance
of at least M from each other, and ω(i, n) ∈ {0, 1}n is the basis vector (trajectory)
obtained by placing the all the patterns corresponding to the counts set n at
locations prescribed by i. More precisely i ∈ I(n; n) if for any two pairs (j, k) and
( j̃, k̃) with ij,k ≤ i j̃,k̃ one has ij,k + |α(j)|+ M − 1 < i j̃,k̃. The basis vector |ω(i, n)⟩
consist of zeros except patterns α(j) written at positions ij,k for j ∈ {1, . . . , p} and
k ∈ {1, . . . , nj}.

To show that the remainder term is o(1) note that any term in the superposition
|n, n⟩ corresponding to a specific product of σs is a vector of the standard basis,
and any such vector |ω⟩ has at most a fixed number M · |n| of 1s. Note also that
the action of applying a pattern σα

i to the vacuum cannot be reversed by applying
subsequent σs, since these contain only creation operators. This means that for a
given |ω⟩, the locations i = {ij,k} of the σs producing this vector are limited to an
area of size 2M around each 1 in the sequence, or in other words, the coefficient of
|ω⟩ is bounded by (2M)M|n|. On the other hand, the number of basis vectors |ω⟩
obtained by applying patterns such that at least two overlap or are at distance
smaller than M from each other is o(n|n|) since the number of possible locations
for two such σs is O(n). Therefore, the remainder term in (6.26) is o(1).
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Using equation (6.26) we obtain

⟨m; n|n; n⟩ =
1√

n|n| · n|m| · n! · m!
∑
i,ĩ

⟨ω(i, n)|ω(ĩ, m)⟩+ o(1)

where the sum runs over i ∈ I(n; n) and ĩ ∈ I(m; n). Since each i and ĩ uniquely
determines the patterns it contains, the basis vectors |ω(i, n)⟩ and |ω(ĩ, m)⟩ have
non-zero overlap (coincide) only if their sets of patterns coincide, i.e., n = m.
Therefore, if n ̸= m hold then

lim
n→∞

⟨m; n|n; n⟩ = 0.

On the other hand, if m = n then

lim
n→∞

⟨n; n|n; n⟩ = lim
n→∞

1
n|n|n!

(n!)2 |I(n, n)|
n!

= 1

where we took into account that each basis vector |ω(i, n)⟩ appears n! times in
the sum over i ∈ I(n; n), and that

lim
n→∞

|I(n, n)|
n|n| = 1.

Proof of Corollary 2. As shown in the proof of Proposition 8 the "Fock state" |n; n⟩
can be approximated by a superposition of basis states in which the patterns in
n are non-overlapping and are situated at least at a certain distance from each
other. Moreover the remainder term contains o(n|n|) basis vectors with bounded
coefficients. After applying A∗

β(n), the multiplicity of each basis vector |ω⟩ is

finite and the number of possible basis vectors is o(n|n|+1). Taking account of
the factor n−(|n|+1)/2 we find that the action of A∗

β(n) on the o(1) remainder in
(8) is still o(1). On the other hand, the action on the main term in (8) is to add
a pattern β separated by the other patterns by max(M, |β|), with a negligible
term coming from locations in which β overlaps with or is too close to one of
the existing patterns. The factor

√
nβ + 1 comes from the definition of the "Fock

state" |n + δ(β); n⟩.
The action of Aβ(n) on one of the vectors |ω(i, n)⟩ is to produce a superposition

of basis vectors in which the pattern β has been removed from the set n of patters,
at all possible locations. This may include removing part of a existing pattern α(j)

which coincides with β. These two case will produce orthogonal vectors and can
be evaluated separately. In the first case, the pattern β is removed from one of the
locations where such pattern existed.

In the Fourier decomposition of √nβ|n − δβ; n⟩, a basis vector |ω⟩ given by
non-overlapping patterns has coefficient

c(ω) =
√

nβ
n!
nβ

√n · nβ√
n|n|n!

= n!
√

n√
n|n|n!

Such a vector can be obtained in approximately n ways by removing a pattern β

from a basis vector which appears in the decomposition of |n; n⟩. Therefore its
coefficient in Aβ|n, n⟩ is approximately

n!√
n
· n · 1√

n|n|n!
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where we took into account a factor 1/
√

n from the definition of Aβ. We there-
fore obtain that the coefficients of the non-overlapping terms in Aβ|n; n⟩ and
√nβ|n − δβ; n⟩ agree asymptotically. The fact that the o(1) terms remain small
after applying Aβ can be shown similarly to the above.

6.11 P R O O F S O F T H E O R E M 1 9 A N D L E M M A 8

Proof of Theorem 19. In order to prove the theorem, we will make use of the
method of moments; this can be done since the moment problem corresponding
to the moments of Poisson and Gaussian random variables admits a unique
solution (this can be seen for instance using Cramér condition, see [114, 147]).

Number operators. We will show the convergence of the moments of Nα(n)
in the state ρout

u,n to those of a Poisson random variable of intensity λ(u) := u2λα.
We recall the r-th moment of a Poisson random variable of intensity λ(u) is
equal to ∑r

m=1 S(r, m)λ(u)m where S(r, m) are the Stirling numbers of the second
type: a combinatorial interpretation of S(r, m) is the number of partitions in m
non-empty subsets of a set of cardinality r.

Let us focus on the expression of the r-th moment of Nα(n). For simplicity we
denote ⟨X⟩u := ρ̃out

u,n(X). From (6.10) we have

⟨Nα(n)r⟩u =
1
nr

n−|α|+1

∑
i1,...,ir=1
j1,...,jr=1

⟨σα
i1 σα∗

j1 · · · σα
ir σ

α∗
jr ⟩u. (6.27)

Splitting of the sum based on non-overlapping groups of σs. Let us consider
a term σα

i1 σα∗
j1 · · · σα

ir σ
α∗
jr and represent each σα

i or σα∗
i as a block of length |α|

covering positions {i, i + 1, . . . i + |α| − 1} of the string {1, 2, . . . n}. Depending
on the overlapping pattern of the blocks, the indices can be split (uniquely)
in a number s = s(i1, j1, . . . , ir, jr) of groups (1 ≤ s ≤ 2r) such that blocks in
different groups do not overlap, and each group cannot be split into further non-
overlapping sub-groups. Among these groups we identify g = g(i1, j1, . . . , ir, jr)
special groups characterised by the fact that they are made up of one or more
pairs of blocks of the type (σα∗

z σα
z ) for some z. We call P0 the set of such groups.

Note that not all groups associated to a product of σs can be in P0 because the
order of σα∗

z and σα
z in the latter is opposite to that in which such terms appear in

Nα(n).
For example, consider the pattern α ="11" for n = 10 and the term

σα
8 σα∗

1 σα
6 σα∗

8 σα
1 σα∗

2 σα
2 σα∗

5

This has 3 non-overlapping groups of operators (that commute with each others):
the first one

σα∗
1 σα

1 σα∗
2 σα

2

belongs to P0, while the second and third ones

σα
6 σα∗

5 and σα
8 σα∗

8

are not in P0. Therefore s = 3 and g = 1.
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Let us now look at the expected value of a given product of σs. We have

⟨σα
i1 σα∗

j1 · · · σα
ir σ

α∗
jr ⟩u = ρss

u
(
Cu,1T̃x1

u · · · T̃xs−1
u Cu,s(1)

)
(6.28)

where xi’s are the distances between the non-overlapping groups and Cu,i is
the map corresponding to the i-th group, which is computed according to the
following rule. In every group we multiply the operators on a given position (we
may have several σ+, σ− or σ0 on one position) and the result will be an element
of the set O := {σ+, σ−, σ0, |0⟩ ⟨0| , |1⟩ ⟨1| , 0}. For example the first group above
gives

σα∗
1 σα

1 σα∗
2 σα

2 = (|0⟩ ⟨0|)1(|0⟩ ⟨0|)2(|0⟩ ⟨0|)3

while
σα

6 σα∗
5 = σ−

5 (|1⟩ ⟨1|)6σ+
7

and
σα

8 σα∗
8 = (|1⟩ ⟨1|)8(|1⟩ ⟨1|)9.

Suppose the result of this computation is O1
i · · ·Ok

i+k−1, with Ok ∈ O; then in
the expectation, this translates into a superoperator Cu = Cu[O1] ◦ · · · ◦ Cu[Ok]

obtained by composing in the same order basic maps Cu[O] defined as follows

Cu[σ
+] := Au,1, Cu[σ

0] := Au,0, Cu[σ
−] := Au,−1,

Cu[0] := 0, Cu[|j⟩ ⟨j|] := Bu,j, j ∈ {0, 1}.

where Au,i are defined as in equation (6.15) by replacing K̃i with K̃u,i and

Bu,j(x) =





K̃∗
u,1xK̃u,1 j = 1

K̃∗
u,0xK̃u,0 j = 0

.

In what follows we will drop the label u when u = 0.
We can now compute the expectation of our example product of σs as

⟨σα
8 σα∗

1 σα
6 σα∗

8 σα
1 σα∗

2 σα
2 σα∗

5 ⟩u =

ρss
u
(
B3

u,0T̃uAu,−1Bu,1Au,1B2
u,1(1)

)
.

Let us define the space

1⊥ := {x ∈ B(CD) : ρ̃ss(x) = 0},

and note that the following properties hold true:

• A0 and B0 leave 1⊥ invariant;

• the image of Ai and Bj for i, j ̸= 0 is contained in 1⊥;

• for every m ≥ 1, the norm of Am
0 = T̃m restricted to 1⊥ is less or equal than

cλm for some c > 0 and 1 > λ > 0.

The reason why we singled out groups in P0 is given by the following key
observation: such groups are the only ones for which the corresponding map Cu,i
is only composed by Au,0s and Bu,0s. Any other group will contain at least one
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Au,±1 or Bu,1 factor. From this and the properties above it follows that if C is not
in P0 then

∥T̃m ◦ C∥ ≤ cλm. (6.29)

We will often identify the maps with the corresponding patterns saying, for
instance, that the map is in P0 when the corresponding group is.

We will prove the convergence of moments by expanding in Taylor series in u
and showing the convergence at each order. The moment of order r of the Poisson
distribution with intensity u2λα is

mr =
r

∑
k=1

S(r, k)u2kλk
α (6.30)

where S(r, k) are the Stirling numbers of second kind; the mth derivative with
respect to u at u = 0 is S(r, m/2)m!λm/2

α for m even, and zero otherwise.
Recall that each term in (6.27) gives rise to a certain set of groups of indices

made up of overlapping blocks, and each group corresponds to a map Cu,i such
that the expectation is expressed as in equation in (6.28). We will show that in
limit of large n, the only terms which contribute to the m-th derivative are those
coming from certain configurations with s − g = m where s is the number of
groups and g is the number of groups in P0.

Taylor approximation for a given set (Cu,1, . . . Cu,s) up to order m = s −
g. Let us consider the sum of all the terms in Eq. (6.27) coming from all the
correlations corresponding to a given sequence of maps C := (Cu,1, . . . , Cu,s). This
contribution is given by the product between a combinatorial factor (independent
of n) counting how many products of σs in (6.27) lead to the same set of maps C
and the following sum

1
nr ∑

x0+···+xs=n−K
ρ̃ss

u
(
Cu,1T̃x1

u · · · T̃xs−1
u Cu,s(1)

)
, (6.31)

where K is the total length of all the s blocks in C, which is smaller than 2|α|r.
Note that the factors T̃x0

u and T̃xs
u have been suppressed due to stationarity but

the indices x0, xs are still present in the sum. We denote by g the number of maps
in (Cu,1, . . . , Cu,s) that belong to P0.

Let us now consider the Taylor expansion of the correlations in (6.31). The 0-th
order term is 0 because at least one Ci is not in P0 and hence ρ̃ss annihilates the
result. This is because on one hand, Ci∗(ρ̃ss) = ρ̃ss for all Ci ∈ P0, but on the other
hand at least one Ci is not in P0 and hence it contains a term A±1 or B1 for which
A±1∗(ρ̃ss) = B1∗(ρ̃ss) = 0 since K̃1 |χss⟩ = 0.

