

New Approaches for the Integration of the
Discrete Cosine Transform in

Neural Networks for
Fine-Grained Image Classification

Submitted 15 March 2023, in partial fulfilment of the conditions for the award of the

degree Doctor of Philosophy.

KELVIN TAN SIM ZHEN

Student ID: 18023285

Supervised by: Dr Tomas Maul
Secondary Supervisor: Dr Nafizah Goriman Khan
External Supervisors: Dr Khor Jeen Ghee
 Dr Wong Yee Wan

 Dr Thomas Ooi Wei Min

Department of Electrical and Electronic Engineering
University of Nottingham

I hereby declare that this dissertation is all my own work, except as indicated in the
text:

Signature:

Date 15 / 03 / _2023

I hereby declare that I have all necessary rights and consents to publicly distribute this
dissertation via the University of Nottingham’s e-dissertation archive.

Public access to this dissertation is restricted until: DD/MM/YYYY

i

Declaration

I declare that all the research work conducted in this thesis was completed

in the Department of Electrical and Electronic Engineering at the
University of Nottingham Malaysia between March 2019 and September
2022. The work completed in this thesis is, to the best of my knowledge,

novel and has not been submitted for any other degree of any other
universities.

Kelvin Tan Sim Zhen

University of Nottingham Malaysia

15 March 2023

ii

Abstract

A convolutional neural network (CNN) is a popular neural network architecture
that excels in its ability to capture patterns in tasks with grid-structured inputs (e.g.
visual recognition). Fine-grained visual classification (FGVC) uses CNN to categorise
images of high intra-class and low inter-class variance. According to the literature, the
2D Discrete Cosine Transform (DCT) is one of the well-known transformations used in
compression for its robustness and high data compaction properties. In compressed
domain image classification, many works have focused on extracting features from the
low DCT coefficients (L-DCTCs) through a fully pointwise vanilla CNN. Here, the
abundant medium to high DCTCs have typically been discarded. Although pointwise
convolution is capable of complex transformations, the spatial context and
representation are limited. The area of compressed domain FGVC remains a relatively
inactive field. It is therefore essential to explore compressed domain FGVC under DCT
conditions to investigate the relationship between fine-grained features and the full
spectrum of DCTCs. More specifically, this thesis intends to adopt and extend DCT
techniques in compressed domain FGVC to address three topics: (1) the usability and
inclusive learning of mid-band DCTCs; (2) the adaptive learning of DCT basis functions
on composing the pointwise convolutional kernels; (3) the interaction between DCT
channel groups in feature representations. The first contribution introduces the
‘Skipped Medium DCT CNN’. The M-DCTCs were processed via a skipping branch with
a shallow convolutional block alongside the L-DCTCs which were passed through the
main branch of the CNN. This architecture achieved a classification error drop of up to
7% over the standard model without the skipping branch. It highlights the importance
of combining higher-frequency DCTCs with lower ones for improved robustness. The
second contribution enhances the prior network by adaptively weighting the DCT basis
functions to form a pointwise convolutional kernel. The spatial details were considered
when constructing the pointwise convolutional kernel apart from the frequency
contents. The adaptive weights are referred to as the ‘Adaptive DCT (Adapt-DCT)’
kernel. This network achieved up to 8% classification error drop on small-scale FGVC
datasets and a top-5 testing accuracy of 73.93% on mini-ImageNet. The third
contribution investigates the significance of DCT feature groups in the compressed
domain FGVC. The modified attention mechanism that prioritises the channel
interactions within the DCT group is referred to as the ‘Hybrid Modified Efficient

iii

Channel Attention’ (HyMod-ECA). It reduces the classification error by up to 3.5% over
the original ECA. The optimised Adapt-DCT CNN with HyMod-ECA achieves a
substantial parameter reduction of up to 73%. It is shown that the interactions among
the DCT feature groups are one of the promising mechanisms to ease compressed
domain FGVC. To conclude, this thesis discusses novel contributions in the context of
combining the higher frequency DCTCs via a DCT-oriented convolutional kernel with
an attention mechanism to address compressed domain FGVC.

iv

Acknowledgements

First of all, I would like to convey my deepest gratitude to my main supervisor Dr
Tomas Maul for his endless support along my PhD journey. Dr Tomas had definitely
guided me mentally and practically to complete my research work, through a lot of ups
and downs. His continuous care on my mental health and life besides PhD is
impeccable. I would also love to thank my secondary supervisor Dr Nafizah for her
guidance on teaching me the technical writing style of a journal. Her diligent on every
bit of writing details had certainly turned me into a better academic writer. I also wish
to thank my internal examiner Dr Hermawan for his valuable feedback during the
annual review. Besides, I wish to appreciate my ex-supervisors Dr Khor Jeen Ghee and
Dr Wong Yee Wan for providing me an interesting research topic and supporting my
first year in PhD to kickstart the research work. In addition, I am indebted to my
industry supervisor Dr Thomas Ooi from Intel Corporation. He provided me a one-year
industry placement to be equipped with tons of technical skillset that are helpful
throughout my PhD journey. Finally, I am blessed to have parents that can offer me an
opportunity to pursue my PhD dream. I am also truly blessed to have a kind, diligent
and sympathetic girlfriend who has helped me to achieve my every milestone along the
PhD journey.

v

Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents v
List of Figures viii
List of Tables x
List of Abbreviations xiii

Chapter 1 Introduction

1.1 Background 1
1.2 Problem Statement 5
1.3 Research Aim and Objectives 7
1.4 Contribution of the Research 8
1.5 Scope of the Research 10
1.6 Thesis Structure 12

Chapter 2 Literature Review

2.1 Convolutional Neural Networks 13
2.2 Compressed Domain Algorithms and Neural Networks 21

2.2.1 Comparison Metrics of various Compression Algorithms 21
2.2.2 Frequency Domain CNNs 24
2.2.3 Integration of DCT within CNNs 28

2.3 Attention Mechanism and Adaptive Techniques on
Compressed Domain FGVC 36
2.3.1 Fine-Grained Visual Classification 37
2.3.2 Attention Mechanisms in CNNs 39
2.3.3 Adaptive DCT-based CNNs 42

2.4 Fundamental Concepts 44
2.4.1 Basics of CNN and DCT 44
2.4.2 Attention Mechanism involving Frequency Properties 47

2.5 Summary 49

vi

Chapter 3 Methodology
3.1 Overview 51
3.2 Skipped Medium-DCT Convolutional Neural Network 59

3.2.1 Low, Medium, and High DCT Coefficients 60
3.2.2 Baseline Network Setup 63
3.2.3 M-Skipped DCTC Branch 67

3.3 Adaptive-DCT Pointwise Convolutional Kernel 70
3.3.1 Background Motivations and Theories of

Adaptive DCT Basis Functions 73
3.3.2 Adaptive DCT Pointwise Convolutional Kernel 79
3.3.3 Principles of Adaptive DCT Pointwise Convolutional Kernel 84
3.3.4 Adaptive DCT Pointwise Convolutional Neural Network 85
3.3.5 Spatial Upscaling of Adaptive DCT Kernel 88
3.3.6 Depth-wise Level Optimisation of Adaptive DCT Kernel 91

3.4 Hybrid Modified Efficient Channel Attention 93
3.4.1 Hybrid Modified ECA on

Intra-Group DCT Channel Interaction 102
3.5 Experimental Design 106

3.5.1 Characteristics and Processing of Datasets 106
3.5.2 Performance Metrics and Evaluation Criteria 114
3.5.3 System Setups 120
3.5.4 M-Skipped DCT-CNN 121
3.5.5 Adaptive-DCT Pointwise CNN 124

3.5.5.1 Spatial Upscaling of Adaptive DCT Kernel 125
3.5.5.2 Optimisation of DCT Basis Functions

Of Frequency Bases in Adaptive DCT Kernel 126
3.5.5.3 Pruning Effects of Frequency Bases

with Fewer Trainable Parameters 128
3.5.5.4 Ablation Study 129

3.5.6 Experimental Setup of Hybrid Modified ECA 130

vii

Chapter 4 Results and Discussion
4.1 M–Skipped DCT–CNN 133

4.1.1 Low, Medium, and High DCT Coefficients 133
4.1.2 Single and Multiple M-Skipped Connection 134
4.1.3 Ablation Study 137

4.2 Adaptive DCT CNN 140
4.2.1 Spatial Properties of Adaptive DCT Kernel 140
4.2.2 Optimisation of DCT Basis Functions of

Frequency Bases with Increasing Channel Weights Set 143
4.2.3 Optimisation of DCT Basis Functions for

Trainable Parameters Compression 147
4.2.4 Ablation Study 151
4.2.5 Summary of top performing Adapt-DCT variants

for FGVC datasets 154
4.3 Hybrid Modified Efficient Channel Attention 155

4.3.1 Experimental results and discussion of HyMod-ECA 155
4.3.2 Ablation Study 160

4.4 Summary 163

Chapter 5 Conclusion and Future Works 166

Bibliography 171

Appendix 189

viii

List of Figures

Figure 1.1: An illustration of a CNN. .. 2
Figure 1.2: The scope of the research work. .. 10
Figure 1.3: A high-level block diagram of the research work. .. 11
Figure 2.1: A perceptron probabilistic model [50]. .. 13
Figure 2.2: A simple illustration of the architecture of a CNN. 14
Figure 2.3: An illustration of the activation function and their corresponding response
[64]. ... 16
Figure 2.4: The operation of max-pooling in a CNN [66]. ... 17
Figure 2.5: Principle of hierarchical feature extraction in a CNN [68]. 18
Figure 2.6: The architecture of a VGG-16 net [75]. .. 19
Figure 2.7: A 2-layer identity block from residual network [8]. 19
Figure 2.8: A pooling mechanism within a Fourier domain [99]. 26
Figure 2.9: A DCT operation in the first convolutional layer [101]. 29
Figure 2.10: (a) Harmonics convolutional block. (b) Harmonics convolutional kernel
visualisation [26]. .. 31
Figure 2.11: An illustration of the Hybrid CBC filter bank [105]. 34
Figure 3.1: Forward and inverse 2D-DCT implemented along the compressed domain
CNN. ... 53
Figure 3.2: Comparison of different DCT-based approaches for compressed domain
CNN. ... 53
Figure 3.3: Overview of the Hybrid Modified Efficient Channel Attention (HyMod-ECA).
The thin line separates individual channels, while the bold line separates channel
groups. .. 58
Figure 3.4: Basic illustration of the integration of M-DCTC with baseline convolutional
network. .. 60
Figure 3.5: Low, medium, and high DCTC factorisation. After 2D-DCT and zigzag
encoding, the 1D vector is factorised along the channel direction. 62
Figure 3.6: Activation function comparison between (a) ReLU vs (b) PreLU). PreLU
allows the negative response of the network to continuously learn. 65
Figure 3.7: M-Skipped DCT-CNN for variant (a) M-Skipped-1, (b) M-Skipped-2, (c) M-
Skipped-3. ... 68
Figure 3.8: Comparison between (a) original forward 2D-DCT and (b) modified forward
2D-DCT. ... 71
Figure 3.9: The formation of the frequency pointwise convolution kernel from
adaptively weighting the modified DCT basis functions. .. 72
Figure 3.10: Pointwise convolution adopting the Adapt-DCT pointwise convolutional
kernel. ... 72
Figure 3.11: Spatial summation of a 2D tensor. ... 74
Figure 3.12: Original DCT basis functions ℬ𝑥, 𝑦, 𝑢, 𝑣 versus modified DCT basis
functions ℬ′𝑥, 𝑦, 𝑤. .. 75
Figure 3.13: Horizontal prior zigzag encoding. ... 76

ix

Figure 3.14: Obtaining frequency tensor from the Adaptive DCT Tensor. 78
Figure 3.15: (a) Primary concept of adopting Adapt-DCT tensor to produce a 1-
dimensional frequency vector. (b) The adaptive weighting of the modified DCT basis
functions to produce the frequency pointwise convolution kernel. 80
Figure 3.16: The extension of a single layer 𝒦𝑡𝑠 by 𝐶𝑁2 times to produce the required
𝒦𝑇𝑆 which carries a channel dimension of C. .. 81
Figure 3.17: Full process of acquiring the frequency domain pointwise convolutional
kernel from Adapt-DCT kernel. ... 82
Figure 3.18: Pointwise convolution between a convolutional kernel and the DCT input.
 .. 85
Figure 3.19: Aggregated DCT channel groups (𝑋𝑤), produced by the original 1D tensor
acquired by performing GAP over the input feature map X. ... 94
Figure 3.20: Comparison between (a) HyMod-ECA versus (b) the original ECA. 96
Figure 3.21: Abstract representation of the application of attention weights (𝐴) from
HyMod-ECA to the input feature map (𝑋) through a DCT channel group point of view.
 .. 99
Figure 3.22: Implementation of HyMod-ECA integrated with Adapt-DCT CNN with a
baseline model of VGG-16. ... 103
Figure 3.23: A small subset of images from the datasets [160][161][162][165]. 108
Figure 3.24: Block diagram of the partial compression and partial decompression from
JPEG CODEC. The crossed-out sign indicates the processes that are discarded from the
standard JPEG CODEC from the partial compression and decompression. 112
Figure 3.25: M-Skipped DCTC with extended convolutional branch. 123
Figure 3.26: Depth-wise optimisation on DCT basis functions of frequency bases in
Adapt-DCT kernel. .. 127
Figure 4.1: Feature map representations of activation function outputs from ReLU
(Right) and PReLU (Left). ... 137
Figure 4.2: The first layer of the convolution kernel is shown for each convolution block,
with conv3 referring to convolution block 1, conv4 referring to convolution block 2, and
conv5 referring to convolution block 3. Covid19-3C on three different spatial
dimensions of Adapt-DCT CNN, (a) MS3-AD-0204; (b) MS3-AD-0416; (c) MS3-AD-
0864. .. 141
Figure 4.3: The first layer of the convolution kernel is shown for each convolution block,
with conv3 referring to convolution block 1, conv4 referring to convolution block 2, and
conv5 referring to convolution block 3. Spider-15C on three different spatial dimensions
of Adapt-DCT CNN, (a) MS3-AD-0204; (b) MS3-AD-0416; (c) MS3-AD-0864. 142
Figure 4.4: Training curves for Spider-35C. (a) Validation accuracy training curve on
MS3-AD-0816-opt; (b) Validation accuracy training curve on MS3-AD-0404-opt; (c)
Validation loss training curve on MS3-AD-0404-opt; (d) Validation loss training curve
on MS3-AD-0816-opt. ... 150
Figure 4.5: Several samples from a subset of classes of the fine-grained monkey [165]
and spider datasets [166]. ... 158

x

List of Tables

Table 2.1: Comparison of different aspects of each compressed domain algorithms. 23
Table 2.2: Summary of literature on frequency domain and DCT-based CNNs. 24
Table 2.3: The quantitative evaluation metrics, data sources, and the model apparatus
relating to the compressed domain technique in the corresponding literature. 35
Table 2.4: Summary of literature on attention mechanism and adaptive technique in
compressed domain CNNs. .. 36
Table 2.5: Comparison of spatial and frequency domain CNN. 45
Table 2.6: Comparison between Fourier- and DCT-based CNN. 46
Table 2.7: Implementation of DCT-based strategy and its significance in a CNN. 46
Table 2.8: Differences between attention mechanism on a spatial- versus DCT-based
CNN. ... 48
Table 3.1: Metrics comparison between three attention modules for selection criteria. . 57
Table 3.2: VGG-16 baseline model. .. 66
Table 3.3: Depth-wise mapping of elements from (u, v) to (w). 76
Table 3.4: Spatial upscaling of Adapt-DCT kernel concerning the DCT partition. 88
Table 3.5: Variations of spatial upscaling on Adapt-DCT kernel with a DCT partition of
8 × 8 .. 89
Table 3.6: Key differences between original ECA and HyMod-ECA. 100
Table 3.7: Architecture of the Adapt-DCT CNN of VGG-16 with the integrated HyMod-
ECA module. ... 104
Table 3.8: Number of classes, dataset genre, and the source(s) of various datasets. 107
Table 3.9: Datasets used in each algorithm. ... 110
Table 3.10: Input shape and DCT partition of various datasets. 111
Table 3.11: Number of images per class on training, validation, and testing set for
various datasets. .. 113
Table 3.12: M-Skipped variations model implementation. .. 122
Table 3.13: Functionality and specifications of spatial dimensions of Adapt-DCT kernel.
 ... 125
Table 3.14: Variations and specifications of Adapt-DCT kernel with spatial upscaling.
 ... 126
Table 3.15: Variations and specifications of frequency adaptive DCT-BF kernel
optimisation ... 127
Table 3.16: Variations and specifications of pruning of frequency adaptive DCT-BF
kernel. ... 128
Table 3.17: Variations and specifications of varying spatial size of Adapt-DCT kernel on
frequency adaptive DCT-BF kernel optimisation. .. 129
Table 3.18: Experimental specifications and respective model abbreviations of HyMod-
ECA. ... 131
Table 4.1: Comparison of classification error on individual DCTCs input. 134
Table 4.2: Comparison of classification error between three M-Skipped variants and the
corresponding average performance. ... 135

xi

Table 4.3: Comparison of classification error between multiple M-Skipped variants
against the M-Skipped-3. .. 136
Table 4.4: Comparison of classification error between the best-performing M-Skipped
variation and the baseline variation without the M-Skipped branch (All-DCTC). 136
Table 4.5: Comparison of classification error between baseline M-Skipped-3 variant
with PReLU (‘M-Skipped-3’), baseline M-Skipped-3 variant with fully connected layers
(‘M-Skipped-3-FC), and baseline M-Skipped-3 variant with ReLU (‘M-Skipped-3-
ReLU’). ... 138
Table 4.6: Comparison of F1-Score between M-Skipped-3, H-Skipped-3, and the
standard VGG-16 algorithm. ... 139
Table 4.7: Comparison of number of trainable parameters and compression ratio
between different variants. ... 139
Table 4.8: Comparison of classification error with increasing spatial dimension of
Adapt-DCT kernel. ... 140
Table 4.9: Comparison of classification error trend with spatial Adapt-DCT kernel size
of 8. .. 144
Table 4.10: Comparison of classification error trend with spatial Adapt-DCT kernel size
of 4. .. 145
Table 4.11: Epoch reaching 75% test accuracy for spatial dimension of 8. 146
Table 4.12: Epoch reaching 75% test accuracy for spatial dimension of 4. 146
Table 4.13: Best performing classification error trend comparison with spatial Adapt-
DCT kernel size of 8, with increasing DCT frequency basis functions and trainable
parameters. .. 147
Table 4.14: Best performing classification error trend comparison with spatial Adapt-
DCT kernel size of 4, with increasing DCT frequency basis functions and trainable
parameters. ... 148
Table 4.15: Specifications and reduced percentage of trainable parameters of the
optimised variants with respect to the original variant of spatial Adapt-DCT kernel of
8 × 8. TP reduced is measured in percentage (%) with reference to MS3-AD-0864-org.
 .. 148
Table 4.16: Specifications and reduced percentage of trainable parameters of the
optimised variants with respect to the original spatial Adapt-DCT kernel of 4 × 4. TP
reduction is measured in percentage (%) with reference to MS3-AD-0416-org. 148
Table 4.17: Best performing test error comparison between best performing Adapt-DCT
CNN, M-Skipped-3, and normal VGG-16 pointwise CNN. .. 152
Table 4.18: Best performing test error comparison between best performing Adapt-DCT
CNN, M-Skipped-3, and normal VGG-16 pointwise CNN. .. 152
Table 4.19: Performance comparison with varying spatial dimensions for Adapt-DCT
kernel with the best Adapt-DCT variant. .. 153
Table 4.20: Performance comparison in terms of classification error for all attention
variants on Adapt-DCT CNN. ... 156
Table 4.21: Performance comparison in terms of classification error of HyMod-ECA
Adapt-DCT CNN with its baseline counterpart without attention and the best
performing Adapt-DCT CNN for the dataset without attention. 157

xii

Table 4.22: Number of trainable parameters for each attention mechanism variant. .. 159
Table 4.23: Performance comparison in terms of classification error of HyMod-ECA
with and without fully connected layers. .. 159
Table 4.24: Performance comparison in terms of classification error with the
optimisation of HyMod-ECA. .. 160
Table 4.25: Comparison of several metrics (rows) between the developed M-Skipped-3,
Adapt-DCT CNN, and HyMod-ECA versus the comparable model in CBC on a 10-
classes Monkey FGVC dataset. Bold text shows the best results for each row. 161
Table 4.26: Overall intraclass metrics comparison of the concluding model in this
research about the standard VGG-16 algorithm. .. 162
Table 4.27: Performance metrics comparison of the concluding model in this research
about standard VGG-16 algorithm. ... 162
Table I: Performance comparison in terms of classification error between various M-
Skipped architectures and Ablation Study. …………………………………………………………. 190

Table II: Best performing classification error between all adaptive DCT-BF kernel
variations. ………………………………………………………………………………………………………. 191

Table III: Best performing speed of convergence (reaching over 75% classification
accuracy, measured in epochs) between all adaptive DCT-BF kernel
variations. ……………………………………………………………………………………………………….. 192

Table IV: Average classification error, average convergence speed, and number of
parameters between several adaptive DCT-BF kernel variants and the former M-
Skipped network across FGVC datasets. …………………………………………………………….. 193

Table V: Classification error on the testing dataset for all attention variations on Adapt-
DCT CNN. …………………………………………………………….……………………………………….… 194

xiii

List of Abbreviations

Abbreviations Full Term

AI Artificial Intelligence

ANN Artificial Neural Network

BN Batch Normalisation

CBAM Convolutional Block Attention Mechanism

CDA Compressed Domain Analytics

CDIA Compressed Domain Image Analytics

CNN Convolutional Neural Network

CODEC Compression Decompression

CPU Central Processing Unit

DCT Discrete Cosine Transformation

DCT-BF Discrete Cosine Transform Basis Functions

DCTC Discrete Cosine Transform Coefficients

DFT Discrete Fourier Transformation

DL Deep Learning

DNN Deep Neural Network

DWT Discrete Wavelet Transformation

ECA Efficient Channel Attention

FC Fully Connected (layers)

FFT Fast Fourier Transformation

FGVC Fine-Grained Visual Classification

xiv

FM Feature Maps

FPGA Field Programmable Gate Array

GPU Graphic Processing Unit

H-DCTC High frequency Discrete Cosine Transform Coefficients

HyMod Feature Maps

IOT Internet of Things

JPEG Joint Photographic Experts Group

L-DCTC Low frequency Discrete Cosine Transform Coefficients

LMH-DCTC Low, Medium, High frequency Discrete Cosine Transform Coefficients

MCP McCulloch-Pitt

M-DCTC Medium frequency Discrete Cosine Transform Coefficients

ReLU Rectified Linear Unit function

SOTA State of the Art

TLU Threshold Logic Unit

1

Chapter 1 Introduction

1.1 Background

Artificial intelligence (AI) is a field that is dedicated to the development of
algorithms that are aimed to make smart decisions like a human. The deep learning
(DL) approach is a subset of AI that uses complex neural networks to imitate how the
human brain works. It is composed of a complex mathematical algorithm that contains
adjustable weights. A very deep model can recognise data patterns and construct
complex feature representations. It can even match or excel in human-level
performance. An AI chatbot (ChatGPT) that implements a deep learning algorithm was
launched in November 2022 and accumulated up to 100 million worldwide users in just
2 months [1]. It can interact with users by addressing specific questions through an
interactive response. The deep learning approach is also used in the camera application
of mobile devices for image processing. The ‘photonic engine’ is a module developed by
Apple that enhances photographs on an iPhone [2] through computational image
processing by using deep learning models. In 2023, about 19% of the worldwide
population (1.5 billion out of 8 billion) owns an iPhone [3]. In other words, deep
learning plays a critical role in modern human life.

A Convolutional Neural Network (CNN) as shown in Figure 1.1 is a type of deep
neural network that is formed by stacking sequential layers between input and output
layers at both ends. It is commonly found in image classification [4] and object
detection [5]. CNNs [6] are biologically inspired by the concept of the human visual
cortex. CNNs possess the ability to extract the regular patterns in the input space. It
operates by convolving a reduced set of weights, known as kernels, across the input data
and producing the corresponding output, often referred to as feature maps. The local
receptive field is a small region within the input where the convolutional weights
engage. During convolution, the same set of weights is used to receive information
across the whole extent of the input space. This weight-sharing technique used by CNN
further reduces its number of trainable parameters compared to other architectures like
Multilayered Perceptron (MLP).

2

Figure 1.1: An illustration of a CNN.

An RGB image is the spatial representation of static visual content. It is formed
by several pixels over the spatial context. A conventional CNN typically receives raw
pixels from RGB images as the input [7] for image classification. The working strategy
of developing such CNNs is considered to be in the spatial domain CNN. By convolving
different kernels over the input space, a collection of distinct patterns is formed. These
patterns are combined to form the output feature maps consisting of multiple channels.
With the increasing demands on higher resolution visual contents [8], more advanced
CNNs are required to process these extensive data. A complex CNN model such as
ResNet-152 [9] can take weeks to develop due to its high complexity and computational
cost.

In fact, it was shown that an image representation in the spatial domain can
carry redundancy [10]. This scenario is particularly prevalent in fine-grained images,
where several works have been carried out such as [11][12][13][14][15] to mitigate its
negative impact on the model’s performance. Fine-grained visual classification (FGVC)
is a type of visual recognition task that exhibits low inter-class and high intra-class
variance. It corresponds to the problem of classifying between hard-to-distinguish
object classes, such as animal species and vehicle models. FGVC emphasises learning
the most discriminative pattern, which means only part of the image is useful for
describing the subtle differences. When the convolutional kernel processes redundant
data, it generates a highly similar pattern, which can be considered as information

3

redundancy. In other words, the features produced by fine-grained images can contain
high redundancy in spatial domain CNNs [16]. The emergence of these trends could
lead to a less robust deep learning framework.

To overcome the challenges above, the idea of implementing compressed domain
analytics in deep learning has triggered noticeable research interest [17]. Compressed
domain analytics refers to transforming the spatial domain information into its relative
frequency counterpart when implementing deep learning algorithms. The objective of
this technique is to improve compression gain and promote a lightweight and robust
CNN development process. This approach also facilitates resource optimisation by
reducing the overall memory footprint across the entire deep learning development
system. Resource optimisation in deep learning involves minimising computational
costs, memory usage, and processing time while maintaining or enhancing model
performance. For fine-grained visual classification, resource optimisation is particularly
critical because these tasks require intricate feature extraction, leading to large,
computationally intensive models. Achieving resource optimisation can involve various
strategies such as data preprocessing, dataset management, model design, algorithmic
improvements, and the use of hardware accelerators. In this thesis, the focus is on
optimising data processing and model algorithms. Techniques like model compression
and parameter reduction are employed to decrease the model's memory footprint and
boost processing efficiency, directly addressing the challenges of resource optimisation
in fine-grained visual classification tasks. In essence, images are commonly stored in a
compressed format to reduce redundancy, called the ‘Joint Photographic Expert Group’
(JPEG). The JPEG CODEC algorithm uses 2D-Discrete Cosine Transformation (2D-
DCT) to compress an image. A JPEG image is produced by applying 2D-DCT to an RGB
image, followed by several standard encodings. A set of Discrete Cosine Transform
Coefficients (DCTCs) are formed along the compression process. It contains different
sets of basis functions in both spatial and frequency contexts. It eliminates spatial
redundancy and delivers compact features for CDA [10]. In fact, the DCTCs of an image
can be obtained by either performing forward 2D-DCT on the RGB image or by
decoding a JPEG image without going through the inverse 2D-DCT. The DCTCs
represent an image by combining several frequency bands. Its data compaction
properties [18][19] allow it to consolidate most of the useful information towards the L-
DCTCs. Hence, the DCTCs possess higher compression gain and lower redundancy as
compared to an RGB image. The DCTCs are widely used in compressed domain CNNs

4

[20] as they do not carry imaginary components. Thus, it helps to regulate the
interpretability of a CNN model.

Compressed domain analytics have been widely adopted in various applications,
especially in machine vision [21]. It is also found in general classification tasks such as
CIFAR-10 [22], CIFAR-100 [23], and ImageNet [24][25]. The research community has
widely implemented pruning techniques by using only the low DCTCs (L-DCTCs) for
general classification tasks [26][27] in compressed domain CNN. The medium to high
DCTC frequency bands is discarded under most circumstances as they are believed to
exhibit noise contamination. Commonly, the L-DCTCs are sufficient for feature
extraction in such cases, where the images carry high inter-class and low intra-class
variance. It offers a robust and lightweight model with fewer parameters compared with
spatial domain CNN [25][28][29]. Therefore, the working strategy of compressed
domain analytics can lead to several advantages, especially in FGVC. However, to detect
subtle differences in fine-grained images, solely considering L-DCTCs is challenging.
This is because the fine-grained features could be contained within frequency bands
beyond L-DCTCs. Therefore, given the established advantages of compressed domain
analytics over the spatial domain, and the convergence of these trends, it motivates a
study on compressed domain image analytics (CDIA) in the context of small-scale
FGVC, an area that has not been previously investigated.

5

1.2 Problem Statement

To address FGVC problems, conventional CNNs must exhibit exceptional
sensitivity to subtle differences, particularly within the spatial context of feature maps.
These small changes are analogous to variations in frequency bands in compressed
domain analytics, where the recognition of discriminative patterns becomes crucial.
Compressed domain analytics, with their ability to analyse features through a broader
spectrum of frequency bands, could potentially offer increased robustness compared to
spatial domain analysis [30][31][32][33]. While former FGVC research emphasises
complexity in the spatial domain [34][35][36][37], limited attention has been given to
compressed domain analytics in this context. The existing compressed domain
implementations often rely solely on pruning higher frequency bands to focus on L-
DCTCs for general classification [38][39]. Although this reduces complexity, it raises
concerns about the adequacy of L-DCTCs in fully representing and detecting subtle
differences in FGVC. In the representation of compressed domain features through 2D-
DCT, the patterns distributed across the spatial context are hierarchically encoded
along the channel dimension [24]. In other words, the fine-grained object parts that
were originally located across the spatial context are now encoded in the channel
dimension. However, relying exclusively on L-DCTCs for classification in FGVC may
pose challenges, particularly regarding the loss of critical edge information leading to
distortion or artifacts. This information can be essential in forming discriminative
patterns, and their absence could hinder accurate classification. To address this
limitation and explore comprehensive solutions [40][41], it becomes imperative to
consider frequency bands beyond L-DCTCs. In fact, the medium-frequency DCTCs are
widely explored in steganography [42][43], whereas a few other papers [44][45] have
provided early attempts on mid-high frequency bands for the recognition task,
indicating their potential in FGVC. To highlight fine details, one of the strategies is to
employ attention mechanisms. It allows the network to focus on individual components
carrying unique patterns representing fine-grained details. In compressed domain
analytics, a unique pattern could be formed by several frequency bands. It is trivial to
consider pieces of individual components, where the collection of patterns can be more
profound in representing the most discriminative features. A convolutional kernel is
responsible for composing local receptive fields. It is becoming more specific at higher-
level intervals, where extended channel depths are present. In the context of spatial

6

domain FGVC, this implies that a large number of hierarchical kernels across different
levels are needed to capture highly specific features. This approach yields less robust
outcomes, necessitating a deeper exploration of implementing a compressed domain
approach in the convolutional kernel. Although CNNs employ weight-sharing
techniques, the inherent redundancy in RGB images in the spatial domain, especially in
the context of fine-grained visual classification (FGVC), can lead to inefficient resource
usage. Processing this redundant information requires additional parameters, which
wastes computational resources and memory. This inefficiency can result in the need
for more training data, increased computational complexity, and a longer development
timeline. Consequently, the development process can become prohibitively expensive,
both in terms of computation and memory, limiting the practical deployment of CNNs
in real-world applications. These cumulative challenges highlight the importance of
resource optimisation as a key objective of this research, aiming to make deep learning
models more efficient and deployable.

In short, the summary of problem statements is:

• The pruning technique in CDA solely considers L-DCTCs, where the frequencies
beyond L-DCTCs are mostly discarded. This could lead to suboptimal feature
representations and hinder comprehensive frequency information at higher-level
frequency bands for FGVC.

• The robustness of kernel analytics is limited at different convolutional block
intervals. This limitation can compromise the extraction and synthesis of
discriminative features to maintain efficacy across different network depths.

• The conventional attention mechanism predominantly highlights individual
components within the feature maps. This approach potentially overlooks the
relationships among features to capture feature interactions.

7

1.3 Research Aim and Objectives

This research aims to employ DCT-based strategies to develop novel deep
learning methods for small-scale fine-grained visual classification to achieve resource
optimisation.

The objectives are outlined below:

1. To develop a CNN algorithm that integrates different levels of frequency bands in
feature maps.

2. To develop a DCT-based strategy to compose the convolutional kernel using DCT
basis functions.

3. To develop a hybrid attention mechanism to highlight interactions between
channel groups of a frequency nature.

8

1.4 Contribution of the Research

This research mainly covers the research gap in compressed domain CNNs for
FGVC using DCT. The key contributions and accomplishments are:

• A preliminary work on general classification was performed using a fully pointwise
compressed domain CNN. This work focused on the novel implementation aspect of
the compressed domain CNN by using the OpenVINO inference engine to run the
model on the CPU. The work was published in [46] and provided foundational
insights for conducting this research work.

• The development of a novel ‘M-skipped pointwise convolution branch’ aims to
motivate the distinctive learning of M-DCTCs alongside L-DCTCs. The “M-Skipped
DCT CNN” with the M-Skipped branch exploits various compositions of L-DCTCs
and M-DCTCs to construct a rich and robust set of features. This architecture
enables the interaction of lower-level features with higher-level features via
shallowly convolved M-DCTCs. By adopting the M-Skipped architecture, the model
avoids processing the full spectrum of DCT coefficients, reducing computational
complexity and processing time, thus achieving optimisation. The M-Skipped DCT
CNN serves as the baseline architecture for subsequent algorithms, incorporating
the Adapt-DCT kernel and HyMod-ECA into this model. The experiments show that
the characteristics of low-level M-DCTC are important in compressed domain
FGVC.

• The development of a novel algorithm named ‘Adaptive-DCT pointwise convolution
kernel’ (Adapt-DCT kernel) was implemented on top of the M-Skipped architecture.
The technique adaptively weights the individual spatial and frequency bases of the
DCT basis functions to form a pointwise convolution kernel. This technique enables
the modification of spatial sizes and pruning of frequency bases of the DCT basis
functions. It considers both spatial and frequency bases of DCT basis functions in
forming a pointwise convolution kernel. This algorithm avoids composing
conventional convolutional kernels which may contain redundant filters, which
significantly reduces the model’s footprint and enhances computational efficiency.
The technique emphasizes the spatial context of DCT-based representations in
kernels.

9

• The development of a ‘Hybrid Modified Efficient Channel Attention’ (HyMod-ECA)
mechanism, which is used to investigate cross-DCT channel group interactions. This
was achieved by applying fast 1D convolution with a large stride on the intermediate
features. Unlike existing work that relies on cross-individual channel interactions,
HyMod-ECA considers groupwise DCT attention weights that preserve the linearity
and correspondence of the attention weights. The technique is novel for its study of
groupwise DCT channel interactions. The integration of HyMod-ECA plays a crucial
role in combining the relationships among features in compressed domain analytics.
This mechanism is key to resource optimisation because it utilises a smaller number
of attention weights compared to conventional methodologies. By employing fast 1D
convolution with a larger stride size, the computational complexity is significantly
reduced, resulting in fewer parameters and more efficient computing. This
reduction in algorithmic complexity directly addresses the problem of resource
inefficiency found in existing methods. Through the integration of HyMod-ECA,
resource optimisation is achieved while enhancing the relationships among feature
groups, which has a direct positive impact on both the overall computational
efficiency and model performance.

The significance of this research covers the following notable knowledge:

• A broader implication of incorporating DCT coefficients beyond low frequency at
greater network depths extends the understanding of fine-grained image
representation and feature synthesis within CNN.

• The advancements in frequency domain kernel formulation, learning capabilities,
and optimisation techniques by leveraging the DCT basis function enhances kernel
analytics in frequency domain CNNs.

• The importance of interactions and correspondence among DCT channel sets and
their corresponding weights along the learning phase of frequency domain CNN

provides greater insights into feature relationships across various channel depths.

10

1.5 Scope of the Research

Figure 1.2 presents a brief overview of the scope of this research work. As there is
a wide spectrum of topics under the deep learning umbrella, therefore the topic listings
in Figure 1.2 are not necessarily exhaustive, and only the most relevant ones are
depicted. Figure 1.2 covers the basic types of ANNs, their applications, a few
optimisation methods, and the compressed domain technique used in this research
work. The orange boxes indicate the specific scope chosen for the research underlying
this thesis. The compressed domain can cover many aspects of implementation in a
deep learning algorithm. This research focuses on using the DCT technique to optimise
the input and form a convolutional kernel in CNN for small-scale FGVC.

Figure 1.2: The scope of the research work.

11

Figure 1.3 portrays the high-level block diagram of the novel approaches
proposed in this research. Specifically, the Adapt-DCT convolutional kernel is
implemented in M-Skipped DCT-CNN, whereas the HyMod-ECA module is added
toward the output of each convolutional block across the main network. The integration
of all three approaches works seamlessly to address the issues of FGVC. The arrows in
Figure 1.3 indicate the directional flow of information along the CNN. A JPEG image is
partially decompressed to obtain three partitions of DCTCs as input, specifically L-
DCTCs, M-DCTCs, and H-DCTCs. The L-DCTCs will flow through the main
convolutional blocks whereby the adaptive weighted convolutional kernel and hybrid
attention module are employed. The M-DCTCs will flow through another branch with
fewer convolutional layers where the M-Skipped branch is employed. The concluding
outputs from the two branches are concatenated and fed through the fully connected
layers for classification.

Figure 1.3: A high-level block diagram of the research work.

12

1.6 Thesis Structure

This thesis consists of 5 chapters and is organised as below:

• Chapter 1 – Introduction: This chapter thoroughly discusses the background of
the deep learning approach and the importance of artificial intelligence. It
provides the problem statements and the motivations for conducting this
research work in the compressed domain FGVC. The aims and objectives, scope,
and contribution of this research are outlined.

• Chapter 2 – Literature Review: This chapter presents an overview of CNNs,
compression algorithms, the mathematical transformation of compressed
domain analytics, compressed domain-related CNNs, FGVC-related modules,
and attention mechanisms.

• Chapter 3 – Methodology: This chapter introduces the design and
implementation of the skipping branch containing M-DCTC in a CNN. The M-
Skipped branch is integrated on a fully pointwise VGG-16 network, called ‘M-
Skipped DCT CNN’. It also develops and demonstrates the adaptive weighting of
DCT basis functions to form a pointwise convolution kernel. It is referred to as
the ‘Adapt-DCT Pointwise Convolutional Kernel’. The last section modifies the
original ECA to form the novel hybrid modified ECA (HyMod-ECA) to exploit
cross-DCT channel group interactions.

• Chapter 4 – Results and Discussion: A few variants of the M-Skipped DCT CNN
were experimented with, specifically by skipping the M-DCTC over convolutional
block 1, block 2, and block 3. Small-scale fine-grained datasets of the frequency
domain were used to evaluate the performance of the M-Skipped DCT CNN.
Several variations of the adaptive weighting scheme and optimisation were
investigated. A few benchmark datasets were tested on the Adapt-DCT CNN, and
major results were presented and discussed. Several small-scale FGVC datasets
were used to compare the performance of the model with and without this
attention module.

• Chapter 5 – Conclusion and Future Works: This chapter recaps the key findings
and results of this research work. Several future works are suggested for further
improvement of this study.

13

Chapter 2 Literature Review

2.1 Convolutional Neural Networks
The artificial neural network (ANN) is a type of neural network inspired by the

biological neuron [47]. It mimics the working nature of the human brain. A single-layer
perceptron probabilistic model [48] can perform decisions based on a set of weighted
real value inputs. The weighted inputs are summed and passed through a Threshold
Logic Unit (TLU), which can be referred to as an activation function [49] to produce a
final output. A simple illustration of the perceptron is shown in Figure 2.1 [50].

Figure 2.1: A perceptron probabilistic model [50].

By combining multiple hidden layers of perceptron between the input and
output, a Multilayered Perceptron (MLP) is formed. The combination of non-linear
decision functions in an MLP provides non-linear boundaries in relation to the given
inputs, which can thus solve more complex problems. The MLP, when composed of
many layers, is a type of Deep Neural Network (DNN) [51]. It is also known as a
network with fully connected (FC) layers due to its architecture where all the neurons in
the current hidden layer are connected to all neurons in the previous layer. Deep
learning [52] is a type of computational algorithms that implements DNN to extract
high-level features from data. The number of trainable parameters and the model size
of an MLP increase according to the complexity of a problem. This can cause several
drawbacks such as an extensive rise in computational requirements and proneness to
overfitting [53].

14

A convolutional layer carries units with receptive fields which involve a localised
part of the previous layer. The adaptive weights associated with these units are often
collectively referred to as a filter. The down-sampling layer benefits CNN by scaling
down the spatial dimension of the previous layer and easing the classification. The
neocognitron [54] is the first CNN precursor to use weight weight-sharing technique
across multiple units. It addressed the challenges of MLPs regarding optimising the
deep learning algorithms with reduced parameters and computational complexity by
introducing weight sharing.

With the increasing trend of digital media consumption over the years, images
and videos are heavily stored and shared across online platforms. The internet access to
media content has also increased especially for adolescents [55][55]. The applications
and solutions of computer vision also dominate the market in areas such as automation
and advanced manufacturing industries. The fundamental working mechanism of
computer vision in deep learning algorithms relies on 2D-CNNs. Yann LeCun published
the first work on a fully automated learning of CNN using backpropagation [56]. The
backpropagation algorithm is used to optimise the weights by backpropagating the
gradient of the loss function for each weight during training [57]. The model is named
‘LeNet’ which was used to learn handwritten digits. The work is governed by the general
convolution theorem forming modern CNNs [58]. A typical CNN consists of a few
individual components including a convolutional layer, pooling layer, and fully
connected layer [59]. A simple CNN can be visualised in Figure 2.2

Figure 2.2: A simple illustration of the architecture of a CNN.

