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Abstract 
 

A convolutional neural network (CNN) is a popular neural network architecture 
that excels in its ability to capture patterns in tasks with grid-structured inputs (e.g. 
visual recognition). Fine-grained visual classification (FGVC) uses CNN to categorise 
images of high intra-class and low inter-class variance. According to the literature, the 
2D Discrete Cosine Transform (DCT) is one of the well-known transformations used in 
compression for its robustness and high data compaction properties. In compressed 
domain image classification, many works have focused on extracting features from the 
low DCT coefficients (L-DCTCs) through a fully pointwise vanilla CNN. Here, the 
abundant medium to high DCTCs have typically been discarded. Although pointwise 
convolution is capable of complex transformations, the spatial context and 
representation are limited. The area of compressed domain FGVC remains a relatively 
inactive field. It is therefore essential to explore compressed domain FGVC under DCT 
conditions to investigate the relationship between fine-grained features and the full 
spectrum of DCTCs. More specifically, this thesis intends to adopt and extend DCT 
techniques in compressed domain FGVC to address three topics: (1) the usability and 
inclusive learning of mid-band DCTCs; (2) the adaptive learning of DCT basis functions 
on composing the pointwise convolutional kernels; (3) the interaction between DCT 
channel groups in feature representations. The first contribution introduces the 
‘Skipped Medium DCT CNN’. The M-DCTCs were processed via a skipping branch with 
a shallow convolutional block alongside the L-DCTCs which were passed through the 
main branch of the CNN. This architecture achieved a classification error drop of up to 
7% over the standard model without the skipping branch. It highlights the importance 
of combining higher-frequency DCTCs with lower ones for improved robustness. The 
second contribution enhances the prior network by adaptively weighting the DCT basis 
functions to form a pointwise convolutional kernel. The spatial details were considered 
when constructing the pointwise convolutional kernel apart from the frequency 
contents. The adaptive weights are referred to as the ‘Adaptive DCT (Adapt-DCT)’ 
kernel. This network achieved up to 8% classification error drop on small-scale FGVC 
datasets and a top-5 testing accuracy of 73.93% on mini-ImageNet. The third 
contribution investigates the significance of DCT feature groups in the compressed 
domain FGVC. The modified attention mechanism that prioritises the channel 
interactions within the DCT group is referred to as the ‘Hybrid Modified Efficient 
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Channel Attention’ (HyMod-ECA). It reduces the classification error by up to 3.5% over 
the original ECA. The optimised Adapt-DCT CNN with HyMod-ECA achieves a 
substantial parameter reduction of up to 73%. It is shown that the interactions among 
the DCT feature groups are one of the promising mechanisms to ease compressed 
domain FGVC. To conclude, this thesis discusses novel contributions in the context of 
combining the higher frequency DCTCs via a DCT-oriented convolutional kernel with 
an attention mechanism to address compressed domain FGVC. 
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Chapter 1 Introduction 
 

1.1 Background 
 

Artificial intelligence (AI) is a field that is dedicated to the development of 
algorithms that are aimed to make smart decisions like a human. The deep learning 
(DL) approach is a subset of AI that uses complex neural networks to imitate how the 
human brain works. It is composed of a complex mathematical algorithm that contains 
adjustable weights. A very deep model can recognise data patterns and construct 
complex feature representations. It can even match or excel in human-level 
performance. An AI chatbot (ChatGPT) that implements a deep learning algorithm was 
launched in November 2022 and accumulated up to 100 million worldwide users in just 
2 months [1]. It can interact with users by addressing specific questions through an 
interactive response. The deep learning approach is also used in the camera application 
of mobile devices for image processing. The ‘photonic engine’ is a module developed by 
Apple that enhances photographs on an iPhone [2] through computational image 
processing by using deep learning models. In 2023, about 19% of the worldwide 
population (1.5 billion out of 8 billion) owns an iPhone [3]. In other words, deep 
learning plays a critical role in modern human life. 

A Convolutional Neural Network (CNN) as shown in Figure 1.1 is a type of deep 
neural network that is formed by stacking sequential layers between input and output 
layers at both ends. It is commonly found in image classification [4] and object 
detection [5]. CNNs [6] are biologically inspired by the concept of the human visual 
cortex. CNNs possess the ability to extract the regular patterns in the input space. It 
operates by convolving a reduced set of weights, known as kernels, across the input data 
and producing the corresponding output, often referred to as feature maps. The local 
receptive field is a small region within the input where the convolutional weights 
engage. During convolution, the same set of weights is used to receive information 
across the whole extent of the input space. This weight-sharing technique used by CNN 
further reduces its number of trainable parameters compared to other architectures like 
Multilayered Perceptron (MLP).  
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Figure 1.1: An illustration of a CNN. 

An RGB image is the spatial representation of static visual content. It is formed 
by several pixels over the spatial context. A conventional CNN typically receives raw 
pixels from RGB images as the input [7] for image classification. The working strategy 
of developing such CNNs is considered to be in the spatial domain CNN. By convolving 
different kernels over the input space, a collection of distinct patterns is formed. These 
patterns are combined to form the output feature maps consisting of multiple channels. 
With the increasing demands on higher resolution visual contents [8], more advanced 
CNNs are required to process these extensive data. A complex CNN model such as 
ResNet-152 [9] can take weeks to develop due to its high complexity and computational 
cost. 

In fact, it was shown that an image representation in the spatial domain can 
carry redundancy [10]. This scenario is particularly prevalent in fine-grained images, 
where several works have been carried out such as [11][12][13][14][15] to mitigate its 
negative impact on the model’s performance. Fine-grained visual classification (FGVC) 
is a type of visual recognition task that exhibits low inter-class and high intra-class 
variance. It corresponds to the problem of classifying between hard-to-distinguish 
object classes, such as animal species and vehicle models. FGVC emphasises learning 
the most discriminative pattern, which means only part of the image is useful for 
describing the subtle differences. When the convolutional kernel processes redundant 
data, it generates a highly similar pattern, which can be considered as information 
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redundancy. In other words, the features produced by fine-grained images can contain 
high redundancy in spatial domain CNNs [16]. The emergence of these trends could 
lead to a less robust deep learning framework. 

To overcome the challenges above, the idea of implementing compressed domain 
analytics in deep learning has triggered noticeable research interest [17]. Compressed 
domain analytics refers to transforming the spatial domain information into its relative 
frequency counterpart when implementing deep learning algorithms. The objective of 
this technique is to improve compression gain and promote a lightweight and robust 
CNN development process. This approach also facilitates resource optimisation by 
reducing the overall memory footprint across the entire deep learning development 
system. Resource optimisation in deep learning involves minimising computational 
costs, memory usage, and processing time while maintaining or enhancing model 
performance. For fine-grained visual classification, resource optimisation is particularly 
critical because these tasks require intricate feature extraction, leading to large, 
computationally intensive models. Achieving resource optimisation can involve various 
strategies such as data preprocessing, dataset management, model design, algorithmic 
improvements, and the use of hardware accelerators. In this thesis, the focus is on 
optimising data processing and model algorithms. Techniques like model compression 
and parameter reduction are employed to decrease the model's memory footprint and 
boost processing efficiency, directly addressing the challenges of resource optimisation 
in fine-grained visual classification tasks. In essence, images are commonly stored in a 
compressed format to reduce redundancy, called the ‘Joint Photographic Expert Group’ 
(JPEG). The JPEG CODEC algorithm uses 2D-Discrete Cosine Transformation (2D-
DCT) to compress an image. A JPEG image is produced by applying 2D-DCT to an RGB 
image, followed by several standard encodings. A set of Discrete Cosine Transform 
Coefficients (DCTCs) are formed along the compression process. It contains different 
sets of basis functions in both spatial and frequency contexts. It eliminates spatial 
redundancy and delivers compact features for CDA [10]. In fact, the DCTCs of an image 
can be obtained by either performing forward 2D-DCT on the RGB image or by 
decoding a JPEG image without going through the inverse 2D-DCT. The DCTCs 
represent an image by combining several frequency bands. Its data compaction 
properties [18][19] allow it to consolidate most of the useful information towards the L-
DCTCs. Hence, the DCTCs possess higher compression gain and lower redundancy as 
compared to an RGB image. The DCTCs are widely used in compressed domain CNNs 
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[20] as they do not carry imaginary components. Thus, it helps to regulate the 
interpretability of a CNN model.  

Compressed domain analytics have been widely adopted in various applications, 
especially in machine vision [21]. It is also found in general classification tasks such as 
CIFAR-10 [22], CIFAR-100 [23], and ImageNet [24][25]. The research community has 
widely implemented pruning techniques by using only the low DCTCs (L-DCTCs) for 
general classification tasks [26][27] in compressed domain CNN. The medium to high 
DCTC frequency bands is discarded under most circumstances as they are believed to 
exhibit noise contamination. Commonly, the L-DCTCs are sufficient for feature 
extraction in such cases, where the images carry high inter-class and low intra-class 
variance. It offers a robust and lightweight model with fewer parameters compared with 
spatial domain CNN [25][28][29]. Therefore, the working strategy of compressed 
domain analytics can lead to several advantages, especially in FGVC. However, to detect 
subtle differences in fine-grained images, solely considering L-DCTCs is challenging. 
This is because the fine-grained features could be contained within frequency bands 
beyond L-DCTCs. Therefore, given the established advantages of compressed domain 
analytics over the spatial domain, and the convergence of these trends, it motivates a 
study on compressed domain image analytics (CDIA) in the context of small-scale 
FGVC, an area that has not been previously investigated. 
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1.2 Problem Statement 
 

To address FGVC problems, conventional CNNs must exhibit exceptional 
sensitivity to subtle differences, particularly within the spatial context of feature maps. 
These small changes are analogous to variations in frequency bands in compressed 
domain analytics, where the recognition of discriminative patterns becomes crucial. 
Compressed domain analytics, with their ability to analyse features through a broader 
spectrum of frequency bands, could potentially offer increased robustness compared to 
spatial domain analysis [30][31][32][33]. While former FGVC research emphasises 
complexity in the spatial domain [34][35][36][37], limited attention has been given to 
compressed domain analytics in this context. The existing compressed domain 
implementations often rely solely on pruning higher frequency bands to focus on L-
DCTCs for general classification [38][39]. Although this reduces complexity, it raises 
concerns about the adequacy of L-DCTCs in fully representing and detecting subtle 
differences in FGVC. In the representation of compressed domain features through 2D-
DCT, the patterns distributed across the spatial context are hierarchically encoded 
along the channel dimension [24]. In other words, the fine-grained object parts that 
were originally located across the spatial context are now encoded in the channel 
dimension. However, relying exclusively on L-DCTCs for classification in FGVC may 
pose challenges, particularly regarding the loss of critical edge information leading to 
distortion or artifacts. This information can be essential in forming discriminative 
patterns, and their absence could hinder accurate classification. To address this 
limitation and explore comprehensive solutions [40][41], it becomes imperative to 
consider frequency bands beyond L-DCTCs. In fact, the medium-frequency DCTCs are 
widely explored in steganography [42][43], whereas a few other papers [44][45] have 
provided early attempts on mid-high frequency bands for the recognition task, 
indicating their potential in FGVC. To highlight fine details, one of the strategies is to 
employ attention mechanisms. It allows the network to focus on individual components 
carrying unique patterns representing fine-grained details. In compressed domain 
analytics, a unique pattern could be formed by several frequency bands. It is trivial to 
consider pieces of individual components, where the collection of patterns can be more 
profound in representing the most discriminative features. A convolutional kernel is 
responsible for composing local receptive fields. It is becoming more specific at higher-
level intervals, where extended channel depths are present. In the context of spatial 
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domain FGVC, this implies that a large number of hierarchical kernels across different 
levels are needed to capture highly specific features. This approach yields less robust 
outcomes, necessitating a deeper exploration of implementing a compressed domain 
approach in the convolutional kernel. Although CNNs employ weight-sharing 
techniques, the inherent redundancy in RGB images in the spatial domain, especially in 
the context of fine-grained visual classification (FGVC), can lead to inefficient resource 
usage. Processing this redundant information requires additional parameters, which 
wastes computational resources and memory. This inefficiency can result in the need 
for more training data, increased computational complexity, and a longer development 
timeline. Consequently, the development process can become prohibitively expensive, 
both in terms of computation and memory, limiting the practical deployment of CNNs 
in real-world applications. These cumulative challenges highlight the importance of 
resource optimisation as a key objective of this research, aiming to make deep learning 
models more efficient and deployable. 

In short, the summary of problem statements is: 

• The pruning technique in CDA solely considers L-DCTCs, where the frequencies 
beyond L-DCTCs are mostly discarded. This could lead to suboptimal feature 
representations and hinder comprehensive frequency information at higher-level 
frequency bands for FGVC. 

• The robustness of kernel analytics is limited at different convolutional block 
intervals. This limitation can compromise the extraction and synthesis of 
discriminative features to maintain efficacy across different network depths.  

• The conventional attention mechanism predominantly highlights individual 
components within the feature maps. This approach potentially overlooks the 
relationships among features to capture feature interactions. 
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1.3 Research Aim and Objectives 
 

This research aims to employ DCT-based strategies to develop novel deep 
learning methods for small-scale fine-grained visual classification to achieve resource 
optimisation. 

The objectives are outlined below: 

1. To develop a CNN algorithm that integrates different levels of frequency bands in 
feature maps. 

2. To develop a DCT-based strategy to compose the convolutional kernel using DCT 
basis functions. 

3. To develop a hybrid attention mechanism to highlight interactions between 
channel groups of a frequency nature. 
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1.4 Contribution of the Research 
 

This research mainly covers the research gap in compressed domain CNNs for 
FGVC using DCT. The key contributions and accomplishments are: 

• A preliminary work on general classification was performed using a fully pointwise 
compressed domain CNN. This work focused on the novel implementation aspect of 
the compressed domain CNN by using the OpenVINO inference engine to run the 
model on the CPU. The work was published in [46] and provided foundational 
insights for conducting this research work. 

• The development of a novel ‘M-skipped pointwise convolution branch’ aims to 
motivate the distinctive learning of M-DCTCs alongside L-DCTCs. The “M-Skipped 
DCT CNN” with the M-Skipped branch exploits various compositions of L-DCTCs 
and M-DCTCs to construct a rich and robust set of features. This architecture 
enables the interaction of lower-level features with higher-level features via 
shallowly convolved M-DCTCs. By adopting the M-Skipped architecture, the model 
avoids processing the full spectrum of DCT coefficients, reducing computational 
complexity and processing time, thus achieving optimisation. The M-Skipped DCT 
CNN serves as the baseline architecture for subsequent algorithms, incorporating 
the Adapt-DCT kernel and HyMod-ECA into this model. The experiments show that 
the characteristics of low-level M-DCTC are important in compressed domain 
FGVC. 

• The development of a novel algorithm named ‘Adaptive-DCT pointwise convolution 
kernel’ (Adapt-DCT kernel) was implemented on top of the M-Skipped architecture. 
The technique adaptively weights the individual spatial and frequency bases of the 
DCT basis functions to form a pointwise convolution kernel. This technique enables 
the modification of spatial sizes and pruning of frequency bases of the DCT basis 
functions. It considers both spatial and frequency bases of DCT basis functions in 
forming a pointwise convolution kernel. This algorithm avoids composing 
conventional convolutional kernels which may contain redundant filters, which 
significantly reduces the model’s footprint and enhances computational efficiency. 
The technique emphasizes the spatial context of DCT-based representations in 
kernels. 
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• The development of a ‘Hybrid Modified Efficient Channel Attention’ (HyMod-ECA) 
mechanism, which is used to investigate cross-DCT channel group interactions. This 
was achieved by applying fast 1D convolution with a large stride on the intermediate 
features. Unlike existing work that relies on cross-individual channel interactions, 
HyMod-ECA considers groupwise DCT attention weights that preserve the linearity 
and correspondence of the attention weights. The technique is novel for its study of 
groupwise DCT channel interactions. The integration of HyMod-ECA plays a crucial 
role in combining the relationships among features in compressed domain analytics. 
This mechanism is key to resource optimisation because it utilises a smaller number 
of attention weights compared to conventional methodologies. By employing fast 1D 
convolution with a larger stride size, the computational complexity is significantly 
reduced, resulting in fewer parameters and more efficient computing. This 
reduction in algorithmic complexity directly addresses the problem of resource 
inefficiency found in existing methods. Through the integration of HyMod-ECA, 
resource optimisation is achieved while enhancing the relationships among feature 
groups, which has a direct positive impact on both the overall computational 
efficiency and model performance. 

 

The significance of this research covers the following notable knowledge: 

• A broader implication of incorporating DCT coefficients beyond low frequency at 
greater network depths extends the understanding of fine-grained image 
representation and feature synthesis within CNN. 

• The advancements in frequency domain kernel formulation, learning capabilities, 
and optimisation techniques by leveraging the DCT basis function enhances kernel 
analytics in frequency domain CNNs. 

• The importance of interactions and correspondence among DCT channel sets and 
their corresponding weights along the learning phase of frequency domain CNN 

provides greater insights into feature relationships across various channel depths. 
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1.5 Scope of the Research 
 

Figure 1.2 presents a brief overview of the scope of this research work. As there is 
a wide spectrum of topics under the deep learning umbrella, therefore the topic listings 
in Figure 1.2 are not necessarily exhaustive, and only the most relevant ones are 
depicted. Figure 1.2 covers the basic types of ANNs, their applications, a few 
optimisation methods, and the compressed domain technique used in this research 
work. The orange boxes indicate the specific scope chosen for the research underlying 
this thesis. The compressed domain can cover many aspects of implementation in a 
deep learning algorithm. This research focuses on using the DCT technique to optimise 
the input and form a convolutional kernel in CNN for small-scale FGVC. 

 

 

 

Figure 1.2: The scope of the research work. 
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Figure 1.3 portrays the high-level block diagram of the novel approaches 
proposed in this research. Specifically, the Adapt-DCT convolutional kernel is 
implemented in M-Skipped DCT-CNN, whereas the HyMod-ECA module is added 
toward the output of each convolutional block across the main network. The integration 
of all three approaches works seamlessly to address the issues of FGVC. The arrows in 
Figure 1.3 indicate the directional flow of information along the CNN. A JPEG image is 
partially decompressed to obtain three partitions of DCTCs as input, specifically L-
DCTCs, M-DCTCs, and H-DCTCs. The L-DCTCs will flow through the main 
convolutional blocks whereby the adaptive weighted convolutional kernel and hybrid 
attention module are employed. The M-DCTCs will flow through another branch with 
fewer convolutional layers where the M-Skipped branch is employed. The concluding 
outputs from the two branches are concatenated and fed through the fully connected 
layers for classification. 

 

 
 

Figure 1.3: A high-level block diagram of the research work. 
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1.6 Thesis Structure 
 

This thesis consists of 5 chapters and is organised as below: 

• Chapter 1 – Introduction: This chapter thoroughly discusses the background of 
the deep learning approach and the importance of artificial intelligence. It 
provides the problem statements and the motivations for conducting this 
research work in the compressed domain FGVC. The aims and objectives, scope, 
and contribution of this research are outlined. 

• Chapter 2 – Literature Review: This chapter presents an overview of CNNs, 
compression algorithms, the mathematical transformation of compressed 
domain analytics, compressed domain-related CNNs, FGVC-related modules, 
and attention mechanisms.  

• Chapter 3 – Methodology: This chapter introduces the design and 
implementation of the skipping branch containing M-DCTC in a CNN. The M-
Skipped branch is integrated on a fully pointwise VGG-16 network, called ‘M-
Skipped DCT CNN’. It also develops and demonstrates the adaptive weighting of 
DCT basis functions to form a pointwise convolution kernel. It is referred to as 
the ‘Adapt-DCT Pointwise Convolutional Kernel’. The last section modifies the 
original ECA to form the novel hybrid modified ECA (HyMod-ECA) to exploit 
cross-DCT channel group interactions. 

• Chapter 4 – Results and Discussion: A few variants of the M-Skipped DCT CNN 
were experimented with, specifically by skipping the M-DCTC over convolutional 
block 1, block 2, and block 3. Small-scale fine-grained datasets of the frequency 
domain were used to evaluate the performance of the M-Skipped DCT CNN. 
Several variations of the adaptive weighting scheme and optimisation were 
investigated. A few benchmark datasets were tested on the Adapt-DCT CNN, and 
major results were presented and discussed. Several small-scale FGVC datasets 
were used to compare the performance of the model with and without this 
attention module.  

• Chapter 5 – Conclusion and Future Works: This chapter recaps the key findings 
and results of this research work. Several future works are suggested for further 
improvement of this study. 
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Chapter 2 Literature Review 

2.1 Convolutional Neural Networks 
The artificial neural network (ANN) is a type of neural network inspired by the 

biological neuron [47]. It mimics the working nature of the human brain. A single-layer 
perceptron probabilistic model [48] can perform decisions based on a set of weighted 
real value inputs. The weighted inputs are summed and passed through a Threshold 
Logic Unit (TLU), which can be referred to as an activation function [49] to produce a 
final output. A simple illustration of the perceptron is shown in Figure 2.1 [50]. 

 

Figure 2.1: A perceptron probabilistic model [50]. 

By combining multiple hidden layers of perceptron between the input and 
output, a Multilayered Perceptron (MLP) is formed. The combination of non-linear 
decision functions in an MLP provides non-linear boundaries in relation to the given 
inputs, which can thus solve more complex problems. The MLP, when composed of 
many layers, is a type of Deep Neural Network (DNN) [51]. It is also known as a 
network with fully connected (FC) layers due to its architecture where all the neurons in 
the current hidden layer are connected to all neurons in the previous layer. Deep 
learning [52] is a type of computational algorithms that implements DNN to extract 
high-level features from data. The number of trainable parameters and the model size 
of an MLP increase according to the complexity of a problem. This can cause several 
drawbacks such as an extensive rise in computational requirements and proneness to 
overfitting [53].  
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A convolutional layer carries units with receptive fields which involve a localised 
part of the previous layer. The adaptive weights associated with these units are often 
collectively referred to as a filter. The down-sampling layer benefits CNN by scaling 
down the spatial dimension of the previous layer and easing the classification. The 
neocognitron [54] is the first CNN precursor to use weight weight-sharing technique 
across multiple units. It addressed the challenges of MLPs regarding optimising the 
deep learning algorithms with reduced parameters and computational complexity by 
introducing weight sharing.  

With the increasing trend of digital media consumption over the years, images 
and videos are heavily stored and shared across online platforms. The internet access to 
media content has also increased especially for adolescents [55][55]. The applications 
and solutions of computer vision also dominate the market in areas such as automation 
and advanced manufacturing industries. The fundamental working mechanism of 
computer vision in deep learning algorithms relies on 2D-CNNs. Yann LeCun published 
the first work on a fully automated learning of CNN using backpropagation [56]. The 
backpropagation algorithm is used to optimise the weights by backpropagating the 
gradient of the loss function for each weight during training [57]. The model is named 
‘LeNet’ which was used to learn handwritten digits. The work is governed by the general 
convolution theorem forming modern CNNs [58]. A typical CNN consists of a few 
individual components including a convolutional layer, pooling layer, and fully 
connected layer [59]. A simple CNN can be visualised in Figure 2.2 

 

Figure 2.2: A simple illustration of the architecture of a CNN. 
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Convolution is the core operation of a CNN whereby a filter (kernel) is convolved 
across the input matrix. In 2D CNNs, the convolution is done by computing the dot 
product between the filter and the input entries. The kernel size and the corresponding 
stride size are determined before a convolutional process. Stride size is the number of 
shifting pixels when the filter matrix is convolved over the input matrix. The 
mathematical equation of 2D convolution [60] is denoted in Equation 2.1: 

𝑦[𝑖, 𝑗] = ; ; ℎ[𝑚, 𝑛] ∙ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]
!

"#$!

!
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 Eq.  2.1 

Where ‘h’ is the filter matrix, ‘x’ is the input matrix, and ‘y’ is the output feature 
map.  The convolutional layer serves as a feature extractor [4]. A small number of 
artificial neurons with learnable weights are grouped to form a filter in the 
convolutional layer. These filters are also known as kernels, and they are capable of 
learning local feature representations. The kernels are convolved across the input 
matrix during the forward pass to produce the corresponding output. The receptive 
field is a portion within the local input region where the kernel function is applied to 
produce the corresponding output feature. The respective outputs are arranged in a 
spatial configuration consistent with the previous layer to produce a feature map. A 
variety of feature maps are formed by convolving different kernels with the input 
matrix. The feature maps are stacked to produce the output of a convolutional layer 
which will be sent to an activation function to form the final activation maps. 

Activation function [49] is a crucial part of a neural network as it serves non-
linearity boundaries for the output from an artificial neuron. It also has a major 
influence on the computational efficiency and performance of a CNN [61]. Dhanasree 
[62] presented the significance of an activation function along multiple hidden layers in 
a network for data analytics. The paper concludes that the performance of a general 
neural network will be affected by the number of hidden layers and types of activation 
functions used. 
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The weighted sum of input sets in an artificial neuron delivers a single output 
proportional to the input sets. The drawback of the linear regression model is that the 
input and output sets are treated as a linear relationship, whereas the real-world 
problems exhibit non-linearity in nature. Fortunately, the nonlinear activation 
functions overcome these issues by adopting non-linearity. This property allows the 
stacking of multiple layers of artificial neurons to form a DNN which is desired for 
solving complicated tasks, such as image classification performed by a CNN [63]. The 
nonlinearity of activation functions is important since it allows the network to form 
complex non-linear mappings between input and output. Two popular activation 
functions are highlighted which are found in many DNNs today, namely the Sigmoid 
function and the Rectified Linear Unit function (ReLU). Their respective behaviours are 
shown in Figure 2.3 [64]. 

 

 

Figure 2.3: An illustration of the activation function and their corresponding response [64]. 

ReLU is widely used in CNNs as it is computationally efficient [65] to achieve 
non-linearity and it reduces the vanishing gradient problem. The sigmoid activation 
function produces a smooth and continuous non-linear output concerning the input; 
thus, it is useful in probability and prediction algorithms. The feature maps from a 
convolutional layer that goes through the activation function will form an array of 
activation maps. In other words, the convolutional layer learns filters that will lead to 
large node activations when specific features are detected in specific locations of the 
input. In the same convolutional layer, feature maps contain non-identical weights to 
detect different features at different input locations. The convolution is done between 
input images or feature maps with different filters to generate new feature maps, and 
the output is delivered through nonlinear activation functions to produce the final 
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activation maps. The pooling layer is also an important element of CNNs. It is used to 
perform a non-linear down-sampling of the activation maps. The objective of 
performing the pooling operation is to downsize the spatial dimension of the activation 
maps, to provide invariance properties, and to reduce computational complexity. 2D 
spatial max pooling is the commonly adopted method for pooling in CNNs. The 
example in Figure 2.4 portrays the concept of max pooling [66]. 

 

Figure 2.4: The operation of max-pooling in a CNN [66]. 

The convolutional and pooling layers are often stacked on top of each other 
progressively to form a convolutional block. The spatial dimension of the feature maps 
will shrink in size due to the stride operation and the spatial down-sampling while 
extending depth in the layer dimension. After the pooling layer in the last convolutional 
block, all the feature maps are flattened into 1D vectors. The 1D vectors are fed towards 
a few layers of fully connected layers and classification is conducted. For multiclass 
image classification, the SoftMax function is used for determining the probability class 
of a given input image. The SoftMax function is also used in other applications such as 
reinforcement learning in game theory [67].  

A CNN is comprised of several convolutional blocks followed by FC layers. It 
extracts several simpler features primarily and gradually combines them in the later 
layers forming the required results. The principle of hierarchical feature extraction of 
the CNN is shown in Figure 2.5 [68]. It shows that the first stage of the neural network 
model recognises the edges of the representation. The latter stages further combine and 
map the previous features into a higher-level feature for classification.  
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Figure 2.5: Principle of hierarchical feature extraction in a CNN [68]. 

With the advancement in hardware technologies for training CNNs over the 
years, more popular architectures [69] have been established and have brought 
astounding impact to modern computer vision recognition [70]. The motivation to 
design a better CNN [71] tends to lead to better performance and overcome several 
issues in CNN development. A few state-of-the-art CNN architectures are covered in 
this section to appreciate the insights and contributions that resolved the potential gaps 
in between. 

LeNet-5 [72] was the first CNN to perform Optical Character Recognition (OCR) 
through 3 convolutional layers, 2 pooling layers, and 2 fully connected layers. The 
major downside of this architecture is that it is not deep enough. The ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) [73] is a well-known computer vision 
classification benchmark on 1000 categories. The task incorporates object detection 
[74] and classification [75]. AlexNet as the improved version of LeNet-5 scored a top-5 
error rate of 18.2% in the ILSVRC 2012. AlexNet was the first CNN to feature GPU 
learning for accelerated training. Since AlexNet contains up to 61 million trainable 
parameters, the DropOut layer [76] was used later to generalise the model to avoid 
overfitting. Some of the dominant CNN models after AlexNet are the VGG-nets [75], 
Residual Networks [8], Dense-net [77], and MobileNet [78]. They are widely used 
among state-of-the-art contemporary architectures. 
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The Visual Geometry Group (VGG) developed VGG-net [75] with deeper 
convolutions adapting the same filter size. It features a uniform CNN with a few feed-
forward convolutional blocks. The most popular variation is the VGG-16 which is shown 
in Figure 2.6. It contains a total of 16 layers deep, whereby all the filters carry a spatial 

dimension of 3 × 3. The very deep VGG-16 consists of 138 million trainable parameters. 
It was found that very deep networks were subjected to the vanishing gradient problem 
when the VGG nets extended beyond 20 convolutional layers, which limits the network 
performance. 

 

Figure 2.6: The architecture of a VGG-16 net [75]. 

Deep residual learning was introduced to resolve the vanishing gradient problem 
by inserting residual connections between convolutional layers. The residual network 
(ResNet) [8] is the first CNN adopting residual learning which won the ILSVRC in 2015 
with a top-5 error rate of 3.57%. The ResNet-152 used in the competition consists of 152 
convolutional layers, which is approximately 8 times deeper when compared with VGG-
19. Figure 2.7 portrays the bottleneck of the ‘identity shortcut connection’ from one of 
the residual blocks. Batch normalisation is also added after every identity block to 
further reduce the overfitting and vanishing gradient issue.  

 

Figure 2.7: A 2-layer identity block from residual network [8]. 
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DenseNet [77] also uses shortcut connections between layers by connecting all 
previous layers to the current layer. All feature maps of preceding layers are served as a 
concatenated input towards the current layer. It contains more shortcut connections 
between the convolutional layers. DenseNet can overcome the vanishing gradient 
problem while greatly reducing the number of trainable parameters. The Squeeze-Net 

[79] architecture was modified from Alex-Net [80] with 50 × fewer parameters while 
attaining similar performance. The key technique for reducing the number of 

parameters in SqueezeNet is by replacing 3 × 3 filters with 1 × 1 filters.  

Mobile-Net [78] is a small CNN architecture that highlights depth-wise separable 
convolutions. Depth-wise convolution is a convolution process applied spatially across 
each of the channels independently, producing an output with the same number of 

channels as the input feature. The output is later applied with 1 × 1 filters. The 1x1 filter 
is referred to as a pointwise convolution filter. It requires less power to run and is 
specially designed to fit applications in mobile devices. 

From the above literature, it can be recognised that by adopting a greater 
number of deep convolutional layers in CNN using residual learning, CNN can achieve a 
good performance. To optimise the CNN while retaining comparable performance, an 

individual can implement 1 × 1  filters onto the prior baseline models. The remaining 
sections of the literature will cover the background knowledge underlying the core ideas 
of this work. 
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2.2 Compressed Domain Algorithms and Neural 
Networks 

2.2.1 Comparison Metrics of various Compression 
Algorithms 

Compression is applied to an image to reduce redundancy. It is important to 
understand the fundamentals of the compression algorithms specifically between DFT, 
DCT, and DWT. A mathematical transformation (MT) is conducted in the compression 
process to transform the image into another domain that uses fewer bits for image 
representation. Most image compression is done by converting the image from a spatial 
to a frequency domain via Fourier-related transformation. The popular MT algorithms 
are Discrete Wavelet Transformation (DWT) and Discrete Cosine Transformation (DCT) 
[81].  

[82] showed that DCT compression has an overall higher Mean Square Error 
(MSE) and Compression Ratio (CR) over DWT, and lower Peak Signal-to-Noise Ratio 
(PSNR) and Bits Per Pixel (BPP) over DWT. [81] used FFT, DCT, and DWT as the base 
functions for image transformation by applying four different compression percentages 
(10%, 30%, 50%, and 70%). The author concluded that DCT is a better MT compared 
with DWT and FFT in image compression. The author also indicated that most of the 
image quality is preserved when the compression rate is below 10% regardless of the 
image size. Another paper [83] did a comparative study on image compression between 
DCT and DWT using JPEG and PNG colour images. The image size stayed constant 
throughout the experiment and was processed with level-1 DWT. It was shown that 
image compression using DWT and Inverse DWT performs better than DCT in terms of 
image devaluation criteria, which were measured in MSE and PSNR. Some other 
studies [84][85] have shown that both DWT and DCT have comparable image quality 
preservation while DCT performs better than DWT through less computational 
complexity. 

Fourier-related transformation (DFT, DCT) is efficient in extracting low-level 
(frequency) features of an image, while high-frequency components are usually 
quantised thus causing poor edge quality [86]. The transformation usually partitions 
the image into blocks and applies the transformation to each of the blocks. It was 
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reported in [87] that DCT performs efficiently at medium bit rates. JPEG uses 
sequential DCT such that image coding at high and medium bit rates is good. Low 
compression bit rates with high quantisation will increase the compression ratio, but it 
can lead to blocking artefacts and spatial decorrelation from the neighbouring blocks. 
DWT can preserve better image quality as there are no blocks or partitions involved. 
DWT exhibits multi-resolution properties. It can decompose a frequency signal using 
sinusoids of very fine resolution. DWT produces high-quality content at lower bit rates. 
Larger DWT basis functions or wavelet filters can cause blurring effects at image edges. 
At low compression rates, DWT produces a lower-quality image than DCT and requires 
a longer compression time. DWT and DCT produce comparable energy compaction 
properties. DCT has better performance than DWT in terms of lower BPP and higher 
CR. So, it is a fair trade-off whereby DCT does not match DWT in terms of image quality 
but outperforms DWT in terms of computational requirements. 

The main difference between DCT and DWT coefficients lies in the high pass 
band. The DCT high pass band provides higher frequency resolution but lower spatial 
resolution. It has more frequency bands, but it is hard to recognise spatial information. 
In contrast, the wavelet sub-bands provide higher spatial resolution and lower 
frequency resolution as the number of sub-bands is smaller, but the spatial resolution is 
prevalent.  

[88] compared DCT- and DWT-based compressed image algorithms to observe 
their transmission through wireless sensor networks (WSN). The results showed that 
DWT transform is better than DCT in terms of image quality and execution time, while 
DCT outperformed DWT in memory space consumption. [89] compared data 
compression in image processing for medical images. The experiment covered an MRI 

CT scan of an axial slice of the human brain with a grayscale image size of 512 × 512. 
The result showed that JPEG compression outperforms DWT in terms of PSNR and CR. 
JPEG has higher image quality at a lower CR than DWT. At higher CR, the quality of the 
JPEG image degrades due to blocking artefacts. Wavelets however provide good image 
quality at low bit rates due to their overlapping basis functions and the energy 
compaction property of wavelet transforms. 

[90] presented a broad review of various methods used for feature extraction in 
facial expression recognition. By solely comparing DCT zigzag extraction and DWT 
feature extraction in [91], DCT achieved 80% accuracy while DWT achieved 81%. DCT 
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and DWT feature extraction performance is comparable in terms of feature quality 
preservation. Another paper [92] demonstrated facial recognition using compressed 
domain data with Principal Component Analysis (PCA) and Independent Component 
Analysis (ICA). The focus of this paper was to observe the normalised recognition rate 
(NRR). For PCA NRR comparison, DCT and DWT have a comparable performance level 
from 0.5 bit-per-pixel onwards. The results from ICA NRR showed that DCT 
outperforms DWT. [93] demonstrated iris recognition using block-based DWT and DCT 
for feature extraction. Block-based DWT outperformed conventional DWT and DCT as 
the false acceptance rate (FAR) and false rejection rate (FRR) are minimal. In [94], FFT, 
DCT, DWT, and Gabor Filter were used as feature extractors in fingerprint recognition. 
By comparing only DWT and DCT, both transformations achieved a comparable total 
success rate (TSR). 