Before addressing in detail the derivatives of (6.31) we make some remarks
concerning the magnitude of the sum. Note that this contains O(ns) terms which
are uniformly bounded and the largest possible value of s is 2r (all patterns are
non-overlapping). On the other hand the sum is preceded by the factor n−r and
any derivative further multiplies it by n−1/2 since all operators depend on u via
u/

√
n. These arguments alone are not sufficient to deduce the convergence of

(low order) derivatives, at least for configurations C with large s.
The key additional ingredient is the fact that for Ci /∈ P0, the factors T̃xiCi are

exponentially decreasing, cf. equation (6.29). This will provide more conservative
upper bounds for the derivatives of the sum (6.31), as detailed below. Before
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considering that, note that the exponential bound can also be used to get an
alternative proof of the convergence to 0 of

1
nr ∑

x0+···+xs=n−K
Cu,1T̃x1

u · · · T̃xs−1
u Cu,s(1).

Indeed, by summing over xis for groups not in P0, we get that the sum (6.31) is
O(ng/nr) rather than O(ns/nr). Since in any configuration C , at least one group
is not in P0, and each group in P0 has at least two of the original 2r blocks, we
see that g < r so that the whole sum is O(n−1). The upshot for derivatives will
be that in order to create contributions that do not decay, the derivatives have to
be applied in an "efficient" way, namely to factors of the type Txi ◦ Ci with Ci not
in P0. This will break the exponential decay and allow for the balancing of the
terms in the derivative with the pre-factor n−r.

Consider now the case of the first order derivative of the sum (6.31). This
will split into a sum of sub-sums, one for each of the terms Cu,i or Txi

u that are
differentiated. Each sub-sum will be shown to have a decaying contribution to
the derivative.

i) If a term Cu,i in P0 is differentiated, then the sub-sum is similar to the
original sum with the difference that Cu,i is replaced by another bounded
term Ċi). The overall contribution is then of the order n−r × ng × n−1/2

which decays since g < r.

ii) If a term T̃xi−1
u is differentiated, for which Cu,i is in P0 then the product

T̃xi−1
u Cu,i becomes the sum

Si =
xi−1

∑
l=1

T̃xi−1−l ˙̃TT̃l−1Ci(·) (6.32)

By ergodicity T̃l−1(Ci(·)) converges exponentially fast to ρ̃ss(Ci(·))1 for
large l so

Si =
xi−1

∑
l′=1

T̃l′( ˙̃T(1)) · ρ̃ss(Ci(·)) + O(1)

By the same argument T̃l′ ˙̃T(1) converges to ρ̃ss( ˙̃T(1)) = 0 for large values
of l′. The latter follows from differentiating ρ̃ss

u (T̃u(·)) = ρ̃ss
u (·). Therefore

Si is O(1) which does not change the magnitude of the overall sum before
differentiation, so this contribution decays as well, as argued in point i).

iii) If a term T̃xi−1
u is differentiated, for which Cu,i is not in P0, one obtains a sum

Si as in equation (6.32). Since Ci leaves 1⊥ invariant we have ∥T̃l ◦ Ci∥ ≤ cλl

so the terms with large l become negligible while for small l (large xi−1 − l)
T̃xi−1−l(·) converges to ρ̃ss(·)1. Therefore, using ∑∞

l′=0 T̃l′Ci = R̃Ci where R
is the Moore-Penrose inverse of Id − T̃, we obtain

Si = ρss( ˙̃TR̃Ci(·))1 + o(1).

Hence differentiating T̃xi−1
u for which Cu,i is not in P0 removes the exponen-

tial decay associated to un-differentiated term T̃xi−1
u Cu,i so that the upper

bound for this contribution to the derivative is ng+1n−1/2n−r. Since g < r
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we have g + 1 − 1/2 − r < 0 so the contribution to the derivative decays
(even though it decays slower than the previous sub-sums, which will be
important when considering higher derivatives).

iv) If a term Cu,i not in P0 is differentiated then for large xi−1

T̃xi−1 Ċi(·) = ρ̃ss(Ċi(·))1 + o(1)

This means that such a derivative breaks the exponential decay of the prod-
uct T̃xi−1Ci but the contribution to the sum is still bounded by ng+1n−1/2n−r.

The upshot of the argument for the first order derivative is that differentiating
a Cu,i in P0 or the factor Txi−1 in front of it, does not increase the magnitude
of the sum and the contribution to the overall sum decays. On the other hand,
differentiating a Cu,i which is not in P0 or the factor Txi−1 in front of it, breaks
the overall exponential decay of the product and contributes with an additional
factor n1/2 compared to the un-differentiated term.

We now consider higher order derivatives. One can again consider the possible
positions where derivatives are applied and evaluate their separate contributions
to the derivative. Following the same argument as in point i) above, one can see
that differentiating a term Cu,i in P0 once or multiple times does not bring any
change compared to the term before differentiation. Similarly, as in point ii) one
finds that differentiating Txi−1

u in front of Cu,i which is in P0, once or multiple times
does not bring any change (this is due to the fact that dk

duk Tx
u (1) = 0 for every k ≥

1). Now we move our attention to terms Txi−1
u Cu,i for which Cu,i is not in P0. As in

cases iii) and iv) above, differentiating either one of the two factors will break the
exponential decay and bring an extra overall multiplicative factor n1/2 compared
to the un-differentiated terms. However if any of the two factors is differentiated
further (more than one derivative in the product Txi−1

u Cu,i) then the additional
derivative does not change the bound except for the multiplicative factor n−1/2

due to differentiation. This shows that in order to obtain contributions that do not
vanish asymptotically, the derivatives have to be placed on the products Txi−1

u Cu,i
for which Cu,i is not in P0, with at most one derivative for each product.

Recall that we are considering derivatives up to order m = s − g which is
equal to the number of Cu,i not in P0. According to the argument above, the most
favourable positions for the derivatives is on different terms Txi−1

u Cu,i. Therefore,
for a derivative of order k ≤ m the entire derivative can be upper bounded as

n−r × n−k/2 × ng × nk = n−r+g+k/2

Since k ≤ m = s− g the exponent is smaller than t := −r + g+(s− g)/2. We will
show that t ≤ 0 with equality if and only if m = s − g and the configuration C is
such that all groups in P0 consists of 2 perfectly overlapping σs and the groups
not in P0 consists of single blocks. Indeed for given total number 2r of σ blocks,
s + g is maximum if all groups in P0 have just two σ blocks and all others have a
single block, so 2g + s − g = s + g ≤ 2r, which implies t ≤ 0. In conclusion, for
any configuration C, the derivatives below order m = s − g decay asymptotically,
and that of order m does as well unless C is of the special type described above.
Derivatives of order above m will be treated below. Note that for the special
configurations, m is even so all odd derivatives decay, as is expected from the
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fact that the intensity of the limit Poisson distribution is proportional to u2. We
will now compute the limit of the mth derivative for the special configuration.

If Ci ∈ P0 consists of two blocks of σs then the corresponding product is

σα∗σα = Oα1 . . . Oα|α|

where α = (α1, . . . , α|α|) and O0 := 1, O1 = |0⟩⟨0|. Therefore

Ci = C(α1) . . . C(α|α|)

with C(0) = A0 = T and C(1) = B0. Therefore when x1, . . . , xs are large the
following holds

Txi−1Ci(·) = ρss(Ci(·))1 + o(1) = ρss(·)1 + o(1)

since ρss ◦ A0 = ρss and ρss ◦ B0 = ρss This means that for large x1, . . . , xs the
derivative of order m = 2(m/2) factorises as

|ρss(ṪRAα(1) + ρss(Ãα(1))|2(m/2)

where Ãα is obtained from Aα differentiating the first A1. This formula follows
from the contributions obtained at points iii) and iv) above and the fact that the
groups that are differentiated contain a single σ block.

We remark that the term for which we computed the limit appears in the m-th
derivative with a factor m! in front.

Finally, we need to compute the combinatorial factor counting the number
of terms in the expectation which produce the desired set C consisting of g =

r − m/2 groups of two σs in P0 plus m groups of single σs (with s = r + m/2
total number of groups).

We will show that this is exactly S(r, m/2) (Stirling number of second type),
i.e., the number of partitions of a set of r elements into m/2 non-empty subsets.
For this it is enough to show that the numbers of ways in which we can pair the
σs is in a bijection with the partitions in m/2 classes of r elements. Consider the
collection of σs

σα
i1 σα∗

j1 · · · σα
ir σ

α∗
jr ,

which, for our purposes, we can identify with the set of "dipoles"

(α, α∗)1, · · · , (α, α∗)r

In order to create a C in P0, we need to pair a σα∗
jz with a σα

iw
such that z < w. This

induces an equivalence relation on the collection of dipoles where we identify
two dipoles (α, α∗)z, (α, α∗)w if jz = iw and we impose transitivity of this relation.
By construction, in each equivalence class {(α, α∗)z1 , (α, α∗)zk} we have jzl = izl+1

so all positions of α∗s are equal to the position of α in the next dipole. In other
words, an equivalence class uniquely determines a set of pairs of equal indices,
and altogether the set of equivalence classes uniquely determine the splitting into
P0 groups. Since iz1 and jzk are the only indices that are not paired in the chosen
equivalence class, the number of classes is m/2, i.e., half of the number of groups
not in P0. The number of ways to group the r dipoles in m/2 equivalence classes
is the Stirling number of second type S(r, m/2) which provided the combinatorial
factor for our mth order derivative.
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With this we conclude that the mth order derivative of (6.27) converges to the
corresponding derivative of (6.30).

Reminder of the Taylor approximation (order s − g + 1). The last thing we
need to check is that the remainder corresponding to the sum of all the terms in
Eq. (6.27) with s non-overlapping blocks is negligible; the reminder is given by

um′

m′!nr+ m′
2

∑
x1+···+xs=n−K

dm′

dum′ fx1,...,xs(u)

∣∣∣∣∣
u=ηx1,...,xs−1

for some |ηx1,...,xs−1 | ≤ |u|/√n, where m′ = s − g + 1 and

fx1,...,xs(u) = ρss
u
(
C1,uTx1

u · · · Txs−1
u Cs,u(1)

)
.

Notice that r + m′/2 > s: indeed,

r +
s − g + 1

2
> s ⇔ 2r + 1 > g + s.

Therefore, it is enough to show that

dl+1

dul+1 fx1,...,xs(u)
∣∣∣∣
u=ηx1,...,xs−1

, 2 ≤ l ≤ 2r

are uniformly bounded: the only terms that requires some care are the derivatives
of Tx

u , which are of the type

∑
0≤l1≤···≤lk≤x

Tx−lk
η T(mk)

η · · · T(m1)
η Tl1−1

η ,

where T(m)
η stays for the m-th derivative of Tu evaluated at η. Using

• the spectral decomposition of Tη(·) = ρss
η (·)1 +Rη , with ρss

η (Rη(·)) = 0
and ∥Rη∥ ≤ λ < 1 (for n big enough) and

• the fact that T(m)(1) = 0 (m ≥ 1),

we have that

∑
0≤l1≤···≤lk≤x

∥Tx−lk
η T(mk)

η · · · T(m1)
η Tl1−1

η ∥ =

∑
0≤l1≤···≤lk≤x

∥Tx−lk
η T(mk)

η Rlk−lk−1−1
η · · · T(m1)

η Rl1−1
η ∥ ≤

C ∑
0≤l1≤···≤lk≤x

λlk ,

which is bounded.
Quadratures. For the sake of keeping notation simple, we will show the proof

in the case of z = 1, but the same reasoning applies to the general case inserting z
and z where needed. We recall that k = |α|.

First of all, notice that the mean of Qα(n) converges to uµα,1: indeed, its first
moment is given by

1√
n

n−k+1

∑
i=1

ρ̃ss(u/
√

n)
(√

2ℜ(Aα)(1)
)
→ uµα,1.
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In order to simplify the proof, we consider the standardised random variable

√
2
(

Qα(n)−
n − k + 1

n
uµα,1

)
=

A∗
α(n) + Aα(n)− 2ℜ(µα)u =

1√
n

n−k+1

∑
i=1

σ̃α
i (u) + σ̃α∗

i (u),

where
σ̃α(u) = σα − u√

n
ρ((ṪRAα + Ãα)(1))1.

In order to prove the statement, we need to show that the sequence of standard-
ized quadratures converges in law to a standard Gaussian random variable.

For r ≥ 2, the r-th moment of the standardised random process at time n has
the following expression:

∑
j1,...,jr∈{α,α∗}

1
nr/2

n−k+1

∑
i1,...,ir=1

⟨σ̃j1
i1
· · · σ̃

jr
ir ⟩u/

√
n.

Consider the correlation corresponding to a choice of indices i1, . . . , ir such that
there are exactly s non-overlapping groups and let g be the number of groups
with overlapping terms of the form σ̃α∗

z (u)σ̃α
z (u) (as before, we denote the set

of such groups as P0). As before, these are the only overlapping groups that at
u = 0 will produce an operator which is not in 1⊥.