15

Convolution is the core operation of a CNN whereby a filter (kernel) is convolved
across the input matrix. In 2D CNNs, the convolution is done by computing the dot
product between the filter and the input entries. The kernel size and the corresponding
stride size are determined before a convolutional process. Stride size is the number of
shifting pixels when the filter matrix is convolved over the input matrix. The
mathematical equation of 2D convolution [60] is denoted in Equation 2.1:

𝑦[𝑖, 𝑗] = ; ; ℎ[𝑚, 𝑛] ∙ 𝑥[𝑖 − 𝑚, 𝑗 − 𝑛]
!

"#$!

!

%#$!

 Eq. 2.1

Where ‘h’ is the filter matrix, ‘x’ is the input matrix, and ‘y’ is the output feature
map. The convolutional layer serves as a feature extractor [4]. A small number of
artificial neurons with learnable weights are grouped to form a filter in the
convolutional layer. These filters are also known as kernels, and they are capable of
learning local feature representations. The kernels are convolved across the input
matrix during the forward pass to produce the corresponding output. The receptive
field is a portion within the local input region where the kernel function is applied to
produce the corresponding output feature. The respective outputs are arranged in a
spatial configuration consistent with the previous layer to produce a feature map. A
variety of feature maps are formed by convolving different kernels with the input
matrix. The feature maps are stacked to produce the output of a convolutional layer
which will be sent to an activation function to form the final activation maps.

Activation function [49] is a crucial part of a neural network as it serves non-
linearity boundaries for the output from an artificial neuron. It also has a major
influence on the computational efficiency and performance of a CNN [61]. Dhanasree
[62] presented the significance of an activation function along multiple hidden layers in
a network for data analytics. The paper concludes that the performance of a general
neural network will be affected by the number of hidden layers and types of activation
functions used.

16

The weighted sum of input sets in an artificial neuron delivers a single output
proportional to the input sets. The drawback of the linear regression model is that the
input and output sets are treated as a linear relationship, whereas the real-world
problems exhibit non-linearity in nature. Fortunately, the nonlinear activation
functions overcome these issues by adopting non-linearity. This property allows the
stacking of multiple layers of artificial neurons to form a DNN which is desired for
solving complicated tasks, such as image classification performed by a CNN [63]. The
nonlinearity of activation functions is important since it allows the network to form
complex non-linear mappings between input and output. Two popular activation
functions are highlighted which are found in many DNNs today, namely the Sigmoid
function and the Rectified Linear Unit function (ReLU). Their respective behaviours are
shown in Figure 2.3 [64].

Figure 2.3: An illustration of the activation function and their corresponding response [64].

ReLU is widely used in CNNs as it is computationally efficient [65] to achieve
non-linearity and it reduces the vanishing gradient problem. The sigmoid activation
function produces a smooth and continuous non-linear output concerning the input;
thus, it is useful in probability and prediction algorithms. The feature maps from a
convolutional layer that goes through the activation function will form an array of
activation maps. In other words, the convolutional layer learns filters that will lead to
large node activations when specific features are detected in specific locations of the
input. In the same convolutional layer, feature maps contain non-identical weights to
detect different features at different input locations. The convolution is done between
input images or feature maps with different filters to generate new feature maps, and
the output is delivered through nonlinear activation functions to produce the final

17

activation maps. The pooling layer is also an important element of CNNs. It is used to
perform a non-linear down-sampling of the activation maps. The objective of
performing the pooling operation is to downsize the spatial dimension of the activation
maps, to provide invariance properties, and to reduce computational complexity. 2D
spatial max pooling is the commonly adopted method for pooling in CNNs. The
example in Figure 2.4 portrays the concept of max pooling [66].

Figure 2.4: The operation of max-pooling in a CNN [66].

The convolutional and pooling layers are often stacked on top of each other
progressively to form a convolutional block. The spatial dimension of the feature maps
will shrink in size due to the stride operation and the spatial down-sampling while
extending depth in the layer dimension. After the pooling layer in the last convolutional
block, all the feature maps are flattened into 1D vectors. The 1D vectors are fed towards
a few layers of fully connected layers and classification is conducted. For multiclass
image classification, the SoftMax function is used for determining the probability class
of a given input image. The SoftMax function is also used in other applications such as
reinforcement learning in game theory [67].

A CNN is comprised of several convolutional blocks followed by FC layers. It
extracts several simpler features primarily and gradually combines them in the later
layers forming the required results. The principle of hierarchical feature extraction of
the CNN is shown in Figure 2.5 [68]. It shows that the first stage of the neural network
model recognises the edges of the representation. The latter stages further combine and
map the previous features into a higher-level feature for classification.

18

Figure 2.5: Principle of hierarchical feature extraction in a CNN [68].

With the advancement in hardware technologies for training CNNs over the
years, more popular architectures [69] have been established and have brought
astounding impact to modern computer vision recognition [70]. The motivation to
design a better CNN [71] tends to lead to better performance and overcome several
issues in CNN development. A few state-of-the-art CNN architectures are covered in
this section to appreciate the insights and contributions that resolved the potential gaps
in between.

LeNet-5 [72] was the first CNN to perform Optical Character Recognition (OCR)
through 3 convolutional layers, 2 pooling layers, and 2 fully connected layers. The
major downside of this architecture is that it is not deep enough. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [73] is a well-known computer vision
classification benchmark on 1000 categories. The task incorporates object detection
[74] and classification [75]. AlexNet as the improved version of LeNet-5 scored a top-5
error rate of 18.2% in the ILSVRC 2012. AlexNet was the first CNN to feature GPU
learning for accelerated training. Since AlexNet contains up to 61 million trainable
parameters, the DropOut layer [76] was used later to generalise the model to avoid
overfitting. Some of the dominant CNN models after AlexNet are the VGG-nets [75],
Residual Networks [8], Dense-net [77], and MobileNet [78]. They are widely used
among state-of-the-art contemporary architectures.

19

The Visual Geometry Group (VGG) developed VGG-net [75] with deeper
convolutions adapting the same filter size. It features a uniform CNN with a few feed-
forward convolutional blocks. The most popular variation is the VGG-16 which is shown
in Figure 2.6. It contains a total of 16 layers deep, whereby all the filters carry a spatial

dimension of 3 × 3. The very deep VGG-16 consists of 138 million trainable parameters.
It was found that very deep networks were subjected to the vanishing gradient problem
when the VGG nets extended beyond 20 convolutional layers, which limits the network
performance.

Figure 2.6: The architecture of a VGG-16 net [75].

Deep residual learning was introduced to resolve the vanishing gradient problem
by inserting residual connections between convolutional layers. The residual network
(ResNet) [8] is the first CNN adopting residual learning which won the ILSVRC in 2015
with a top-5 error rate of 3.57%. The ResNet-152 used in the competition consists of 152
convolutional layers, which is approximately 8 times deeper when compared with VGG-
19. Figure 2.7 portrays the bottleneck of the ‘identity shortcut connection’ from one of
the residual blocks. Batch normalisation is also added after every identity block to
further reduce the overfitting and vanishing gradient issue.

Figure 2.7: A 2-layer identity block from residual network [8].

20

DenseNet [77] also uses shortcut connections between layers by connecting all
previous layers to the current layer. All feature maps of preceding layers are served as a
concatenated input towards the current layer. It contains more shortcut connections
between the convolutional layers. DenseNet can overcome the vanishing gradient
problem while greatly reducing the number of trainable parameters. The Squeeze-Net

[79] architecture was modified from Alex-Net [80] with 50 × fewer parameters while
attaining similar performance. The key technique for reducing the number of

parameters in SqueezeNet is by replacing 3 × 3 filters with 1 × 1 filters.

Mobile-Net [78] is a small CNN architecture that highlights depth-wise separable
convolutions. Depth-wise convolution is a convolution process applied spatially across
each of the channels independently, producing an output with the same number of

channels as the input feature. The output is later applied with 1 × 1 filters. The 1x1 filter
is referred to as a pointwise convolution filter. It requires less power to run and is
specially designed to fit applications in mobile devices.

From the above literature, it can be recognised that by adopting a greater
number of deep convolutional layers in CNN using residual learning, CNN can achieve a
good performance. To optimise the CNN while retaining comparable performance, an

individual can implement 1 × 1 filters onto the prior baseline models. The remaining
sections of the literature will cover the background knowledge underlying the core ideas
of this work.

21

2.2 Compressed Domain Algorithms and Neural
Networks

2.2.1 Comparison Metrics of various Compression
Algorithms

Compression is applied to an image to reduce redundancy. It is important to
understand the fundamentals of the compression algorithms specifically between DFT,
DCT, and DWT. A mathematical transformation (MT) is conducted in the compression
process to transform the image into another domain that uses fewer bits for image
representation. Most image compression is done by converting the image from a spatial
to a frequency domain via Fourier-related transformation. The popular MT algorithms
are Discrete Wavelet Transformation (DWT) and Discrete Cosine Transformation (DCT)
[81].

[82] showed that DCT compression has an overall higher Mean Square Error
(MSE) and Compression Ratio (CR) over DWT, and lower Peak Signal-to-Noise Ratio
(PSNR) and Bits Per Pixel (BPP) over DWT. [81] used FFT, DCT, and DWT as the base
functions for image transformation by applying four different compression percentages
(10%, 30%, 50%, and 70%). The author concluded that DCT is a better MT compared
with DWT and FFT in image compression. The author also indicated that most of the
image quality is preserved when the compression rate is below 10% regardless of the
image size. Another paper [83] did a comparative study on image compression between
DCT and DWT using JPEG and PNG colour images. The image size stayed constant
throughout the experiment and was processed with level-1 DWT. It was shown that
image compression using DWT and Inverse DWT performs better than DCT in terms of
image devaluation criteria, which were measured in MSE and PSNR. Some other
studies [84][85] have shown that both DWT and DCT have comparable image quality
preservation while DCT performs better than DWT through less computational
complexity.

Fourier-related transformation (DFT, DCT) is efficient in extracting low-level
(frequency) features of an image, while high-frequency components are usually
quantised thus causing poor edge quality [86]. The transformation usually partitions
the image into blocks and applies the transformation to each of the blocks. It was

22

reported in [87] that DCT performs efficiently at medium bit rates. JPEG uses
sequential DCT such that image coding at high and medium bit rates is good. Low
compression bit rates with high quantisation will increase the compression ratio, but it
can lead to blocking artefacts and spatial decorrelation from the neighbouring blocks.
DWT can preserve better image quality as there are no blocks or partitions involved.
DWT exhibits multi-resolution properties. It can decompose a frequency signal using
sinusoids of very fine resolution. DWT produces high-quality content at lower bit rates.
Larger DWT basis functions or wavelet filters can cause blurring effects at image edges.
At low compression rates, DWT produces a lower-quality image than DCT and requires
a longer compression time. DWT and DCT produce comparable energy compaction
properties. DCT has better performance than DWT in terms of lower BPP and higher
CR. So, it is a fair trade-off whereby DCT does not match DWT in terms of image quality
but outperforms DWT in terms of computational requirements.

The main difference between DCT and DWT coefficients lies in the high pass
band. The DCT high pass band provides higher frequency resolution but lower spatial
resolution. It has more frequency bands, but it is hard to recognise spatial information.
In contrast, the wavelet sub-bands provide higher spatial resolution and lower
frequency resolution as the number of sub-bands is smaller, but the spatial resolution is
prevalent.

[88] compared DCT- and DWT-based compressed image algorithms to observe
their transmission through wireless sensor networks (WSN). The results showed that
DWT transform is better than DCT in terms of image quality and execution time, while
DCT outperformed DWT in memory space consumption. [89] compared data
compression in image processing for medical images. The experiment covered an MRI

CT scan of an axial slice of the human brain with a grayscale image size of 512 × 512.
The result showed that JPEG compression outperforms DWT in terms of PSNR and CR.
JPEG has higher image quality at a lower CR than DWT. At higher CR, the quality of the
JPEG image degrades due to blocking artefacts. Wavelets however provide good image
quality at low bit rates due to their overlapping basis functions and the energy
compaction property of wavelet transforms.

[90] presented a broad review of various methods used for feature extraction in
facial expression recognition. By solely comparing DCT zigzag extraction and DWT
feature extraction in [91], DCT achieved 80% accuracy while DWT achieved 81%. DCT

23

and DWT feature extraction performance is comparable in terms of feature quality
preservation. Another paper [92] demonstrated facial recognition using compressed
domain data with Principal Component Analysis (PCA) and Independent Component
Analysis (ICA). The focus of this paper was to observe the normalised recognition rate
(NRR). For PCA NRR comparison, DCT and DWT have a comparable performance level
from 0.5 bit-per-pixel onwards. The results from ICA NRR showed that DCT
outperforms DWT. [93] demonstrated iris recognition using block-based DWT and DCT
for feature extraction. Block-based DWT outperformed conventional DWT and DCT as
the false acceptance rate (FAR) and false rejection rate (FRR) are minimal. In [94], FFT,
DCT, DWT, and Gabor Filter were used as feature extractors in fingerprint recognition.
By comparing only DWT and DCT, both transformations achieved a comparable total
success rate (TSR).

Table 2.1 establishes the summary of the discussion. From the literature
reviewed, DWT outperforms DCT in image quality, but the difference is minimal. DWT
is a type of image CODEC algorithm that is very sensitive to sudden changes in an
image. Several scaling and bandpass filter-like processes are employed along the
transform for signal coding. Although it is a lossless image compression format, DWT
generally requires more effort compared to DCT. In terms of computational complexity,
DCT is reported to be more efficient as compared to DWT. By extending the concluding
factors towards compressed domain CNNs, DCT will be less expensive to implement.
Therefore, DCT will be used in this research as it is intended to focus on compression
gain over image quality.

Table 2.1: Comparison of different aspects of each compressed domain algorithms.

Aspects DCT DWT

Image quality Slightly worse, negligible Better

Preserve edge information Slightly worse, negligible Better

Compression gain Higher Lower

Computational complexity Lower Higher

24

2.2.2 Frequency Domain CNNs

The DCT approaches used in CNNs will be reviewed in this section. Table 2.2
summarises the core comparisons of the related works in section 2.2.2 and 2.2.3:

Table 2.2: Summary of literature on frequency domain and DCT-based CNNs.

Literature Compression Algorithm Methodology

[95] DCT Apply DCT towards the entire face image for
recognition.

[96][97] DCT
Combine DCTC with dynamic weighted
discrimination power analysis (DPA) for identity
recognition.

[98][99] DFT
Compute convolution as the pointwise product in the
Fourier Domain and reuse the transformed feature
maps repeatedly.

[100] DCT Train CNN directly on the DCTC partition available
within the JPEG codec without full decompression.

[25][101] DCT Integrate a DCT module on top of a CNN to train a
robust model by accommodating specific distortions.

[102] DCT DCT-based spectral pooling replaces normal 2D-
MaxPooling to resolve heavy information loss.

[23] Inverse-DCT
The convolution filters are trained and saved in DCT
coefficients. Inverse DCT is applied to the filters to
get spatial filters during inference.

[26][103] DCT

Network consisting of harmonic blocks (learning
optimal combinations of spectral filters defined by
DCT) and some optionally learned spatial
convolution or FC layers.

[104] Spatial domain, none used
Factorise spatial mixed feature maps at different
frequencies and encourage inter- and intra-frequency
communication.

[105] Cosine basis function
Frequency parameters (amplitudes, frequencies,
phases) of cosine basis are learned to produce spatial
domain filter weights during training.

25

An early paper [96] demonstrated a statistical analysis by combining DCT
coefficients and discrimination power analysis (DPA) for identity recognition. Dynamic
weighted DPA (DWDPA) was proposed to enhance the DP of the selected DCTC without
a pre-masking window. Mathieu et al. showed an early technique [98] to reduce the
CNN’s training and inference time by computing convolutions as pointwise products in
the Fourier Domain. The transformed feature maps were reused repeatedly. The
algorithm is based on the Convolution Theorem which states that circular convolutions
in the spatial domain are equivalent to pointwise products in the Fourier domain. This
method is efficient when the size of the convolution kernel is close to the input. The
need to compute padding or periodic expansion is not easy to implement although it
can save up computational power. Besides, a complex number can introduce complexity
in calculations. The results in [98] proved that even though FFT is less efficient for a
single convolution, with a deep network, the resource optimisation is much more
noticeable. Even same memory bank was used to store the Fourier Domain feature
maps for different layers, additional memory is still required. The inverse FFT is
required to transform the data back to the spatial domain at the end of the network.

[99] opted out of the repeating process of forward and inverse Fourier
transformations in the CNN. The training was conducted entirely in the Fourier
frequency domain to speed up the entire process. From the Convolution Theorem as

shown in Equation 2.2, ‘ℱ’ denotes Fourier Transform, ‘*’ denotes convolution and ʘ
represents the Hadamard Pointwise Product.

ℱ(𝜅 ∗ 𝑢) = ℱ(𝜅)⨀ℱ(𝑢) Eq. 2.2

The operation carried out in the Fourier domain is less intuitive as the
representation of the filters learned in the frequency domain could not be interpreted
directly. FFT was only applied on the input images while the kernels were treated as
Fourier filters. The Fourier-CNN (FCNN) in [99] can learn arbitrarily large spatial
kernels through the Fourier domain. However, it was limited by the initial image size,
as the spatial domain kernel size cannot be larger than the input image size. The
pooling operation was carried out alongside the convolution to save up more
computational costs. Fourier domain feature maps were distributed differently in FCNN.
More features can be preserved in the Fourier domain as compared with the spatial
domain. According to the 3D tensor shown in Figure 2.8, high-frequency data is often

26

concentrated towards the centre of the Fourier tensor while low frequency is towards
the boundaries. The pooling operation which discards the high-frequency components
is straightforward.

Figure 2.8: A pooling mechanism within a Fourier domain [99].

In the spatial domain, the kernels or feature maps will overload the memory if

the input image size reaches a certain limit (2& in [99]). It can also cause parallel

training to be infeasible, which can be addressed by reducing the batch size. This issue
was addressed and resolved by training the model in the Fourier domain as it requires
less memory when running in parallel. The computational complexity of spatial
convolution increases exponentially as the image size increases, while Fourier
convolution scales at a slower rate. The FCNN was assessed based on the computational
time and accuracy of 3 datasets (MNIST, CIFAR-10, and Kaggle fundus images). In
most of the experiments, FCNN exhibited a run-time advantage. The optimisation
technique used in FCNN can be implemented in other network architectures to achieve
SOTA accuracies with reduced memory footprint. The advantages exhibited by Fourier-
related CNNs encourage more studies to be conducted on compressed domain CNNs.

A combination of spectral and spatial representations was incorporated by [106]
in the convolutional block by effectively integrating features from both domains. The
combination was done on a channel-shifting mechanism. It was found that this
mechanism can reduce information loss as well as encourage model robustness. Since
the spatial-spectral convolution learns features in both domains concurrently, it can
detect the information from both domains. This includes local correlations in the spatial
domain, global features of low frequency, and granularities of high frequency in the
spectral domain. The channel division factor on spatial and spectral domains is based
on a hyperparameter. The output feature maps from both domains are concatenated
and passed through channel shifting before being fed into the next input. The shifted-
spectral convolution was evaluated based on CIFAR and SVHN datasets on the VGG

27

network. Based on the experiments conducted in [106], with an optimal channel-
division factor, this module can achieve a lower classification error rate with fewer
parameters compared with conventional spatial domain convolutions.

In natural images, higher frequencies encode fine details while lower frequencies
encode global structures. Octave Convolution (Oct-Conv) was introduced in [104] to
factorise the feature maps at different frequencies to reduce spatial redundancy. Oct-
Conv can be used as a direct replacement for vanilla convolutions. The information
between adjacent locations is treated as a multi-frequency representation. The high and
low-frequency features are stored and processed through different channels. In octave
convolution, the aim is to obtain both low- and high-frequency maps (inter- and intra-
frequency update) as the input towards the next feature maps. The up-sampling process
is applied on the low-frequency maps when performing inter-frequency communication
towards the high-frequency output, while the average pooling is imposed on the high-
frequency maps. The Oct-Conv was tested on ImageNet using ResNet and DenseNet
[104]. It was recognised that Oct-Conv can achieve 82.9% classification accuracy by
only using 22.2 GFLOPS.

The pioneering introduction of FCNN marked a major leap in utilising
compressed domain-related techniques to achieve computational optimisation without
compromising SOTA accuracies. Techniques such as shifted-spectral convolution and
octave convolution have emerged as noteworthy approaches for integrating information
from various domains or capturing details at different frequency levels. These
methodologies provide valuable insights into how combining signals from diverse
domains can effectively reduce classification error rates and enhance optimisation.
These algorithms were primarily tested on general classification datasets such as
MNIST, CIFAR, SVHN, and ImageNet using popular CNN architectures like VGG,
ResNet, and DenseNet. They prioritise parameter commonality while using
classification error rates and computational complexity as key evaluation metrics.
Despite their advantages in facilitating information exchange, these approaches often
overlook the global context of features. Nonetheless, they serve a foundational
background that motivates further exploration into the integration of different
frequency coefficients at multiple scales.

28

2.2.3 Integration of DCT within CNNs

The authors in [100] presented a method to train the CNN directly on the DCT
coefficients available within the JPEG codec without performing full decompression.
The frequency information was fed directly into the modified ResNet-50 network. It

was reported that the network was 1.77 × faster and more accurate on ImageNet than
the original ResNet-50. It was reported in [100] that the ‘Deconvolution RFA’ network
achieved the lowest top-5 error rate with an improved inference speed of 30%. The
‘Late-Concat-RFA-Thinner’ architecture from [100] has the closest baseline error rate
with 77% faster inference. This study contributes to an insight into implementing the
DCT coefficients directly in CNN for computer vision tasks. It also showed that it is vital
to balance between the model’s performance and computational speed.

[25] addressed the issues of modern CNNs which rely heavily on large datasets
for training and CNNs’ vulnerability to image quality degradation. ‘Distortion Robust
DCT-Net’ was proposed in this research by integrating a DCT module on top of VGG-16.
It improved the CNN’s invariance by exposing it to more unseen images by fine-tuning
the model to accommodate specific distortions. The forward 2D-DCT was performed on
the input image, and the high-frequency components were discarded according to a
uniformly distributed scale. The remaining coefficients were transformed back to RGB
images via IDCT and fed into the network for training. The randomised selection of the
threshold value for discarding high-frequency DCT coefficients of the input image was
limited. A better scheme is required to produce a deterministic decision to select which
coefficients to discard. Besides, the repeating forward and inverse DCT are inefficient.
By discarding high-frequency components, noise, and distortion can be rejected. But at
the same time, the method also discards edge details within the image. A blindly trained
model with image data containing mostly low-frequency DCT coefficients can perform
well in image classification with large variations. However, it may lead to potential gaps
in fine-grained image classification.

The DCT operation was used in [101] for feature extraction. The authors
incorporated the DCT process with convolutional layers after the non-linear activation
function and before the pooling layer. The best result was obtained by performing DCT
once towards the first convolutional layer to capture low-level information. The DCT
process can be found at the ‘conv1’ layer in the CNN architecture in Figure 2.9.

29

Figure 2.9: A DCT operation in the first convolutional layer [101].

The model was tested on pedestrian detection and object recognition. It was
reported that feature extraction in the DCT domain resulted in an accuracy drop of 7.1%
and an increase in convergence speed on CIFAR-10 when compared with conventional
models. The weight matrices in the final model are sparser thus further optimisation
can be achieved. Although the real-time DCT operation exhibited noticeable

computational complexity, it helped the model to converge 5 × faster with fewer
training epochs. A novel DCT-based pooling layer was developed in [102] to mitigate
heavy information loss due to max-pooling in the spatial domain. It was proved that
DCT-based pooling can preserve more information as compared to DFT due to its high
energy compaction. The DCT-transformed matrices were embedded into the linear
layer to accelerate the pooling process on GPU. Although the method can preserve
features and fast DCT was used, the repeating forward and inverse DCT is still
inefficient.

In [107], a DCT perceptron layer based on the DCT convolution theorem was

developed. It was aimed to substitute 3 × 3 convolutional layers in CNN. The DCT
perceptron module contains a scaling layer, a pointwise convolutional layer, and a
trainable soft-thresholding function. The forward 2D-DCT was initially imposed on the
intermediate feature maps before it was fed into the module. The output from the
module is transformed back into spatial features via an inverse 2D-DCT. The scaling
layer is similar to the concept of spatial domain convolution, where the trainable soft-
thresholding layer can capture the positive and negative amplitudes of DCTC. The

30

trainable parameters in the soft-thresholding layer can be neglected for more parameter
savings. This is because the PReLU activation function is sufficient to detect the positive
and negative portions of the DCTCs. Although this method exhibited a reduced number
of trainable parameters, the forward and inverse DCT processes are still undesirable.
Thus, the process shall be addressed with an alternative approach.

Chęciński et al. [23] presented a method to perform IDCT on a set of trained
parameters (frequency weights) in the context of spatial convolutional filters. The
authors suggested a transformation over the trained parameters (small dimension of
kernel weights) to produce the filter. This was done by coding the spatial convolution
filters with trained DCT parameters to achieve a smaller model size. In other words,
whenever any filters in the convolutional layer were used (inference), these filters were
generated via IDCT from the frequency weights. This research showed that sufficiently
rich spatial filters can have sparse frequency representations. The IDCT was performed
independently for each filter. This can lead to a tremendous increase in computational
complexity. Another recent work on using DCT in convolutional kernel can be found in
[33].

Harmonic blocks produce features by learning optimal combinations of spectral
filters defined by DCT [26]. It replaces the convolutional layers in conventional CNNs to
construct a partial or fully harmonic CNN. Spectral features are generated by learning
the linear correlations of the spectral filters defined by 2D-DCT. The spectral filter
selects or eliminates image contents based on wavelength information. DCT is
advantageous in frequency separation and energy compaction. The harmonic networks
learn responses by combining ‘window-based-DCT’ with a small receptive field. Besides,
it also learns to combine spectral coefficients at every layer to produce a fixed-size
representation defined as the ‘weighted sum of responses’ of DCT filters.

Harmonic networks consist of a few harmonic blocks with some optionally
learned spatial convolutions or FC layers. The harmonic blocks decompose the input
features using ‘window-based 2D-DCT’. The transformed signal is then combined with
learned weights. The input features that have gone through spectral decomposition will
produce a block-wise DCT representation. Thus, a new feature map for each channel is
formed. The frequency coefficients of the transformed features are mapped along the
layer dimension. Each set of feature maps in each layer represents a particular DCT
basis function. The harmonic blocks can be treated as a special case of depth-wise

31

separable convolution with predefined spatial filters. It learns the relative importance of
the feature extractors (DCT filter responses) at multiple layers. The spectral
decomposition is computationally cheaper when compared with spatial convolution,
but it up-samples the number of intermediate features hence increasing the respective
memory requirements. This is particularly inefficient for memory management.

Figure 2.10(a) shows a harmonic block that performs channel-wise windowed

DCT and recombines the responses with 1 × 1 convolution. Given that a set of filters

carrying size ‘K’, number of input channels ‘N’, and output channels ‘M’, each box shows
the corresponding operation, filter size (if applicable), and the number of output
channels. The batch normalisation (BN) layer is optional. The compression of harmonic
networks limits the visual spectrum of the harmonic blocks. It allows less processing of
low-frequency DCT coefficients to reduce the number of parameters and operations.
The coefficients were arranged following their importance in the triangle patterns as
shown in Figure 2.10(b).

Figure 2.10: (a) Harmonics convolutional block. (b) Harmonics convolutional kernel visualisation [26].

In [26], a hyperparameter will determine the level of DCTC allowed for

computation. Equation 2.3 shows that a feature map ‘h’ at depth ‘l’ is computed as a

weighted linear combination of DCT coefficients across all input channels ‘N’. φ',)	is the

frequency selective DCT filter with a spatial size of K × K, ‘∗∗’ represents 2D convolution,

andW*,',+
, is the learned weight. The integration of harmonic blocks in CNN showed

improvement in classification accuracy and parametric complexity. However, the

32

spectral decomposition up-samples the number of intermediate features (by a factor of

K-) hence increasing the memory requirements.

ℎ. = ;;;𝑤",/,0.
1$2

0#3

𝜑/,0 ∗∗ ℎ".$2
1$2

/#3

4$2

"#3

 Eq. 2.3

The work was further studied by Ulicny et al. in [103] to address the need that
CNNs have for large amounts of training data. The proposed harmonic blocks with DCT
filters in CNNs are computationally cheaper and perform better than wavelet scattering
networks (a network that works robustly with wavelet scattering data). [103] relates
harmonic convolution with Modified-DCT (MDCT) to consider overlap in convolution.
MDCT can reduce artefacts at the window edge. An improved model with higher
efficiency was achieved which outperformed the wavelet scattering network.

The former work on harmonic blocks [26] replaced fully learned convolution
with multidimensional input features. L1-normalized filters (batch normalization) were
found useful for conserving DCTC features along the spatial-frequency spectrum. For
parallel execution, extra memory was required to store the DCT filters’ responses at
each layer. It was realised that DCT and the linear combination operation could be
integrated into a single operation. By factorising the filters as a linear combination of
DCT basis functions, equivalent features can be obtained. With control over the filters,
the author can approximate the signal with reduced computational complexity [103]. It
was concluded that with only a small increment in multiply-add operations, it was
possible to obtain similar performance and avoid overfitting in the model. [103] studies
the effects of window functions in MDCT with a harmonic block by evaluating the
classification error on 3 datasets (MNIST, CIFAR, and STL-10). Instead of computing a
total DCT computation, using shifting to compute the convolution of filters along the
feature maps might achieve a cheaper computation and the shifting weights can be
learned dynamically.

Ciurana et al. [105] proposed a method to use the cosine basis function to
generate filter weights. The convolutional layer is known as ‘Cosine Convolution filter’
(CBC). Frequency parameters of cosine bases were learned to produce spatial domain
filter weights. The hybrid CBC only uses amplitudes, frequencies, and phases to
represent the entire spatial filter. The CBC filter can be known as the frequency
decomposition of a convolutional filter. The CBC filter can be derived from spatial

33

dimensions (x, y) and channel dimension (c). To produce a spatial filter, two cosine
basis functions of ‘spatial-product (SP)’ and ‘spatial-direction (SD)’ were developed. The
spatial-product CBC filter only defines the composition of two unique spatial harmonics.
On the other hand, a spatial-direction CBC filter defines one harmonic in two different

directions, ‘w7’ and ‘w8’ which represent the unique frequency in both vertical and

horizontal dimensions. The S9 resembles two harmonics in horizontal and vertical

dimensions while the S: uses a single harmonic to define a filter in different directions.

The definitions of S9 and S: are shown in Equations 2.4 and 2.5.

𝑆;(𝑥, 𝑦) = cos	(𝑤< ∙ 𝑥 + 𝜙<) ∙ cos	(𝑤= ∙ 𝑦 + 𝜙=) Eq. 2.4

𝑆>(𝑥, 𝑦) = cos	(𝑤< ∙ 𝑥 + 𝑤= ∙ 𝑦 + ∅) Eq. 2.5

the feature dimension, ‘feature-direct (𝐹𝐷)’ and ‘feature-weight (𝐹𝑊)’ were

proposed. Another cosine basis function was initialised, with ‘𝐴 ’ representing the

amplitude, ‘𝑤𝐶’ representing the frequency, and ‘𝑐’ representing the feature coordinate

of the filter weights. It has higher compression as only three parameters (amplitude 𝐴,
frequency 𝑤𝐶, and phase φ𝑐) are required to define a channel. Both spatial and feature

dimension basis functions can combine to create a CBC filter as shown in Equation 2.6.
Spatial or feature dimensions can be any one of the two equations proposed earlier.

Eq. 2.6

The hybrid CBC layer combines conventional spatial filters and CBC filters. It is
aimed to capture harmonics in the feature maps using a CBC filter while conventional

filters are used for complex features. With a total of ‘𝑀’ filters, ‘α’ determines the
number of CBC filters versus spatial filters. When α is close to zero, a near-to
conventional convolutional filter will be produced and vice versa. The hybrid CNC filter

bank is shown in Figure 2.11. For a 1 × 1 filter, the S(x, y) was set to 1 in Equation 2.6

such that only F(c) was used.

34

Figure 2.11: An illustration of the Hybrid CBC filter bank [105].

VGG-16 and ResNet-50 were employed to train datasets including CIFAR-10,
CIFAR-100, and Monkeys (for fine-grained classification). The evaluation primarily
centred on classification accuracy and convergence speed. Remarkably, the experiments
revealed that models incorporating hybrid CBC layers exhibited superior performance
compared to conventional networks, even when operating with fewer parameters
(compression factors ranging between 1.2 and 2). This technique not only facilitates
faster convergence speed during training but also allows for incremental increases in
the spatial size of filters without incurring additional costs, all while reducing the
overall number of parameters.

A notable advantage of the CBC filter is that receptive fields can be increased at
no cost as the number of parameters does not change in the cosine basis function.

Based on the spatial and feature weighting of the CBC filter, the parameters (A, w7, w8,

wC , φx , φy , φc) forming S(x, y) and F(c) were trained to be consistent across each

channel instance. Although fewer parameters were required to form a CBC filter, it is

challenging to access and fine-tune each feature channel instance (c) at a particular

direction of (x, y) thus limiting the potential of CBC to form the spatial kernel.

From the literature reviewed, the main metrics for evaluating the effectiveness of
compressed domain techniques in CNNs typically revolve around classification
accuracy or error rate. In addition, the secondary metrics to assess the training speed of
compressed domain CNNs are often measured by convergence speed. Other relevant
parameters include the number of trainable parameters and computational complexity.
For studies targeting general classification tasks, common datasets like MNIST, CIFAR,
NORB, and STL-10 are frequently used for small-scale evaluation, while ImageNet
serves as a benchmark for SOTA assessments. Provided the focus of this research is on

35

FGVC, small-scale datasets like Monkeys can be found in the literature to offer a fair
comparison. Popular networks such as VGG and ResNet are usually employed due to
their ease of implementation and well-established performance. While equipment
variations exist across studies, the use of GPU for this research is deemed acceptable.
Because the focus of this work is on achieving compression gain and comparable
accuracy in compressed domain FGVC, the specific equipment used becomes a
secondary concern, as it does not impact the research outcomes or outcomes. Table 2.3
provides a summary of the key metrics, models, and commonly utilised datasets found
in the majority of literature related to compressed domain CNNs.

Table 2.3: The quantitative evaluation metrics, data sources, and the model apparatus relating to the
compressed domain technique in the corresponding literature.

Literature Metrics Model Datasets

[98][99] Classification Accuracy

Computational Complexity

Basic CNN MNIST

CIFAR

[106] Test Error Rate

Number of Parameters

VGG CIFAR

SVHN

[104]

Classification Accuracy

Computational Complexity

ResNet

DenseNet

ImageNet

[100] Classification Accuracy

Inference Speed

ResNet ImageNet

[101] Classification Accuracy

Convergence Speed

Basic CNN

VGG

ResNet

CIFAR

STL-10

[26] Classification Error

Number of Parameters

ResNet MNIST

CIFAR

NORB

STL-10

[105] Classification Accuracy

Convergence Speed

VGG

ResNet

CIFAR

Monkeys

36

2.3 Attention Mechanism and Adaptive Techniques
on Compressed Domain FGVC

Table 2.4 summarises the core comparisons of the related works in section 2.3
concerning FGVC.

Table 2.4: Summary of literature on attention mechanism and adaptive technique in compressed domain
CNNs.

Literature Domain Methodology

[109] Similarity learning Use distance metrics to compute discriminative
information between subtle features.

[31] [32] Similarity learning Compute bilinear functions.

[33] Similarity learning Compute channel and spatial correlations.

[34] Information exchange Use progressive training to acquire features at different
stages to form higher-level features.

[35] [36] Information exchange Use dual pathway hierarchy to integrate low-level with
high-level features.

[37] Information exchange Combine localisation and fine-grained feature learning.

[110][111] Spatial attention Produce attention mask to highlight features across
spatial locations.

[112] Channel attention Highlight features across channel.

[113] [114]
[115] Channel-spatial attention Study combination of both attention mechanisms.

[116] Spatial attention Study spatial interrelationships across semantic regions.

[117] Channel attention Study integration of global and local context.

[118] DCT-related attention Use DCT to build attention approximation function in
NLP.

[119] Multi-frequency attention
Compute inter- and intra-frequency interactions
between low and high spatial features derived from DCT
using octave convolution.

[120] Frequency domain
attention

Highlight intra-frequency to retain important
frequencies using the frequency domain attention
mechanism (FDAM).

37

2.3.1 Fine-Grained Visual Classification

FGVC is challenging due to the need to recognise subtle differences between
classes. The core techniques involved in solving FGVC-related problems involve
localising and differentiating subtle features via discriminative methods. Similarity
learning and information exchange are reviewed in this section to gather insights that
lead to research gaps as proposed in this thesis.

The bi-similarity network (BS-Net) [109] assumes that fine-grained images can
be distinguished by two or more distance metrics of feature maps by comparing the
query and support images. The two-distance metrics are the Euclidean distance and the
cosine distance. This approach packs the information into smaller feature spaces with
more discriminative feature maps. This is because the feature embedding module
within the network is required to satisfy two different distance metrics. The authors in
[31] addressed the issue of the equal treatment of features in FGVC for high-similarity
subclasses by integrating bilinear CNN with a subclass similarity measurement. A
weakly supervised localisation technique was then used to produce a bounding box
around the object, and a fuzzing similarity matrix was used to compute interclass
similarities. Finally, weighted triplet loss and classifier loss functions were used to
compute the classification. Other similar papers such as [32] also used a bilinear
technique. The work in [33] also exploits feature correlations by focusing on channel
and spatial correlations without dimensionality increment. Similarity learning utilises
domain optimisation and comparative measurements by computing relative metrics to
improve FGVC. However, the learning can be optimised further by conducting FGVC in
the frequency domain. This is because DCTC naturally provides a clear distinguishable
boundary between varying features which can be found in basis functions.

38

Another method to ease FGVC is to effectively obtain and allow information
exchange between global and local features. Progressive multi-granularity (PMG)
training [34] focuses on identifying the most discriminative granularities by adopting a
progressive training process, whereby granularities learned by earlier stages are used to
facilitate the formulation of higher-level fine-grained details at later stages. A jigsaw
puzzle generator is used on the fly during training to create images of different
granularity levels. The authors in [35] showed how the integration of low-level
information with high-level features using a dual pathway hierarchy, can result in a
network that performs better with higher accuracy in locating discriminative regions.
Another paper [36] extends the work beyond combining localised fine-grained features
with global information by leveraging intra-class divergence and similarity. The
literature showed that low-level features are critical in conjunction with higher-level
features in FGVC for better performance. Identically, this provides valuable insights
such that one may expect a combination of different levels of DCTC can ease FGVC in
the frequency domain.

Discriminative part localisation and part-based fine-grained feature learning are
typically solved independently when their inter-dependence could be exploited for
improved performance. In other words, current methods focus on addressing these
problems independently, while failing to realise that region detection and fine-grained
feature learning are mutually correlated and thus can reinforce each other. In [37], the
authors presented an attention object location module (AOLM) and an attention part
proposal module (APPM) to forecast informative locations. The approach combines the
idea of localising and learning fine-grained object parts in solving the FGVC problem.

The prior works on similarity learning and information exchange encourage a
study in the frequency domain FGVC. It identifies a common gap in how one can refine
the DCTC into different levels of frequency coefficients to obtain discriminative features
and combine this information at different stages of the network. It also provides an
opportunity to explore FGVC in the compressed domain, which is an area that is lacking
research.

39

2.3.2 Attention Mechanisms in CNNs

Attention mechanisms [121] are a popular approach used in FGVC. Attention
enables the network to selectively focus on salient regions while diminishing irrelevant
parts. This mechanism enhances fine-grained feature discrimination by highlighting
critical regions within an image. This is particularly important in FGVC due to highly
localised and detailed features, which are usually not uniformly distributed across the
entire image. The application of conventional CNNs to FGVC often leads to poor
generalisation due to uniform feature processing. This can cause difficulty to the model
in terms of capturing fine-grained distinctions. Attention mechanisms address this
limitation by dynamically adjusting the weight of features based on their importance,
allowing for more flexible and focused learning of discriminative patterns. While these
mechanisms significantly improve FGVC performance, they also introduce additional
parameters. This results in increased computational requirements, which can hinder
model deployment. Therefore, it becomes imperative in this study to explore DCT-
based attention mechanisms to achieve both enhanced feature discrimination and
resource optimisation, aligning with the overall goals of this research. Attention helps
the network focus on salient regions and diminish the irrelevant parts. The concepts of
spatial and channel attention which were generally adopted in computer vision are
initially reviewed. This is followed by a discussion on multi-frequency and frequency
domain-related attention. It is essential to review the frequency domain attention
solutions besides the spatial attention ones that were implemented in earlier works to
compare and consolidate the focus of this thesis.

Spatial attention [110][111] focuses on producing an attention mask to amplify
features across spatial locations, while channel attention [112] intensifies certain feature
channels. Spatial attention was frequently used in semantic segmentation and object
detection while channel attention was found in image classification. A combination of
spatial and channel attention was demonstrated in [113] to generate a fusion of ‘what’
and ‘where’ processes, which is reminiscent of computational theories about the human
visual cortex. In [114], some parts of the neural architecture were extended with
channel-spatial attention to get spatial features on top of prior global features. The
global features were included in channel pruning to enhance interdependence between
channels within the same layer [115].

40

Spatial interrelationships among semantic regions were studied in [116] with the
attention module to shift the focus of the model towards highly activated regions while
diminishing focus in low response areas. [117] links global and local contexts via
channel attention to weigh different contexts. Spatial and spectral details were fused
adaptively in [122] in addition to input and delivered to a 3D CNN to produce attention
masks that highlight spectral and spatial characteristics. From the literature reviewed,
many of the recent attention techniques incorporate global and local discriminative
features for different tasks.