Table 2.1 establishes the summary of the discussion. From the literature 
reviewed, DWT outperforms DCT in image quality, but the difference is minimal. DWT 
is a type of image CODEC algorithm that is very sensitive to sudden changes in an 
image. Several scaling and bandpass filter-like processes are employed along the 
transform for signal coding. Although it is a lossless image compression format, DWT 
generally requires more effort compared to DCT. In terms of computational complexity, 
DCT is reported to be more efficient as compared to DWT. By extending the concluding 
factors towards compressed domain CNNs, DCT will be less expensive to implement. 
Therefore, DCT will be used in this research as it is intended to focus on compression 
gain over image quality. 

Table 2.1: Comparison of different aspects of each compressed domain algorithms. 

Aspects DCT DWT 

Image quality Slightly worse, negligible Better 

Preserve edge information Slightly worse, negligible Better 

Compression gain Higher Lower 

Computational complexity  Lower Higher 
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2.2.2 Frequency Domain CNNs 

The DCT approaches used in CNNs will be reviewed in this section. Table 2.2 
summarises the core comparisons of the related works in section 2.2.2 and 2.2.3: 

Table 2.2: Summary of literature on frequency domain and DCT-based CNNs. 

Literature Compression Algorithm Methodology 

[95] DCT Apply DCT towards the entire face image for 
recognition. 

[96][97] DCT 
Combine DCTC with dynamic weighted 
discrimination power analysis (DPA) for identity 
recognition. 

[98][99] DFT 
Compute convolution as the pointwise product in the 
Fourier Domain and reuse the transformed feature 
maps repeatedly. 

[100] DCT Train CNN directly on the DCTC partition available 
within the JPEG codec without full decompression. 

[25][101] DCT Integrate a DCT module on top of a CNN to train a 
robust model by accommodating specific distortions. 

[102] DCT DCT-based spectral pooling replaces normal 2D-
MaxPooling to resolve heavy information loss. 

[23] Inverse-DCT 
The convolution filters are trained and saved in DCT 
coefficients. Inverse DCT is applied to the filters to 
get spatial filters during inference. 

[26][103] DCT 

Network consisting of harmonic blocks (learning 
optimal combinations of spectral filters defined by 
DCT) and some optionally learned spatial 
convolution or FC layers. 

[104] Spatial domain, none used 
Factorise spatial mixed feature maps at different 
frequencies and encourage inter- and intra-frequency 
communication. 

[105] Cosine basis function 
Frequency parameters (amplitudes, frequencies, 
phases) of cosine basis are learned to produce spatial 
domain filter weights during training. 
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An early paper [96] demonstrated a statistical analysis by combining DCT 
coefficients and discrimination power analysis (DPA) for identity recognition. Dynamic 
weighted DPA (DWDPA) was proposed to enhance the DP of the selected DCTC without 
a pre-masking window. Mathieu et al. showed an early technique [98] to reduce the 
CNN’s training and inference time by computing convolutions as pointwise products in 
the Fourier Domain. The transformed feature maps were reused repeatedly. The 
algorithm is based on the Convolution Theorem which states that circular convolutions 
in the spatial domain are equivalent to pointwise products in the Fourier domain. This 
method is efficient when the size of the convolution kernel is close to the input. The 
need to compute padding or periodic expansion is not easy to implement although it 
can save up computational power. Besides, a complex number can introduce complexity 
in calculations. The results in [98] proved that even though FFT is less efficient for a 
single convolution, with a deep network, the resource optimisation is much more 
noticeable. Even same memory bank was used to store the Fourier Domain feature 
maps for different layers, additional memory is still required. The inverse FFT is 
required to transform the data back to the spatial domain at the end of the network.  

[99] opted out of the repeating process of forward and inverse Fourier 
transformations in the CNN. The training was conducted entirely in the Fourier 
frequency domain to speed up the entire process. From the Convolution Theorem as 

shown in Equation 2.2, ‘ℱ’ denotes Fourier Transform, ‘*’ denotes convolution and ʘ 
represents the Hadamard Pointwise Product. 

ℱ(𝜅 ∗ 𝑢) = ℱ(𝜅)⨀ℱ(𝑢) Eq.  2.2 

The operation carried out in the Fourier domain is less intuitive as the 
representation of the filters learned in the frequency domain could not be interpreted 
directly. FFT was only applied on the input images while the kernels were treated as 
Fourier filters. The Fourier-CNN (FCNN) in [99] can learn arbitrarily large spatial 
kernels through the Fourier domain. However, it was limited by the initial image size, 
as the spatial domain kernel size cannot be larger than the input image size. The 
pooling operation was carried out alongside the convolution to save up more 
computational costs. Fourier domain feature maps were distributed differently in FCNN. 
More features can be preserved in the Fourier domain as compared with the spatial 
domain. According to the 3D tensor shown in Figure 2.8, high-frequency data is often 
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concentrated towards the centre of the Fourier tensor while low frequency is towards 
the boundaries. The pooling operation which discards the high-frequency components 
is straightforward.  

 

Figure 2.8: A pooling mechanism within a Fourier domain [99]. 

In the spatial domain, the kernels or feature maps will overload the memory if 

the input image size reaches a certain limit (2&  in [99]). It can also cause parallel 

training to be infeasible, which can be addressed by reducing the batch size. This issue 
was addressed and resolved by training the model in the Fourier domain as it requires 
less memory when running in parallel. The computational complexity of spatial 
convolution increases exponentially as the image size increases, while Fourier 
convolution scales at a slower rate. The FCNN was assessed based on the computational 
time and accuracy of 3 datasets (MNIST, CIFAR-10, and Kaggle fundus images). In 
most of the experiments, FCNN exhibited a run-time advantage. The optimisation 
technique used in FCNN can be implemented in other network architectures to achieve 
SOTA accuracies with reduced memory footprint. The advantages exhibited by Fourier-
related CNNs encourage more studies to be conducted on compressed domain CNNs. 

A combination of spectral and spatial representations was incorporated by [106] 
in the convolutional block by effectively integrating features from both domains. The 
combination was done on a channel-shifting mechanism. It was found that this 
mechanism can reduce information loss as well as encourage model robustness. Since 
the spatial-spectral convolution learns features in both domains concurrently, it can 
detect the information from both domains. This includes local correlations in the spatial 
domain, global features of low frequency, and granularities of high frequency in the 
spectral domain. The channel division factor on spatial and spectral domains is based 
on a hyperparameter. The output feature maps from both domains are concatenated 
and passed through channel shifting before being fed into the next input. The shifted-
spectral convolution was evaluated based on CIFAR and SVHN datasets on the VGG 



27  

network. Based on the experiments conducted in [106], with an optimal channel-
division factor, this module can achieve a lower classification error rate with fewer 
parameters compared with conventional spatial domain convolutions. 

In natural images, higher frequencies encode fine details while lower frequencies 
encode global structures. Octave Convolution (Oct-Conv) was introduced in [104] to 
factorise the feature maps at different frequencies to reduce spatial redundancy. Oct-
Conv can be used as a direct replacement for vanilla convolutions. The information 
between adjacent locations is treated as a multi-frequency representation. The high and 
low-frequency features are stored and processed through different channels. In octave 
convolution, the aim is to obtain both low- and high-frequency maps (inter- and intra-
frequency update) as the input towards the next feature maps. The up-sampling process 
is applied on the low-frequency maps when performing inter-frequency communication 
towards the high-frequency output, while the average pooling is imposed on the high-
frequency maps. The Oct-Conv was tested on ImageNet using ResNet and DenseNet 
[104]. It was recognised that Oct-Conv can achieve 82.9% classification accuracy by 
only using 22.2 GFLOPS. 

The pioneering introduction of FCNN marked a major leap in utilising 
compressed domain-related techniques to achieve computational optimisation without 
compromising SOTA accuracies. Techniques such as shifted-spectral convolution and 
octave convolution have emerged as noteworthy approaches for integrating information 
from various domains or capturing details at different frequency levels. These 
methodologies provide valuable insights into how combining signals from diverse 
domains can effectively reduce classification error rates and enhance optimisation. 
These algorithms were primarily tested on general classification datasets such as 
MNIST, CIFAR, SVHN, and ImageNet using popular CNN architectures like VGG, 
ResNet, and DenseNet. They prioritise parameter commonality while using 
classification error rates and computational complexity as key evaluation metrics. 
Despite their advantages in facilitating information exchange, these approaches often 
overlook the global context of features. Nonetheless, they serve a foundational 
background that motivates further exploration into the integration of different 
frequency coefficients at multiple scales. 
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2.2.3 Integration of DCT within CNNs 

The authors in [100] presented a method to train the CNN directly on the DCT 
coefficients available within the JPEG codec without performing full decompression. 
The frequency information was fed directly into the modified ResNet-50 network. It 

was reported that the network was 1.77 × faster and more accurate on ImageNet than 
the original ResNet-50. It was reported in [100] that the ‘Deconvolution RFA’ network 
achieved the lowest top-5 error rate with an improved inference speed of 30%. The 
‘Late-Concat-RFA-Thinner’ architecture from [100] has the closest baseline error rate 
with 77% faster inference. This study contributes to an insight into implementing the 
DCT coefficients directly in CNN for computer vision tasks. It also showed that it is vital 
to balance between the model’s performance and computational speed.  

[25] addressed the issues of modern CNNs which rely heavily on large datasets 
for training and CNNs’ vulnerability to image quality degradation. ‘Distortion Robust 
DCT-Net’ was proposed in this research by integrating a DCT module on top of VGG-16. 
It improved the CNN’s invariance by exposing it to more unseen images by fine-tuning 
the model to accommodate specific distortions. The forward 2D-DCT was performed on 
the input image, and the high-frequency components were discarded according to a 
uniformly distributed scale. The remaining coefficients were transformed back to RGB 
images via IDCT and fed into the network for training. The randomised selection of the 
threshold value for discarding high-frequency DCT coefficients of the input image was 
limited. A better scheme is required to produce a deterministic decision to select which 
coefficients to discard. Besides, the repeating forward and inverse DCT are inefficient. 
By discarding high-frequency components, noise, and distortion can be rejected. But at 
the same time, the method also discards edge details within the image. A blindly trained 
model with image data containing mostly low-frequency DCT coefficients can perform 
well in image classification with large variations. However, it may lead to potential gaps 
in fine-grained image classification.  

The DCT operation was used in [101] for feature extraction. The authors 
incorporated the DCT process with convolutional layers after the non-linear activation 
function and before the pooling layer. The best result was obtained by performing DCT 
once towards the first convolutional layer to capture low-level information. The DCT 
process can be found at the ‘conv1’ layer in the CNN architecture in Figure 2.9. 
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Figure 2.9: A DCT operation in the first convolutional layer [101]. 

The model was tested on pedestrian detection and object recognition. It was 
reported that feature extraction in the DCT domain resulted in an accuracy drop of 7.1% 
and an increase in convergence speed on CIFAR-10 when compared with conventional 
models. The weight matrices in the final model are sparser thus further optimisation 
can be achieved. Although the real-time DCT operation exhibited noticeable 

computational complexity, it helped the model to converge 5 ×  faster with fewer 
training epochs. A novel DCT-based pooling layer was developed in [102] to mitigate 
heavy information loss due to max-pooling in the spatial domain. It was proved that 
DCT-based pooling can preserve more information as compared to DFT due to its high 
energy compaction. The DCT-transformed matrices were embedded into the linear 
layer to accelerate the pooling process on GPU. Although the method can preserve 
features and fast DCT was used, the repeating forward and inverse DCT is still 
inefficient.  

In [107], a DCT perceptron layer based on the DCT convolution theorem was 

developed. It was aimed to substitute 3 × 3 convolutional layers in CNN. The DCT 
perceptron module contains a scaling layer, a pointwise convolutional layer, and a 
trainable soft-thresholding function. The forward 2D-DCT was initially imposed on the 
intermediate feature maps before it was fed into the module. The output from the 
module is transformed back into spatial features via an inverse 2D-DCT. The scaling 
layer is similar to the concept of spatial domain convolution, where the trainable soft-
thresholding layer can capture the positive and negative amplitudes of DCTC. The 
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trainable parameters in the soft-thresholding layer can be neglected for more parameter 
savings. This is because the PReLU activation function is sufficient to detect the positive 
and negative portions of the DCTCs. Although this method exhibited a reduced number 
of trainable parameters, the forward and inverse DCT processes are still undesirable. 
Thus, the process shall be addressed with an alternative approach. 

Chęciński et al. [23] presented a method to perform IDCT on a set of trained 
parameters (frequency weights) in the context of spatial convolutional filters. The 
authors suggested a transformation over the trained parameters (small dimension of 
kernel weights) to produce the filter. This was done by coding the spatial convolution 
filters with trained DCT parameters to achieve a smaller model size. In other words, 
whenever any filters in the convolutional layer were used (inference), these filters were 
generated via IDCT from the frequency weights. This research showed that sufficiently 
rich spatial filters can have sparse frequency representations. The IDCT was performed 
independently for each filter. This can lead to a tremendous increase in computational 
complexity. Another recent work on using DCT in convolutional kernel can be found in 
[33]. 

Harmonic blocks produce features by learning optimal combinations of spectral 
filters defined by DCT [26]. It replaces the convolutional layers in conventional CNNs to 
construct a partial or fully harmonic CNN. Spectral features are generated by learning 
the linear correlations of the spectral filters defined by 2D-DCT. The spectral filter 
selects or eliminates image contents based on wavelength information. DCT is 
advantageous in frequency separation and energy compaction. The harmonic networks 
learn responses by combining ‘window-based-DCT’ with a small receptive field. Besides, 
it also learns to combine spectral coefficients at every layer to produce a fixed-size 
representation defined as the ‘weighted sum of responses’ of DCT filters.  

Harmonic networks consist of a few harmonic blocks with some optionally 
learned spatial convolutions or FC layers. The harmonic blocks decompose the input 
features using ‘window-based 2D-DCT’. The transformed signal is then combined with 
learned weights. The input features that have gone through spectral decomposition will 
produce a block-wise DCT representation. Thus, a new feature map for each channel is 
formed. The frequency coefficients of the transformed features are mapped along the 
layer dimension. Each set of feature maps in each layer represents a particular DCT 
basis function. The harmonic blocks can be treated as a special case of depth-wise 
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separable convolution with predefined spatial filters. It learns the relative importance of 
the feature extractors (DCT filter responses) at multiple layers. The spectral 
decomposition is computationally cheaper when compared with spatial convolution, 
but it up-samples the number of intermediate features hence increasing the respective 
memory requirements. This is particularly inefficient for memory management. 

Figure 2.10(a) shows a harmonic block that performs channel-wise windowed 

DCT and recombines the responses with 1 × 1 convolution. Given that a set of filters 

carrying size ‘K’, number of input channels ‘N’, and output channels ‘M’, each box shows 
the corresponding operation, filter size (if applicable), and the number of output 
channels. The batch normalisation (BN) layer is optional. The compression of harmonic 
networks limits the visual spectrum of the harmonic blocks. It allows less processing of 
low-frequency DCT coefficients to reduce the number of parameters and operations. 
The coefficients were arranged following their importance in the triangle patterns as 
shown in Figure 2.10(b).  

 

  

Figure 2.10: (a) Harmonics convolutional block. (b) Harmonics convolutional kernel visualisation [26]. 

In [26], a hyperparameter will determine the level of DCTC allowed for 

computation. Equation 2.3 shows that a feature map ‘h’ at depth ‘l’ is computed as a 

weighted linear combination of DCT coefficients across all input channels ‘N’. φ',)	is the 

frequency selective DCT filter with a spatial size of K × K, ‘∗∗’ represents 2D convolution, 

andW*,',+
,  is the learned weight. The integration of harmonic blocks in CNN showed 

improvement in classification accuracy and parametric complexity. However, the 
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spectral decomposition up-samples the number of intermediate features (by a factor of 

K-) hence increasing the memory requirements.  

ℎ. = ;;;𝑤",/,0.
1$2

0#3

𝜑/,0 ∗∗ ℎ".$2
1$2

/#3

4$2

"#3

 Eq.  2.3 

The work was further studied by Ulicny et al. in [103] to address the need that 
CNNs have for large amounts of training data. The proposed harmonic blocks with DCT 
filters in CNNs are computationally cheaper and perform better than wavelet scattering 
networks (a network that works robustly with wavelet scattering data). [103] relates 
harmonic convolution with Modified-DCT (MDCT) to consider overlap in convolution. 
MDCT can reduce artefacts at the window edge. An improved model with higher 
efficiency was achieved which outperformed the wavelet scattering network.  

The former work on harmonic blocks [26] replaced fully learned convolution 
with multidimensional input features. L1-normalized filters (batch normalization) were 
found useful for conserving DCTC features along the spatial-frequency spectrum. For 
parallel execution, extra memory was required to store the DCT filters’ responses at 
each layer. It was realised that DCT and the linear combination operation could be 
integrated into a single operation. By factorising the filters as a linear combination of 
DCT basis functions, equivalent features can be obtained.  With control over the filters, 
the author can approximate the signal with reduced computational complexity [103]. It 
was concluded that with only a small increment in multiply-add operations, it was 
possible to obtain similar performance and avoid overfitting in the model. [103] studies 
the effects of window functions in MDCT with a harmonic block by evaluating the 
classification error on 3 datasets (MNIST, CIFAR, and STL-10). Instead of computing a 
total DCT computation, using shifting to compute the convolution of filters along the 
feature maps might achieve a cheaper computation and the shifting weights can be 
learned dynamically. 

Ciurana et al. [105] proposed a method to use the cosine basis function to 
generate filter weights. The convolutional layer is known as ‘Cosine Convolution filter’ 
(CBC). Frequency parameters of cosine bases were learned to produce spatial domain 
filter weights. The hybrid CBC only uses amplitudes, frequencies, and phases to 
represent the entire spatial filter. The CBC filter can be known as the frequency 
decomposition of a convolutional filter. The CBC filter can be derived from spatial 
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dimensions (x, y) and channel dimension (c). To produce a spatial filter, two cosine 
basis functions of ‘spatial-product (SP)’ and ‘spatial-direction (SD)’ were developed. The 
spatial-product CBC filter only defines the composition of two unique spatial harmonics. 
On the other hand, a spatial-direction CBC filter defines one harmonic in two different 

directions, ‘w7’ and ‘w8’ which represent the unique frequency in both vertical and 

horizontal dimensions. The S9  resembles two harmonics in horizontal and vertical 

dimensions while the S: uses a single harmonic to define a filter in different directions. 

The definitions of S9 and S: are shown in Equations 2.4 and 2.5. 

𝑆;(𝑥, 𝑦) = cos	(𝑤< ∙ 𝑥 + 𝜙<) ∙ cos	(𝑤= ∙ 𝑦 + 𝜙=) Eq.  2.4 

𝑆>(𝑥, 𝑦) = cos	(𝑤< ∙ 𝑥 + 𝑤= ∙ 𝑦 + ∅) Eq.  2.5 

the feature dimension, ‘feature-direct (𝐹𝐷 )’ and ‘feature-weight (𝐹𝑊 )’ were 

proposed. Another cosine basis function was initialised, with ‘𝐴 ’ representing the 

amplitude, ‘𝑤𝐶’ representing the frequency, and ‘𝑐’ representing the feature coordinate 

of the filter weights. It has higher compression as only three parameters (amplitude 𝐴, 
frequency 𝑤𝐶, and phase φ𝑐) are required to define a channel. Both spatial and feature 

dimension basis functions can combine to create a CBC filter as shown in Equation 2.6. 
Spatial or feature dimensions can be any one of the two equations proposed earlier. 

 
Eq.  2.6 

The hybrid CBC layer combines conventional spatial filters and CBC filters. It is 
aimed to capture harmonics in the feature maps using a CBC filter while conventional 

filters are used for complex features. With a total of ‘𝑀’ filters, ‘α’ determines the 
number of CBC filters versus spatial filters. When α is close to zero, a near-to 
conventional convolutional filter will be produced and vice versa. The hybrid CNC filter 

bank is shown in Figure 2.11. For a 1 × 1  filter, the S(x, y) was set to 1 in Equation 2.6 

such that only F(c) was used. 
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Figure 2.11: An illustration of the Hybrid CBC filter bank [105]. 

VGG-16 and ResNet-50 were employed to train datasets including CIFAR-10, 
CIFAR-100, and Monkeys (for fine-grained classification). The evaluation primarily 
centred on classification accuracy and convergence speed. Remarkably, the experiments 
revealed that models incorporating hybrid CBC layers exhibited superior performance 
compared to conventional networks, even when operating with fewer parameters 
(compression factors ranging between 1.2 and 2). This technique not only facilitates 
faster convergence speed during training but also allows for incremental increases in 
the spatial size of filters without incurring additional costs, all while reducing the 
overall number of parameters. 

A notable advantage of the CBC filter is that receptive fields can be increased at 
no cost as the number of parameters does not change in the cosine basis function. 

Based on the spatial and feature weighting of the CBC filter, the parameters (A, w7, w8, 

wC , φx , φy , φc ) forming S(x, y)  and F(c)  were trained to be consistent across each 

channel instance. Although fewer parameters were required to form a CBC filter, it is 

challenging to access and fine-tune each feature channel instance (c) at a particular 

direction of (x, y) thus limiting the potential of CBC to form the spatial kernel. 

From the literature reviewed, the main metrics for evaluating the effectiveness of 
compressed domain techniques in CNNs typically revolve around classification 
accuracy or error rate. In addition, the secondary metrics to assess the training speed of 
compressed domain CNNs are often measured by convergence speed. Other relevant 
parameters include the number of trainable parameters and computational complexity. 
For studies targeting general classification tasks, common datasets like MNIST, CIFAR, 
NORB, and STL-10 are frequently used for small-scale evaluation, while ImageNet 
serves as a benchmark for SOTA assessments. Provided the focus of this research is on 
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FGVC, small-scale datasets like Monkeys can be found in the literature to offer a fair 
comparison. Popular networks such as VGG and ResNet are usually employed due to 
their ease of implementation and well-established performance. While equipment 
variations exist across studies, the use of GPU for this research is deemed acceptable. 
Because the focus of this work is on achieving compression gain and comparable 
accuracy in compressed domain FGVC, the specific equipment used becomes a 
secondary concern, as it does not impact the research outcomes or outcomes. Table 2.3 
provides a summary of the key metrics, models, and commonly utilised datasets found 
in the majority of literature related to compressed domain CNNs. 

Table 2.3: The quantitative evaluation metrics, data sources, and the model apparatus relating to the 
compressed domain technique in the corresponding literature. 

Literature Metrics Model Datasets 

[98][99] Classification Accuracy 

Computational Complexity 

Basic CNN MNIST 

CIFAR 

[106] Test Error Rate 

Number of Parameters 

VGG CIFAR 

SVHN 

[104] 

 

Classification Accuracy 

Computational Complexity 

ResNet 

DenseNet 

ImageNet 

[100] Classification Accuracy 

Inference Speed 

ResNet ImageNet 

[101] Classification Accuracy 

Convergence Speed 

Basic CNN 

VGG 

ResNet 

CIFAR 

STL-10 

[26] Classification Error 

Number of Parameters 

ResNet MNIST 

CIFAR 

NORB 

STL-10 

[105] Classification Accuracy 

Convergence Speed 

VGG 

ResNet 

CIFAR 

Monkeys 
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2.3 Attention Mechanism and Adaptive Techniques 
on Compressed Domain FGVC 

Table 2.4 summarises the core comparisons of the related works in section 2.3 
concerning FGVC. 

Table 2.4: Summary of literature on attention mechanism and adaptive technique in compressed domain 
CNNs. 

Literature Domain Methodology 

[109] Similarity learning Use distance metrics to compute discriminative 
information between subtle features. 

[31] [32] Similarity learning Compute bilinear functions. 

[33] Similarity learning Compute channel and spatial correlations. 

[34] Information exchange Use progressive training to acquire features at different 
stages to form higher-level features. 

[35] [36] Information exchange Use dual pathway hierarchy to integrate low-level with 
high-level features. 

[37] Information exchange Combine localisation and fine-grained feature learning. 

[110][111] Spatial attention Produce attention mask to highlight features across 
spatial locations. 

[112] Channel attention Highlight features across channel. 

[113] [114] 
[115] Channel-spatial attention Study combination of both attention mechanisms. 

[116] Spatial attention Study spatial interrelationships across semantic regions. 

[117] Channel attention Study integration of global and local context. 

[118] DCT-related attention Use DCT to build attention approximation function in 
NLP. 

[119] Multi-frequency attention 
Compute inter- and intra-frequency interactions 
between low and high spatial features derived from DCT 
using octave convolution. 

[120] Frequency domain 
attention 

Highlight intra-frequency to retain important 
frequencies using the frequency domain attention 
mechanism (FDAM). 



37  

2.3.1 Fine-Grained Visual Classification 

FGVC is challenging due to the need to recognise subtle differences between 
classes. The core techniques involved in solving FGVC-related problems involve 
localising and differentiating subtle features via discriminative methods. Similarity 
learning and information exchange are reviewed in this section to gather insights that 
lead to research gaps as proposed in this thesis. 

The bi-similarity network (BS-Net) [109] assumes that fine-grained images can 
be distinguished by two or more distance metrics of feature maps by comparing the 
query and support images. The two-distance metrics are the Euclidean distance and the 
cosine distance. This approach packs the information into smaller feature spaces with 
more discriminative feature maps. This is because the feature embedding module 
within the network is required to satisfy two different distance metrics. The authors in 
[31] addressed the issue of the equal treatment of features in FGVC for high-similarity 
subclasses by integrating bilinear CNN with a subclass similarity measurement. A 
weakly supervised localisation technique was then used to produce a bounding box 
around the object, and a fuzzing similarity matrix was used to compute interclass 
similarities. Finally, weighted triplet loss and classifier loss functions were used to 
compute the classification. Other similar papers such as [32] also used a bilinear 
technique. The work in [33] also exploits feature correlations by focusing on channel 
and spatial correlations without dimensionality increment. Similarity learning utilises 
domain optimisation and comparative measurements by computing relative metrics to 
improve FGVC. However, the learning can be optimised further by conducting FGVC in 
the frequency domain. This is because DCTC naturally provides a clear distinguishable 
boundary between varying features which can be found in basis functions. 
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Another method to ease FGVC is to effectively obtain and allow information 
exchange between global and local features. Progressive multi-granularity (PMG) 
training [34] focuses on identifying the most discriminative granularities by adopting a 
progressive training process, whereby granularities learned by earlier stages are used to 
facilitate the formulation of higher-level fine-grained details at later stages. A jigsaw 
puzzle generator is used on the fly during training to create images of different 
granularity levels. The authors in [35] showed how the integration of low-level 
information with high-level features using a dual pathway hierarchy, can result in a 
network that performs better with higher accuracy in locating discriminative regions. 
Another paper [36] extends the work beyond combining localised fine-grained features 
with global information by leveraging intra-class divergence and similarity. The 
literature showed that low-level features are critical in conjunction with higher-level 
features in FGVC for better performance. Identically, this provides valuable insights 
such that one may expect a combination of different levels of DCTC can ease FGVC in 
the frequency domain. 

Discriminative part localisation and part-based fine-grained feature learning are 
typically solved independently when their inter-dependence could be exploited for 
improved performance. In other words, current methods focus on addressing these 
problems independently, while failing to realise that region detection and fine-grained 
feature learning are mutually correlated and thus can reinforce each other. In [37], the 
authors presented an attention object location module (AOLM) and an attention part 
proposal module (APPM) to forecast informative locations. The approach combines the 
idea of localising and learning fine-grained object parts in solving the FGVC problem.  

The prior works on similarity learning and information exchange encourage a 
study in the frequency domain FGVC. It identifies a common gap in how one can refine 
the DCTC into different levels of frequency coefficients to obtain discriminative features 
and combine this information at different stages of the network. It also provides an 
opportunity to explore FGVC in the compressed domain, which is an area that is lacking 
research. 
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2.3.2    Attention Mechanisms in CNNs 

Attention mechanisms [121] are a popular approach used in FGVC. Attention 
enables the network to selectively focus on salient regions while diminishing irrelevant 
parts. This mechanism enhances fine-grained feature discrimination by highlighting 
critical regions within an image. This is particularly important in FGVC due to highly 
localised and detailed features, which are usually not uniformly distributed across the 
entire image. The application of conventional CNNs to FGVC often leads to poor 
generalisation due to uniform feature processing. This can cause difficulty to the model 
in terms of capturing fine-grained distinctions. Attention mechanisms address this 
limitation by dynamically adjusting the weight of features based on their importance, 
allowing for more flexible and focused learning of discriminative patterns. While these 
mechanisms significantly improve FGVC performance, they also introduce additional 
parameters. This results in increased computational requirements, which can hinder 
model deployment. Therefore, it becomes imperative in this study to explore DCT-
based attention mechanisms to achieve both enhanced feature discrimination and 
resource optimisation, aligning with the overall goals of this research. Attention helps 
the network focus on salient regions and diminish the irrelevant parts. The concepts of 
spatial and channel attention which were generally adopted in computer vision are 
initially reviewed. This is followed by a discussion on multi-frequency and frequency 
domain-related attention. It is essential to review the frequency domain attention 
solutions besides the spatial attention ones that were implemented in earlier works to 
compare and consolidate the focus of this thesis.  

Spatial attention [110][111] focuses on producing an attention mask to amplify 
features across spatial locations, while channel attention [112] intensifies certain feature 
channels. Spatial attention was frequently used in semantic segmentation and object 
detection while channel attention was found in image classification. A combination of 
spatial and channel attention was demonstrated in [113] to generate a fusion of ‘what’ 
and ‘where’ processes, which is reminiscent of computational theories about the human 
visual cortex. In [114], some parts of the neural architecture were extended with 
channel-spatial attention to get spatial features on top of prior global features. The 
global features were included in channel pruning to enhance interdependence between 
channels within the same layer [115].  
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Spatial interrelationships among semantic regions were studied in [116] with the 
attention module to shift the focus of the model towards highly activated regions while 
diminishing focus in low response areas. [117] links global and local contexts via 
channel attention to weigh different contexts. Spatial and spectral details were fused 
adaptively in [122] in addition to input and delivered to a 3D CNN to produce attention 
masks that highlight spectral and spatial characteristics. From the literature reviewed, 
many of the recent attention techniques incorporate global and local discriminative 
features for different tasks. 

A lightweight attention module [123] took channel and spatial attention into 
account simultaneously for better flexibility and adaptability. Cross-channel with 
spatial interrelationships via two parallel attention modules was used in [124] for 
COVID-19 detection. [118] employs DCT properties to build an attention approximation 
module for efficient computing in NLP. The approximation is retrieved by performing 
IDCT before feeding the resulting features to the SoftMax layer. A similar concept is 
shown in [125] by treating the global average pooling from channel attention as a 
special case of DCT function decomposition. Other similar works on spatial channel 
attention were also implemented on crowd counting [126], cross-channel loss 
computation for FGVC [127], dense attention network detection [128] to resolve the 
lack of mutual dependency of features, and wavelet attention on high-frequency and 
low-frequency information [129]. 

Multi-frequency attention network [119] generates low and high spatial 
frequency components from feature decomposition using 2D-DCT. Octave convolution 
was used to compute inter- and intra-frequency interactions for multi-frequency 
learning, while frequency channel attention was imposed on each of the high and low-
frequency features. The self-supervised attention filtering and multi-scale features 
network (SA-MFN) [130] was used in FGVC. The multi-scale attention map generator 
extracts local attention maps and the relative global spatial relationship by providing a 
prediction score during scanning. To succeed in multi-scale feature learning, it was 
found that it is beneficial to relate the spatial relationship between global and local 
details to construct robust local features.  

Frequency transformation can be modified to ease pointwise convolution. 
Classification. [38] proposed activations transformation by computing pointwise 
convolutions in a DCT-based frequency space. Each pointwise layer was replaced with 
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truncated DCT to achieve channel-frequency band pruning. The author developed a 
frequency contiguous mask (FC-Mask) with a new trainable parameter to learn the level 
of channel-frequency band pruning per layer and per channel during training. This 
method allows continuous dense pruning at neighbouring channels, losing only a few 
pruned coefficients while achieving efficiency. It was found that a minimal difference is 
acquired between this method and the unrestricted channel-coefficient pruning. The 
drawback of this approach is the need to compute repeating DCT and IDCT operations. 

The frequency domain attention mechanism (FDAM) from [120] utilised intra-
frequency to retain valuable frequencies and suppress the trivial ones. It removed 
redundant frequency channels through an understanding of frequency details between 
classes using a gate module. [38] utilised 1D CNNs to extract local-channel correlations 
on multi-level features while dual attention was used in [131] to combine features from 
different branches (locate local and global discriminative features) to produce multi-
scale features. A similar method was adopted by [132] to solve inaccurate region 
localisation caused by discriminative regions spread with overlaying local receptive 
fields. Two attention modules with depth-wise separable convolutions [133] were used 
to capture channels and positional information for garbage image classification 
supported by a residual network for improved discriminative classification. 

The literature above portrayed the significance of attention mechanisms from the 
spatial and channel perspective for image classification. The channel attention 
mechanism is considered in this thesis as this research work is intended to focus on 
frequency feature extraction. Besides, channel properties are prioritised over the spatial 
context in the compressed domain. It was found that the multi-frequency concept and 
global-local attention integration are vital techniques implemented in contemporary 
attention related networks. This is particularly compelling to be adopted in the 
frequency domain as DCT basis functions encode features at explicit frequencies. This 
work intends to integrate the multi-frequency and channel attention mechanisms in 
compressed domain FGVC to serve several advantages such as reduced parameters for 
compression gain. This can build a more robust learning framework that is less likely to 
overfit. 
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2.3.3 Adaptive DCT-based CNNs 

Several studies have been presented in this section to understand the adaptive 
concept in various DL applications. [134] exploits spatial details obtained from the 
input at two scales. These features are then rectified according to their channel 
importance. It can be seen as an improved pointwise convolution incorporating spatial 
context information. A few groups of similar spatial-sized tensors were obtained from 
the spatial domain input according to varying channels. A single filter was used to 
convolve with these groups to produce a new group of intermediate features. The new 
group is stacked and further processed with a ‘context refinement module (CRM)’ to 
produce a stage 1 output. A stage 2 output is produced corresponding to stage 1 with 
another CRM to produce a group 2 output. The original pointwise convolved output is 

compiled with both groups generating a final output. Two 3 × 3  convolutions are 

employed in both stages to mimic a 5 × 5 convolution as it uses fewer parameters. In 
the ablation study, the author showed that a 2-stage process is the optimal variant of 
this method. The multiscale learning technique is similar to the method that is intended 
to be explored in this thesis. 

Another paper [135] demonstrated the adaptive learning of frequency domain 
decomposition and transformation. Frequency attention features were continuously 
integrated aside from spatial clues for forgery detection. Soft masks with trainable 
parameters which replaced the fixed frequency transforms were utilised to decompose 
the frequency features with triplet loss. Inverse frequency transform (inverse DCT) was 
conducted after the frequency feature was applied with soft masks. The attention 
mechanism was applied to the resulting features and later fused with the original RGB 
branch. This technique is similar to the proposed technique, with the difference being 
that the whole adaptive kernel is trained on the frequency domain, hence no inverse 
transformation is required. [136] explores subject tracking using discriminative DCTC 
based on mean estimation of feature distributions. 

[137] developed CropNets to acquire feature map patches by cropping at multiple 
stages. Skipped branches were used from intermediate features toward the network 
output with different loss functions. The network consisted of a 3-stage coarse-to-fine 
coordinate regression framework and facial landmark location was refined in each 
patch obtained from lower-level feature maps. Image super-resolution by processing 
features at different frequency scales effectively with coarse-to-fine matter was 
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presented in [138]. This method implemented a progressive frequency domain module 
(PFDM) and convolution-guided module (CGM) by incorporating frequency features 
with discriminative properties to compensate for detail loss. Hyperspectral image (HSI) 
classification [139] used multi-level feature extraction on the spectral-spatial attention 
model to resolve inhomogeneous pixels or inherent spectral correlation in HSI 
classification. A similar frequency domain HSI classification approach using a complex 
value wavelet network was presented in [140] to convert efficient features into 
frequency domain complex values to enhance the robustness and generalisation of 
CNNs. A gated RNN architecture forming a small hybrid model for HSI classification 
was also reported in [141] to fuse spectral and spatial information.  