First suppose that s − g > 0. We can prevent the maps which do not belong
to P0 to be annihilated by ρ and to cause an exponential decay differentiating
and repeating the same computations as in the case of number operators. If we
consider the m-th term in the Taylor expansion up to m = s − g, we can see that
it grows at most as n to the power g + m/2 − r/2; if we want the exponent to be
bigger or equal than 0, we need that m ≥ r − 2g; since m ≤ s − g, one realises
that g + m/2 − r/2 can at most be equal to 0 and this is true when m = s − g and
s + g = r, which means that every group in P0 is of the form σ̃α∗

z (u)σ̃α
z (u) and

all the other groups are singletons. However, if a group is composed by a single
element, since we centered the random process, the first derivative will not be
enough to cancel the exponential decay. Therefore, if s− g > 0, the corresponding
terms will decrease to 0.

On the other hand, if r is even and s = g = r/2, the 0-th order term is equal to
1, hence the leading term comes from the case when r is even and g = r/2. In this
case one can see that the limit quantity is equal to 1 times the way we can pair
the σ̃(u)’s in groups of the type σ̃α∗

z (u)σ̃α
z (u) and this is given by (r − 1)!! (which

is the number of partition into pairs of a set of r elements).
The reminder can be controlled as in the case of number operators.

Proof of Lemma 8. Alternative expression for µα. Using that K̃0 |χss⟩ = |χss⟩ and
K̃1 |χss⟩ = 0, one can write

˙̃T∗(ρ̃ss) =
1

∑
i=0

˙̃Ki |χss⟩ ⟨χss| K̃∗
i + K̃i |χss⟩ ⟨χss| ˙̃K∗

i

= | ˙̃K0χss⟩ ⟨χss|+ |χss⟩ ⟨ ˙̃K0χss|
.
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Under the "gauge condition (6.6) and using the explicit expression of K̃θ,i’s in Eq.
(6.35) we obtain ⟨χss| ˙̃K0χss⟩ = 0.

From K̃∗
0 K̃0 + K̃∗

1 K̃1 = 1 we obtain K̃∗
0 |χss⟩ = |χss⟩. Therefore

K̃0 = |χss⟩⟨χss|+ Pss
⊥ K̃0Pss

⊥

where Pss
⊥ = 1 − |χss⟩⟨χss|, which implies

∑
k≥0

K̃k
0 | ˙̃K0χss⟩ = |(1 − K̃0)

−1 ˙̃K0χss⟩

and

R̃∗ ˙̃T∗(ρ̃ss) = |(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨χss|

+ |χss⟩ ⟨(1 − K̃0)
−1 ˙̃K0χss| . (6.33)

When we evaluate it against Aα(1), the first term in the previous equation gets
killed, while the second one produces the term

⟨K̃α|α| · · · K̃α1(1 − K̃0)
−1 ˙̃K0χss|χss⟩.

The rest of the proof is just a trivial check.
Expression for the total intensity. Since λα ≥ 0, one has that ∑α λα = C ∈

[0,+∞] and the limit is always the same irrespectively of the choice of partial
sums. Notice that

λ(1) = |⟨(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss|χss⟩|2

= Tr(|χss⟩ ⟨χss|Y),

where

Y := |(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss⟩

⟨(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss| . (6.34)

For any α such that |α| ≥ 2, λα is equal to:

|⟨K̃α|α| · · · K̃α2(K̃α1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss|χss⟩|2 =

|⟨K̃1K̃α|α|−1 · · · K̃α2(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss|χss⟩|2 =

Tr(XK̃α|α|−1 · · · K̃α2YK̃∗
α2
· · · K̃∗

α|α|−1
),

where X := |K̃∗
1 χss⟩ ⟨K̃∗

1 χss| and Y is the same as in Eq. (6.34).
Therefore

∑
2≤|α|≤N

λα = Tr(
N−1

∑
k=0

T̃k(X)Y)

and
lim

N→+∞
∑

2≤|α|≤N
λα = ∑

2≤|α|
λα = Tr(R̃(X)Y),

therefore
∑
α

λα = Tr((Id + R̃B1)(|χss⟩ ⟨χss|)Y).
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Let us massage a little the expression we obtained:

Tr((Id + R̃B1)(|χss⟩ ⟨χss|)Y) =
⟨χss|Yχss⟩+ ⟨χss|B1∗R̃∗(Y − Tr(Y) |χss⟩ ⟨χss|)χss⟩ =
⟨χss|Yχss⟩+ ⟨χss|T̃∗R̃∗(Y − Tr(Y) |χss⟩ ⟨χss|)χss⟩−
⟨χss|R∗(Y − Tr(Y) |χss⟩ ⟨χss|)χss⟩ =
⟨χss|Yχss⟩ − ⟨χss|(Y − Tr(Y) |χss⟩ ⟨χss|)χss⟩ = Tr(Y).

We used the fact that B0(|χss⟩ ⟨χss|) = |χss⟩ ⟨χss| and that T̃∗R̃∗ = R̃∗ − Id.
Finally,

Tr(Y) = ∥(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss∥2

6.12 P R O O F O F C O R O L L A R Y 3

Proof of Corollary 3. We will use the expression of ∑α λα given by

−ℜ(⟨χss, 2 ˙̃K0(1 − K̃0)
−1 ˙̃K0 +

¨̃K0χss⟩)
as states in equation (6.21) in Theorem 20. The proof of this identity can be found
in section 6.13; the expression we use here has the advantage that it immediately
shows that ∑α λα does not change for different choices of the postprocessing.
Before proceeding, we recall the expression of all the terms appearing in the
previous equation using quantities of the dynamics of the system alone.

• |χss⟩ = ∑d
i=1

√
λi |φi⟩S ⊗ |φi⟩A, where ρss = ∑d

i=1 λi |φi⟩ ⟨φi| is the spectral
resolution of the stationary state of the system dynamics;

• The Kraus operator K̃0 is uniquely determined as follows (left tensor is the
system)

K̃0 =
1

∑
k=0

d

∑
i,j=1

√
λj

λi
⟨φj, K∗

k φi⟩Kk ⊗ |φi⟩ ⟨φj| . (6.35)

• The derivative of ˙̃K0 is (where we keep in mind than only the system unitary
depends on θ)

˙̃K0 =
1

∑
k=0

d

∑
i,j=1

√
λj

λi
⟨φj, K∗

k φi⟩K̇k ⊗ |φi⟩ ⟨φj| ,

• The second derivative is

¨̃K0 =
1

∑
k=0

d

∑
i,j=1

√
λj

λi
⟨φj, K∗

k φi⟩K̈k ⊗ |φi⟩ ⟨φj| .

Note that

⟨χss, ¨̃K0χss⟩ =
1

∑
k=0

d

∑
i,j=1

λj⟨φi, K̈k φj⟩S⟨φj, K∗
k φi⟩S

=
1

∑
k=0

Tr(K̈kρssK∗
k ).
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Hence, using that ∑1
k=0 K̈∗

k Kk + K∗
k K̈k + 2K̇∗

k K̇k = 0, one has

−ℜ(⟨χss, ¨̃K0χss⟩) = ∑
k=0

Tr(ρssK̇∗
k K̇k).

Let us consider the rest of the total intensity: using that (1 − K̃0)−1 ˙̃K0 |χss⟩ =

∑+∞
l=0 K̃l

0
˙̃K0 |χss⟩, one gets

⟨χss, ˙̃K0(1 − K̃0)
−1 ˙̃K0χss⟩

=
d

∑
i,j=1

1

∑
a,b=0

+∞

∑
l=0

∑
k1,...kl=0

λj⟨φi, K̇aKkl · · ·Kk1 K̇b φj⟩ ·

·⟨φj, K∗
b K∗

k1
· · ·K∗

kl
K∗

a φi⟩

=
1

∑
a,b=0

+∞

∑
l=0

1

∑
k1,...kl=0

Tr(K̇aKkl · · ·Kk1 K̇bρssK∗
b K∗

k1
· · ·K∗

kl
K∗

a )

= Tr(
1

∑
a=0

K∗
a K̇aR

(
1

∑
b=0

K̇bρssK∗
b

)
).

Therefore,

−2ℜ(⟨χss, ˙̃K0(1 − K̃0)
−1 ˙̃K0χss⟩)

= 2Tr(ℑ
(

1

∑
a=0

K∗
a K̇a

)
R
(
ℑ
(

1

∑
b=0

K̇bρssK∗
b

))
).
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Proof of Theorem 20 and Proposition 9. First of all, let us show that λtot given by Eq.
(6.21) is equal to ∑α λα, whose expression is given by equation (6.18). We have

∥(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss∥2 =

⟨(1 − K̃0)
−1 ˙̃K0χss, K̃∗

1 K̃1(1 − K̃0)
−1 ˙̃K0χss⟩

+ ⟨(1 − K̃0)
−1 ˙̃K0χss, K̃∗

1
˙̃K1χss⟩

+ ⟨χss, ˙̃K∗
1 K̃1(1 − K̃0)

−1 ˙̃K0χss⟩
+ ⟨χss, ˙̃K∗

1
˙̃K1χss⟩.

Note that

⟨χss, ˙̃K∗
1

˙̃K1χss⟩ = 1
2
⟨χss, B̈1(1)χss⟩ = −1

2
⟨χss, B̈0(1)χss⟩

= −ℜ(⟨χss, ¨̃K0χss⟩)− ∥ ˙̃K0χss∥2.

Moreover, since K̃∗
0 K̃0 + K̃∗

1 K̃1 = 1,

⟨(1 − K̃0)
−1 ˙̃K0χss, K̃∗

1 K̃1(1 − K̃0)
−1 ˙̃K0χss⟩

= ∥(1 − K̃0)
−1 ˙̃K0χss∥2 − ∥K̃0(1 − K̃0)

−1 ˙̃K0χss∥2.
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As for the other terms, one has

⟨(1 − K̃0)
−1 ˙̃K0χss, K̃∗

1
˙̃K1χss⟩

= ⟨(1 − K̃0)
−1 ˙̃K0χss, Ḃ1(1)χss⟩

= −⟨(1 − K̃0)
−1 ˙̃K0χss, Ḃ0(1)χss⟩

= −⟨ ˙̃K0(1 − K̃0)
−1 ˙̃K0χss, χss⟩

− ⟨K̃0(1 − K̃0)
−1 ˙̃K0χss, ˙̃K0χss⟩

and analogously

⟨χss, ˙̃K∗
1 K̃1(1 − K̃0)

−1 ˙̃K0χss⟩
= −⟨χss, ˙̃K0(1 − K̃0)

−1 ˙̃K0χss⟩
− ⟨ ˙̃K0χss, K̃0(1 − K̃0)

−1 ˙̃K0χss⟩.
Putting everything together, one gets

∑
α

λα = ∥(K̃1(1 − K̃0)
−1 ˙̃K0 +

˙̃K1)χ
ss∥2

= ∥(1 − K̃0)
−1 ˙̃K0χss∥2 − ∥K̃0(1 − K̃0)

−1 ˙̃K0χss∥2

− 2ℜ(⟨ ˙̃K0(1 − K̃0)
−1 ˙̃K0χss, χss⟩)

− 2ℜ(⟨K̃0(1 − K̃0)
−1 ˙̃K0χss, ˙̃K0χss⟩)

−ℜ(⟨χss, ¨̃K0χss⟩)− ∥ ˙̃K0χss∥2

= λtot + ∥(1 − K̃0)
−1 ˙̃K0χss∥2

− ∥(K̃0(1 − K̃0)
−1 + 1) ˙̃K0χss∥2 = λtot.

Let us now prove the first part of the theorem. What we are actually going to
show is that for n → +∞ and |u| ≤ nϵ′ , one has

eλtotu2
νu,n (Bm(n)) ≍

k

∏
i=1

(λα(i)u
2)m

α(i)

mα(i) !
.

Let us consider a fixed ordered sequence of excitation patterns α(1), . . . , α(k) (here
we do not require them to be distinct). For an observation time n big enough,
the probability of observing such a sequence of patterns separated one from the
other by more than nγ consecutive 0s is given by

∑
x1+···+xk+1=n−K

x2,...,xk≥nγ

ρ̃ss
u

(
Bx1

u,0Bu,α(1)Bx2
u,0 · · ·

· · · Bxk
u,0Bu,α(k)B

xk+1
u,0 (1))

)
. (6.36)

where K = ∑k
i=1 |αi| and Bu,α(x) := Bu,α1 · · · Bu,α|α|(x).