A lightweight attention module [123] took channel and spatial attention into
account simultaneously for better flexibility and adaptability. Cross-channel with
spatial interrelationships via two parallel attention modules was used in [124] for
COVID-19 detection. [118] employs DCT properties to build an attention approximation
module for efficient computing in NLP. The approximation is retrieved by performing
IDCT before feeding the resulting features to the SoftMax layer. A similar concept is
shown in [125] by treating the global average pooling from channel attention as a
special case of DCT function decomposition. Other similar works on spatial channel
attention were also implemented on crowd counting [126], cross-channel loss
computation for FGVC [127], dense attention network detection [128] to resolve the
lack of mutual dependency of features, and wavelet attention on high-frequency and
low-frequency information [129].

Multi-frequency attention network [119] generates low and high spatial
frequency components from feature decomposition using 2D-DCT. Octave convolution
was used to compute inter- and intra-frequency interactions for multi-frequency
learning, while frequency channel attention was imposed on each of the high and low-
frequency features. The self-supervised attention filtering and multi-scale features
network (SA-MFN) [130] was used in FGVC. The multi-scale attention map generator
extracts local attention maps and the relative global spatial relationship by providing a
prediction score during scanning. To succeed in multi-scale feature learning, it was
found that it is beneficial to relate the spatial relationship between global and local
details to construct robust local features.

Frequency transformation can be modified to ease pointwise convolution.
Classification. [38] proposed activations transformation by computing pointwise
convolutions in a DCT-based frequency space. Each pointwise layer was replaced with

41

truncated DCT to achieve channel-frequency band pruning. The author developed a
frequency contiguous mask (FC-Mask) with a new trainable parameter to learn the level
of channel-frequency band pruning per layer and per channel during training. This
method allows continuous dense pruning at neighbouring channels, losing only a few
pruned coefficients while achieving efficiency. It was found that a minimal difference is
acquired between this method and the unrestricted channel-coefficient pruning. The
drawback of this approach is the need to compute repeating DCT and IDCT operations.

The frequency domain attention mechanism (FDAM) from [120] utilised intra-
frequency to retain valuable frequencies and suppress the trivial ones. It removed
redundant frequency channels through an understanding of frequency details between
classes using a gate module. [38] utilised 1D CNNs to extract local-channel correlations
on multi-level features while dual attention was used in [131] to combine features from
different branches (locate local and global discriminative features) to produce multi-
scale features. A similar method was adopted by [132] to solve inaccurate region
localisation caused by discriminative regions spread with overlaying local receptive
fields. Two attention modules with depth-wise separable convolutions [133] were used
to capture channels and positional information for garbage image classification
supported by a residual network for improved discriminative classification.

The literature above portrayed the significance of attention mechanisms from the
spatial and channel perspective for image classification. The channel attention
mechanism is considered in this thesis as this research work is intended to focus on
frequency feature extraction. Besides, channel properties are prioritised over the spatial
context in the compressed domain. It was found that the multi-frequency concept and
global-local attention integration are vital techniques implemented in contemporary
attention related networks. This is particularly compelling to be adopted in the
frequency domain as DCT basis functions encode features at explicit frequencies. This
work intends to integrate the multi-frequency and channel attention mechanisms in
compressed domain FGVC to serve several advantages such as reduced parameters for
compression gain. This can build a more robust learning framework that is less likely to
overfit.

42

2.3.3 Adaptive DCT-based CNNs

Several studies have been presented in this section to understand the adaptive
concept in various DL applications. [134] exploits spatial details obtained from the
input at two scales. These features are then rectified according to their channel
importance. It can be seen as an improved pointwise convolution incorporating spatial
context information. A few groups of similar spatial-sized tensors were obtained from
the spatial domain input according to varying channels. A single filter was used to
convolve with these groups to produce a new group of intermediate features. The new
group is stacked and further processed with a ‘context refinement module (CRM)’ to
produce a stage 1 output. A stage 2 output is produced corresponding to stage 1 with
another CRM to produce a group 2 output. The original pointwise convolved output is

compiled with both groups generating a final output. Two 3 × 3 convolutions are

employed in both stages to mimic a 5 × 5 convolution as it uses fewer parameters. In
the ablation study, the author showed that a 2-stage process is the optimal variant of
this method. The multiscale learning technique is similar to the method that is intended
to be explored in this thesis.

Another paper [135] demonstrated the adaptive learning of frequency domain
decomposition and transformation. Frequency attention features were continuously
integrated aside from spatial clues for forgery detection. Soft masks with trainable
parameters which replaced the fixed frequency transforms were utilised to decompose
the frequency features with triplet loss. Inverse frequency transform (inverse DCT) was
conducted after the frequency feature was applied with soft masks. The attention
mechanism was applied to the resulting features and later fused with the original RGB
branch. This technique is similar to the proposed technique, with the difference being
that the whole adaptive kernel is trained on the frequency domain, hence no inverse
transformation is required. [136] explores subject tracking using discriminative DCTC
based on mean estimation of feature distributions.

[137] developed CropNets to acquire feature map patches by cropping at multiple
stages. Skipped branches were used from intermediate features toward the network
output with different loss functions. The network consisted of a 3-stage coarse-to-fine
coordinate regression framework and facial landmark location was refined in each
patch obtained from lower-level feature maps. Image super-resolution by processing
features at different frequency scales effectively with coarse-to-fine matter was

43

presented in [138]. This method implemented a progressive frequency domain module
(PFDM) and convolution-guided module (CGM) by incorporating frequency features
with discriminative properties to compensate for detail loss. Hyperspectral image (HSI)
classification [139] used multi-level feature extraction on the spectral-spatial attention
model to resolve inhomogeneous pixels or inherent spectral correlation in HSI
classification. A similar frequency domain HSI classification approach using a complex
value wavelet network was presented in [140] to convert efficient features into
frequency domain complex values to enhance the robustness and generalisation of
CNNs. A gated RNN architecture forming a small hybrid model for HSI classification
was also reported in [141] to fuse spectral and spatial information.

A special spectral rectified linear unit (SReLU) activation function was designed
in [142] to perform computation in the frequency domain to avoid domain switching.
The solution involves optimisation by using low-frequency coefficients [143] that
adaptively fuse features acquired from FFT and low-pass filter weighting (spatial and
channel) and aims to generate enhanced discrimination of image representations for
better retrieval accuracy. [144] uses a DWT/IDWT layer to replace down-sampling
operations in CNN to reduce aliasing effects thus improving noise and adversarial
robustness.

Several papers have demonstrated adaptive methods in CNNs. However,
research on the adaptive learning of DCT basis functions is currently lacking in DCT
domain CNNs, not to mention the possibility of employing adaptive learning algorithms
on DCT basis functions for FGVC. Hence, the need to investigate adaptive learning of
DCT basis functions forming the frequency domain kernel in CNN for FGVC is strongly
supported.

44

2.4 Fundamental Concepts

2.4.1 Basics of CNN and DCT

The convolution is a mathematical operation that combines two sequences to
produce a third sequence by sliding a small filter over the input sequence. It intends to
highlight certain patterns or features in that sequence. Often, the mathematical
procedure induces multiplying the filter’s values with the corresponding portion of the
input sequence at each step and summing up the results. In deep learning, 2D
convolution is widely used in CNNs for image recognition. A collection of hierarchy
representations is formed when multiple deep convolutions are stacked together
forming a CNN. Combining higher-level features, a CNN learns local representations
efficiently by conducting 2D convolution by sliding a spatial filter (kernel) across the
input image. The corresponding output feature maps determine the presence or
absence of particular patterns in different spatial locations, forming spatially correlated
relationships.

The convolution theorem states that the Fourier transform of a convolution is the
pointwise product of the Fourier transform of each function. In other words, it is
possible to conduct convolution in the frequency domain according to this theory. This
was demonstrated in [28] and later in [101]. The frequency-related CNN is named
FCNN. The strategy of implementing the Fourier domain in CNNs is by applying FFT
towards the spatial kernel and feature maps, then applying a pointwise product across
the two functions. By integrating FFT into CNNs, a frequency domain learning
framework is formed, whereby a CNN is trained to capture frequency components
instead of spatial contents. In the frequency domain CNN, a frequency representation of
kernels and features separates the content into low and high bands, derived from a
combination of consistent Fourier-related functions at specific frequencies. This allows
multiscale analysis of features composed at different frequency ranges. An image or
feature commonly has sparse representation, where several frequency components
contribute heavily to the overall content. This is particularly beneficial when conducting
convolution in the frequency domain, often shortening the lifecycle of CNN
development. Table 2.5 tabulates the basic differences of spatial and frequency domain
CNN.

45

Table 2.5: Comparison of spatial and frequency domain CNN.

Aspects Spatial domain CNN Frequency domain CNN

Theory Highlight spatial features
across the input sequence

Capture frequency components at a specific
range

Working strategy Sliding filter across entire
input feature

The dot product between two Fourier
transformed functions, i.e. kernel and feature

Significance Emphasise spatial correlated
relationships

Emphasise multiscale frequency compositions

Real-world data, particularly images, often exhibit real-valued and correlated
structures in their spatial context. A compressed JPEG image is formed by conducting
forward 2D-DCT towards an RGB image, whereby an intermediate form of frequency
image representation can be cultivated. The frequency domain image representation is
constructed by DCTC. Although DCT is part of the Fourier transform, it focuses on real-
valued signals only. While the Fourier transform operates on complex numbers, the
DCT produces a set of real coefficients. This property is advantageous when dealing
with images that inherently possess real-valued attributes.

Fourier-related CNNs are not widely found in recent CNNs as FFT consists of
imaginary parts which can affect the interpretability of a CNN. Moreover, the
substitution of FFT and a pointwise product in the convolution layer requires the
repeated computation of forward and inverse FFT. The inverse FFT is required to
transform the data back to the spatial domain at the end of the network. As such, the
implementation of frequency domain CNN by consuming image DCTCs is a more
practical option. A DCT-related CNN takes DCTCs as input instead of raw pixel values.
It learns features directly from DCTCs to capture information relevant to compression
and frequency-related characteristics. The key benefit of DCT over the Fourier
Transform is its strategy of handling content using real values. Table 2.6 compares the
differences between Fourier- and DCT-related CNN.

46

Table 2.6: Comparison between Fourier- and DCT-based CNN.

Aspects Fourier CNN DCT CNN

Transform Domain Complex Real

Feature representation Global features Local features

Computational complexity Higher Lower

Besides taking DCTCs into a DCT-related CNN, the DCT technique is also widely

applied in many parts across the CNN, such as pooling layers, kernels, and feature
maps. Such a process intends to achieve different objectives. In this thesis, the DCT
strategy is adopted and modified to be implemented in the kernel and feature maps for
its advantages over other frequency strategies, which include a broader feature
representation in higher-level frequency bands and kernel analytics at different depths
of a CNN. In essence, it is intended to establish the foundational concept of DCT in
CNN for FGVC. Table 2.7 summarises the key areas where a DCT-based strategy is
implemented along a CNN.

Table 2.7: Implementation of DCT-based strategy and its significance in a CNN.

Aspects Significance

DCT in pooling layers Resolve heavy information loss

DCT in kernels Kernels formed by DCTC are sparse hence reducing model size

DCT in feature maps Convolutional kernels learn frequency compositions

instead of local representations

47

2.4.2 Attention Mechanism involving Frequency
Properties

Deep learning attention mechanisms are inspired by human visual attention.
They allow a neural network algorithm to focus on specific sections of the sequence
rather than the entire input series. The working strategy of the attention mechanism
usually involves assigning dynamic weights to different parts of the input sequence,
thus allowing the model to pay more attention to relevant information. An early
motivation behind attention mechanisms lies in the desire to enhance the ability of
neural networks to process and understand sequential data, which is crucial as it
improves the interpretability on specific instances within a series of data.

The attention mechanism is particularly useful in neural networks such as RNN
and CNN. Conventionally, RNNs such as LSTM and GRU suffer from vanishing
gradient and exploding gradient issues. In LSTM, attention weights are associated with
the hidden states of the encoder to reflect the relative importance of each state during
the decoding process. Similarly, attention weights are computed based on the relevance
between each hidden state with the current decoding step in GRU. The weighted sum of
the encoder states based on the attention weights is then used to generate a prediction.
In both cases, the attention mechanism helps the model to handle long-range
dependencies more effectively. It has proven to improve the performance of
applications such as NLP and prediction in the early stage of the deep learning NLP
renaissance.

Attention mechanisms have also found their way into CNNs in the application of
computer vision, especially FGVC. Typically, FGVC contains hard-to-classify objects
where the intra-class difference is minimal. The use of attention in CNNs aimed to
improve the network’s ability to focus on relevant fine-grained object regions for
effective feature extraction. The basic approach for integrating attention into CNNs is
by applying the attention module at various stages across the network, including before
or after convolutional layers. This involves optimising learnable parameters to highlight
the most prevalent features.

48

In DCT-related CNNs, the feature channel which consists of frequency-related
information is usually derived from hierarchy-convolved DCTC. By applying attention
to feature channels in a DCT-related CNN, the attention module focuses on capturing
specific frequency components relevant to the task instead of regional features relating
to the spatial context. The working strategy of implementing channel attention in DCT-
related CNNs is similar to the one in spatial domain CNNs. This is done by assigning
learnable parameters across the convolutional layers. In this thesis, the attention
weights are applied to the frequency channels after the convolutional layer. It is
intended to ease the model to focus on more significant frequency components relating
to the fine-grained features of FGVC. Attention to frequency analytics provides several
benefits over the spatial domain such as improved model robustness.

In Table 2.8, a summary of the highlights, significance, and outcome between the
attention mechanism applied on spatial domain CNNs and DCT-related CNNs is
established.

Table 2.8: Differences between attention mechanism on a spatial- versus DCT-based CNN.

Aspects Attention on spatial domain CNN Attention on DCT-related CNN

Highlights Focus on regional features relating to
spatial context

Focus on frequency-related components

Significance Relevant parts derived from hierarchy-
convolved feature maps of spatial
context

Relevant information derived from
hierarchically convolved representations
relating to DCTC

Outcome Improved regional feature
discrimination involves spatial context

Improved frequency component
discrimination and interpretability

49

2.5 Summary

From the literature reviewed, it is prevalent that network performance can be

improved through the right combination of features at different scales. While similarity
learning and information exchange provide insights into feature communication in the
spatial domain, the exploration of learning different frequency coefficients is notably
absent in DCT-related CNNs. It is particularly essential to consider multiple ranges of
frequency coefficients in addressing a gap in compressed domain FGVC. While
pointwise convolutional filters in residual learning prove efficient and robust in DCT-
related CNNs, their limitation lies in the inability to incorporate spatial context on top
of the frequency features. This gap prompts an interesting exploration of adopting DCT
to form the pointwise convolutional filters that encapsulate both spatial and frequency
contexts. Additionally, an attention mechanism has proven its importance in enhancing
feature extraction in FGVC, yet the lack of correspondence between the highlighted
signals calls for a deeper understanding. Henceforth, it is imperative to study the
relationship between the focused frequency components produced by an attention
mechanism. The identified research gaps from the literature review can be summarised
as follows:

• The limitation of discriminative learning in DCT-related CNNs, especially involving
frequencies beyond L-DCTC.

• The absence of spatial and frequency analytics in the pointwise convolutional kernel
within DCT-related CNNs.

• The need for interpretability regarding the correspondence and relationship
between highlighted signals produced by an attention mechanism.

50

In essence, this study explores the potential framework of compressed domain
CNNs to bridge these research gaps in frequency domain-related CNNs. Furthermore, it
aims to underscore the importance of striking a balance between frequency analytics
and compression gain. Resource optimisation is a critical focus in deep learning
research, aimed at balancing model performance with the efficient use of computational
resources. It not only reduces the financial and environmental costs associated with
model training and deployment but also democratises access to advanced AI
technologies. By making optimised models more accessible, industries and researchers
with limited resources can benefit from deep learning advancements. As deep learning
scales across diverse applications, resource efficiency becomes essential to ensure
sustainability and practicality without compromising model effectiveness. Additionally,
resource-optimised models are crucial for operating in environments with limited
computational power, such as mobile devices or embedded systems, while still
managing complex tasks like fine-grained classification. Achieving this scalability
allows the models to be adaptable for both large-scale systems and constrained
environments. By reducing the number of parameters, optimising computational
operations, and integrating efficient mechanisms like DCT-based strategies, it is
possible to develop models that maintain or improve performance while significantly
enhancing computational efficiency.

51

Chapter 3 Methodology
3.1 Overview

Fine-grained visual classification (FGVC) [145] focuses on using deep learning
models to classify hard-to-distinguish object classes such as species of animals or
identifying certain models of vehicles. FGVC domain typically exhibits low inter-class
variance and high intra-class variance. The major challenges include locating fine-
grained object parts and emphasising the learning of those fine-grained features. Fine-
grained feature localisation is more challenging when the pose of an object changes.
Most FGVC solutions follow the process of finding foreground objects or parts (where)
to extract discriminative features (what).

In recent years, relatively little research has focused on FGVC. Recent literature
often emphasises the localising [146] and attention [33] of the most discriminative
features within the fine-grained images [147]. Most of the discriminative methods tend
to employ multiple models (two models for bi-similarity networks, and three models for
triplet loss function). Although the models use shared weights, network complexity is
still a potential issue. Several papers have been working on metric learning [148][149]
or similarity learning [109][150][151] for FGVC. The few-shot learning based on metric
learning has become more popular in FGVC [33] for its ability to address the problems
of differentiating FGVC features from small datasets. Through preserving the
relationships embedded in feature space, it allows the model to generalise well and only
requires very little instances per class for training. Although the classification
performance is on par with benchmarks, the existing methods do not fully address fine-
grained feature learning issues.

In FGVC, spatial information is found to be less informative compared to order-
less descriptors. Regardless of the learning techniques or modules used, the properties
of the input domain and the corresponding feature representation could be a factor
hindering the relative ease of fine-grained feature learning. Varying the input domain or
feature map representation can potentially ease the network to classify fine-grained
images. This is because, with different input domains, the model is encouraged to learn
different feature representations, thereby fostering the emergence of different
properties with richer higher-level representations.

52

Motivated by the proven benefits of frequency domain representation, this thesis
starts with formulating input representation in the frequency domain to cover the
research gap on medium frequencies. In the spatial domain of natural images, higher
frequencies encode fine details while lower frequencies encode coarse features. The
usage of DCT coefficients for representing images allows higher-level feature
representations to be learned at earlier parts of a network. Moreover, DCT excels in
energy compaction and frequency separation. Thus, it can ease a network to learn a
compact and robust feature when it uses DCTC inputs as compared to RGB.

Inspired by the concept of metric learning on emphasising subtle feature
discrimination yet sustaining variability between features, this thesis initially focuses on
exploiting low and medium-frequency DCT coefficients via branching architectures in
the FGVC domain. Learning the features individually allows the network to extract
discriminative content, while combining these features at the latter part of the network
bridges the two approaches. More explicitly, it is proposed that by combining the
features extracted from low DCTC (L-DCTC) with medium DCTC (M-DCTC), the
discriminative feature learning procedure can be significantly improved whilst
enhancing the conventional approach that utilises multiple models for discriminative
classification. Henceforth, it is hypothesised that the integration of a skipping
connection that carries M-DCTC with a deeply convolved L-DCTC for FGVC will
outperform the standard solution that does not integrate medium frequency
coefficients. This is because the classifier can take advantage of fine-grained features
through shallowly convolved M-DCTC.

CNNs are known for their capability to capture local correlations in a feature
map. Existing works on compressed domain CNNs have focused on convolving either
the input [101] or the feature maps [105][152][23] in the frequency domain. Frequently,
the compressed domain CNN involves the forward and/or inverse 2D-DCT (DCT/DCT-

1) to obtain the spatial or frequency information. Figure 3.1 shows the 2D-DCT
(DCT/DCT-1) being applied in one or more processes along the compressed domain
CNN including the input, filter, and output.

53

Figure 3.1: Forward and inverse 2D-DCT implemented along the compressed domain CNN.

Figure 3.2 compares the major works on compressed domain CNN. Figure 3.2(a)

shows the conventional CNN uses RGB kernel (𝒦GHI) to convolve with RGB input

features (XGHI) to obtain a RGB output feature map (YGHI). Figure 3.2(b) shows the

inverse 2D-DCT (DCT$2) applied on the DCT kernel (𝒦:JK) during the forward pass to

generate the spatial domain kernel (𝒦GHI) to convolve with the spatial domain features.

Figure 3.2(c) shows the forward 2D-DCT (DCT) is used to convert the RGB feature map
into the DCT domain before forwarding to the network, and the convolving output is
converted back to the spatial domain via inverse 2D-DCT. The spatial kernel in Figure
3.2(d) is produced from cosine bases whereby the trainable parameters are the
frequency parameters (amplitudes, frequency, phases).

Figure 3.2: Comparison of different DCT-based approaches for compressed domain CNN.

54

The DCT technique is commonly found in two parts across compressed domain
CNNs, particularly the feature map and the convolution kernel. In this thesis, the
frequency domain input and feature maps are referred to as the ‘DCT input’ and the
‘DCT feature maps’. The DCT input is obtained by performing forward 2D-DCT-II on

the RGB image (commonly with an 8 × 8 block-wise partition), while the DCT feature
maps are the collective convolutional result of the DCT input. It is well known that most
compressed domain networks that accept DCT input are constructed using a fully
pointwise convolutional block. Pointwise convolution can handle complex feature
transformations due to its non-linearities when correctly composed. Although
pointwise convolution ignores explicit spatial correlations, it provides advantages in
terms of feature channel representations.

However, solely using the pointwise convolution in compressed domain CNN
brings limitations in terms of spatial analytics. This is because pointwise convolution
falls short of recognising local correlation patterns consisting of spatial context. The
spatial combination of DCT basis functions from neighbouring coordinates in a trivial
manner is not feasible, although each basis function represents a specific set of spatial
correlations. Moreover, the DCT input and the DCT feature maps are the results of
block-wise partition pixels, causing decorrelation and block-wise partition disjoints,
therefore the learning process is biased towards the feature channel. Thus, it is crucial
to identify and leverage the common interval between spatial and frequency context to
enhance the robustness of kernel analytics in the compressed domain.

In compressed domain analytics, the conversion between spatial and frequency
domains occurs through 2D-DCT, where the DCT basis functions serve as the
intermediary for this process. The basis functions govern the fundamental properties
and behaviour of the corresponding frequency representation. Particularly, it expresses
the representation by incorporating spatial and frequency components. To enhance the
robustness of pointwise convolutional kernels for spatial analytics, it is mandatory to
consider the modification of basis functions during the intermediate phase of forming
the pointwise convolutional kernel. Recognising the importance of DCT basis functions,
this research advocates for an innovative approach: the modification of these basis
functions to compose a robust pointwise convolutional kernel capable of spatial and
frequency analytics. To address this challenge, the proposed technique involves
assigning weights to each spatial and frequency base of the DCT-BF during the kernel
formulation. This novel approach is called ‘Adaptive DCT (Adapt-DCT) Pointwise

55

Convolution’. It is implemented within M-Skipped DCT-CNN and aims to address the
inherent limitations of conventional pointwise convolution in handling both frequency
and spatial aspects effectively. The adaptive nature of the Adapt-DCT kernel allows the
following distinguishable differences over the prior pointwise convolutional kernels
being investigated: (1) a subset of DCT basis functions is emphasized and selected to

form the final pointwise convolution kernel; (2) the adaptive kernel (𝒦KL) serves as
trainable weights to multiply (element-wise) with the modified DCT basis functions; (3)
the original coefficients for the DCT basis function are no longer available since they are

replaced by 𝒦KL.
Attention mechanism has found its way into computer vision [121] for its

capability to accentuate discriminative characteristics in various visual recognition
tasks, especially fine-grained visual classification (FGVC) [153]. Several contemporary
attention-related methods cover channel attention and spatial attention
[114][124][125][154][155]. Channel attention is good for image classification while
spatial attention is advantageous for segmentation and object detection. Other popular
attention-related methods are convolutional block attention module (CBAM) [113][156]
and Squeeze and Excitation Net (SE-Net) [112].

The implementation of FGVC in the DCT domain is challenging due to the subtle
details encoded in the DCTCs. DCT is the key ingredient in frequency domain-related
convolution neural networks (CNN) for its advantage of packing features with a high
level of compactness to achieve compression. However, in the DCT domain, most of the
DCTC of frequency bases are encoded into the channel dimension. Since DCT naturally
destroys the neighbouring spatial correlations of a spatial context, a spatial attention
mechanism with convolving or masking properties is less effective in locating fine-
grained features. Most of the existing works as reviewed in Chapter 2 relating to DCT
attention only deal with spatial domain input and networks, such as [118] uses DCT in
self-attention for natural language processing while [125] treats the normal channel
attention as the special case of 2D-DCT.

Henceforth, it is arguably appropriate to focus on modifying channel attention as
channel properties outweigh spatial properties in the DCT domain CNN.
Implementation of direct channel attention towards DCT feature maps not only
increases trainable parameters but also further causes non-linear projection between
features and attention weights in SE-Net. Therefore, this thesis focuses on exploring the
channel attention mechanism in a slightly different approach: Can the channel

56

attention module in the DCT domain be modified to capture the interaction of
discriminative DCT-related properties effectively?

Since the introduction of M-Skipped-DCT CNN, the channel dimension of the
DCT feature maps is viewed as a sequential-ordered tensor consisting of low, medium,
and high DCT coefficients (LMH-DCTC). Instead of using channel attention to capture
depth-wise DCT features directly, an alternative approach is developed. Following the
similar perspective of adaptively weighting the DCT basis functions to acquire different
DCT bases in Adapt-DCT CNN, a novel idea of exploiting intra-group DCT channel
relationships is proposed. This method aims to cultivate attention based on intra-
channel LMH-DCTC sets to produce an attention map that encourages the network to
emphasize the relationship changes within varying groups of DCT channels. By utilising
the attention mechanism on the interaction of LMH-DCT feature maps, it was shown
that it is possible to improve the performance without increasing model complexity. In
other words, it is exceptionally crucial to incorporate attention mechanisms into the
Adapt-DCT CNN with a DCT input image (input image with DCT coefficients) to
understand the effects on several FGVC datasets.

The efficient channel attention (ECA) [156] is an improvised attention
mechanism originating from SE-Net where it avoids dimensionality reduction and
emphasizes cross-channel relationships. The working strategy behind ECA is to conduct
fast 1D convolution between the kernel and feature channel to produce a channel
attention map. Since DCTC carries a compact feature representation where the
redundant feature is filtered, therefore explicit dimensionality reduction could be
unnecessary as it may cause undesired information loss. Besides, the avoidance of
dimensionality reduction is important for learning channel attention based on [156].
This is relatable as the fine-grained DCT features are deeply encoded in the channel
dimension. The cross-channel interaction in DCT features is important as it gathers
frequency correlation across channels forming complex patterns and relationships that
can ease FGVC. Moreover, the cross-channel interaction can retain the performance
and robustness of a model. In Table 3.1, comparison metrics between CBAM, SE-Net,
and ECA extracted from [156] are computed to present the reason behind selecting ECA
as the baseline module in this research.

57

Table 3.1: Metrics comparison between three attention modules for selection criteria.

Metrics

Architecture

Dimensionality
Reduction

Cross-channel
Interaction

Lightweight Model

SE-Net [112] ✓ ✓ ✘

CBAM [113] ✓ ✓ ✓

ECA [156] ✘ ✓ ✓

It is clear that by considering the comparison from Table 3.1, it is particularly

relevant to pick ECA owing to its modularity, criteria, and efficiency over the other
attention mechanism alternatives. Hence, ECA is selected for its ability to capture
individual cross-channel interactions and reduce model complexity, which is aligned
with our objective.

The ECA is employed as the baseline attention module on top of the Adapt-DCT
CNN with several tweaks. Similar to the original proposed ECA to capture the local
cross-channel interaction, the ECA module is further adjusted to obtain the intra-group
DCT channel interaction. Specifically, a larger size of the 1D convolution kernel and
stride size is used as compared with the former ECA to harvest the intra-group DCT
channel interaction and maximize the correspondence of DCT channel sets and weights.
The ECA that is altered to suit Adapt-DCT CNN is called ‘Hybrid Modified-ECA’
(HyMod-ECA) which enhances the former ECA.

Figure 3.3 illustrates the overview of the HyMod-ECA module. Provided the

input feature (X) to acquire a 1D vector (Xi) via global average pooling (GAP), X is viewed
as a sequential order of tensors consisting of different DCTC channel sets (best viewed

in colour) separated by multiple thick lines. These grouped channels produce Xi, which
is referred to as the ‘aggregated DCT channel set’. The number of available DCT channel

sets is represented by J
M
 (more details in the following section). The DCT channel set

weights (Ai) are produced by performing a 1D convolution between Xi and the 1D kernel

(K), whereas the 1D kernel size is determined by the number of DCT channels per set (f).

58

Figure 3.3: Overview of the Hybrid Modified Efficient Channel Attention (HyMod-ECA). The thin line

separates individual channels, while the bold line separates channel groups.

In the following section, the methodology and experimental design of the M-

Skipped network, the Adapt-DCT convolutional kernel, and the HyMod-ECA module
are established. The M-Skipped DCT CNN is designed to integrate frequencies beyond
L-DCTC to improve FGVC in the compressed domain. Due to the limitations associated
with conventional pointwise convolutional kernels in the context of compressed domain,
the Adapt-DCT kernel is introduced and integrated into the prior M-Skipped network.
To study the interactions between the convolved frequency features generated by the
enhanced network, the HyMod-ECA module is further incorporated into the existing M-
Skipped network which already encompasses the Adapt-DCT kernel. The synthesis of
each developed algorithm within this framework combines the compressed domain
approaches to address the specific challenges encountered in FGVC.

59

3.2 Skipped Medium-DCT Convolutional Neural
Network

The motivation to introduce the skipped M-DCT branch to the baseline CNN
model in a compressed domain is to enable fine-grained communication between low-
and high-level features. The foundational concept of skipping layer is motivated by [113].
This skipping methodology offers great flexibility in adjusting skip lengths to enable
feature exchange at multiple scales. It fits the objective of this research on exploring the
effects of integrating M-DCTC with different parts of the baseline network. The shortcut
connections from ResNet and DenseNet aimed to address the gradient vanishing
problem and enhance feature reuse. These skipping layers are not employed as they do
not serve the purpose of this research.

The skipped M-DCT convolutional neural network consists of a baseline CNN
network attached to a skipped convolutional branch. The skipped convolutional branch
is targeted to extract intermediate fine-grained features. The L-DCTC input is fed
through the CNN model based on pointwise convolutional blocks. The M-DCTCs are fed

through (bypass) another 1 × 1 skipped convolutional layer (with batch normalization
and activation function). The skipped convolutional layer’s output is then concatenated
with the intermediate output feature maps from the baseline network. The subsequent
combined feature maps are then fed to the classifier. Figure 3.4 shows the basic
integration of M-DCTC with the convolutional features. The fine-grained features (M-
DCTC) are retained in the elementary form by passing the M-DCTCs through a
convolutional layer. It is intended to combine low- and high-level features to improve
feature representation and model robustness.

60

Figure 3.4: Basic illustration of the integration of M-DCTC with baseline convolutional network.

3.2.1 Low, Medium, High DCTC Representations

This work employs partial CODEC on JPEG images during training to obtain
DCTC as input to the network. In particular, the datasets comprising raw RGB images
undergo a process of partial compression. The formulation below demonstrates the
process and the separation of low, medium, and high DCTC (LMH-DCTC).

Let Equation 3.1 denote the tensor comprising raw RGB images in the spatial
domain, while Equation 3.2 represents the input tensor in the frequency domain.
Equation 3.3 provides a fundamental overview of the conversion of raw RGB image data
from spatial to frequency (DCT) domain:

𝑋N ∈ 𝑅O×Q×R Eq. 3.1

𝑋0 ∈ 𝑅
O
S×

Q
S×S

!×R" Eq. 3.2

ℋ->$>TU(𝑋N) = 𝑋0 Eq. 3.3

61

Function 𝐻 represents a forward 2D DCT with 𝑝 × 𝑝 partition, where ℎ and 𝑤

represent the height and width of the input tensor respectively, 𝑐 and 𝑐′ refer to spatial
channels and frequency channels respectively. The conversion of the spatial domain

input 𝑋N to the frequency domain input 𝑋0 requires 2D forward DCT, which is the core
of JPEG compression. The conversion of the input tensor from the spatial domain to the

frequency domain will shrink the spatial dimension from ℎ × 𝑤 to O
S
× Q

S
, and extend the

channel depth to (𝑝-). The depth-wise coefficients (𝑝-) are derived from the sum of the
DCT basis functions across that partition block.

Regarding the idea of the top left portion of the 𝑝 × 𝑝 partitions representing L-
DCTC and the bottom right representing high DCTC, we derived the zigzag encoded

1 × 𝑝- DCTCs are arranged in ascending order from low to high DCTC. Fundamentally,
L-DCTC corresponds to coarse and slow varying features while H-DCTC corresponds to
rapidly varying features (often noise). DCTC pruning techniques typically suggest that
the most useful L-DCTCs are found in the first 12 coefficients. Some early literature
[157][158][159][45] performed similar DCTC factorizations based on different ratios but
those works were not applied to FGVC. This section takes the initiative to perform a
split of four to factorize LMH-DCTC. Specifically, a dedicated factor of two is allocated
for M-DCTC which potentially encapsulates more fine-grained features.

Zigzag encoding was used to convert the 𝑝 × 𝑝 partition into a 1 × 𝑝- depth-wise
DCTC representation after the 2D forward DCT step. Following the zigzag encoding

pattern for each 𝑝 × 𝑝 partition, as shown in Figure 3.5, this method explicitly defines

the first S
!

V
 DCTCs as L-DCTC, the intermediate S

!

-
 DCTCs as M-DCTC while the last S

!

V

coefficients as H-DCTC. Figure 3.5 explains the factorization pattern of a 𝑝 × 𝑝 DCT
partition.

62

Figure 3.5: Low, medium, and high DCTC factorisation. After 2D-DCT and zigzag encoding, the 1D vector
is factorised along the channel direction.

For a single channel of spatial input with 𝑝 × 𝑝 partition at an arbitrary location

of (𝑖, 𝑗), forward 2D-DCT will map the spatial input of {𝑥N,WXYZ , ⋯ , 𝑥N[S,W[SXYZ } to a frequency

domain of {𝑥/,0>TU , ⋯ , 𝑥/[S,0[S>TU }. The zigzag encoding will map the frequency partition

block to {𝑥3>TU , ⋯ , 𝑥S!$2
>TU }, with 𝑥Q>TU indicating the instantaneous index from the depth-

wise vector. The entire partition restructure can be written as:

From the 𝑝-depth-wise DCTCs, we factorize 𝑋0 along the 𝑝- dimension into low

(𝑋\$>TUT0), medium (𝑋]$>TUT0), and high (𝑋^$>TUT0) DCTC representation with the

following notation:

Where they share the same spatial tensor of size as 𝑋0, with different depths
along the channel dimension. The resulting LMH-DCTC tensor input representation is
shown as follows:

u𝑥N,WXYZ , ⋯ , 𝑥N[S,W[SXYZ v ↔ {𝑥Q>TU , ⋯ , 𝑥S!
>TU} Eq. 3.4

𝑋0 = {𝑋\$>TUT0 , 𝑋]$>TUT0 , 𝑋^$>TUT0 } Eq. 3.5

63

With 𝑝 = 8 in a standard JPEG compression, compressing a 8 × 8 partition will
produce a corresponding channel with a depth of 64. An even ratio split of 4 supplies L-
DCTC with 16 DCTC, which is more than the fundamental requirement to fully

represent the contents within a particular 𝑝 × 𝑝 partition. M-DCTC is given 32
coefficients while H-DCTC is given 16 coefficients. Since an RGB input consists of 3

channels, applying forward 2D-DCT on an 8 × 8 × 3 partition will produce the
corresponding channel with a depth of 192.

3.2.2 Baseline Network Setup

This thesis adopts the VGG-16 architecture as the baseline model due to its
simplicity and proven effectiveness. The uniformity of its architecture can simplify the
design process, rendering it to be a versatile apparatus for this research when compared
to other SOTA networks. Notably, the VGG-16 architecture excels in interpretability.
Thus, it is convenient to facilitate a thorough analysis of its behaviour across various
contexts. By leveraging the VGG-16 as a baseline model, it prompts an early insight and
focus on the DCT technique that addresses the objective of this research without
considering the need for exhaustive evaluations across an extensive array of SOTA
networks. The substitution of VGG-16 with other SOTA networks such as Mobile-Net or
Res-Net with M-Skipped-DCT architecture is straightforward.

In the compressed domain, more emphasis is put on DCTC depth-wise feature

representations over spatial correlations. In essence, a 1 × 1 convolution kernel that
emphasises depth-wise context can achieve increased parameter savings compared to a

3 × 3 convolution kernel. Hence, a pointwise convolution filter was used in the

experiments given its superior performance. Convolutions based on 3 × 3 kernels were

also explored but it was found that 1 × 1 performed better. Consider the ratio below to

𝑋\$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟒 ×R

"
 Eq. 3.6

𝑋]$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟐 ×R

"
 Eq. 3.7

𝑋^$>TUT0 ∈ ℝ
O
S×

Q
S×

𝒑𝟐
𝟒 ×R

"
 Eq. 3.8

64

compare the increment in trainable parameters from using 3 × 3 kernels over 1 × 1
kernels:

Where 𝑛 represents the number of depth-wise filters. With a single convolution

layer, a 3 × 3 kernel has 9 times more trainable parameters compared to a 1 × 1 kernel.
The VGG-16 architecture consists of 3 convolutional layers per block, with a total of 3
convolutional blocks, which translates into significant parameter savings, leading to a
reduction of both training time and energy consumption and a lower probability of
overfitting.

In most of the general image classification tasks, VGG-16 typically accepts an

RGB image input with a spatial size of 224 × 224 and a channel depth of 3. This thesis

processes the spatial input with forward 2D-DCT using an 8 × 8 partition, resulting in a

DCTC input with a spatial size of 28 × 28 and a channel depth of 192 [100]. To properly
fit a DCTC with a smaller spatial size and larger channel dimensionality, the third
convolutional block from the original VGG-16 algorithm which accepts an input spatial

size of 28 × 28 was used as the initial block to process this input. This adheres to the
VGG algorithm’s convention of preserving the spatial size and channel depth in each
successive convolutional block, facilitating a systematic and effective extraction of
hierarchical features. This also ensured that the spatial size of the final output before
flattening the layer was the same as the original RGB version of VGG-16. In summary,
in this thesis, a total of 3 convolution blocks from the original VGG-16 network were
used instead of 5, i.e. convolution blocks from the third to the fifth stage.

The ‘Parametric Rectified Linear Unit’ (PReLU) was selected as a key activation
function over the original ‘Rectified Linear Unit’ (ReLU) for all of the convolutional
layers in the primary network, while the M-skipped branch implemented ReLU. Figure
3.6 compares the activation responses of both ReLU and PreLU. This is in conjunction
with the feature scaling of the compressed domain images into the range from -1 to +1.
PReLU also provides a larger activation function region along the negative portion of
the input to facilitate the learning process.

𝑅𝑎𝑡𝑖𝑜 =
3 × 3 × 𝑛
1 × 1 × 𝑛 = 9 Eq. 3.9

65

Figure 3.6: Activation function comparison between (a) ReLU vs (b) PreLU). PreLU allows the negative
response of the network to continuously learn.

In addition, our model also avoids using fully connected layers at the end of the

network. Preliminary experiments showed that the inclusion of fully connected layers
sometimes resulted in minimal to no performance improvement, and at other times
resulted in worse performance. Moreover, these layers contribute a significant number
of additional parameters. Hence, the final concatenated output feature maps are fed
directly into a linear Softmax layer after flattening. A more detailed experiment can be
found in the ablation study in section 4.1.3.

Table 3.2 shows the modified version of the VGG-16 model in the DCT domain.

The abbreviations of [𝑓, 𝑘, 𝑠, 𝑝] indicate the number of filter channels, kernel size, stride
size, and padding respectively. The number of layers in a convolutional block is usually
in the power of two due to hardware efficiency. Since the corresponding DCTC input
from an RGB image consists of 192 channels, thus 256 filters are dedicated to the first
convolutional block, and 512 filters are used in the second and last block. The number
of baseline filters for each convolutional block was kept the same across all experiments
to avoid discrepancy. The M-skipped connection can be concatenated with any of the

output feature maps from the original baseline network marked ‘*’.

66

Table 3.2: VGG-16 baseline model.

Layer [𝒇, 𝒌, 𝒔, 𝒑] Output Details

Conv1_1, 2, 3 [256, 1, 1, 0] 28 × 28 × 256 3x layer

2D Max-pooling [-, 2, 2, 0] 14 × 14 × 256* -

Conv2_1, 2, 3 [512, 1, 1, 0] 14 × 14 × 512 3x layer

2D Max-pooling [-, 2, 2, 0] 7 × 7 × 512* -

Conv3_1, 2, 3 [512, 1, 1, 0] 7 × 7 × 512 3x layer

2D Max-pooling [-, 2, 2, 0] 3 × 3 × 512* -

Concatenate - 14 × 14 × 256 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)a

7 × 7 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)b

3 × 3 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟)c

Connection from the
output of the M-Skipped
Branch can be
connected to any of the
output with *

Classifier - Class number -

a. When M-skipped is connected to the output feature map of Conv1_3, the input towards Conv2_1 will be 14 × 14 × 256 +

(𝑀𝑓𝑖𝑙𝑡𝑒𝑟).

b. When M-skipped is connected to the output feature map of Conv2_3, the input towards Conv3_1 will be 7 × 7 × 512 +

(𝑀𝑓𝑖𝑙𝑡𝑒𝑟).

c. When M-skipped is connected to the output feature map of Conv3_3, the linear input towards the final classifier will be

3 × 3 × 512 + (𝑀𝑓𝑖𝑙𝑡𝑒𝑟).

67

3.2.3 M-Skipped DCTC Branch

This section demonstrates the feature representation between the M-Skipped
DCTC and the deeply convolved L-DCTC. The basic idea is to deliver a lower-level
feature representation based on M-DCTC to the higher-level feature by using a skip
connection. L-DCTC represents coarser features while M-DCTC represents finer
features. The full spectrum of L-DCTCs is obtained from the factorisation and fed into
the main network instead of using a pruning technique. This is because it provides the
convolutional layers the flexibility to select which features to use from the full spectrum
of L-DCTCs.