A special spectral rectified linear unit (SReLU) activation function was designed 
in [142] to perform computation in the frequency domain to avoid domain switching. 
The solution involves optimisation by using low-frequency coefficients [143] that 
adaptively fuse features acquired from FFT and low-pass filter weighting (spatial and 
channel) and aims to generate enhanced discrimination of image representations for 
better retrieval accuracy. [144] uses a DWT/IDWT layer to replace down-sampling 
operations in CNN to reduce aliasing effects thus improving noise and adversarial 
robustness.  

Several papers have demonstrated adaptive methods in CNNs. However, 
research on the adaptive learning of DCT basis functions is currently lacking in DCT 
domain CNNs, not to mention the possibility of employing adaptive learning algorithms 
on DCT basis functions for FGVC. Hence, the need to investigate adaptive learning of 
DCT basis functions forming the frequency domain kernel in CNN for FGVC is strongly 
supported. 
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2.4 Fundamental Concepts 

2.4.1 Basics of CNN and DCT 
 

The convolution is a mathematical operation that combines two sequences to 
produce a third sequence by sliding a small filter over the input sequence. It intends to 
highlight certain patterns or features in that sequence. Often, the mathematical 
procedure induces multiplying the filter’s values with the corresponding portion of the 
input sequence at each step and summing up the results. In deep learning, 2D 
convolution is widely used in CNNs for image recognition. A collection of hierarchy 
representations is formed when multiple deep convolutions are stacked together 
forming a CNN. Combining higher-level features, a CNN learns local representations 
efficiently by conducting 2D convolution by sliding a spatial filter (kernel) across the 
input image. The corresponding output feature maps determine the presence or 
absence of particular patterns in different spatial locations, forming spatially correlated 
relationships. 
 

The convolution theorem states that the Fourier transform of a convolution is the 
pointwise product of the Fourier transform of each function. In other words, it is 
possible to conduct convolution in the frequency domain according to this theory. This 
was demonstrated in [28] and later in [101]. The frequency-related CNN is named 
FCNN.  The strategy of implementing the Fourier domain in CNNs is by applying FFT 
towards the spatial kernel and feature maps, then applying a pointwise product across 
the two functions. By integrating FFT into CNNs, a frequency domain learning 
framework is formed, whereby a CNN is trained to capture frequency components 
instead of spatial contents. In the frequency domain CNN, a frequency representation of 
kernels and features separates the content into low and high bands, derived from a 
combination of consistent Fourier-related functions at specific frequencies. This allows 
multiscale analysis of features composed at different frequency ranges. An image or 
feature commonly has sparse representation, where several frequency components 
contribute heavily to the overall content. This is particularly beneficial when conducting 
convolution in the frequency domain, often shortening the lifecycle of CNN 
development. Table 2.5 tabulates the basic differences of spatial and frequency domain 
CNN. 
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Table 2.5: Comparison of spatial and frequency domain CNN. 

 
Aspects Spatial domain CNN Frequency domain CNN 

Theory Highlight spatial features 
across the input sequence  

Capture frequency components at a specific 
range 

Working strategy Sliding filter across entire 
input feature 

The dot product between two Fourier 
transformed functions, i.e. kernel and feature 

Significance Emphasise spatial correlated 
relationships 

Emphasise multiscale frequency compositions 

 
 

Real-world data, particularly images, often exhibit real-valued and correlated 
structures in their spatial context. A compressed JPEG image is formed by conducting 
forward 2D-DCT towards an RGB image, whereby an intermediate form of frequency 
image representation can be cultivated. The frequency domain image representation is 
constructed by DCTC. Although DCT is part of the Fourier transform, it focuses on real-
valued signals only. While the Fourier transform operates on complex numbers, the 
DCT produces a set of real coefficients. This property is advantageous when dealing 
with images that inherently possess real-valued attributes. 

Fourier-related CNNs are not widely found in recent CNNs as FFT consists of 
imaginary parts which can affect the interpretability of a CNN. Moreover, the 
substitution of FFT and a pointwise product in the convolution layer requires the 
repeated computation of forward and inverse FFT. The inverse FFT is required to 
transform the data back to the spatial domain at the end of the network. As such, the 
implementation of frequency domain CNN by consuming image DCTCs is a more 
practical option. A DCT-related CNN takes DCTCs as input instead of raw pixel values. 
It learns features directly from DCTCs to capture information relevant to compression 
and frequency-related characteristics. The key benefit of DCT over the Fourier 
Transform is its strategy of handling content using real values. Table 2.6 compares the 
differences between Fourier- and DCT-related CNN. 
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Table 2.6: Comparison between Fourier- and DCT-based CNN. 
 

Aspects Fourier CNN DCT CNN 

Transform Domain Complex Real 

Feature representation Global features Local features 

Computational complexity Higher Lower 

 
 
Besides taking DCTCs into a DCT-related CNN, the DCT technique is also widely 

applied in many parts across the CNN, such as pooling layers, kernels, and feature 
maps. Such a process intends to achieve different objectives. In this thesis, the DCT 
strategy is adopted and modified to be implemented in the kernel and feature maps for 
its advantages over other frequency strategies, which include a broader feature 
representation in higher-level frequency bands and kernel analytics at different depths 
of a CNN. In essence, it is intended to establish the foundational concept of DCT in 
CNN for FGVC. Table 2.7 summarises the key areas where a DCT-based strategy is 
implemented along a CNN. 
 
 

Table 2.7: Implementation of DCT-based strategy and its significance in a CNN. 
 

Aspects Significance 

DCT in pooling layers Resolve heavy information loss 

DCT in kernels Kernels formed by DCTC are sparse hence reducing model size 

DCT in feature maps Convolutional kernels learn frequency compositions 

instead of local representations 
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2.4.2 Attention Mechanism involving Frequency 
Properties 

Deep learning attention mechanisms are inspired by human visual attention. 
They allow a neural network algorithm to focus on specific sections of the sequence 
rather than the entire input series. The working strategy of the attention mechanism 
usually involves assigning dynamic weights to different parts of the input sequence, 
thus allowing the model to pay more attention to relevant information. An early 
motivation behind attention mechanisms lies in the desire to enhance the ability of 
neural networks to process and understand sequential data, which is crucial as it 
improves the interpretability on specific instances within a series of data. 
 

The attention mechanism is particularly useful in neural networks such as RNN 
and CNN. Conventionally, RNNs such as LSTM and GRU suffer from vanishing 
gradient and exploding gradient issues. In LSTM, attention weights are associated with 
the hidden states of the encoder to reflect the relative importance of each state during 
the decoding process. Similarly, attention weights are computed based on the relevance 
between each hidden state with the current decoding step in GRU. The weighted sum of 
the encoder states based on the attention weights is then used to generate a prediction. 
In both cases, the attention mechanism helps the model to handle long-range 
dependencies more effectively. It has proven to improve the performance of 
applications such as NLP and prediction in the early stage of the deep learning NLP 
renaissance. 

Attention mechanisms have also found their way into CNNs in the application of 
computer vision, especially FGVC. Typically, FGVC contains hard-to-classify objects 
where the intra-class difference is minimal. The use of attention in CNNs aimed to 
improve the network’s ability to focus on relevant fine-grained object regions for 
effective feature extraction. The basic approach for integrating attention into CNNs is 
by applying the attention module at various stages across the network, including before 
or after convolutional layers. This involves optimising learnable parameters to highlight 
the most prevalent features. 
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In DCT-related CNNs, the feature channel which consists of frequency-related 
information is usually derived from hierarchy-convolved DCTC. By applying attention 
to feature channels in a DCT-related CNN, the attention module focuses on capturing 
specific frequency components relevant to the task instead of regional features relating 
to the spatial context. The working strategy of implementing channel attention in DCT-
related CNNs is similar to the one in spatial domain CNNs. This is done by assigning 
learnable parameters across the convolutional layers. In this thesis, the attention 
weights are applied to the frequency channels after the convolutional layer. It is 
intended to ease the model to focus on more significant frequency components relating 
to the fine-grained features of FGVC. Attention to frequency analytics provides several 
benefits over the spatial domain such as improved model robustness. 
 

In Table 2.8, a summary of the highlights, significance, and outcome between the 
attention mechanism applied on spatial domain CNNs and DCT-related CNNs is 
established. 
 

Table 2.8: Differences between attention mechanism on a spatial- versus DCT-based CNN. 
 

Aspects Attention on spatial domain CNN Attention on DCT-related CNN 

Highlights Focus on regional features relating to 
spatial context 

Focus on frequency-related components 

Significance Relevant parts derived from hierarchy-
convolved feature maps of spatial 
context 

Relevant information derived from 
hierarchically convolved representations 
relating to DCTC 

Outcome Improved regional feature 
discrimination involves spatial context 

Improved frequency component 
discrimination and interpretability 
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2.5 Summary 

 
From the literature reviewed, it is prevalent that network performance can be 

improved through the right combination of features at different scales. While similarity 
learning and information exchange provide insights into feature communication in the 
spatial domain, the exploration of learning different frequency coefficients is notably 
absent in DCT-related CNNs. It is particularly essential to consider multiple ranges of 
frequency coefficients in addressing a gap in compressed domain FGVC. While 
pointwise convolutional filters in residual learning prove efficient and robust in DCT-
related CNNs, their limitation lies in the inability to incorporate spatial context on top 
of the frequency features. This gap prompts an interesting exploration of adopting DCT 
to form the pointwise convolutional filters that encapsulate both spatial and frequency 
contexts. Additionally, an attention mechanism has proven its importance in enhancing 
feature extraction in FGVC, yet the lack of correspondence between the highlighted 
signals calls for a deeper understanding. Henceforth, it is imperative to study the 
relationship between the focused frequency components produced by an attention 
mechanism. The identified research gaps from the literature review can be summarised 
as follows: 
 

• The limitation of discriminative learning in DCT-related CNNs, especially involving 
frequencies beyond L-DCTC. 

• The absence of spatial and frequency analytics in the pointwise convolutional kernel 
within DCT-related CNNs. 

• The need for interpretability regarding the correspondence and relationship 
between highlighted signals produced by an attention mechanism. 
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In essence, this study explores the potential framework of compressed domain 
CNNs to bridge these research gaps in frequency domain-related CNNs. Furthermore, it 
aims to underscore the importance of striking a balance between frequency analytics 
and compression gain. Resource optimisation is a critical focus in deep learning 
research, aimed at balancing model performance with the efficient use of computational 
resources. It not only reduces the financial and environmental costs associated with 
model training and deployment but also democratises access to advanced AI 
technologies. By making optimised models more accessible, industries and researchers 
with limited resources can benefit from deep learning advancements. As deep learning 
scales across diverse applications, resource efficiency becomes essential to ensure 
sustainability and practicality without compromising model effectiveness. Additionally, 
resource-optimised models are crucial for operating in environments with limited 
computational power, such as mobile devices or embedded systems, while still 
managing complex tasks like fine-grained classification. Achieving this scalability 
allows the models to be adaptable for both large-scale systems and constrained 
environments. By reducing the number of parameters, optimising computational 
operations, and integrating efficient mechanisms like DCT-based strategies, it is 
possible to develop models that maintain or improve performance while significantly 
enhancing computational efficiency. 
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Chapter 3 Methodology 
3.1 Overview 

Fine-grained visual classification (FGVC) [145] focuses on using deep learning 
models to classify hard-to-distinguish object classes such as species of animals or 
identifying certain models of vehicles. FGVC domain typically exhibits low inter-class 
variance and high intra-class variance. The major challenges include locating fine-
grained object parts and emphasising the learning of those fine-grained features. Fine-
grained feature localisation is more challenging when the pose of an object changes. 
Most FGVC solutions follow the process of finding foreground objects or parts (where) 
to extract discriminative features (what). 

In recent years, relatively little research has focused on FGVC. Recent literature 
often emphasises the localising [146] and attention [33] of the most discriminative 
features within the fine-grained images [147]. Most of the discriminative methods tend 
to employ multiple models (two models for bi-similarity networks, and three models for 
triplet loss function). Although the models use shared weights, network complexity is 
still a potential issue. Several papers have been working on metric learning [148][149] 
or similarity learning [109][150][151] for FGVC. The few-shot learning based on metric 
learning has become more popular in FGVC [33] for its ability to address the problems 
of differentiating FGVC features from small datasets. Through preserving the 
relationships embedded in feature space, it allows the model to generalise well and only 
requires very little instances per class for training. Although the classification 
performance is on par with benchmarks, the existing methods do not fully address fine-
grained feature learning issues. 

In FGVC, spatial information is found to be less informative compared to order-
less descriptors. Regardless of the learning techniques or modules used, the properties 
of the input domain and the corresponding feature representation could be a factor 
hindering the relative ease of fine-grained feature learning. Varying the input domain or 
feature map representation can potentially ease the network to classify fine-grained 
images. This is because, with different input domains, the model is encouraged to learn 
different feature representations, thereby fostering the emergence of different 
properties with richer higher-level representations. 
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Motivated by the proven benefits of frequency domain representation, this thesis 
starts with formulating input representation in the frequency domain to cover the 
research gap on medium frequencies. In the spatial domain of natural images, higher 
frequencies encode fine details while lower frequencies encode coarse features. The 
usage of DCT coefficients for representing images allows higher-level feature 
representations to be learned at earlier parts of a network. Moreover, DCT excels in 
energy compaction and frequency separation. Thus, it can ease a network to learn a 
compact and robust feature when it uses DCTC inputs as compared to RGB.  

Inspired by the concept of metric learning on emphasising subtle feature 
discrimination yet sustaining variability between features, this thesis initially focuses on 
exploiting low and medium-frequency DCT coefficients via branching architectures in 
the FGVC domain. Learning the features individually allows the network to extract 
discriminative content, while combining these features at the latter part of the network 
bridges the two approaches. More explicitly, it is proposed that by combining the 
features extracted from low DCTC (L-DCTC) with medium DCTC (M-DCTC), the 
discriminative feature learning procedure can be significantly improved whilst 
enhancing the conventional approach that utilises multiple models for discriminative 
classification. Henceforth, it is hypothesised that the integration of a skipping 
connection that carries M-DCTC with a deeply convolved L-DCTC for FGVC will 
outperform the standard solution that does not integrate medium frequency 
coefficients. This is because the classifier can take advantage of fine-grained features 
through shallowly convolved M-DCTC. 

CNNs are known for their capability to capture local correlations in a feature 
map. Existing works on compressed domain CNNs have focused on convolving either 
the input [101] or the feature maps [105][152][23] in the frequency domain. Frequently, 
the compressed domain CNN involves the forward and/or inverse 2D-DCT (DCT/DCT-

1) to obtain the spatial or frequency information. Figure 3.1 shows the 2D-DCT 
(DCT/DCT-1) being applied in one or more processes along the compressed domain 
CNN including the input, filter, and output. 
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Figure 3.1: Forward and inverse 2D-DCT implemented along the compressed domain CNN. 

 
Figure 3.2 compares the major works on compressed domain CNN. Figure 3.2(a) 

shows the conventional CNN uses RGB kernel (𝒦GHI) to convolve with RGB input 

features (XGHI)  to obtain a RGB output feature map (YGHI). Figure 3.2(b) shows the 

inverse 2D-DCT (DCT$2) applied on the DCT kernel (𝒦:JK) during the forward pass to 

generate the spatial domain kernel (𝒦GHI) to convolve with the spatial domain features. 

Figure 3.2(c) shows the forward 2D-DCT (DCT) is used to convert the RGB feature map 
into the DCT domain before forwarding to the network, and the convolving output is 
converted back to the spatial domain via inverse 2D-DCT. The spatial kernel in Figure 
3.2(d) is produced from cosine bases whereby the trainable parameters are the 
frequency parameters (amplitudes, frequency, phases).  

 

Figure 3.2: Comparison of different DCT-based approaches for compressed domain CNN. 
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The DCT technique is commonly found in two parts across compressed domain 
CNNs, particularly the feature map and the convolution kernel. In this thesis, the 
frequency domain input and feature maps are referred to as the ‘DCT input’ and the 
‘DCT feature maps’. The DCT input is obtained by performing forward 2D-DCT-II on 

the RGB image (commonly with an 8 × 8 block-wise partition), while the DCT feature 
maps are the collective convolutional result of the DCT input. It is well known that most 
compressed domain networks that accept DCT input are constructed using a fully 
pointwise convolutional block. Pointwise convolution can handle complex feature 
transformations due to its non-linearities when correctly composed. Although 
pointwise convolution ignores explicit spatial correlations, it provides advantages in 
terms of feature channel representations. 

However, solely using the pointwise convolution in compressed domain CNN 
brings limitations in terms of spatial analytics. This is because pointwise convolution 
falls short of recognising local correlation patterns consisting of spatial context. The 
spatial combination of DCT basis functions from neighbouring coordinates in a trivial 
manner is not feasible, although each basis function represents a specific set of spatial 
correlations.  Moreover, the DCT input and the DCT feature maps are the results of 
block-wise partition pixels, causing decorrelation and block-wise partition disjoints, 
therefore the learning process is biased towards the feature channel. Thus, it is crucial 
to identify and leverage the common interval between spatial and frequency context to 
enhance the robustness of kernel analytics in the compressed domain. 

In compressed domain analytics, the conversion between spatial and frequency 
domains occurs through 2D-DCT, where the DCT basis functions serve as the 
intermediary for this process. The basis functions govern the fundamental properties 
and behaviour of the corresponding frequency representation. Particularly, it expresses 
the representation by incorporating spatial and frequency components. To enhance the 
robustness of pointwise convolutional kernels for spatial analytics, it is mandatory to 
consider the modification of basis functions during the intermediate phase of forming 
the pointwise convolutional kernel. Recognising the importance of DCT basis functions, 
this research advocates for an innovative approach: the modification of these basis 
functions to compose a robust pointwise convolutional kernel capable of spatial and 
frequency analytics. To address this challenge, the proposed technique involves 
assigning weights to each spatial and frequency base of the DCT-BF during the kernel 
formulation. This novel approach is called ‘Adaptive DCT (Adapt-DCT) Pointwise 
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Convolution’. It is implemented within M-Skipped DCT-CNN and aims to address the 
inherent limitations of conventional pointwise convolution in handling both frequency 
and spatial aspects effectively. The adaptive nature of the Adapt-DCT kernel allows the 
following distinguishable differences over the prior pointwise convolutional kernels 
being investigated: (1) a subset of DCT basis functions is emphasized and selected to 

form the final pointwise convolution kernel; (2) the adaptive kernel (𝒦KL) serves as 
trainable weights to multiply (element-wise) with the modified DCT basis functions; (3) 
the original coefficients for the DCT basis function are no longer available since they are 

replaced by 𝒦KL. 
Attention mechanism has found its way into computer vision [121] for its 

capability to accentuate discriminative characteristics in various visual recognition 
tasks, especially fine-grained visual classification (FGVC) [153]. Several contemporary 
attention-related methods cover channel attention and spatial attention 
[114][124][125][154][155]. Channel attention is good for image classification while 
spatial attention is advantageous for segmentation and object detection. Other popular 
attention-related methods are convolutional block attention module (CBAM) [113][156] 
and Squeeze and Excitation Net (SE-Net) [112]. 

The implementation of FGVC in the DCT domain is challenging due to the subtle 
details encoded in the DCTCs. DCT is the key ingredient in frequency domain-related 
convolution neural networks (CNN) for its advantage of packing features with a high 
level of compactness to achieve compression. However, in the DCT domain, most of the 
DCTC of frequency bases are encoded into the channel dimension. Since DCT naturally 
destroys the neighbouring spatial correlations of a spatial context, a spatial attention 
mechanism with convolving or masking properties is less effective in locating fine-
grained features. Most of the existing works as reviewed in Chapter 2 relating to DCT 
attention only deal with spatial domain input and networks, such as [118] uses DCT in 
self-attention for natural language processing while [125] treats the normal channel 
attention as the special case of 2D-DCT. 

Henceforth, it is arguably appropriate to focus on modifying channel attention as 
channel properties outweigh spatial properties in the DCT domain CNN. 
Implementation of direct channel attention towards DCT feature maps not only 
increases trainable parameters but also further causes non-linear projection between 
features and attention weights in SE-Net. Therefore, this thesis focuses on exploring the 
channel attention mechanism in a slightly different approach: Can the channel 
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attention module in the DCT domain be modified to capture the interaction of 
discriminative DCT-related properties effectively? 

Since the introduction of M-Skipped-DCT CNN, the channel dimension of the 
DCT feature maps is viewed as a sequential-ordered tensor consisting of low, medium, 
and high DCT coefficients (LMH-DCTC). Instead of using channel attention to capture 
depth-wise DCT features directly, an alternative approach is developed. Following the 
similar perspective of adaptively weighting the DCT basis functions to acquire different 
DCT bases in Adapt-DCT CNN, a novel idea of exploiting intra-group DCT channel 
relationships is proposed. This method aims to cultivate attention based on intra-
channel LMH-DCTC sets to produce an attention map that encourages the network to 
emphasize the relationship changes within varying groups of DCT channels. By utilising 
the attention mechanism on the interaction of LMH-DCT feature maps, it was shown 
that it is possible to improve the performance without increasing model complexity. In 
other words, it is exceptionally crucial to incorporate attention mechanisms into the 
Adapt-DCT CNN with a DCT input image (input image with DCT coefficients) to 
understand the effects on several FGVC datasets. 

The efficient channel attention (ECA) [156] is an improvised attention 
mechanism originating from SE-Net where it avoids dimensionality reduction and 
emphasizes cross-channel relationships. The working strategy behind ECA is to conduct 
fast 1D convolution between the kernel and feature channel to produce a channel 
attention map. Since DCTC carries a compact feature representation where the 
redundant feature is filtered, therefore explicit dimensionality reduction could be 
unnecessary as it may cause undesired information loss. Besides, the avoidance of 
dimensionality reduction is important for learning channel attention based on [156]. 
This is relatable as the fine-grained DCT features are deeply encoded in the channel 
dimension. The cross-channel interaction in DCT features is important as it gathers 
frequency correlation across channels forming complex patterns and relationships that 
can ease FGVC. Moreover, the cross-channel interaction can retain the performance 
and robustness of a model. In Table 3.1, comparison metrics between CBAM, SE-Net, 
and ECA extracted from [156] are computed to present the reason behind selecting ECA 
as the baseline module in this research. 
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Table 3.1: Metrics comparison between three attention modules for selection criteria. 

Metrics 

 
Architecture 

Dimensionality 
Reduction 

Cross-channel 
Interaction 

Lightweight Model 

SE-Net [112] ✓ ✓ ✘ 

CBAM [113] ✓ ✓ ✓ 

ECA [156] ✘ ✓ ✓ 

 
It is clear that by considering the comparison from Table 3.1, it is particularly 

relevant to pick ECA owing to its modularity, criteria, and efficiency over the other 
attention mechanism alternatives. Hence, ECA is selected for its ability to capture 
individual cross-channel interactions and reduce model complexity, which is aligned 
with our objective. 

The ECA is employed as the baseline attention module on top of the Adapt-DCT 
CNN with several tweaks. Similar to the original proposed ECA to capture the local 
cross-channel interaction, the ECA module is further adjusted to obtain the intra-group 
DCT channel interaction. Specifically, a larger size of the 1D convolution kernel and 
stride size is used as compared with the former ECA to harvest the intra-group DCT 
channel interaction and maximize the correspondence of DCT channel sets and weights. 
The ECA that is altered to suit Adapt-DCT CNN is called ‘Hybrid Modified-ECA’ 
(HyMod-ECA) which enhances the former ECA. 

Figure 3.3 illustrates the overview of the HyMod-ECA module. Provided the 

input feature (X) to acquire a 1D vector (Xi) via global average pooling (GAP), X is viewed 
as a sequential order of tensors consisting of different DCTC channel sets (best viewed 

in colour) separated by multiple thick lines. These grouped channels produce Xi, which 
is referred to as the ‘aggregated DCT channel set’. The number of available DCT channel 

sets is represented by J
M
 (more details in the following section). The DCT channel set 

weights (Ai) are produced by performing a 1D convolution between Xi and the 1D kernel 

(K), whereas the 1D kernel size is determined by the number of DCT channels per set (f). 
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Figure 3.3: Overview of the Hybrid Modified Efficient Channel Attention (HyMod-ECA). The thin line 

separates individual channels, while the bold line separates channel groups. 

 
In the following section, the methodology and experimental design of the M-

Skipped network, the Adapt-DCT convolutional kernel, and the HyMod-ECA module 
are established. The M-Skipped DCT CNN is designed to integrate frequencies beyond 
L-DCTC to improve FGVC in the compressed domain. Due to the limitations associated 
with conventional pointwise convolutional kernels in the context of compressed domain, 
the Adapt-DCT kernel is introduced and integrated into the prior M-Skipped network. 
To study the interactions between the convolved frequency features generated by the 
enhanced network, the HyMod-ECA module is further incorporated into the existing M-
Skipped network which already encompasses the Adapt-DCT kernel. The synthesis of 
each developed algorithm within this framework combines the compressed domain 
approaches to address the specific challenges encountered in FGVC. 
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3.2 Skipped Medium-DCT Convolutional Neural 
Network 

The motivation to introduce the skipped M-DCT branch to the baseline CNN 
model in a compressed domain is to enable fine-grained communication between low- 
and high-level features. The foundational concept of skipping layer is motivated by [113]. 
This skipping methodology offers great flexibility in adjusting skip lengths to enable 
feature exchange at multiple scales. It fits the objective of this research on exploring the 
effects of integrating M-DCTC with different parts of the baseline network. The shortcut 
connections from ResNet and DenseNet aimed to address the gradient vanishing 
problem and enhance feature reuse. These skipping layers are not employed as they do 
not serve the purpose of this research. 

The skipped M-DCT convolutional neural network consists of a baseline CNN 
network attached to a skipped convolutional branch. The skipped convolutional branch 
is targeted to extract intermediate fine-grained features. The L-DCTC input is fed 
through the CNN model based on pointwise convolutional blocks. The M-DCTCs are fed 

through (bypass) another 1 × 1 skipped convolutional layer (with batch normalization 
and activation function). The skipped convolutional layer’s output is then concatenated 
with the intermediate output feature maps from the baseline network. The subsequent 
combined feature maps are then fed to the classifier. Figure 3.4 shows the basic 
integration of M-DCTC with the convolutional features. The fine-grained features (M-
DCTC) are retained in the elementary form by passing the M-DCTCs through a 
convolutional layer. It is intended to combine low- and high-level features to improve 
feature representation and model robustness. 
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Figure 3.4: Basic illustration of the integration of M-DCTC with baseline convolutional network. 

 

3.2.1 Low, Medium, High DCTC Representations 

This work employs partial CODEC on JPEG images during training to obtain 
DCTC as input to the network. In particular, the datasets comprising raw RGB images 
undergo a process of partial compression. The formulation below demonstrates the 
process and the separation of low, medium, and high DCTC (LMH-DCTC).  

Let Equation 3.1 denote the tensor comprising raw RGB images in the spatial 
domain, while Equation 3.2 represents the input tensor in the frequency domain. 
Equation 3.3 provides a fundamental overview of the conversion of raw RGB image data 
from spatial to frequency (DCT) domain: 

 

 

𝑋N ∈ 𝑅O×Q×R Eq.  3.1 

𝑋0 ∈ 𝑅
O
S×

Q
S×S

!×R"  Eq.  3.2 

ℋ->$>TU(𝑋N) = 𝑋0 Eq.  3.3 
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Function 𝐻  represents a forward 2D DCT with 𝑝 × 𝑝 partition, where ℎ and 𝑤 

represent the height and width of the input tensor respectively, 𝑐 and 𝑐′ refer to spatial 
channels and frequency channels respectively. The conversion of the spatial domain 

input 𝑋N to the frequency domain input 𝑋0 requires 2D forward DCT, which is the core 
of JPEG compression. The conversion of the input tensor from the spatial domain to the 

frequency domain will shrink the spatial dimension from ℎ × 𝑤 to O
S
× Q

S
, and extend the 

channel depth to (𝑝-). The depth-wise coefficients (𝑝-) are derived from the sum of the 
DCT basis functions across that partition block. 
 

Regarding the idea of the top left portion of the 𝑝 × 𝑝 partitions representing L-
DCTC and the bottom right representing high DCTC, we derived the zigzag encoded 

1 × 𝑝- DCTCs are arranged in ascending order from low to high DCTC. Fundamentally, 
L-DCTC corresponds to coarse and slow varying features while H-DCTC corresponds to 
rapidly varying features (often noise). DCTC pruning techniques typically suggest that 
the most useful L-DCTCs are found in the first 12 coefficients. Some early literature 
[157][158][159][45] performed similar DCTC factorizations based on different ratios but 
those works were not applied to FGVC. This section takes the initiative to perform a 
split of four to factorize LMH-DCTC. Specifically, a dedicated factor of two is allocated 
for M-DCTC which potentially encapsulates more fine-grained features. 
 

Zigzag encoding was used to convert the 𝑝 × 𝑝 partition into a 1 × 𝑝- depth-wise 
DCTC representation after the 2D forward DCT step. Following the zigzag encoding 

pattern for each 𝑝 × 𝑝 partition, as shown in Figure 3.5, this method explicitly defines 

the first S
!

V
 DCTCs as L-DCTC, the intermediate S

!

-
 DCTCs as M-DCTC while the last S

!

V
 

coefficients as H-DCTC. Figure 3.5 explains the factorization pattern of a 𝑝 × 𝑝 DCT 
partition. 
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Figure 3.5: Low, medium, and high DCTC factorisation. After 2D-DCT and zigzag encoding, the 1D vector 
is factorised along the channel direction. 

For a single channel of spatial input with 𝑝 × 𝑝 partition at an arbitrary location 

of (𝑖, 𝑗), forward 2D-DCT will map the spatial input of {𝑥N,WXYZ , ⋯ , 𝑥N[S,W[SXYZ } to a frequency 

domain of  {𝑥/,0>TU , ⋯ , 𝑥/[S,0[S>TU }. The zigzag encoding will map the frequency partition 

block to  {𝑥3>TU , ⋯ , 𝑥S!$2
>TU }, with 𝑥Q>TU indicating the instantaneous index from the depth-

wise vector. The entire partition restructure can be written as: 
 

 

From the 𝑝-depth-wise DCTCs, we factorize 𝑋0 along the 𝑝- dimension into low 

(𝑋\$>TUT0 ), medium (𝑋]$>TUT0 ), and high (𝑋^$>TUT0 ) DCTC representation with the 

following notation: 

 

Where they share the same spatial tensor of size as 𝑋0, with different depths 
along the channel dimension. The resulting LMH-DCTC tensor input representation is 
shown as follows: 

u𝑥N,WXYZ , ⋯ , 𝑥N[S,W[SXYZ v ↔ {𝑥Q>TU , ⋯ , 𝑥S!
>TU} Eq.  3.4 

𝑋0 = {𝑋\$>TUT0 , 𝑋]$>TUT0 , 𝑋^$>TUT0 } Eq.  3.5 
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With 𝑝 = 8 in a standard JPEG compression, compressing a 8 × 8 partition will 
produce a corresponding channel with a depth of 64. An even ratio split of 4 supplies L-
DCTC with 16 DCTC, which is more than the fundamental requirement to fully 

represent the contents within a particular 𝑝 × 𝑝  partition. M-DCTC is given 32 
coefficients while H-DCTC is given 16 coefficients. Since an RGB input consists of 3 

channels, applying forward 2D-DCT on an 8 × 8 × 3  partition will produce the 
corresponding channel with a depth of 192. 

 

3.2.2 Baseline Network Setup 

This thesis adopts the VGG-16 architecture as the baseline model due to its 
simplicity and proven effectiveness. The uniformity of its architecture can simplify the 
design process, rendering it to be a versatile apparatus for this research when compared 
to other SOTA networks. Notably, the VGG-16 architecture excels in interpretability. 
Thus, it is convenient to facilitate a thorough analysis of its behaviour across various 
contexts. By leveraging the VGG-16 as a baseline model, it prompts an early insight and 
focus on the DCT technique that addresses the objective of this research without 
considering the need for exhaustive evaluations across an extensive array of SOTA 
networks. The substitution of VGG-16 with other SOTA networks such as Mobile-Net or 
Res-Net with M-Skipped-DCT architecture is straightforward. 

In the compressed domain, more emphasis is put on DCTC depth-wise feature 

representations over spatial correlations. In essence, a 1 × 1 convolution kernel that 
emphasises depth-wise context can achieve increased parameter savings compared to a 

3 × 3  convolution kernel. Hence, a pointwise convolution filter was used in the 

experiments given its superior performance. Convolutions based on 3 × 3 kernels were 

also explored but it was found that 1 × 1  performed better. Consider the ratio below to 

𝑋\$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟒 ×R

"
 Eq.  3.6  

𝑋]$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟐 ×R

"
 Eq.  3.7 

𝑋^$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟒 ×R

"
 Eq.  3.8 
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compare the increment in trainable parameters from using 3 × 3 kernels over 1 × 1 
kernels: 

Where 𝑛 represents the number of depth-wise filters. With a single convolution 

layer, a 3 × 3 kernel has 9 times more trainable parameters compared to a 1 × 1 kernel. 
The VGG-16 architecture consists of 3 convolutional layers per block, with a total of 3 
convolutional blocks, which translates into significant parameter savings, leading to a 
reduction of both training time and energy consumption and a lower probability of 
overfitting. 

In most of the general image classification tasks, VGG-16 typically accepts an 

RGB image input with a spatial size of 224 × 224 and a channel depth of 3. This thesis 

processes the spatial input with forward 2D-DCT using an 8 × 8 partition, resulting in a 

DCTC input with a spatial size of 28 × 28 and a channel depth of 192 [100]. To properly 
fit a DCTC with a smaller spatial size and larger channel dimensionality, the third 
convolutional block from the original VGG-16 algorithm which accepts an input spatial 

size of 28 × 28 was used as the initial block to process this input. This adheres to the 
VGG algorithm’s convention of preserving the spatial size and channel depth in each 
successive convolutional block, facilitating a systematic and effective extraction of 
hierarchical features. This also ensured that the spatial size of the final output before 
flattening the layer was the same as the original RGB version of VGG-16. In summary, 
in this thesis, a total of 3 convolution blocks from the original VGG-16 network were 
used instead of 5, i.e. convolution blocks from the third to the fifth stage.  

The ‘Parametric Rectified Linear Unit’ (PReLU) was selected as a key activation 
function over the original ‘Rectified Linear Unit’ (ReLU) for all of the convolutional 
layers in the primary network, while the M-skipped branch implemented ReLU. Figure 
3.6 compares the activation responses of both ReLU and PreLU. This is in conjunction 
with the feature scaling of the compressed domain images into the range from -1 to +1. 
PReLU also provides a larger activation function region along the negative portion of 
the input to facilitate the learning process. 

 

 

𝑅𝑎𝑡𝑖𝑜 =
3 × 3 × 𝑛
1 × 1 × 𝑛 = 9 Eq.  3.9 
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Figure 3.6: Activation function comparison between (a) ReLU vs (b) PreLU). PreLU allows the negative 
response of the network to continuously learn. 

 
In addition, our model also avoids using fully connected layers at the end of the 

network. Preliminary experiments showed that the inclusion of fully connected layers 
sometimes resulted in minimal to no performance improvement, and at other times 
resulted in worse performance. Moreover, these layers contribute a significant number 
of additional parameters. Hence, the final concatenated output feature maps are fed 
directly into a linear Softmax layer after flattening. A more detailed experiment can be 
found in the ablation study in section 4.1.3. 
 

Table 3.2 shows the modified version of the VGG-16 model in the DCT domain. 