The rest of the proof follows a similar line as the proof of Theorem 19: we study
the Taylor expansion of the series and identify the leading terms in the limit
n → +∞. We will often use the spectral decomposition of B0, i.e.,

B0(x) = ρ̃ss(x) |χss⟩ ⟨χss|+ E0(x)

such that



6.13 P R O O F O F T H E O R E M 2 0 A N D P R O P O S I T I O N 9 168

• for any k ≥ 1, for some constants C > 0, 0 < λ < 1, one has ∥E k
0∥ ≤ Cλk,

• ρ̃ss(E0(·)) = 0 and E0(|χss⟩ ⟨χss|) = 0.

Notice that, in general, ρ̃ss(u) and the eigenvector of Bu,0∗ corresponding to the
spectral radius only coincide for u = 0.

We will also use the following identities

• ρ̃ss( ˙̃TR̃Bx
0Bα(·)) = 0 follows from (6.33) and the fact that K̃1|χss⟩ = 0.

• ρ̃ss(Ḃα(·)) = 0 follows from K̃1|χss⟩ = 0

• ρ̃ss(Ḃ0(·)) = 0 follows from the "gauge condition" (6.6) and using the
explicit expression (6.35).

Significant terms in the Taylor approximation (up to the 2k-th term). We
will show that up to derivatives of order 2k the only contribution in the Taylor
expansion of (6.36) which does not decay with n is that coming from the part of
the order 2k derivative in which one takes the second order derivative to each of
the blocks Bxi

u,0Bu,α(i) , for i = 1, . . . k. This follows from the observations below:
1) the first derivative of (6.36) at u = 0 is zero since ρ̃ss(Bα(·)) = 0 and the first

derivative of ρ̃ss
u (Bx

u,0Bu,α(·)) at u = 0 is equal to

ρ̃ss( ˙̃TR̃Bx
0Bα(·)) +

x−1

∑
l=0

ρ̃ss(Ḃ0Bl
0Bα(·)) + ρ̃ss(Ḃα(·))

and the three terms have been shown to be equal to zero above.
2) Each block of the type Bx

u,0Bu,α needs to be differentiated twice. Indeed if it
is not differentiated at all, then it will bring an exponential decaying contribution
since

∑
nγ≤x≤n

∥Bx
0Bα∥ ≤ C ∑

nγ≤x≤n
λx =

C(λnγ − λn+1)

1 − λ
→ 0;

This follows from the fact that since α contains at least one 1, we have ρ̃ss(Bα(·)) =
0 which means that Bα(·) belongs to the subspace on which B0 acts as the strict
contraction R0.

Alternatively, if we take a first order derivative we get a vanishing contribution
since

∑
nγ≤x≤n

∥Bx
0 Ḃα∥ ≤ C ∑

nγ≤x≤n
λx

which decays as the term in the previous equation and

∑
nγ≤k<x≤n

∥Bx−k
0 Ḃ0Bk−1

0 Bα∥

≤ C ∑
nγ≤k<x≤n

λx ≍ Cnγλnγ →n→+∞ 0.

On the other hand, by differentiating a block of the form Bx
u,0Bu,α twice, one stops

the exponential decay and obtains a linear growth in n; however, we need to
remember that every time we use a derivative, everything gets multiplied by
u/

√
n, which is of the order n−1/2+ϵ′ . Therefore, if we consider the terms in the

Taylor expansion up to order 2k, the only one that does not decay to 0 is the one
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with 2k derivatives where we use two of them on the block ρ̃ss(Bx1
u,0Bu,α(1)(·)) at

the beginning and other two on each following block of the form Bxi
u,0Bu,α(i)(·).

Any other term where we have less derivatives involved or where we spend
them in a different way is either 0 or decays at least as (for k ≥ 2)

(n
1
2+γλnγ

)n2kϵ′

uniformly in u for |u| ≤ nϵ′ ; indeed, for any derivative used in a different way
(they cannot be more than 2(k − 1) because two of them need to be used for the
first block), one gains a growth of n1/2, but suffers a decay of at least nγλnγ

.
We now focus on the leading (order 2k) term of the Taylor expansion. The

second derivative of a block of the type Bx
u,0Bu,α looks like

Bx
0 B̈α +

x

∑
k=1

Bk−1
0 B̈0Bx−kBα

+2
x

∑
k=1

Bk−1
0 Ḃ0Bx−k

0 Ḃα

+2 ∑
1≤k<s≤x

Bk−1
0 Ḃ0Bs−k−1

0 Ḃ0Bx−s
0 Bα

For large n this becomes

ρ̃ss [(B̈α + 2Ḃ0R0Ḃα)(·)
]
|χss⟩⟨χss|

+ρ̃ss [(B̈0 + 2Ḃ0R0Ḃ0)R0Bα)(·)
]
|χss⟩⟨χss|

where R0 is the Moore-Penrose inverse of Id −B0, and we have used the spectral
decomposition of B0. Moreover, the rightmost term Bxk+1

0 (1) (which is not differ-
entiated) converges to |χss⟩⟨χss|. This means that the full 2k derivative of (6.36)
becomes

u2k

k!

k

∏
i=1

1
2

ρ̃ss
[
B(2)

α(i)
(|χss⟩ ⟨χss|)

]

where

B(2)
α := B̈α + 2Ḃ0R0Ḃα + (B̈0 + 2Ḃ0R0Ḃ0)R0Bα .

The number of terms with two derivatives in each block is equal to (2k)!/2k

(it is the same as the number of terms of the form 2k =

(
d2

dx
2
(x2)

)k

in the 2k-

th derivative of (x2)k): (2k)! simplifies with the one coming from the Taylor
expansion, while the factor 2−k can be distributed to each factor. The expression
of the factors and the upper bound on the error can be obtained differentiating
and using the spectral decomposition of B0; the 1/k! in front comes from the sum:
indeed one can see that

∑
x1+···+xk+1=n−K

x2,...,xk≥nγ

≍ ∑
x1+···+xk+1=n

≍ nk

k!
,

which is the number of ways one can choose k numbers out of n.
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The first term of the form

1
2

ρ̃ss(B̈α(|χss⟩ ⟨χss|)) = |⟨χss|K̃α|α| · · · K̃α2
˙̃K1χss⟩|2.

This follows from the fact that K1|χss⟩ = 0, so the derivatives need to be applied
the first K1 terms of Bα. For the second term, one gets

ρ̃ss(Ḃ0R0Ḃα(|χss⟩ ⟨χss|)) =
2ℜ
(
⟨K̃α|α| · · · K̃α2

˙̃K1χss|χss⟩×

⟨χss|K̃α|α| · · · K̃α1(1 − K̃0)
−1 ˙̃K0χss⟩

)
.

Finally, for the last term, below we will show that

1
2

ρ̃ss((B̈0 + 2Ḃ0R0Ḃ0)R0Bα(|χss⟩ ⟨χss|)) =

|⟨χss|K̃α|α| · · · K̃α1(1 − K̃0)
−1 ˙̃K0χss⟩|2.

(6.37)

Note that the sum of the three terms is equal to |µα|2 where µα is given in equation
(6.17) in Lemma 8.

In conclusion, we obtained that for large n, the probability of any sequence
of n outcomes showing the ordered sequence of excitation patterns given by
α(1), . . . , α(k) is asymptotically equivalent to

1
k!

k

∏
i=1

(λα(i)u
2) (6.38)

plus a reminder coming from neglecting the terms of order bigger than 2k in the
Taylor expansion. If we are able to show that the reminder is negligible compared
to the term in Eq. (6.38), then we can prove the statement in Eq. (6.20). Indeed,
suppose that the sequence we are analysing belongs to Bm; then we can partition
Bm into

k!

∏k
i=1 mα(i) !

disjoint subsets containing the excitation patters in (α(1), mα(1)), . . . , (α(k), mα(k))

in a fixed order and whose probability asymptotically behaves as (as we just
showed)

1
k!

k

∏
i=1

(u2λα(i))
m

α(i) .

We now prove (6.37). Notice that, since

|⟨χss|K̃α|α| · · · K̃α1(1 − K̃0)
−1 ˙̃K0χss⟩|2 =

⟨(1 − K̃0)
−1 ˙̃K0χss|Bα(|χss⟩ ⟨χss|)|(1 − K̃0)

−1 ˙̃K0χss⟩,

we need to prove that

R0∗(B̈0∗ + 2Ḃ0∗R0∗Ḃ0∗)(ρ̃ss)) =

2 |(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨(1 − K̃0)

−1 ˙̃K0χss|+ rem,
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where by R0∗ we mean the Moore-Penrose inverse and "rem" is a term which is
gives 0 when evaluated against Bα(|χss⟩ ⟨χss|). Equivalently,

(B̈0∗ + 2Ḃ0∗R0∗Ḃ0∗)(ρ̃ss) =

2(Id −B0∗)(|(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨(1 − K̃0)

−1 ˙̃K0χss|) + rem′,

where R0∗(rem′) = rem.
By explicit computations, one can see that

(Id −B0∗)(|(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨(1 − K̃0)

−1 ˙̃K0χss|) =
|(1 − K̃0)

−1 ˙̃K0χss⟩ ⟨(1 − K̃0)
−1 ˙̃K0χss| −

|K̃0(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨K̃0(1 − K̃0)

−1 ˙̃K0χss| .

Using that K̃0(1 − K̃0)−1 = (1 − K̃0)−1 − 1, one gets

(Id −B0∗)(|(1 − K̃0)
−1 ˙̃K0χss⟩ ⟨(1 − K̃0)

−1 ˙̃K0χss|) =
|(1 − K̃0)

−1 ˙̃K0χss⟩ ⟨ ˙̃K0χss|+ | ˙̃K0χss⟩ ⟨(1 − K̃0)
−1 ˙̃K0χss| −

| ˙̃K0χss⟩ ⟨ ˙̃K0χss| .

On the other hand,

(B̈0∗ + 2Ḃ0∗R0∗Ḃ0∗)(ρ)

= | ¨̃K0χss⟩ ⟨χss|+ 2 | ˙̃K0χss⟩ ⟨ ˙̃K0χss|+ |χss⟩ ⟨ ¨̃K0χss|
+2 | ˙̃K0(1 − K̃0)

−1 ˙̃K0χss⟩ ⟨χss|
+2 |χss⟩ ⟨ ˙̃K0(1 − K̃0)

−1 ˙̃K0χss|
+2 |K̃0(1 − K̃0)

−1 ˙̃K0χss⟩ ⟨ ˙̃K0χss|
+2 | ˙̃K0χss⟩ ⟨ ˙̃K0(1 − K̃0)

−1 ˙̃K0χss|
= |( ¨̃K0 + 2 ˙̃K0(1 − K̃0)

−1 ˙̃K0)χ
ss⟩ ⟨χss|

+ |χss⟩ ⟨( ¨̃K0 + 2 ˙̃K0(1 − K̃0)
−1 ˙̃K0)χ

ss|
+2 |(1 − K̃0)

−1 ˙̃K0χss⟩ ⟨ ˙̃K0.χss|
+2 | ˙̃K0χss⟩ ⟨(1 − K̃0)

−1 ˙̃K0χss| − 2 | ˙̃K0χss⟩ ⟨ ˙̃K0χss| .

Note that the last two lines are exactly equal to 2(Id−B0∗)(|(1 − K̃0)−1 ˙̃K0χss⟩ ⟨(1 − K̃0)−1 ˙̃K0χss|).
Let us look at the remaining part:

rem′ = |( ¨̃K0 + 2 ˙̃K0(1 − K̃0)
−1 ˙̃K0)χ

ss⟩ ⟨χss|+
|χss⟩ ⟨( ¨̃K0 + 2 ˙̃K0(1 − K̃0)

−1 ˙̃K0)χ
ss| .

one can easily see that

R0∗(rem′) =

|(1 − K̃0)
−1( ¨̃K0 + 2 ˙̃K0(1 − K̃0)

−1 ˙̃K0)χ
ss⟩ ⟨χss|

+ |χss⟩ ⟨(1 − K̃0)
−1( ¨̃K0 + 2 ˙̃K0(1 − K̃0)

−1 ˙̃K0)χ
ss| .