There are a few ways to integrate a single M-DCTC skipped convolution branch
with the baseline network. In Figure 3.7, three variations of single M-Skipped branches
are established. The L-DCTCs are passed through the baseline network, while the M-
DCTCs are passed through a skipping branch. In Figure 3.7 (a), when the skipping
branch is connected with the output from the first convolutional block of the baseline
network, it is denoted as M-Skipped-1. In Figure 3.7 (b), when it is connected with the
output from the second convolutional block, it is denoted as M-Skipped-2. Whereas M-
Skipped-3 refers to the variation where the skipping branch is connected to the output
from the last convolutional block, shown in Figure 3.7 (c).

(a)

68

(b)

(c)

Figure 3.7: M-Skipped DCT-CNN for variant (a) M-Skipped-1, (b) M-Skipped-2, (c) M-Skipped-3.

69

There are several differences and significance for connecting the skipping branch
with different parts of the baseline network. When integrating the M-DCTC skipping
branch with the early convolutional block, the combined features are significant in
producing higher-level hierarchical representations. While integrating the skipping
branch directly with the last convolutional block, the concatenated features contribute
significantly to the final classification tasks. Therefore, it is crucial to understand the
impact of different skipping variations to achieve the objective of this research.

The formulation of the novel M-Skipped feature representation is shown below.
Any intermediate output feature map of a deep neural network is denoted as:

𝑌 is the output while 𝑋 is the input. The superscript ‘𝑖’ indicates the sequence of

the convolution block. 𝐺 is the function combining the convolutional operation and the
activation function along the main network, resulting in a new feature map. In this case,
L-DCTC is fed into the deep network such that the model can focus on learning
fundamental key features. The new parameter for the M-Skipped DCTC branch is
denoted as:

Where the notation of 𝑌0]$>TUT represents the output by convolving M-DCTC. In

Equation 3.11, different from the main network, ‘𝑔’ denotes the shallow convolution
block in the M-Skipped branch. The skipped connection of shallowly convolved M-
DCTC separates the fine-grained features from the main network. A shallow
convolution block is applied on M-DCTC to preserve low-level fine-grained features.

𝑌0
bN"c. is the final integrated output feature map obtained by concatenating the

output from the (𝑖 + 1)dO convolutional block with the output of the M-DCTC branch. In
this preliminary experiment, it was found that concatenation works better than
information exchange such as matrix summation and octave convolution.

𝑌0N = 𝑋0N[2 = 𝐺(𝑋0N) Eq. 3.10

𝑌0]$>TUT = ℊ(𝑋]$>TUT0) Eq. 3.11

𝑌0
bN"c. = 𝑌0N ∪ 𝑌0]$>TUT = 𝐺�𝑋0N� ∪ ℊ(𝑋]$>TUT0) Eq. 3.12

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑌0
bN"c.) Eq. 3.13

70

The integrated final feature undergoes flattening and a feed-forward layer ending
in the final classifier (Softmax). As such, the M-DCTCs which contain low-level fine-
grained feature information can be made visible to the classifier with only one shallow
convolutional layer in between.

3.3 Adaptive-DCT Pointwise Convolutional Kernel

While the M-Skipped DCT-CNN effectively considers higher frequency bands for
improved feature extraction, it has limitations in adaptability and efficiency,
particularly in handling complex frequency patterns. These limitations arise from the
nature of the convolutional kernel and the underlying algorithms. The current
composition of the convolutional kernel demonstrates resilience towards challenging
fine-grained features, which can hinder its performance across various tasks. To
address this issue, the Adaptive-DCT-based convolutional kernel is introduced. This
algorithm enables the model to prioritise more relevant frequencies during kernel
formation. This adjustment enhances both the flexibility and accuracy of feature
representations by dynamically adapting to the complexity of the data, thereby
overcoming the limitations associated with the resilience of the convolutional kernel in
the M-Skipped approach.

The Adapt-DCT kernel is initially explained simplistically in section 3.3.1 from a
forward 2D-DCT-II process to set up a fundamental understanding. The basic
formulation is then extended towards the adaptive DCT tensor in section 3.3.2 with
relation to the working of DCT, basis functions, and depth-wise channel mapping.
Section 3.3.3 tailored the final frequency domain pointwise convolutional kernel
through graphics and a few associated conditions for usage and different circumstances.

Figure 3.8 shows the difference between the original forward 2D-DCT and the
modified method employed. A modified 3-dimensional DCT basis function is formed by
applying zigzag encoding towards the original 4-dimensional one. The Adapt-DCT
pointwise convolutional kernel replaces the coefficients of the modified DCT basis
functions with trainable weights to adaptively learn the importance of spatial and
frequency bases. The kernel is entirely produced by adaptively weighting the modified
DCT basis functions during the training. Figure 3.9 illustrates the formation of the

71

pointwise convolutional kernel from adaptively weighting the modified 3D DCT basis

functions. An adaptive kernel (𝒦ef) is element-wise multiplied (denoted by ‘⨂’) with the

basis functions (𝔹′). The spatial summation is applied towards the resulting tensor

forming a pointwise convolution kernel (𝒦Mg). The kernel is then used to perform
pointwise convolution with the DCT features along the compressed domain CNN, as
shown in Figure 3.10.

(a)

(b)

Figure 3.8: Comparison between (a) original forward 2D-DCT and (b) modified forward 2D-DCT.

72

Figure 3.9: The formation of the frequency pointwise convolution kernel from adaptively weighting the

modified DCT basis functions.

Figure 3.10: Pointwise convolution adopting the Adapt-DCT pointwise convolutional kernel.

The key difference between the Adapt-DCT convolution and the Cosine Basis
Convolution (CBC) is that CBC uses cosine basis to produce spatial filter weights by
weighting the parameters (frequencies and phases) within basis functions, while the
Adapt-DCT convolution weights the modified basis functions directly to generate the
frequency domain pointwise convolution kernel. The Adapt-DCT study serves as an
initial attempt to explore the usability of the modified DCT basis functions in both
spatial and frequency bases.

During the training of the Adapt-DCT CNN, only part of the DCT processes is
required. The forward pass consisting of the forward DCT only involves the
multiplication of the adaptive weights with the modified DCT basis functions, followed
by spatial summation to acquire the DCT pointwise convolutional kernel. While
computing the backpropagation algorithm, only the multiplication of the differential
kernel weights with the modified DCT basis functions applies. The optimisation of the
Adapt-DCT kernel and backpropagation is like a perceptron forward pass algorithm, as
DCT is a linear transformation.

73

3.3.1 Background Motivations and Theories of
Adaptive DCT Basis Functions

When a partition of spatial domain image or a feature map is applied with 2D-
DCT-II, the frequency bases are mapped towards the layer dimension. The layer
dimension comprised different sets of individual frequency bases. A similar idea can be
applied to the formation of a pointwise convolution kernel, with the difference being
that the spatial dimension of the kernel is smaller than the feature maps. The Adapt-
DCT kernel is a 3D matrix. Once multiplied with the modified DCT basis functions
followed by the application of spatial summation, a frequency domain pointwise
convolution kernel is formed.

The forward 2D-DCT-II is introduced to provide some background knowledge.
Each intermediate step along the forward 2D-DCT-II process is elaborated to ease
understanding. The full expansion of the DCT basis functions is highlighted to ease the
explanation of the adaptive weighting at the later stage. Simplifications and notations of
forward 2D-DCT-II are shown to derive the modified DCT basis functions. The objective
is to obtain the modified DCT basis function. Generally, the forward 2D-DCT-II is
written as:

 𝒦$%(𝑢, 𝑣) = ℱ$&'()@𝒦*+(𝑥, 𝑦)C

= D
2
𝑁 ∗ 𝜉

(𝑢) ∗ 𝜉(𝑣)HIIJ𝒦*+(𝑥, 𝑦)K Lcos
𝜋 ∙ 𝑢(𝑥 + 0.5)

𝑁 T Lcos
𝜋 ∙ 𝑣(𝑦 + 0.5)

𝑁 T
,&-

./0

,&-

1/0

 Eq. 3.14

Where function 𝜉(𝑢) = �
2
√-
, 𝑢 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝜉(𝑣) = �
2
√-
, 𝑣 = 0
1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℱb$>TU indicates the forward 2D-DCT-II. 𝒦bi is the frequency domain matrix

with 𝒦bi(𝑢, 𝑣) representing the element with an index at (𝑢, 𝑣) . 𝒦jS is the spatial

domain matrix with 𝒦jS(𝑥, 𝑦) representing the element with index at (𝑥, 𝑦). 𝑁 is the

spatial dimension of the spatial domain matrix. Rewriting and simplifying the equation
above yields:

74

𝒦bi = ℱb$>TUu𝒦jSv = ℂ ∙ ;;�𝒦jS ∙ 𝔹�
4$2

=#3

4$2

<#3

 Eq. 3.15

Where : ℂ = -
4
∗ 𝜉(𝑢) ∗ 𝜉(𝑣)

𝔹 = �cos
𝜋 ∙ 𝑢(𝑥 + 0.5)

𝑁 � �cos
𝜋 ∙ 𝑣(𝑦 + 0.5)

𝑁 �

𝐹𝑜𝑟	𝑥, 𝑦, 𝑢, 𝑣 = 0,1,2, … , 𝑁 − 1

The 4-dimensional tensor 𝔹 in Equation 3.15 represents the DCT basis functions

with element ℬ(𝑥, 𝑦, 𝑢, 𝑣) at the index location of (𝑥, 𝑦, 𝑢, 𝑣). The forward 2D-DCT-II in

Equation 3.15 converts the spatial coefficients (𝒦jS) directly into frequency coefficients

(𝒦bi). An instantaneous tensor is given by the notation 𝒦jS
k can be obtained from the

forward 2D-DCT-II. It represents the result of multiplying 𝒦jS with the DCT basis

functions (Equation 3.16). After applying spatial summation on 𝒦jS
k , 𝒦bi is obtained as

the frequency coefficients (Equation 3.17). Figure 3.11 provides an example of the
spatial summation for a 2D tensor; it is not to be confused with the summation of
activation outputs in a regular neural network.

Figure 3.11: Spatial summation of a 2D tensor.

The spatial summation of the 2D tensor can be represented in Equations 3.16 and 3.17:

𝒦jS
k (𝑥, 𝑦, 𝑢, 𝑣) = 𝒦jS(𝑥, 𝑦)⨂ℬ(𝑥, 𝑦, 𝑢, 𝑣) Eq. 3.16

𝒦bi(𝑢, 𝑣) = ; ;𝒦jS
k (𝑥, 𝑦, 𝑢, 𝑣)

4$2

=#3

4$2

<#3

 Eq. 3.17

75

The 𝒦jS and 𝒦bi are single layers of a 2D matrix. ⨂ indicates element-wise

multiplication. A spatial domain matrix of 𝒦jS carrying ℜ4×4 will produce a

corresponding frequency domain matrix of 𝒦bi carrying ℜ4×4 according to 2D-DCT-II

principle, whereas the corresponding DCT basis functions 𝔹 will carry a shape of

ℜ4×4×4×4. The spatial dimension (height and width) of both 𝒦jS and 𝒦bi is denoted by

𝑁 . The DCT basis functions follow the same fashion with each of the indexes in
(𝑥, 𝑦, 𝑢, 𝑣) ranging from {0, 1, 2, … , 𝑁 − 1}.

The following step is to define the modified DCT basis functions. It is obtained by
mapping the DCT basis functions of frequency bases towards the depth channel. In
other words, the DCT basis functions will be propagated from a 4D tensor into a 3D

tensor. Specifically, the tensor index is mapped from (𝑢, 𝑣) to (𝑤), producing ℬ′(𝑥, 𝑦, 𝑤)

from ℬ(𝑥, 𝑦, 𝑢, 𝑣). The objective of producing such modified function is to reduce the
dimension of the DCT basis functions to ease the adaptive weighting and the kernel
composition at the later stage. The 3D DCT basis functions are referred to as the

‘modified DCT basis functions’. The depth-wise mapping from ℬ(𝑥, 𝑦, 𝑢, 𝑣) to ℬ′(𝑥, 𝑦, 𝑤)
follows the ‘horizontal prior’ for algorithmic simplicity. It provides easier access to

certain frequency coefficients at specific locations with instance (𝑢, 𝑣) . The spatial

context ℬ′(𝑥, 𝑦, :) is referred to as the spatial bases whereas the channel context

ℬk(: , : , 𝑤) is referred to as the frequency bases.

Figure 3.12 illustrates the original 4D DCT basis functions and the modified 3D
counterpart.

Figure 3.12: Original DCT basis functions ℬ(𝑥, 𝑦, 𝑢, 𝑣) versus modified DCT basis functions ℬ′(𝑥, 𝑦, 𝑤).

76

The zigzag encoding scheme is shown in Figure 3.13 and the corresponding element
mapping is shown in Table 3.3.

Figure 3.13: Horizontal prior zigzag encoding.

Table 3.3: Depth-wise mapping of elements from (u, v) to (w).

𝐼𝑛𝑑𝑒𝑥	(𝑢, 𝑣) 𝐼𝑛𝑑𝑒𝑥	(𝑤) 𝐸𝑙𝑒𝑚𝑒𝑛𝑡

(0,0) 0 32

(0,1) 1 7

(0,2) 2 5

(0,3) 3 11

(1,0) 4 17

(1,1) 5 26

(1,2) 6 12

(1,3) 7 3

(2,0) 8 47

(2,1) 9 23

(2,2) 10 34

(2,3) 11 41

(3,0) 12 14

(3,1) 13 9

(3,2) 14 21

(3,3) 15 33

The mapping procedures can be derived from the following notations:

ℬ(𝑥, 𝑦, 𝑢, 𝑣) 	
>lSdOQNjl]cSSN"n
���������������� ℬ′(𝑥, 𝑦, 𝑤) Eq. 3.18

𝔹
>lSdOQNjl]cSSN"n
���������������� 𝔹′

77

Each set of (𝑢, 𝑣) corresponds to a particular (𝑤) in the layer dimension. As each

of the index (𝑢, 𝑣) is in the range of {0, 1, 2, … , 𝑁 − 1}, thus, the index (𝑤) will range

from {0, 1, 2, … , 𝑁- − 1}. With the introduction of 3D-modified DCT basis functions,
both spatial and frequency bases are accessible. This allows flexibility tuning and

information filtering along each base. A new tensor (𝒦dj) is introduced to replace the

spatial domain matrix of 𝒦jS in conjunction with the modified DCT basis functions. 𝒦dj

carries the same shape as the modified DCT basis functions of 𝔹′. This simplifies the

element-wise multiplication to obtain the intermediate tensor of 𝒦dj
k . 𝒦dj is called the

‘Adaptive DCT Tensor’. The corresponding shape of each tensor is:

𝔹 ∈ ℜ4×4×4×4

𝔹′ ∈ ℜ4×4×4!

𝒦dj ∈ ℜ4×4×4!

𝒦dj
k ∈ ℜ4×4×4!

The modified DCT basis functions adhere to the same rules as the original 2D-
DCT formula. These basis functions maintain orthogonality among each other,
signifying that the inner product between any two distinct basis functions is zero. This

characteristic holds a particular significance for the transformed kernel (𝒦dj
k). This is

because it simplifies the kernel composition of 𝒦bi by expressing it as individual

decorrelated components. This composition involves decomposing the initial spatial

filter of 𝒦jS, ensuring the preservation of kernel properties and enabling analytics for

each component. The kernel properties are effectively distributed among these

orthogonal components. Hence, the formation of 𝒦bi
k is required to adhere to the core

basis function rules.

78

By modifying the earlier Equations 3.16 and 3.17, the illustrations and logic are
presented in Figure 3.14:

Figure 3.14: Obtaining frequency tensor from the Adaptive DCT Tensor.

𝒦dj
k (𝑥, 𝑦, 𝑤) = 𝒦dj(𝑥, 𝑦, 𝑤)⨂ℬ′(𝑥, 𝑦, 𝑤) Eq. 3.19

𝒦bi
k (𝑤) = ; ;𝒦dj

k (𝑥, 𝑦, 𝑤)
4$2

=#3

4$2

<#3

𝒦bi
k ∈ ℜ2×2×4

Eq. 3.20

By conducting spatial summation on 𝒦dj
k along the (𝑥, 𝑦) axes will produce a 1-

dimensional frequency vector of 𝒦bi
k . The intention of producing a 1D frequency vector

at this point is to set up a common background for formulating the pointwise
convolution kernel in the next section. The overall transformation of the Adaptive DCT
tensor can be summarised as:

𝒦dj(𝑥, 𝑦, 𝑤)
o.l%l"d$QNjl	

%/.dNS.NRcdNp"	QNdO	ℬk
������������������𝒦dj

k (𝑥, 𝑦, 𝑤)
rScdNc.	r/%%cdNp"
���������������𝒦bi

k (𝑤)

79

3.3.2 Adaptive DCT Pointwise Convolutional
Kernel

In this section, the formulation of the Adapt-DCT kernel and its transformation
towards the pointwise convolutional kernel will be established. The pointwise

convolution is a convolution process that adopts 1 × 1 kernel of 1D vector. In the DCT
domain, the pointwise convolution is widely implemented. Following the concept

established earlier, a 1 × 1 kernel (𝒦bi
k) can be produced by multiplying an adaptive

weight with the modified DCT basis functions. In other words, an adaptive tensor can

be initialized as trainable weights to compose a 1 × 1 kernel.

Let the pointwise convolutional kernel be 𝒦sG
k 	 with a shape of ℜ2×2×J, where C is

the total number of channels carried by the 1 × 1 kernel. In the modified DCT basis
functions, the number of frequency bases is derived from its corresponding spatial

dimension (N × N), denoted as N- . Under normal circumstances, the number of

channels (C) of the pointwise convolutional kernel (𝒦sG
k) will always be greater than the

number of frequency bases. Following the principle above, it can be derived that C ≥ N-.

To produce a pointwise convolutional kernel consisting of C channels by inheriting

earlier concepts, the desired adaptive tensor (𝒦ef) shall carry C layer instead of N-. To

achieve learning capabilities, the adaptive tensor can be defined as weights, denoted as

𝒦KL. Thus, 𝒦KL is named as the ‘Adaptive DCT (Adapt-DCT) Tensor’, or simply adaptive
weights. A simple comparison can be seen from Figures 3.15(a) and 3.15(b).

(a)

80

(b)

Figure 3.15: (a) Primary concept of adopting Adapt-DCT tensor to produce a 1-dimensional frequency
vector. (b) The adaptive weighting of the modified DCT basis functions to produce the frequency

pointwise convolution kernel.

In essence, due to the dissimilarities between the number of channels and
frequency bases, each DCT basis function within a specific frequency base requires the
application of several adaptive weights. This is achieved through a process known as

‘channel extension’ applied to the initial set of 𝒦ef . The primary goal of channel
extension is to establish a correspondence between adaptive weights and the basis
functions. The objective is to synchronise their multiplication with the modified DCT
basis functions.

The 𝒦ef in the earlier section multiplies a single layer of 𝒦ef(: , : , w) with a

corresponding layer in the modified DCT basis function ℬk(: , : , w). Since 𝒦KL carries a

channel of C as opposed to N-, multiple layers within 𝒦KL shall be multiplied with a

single layer of frequency base from ℬk. In other words, each layer of DCT basis functions

of frequency base is multiplied with a set of ‘channel weights’ within 𝒦KL. The set of

‘channel weights’ is formed by extending each layer of the prior 𝒦ef(: , : , w) at the index

location of w by J
t!

 times. The calculation for each set of channel weights possesses an

equivalent depth of J
t!

. Each set of channel weights is denoted as 𝒦KL(w′) (or simplified

as 𝒦KL
uk), with index w′ referring to the (wk)ev set. An example is given in Figure 3.16,

where C = 8	and		N = 2. Thus, N- = 4 and J
t!
= 2. 𝒦KL contains more learnable weights

per frequency base as compared to 𝒦ef with improved learning capabilities.

81

Figure 3.16: The extension of a single layer 𝒦2* by (
,!

 times to produce the required 𝒦)3 which carries a

channel dimension of C.

For each 𝒦Ur(𝑤′):

𝒦Ur(𝑤′) ∈ ℜ
4×4× T

4!

𝒦Ur
Qk = 𝒦Ur(𝑤′)

𝒦Ur
Qk = �𝒦dj(𝑥, 𝑦, 0),𝒦dj(𝑥, 𝑦, 1), … ,𝒦dj(𝑥, 𝑦, 𝒛), … ,𝒦dj �𝑥, 𝑦,

𝐶
𝑁- − 1 	¡ Eq. 3.21

𝑧 is the channel index within each set of the channel weights (𝒦Ur
Q") ranging from

£0, 1, 2, … , T
4!
− 1¤ . The 𝒦Ur can also be viewed as equal grouping across the layer

dimension to produce 𝑁- sets of equivalent depth tensor (𝒦Ur
Qk). Each group is a set of

channel weights to be multiplied with a frequency base. The final 𝒦Ur can be written as:

𝒦KL ∈ ℜt×t×J

𝒦Ur = {𝒦Ur(0),𝒦Ur(1),𝒦Ur(2), … ,𝒦Ur(𝑤′), … ,𝒦Ur(𝑁- − 1)}

𝒦Ur = u𝒦Ur
3 , 𝒦Ur

2 , 𝒦Ur
- , … ,𝒦Ur

Qk, … ,𝒦Ur
4!$2v Eq. 3.22

Consecutively, the modified DCT basis functions (𝔹k) can be separated into a

single layer of ℬQk to be multiplied with 𝒦Ur
Qk. The definition of 𝔹k is defined in the earlier

section in Equation 3.18. Each ℬQk is the frequency base instantiation across the layer

dimension at 𝑤dO depth. The modified DCT basis functions can be written as a

collection of single layers ℬk(: , : , 𝑤):

82

𝔹′ = {ℬk(𝑥, 𝑦, 0), ℬk(𝑥, 𝑦, 1), … , ℬk(𝑥, 𝑦, w), … , ℬ′(𝑥, 𝑦, 𝑁- − 1)}

𝔹′ = uℬ3k , ℬ2k , ℬ-k , … , ℬQk , … , ℬ4!$2
k v Eq. 3.23

During training, the model will optimize based on 𝒦Ur instead of directly on the

1 × 1 kernel. The modified DCT basis functions can also be pre-computed. Therefore,

𝒦Ur and 𝔹′ are initialised before the training for computational efficiency. Each set of

the tensor 𝒦Ur
Qk is multiplied with the corresponding layer of the DCT basis function of

ℬQk . The process is shown in Figure 3.17(a). Then, the resultant tensor will go through
spatial summation and depth-wise concatenation to obtain the final pointwise

convolution kernel (𝒦wX
k) as shown in Figure 3.17(b). The pointwise convolution kernel

is formed via adaptive weighting of modified DCT basis functions followed by spatial

summation. During deployment, only the final 1 × 1 kernel is required for inference.
The inference model is like a fully pointwise CNN.

(a)

(b)

Figure 3.17: Full process of acquiring the frequency domain pointwise convolutional kernel from Adapt-
DCT kernel.

83

The formula can be represented as:

𝒦wX
k (𝑤′) = ; ;[𝒦Ur(𝑤′)⨂ℬk(w)](<,=)

4$2

=#3

4$2

<#3

 Eq. 3.24

It can be further simplified and denoted as:

𝓚𝑭𝑹
= 𝚿{𝓚𝑻𝑺

𝒘# , 𝓑𝒘# } Eq. 3.25

𝒦wX
k = 𝑐𝑜𝑛𝑐𝑎𝑡uΨ[𝒦Ur

3 , ℬ3k], Ψ[𝒦Ur
2 , ℬ2k], Ψ[𝒦Ur

- ∙ ℬ-k], … ,Ψ[𝒦Ur
Qk, ℬQk], … ,Ψ�𝒦Ur

4!$2, ℬ4!$2
k �v

The function ‘Ψ’ represents element wise multiplication of 𝒦Ur
Qk with ℬQk followed

by spatial summation along the (𝑥, 𝑦) axes. For 𝒦wX
k (𝑤′):

𝒦wX
k (𝑤′) ∈ ℜ2×2×

T
4!

𝒦wX
k = u𝒦bi

k (0),𝒦bi
k (1),𝒦bi

k (2), … ,𝒦bi
k (𝑤k), … ,𝒦bi

k (𝑁- − 1)v Eq. 3.26

𝑤ℎ𝑒𝑟𝑒	𝒦wX
k (𝑤′) = �𝒦wX

k (0),𝒦wX
k (1),𝒦wX

k (2), … ,𝒦wX
k (𝒛), … ,𝒦wX

k �
𝐶
𝑁- 	¡

84

3.3.3 Principles of Adaptive DCT Pointwise
Convolutional Kernel

Several conditions govern the formulation of the Adapt-DCT pointwise
convolution kernel, and it must be satisfied in conjunction with the modified DCT basis
functions. The conditions are as below:

(i) The number of channels (𝐶) of the final DCT domain pointwise convolution kernel

(𝒦34
5) should always be equal to or larger than the number of modified DCT basis

functions of frequency bases (𝑁6).

𝐶 ≥ 𝑁-

(ii) The number of channels (𝐶) of the final DCT domain pointwise convolution kernel

(𝒦34
5) should always be divisible by the number of modified DCT basis functions of

frequency bases (𝑁6). ‘%’ indicates the modulo operation.

𝐶	%	𝑁- ≡ 0

In the sense that any of the above conditions cannot be satisfied during the

initialisation of the Adapt-DCT pointwise convolution kernel, the 𝒦wX
k will be undefined.

𝒦'(
= ∅* 𝐶 < 𝑁2

	𝐶	%	𝑁2 ≠ 0

85

3.3.4 Adaptive DCT Pointwise Convolutional
Neural Network

In this section, the full process of the adaptive DCT pointwise convolution is
established. It covers the forward and backward passes of the Adapt-DCT convolution.
The Adapt-DCT convolutional layer can be treated as a plug-and-play layer to replace
any convolutional layer in a CNN. Specifically, the Adapt-DCT convolution is used in
compressed domain CNN with an input consisting of a DCT image. The forward and
backward pass can operate flawlessly since the kernel will not be affected by the DCT
process.

The forward pass is computed by performing pointwise convolution between the
pointwise convolutional kernel over the DCT input or DCT feature map. The process is

shown in Figure 3.18. The kernel is denoted as 𝒦wX
k . The input feature map is

represented by 𝑋 and the output is 𝑌. The ‘𝐻 ×𝑊’ is the height and width of the feature

map, 𝐶 is the number of channels, where 𝐶 = CN × CW. Since the operation is pointwise

convolution, hence the spatial size (𝐻 ×𝑊) of the input and output will be the same.
Thus, the forward pass is:

𝑌 = 𝒦wX
k ∗ 𝑋 Eq. 3.27

𝒦wX
k 	 ∈ ℜ2×2×T
𝑋 ∈ ℜ^×{×J4

𝑌 ∈ ℜ^×{×J5

Figure 3.18: Pointwise convolution between a convolutional kernel and the DCT input.

86

In the forward pass, the input is processed through the CNN and a loss is
computed at the end. The chosen loss function for this research is the categorical cross-
entropy loss. It is widely implemented in the context of multi-class classification

problems. Let 𝒥 denote the loss function for the classification prediction with 𝑁 total

number of classes. 𝑦N indicates the true categorical label for class 𝑖, encoded as a one-

hot vector, whereas 𝑦¬N 	resembles the predicted probability distribution for the same

class. 𝑦¬N 	 is computed by passing 𝑌 through a fully connected layer followed by the
Softmax activation function. The expression of the loss function is defined in Equation
3.28.

𝒥 = −;(𝑦N) ∙ log	(𝑦¬N)
4

N#2

 Eq. 3.28

To facilitate the update of convolutional filters, it involves minimizing the loss by
backpropagating the gradient of the loss function concerning the filers back through the
network. From the proven formula for backpropagation in a convolutional layer using

the chain rule, the specific gradient of interest is the convolution between the input 𝑋

and the gradient loss from the subsequent layer |𝒥
|~

. Consequently, the relationship

between the gradient of the loss function concerning the kernel |𝒥
|𝒦67

" in the current layer

with 𝑋 and |𝒥
|~
	is written as:

𝜕𝒥
𝜕𝒦wX

k = 𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛	 ¯𝑋 ∗
𝜕𝒥
𝜕𝑌° Eq. 3.29

Since the pointwise convolutional kernel (𝒦wX
k) is obtained from the adaptive

weights (𝒦Ur), to optimize the initial 𝒦Ur, it is required to backpropagate the loss from

𝒦wX
k to 𝒦Ur. Specifically, the partial derivative of |𝒥

|𝒦67
" is used to find |𝒥

|𝒦89
. By using the

formula above to obtain |𝒥
|𝒦67

" , |𝒥
|𝒦89

 can be computed. Provided that the Adapt-DCT

kernel is weighting each of the DCT basis functions across the spatial dimension
individually, therefore the same spatial size of the Adapt-DCT kernel and the basis
function applies. Two intermediate steps in forward 2D-DCT are conducted to produce

𝒦wX
k from 𝒦Ur, specifically element-wise multiplication of Adapt-DCT kernel (𝒦Ur) with

87

the modified DCT basis functions (𝔹’) and spatial summation of the resultant tensor

𝒦′Ur. The representation can be described as below:

𝒦′Ur = 𝒦Ur	⨂	𝔹′ Eq. 3.30

𝒦wX
k =;;[𝒦′Ur](<,=)

=<

 Eq. 3.31

𝒦′Ur is the modulated form of 𝒦Ur with the same shape. It is obtained after

conducting element-wise multiplication of 𝒦Ur with the modified DCT basis function at
a specific frequency base. It is important to note that the notation above is the

intermediate representation of 2D-DCT whereby the spatial dimension of both the 𝒦Ur

and 𝔹′ exists. The constant term of ℂ = -
4
∙ 𝜉(𝑢) ∙ 𝜉(𝑣) is neglected as it will not affect the

backward pass of the loss function. To compute 𝒦Ur from 𝒦wX
k , inverse 2D-DCT is

performed without computing the summation.

𝒦Ur = 𝒦wX
k 	⨂	𝔹′ Eq. 3.32

This concept is applicable for the backward pass algorithm since 2D-DCT

between 𝒦Ur and 𝒦wX
k is a linear transformation. Hence, the computation of its partial

derivatives loss function and backward pass is straightforward. From Equation 3.32,

differentiate loss function ‘𝒥’ with respect to the kernel ‘𝒦’ governs the following:

𝜕𝒥
𝜕𝒦Ur

=
𝜕𝒥
𝜕𝒦wX

k 	⨂	𝔹′ Eq. 3.33

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	
𝜕𝒥

𝜕𝒦Ur(𝑥, 𝑦, 𝑤′)
=

𝜕𝒥
𝜕𝒦wX

k (𝑤′)	⨂	ℬ′
(𝑥, 𝑦, 𝑤)

Eq. 3.34

By substituting |𝒥
|𝒦67

" obtained from Equation 3.29 into Equation 3.33, each of the

corresponding backward pass functions |𝒥
|𝒦89

 can be computed to optimise the Adapt-

DCT kernel (𝒦Ur). The layers other than Adapt-DCT convolution such as fully
connected layers will be computed as usual.

88

3.3.5 Spatial Upscaling of Adaptive DCT Kernel

In the spatial domain CNN, generally the spatial dimension of the convolution

kernel consists of odd numbers such as 3 × 3, 5 × 5, and so on. With the partial forward

2D-DCT to transform the Adapt-DCT kernel (𝒦Ur) into the pointwise convolution
kernel, it allows the upscaling of the initial Adapt-DCT kernel to an arbitrary spatial size,
but there are several principles to abide which concern the DCT partition.

Commonly, the spatial dimension (𝑁 × 𝑁) of an Adapt-DCT kernel is upscaled in
a way such that it is a multiplier of 2. This is because of the need to adhere to the
original partition size of the DCT image. Additionally, it is intended to achieve division

with zero remainder with the channel (𝐶) over the frequency bases of the DCT basis

functions (𝑁-). All the possible spatial upscaling of the ADAPT-DCT kernel with
reference to the DCT partition of the image is provided in Table 3.4.

Table 3.4: Spatial upscaling of Adapt-DCT kernel concerning the DCT partition.

Spatial Size of 𝒦)3

DCT Partition
1 × 1 2 × 2 4 × 4 8 × 8

2 × 2 ✓ ✓ ✘ ✘

4 × 4 ✓ ✓ ✓ ✘

8 × 8 ✓ ✓ ✓ ✓

As an example, with a DCT partition of 2 × 2, the maximum spatial upscaling of

the 𝒦Ur is 2 × 2. This is because of a spatial size of 𝒦Ur larger than 2 × 2 does not
symbolize nor represent the accurate DCT spatial base information. Moreover, it may
overlap or cause aliasing effects on the spatial bases with other DCT partitions. From

the experiments conducted, a larger spatial size of 𝒦Ur with a smaller DCT partition
does not bring any performance improvement. The same concept is applicable even
though a normal pointwise convolution layer exists before an Adapt-DCT convolution
layer in compressed domain CNN. With a particular DCT partition, a larger spatial

dimension (𝑁 × 𝑁) of the Adapt-DCT kernel can accommodate more DCT basis

89

functions (subjected to 𝐶 ≥ 𝑁-). Furthermore, by using more basis functions to

represent a pointwise convolution kernel, more sampling provides more adaptive

weighting flexibility. Thus, for a specific number of channels (𝐶), an increasing spatial

size (𝑁 × 𝑁) of the initial Adapt-DCT kernel (𝒦Ur) will reduce the number of channel

sets (T
4!

) allocated to each of the DCT basis functions of frequency base.

A few scenarios with a specific DCT partition of 8 × 8 are elaborated further to
pursue an in-depth understanding of the concept of spatial upscaling of the Adapt-DCT

kernel. Let the number of channels of the input and output feature maps be 𝐶N and 𝐶W,

where 𝐶N = 𝐶W = 8 . Consequently, the number of channels of the corresponding

pointwise convolution kernel will be 𝐶. Table 3.5 presents a few variations of the spatial
dimension of the Adapt-DCT kernel and their effects on the overall properties of other
tensors.

Table 3.5: Variations of spatial upscaling on Adapt-DCT kernel with a DCT partition of 8 × 8

 Case 1 (𝑵 = 𝟐) Case 2 (𝑵 = 𝟒) Case 3 (𝑵 = 𝟖)

Spatial Dimension of

Adapt-DCT kernel
𝑁 ×𝑁 2 × 2 4 × 4 8 × 8

Number of available
frequency bases

𝑁: 4 16 64

Number of channel weights
per frequency base

𝐶
𝑁: 16 8 1

Shape of 𝒦)3
;" ℜ,×,× (

,! ℜ:×:×=>> = ℜ:×:×-= ℜ>×>×=>-= = ℜ>×>×? ℜ?×?×=>=> = ℜ?×?×-

Shape of 𝒦)3 ℜ,×,×(ℜ:×:×=> ℜ>×>×=> ℜ?×?×=>

Shape of 𝒦@A after spatial

summation on 𝒦)3
ℜ-×-×(ℜ-×-×=> ℜ-×-×=> ℜ-×-×=>

90

The above logic is applicable even with a DCT partition of 4 × 4 or 2 × 2. The
difference is that with an increasing spatial dimension of the Adapt-DCT kernel, it will

reduce the number of channel weights set (𝒦Ur
Qk) per DCT basis function of frequency

base (ℬ′(𝑤)). From the standard scenarios as presented above, for any Adapt-DCT

kernel with spatial dimension equal to any reasonable real number, i.e., 0 < 𝑁 ≤

𝐷𝐶𝑇	𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛, computing forward 2D-DCT will produce a frequency domain pointwise

convolution kernel with a consistent spatial dimension of 1 × 1 (𝒦wX ∈ ℜ2×2×T). This
can be seen in the last row in Table 3.5. Hence, it is safe to deduce that the spatial

dimension (𝑁) of the Adapt-DCT kernel will not affect the spatial dimension of the final

frequency domain pointwise convolution kernel (𝒦wX). But different 𝑁 will require a

different number of channel weights set (𝒦Ur
Qk) per DCT frequency base.

The potential of spatial upscaling in an Adapt-DCT kernel serves several
flexibilities in the CNN. The spatial dimension of an Adapt-DCT kernel can be increased
to improve the sampling and partition steps of the pointwise convolution kernel. In
other words, when more DCT basis functions are used to define a final pointwise
convolution kernel, more flexibility in terms of fine-tuning and weighting each spatial
and frequency base can be exercised. In contrast, the spatial dimension of an Adapt-
DCT kernel can be decreased to reduce trainable parameters.

91

3.3.6 Depth-wise Level Optimisation of Adaptive
DCT Pointwise Convolutional Kernel

This section discusses the depth-wise channel optimisation within the Adapt-
DCT kernel. The optimisation strategy draws inspiration from the pruning technique
applied to DCT. The underlying concept revolves around the fact that basis functions
serve as a common connection between the resultant pointwise convolutional kernel
and the adaptive weights. Unlike the approach used in the M-Skipped network, where
the modifications took place on the feature map, this method focuses on modifying the
DCT basis functions during the kernel composition. It is crucial to note that these two
methods are not contradictory; rather, the key distinction lies in the former being
focused on the feature map, while the present work is centred on the kernel formulation.
By carefully pruning the higher-level frequency bands across the DCT basis functions
and specifying the number of resulting channels, this optimisation ensures a particular
frequency band will be weighted by similar or more sets of adaptive weights compared
to the original case.

Under ordinary circumstances, the DCT basis functions carry a tensor shape of

𝔹′ ∈ ℜ4×4×4!, where 𝑁 × 𝑁 represents the spatial dimension of the Adapt-DCT kernel
as shown in section 3.3.2. The depth-wise channel across the adaptive weights is equally
divided according to the number of DCT basis functions of frequency bases. The
optimisation is applied on the layer dimension of the frequency base in the DCT basis

function, denoted by the instance (𝑤)	in ℬ(𝑥, 𝑦, 𝑤).

Let the number of frequency bases be 𝜂, such that the corresponding DCT basis

functions will carry a shape of 𝔹k ∈ ℜ4×4×�. The parameter ‘𝜂’ represents the shape of
the layer dimension of the frequency bases. This parameter is restrained by the

conditions below where it specifies the usage boundary of ‘𝜂’:

(i) The parameter ‘𝜂’ should be larger than zero and smaller than the original layer

shape of 𝑁6.

0 < 𝜂 < 𝑁-

(ii) The parameter ‘𝜂’ should be divisible by the total number of channels of the Adapt-

DCT kernel ‘𝐶’.

𝐶	%	𝜂 ≡ 0

92

An extension example is elaborated from the scenario in the previous section to
showcase the working of depth-wise channel optimisation on the Adapt-DCT kernel.

With a DCT partition of 8 × 8, the spatial size of the Adapt-DCT kernel (𝑁) is 8 whereas

the number of channels (𝐶) will be 64, such that 𝒦Ur carries ℜ�×�×�V. Following the
original formulation, the number of DCT basis functions of frequency bases along the

layer dimension (𝑁-) shall be 64, and the respective channel weights per DCT basis

function (𝒦Ur
Qk) will carry a shape of ℜ�×�×2. With 𝜂 = 4 replacing the original 𝑁- = 64,

the optimised basis function 𝔹k will carry the shape of ℜ�×�×V (ℜ4×4×�) instead of the

former ℜ�×�×�V (ℜ4×4×4!). This optimisation will correspond to an increase in the

number of channel weights per DCT frequency base (𝒦Ur
Qk) from the original ℜ�×�×2

(ℜ4×4× B
C!) to ℜ�×�×2� (ℜ4×4×BD).

By adopting the idea of DCT pruning, it involves a selective inclusion of
frequency bases in the formation of the resultant kernel that contribute significantly to
the major recognition properties. This approach preserves the spatial context of DCT
basis functions and adaptive weights while optimizing the frequency bases. Instead of
incorporating all available frequency bases, the optimisation selectively utilises a subset
to compose the pointwise convolutional kernel. The primary outcome of this
optimisation is to investigate the robustness throughout the learning phase by
employing a reduced number of basis functions for kernel composition. It is aimed to
observe how varying the number of DCT basis functions in kernel composition can
influence performance.

93

3.4 Hybrid Modified Efficient Channel Attention

While the earlier Adapt-DCT CNN improved kernel flexibility for handling
complex fine-grained patterns, how each feature channel contributes to FGVC in the
compressed domain remains unclear. Therefore, adopting an attention mechanism is
crucial to explore this dimension. Fine-grained features along the channel dimension
are often better captured through attention mechanisms, which emphasise the most
discriminative aspects of the data. However, the attention mechanisms typically
introduce additional parameters which directly increases the computational
requirements. The introduction of the HyMod-ECA complements the earlier model by
integrating feature prioritisation and interaction while reducing the number of
parameters. This balance is critical for enhancing resource efficiency, leading to overall
performance improvements and model optimisation.

In this section, the main conceptual differences between former ECA on local
cross-channel interactions and the proposed HyMod-ECA on intra-group DCT channel
interactions are established. Later, the formulation and implementation details of the
HyMod-ECA will be elaborated on. Towards the end, a demonstration of implementing
the HyMod-ECA on top of the former Adapt-DCT CNN will be explained.

The original ECA highlights individual local cross-channel interactions whereby
every local channel and its neighbouring relationship and interaction is considered.
However, in the frequency domain, it is suggested that not every single channel and its
neighbouring channels correlate. This is because DCT decorrelates spatial context and
concentrates the frequency features towards several coefficients in the channel
dimension. Therefore, different from the conventional ECA, HyMod-ECA considers the
interaction within a larger DCT channel group. Each of the DCT channel groups across
the output of a convolution block carries a different level of frequency information in
the feature space. By considering the interaction between DCT channel groups at the
output of each convolution block, it is suggested that the connection between
hierarchical discriminative features can be established to ease FGVC.

Let the output of an intermediate feature map from any convolutional block be

𝑋 ∈ ℝ^×{×T, where 𝐻,𝑊, 𝐶 are the height, width, and number of channels. To produce

an aggregated 1D vector of 𝑋¶ ∈ ℝ2×2×T based on 𝑋 , the original channel-wise GAP

(denoted as 𝐺𝐴𝑃(∗)) is used to average each spatial map of 𝑋. GAP is utilized over GMP
for its ability to emphasize generalization and robustness of the attention mechanism to

94

avoid overfitting, such that every DCT channel group is equally considered. 𝑋¶R below

indicates the aggregated feature after computing GAP at the channel 𝑐.