The abbreviations of [𝑓, 𝑘, 𝑠, 𝑝] indicate the number of filter channels, kernel size, stride 
size, and padding respectively. The number of layers in a convolutional block is usually 
in the power of two due to hardware efficiency. Since the corresponding DCTC input 
from an RGB image consists of 192 channels, thus 256 filters are dedicated to the first 
convolutional block, and 512 filters are used in the second and last block. The number 
of baseline filters for each convolutional block was kept the same across all experiments 
to avoid discrepancy. The M-skipped connection can be concatenated with any of the 

output feature maps from the original baseline network marked ‘*’. 
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Table 3.2: VGG-16 baseline model. 
 

Layer [𝒇, 𝒌, 𝒔, 𝒑] Output Details 

Conv1_1, 2, 3 [256, 1, 1, 0] 28 × 28 × 256 3x layer 

2D Max-pooling [-, 2, 2, 0] 14 × 14 × 256* - 

Conv2_1, 2, 3 [512, 1, 1, 0] 14 × 14 × 512 3x layer 

2D Max-pooling [-, 2, 2, 0] 7 × 7 × 512* - 

Conv3_1, 2, 3 [512, 1, 1, 0] 7 × 7 × 512 3x layer 

2D Max-pooling [-, 2, 2, 0] 3 × 3 × 512* - 

Concatenate - 14 × 14 × 256 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)a 

7 × 7 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)b 

3 × 3 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)c 

Connection from the 
output of the M-Skipped 
Branch can be 
connected to any of the 
output with * 

Classifier - Class number - 

 
a. When M-skipped is connected to the output feature map of Conv1_3, the input towards Conv2_1 will be 14 × 14 × 256 +

(𝑀𝑓𝑖𝑙𝑡𝑒𝑟). 

b. When M-skipped is connected to the output feature map of Conv2_3, the input towards Conv3_1 will be 7 × 7 × 512 +

(𝑀𝑓𝑖𝑙𝑡𝑒𝑟). 

c. When M-skipped is connected to the output feature map of Conv3_3, the linear input towards the final classifier will be 

3 × 3 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟). 
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3.2.3 M-Skipped DCTC Branch 

This section demonstrates the feature representation between the M-Skipped 
DCTC and the deeply convolved L-DCTC. The basic idea is to deliver a lower-level 
feature representation based on M-DCTC to the higher-level feature by using a skip 
connection. L-DCTC represents coarser features while M-DCTC represents finer 
features. The full spectrum of L-DCTCs is obtained from the factorisation and fed into 
the main network instead of using a pruning technique. This is because it provides the 
convolutional layers the flexibility to select which features to use from the full spectrum 
of L-DCTCs.  

There are a few ways to integrate a single M-DCTC skipped convolution branch 
with the baseline network. In Figure 3.7, three variations of single M-Skipped branches 
are established. The L-DCTCs are passed through the baseline network, while the M-
DCTCs are passed through a skipping branch. In Figure 3.7 (a), when the skipping 
branch is connected with the output from the first convolutional block of the baseline 
network, it is denoted as M-Skipped-1. In Figure 3.7 (b), when it is connected with the 
output from the second convolutional block, it is denoted as M-Skipped-2. Whereas M-
Skipped-3 refers to the variation where the skipping branch is connected to the output 
from the last convolutional block, shown in Figure 3.7 (c). 

 
(a) 
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(b) 

 

 
(c) 

 
Figure 3.7: M-Skipped DCT-CNN for variant (a) M-Skipped-1, (b) M-Skipped-2, (c) M-Skipped-3. 
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There are several differences and significance for connecting the skipping branch 
with different parts of the baseline network. When integrating the M-DCTC skipping 
branch with the early convolutional block, the combined features are significant in 
producing higher-level hierarchical representations. While integrating the skipping 
branch directly with the last convolutional block, the concatenated features contribute 
significantly to the final classification tasks. Therefore, it is crucial to understand the 
impact of different skipping variations to achieve the objective of this research. 

The formulation of the novel M-Skipped feature representation is shown below. 
Any intermediate output feature map of a deep neural network is denoted as: 

𝑌 is the output while 𝑋 is the input. The superscript ‘𝑖’ indicates the sequence of 

the convolution block. 𝐺 is the function combining the convolutional operation and the 
activation function along the main network, resulting in a new feature map. In this case, 
L-DCTC is fed into the deep network such that the model can focus on learning 
fundamental key features. The new parameter for the M-Skipped DCTC branch is 
denoted as: 

Where the notation of 𝑌0]$>TUT  represents the output by convolving M-DCTC. In 

Equation 3.11, different from the main network, ‘𝑔’ denotes the shallow convolution 
block in the M-Skipped branch. The skipped connection of shallowly convolved M-
DCTC separates the fine-grained features from the main network. A shallow 
convolution block is applied on M-DCTC to preserve low-level fine-grained features. 

 

 

𝑌0
bN"c. is the final integrated output feature map obtained by concatenating the 

output from the (𝑖 + 1)dO convolutional block with the output of the M-DCTC branch. In 
this preliminary experiment, it was found that concatenation works better than 
information exchange such as matrix summation and octave convolution. 

 

𝑌0N = 𝑋0N[2 = 𝐺(𝑋0N) Eq.  3.10 

𝑌0]$>TUT = ℊ(𝑋]$>TUT0 ) Eq.  3.11 

𝑌0
bN"c. = 𝑌0N ∪ 𝑌0]$>TUT = 𝐺�𝑋0N� ∪ ℊ(𝑋]$>TUT0 ) Eq.  3.12  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑌0
bN"c.) Eq.  3.13  
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The integrated final feature undergoes flattening and a feed-forward layer ending 
in the final classifier (Softmax). As such, the M-DCTCs which contain low-level fine-
grained feature information can be made visible to the classifier with only one shallow 
convolutional layer in between. 

 

3.3 Adaptive-DCT Pointwise Convolutional Kernel 

 

While the M-Skipped DCT-CNN effectively considers higher frequency bands for 
improved feature extraction, it has limitations in adaptability and efficiency, 
particularly in handling complex frequency patterns. These limitations arise from the 
nature of the convolutional kernel and the underlying algorithms. The current 
composition of the convolutional kernel demonstrates resilience towards challenging 
fine-grained features, which can hinder its performance across various tasks. To 
address this issue, the Adaptive-DCT-based convolutional kernel is introduced. This 
algorithm enables the model to prioritise more relevant frequencies during kernel 
formation. This adjustment enhances both the flexibility and accuracy of feature 
representations by dynamically adapting to the complexity of the data, thereby 
overcoming the limitations associated with the resilience of the convolutional kernel in 
the M-Skipped approach. 

The Adapt-DCT kernel is initially explained simplistically in section 3.3.1 from a 
forward 2D-DCT-II process to set up a fundamental understanding. The basic 
formulation is then extended towards the adaptive DCT tensor in section 3.3.2 with 
relation to the working of DCT, basis functions, and depth-wise channel mapping. 
Section 3.3.3 tailored the final frequency domain pointwise convolutional kernel 
through graphics and a few associated conditions for usage and different circumstances. 

Figure 3.8 shows the difference between the original forward 2D-DCT and the 
modified method employed. A modified 3-dimensional DCT basis function is formed by 
applying zigzag encoding towards the original 4-dimensional one. The Adapt-DCT 
pointwise convolutional kernel replaces the coefficients of the modified DCT basis 
functions with trainable weights to adaptively learn the importance of spatial and 
frequency bases. The kernel is entirely produced by adaptively weighting the modified 
DCT basis functions during the training. Figure 3.9 illustrates the formation of the 
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pointwise convolutional kernel from adaptively weighting the modified 3D DCT basis 

functions. An adaptive kernel (𝒦ef) is element-wise multiplied (denoted by ‘⨂’) with the 

basis functions (𝔹′). The spatial summation is applied towards the resulting tensor 

forming a pointwise convolution kernel (𝒦Mg). The kernel is then used to perform 
pointwise convolution with the DCT features along the compressed domain CNN, as 
shown in Figure 3.10. 

 

 

(a) 

 

(b) 

Figure 3.8: Comparison between (a) original forward 2D-DCT and (b) modified forward 2D-DCT. 
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Figure 3.9: The formation of the frequency pointwise convolution kernel from adaptively weighting the 

modified DCT basis functions. 

 
 
 

 
 

Figure 3.10: Pointwise convolution adopting the Adapt-DCT pointwise convolutional kernel. 

 
 

The key difference between the Adapt-DCT convolution and the Cosine Basis 
Convolution (CBC) is that CBC uses cosine basis to produce spatial filter weights by 
weighting the parameters (frequencies and phases) within basis functions, while the 
Adapt-DCT convolution weights the modified basis functions directly to generate the 
frequency domain pointwise convolution kernel. The Adapt-DCT study serves as an 
initial attempt to explore the usability of the modified DCT basis functions in both 
spatial and frequency bases. 
 

During the training of the Adapt-DCT CNN, only part of the DCT processes is 
required. The forward pass consisting of the forward DCT only involves the 
multiplication of the adaptive weights with the modified DCT basis functions, followed 
by spatial summation to acquire the DCT pointwise convolutional kernel. While 
computing the backpropagation algorithm, only the multiplication of the differential 
kernel weights with the modified DCT basis functions applies. The optimisation of the 
Adapt-DCT kernel and backpropagation is like a perceptron forward pass algorithm, as 
DCT is a linear transformation.  
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3.3.1 Background Motivations and Theories of 
Adaptive DCT Basis Functions 

When a partition of spatial domain image or a feature map is applied with 2D-
DCT-II, the frequency bases are mapped towards the layer dimension. The layer 
dimension comprised different sets of individual frequency bases. A similar idea can be 
applied to the formation of a pointwise convolution kernel, with the difference being 
that the spatial dimension of the kernel is smaller than the feature maps. The Adapt-
DCT kernel is a 3D matrix. Once multiplied with the modified DCT basis functions 
followed by the application of spatial summation, a frequency domain pointwise 
convolution kernel is formed. 

The forward 2D-DCT-II is introduced to provide some background knowledge. 
Each intermediate step along the forward 2D-DCT-II process is elaborated to ease 
understanding. The full expansion of the DCT basis functions is highlighted to ease the 
explanation of the adaptive weighting at the later stage. Simplifications and notations of 
forward 2D-DCT-II are shown to derive the modified DCT basis functions. The objective 
is to obtain the modified DCT basis function. Generally, the forward 2D-DCT-II is 
written as: 

       𝒦$%(𝑢, 𝑣) = ℱ$&'()@𝒦*+(𝑥, 𝑦)C 

= D
2
𝑁 ∗ 𝜉

(𝑢) ∗ 𝜉(𝑣)HIIJ𝒦*+(𝑥, 𝑦)K Lcos
𝜋 ∙ 𝑢(𝑥 + 0.5)

𝑁 T Lcos
𝜋 ∙ 𝑣(𝑦 + 0.5)

𝑁 T
,&-

./0

,&-

1/0

 Eq.  3.14 

Where  function 𝜉(𝑢) = �
2
√-
, 𝑢 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝜉(𝑣) = �
2
√-
, 𝑣 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

ℱb$>TU  indicates the forward 2D-DCT-II. 𝒦bi  is the frequency domain matrix 

with 𝒦bi(𝑢, 𝑣)  representing the element with an index at (𝑢, 𝑣) . 𝒦jS  is the spatial 

domain matrix with 𝒦jS(𝑥, 𝑦) representing the element with index at (𝑥, 𝑦). 𝑁 is the 

spatial dimension of the spatial domain matrix. Rewriting and simplifying the equation 
above yields: 
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𝒦bi = ℱb$>TUu𝒦jSv = ℂ ∙ ;;�𝒦jS ∙ 𝔹�
4$2

=#3

4$2

<#3

 Eq.  3.15 

Where : ℂ = -
4
∗ 𝜉(𝑢) ∗ 𝜉(𝑣) 

𝔹 = �cos
𝜋 ∙ 𝑢(𝑥 + 0.5)

𝑁 � �cos
𝜋 ∙ 𝑣(𝑦 + 0.5)

𝑁 � 

𝐹𝑜𝑟	𝑥, 𝑦, 𝑢, 𝑣 = 0,1,2, … , 𝑁 − 1 

 

The 4-dimensional tensor 𝔹 in Equation 3.15 represents the DCT basis functions 

with element ℬ(𝑥, 𝑦, 𝑢, 𝑣) at the index location of (𝑥, 𝑦, 𝑢, 𝑣). The forward 2D-DCT-II in 

Equation 3.15 converts the spatial coefficients (𝒦jS) directly into frequency coefficients 

(𝒦bi). An instantaneous tensor is given by the notation 𝒦jS
k  can be obtained from the 

forward 2D-DCT-II. It represents the result of multiplying 𝒦jS  with the DCT basis 

functions (Equation 3.16). After applying spatial summation on 𝒦jS
k , 𝒦bi is obtained as 

the frequency coefficients (Equation 3.17). Figure 3.11 provides an example of the 
spatial summation for a 2D tensor; it is not to be confused with the summation of 
activation outputs in a regular neural network. 

 

Figure 3.11: Spatial summation of a 2D tensor. 

 

The spatial summation of the 2D tensor can be represented in Equations 3.16 and 3.17: 

𝒦jS
k (𝑥, 𝑦, 𝑢, 𝑣) = 𝒦jS(𝑥, 𝑦)⨂ℬ(𝑥, 𝑦, 𝑢, 𝑣) Eq. 3.16 

𝒦bi(𝑢, 𝑣) = ; ;𝒦jS
k (𝑥, 𝑦, 𝑢, 𝑣)

4$2

=#3

4$2

<#3

 Eq. 3.17 
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The 𝒦jS  and 𝒦bi  are single layers of a 2D matrix. ⨂  indicates element-wise 

multiplication. A spatial domain matrix of 𝒦jS  carrying ℜ4×4 will produce a 

corresponding frequency domain matrix of 𝒦bi carrying ℜ4×4 according to 2D-DCT-II 

principle, whereas the corresponding DCT basis functions 𝔹  will carry a shape of 

ℜ4×4×4×4. The spatial dimension (height and width) of both 𝒦jS and 𝒦bi is denoted by 

𝑁 . The DCT basis functions follow the same fashion with each of the indexes in 
(𝑥, 𝑦, 𝑢, 𝑣) ranging from {0, 1, 2, … , 𝑁 − 1}. 

The following step is to define the modified DCT basis functions. It is obtained by 
mapping the DCT basis functions of frequency bases towards the depth channel. In 
other words, the DCT basis functions will be propagated from a 4D tensor into a 3D 

tensor. Specifically, the tensor index is mapped from (𝑢, 𝑣) to (𝑤), producing ℬ′(𝑥, 𝑦, 𝑤) 

from ℬ(𝑥, 𝑦, 𝑢, 𝑣). The objective of producing such modified function is to reduce the 
dimension of the DCT basis functions to ease the adaptive weighting and the kernel 
composition at the later stage. The 3D DCT basis functions are referred to as the 

‘modified DCT basis functions’. The depth-wise mapping from ℬ(𝑥, 𝑦, 𝑢, 𝑣) to ℬ′(𝑥, 𝑦, 𝑤) 
follows the ‘horizontal prior’ for algorithmic simplicity. It provides easier access to 

certain frequency coefficients at specific locations with instance (𝑢, 𝑣) . The spatial 

context ℬ′(𝑥, 𝑦, : )  is referred to as the spatial bases whereas the channel context 

ℬk(: , : , 𝑤) is referred to as the frequency bases. 

Figure 3.12 illustrates the original 4D DCT basis functions and the modified 3D 
counterpart. 

 
 

Figure 3.12: Original DCT basis functions ℬ(𝑥, 𝑦, 𝑢, 𝑣) versus modified DCT basis functions ℬ′(𝑥, 𝑦, 𝑤). 
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The zigzag encoding scheme is shown in Figure 3.13 and the corresponding element 
mapping is shown in Table 3.3.  

 

Figure 3.13: Horizontal prior zigzag encoding. 

Table 3.3: Depth-wise mapping of elements from (u, v) to (w). 

𝐼𝑛𝑑𝑒𝑥	(𝑢, 𝑣) 𝐼𝑛𝑑𝑒𝑥	(𝑤) 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 

(0,0) 0 32 

(0,1) 1 7 

(0,2) 2 5 

(0,3) 3 11 

(1,0) 4 17 

(1,1) 5 26 

(1,2) 6 12 

(1,3) 7 3 

(2,0) 8 47 

(2,1) 9 23 

(2,2) 10 34 

(2,3) 11 41 

(3,0) 12 14 

(3,1) 13 9 

(3,2) 14 21 

(3,3) 15 33 

The mapping procedures can be derived from the following notations: 

ℬ(𝑥, 𝑦, 𝑢, 𝑣) 	
>lSdOQNjl	]cSSN"n
���������������� ℬ′(𝑥, 𝑦, 𝑤) Eq. 3.18 

𝔹
>lSdOQNjl	]cSSN"n
���������������� 𝔹′  
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Each set of (𝑢, 𝑣) corresponds to a particular (𝑤) in the layer dimension. As each 

of the index (𝑢, 𝑣) is in the range of {0, 1, 2, … , 𝑁 − 1}, thus, the index (𝑤) will range 

from {0, 1, 2, … , 𝑁- − 1}. With the introduction of 3D-modified DCT basis functions, 
both spatial and frequency bases are accessible. This allows flexibility tuning and 

information filtering along each base. A new tensor (𝒦dj) is introduced to replace the 

spatial domain matrix of 𝒦jS in conjunction with the modified DCT basis functions. 𝒦dj 

carries the same shape as the modified DCT basis functions of 𝔹′. This simplifies the 

element-wise multiplication to obtain the intermediate tensor of 𝒦dj
k . 𝒦dj is called the 

‘Adaptive DCT Tensor’. The corresponding shape of each tensor is: 

 

𝔹 ∈ ℜ4×4×4×4 
 

𝔹′ ∈ ℜ4×4×4!  
 

𝒦dj ∈ ℜ4×4×4!  
 

𝒦dj
k ∈ ℜ4×4×4!  

 

The modified DCT basis functions adhere to the same rules as the original 2D-
DCT formula. These basis functions maintain orthogonality among each other, 
signifying that the inner product between any two distinct basis functions is zero. This 

characteristic holds a particular significance for the transformed kernel (𝒦dj
k ). This is 

because it simplifies the kernel composition of 𝒦bi  by expressing it as individual 

decorrelated components. This composition involves decomposing the initial spatial 

filter of 𝒦jS, ensuring the preservation of kernel properties and enabling analytics for 

each component. The kernel properties are effectively distributed among these 

orthogonal components. Hence, the formation of 𝒦bi
k  is required to adhere to the core 

basis function rules. 
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By modifying the earlier Equations 3.16 and 3.17, the illustrations and logic are 
presented in Figure 3.14: 

 

Figure 3.14: Obtaining frequency tensor from the Adaptive DCT Tensor. 

 

𝒦dj
k (𝑥, 𝑦, 𝑤) = 𝒦dj(𝑥, 𝑦, 𝑤)⨂ℬ′(𝑥, 𝑦, 𝑤) Eq. 3.19 

𝒦bi
k (𝑤) = ; ;𝒦dj

k (𝑥, 𝑦, 𝑤)
4$2

=#3

4$2

<#3

 

𝒦bi
k ∈ ℜ2×2×4 

Eq. 3.20 

 

By conducting spatial summation on 𝒦dj
k  along the (𝑥, 𝑦) axes will produce a 1-

dimensional frequency vector of 𝒦bi
k . The intention of producing a 1D frequency vector 

at this point is to set up a common background for formulating the pointwise 
convolution kernel in the next section. The overall transformation of the Adaptive DCT 
tensor can be summarised as: 

 

𝒦dj(𝑥, 𝑦, 𝑤)
o.l%l"d$QNjl	

%/.dNS.NRcdNp"	QNdO	ℬk
������������������𝒦dj

k (𝑥, 𝑦, 𝑤)
rScdNc.	r/%%cdNp"
���������������𝒦bi

k (𝑤) 
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3.3.2 Adaptive DCT Pointwise Convolutional 
Kernel 

In this section, the formulation of the Adapt-DCT kernel and its transformation 
towards the pointwise convolutional kernel will be established. The pointwise 

convolution is a convolution process that adopts 1 × 1 kernel of 1D vector. In the DCT 
domain, the pointwise convolution is widely implemented. Following the concept 

established earlier, a 1 × 1  kernel (𝒦bi
k ) can be produced by multiplying an adaptive 

weight with the modified DCT basis functions. In other words, an adaptive tensor can 

be initialized as trainable weights to compose a 1 × 1  kernel. 

Let the pointwise convolutional kernel be 𝒦sG
k 	 with a shape of ℜ2×2×J, where C is 

the total number of channels carried by the 1 × 1  kernel.  In the modified DCT basis 
functions, the number of frequency bases is derived from its corresponding spatial 

dimension (N × N ), denoted as N- . Under normal circumstances, the number of 

channels (C) of the pointwise convolutional kernel (𝒦sG
k ) will always be greater than the 

number of frequency bases.  Following the principle above, it can be derived that C ≥ N-. 

To produce a pointwise convolutional kernel consisting of C channels by inheriting 

earlier concepts, the desired adaptive tensor (𝒦ef) shall carry C layer instead of N-. To 

achieve learning capabilities, the adaptive tensor can be defined as weights, denoted as 

𝒦KL. Thus, 𝒦KL is named as the ‘Adaptive DCT (Adapt-DCT) Tensor’, or simply adaptive 
weights. A simple comparison can be seen from Figures 3.15(a) and 3.15(b). 

 

 

(a) 
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(b) 

Figure 3.15: (a) Primary concept of adopting Adapt-DCT tensor to produce a 1-dimensional frequency 
vector. (b) The adaptive weighting of the modified DCT basis functions to produce the frequency 

pointwise convolution kernel. 

In essence, due to the dissimilarities between the number of channels and 
frequency bases, each DCT basis function within a specific frequency base requires the 
application of several adaptive weights. This is achieved through a process known as 

‘channel extension’ applied to the initial set of 𝒦ef . The primary goal of channel 
extension is to establish a correspondence between adaptive weights and the basis 
functions. The objective is to synchronise their multiplication with the modified DCT 
basis functions. 

The 𝒦ef  in the earlier section multiplies a single layer of 𝒦ef(: , : , w)  with a 

corresponding layer in the modified DCT basis function ℬk(: , : , w). Since 𝒦KL carries a 

channel of C as opposed to N-, multiple layers within 𝒦KL shall be multiplied with a 

single layer of frequency base from ℬk. In other words, each layer of DCT basis functions 

of frequency base is multiplied with a set of ‘channel weights’ within 𝒦KL. The set of 

‘channel weights’ is formed by extending each layer of the prior 𝒦ef(: , : , w) at the index 

location of w by J
t!

 times. The calculation for each set of channel weights possesses an 

equivalent depth of J
t!

. Each set of channel weights is denoted as 𝒦KL(w′) (or simplified 

as 𝒦KL
uk), with index w′ referring to the (wk)ev set. An example is given in Figure 3.16, 

where C = 8	and		N = 2. Thus, N- = 4 and J
t!
= 2. 𝒦KL contains more learnable weights 

per frequency base as compared to 𝒦ef with improved learning capabilities. 
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Figure 3.16: The extension of a single layer 𝒦2* by (
,!

 times to produce the required 𝒦)3 which carries a 

channel dimension of C. 

For each 𝒦Ur(𝑤′): 

𝒦Ur(𝑤′) ∈ ℜ
4×4× T

4!  

𝒦Ur
Qk = 𝒦Ur(𝑤′) 

𝒦Ur
Qk = �𝒦dj(𝑥, 𝑦, 0),𝒦dj(𝑥, 𝑦, 1), … ,𝒦dj(𝑥, 𝑦, 𝒛), … ,𝒦dj �𝑥, 𝑦,

𝐶
𝑁- − 1 	¡ Eq. 3.21 

𝑧 is the channel index within each set of the channel weights (𝒦Ur
Q") ranging from 

£0, 1, 2, … , T
4!
− 1¤ . The 𝒦Ur  can also be viewed as equal grouping across the layer 

dimension to produce 𝑁- sets of equivalent depth tensor (𝒦Ur
Qk). Each group is a set of 

channel weights to be multiplied with a frequency base. The final 𝒦Ur can be written as: 

𝒦KL ∈ ℜt×t×J 

𝒦Ur = {𝒦Ur(0),𝒦Ur(1),𝒦Ur(2), … ,𝒦Ur(𝑤′), … ,𝒦Ur(𝑁- − 1)} 

𝒦Ur = u𝒦Ur
3 , 𝒦Ur

2 , 𝒦Ur
- , … ,𝒦Ur

Qk, … ,𝒦Ur
4!$2v Eq. 3.22 

Consecutively, the modified DCT basis functions (𝔹k) can be separated into a 

single layer of ℬQk  to be multiplied with 𝒦Ur
Qk. The definition of 𝔹k is defined in the earlier 

section in Equation 3.18. Each ℬQk  is the frequency base instantiation across the layer 

dimension at 𝑤dO  depth. The modified DCT basis functions can be written as a 

collection of single layers ℬk(: , : , 𝑤): 
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𝔹′ = {ℬk(𝑥, 𝑦, 0), ℬk(𝑥, 𝑦, 1), … , ℬk(𝑥, 𝑦, w), … , ℬ′(𝑥, 𝑦, 𝑁- − 1)} 

𝔹′ = uℬ3k , ℬ2k , ℬ-k , … , ℬQk , … , ℬ4!$2
k v Eq. 3.23 

During training, the model will optimize based on 𝒦Ur instead of directly on the 

1 × 1  kernel. The modified DCT basis functions can also be pre-computed. Therefore, 

𝒦Ur and 𝔹′ are initialised before the training for computational efficiency. Each set of 

the tensor 𝒦Ur
Qk is multiplied with the corresponding layer of the DCT basis function of 

ℬQk . The process is shown in Figure 3.17(a). Then, the resultant tensor will go through 
spatial summation and depth-wise concatenation to obtain the final pointwise 

convolution kernel (𝒦wX
k ) as shown in Figure 3.17(b). The pointwise convolution kernel 

is formed via adaptive weighting of modified DCT basis functions followed by spatial 

summation. During deployment, only the final 1 × 1  kernel is required for inference. 
The inference model is like a fully pointwise CNN. 

 

 

(a) 

 

(b) 

Figure 3.17: Full process of acquiring the frequency domain pointwise convolutional kernel from Adapt-
DCT kernel. 
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The formula can be represented as: 

𝒦wX
k (𝑤′) = ; ;[𝒦Ur(𝑤′)⨂ℬk(w)](<,=)

4$2

=#3

4$2

<#3

 Eq. 3.24 

 

It can be further simplified and denoted as: 

𝓚𝑭𝑹
# = 𝚿{𝓚𝑻𝑺

𝒘# , 𝓑𝒘# } Eq. 3.25 

𝒦wX
k = 𝑐𝑜𝑛𝑐𝑎𝑡uΨ[𝒦Ur

3 , ℬ3k ], Ψ[𝒦Ur
2 , ℬ2k ], Ψ[𝒦Ur

- ∙ ℬ-k ], … ,Ψ[𝒦Ur
Qk, ℬQk ], … ,Ψ�𝒦Ur

4!$2, ℬ4!$2
k �v 

 

The function ‘Ψ’ represents element wise multiplication of 𝒦Ur
Qk with ℬQk  followed 

by spatial summation along the (𝑥, 𝑦) axes. For 𝒦wX
k (𝑤′): 

 

𝒦wX
k (𝑤′) ∈ ℜ2×2×

T
4!  

𝒦wX
k = u𝒦bi

k (0),𝒦bi
k (1),𝒦bi

k (2), … ,𝒦bi
k (𝑤k), … ,𝒦bi

k (𝑁- − 1)v Eq. 3.26 

𝑤ℎ𝑒𝑟𝑒	𝒦wX
k (𝑤′) = �𝒦wX

k (0),𝒦wX
k (1),𝒦wX

k (2), … ,𝒦wX
k (𝒛), … ,𝒦wX

k �
𝐶
𝑁- 	¡ 
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3.3.3 Principles of Adaptive DCT Pointwise 
Convolutional Kernel 

 

Several conditions govern the formulation of the Adapt-DCT pointwise 
convolution kernel, and it must be satisfied in conjunction with the modified DCT basis 
functions. The conditions are as below: 

(i) The number of channels (𝐶) of the final DCT domain pointwise convolution kernel 

(𝒦34
5 ) should always be equal to or larger than the number of modified DCT basis 

functions of frequency bases (𝑁6). 

𝐶 ≥ 𝑁- 

(ii) The number of channels (𝐶) of the final DCT domain pointwise convolution kernel 

(𝒦34
5 ) should always be divisible by the number of modified DCT basis functions of 

frequency bases (𝑁6). ‘%’ indicates the modulo operation. 

𝐶	%	𝑁- ≡ 0 

In the sense that any of the above conditions cannot be satisfied during the 

initialisation of the Adapt-DCT pointwise convolution kernel, the 𝒦wX
k  will be undefined.  

 

𝒦'(
# = ∅* 𝐶 < 𝑁2

	𝐶	%	𝑁2 ≠ 0
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3.3.4 Adaptive DCT Pointwise Convolutional 
Neural Network 

In this section, the full process of the adaptive DCT pointwise convolution is 
established. It covers the forward and backward passes of the Adapt-DCT convolution. 
The Adapt-DCT convolutional layer can be treated as a plug-and-play layer to replace 
any convolutional layer in a CNN. Specifically, the Adapt-DCT convolution is used in 
compressed domain CNN with an input consisting of a DCT image. The forward and 
backward pass can operate flawlessly since the kernel will not be affected by the DCT 
process.  

The forward pass is computed by performing pointwise convolution between the 
pointwise convolutional kernel over the DCT input or DCT feature map. The process is 

shown in Figure 3.18. The kernel is denoted as 𝒦wX
k . The input feature map is 

represented by 𝑋 and the output is 𝑌. The ‘𝐻 ×𝑊’ is the height and width of the feature 

map, 𝐶 is the number of channels, where 𝐶 = CN × CW. Since the operation is pointwise 

convolution, hence the spatial size (𝐻 ×𝑊) of the input and output will be the same. 
Thus, the forward pass is: 

𝑌 = 𝒦wX
k ∗ 𝑋 Eq. 3.27 

𝒦wX
k 	 ∈ ℜ2×2×T  
𝑋 ∈ ℜ^×{×J4  

𝑌 ∈ ℜ^×{×J5  

 

 

Figure 3.18: Pointwise convolution between a convolutional kernel and the DCT input. 
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In the forward pass, the input is processed through the CNN and a loss is 
computed at the end. The chosen loss function for this research is the categorical cross-
entropy loss. It is widely implemented in the context of multi-class classification 

problems. Let 𝒥 denote the loss function for the classification prediction with 𝑁 total 

number of classes. 𝑦N indicates the true categorical label for class 𝑖, encoded as a one-

hot vector, whereas 𝑦¬N 	resembles the predicted probability distribution for the same 

class. 𝑦¬N 	 is computed by passing 𝑌  through a fully connected layer followed by the 
Softmax activation function. The expression of the loss function is defined in Equation 
3.28. 

𝒥 = −;(𝑦N) ∙ log	(𝑦¬N)
4

N#2

 Eq. 3.28 

To facilitate the update of convolutional filters, it involves minimizing the loss by 
backpropagating the gradient of the loss function concerning the filers back through the 
network. From the proven formula for backpropagation in a convolutional layer using 

the chain rule, the specific gradient of interest is the convolution between the input 𝑋 

and the gradient loss from the subsequent layer |𝒥
|~

. Consequently, the relationship 

between the gradient of the loss function concerning the kernel |𝒥
|𝒦67

"  in the current layer 

with 𝑋 and |𝒥
|~
	is written as: 

𝜕𝒥
𝜕𝒦wX

k = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 ¯𝑋 ∗
𝜕𝒥
𝜕𝑌° Eq. 3.29 

Since the pointwise convolutional kernel (𝒦wX
k ) is obtained from the adaptive 

weights (𝒦Ur), to optimize the initial 𝒦Ur, it is required to backpropagate the loss from 

𝒦wX
k  to 𝒦Ur. Specifically, the partial derivative of |𝒥

|𝒦67
"  is used to find |𝒥

|𝒦89
. By using the 

formula above to obtain |𝒥
|𝒦67

" , |𝒥
|𝒦89

 can be computed. Provided that the Adapt-DCT 

kernel is weighting each of the DCT basis functions across the spatial dimension 
individually, therefore the same spatial size of the Adapt-DCT kernel and the basis 
function applies. Two intermediate steps in forward 2D-DCT are conducted to produce 

𝒦wX
k  from 𝒦Ur, specifically element-wise multiplication of Adapt-DCT kernel (𝒦Ur) with 
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the modified DCT basis functions (𝔹’) and spatial summation of the resultant tensor 

𝒦′Ur. The representation can be described as below: 

𝒦′Ur = 𝒦Ur	⨂	𝔹′ Eq. 3.30 

𝒦wX
k =;;[𝒦′Ur](<,=)

=<

 Eq. 3.31 

𝒦′Ur  is the modulated form of 𝒦Ur  with the same shape. It is obtained after 

conducting element-wise multiplication of 𝒦Ur with the modified DCT basis function at 
a specific frequency base. It is important to note that the notation above is the 

intermediate representation of 2D-DCT whereby the spatial dimension of both the 𝒦Ur 

and 𝔹′ exists. The constant term of ℂ = -
4
∙ 𝜉(𝑢) ∙ 𝜉(𝑣) is neglected as it will not affect the 

backward pass of the loss function. To compute 𝒦Ur  from 𝒦wX
k , inverse 2D-DCT is 

performed without computing the summation. 

𝒦Ur = 𝒦wX
k 	⨂	𝔹′ Eq. 3.32 

This concept is applicable for the backward pass algorithm since 2D-DCT 

between 𝒦Ur and 𝒦wX
k  is a linear transformation. Hence, the computation of its partial 

derivatives loss function and backward pass is straightforward. From Equation 3.32, 

differentiate loss function ‘𝒥’ with respect to the kernel ‘𝒦’ governs the following: 

𝜕𝒥
𝜕𝒦Ur

=
𝜕𝒥
𝜕𝒦wX

k 	⨂	𝔹′ Eq. 3.33 

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	
𝜕𝒥

𝜕𝒦Ur(𝑥, 𝑦, 𝑤′)
=

𝜕𝒥
𝜕𝒦wX

k (𝑤′)	⨂	ℬ′
(𝑥, 𝑦, 𝑤) 

 

Eq. 3.34 

By substituting |𝒥
|𝒦67

"  obtained from Equation 3.29 into Equation 3.33, each of the 

corresponding backward pass functions |𝒥
|𝒦89

 can be computed to optimise the Adapt-

DCT kernel (𝒦Ur). The layers other than Adapt-DCT convolution such as fully 
connected layers will be computed as usual. 
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3.3.5 Spatial Upscaling of Adaptive DCT Kernel 

In the spatial domain CNN, generally the spatial dimension of the convolution 

kernel consists of odd numbers such as 3 × 3, 5 × 5, and so on. With the partial forward 

2D-DCT to transform the Adapt-DCT kernel (𝒦Ur ) into the pointwise convolution 
kernel, it allows the upscaling of the initial Adapt-DCT kernel to an arbitrary spatial size, 
but there are several principles to abide which concern the DCT partition. 

Commonly, the spatial dimension (𝑁 × 𝑁) of an Adapt-DCT kernel is upscaled in 
a way such that it is a multiplier of 2. This is because of the need to adhere to the 
original partition size of the DCT image. Additionally, it is intended to achieve division 

with zero remainder with the channel (𝐶) over the frequency bases of the DCT basis 

functions (𝑁- ). All the possible spatial upscaling of the ADAPT-DCT kernel with 
reference to the DCT partition of the image is provided in Table 3.4. 

 

Table 3.4: Spatial upscaling of Adapt-DCT kernel concerning the DCT partition. 