In the previous Eq. we used (1 − K0)−1 for the Moore-Penrose inverse: in gen-
eral, |( ¨̃K0 + 2 ˙̃K0(1 − K̃0)−1 ˙̃K0)χss⟩ is not orthogonal to |χ⟩ss. It is now clear that
Tr(()R0∗(rem′)Bα(|χss⟩ ⟨χss|) = 0 which proves (6.37).
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Remainder. Now, we need to take care of the reminder: it is enough to show
that the following expression is o(n2kϵ):

u2k+1

nk+1/2 ∑
x1+···+xk+1=n−K

x2,...,xk≥nγ

d2k+1

u2k+1 ρ̃ss
(

u√
n

)(
B̃x1

0,uB̃α1,uB̃x2
0,u · · ·

· · · B̃xk
0,uB̃αk ,uB̃xk+1

0,u (1))
)∣∣∣

u=η

(6.39)

for any |η| ≤ u/
√

n, where

B̃α,u = eλtot|α|u2/nBα,u

for any string α.
Let us first point out some properties of the maps B̃α,u:

• for u small enough,

B̃0,u(·) = a(u)l(u)(·)r(u) + Ẽ0,u(·)
where

– a(u) = 1 + O(u3/n3/2),

– l(u)(r(u)) ≡ 1,

– l(u)(Ẽ0,u(·)) = 0,

– Ẽ0,u(r(u)) = 0 and

– ∥Ẽ k
0,u∥ ≤ Cλk for some C ≥ 0 and 0 < λ < 1.

The order of the reminder in the expression a(u) is due to the fact that λ̇ is
equal to the first derivative at 0 of the spectral radius of B0,u which is equal
to 0 because it attains a maximum there; the fact that λ̈ = 0 as well is due
to the multiplicative factor in front of B0,u in the definition of B̃0,u.

• ρ̃ss(u/
√

n)(Ẽ0,u(·)) = O(u/
√

n).

• For any excitation pattern α one has

l(u)(B̃α,u(·)) = O(u2/n),

l(u)( ˙̃Bα,u(·)) = O(u/
√

n).

Indeed, the first derivative of l(u)(B̃α,u(·)) at 0 is given by

ρ̃ss(Ḃα(·)) + l̇(Bα(·)).
That the first addend is 0 has been shown earlier, while for the second one,
it is clear using l̇ = ρ̃ss(Ḃα(Id −B0)−1(·)).

• Moreover,

l(u)( ˙̃B0,u(r(u))) = O(u2/n) and

l(u)(( ¨̃B0,u + 2 ˙̃B0,uẼ0,u
˙̃B0,u(r(u))) = O(u/

√
n).

(6.40)

This can be seen differentiating

l(u)B̃0,u(x(u)) = a(u)

and evaluating at 0.
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• Finally,
l(u)( ˙̃B0,uẼ0,uB̃α,u(·)) = O(u/

√
n),

since ρ̃ss(Ḃ0)(·) = 0.

Let us now study the growth of the derivatives of B̃x
0,uB̃α,u(·) for 0 ≤ x ≤ n →

+∞:

1. 0th order:

B̃x
0,uB̃α,u(·) = a(u)l(u)(B̃α,u(·))x(u) + O(λx)

= O
(

u2

n
+ λx

)
;

2. 1st order:

∑
1≤l≤x

B̃x−l
0,u

˙̃B0,uB̃l−1
0,u B̃α,u(·) + B̃x

0,u
˙̃Bα,u(·) =

xa(u)2l(u)( ˙̃B0,u(x(u)))l(u)(B̃α,u(·))+
a(u)R̃0,u

˙̃B0,u(x(u)))l(u)(B̃α,u(·))+

a(u)l(u)( ˙̃B0,uR̃0,uB̃α,u(·))x(u) + O
(

u√
n
+ xλx

)

= O
(

u√
n
+ xλx

)
,

where we used that ϵ < 1/6;

We remark that in the case where the block B̃x
0,uB̃α,u(·) is the first one, due to

the action of ρ̃ss(u/
√

n), the 0th-order term becomes O(u2/n + uλx/
√

n) and the
1st-order one becomes O(u/

√
n), while if the block is not the first one, λx decays

exponentially fast in n since x ≥ nγ.

3. 2nd order:

∑
1≤l≤x

B̃x−l
0,u

¨̃B0,uB̃l−1
0,u B̃α,u(·)+

2 ∑
1≤l<k≤x

B̃x−k
0,u

˙̃B0,uB̃k−l−1
0,u

˙̃B0,uB̃l−1
0,u B̃α,u(·)+

2 ∑
1≤l≤x

B̃x−l
0,u

˙̃B0,uB̃l−1
0,u

˙̃Bα,u(·)+

B̃x
0,u

¨̃Bα,u(·) =
2x2a(u)3(l(u)( ˙̃B0,u(x(u)))2l(u)(B̃α,u(·))+
xa(u)2l(u)(( ¨̃B0,u + 2 ˙̃B0,uR̃0,u

˙̃B0,u)(x(u)))l(u)(B̃α,u(·))+
2xa(u)2l(u)( ˙̃B0,u(x(u))l(u)( ˙̃Bα,u(·)) + O(1) = O(1);
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4. 3rd order:

∑
1≤l≤x

B̃x−l
0,u

...
B̃ 0,uB̃l−1

0,u B̃α,u(·)+

3 ∑
1≤l<k≤x

B̃x−k
0,u

¨̃B0,uB̃k−l−1
0,u

˙̃B0,uB̃l−1
0,u B̃α,u(·)+

3 ∑
1≤l<k≤x

B̃x−k
0,u

˙̃B0,uB̃k−l−1
0,u

¨̃B0,uB̃l−1
0,u B̃α,u(·)+

6 ∑
1≤l<k<m≤x

B̃x−m
0,u

˙̃B0,uB̃m−k−1
0,u

˙̃B0,uB̃k−l−1
0,u

˙̃B0,uB̃l−1
0,u B̃α,u(·)+

3 ∑
1≤l≤x

B̃x−l
0,u

¨̃B0,uB̃l−1
0,u

˙̃Bα,u(·)+

6 ∑
1≤l<k≤x

B̃x−k
0,u

˙̃B0,uB̃k−l−1
0,u

˙̃B0,uB̃l−1
0,u

˙̃Bα,u(·)+

3 ∑
1≤l≤x

B̃x−l
0,u

˙̃B0,uB̃l−1
0,u

¨̃Bα,u(·)+

B̃x
0,u

...
B̃ α,u(·) = O(n2ϵ);

5. mth order for m ≥ 4: first, notice that

dm

dum

(
B̃x

0,uB̃α,u(·)
)
=

m

∑
l=0

(
m
l

)
dl

dul (B̃
x
0,u)

d(m−l)

du(m−l)
(B̃α,u(·)).

The term dl(B̃x
0,u)/dul is a sum over all possible ways of distributing the

derivatives among the factors B̃0,u.

Then one can use the spectral decomposition of the B̃0,u which have not
been differentiated and glue together differentiated terms using R0,u or
turning them into products using the projection l(u)(·)x(u) as we did in
the previous items. From Eq. (6.40), one can see that the blocks with a single
derivative of a single term B̃0,u bring a growth of the order n2ϵ′ , the terms
with two derivatives ( ¨̃B0,u + 2 ˙̃B0,uR̃0,u

˙̃B0,u) bring a growth of the order
n1/2+ϵ′ while all other blocks (with at least 3 elements), cause a growth of
the order at most n. Notice that the highest growth is attained by making as
many groups of three derivatives as possible and this will be used in obtaining
the following estimate.

The term d(m−l)(B̃α,u)/du(m−l) does not cause any reduction in the growth
if m − l ≥ 2, while causes a decay equal to n−1/2+ϵ′ if m = l + 1 and n−1+2ϵ′

if m = l.

Therefore,
∥∥∥∥

dm

dum

(
B̃x

0,uB̃α,u(·)
)∥∥∥∥ ≲

nmax{ f (m−2), f (m−1)− 1
2+ϵ′, f (m)−1+2ϵ′},

(6.41)

where

f (m) = a(m) +

(
1
2
+ ϵ′

)
b(m) + 2ϵ′(m − (3a(m) + 2b(m)))
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a(m) :=
⌊m

3

⌋
, b(m) :=

⌊
1
2

(
m − 3

⌊m
3

⌋)⌋
.

a(m) is the maximum number of groups with three derivatives and b(m) is the
maximum number of groups with two derivatives that we can make with the
derivatives left. Notice that if ϵ′ < 1/6, then f (m) ≤ m/3: indeed,

a(m) +

(
1
2
+ ϵ′

)
b(m) + 2ϵ′(m − (3a(m) + 2b(m))) =

2ϵ′m + (1 − 6ϵ′)a(m) +

(
1
2
− 3ϵ′

)
b(m) ≤

2ϵ′m + (1 − 6ϵ′)a(m) +
1
2

(
1
2
− 3ϵ′

)
(m − 3a(m)) ≤

1
2

((
1
2
+ ϵ′

)
m +

(
1
2
− 3ϵ′

)
a(m)

)
≤

1
2

((
1
2
+ ϵ′

)
m +

(
1
6
− ϵ′

)
m
)
≤ m

3
.

Therefore, the growth of the term in Eq. (6.41) is upper bounded by

nmax{m−2
3 , m−1

3 − 1
2+ϵ′, m

3 −1+2ϵ′}. (6.42)

This implies that the first two derivatives spent on a block of the form B̃x
0,uB̃α,u

cause a growth equal to n1/2−ϵ′ , while the other m − 2 only brings a growth at
most equal to the term in Eq. (6.42). Notice that it is more convenient to spend
them in a way that every block of the form B̃x

0,uB̃α,u has two derivatives, since
one has that (

1
2
− ϵ′

)
(m − 2) ≥ m − 2

3
⇔ m ≥ 2,

moreover (
1
2
− ϵ′

)
(m − 2) ≥ m − 1

3
− 1

2
+ ϵ′ ⇔ m ≥ 1

and (
1
2
− ϵ′

)
(m − 2) ≥ m

3
− 1 + 2ϵ′ ⇔ m ≥ 0.

Therefore the growth of

∑
x1+···+xk+1=n−K

x2,...,xk≥nγ

d2k+1

u2k+1 ρ̃ss
(

u√
n

)(
B̃x1

0,uB̃α1,uB̃x2
0,u · · ·

· · · B̃xk
0,uB̃αk ,uB̃xk+1

0,u (1))
)∣∣∣

u=η
,

is of the order of O(n2ϵ′) uniformly in u and it is attained by the term where
we spend at least two derivatives in each block of the form B̃x

0,uB̃α,u and the last
derivative in any of such blocks. One can see that it is not convenient to use
any derivative in the final term B̃x

0,u(1), since it is better to contrast the decay
induced by the other blocks. To conclude, the term in Eq. (6.39) grows at most
as n(2k+3)ϵ′−1/2 = o(n2kϵ′). We proved Proposition 9 and notice that Theorem 20
follows considering ϵ′ = 0.
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6.14 P R O O F O F C O R O L L A R Y 4

Proof. Let us define the measurable space given by the set Ω = NN together
with the σ-field F generated by cylindrical sets; we can consider on (Ω,F ) the
law νu of {Nα : α ∈ P} and the law of {Nα(n) : α ∈ P}, which, with a slight
abuse of notation, we still denote by νu,n as well. We know that for every finite
set A of patterns, one has

lim
n→+∞

sup
|u|<C

|νu,n(A)− νu(A)| = 0. (6.43)

Notice that, for every ϵ > 0, there exists a set Aϵ of finitely many patter such that

inf
|u|<C

νu(Aϵ) > 1 − ϵ.

Therefore, using Eq. (6.43), one has that there exists Nϵ such that ∀n ≥ Nϵ,

inf
|u|<C

νu,n(Aϵ) > 1 − ϵ, and sup
|u|<C

|νu,n(Aϵ)− νu(Aϵ)| < ϵ.

Therefore, given a bounded function f : NP → R, for every ϵ > 0, ∀n ≥ Nϵ, one
has

sup
|u|<C

|Eνu,n [ f ]− Eνu [ f ]| ≤

∥ f ∥∞

(
sup
|u|<C

|νu,n(Aϵ)− νu(Aϵ)|+

sup
|u|<C

νu,n(AC
ϵ ) + νu(AC

ϵ )

)
≤

3∥ f ∥∞ϵ.

For the arbitrariness of ϵ, we proved the first statement about the weak conver-
gence.

Consider the random process Ntot(n) that counts all the occurrences of 1’s
in the output up to time n and notice that for every α ∈ P , Nα(n) ≤ Ntot(n).
Therefore for every p ≥ 1 and m ∈ N, one has

Eνu,n [Nα(n)p1{Nα(n)>m}] ≤ Eνu,n [Ntot(n)p1{Ntot(n)>m}].