𝑋¶R = 𝐺𝐴𝑃(𝑋R) =
1
𝑊𝐻; 𝑋R,NW

{,^

N#2,W#2
 Eq. 3.35

From the original ECA, an effective method to apply weight sharing across
channel groups is through computing fast 1D convolution. This technique is further
extended in this section by modifying the stride size of the 1D kernel to reduce the
computational complexity and to emphasize intra-group DCT channel interactions.
Figure 3.19 briefly provides a fundamental concept on the formulation of DCT channel

groups. The aggregated DCT vector (𝑋¶) is equally split into several DCT channel groups,

with each respective group denoted as 𝑋¶Q ∈ ℝ2×2×b , where 𝑤 and 𝑓 represent the

sequence instance of the DCT channel group and the channel depth of each DCT

channel group. 𝑋¶Q is referred to as an ‘aggregated DCT channel group’.

Figure 3.19: Aggregated DCT channel groups (𝑋;), produced by the original 1D tensor acquired by

performing GAP over the input feature map X.

Since the total number of DCT channels available from the aggregated feature 𝑋¶

is 𝐶, by conducting equal channel dissemination on 𝑋¶, the total number of available

DCT channel groups is equal to T
b
 . The same concept is also applied to the input feature

map 𝑋 to obtain the same form of DCT input feature channel groups, denoted as 𝑋Q ∈

ℝ^×{×b. 𝑋 is later used to multiply with the attention weights following the order of

95

DCT channel groups. Each of the DCT channel groups (𝑋Q) will be multiplied with one

of the attention scalar weights acquired from 𝐴̅. Multiple sets of attention maps are

needed to weight each DCT channel group respectively. To acquire an aggregated DCT

channel group from the original aggregated feature 𝑋¶ , the below notation can be
considered:

𝑋¶ ∈ �𝑋¶3, 𝑋¶2, … , 𝑋¶Q , … , 𝑋¶T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑒𝑙𝑎𝑝𝑠𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1.

Similarly, the DCT input feature map 𝑋 can be visualized in the same fashion

where each of the 𝑋¶Q is produced from 𝑋¶. The DCT input feature map corresponds to its
channel groups and can be written as:

𝑋 ∈ �𝑋3, 𝑋2, … , 𝑋Q , … , 𝑋T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑒𝑙𝑎𝑝𝑠𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1.

The intention to perform equal channel dissemination on 𝑋¶ is to obtain the

subsequent scalar attention weights 𝐴̅ produced via fast 1D convolution. It will be used

to multiply with the corresponding 𝑋Q to achieve a linear correspondence of cross-DCT
channel group attention. It also aimed to ease the fast 1D convolution to adopt
consistent kernel and stride size.

Let 𝐾 be the 1D convolution kernel that slides across the channel dimension 𝑋¶.
Figure 3.20 briefly showcases the concept of ‘local cross channel’ versus ‘intra DCT
channel groups’ interaction by conducting 1D convolution. Figure 3.20 (a) shows the
intra-DCT channel group interaction while Figure 3.20 (b) is the original ECA. Due to
the difference in the stride size of the 1D convolution, the final produced attention

weights for HyMod-ECA (𝐴̅) are smaller in terms of the depth-wise channel dimension

when compared with the original ECA which carries the same shape (𝐴̅′) as the

aggregated feature 𝑋¶.

96

Figure 3.20: Comparison between (a) HyMod-ECA versus (b) the original ECA.

The 1D convolution kernel 𝐾 carries a set of convolutional properties of 𝐾(b,�,j,S),

where (𝑓, 𝑘, 𝑠, 𝑝) indicates number of input filters, spatial size of kernel, stride size,
padding size respectively. Since the convolution is of 1D nature intending to capture
cross DCT channel group relationship, therefore the spatial size is 1 and the stride size

is set to the same as the number of kernel filters (𝑓) within the same group. The
padding is not applied in the HyMod-ECA to produce the DCT channel group weights;

thus, the padding size is set to zero. Rewriting the kernel 𝐾(b,�,j,S) with the above criteria

will result in 𝐾(b,2,b,3), where 𝐾(b,2,b,3) ∈ ℝ2×2×b.

Conducting fast 1D convolution followed by the Sigmoid activation function (𝜎)

across the aggregated feature 𝑋¶, the kernel 𝐾 will produce the subsequent attention

weights 𝐴̅ ∈ ℝ2×2×
B
E, which we referred to as the “DCT channel group attention weights”.

The interaction of the intra-group DCT channel is governed by performing fast 1D
convolution via the following formulation:

𝐴̅ = 𝜎�𝑋¶ ∗ 𝐾(b,�,j,S)�Rp"0_2> = 𝜎�𝑋¶ ∗ 𝐾(b,2,b,3)�Rp"0_2> Eq. 3.36

Similar to 𝑋¶, the attention weights 𝐴̅ can also be seen as an individual group

denoted as 𝐴̅Q . Each 𝐴̅Q is produced by element-wise multiplication and summation

between the 1D convolution kernel 𝐾(b,2,b,3) and the aggregated DCT channel set 𝑋¶Q .

97

Since both the 𝐴̅Q and K carries the same shape of ℝ2×2×b , the instantaneous

convolution between them will produce a single scalar of 𝐴̅Q ∈ ℝ2×2×2. 𝐴̅Q resembles the

attention weightage that is applied towards the respective input feature group of 𝑋Q.

The relationship between 𝐴 and 𝐴̅Q can be written as:

𝐴̅ ∈ ℝ2×2×
T
b

𝐴̅ ∈ �𝐴̅3, 𝐴̅2, … , 𝐴̅Q , … , 𝐴̅T
b$2

¸ , 𝑤ℎ𝑒𝑟𝑒	𝑤	𝑟𝑎𝑛𝑔𝑒𝑠	𝑓𝑟𝑜𝑚	0	𝑡𝑜	
𝐶
𝑓 − 1.

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝐴̅Q =;[𝑋¶Q⨂𝐾(b,2,b,3)] Eq. 3.37

The technique of grouping DCT channels and conducting 1D fast convolution to
capture intra-group DCT channel interactions is significant. Through grouping the DCT
channel sets, it creates a connection between the frequency coefficients in the feature
space. It is more robust to consider several frequency features as opposed to individual
ones in discriminative learning. This is because a collective of DCT channel groups can
correlate with each other in detecting subtle differences. Convolving across DCT
channel groups with a larger stride and kernel size focuses on capturing the interaction
within several frequency coefficients in producing higher-level features. With the
application of HyMod-ECA towards the lower-level DCT channel group, it can be seen
as capturing a collective of interactions between basic frequency features. While the
convolution process in the higher-level DCT channel group captures the discriminative
relationship between more complex and higher-level abstract frequency feature groups.

Furthermore, the hybrid 1D fast convolution performed in HyMod-ECA involves
lesser computational complexity as compared to the original ECA due to its larger

kernel and stride size. Given that 𝑓 denotes the filter depth while 𝐶 represents the
channel depth, the computational complexity and their ratio for 1D fast convolution of
both the original and the HyMod-ECA are:

98

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝐸𝐶𝐴:𝑂789 = 𝑂[(𝑑 − 𝑘 + 3)(𝑘 − 1)𝑘] = 𝑂[(𝐶 − 𝑓 + 3) ⋅ (𝑓 − 1) ⋅ 𝑓] Eq. 3.38

𝐻𝑦𝑏𝑟𝑖𝑑	𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑	𝐸𝐶𝐴:𝑂:;<=>?789 = 𝑂[𝑑 ⋅ (𝑘 − 1)] = 𝑂[𝐶 ⋅ (𝑓 − 1)] Eq. 3.39

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑟𝑎𝑡𝑖𝑜:
𝑂789

𝑂:;<=>?789
= 𝑘 −

[𝑘 ⋅ (𝑘 − 3)]
𝑑

= 𝑓 −
[𝑓 ⋅ (𝑓 − 3)]

𝐶
 Eq. 3.40

Full derivations are shown in the appendix. It is clear from the derivation that

the HyMod-ECA convolution consists of 𝑓 − [b⋅(b$�)]
T

 fewer computations when

compared with the original ECA, thus achieving efficient and hybrid fast 1D
convolutions. At this point, it is important to recall that in HyMod-ECA convolution, the

DCT channel group depth dimension (𝑓) is the same as the length of the kernel (𝑓) and

the convolution stride size (𝑠). Towards the end, to compute the output feature map

with HyMod-ECA denoted as 𝑌 ∈ ℝ^×{×T, the DCT attention weights 𝐴̅ are multiplied

with the input feature map 𝑋 . Specifically, each of the single scalar of 𝐴̅Q were

multiplied with the corresponding DCT channel group of input 𝑋Q , and later
concatenation was applied to compute the final attention output feature.

𝐶𝑜𝑚𝑝𝑢𝑡𝑒	𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛	𝑂𝑢𝑡𝑝𝑢𝑡:	𝑌 ∈ ℝ^×{×T

𝑌 = 𝑋⨂𝐴̅ = 𝑐𝑜𝑛𝑐𝑎𝑡{𝑋Q ⋅ 𝐴̅Q}Q#3
Q#Tb$2

						= �𝑋3 ⋅ 𝐴̅3, 𝑋2 ⋅ 𝐴̅2, … , 𝑋T
b$2

⋅ 𝐴̅T
b$2

¸

Eq. 3.41

Figure 3.21 explains the abstract form of the attention mechanism where 𝐴̅ was

applied to the input feature map. The input 𝑋 is partitioned into several groups of DCT

channel sets (𝑋Q) following the 𝑋¶ fashion, as shown in different colours. Each of the 𝑋Q

is applied with the corresponding scalar attention of 𝐴̅Q to produce a subsequent DCT

channel group of feature output 𝑌Q at the same location.

99

Figure 3.21: Abstract representation of the application of attention weights (𝐴̅) from HyMod-ECA to the
input feature map (𝑋) through a DCT channel group point of view.

The motivation of applying a single attention weight of 𝐴̅Q towards the

designated input DCT channel group of 𝑋Q lies beyond providing attention to capturing
the interactions within discriminative features at specific frequency ranges. The fast 1D

convolution output (𝐴̅ , also the attention weights) carries a shape of

(𝑁, 1, T
b
), where 𝑁 refers to the batch size. 𝐴̅ carries the relative importance between each

DCT feature group across the channel direction. By multiplying a DCT channel group

(𝑋Q) with its corresponding attention weight (𝑋Q), less discriminative information will
be suppressed. This concept addresses the research gap in considering DCT channel
groups in the compressed domain FGVC. Henceforth, the final hybrid modified ECA

can be represented with the below formula, with Φ(∗) indicating the overall
computation:

𝑌 = 𝑋⨂𝜎u[𝐺𝐴𝑃(𝑋)] ∗ �𝐾(b,2,b,3)�vRp"0FG Eq. 3.42

𝑌 = Φ(𝑋)

100

The key differences between the original ECA and the HyMod-ECA are
summarised in Table 3.6.

Table 3.6: Key differences between original ECA and HyMod-ECA.

Variations\Specifications Original ECA Hybrid Modified ECA

Kernel shape (𝑁, 1, 3) (𝑁, 1, 𝑓)

Stride size 1 𝑓

Padding 1 0

Attention weights depth (𝐴̅) 𝑆𝑎𝑚𝑒	𝑎𝑠	𝑖𝑛𝑝𝑢𝑡
𝐶
𝑓

Computation complexity 𝑂[(𝐶 − 𝑓 + 3) ⋅ (𝑓 − 1) ⋅ 𝑓] 𝑂[𝐶 ⋅ (𝑓 − 1)]

Trainable parameters of 𝐾 𝑁𝑜𝑟𝑚𝑎𝑙𝑙𝑦	3 𝑓

From the empirical formulation of hybrid modified ECA, the number of channels

per DCT channel group (𝑓) is an important variable that can have a significant impact
on the overall attention mechanism in terms of computation and the learning of

frequency feature group. The ‘𝑓’ determines the 1D convolution kernel size. It hinders
an indirect relationship with the 1D convolution computational complexity. With a

larger size of ‘𝑓’, the computational complexity reduces and vice versa. A larger ‘𝑓’ with
a larger number of trainable parameters also indicates the model’s increased ability to
govern more global relationships within DCT channel groups instead of localised DCT
group features in FGVC.

101

Based on a preliminary set of exploratory experiments, several primary

conditions are set up to restrict the initialisation of ‘𝑓’ to ensure the proper working of
the attention module. The conditions are as below:

(iii) The number of channels per DCT channel group (𝑓) should always be a positive even
integer. ‘%’ indicates the modulo operation.

𝑓	%	2 ≡ 0, 2 ≤ 𝑓 < 𝐶

(iv) The number of channels per DCT channel group (𝑓) should always be fully divisible

by the channel depth (𝐶).

𝐶	%	𝑓 ≡ 0

These limits are to ensure that the output produced from the 1D convolution can
be a whole number, and that the convolution process can operate without any centre
shift. Besides, by doing so, the attention weights can be properly assigned to each input
DCT channel group to achieve direct correspondence. In all the experiments, the

number of channels per DCT channel group (𝑓) is obtained by dividing the channel
number by 4, following the partitioning technique earlier applied towards the input
DCT on viewing the tensor as a sequential stack of LMH-DCTC structure.

In short, the preliminary effort on developing a hybrid modified ECA on the DCT
domain for FGVC showcases the importance of fundamental multi-frequency intra-
group information exchange. The multiplication of the scalar attention weight with the
respective DCT channel group retains the correspondence of the DCT channel group
and the output, avoiding information mixing between different DCT channel groups.
The attention process will later produce a series of amplified DCT channel groups that
potentially contain essential fine-grained features that distinguish itself from other
classes to improve FGVC in the DCT domain.

102

3.4.1 Hybrid Modified ECA on Intra-Group DCT
Channel Interaction

To demonstrate the workings of the hybrid modified ECA (HyMod-ECA) on the
adaptive DCT (Adapt-DCT) CNN, a brief recap is initially provided on the M-Skipped-3
architecture from section 3.2.2. Then, the integration of HyMod-ECA with Adapt-DCT
CNN is formulated. VGG-16 is used as the backbone for all the experiments for
consistency. Further down, several experimental setups with a few variations are
designed to prove the working concept of HyMod-ECA. The output of an intermediate

feature map from the 𝑙dO convolution block is:

𝑌. = 𝑋.[2 = 𝐺(𝑋.)

Where 𝐺(∗) denotes the function of a convolution block. 𝑌. is the output from 𝑙dO

convolution block with the input of 𝑋. . 𝑌. is also treated as the input towards 𝑙 + 1

convolution block, indicated by 𝑋.[2. 𝑋]$>TUT is the medium DCTC partition obtained

from the original DCT input image. The final feature map (𝑌bN"c.) is acquired by

concatenating (denoted with ⊕) a shallowly convolved M-DCTC (denoted as ℊ(∗)) and

the output from the final convolution block, denoted by 𝑌\, where the total number of

available convolution blocks is 𝑙 = 𝐿.

𝑌bN"c. = 𝑌\ ⊕𝑌]$>TUT = 𝐺(𝑋\) ⊕ ℊ(𝑋]$>TUT)

Specifically, in VGG-16 where a typical 3 convolution block is employed, the HyMod-
ECA module is applied towards the feature map output from convolution blocks 1 and 2,

and the final feature map of 𝑌bN"c.. A simple block diagram is shown in Figure 3.22:

103

Figure 3.22: Implementation of HyMod-ECA integrated with Adapt-DCT CNN with a baseline model of
VGG-16.

For convolution block 1 (𝑙 = 0) and 2 (𝑙 = 1), the following formulation applies:

𝑌cdd. = Φ(𝐺(𝑋.))

𝑌cdd. is the intermediate output feature with an associated attention mechanism

from the 𝑙dO convolution block, Φ is the HyMod-ECA module. To obtain the final feature

map (𝑌p/d) before forwarding to fully connected layers and classifier:

𝑌p/d = Φ[𝑌-⊕ℊ(𝑋]$>TUT)]

𝑌- is the output feature map from the third convolution block. For input towards

convolution block 2 (𝑋2) and 3 (𝑋-), where attention is applied towards the output from
the previous convolution block:

𝑌cdd3 = 𝑋2, 𝑌cdd2 = 𝑋-

The amplified intermediate output 𝑌cdd. will be forwarded to the next block (𝑙 + 1)

for convolving with the Adapt-DCT kernel instead of the original output (𝑌.), which

involves the Adapt-DCT kernel 𝒦Ur
.[2 and the relative pointwise convolution kernel 𝒦bi

.[2,

where 𝒦bi
.[2 = Ψu𝒦Ur

.[2 ∙ 𝔹v where the function ‘Ψ’ represents the application of element-

wise multiplication and spatial summation:

𝑌.[2 = 𝒦bi
.[2 ∗ 𝑋.[2 = 𝒦bi

.[2 ∗ 𝑌cdd.

104

Table 3.7 shows the integration of HyMod-ECA with the Adapt-DCT CNN on

VGG-16. The kernel properties (𝑓, 𝑘, 𝑠, 𝑝) indicate the (number of filters, spatial size of
the kernel, stride size, and padding size) respectively. The HyMod-ECA modules are

added into three slots of the model, denoted by 𝐾cdd. in Table 3.7. Specifically, the
attention is added after the max pooling layer from the convolution blocks 1 and 2, and
after the concatenation of convolution block 3 output with the M-Skipped feature
embedded before the classifier.

Table 3.7: Architecture of the Adapt-DCT CNN of VGG-16 with the integrated HyMod-ECA module.

Block layer
Kernel

[𝒇, 𝒌, 𝒔, 𝒑]
Convolution type Details

Convolution block 1 [256, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU

2D max pooling [-, 2, 2, 0] - -

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟎)

Convolution block 2 [512, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU

2D max pooling [-, 2, 2, 0] - -

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟏)

Convolution block 3 [512, 1, 1, 0] x 3 Pointwise convolution Activation function: PReLU

2D max pooling [-, 2, 2, 0] - -

Concatenate & reshape - -
Concatenate with M-skipped output
and reshape into a 1D tensor

HyMod-ECA (𝑲𝒂𝒕𝒕
𝟐)

Classifier - - Class number as output

105

With HyMod-ECA applied towards the feature output (𝑌cdd.) from convolution

blocks 1 and 2, the low and medium-level DCT feature groups are regulated in such a
way that critical interactions and relationships within fine-grained features of DCT
nature can be captured. With the attention output feeding towards the next convolution
block as input, plus the combination of Adapt-DCT convolution, adaptive DCT learning

on top of the DCT channel group can be achieved. The final attention output of 𝑌p/d
contains DCT channel groups of early low-level M-DCTC features and high-level general
fine-grained features. It helps to regulate the learning process such that attention is
fairly applied to the essential M-DCTC feature groups and the global context based on a
DCT representation. In other words, intra-group DCT channel interactions between
general fine-grained context and high-level DCT feature sets can be learned to enrich
complex high-level learning of DCT domain CNNs.

106

3.5 Experimental Design

This section outlines the essential components of the experimental setup and its
prerequisites. The initial segment explains the datasets employed, their processing
methodology, the chosen performance metrics, and the requisite system setup
specifications. The subsequent segment elaborates on the specific experimental setups
for each method discussed in the preceding section.

3.5.1 Characteristics and Processing of Datasets

The primary aim of this research is to establish a foundational understanding of
compressed domain FGVC. FGVC is designed to excel in distinguishing between fine-
grained subcategories within a broader category, where the subcategories are
characterized by more specific datasets featuring subtle distinctions. Certain datasets,
such as the one focused on butterflies, encompass both discriminative and global
features, while others solely emphasise fine-grained features. Consequently, it
contributes to a collection of a well-balanced mixture of robust datasets. In other words,
the chosen datasets are therefore deemed resilient and well-aligned with the interest of
this research. This research initially concentrates on small-scale FGVC datasets,
specifically those with fewer than 50 classes as a foundational phase. Subsequently, a
larger FGVC dataset (Oxford Flowers) and some general datasets (CIFAR and Mini
ImageNet) are employed to assess the algorithm’s robustness. In comparison to other
benchmark datasets, the selected datasets are notable for their robustness, small scale,
and limited number of images per class. This characteristic renders them highly
suitable for facilitating the achievement of the research objectives thus formulating
conclusions. To be more specific, eight medium-sized FGVC datasets below 50 classes,
one large-sized FGVC dataset comprising 103 classes, and three general datasets, all
fully annotated, were meticulously chosen. Notably, while the Covid-19 dataset consists
of grayscale images, the other datasets contain colour images with RGB channels. The
FGVC datasets collectively represent numerous classes that span fine-grained
classifications of various subcategory species, as detailed in Table 3.8. Furthermore,
Figure 3.23 illustrates examples of classes from these datasets, providing a visual
representation of the fine-grained classification pursued in this research.

107

Table 3.8: Number of classes, dataset genre, and the source(s) of various datasets.

Datasets # of Classes Dataset Genre Source

Covid-19 3 FGVC [160]

Sheep Breed 4 FGVC [161][162]

Flowers 5 FGVC [163]

Leeds Butterfly 8 FGVC [164]

Monkey 10 FGVC [165]

Spider Breed 15 FGVC [166]

Snake Breed 35 FGVC [167]

Butterfly 50 FGVC [168]

Oxford Flowers 102 FGVC [169]

CIFAR10 10 General [170]

CIFAR100 100 General [170]

Mini ImageNet 100 General [171]

108

Figure 3.23: A small subset of images from the datasets [160][161][162][165].

109

The rationale behind selecting different datasets for evaluating the M-Skipped
DCT-CNN, the Adapt-DCT CNN, and the HyMod-ECA DCT-CNN lies in tailoring the
dataset choices to specific objectives and methodologies, thereby enriching the depth
and breadth of this study. For the foundational phase of understanding compressed
domain FGVC, the focus was on five small-scale datasets with fewer than 50 classes. It
provides a controlled environment for initial insights into the M-Skipped DCT-CNN
algorithm. This deliberate choice eases the process of reaching meaningful conclusions,
given the smaller number of classes. While transitioning to the exploration of the
Adapt-DCT CNN, a diverse set of datasets was employed. Six medium-sized FGVC
datasets (Covid19-3C grayscale, Flowers-5C, Monkey-10C, Spider-15C, Snake Breed 35C,
Butterfly-50C), a large-sized FGVC dataset (Flowers-104C), and general datasets
(CIFAR10, CIFAR100, Mini Image Net 100C) were strategically chosen. The strategy
involved comprehensive data selection which spanned across different class sizes, and
allowed for a thorough analysis across various scales on the Adapt-DCT approach which
was integrated into the M-Skipped architecture. This strategy ensures a detailed
evaluation of the algorithm’s performance under different conditions. In the final
section, the attention mechanism which was implemented on top of previous
algorithms was examined using a set of five FGVC datasets. The emphasis here was on
capturing fundamental aspects of how attention mechanisms influence the performance,
particularly in the context of smaller-scale compressed domain FGVC. In fact, this
selection aligns with the research objective of forming a foundational understanding of
the relationship between HyMod-ECA and the FGVC within small-scale datasets. The
datasets chosen for each section of the research are systematically presented in Table
3.9, providing clear analytics of the dataset selection strategy employed throughout this
thesis.

110

Table 3.9: Datasets used in each algorithm.

Datasets M-Skipped DCT-CNN Adapt-DCT CNN HyMod-ECA DCT-CNN

Covid-19 ✓

Sheep Breed ✓

Flowers ✓ ✓ ✓

Leeds Butterfly ✓

Monkey ✓ ✓ ✓

Spider Breed ✓ ✓ ✓

Snake Breed ✓ ✓

Butterfly ✓ ✓

Oxford Flowers ✓

CIFAR10 ✓

CIFAR100 ✓

Mini ImageNet ✓

To produce compressed domain input, a conversion from RGB to DCTC is
needed. Following the standard JPEG compression CODEC, the images (except

CIFAR10, CIFAR100, and Covid19-3C) were initially resized into 224 × 224 pixels and
converted from the RGB domain to the YCbCr domain. The CIFAR10 and CIFAR100

consisted of a 3-channel RGB matrix with a spatial dimension of 32 × 32, whereas each
of the Covid19-3C images contained a single grayscale channel carrying a spatial

dimension of 224 × 224. Chroma subsampling and quantization were not applied to

reduce information loss in the images. 2 × 2 DCT partition was applied on the CIFAR10

and CIFAR100, while the 8 × 8 partition was applied on other datasets followed by

forward 2D-DCT-II. The tensor went through zigzag encoding (conversion of 𝑝 × 𝑝

partitions into a 1 × 𝑝- depth-wise DCTC representation, where 𝑝 = {2, 8} in this case)
and feature-wise standardisation. Table 3.10 provides details on the resolution of the
original RGB images, the applied DCT partition, and the corresponding shape of the
DCTC for each dataset.

111

Table 3.10: Input shape and DCT partition of various datasets.

Datasets RGB Shape DCT Partition (𝒑 × 𝒑) DCTC Shape

Covid-19 224 × 224 × 1 8 × 8 28 × 28 × 64 × 1

Sheep Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Flowers 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Leeds Butterfly 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Monkey 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Spider Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Snake Breed 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Butterfly 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

Oxford Flowers 224 × 224 × 3 8 × 8 28 × 28 × 64 × 3

CIFAR10 32 × 32 × 3 2 × 2 16 × 16 × 4 × 3

CIFAR100 32 × 32 × 3 2 × 2 16 × 16 × 4 × 3

Mini ImageNet 224 × 224 × 3 2 × 2 28 × 28 × 64 × 3

The result from the forward 2D-DCT operation will generate a tensor carrying
integers ranging between -1024 to +1023. Feature scaling was performed by applying

normalization to scale the integers into the range of approximately −1 to +1. The
remaining process of quantization and Huffman Encoding from the full JPEG
compression algorithm were excluded as only lossless DCT coefficients were required
for this research. This process is considered as partial JPEG compression. Conversely,
the complementary process of applying partial decompression by decoding the JPEG
image to acquire the DCTC during inference is straightforward. Finally, the dataset was
saved as a NumPy array with a standard PyTorch directory format. The block diagram
for the partial compression and decompression is shown in Figure 3.24.

112

Figure 3.24: Block diagram of the partial compression and partial decompression from JPEG CODEC.
The crossed-out sign indicates the processes that are discarded from the standard JPEG CODEC from the

partial compression and decompression.

Within the comprehensive collection of FGVC datasets, the total number of
images per class ranges between approximately 10 to 1000. In each experimental setup,
the dataset is split carefully into training, validation, and test sets. It is aimed to ensure
a robust evaluation of the developed algorithm in compressed domain FGVC. For
datasets with predefined splits, the established partitions were followed accordingly. In
cases where no predefined split exists, a common practice is applied: 10% of the total
images per class were designated for testing, another 10% for validation, and the
remaining images are allocated to the training set. This partitioning strategy satisfies a
balance between retaining sufficient training data for model learning and a
comprehensive testing set for diligent evaluation. The specific details of dataset splitting
are tabulated in Table 3.11.

113

Table 3.11: Number of images per class on training, validation, and testing set for various datasets.

Datasets
Training images

per class

Validation images

per class

Testing images

per class

Covid-19 50~85 20~26 20~26

Sheep Breed 336 42 42

Flowers 500~900 26 26

Leeds Butterfly 40 20 20

Monkey 80~00 26~30 26~30

Spider Breed 100~200 10 10

Snake Breed 224 48 48

Butterfly 50~120 10 10

Oxford Flowers 18~800 5~230 5~230

CIFAR10 5000 1000 1000

CIFAR100 500 100 100

Mini ImageNet 570 30 30

Given the challenge of a lower number of training images per class in some of the
datasets, the entire training process incorporates various techniques such as early
stopping, the utilization of a cosine anneal schedule for learning rate adjustment,
dropout, and batch normalization. These methods serve to regularize the model, avoid
overfitting, and shorten the training process. Given the specific characteristics of the
fine-grained images, it is crucial to avoid relying on data augmentation techniques and
to explore alternative methods to enhance dataset diversity. Throughout the training
phase, the validation metrics are computed to guide the tuning of hyperparameters. The
testing metrics are only employed after the completion of the training process. The
testing images are not used to tune the hyperparameter. This separation satisfies the
objectivity of model evaluation.

114

3.5.2 Performance Metrics and Evaluation
Criteria

The core motivation of this research is to address the issue of information
redundancy in FGVC through compressed domain analytics. To address the
fundamental issue of this work, a set of well-designed quantitative metrics is employed
to evaluate the performance of the developed algorithm to achieve the objectives. These
metrics encompass classification error, the number of trainable parameters, and
convergence speed. The classification error serves as a fundamental metric, offering an
initial assessment of the algorithm’s performance in compressed domain FGVC [98]
[100][101][26][104][105]. It is essential to provide a thorough analysis of how well the
developed algorithm addresses the identified issue earlier. Given the emphasis on the
compressed domain, the number of trainable parameters plays a critical role in
evaluating the comprehensiveness between content and model optimisation. A higher
compression gain reflects the algorithm’s ability to leverage minimal fine-grained
features within a smaller model for effective FGVC. To evaluate the effective learning of
the proposed algorithm on compressed domain FGVC, the convergence speed is
included as an examination metric. By adopting appropriate features in the compressed
domain algorithm, the convergence speed can be enhanced, leading to a shorter
learning duration. It also poses the effective development of compressed domain FGVC.

While generally, the classification error is an important metric for evaluating
model performance, this research places secondary interest on error reduction. In fact,
the classification error is utilised as a baseline reference to assess the model’s
performance against the issue addressed. Furthermore, the scope of this work revolves
around the compressed domain. Henceforth, the achievement is evaluated based on the
delicate balance between comparable classification error and compression gain.

The goal of conducting compressed domain analytics is to enhance compression
gain, which directly relates to the number of trainable parameters. While training speed
is influenced by these parameters, it can exhibit vast differences due to factors such as
the number of training images, hardware configurations, and operating devices. This
variability in behavior extends to inference time as well. Remarkably, the training speed
can be comparable across models with different numbers of trainable parameters. The
number of trainable parameters is directly correlated with computational complexity,

115

serving as an indicator of the compression gain in the computation of compressed
domain CNNs. Additionally, the training speed is linked to convergence speed, with the
specific evaluation metric covered in the result and discussion. Given the central focus
in this research is on compressed domain analytics, compression gain stands out as the
key metric for addressing this concern. Through the measurement of the number of
trainable parameters in experiments, the reduction of these parameters serves as an
interpretable metric for interpreting compression gain to address the problem
statement and objectives. Hence, the measurement of training speed and inference
timing metrics serves as a secondary consideration in evaluating the performance.

In the subsequent section, each quantitative metric for the experiment is defined,
accompanied by their respective supplementary metrics.

1) Classification error (𝜺)
The classification error is computed by dividing the sum of false positives and

false negatives over the total number of testing images. In the context of this research,
testing error is considered when there is a misclassification within the selected test sets
from each class. A lower classification error indicates a better performance. The
formula is:

𝜺 =
𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

Supplementary metrics:

• Best Testing Accuracy: The highest testing accuracy achieved during the inference
process, measured in percentage (%). Higher values indicate better performance,

computed as:

(𝟏 − 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏	𝒆𝒓𝒓𝒐𝒓) × 𝟏𝟎𝟎

• Error Trend: It is determined by tracking the average changes of the testing error
across different model variants by using a gradient. This metric yields a trendline
that portrays sequential changes in classification error throughout the
progressive experimental design. The gradient is computed as a linear
approximation function, expressed in percentage (%). The outcomes of this
analysis are commonly presented in the concluding rows of each table wherever

116

applicable. A negative gradient in the error trend resembles a decline in testing
error, reflecting an improvement in model performance. Conversely, a positive
gradient indicates the opposite scenario. A gradient value smaller than 0.10% is
deemed as a constant gradient.

• Error Change: Performance differences in terms of classification error between
the developed framework against the reference counterpart. The difference is
expressed as a percentage and typically showcased in the final rows of the tables.

A negative sign accompanied by a downward arrow (¯) signifies a reduction in

classification error where a performance improvement is obtained, while a

positive sign with an upward arrow (­) denotes the opposite scenario. The error

change can be obtained as follows:

(𝜺 − 𝜺𝑪𝒐𝒖𝒏𝒕𝒆𝒓𝒑𝒂𝒓𝒕) × 𝟏𝟎𝟎

• Precision: Measurement of accuracy of positive predictions made by the model.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

• Sensitivity: It is so known as recall, measuring model’s capability to correctly
identify positive instances of each category.

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

𝑭𝒂𝒍𝒔𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑻𝒓𝒖𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

• Specificity: It gauges the model’s ability to predict false instances of each class.

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔

𝑻𝒓𝒖𝒆	𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝒔 + 𝑭𝒂𝒍𝒔𝒆	𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝒔

• F1 Score: Harmonic mean of precision and recall, providing a balanced measure
that considers both false positives and false negatives. It is important to capture
the overall performance of a model when there is an imbalance between
precision and recall. The F1 score for each class is calculated and averaged.

𝑭𝟏	𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏	 ∙ 𝑹𝒆𝒄𝒂𝒍𝒍
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍

117

Both sensitivity and specificity serve as essential metrics for assessing the FGVC
performance in terms of intraclass scores. A higher model’s sensitivity indicates a better
capacity to capture positive instances, whereas a higher specificity denotes enhanced
proficiency in rejecting negative instances. To ensure a comprehensive evaluation, the
F1 score is computed, providing a fair measurement that compares the performance of
compressed domain FGVC against the standard algorithm.

2) Number of trainable parameters
The number of trainable parameters denotes the overall count of parameters that

were tuned and optimized throughout the model training process. These parameters
include the weights and biases inherent in both convolutional layers and fully
connected layers. It is measured in millions (mil.). A lower number of parameters leads
to higher compression gain, resulting in lightweight architecture that is easier to
optimize during training. This simplicity also contributes to higher robustness, reducing
the risk of memorizing irrelevant details which could potentially lead to overfitting.

Supplementary metrics:

• Compression Ratio: This ratio defines the relationship between the total
trainable parameters of the developed model variants in comparison to the
counterpart. A ratio above 1 indicates a reduction in parameters and vice versa.

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒	𝑀𝑜𝑑𝑒𝑙	𝑇𝑃

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝐷𝑜𝑚𝑎𝑖𝑛	𝑀𝑜𝑑𝑒𝑙	𝑇𝑃

• Parameter change: Parameters difference in terms of total number of trainable
parameters between the developed framework against the reference counterpart.
The difference of change is calculated based on the following equation:

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑇𝑃 − 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑	𝑇𝑃
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙	𝑇𝑃 × 100

118

3) Convergence speed
The convergence speed serves as an indicator of the epoch during the training

process at which the model attains over 75% validation accuracy. It implies the training
speed and convergence rate of the model, with lower values being preferable.

Supplementary metrics:

• Convergence speed ratio: The ratio between the number of epochs required for
the developed system to reach 75% validation accuracy and its counterpart,
offering insights into the relative efficiency of the convergence speed.

The first research objective aims to incorporate different levels of frequency

bands within DCTC features. The achievement of this objective is evaluated based on
the number of trainable parameters and classification errors. In essence, this is
intended to measure the efficacy of various frequency ranges in terms of feature
representation for FGVC and identify the architecture that yields the optimal
performance for these features. The goal is to establish a foundational framework
between model and frequency domain feature representations, emphasising the
broader exploration of the general emergence and impact of compressed domain
features on specific architectures. By extending the frequency features beyond L-DCTC,
a reduction in the number of trainable parameters and classification errors as compared
with the standard algorithm demonstrate the contributions proposed to achieve this
objective. The intraclass score primarily targets the consistency of classification results
and the representation capability between subclasses. While the intraclass score carries
a secondary role compared to the primary focus of this research on the compressed
domain, it is evaluated based on the overall F1 score. The F1 score is computed and
compared between the key architecture from the M-Skipped network variants and
compared against the standard VGG-16 algorithm. It aims to achieve a complementary
understanding of the FGVC analysis between different systems.

119

The second research objective centres on convolutional kernel analytics. The
analytics involve the composition of kernels using DCT-BF hence promoting robustness.
As such, the number of trainable parameters and convergence speed are used to
determine the achievement of this section. In this context, the intraclass variation
carries limited relevance for evaluating the compressed domain technique concerning
the delicate balance between optimisation and performance. Metrics such as
compression gain, and convergence speed prove to be more prominent for such
evaluation. Compressed domain analytics play a role in reducing feature redundancy.
Ideally, the proposed algorithm can offer a fair balance of compression gain and
convergence speed.

The third research objective emphasises the interactions among frequency
features to enhance effective learning. This is evaluated based on the convergence speed
and classification error. Ultimately, it is expected that a better algorithm can improve
convergence speed with comparable classification performance. The integration of the
adaptive kernel technique into the M-Skipped DCT-CNN, combined with HyMod-ECA,
constitutes the fully developed framework for compressed domain FGVC. A
comprehensive comparison between the developed algorithm and the standard
algorithm is conducted to evaluate their performance on practical FGVC. This
assessment involves the computation of intraclass metrics such as precision, sensitivity,
specificity, and f1-score. Ideally, the framework exhibiting superior scores is expected to
demonstrate better performance on FGVC. While these performance metrics provide
valuable insights, they hold secondary significance and serve as a subset of metrics
emphasised in this research on compressed domain analytics. Therefore, it is
imperative to prioritize core metrics such as the number of trainable parameters and
convergence speed for a thorough evaluation of the system in this research.

120

3.5.3 System Setups

All the experiments were implemented on a system running on an Intel Xeon

CPU, with 6 cores and a frequency of 2.2GHz to 4.1GHz. The system was equipped with
a RAM of 16GB and a Solid-State Drive of 500 GB. The system was running on top of
Ubuntu 16.04LTS., and the computing language used for this research was based on
Python 3.6. PyTorch (version 1.8) was used to implement the CNN models and evaluate
their performance. All the CNN models in each experiment were set to train for a
maximum of 100 epochs accompanied by stochastic gradient descent (SGD) with an
initial learning rate of 0.01. A cosine anneal scheduler was used during the training with
the minimum learning rate set to 0.0001. Early stopping was imposed if the validation
performance did not increase for more than 10 epochs to avoid overfitting.

Due to the stochastic nature and variability during training a CNN which arises
from the initialisation of random weights, can lead to slight variations in results across
different runs. Through employing multiple trials serves to address this inherent
variability, thus fostering a robust comprehension and ensuring reliable results.
Through the experimentation presented in this thesis, it has been demonstrated that
conducting the same experiment three times produces consistent outcomes, with the
majority of standard deviations in evaluation metrics falling within an acceptable range.
This approach yields reliable results while maintaining experimental efficiency.
Therefore, this observation justifies the choice of three trials for all experiments to
pursue an early understanding of the performance trend pertaining to small-scale scale-
compressed domain FGVC. Additionally, due to the factors such as computational cost
and computational constraints, three trials satisfy the research objectives and attains a
balance between obtaining dependable results and experimental feasibility. The best-
performing models in terms of the lowest testing error were logged. The mean and
standard deviation of the performance across three trials were computed for all the
following experiments.

121

3.5.4 M-Skipped DCT-CNN

This section explains the experimental design adopted on M-Skipped DCT-CNN.

It consisted of two core experiments followed by an ablation study. The first experiment
evaluates the network’s performance by feeding different frequency ranges of DCTC as
input to the baseline VGG-16 pointwise CNN. Specifically, L-DCTCs, M-DCTCs, H-
DCTCs, and complete DCTCs were tested individually. They were denoted as L-DCTC,
M-DCTC, H-DCTC, and All-DCTC respectively. This experiment reveals the relative
importance of each DCTC frequency range for compressed domain FGVC. One of the
objectives was to determine if M-DCTC or H-DCTC alone could provide enough mid-
high frequency domain information for feature extraction.

The second experiment implemented a single skipping connection from the
input toward the end of the convolutional blocks individually. The connection involves a
shallow convolutional layer receiving the M-DCTC in addition to the baseline VGG-16
network, denoted as the ‘M-Skipped’ branch. The motivation for this is to enable the
integration of higher-level feature maps in L-DCTC in conjunction with shallow-level
M-DCTC representations. By concatenating the convolved M-DCTC with the feature
maps produced from L-DCTC, it was hypothesized that a more robust integrated feature
representation of fine-grained compressed information could be generated.

In this experiment, three variants of single M-Skipped branches were employed.
The M-Skipped branch was individually concatenated towards the output from the first,
second, and last convolutional block from VGG-16. They were denoted as M-Skipped-1,
M-Skipped-2, and M-Skipped-3 consecutively. The overview of each variant of the M-
Skipped branch is shown in Figure 3.7 in section 3.2.3. Max-Adaptive Pooling was used
towards the end of the M-Skipped branch instead of Average-Adaptive Pooling as the
former is found to have better performance in the context of FGVC.

The convolutional layer for all the M-Skipped variants carries a single pointwise
convolutional layer containing 128 filters. A different number of filters were tested, and
it was found that 128 resulted in optimal performance. In each of the M-Skipped
variants from Table 3.12, only one of the three ‘M-Skipped-x’ and ‘Concate-x output’
was used, while the other convolutional blocks remained the same without any
concatenation applied.

122

Table 3.12: M-Skipped variations model implementation.

Layer [f, k, s, p] M-Skipped [f, k, s, p]

Conv1_1, 2, 3 [256, 1, 1, 0] M-Skipped-1 [128, 1, 1, 0]

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool

Concate-1 output 14 × 14 × (256 + 128)d

Conv2_1, 2, 3 [512, 1, 1, 0] M-Skipped-2 [128, 1, 1, 0]

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool

Concat-2 output 7 × 7 × (512 + 128)d

Conv3_1, 2, 3 [512, 1, 1, 0] M-Skipped-3 [128, 1, 1, 0]

2D Max-pooling [-, 2, 2, 0] 2D AdapMaxPool

Concat-3 output 3 × 3 × (512 + 128)d

Classifier Softmax output (Number of classes)

d. In this case, the M-skipped filter consists of 128 channels.

These experiments were followed up by connecting multiple M-Skipped

branches at all convolutional blocks from the main network. The illustration is shown in
Figure 3.25. It is intended to compare the performance between single and multiple
deeply convolved M-Skipped variants. The single M-Skipped connection was extended
by implementing two additional variants as described below:

• Concatenating the output of the M-Skipped branch which carries a single
convolutional layer of 128 filters with all three convolutional blocks of the main branch,
denoted as ‘M-Skipped-123-extended’.