Spatial Size of 𝒦)3 

DCT Partition 
1 × 1 2 × 2 4 × 4 8 × 8 

2 × 2 ✓ ✓ ✘ ✘ 

4 × 4 ✓ ✓ ✓ ✘ 

8 × 8 ✓ ✓ ✓ ✓ 

 

As an example, with a DCT partition of 2 × 2, the maximum spatial upscaling of 

the 𝒦Ur  is 2 × 2. This is because of a spatial size of 𝒦Ur  larger than 2 × 2 does not 
symbolize nor represent the accurate DCT spatial base information. Moreover, it may 
overlap or cause aliasing effects on the spatial bases with other DCT partitions. From 

the experiments conducted, a larger spatial size of 𝒦Ur with a smaller DCT partition 
does not bring any performance improvement. The same concept is applicable even 
though a normal pointwise convolution layer exists before an Adapt-DCT convolution 
layer in compressed domain CNN. With a particular DCT partition, a larger spatial 

dimension (𝑁 × 𝑁 ) of the Adapt-DCT kernel can accommodate more DCT basis 
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functions (subjected to 𝐶 ≥ 𝑁- ). Furthermore, by using more basis functions to 

represent a pointwise convolution kernel, more sampling provides more adaptive 

weighting flexibility. Thus, for a specific number of channels (𝐶), an increasing spatial 

size (𝑁 × 𝑁) of the initial Adapt-DCT kernel (𝒦Ur) will reduce the number of channel 

sets ( T
4!

) allocated to each of the DCT basis functions of frequency base. 

A few scenarios with a specific DCT partition of 8 × 8 are elaborated further to 
pursue an in-depth understanding of the concept of spatial upscaling of the Adapt-DCT 

kernel. Let the number of channels of the input and output feature maps be 𝐶N and 𝐶W, 

where 𝐶N = 𝐶W = 8 . Consequently, the number of channels of the corresponding 

pointwise convolution kernel will be 𝐶. Table 3.5 presents a few variations of the spatial 
dimension of the Adapt-DCT kernel and their effects on the overall properties of other 
tensors. 

 
 

Table 3.5: Variations of spatial upscaling on Adapt-DCT kernel with a DCT partition of 8 × 8 

 Case 1 (𝑵 = 𝟐) Case 2 (𝑵 = 𝟒) Case 3 (𝑵 = 𝟖) 

Spatial Dimension of 

Adapt-DCT kernel 
𝑁 ×𝑁 2 × 2 4 × 4 8 × 8 

Number of available 
frequency bases 

𝑁: 4 16 64 

Number of channel weights 
per frequency base 

𝐶
𝑁: 16 8 1 

Shape of 𝒦)3
;" ℜ,×,× (

,! ℜ:×:×=>> = ℜ:×:×-= ℜ>×>×=>-= = ℜ>×>×? ℜ?×?×=>=> = ℜ?×?×- 

Shape of 𝒦)3 ℜ,×,×(  ℜ:×:×=> ℜ>×>×=> ℜ?×?×=> 

Shape of 𝒦@A after spatial 

summation on 𝒦)3 
ℜ-×-×(  ℜ-×-×=> ℜ-×-×=> ℜ-×-×=> 
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The above logic is applicable even with a DCT partition of 4 × 4 or 2 × 2. The 
difference is that with an increasing spatial dimension of the Adapt-DCT kernel, it will 

reduce the number of channel weights set (𝒦Ur
Qk) per DCT basis function of frequency 

base (ℬ′(𝑤)). From the standard scenarios as presented above, for any Adapt-DCT 

kernel with spatial dimension equal to any reasonable real number, i.e., 0 < 𝑁 ≤

𝐷𝐶𝑇	𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, computing forward 2D-DCT will produce a frequency domain pointwise 

convolution kernel with a consistent spatial dimension of 1 × 1 (𝒦wX ∈ ℜ2×2×T). This 
can be seen in the last row in Table 3.5. Hence, it is safe to deduce that the spatial 

dimension (𝑁) of the Adapt-DCT kernel will not affect the spatial dimension of the final 

frequency domain pointwise convolution kernel (𝒦wX). But different 𝑁 will require a 

different number of channel weights set (𝒦Ur
Qk) per DCT frequency base. 

The potential of spatial upscaling in an Adapt-DCT kernel serves several 
flexibilities in the CNN. The spatial dimension of an Adapt-DCT kernel can be increased 
to improve the sampling and partition steps of the pointwise convolution kernel. In 
other words, when more DCT basis functions are used to define a final pointwise 
convolution kernel, more flexibility in terms of fine-tuning and weighting each spatial 
and frequency base can be exercised. In contrast, the spatial dimension of an Adapt-
DCT kernel can be decreased to reduce trainable parameters.  
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3.3.6 Depth-wise Level Optimisation of Adaptive 
DCT Pointwise Convolutional Kernel 

This section discusses the depth-wise channel optimisation within the Adapt-
DCT kernel. The optimisation strategy draws inspiration from the pruning technique 
applied to DCT. The underlying concept revolves around the fact that basis functions 
serve as a common connection between the resultant pointwise convolutional kernel 
and the adaptive weights.  Unlike the approach used in the M-Skipped network, where 
the modifications took place on the feature map, this method focuses on modifying the 
DCT basis functions during the kernel composition. It is crucial to note that these two 
methods are not contradictory; rather, the key distinction lies in the former being 
focused on the feature map, while the present work is centred on the kernel formulation. 
By carefully pruning the higher-level frequency bands across the DCT basis functions 
and specifying the number of resulting channels, this optimisation ensures a particular 
frequency band will be weighted by similar or more sets of adaptive weights compared 
to the original case. 

Under ordinary circumstances, the DCT basis functions carry a tensor shape of 

𝔹′ ∈ ℜ4×4×4!, where 𝑁 × 𝑁 represents the spatial dimension of the Adapt-DCT kernel 
as shown in section 3.3.2. The depth-wise channel across the adaptive weights is equally 
divided according to the number of DCT basis functions of frequency bases. The 
optimisation is applied on the layer dimension of the frequency base in the DCT basis 

function, denoted by the instance (𝑤)	in ℬ(𝑥, 𝑦, 𝑤). 

Let the number of frequency bases be 𝜂, such that the corresponding DCT basis 

functions will carry a shape of 𝔹k ∈ ℜ4×4×�. The parameter ‘𝜂’ represents the shape of 
the layer dimension of the frequency bases. This parameter is restrained by the 

conditions below where it specifies the usage boundary of ‘𝜂’: 

(i) The parameter ‘𝜂’ should be larger than zero and smaller than the original layer 

shape of 𝑁6. 

0 < 𝜂 < 𝑁- 

(ii) The parameter ‘𝜂’ should be divisible by the total number of channels of the Adapt-

DCT kernel ‘𝐶’. 

𝐶	%	𝜂 ≡ 0 
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An extension example is elaborated from the scenario in the previous section to 
showcase the working of depth-wise channel optimisation on the Adapt-DCT kernel. 

With a DCT partition of 8 × 8, the spatial size of the Adapt-DCT kernel (𝑁) is 8 whereas 

the number of channels (𝐶) will be 64, such that 𝒦Ur carries ℜ�×�×�V. Following the 
original formulation, the number of DCT basis functions of frequency bases along the 

layer dimension (𝑁-) shall be 64, and the respective channel weights per DCT basis 

function (𝒦Ur
Qk) will carry a shape of ℜ�×�×2. With 𝜂 = 4 replacing the original 𝑁- = 64, 

the optimised basis function 𝔹k will carry the shape of ℜ�×�×V (ℜ4×4×�) instead of the 

former ℜ�×�×�V  (ℜ4×4×4! ). This optimisation will correspond to an increase in the 

number of channel weights per DCT frequency base (𝒦Ur
Qk) from the original ℜ�×�×2 

(ℜ4×4× B
C!) to ℜ�×�×2� (ℜ4×4×BD). 

By adopting the idea of DCT pruning, it involves a selective inclusion of 
frequency bases in the formation of the resultant kernel that contribute significantly to 
the major recognition properties. This approach preserves the spatial context of DCT 
basis functions and adaptive weights while optimizing the frequency bases. Instead of 
incorporating all available frequency bases, the optimisation selectively utilises a subset 
to compose the pointwise convolutional kernel. The primary outcome of this 
optimisation is to investigate the robustness throughout the learning phase by 
employing a reduced number of basis functions for kernel composition. It is aimed to 
observe how varying the number of DCT basis functions in kernel composition can 
influence performance. 
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3.4 Hybrid Modified Efficient Channel Attention 

While the earlier Adapt-DCT CNN improved kernel flexibility for handling 
complex fine-grained patterns, how each feature channel contributes to FGVC in the 
compressed domain remains unclear. Therefore, adopting an attention mechanism is 
crucial to explore this dimension. Fine-grained features along the channel dimension 
are often better captured through attention mechanisms, which emphasise the most 
discriminative aspects of the data. However, the attention mechanisms typically 
introduce additional parameters which directly increases the computational 
requirements. The introduction of the HyMod-ECA complements the earlier model by 
integrating feature prioritisation and interaction while reducing the number of 
parameters. This balance is critical for enhancing resource efficiency, leading to overall 
performance improvements and model optimisation. 

In this section, the main conceptual differences between former ECA on local 
cross-channel interactions and the proposed HyMod-ECA on intra-group DCT channel 
interactions are established. Later, the formulation and implementation details of the 
HyMod-ECA will be elaborated on. Towards the end, a demonstration of implementing 
the HyMod-ECA on top of the former Adapt-DCT CNN will be explained. 

The original ECA highlights individual local cross-channel interactions whereby 
every local channel and its neighbouring relationship and interaction is considered. 
However, in the frequency domain, it is suggested that not every single channel and its 
neighbouring channels correlate. This is because DCT decorrelates spatial context and 
concentrates the frequency features towards several coefficients in the channel 
dimension. Therefore, different from the conventional ECA, HyMod-ECA considers the 
interaction within a larger DCT channel group. Each of the DCT channel groups across 
the output of a convolution block carries a different level of frequency information in 
the feature space. By considering the interaction between DCT channel groups at the 
output of each convolution block, it is suggested that the connection between 
hierarchical discriminative features can be established to ease FGVC.  

Let the output of an intermediate feature map from any convolutional block be 

𝑋 ∈ ℝ^×{×T, where 𝐻,𝑊, 𝐶 are the height, width, and number of channels. To produce 

an aggregated 1D vector of 𝑋¶ ∈ ℝ2×2×T  based on 𝑋 , the original channel-wise GAP 

(denoted as 𝐺𝐴𝑃(∗)) is used to average each spatial map of 𝑋. GAP is utilized over GMP 
for its ability to emphasize generalization and robustness of the attention mechanism to 
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avoid overfitting, such that every DCT channel group is equally considered. 𝑋¶R below 

indicates the aggregated feature after computing GAP at the channel 𝑐. 

𝑋¶R = 𝐺𝐴𝑃(𝑋R) =
1
𝑊𝐻; 𝑋R,NW

{,^

N#2,W#2
 Eq. 3.35 

From the original ECA, an effective method to apply weight sharing across 
channel groups is through computing fast 1D convolution. This technique is further 
extended in this section by modifying the stride size of the 1D kernel to reduce the 
computational complexity and to emphasize intra-group DCT channel interactions. 
Figure 3.19 briefly provides a fundamental concept on the formulation of DCT channel 

groups. The aggregated DCT vector (𝑋¶) is equally split into several DCT channel groups, 

with each respective group denoted as 𝑋¶Q ∈ ℝ2×2×b , where 𝑤  and 𝑓  represent the 

sequence instance of the DCT channel group and the channel depth of each DCT 

channel group. 𝑋¶Q is referred to as an ‘aggregated DCT channel group’.  

 

Figure 3.19: Aggregated DCT channel groups (𝑋;), produced by the original 1D tensor acquired by 

performing GAP over the input feature map X. 

 

Since the total number of DCT channels available from the aggregated feature 𝑋¶ 

is 𝐶, by conducting equal channel dissemination on 𝑋¶, the total number of available 

DCT channel groups is equal to T
b
 . The same concept is also applied to the input feature 

map 𝑋 to obtain the same form of DCT input feature channel groups, denoted as 𝑋Q ∈

ℝ^×{×b. 𝑋 is later used to multiply with the attention weights following the order of 
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DCT channel groups. Each of the DCT channel groups (𝑋Q) will be multiplied with one 

of the attention scalar weights acquired from 𝐴̅. Multiple sets of attention maps are 

needed to weight each DCT channel group respectively. To acquire an aggregated DCT 

channel group from the original aggregated feature 𝑋¶ , the below notation can be 
considered: 

𝑋¶ ∈ �𝑋¶3, 𝑋¶2, … , 𝑋¶Q , … , 𝑋¶T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑒𝑙𝑎𝑝𝑠𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1. 

 
 

Similarly, the DCT input feature map 𝑋 can be visualized in the same fashion 

where each of the 𝑋¶Q is produced from 𝑋¶. The DCT input feature map corresponds to its 
channel groups and can be written as: 

 

𝑋 ∈ �𝑋3, 𝑋2, … , 𝑋Q , … , 𝑋T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑒𝑙𝑎𝑝𝑠𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1. 

 

The intention to perform equal channel dissemination on 𝑋¶  is to obtain the 

subsequent scalar attention weights 𝐴̅ produced via fast 1D convolution. It will be used 

to multiply with the corresponding 𝑋Q to achieve a linear correspondence of cross-DCT 
channel group attention. It also aimed to ease the fast 1D convolution to adopt 
consistent kernel and stride size.  

Let 𝐾 be the 1D convolution kernel that slides across the channel dimension 𝑋¶. 
Figure 3.20 briefly showcases the concept of ‘local cross channel’ versus ‘intra DCT 
channel groups’ interaction by conducting 1D convolution. Figure 3.20 (a) shows the 
intra-DCT channel group interaction while Figure 3.20 (b) is the original ECA. Due to 
the difference in the stride size of the 1D convolution, the final produced attention 

weights for HyMod-ECA (𝐴̅) are smaller in terms of the depth-wise channel dimension 

when compared with the original ECA which carries the same shape ( 𝐴̅′) as the 

aggregated feature 𝑋¶. 
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Figure 3.20: Comparison between (a) HyMod-ECA versus (b) the original ECA. 

 

The 1D convolution kernel 𝐾 carries a set of convolutional properties of 𝐾(b,�,j,S), 

where (𝑓, 𝑘, 𝑠, 𝑝) indicates number of input filters, spatial size of kernel, stride size, 
padding size respectively. Since the convolution is of 1D nature intending to capture 
cross DCT channel group relationship, therefore the spatial size is 1 and the stride size 

is set to the same as the number of kernel filters (𝑓) within the same group. The 
padding is not applied in the HyMod-ECA to produce the DCT channel group weights; 

thus, the padding size is set to zero. Rewriting the kernel 𝐾(b,�,j,S) with the above criteria 

will result in 𝐾(b,2,b,3), where 𝐾(b,2,b,3) ∈ ℝ2×2×b.  

Conducting fast 1D convolution followed by the Sigmoid activation function (𝜎) 

across the aggregated feature 𝑋¶, the kernel 𝐾 will produce the subsequent attention 

weights 𝐴̅ ∈ ℝ2×2×
B
E, which we referred to as the “DCT channel group attention weights”. 

The interaction of the intra-group DCT channel is governed by performing fast 1D 
convolution via the following formulation: 
 

𝐴̅ = 𝜎�𝑋¶ ∗ 𝐾(b,�,j,S)�Rp"0_2> = 𝜎�𝑋¶ ∗ 𝐾(b,2,b,3)�Rp"0_2> Eq. 3.36 

 

Similar to 𝑋¶, the attention weights 𝐴̅ can also be seen as an individual group 

denoted as 𝐴̅Q . Each 𝐴̅Q  is produced by element-wise multiplication and summation 

between the 1D convolution kernel 𝐾(b,2,b,3) and the aggregated DCT channel set 𝑋¶Q . 
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Since both the 𝐴̅Q  and K carries the same shape of ℝ2×2×b , the instantaneous 

convolution between them will produce a single scalar of 𝐴̅Q ∈ ℝ2×2×2. 𝐴̅Q resembles the 

attention weightage that is applied towards the respective input feature group of 𝑋Q. 

The relationship between 𝐴 and 𝐴̅Q can be written as: 
 

𝐴̅ ∈ ℝ2×2×
T
b  

𝐴̅ ∈ �𝐴̅3, 𝐴̅2, … , 𝐴̅Q , … , 𝐴̅T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑟𝑎𝑛𝑔𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1. 

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝐴̅Q =;[𝑋¶Q⨂𝐾(b,2,b,3)] Eq. 3.37 

 
 

The technique of grouping DCT channels and conducting 1D fast convolution to 
capture intra-group DCT channel interactions is significant. Through grouping the DCT 
channel sets, it creates a connection between the frequency coefficients in the feature 
space. It is more robust to consider several frequency features as opposed to individual 
ones in discriminative learning. This is because a collective of DCT channel groups can 
correlate with each other in detecting subtle differences. Convolving across DCT 
channel groups with a larger stride and kernel size focuses on capturing the interaction 
within several frequency coefficients in producing higher-level features. With the 
application of HyMod-ECA towards the lower-level DCT channel group, it can be seen 
as capturing a collective of interactions between basic frequency features. While the 
convolution process in the higher-level DCT channel group captures the discriminative 
relationship between more complex and higher-level abstract frequency feature groups. 
 

Furthermore, the hybrid 1D fast convolution performed in HyMod-ECA involves 
lesser computational complexity as compared to the original ECA due to its larger 

kernel and stride size. Given that 𝑓  denotes the filter depth while 𝐶  represents the 
channel depth, the computational complexity and their ratio for 1D fast convolution of 
both the original and the HyMod-ECA are: 
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𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝐸𝐶𝐴:𝑂789 = 𝑂[(𝑑 − 𝑘 + 3)(𝑘 − 1)𝑘] = 𝑂[(𝐶 − 𝑓 + 3) ⋅ (𝑓 − 1) ⋅ 𝑓] Eq. 3.38 

𝐻𝑦𝑏𝑟𝑖𝑑	𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑	𝐸𝐶𝐴:𝑂:;<=>?789 = 𝑂[𝑑 ⋅ (𝑘 − 1)] = 𝑂[𝐶 ⋅ (𝑓 − 1)] Eq. 3.39 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑟𝑎𝑡𝑖𝑜:
𝑂789

𝑂:;<=>?789
= 𝑘 −

[𝑘 ⋅ (𝑘 − 3)]
𝑑

= 𝑓 −
[𝑓 ⋅ (𝑓 − 3)]

𝐶
 Eq. 3.40 

 
Full derivations are shown in the appendix. It is clear from the derivation that 

the HyMod-ECA convolution consists of 𝑓 − [b⋅(b$�)]
T

 fewer computations when 

compared with the original ECA, thus achieving efficient and hybrid fast 1D 
convolutions. At this point, it is important to recall that in HyMod-ECA convolution, the 

DCT channel group depth dimension (𝑓) is the same as the length of the kernel (𝑓) and 

the convolution stride size (𝑠). Towards the end, to compute the output feature map 

with HyMod-ECA denoted as 𝑌 ∈ ℝ^×{×T, the DCT attention weights 𝐴̅ are multiplied 

with the input feature map 𝑋 . Specifically, each of the single scalar of 𝐴̅Q  were 

multiplied with the corresponding DCT channel group of input 𝑋Q , and later 
concatenation was applied to compute the final attention output feature. 
 

𝐶𝑜𝑚𝑝𝑢𝑡𝑒	𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	𝑂𝑢𝑡𝑝𝑢𝑡:	𝑌 ∈ ℝ^×{×T  

𝑌 = 𝑋⨂𝐴̅ = 𝑐𝑜𝑛𝑐𝑎𝑡{𝑋Q ⋅ 𝐴̅Q}Q#3
Q#Tb$2 

						= �𝑋3 ⋅ 𝐴̅3, 𝑋2 ⋅ 𝐴̅2, … , 𝑋T
b$2

⋅ 𝐴̅T
b$2

¸ 

Eq. 3.41 
 

 

Figure 3.21 explains the abstract form of the attention mechanism where 𝐴̅ was 

applied to the input feature map. The input 𝑋 is partitioned into several groups of DCT 

channel sets (𝑋Q) following the 𝑋¶ fashion, as shown in different colours. Each of the 𝑋Q 

is applied with the corresponding scalar attention of 𝐴̅Q to produce a subsequent DCT 

channel group of feature output 𝑌Q at the same location. 
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Figure 3.21: Abstract representation of the application of attention weights (𝐴̅) from HyMod-ECA to the 
input feature map (𝑋) through a DCT channel group point of view. 

 

The motivation of applying a single attention weight of 𝐴̅Q  towards the 

designated input DCT channel group of 𝑋Q lies beyond providing attention to capturing 
the interactions within discriminative features at specific frequency ranges. The fast 1D 

convolution output ( 𝐴̅ , also the attention weights) carries a shape of  

(𝑁, 1, T
b
), where 𝑁 refers to the batch size. 𝐴̅ carries the relative importance between each 

DCT feature group across the channel direction. By multiplying a DCT channel group 

(𝑋Q) with its corresponding attention weight (𝑋Q), less discriminative information will 
be suppressed. This concept addresses the research gap in considering DCT channel 
groups in the compressed domain FGVC. Henceforth, the final hybrid modified ECA 

can be represented with the below formula, with Φ(∗)  indicating the overall 
computation: 

𝑌 = 𝑋⨂𝜎u[𝐺𝐴𝑃(𝑋)] ∗ �𝐾(b,2,b,3)�vRp"0FG  Eq. 3.42 

𝑌 = Φ(𝑋) 
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The key differences between the original ECA and the HyMod-ECA are 
summarised in Table 3.6. 

Table 3.6: Key differences between original ECA and HyMod-ECA. 

Variations\Specifications Original ECA Hybrid Modified ECA 

Kernel shape (𝑁, 1, 3) (𝑁, 1, 𝑓) 

Stride size 1 𝑓 

Padding 1 0 

Attention weights depth (𝐴̅) 𝑆𝑎𝑚𝑒	𝑎𝑠	𝑖𝑛𝑝𝑢𝑡 
𝐶
𝑓 

Computation complexity 𝑂[(𝐶 − 𝑓 + 3) ⋅ (𝑓 − 1) ⋅ 𝑓] 𝑂[𝐶 ⋅ (𝑓 − 1)] 

Trainable parameters of 𝐾 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑦	3 𝑓 

 

From the empirical formulation of hybrid modified ECA, the number of channels 

per DCT channel group (𝑓) is an important variable that can have a significant impact 
on the overall attention mechanism in terms of computation and the learning of 

frequency feature group. The ‘𝑓’ determines the 1D convolution kernel size. It hinders 
an indirect relationship with the 1D convolution computational complexity. With a 

larger size of ‘𝑓’, the computational complexity reduces and vice versa. A larger ‘𝑓’ with 
a larger number of trainable parameters also indicates the model’s increased ability to 
govern more global relationships within DCT channel groups instead of localised DCT 
group features in FGVC. 
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Based on a preliminary set of exploratory experiments, several primary 

conditions are set up to restrict the initialisation of ‘𝑓’ to ensure the proper working of 
the attention module. The conditions are as below: 
 

(iii) The number of channels per DCT channel group (𝑓) should always be a positive even 
integer. ‘%’ indicates the modulo operation. 

𝑓	%	2 ≡ 0, 2 ≤ 𝑓 < 𝐶 

(iv) The number of channels per DCT channel group (𝑓) should always be fully divisible 

by the channel depth (𝐶). 

𝐶	%	𝑓 ≡ 0 

These limits are to ensure that the output produced from the 1D convolution can 
be a whole number, and that the convolution process can operate without any centre 
shift. Besides, by doing so, the attention weights can be properly assigned to each input 
DCT channel group to achieve direct correspondence. In all the experiments, the 

number of channels per DCT channel group (𝑓) is obtained by dividing the channel 
number by 4, following the partitioning technique earlier applied towards the input 
DCT on viewing the tensor as a sequential stack of LMH-DCTC structure. 
 

In short, the preliminary effort on developing a hybrid modified ECA on the DCT 
domain for FGVC showcases the importance of fundamental multi-frequency intra-
group information exchange. The multiplication of the scalar attention weight with the 
respective DCT channel group retains the correspondence of the DCT channel group 
and the output, avoiding information mixing between different DCT channel groups. 
The attention process will later produce a series of amplified DCT channel groups that 
potentially contain essential fine-grained features that distinguish itself from other 
classes to improve FGVC in the DCT domain. 

 

 

 

 

  



102  

3.4.1 Hybrid Modified ECA on Intra-Group DCT 
Channel Interaction 

To demonstrate the workings of the hybrid modified ECA (HyMod-ECA) on the 
adaptive DCT (Adapt-DCT) CNN, a brief recap is initially provided on the M-Skipped-3 
architecture from section 3.2.2. Then, the integration of HyMod-ECA with Adapt-DCT 
CNN is formulated. VGG-16 is used as the backbone for all the experiments for 
consistency. Further down, several experimental setups with a few variations are 
designed to prove the working concept of HyMod-ECA. The output of an intermediate 

feature map from the 𝑙dO convolution block is: 

𝑌. = 𝑋.[2 = 𝐺(𝑋.) 

Where 𝐺(∗) denotes the function of a convolution block. 𝑌. is the output from 𝑙dO 

convolution block with the input of 𝑋. . 𝑌.  is also treated as the input towards 𝑙 + 1 

convolution block, indicated by 𝑋.[2. 𝑋]$>TUT  is the medium DCTC partition obtained 

from the original DCT input image. The final feature map (𝑌bN"c. ) is acquired by 

concatenating (denoted with ⊕) a shallowly convolved M-DCTC (denoted as ℊ(∗)) and 

the output from the final convolution block, denoted by 𝑌\, where the total number of 

available convolution blocks is 𝑙 = 𝐿. 

𝑌bN"c. = 𝑌\ ⊕𝑌]$>TUT = 𝐺(𝑋\) ⊕ ℊ(𝑋]$>TUT) 

Specifically, in VGG-16 where a typical 3 convolution block is employed, the HyMod-
ECA module is applied towards the feature map output from convolution blocks 1 and 2, 

and the final feature map of 𝑌bN"c.. A simple block diagram is shown in Figure 3.22: 
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Figure 3.22: Implementation of HyMod-ECA integrated with Adapt-DCT CNN with a baseline model of 
VGG-16. 

For convolution block 1 (𝑙 = 0) and 2 (𝑙 = 1), the following formulation applies: 

𝑌cdd. = Φ(𝐺(𝑋.)) 

𝑌cdd.  is the intermediate output feature with an associated attention mechanism 

from the 𝑙dO convolution block, Φ is the HyMod-ECA module. To obtain the final feature 

map (𝑌p/d) before forwarding to fully connected layers and classifier: 

𝑌p/d = Φ[𝑌-⊕ℊ(𝑋]$>TUT)] 

 

𝑌- is the output feature map from the third convolution block. For input towards 

convolution block 2 (𝑋2) and 3 (𝑋-), where attention is applied towards the output from 
the previous convolution block: 

𝑌cdd3 = 𝑋2, 𝑌cdd2 = 𝑋- 

The amplified intermediate output 𝑌cdd.  will be forwarded to the next block (𝑙 + 1) 

for convolving with the Adapt-DCT kernel instead of the original output (𝑌.), which 

involves the Adapt-DCT kernel 𝒦Ur
.[2 and the relative pointwise convolution kernel 𝒦bi

.[2, 

where 𝒦bi
.[2 = Ψu𝒦Ur

.[2 ∙ 𝔹v where the function ‘Ψ’ represents the application of element-

wise multiplication and spatial summation: 

𝑌.[2 = 𝒦bi
.[2 ∗ 𝑋.[2 = 𝒦bi

.[2 ∗ 𝑌cdd.  
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Table 3.7 shows the integration of HyMod-ECA with the Adapt-DCT CNN on 

VGG-16. The kernel properties (𝑓, 𝑘, 𝑠, 𝑝) indicate the (number of filters, spatial size of 
the kernel, stride size, and padding size) respectively. The HyMod-ECA modules are 

added into three slots of the model, denoted by 𝐾cdd.  in Table 3.7. Specifically, the 
attention is added after the max pooling layer from the convolution blocks 1 and 2, and 
after the concatenation of convolution block 3 output with the M-Skipped feature 
embedded before the classifier. 

 

Table 3.7: Architecture of the Adapt-DCT CNN of VGG-16 with the integrated HyMod-ECA module. 

Block layer 
Kernel 

[𝒇, 𝒌, 𝒔, 𝒑] 
Convolution type Details 

Convolution block 1 [256, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU 

2D max pooling [-, 2, 2, 0] - - 

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟎 ) 

Convolution block 2 [512, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU 

2D max pooling [-, 2, 2, 0] - - 

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟏 ) 

Convolution block 3 [512, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU 

2D max pooling [-, 2, 2, 0] - - 

Concatenate & reshape - - 
Concatenate with M-skipped output 
and reshape into a 1D tensor 

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟐 ) 

Classifier - - Class number as output 
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With HyMod-ECA applied towards the feature output (𝑌cdd. ) from convolution 

blocks 1 and 2, the low and medium-level DCT feature groups are regulated in such a 
way that critical interactions and relationships within fine-grained features of DCT 
nature can be captured. With the attention output feeding towards the next convolution 
block as input, plus the combination of Adapt-DCT convolution, adaptive DCT learning 

on top of the DCT channel group can be achieved. The final attention output of 𝑌p/d 
contains DCT channel groups of early low-level M-DCTC features and high-level general 
fine-grained features. It helps to regulate the learning process such that attention is 
fairly applied to the essential M-DCTC feature groups and the global context based on a 
DCT representation. In other words, intra-group DCT channel interactions between 
general fine-grained context and high-level DCT feature sets can be learned to enrich 
complex high-level learning of DCT domain CNNs. 
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3.5 Experimental Design 

This section outlines the essential components of the experimental setup and its 
prerequisites. The initial segment explains the datasets employed, their processing 
methodology, the chosen performance metrics, and the requisite system setup 
specifications. The subsequent segment elaborates on the specific experimental setups 
for each method discussed in the preceding section. 

 

3.5.1 Characteristics and Processing of Datasets 

The primary aim of this research is to establish a foundational understanding of 
compressed domain FGVC. FGVC is designed to excel in distinguishing between fine-
grained subcategories within a broader category, where the subcategories are 
characterized by more specific datasets featuring subtle distinctions. Certain datasets, 
such as the one focused on butterflies, encompass both discriminative and global 
features, while others solely emphasise fine-grained features. Consequently, it 
contributes to a collection of a well-balanced mixture of robust datasets. In other words, 
the chosen datasets are therefore deemed resilient and well-aligned with the interest of 
this research. This research initially concentrates on small-scale FGVC datasets, 
specifically those with fewer than 50 classes as a foundational phase. Subsequently, a 
larger FGVC dataset (Oxford Flowers) and some general datasets (CIFAR and Mini 
ImageNet) are employed to assess the algorithm’s robustness. In comparison to other 
benchmark datasets, the selected datasets are notable for their robustness, small scale, 
and limited number of images per class. This characteristic renders them highly 
suitable for facilitating the achievement of the research objectives thus formulating 
conclusions. To be more specific, eight medium-sized FGVC datasets below 50 classes, 
one large-sized FGVC dataset comprising 103 classes, and three general datasets, all 
fully annotated, were meticulously chosen. Notably, while the Covid-19 dataset consists 
of grayscale images, the other datasets contain colour images with RGB channels. The 
FGVC datasets collectively represent numerous classes that span fine-grained 
classifications of various subcategory species, as detailed in Table 3.8. Furthermore, 
Figure 3.23 illustrates examples of classes from these datasets, providing a visual 
representation of the fine-grained classification pursued in this research. 
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Table 3.8: Number of classes, dataset genre, and the source(s) of various datasets. 

Datasets # of Classes Dataset Genre Source 

Covid-19 3 FGVC [160] 

Sheep Breed 4 FGVC [161][162] 

Flowers 5 FGVC [163] 

Leeds Butterfly 8 FGVC [164] 

Monkey 10 FGVC [165] 

Spider Breed 15 FGVC [166] 

Snake Breed 35 FGVC [167] 

Butterfly 50 FGVC [168] 

Oxford Flowers 102 FGVC [169] 

CIFAR10 10 General [170] 

CIFAR100 100 General [170] 

Mini ImageNet 100 General [171] 
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Figure 3.23: A small subset of images from the datasets [160][161][162][165]. 
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The rationale behind selecting different datasets for evaluating the M-Skipped 
DCT-CNN, the Adapt-DCT CNN, and the HyMod-ECA DCT-CNN lies in tailoring the 
dataset choices to specific objectives and methodologies, thereby enriching the depth 
and breadth of this study. For the foundational phase of understanding compressed 
domain FGVC, the focus was on five small-scale datasets with fewer than 50 classes. It 
provides a controlled environment for initial insights into the M-Skipped DCT-CNN 
algorithm. This deliberate choice eases the process of reaching meaningful conclusions, 
given the smaller number of classes. While transitioning to the exploration of the 
Adapt-DCT CNN, a diverse set of datasets was employed. Six medium-sized FGVC 
datasets (Covid19-3C grayscale, Flowers-5C, Monkey-10C, Spider-15C, Snake Breed 35C, 
Butterfly-50C), a large-sized FGVC dataset (Flowers-104C), and general datasets 
(CIFAR10, CIFAR100, Mini Image Net 100C) were strategically chosen. The strategy 
involved comprehensive data selection which spanned across different class sizes, and 
allowed for a thorough analysis across various scales on the Adapt-DCT approach which 
was integrated into the M-Skipped architecture. This strategy ensures a detailed 
evaluation of the algorithm’s performance under different conditions. In the final 
section, the attention mechanism which was implemented on top of previous 
algorithms was examined using a set of five FGVC datasets. The emphasis here was on 
capturing fundamental aspects of how attention mechanisms influence the performance, 
particularly in the context of smaller-scale compressed domain FGVC.  In fact, this 
selection aligns with the research objective of forming a foundational understanding of 
the relationship between HyMod-ECA and the FGVC within small-scale datasets. The 
datasets chosen for each section of the research are systematically presented in Table 
3.9, providing clear analytics of the dataset selection strategy employed throughout this 
thesis. 
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Table 3.9: Datasets used in each algorithm. 

Datasets M-Skipped DCT-CNN Adapt-DCT CNN HyMod-ECA DCT-CNN 

Covid-19  ✓  

Sheep Breed ✓   

Flowers ✓ ✓ ✓ 

Leeds Butterfly ✓   

Monkey ✓ ✓ ✓ 

Spider Breed ✓ ✓ ✓ 

Snake Breed  ✓ ✓ 

Butterfly  ✓ ✓ 

Oxford Flowers  ✓  

CIFAR10  ✓  

CIFAR100  ✓  

Mini ImageNet  ✓  

 

To produce compressed domain input, a conversion from RGB to DCTC is 
needed. Following the standard JPEG compression CODEC, the images (except 

CIFAR10, CIFAR100, and Covid19-3C) were initially resized into 224 × 224 pixels and 
converted from the RGB domain to the YCbCr domain. The CIFAR10 and CIFAR100 

consisted of a 3-channel RGB matrix with a spatial dimension of 32 × 32, whereas each 
of the Covid19-3C images contained a single grayscale channel carrying a spatial 

dimension of 224 × 224. Chroma subsampling and quantization were not applied to 

reduce information loss in the images. 2 × 2  DCT partition was applied on the CIFAR10 

and CIFAR100, while the 8 × 8  partition was applied on other datasets followed by 

forward 2D-DCT-II. The tensor went through zigzag encoding (conversion of 𝑝 × 𝑝 

partitions into a 1 × 𝑝- depth-wise DCTC representation, where 𝑝 = {2, 8} in this case) 
and feature-wise standardisation. Table 3.10 provides details on the resolution of the 
original RGB images, the applied DCT partition, and the corresponding shape of the 
DCTC for each dataset. 
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Table 3.10: Input shape and DCT partition of various datasets. 