If we show that the moments of every order of Ntot(n) converge to some finite
limit and that it converges in law to some limit random variable Xu, we obtain
the second statement as well. Indeed, let us call C(p) the limit of the p-moment
of Ntot(n); notice that for every p ≥ 1, m ∈ N

lim sup
n→+∞

Eνu,n [Nα(n)p1{Nα(n)>m}] ≤

lim sup
n→+∞

Eνu,n [Ntot(n)p1{Ntot(n)>m}] ≤

lim
n→+∞

Eνu,n [Ntot(n)pq]1/qνu,n(Ntot(n) > m)1/q′ =

C(pq)1/qP(Xu > m)1/q′ .



6.14 P R O O F O F C O R O L L A R Y 4 177

Notice that in the last inequality we made use of Hölder inequality for some pair
of conjugate indices (q, q′). Therefore, if we fix p ≥ 1, for every ϵ > 0, one can
choose mϵ such that

lim sup
n→+∞

Eνu,n [Nα(n)p1{Nα(n)>mϵ}] ≤ ϵ/2,

Eνu [N
p
α 1{Nα>mϵ}] ≤ ϵ/2

and one gets

lim sup
n→+∞

|Eνu,n [Nα(n)p]− Eνu [N
p
α ]| ≤

lim
n→+∞

|Eνu,n [Nα(n)p1{Nα(n)≤mϵ}]− Eνu [N
p
α 1{Nα≤mϵ}]|+

lim sup
n→+∞

Eνu,n [Nα(n)p1{Nα(n)>mϵ}]+

Eνu [N
p
α 1{Nα>mϵ}] ≤ ϵ.

Since this holds for every ϵ > 0, we proved the statement.
We need to show that, under νu,n, Ntot(n) converges in law to a random variable

Xu with finite moments of every order and that we have convergence of the
moments as well. One can see that the Laplace transform of Ntot(n) can be
expressed as

Eνu,n [e
zNtot(n)] = ρ̃ss(u/

√
n)(T̃n

u,z,n(1)) z ∈ C,

where

T̃u,z,n(·) =K̃∗
0(u/

√
n) · K̃0(u/

√
n)+

ezK̃∗
1(u/

√
n) · K̃∗

1(u/
√

n).

Notice that T̃0,z := T̃0,z,n is independent from n and is an analytic perturbation of
T̃. If we pick z small enough in modulus, perturbation theory ensures that T̃0,z has
1 as eigenvalue with maximum modulus with |χss⟩ ⟨χss| as left eigenvector. Let
xz be the corresponding right eigenvector such that Tr(ρssxz) = ⟨χss| xz |χss⟩ = 1,
and let

xz =

(
1 a

b c

)

be its block matrix form with respect to the decomposition of CD into C|χss⟩ and
its orthogonal complement. Then one can prove that a = b = 0 by using the fact
that the Kraus operators are of the form

K0 =

(
1 0

0 β

)
, K1 =

(
0 γ

0 δ

)

for some blocks β, γ, δ such that |β|2 + |γ|2 + |δ|2 = 1. Let us first fix z small
enough, then for n big enough, T̃u,z,n has a unique eigenvalue λz(u, n) of maxi-
mum modulus with corresponding left and right eigenvectors lz(u, n), xz(u, n)
and one has that

Eνu,n [e
zNtot(n)] =

λz(u, n)nlz(u, n)(1)ρ̃ss(u/
√

n)(xz(u)) + o(n)
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where o(n) is uniform in u (and z in compact sets). Notice that both lz(u, n)(1)
and ρ̃ss(u/

√
n)(xz(u)) converge to 1 for n → +∞; regarding the behaviour of

λz(u, n) consider the Taylor expansion up to second order in u around 0:

λz(u, n) = 1 +
u√
n

λ
(1)
z +

u2

n
λ
(2)
z + o(n−1).

We can choose lz(u, n) and xz(u, n) such that Tr(()lz(u, n)xz(u, n)) ≡ 1, therefore
differentiating Tr(()lz(u, n)T̃z,u,n(xz(u, n))) = λz(u, n) at 0 one gets

λ
(1)
z = Tr(()lz∂uT̃z|u=0xz)

which can be easily seen to be 0. Summing up, we proved that

lim
n→+∞

Eνu,n [e
zNtot(n)] = eλ

(2)
z

uniformly in u and in z in compact small neighborhoods of 0. Since for every
u, fn(z) := Eνu,n [ezNtot(n)] are analytic functions around 0, then we can deduce

that eλ
(2)
z is analytic as well and that we have uniform convergence (on compact

small neighborhoods of 0) of all the derivatives, which consists exactly in the
convergence of moments of all orders and we are done.
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In this section we present a proof of Theorem 21 and we comment on the gap be-
tween the hypothesis that we need to assume and what we proved in Proposition
9.

Proof of Theorem 21. By hypothesis, we know that θ belongs to the (random) con-
fidence interval

In = (θ̃n − n−1/2+ϵ, θ̃n + n−1/2+ϵ)

with high probability. In order to prove the statement, it suffices to show that

|(Eθ [eia
√

n(θ̂n−θ)|θ̃n]− e−
a2

2 fθ )|χ{θ∈In}(θ̃n)

can be upper bounded uniformly in θ̃n by a sequence converging to 0. Indeed,
notice that for every a ∈ R

Eθ [eia
√

n(θ̂n−θ)] = e−
a2

2 fθ Pθ(θ ∈ In)

+
∫

θ∈In

pθ(dθ̃n)(Eθ [eia
√

n(θ̂n−θ)|θ̃n]− e−
a2

2 fθ )

+
∫

θ /∈In

pθ(dθ̃n)Eθ [eia
√

n(θ̂n−θ)|θ̃n].

Since Pθ(θ /∈ In) goes to zero, the first term goes to e−
a2

2 fθ and the third one van-
ishes. If we show that the second term vanishes then we obtain the convergence
in distribution of

√
n(θ̂n − θ) as in the statement.
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First of all notice that for every a ∈ R, for every θ̃ ∈ Θ

E[eia(Yn,θ,θ̃−
√

n(θ−θ̃))] =

eλtot(θ̃)(
√

n(θ−θ̃)+τn)2(eia/(2λtot(θ̃)τn)−1)−ia( τn
2 +

√
n(θ̃−θ)).

Therefore for every a ∈ R one has

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∣∣∣∣E[eia(Yn,θ,θ̃−
√

n(θ−θ̃))]− e−
a2
fθ

∣∣∣∣ = 0

We will denote by u =
√

n(θ − θ̃n). The definition of θ̂n implies that
√

n(θ̂n − θ) = Yn − u.

Therefore we obtain that

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∣∣∣∣Eθ [eia(Yn−u)|θ̃n = θ̃]− e−
a2

2 fθ

∣∣∣∣ ≤

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

|Eθ [eiaYn |θ̃n = θ̃]− E[eiaYn,θ,θ̃ ]|+

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∣∣∣∣E[eia(Yn,θ,θ̃−
√

n(θ−θ̃))]− e−
a2
fθ

∣∣∣∣ .

Hence,

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∣∣∣∣Eθ [eia(Yn−u)|θ̃n = θ̃]− e−
a2

2 fθ

∣∣∣∣ = 0

and we are done.

Let us briefly comment on the relationship between the additional hypothesis
we introduced (Eq. (6.25)) and the result in Proposition 9; let us consider the
following family of stochastic processes: for every n ∈ N, θ̃, θ ∈ Θ, consider the
collection of independent random variables

Nn,θ,θ̃,α ∼ Poisson(λα(θ̃(
√

n(θ − θ̃) + τn)
2), α ∈ P

and their law νn,θ,θ̃ on NP . (together with the σ-field of cylindrical sets). Notice
that ∑α∈P Nn,θ,θ̃,α converges in mean square and has the same law as Nn,θ,θ̃ .

Inspecting the proof, one can notice that the convergence in the statement of
Proposition 9 holds uniformly in a small neighborhood of the reference parameter
θ0, therefore we can restate it in the following way: for ϵ small enough and for
every finite collections of excitation patterns counts m one has

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∣∣∣∣∣
ν√n(θ−θ̃),n(Bm(n))

νθ,θ̃,n(m)
− 1

∣∣∣∣∣ = 0.

If we were able to show that the previous result still holds integrating with respect
to νθ,θ̃,n, i.e.,

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∑
m

νθ,θ̃,n(m)

∣∣∣∣∣
ν√n(θ−θ̃),n(Bm(n))

νθ,θ̃,n(m)
− 1

∣∣∣∣∣ =

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

∑
m

∣∣∣ν√n(θ−θ̃),n(Bm(n))− νθ,θ̃,n(m)
∣∣∣ = 0,

(6.44)
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this would imply the condition in Eq. (6.25) (it can be seen using the fact that
∑α∈P Nn,θ,θ̃,α and Nn,θ,θ̃ have the same law). Unfortunately, we are not able to
prove this.

The last remark we make is that Eq. (6.44) cannot be true unless

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

νθ,θ̃,n(G(n)C) = 0,

where G(n) is the set of all m’s such that ν√n(θ−θ̃),n(Bm(n)) > 0. We can prove
that this is indeed the case.

Lemma 9. If ϵ is small enough, then

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

νθ,θ̃,n(G(n)C) = 0.

Proof. Notice that G(n) is the set of all those patterns counts m = (mα(1) , . . . , mα(k))

such that the following conditions are satisfied

1. α(i) does not contain more than nγ consecutive 0s for every i = 1, . . . , k;

2. ∑k
i=1 mα(i) |α(i)|+ (k − 1)nγ ≤ n.

We recall that |α| is the length of the pattern α.

Let us consider a positive number η < 1 − γ and notice that one has G̃(n) ⊆
G(n), where G̃(n) is the set of all those patterns counts m = (mα(1) , . . . , mα(k))

such that

1. |α(i)| ≤ η log2(n) for every i = 1, . . . , k and

2. ∑k
i=1 mα(i) |α(i)|+ (k − 1)nγ ≤ n.

We denote by A(n) the set of patterns satisfying 1. and B(n) the set of patterns
satisfying 2., hence G̃(n) = A(n) ∩ B(n). In order to prove the statement, it
suffices to show that

lim
n→+∞

sup
θ̃:|θ̃−θ|<n−1/2+ϵ

νθ,θ̃,n(G̃(n)C) = 0.

Notice that G̃(n)C = A(n)C ⊔ (B(n)C ∩ A(n)); let us first show that

lim
n→+∞

inf
θ̃:|θ̃−θ|<n−1/2+ϵ

νθ,θ̃,n(A(n)) → 1.

Notice that,

lim
n→+∞

inf
θ̃:|θ̃−θ|<n−1/2+ϵ

νθ,θ̃,n(A(n)) =

lim
n→+∞

inf
θ̃:|θ̃−θ|<n−1/2+ϵ

e−(∑|α|>η log2(n)
λα)(

√
n(θ−θ̃)−τn)2

= 1,

since, for every θ̃ such that |θ − θ̃| < n−1/2+ϵ, one has

 ∑

|α|>η log2(n)
λα


 (

√
n(θ − θ̃)− τn)

2 ≲ nη log2(λ)+3ϵ → 0
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if ϵ < −η log2(λ)/3. Let us now study the probability of B(n)C ∩ A(n): first
notice that

B(n)C ∩ A(n) ⊆

{m : |α(i)| ≤ η log2(n),
k

∑
i=1

mα(i) |α(i)|+ 2η log2(n)nγ > n},

because 2η log2(n) upper bounds the cardinality of all the patterns of length smaller
or equal than η log2(n). Therefore

νθ,θ̃,n(B(n)C ∩ A(n)) ≤ νθ,θ̃,n(C(n))

≤ νθ,θ̃,n





m : ∑

|α|≤η log2(n)
mα >

n − nη+γ

η log(n)






 .

where C(n) is the set of pattern counts such that |α(i)| ≤ η log2(n) and ∑k
i=1 mα(i)η log2(n)+

nη+γn > n. The last term amounts to the probability that a Poisson random vari-
able of parameter ∑|α|≤η log2(n)

λα(
√

n(θ − θ̃)− τn)2 ≲ n3ϵ is bigger than some-
thing that grows as n/(η log(n)). Such a probability goes to 0 uniformly in θ̃ if
3ϵ < 1 and we are done.



Part III

A P P E N D I X



A
N U M E R I C A L S I M U L A T I O N S P Y T H O N C O D E

In this appendix we introduce the Python code used for all the numerical simula-
tions found in this thesis. The code has been made available on GitHub at

https://github.com/AGodley/ThesisCode.

The primary aim of this appendix is to provide a guide to the most recent code,
explaining the role of each of the main files so that the reader can run a simulation
themselves with minimal difficulty.