• Increasing the number of convolutional layers in the M-Skipped convolutional
branch from one to three, while retaining the same number of filters in each
convolutional layer, denoted as ‘M-Skipped-123-extended-deep’.

123

Figure 3.25: M-Skipped DCTC with extended convolutional branch.

In the ablation study, a series of experiments were designed to investigate the

significance of integrating diverse frequency components, aiming to establish a
comprehensive performance comparison with the former M-Skipped-3 DCT-CNN. The
initial experiment introduced fully connected layers into the M-Skipped-3 variant,
denoted as ‘M-Skipped-3-FC’. The intention is to evaluate the impact of the existence of
fully connected layers in compressed domain FGVC. The study also included a
comparison involving ReLU as the activation function in the M-Skipped-3 without fully
connected layers, denoted as ‘M-Skipped-3-FC-ReLU’. Both were then compared
against the former M-Skipped-3 variant in terms of classification error. Subsequently,
the second experiment replaced the input of the skipping connection in M-Skipped-3
from experiment 1 with H-DCTCs, while maintaining the other setups unchanged,
denoted as ‘H-Skipped-3’. This adjustment seeks to explore the distinctions arising
between combining H-DCTCs as opposed to M-DCTCs with the high-level features
derived from L-DCTCs in the primary network. The final experiment incorporated the

124

original RGB image of all datasets as input to a standard VGG-16 algorithm. This
configuration was established to create a baseline comparison between the standard
algorithm and compressed domain FGVC. The F1-Score is computed and compared
between the H-Skipped-3, the standard VGG-16, and the former M-Skipped-3 variant
for general FGVC intra-class analysis. These carefully designed experiments collectively
contribute to a deeper understanding of the impact of varying frequency components on
the performance of compressed domain FGVC models.

3.5.5 Adaptive-DCT Pointwise Convolutional
Neural Network

The performance of Adapt-DCT CNN was assessed in several image classification
tasks including FGVC and general datasets. To the best of the author’s knowledge, there
are currently no available benchmark results on the fine-grained datasets considered in
this experiment, which consisted of DCT input. The entire convolution process that is
considered in this thesis consists of DCT input, DCT feature maps, and DCT kernel.
Therefore, it is not possible to directly compare these results with other benchmarking
literature of similar design.

The baseline experiments and models were designed carefully to serve as vital
reference points for comparative analysis between Adapt-DCT CNN variants. In all
experiments, the Adapt-DCT kernel was implemented on top of the M-Skipped DCT-
CNN, with the input image comprising the DCTC tensor. The replacement of a
convolutional layer in the CNN with an Adapt-DCT convolution kernel is
straightforward. It can be treated as a plug-and-play process. It enables all the
experiments to be carried out without going through modifying complex convolution
blocks and layers.

Several experiments were designed to test out the Adapt-DCT convolution
kernel. Two main studies were presented via three experiments to establish the
empirical support for the Adapt-DCT concept, including spatial upscaling and
frequency optimisation. Three of the main experiments were conducted on six medium-
sized FGVC datasets (Covid19-3C grayscale, Flowers-5C, Monkey-10C, Spider-15C,
Snake Breed 35C, Butterfly-50C), whereas three additional datasets were included in
the ablation study (CUB-144C, CIFAR10 and CIFAR100).

125

3.5.5.1 Spatial upscaling of Adaptive DCT Kernel

In the first experiment, the pointwise convolutional kernel in the M-Skipped-3
DCT-CNN was replaced with the Adapt-DCT kernel. Three different spatial variants of

the Adapt-DCT kernel were explored, including 2 × 2 , 4 × 4, and 8 × 8 . The
corresponding DCT basis functions of frequency bases remained with the spatial
dimension, i.e., no pruning or optimisation was applied.

Let the initial Adapt-DCT kernel (𝒦Ur) carries the shape of ℜ4×4×T , where 𝐶 is the

number of channels and 𝑁 × 𝑁 represents the spatial dimension. Different spatial

dimensions will produce different numbers of frequency bases (𝑁-) and numbers of

channel weights set per frequency base (T
4!

). The relationships between the spatial

dimensions of Adapt-DCT kernel (𝑁), numbers of DCT frequency bases (𝑁-) and the

numbers of channel weights (T
4!

) are depicted in Table 3.13:

Table 3.13: Functionality and specifications of spatial dimensions of Adapt-DCT kernel.

Spatial dimension of Adapt-DCT kernel 2 × 2 4 × 4 8 × 8

Number of DCT frequency base 4 16 64

Channel weights set per DCT frequency base 𝐶
4 𝐶

16 𝐶
64

The objective of implementing different spatial dimensions of Adapt-DCT kernel

is motivated in several ways. The experiment is expected to lead to an early
understanding on the potential of capturing certain frequency domain features along
the CNN. It is also helpful to realize the optimal spatial dimension of the Adapt-DCT
kernel for different contexts and datasets. Three variations of the spatial dimension of

Adapt-DCT kernel and the corresponding abbreviations are listed in Table 3.14. (𝐾, 𝐿, 𝐹)
denotes the (spatial dimension of the kernel, number of DCT basis function of

frequency bases, number of channels 𝐶). The performance comparison of these variants
on different datasets will be measured using classification error.

126

Table 3.14: Variations and specifications of Adapt-DCT kernel with spatial upscaling.

Abbreviation
Convolution block 1

(𝐾, 𝐿, 𝐹)

Convolution block 2

(𝐾, 𝐿, 𝐹)

Convolution block 3

(𝐾, 𝐿, 𝐹)

MS3-AD-0204 (2 × 2, 4, 256) (2 × 2, 4, 512) (2 × 2, 4, 512)

MS3-AD-0416 (4 × 4, 16, 256) (4 × 4, 16, 512) (4 × 4, 16, 512)

MS3-AD-0864 (8 × 8, 64, 256) (8 × 8, 64, 512) (8 × 8, 64, 512)

3.5.5.2 Optimisation of DCT Basis Functions of
Frequency Bases in Adaptive DCT Kernel

The second experiment studied the effects of reducing the frequency bases of
DCT basis functions forming the Adapt-DCT kernel. With a specific number of channels

at each convolutional layer (𝐶), pruning away the less important frequency bases will
lead to a growing number in channel weight associated to each of the remaining

frequency bases (increase in T
4!

 whereby 𝑁- is replaced with 𝜂). It is suggested that not

all of the frequency bases are contributing towards effective learning and feature
representations. Therefore, the optimisation was applied to the frequency bases
whereas the spatial bases were retained.

The depth-wise dimension of the original 𝑁- layer was replaced with 𝜂 during

optimisation. The formulation and criteria of 𝜂 is established in section 3.3.6. Two
spatial dimensions of Adapt-DCT kernel were explored in this experiment, particularly

8 × 8 and 4 × 4. With an Adapt-DCT kernel carrying a spatial dimension of 4 × 4, by

optimising the frequency bases, a channel of 𝜂 = 1 (leftover DC base) and 𝜂 = 4 can be
formed. A comparison of the performance between depth-wise levels of 1, 4 and 16
(original) will be presented in Chapter 4. An Adapt-DCT kernel with a spatial dimension

of 8 × 8 can accommodate several depth-wise level optimisations including 𝜂 = 1, 𝜂 = 4

and 𝜂 = 16. A similar comparison will be made between the depth-wise levels of 1, 4, 16
and 64 (original).

127

A simple illustration is shown in Figure 3.26 on the depth-wise level

optimisation based on the Adapt-DCT kernels of 8 × 8 and 4 × 4 . 𝐶 represents the

number of channels across the convolution layer, 𝑁 denotes the spatial dimension of

the Adapt-DCT kernel and 𝜂 represents the number of optimised frequency bases.

Figure 3.26: Depth-wise optimisation on DCT basis functions of frequency bases in Adapt-DCT kernel.

Five variations of depth-wise channel optimisation of Adapt-DCT kernel and
their abbreviations are listed in Table 3.15. The evaluation metric is done based on the
convergence speed and classification error. It is important to compare these metrics
concerning the frequency pruning of the Adapt-DCT kernel.

Table 3.15: Variations and specifications of frequency adaptive DCT-BF kernel optimisation

Abbreviation
Convolution block 1

(𝐾, 𝐿, 𝐹)

Convolution block 2

(𝐾, 𝐿, 𝐹)

Convolution block 3

(𝐾, 𝐿, 𝐹)

MS3-AD-0401 (4 × 4, 1, 256) (4 × 4, 1, 512) (4 × 4, 1, 512)

MS3-AD-0404 (4 × 4, 4, 256) (4 × 4, 4, 512) (4 × 4, 4, 512)

MS3-AD-0801 (8 × 8, 1, 256) (8 × 8, 1, 512) (8 × 8, 1, 512)

MS3-AD-0804 (8 × 8, 4, 256) (8 × 8, 4, 512) (8 × 8, 4, 512)

MS3-AD-0816 (8 × 8, 16, 256) (8 × 8, 16, 512) (8 × 8, 16, 512)

128

3.5.5.3 Pruning Effects of Frequency Bases with
Fewer Trainable Parameters

In experiment 2, the optimisation of DCT basis functions of frequency bases was

explored where the total number of channels (𝐶) was kept constant. It is also vital to
study the effects of pruned frequency bases with a reduced number of channels to
achieve a higher compression gain. The objective is to study the effects of pruned
frequency based on the speed of convergence and performance in a compressed domain
CNN. This experiment served as an extension of the prior experiment. Besides pruning

away the less essential frequency bases, the channel weights set per frequency base (T
4!

)

were kept constant. An example for a 4 × 4 kernel would result in 16 channel weights

per frequency base Ú-��
�V
Û for convolutional block 1 and 32 channel weights per frequency

base Ú�2-
�V
Û for convolutional blocks 2 and 3. The formulation on an 8 × 8 Adapt-DCT

kernel is similar following the same logic. By conducting direct pruning on the
frequency bases will reduce the total number of trainable parameters.

Five variations in experiment 3 are depicted in Table 3.16, with the

corresponding abbreviation and the specifications for each convolutional block. (𝐾, 𝐿, 𝐹)
denotes the ‘(spatial dimension of Adapt-DCT kernel, number of DCT basis function of

frequency bases, number of channels 𝐶 ’). As the focus here is to prune away the
frequency bases to achieve higher compression gain, the evaluation is built based on the
percentage change in the number of trainable parameters and the gradient trend in
classification error.

Table 3.16: Variations and specifications of pruning of frequency adaptive DCT-BF kernel.

Abbreviation Convolution block 1
(𝐾, 𝐿, 𝐹)

Convolution block 2
(𝐾, 𝐿, 𝐹)

Convolution block 3
(𝐾, 𝐿, 𝐹) M-Skipped

MS3-AD-0401-opt (4 × 4, 1, 16) (4 × 4, 1, 32) (4 × 4, 1, 32) (-, 1, 8)

MS3-AD-0404-opt (4 × 4, 4, 64) (4 × 4, 4, 128) (4 × 4, 4, 128) (-, 1, 32)

MS3-AD-0801-opt (8 × 8, 1, 4) (8 × 8, 1, 8) (8 × 8, 1, 8) (-, 1, 2)

MS3-AD-0804-opt (8 × 8, 4, 16) (8 × 8, 4, 32) (8 × 8, 4, 32) (-, 1, 8)

MS3-AD-0816-opt (8 × 8, 16, 64) (8 × 8, 16, 128) (8 × 8, 16, 128) (-, 1, 32)

129

3.5.5.4 Ablation Study

In the ablation study, different spatial dimensions of the Adapt-DCT kernel were
applied to different convolution blocks. Following the foundational concept where the
feature maps of the earlier network contain lower-level patterns, a larger Adapt-DCT
kernel was used in the earlier block of the network. In the latter network, more detailed

and complex higher-level features were found. In essence, an 8 × 8 kernel was used in

the first convolutional block, 4 × 4 was used in the second convolutional block and 2 × 2
was used in the last convolutional block. This variant is denoted as ‘MS3-AD-842’.
Another two basic CNNs with VGG-16 as the core architecture were presented for
baseline comparison. The first model is denoted as ‘VGG16-PC’, where three
convolutional layers were used to form a convolutional block. A total of three
convolutional blocks were stacked together to form the baseline VGG-16. All the
convolutional layers in this model featured Adapt-DCT pointwise convolutional kernel
in line with the frequency domain CNN. The VGG16-PC was implemented without any
skipped connection. ReLU was used as the activation function in this model and the
fully connected layers at the end of the network were removed. The second baseline
CNN was the M-Skipped-3 DCT-CNN. It is denoted as ‘MS3-base’. All three of the
models that were tested in the ablation study are listed in Table 3.17.

Table 3.17: Variations and specifications of varying spatial size of Adapt-DCT kernel on frequency

adaptive DCT-BF kernel optimisation.

Abbreviation
Convolution block 1

(𝐾, 𝐿, 𝐹)

Convolution block 2

(𝐾, 𝐿, 𝐹)

Convolution block 3

(𝐾, 𝐿, 𝐹)

MS3-AD-842 (8 × 8, 64, 256) (4 × 4, 16, 512) (2 × 2, 4, 512)

VGG16-PC* (1 × 1,−	, 256) (1 × 1,−	, 512) (1 × 1,−	, 512)

MS3-base* (1 × 1,−	, 256) (1 × 1,−	, 512) (1 × 1,−	, 512)

*Models with asterisk signs are not implementing the Adapt-DCT kernel.

130

3.5.6 Experimental Setup of Hybrid Modified ECA

Within this section, the implementation of the HyMod-ECA module takes place
on top of the M-Skipped-3 DCT-CNN which carries the Adapt-DCT convolutional
kernel. The variant which was abbreviated as ‘MS3-AD-0404’ was selected as the
baseline model in this experiment for its balance between performance and
compression gain, as detailed in Table II and III in the Appendix. Four distinct
experiments were designed to address specific research questions outlined in Chapter 1,
particularly concerning the concept of intra-group DCT channel interaction and the
optimisation of HyMod-ECA on Adapt-DCT CNN. It facilitates a thorough evaluation
and fair comparison of the impact of the HyMod-ECA module.

In the first experiment (denoted as ‘MS3-0404 ECA-ORG’), the ECA module
adapted from the original literature without any modification was integrated directly
into the M-Skipped-3 Adapt-DCT CNN as a baseline comparison. To obtain cross-DCT

channel interactions, 1D fast convolution was used with a kernel 𝐾(b,�,j,S), which carries

a set of convolutional properties of (𝑓, 𝑘, 𝑠, 𝑝) . Following the original ECA

implementation, the optimal number of kernel filters 𝑓 is set to a default of 3, with a

padding size 𝑝 and stride size 𝑠 of 1, yielding 𝐾(�,2,2,2).

The second experiment (denoted as MS3-0404 ECA-AD) demonstrates the
proposed HyMod-ECA on top of the M-Skipped-3 Adapt-DCT CNN, with a modified 1D

convolutional kernel carrying properties of (𝑓, 1, 𝑓, 0), ‘𝑓’ indicates the channel depth of
the kernel. With a minor increment in the number of trainable parameters manifested
in the kernel attention weights, it was expected that the implementation of HyMod-ECA
would improve the performance of the Adapt-DCT CNN over the original ECA. This is
due to its emphasis on the intra-group DCT channel interaction on top of the adaptive
learning of fine-grained DCT features (Adapt-DCT kernel).

The third experiment (denoted as MS3-0404 ECA-AD-1C1A) intentionally
includes only one convolution layer instead of 3 in every convolutional block in the
primary network followed by HyMod-ECA. The motivations come twofold. Firstly, the
experiment intends to achieve compression gain with reduced trainable parameters and
secondly, to encourage the attention module to focus on DCT channel information in
addition to the previous section in Adapt-DCT CNN where spatial context is considered.

131

A comparable performance was expected to be attained with higher compression gain
as compared with its counterpart baseline variations (MS3-0404 ECA-AD).

In the last experiment, the ‘MS3-0404 ECA-AD’ variant was attached with two
supplementary fully connected layers positioned before the classifier near the end. Each
of these fully connected layers incorporates a ReLU activation function and comprises
1024 nodes. This augmentation was introduced with the specific aim of capturing non-
linear relationships within the DCT channel. The main experiments with their
respective abbreviations and details are outlined in Table 3.18

Table 3.18: Experimental specifications and respective model abbreviations of HyMod-ECA.

Abbreviations Specifications

MS3-0404 ECA-ORG Original ECA with 𝐾(M,-,-,-) integrated into the Adapt-DCT CNN.

MS3-0404 ECA-AD HyMod-ECA with 𝐾($,-,$,0) integrated into the Adapt-DCT CNN.

MS3-0404 ECA-AD-1C1A
HyMod-ECA with 𝐾($,-,$,0) integrated into the Adapt-DCT CNN, with

only one convolution layer per convolution block instead of three.

MS3-0404 ECA-ADFC
HyMod-ECA was added to the Adapt-DCT CNN, with two fully
connected layers towards the end before the classifier.

To ensure the robustness of this research, an empirical investigation was

conducted in an ablation study to compare the technique demonstrated by the Hybrid
Cosine Basis Convolution (CBC) technique [105] with the developed DCT method
presented in this research. Given the primary focus of this research is on compressed
domain FGVC, this comparative analysis with the hybrid CBC aligns with the common
objective of exploring compressed domain approaches, setting it apart from the more
general SOTA fine-grained approaches conducted in the spatial domain. The alignment
of objectives is facilitated by hybrid CBC’s computation of compressed domain features
on a common dataset, i.e. Monkey-10C, as depicted in this research. Furthermore, the
VGG-16 baseline model which was employed in hybrid CBC offers a relevant benchmark
for comparison with the model variants presented in this study. Consequently, a fair
and meaningful comparison can be conducted between the two approaches.

132

This comparative study is dedicated to presenting the trade-off between
compression gain and performance. In contrast to conventional SOTA fine-grained
methodologies that predominantly function within the spatial domain, the distinctive
emphasis of this study lies in the context of frequency domain analytics. Here, the core
focus is on fine-grained feature extraction and representation within the compressed
domain, with a deliberate prioritization of achieving compression gain while
maintaining comparable performance. Notably, while the hybrid CBC model processes
RGB input images in the spatial domain, the various variants of the developed model in
this research operate with DCTCs as input images. The comparison between these
models primarily depends on key metrics such as classification error rate, parameter
compression ratio, and convergence speed ratio.

To address practical FGVC problems, a concluding experiment is formulated to
classify Flower (5C) and Leeds Butterfly (8C) utilizing a unified model. Specifically,
both datasets were combined and employed, comprising a total of 13 classes. A
comparison is established by comparing the performance of a standard VGG-16
algorithm utilizing RGB data from the datasets, against the comprehensive model
developed in this research (MS3-0404 ECA-AD). The analysis focuses on main
performance metrics, including precision, sensitivity, specificity, and f1-score. These
metrics collectively contribute to a thorough understanding of FGVC analysis,
particularly concerning intra-class scores between spatial domain and compressed
domain. Recognizing the significance of intra-class score in FGVC analysis, the metrics
of compression ratio and convergence speed ratio are also presented for comparison,
aligning with the central focus of this research.

133

Chapter 4 Results and Discussion

4.1 M–Skipped DCT–CNN

4.1.1 Low, Medium, and High DCT Coefficients

Following the training setup in section 3.5.4, Table 4.1 summarises the results.
The table shows the comparison of classification error comparing test images for L-
DCTC, M-DCTC, H-DCTC, and All-DCTC. The input channel for the first convolutional

layer is changed accordingly to fit the L-DCTC (28 × 28 × 16 × 3), M-DCTC (28 × 28 ×

32 × 3) and H-DCTC (28 × 28 × 16 × 3) representations respectively. The M-skipped
connection is not applicable in this experiment.

Table 4.1 depicts the difference in classification error between varying DCTC
conditions and the performance changes across FGVC datasets. Generally, L-DCTC and
sometimes All-DCTC performed better than standalone M-DCTC and H-DCTC. In brief,
all datasets exhibit better performance on All-DCTC or L-DCTC as the sole input
compared to M-DCTC or H-DCTC. Generally, with M- or H-DCTC as the only input, the
classification error is above 0.4. With All-DCTC as input, most of the datasets have a
lower error rate of around 1% to 4% when compared with L-DCTC. In contrast, Flowers
and Sheep Breed have no performance difference. The experiment conducted in this
section once again confirmed that the conventional approach of utilising All-DCTC or L-
DCTC as the only input is advantageous, as All-DCTC can fully represent the partition
features in the compressed domain, while L-DCTC contains the majority of the
information required for the model to learn well. In other words, All-DCTC and L-DCTC
can be used as a general feature representation in FGVC.

As previously mentioned, the inclusion of individual M-DCTC and H-DCTC
representations aimed to assess whether the deep CNN could effectively learn
discriminative features in FGVC within the mid-high frequency spectrum. However, the
observed lower performance, as indicated in Table 4.1, suggests that mid-high DCTCs
may not be as important as L-DCTCs. H-DCTC input generally has the lowest accuracy
as it tends to consist of irrelevant features, often noise. According to the preliminary
results in Table 4.1 and Table 4.6 in the ablation study, it was revealed that H-DCTC
could not provide sufficient features for the network, hence leading to its exclusion from

134

the subsequent experiments. Using M-DCTCs as standalone input only introduces
medium-varying features. In essence, M-DCTC on its own will not furnish adequate
information, highlighting the necessity of L-DCTCs to enhance overall performance.
This finding motivated the subsequent experiments where M-DCTCs were introduced
and built around the foundational L-DCTC feature.

Table 4.1: Comparison of classification error on individual DCTCs input.

Abbreviation Sheep

Breed

Flowers Leeds

Butterfly

Monkey Spider

Breed

All-DCTC 0.0972 0.2615 0.1979 0.2721 0.2244

L-DCTC 0.0972 0.2615 0.2021 0.3113 0.2400

M-DCTC 0.4028 0.4513 0.5833 0.6434 0.6867

H-DCTC 0.4643 0.5615 0.6812 0.6752 0.7111

4.1.2 Single and Multiple M-Skipped Connection

Tables 4.2, 4.3, and 4.4 show the test error for each M-Skipped variant. With
regards to Table 4.2, Monkey and Spider Breed attained better performance with M-
Skipped-1, Sheep Breed and Flowers achieved better performance with M-Skipped-2
while Leeds Butterfly had better performance with M-Skipped-3. By computing the
average performance metrics across each M-Skipped variant in Table 4.2, it is clear that
M-Skipped-3 obtained the overall lowest classification error, which is 0.1895. It was
found that by concatenating the output of a single M-DCTC skipped convolutional
branch at the last convolutional block, i.e. M-Skipped-3, it generated the best results.
Hence, it is suitable to adopt M-Skipped-3 as the baseline architecture over the other
variants.
 By referring to Table 4.3, by comparing the ‘M-Skipped-123-extended’ to the ‘M-
Skipped-3’ variant, a maximum of 6% error rate increase was observed in the extended
model on Spider Breed. Its deeper counterpart obtained the lowest error rate on
Monkey and Spider Breed over the single M-Skipped variant with a difference error rate
of up to 3%. However, the model carries an additional 0.2 million trainable parameters
compared to the single M-Skipped variant. From Table 4.4, it can be seen that by
adopting an M-Skipped connection, a reduction in error rate of up to 7.5% can be

135

obtained in medium-sized FGVC datasets, when compared to a more conventional
network, i.e. All-DCTC variant. This suggests that M-DCTC contains additional higher
frequency details that when integrated with deeply convolved L-DCTC representations,
a feature-rich frequency domain representation can be obtained.

From these results, it is clear that the deeper M-Skipped convolutional branch
significantly enhances the original M-DCTC feature representation and improves
performance on some of the datasets. Nevertheless, the single M-Skipped architecture
still offered a clear balance between parameters and performance. This experiment
once again shows that M-DCTC is important for FGVC and that the specific approach
adopted for integrating M-DCTC is not necessarily trivial. In other words, the specific
way in which M-DCTC is integrated can significantly affect performance in the FGVC
domain.

Table 4.2: Comparison of classification error between three M-Skipped variants and the corresponding
average performance.

Abbreviation Sheep
Breed

Flowers Leeds
Butterfly

Monkey Spider
Breed

Average

M-Skipped-1 0.0873 0.2589 0.1667 0.2574 0.2156 0.1972

M-Skipped-2 0.0695 0.2436 0.1625 0.2709 0.2666 0.2026

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895

Error Change

(Best variant vs

M-Skipped-3)

+1.58% (­) +1.02% (­) 0.0000 0.36% (­) -0.89% (¯)

136

Table 4.3: Comparison of classification error between multiple M-Skipped variants against the M-
Skipped-3.

Abbreviation Sheep
Breed

Flowers Leeds
Butterfly

Monkey Spider
Breed

Average

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895

M-Skipped-123-
extended

0.0873 0.3051 0.1792 0.2402 0.2889 0.2201

M-Skipped-123-
extended-deep

0.0893 0.2692 0.1479 0.2230 0.1845 0.1816

Table 4.4: Comparison of classification error between the best-performing M-Skipped variation and the
baseline variation without the M-Skipped branch (All-DCTC).

Abbreviation Sheep

Breed

Flowers Leeds

Butterfly

Monkey Spider

Breed

All DCTC 0.0972 0.2615 0.1979 0.2721 0.2244

Best performing M-Skipped 0.0695 0.2436 0.1229 0.2574 0.1845

Error Change -1.19% (¯) -1.79% (¯) -7.5% (¯) -1.47% (¯) -3.99% (¯)

137

4.1.3 Ablation Study

In classical CNNs, fully connected layers were typically employed at the end of
the model to improve non-linear mapping within feature maps. Surprisingly, it was
found that compressed domain CNNs often exhibit similar or sometimes inferior
performance when compared to models without fully connected layers, as evidenced in
Table 4.5. M-Skipped-3 without fully connected layers still offers the overall best
average performance with the lowest error as compared to other variants. Furthermore,
the inclusion of fully connected layers leads to an increase in the overall parameters by
approximately 7 million, as shown in Table 4.7. Thus, the fully connected layers were
not employed in this research to achieve higher compression gain and avoid
unnecessary algorithm complexity.

The initial choice of the ReLU activation function caused a clustering of features
around the x and y-axis when plotted. It poses a challenge for the classifier to draw clear
classification boundaries between classes. Moreover, when datasets were normalized
between 0 to +1 and used on ReLU, the data scaling range was considerably narrow
when compared to the feature standardization achieved with a range of -1 to +1 on
PReLU. Feature map comparisons in Figure 4.1 illustrate the PReLU-based feature
maps exhibit more pronounced clustering, allowing a more visible decision boundary.
The concept is further supported by the results in Table 4.5. It shows that the use of
PReLU in the baseline variant of M-Skipped-3 can achieve the lowest average error of
0.1895 over M-Skipped-3-ReLU.

Figure 4.1: Feature map representations of activation function outputs from ReLU (Right) and PReLU
(Left).

138

Table 4.5: Comparison of classification error between baseline M-Skipped-3 variant with PReLU (‘M-
Skipped-3’), baseline M-Skipped-3 variant with fully connected layers (‘M-Skipped-3-FC), and baseline

M-Skipped-3 variant with ReLU (‘M-Skipped-3-ReLU’).

Abbreviation Sheep

Breed

Flowers Leeds

Butterfly

Monkey Spider

Breed

Average

M-Skipped-3 0.0853 0.2538 0.1229 0.2610 0.2245 0.1895

M-Skipped-3-FC 0.0714 0.2769 0.1416 0.2512 0.2978 0.2078

M-Skipped-3-ReLU 0.1071 0.2666 0.1771 0.2904 0.2844 0.2251

The final investigation exploited the intraclass scores, particularly focusing on

the comparison between the developed algorithm (M-Skipped-3) and the H-Skipped-3
variant, alongside a standard SOTA VGG-16 algorithm. The F1-Score across these
variants was computed and presented in Table 4.6. An in-depth examination of the
intraclass scores shows that M-Skipped-3 outperforms H-Skipped-3. It attains a better
average F1-Score across all datasets. While H-Skipped-3 delivers higher F1-Score in
specific datasets such as Sheep Breed and Spider Breed, with improvements of 0.5%
and 3.99% respectively, M-Skipped-3 consistently exhibits better performance across
other datasets. Despite both variants carrying the same number of parameters, as
outlined in Table 4.7, the average F1-Score demonstrates that M-Skipped-3 excels in
providing better FGVC analysis compared to H-Skipped-3.

From the average F1-Score formulated in Table 4.6, the M-Skipped-3 variant
that is developed in this section surpasses the performance of the standard VGG-16
algorithm by 2.2%. On an individual dataset basis, except Spider Breed showing better
performance with the standard algorithm, all other datasets have better FGVC analysis
on M-Skipped-3. Furthermore, the number of parameters exhibited by the standard
algorithm is significantly greater than that of M-Skipped-3. According to Table 4.7, M-
Skipped-3 contains 1.7 million parameters whereas the standard algorithm contains
134.4 million. The compression ratio of standard VGG-16 against the M-Skipped-3
reaches up to 79 times. By considering the key emphasis of this research on
compression gain and compressed domain, coupled with the better overall F1-Score of
the developed system, it is promising that small-scale compressed domain FGVC excels
over the classical VGG-16 approach in terms of FGVC analysis.

139

Table 4.6: Comparison of F1-Score between M-Skipped-3, H-Skipped-3, and the standard VGG-16
algorithm.

Abbreviation

(Domain)

Sheep

Breed

Flowers Leeds

Butterfly

Monkey Spider

Breed

Average

M-Skipped-3 (DCT) 94.03 75.58 88.60 79.57 79.26 83.41

H-Skipped-3 (DCT) 94.63 75.16 84.22 75.84 82.65 82.50

Standard VGG-16 (RGB) 82.30 74.47 88.19 77.91 83.16 81.21

Table 4.7: Comparison of number of trainable parameters and compression ratio between different
variants.

Abbreviation Number of Parameters (mil) Compression Ratio

Standard VGG-16 134.4 1

M-Skipped-3 1.7 79

M-Skipped-123-extended 1.9 70

M-Skipped-123-extended-deep 1.9 70

M-Skipped-3-FC 8.9 15

M-Skipped-3-ReLU 1.7 79

H-Skipped-3 1.7 79

140

4.2 Adaptive DCT CNN

4.2.1 Spatial Properties of Adaptive DCT Kernel

The weighting and upscaling of spatial properties on the Adapt-DCT kernel are
discussed in this section. The setup of this experiment is explained in section 3.5.5. The
underlying motivation is to examine various spatial resolutions of the DCT-BF to form
the convolutional kernel. The term ‘upscaling’ is used to describe the ability to initialize

the kernel with spatial dimensions of 2 × 2, 4 × 4 and 8 × 8 to weigh the DCT-BF and

subsequently to form the final 1 × 1 convolutional kernel.

From Table 4.8, with an increasing spatial dimension on Adapt-DCT kernel,
Flowers and Spider Breed showed increasing error trends of 0.22% and 2.22%
respectively. On the other hand, COVID-19, Monkey, and Butterfly showed decreasing
errors of 7.49% and 0.55% respectively. The overall best result was obtained with a

spatial dimension of 8 × 8 on COVID-19, Monkey, and Butterfly, while the spatial

dimension of 2 × 2 excelled on Flowers and Spider. This suggests that smaller spatial
dimension provides fewer spatial harmonics (only key ones) to form the pointwise
convolutional kernel from the adaptive weighting of DCT basis functions and vice versa.
The smaller dimension focuses on composing fewer key representations. It is suggested
that Flowers and Spider only require a few representational capacities of the pointwise
convolution filter for DCT feature learning. On the contrary, a larger dimension serves a
higher representational capacity within the pointwise convolution filter that can ease
the feature learning of COVID-19, Monkey, and Butterfly.

Table 4.8: Comparison of classification error with increasing spatial dimension of Adapt-DCT kernel.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0204 0.2121 0.2564 0.2267 0.1778 0.3788 0.1707

MS3-AD-0416 0.1364 0.2590 0.2194 0.2155 0.3675 0.1727

MS3-AD-0864 0.0624 0.2607 0.2157 0.2222 0.3772 0.1587

Error Trend -7.49% (¯) +0.22% (­) -0.55% (¯) +2.22% (­) -0.08 % (¯) -0.60% (¯)

141

With an increasing spatial dimension on the Adapt-DCT kernel, a prevalent
performance improvement can be observed with up to a 7.49% error drop on Covid19.
The Snake Breed exhibited a nearly constant error rate across distinct spatial
dimensions. It was observed that an increase in spatial dimension did not contribute to
an improvement in its recognition performance. The resulting trend for different spatial
dimensions of the Adapt-DCT kernel is dataset-dependent. Figures 4.2 and 4.3 display
the visualization of part of the Adapt-DCT kernel on COVID-19 and Spider Breed on
different Adapt-DCT variants.

Figure 4.2: The first layer of the convolution kernel is shown for each convolution block, with conv3
referring to convolution block 1, conv4 referring to convolution block 2, and conv5 referring to

convolution block 3. Covid19-3C on three different spatial dimensions of Adapt-DCT CNN, (a) MS3-AD-
0204; (b) MS3-AD-0416; (c) MS3-AD-0864.

142

Figure 4.3: The first layer of the convolution kernel is shown for each convolution block, with conv3
referring to convolution block 1, conv4 referring to convolution block 2, and conv5 referring to

convolution block 3. Spider-15C on three different spatial dimensions of Adapt-DCT CNN, (a) MS3-AD-
0204; (b) MS3-AD-0416; (c) MS3-AD-0864.

The spatial upscaling of the Adapt-DCT kernel contributes to an early
understanding of how different spatial dimensions of weighting the DCT basis functions
can benefit compressed domain CNNs. A fundamental technique on the capability of
filter representation is established from the perspective of the DCT domain. The spatial
dimension for optimal performance differs for each dataset. Thus, the spatial properties
can be reinstated on top of the DCT pointwise convolution kernel in Adapt-DCT
convolution.

143

4.2.2 Optimisation of DCT Basis Functions of
Frequency Bases with Increasing Channel Weights
Set

The spatial and frequency bases of DCT basis functions are equally important for
the Adapt-DCT kernel in compressed domain image classification. The optimisation of
frequency bases came in two forms as discussed in section 3.5.5. The first technique
pruned away higher frequency bases while maintaining the total number of channels,
which increased the number of channel weights per frequency base. Whereas the
second method restrained the number of channel weights per frequency base in
addition to the former pruning. Hence, it will reduce the total number of trainable
parameters. The prior method intended to achieve frequency-based optimisation while
retaining the parameters while the latter method solely focused on pruning and
reducing the parameters. The results of the first technique will be discussed in this part.

Two variants of the Adapt-DCT kernel with spatial dimensions of 4 × 4 and 8 × 8 were
presented. The performance was compared between the frequency bases carrying an

original number of bases (𝑁- where 𝑁 is the spatial dimension of Adapt-DCT kernel)

and the pruned bases (𝜂). More setup information can be found in section 3.5.5.

It is crucial to analyse the convergence speed and the classification error with the
frequency pruning of the Adapt-DCT kernel. The classification error and error trend of

each frequency base with 4 × 4 and 8 × 8 spatial dimension was tabulated in Tables 4.9

and 4.10. For the spatial dimension of 8 × 8, with a reduction of frequency bases along
the channel direction and an increase of ‘channel weights set’ per frequency base,
Spider Breed exhibits a reducing error while Covid19, Monkey, and Butterfly show
increasing errors. Flowers and Snake Breed have a near-constant error regardless of the
number of frequency bases. An error trend of -0.87% can be found in the Spider with a
reduction in the number of frequency bases. Monkey exhibits an increment in error
trend of +3.76% under the same pruning condition. This suggests that Spider benefits

from the pruning effect in the spatial dimension of 8 × 8 while performance on Monkey

degrades. For the spatial dimension of 4 × 4, with a reduction of frequency bases and an
increase of channel weights set, COVID-19, Monkey, and Butterfly exhibit an error
reduction while Monkey, Spider, and Snake Breed show increasing error. COVID-19
benefits from the frequency base pruning with an error trend of -2.27%, while Spider

144

experienced the highest increment in error trend of +3.78%.

When most of the frequency bases were removed while remaining only one

frequency base (4 × 4 is denoted as MS3-AD-0401, 8 × 8 is denoted as MS3-AD-0801),
this is referred to as the ‘DC frequency base’. Spider shows the best performance on a

spatial dimension of 8 × 8 with a DC frequency base while Butterfly achieves the best

performance on a spatial dimension of 4 × 4. COVID-19 and Snake Breed did not

benefit from the frequency base optimisation in both spatial variants of 4 × 4 and 8 × 8
respectively. This can be recognised when both of the datasets presented the lowest
error on the original number of frequency bases. Generally, the optimal performance is
obtained when the first 4 frequency bases are used, i.e., when the depth-wise channel
contains 4 frequency bases (denoted as MS3-AD-xx04). This concept is proven when
Flowers, Snake Breed, and Butterfly present the lowest error on MS3-AD-0804. While
COVID-19, Flowers, Monkey, and Spider Breed attain the lowest error on MS3-AD-
0404.

Table 4.9: Comparison of classification error trend with spatial Adapt-DCT kernel size of 8.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0864 0.0624 0.2607 0.2157 0.2222 0.3772 0.1587

MS3-AD-0816 0.0657 0.2590 0.2022 0.2267 0.3736 0.1593

MS3-AD-0804 0.0808 0.2513 0.2145 0.2133 0.3728 0.1560

MS3-AD-0801 0.0791 0.2641 0.3370 0.1978 0.3788 0.1760

Error Trend +0.65% (­) +0.02% (­) +3.76% (­) -0.87% (¯) +0.04% (­) +0.49% (­)

145

Table 4.10: Comparison of classification error trend with spatial Adapt-DCT kernel size of 4.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0416 0.1364 0.2590 0.2194 0.2155 0.3675 0.1727

MS3-AD-0404 0.0758 0.2408 0.2108 0.2134 0.3724 0.1653

MS3-AD-0401 0.0909 0.2564 0.2819 0.2911 0.3750 0.1607

Error Trend -2.27% (¯) -0.13% (¯) +3.13% (­) +3.78% (­) +0.37% (­) -0.60% (¯)

The convergence speed for the optimisation of frequency bases is presented in
Tables 4.11 and 4.12. Each table indicates the results for different spatial dimensions of

8 × 8 (Table 4.11) and 4 × 4 (Table 4.12). The convergence metric of the Snake Breed
was excluded from both tables as it did not achieve a classification error below 0.25.
The variant with the best convergence speed is shown in bold numeric in the tables. The
convergence speed ratio was obtained by comparing the original frequency base with

the earliest converge variant. For the spatial dimension of 8 × 8, all of the datasets
attained early convergence with the frequency base optimisation as compared with the
original one. Monkey achieved up to 1.28 times faster convergence on the MS3-AD-
0804 as compared with the original counterpart. With the frequency base optimisation

conducted on the spatial dimension of 4 × 4, Covid19 exhibits up to 1.33 times faster
convergence while Spider Breed shows no improvement. The highest convergence

speed can be found in the context of the spatial dimension of 4 × 4 on the MS3-AD-

0401 on Covid-19, Monkey, and Butterfly. For the spatial dimension of 8 × 8 ,
insufficient trends can be drawn to provide a conclusive statement on which variant will
lead to the fastest convergence.

146

Table 4.11: Epoch reaching 75% test accuracy for spatial dimension of 8.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed

MS3-AD-0864 8.33 21.00 15.00 18.00 6.33

MS3-AD-0816 7.00 20.00 21.67 17.00 6.00

MS3-AD-0804 8.00 23.00 11.67 17.00 5.33

MS3-AD-0801 7.67 25.00 14.00 16.00 5.67

Convergence Speed Ratio
(vs MS3-AD-0864)

1.19 1.05 1.28 1.13 1.19

Table 4.12: Epoch reaching 75% test accuracy for spatial dimension of 4.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed

MS3-AD-0416 8.00 18.67 13.33 11.00 6.67

MS3-AD-0404 7.00 16.00 13.00 16.33 6.67

MS3-AD-0401 6.00 20.33 12.00 15.33 6.33

Convergence Speed Ratio
(vs MS3-AD-0416)

1.33 1.17 1.11 1.00 1.05

The technique of pruning away frequency bases with increasing channel weight
sets allows the optimisation of frequency bases and early convergence on most of the
datasets. Early convergence is achieved as it is suggested that fewer frequency bases
were required to be optimised, hence promoting robustness. The representation of a
pointwise convolutional filter with frequency base optimisation allows more filters of
the same frequency base to be generated. This suggests that the model can improve
feature learning if the DCT features contain a large portion of similar context that
matches the filter’s pattern of the remaining frequency bases.

147

4.2.3 Optimisation of DCT Basis Functions for
Trainable Parameters Compression

As the objective here is to prune the frequency bases to achieve fewer trainable
parameters, the evaluation is built based on the compression ratio (Tables 4.15 and 4.16)
and the error change (Tables 4.13 and 4.14). From Tables 4.13 and 4.14, all of the
datasets show increasing errors with a reduced number of frequency bases and

trainable parameters. With a spatial dimension of 8 × 8 on the Adapt-DCT kernel, the
steepest error trend of +16.76% can be found on the Snake Breed while the lowest trend

of +2.87% was found on Flower. With a spatial dimension of 4 × 4, the steepest trend of
+17.27% was exhibited on Snake Breed while the lowest trend of +1.01% was found on
Covid19

By referring to Tables 4.15 and 4.16, the optimisation of frequency based on

spatial dimensions of 8 × 8 and 4 × 4 offers a 93% to 99% reduction in the number of
trainable parameters concerning their original variant. The lowest classification error

across the board can be found on MS3-AD-0816-opt (for spatial dimension of 8 × 8)

and MS3-AD-0404-opt (for spatial dimension of 4 × 4), except Covid19, which attained
the lowest error on MS3-AD-0401-opt. In other words, in this experimental setup,
MS3-AD-0816-opt and MS3-AD-0401-opt offer the best performance for most of the
datasets.