Datasets RGB Shape DCT Partition (𝒑 × 𝒑) DCTC Shape 

Covid-19 224 × 224 × 1 8 × 8 28 × 28 × 64 × 1 

Sheep Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Flowers 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Leeds Butterfly 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Monkey 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Spider Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Snake Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Butterfly 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

Oxford Flowers 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3 

CIFAR10 32 × 32 × 3 2 × 2 16 × 16 × 4 × 3 

CIFAR100 32 × 32 × 3 2 × 2 16 × 16 × 4 × 3 

Mini ImageNet 224 × 224 × 3 2 × 2 28 × 28 × 64 × 3 

 

The result from the forward 2D-DCT operation will generate a tensor carrying 
integers ranging between -1024 to +1023. Feature scaling was performed by applying 

normalization to scale the integers into the range of approximately −1  to +1. The 
remaining process of quantization and Huffman Encoding from the full JPEG 
compression algorithm were excluded as only lossless DCT coefficients were required 
for this research. This process is considered as partial JPEG compression. Conversely, 
the complementary process of applying partial decompression by decoding the JPEG 
image to acquire the DCTC during inference is straightforward. Finally, the dataset was 
saved as a NumPy array with a standard PyTorch directory format. The block diagram 
for the partial compression and decompression is shown in Figure 3.24. 
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Figure 3.24: Block diagram of the partial compression and partial decompression from JPEG CODEC. 
The crossed-out sign indicates the processes that are discarded from the standard JPEG CODEC from the 

partial compression and decompression. 

 

Within the comprehensive collection of FGVC datasets, the total number of 
images per class ranges between approximately 10 to 1000. In each experimental setup, 
the dataset is split carefully into training, validation, and test sets. It is aimed to ensure 
a robust evaluation of the developed algorithm in compressed domain FGVC. For 
datasets with predefined splits, the established partitions were followed accordingly. In 
cases where no predefined split exists, a common practice is applied: 10% of the total 
images per class were designated for testing, another 10% for validation, and the 
remaining images are allocated to the training set. This partitioning strategy satisfies a 
balance between retaining sufficient training data for model learning and a 
comprehensive testing set for diligent evaluation. The specific details of dataset splitting 
are tabulated in Table 3.11. 
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Table 3.11: Number of images per class on training, validation, and testing set for various datasets. 

Datasets 
Training images 

per class 

Validation images 

per class 

Testing images 

per class 

Covid-19 50~85 20~26 20~26 

Sheep Breed 336 42 42 

Flowers 500~900 26 26 

Leeds Butterfly 40 20 20 

Monkey 80~00 26~30 26~30 

Spider Breed 100~200 10 10 

Snake Breed 224 48 48 

Butterfly 50~120 10 10 

Oxford Flowers 18~800 5~230 5~230 

CIFAR10 5000 1000 1000 

CIFAR100 500 100 100 

Mini ImageNet 570 30 30 

 

Given the challenge of a lower number of training images per class in some of the 
datasets, the entire training process incorporates various techniques such as early 
stopping, the utilization of a cosine anneal schedule for learning rate adjustment, 
dropout, and batch normalization. These methods serve to regularize the model, avoid 
overfitting, and shorten the training process. Given the specific characteristics of the 
fine-grained images, it is crucial to avoid relying on data augmentation techniques and 
to explore alternative methods to enhance dataset diversity. Throughout the training 
phase, the validation metrics are computed to guide the tuning of hyperparameters. The 
testing metrics are only employed after the completion of the training process. The 
testing images are not used to tune the hyperparameter. This separation satisfies the 
objectivity of model evaluation. 
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3.5.2 Performance Metrics and Evaluation 
Criteria 

The core motivation of this research is to address the issue of information 
redundancy in FGVC through compressed domain analytics. To address the 
fundamental issue of this work, a set of well-designed quantitative metrics is employed 
to evaluate the performance of the developed algorithm to achieve the objectives. These 
metrics encompass classification error, the number of trainable parameters, and 
convergence speed. The classification error serves as a fundamental metric, offering an 
initial assessment of the algorithm’s performance in compressed domain FGVC [98] 
[100][101][26][104][105]. It is essential to provide a thorough analysis of how well the 
developed algorithm addresses the identified issue earlier. Given the emphasis on the 
compressed domain, the number of trainable parameters plays a critical role in 
evaluating the comprehensiveness between content and model optimisation. A higher 
compression gain reflects the algorithm’s ability to leverage minimal fine-grained 
features within a smaller model for effective FGVC. To evaluate the effective learning of 
the proposed algorithm on compressed domain FGVC, the convergence speed is 
included as an examination metric. By adopting appropriate features in the compressed 
domain algorithm, the convergence speed can be enhanced, leading to a shorter 
learning duration. It also poses the effective development of compressed domain FGVC. 

While generally, the classification error is an important metric for evaluating 
model performance, this research places secondary interest on error reduction. In fact, 
the classification error is utilised as a baseline reference to assess the model’s 
performance against the issue addressed. Furthermore, the scope of this work revolves 
around the compressed domain. Henceforth, the achievement is evaluated based on the 
delicate balance between comparable classification error and compression gain. 

The goal of conducting compressed domain analytics is to enhance compression 
gain, which directly relates to the number of trainable parameters. While training speed 
is influenced by these parameters, it can exhibit vast differences due to factors such as 
the number of training images, hardware configurations, and operating devices. This 
variability in behavior extends to inference time as well. Remarkably, the training speed 
can be comparable across models with different numbers of trainable parameters. The 
number of trainable parameters is directly correlated with computational complexity, 
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serving as an indicator of the compression gain in the computation of compressed 
domain CNNs. Additionally, the training speed is linked to convergence speed, with the 
specific evaluation metric covered in the result and discussion. Given the central focus 
in this research is on compressed domain analytics, compression gain stands out as the 
key metric for addressing this concern. Through the measurement of the number of 
trainable parameters in experiments, the reduction of these parameters serves as an 
interpretable metric for interpreting compression gain to address the problem 
statement and objectives. Hence, the measurement of training speed and inference 
timing metrics serves as a secondary consideration in evaluating the performance. 

In the subsequent section, each quantitative metric for the experiment is defined, 
accompanied by their respective supplementary metrics. 

1) Classification error (𝜺) 
The classification error is computed by dividing the sum of false positives and 

false negatives over the total number of testing images. In the context of this research, 
testing error is considered when there is a misclassification within the selected test sets 
from each class. A lower classification error indicates a better performance. The 
formula is: 
 

𝜺 =
𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔
 

 
Supplementary metrics: 

• Best Testing Accuracy: The highest testing accuracy achieved during the inference 
process, measured in percentage (%). Higher values indicate better performance, 

computed as: 

(𝟏 − 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏	𝒆𝒓𝒓𝒐𝒓) × 𝟏𝟎𝟎 

• Error Trend: It is determined by tracking the average changes of the testing error 
across different model variants by using a gradient. This metric yields a trendline 
that portrays sequential changes in classification error throughout the 
progressive experimental design. The gradient is computed as a linear 
approximation function, expressed in percentage (%). The outcomes of this 
analysis are commonly presented in the concluding rows of each table wherever 
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applicable. A negative gradient in the error trend resembles a decline in testing 
error, reflecting an improvement in model performance. Conversely, a positive 
gradient indicates the opposite scenario. A gradient value smaller than 0.10% is 
deemed as a constant gradient. 

• Error Change: Performance differences in terms of classification error between 
the developed framework against the reference counterpart. The difference is 
expressed as a percentage and typically showcased in the final rows of the tables. 

A negative sign accompanied by a downward arrow (¯) signifies a reduction in 

classification error where a performance improvement is obtained, while a 

positive sign with an upward arrow (­) denotes the opposite scenario. The error 

change can be obtained as follows: 

(𝜺 − 𝜺𝑪𝒐𝒖𝒏𝒕𝒆𝒓𝒑𝒂𝒓𝒕) × 𝟏𝟎𝟎 

• Precision: Measurement of accuracy of positive predictions made by the model. 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 

 

• Sensitivity: It is so known as recall, measuring model’s capability to correctly 
identify positive instances of each category. 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 

 

• Specificity: It gauges the model’s ability to predict false instances of each class. 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 

 

• F1 Score: Harmonic mean of precision and recall, providing a balanced measure 
that considers both false positives and false negatives. It is important to capture 
the overall performance of a model when there is an imbalance between 
precision and recall. The F1 score for each class is calculated and averaged. 

𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	 ∙ 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍 
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Both sensitivity and specificity serve as essential metrics for assessing the FGVC 
performance in terms of intraclass scores. A higher model’s sensitivity indicates a better 
capacity to capture positive instances, whereas a higher specificity denotes enhanced 
proficiency in rejecting negative instances. To ensure a comprehensive evaluation, the 
F1 score is computed, providing a fair measurement that compares the performance of 
compressed domain FGVC against the standard algorithm. 
 

2) Number of trainable parameters 
The number of trainable parameters denotes the overall count of parameters that 

were tuned and optimized throughout the model training process. These parameters 
include the weights and biases inherent in both convolutional layers and fully 
connected layers. It is measured in millions (mil.). A lower number of parameters leads 
to higher compression gain, resulting in lightweight architecture that is easier to 
optimize during training. This simplicity also contributes to higher robustness, reducing 
the risk of memorizing irrelevant details which could potentially lead to overfitting. 
 
Supplementary metrics: 

• Compression Ratio: This ratio defines the relationship between the total 
trainable parameters of the developed model variants in comparison to the 
counterpart. A ratio above 1 indicates a reduction in parameters and vice versa. 

 
𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑀𝑜𝑑𝑒𝑙	𝑇𝑃

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝐷𝑜𝑚𝑎𝑖𝑛	𝑀𝑜𝑑𝑒𝑙	𝑇𝑃 

 

• Parameter change: Parameters difference in terms of total number of trainable 
parameters between the developed framework against the reference counterpart. 
The difference of change is calculated based on the following equation: 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑇𝑃 − 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑	𝑇𝑃
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑇𝑃 × 100 
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3) Convergence speed 
The convergence speed serves as an indicator of the epoch during the training 

process at which the model attains over 75% validation accuracy. It implies the training 
speed and convergence rate of the model, with lower values being preferable. 
 
Supplementary metrics: 

• Convergence speed ratio: The ratio between the number of epochs required for 
the developed system to reach 75% validation accuracy and its counterpart, 
offering insights into the relative efficiency of the convergence speed. 

 
The first research objective aims to incorporate different levels of frequency 

bands within DCTC features. The achievement of this objective is evaluated based on 
the number of trainable parameters and classification errors. In essence, this is 
intended to measure the efficacy of various frequency ranges in terms of feature 
representation for FGVC and identify the architecture that yields the optimal 
performance for these features. The goal is to establish a foundational framework 
between model and frequency domain feature representations, emphasising the 
broader exploration of the general emergence and impact of compressed domain 
features on specific architectures. By extending the frequency features beyond L-DCTC, 
a reduction in the number of trainable parameters and classification errors as compared 
with the standard algorithm demonstrate the contributions proposed to achieve this 
objective. The intraclass score primarily targets the consistency of classification results 
and the representation capability between subclasses. While the intraclass score carries 
a secondary role compared to the primary focus of this research on the compressed 
domain, it is evaluated based on the overall F1 score. The F1 score is computed and 
compared between the key architecture from the M-Skipped network variants and 
compared against the standard VGG-16 algorithm. It aims to achieve a complementary 
understanding of the FGVC analysis between different systems. 
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The second research objective centres on convolutional kernel analytics. The 
analytics involve the composition of kernels using DCT-BF hence promoting robustness. 
As such, the number of trainable parameters and convergence speed are used to 
determine the achievement of this section. In this context, the intraclass variation 
carries limited relevance for evaluating the compressed domain technique concerning 
the delicate balance between optimisation and performance. Metrics such as 
compression gain, and convergence speed prove to be more prominent for such 
evaluation. Compressed domain analytics play a role in reducing feature redundancy. 
Ideally, the proposed algorithm can offer a fair balance of compression gain and 
convergence speed. 
 

The third research objective emphasises the interactions among frequency 
features to enhance effective learning. This is evaluated based on the convergence speed 
and classification error. Ultimately, it is expected that a better algorithm can improve 
convergence speed with comparable classification performance. The integration of the 
adaptive kernel technique into the M-Skipped DCT-CNN, combined with HyMod-ECA, 
constitutes the fully developed framework for compressed domain FGVC. A 
comprehensive comparison between the developed algorithm and the standard 
algorithm is conducted to evaluate their performance on practical FGVC. This 
assessment involves the computation of intraclass metrics such as precision, sensitivity, 
specificity, and f1-score. Ideally, the framework exhibiting superior scores is expected to 
demonstrate better performance on FGVC. While these performance metrics provide 
valuable insights, they hold secondary significance and serve as a subset of metrics 
emphasised in this research on compressed domain analytics. Therefore, it is 
imperative to prioritize core metrics such as the number of trainable parameters and 
convergence speed for a thorough evaluation of the system in this research. 
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3.5.3 System Setups 

 
All the experiments were implemented on a system running on an Intel Xeon 

CPU, with 6 cores and a frequency of 2.2GHz to 4.1GHz. The system was equipped with 
a RAM of 16GB and a Solid-State Drive of 500 GB. The system was running on top of 
Ubuntu 16.04LTS., and the computing language used for this research was based on 
Python 3.6. PyTorch (version 1.8) was used to implement the CNN models and evaluate 
their performance. All the CNN models in each experiment were set to train for a 
maximum of 100 epochs accompanied by stochastic gradient descent (SGD) with an 
initial learning rate of 0.01. A cosine anneal scheduler was used during the training with 
the minimum learning rate set to 0.0001. Early stopping was imposed if the validation 
performance did not increase for more than 10 epochs to avoid overfitting. 

Due to the stochastic nature and variability during training a CNN which arises 
from the initialisation of random weights, can lead to slight variations in results across 
different runs. Through employing multiple trials serves to address this inherent 
variability, thus fostering a robust comprehension and ensuring reliable results. 
Through the experimentation presented in this thesis, it has been demonstrated that 
conducting the same experiment three times produces consistent outcomes, with the 
majority of standard deviations in evaluation metrics falling within an acceptable range. 
This approach yields reliable results while maintaining experimental efficiency. 
Therefore, this observation justifies the choice of three trials for all experiments to 
pursue an early understanding of the performance trend pertaining to small-scale scale-
compressed domain FGVC. Additionally, due to the factors such as computational cost 
and computational constraints, three trials satisfy the research objectives and attains a 
balance between obtaining dependable results and experimental feasibility. The best-
performing models in terms of the lowest testing error were logged. The mean and 
standard deviation of the performance across three trials were computed for all the 
following experiments. 
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3.5.4 M-Skipped DCT-CNN 

 
This section explains the experimental design adopted on M-Skipped DCT-CNN. 

It consisted of two core experiments followed by an ablation study. The first experiment 
evaluates the network’s performance by feeding different frequency ranges of DCTC as 
input to the baseline VGG-16 pointwise CNN. Specifically, L-DCTCs, M-DCTCs, H-
DCTCs, and complete DCTCs were tested individually. They were denoted as L-DCTC, 
M-DCTC, H-DCTC, and All-DCTC respectively. This experiment reveals the relative 
importance of each DCTC frequency range for compressed domain FGVC. One of the 
objectives was to determine if M-DCTC or H-DCTC alone could provide enough mid-
high frequency domain information for feature extraction. 

The second experiment implemented a single skipping connection from the 
input toward the end of the convolutional blocks individually. The connection involves a 
shallow convolutional layer receiving the M-DCTC in addition to the baseline VGG-16 
network, denoted as the ‘M-Skipped’ branch. The motivation for this is to enable the 
integration of higher-level feature maps in L-DCTC in conjunction with shallow-level 
M-DCTC representations. By concatenating the convolved M-DCTC with the feature 
maps produced from L-DCTC, it was hypothesized that a more robust integrated feature 
representation of fine-grained compressed information could be generated. 

In this experiment, three variants of single M-Skipped branches were employed. 
The M-Skipped branch was individually concatenated towards the output from the first, 
second, and last convolutional block from VGG-16. They were denoted as M-Skipped-1, 
M-Skipped-2, and M-Skipped-3 consecutively.  The overview of each variant of the M-
Skipped branch is shown in Figure 3.7 in section 3.2.3. Max-Adaptive Pooling was used 
towards the end of the M-Skipped branch instead of Average-Adaptive Pooling as the 
former is found to have better performance in the context of FGVC.  

The convolutional layer for all the M-Skipped variants carries a single pointwise 
convolutional layer containing 128 filters. A different number of filters were tested, and 
it was found that 128 resulted in optimal performance. In each of the M-Skipped 
variants from Table 3.12, only one of the three ‘M-Skipped-x’ and ‘Concate-x output’ 
was used, while the other convolutional blocks remained the same without any 
concatenation applied. 
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Table 3.12: M-Skipped variations model implementation. 

Layer [f, k, s, p] M-Skipped [f, k, s, p] 

Conv1_1, 2, 3 [256, 1, 1, 0] M-Skipped-1 [128, 1, 1, 0] 

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool  

Concate-1 output 14 × 14 × (256 + 128)d 

Conv2_1, 2, 3 [512, 1, 1, 0] M-Skipped-2 [128, 1, 1, 0] 

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool  

Concat-2 output 7 × 7 × (512 + 128)d 

Conv3_1, 2, 3 [512, 1, 1, 0] M-Skipped-3 [128, 1, 1, 0] 

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool  

Concat-3 output 3 × 3 × (512 + 128)d 

Classifier Softmax output (Number of classes) 

d. In this case, the M-skipped filter consists of 128 channels. 

 
These experiments were followed up by connecting multiple M-Skipped 

branches at all convolutional blocks from the main network. The illustration is shown in 
Figure 3.25. It is intended to compare the performance between single and multiple 
deeply convolved M-Skipped variants. The single M-Skipped connection was extended 
by implementing two additional variants as described below: 

• Concatenating the output of the M-Skipped branch which carries a single 
convolutional layer of 128 filters with all three convolutional blocks of the main branch, 
denoted as ‘M-Skipped-123-extended’. 

• Increasing the number of convolutional layers in the M-Skipped convolutional 
branch from one to three, while retaining the same number of filters in each 
convolutional layer, denoted as ‘M-Skipped-123-extended-deep’. 
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Figure 3.25: M-Skipped DCTC with extended convolutional branch. 

 
In the ablation study, a series of experiments were designed to investigate the 

significance of integrating diverse frequency components, aiming to establish a 
comprehensive performance comparison with the former M-Skipped-3 DCT-CNN. The 
initial experiment introduced fully connected layers into the M-Skipped-3 variant, 
denoted as ‘M-Skipped-3-FC’. The intention is to evaluate the impact of the existence of 
fully connected layers in compressed domain FGVC. The study also included a 
comparison involving ReLU as the activation function in the M-Skipped-3 without fully 
connected layers, denoted as ‘M-Skipped-3-FC-ReLU’. Both were then compared 
against the former M-Skipped-3 variant in terms of classification error. Subsequently, 
the second experiment replaced the input of the skipping connection in M-Skipped-3 
from experiment 1 with H-DCTCs, while maintaining the other setups unchanged, 
denoted as ‘H-Skipped-3’. This adjustment seeks to explore the distinctions arising 
between combining H-DCTCs as opposed to M-DCTCs with the high-level features 
derived from L-DCTCs in the primary network. The final experiment incorporated the 
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original RGB image of all datasets as input to a standard VGG-16 algorithm. This 
configuration was established to create a baseline comparison between the standard 
algorithm and compressed domain FGVC. The F1-Score is computed and compared 
between the H-Skipped-3, the standard VGG-16, and the former M-Skipped-3 variant 
for general FGVC intra-class analysis. These carefully designed experiments collectively 
contribute to a deeper understanding of the impact of varying frequency components on 
the performance of compressed domain FGVC models. 
 

3.5.5 Adaptive-DCT Pointwise Convolutional 
Neural Network 

The performance of Adapt-DCT CNN was assessed in several image classification 
tasks including FGVC and general datasets. To the best of the author’s knowledge, there 
are currently no available benchmark results on the fine-grained datasets considered in 
this experiment, which consisted of DCT input. The entire convolution process that is 
considered in this thesis consists of DCT input, DCT feature maps, and DCT kernel. 
Therefore, it is not possible to directly compare these results with other benchmarking 
literature of similar design. 

The baseline experiments and models were designed carefully to serve as vital 
reference points for comparative analysis between Adapt-DCT CNN variants. In all 
experiments, the Adapt-DCT kernel was implemented on top of the M-Skipped DCT-
CNN, with the input image comprising the DCTC tensor. The replacement of a 
convolutional layer in the CNN with an Adapt-DCT convolution kernel is 
straightforward. It can be treated as a plug-and-play process. It enables all the 
experiments to be carried out without going through modifying complex convolution 
blocks and layers. 

Several experiments were designed to test out the Adapt-DCT convolution 
kernel. Two main studies were presented via three experiments to establish the 
empirical support for the Adapt-DCT concept, including spatial upscaling and 
frequency optimisation. Three of the main experiments were conducted on six medium-
sized FGVC datasets (Covid19-3C grayscale, Flowers-5C, Monkey-10C, Spider-15C, 
Snake Breed 35C, Butterfly-50C), whereas three additional datasets were included in 
the ablation study (CUB-144C, CIFAR10 and CIFAR100). 



125  

 

3.5.5.1 Spatial upscaling of Adaptive DCT Kernel 

In the first experiment, the pointwise convolutional kernel in the M-Skipped-3 
DCT-CNN was replaced with the Adapt-DCT kernel. Three different spatial variants of 

the Adapt-DCT kernel were explored, including 2 × 2 , 4 × 4,  and 8 × 8 . The 
corresponding DCT basis functions of frequency bases remained with the spatial 
dimension, i.e., no pruning or optimisation was applied. 

Let the initial Adapt-DCT kernel (𝒦Ur) carries the shape of ℜ4×4×T , where 𝐶  is the 

number of channels and 𝑁 × 𝑁  represents the spatial dimension. Different spatial 

dimensions will produce different numbers of frequency bases (𝑁-) and numbers of 

channel weights set per frequency base ( T
4!

). The relationships between the spatial 

dimensions of Adapt-DCT kernel (𝑁), numbers of DCT frequency bases (𝑁-) and the 

numbers of channel weights ( T
4!

) are depicted in Table 3.13: 

Table 3.13: Functionality and specifications of spatial dimensions of Adapt-DCT kernel. 

Spatial dimension of Adapt-DCT kernel 2 × 2 4 × 4 8 × 8 

Number of DCT frequency base 4 16 64 

Channel weights set per DCT frequency base 𝐶
4 𝐶

16 𝐶
64 

 
The objective of implementing different spatial dimensions of Adapt-DCT kernel 

is motivated in several ways. The experiment is expected to lead to an early 
understanding on the potential of capturing certain frequency domain features along 
the CNN. It is also helpful to realize the optimal spatial dimension of the Adapt-DCT 
kernel for different contexts and datasets. Three variations of the spatial dimension of 

Adapt-DCT kernel and the corresponding abbreviations are listed in Table 3.14. (𝐾, 𝐿, 𝐹) 
denotes the (spatial dimension of the kernel, number of DCT basis function of 

frequency bases, number of channels 𝐶). The performance comparison of these variants 
on different datasets will be measured using classification error. 
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Table 3.14: Variations and specifications of Adapt-DCT kernel with spatial upscaling. 

Abbreviation 
Convolution block 1 

(𝐾, 𝐿, 𝐹) 

Convolution block 2 

(𝐾, 𝐿, 𝐹) 

Convolution block 3 

(𝐾, 𝐿, 𝐹) 

MS3-AD-0204 (2 × 2, 4, 256) (2 × 2, 4, 512) (2 × 2, 4, 512) 

MS3-AD-0416 (4 × 4, 16, 256) (4 × 4, 16, 512) (4 × 4, 16, 512) 

MS3-AD-0864 (8 × 8, 64, 256) (8 × 8, 64, 512) (8 × 8, 64, 512) 

 
 

3.5.5.2 Optimisation of DCT Basis Functions of 
Frequency Bases in Adaptive DCT Kernel 

The second experiment studied the effects of reducing the frequency bases of 
DCT basis functions forming the Adapt-DCT kernel. With a specific number of channels 

at each convolutional layer (𝐶), pruning away the less important frequency bases will 
lead to a growing number in channel weight associated to each of the remaining 

frequency bases (increase in T
4!

 whereby 𝑁- is replaced with 𝜂). It is suggested that not 

all of the frequency bases are contributing towards effective learning and feature 
representations. Therefore, the optimisation was applied to the frequency bases 
whereas the spatial bases were retained. 

The depth-wise dimension of the original 𝑁- layer was replaced with 𝜂 during 

optimisation. The formulation and criteria of 𝜂  is established in section 3.3.6. Two 
spatial dimensions of Adapt-DCT kernel were explored in this experiment, particularly 

8 × 8 and 4 × 4. With an Adapt-DCT kernel carrying a spatial dimension of 4 × 4, by 

optimising the frequency bases, a channel of 𝜂 = 1 (leftover DC base) and 𝜂 = 4 can be 
formed. A comparison of the performance between depth-wise levels of 1, 4 and 16 
(original) will be presented in Chapter 4. An Adapt-DCT kernel with a spatial dimension 

of 8 × 8 can accommodate several depth-wise level optimisations including 𝜂 = 1, 𝜂 = 4 

and 𝜂 = 16. A similar comparison will be made between the depth-wise levels of 1, 4, 16 
and 64 (original). 
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A simple illustration is shown in Figure 3.26 on the depth-wise level 

optimisation based on the Adapt-DCT kernels of 8 × 8  and 4 × 4 . 𝐶  represents the 

number of channels across the convolution layer, 𝑁 denotes the spatial dimension of 

the Adapt-DCT kernel and 𝜂 represents the number of optimised frequency bases. 
 

 
Figure 3.26: Depth-wise optimisation on DCT basis functions of frequency bases in Adapt-DCT kernel. 

 

Five variations of depth-wise channel optimisation of Adapt-DCT kernel and 
their abbreviations are listed in Table 3.15. The evaluation metric is done based on the 
convergence speed and classification error. It is important to compare these metrics 
concerning the frequency pruning of the Adapt-DCT kernel. 

 

Table 3.15: Variations and specifications of frequency adaptive DCT-BF kernel optimisation 

Abbreviation 
Convolution block 1 

(𝐾, 𝐿, 𝐹) 

Convolution block 2 

(𝐾, 𝐿, 𝐹) 

Convolution block 3 

(𝐾, 𝐿, 𝐹) 

MS3-AD-0401 (4 × 4, 1, 256) (4 × 4, 1, 512) (4 × 4, 1, 512) 

MS3-AD-0404 (4 × 4, 4, 256) (4 × 4, 4, 512) (4 × 4, 4, 512) 

MS3-AD-0801 (8 × 8, 1, 256) (8 × 8, 1, 512) (8 × 8, 1, 512) 

MS3-AD-0804 (8 × 8, 4, 256) (8 × 8, 4, 512) (8 × 8, 4, 512) 

MS3-AD-0816 (8 × 8, 16, 256) (8 × 8, 16, 512) (8 × 8, 16, 512) 
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3.5.5.3 Pruning Effects of Frequency Bases with 
Fewer Trainable Parameters 

In experiment 2, the optimisation of DCT basis functions of frequency bases was 

explored where the total number of channels (𝐶) was kept constant. It is also vital to 
study the effects of pruned frequency bases with a reduced number of channels to 
achieve a higher compression gain. The objective is to study the effects of pruned 
frequency based on the speed of convergence and performance in a compressed domain 
CNN. This experiment served as an extension of the prior experiment. Besides pruning 

away the less essential frequency bases, the channel weights set per frequency base ( T
4!

) 

were kept constant. An example for a 4 × 4 kernel would result in 16 channel weights 

per frequency base Ú-��
�V
Û for convolutional block 1 and 32 channel weights per frequency 

base Ú�2-
�V
Û for convolutional blocks 2 and 3. The formulation on an 8 × 8 Adapt-DCT 

kernel is similar following the same logic. By conducting direct pruning on the 
frequency bases will reduce the total number of trainable parameters. 

Five variations in experiment 3 are depicted in Table 3.16, with the 

corresponding abbreviation and the specifications for each convolutional block. (𝐾, 𝐿, 𝐹) 
denotes the ‘(spatial dimension of Adapt-DCT kernel, number of DCT basis function of 

frequency bases, number of channels 𝐶 ’). As the focus here is to prune away the 
frequency bases to achieve higher compression gain, the evaluation is built based on the 
percentage change in the number of trainable parameters and the gradient trend in 
classification error. 

Table 3.16: Variations and specifications of pruning of frequency adaptive DCT-BF kernel. 

Abbreviation Convolution block 1 
(𝐾, 𝐿, 𝐹) 

Convolution block 2 
(𝐾, 𝐿, 𝐹) 

Convolution block 3 
(𝐾, 𝐿, 𝐹) M-Skipped 

MS3-AD-0401-opt (4 × 4, 1, 16) (4 × 4, 1, 32) (4 × 4, 1, 32) (-, 1, 8) 

MS3-AD-0404-opt (4 × 4, 4, 64) (4 × 4, 4, 128) (4 × 4, 4, 128) (-, 1, 32) 

MS3-AD-0801-opt (8 × 8, 1, 4) (8 × 8, 1, 8) (8 × 8, 1, 8) (-, 1, 2) 

MS3-AD-0804-opt (8 × 8, 4, 16) (8 × 8, 4, 32) (8 × 8, 4, 32) (-, 1, 8) 

MS3-AD-0816-opt (8 × 8, 16, 64) (8 × 8, 16, 128) (8 × 8, 16, 128) (-, 1, 32) 
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3.5.5.4 Ablation Study 

In the ablation study, different spatial dimensions of the Adapt-DCT kernel were 
applied to different convolution blocks. Following the foundational concept where the 
feature maps of the earlier network contain lower-level patterns, a larger Adapt-DCT 
kernel was used in the earlier block of the network. In the latter network, more detailed 

and complex higher-level features were found. In essence, an 8 × 8 kernel was used in 

the first convolutional block, 4 × 4 was used in the second convolutional block and 2 × 2 
was used in the last convolutional block. This variant is denoted as ‘MS3-AD-842’. 
Another two basic CNNs with VGG-16 as the core architecture were presented for 
baseline comparison. The first model is denoted as ‘VGG16-PC’, where three 
convolutional layers were used to form a convolutional block. A total of three 
convolutional blocks were stacked together to form the baseline VGG-16. All the 
convolutional layers in this model featured Adapt-DCT pointwise convolutional kernel 
in line with the frequency domain CNN. The VGG16-PC was implemented without any 
skipped connection. ReLU was used as the activation function in this model and the 
fully connected layers at the end of the network were removed. The second baseline 
CNN was the M-Skipped-3 DCT-CNN. It is denoted as ‘MS3-base’. All three of the 
models that were tested in the ablation study are listed in Table 3.17. 

 
Table 3.17: Variations and specifications of varying spatial size of Adapt-DCT kernel on frequency 

adaptive DCT-BF kernel optimisation. 

Abbreviation 
Convolution block 1 

(𝐾, 𝐿, 𝐹) 

Convolution block 2 

(𝐾, 𝐿, 𝐹) 

Convolution block 3 

(𝐾, 𝐿, 𝐹) 

MS3-AD-842 (8 × 8, 64, 256) (4 × 4, 16, 512) (2 × 2, 4, 512) 

VGG16-PC* (1 × 1,−	, 256) (1 × 1,−	, 512) (1 × 1,−	, 512) 

MS3-base* (1 × 1,−	, 256) (1 × 1,−	, 512) (1 × 1,−	, 512) 

*Models with asterisk signs are not implementing the Adapt-DCT kernel. 
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3.5.6 Experimental Setup of Hybrid Modified ECA 

Within this section, the implementation of the HyMod-ECA module takes place 
on top of the M-Skipped-3 DCT-CNN which carries the Adapt-DCT convolutional 
kernel. The variant which was abbreviated as ‘MS3-AD-0404’ was selected as the 
baseline model in this experiment for its balance between performance and 
compression gain, as detailed in Table II and III in the Appendix. Four distinct 
experiments were designed to address specific research questions outlined in Chapter 1, 
particularly concerning the concept of intra-group DCT channel interaction and the 
optimisation of HyMod-ECA on Adapt-DCT CNN. It facilitates a thorough evaluation 
and fair comparison of the impact of the HyMod-ECA module. 

In the first experiment (denoted as ‘MS3-0404 ECA-ORG’), the ECA module 
adapted from the original literature without any modification was integrated directly 
into the M-Skipped-3 Adapt-DCT CNN as a baseline comparison. To obtain cross-DCT 

channel interactions, 1D fast convolution was used with a kernel 𝐾(b,�,j,S), which carries 

a set of convolutional properties of (𝑓, 𝑘, 𝑠, 𝑝) . Following the original ECA 

implementation, the optimal number of kernel filters 𝑓 is set to a default of 3, with a 

padding size 𝑝 and stride size 𝑠 of 1, yielding 𝐾(�,2,2,2). 

The second experiment (denoted as MS3-0404 ECA-AD) demonstrates the 
proposed HyMod-ECA on top of the M-Skipped-3 Adapt-DCT CNN, with a modified 1D 

convolutional kernel carrying properties of (𝑓, 1, 𝑓, 0), ‘𝑓’ indicates the channel depth of 
the kernel. With a minor increment in the number of trainable parameters manifested 
in the kernel attention weights, it was expected that the implementation of HyMod-ECA 
would improve the performance of the Adapt-DCT CNN over the original ECA. This is 
due to its emphasis on the intra-group DCT channel interaction on top of the adaptive 
learning of fine-grained DCT features (Adapt-DCT kernel). 

The third experiment (denoted as MS3-0404 ECA-AD-1C1A) intentionally 
includes only one convolution layer instead of 3 in every convolutional block in the 
primary network followed by HyMod-ECA. The motivations come twofold. Firstly, the 
experiment intends to achieve compression gain with reduced trainable parameters and 
secondly, to encourage the attention module to focus on DCT channel information in 
addition to the previous section in Adapt-DCT CNN where spatial context is considered. 
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A comparable performance was expected to be attained with higher compression gain 
as compared with its counterpart baseline variations (MS3-0404 ECA-AD). 

In the last experiment, the ‘MS3-0404 ECA-AD’ variant was attached with two 
supplementary fully connected layers positioned before the classifier near the end. Each 
of these fully connected layers incorporates a ReLU activation function and comprises 
1024 nodes. This augmentation was introduced with the specific aim of capturing non-
linear relationships within the DCT channel. The main experiments with their 
respective abbreviations and details are outlined in Table 3.18 

Table 3.18: Experimental specifications and respective model abbreviations of HyMod-ECA. 

Abbreviations Specifications 

MS3-0404 ECA-ORG Original ECA with 𝐾(M,-,-,-) integrated into the Adapt-DCT CNN. 

MS3-0404 ECA-AD HyMod-ECA with 𝐾($,-,$,0) integrated into the Adapt-DCT CNN. 

MS3-0404 ECA-AD-1C1A 
HyMod-ECA with 𝐾($,-,$,0) integrated into the Adapt-DCT CNN, with 

only one convolution layer per convolution block instead of three. 

MS3-0404 ECA-ADFC 
HyMod-ECA was added to the Adapt-DCT CNN, with two fully 
connected layers towards the end before the classifier. 

 
To ensure the robustness of this research, an empirical investigation was 

conducted in an ablation study to compare the technique demonstrated by the Hybrid 
Cosine Basis Convolution (CBC) technique [105] with the developed DCT method 
presented in this research. Given the primary focus of this research is on compressed 
domain FGVC, this comparative analysis with the hybrid CBC aligns with the common 
objective of exploring compressed domain approaches, setting it apart from the more 
general SOTA fine-grained approaches conducted in the spatial domain. The alignment 
of objectives is facilitated by hybrid CBC’s computation of compressed domain features 
on a common dataset, i.e. Monkey-10C, as depicted in this research. Furthermore, the 
VGG-16 baseline model which was employed in hybrid CBC offers a relevant benchmark 
for comparison with the model variants presented in this study. Consequently, a fair 
and meaningful comparison can be conducted between the two approaches. 
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This comparative study is dedicated to presenting the trade-off between 
compression gain and performance. In contrast to conventional SOTA fine-grained 
methodologies that predominantly function within the spatial domain, the distinctive 
emphasis of this study lies in the context of frequency domain analytics. Here, the core 
focus is on fine-grained feature extraction and representation within the compressed 
domain, with a deliberate prioritization of achieving compression gain while 
maintaining comparable performance. Notably, while the hybrid CBC model processes 
RGB input images in the spatial domain, the various variants of the developed model in 
this research operate with DCTCs as input images. The comparison between these 
models primarily depends on key metrics such as classification error rate, parameter 
compression ratio, and convergence speed ratio. 