To this end, we start by describing the structure of the GitHub repository. On
this GitHub page there are two main folders: one containing the Python code
itself and one containing the data from our numerical simulations. Both folders
are split again into distinct projects. Theses project correspond with the numerical
simulations for the adaptive measurement scheme [78], the exploratory simula-
tions for an independent identically distributed (IID) displaced null measurement
scheme [77] and the numerical simulations for the quantum Markov chain (QMC)
displaced null measurement scheme [75]. The code for this last project is the most
recent and up to date, so we will mostly discuss this project.

The model that we are simulating is a simple qubit model outlined in section
6.8 with parameters θ,λ,ϕ. The parameter of interest is θ, while both λ = 0.8 and
ϕ = π/4 are fixed values. In particular, the environment, or input units, of a
quantum Markov chain (QMC) are modelled as a series of qubits initialised in the
|0⟩ ⟨0| state, the system itself is modelled as a qubit and the absorber is modelled
as a qubit. In the /code/displacedNullMeasurements folder there is a total of 9
Python files:

absorber.py

analysis.py

dnm_main.py

dnm_main_fixed.py

dnm_main_repeated.py

initial.py

kraus.py

patterns.py

qfi.py

The model itself is specified within kraus.py. This file contains functions that
calculate the model’s Kraus operators for specified parameter values, both with
and without the absorber:

k(tht, lmbd, phi, meas)

k_dot(tht, lmbd, phi, meas)
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k_abs(tht, tht_r, lmbd, phi, meas)

k_abs_dot(tht, tht_r, lmbd, phi, meas)

In each function the model’s pseudo-unitary U is manually coded; this is not a
true unitary as we only have to define its action on states |i⟩ ⊗ |0⟩ for an ONB
{|i⟩ ∈ C2} since each noise unit of the quantum Markov chain (QMC) is prepared
in the same initial state |0⟩ ⟨0|. In k( ) the Kraus operators are then calculated as

Ki = Tr(1 ⊗ |0⟩ ⟨ei|U)

and these Kraus operators are returned by the function to be used elsewhere. For
example:

# Kraus operators without the absorber

def k(tht, lmbd, phi, meas):

# Inputs the unitary U; this is not a true unitary as only it's action ...

# At each step a new auxiliary system |0> interacts with our soi.

U = Qobj([[np.cos(tht) * sqrt(1 - tht ** 2), 0, 1j * np.sin(tht) \

* sqrt(1 - lmbd), 0],

[0, 0, sqrt(lmbd) * np.exp(1j * phi), 0],

[1j * np.sin(tht)

* sqrt(1 - tht ** 2), 0, np.cos(tht) * sqrt(1 - lmbd), 0],

[tht, 0, 0, 0]],

dims=[[2, 2], [2, 2]])

# Checks whether the function was sent 1 or 2 measurements

if len(meas) == 2:

# WHen sent two measurements, calculates both corresponding ...

K_0 = (tensor(qeye(2), fock(2, 0) * meas[0].dag()) * U).ptrace([0])

K_1 = (tensor(qeye(2), fock(2, 0) * meas[1].dag()) * U).ptrace([0])

# Kraus operators are returned in a list

K = [K_0, K_1]

# For checking they're proper Kraus operators

# print('Kraus check:')

# print(K[0].dag()*K[0] + K[1].dag()*K[1])

else:

# Kraus corresponding to a single measurement

K = (tensor(qeye(2), fock(2, 0) * meas[0].dag()) * U).ptrace([0])

return K, U

Crucially, this function is passed an orthonormal basis (ONB) as the measurement
choice in a list. This is always

meas = [fock(2, 0), fock(2, 1)],

but it could be varied. A legacy feature allows a single measurement to be passed
to the function instead, and the function will calculate the corresponding Kraus
operator.

The function k_abs( ) calculates the Kraus operators for the combined sys-
tem+absorber in a similar manner using total unitary VU, where the unitary
V corresponding to the absorber is obtained from a function within the file ab-
sorber.py. For this model, we calculated an analytical formula for the system’s
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stationary state for any θ. This file simply uses these analytical formula for an
input value of θ to calculate the absorber’s unitary V based off the desired prop-
erty in Lemma 1. These functions are pretty well documented, so we suggest
looking at the files instead. The result is a new set of Kraus operators on a now
4-dimensional space (system+absorber).

The file kraus.py also contains another function

true_ss(tht, tht_r, lmbd, phi, meas)

which calculates the actual stationary state of the channel associated with the
system+absorber by vectorising its Kraus operators and finding the eigenvector
with eigenvalue 1. This is mostly used in some analysis of the generated trajec-
tories. The other two functions calculate the derivatives of the Kraus operators
(with/without absorber) in a similar manner using a hard-coded derivative of
the pseudo-unitary.

The most important file is dnm_main.py. This is the main file, from which we
configure and run simulations of the estimation scheme described in Chapter 6,
specifically section 6.8. This configuration is mostly done by changing the values
found in the dictionary:

# Global parameter values

setup = {

'N': 3000, # No. of samples to generate

'n': 6 * 10**5, # No. of ancillary systems

'theta': 0.2, # True value of theta for trajectory generation

'lambda': 0.8, # Transition parameter, 0<=lmbd<=1

'phi': pi / 4, # Phase parameter

'initial': False, # Controls initial estimation; ...

'eps': 0.065, # Prop. of traj. to use in initial est.

'gamma': 2.1 # Controls how far the absorber is offset, gamma>1

}

As explained by the comments, these variables are the number of trajectories
(individual simulations) to generate, the length of each trajectory, the 3 parameters
of the qubit model that we are simulating (see equation (4.20)), a variable that
configures whether we want to include an initial estimation step, a variable that
specifies the proportion of the input systems that we use in the initial estimation
(n1−ϵ), and a variable that controls the displacement in the null measurement.

When we run the main file, the following code repeatedly calls a function

trajectory(id, setup)

to generate multiple trajectories:

# Pool object to run the multiprocessing

pool = Pool()

results = pool.starmap(trajectory, zip(ids, repeat(setup)))

pool.close()

pool.join()

This handles multiprocessing, i.e.- generating multiple trajectories at the same
time.
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Inside trajectory( ), an initial if statement determines whether setup in-
cluded initial estimation. If so, the total length n is partitioned into parts for
initial and final estimation, n_init = n1−ϵ and n_final:

# Splits the samples into samples used in the initial and final est

n_init = int(np.floor(n ** (1 - eps)))

n_final = n - n_init

theta_rough, *_ = initial_est(theta, lmbd, phi, n_init)

An initial estimate is then calculated through the function initial_est( ), found
within the initial.py file. This function calculates an initial estimate through
a rudimentary method; this involves first generating a trajectory through the
following algorithm:

1. First, initialise a qubit in the state ρ = |0⟩ ⟨0| state and calculate the Kraus
operators K0, K1 at θ = 0.2.

2. Pick a Kraus operator to apply randomly with probabilities pi = Tr(KiρKi),
record the choice i in a list x.

3. Apply the Kraus operator to the state

ρ → KiρKi

pi
.

4. Repeat the last two steps for the remaining ninit − 1 qubits.

We then calculate the expected number of 1s on a grid of values of θ between 0.18
and 0.22. This is done by calculating the stationary state ρ∗(θ′) for each value θ′

from this grid using the analytical function found within absorber.py. We then
calculate the corresponding Kraus operators at θ′ and calculate the expected
number of 1s as

n_init.Tr(ρK∗
1 K1).

Fitting this to the observed number of 1s provides our initial estimate theta_rough.
Otherwise, we set theta_rough = 0.2, the true value of θ used in all our simula-
tions. This covers the initial estimation.

We can then calculate the Kraus operators that include the absorber using the
rough estimate plus the offset required by the null measurement scheme:

offset = n ** (-0.5 + gamma * eps)

absorber = theta_rough + offset

# Stage 2: measurement in the fixed basis specified by the function

M = measurement_choice()

# Finds kraus operators

K, *_ = k_abs(theta, absorber, lmbd, phi, M)

This corresponds to total unitary

VabsorberUθ .

The final stage trajectory is then generated in a very similar manner with these
new Kraus operators, starting with the purified stationary state at θ = theta_rough,
which is also returned by the function uV( ) from absorber.py that calculates the
unitary V for the absorber. This is our best guess at the true stationary state.
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# Initializes the state of the s+a; estimate of true ss

a, rho_0 = uV(theta_rough, lmbd, phi)

rho = rho_0

# List to record which outcomes occurred

x = [None] * n_final

# Trajectory generation

for j in np.arange(n_final):

# Defines probability that outcome 0 occurs

p0 = np.real_if_close( (K[0] * rho * K[0].dag()).tr() )

# Choice of {0, 1} with prob {p(0), p(1)}

x_j = np.random.choice([0, 1], p=[p0, 1 - p0])

# Records the outcome in x_s2

x[j] = x_j

# Updates the state by applying the measurement projection and ...

rho = K[x_j] * rho * K[x_j].dag()

rho = rho / rho.tr()

At this stage the result is a list x of mostly 0s that contains excitation patterns
as described in chapter 6. E.g.-

x = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, ...]

To extract these patterns, there is a choice of two functions: stochastic_patterns( )

or pattern_check(x, k). The first is a new experimental method of counting
the patterns that relies upon a probabilistic algorithm. The second is the method
described in section 6.7, which looks for an excitation pattern α padded with 0s
either side, where k is the max pattern length that we search for. These pattern
counts are then saved in a csv file such as counting_Markov_excitations_analysis.csv.

Additionally, the expected rates of each pattern are calculated using the forum-
lae in section 6.5:

# Calculates the expected counts for the pattern

expected_counts, mpn_pat = expected(rho_t0, K,

abs(theta - absorber), n_final)

# Alternative stationary state used in Taylor expansion formula for ...

rho_ss = true_ss(theta_rough, theta_rough, lmbd, phi, M)

# Best guess at kraus operators for calculating expected values ...

K, *_ = k_abs(theta_rough, theta_rough, lmbd, phi, M)

K_dot, *_ = k_abs_dot(theta_rough, theta_rough, lmbd, phi, M) # ...

# Calculates the mus for the pattern using alternative formula

alt_mus, FI_pat, alt_expected = alternative(rho_ss, K, K_dot,

abs(theta - absorber), n_final)

Crucially, this is also done using theta_rough; we use these rates in the pattern
counts estimator, so we cannot use the true value in their calculation. These rates
are also saved in csv files.



N U M E R I C A L S I M U L AT I O N S P Y T H O N C O D E 188

The Python file analysis.py then processes these saved csv files patterns.py to
produce the figures. This involves the pattern counting estimator, see section 6.7,
contained in the function u_method( ). This function is quite long, containing
several different methods that specify a cutoff on the patterns we include in our
estimator. Therefore, we recommend looking at the file itself.

The remaining files are dnm_main_fixed.py, dnm_main_repeated.py and qfi.
The first simply fixes the initial estimation so a that fixed theta_rough is used
to generate multiple trajectories, which we used in some figures. The second in-
creases the length of the trajectory used in the final estimation by a multiplicative
factor. This was useful when we wanted to have realistic initial estimation, but
get much closer to an asymptotic regime where the proportion of n used in the
initial estimation should be very small. And finally, the last file simple calculate
the model’s quantum Fisher information.
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[112] Matthew Levitt and Mădălin Guţă. “Identification of single-input–single-
output quantum linear systems”. In: Physical Review A 95.3 (Mar. 2017),
p. 033825 (cit. on pp. 55, 131).
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patibility in multiparameter quantum metrology”. In: Physical Review A
94.5 (Nov. 2016), p. 052108 (cit. on p. 106).

[142] J F Ralph, K Jacobs, and C D Hill. “Frequency tracking and parameter
estimation for robust quantum state estimation”. In: Phys. Rev. A 84 (2011),
p. 52119 (cit. on pp. 55, 131).

[143] J F Ralph, S Maskell, and K Jacobs. “Multiparameter estimation along
quantum trajectories with sequential Monte Carlo methods”. In: Phys. Rev.
A 96 (2017), p. 52306 (cit. on pp. 55, 131).

[144] Ángel Rivas and Susana F. Huelga. “Open Quantum Systems. An In-
troduction”. In: SpringerBriefs in Physics (Apr. 2011) (cit. on pp. 3, 31,
32).

[145] Jesús Rubio, Janet Anders, and Luis A. Correa. “Global Quantum Ther-
mometry”. In: Physical Review Letters 127.19 (Nov. 2021), p. 190402 (cit. on
p. 2).