Table 4.13: Best performing classification error trend comparison with spatial Adapt-DCT kernel size of 8,
with increasing DCT frequency basis functions and trainable parameters.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0816-opt 0.1010 0.2410 0.2623 0.2289 0.4147 0.2073

MS3-AD-0804-opt 0.1768 0.2641 0.3689 0.2955 0.7198 0.2807

MS3-AD-0801-opt 0.2727 0.3487 0.4669 0.3800 0.8343 0.4187

Error Trend +7.07% (­) +2.87% (­) +8.60% +5.40% (­) +16.76% (­) +8.53% (­)

148

Table 4.14: Best performing classification error trend comparison with spatial Adapt-DCT kernel size of 4,
with increasing DCT frequency basis functions and trainable parameters.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0404-opt 0.1717 0.2615 0.2487 0.2400 0.4426 0.2107

MS3-AD-0401-opt 0.1566 0.2872 0.3456 0.3356 0.7129 0.2860

Error Trend +1.01% (­) +1.41% (­) +6.31% (­) +6.00% (­) +17.27% (­) +5.66% (­)

Table 4.15: Specifications and reduced percentage of trainable parameters of the optimised variants with

respect to the original variant of spatial Adapt-DCT kernel of 8 × 8. TP reduced is measured in percentage
(%) with reference to MS3-AD-0864-org.

Abbreviation Number of Parameters (mil) Parameter Change (%)

MS3-AD-0864-org 102.53 -

MS3-AD-0816-opt 6.76 93.41

MS3-AD-0804-opt 0.51 99.50

MS3-AD-0801-opt 0.05 99.98

Table 4.16: Specifications and reduced percentage of trainable parameters of the optimised variants with

respect to the original spatial Adapt-DCT kernel of 4 × 4. TP reduction is measured in percentage (%)
with reference to MS3-AD-0416-org.

Abbreviation Number of Parameters (mil) Parameter Change (%)

MS3-AD-0416-org 25.85 -

MS3-AD-0404-opt 1.74 93.26

MS3-AD-0401-opt 0.14 99.46

149

Generally, the frequency pruning with very few trainable parameters provides
higher compression gain. This approach can offer a hybrid understanding of the
performance of each variant before conducting detailed experiments on the model that
contains the original number of frequency bases. The tradeoff of this approach is the
mediocre performance. It is suggested that the representation capability of pointwise
convolutional filter drops concerning the reduced frequency bases with consistent
channel weights set per frequency base. This scenario constrains the learning capability
of a filter hence leading to a performance drop. In a nutshell, the optimisation of DCT-
BF with pruning the frequency bases opens up the window to customise the DCT-BF to
form a convolution filter.

In Figure 4.4, the noticeable gap between training and validation metrics entails

the presence of a potential overfitting issue. This gap may arise due to factors such as
inherent noise, a limited dataset, or the complexity of the model. Several precautions
have been implemented carefully to address overfitting through regularisation
techniques. These involve applying dropout by randomly omitting neurons during
training to prevent the model from relying heavily on specific neurons. Additionally, a
cosine annealing scheduler and early stopping have been adopted to control the training
progress and foster model robustness. Introducing randomness compels the model to
learn diverse features, ultimately promoting more robust and generalised
representations. Beyond these measures, the predominant way to further reduce
overfitting is by obtaining more data. This is currently infeasible given the context of the
datasets and the research objectives.

150

Figure 4.4: Training curves for Spider-35C. (a) Validation accuracy training curve on MS3-AD-0816-opt;
(b) Validation accuracy training curve on MS3-AD-0404-opt; (c) Validation loss training curve on MS3-

AD-0404-opt; (d) Validation loss training curve on MS3-AD-0816-opt.

151

4.2.4 Ablation Study

In this section, a simple performance comparison between 2 baseline models and
the best variant of Adapt-DCT CNN was presented. Tables 4.17 and 4.18 establish the
classification error obtained from the baselines and Adapt-DCT CNN. The results are
shown based on 7 FGVC datasets (Covid-19, Flowers, Monkey, Spider Breed, Snake
Breed, Butterfly, Flowers) and 3 general datasets (Cifar-10, Cifar-100, Mini Image Net).

From a general glance, all the datasets exhibit improved performance in the
Adapt-DCT CNN condition over the baseline models. An improvement with up to
13.97% error drop on the Monkey-10C dataset can be found. The results in Table 4.17
show that FGVC datasets with below 100 classes can achieve up to 14% error drop over
the baseline model and the M-Skipped-3. In Table 4.18, with the adoption of the Adapt-
DCT kernel, Flowers achieves up to 4% error drop over the baseline models, while the
general datasets (CIFAR10 and CIFAR100) achieve between 2% to 8% error drop.

The mediocre performance of both CIFAR10 and CIFAR100 is due to the
dimension constraints of the original images. With an original RGB image size of

32 × 32 × 3, applying 2D-DCT according to a partition of 2 × 2 will result in a DCT

input tensor of (16 × 16) × (2 × 2) × 3. The mapping of the 2 × 2 partition into the layer

dimension will produce a final tensor of 16 × 16 × 12. There is more information loss
when compared with the standard RGB input. By applying 2D-DCT with a partition of

8 × 8 on the standard RGB input of 224 × 224 × 3, it will produce a corresponding DCT

input of 28 × 28 × 192. Only the Adapt-DCT variant with a spatial dimension of 2 × 2 is
applied on CIFAR10 and CIFAR100. This is because CIFAR datasets are pre-processed

with a DCT partition of 2 × 2. Applying larger spatial dimension results in negligible
performance improvement from the preliminary experiment conducted, hence it is
excluded from the analysis. Another variant from the VGG-16 baseline model that
replaced all the convolutions with Adapt-DCT kernels was implemented without the M-
Skipped architecture. This variant produced the worst result over most of the datasets.
Hence, this baseline variant was excluded from the analysis.

152

Table 4.17: Best performing test error comparison between best performing Adapt-DCT CNN, M-

Skipped-3, and normal VGG-16 pointwise CNN.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

VGG16-PC 0.1717 0.2720 0.3419 0.2489 0.4123 0.2253

MS3-base 0.2071 0.2448 0.2194 0.2489 0.3780 0.1807

Best Adapt-DCT variant 0.0624 0.2408 0.2022 0.1778 0.3675 0.1560

Error Change
(Best variant vs baseline)

-10.93% -3.12% -13.97% -7.11% -4.48% -6.93%

Error Change
(Best variant vs
M-Skipped-3)

-14.47% -0.40% -1.72% -7.11% -1.05% -2.47%

Table 4.18: Best performing test error comparison between best performing Adapt-DCT CNN, M-
Skipped-3, and normal VGG-16 pointwise CNN.

 Top 5 Top 5

Datasets
Model

Cifar-10C Cifar-100C Flowers-104C

VGG16-PC 0.3938 0.3765 0.2099

MS3-base 0.4437 0.3818 0.1743

Best Adapt-DCT variant 0.3683 0.3232 0.1699

Error Change
(Best variant vs baseline)

-2.55% -5.33% -4.00%

Error Change
(Best variant vs M-Skipped-3)

-7.54% -5.86% -0.44%

153

In this final part of the ablation study, an investigation into varying the spatial
dimensions of the Adapt-DCT kernel implemented onto each convolutional block is
attempted. This background concept is built based on the idea that early convolutional
features contain lower-level fundamental patterns while deeper features consist of
complex features. The full architecture is denoted as ‘MS3-AD-842-org’ and presented
in section 3.5. This model is implemented on 6 FGVC datasets and 1 general benchmark
dataset (mini-image net of 100 classes). It is intended to study the error change
between varying spatial dimensions of Adapt-DCT with respect to the best-performing
variant. According to Table 4.19, all of the FGVC datasets fall short on error by up to
+1.78% when compared to the best-performing Adapt-DCT variant. The general
benchmark dataset (mini-image net) obtained a top-5 classification accuracy of 73.93%
with Adapt-DCT CNN as compared with similar work which attained a top-1 accuracy of
84.81% on few-shot learning [33].

Table 4.19: Performance comparison with varying spatial dimensions for Adapt-DCT kernel with the best

Adapt-DCT variant.

Abbreviation Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

Best Adapt-DCT variant 0.0624 0.2408 0.2022 0.1778 0.3675 0.1560

MS3-AD-842-org 0.0657 0.2564 0.2083 0.1956 0.3710 0.1627

Error Change +0.33% (­) +1.56% (­) +0.61% (­) +1.78% (­) +0.35% (­) +0.67% (­)

154

4.2.5 Summary of top performing Adapt-DCT
variants for FGVC datasets

The classification error and convergence speed comparison between all Adapt-

DCT variants are presented in Tables II and III in the Appendix. The errors are ranked
based on 3 of the lowest classification errors. These metrics for each dataset are bolded.
Their corresponding variants are listed in the last 3 rows in the table. The models that
were tested in the ablation study are indicated with parenthesis. From Table II, MS3
AD-842 from the ablation study attained the top-3 lowest error on 4 (Covid-19, Monkey,
Spider, Snake Breed) out of 6 of the datasets. By purely considering the main
experiments besides the ablation study, MS3-AD-0816 and MS3-AD-0404 achieved the
top-3 lowest error on 3 out of 6 of the datasets respectively. Given that MS3-AD-0816
and MS3-AD-0404 carry 103mil and 25mil number of trainable parameters respectively,
an optimal variant that will suffice the trade-off between performance and compression
gain would be MS3-AD-0404.

155

4.3 Hybrid Modified Efficient Channel Attention

4.3.1 Experimental results and discussion of
HyMod-ECA

CBAM and ECA were initially explored in preliminary experiments by attaching

both attention modules respectively into the MS3-AD-0404 variant, adopted from the
baseline Adapt-DCT CNN. It was found that ECA attained better performance (i.e., a
lower classification error rate of 2-5%) on the same baseline experimental setup as
compared to CBAM. Therefore, ECA was selected over CBAM as the baseline channel
attention module for Adapt-DCT CNN. To determine where to add the HyMod-ECA
module after the last convolution block, both scenarios where the HyMod-ECA module
was added after the last convolution block before and after concatenating the M-
Skipped feature were tested. The results show that the latter performs better.

The general performance metric used in this section is the classification error (ε)
on test sets. Bold text showcases the top-performing variants out of all the attention
mechanism counterparts on the same baseline model. In Table 4.20, four types of
attention variants added on MS3-AD-0404 are compared against each other. The error
change between the original ECA and the HyMod-ECA is explicitly compared to draw a
clear indication of the improvement made with the proposed HyMod-ECA. In Table
4.20, the HyMod-ECA is compared against the MS3-AD-0404 and the best-performing
Adapt-DCT CNN without attention.

156

Table 4.20: Performance comparison in terms of classification error for all attention variants on Adapt-
DCT CNN.

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly

MS3-0404
ECA-ORG

0.2231 0.2169 0.2133 0.3673 0.1620

MS3-0404
ECA-AD

0.2205 0.2059 0.1778 0.3734 0.1580

MS3-0404
ECA-AD-1C1A

0.2436 0.2059 0.2155 0.3802 0.1833

MS3-0404
ECA-ADFC

0.2410 0.2096 0.3133 0.3855 0.1827

Error Change
(Original ECA vs ECA-AD)

-0.26% (¯) -1.10% (¯) -3.55% (¯) +0.61% (­) -0.40% (¯)

According to Table 4.20, HyMod-ECA achieves the best performance on most of

the FGVC datasets across the board except for Snake Breed, where applying the original
ECA module attains better performance over the other variants. By purely comparing
the proposed HyMod-ECA over the original ECA, the FGVC datasets exhibit
performance improvements of up to 3.55%. Only a slight error increase of 0.61% can be
observed in the Snake Breed. The results are strongly suggestive of the fact that the
utilization of DCT channel group interaction by implementing HyMod-ECA
outperforms the original ECA on medium FGVC tasks. The original ECA exhibited
better performance than the HyMod-ECA on the snake dataset. It is suggested that the
individual DCT channel interaction is being prioritised over intra-group interaction.
The result indicates that medium FGVC tasks generally prioritise intra-group DCT
channel interaction over individual channel relationships except for Snake Breed.

157

Table 4.21: Performance comparison in terms of classification error of HyMod-ECA Adapt-DCT CNN
with its baseline counterpart without attention and the best performing Adapt-DCT CNN for the dataset

without attention.

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly

Best variation from
the previous chapter

0.2359
(MS3-AD-842-

04)

0.2022
(MS3-AD-

0816)

0.1778
(MS3-AD-0204)

0.3675
(MS3-AD-

0416)

0.1560
(MS3-AD-

0804)

MS3-AD-0404
(Baseline)

0.2408 0.2108 0.2134 0.3724 0.1653

MS3-0404
ECA-AD

0.2205 0.2059 0.1778 0.3734 0.1580

Error Change
(Baseline vs
ECA-AD)

-2.03% (¯) -0.49% (¯) -3.56% (¯) +0.10% (­) -0.73% (¯)

Error Change
(Best vs ECA-AD)

-1.54% (¯) +0.37% (­) -0.00% +0.59% (­) +0.20% (­)

As shown in Table 4.21, when comparing the HyMod-ECA CNN against its
baseline variant without attention, the most improved performance is found on the
Spider. It achieves up to a 3.56% error drop with the adoption of HyMod-ECA as
compared with its baseline model without attention. On the flip side, a negligible
increase in error rate of 0.10% was observed on the Snake. By comparing the HyMod-
ECA with the best-performing variants of Adapt-DCT CNN without attention
mechanism, an improved performance was found on the Flowers of 1.54%, while the
Spider achieves the same performance. Minor error rate increment was found on the
other FGVC datasets, but these were maintained below 1%, which is minimal. The
comparison against the best-performing model without attention is to provide an
advanced and extensive benchmark against the original baseline counterpart.

The Spider and Flowers obtained up to 2% and 3.56% performance
improvements by using HyMod-ECA over its baseline counterpart without attention.
This suggests that these two fine-grained datasets contain more DCT channel groups of
fine-grained object parts that fully utilise the intra-group DCT channel interaction
mechanism of HyMod-ECA. On the other hand, the result also suggests Monkey and
Butterfly consist of lesser DCT channel group features that can take advantage of the
DCT channel group interaction of the HyMod-ECA module. Figures 4.5(a) and 4.5(b)
show a few samples from different classes of Spider and Monkey. The Snake Breed

158

overall has a higher error rate than all other FGVC datasets. A minor drop of 0.10% in
performance does not conclusively imply that implementing DCT channel interaction is
worse.

The intention of comparing the HyMod-ECA against its baseline counterpart
without attention is to prove that the inclusion of weight sharing across channel groups
on top of spatial pointwise convolution of the Adapt-DCT kernel can benefit FGVC in
the DCT domain. Intra-group DCT channel interactions are not sufficiently captured by
solely adopting the Adapt-DCT kernel, thus, with the proposed attention module, the
performance of the baseline model can be improved.

(a) Spider [166] visualisation from three different classes of dataset.

(b) Monkey [165] from three different classes of dataset.
Figure 4.5: Several samples from a subset of classes of the fine-grained monkey [165] and spider datasets

[166].

159

The number of trainable parameters for all four variants of the attention
mechanism is listed in Table 4.22. Table 4.23 compares the performance difference
with the inclusion of fully connected (FC) layers in HyMod-ECA while Table 4.24
measures the performance difference as a result of optimizing HyMod-ECA. From Table
4.23, the inclusion of FC layers will cause a significant performance degradation across
all the FGVC datasets as compared with the original HyMod-ECA model, ranging from
an increase in error rate of 0.37% to 13.55%. The DCT features from different groups
are combined and flattened when going through the FC layers. It is suggested that the
FC layers introduce additional transformation and non-linearity which can cause the
frequency information to be less distinctive. Combining the ablation study of
integrating FC layers into the M-Skipped-3 CNN, one can suggest that FC layers will not
ease FGVC in the DCT domain.

Table 4.22: Number of trainable parameters for each attention mechanism variant.

Abbreviation Trainable Parameters (mil)

MS3-0404 ECA-ORG 25

MS3-0404 ECA-AD 25

MS3-0404 ECA-AD-1C1A 6.72

MS3-0404 ECA-ADFC 32

Table 4.23: Performance comparison in terms of classification error of HyMod-ECA with and without
fully connected layers.

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly

MS3-0404 ECA-AD 0.2205 0.2059 0.1778 0.3734 0.1580

MS3-0404 ECA-ADFC 0.2410 0.2096 0.3133 0.3855 0.1827

Error Change +2.05% (­) +0.37% (­) +13.55% (­) +1.21% (­) +2.47% (­)

160

Table 4.24: Performance comparison in terms of classification error with the optimisation of HyMod-
ECA.

Abbreviation Flowers Monkey Snake Breed Snake Breed Butterfly

MS3-0404 ECA-AD 0.2205 0.2059 0.1778 0.3734 0.1580

MS3-0404
ECA-AD-1C1A

0.2436 0.2059 0.2159 0.3802 0.1833

Error Change +2.31% (­) -0.00% +3.81% (­) +0.68% (­) +2.35% (­)

4.3.2 Ablation Study

The comparison metrics among the Hybrid CBC algorithm, M-Skipped-3 DCT-

CNN, Adapt-DCT CNN, and HyMod-ECA DCT-CNN are presented in Table 4.25. The
M-Skipped-3 DCT CNN demonstrates a promising compression ratio, achieving up to
5.23 times in comparison to its Hybrid CBC counterpart. Meanwhile, the baseline
model of the HyMod-ECA (Adapt-DCT-0404) attains the fastest learning rate and
convergence speed ratio compared to the hybrid CBC. Impressively, this mode
accomplishes a classification error rate below 25% within 12 training epochs. The best-
performing variant in this study achieves a minimal error rate of 20.56%, showcased by
the optimized HyMod-ECA model. Although a slight increase in error of approximately
7% was exhibited when compared to the Hybrid CBC, the HyMod-ECA CNN in the DCT
domain exhibited a model compression ratio up to 1.29 times and a learning speed 5.6
times faster. In essence, while the developed method incurs a slight increase in error,
leading to a less accurate model, it successfully achieved the primary objective of this
research by delivering higher compression gain and faster learning speed in the
compressed domain. Despite a little compromise in model accuracy, the compressed
domain CNN presents three significant advantages: a reduced model size with fewer
parameters, accelerated learning speed with diminished computational complexity, and
the capability to fully operate in the DCT domain when handling input images of DCT
nature.

161

Table 4.25: Comparison of several metrics (rows) between the developed M-Skipped-3, Adapt-DCT CNN,
and HyMod-ECA versus the comparable model in CBC on a 10-classes Monkey FGVC dataset. Bold text

shows the best results for each row.

VGG-CBC-SpFw

[105]
M-Skipped-3

Adapt-DCT-
0404

HyModECA-AD-
1C1A

Best Error
Rate (%)

13.13 21.94 21.08 20.59

Convergence
Speed

96 15 12 17

Number of
trainable
parameters

8,726,000 1,666,990 25,624,622 6,745,462

Compression
Ratio

1.00 5.23 0.34 1.29

Convergence
Speed Ratio

1.00 6.4 8.0 5.6

Table 4.26 presents the intra-class scores between the concluding model

developed in this research and the standard VGG-16 algorithm. This final experiment
which was conducted on the heterogeneous combined datasets of Flowers and Leeds
Butterfly, offers a comprehensive FGVC usage comparison based on several metrics.
The results indicate that the standard VGG-16 implemented in the RGB domain
attained better FGVC analysis with higher intra-class scores. The overall F1-score
obtained from the standard VGG-16 algorithm is 8.13% higher than that of the
developed system in this research. While the sensitivity and specificity of the standard
VGG-16 algorithm shared a better performance of 8.51%, it also exhibited higher
precision by 5.84% compared to the developed system. This suggests that the spatial
context in RGB images remains relatively relevant for composing discriminative
features for FGVC analysis in classical CNNs. However, as shown in Table 4.27, the
standard VGG-16 has remarkably more parameters and slower convergence speed
compared to the model in this work. Specifically, a compression ratio of 20 times and a
convergence speed ratio of 1.2 times that of the standard VGG-16 were observed.
Regardless of the classical approaches, the implementation of compressed domain
CNNs that focus on the basis functions and frequency analytics still provides a

162

comparable performance yet achieves better compression gain as addressed in the
objective of this research.

Table 4.26: Overall intraclass metrics comparison of the concluding model in this research about the
standard VGG-16 algorithm.

Abbreviation Precision Sensitivity Specificity F1-Score

MS3-0404 ECA-AD (DCT) 76.58 70.46 70.46 70.64

Standard VGG-16 (RGB) 82.42 78.97 78.97 78.77

Accuracy Change -5.84% (¯) -8.51% (¯) -8.51% (¯) -8.13% (¯)

Table 4.27: Performance metrics comparison of the concluding model in this research about standard
VGG-16 algorithm.

Evaluation Metrics

Model

Convergence Speed

(epochs)

Trainable Parameters

(mil.)

Compression

Ratio

Convergence Speed

Ratio

MS3-0404 ECA-AD (DCT) 17 6.7
20 1.2

Standard VGG-16 (RGB) 20 134.3

163

4.4 Summary

In M-Skipped DCT-CNN, the integration of M-DCTCs with low DCTCs was
implemented in the FGVC domain. The work addresses a research gap concerning the
hindrance of feature learning concerning higher DCTC bands in a compressed domain
FGVC context. Feature correlation issues in FGVC datasets exist interchangeably
between spatial and compressed domains. Discriminative localized fine-grained feature
representations lie naturally within the spectrum of DCT coefficients and hence can be
extracted with ease in the DCT domain. The learning process of fine-grained
information in the frequency domain is arguably simpler when compared to the spatial
domain. This chapter answers the research question of whether and how appropriate
learning of M-DCTCs, in addition to L-DCTC learning, can be implemented to improve
representation learning in FGVC. A systematic approach for testing different frequency
ranges verified that L-DCTC is the main essential range for feature extraction in FGVC.
Overall, a reduction of about 7% classification error rate was achieved by utilizing an M-
skipped connection when compared to the model without the skip-connection in FGVC,
whereas minimal performance difference was obtained in a non-FGVC comparison
dataset. The M-Skipped DCT-CNN has an overall better F1-Score than the standard
VGG-16 algorithm by 2.2%. More importantly, it dominates the standard algorithm
with a compression ratio of up to 15 times. It is crucial for compressed domain FGVC to
emphasise higher frequency bands without significantly increasing computational
complexity. The parameter reduction and improved F1-Score achieved by the M-
Skipped network address the research problem of pruning across different frequency
levels, resulting in a smaller, yet high-performing model. Typically, FGVC models are
challenging to deploy due to the large number of parameters required to extract
discriminative features, as fine-grained details are often less distinguishable across
different classes. The success of the M-Skipped DCT-CNN enables its deployment in
real-world applications with limited computational resources, such as mobile devices,
embedded systems, or environments with constrained processing power. This network
offers a scalable and efficient solution for deployment across various platforms.

The work is further extended by incorporating adaptive DCT basis functions on
kernel analytics on top of M-Skipped DCT CNN. Subsequently, a novel Adaptive DCT
(Adapt-DCT) convolution kernel is developed. The Adapt-DCT kernel is intended to
form the pointwise convolution kernel which is generally found in compressed domain

164

DCT related CNNs. The Adapt-DCT convolution kernel carries trainable parameters to
weight each of the DCT basis functions of spatial and frequency base respectively. A
final pointwise convolution kernel is produced from the result of applying element-wise
multiplication and spatial summation between the Adapt-DCT kernel and the DCT
basis functions. It involved weighting the DCT basis functions to form the convolutional
kernel. This technique provides an early approach to improve the robustness of
pointwise convolutional filters in the compressed domain as compared with the

classical 3 × 3 filter in the spatial domain. With the replacement of the Adapt-DCT
kernel on the original pointwise convolution kernel, FGVC datasets obtained between
1% to 8% classification error reduction. For general classification tasks, CIFAR datasets
obtained a 2% to 8% error rate drop. The general benchmark classification task on Tiny
ImageNet of 100 classes using Adapt-DCT CNN achieved a top-5 accuracy of 73.93%.
The performance improvements from the prior experimental setups demonstrate that
the compressed domain approach can effectively address more challenging FGVC
problems. It introduces a DCT-based methodology tailored for FGVC, where highly
detailed and localised feature extraction is essential. This approach enhances the
efficiency of convolutional kernels while minimising the need for larger, more complex
algorithms. By leveraging a DCT-based kernel formulation, the methodology fosters a
more robust and dynamic convolutional algorithm, advancing its importance in both
general and fine-grained classification tasks.

In the final section, a novel concept of capitalizing on intra-group DCT channel
interactions by modifying the channel attention mechanism was proposed. The module
is inherited and improved based on a popular attention mechanism called ‘Efficient
Channel Attention’ (ECA) to fit the usage of this research for FGVC in the DCT domain.
A channel attention mechanism prioritising channel interactions within DCT groups
was developed, namely ‘Hybrid Modified ECA’ (HyMod-ECA). It serves the objective of
exploring intra-group DCT channel interaction and relationship on top of the adaptive
learning of DCT basis function in FGVC in the frequency domain. The development of
HyMod-ECA pushes the boundaries of convergence speed and parameter reduction
through the implementation of a DCT-based attention mechanism. The results
demonstrated a notable reduction in parameters and improved convergence speed,
significantly shortening the overall training and deployment timeline compared to
conventional methods, as the model converges more quickly in the compressed domain.
This attention mechanism addresses the previously overlooked intra-group DCT

165

channel relationships, which are crucial for optimising performance in FGVC tasks.
Although there is a slight decline in F1-Score compared to the contemporary Hybrid
CBC mechanism, HyMod-ECA still achieves the overall research objective by delivering
competitive performance alongside resource optimisation. The HyMod-ECA is
demonstrated on top of M-Skipped DCT-CNN which involves the Adapt-DCT kernel. It
is found to outperform the original ECA on several medium FGVC datasets. The
successful implementation of HyMod-ECA achieves up to 3.5% classification error
reduction over the original ECA and the prior Adapt-DCT baseline model without an
attention module. Besides, the optimisation of the baseline Adapt-DCT model with
HyMod-ECA attains a parameter reduction of up to 73% with no performance
degradation on Monkey-10C. It is proven that the intra-group DCT channel interactions
carry more importance over cross-channel interactions in the DCT domain FGVC.

166

Chapter 5 Conclusion and Future
Works

This research implements DCT-based methodologies within CNNs for
compressed domain small-scale FGVC. This involves the integration of the HyMod-ECA
module into the M-Skipped DCT-CNN framework, which consists of the Adapt-DCT
convolutional kernel to accomplish the aim of this work.

In a preliminary exploration of adopting low, medium, and high-frequency
coefficients (L-DCTCs, M-DCTCs, H-DCTCs) independently through a fully pointwise
VGG-16 network, it became evident that L-DCTCs and M-DCTCs share essential
features for effective classification. As a result, a novel architectural branch called the
M-Skipped DCT connection was developed to ease the passage of low-level features
from the shallowly convolved M-DCTCs, allowing them to skip through certain network
segments and combine with the deeply convolved L-DCTCs. Integrating the M-Skipped
branch with the output from the final convolutional block (M-Skipped-3) yielded
significant improvements. It achieved a notable 7.5% reduction in classification error
compared to its baseline counterpart without the M-Skipped branch on Leeds Butterfly.
The M-Skipped-3 variant demonstrated an average classification error of 18.95% over
five FGVC datasets in contrast with the baseline model’s error rate of 22.44%, resulting
in an average error reduction of 3.49%. Furthermore, the M-Skipped-3 algorithm
showed an average F1-Score of 83.41% across the same datasets, surpassing the
standard VGG-16 algorithm’s score of 81.21% by 2.2%. Remarkably, the M-Skipped-3
network comprised only 1.7 million parameters, while the standard algorithm contained
a substantial 134.4 million parameters. This shows that the developed algorithm offers
a parameter reduction of 98%. This section addressed the research gap concerning the
optimal learning and integration of frequency bands beyond L-DCTCs.

Based on the proven benefits of the M-Skipped DCT CNN, the research
progressed towards integrating the DCT methodology into a pointwise convolutional
kernel within the same CNN framework. This novel approach involved developing an
adaptive learning mechanism to weigh the DCT basis functions, resulting in the
construction of the adaptive DCT (Adapt-DCT) convolutional kernel. The spatial and

167

frequency properties of the Adapt-DCT kernel were thoroughly evaluated. The Adapt-

DCT variant which carries an adaptive weight with a spatial size of 4 × 4 and an
optimized frequency channel of 4 is denoted as MS3-AD-0404. This variant achieved
promising results with an average classification error of 21.31% and a convergence
speed of 11.80 epochs across 6 FGVC datasets. When comparing these results against
the former M-Skipped DCT CNN, which exhibited an average classification error of
24.65% and convergence speed of 13.00 epochs over the same datasets, the MS3-AD-
0404 variant attained a notable 1.1 times faster convergence speed and a 3.34%
reduction in classification error. Furthermore, with the MS3-AD-0404 variant
containing 25.85 million parameters compared to the standard VGG-16 algorithm’s
134.4 million, a compression gain of 5.2 times was achieved. The MS3-AD-0404 strikes
an optimal balance between parameter reduction and convergence speed. Additionally,
the robustness of the Adapt-DCT kernel was also tested on a general dataset. It attained
a top-5 testing accuracy of 73.93% on tiny images from 100 classes. Several
contributions were made including the modulation of spatial size and frequency
coefficient pruning of DCT-BFs to produce a kernel. These contributions addressed a
research gap in compressed domain CNNs by adaptively expediting the DCT-BFs to
construct a more robust pointwise convolutional kernel through spatial and frequency
analytics.

In the concluding phase of this research, the focus was placed on the interaction
among DCT channel groups through an attention mechanism referred to as ‘Hybrid
Modified Efficient Channel Attention’ (HyMod-ECA). This innovative approach was
evaluated on five distinct FGVC datasets. It reveals a notable performance enhancement
compared to both the original ECA and the baseline model without an attention module
in most datasets. HyMod-ECA exhibited a drop in classification error of up to 3.5%.
Moreover, an ablation study was conducted, where certain convolutional layers were
removed from each baseline convolutional block while keeping the HyMod-ECA to
increase compression gain. Particularly, the Monkey-10C achieved a parameter saving
of 73% compared to the baseline HyMod-ECA model without sacrificing performance.
This dataset also achieved a convergence speed ratio of 1.2 times faster and a
compression ratio of 20 times greater than the standard VGG-16 algorithm, with a
slight decline in F1-Score by 5.84%. This novelty significantly contributes to the
understanding of the utility of intra-group DCT channel interactions alongside the
individual cross-channel relationships in DCT domain FGVC. The integration of the

168

HyMod-ECA module on top of the Adapt-DCT M-Skipped CNN concurrently addressed
the research gap involving the interpretability and correspondence between DCT
channel groups.

This research exhibits the successful integration of CNNs in compressed domain
FGVC using DCT-based techniques. The three major innovations are the M-Skipped-3
convolutional skipping branch, the adaptive DCT kernel, and the hybrid modified
efficient channel attention mechanism. The outcomes and insights derived by these
innovations involve comparable performance, enhanced convergence speed ratios, and
improved compression gain in relation to the spatial domain. These achievements
collectively demonstrate how the objectives of this research were achieved. They are
facilitated through the following contributions:

1. The study of individual LMH-DCTCs and integration of M-DCTCs was
facilitated through the development of the M-Skipped DCT CNN. This approach yielded
an average classification error reduction of 3.49%, a 2.2% increase in the F1-score, and
a 98% reduction in parameters compared to the standard VGG-16 algorithm. This
outcome offers an alternative approach to the pruning problem frequently encountered
within the context of compressed domain FGVC. By extending the analysis beyond
conventional L-DCTC frequency bands, the research objective of integrating diverse
frequency levels to enhance FGVC performance in compressed domain applications is
addressed.

2. The study of spatial and frequency properties of DCT basis functions to
formulate a convolutional kernel was facilitated through the development of the
Adaptive DCT pointwise convolutional kernel. This technique led to a 1.1 times
improvement in convergence speed and a 3.34% reduction in classification error
compared to the M-Skipped DCT CNN without the Adapt-DCT kernel, along with a
compression gain of 5.2 times relative to the standard VGG-16 algorithm. This outcome
addresses the limitations of conventional convolutional kernel composition, which
often leads to excessive parameters and reduced robustness. Through employing DCT
basis functions, the research objective to enhance the kernel formulation is met, thereby
reducing computational complexity and achieving significant resource optimisation.

3. The study of interactions between DCT channel groups was facilitated through
the development of HyMod-ECA. This algorithm achieved an average classification
error drop of 1% compared to the original ECA. It also delivered a 1.2 times increase in

169

convergence speed and a 20 times compression ratio relative to the standard VGG-16
algorithm, with a minor drop in F1-Score by 5.84% on the Monkey-10C. This outcome
solves the problem of attention mechanisms that solely focus on individual feature
channels. By integrating the relationships and interactions among feature channels, the
research objective is met, thus enabling improved resource efficacy in compressed
domain FGVC.

While feature modification and model optimisation can enhance the efficacy of
compressed domain FGVC, the unavoidable challenges following information loss
during the compression of fine-grained images impose limitations. This hinders the
developed algorithm from achieving desirable accuracy performance in FGVC.
Nonetheless, the primary scope of this research is to explore compressed domains to
tackle information redundancy in FGVC. Although the developed algorithm achieved
the research objectives, it is crucial to address future work toward enhancing the model
robustness in terms of classification accuracy while concurrently maintaining a
comparable level of compression gain.

In the majority of experiments conducted, VGG-16 served as the foundational
baseline model. An avenue for extending this research involves the application of the
developed techniques to other SOTA CNN architectures such as ResNet and MobileNet.
This extension could offer insights into the adaptability of the proposed methodologies
across diverse network architectures. Besides, a promising direction for future research
lies in exploring dynamic mechanisms integrated within the network to further enhance
compression gains. Specifically, about the Adapt-DCT kernel, the network architecture
could be designed to dynamically assign varying sets of DCT basis functions based on
the interaction between feature maps and the convolving kernel. This dynamic
adaptation could enable the network to learn assorted combinations of DCT basis
functions tailored to represent the weights optimally. Regarding the HyMod-ECA
module, improvements could involve the continuous formulation of 1D convolutional
kernel sizes throughout model training. For instance, the integration of dilated
convolutions could be explored to investigate various combinations of DCT channel
groups to form higher-level and more complex representations. Finally, further
exploration involves the implementation of a random mixture of individual and group
DCT channel interactions. This approach could uncover novel insights into the

170

harmonic effects of combining different types of DCT channel interactions thus
improving the model’s representational capacity.

In conclusion, compressed domain image analytics and concomitant neural
architectural innovations can reduce information redundancy and hence improve the
robustness of a model. This thesis has proposed several innovations in this direction
and, it is hoped, has opened several useful directions for further improvements.

171

Bibliography

[1] D. Ruby, “ChatGPT Statistics for 2023: Comprehensive Facts and Data,”
Demand Sage. Accessed: Mar. 07, 2023. Available:
https://www.demandsage.com/chatgpt-statistics/.
[2] E. B. Picaro, “What is Apple’s Photonic Engine and how does it boost low-light
photos?”, Pocket-Lint. Accessed: Mar. 07, 2023. Available: https://www.pocket-
lint.com/phones/news/apple/162585-apple-photonic-engine-low-light-photos-how-
does-it-work-iphone-camera/.
[3] D. Ruby, “26+ iPhone User & Sales Statistics (Fresh Data 2023),” Demand Sage.
Accessed: Mar. 07, 2023. Available: https://www.demandsage.com/iphone-user-
statistics/.
[4] W. Rawat and Z. Wang, “Deep Convolutional Neural Networks for Image
Classification: A Comprehensive Review,” Neural Computation, vol. 29, no. 9, pp.
2352–2449, Sep. 2017, doi: https://doi.org/10.1162/neco_a_00990.
[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation,” 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 580–587, Jun. 2014, doi:
https://doi.org/10.1109/cvpr.2014.81.
[6] “Convolutional Neural Networks,” Bayern Collab. Accessed: Mar. 07, 2023.
Available: https://wiki.tum.de/display/lfdv/Convolutional+Neural+Networks.
[7] J. P. Bharadiya, “Convolutional Neural Networks for Image
Classification,” International Journal of Innovative Science and Research Technology,
vol. 8, no. 5, pp. 673–677., May 2023, doi: https://doi.org/10.5281/zenodo.7952031.
[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, Jun. 2016, doi: https://doi.org/10.1109/cvpr.2016.90.
[9] Z. Wu, C. Shen, and A. van den Hengel, “Wider or Deeper: Revisiting the ResNet
Model for Visual Recognition,” Pattern Recognition, vol. 90, pp. 119–133, Jun. 2019,
doi: https://doi.org/10.1016/j.patcog.2019.01.006.
[10] Z. Pan, A. G. Rust, and H. Bolouri, “Image redundancy reduction for neural
network classification using discrete cosine transforms,” Proceedings of the IEEE-

https://www.demandsage.com/chatgpt-statistics/
https://www.pocket-lint.com/phones/news/apple/162585-apple-photonic-engine-low-light-photos-how-does-it-work-iphone-camera/
https://www.pocket-lint.com/phones/news/apple/162585-apple-photonic-engine-low-light-photos-how-does-it-work-iphone-camera/
https://www.pocket-lint.com/phones/news/apple/162585-apple-photonic-engine-low-light-photos-how-does-it-work-iphone-camera/
https://doi.org/10.1162/neco_a_00990

172

INNS-ENNS International Joint Conference on Neural Networks (IJCNN 2000), Jul.
2000, doi: https://doi.org/10.1109/IJCNN.2000.861296.
[11] Y. Wang, S. Ye, S. Yu, and X. You, “R2-Trans:Fine-Grained Visual Categorization
with Redundancy Reduction,” arXiv.org, Apr. 21, 2022. Accessed: May 03, 2022.
Available: http://arxiv.org/abs/2204.10095.
[12] C. Deng, Q. Chen, X. Zou, E. Xu, B. Tang, and W. Xia, “imDedup: A Lossless
Deduplication Scheme to Eliminate Fine-grained Redundancy among Images,” 2022
IEEE 38th International Conference on Data Engineering (ICDE), May 2022, doi:
https://doi.org/10.1109/icde53745.2022.00085.
[13] Z. Wang, C. Li, and X. Wang, “Convolutional Neural Network Pruning with
Structural Redundancy Reduction,” arXiv.org, Apr. 07, 2021. Accessed: Mar. 07, 2023.
Available: http://arxiv.org/abs/2104.03438.
[14] Y. Wang, K. Lv, R. Huang, S. Song, L. Yang, and G. Huang, “Glance and Focus: a
Dynamic Approach to Reducing Spatial Redundancy in Image Classification,”
arXiv.org, Oct. 11. 2020, [Online]. Accessed: Mar. 07, 2023. Available:
http://arxiv.org/abs/2010.05300.
[15] J. Liang, T. Zhang, and G. Feng, “Channel Compression: Rethinking Information
Redundancy Among Channels in CNN Architecture,” IEEE Access, vol. 8, pp. 147265–
147274, 2020, doi: https://doi.org/10.1109/access.2020.3015714.
[16] R. Zheng, Z. Yu, Y. Zhang, C. Ding, H. V. Cheng, and L. Liu, “Learning Class
Unique Features in Fine-Grained Visual Classification,” arXiv.org, Mar. 16, 2021.
Accessed: Mar. 07, 2023. Available: http://arxiv.org/abs/2011.10951.
[17] D. Zhai, X. Zhang, X. Li, X. Xing, Y. Zhou, and C. Ma, “Object detection methods
on compressed domain videos: An overview, comparative analysis, and new directions,”
Measurement, vol. 207, p. 112371, Feb. 2023, doi:
https://doi.org/10.1016/j.measurement.2022.112371.
[18] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto, “Learning Image and Video
Compression through Spatial-Temporal Energy Compaction,” arXiv.org, Jun. 27, 2019.
Accessed: May 03, 2022. Available: http://arxiv.org/abs/1906.09683.
[19] W. Xiao, N. Wan, A. Hong, and X. Chen, “A Fast JPEG Image Compression
Algorithm Based on DCT,” 2020 IEEE International Conference on Smart Cloud
(SmartCloud), Nov. 2020, doi: https://doi.org/10.1109/SmartCloud49737.2020.00028.
[20] B. Rajesh, M. Javed, Ratnesh, and S. Srivastava, “DCT-CompCNN: A Novel
Image Classification Network Using JPEG Compressed DCT Coefficients,” 2019 IEEE

173

Conference on Information and Communication Technology, Dec. 2019, doi:
https://doi.org/10.1109/cict48419.2019.9066242.z.
[21] R. V. Babu, M. Tom, and P. Wadekar, “A survey on compressed domain video
analysis techniques,” Multimedia Tools and Applications, vol. 75, no. 2, pp. 1043–1078,
Nov. 2014, doi: https://doi.org/10.1007/s11042-014-2345-z.
[22] M. Ulicny and R. Dahyot, “On using CNN with DCT based Image Data,”
Proceedings of the 19th Irish Machine Vision and Image Processing conference, Aug.
2017.
[23] K. Cheinski and P. Wawrzynski, “DCT-Conv: Coding filters in convolutional
networks with Discrete Cosine Transform,” 2020 International Joint Conference on
Neural Networks (IJCNN), Jul. 2020, doi:
https://doi.org/10.1109/ijcnn48605.2020.9207103.
[24] K. Xu, M. Qin, F. Sun, N. C. Beaulieu, Y.-K. Chen, and F. Ren, “Learning in the
Frequency Domain,” Computer Vision and Pattern Recognition, Jun. 2020, doi:
https://doi.org/10.1109/cvpr42600.2020.00181.
[25] T. Hossain, Shyh Wei Teng, D. Zhang, S. Lim, and G. Lu, “Distortion Robust
Image Classification Using Deep Convolutional Neural Network with Discrete Cosine
Transform,” 2019 IEEE International Conference on Image Processing (ICIP), Sep.
2019, doi: https://doi.org/10.1109/icip.2019.8803787.
[26] M. Ulicny, V. A. Krylov, and R. Dahyot, “Harmonic Networks: Integrating
Spectral Information into CNNs,” arXiv.org, Dec. 07, 2018. Accessed: Mar. 07, 2023.
Available: https://arxiv.org/abs/1812.
[27] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing Deep Neural
Networks with Pruning, Trained Quantization and Huffman Coding,” arXiv.org, Feb.
2016. Accessed: Mar. 07, 2023. Available: https://arxiv.org/abs/1510.00149.
[28] S. Herbreteau and C. Kervrann, “DCT2net: An Interpretable Shallow CNN for
Image Denoising,” IEEE transactions on image processing: a publication of the IEEE
Signal Processing Society, vol. 31, pp. 4292–4305, 2022, doi:
https://doi.org/10.1109/TIP.2022.3181488.
[29] Z. Wang, Y. Yang, A. Shrivastava, V. Rawal, and Z. Ding, “Towards Frequency-
Based Explanation for Robust CNN,” arXiv.org, May 2020. Accessed: Mar. 07, 2023.
Available: http://arxiv.org/abs/2005.03141.
[30] K. Gao, H. Aliakbarpour, G. Seetharaman, and K. Palaniappan, “DCT-Based
Local Descriptor for Robust Matching and Feature Tracking in Wide Area Motion

174

Imagery,” IEEE Geoscience and Remote Sensing Letters, vol. 18, no. 8, pp. 1441–1445,
Aug. 2021, doi: https://doi.org/10.1109/lgrs.2020.3000762.
[31] X. Shen, J. Yang, C. Wei, B. Deng, J. Huang, X. Hua, X. Cheng, and K. Liang,
“DCT-Mask: Discrete Cosine Transform Mask Representation for Instance
Segmentation,” arXiv.org, Apr. 27, 2021. Accessed: Mar. 07, 2023. Available:
http://arxiv.org/abs/2011.09876.
[32] X. Chen and G. Wang, “Few-Shot Learning by Integrating Spatial and Frequency
Representation,” arXiv.org, Jul. 06, 2021. Accessed: Mar. 07, 2023. Available:
http://arxiv.org/abs/2105.05348.