To address practical FGVC problems, a concluding experiment is formulated to 
classify Flower (5C) and Leeds Butterfly (8C) utilizing a unified model. Specifically, 
both datasets were combined and employed, comprising a total of 13 classes. A 
comparison is established by comparing the performance of a standard VGG-16 
algorithm utilizing RGB data from the datasets, against the comprehensive model 
developed in this research (MS3-0404 ECA-AD). The analysis focuses on main 
performance metrics, including precision, sensitivity, specificity, and f1-score. These 
metrics collectively contribute to a thorough understanding of FGVC analysis, 
particularly concerning intra-class scores between spatial domain and compressed 
domain. Recognizing the significance of intra-class score in FGVC analysis, the metrics 
of compression ratio and convergence speed ratio are also presented for comparison, 
aligning with the central focus of this research.  
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Chapter 4 Results and Discussion 
 

4.1 M–Skipped DCT–CNN 

4.1.1 Low, Medium, and High DCT Coefficients 

Following the training setup in section 3.5.4, Table 4.1 summarises the results. 
The table shows the comparison of classification error comparing test images for L-
DCTC, M-DCTC, H-DCTC, and All-DCTC. The input channel for the first convolutional 

layer is changed accordingly to fit the L-DCTC (28 × 28 × 16 × 3), M-DCTC (28 × 28 ×

32 × 3) and H-DCTC (28 × 28 × 16 × 3) representations respectively. The M-skipped 
connection is not applicable in this experiment. 

Table 4.1 depicts the difference in classification error between varying DCTC 
conditions and the performance changes across FGVC datasets. Generally, L-DCTC and 
sometimes All-DCTC performed better than standalone M-DCTC and H-DCTC. In brief, 
all datasets exhibit better performance on All-DCTC or L-DCTC as the sole input 
compared to M-DCTC or H-DCTC. Generally, with M- or H-DCTC as the only input, the 
classification error is above 0.4. With All-DCTC as input, most of the datasets have a 
lower error rate of around 1% to 4% when compared with L-DCTC. In contrast, Flowers 
and Sheep Breed have no performance difference. The experiment conducted in this 
section once again confirmed that the conventional approach of utilising All-DCTC or L-
DCTC as the only input is advantageous, as All-DCTC can fully represent the partition 
features in the compressed domain, while L-DCTC contains the majority of the 
information required for the model to learn well. In other words, All-DCTC and L-DCTC 
can be used as a general feature representation in FGVC. 

As previously mentioned, the inclusion of individual M-DCTC and H-DCTC 
representations aimed to assess whether the deep CNN could effectively learn 
discriminative features in FGVC within the mid-high frequency spectrum. However, the 
observed lower performance, as indicated in Table 4.1, suggests that mid-high DCTCs 
may not be as important as L-DCTCs. H-DCTC input generally has the lowest accuracy 
as it tends to consist of irrelevant features, often noise. According to the preliminary 
results in Table 4.1 and Table 4.6 in the ablation study, it was revealed that H-DCTC 
could not provide sufficient features for the network, hence leading to its exclusion from 
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the subsequent experiments. Using M-DCTCs as standalone input only introduces 
medium-varying features. In essence, M-DCTC on its own will not furnish adequate 
information, highlighting the necessity of L-DCTCs to enhance overall performance. 
This finding motivated the subsequent experiments where M-DCTCs were introduced 
and built around the foundational L-DCTC feature. 

Table 4.1: Comparison of classification error on individual DCTCs input. 

Abbreviation Sheep 

Breed 

Flowers Leeds 

Butterfly 

Monkey Spider 

Breed 

All-DCTC 0.0972 0.2615 0.1979 0.2721 0.2244 

L-DCTC 0.0972 0.2615 0.2021 0.3113 0.2400 

M-DCTC 0.4028 0.4513 0.5833 0.6434 0.6867 

H-DCTC 0.4643 0.5615 0.6812 0.6752 0.7111 

 

4.1.2 Single and Multiple M-Skipped Connection 

Tables 4.2, 4.3, and 4.4 show the test error for each M-Skipped variant. With 
regards to Table 4.2, Monkey and Spider Breed attained better performance with M-
Skipped-1, Sheep Breed and Flowers achieved better performance with M-Skipped-2 
while Leeds Butterfly had better performance with M-Skipped-3. By computing the 
average performance metrics across each M-Skipped variant in Table 4.2, it is clear that 
M-Skipped-3 obtained the overall lowest classification error, which is 0.1895. It was 
found that by concatenating the output of a single M-DCTC skipped convolutional 
branch at the last convolutional block, i.e. M-Skipped-3, it generated the best results. 
Hence, it is suitable to adopt M-Skipped-3 as the baseline architecture over the other 
variants.  
  By referring to Table 4.3, by comparing the ‘M-Skipped-123-extended’ to the ‘M-
Skipped-3’ variant, a maximum of 6% error rate increase was observed in the extended 
model on Spider Breed. Its deeper counterpart obtained the lowest error rate on 
Monkey and Spider Breed over the single M-Skipped variant with a difference error rate 
of up to 3%. However, the model carries an additional 0.2 million trainable parameters 
compared to the single M-Skipped variant. From Table 4.4, it can be seen that by 
adopting an M-Skipped connection, a reduction in error rate of up to 7.5% can be 
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obtained in medium-sized FGVC datasets, when compared to a more conventional 
network, i.e. All-DCTC variant. This suggests that M-DCTC contains additional higher 
frequency details that when integrated with deeply convolved L-DCTC representations, 
a feature-rich frequency domain representation can be obtained.  

From these results, it is clear that the deeper M-Skipped convolutional branch 
significantly enhances the original M-DCTC feature representation and improves 
performance on some of the datasets. Nevertheless, the single M-Skipped architecture 
still offered a clear balance between parameters and performance. This experiment 
once again shows that M-DCTC is important for FGVC and that the specific approach 
adopted for integrating M-DCTC is not necessarily trivial. In other words, the specific 
way in which M-DCTC is integrated can significantly affect performance in the FGVC 
domain. 

 

Table 4.2: Comparison of classification error between three M-Skipped variants and the corresponding 
average performance. 

Abbreviation Sheep 
Breed 

Flowers Leeds 
Butterfly 

Monkey Spider 
Breed 

Average 

M-Skipped-1 0.0873 0.2589 0.1667 0.2574 0.2156 0.1972 

M-Skipped-2 0.0695 0.2436 0.1625 0.2709 0.2666 0.2026 

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895 

Error Change 

(Best variant vs 

M-Skipped-3) 

+1.58% (­) +1.02% (­) 0.0000 0.36% (­) -0.89% (¯)  
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Table 4.3: Comparison of classification error between multiple M-Skipped variants against the M-
Skipped-3. 

Abbreviation Sheep 
Breed 

Flowers Leeds 
Butterfly 

Monkey Spider 
Breed 

Average 

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895 

M-Skipped-123-
extended 

0.0873 0.3051 0.1792 0.2402 0.2889 0.2201 

M-Skipped-123-
extended-deep 

0.0893 0.2692 0.1479 0.2230 0.1845 0.1816 

 

Table 4.4: Comparison of classification error between the best-performing M-Skipped variation and the 
baseline variation without the M-Skipped branch (All-DCTC). 

Abbreviation Sheep 

Breed 

Flowers Leeds 

Butterfly 

Monkey Spider 

Breed 

All DCTC 0.0972 0.2615 0.1979 0.2721 0.2244 

Best performing M-Skipped 0.0695 0.2436 0.1229 0.2574 0.1845 

Error Change -1.19% (¯) -1.79% (¯) -7.5% (¯) -1.47% (¯) -3.99% (¯) 
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4.1.3 Ablation Study 

In classical CNNs, fully connected layers were typically employed at the end of 
the model to improve non-linear mapping within feature maps. Surprisingly, it was 
found that compressed domain CNNs often exhibit similar or sometimes inferior 
performance when compared to models without fully connected layers, as evidenced in 
Table 4.5. M-Skipped-3 without fully connected layers still offers the overall best 
average performance with the lowest error as compared to other variants. Furthermore, 
the inclusion of fully connected layers leads to an increase in the overall parameters by 
approximately 7 million, as shown in Table 4.7. Thus, the fully connected layers were 
not employed in this research to achieve higher compression gain and avoid 
unnecessary algorithm complexity. 

The initial choice of the ReLU activation function caused a clustering of features 
around the x and y-axis when plotted. It poses a challenge for the classifier to draw clear 
classification boundaries between classes. Moreover, when datasets were normalized 
between 0 to +1 and used on ReLU, the data scaling range was considerably narrow 
when compared to the feature standardization achieved with a range of -1 to +1 on 
PReLU. Feature map comparisons in Figure 4.1 illustrate the PReLU-based feature 
maps exhibit more pronounced clustering, allowing a more visible decision boundary. 
The concept is further supported by the results in Table 4.5. It shows that the use of 
PReLU in the baseline variant of M-Skipped-3 can achieve the lowest average error of 
0.1895 over M-Skipped-3-ReLU. 

 

Figure 4.1: Feature map representations of activation function outputs from ReLU (Right) and PReLU 
(Left). 
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Table 4.5: Comparison of classification error between baseline M-Skipped-3 variant with PReLU (‘M-
Skipped-3’), baseline M-Skipped-3 variant with fully connected layers  (‘M-Skipped-3-FC), and baseline 

M-Skipped-3 variant with ReLU (‘M-Skipped-3-ReLU’). 

Abbreviation Sheep 

Breed 

Flowers Leeds 

Butterfly 

Monkey Spider 

Breed 

Average 

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895 

M-Skipped-3-FC 0.0714 0.2769 0.1416 0.2512 0.2978 0.2078 

M-Skipped-3-ReLU 0.1071 0.2666 0.1771 0.2904 0.2844 0.2251 

 
The final investigation exploited the intraclass scores, particularly focusing on 

the comparison between the developed algorithm (M-Skipped-3) and the H-Skipped-3 
variant, alongside a standard SOTA VGG-16 algorithm. The F1-Score across these 
variants was computed and presented in Table 4.6. An in-depth examination of the 
intraclass scores shows that M-Skipped-3 outperforms H-Skipped-3. It attains a better 
average F1-Score across all datasets. While H-Skipped-3 delivers higher F1-Score in 
specific datasets such as Sheep Breed and Spider Breed, with improvements of 0.5% 
and 3.99% respectively, M-Skipped-3 consistently exhibits better performance across 
other datasets. Despite both variants carrying the same number of parameters, as 
outlined in Table 4.7, the average F1-Score demonstrates that M-Skipped-3 excels in 
providing better FGVC analysis compared to H-Skipped-3.  

From the average F1-Score formulated in Table 4.6, the M-Skipped-3 variant 
that is developed in this section surpasses the performance of the standard VGG-16 
algorithm by 2.2%. On an individual dataset basis, except Spider Breed showing better 
performance with the standard algorithm, all other datasets have better FGVC analysis 
on M-Skipped-3. Furthermore, the number of parameters exhibited by the standard 
algorithm is significantly greater than that of M-Skipped-3. According to Table 4.7, M-
Skipped-3 contains 1.7 million parameters whereas the standard algorithm contains 
134.4 million. The compression ratio of standard VGG-16 against the M-Skipped-3 
reaches up to 79 times. By considering the key emphasis of this research on 
compression gain and compressed domain, coupled with the better overall F1-Score of 
the developed system, it is promising that small-scale compressed domain FGVC excels 
over the classical VGG-16 approach in terms of FGVC analysis. 
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Table 4.6: Comparison of F1-Score between M-Skipped-3, H-Skipped-3, and the standard VGG-16 
algorithm. 

Abbreviation 

(Domain) 

Sheep 

Breed 

Flowers Leeds 

Butterfly 

Monkey Spider 

Breed 

Average 

M-Skipped-3 (DCT) 94.03 75.58 88.60 79.57 79.26 83.41 

H-Skipped-3 (DCT) 94.63 75.16 84.22 75.84 82.65 82.50 

Standard VGG-16 (RGB) 82.30 74.47 88.19 77.91 83.16 81.21 

 

Table 4.7: Comparison of number of trainable parameters and compression ratio between different 
variants. 

Abbreviation Number of Parameters (mil) Compression Ratio 

Standard VGG-16 134.4 1 

M-Skipped-3 1.7 79 

M-Skipped-123-extended 1.9 70 

M-Skipped-123-extended-deep 1.9 70 

M-Skipped-3-FC 8.9 15 

M-Skipped-3-ReLU 1.7 79 

H-Skipped-3 1.7 79 
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4.2 Adaptive DCT CNN 

4.2.1 Spatial Properties of Adaptive DCT Kernel 

 

The weighting and upscaling of spatial properties on the Adapt-DCT kernel are 
discussed in this section. The setup of this experiment is explained in section 3.5.5. The 
underlying motivation is to examine various spatial resolutions of the DCT-BF to form 
the convolutional kernel. The term ‘upscaling’ is used to describe the ability to initialize 

the kernel with spatial dimensions of 2 × 2, 4 × 4 and 8 × 8 to weigh the DCT-BF and 

subsequently to form the final 1 × 1 convolutional kernel. 

From Table 4.8, with an increasing spatial dimension on Adapt-DCT kernel, 
Flowers and Spider Breed showed increasing error trends of 0.22% and 2.22% 
respectively. On the other hand, COVID-19, Monkey, and Butterfly showed decreasing 
errors of 7.49% and 0.55% respectively. The overall best result was obtained with a 

spatial dimension of 8 × 8  on COVID-19, Monkey, and Butterfly, while the spatial 

dimension of 2 × 2 excelled on Flowers and Spider. This suggests that smaller spatial 
dimension provides fewer spatial harmonics (only key ones) to form the pointwise 
convolutional kernel from the adaptive weighting of DCT basis functions and vice versa. 
The smaller dimension focuses on composing fewer key representations. It is suggested 
that Flowers and Spider only require a few representational capacities of the pointwise 
convolution filter for DCT feature learning. On the contrary, a larger dimension serves a 
higher representational capacity within the pointwise convolution filter that can ease 
the feature learning of COVID-19, Monkey, and Butterfly. 

Table 4.8: Comparison of classification error with increasing spatial dimension of Adapt-DCT kernel. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0204 0.2121 0.2564 0.2267 0.1778 0.3788 0.1707 

MS3-AD-0416 0.1364 0.2590 0.2194 0.2155 0.3675 0.1727 

MS3-AD-0864 0.0624 0.2607 0.2157 0.2222 0.3772 0.1587 

Error Trend -7.49% (¯) +0.22% (­) -0.55% (¯) +2.22% (­) -0.08 % (¯) -0.60% (¯) 
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With an increasing spatial dimension on the Adapt-DCT kernel, a prevalent 
performance improvement can be observed with up to a 7.49% error drop on Covid19. 
The Snake Breed exhibited a nearly constant error rate across distinct spatial 
dimensions. It was observed that an increase in spatial dimension did not contribute to 
an improvement in its recognition performance. The resulting trend for different spatial 
dimensions of the Adapt-DCT kernel is dataset-dependent. Figures 4.2 and 4.3 display 
the visualization of part of the Adapt-DCT kernel on COVID-19 and Spider Breed on 
different Adapt-DCT variants. 

 

Figure 4.2: The first layer of the convolution kernel is shown for each convolution block, with conv3 
referring to convolution block 1, conv4 referring to convolution block 2, and conv5 referring to 

convolution block 3. Covid19-3C on three different spatial dimensions of Adapt-DCT CNN, (a) MS3-AD-
0204; (b) MS3-AD-0416; (c) MS3-AD-0864. 
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Figure 4.3: The first layer of the convolution kernel is shown for each convolution block, with conv3 
referring to convolution block 1, conv4 referring to convolution block 2, and conv5 referring to 

convolution block 3. Spider-15C on three different spatial dimensions of Adapt-DCT CNN, (a) MS3-AD-
0204; (b) MS3-AD-0416; (c) MS3-AD-0864. 

 

The spatial upscaling of the Adapt-DCT kernel contributes to an early 
understanding of how different spatial dimensions of weighting the DCT basis functions 
can benefit compressed domain CNNs. A fundamental technique on the capability of 
filter representation is established from the perspective of the DCT domain. The spatial 
dimension for optimal performance differs for each dataset. Thus, the spatial properties 
can be reinstated on top of the DCT pointwise convolution kernel in Adapt-DCT 
convolution.  
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4.2.2 Optimisation of DCT Basis Functions of 
Frequency Bases with Increasing Channel Weights 
Set 

The spatial and frequency bases of DCT basis functions are equally important for 
the Adapt-DCT kernel in compressed domain image classification. The optimisation of 
frequency bases came in two forms as discussed in section 3.5.5. The first technique 
pruned away higher frequency bases while maintaining the total number of channels, 
which increased the number of channel weights per frequency base. Whereas the 
second method restrained the number of channel weights per frequency base in 
addition to the former pruning. Hence, it will reduce the total number of trainable 
parameters. The prior method intended to achieve frequency-based optimisation while 
retaining the parameters while the latter method solely focused on pruning and 
reducing the parameters. The results of the first technique will be discussed in this part. 

Two variants of the Adapt-DCT kernel with spatial dimensions of 4 × 4 and 8 × 8 were 
presented. The performance was compared between the frequency bases carrying an 

original number of bases (𝑁- where 𝑁 is the spatial dimension of Adapt-DCT kernel) 

and the pruned bases (𝜂). More setup information can be found in section 3.5.5. 

It is crucial to analyse the convergence speed and the classification error with the 
frequency pruning of the Adapt-DCT kernel. The classification error and error trend of 

each frequency base with 4 × 4 and 8 × 8 spatial dimension was tabulated in Tables 4.9 

and 4.10. For the spatial dimension of 8 × 8, with a reduction of frequency bases along 
the channel direction and an increase of ‘channel weights set’ per frequency base, 
Spider Breed exhibits a reducing error while Covid19, Monkey, and Butterfly show 
increasing errors. Flowers and Snake Breed have a near-constant error regardless of the 
number of frequency bases. An error trend of -0.87% can be found in the Spider with a 
reduction in the number of frequency bases. Monkey exhibits an increment in error 
trend of +3.76% under the same pruning condition. This suggests that Spider benefits 

from the pruning effect in the spatial dimension of 8 × 8 while performance on Monkey 

degrades. For the spatial dimension of 4 × 4, with a reduction of frequency bases and an 
increase of channel weights set, COVID-19, Monkey, and Butterfly exhibit an error 
reduction while Monkey, Spider, and Snake Breed show increasing error. COVID-19 
benefits from the frequency base pruning with an error trend of -2.27%, while Spider 
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experienced the highest increment in error trend of +3.78%. 

When most of the frequency bases were removed while remaining only one 

frequency base (4 × 4 is denoted as MS3-AD-0401, 8 × 8 is denoted as MS3-AD-0801), 
this is referred to as the ‘DC frequency base’. Spider shows the best performance on a 

spatial dimension of 8 × 8 with a DC frequency base while Butterfly achieves the best 

performance on a spatial dimension of 4 × 4. COVID-19 and Snake Breed did not 

benefit from the frequency base optimisation in both spatial variants of 4 × 4 and 8 × 8 
respectively. This can be recognised when both of the datasets presented the lowest 
error on the original number of frequency bases. Generally, the optimal performance is 
obtained when the first 4 frequency bases are used, i.e., when the depth-wise channel 
contains 4 frequency bases (denoted as MS3-AD-xx04). This concept is proven when 
Flowers, Snake Breed, and Butterfly present the lowest error on MS3-AD-0804. While 
COVID-19, Flowers, Monkey, and Spider Breed attain the lowest error on MS3-AD-
0404. 

 

Table 4.9: Comparison of classification error trend with spatial Adapt-DCT kernel size of 8. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0864 0.0624 0.2607 0.2157 0.2222 0.3772 0.1587 

MS3-AD-0816 0.0657 0.2590 0.2022 0.2267 0.3736 0.1593 

MS3-AD-0804 0.0808 0.2513 0.2145 0.2133 0.3728 0.1560 

MS3-AD-0801 0.0791 0.2641 0.3370 0.1978 0.3788 0.1760 

Error Trend +0.65% (­) +0.02% (­) +3.76% (­) -0.87% (¯) +0.04% (­) +0.49% (­) 

 

 

 

 

 

 

 



145  

Table 4.10: Comparison of classification error trend with spatial Adapt-DCT kernel size of 4. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0416 0.1364 0.2590 0.2194 0.2155 0.3675 0.1727 

MS3-AD-0404 0.0758 0.2408 0.2108 0.2134 0.3724 0.1653 

MS3-AD-0401 0.0909 0.2564 0.2819 0.2911 0.3750 0.1607 

Error Trend -2.27% (¯) -0.13% (¯) +3.13% (­) +3.78% (­) +0.37% (­) -0.60% (¯) 

 

The convergence speed for the optimisation of frequency bases is presented in 
Tables 4.11 and 4.12. Each table indicates the results for different spatial dimensions of 

8 × 8 (Table 4.11) and 4 × 4 (Table 4.12). The convergence metric of the Snake Breed 
was excluded from both tables as it did not achieve a classification error below 0.25. 
The variant with the best convergence speed is shown in bold numeric in the tables. The 
convergence speed ratio was obtained by comparing the original frequency base with 

the earliest converge variant. For the spatial dimension of 8 × 8, all of the datasets 
attained early convergence with the frequency base optimisation as compared with the 
original one. Monkey achieved up to 1.28 times faster convergence on the MS3-AD-
0804 as compared with the original counterpart. With the frequency base optimisation 

conducted on the spatial dimension of 4 × 4, Covid19 exhibits up to 1.33 times faster 
convergence while Spider Breed shows no improvement. The highest convergence 

speed can be found in the context of the spatial dimension of 4 × 4 on the MS3-AD-

0401 on Covid-19, Monkey, and Butterfly. For the spatial dimension of 8 × 8 , 
insufficient trends can be drawn to provide a conclusive statement on which variant will 
lead to the fastest convergence. 
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Table 4.11: Epoch reaching 75% test accuracy for spatial dimension of 8. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed 

MS3-AD-0864 8.33 21.00 15.00 18.00 6.33 

MS3-AD-0816 7.00 20.00 21.67 17.00 6.00 

MS3-AD-0804 8.00 23.00 11.67 17.00 5.33 

MS3-AD-0801 7.67 25.00 14.00 16.00 5.67 

Convergence Speed Ratio 
(vs MS3-AD-0864) 

1.19 1.05 1.28 1.13 1.19 

 

Table 4.12: Epoch reaching 75% test accuracy for spatial dimension of 4. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed 

MS3-AD-0416 8.00 18.67 13.33 11.00 6.67 

MS3-AD-0404 7.00 16.00 13.00 16.33 6.67 

MS3-AD-0401 6.00 20.33 12.00 15.33 6.33 

Convergence Speed Ratio 
(vs MS3-AD-0416) 

1.33 1.17 1.11 1.00 1.05 

 

The technique of pruning away frequency bases with increasing channel weight 
sets allows the optimisation of frequency bases and early convergence on most of the 
datasets. Early convergence is achieved as it is suggested that fewer frequency bases 
were required to be optimised, hence promoting robustness. The representation of a 
pointwise convolutional filter with frequency base optimisation allows more filters of 
the same frequency base to be generated. This suggests that the model can improve 
feature learning if the DCT features contain a large portion of similar context that 
matches the filter’s pattern of the remaining frequency bases. 
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4.2.3 Optimisation of DCT Basis Functions for 
Trainable Parameters Compression 

As the objective here is to prune the frequency bases to achieve fewer trainable 
parameters, the evaluation is built based on the compression ratio (Tables 4.15 and 4.16) 
and the error change (Tables 4.13 and 4.14). From Tables 4.13 and 4.14, all of the 
datasets show increasing errors with a reduced number of frequency bases and 

trainable parameters. With a spatial dimension of 8 × 8 on the Adapt-DCT kernel, the 
steepest error trend of +16.76% can be found on the Snake Breed while the lowest trend 

of +2.87% was found on Flower. With a spatial dimension of 4 × 4, the steepest trend of 
+17.27% was exhibited on Snake Breed while the lowest trend of +1.01% was found on 
Covid19  

By referring to Tables 4.15 and 4.16, the optimisation of frequency based on 

spatial dimensions of 8 × 8 and 4 × 4 offers a 93% to 99% reduction in the number of 
trainable parameters concerning their original variant. The lowest classification error 

across the board can be found on MS3-AD-0816-opt (for spatial dimension of 8 × 8) 

and MS3-AD-0404-opt (for spatial dimension of 4 × 4), except Covid19, which attained 
the lowest error on MS3-AD-0401-opt. In other words, in this experimental setup, 
MS3-AD-0816-opt and MS3-AD-0401-opt offer the best performance for most of the 
datasets. 

 

Table 4.13: Best performing classification error trend comparison with spatial Adapt-DCT kernel size of 8, 
with increasing DCT frequency basis functions and trainable parameters. 

 

  

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0816-opt 0.1010 0.2410 0.2623 0.2289 0.4147 0.2073 

MS3-AD-0804-opt 0.1768 0.2641 0.3689 0.2955 0.7198 0.2807 

MS3-AD-0801-opt 0.2727 0.3487 0.4669 0.3800 0.8343 0.4187 

Error Trend +7.07% (­) +2.87% (­) +8.60% +5.40% (­) +16.76% (­) +8.53% (­) 
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Table 4.14: Best performing classification error trend comparison with spatial Adapt-DCT kernel size of 4, 
with increasing DCT frequency basis functions and trainable parameters. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0404-opt 0.1717 0.2615 0.2487 0.2400 0.4426 0.2107 

MS3-AD-0401-opt 0.1566 0.2872 0.3456 0.3356 0.7129 0.2860 

Error Trend +1.01% (­) +1.41% (­) +6.31% (­) +6.00% (­) +17.27% (­) +5.66% (­) 

 

Table 4.15: Specifications and reduced percentage of trainable parameters of the optimised variants with 

respect to the original variant of spatial Adapt-DCT kernel of 8 × 8. TP reduced is measured in percentage 
(%) with reference to MS3-AD-0864-org. 

Abbreviation Number of Parameters (mil) Parameter Change (%) 

MS3-AD-0864-org 102.53 - 

MS3-AD-0816-opt 6.76 93.41 

MS3-AD-0804-opt 0.51 99.50 

MS3-AD-0801-opt 0.05 99.98 

 

Table 4.16: Specifications and reduced percentage of trainable parameters of the optimised variants with 

respect to the original spatial Adapt-DCT kernel of 4 × 4. TP reduction is measured in percentage (%) 
with reference to MS3-AD-0416-org. 

Abbreviation Number of Parameters (mil) Parameter Change (%) 

MS3-AD-0416-org 25.85 - 

MS3-AD-0404-opt 1.74 93.26 

MS3-AD-0401-opt 0.14 99.46 
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Generally, the frequency pruning with very few trainable parameters provides 
higher compression gain. This approach can offer a hybrid understanding of the 
performance of each variant before conducting detailed experiments on the model that 
contains the original number of frequency bases. The tradeoff of this approach is the 
mediocre performance. It is suggested that the representation capability of pointwise 
convolutional filter drops concerning the reduced frequency bases with consistent 
channel weights set per frequency base. This scenario constrains the learning capability 
of a filter hence leading to a performance drop. In a nutshell, the optimisation of DCT-
BF with pruning the frequency bases opens up the window to customise the DCT-BF to 
form a convolution filter. 

 
In Figure 4.4, the noticeable gap between training and validation metrics entails 

the presence of a potential overfitting issue. This gap may arise due to factors such as 
inherent noise, a limited dataset, or the complexity of the model. Several precautions 
have been implemented carefully to address overfitting through regularisation 
techniques. These involve applying dropout by randomly omitting neurons during 
training to prevent the model from relying heavily on specific neurons. Additionally, a 
cosine annealing scheduler and early stopping have been adopted to control the training 
progress and foster model robustness. Introducing randomness compels the model to 
learn diverse features, ultimately promoting more robust and generalised 
representations. Beyond these measures, the predominant way to further reduce 
overfitting is by obtaining more data. This is currently infeasible given the context of the 
datasets and the research objectives. 
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Figure 4.4: Training curves for Spider-35C. (a) Validation accuracy training curve on MS3-AD-0816-opt; 
(b) Validation accuracy training curve on MS3-AD-0404-opt; (c) Validation loss training curve on MS3-

AD-0404-opt; (d) Validation loss training curve on MS3-AD-0816-opt. 
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4.2.4 Ablation Study 

In this section, a simple performance comparison between 2 baseline models and 
the best variant of Adapt-DCT CNN was presented. Tables 4.17 and 4.18 establish the 
classification error obtained from the baselines and Adapt-DCT CNN. The results are 
shown based on 7 FGVC datasets (Covid-19, Flowers, Monkey, Spider Breed, Snake 
Breed, Butterfly, Flowers) and 3 general datasets (Cifar-10, Cifar-100, Mini Image Net). 

From a general glance, all the datasets exhibit improved performance in the 
Adapt-DCT CNN condition over the baseline models. An improvement with up to   
13.97% error drop on the Monkey-10C dataset can be found. The results in Table 4.17 
show that FGVC datasets with below 100 classes can achieve up to 14% error drop over 
the baseline model and the M-Skipped-3. In Table 4.18, with the adoption of the Adapt-
DCT kernel, Flowers achieves up to 4% error drop over the baseline models, while the 
general datasets (CIFAR10 and CIFAR100) achieve between 2% to 8% error drop.  

The mediocre performance of both CIFAR10 and CIFAR100 is due to the 
dimension constraints of the original images. With an original RGB image size of 

32 × 32 × 3, applying 2D-DCT according to a partition of 2 × 2 will result in a DCT 

input tensor of (16 × 16) × (2 × 2) × 3. The mapping of the 2 × 2 partition into the layer 

dimension will produce a final tensor of 16 × 16 × 12. There is more information loss 
when compared with the standard RGB input. By applying 2D-DCT with a partition of 

8 × 8 on the standard RGB input of 224 × 224 × 3, it will produce a corresponding DCT 

input of 28 × 28 × 192. Only the Adapt-DCT variant with a spatial dimension of 2 × 2 is 
applied on CIFAR10 and CIFAR100. This is because CIFAR datasets are pre-processed 

with a DCT partition of 2 × 2. Applying larger spatial dimension results in negligible 
performance improvement from the preliminary experiment conducted, hence it is 
excluded from the analysis. Another variant from the VGG-16 baseline model that 
replaced all the convolutions with Adapt-DCT kernels was implemented without the M-
Skipped architecture. This variant produced the worst result over most of the datasets. 
Hence, this baseline variant was excluded from the analysis. 
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Table 4.17: Best performing test error comparison between best performing Adapt-DCT CNN, M-

Skipped-3, and normal VGG-16 pointwise CNN. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

VGG16-PC 0.1717 0.2720 0.3419 0.2489 0.4123 0.2253 

MS3-base 0.2071 0.2448 0.2194 0.2489 0.3780 0.1807 

Best Adapt-DCT variant 0.0624 0.2408 0.2022 0.1778 0.3675 0.1560 

Error Change 
(Best variant vs baseline) 

-10.93% -3.12% -13.97% -7.11% -4.48% -6.93% 

Error Change 
(Best variant vs 
M-Skipped-3) 

-14.47% -0.40% -1.72% -7.11% -1.05% -2.47% 

 
 
 

Table 4.18: Best performing test error comparison between best performing Adapt-DCT CNN, M-
Skipped-3, and normal VGG-16 pointwise CNN. 

  Top 5 Top 5 

Datasets 
Model 

Cifar-10C Cifar-100C Flowers-104C 

VGG16-PC 0.3938 0.3765 0.2099 

MS3-base 0.4437 0.3818 0.1743 

Best Adapt-DCT variant 0.3683 0.3232 0.1699 

Error Change 
(Best variant vs baseline) 

-2.55% -5.33% -4.00% 

Error Change 
(Best variant vs M-Skipped-3) 

-7.54% -5.86% -0.44% 
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In this final part of the ablation study, an investigation into varying the spatial 
dimensions of the Adapt-DCT kernel implemented onto each convolutional block is 
attempted. This background concept is built based on the idea that early convolutional 
features contain lower-level fundamental patterns while deeper features consist of 
complex features. The full architecture is denoted as ‘MS3-AD-842-org’ and presented 
in section 3.5. This model is implemented on 6 FGVC datasets and 1 general benchmark 
dataset (mini-image net of 100 classes). It is intended to study the error change 
between varying spatial dimensions of Adapt-DCT with respect to the best-performing 
variant. According to Table 4.19, all of the FGVC datasets fall short on error by up to 
+1.78% when compared to the best-performing Adapt-DCT variant. The general 
benchmark dataset (mini-image net) obtained a top-5 classification accuracy of 73.93% 
with Adapt-DCT CNN as compared with similar work which attained a top-1 accuracy of 
84.81% on few-shot learning [33]. 

 
Table 4.19: Performance comparison with varying spatial dimensions for Adapt-DCT kernel with the best 

Adapt-DCT variant. 

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

Best Adapt-DCT variant 0.0624 0.2408 0.2022 0.1778 0.3675 0.1560 

MS3-AD-842-org 0.0657 0.2564 0.2083 0.1956 0.3710 0.1627 

Error Change +0.33% (­) +1.56% (­) +0.61% (­) +1.78% (­) +0.35% (­) +0.67% (­) 
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4.2.5 Summary of top performing Adapt-DCT 
variants for FGVC datasets 

 
The classification error and convergence speed comparison between all Adapt-

DCT variants are presented in Tables II and III in the Appendix. The errors are ranked 
based on 3 of the lowest classification errors. These metrics for each dataset are bolded. 
Their corresponding variants are listed in the last 3 rows in the table. The models that 
were tested in the ablation study are indicated with parenthesis. From Table II, MS3 
AD-842 from the ablation study attained the top-3 lowest error on 4 (Covid-19, Monkey, 
Spider, Snake Breed) out of 6 of the datasets. By purely considering the main 
experiments besides the ablation study, MS3-AD-0816 and MS3-AD-0404 achieved the 
top-3 lowest error on 3 out of 6 of the datasets respectively. Given that MS3-AD-0816 
and MS3-AD-0404 carry 103mil and 25mil number of trainable parameters respectively, 
an optimal variant that will suffice the trade-off between performance and compression 
gain would be MS3-AD-0404. 
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4.3 Hybrid Modified Efficient Channel Attention 

4.3.1 Experimental results and discussion of 
HyMod-ECA 

 
CBAM and ECA were initially explored in preliminary experiments by attaching 

both attention modules respectively into the MS3-AD-0404 variant, adopted from the 
baseline Adapt-DCT CNN. It was found that ECA attained better performance (i.e., a 
lower classification error rate of 2-5%) on the same baseline experimental setup as 
compared to CBAM. Therefore, ECA was selected over CBAM as the baseline channel 
attention module for Adapt-DCT CNN. To determine where to add the HyMod-ECA 
module after the last convolution block, both scenarios where the HyMod-ECA module 
was added after the last convolution block before and after concatenating the M-
Skipped feature were tested. The results show that the latter performs better. 

The general performance metric used in this section is the classification error (ε) 
on test sets. Bold text showcases the top-performing variants out of all the attention 
mechanism counterparts on the same baseline model. In Table 4.20, four types of 
attention variants added on MS3-AD-0404 are compared against each other. The error 
change between the original ECA and the HyMod-ECA is explicitly compared to draw a 
clear indication of the improvement made with the proposed HyMod-ECA. In Table 
4.20, the HyMod-ECA is compared against the MS3-AD-0404 and the best-performing 
Adapt-DCT CNN without attention.  
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Table 4.20: Performance comparison in terms of classification error for all attention variants on Adapt-
DCT CNN. 