[146] J. J. Sakurai and Jim Napolitano. Modern Quantum Mechanics. Cambridge
University Press, Sept. 2017 (cit. on pp. 9, 17).

[147] Konrad Schmüdgen. Ten Lectures on the Moment Problem. 2020 (cit. on
p. 156).

[148] Roman Schnabel. “Squeezed states of light and their applications in laser
interferometers”. In: Physics Reports 684 (2017), pp. 1–51 (cit. on p. 119).



B I B L I O G R A P H Y 199

[149] C Schön et al. “Sequential Generation of Entangled Multiqubit States”. In:
Phys. Rev. Lett. 95.11 (2005), p. 110503 (cit. on p. 130).

[150] Pavel Sekatski et al. “Quantum metrology with full and fast quantum
control”. In: Quantum 1 (Sept. 2017), p. 27 (cit. on p. 130).

[151] Luigi Seveso and Matteo G. A. Paris. “Quantum enhanced metrology of
Hamiltonian parameters beyond the Cram\‘er-Rao bound”. In: Interna-
tional Journal of Quantum Information 18.3 (Mar. 2020), p. 2030001 (cit. on
pp. 2, 34–37, 46, 47, 49).

[152] Luigi Seveso, Matteo A. C. Rossi, and Matteo G. A. Paris. “Quantum
metrology beyond the quantum Cramér-Rao theorem”. In: Physical Review
A 95.1 (Jan. 2017), p. 012111 (cit. on pp. 34, 46).

[153] Jasminder S. Sidhu and Pieter Kok. “Geometric perspective on quantum
parameter estimation”. In: AVS Quantum Science 2.1 (Feb. 2020), p. 14701
(cit. on p. 134).

[154] P Six et al. “Parameter estimation from measurements along quantum
trajectories”. In: 2015 54th IEEE Conference on Decision and Control (CDC).
2015, pp. 7742–7748 (cit. on pp. 55, 131).

[155] Andrea Smirne et al. “Ultimate Precision Limits for Noisy Frequency
Estimation”. In: Physical Review Letters 116.12 (Mar. 2016), p. 120801 (cit.
on pp. 55, 130).

[156] Alexander R.H. Smith and Mehdi Ahmadi. “Quantizing time: Interacting
clocks and systems”. In: Quantum 3 (July 2019), p. 160 (cit. on p. 2).

[157] K Stannigel, P Rabl, and P Zoller. “Driven-dissipative preparation of
entangled states in cascaded quantum-optical networks”. In: New Journal
of Physics 14.6 (June 2012), p. 063014 (cit. on pp. 4, 57, 62, 63, 78, 131, 138,
153).

[158] M Szczykulska, T Baumgratz, and A Datta. “Multi-parameter quantum
metrology”. In: Advances in Physics: X 1 (2016), pp. 621–639 (cit. on p. 2).

[159] J. M. Taylor et al. “High-sensitivity diamond magnetometer with nanoscale
resolution”. In: Nature Physics 2008 4:10 4.10 (Sept. 2008), pp. 810–816 (cit.
on pp. 2, 50).

[160] Géza Tóth and Iagoba Apellaniz. “Quantum metrology from a quantum
information science perspective”. In: Journal of Physics A: Mathematical and
Theoretical 47.42 (Oct. 2014), p. 424006 (cit. on pp. 2, 134).

[161] M Tsang. “Time-Symmetric Quantum Theory of Smoothing”. In: Phys.
Rev. Lett. 102 (2009), p. 250403 (cit. on pp. 55, 131).

[162] M Tsang. “Quantum reversal: a general theory of coherent quantum ab-
sorbers”. 2024 (cit. on pp. 140, 153).

[163] M Tsang and R Nair. “Fundamental quantum limits to waveform detec-
tion”. In: Phys. Rev. A 86.4 (2012), p. 42115 (cit. on p. 55).

[164] Makei Tsang. “Caveats of the Crámer-Rao bound” (cit. on pp. 83, 85).

[165] Mankei Tsang. “Optimal waveform estimation for classical and quantum
systems via time-symmetric smoothing”. In: Physical Review A 80.3 (Sept.
2009), p. 033840 (cit. on pp. 55, 131).



B I B L I O G R A P H Y 200

[166] Mankei Tsang. “Optimal waveform estimation for classical and quantum
systems via time-symmetric smoothing. II. Applications to atomic mag-
netometry and Hardy’s paradox”. In: Physical Review A 81.1 (Jan. 2010),
p. 013824 (cit. on pp. 55, 131).

[167] Mankei Tsang, Howard M Wiseman, and Carlton M. Caves. “Fundamental
Quantum Limit to Waveform Estimation”. In: Physical Review Letters 106.9
(Mar. 2011), p. 090401 (cit. on p. 55).

[168] M. Tse et al. “Quantum-Enhanced Advanced LIGO Detectors in the Era
of Gravitational-Wave Astronomy”. In: Physical Review Letters 123.23 (Dec.
2019), p. 231107 (cit. on pp. 2, 50, 51).

[169] Thomas Unden et al. “Quantum metrology enhanced by repetitive quan-
tum error correction”. In: Physical Review Letters 116.23 (Feb. 2016) (cit. on
p. 50).

[170] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press,
Oct. 1998 (cit. on pp. 2, 34, 36–39, 41–43, 45, 84, 99).

[171] F Verstraete and J I Cirac. “Continuous Matrix Product States for Quantum
Fields”. In: Physical Review Letters 104.19 (May 2010), p. 190405 (cit. on
pp. 51, 130).

[172] John Watrous. The Theory of Quantum Information. Apr. 2018, pp. 1–590
(cit. on p. 26).

[173] H M Wiseman and G J Milburn. “Quantum theory of field-quadrature
measurements”. In: Physical Review A 47.1 (Jan. 1993), pp. 642–662 (cit. on
pp. 55, 130).

[174] Howard M Wiseman and Gerard J Milburn. Quantum Measurement and
Control. Cambridge University Press, Nov. 2009 (cit. on pp. 55, 130).

[175] Michael M Wolf. Quantum Channels & Operations Guided Tour. Tech. rep.
2012 (cit. on pp. 4, 14, 21, 23).

[176] Koichi Yamagata, Akio Fujiwara, and Richard D. Gill. “Quantum local
asymptotic normality based on a new quantum likelihood ratio”. In: The
Annals of Statistics 41.4 (Aug. 2013), p. 2197 (cit. on p. 134).

[177] Dayou Yang, Susana F. Huelga, and Martin B. Plenio. “Efficient Infor-
mation Retrieval for Sensing via Continuous Measurement”. In: Physical
Review X 13.3 (July 2023), p. 031012 (cit. on pp. 4, 31, 84, 119, 131, 132, 138,
153).

[178] G A Young and R L Smith. Essentials of Statistical Inference. Cambridge
University Press, 2005 (cit. on p. 99).

[179] H. Yuen and M. Lax. “Multiple-parameter quantum estimation and mea-
surement of nonselfadjoint observables”. In: IEEE Transactions on Informa-
tion Theory 19.6 (Nov. 1973), pp. 740–750 (cit. on pp. 83, 84, 134).

[180] Cheng Zhang et al. “Estimation of parameters in circuit QED by continu-
ous quantum measurement”. In: Phys. Rev. A 99 (2019), p. 22114 (cit. on
pp. 55, 131).



B I B L I O G R A P H Y 201

[181] Sisi Zhou and Liang Jiang. “Optimal approximate quantum error correc-
tion for quantum metrology”. In: Physical Review Research 2.1 (Mar. 2020),
p. 013235 (cit. on p. 50).

[182] Sisi Zhou and Liang Jiang. “Asymptotic Theory of Quantum Channel
Estimation”. In: PRX Quantum 2.1 (Mar. 2021), p. 010343 (cit. on pp. 2, 4,
48).

[183] Sisi Zhou, Chang-Ling Zou, and Liang Jiang. “Saturating the quantum
Cramér–Rao bound using LOCC”. In: Quantum Science and Technology 5.2
(Mar. 2020), p. 025005 (cit. on pp. 56, 58–60, 63–65, 78, 79).

[184] Sisi Zhou et al. “Achieving the Heisenberg limit in quantum metrology
using quantum error correction”. In: Nature Communications 9.1 (Jan. 2018),
p. 78 (cit. on pp. 49, 50, 55, 84, 90, 130).

[185] Eric R. Ziegel, E. L. Lehmann, and George Casella. “Theory of Point
Estimation”. In: Technometrics 41.3 (Aug. 1999), p. 274 (cit. on pp. 84, 98).

[186] Analia Zwick and Gonzalo A. Álvarez. “Quantum sensing tools to char-
acterize physical, chemical and biological processes with magnetic reso-
nance”. In: Journal of Magnetic Resonance Open 16-17 (Dec. 2023), p. 100113
(cit. on p. 2).


	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	Acronyms
	1 Introduction
	 Preliminary Theory
	2 Quantum Information
	2.1 Basic Quantum Mechanics
	2.1.1 States, Observables and Measurements
	2.1.2 Multipartite Systems
	2.1.3 Continuous Variable Systems

	2.2 Quantum Channels
	2.2.1 Representations
	2.2.2 Common Properties

	2.3 Open Quantum Systems and Quantum Markov Chains
	2.3.1 Quantum Markov Chains


	3 Parameter Estimation
	3.1 Classical Estimation
	3.1.1 Local Asymptotic Normality

	3.2 Quantum Estimation
	3.2.1 Quantum Local Asymptotic Normality



	 Results
	4 Adaptive measurement filter: efficient strategy for optimal estimation of quantum Markov chains
	4.1 Introduction
	4.2 Optimal separable measurements
	4.3 Discrete quantum Markov chains and the output QFI
	4.4 Output post-processing using quantum coherent absorber
	4.5 Adaptive measurement algorithm
	4.5.1 Derivation of the measurement filter

	4.6 Fisher informations considerations
	4.6.1 Achievability of the QFI with adaptive output measurements
	4.6.2 Computing the classical Fisher information of the output

	4.7 Numerical simulations
	4.7.1 Simplified Markov model for the first numerical investigation
	4.7.2 Simulation studies for the simplified model
	4.7.3 The second numerical investigation using the full adaptive protocol

	4.8 Conclusions and Outlook
	4.9 Proof of Proposition 1
	4.10 Computation of finite time system-output QFI

	5 Optimal estimation of pure states with displaced-null measurements
	5.1 Introduction and main results
	5.2 Achievability of the QCRB for pure states
	5.3 Why the naive imp. of a null measurement does not work
	5.3.1 Parameter localisation via a two step adaptive procedure

	5.4 Displaced-null est. scheme for opt. est. of pure qubit states
	5.4.1 The displaced-null measurement for one parameter qubit models

	5.5 Displaced-null measurements in the asympt. Gaussian picture
	5.5.1 Brief review of local asymptotic normality for pure qubit states
	5.5.2 Asymptotic perspective on displaced-null measurements via local asymptotic normality

	5.6 Multiparameter estimation for pure qudit states
	5.6.1 Multiparameter estimation
	5.6.2 Gaussian shift models and QLAN
	5.6.3 Achieving the Holevo bound for pure qudit states via QLAN
	5.6.4 Achieving the Holevo bound with displaced-null measurements
	5.6.5 Estimating a completely unknown pure state with respect to the Bures distance
	5.6.6 Achieving the QCRB with displaced-null measurements

	5.7 Conclusions and outlook
	5.8 Proof of Theorem 16 for weaker notions
	5.9 Proof of Proposition 3
	5.10 Proof of Theorem 17
	5.11 Comparison with estimators developed in Ma02
	5.12 Proof of Proposition 4
	5.13 Proof of Proposition 5

	6 Estimating quantum Markov chains using coherent absorber post-processing and pattern counting estimator
	6.1 Introduction
	6.2 Quantum est. and the displaced null measurement technique
	6.3 QMCs and post-processing using coherent absorbers
	6.3.1 Quantum postprocessing with a coherent absorber

	6.4 Translationally invariant modes in the output
	6.5 Limit distribution of quadratures and number operators
	6.6 Limit theorem for counting trajectories
	6.7 Pattern counting estimator
	6.8 Numerical experiments
	6.9 Conclusions and Outlook
	6.10 Proofs of Proposition 8 and Corollary 2
	6.11 Proofs of Theorem 19 and Lemma 8
	6.12 Proof of Corollary 3
	6.13 Proof of Theorem 20 and Proposition 9
	6.14 Proof of Corollary 4
	6.15 Achievability of the QCRB under additional assumptions 


	 Appendix
	A Numerical simulations Python code
	 Bibliography