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly 

MS3-0404 
ECA-ORG 

0.2231 0.2169 0.2133 0.3673 0.1620 

MS3-0404 
ECA-AD 

0.2205 0.2059 0.1778 0.3734 0.1580 

MS3-0404 
ECA-AD-1C1A 

0.2436 0.2059 0.2155 0.3802 0.1833 

MS3-0404 
ECA-ADFC 

0.2410 0.2096 0.3133 0.3855 0.1827 

Error Change 
(Original ECA vs ECA-AD) 

-0.26% (¯) -1.10% (¯) -3.55% (¯) +0.61% (­) -0.40% (¯) 

 
According to Table 4.20, HyMod-ECA achieves the best performance on most of 

the FGVC datasets across the board except for Snake Breed, where applying the original 
ECA module attains better performance over the other variants. By purely comparing 
the proposed HyMod-ECA over the original ECA, the FGVC datasets exhibit 
performance improvements of up to 3.55%. Only a slight error increase of 0.61% can be 
observed in the Snake Breed. The results are strongly suggestive of the fact that the 
utilization of DCT channel group interaction by implementing HyMod-ECA 
outperforms the original ECA on medium FGVC tasks. The original ECA exhibited 
better performance than the HyMod-ECA on the snake dataset. It is suggested that the 
individual DCT channel interaction is being prioritised over intra-group interaction. 
The result indicates that medium FGVC tasks generally prioritise intra-group DCT 
channel interaction over individual channel relationships except for Snake Breed. 
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Table 4.21: Performance comparison in terms of classification error of HyMod-ECA Adapt-DCT CNN 
with its baseline counterpart without attention and the best performing Adapt-DCT CNN for the dataset 

without attention. 

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly 

Best variation from 
the previous chapter 

0.2359 
(MS3-AD-842-

04) 

0.2022 
(MS3-AD-

0816) 

0.1778 
(MS3-AD-0204) 

0.3675 
(MS3-AD-

0416) 

0.1560 
(MS3-AD-

0804) 

MS3-AD-0404 
(Baseline) 

0.2408 0.2108 0.2134 0.3724 0.1653 

MS3-0404 
ECA-AD 

0.2205 0.2059 0.1778 0.3734 0.1580 

Error Change 
(Baseline vs 
ECA-AD) 

-2.03% (¯) -0.49% (¯) -3.56% (¯) +0.10% (­) -0.73% (¯) 

Error Change 
(Best vs ECA-AD) 

-1.54% (¯) +0.37% (­) -0.00% +0.59% (­) +0.20% (­) 

 
 

As shown in Table 4.21, when comparing the HyMod-ECA CNN against its 
baseline variant without attention, the most improved performance is found on the 
Spider. It achieves up to a 3.56% error drop with the adoption of HyMod-ECA as 
compared with its baseline model without attention. On the flip side, a negligible 
increase in error rate of 0.10% was observed on the Snake. By comparing the HyMod-
ECA with the best-performing variants of Adapt-DCT CNN without attention 
mechanism, an improved performance was found on the Flowers of 1.54%, while the 
Spider achieves the same performance. Minor error rate increment was found on the 
other FGVC datasets, but these were maintained below 1%, which is minimal. The 
comparison against the best-performing model without attention is to provide an 
advanced and extensive benchmark against the original baseline counterpart.  

The Spider and Flowers obtained up to 2% and 3.56% performance 
improvements by using HyMod-ECA over its baseline counterpart without attention. 
This suggests that these two fine-grained datasets contain more DCT channel groups of 
fine-grained object parts that fully utilise the intra-group DCT channel interaction 
mechanism of HyMod-ECA. On the other hand, the result also suggests Monkey and 
Butterfly consist of lesser DCT channel group features that can take advantage of the 
DCT channel group interaction of the HyMod-ECA module. Figures 4.5(a) and 4.5(b) 
show a few samples from different classes of Spider and Monkey. The Snake Breed 
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overall has a higher error rate than all other FGVC datasets. A minor drop of 0.10% in 
performance does not conclusively imply that implementing DCT channel interaction is 
worse.  

The intention of comparing the HyMod-ECA against its baseline counterpart 
without attention is to prove that the inclusion of weight sharing across channel groups 
on top of spatial pointwise convolution of the Adapt-DCT kernel can benefit FGVC in 
the DCT domain. Intra-group DCT channel interactions are not sufficiently captured by 
solely adopting the Adapt-DCT kernel, thus, with the proposed attention module, the 
performance of the baseline model can be improved. 
 
 

 
(a) Spider [166] visualisation from three different classes of dataset. 

 
(b) Monkey [165] from three different classes of dataset. 
Figure 4.5: Several samples from a subset of classes of the fine-grained monkey [165] and spider datasets 

[166]. 

 
  



159  

The number of trainable parameters for all four variants of the attention 
mechanism is listed in Table 4.22. Table 4.23 compares the performance difference 
with the inclusion of fully connected (FC) layers in HyMod-ECA while Table 4.24 
measures the performance difference as a result of optimizing HyMod-ECA. From Table 
4.23, the inclusion of FC layers will cause a significant performance degradation across 
all the FGVC datasets as compared with the original HyMod-ECA model, ranging from 
an increase in error rate of 0.37% to 13.55%. The DCT features from different groups 
are combined and flattened when going through the FC layers. It is suggested that the 
FC layers introduce additional transformation and non-linearity which can cause the 
frequency information to be less distinctive. Combining the ablation study of 
integrating FC layers into the M-Skipped-3 CNN, one can suggest that FC layers will not 
ease FGVC in the DCT domain. 
 

Table 4.22: Number of trainable parameters for each attention mechanism variant. 
 

Abbreviation Trainable Parameters (mil) 

MS3-0404 ECA-ORG 25 

MS3-0404 ECA-AD 25 

MS3-0404 ECA-AD-1C1A 6.72 

MS3-0404 ECA-ADFC 32 

 
 
 
 

Table 4.23: Performance comparison in terms of classification error of HyMod-ECA with and without 
fully connected layers. 

 

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly 

MS3-0404 ECA-AD 0.2205 0.2059 0.1778 0.3734 0.1580 

MS3-0404 ECA-ADFC 0.2410 0.2096 0.3133 0.3855 0.1827 

Error Change +2.05% (­) +0.37% (­) +13.55% (­) +1.21% (­) +2.47% (­) 
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Table 4.24: Performance comparison in terms of classification error with the optimisation of HyMod-
ECA. 

 

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly 

MS3-0404 ECA-AD 0.2205 0.2059 0.1778 0.3734 0.1580 

MS3-0404 
ECA-AD-1C1A 

0.2436 0.2059 0.2159 0.3802 0.1833 

Error Change +2.31% (­) -0.00% +3.81% (­) +0.68% (­) +2.35% (­) 

 
 
 

4.3.2 Ablation Study 

 
The comparison metrics among the Hybrid CBC algorithm, M-Skipped-3 DCT-

CNN, Adapt-DCT CNN, and HyMod-ECA DCT-CNN are presented in Table 4.25. The 
M-Skipped-3 DCT CNN demonstrates a promising compression ratio, achieving up to 
5.23 times in comparison to its Hybrid CBC counterpart. Meanwhile, the baseline 
model of the HyMod-ECA (Adapt-DCT-0404) attains the fastest learning rate and 
convergence speed ratio compared to the hybrid CBC. Impressively, this mode 
accomplishes a classification error rate below 25% within 12 training epochs. The best-
performing variant in this study achieves a minimal error rate of 20.56%, showcased by 
the optimized HyMod-ECA model. Although a slight increase in error of approximately 
7% was exhibited when compared to the Hybrid CBC, the HyMod-ECA CNN in the DCT 
domain exhibited a model compression ratio up to 1.29 times and a learning speed 5.6 
times faster. In essence, while the developed method incurs a slight increase in error, 
leading to a less accurate model, it successfully achieved the primary objective of this 
research by delivering higher compression gain and faster learning speed in the 
compressed domain. Despite a little compromise in model accuracy, the compressed 
domain CNN presents three significant advantages: a reduced model size with fewer 
parameters, accelerated learning speed with diminished computational complexity, and 
the capability to fully operate in the DCT domain when handling input images of DCT 
nature. 
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Table 4.25: Comparison of several metrics (rows) between the developed M-Skipped-3, Adapt-DCT CNN, 
and HyMod-ECA versus the comparable model in CBC on a 10-classes Monkey FGVC dataset. Bold text 

shows the best results for each row. 
 

 
VGG-CBC-SpFw 

[105] 
M-Skipped-3 

Adapt-DCT-
0404 

HyModECA-AD-
1C1A 

Best Error 
Rate (%) 

13.13 21.94 21.08 20.59 

Convergence 
Speed 

96 15 12 17 

Number of 
trainable 
parameters 

8,726,000 1,666,990 25,624,622 6,745,462 

Compression 
Ratio 

1.00 5.23 0.34 1.29 

Convergence 
Speed Ratio 

1.00 6.4 8.0 5.6 

 
 
Table 4.26 presents the intra-class scores between the concluding model 

developed in this research and the standard VGG-16 algorithm. This final experiment 
which was conducted on the heterogeneous combined datasets of Flowers and Leeds 
Butterfly, offers a comprehensive FGVC usage comparison based on several metrics. 
The results indicate that the standard VGG-16 implemented in the RGB domain 
attained better FGVC analysis with higher intra-class scores. The overall F1-score 
obtained from the standard VGG-16 algorithm is 8.13% higher than that of the 
developed system in this research. While the sensitivity and specificity of the standard 
VGG-16 algorithm shared a better performance of 8.51%, it also exhibited higher 
precision by 5.84% compared to the developed system. This suggests that the spatial 
context in RGB images remains relatively relevant for composing discriminative 
features for FGVC analysis in classical CNNs. However, as shown in Table 4.27, the 
standard VGG-16 has remarkably more parameters and slower convergence speed 
compared to the model in this work. Specifically, a compression ratio of 20 times and a 
convergence speed ratio of 1.2 times that of the standard VGG-16 were observed. 
Regardless of the classical approaches, the implementation of compressed domain 
CNNs that focus on the basis functions and frequency analytics still provides a 
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comparable performance yet achieves better compression gain as addressed in the 
objective of this research. 
 
 

Table 4.26: Overall intraclass metrics comparison of the concluding model in this research about the 
standard VGG-16 algorithm. 

 

Abbreviation Precision Sensitivity Specificity F1-Score 

MS3-0404 ECA-AD (DCT) 76.58 70.46 70.46 70.64 

Standard VGG-16 (RGB) 82.42 78.97 78.97 78.77 

Accuracy Change -5.84% (¯) -8.51% (¯) -8.51% (¯) -8.13% (¯) 

 
 
 
  
 

Table 4.27: Performance metrics comparison of the concluding model in this research about standard 
VGG-16 algorithm. 

Evaluation Metrics 

Model 

Convergence Speed 

(epochs) 

Trainable Parameters 

(mil.) 

Compression 

Ratio 

Convergence Speed 

Ratio 

MS3-0404 ECA-AD (DCT) 17 6.7 
20 1.2 

Standard VGG-16 (RGB) 20 134.3 
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4.4 Summary 

In M-Skipped DCT-CNN, the integration of M-DCTCs with low DCTCs was 
implemented in the FGVC domain. The work addresses a research gap concerning the 
hindrance of feature learning concerning higher DCTC bands in a compressed domain 
FGVC context. Feature correlation issues in FGVC datasets exist interchangeably 
between spatial and compressed domains. Discriminative localized fine-grained feature 
representations lie naturally within the spectrum of DCT coefficients and hence can be 
extracted with ease in the DCT domain. The learning process of fine-grained 
information in the frequency domain is arguably simpler when compared to the spatial 
domain. This chapter answers the research question of whether and how appropriate 
learning of M-DCTCs, in addition to L-DCTC learning, can be implemented to improve 
representation learning in FGVC. A systematic approach for testing different frequency 
ranges verified that L-DCTC is the main essential range for feature extraction in FGVC. 
Overall, a reduction of about 7% classification error rate was achieved by utilizing an M-
skipped connection when compared to the model without the skip-connection in FGVC, 
whereas minimal performance difference was obtained in a non-FGVC comparison 
dataset. The M-Skipped DCT-CNN has an overall better F1-Score than the standard 
VGG-16 algorithm by 2.2%. More importantly, it dominates the standard algorithm 
with a compression ratio of up to 15 times. It is crucial for compressed domain FGVC to 
emphasise higher frequency bands without significantly increasing computational 
complexity. The parameter reduction and improved F1-Score achieved by the M-
Skipped network address the research problem of pruning across different frequency 
levels, resulting in a smaller, yet high-performing model. Typically, FGVC models are 
challenging to deploy due to the large number of parameters required to extract 
discriminative features, as fine-grained details are often less distinguishable across 
different classes. The success of the M-Skipped DCT-CNN enables its deployment in 
real-world applications with limited computational resources, such as mobile devices, 
embedded systems, or environments with constrained processing power. This network 
offers a scalable and efficient solution for deployment across various platforms. 

The work is further extended by incorporating adaptive DCT basis functions on 
kernel analytics on top of M-Skipped DCT CNN. Subsequently, a novel Adaptive DCT 
(Adapt-DCT) convolution kernel is developed. The Adapt-DCT kernel is intended to 
form the pointwise convolution kernel which is generally found in compressed domain 
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DCT related CNNs. The Adapt-DCT convolution kernel carries trainable parameters to 
weight each of the DCT basis functions of spatial and frequency base respectively. A 
final pointwise convolution kernel is produced from the result of applying element-wise 
multiplication and spatial summation between the Adapt-DCT kernel and the DCT 
basis functions. It involved weighting the DCT basis functions to form the convolutional 
kernel. This technique provides an early approach to improve the robustness of 
pointwise convolutional filters in the compressed domain as compared with the 

classical 3 × 3 filter in the spatial domain. With the replacement of the Adapt-DCT 
kernel on the original pointwise convolution kernel, FGVC datasets obtained between 
1% to 8% classification error reduction. For general classification tasks, CIFAR datasets 
obtained a 2% to 8% error rate drop. The general benchmark classification task on Tiny 
ImageNet of 100 classes using Adapt-DCT CNN achieved a top-5 accuracy of 73.93%. 
The performance improvements from the prior experimental setups demonstrate that 
the compressed domain approach can effectively address more challenging FGVC 
problems. It introduces a DCT-based methodology tailored for FGVC, where highly 
detailed and localised feature extraction is essential. This approach enhances the 
efficiency of convolutional kernels while minimising the need for larger, more complex 
algorithms. By leveraging a DCT-based kernel formulation, the methodology fosters a 
more robust and dynamic convolutional algorithm, advancing its importance in both 
general and fine-grained classification tasks.  

In the final section, a novel concept of capitalizing on intra-group DCT channel 
interactions by modifying the channel attention mechanism was proposed. The module 
is inherited and improved based on a popular attention mechanism called ‘Efficient 
Channel Attention’ (ECA) to fit the usage of this research for FGVC in the DCT domain. 
A channel attention mechanism prioritising channel interactions within DCT groups 
was developed, namely ‘Hybrid Modified ECA’ (HyMod-ECA). It serves the objective of 
exploring intra-group DCT channel interaction and relationship on top of the adaptive 
learning of DCT basis function in FGVC in the frequency domain. The development of 
HyMod-ECA pushes the boundaries of convergence speed and parameter reduction 
through the implementation of a DCT-based attention mechanism. The results 
demonstrated a notable reduction in parameters and improved convergence speed, 
significantly shortening the overall training and deployment timeline compared to 
conventional methods, as the model converges more quickly in the compressed domain. 
This attention mechanism addresses the previously overlooked intra-group DCT 
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channel relationships, which are crucial for optimising performance in FGVC tasks. 
Although there is a slight decline in F1-Score compared to the contemporary Hybrid 
CBC mechanism, HyMod-ECA still achieves the overall research objective by delivering 
competitive performance alongside resource optimisation. The HyMod-ECA is 
demonstrated on top of M-Skipped DCT-CNN which involves the Adapt-DCT kernel. It 
is found to outperform the original ECA on several medium FGVC datasets. The 
successful implementation of HyMod-ECA achieves up to 3.5% classification error 
reduction over the original ECA and the prior Adapt-DCT baseline model without an 
attention module. Besides, the optimisation of the baseline Adapt-DCT model with 
HyMod-ECA attains a parameter reduction of up to 73% with no performance 
degradation on Monkey-10C. It is proven that the intra-group DCT channel interactions 
carry more importance over cross-channel interactions in the DCT domain FGVC. 
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Chapter 5 Conclusion and Future 
Works 
 

This research implements DCT-based methodologies within CNNs for 
compressed domain small-scale FGVC. This involves the integration of the HyMod-ECA 
module into the M-Skipped DCT-CNN framework, which consists of the Adapt-DCT 
convolutional kernel to accomplish the aim of this work. 

In a preliminary exploration of adopting low, medium, and high-frequency 
coefficients (L-DCTCs, M-DCTCs, H-DCTCs) independently through a fully pointwise 
VGG-16 network, it became evident that L-DCTCs and M-DCTCs share essential 
features for effective classification. As a result, a novel architectural branch called the 
M-Skipped DCT connection was developed to ease the passage of low-level features 
from the shallowly convolved M-DCTCs, allowing them to skip through certain network 
segments and combine with the deeply convolved L-DCTCs. Integrating the M-Skipped 
branch with the output from the final convolutional block (M-Skipped-3) yielded 
significant improvements. It achieved a notable 7.5% reduction in classification error 
compared to its baseline counterpart without the M-Skipped branch on Leeds Butterfly. 
The M-Skipped-3 variant demonstrated an average classification error of 18.95% over 
five FGVC datasets in contrast with the baseline model’s error rate of 22.44%, resulting 
in an average error reduction of 3.49%. Furthermore, the M-Skipped-3 algorithm 
showed an average F1-Score of 83.41% across the same datasets, surpassing the 
standard VGG-16 algorithm’s score of 81.21% by 2.2%. Remarkably, the M-Skipped-3 
network comprised only 1.7 million parameters, while the standard algorithm contained 
a substantial 134.4 million parameters. This shows that the developed algorithm offers 
a parameter reduction of 98%. This section addressed the research gap concerning the 
optimal learning and integration of frequency bands beyond L-DCTCs. 

Based on the proven benefits of the M-Skipped DCT CNN, the research 
progressed towards integrating the DCT methodology into a pointwise convolutional 
kernel within the same CNN framework. This novel approach involved developing an 
adaptive learning mechanism to weigh the DCT basis functions, resulting in the 
construction of the adaptive DCT (Adapt-DCT) convolutional kernel. The spatial and 
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frequency properties of the Adapt-DCT kernel were thoroughly evaluated. The Adapt-

DCT variant which carries an adaptive weight with a spatial size of 4 × 4  and an 
optimized frequency channel of 4 is denoted as MS3-AD-0404. This variant achieved 
promising results with an average classification error of 21.31% and a convergence 
speed of 11.80 epochs across 6 FGVC datasets. When comparing these results against 
the former M-Skipped DCT CNN, which exhibited an average classification error of 
24.65% and convergence speed of 13.00 epochs over the same datasets, the MS3-AD-
0404 variant attained a notable 1.1 times faster convergence speed and a 3.34% 
reduction in classification error. Furthermore, with the MS3-AD-0404 variant 
containing 25.85 million parameters compared to the standard VGG-16 algorithm’s 
134.4 million, a compression gain of 5.2 times was achieved. The MS3-AD-0404 strikes 
an optimal balance between parameter reduction and convergence speed. Additionally, 
the robustness of the Adapt-DCT kernel was also tested on a general dataset. It attained 
a top-5 testing accuracy of 73.93% on tiny images from 100 classes. Several 
contributions were made including the modulation of spatial size and frequency 
coefficient pruning of DCT-BFs to produce a kernel. These contributions addressed a 
research gap in compressed domain CNNs by adaptively expediting the DCT-BFs to 
construct a more robust pointwise convolutional kernel through spatial and frequency 
analytics. 

In the concluding phase of this research, the focus was placed on the interaction 
among DCT channel groups through an attention mechanism referred to as ‘Hybrid 
Modified Efficient Channel Attention’ (HyMod-ECA). This innovative approach was 
evaluated on five distinct FGVC datasets. It reveals a notable performance enhancement 
compared to both the original ECA and the baseline model without an attention module 
in most datasets. HyMod-ECA exhibited a drop in classification error of up to 3.5%. 
Moreover, an ablation study was conducted, where certain convolutional layers were 
removed from each baseline convolutional block while keeping the HyMod-ECA to 
increase compression gain. Particularly, the Monkey-10C achieved a parameter saving 
of 73% compared to the baseline HyMod-ECA model without sacrificing performance. 
This dataset also achieved a convergence speed ratio of 1.2 times faster and a 
compression ratio of 20 times greater than the standard VGG-16 algorithm, with a 
slight decline in F1-Score by 5.84%. This novelty significantly contributes to the 
understanding of the utility of intra-group DCT channel interactions alongside the 
individual cross-channel relationships in DCT domain FGVC. The integration of the 
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HyMod-ECA module on top of the Adapt-DCT M-Skipped CNN concurrently addressed 
the research gap involving the interpretability and correspondence between DCT 
channel groups. 

This research exhibits the successful integration of CNNs in compressed domain 
FGVC using DCT-based techniques. The three major innovations are the M-Skipped-3 
convolutional skipping branch, the adaptive DCT kernel, and the hybrid modified 
efficient channel attention mechanism. The outcomes and insights derived by these 
innovations involve comparable performance, enhanced convergence speed ratios, and 
improved compression gain in relation to the spatial domain. These achievements 
collectively demonstrate how the objectives of this research were achieved. They are 
facilitated through the following contributions: 

1. The study of individual LMH-DCTCs and integration of M-DCTCs was 
facilitated through the development of the M-Skipped DCT CNN. This approach yielded 
an average classification error reduction of 3.49%, a 2.2% increase in the F1-score, and 
a 98% reduction in parameters compared to the standard VGG-16 algorithm. This 
outcome offers an alternative approach to the pruning problem frequently encountered 
within the context of compressed domain FGVC. By extending the analysis beyond 
conventional L-DCTC frequency bands, the research objective of integrating diverse 
frequency levels to enhance FGVC performance in compressed domain applications is 
addressed.  

2. The study of spatial and frequency properties of DCT basis functions to 
formulate a convolutional kernel was facilitated through the development of the 
Adaptive DCT pointwise convolutional kernel. This technique led to a 1.1 times 
improvement in convergence speed and a 3.34% reduction in classification error 
compared to the M-Skipped DCT CNN without the Adapt-DCT kernel, along with a 
compression gain of 5.2 times relative to the standard VGG-16 algorithm. This outcome 
addresses the limitations of conventional convolutional kernel composition, which 
often leads to excessive parameters and reduced robustness. Through employing DCT 
basis functions, the research objective to enhance the kernel formulation is met, thereby 
reducing computational complexity and achieving significant resource optimisation. 

3. The study of interactions between DCT channel groups was facilitated through 
the development of HyMod-ECA. This algorithm achieved an average classification 
error drop of 1% compared to the original ECA. It also delivered a 1.2 times increase in 
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convergence speed and a 20 times compression ratio relative to the standard VGG-16 
algorithm, with a minor drop in F1-Score by 5.84% on the Monkey-10C. This outcome 
solves the problem of attention mechanisms that solely focus on individual feature 
channels. By integrating the relationships and interactions among feature channels, the 
research objective is met, thus enabling improved resource efficacy in compressed 
domain FGVC. 

While feature modification and model optimisation can enhance the efficacy of 
compressed domain FGVC, the unavoidable challenges following information loss 
during the compression of fine-grained images impose limitations. This hinders the 
developed algorithm from achieving desirable accuracy performance in FGVC. 
Nonetheless, the primary scope of this research is to explore compressed domains to 
tackle information redundancy in FGVC. Although the developed algorithm achieved 
the research objectives, it is crucial to address future work toward enhancing the model 
robustness in terms of classification accuracy while concurrently maintaining a 
comparable level of compression gain. 

In the majority of experiments conducted, VGG-16 served as the foundational 
baseline model. An avenue for extending this research involves the application of the 
developed techniques to other SOTA CNN architectures such as ResNet and MobileNet. 
This extension could offer insights into the adaptability of the proposed methodologies 
across diverse network architectures. Besides, a promising direction for future research 
lies in exploring dynamic mechanisms integrated within the network to further enhance 
compression gains. Specifically, about the Adapt-DCT kernel, the network architecture 
could be designed to dynamically assign varying sets of DCT basis functions based on 
the interaction between feature maps and the convolving kernel. This dynamic 
adaptation could enable the network to learn assorted combinations of DCT basis 
functions tailored to represent the weights optimally. Regarding the HyMod-ECA 
module, improvements could involve the continuous formulation of 1D convolutional 
kernel sizes throughout model training. For instance, the integration of dilated 
convolutions could be explored to investigate various combinations of DCT channel 
groups to form higher-level and more complex representations. Finally, further 
exploration involves the implementation of a random mixture of individual and group 
DCT channel interactions. This approach could uncover novel insights into the 
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harmonic effects of combining different types of DCT channel interactions thus 
improving the model’s representational capacity. 

In conclusion, compressed domain image analytics and concomitant neural 
architectural innovations can reduce information redundancy and hence improve the 
robustness of a model. This thesis has proposed several innovations in this direction 
and, it is hoped, has opened several useful directions for further improvements.  
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Appendix 
 

This section demonstrates the derivation of the computational complexity of the 
original ECA and the Hybrid Mod-ECA. The notations and variables used in this 
appendix are independent of the rest of this chapter. Let the depth of the 1D 

convolution filter kernel be 𝑘, the 1D input feature channel depth dimension be 𝑑, the 

convolution stride size be 𝑠 , and the padding size be 𝑝 . The instantaneous 

computational complexity ( 𝑂N"jd ) of the 1D convolution process is obtained by 
considering the multiplication and summation of a single convolution process.  
 

𝑂N"jd = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 

 

𝑂N"jd = (𝑜𝑢𝑡𝑝𝑢𝑡	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑝	𝑠𝑖𝑧𝑒) × (𝑘𝑒𝑟𝑛𝑒𝑙	𝑠𝑖𝑧𝑒)

+ (𝑜𝑢𝑡𝑝𝑢𝑡	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑝	𝑠𝑖𝑧𝑒) × (𝑘𝑒𝑟𝑛𝑒𝑙	𝑠𝑖𝑧𝑒 − 1) 

 

∴ 𝑂N"jd = �
(𝑑 + 2𝑝) − 𝑘

𝑠 � × 𝑘 + �
(𝑑 + 2𝑝) − 𝑘

𝑠 � × (𝑘 − 1) 

 

In the original ECA, 𝑘 = 𝑗, 𝑑 = 𝐶, 𝑝 = 𝑠 = 1. The computational complexity yields: 

 

𝑂oT� = �
(𝐶 + 2(1)) − 𝑗

1 + 1� × [𝑗 ∙ (𝑗 − 1)] = (𝑗) ∙ (𝑗 − 1) ∙ (𝐶 − 𝑗 + 3) 

 

In the HyMod-ECA, 𝑘 = 𝑗, 𝑑 = 𝐶, 𝑝 = 0, 𝑠 = 𝑗. The computational complexity yields: 

 

𝑂^=]p�$oT� = �
(𝐶 + 2(0)) − 𝑗

𝑗 + 1� × [𝑗 ∙ (𝑗 − 1)] = ¯
𝐶 − 𝑗 + 𝑗

𝑗 ° ∙ 𝑗 ∙ (𝑗 − 1) = 𝐶 ∙ (𝑗 − 1) 
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Table I: Performance comparison in terms of classification error between various M-Skipped 
architectures and Ablation Study. 

 

Abbreviations 
Parameters 

(mil.) 
Sheep Breed Flowers Leeds Butterfly Monkey Spider Breed 

All-DCTC 1.7 0.0972±0.0124 0.2615±0.0077 0.1979±0.0072 0.2721±0.0132 0.2244±0.0301 

L-DCTC 1.7 0.0972±0.0091 0.2615±0.0077 0.2021±0.0158 0.3113±0.0118 0.2400±0.0333 

M-DCTC 1.7 0.4028±0.0281 0.4513±0.0270 0.5833±0.0036 0.6434±0.0241 0.6867±0.0982 

H-DCTC 1.7 0.4643±0.0412 0.5615±0.0133 0.6812±0.0165 0.6752±0.0042 0.7111±0.0329 

M-Skipped-1 1.7 0.0873±0.0171 0.2589±0.0044 0.1667±0.0072 0.2574±0.0224 0.2156±0.0077 

M-Skipped-2 1.7 0.0695±0.0182 0.2436±0.0160 0.1625±0.0165 0.2709±0.0149 0.2666±0.0577 

M-Skipped-3 1.7 0.0853±0.0124 0.2538±0.0154 0.1229±0.0095 0.2610±0.0373 0.2245±0.0168 

M-Skipped- 

123-extended 
1.9 0.0873±0.0150 0.3051±0.0347 0.1792±0.0144 0.2402±0.0118 0.2889±0.0102 

M-Skipped-123 

-extended-deep 
1.9 0.0893±0.0060 0.2692±0.0000 0.1479±0.0095 0.2230±0.0225 0.1845±0.0204 

M-Skipped-3-

FC 
8.9 0.0714±0.0103 0.2769±0.0539 0.1416±0.0130 0.2512±0.0118 0.2978±0.0907 

M-Skipped-3-
ReLU 

1.7 0.1071±0.0206 0.2666±0.0160 0.1771±0.0308 0.2904±0.0434 0.2844±0.0844 
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Table II: Best performing classification error between all adaptive DCT-BF kernel variations. 

Abbreviations Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0864 0.0624±0.0382 0.2607±0.0199 0.2157±0.0174 0.2222±0.0253 0.3772±0.0021 0.1587±0.0095 

MS3-AD-0816 0.0657±0.0231 0.2590±0.0117 0.2022±0.0337 0.2267±0.0240 0.3736±0.0050 0.1593±0.0103 

MS3-AD-0804 0.0808±0.0315 0.2513±0.0193 0.2145±0.0106 0.2133±0.0231 0.3728±0.0009 0.1560±0.0106 

MS3-AD-0801 0.0791±0.0239 0.2641±0.0247 0.3370±0.1377 0.1978±0.0139 0.3788±0.0015 0.1760±0.0399 

MS3-AD-0416 0.1364±0.0660 0.2590±0.0270 0.2194±0.0202 0.2155±0.0329 0.3675±0.0057 0.1727±0.0117 

MS3-AD-0404 0.0758±0.0152 0.2408±0.0234 0.2108±0.0202 0.2134±0.0115 0.3724±0.0019 0.1653±0.0179 

MS3-AD-0401 0.0909±0.0455 0.2564±0.0088 0.2819±0.0721 0.2911±0.0391 0.3750±0.0032 0.1607±0.0050 

MS3-AD-0204 0.2121±0.0263 0.2564±0.0117 0.2267±0.0165 0.1778±0.0234 0.3788±0.0071 0.1707±0.0121 

MS3-AD-0801-opt 0.2727±0.0152 0.3487±0.0270 0.4669±0.0369 0.3800±0.0067 0.8343±0.0055 0.4187±0.0064 

MS3-AD-0804-opt 0.1768±0.0532 0.2641±0.0270 0.3689±0.0454 0.2955±0.0234 0.71980.0146 0.2807±0.0101 

MS3-AD-0816-opt 0.1010±0.0315 0.2410±0.0193 0.2623±0.0140 0.2289±0.0269 0.4147±0.0081 0.2073±0.0181 

MS3-AD-0401-opt 0.1566±0.0437 0.2872±0.0347 0.3456±0.0459 0.3356±0.0509 0.7129±0.0054 0.2860±0.0140 

MS3-AD-0404-opt 0.1717±0.0438 0.2615±0.0308 0.2487±0.0106 0.2400±0.0176 0.4426±0.0024 0.2107±0.0031 

(MS3-AD-842-org) 0.0657±0.0231 0.2564±0.0044 0.2083±0.0056 0.1956±0.0214 0.3710±0.0048 0.1627±0.0050 

(VGG16-PC*) 0.1717±0.0232 0.2718±0.0235 0.3419±0.0702 0.2489±0.0154 0.4123±0.0027 0.2253±0.0110 

(MS3-base*) 0.2071±0.0631 0.2448±0.0155 0.2194±0.0215 0.2489±0.0539 0.37800.0066 0.1807±0.0046 

Top-1 lowest MS3-AD-0864 MS3-AD-0404 MS3-AD-0816 MS3-AD-0204 MS3-AD-0416 MS3-AD-0804 

Top-2 lowest 
MS3-AD-0816 

(MS3-AD-842-org) 
MS3-AD-0816-opt (MS3-AD-842-org) (MS3-AD-842-org) (MS3-AD-842-org) MS3-AD-0864 

Top-3 lowest - (MS3-base*) MS3-AD-0404 MS3-AD-0801 MS3-AD-0404 MS3-AD-0816 
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Table III: Best performing speed of convergence (reaching over 75% classification accuracy, measured in 
epochs) between all adaptive DCT-BF kernel variations. 

Abbreviations Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly 

MS3-AD-0864 8.33±1.15 21.00±7.21 15.00±1.00 18.00±7.21 0.00±0.00 6.33±1.15 

MS3-AD-0816 7.00±1.73 20.00±3.46 21.67±9.24 17.00±0.00 0.00±0.00 6.00±0.00 

MS3-AD-0804 8.00±1.00 23.00±6.08 11.67±2.08 17.00±3.00 0.00±0.00 5.33±0.58 

MS3-AD-0801 7.67±1.53 25.00±8.00 14.00±1.73 16.00±4.58 0.00±0.00 5.67±0.58 

MS3-AD-0416 8.00±1.00 18.67±7.09 13.33±1.12.00 11.00±3.00 0.00±0.00 6.67±0.58 

MS3-AD-0404 7.00±1.00 16.00±4.00 13.00±2.00 16.33±2.89 0.00±0.00 6.67±1.15 

MS3-AD-0401 6.00±2.00 20.33±8.39 12.00±2.65 15.33±2.08 0.00±0.00 6.33±1.15 

MS3-AD-0204 10.00±1.73 12.33±14.98 15.33±2.31 16.33±1.53 13±0.00 7.33±0.58 

MS3-AD-0801-opt 15.33±11.85 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

MS3-AD-0804-opt 4.33±1.53 18.33±15.89 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

MS3-AD-0816-opt 7.33±1.53 26.00±3.46 20.33±0.58 20.33±2.31 0.00±0.00 9.00±0.00 

MS3-AD-0401-opt 9.67±3.79 19.33±503 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 

MS3-AD-0404-opt 8.67±2.89 3.00±5.20 18.67±4.16 19.67±1.53 0.00±0.00 12.00±1.73 

MS3-AD-842-org 7.67±0.58 20.67±4.16 13.67±2.31 17.00±1.73 0.00±0.00 5.33±0.58 

VGG16-PC* 8.67±2.08 25.00±1.73 1.33±2.31 22.00±1.73 0.00±0.00 11.33±1.15 

MS3-base* 9.00±3.61 16.33±3.06 15.00±2.00 16.67±2.08 0.00±0.00 8.00±1.00 
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Table IV: Average classification error, average convergence speed, and number of parameters between 
several adaptive DCT-BF kernel variants and the former M-Skipped network across FGVC datasets. 

Abbreviations Classification Error 
Convergence Speed 

(Epochs) 
Number of Parameters 

(mil) 

MS3-AD-0864 0.2162 13.73 102.53 

MS3-AD-0816 0.2144 14.33 102.53 

MS3-AD-0804 0.2148 13.00 102.53 

MS3-AD-0801 0.2388 13.67 102.53 

MS3-AD-0416 0.2284 11.53 25.85 

MS3-AD-0404 0.2131 11.80 25.85 

MS3-AD-0401 0.2427 12.00 25.85 

MS3-base* 0.2465 13.00 1.70 
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Table V: Classification error on the testing dataset for all attention variations on Adapt-DCT CNN. 
 

Abbreviations Flowers Monkey Snake Breed Snake Breed Butterfly 

MS3-0404 

ECA-ORG 
0.2231±0.0335 0.2169±0.0184 0.2133±0.0346 0.3673±0.0075 0.1620±0.0035 

MS3-0404 

ECA-AD 
0.2205±0.0222 0.2059±0.0097 0.1778±0.0168 0.3734±0.0079 0.1580±0.0125 

MS3-0404 
ECA-AD-1C1A 

0.2436±0.0494 0.2059±0.0097 0.2155±0.0329 0.3802±0.0015 0.1833±0.0129 

MS3-0404 

ECA-ADFC 
0.2410±0.0311 0.2096±0.0074 0.3133±0.0933 0.3855±0.0084 0.1827±0.0300 

 

 

 

 

 

 

 

 

 

 