[33] A. Yang, M. Li, Z. Wu, Y. He, X. Qiu, Y. Song, W. Du, and Y. Gou, “CDF-net: A
convolutional neural network fusing frequency domain and spatial domain
features,” IET computer vision, vol. 17, no. 3, pp. 319–329, Feb. 2023, doi:
https://doi.org/10.1049/cvi2.12167.
[34] R. Du, D. Chang, A. K. Bhunia, J. Xie, Z. Ma, Y. Z. Song, and J. Guo, “Fine-
Grained Visual Classification via Progressive Multi-granularity Training of Jigsaw
Patches,” Lecture notes in computer science, pp. 153–168, Jan. 2020, doi:
https://doi.org/10.1007/978-3-030-58565-5_10.
[35] H. Zheng, J. Fu, Zheng-Jun Zha, J. Luo, and T. Mei, “Learning Rich Part
Hierarchies With Progressive Attention Networks for Fine-Grained Image Recognition,”
IEEE Transactions on Image Processing, vol. 29, pp. 476–488, Jan. 2020, doi:
https://doi.org/10.1109/tip.2019.2921876.
[36] F. Zhang, L. Liu, G. Zhai, and Y. Liu, “Multi-branch and Multi-scale Attention
Learning for Fine-Grained Visual Categorization,” Springer eBooks, pp. 136–147, Jun.
2021, doi: https://doi.org/10.1007/978-3-030-67832-6_12.
[37] X. Dai, S. Gong, S. Zhong, and Z. Bao, “Bilinear CNN Model for Fine-Grained
Classification Based on Subcategory-Similarity Measurement,” Applied Sciences, vol. 9,
no. 2, p. 301, Jan. 2019, doi: https://doi.org/10.3390/app9020301.
[38] M. Buckler, N. Adit, Y. Hu, Z. Zhang, and A. Sampson, “Dense Pruning of
Pointwise Convolutions in the Frequency Domain,” arXiv.org, Sep. 16, 2021. Accessed:
Mar. 07, 2023. Available: http://arxiv.org/abs/2109.07707.
[39] Z. Liu, J. Xu, X. Peng, and R. Xiong, “Frequency-Domain Dynamic Pruning for
Convolutional Neural Networks,” 2018 Neural Information Processing Systems, Dec.
2018. Available:

175

https://proceedings.neurips.cc/paper_files/paper/2018/hash/a9a6653e48976138166d
e32772b1bf40-Abstract.html.
[40] S. Singh, “Reduction of Blocking Artifacts In JPEG Compressed
Image,” arXiv.org, Feb. 11, 2014. Accessed: Mar. 07, 2023. Available:
https://arxiv.org/abs/1210.1192.
[41] P. Najgebauer, R. Scherer, and L. Rutkowski, “Fully Convolutional Network for
Removing DCT Artefacts From Images,” 2020 International Joint Conference on
Neural Networks (IJCNN), Jul. 2020, doi:
https://doi.org/10.1109/ijcnn48605.2020.9207249.
[42] S. Khan, M. A. Irfan, A. Arif, S. T. H. Rizvi, A. Gul, M. Naeem, and N. Ahmad,
“On Hiding Secret Information in Medium Frequency DCT Components Using Least
Significant Bits Steganography,” Computer Modelling in Engineering & Sciences, vol.
118, no. 3, pp. 529–546, Mar. 2019, doi: https://doi.org/10.31614/cmes.2019.06179.
[43] Q. L. Xu, “A Research on Information Hiding Algorithm Based on Frequency
Blocks of DCT Coefficients,” 2019 Annual Meeting on Management Engineering, Dec.
2019, doi: https://doi.org/10.1145/3377672.3378034.
[44] W. W. Yee, P. S. Kah, and L. M. Ang, “M-band wavelet transform in face
recognition system,” International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, May 2008, doi:
https://doi.org/10.1109/ecticon.2008.4600468.
[45] Y. A. Shah, N. Ahmad, and M. Naeem, “Identification of critical bands in DCT
domain representation for fingerprint recognition,” 18th International Conference on
Automation and Computing (ICAC), Sep. 2012.
[46] Tan et al., “Classification of Compressed Domain Images Utilizing Open VINO
Inference Engine,” International Journal of Engineering and Advanced Technology,
vol. 9, no. 1, pp. 1669–1678, Oct. 2019, doi:
https://doi.org/10.35940/ijeat.a2709.109119.
[47] V. Sharma, S. Rai, and A. Dev, “A Comprehensive Study of Artificial Neural
Networks,” International Journal of Advanced Research in Computer Science and
Software Engineering, vol. 2, no. 10, pp. 278–284, 2012.
[48] F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.,” Psychological Review, vol. 65, no. 6, pp. 386–408,
1958, doi: https://doi.org/10.1037/h0042519.

176

[49] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” arXiv.org, 2018.
Accessed: Mar. 07, 2023. Available: https://arxiv.org/abs/1811.03378.
[50] J.-C. B. Loiseau, “Rosenblatt’s perceptron, the very first neural
network,” Towards Data Science, Mar. 11, 2019. Accessed: Mar. 07, 2023. Available:
https://towardsdatascience.com/rosenblatts-perceptron-the-very-first-neural-network-
37a3ec09038a.
[51] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural
Networks, vol. 61, no. 61, pp. 85–117, Jan. 2015, doi:
https://doi.org/10.1016/j.neunet.2014.09.003.
[52] Y. LeCun, Y. Bengio, and G. Hinton, “Deep Learning,” Nature, vol. 521, no. 7553,
pp. 436–444, May 2015, doi: https://doi.org/10.1038/nature14539.
[53] S. Lawrence and C. L. Giles, “Overfitting and neural networks: conjugate
gradient and backpropagation,” Proceedings of the IEEE-INNS-ENNS International
Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New
Challenges and Perspectives for the New Millennium, 2000, doi:
https://doi.org/10.1109/ijcnn.2000.857823.
[54] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193–202, Apr. 1980, doi:
https://doi.org/10.1007/bf00344251.
[55] G. Gidion, L. F. Capretz, M. Grosch, and K. N. Meadows, “Trends in Students
Media Usage,” Computational Science and Its Applications – ICCSA 2016, pp. 491–502,
2016, doi: https://doi.org/10.1007/978-3-319-42085-1_38.
[56] Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Handwritten Digit Recognition with a Back-Propagation Network,”
Adv Neural Inf Process Syst, pp. 396–404, 1990. Available:
https://proceedings.neurips.cc/paper/1989/file/53c3bce66e43be4f209556518c2fcb54-
Paper.pdf.
[57] R. H. Nielsen, “Theory of the Backpropagation Neural Network**Based on
‘nonindent’ by Robert Hecht-Nielsen, which appeared in Proceedings of the
International Joint Conference on Neural Networks 1, 593–611, June 1989. © 1989
IEEE.,” Neural Networks for Perception, pp. 65–93, 1992, doi:
https://doi.org/10.1016/b978-0-12-741252-8.50010-8.

177

[58] S. Mallat, “Understanding deep convolutional networks,” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, vol. 374, no. 2065, p. 20150203, Apr. 2016, doi:
https://doi.org/10.1098/rsta.2015.0203.
[59] Z. Qin, F. Yu, C. Liu, and X. Chen, “How convolutional neural networks see the
world --- A survey of convolutional neural network visualization
methods,” Mathematical Foundations of Computing, vol. 1, no. 2, pp. 149–180, 2018,
doi: https://doi.org/10.3934/mfc.2018008.
[60] Sneha H.L., “2D Convolution in Image Processing.”, All About Circuits.
Accessed: Dec. 01, 2019. Available: https://www.allaboutcircuits.com/technical-
articles/two-dimensional-convolution-in-image-processing/.
[61] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions:
Comparison of trends in Practice and Research for Deep Learning,” Nov. 2018.
arXiv.org, 2018. Accessed: May 26, 2023. Available: http://arxiv.org/abs/1811.03378
[62] K. Dhanasree, “Data Analytics: Role of Activation function In Neural Net,”
International Journal of Innovative Technology and Exploring Engineering, vol. 8,
no. 5, pp. 299–302, 2019.
[63] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Fully convolutional neural
networks for remote sensing image classification,” International Geoscience and
Remote Sensing Symposium (IGARSS), Jul. 2016, doi:
https://doi.org/10.1109/igarss.2016.7730322.
[64] Analytics Vidhya, “Fundamentals of Deep Learning - Activation Functions and
their use,” Analytics Vidhya, Feb. 22, 2019. Accessed: Aug. 21, 2019. Available:
https://www.analyticsvidhya.com/blog/2017/10/fundamentals-deep-learning-
activation-functions-when-to-use-them/.
[65] V. Nair and G. Hinton, “Rectified Linear Units Improve Restricted Boltzmann
Machines,” Proceedings of the 27th international conference on machine learning
(ICML-10), pp. 807–814, 2010. Available:
https://icml.cc/Conferences/2010/papers/432.pdf.
[66] R. Prabhu, “Understanding of Convolutional Neural Network (CNN) — Deep
Learning,” Medium, Mar. 04, 2018. Accessed: Dec. 01, 2019. Available:
https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-
network-cnn-deep-learning-99760835f148

178

[67] B. Gao and L. Pavel, “On the Properties of the Softmax Function with Application
in Game Theory and Reinforcement Learning,” arXiv.org, Aug. 20, 2018. Accessed: Dec.
01, 2019. Available: https://arxiv.org/abs/1704.00805.
[68] “Neocognitron - Basic principle of the neocognitron,” Accessed: Dec. 01, 2019.
Available:
https://www.kiv.zcu.cz/studies/predmety/uir/NS/Neocognitron/en/hierarch-det.html.
[69] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, “A survey of the recent
architectures of deep convolutional neural networks,” Artificial Intelligence Review, vol.
53, Apr. 2020, doi: https://doi.org/10.1007/s10462-020-09825-6.
[70] M. Sornam, K. Muthusubash, and V. Vanitha, “A Survey on Image Classification
and Activity Recognition using Deep Convolutional Neural Network Architecture,” Dec.
2017, doi: https://doi.org/10.1109/icoac.2017.8441512.
[71] D. Lu and Q. Weng, “A survey of image classification methods and techniques for
improving classification performance,” International Journal of Remote Sensing, vol.
28, no. 5, pp. 823–870, Mar. 2007, doi: https://doi.org/10.1080/01431160600746456.
[72] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998, doi: https://doi.org/10.1109/5.726791.
[73] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and F. F. Li, “ImageNet Large Scale
Visual Recognition Challenge,” International Journal of Computer Vision, vol. 115, no.
3, pp. 211–252, Apr. 2015, doi: https://doi.org/10.1007/s11263-015-0816-y.
[74] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, doi:
https://doi.org/10.1109/tpami.2016.2577031.
[75] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” arXiv.org, Apr. 10, 2015. Accessed: Dec. 01, 2019. Available:
https://arxiv.org/abs/1409.1556.
[76] N. Srivastava, G. Hinton, A. Krizhevsky, and R. Salakhutdinov, “Dropout: A
Simple Way to Prevent Neural Networks from Overfitting,” Journal of Machine
Learning Research, vol. 15, pp. 1929–1958, 2014.
[77] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely Connected
Convolutional Networks,” 2017 IEEE Conference on Computer Vision and Pattern

179

Recognition (CVPR), pp. 2261–2269, Jul. 2017, doi:
https://doi.org/10.1109/cvpr.2017.243.
[78] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M.
Andreetto, and H. Adam, “MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications,” arXiv.org, Apr. 2017. Accessed: Dec. 01, 2019. Available:
http://arxiv.org/abs/1704.04861.
[79] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,
“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model
size,” arXiv.org, Nov. 2016. Accessed: Dec. 01, 2019. Available:
https://arxiv.org/abs/1602.07360.
[80] B. Monien, R. Preis, and S. Schamberger, “ImageNet Classification with Deep
Convolutional Neural Networks,” Handbook of Approximation Algorithms and
Metaheuristics. Chapman and Hall/CRC, 2007. doi:
https://doi.org/10.1201/9781420010749.
[81] T. Mantoro and F. Alfiah, “Comparison methods of DCT, DWT and FFT
techniques approach on lossy image compression,” Nov. 2017, doi:
https://doi.org/10.1109/ced.2017.8308126.
[82] U. Bhade, S. Kumar, P. Dwivedy, S. Soofi, and A. Ray, “Comparative study of
DWT, DCT, BTC and SVD techniques for image compression,” 2017 International
Conference on Recent Innovations in Signal processing and Embedded Systems
(RISE), Oct. 2017, doi: https://doi.org/10.1109/rise.2017.8378167.
[83] A. H. M. J. I. Barbhuiya, T. A. Laskar, and K. Hemachandran, “An Approach for
Color Image Compression of JPEG and PNG Images Using DCT and DWT,” IEEE
Xplore, Nov. 01, 2014. doi: https://doi.org/10.1109/CICN.2014.40.
[84] D. Mehta and K. Chauhan, "Image Compression using DCT and DWT-
Technique", International Journal of Engineering Sciences Research Technology, vol.
2, no. 8, pp. 2133-2139, 2013.
[85] P. Rani and A. Arora, “A Survey on Comparison between DCT and DWT
Techniques of Image Compression,” International Journal of Science and Research
(IJSR), 2015.
[86] V. Elamaran and A. Praveen, “Comparison of DCT and wavelets in image coding,”
2012 International Conference on Computer Communication and Informatics (ICCCI
2012), Jan. 2012, doi: https://doi.org/10.1109/iccci.2012.6158923.

180

[87] C. E. Harisharan and H. Kaur, “Review of Increasing Image Compression Rate
Using (DWT+DCT) and Steganography,” International Journal of Recent Trends in
Engineering and Research, vol. 3, no. 6, pp. 67–72, Jun. 2017.
[88] O. Ghorbel, I. Jabri, W. Ayedi, and M. Abid, “Experimental study of compressed
images transmission through WSN,” Proceedings of the International Conference on
Microelectronics (ICM), pp. 1–6, 2011, Dec. 2011, doi:
https://doi.org/10.1109/icm.2011.6177378.
[89] S. J. Pinto and J. P. Gawande, “Performance analysis of medical image
compression techniques,” Asian Himalayas International Conference on Internet, pp.
1–4, 2012, doi: https://doi.org/10.1109/ahici.2012.6408455.
[90] A. K. Sharma, U. Kumar, S. K. Gupta, U. Sharma, and S. Lakshmiagrwal, “A
survey on feature extraction technique for facial expression recognition system,” 2018
4th International Conference on Computing Communication and Automation (ICCCA
2018), pp. 1–6, 2018, doi: https://doi.org/10.1109/ccaa.2018.8777550.
[91] N. Janu, P. Mathur, S. K. Gupta, and S. L. Agrwal, “Performance analysis of
frequency domain based feature extraction techniques for facial expression
recognition,” 7th International Conference on Cloud Computing, Data Science and
Engineering, Jan. 2017, doi: https://doi.org/10.1109/confluence.2017.7943220.
[92] K. Delac, M. Grgic, and S. Grgic, “Face recognition in JPEG and JPEG2000
compressed domain,” Image and Vision Computing, vol. 27, no. 8, pp. 1108–1120, Jul.
2009, doi: https://doi.org/10.1016/j.imavis.2008.10.007.
[93] A. Deshpande, S. Dubey, H. Shaligram, A. Potnis, and S. Chavan, “Iris
recognition system using block based approach with DWT and DCT,” Annual IEEE
India Conference (INDICON), Dec. 2014, doi:
https://doi.org/10.1109/indicon.2014.7030396.
[94] K. Tewari and R. L. Kalakoti, “Fingerprint recognition and feature extraction
using transform domain techniques,” 2014 International Conference on Advances in
Communication and Computing Technologies (ICACACT 2014), Aug. 2014, doi:
https://doi.org/10.1109/eic.2015.7230719.
[95] M. J. Er, W. Chen, and S. Wu, “High-speed face recognition based on discrete
cosine transform and RBF neural networks,” IEEE Transactions on Neural Networks,
vol. 16, no. 3, pp. 679–691, May 2005, doi: https://doi.org/10.1109/TNN.2005.844909.
[96] L. Leng, J. Zhang, M. K. Khan, J. Xu, and K. Alghathbar, “Dynamic weighted
discrimination power analysis in DCT domain for face and palmprint recognition,”

181

International Conference on Information and Communication Technology
Convergence (ICTC), Nov. 2010, doi: https://doi.org/10.1109/ictc.2010.5674791.
[97] S. Dabbaghchian, A. Aghagolzadeh, and M. S. Moin, “Feature extraction using
discrete cosine transform for face recognition,” 2007 9th International Symposium on
Signal Processing and its Applications, Feb. 2007, doi:
https://doi.org/10.1109/isspa.2007.4555358.
[98] M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolutional networks
through FFTS,” arXiv.org, Mar. 06, 2014. Accessed: Dec. 01, 2019. Available:
https://arxiv.org/abs/1312.5851.
[99] H. Pratt, B. Williams, F. Coenen, and Y. Zheng, “FCNN: Fourier Convolutional
Neural Networks,” Lecture notes in computer science, pp. 786–798, Jan. 2017, doi:
https://doi.org/10.1007/978-3-319-71249-9_47.
[100] L. Gueguen, A. Sergeev, R. Liu, and J. Yosinski, “Faster Neural Networks
Straight from JPEG,” Neural Information Processing Systems (NIPS), Dec. 2018.
Available:
https://proceedings.neurips.cc/paper_files/paper/2018/hash/7af6266cc52234b5aa33
9b16695f7fc4-Abstract.html.
[101] A. Ghosh and R. Chellappa, “Deep feature extraction in the DCT domain,”
International Conference on Pattern Recognition, Dec. 2016, doi:
https://doi.org/10.1109/icpr.2016.7900182.
[102] Y. Xu and H. Nakayama, “DCT Based Information-Preserving Pooling for Deep
Neural Networks,” 2019 IEEE International Conference on Image Processing (ICIP),
Sep. 2019, doi: https://doi.org/10.1109/icip.2019.8802962.
[103] M. Ulicny, V. A. Krylov, and Rozenn Dahyot, “Harmonic Networks with Limited
Training Samples,” MURAL - Maynooth University Research Archive Library
(National University of Ireland, Maynooth), Sep. 2019, doi:
https://doi.org/10.23919/eusipco.2019.8902831.
[104] Y. Chen, H. Fan, B. Xu, Z. Yan, Y. Kalantidis, M. Rohrbach, Y. Shuicheng, and J.
Feng, “Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural
Networks With Octave Convolution,” 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), Oct. 2019, doi: https://doi.org/10.1109/iccv.2019.00353.
[105] A. Ciurana, A. Mosella-Montoro, and J. Ruiz-Hidalgo, “Hybrid Cosine Based
Convolutional Neural Networks,” arXiv.org, Apr. 03, 2019. Accessed: Jan. 13, 2024.
Available: https://arxiv.org/abs/1904.01987.

182

[106] Y. Xu and H. Nakayama, “Shifted spatial-spectral convolution for deep neural
networks,” 1st ACM International Conference on Multimedia in Asia, Dec. 2019, doi:
https://doi.org/10.1145/3338533.3366575.
[107] H. Pan, X. Zhu, S. Atici, and A. E. Cetin, “DCT Perceptron Layer: A Transform
Domain Approach for Convolution Layer,” arXiv.org, Nov. 15, 2022. Accessed: Jan. 13,
2024. Available: http://arxiv.org/abs/2211.08577.
[108] X. Li, J. Wu, Z. Sun, Z. Ma, J. Cao, and J.-H. Xue, “BSNet: Bi-Similarity Network
for Few-shot Fine-grained Image Classification,” IEEE transactions on image
processing, vol. 30, pp. 1318–1331, Jan. 2021, doi:
https://doi.org/10.1109/tip.2020.3043128.
[109] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local Neural Networks,” arXiv
(Cornell University), Nov. 2017, doi: https://doi.org/10.48550/arxiv.1711.07971.
[110] V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, “Recurrent Models of Visual
Attention,” Neural Information Processing Systems, 2014. Available:
https://proceedings.neurips.cc/paper/2014/hash/09c6c3783b4a70054da74f2538ed47
c6-Abstract.html.
[111] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation
Networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1,
2019, doi: https://doi.org/10.1109/tpami.2019.2913372.
[112] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional Block
Attention Module,” Computer Vision – ECCV 2018, pp. 3–19, 2018, doi:
https://doi.org/10.1007/978-3-030-01234-2_1.
[113] B. Wang, S. Zhang, J. Zhang, and Z. Cai, “Architectural style classification based
on CNN and channel–spatial attention,” Signal, Image and Video Processing, Apr.
2022, doi: https://doi.org/10.1007/s11760-022-02208-0.
[114] Y. Cheng, X. Wang, X. Xie, W. Li, and S. Peng, “Channel pruning guided by
global channel relation,” Applied intelligence, vol. 52, no. 14, pp. 16202–16213, Mar.
2022, doi: https://doi.org/10.1007/s10489-022-03198-9.
[115] J. Kong, H. Wang, C. Yang, X. Jin, M. Zuo, and X. Zhang, “A Spatial

Feature-Enhanced Attention Neural Network with High-Order Pooling Representation
for Application in Pest and Disease Recognition,” Agricultural, vol. 12, no. 4, pp. 500–
500, Mar. 2022, doi: https://doi.org/10.3390/agriculture12040500.
[116] S. Wang, Y. Zhu, S. Lee, D. C. Elton, T. C. Shen, Y. Tang, Y. Peng, Z. Lu, and R. M.
Summers, “Global-Local attention network with multi-task uncertainty loss for

183

abnormal lymph node detection in MR images,” Medical image analysis, vol. 77, pp.
102345–102345, Apr. 2022, doi: https://doi.org/10.1016/j.media.2021.102345.
[117] C. Scribano, G. Franchini, M. Prato, and M. Bertogna, “DCT-Former: Efficient
Self-Attention with Discrete Cosine Transform,” Journal of Scientific Computing, vol.
94, no. 3, Feb. 2023, doi: https://doi.org/10.1007/s10915-023-02125-5.
[118] Y. Wang, Y. Qi, C. Xu, M. Lou, and Y. Ma, “Learning multi-frequency features in
convolutional network for mammography classification,” Medical & biological
engineering & computing, vol. 60, no. 7, pp. 2051–2062, May 2022, doi:
https://doi.org/10.1007/s11517-022-02582-4.
[119] Y. Huang, C. Zhou, L. Chen, J. Chen, and S. Lan, “Medical Frequency Domain
Learning: Consider Inter-class and Intra-class Frequency for Medical Image
Segmentation and Classification,” 2021 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), Dec. 2021, doi:
https://doi.org/10.1109/bibm52615.2021.9669443.
[120] M. H. Guo, T. X. Xu, J. J. Liu, Z. N. Liu, P. T. Jiang, T. J. Mu, S. H. Zhang, R. R.
Martin, M. M. Cheng, and S. M. Hu, “Attention mechanisms in computer vision: A
survey,” Computational Visual Media, Mar. 2022, doi:
https://doi.org/10.1007/s41095-022-0271-y.
[121] S. Pande and B. Banerjee, “Adaptive hybrid attention network for hyperspectral
image classification,” Pattern Recognition Letters, vol. 144, pp. 6–12, Apr. 2021, doi:
https://doi.org/10.1016/j.patrec.2021.01.015.
[122] N. Guo, K. Gu, J. Qiao, and J. Bi, “Improved deep CNNs based on Nonlinear
Hybrid Attention Module for image classification,” Neural Networks, vol. 140, pp. 158–
166, Aug. 2021, doi: https://doi.org/10.1016/j.neunet.2021.01.005.
[123] Y. Fan, J. Liu, R. Yao, and X. Yuan, “COVID-19 Detection from X-ray Images
using Multi-Kernel-Size Spatial-Channel Attention Network,” Pattern Recognition, vol.
119, p. 108055, Nov. 2021, doi: https://doi.org/10.1016/j.patcog.2021.108055.
[124] Z. Qin, P. Zhang, F. Wu, and X. Li, “FcaNet: Frequency Channel Attention
Networks,” arXiv.org, Dec. 2020. Accessed: Jan. 13, 2024. Available:
https://doi.org/10.48550/arxiv.2012.11879.
[125] J. Gao, Q. Wang, and Y. Yuan, “SCAR: Spatial-/channel-wise attention
regression networks for crowd counting,” Neurocomputing, vol. 363, pp. 1–8, Oct. 2019,
doi: https://doi.org/10.1016/j.neucom.2019.08.018.

184

[126] X. Wang, J. Shi, H. Fujita, and Y. Zhao, “Aggregate attention module for fine-
grained image classification,” Journal of ambient intelligence & humanized
computing/Journal of ambient intelligence and humanized computing, vol. 14, no. 7,
pp. 8335–8345, Nov. 2021, doi: https://doi.org/10.1007/s12652-021-03599-7.
[127] X. Ke and Y. Zhang, “Fine-grained Vehicle Type Detection and Recognition
Based on Dense Attention Network,” Neurocomputing, vol. 399, pp. 247–257, Mar.
2020, doi: https://doi.org/10.1016/j.neucom.2020.02.101.
[128] Z. Xiangyu, “Wavelet-Attention CNN for Image Classification,” arXiv.org, Jan.
23, 2022. Accessed: Jan. 13, 2024. Available: http://arxiv.org/abs/2201.09271.
[129] H. Chen, L. Cheng, G. Huang, G. Zhang, J. Lan, Z. Wu, C. M. Pun, and W. K. Ling,
“Fine-grained visual classification with multi-scale features based on self-supervised
attention filtering mechanism,” Applied Intelligence, vol. 52, no. 13, pp. 15673–15689,
Mar. 2022, doi: https://doi.org/10.1007/s10489-022-03232-w.
[130] X. Liu, L. Zhang, T. Li, D. Wang, and Z. Wang, “Dual attention guided multi-
scale CNN for fine-grained image classification,” Information Sciences, vol. 573, pp.
37–45, Sep. 2021, doi: https://doi.org/10.1016/j.ins.2021.05.040.
[131] X. Ke, Y. Huang, and W. Guo, “Weakly supervised fine-grained image
classification via two-level attention activation model,” Computer Vision and Image
Understanding, Mar. 2022, doi: https://doi.org/10.1016/j.cviu.2022.103408.
[132] F. Liu, H. Xu, M. Qi, D. Liu, J. Wang, and J. Kong, “Depth-Wise Separable
Convolution Attention Module for Garbage Image Classification,” Sustainability, vol. 14,
no. 5, pp. 3099–3099, Mar. 2022, doi: https://doi.org/10.3390/su14053099.
[133] P. Singh, P. Mazumder, and V. P. Namboodiri, “Context extraction module for
deep convolutional neural networks,” Pattern Recognition, vol. 122, p. 108284, Feb.
2022, doi: https://doi.org/10.1016/j.patcog.2021.108284.
[134] N. Wang, Y. Bai, K. Yu, Y. Jiang, S. Xia, and Y. Wang, “Adaptive Frequency
Learning in Two-branch Face Forgery Detection,” arXiv.org, Mar. 27, 2022. Accessed:
Jan. 13, 2024. Available: http://arxiv.org/abs/2203.14315.
[135] V. K. Sharma, K. K. Mahapatra, and B. Acharya, “Visual object tracking based on
discriminant DCT features,” Digital Signal Processing, vol. 95, p. 102572, Dec. 2019,
doi: https://doi.org/10.1016/j.dsp.2019.08.002.
[136] Y. Yan, S. Duffner, P. Phutane, A. Berthelier, X. Naturel, C. Blanc, C. Garcia, and
T. Chateau, “Fine-grained facial landmark detection exploiting intermediate feature

185

representations,” Computer Vision and Image Understanding, vol. 200, p. 103036,
Nov. 2020, doi: https://doi.org/10.1016/j.cviu.2020.103036.
[137] L. Wang, L. Xu, W. Tian, Y. Zhang, H. Feng, and Z. Chen, “Underwater image
super-resolution and enhancement via progressive frequency-interleaved
network,” Journal of Visual Communication and Image Representation, vol. 86, p.
103545, Jul. 2022, doi: https://doi.org/10.1016/j.jvcir.2022.103545.
[138] C. Pu, H. Huang, and L. Yang, “An attention-driven convolutional neural
network-based multi-level spectral–spatial feature learning for hyperspectral image
classification,” Expert Systems with Applications, vol. 185, p. 115663, Dec. 2021, doi:
https://doi.org/10.1016/j.eswa.2021.115663.
[139] M. Peker, “Classification of hyperspectral imagery using a fully complex-valued
wavelet neural network with deep convolutional features,” Expert Systems with
Applications, vol. 173, p. 114708, Jul. 2021, doi:
https://doi.org/10.1016/j.eswa.2021.114708.
[140] E. Pan, X. Mei, Q. Wang, Y. Ma, and J. Ma, “Spectral-spatial classification for
hyperspectral image based on a single GRU,” Neurocomputing, vol. 387, pp. 150–160,
Apr. 2020, doi: https://doi.org/10.1016/j.neucom.2020.01.029.
[141] S. O. Ayat, M. Khalil-Hani, A. A.-H. Ab Rahman, and H. Abdellatef, “Spectral-
based convolutional neural network without multiple spatial-frequency domain
switchings,” Neurocomputing, vol. 364, pp. 152–167, Oct. 2019, doi:
https://doi.org/10.1016/j.neucom.2019.06.094.
[142] Z. Zhou, X. Wang, C. Li, M. Zeng, and Z. Li, “Adaptive deep feature aggregation
using Fourier transform and low-pass filtering for robust object retrieval,” Journal of
Visual Communication and Image Representation, vol. 72, p. 102860, Oct. 2020, doi:
https://doi.org/10.1016/j.jvcir.2020.102860.
[143] Q. Li, L. Shen, S. Guo, and Z. Lai, “WaveCNet: Wavelet Integrated CNNs to
Suppress Aliasing Effect for Noise-Robust Image Classification,” IEEE Transactions on
Image Processing, vol. 30, pp. 7074–7089, 2021, doi:
https://doi.org/10.1109/tip.2021.3101395.
[144] Y. Wang and Z. Wang, “A survey of recent work on fine-grained image
classification techniques,” Journal of Visual Communication and Image
Representation, vol. 59, pp. 210–214, Feb. 2019, doi:
https://doi.org/10.1016/j.jvcir.2018.12.049.

186

[145] J. Chen, J. Hu, and S. Li, “Learning to locate for fine-grained image
recognition,” Computer Vision and Image Understanding, vol. 206, p. 103184, May
2021, doi: https://doi.org/10.1016/j.cviu.2021.103184.
[146] A. E. Eshratifar, D. Eigen, M. Gormish, and M. Pedram, “Coarse2Fine: a two-
stage training method for fine-grained visual classification,” Machine Vision and
Applications, vol. 32, no. 2, Feb. 2021, doi: https://doi.org/10.1007/s00138-021-
01180-y.
[147] W. Li, L. Wang, J. Xu, J. Huo, Y. Gao, and J. Luo, “Revisiting local descriptor
based image-to-class measure for few-shot learning,” Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
Jun. 2019, doi: https://doi.org/10.1109/cvpr.2019.00743.
[148] W. Y. Chen, Y. C. F. Wang, Y. C. Liu, Z. Kira, and J. bin Huang, “A closer look at
few-shot classification,” arXiv.org, Jan. 2022. Accessed: Jan. 13, 2024. Available:
https://doi.org/10.48550/arxiv.1904.04232.
[149] L. Qiao, Y. Shi, J. Li, Y. Tian, T. Huang, and Y. Wang, “Transductive episodic-
wise adaptive metric for few-shot learning,” Proceedings of the IEEE International
Conference on Computer Vision, Oct. 2019, doi:
https://doi.org/10.1109/iccv.2019.00370.
[150] F. Hao, F. He, J. Cheng, L. Wang, J. Cao, and D. Tao, “Collect and select:
Semantic alignment metric learning for few-shot learning,” Proceedings of the IEEE
International Conference on Computer Vision, Oct. 2019, doi:
https://doi.org/10.1109/iccv.2019.00855.
[151] M. Ulicny, V. A. Krylov, and R. Dahyot, “Harmonic Networks for Image
Classification,” British Machine Vision Conference (BMVC), 2019. Accessed: Jan. 13,
2024. Available: https://mural.maynoothuniversity.ie/15155.
[152] G. Yang, Y. He, Y. Yang, and B. Xu, “Fine-Grained Image Classification for Crop
Disease Based on Attention Mechanism,” Frontiers in Plant Science, vol. 11, Dec. 2020,
doi: https://doi.org/10.3389/fpls.2020.600854.
[153] Y. Zhu, R. Ding, W. Huang, P. Wei, G. Yang, and Y. Wang, “HMFCA-Net:
Hierarchical multi-frequency based Channel attention net for mobile phone surface
defect detection,” Pattern Recognition Letters, vol. 153, pp. 118–125, Jan. 2022, doi:
https://doi.org/10.1016/j.patrec.2021.11.029.

187

[154] S. Li, C. Ge, X. Sui, Y. Zheng, and W. Jia, “Channel and Spatial Attention
Regression Network for Cup-to-Disc Ratio Estimation,” Electronics, vol. 9, no. 6, p. 909,
May 2020, doi: https://doi.org/10.3390/electronics9060909.
[155] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: Efficient Channel
Attention for Deep Convolutional Neural Networks,” 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Jun. 2020, doi:
https://doi.org/10.1109/cvpr42600.2020.01155.
[156] H. Shiratori, H. Goto, and H. Kobayashi, “An efficient text capture method for
moving robots using DCT feature and text tracking,” International Conference on
Pattern Recognition, Jan. 2006, doi: https://doi.org/10.1109/icpr.2006.243.
[157] V. Maheshkar, S. Kamble, S. Agarwal, and V. Kumar, “Feature Image Generation
Using Low, Mid and High Frequency Regions for Face Recognition,” International
journal of multimedia and its applications, vol. 4, no. 1, pp. 75–82, Feb. 2012, doi:
https://doi.org/10.5121/ijma.2012.4107.
[158] S. Dabbaghchian, A. Aghagolzadeh, and M. S. Moin, “Reducing the effects of
small sample size in DCT domain for face recognition,” 2008 International Symposium
on Telecommunications, Aug. 2008, doi: https://doi.org/10.1109/istel.2008.4651378.
[159] The University of Montreal, “Covid-19 Image Dataset,” Kaggle. Accessed: Aug. 21,
2019. Available: https://www.kaggle.com/datasets/pranavraikokte/covid19-image-
dataset.
[160] D. Agrawal, S. Minocha, S. Namasudra, and S. Kumar, “Ensemble Algorithm
using Transfer Learning for Sheep Breed Classification,” 15th International Symposium
on Applied Computational Intelligence and Informatics, May 01, 2021, pp. 199–204.
doi: https://doi.org/10.1109/SACI51354.2021.9465609.
[161] S. Abu Jwade, A. Guzzomi, and A. Mian, “On farm automatic sheep breed
classification using deep learning,” Computers and Electronics in Agriculture, vol. 167,
p. 105055, Dec. 2019, doi: https://doi.org/10.1016/j.compag.2019.105055.
[162] K. C. Tung, “Flower Images jpg,” Mendeley Data, vol. 1, Oct. 2020. Accessed:
Dec. 01, 2019. doi: https://doi.org/10.17632/738sdjm6h9.1.
[163] J. Wang, K. Markert, and M. Everingham, “Learning Models for Object
Recognition from Natural Language Descriptions,” Jan. 2009, doi:
https://doi.org/10.5244/c.23.2.

188

[164] G. Montoya, J. Zhang, and S. Loaiciga, “10 Monkey Species,” Kaggle. Accessed:
Jan. 01, 2020. Available: https://www.kaggle.com/datasets/slothkong/10-monkey-
species.
[165] Gerry, “YIKES! Spiders -15 Species Classification,” Kaggle. Accessed: Jan. 01,
2020. Available: https://www.kaggle.com/datasets/gpiosenka/yikes-spiders-15-
species.
[166] D. Dutta, “Identifying different Breeds of Snakes”, Kaggle. Accessed: Jan. 01,
2020. Available: https://www.kaggle.com/datasets/duttadebadri/identifying-different-
breeds-of-snakes.
[167] E. Duck, “Butterfly Classification Dataset”, Kaggle. Accessed: Jan. 01, 2020.
Available: https://www.kaggle.com/datasets/pnkjgpt/butterfly-classification-dataset.
[168] “Flower Classification with TPUs,” Kaggle. Accessed: Jan. 01, 2020. Available:
https://kaggle.com/competitions/flower-classification-with-tpus.
[169] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” 2009.
Accessed: Jan. 01, 2020. Available: https://www.cs.toronto.edu/~kriz/learning-
features-2009-TR.pdf
[170] “ImageNet 1000 (mini),” Kaggle. Accessed: Jan. 01, 2020. Available:
https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000.

189

Appendix

This section demonstrates the derivation of the computational complexity of the
original ECA and the Hybrid Mod-ECA. The notations and variables used in this
appendix are independent of the rest of this chapter. Let the depth of the 1D

convolution filter kernel be 𝑘, the 1D input feature channel depth dimension be 𝑑, the

convolution stride size be 𝑠 , and the padding size be 𝑝 . The instantaneous

computational complexity (𝑂N"jd) of the 1D convolution process is obtained by
considering the multiplication and summation of a single convolution process.

𝑂N"jd = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛

𝑂N"jd = (𝑜𝑢𝑡𝑝𝑢𝑡	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑝	𝑠𝑖𝑧𝑒) × (𝑘𝑒𝑟𝑛𝑒𝑙	𝑠𝑖𝑧𝑒)

+ (𝑜𝑢𝑡𝑝𝑢𝑡	𝑓𝑒𝑎𝑡𝑢𝑟𝑒	𝑚𝑎𝑝	𝑠𝑖𝑧𝑒) × (𝑘𝑒𝑟𝑛𝑒𝑙	𝑠𝑖𝑧𝑒 − 1)

∴ 𝑂N"jd = �
(𝑑 + 2𝑝) − 𝑘

𝑠 � × 𝑘 + �
(𝑑 + 2𝑝) − 𝑘

𝑠 � × (𝑘 − 1)

In the original ECA, 𝑘 = 𝑗, 𝑑 = 𝐶, 𝑝 = 𝑠 = 1. The computational complexity yields:

𝑂oT� = �
(𝐶 + 2(1)) − 𝑗

1 + 1� × [𝑗 ∙ (𝑗 − 1)] = (𝑗) ∙ (𝑗 − 1) ∙ (𝐶 − 𝑗 + 3)

In the HyMod-ECA, 𝑘 = 𝑗, 𝑑 = 𝐶, 𝑝 = 0, 𝑠 = 𝑗. The computational complexity yields:

𝑂^=]p�$oT� = �
(𝐶 + 2(0)) − 𝑗

𝑗 + 1� × [𝑗 ∙ (𝑗 − 1)] = ¯
𝐶 − 𝑗 + 𝑗

𝑗 ° ∙ 𝑗 ∙ (𝑗 − 1) = 𝐶 ∙ (𝑗 − 1)

190

Table I: Performance comparison in terms of classification error between various M-Skipped
architectures and Ablation Study.

Abbreviations
Parameters

(mil.)
Sheep Breed Flowers Leeds Butterfly Monkey Spider Breed

All-DCTC 1.7 0.0972±0.0124 0.2615±0.0077 0.1979±0.0072 0.2721±0.0132 0.2244±0.0301

L-DCTC 1.7 0.0972±0.0091 0.2615±0.0077 0.2021±0.0158 0.3113±0.0118 0.2400±0.0333

M-DCTC 1.7 0.4028±0.0281 0.4513±0.0270 0.5833±0.0036 0.6434±0.0241 0.6867±0.0982

H-DCTC 1.7 0.4643±0.0412 0.5615±0.0133 0.6812±0.0165 0.6752±0.0042 0.7111±0.0329

M-Skipped-1 1.7 0.0873±0.0171 0.2589±0.0044 0.1667±0.0072 0.2574±0.0224 0.2156±0.0077

M-Skipped-2 1.7 0.0695±0.0182 0.2436±0.0160 0.1625±0.0165 0.2709±0.0149 0.2666±0.0577

M-Skipped-3 1.7 0.0853±0.0124 0.2538±0.0154 0.1229±0.0095 0.2610±0.0373 0.2245±0.0168

M-Skipped-

123-extended
1.9 0.0873±0.0150 0.3051±0.0347 0.1792±0.0144 0.2402±0.0118 0.2889±0.0102

M-Skipped-123

-extended-deep
1.9 0.0893±0.0060 0.2692±0.0000 0.1479±0.0095 0.2230±0.0225 0.1845±0.0204

M-Skipped-3-

FC
8.9 0.0714±0.0103 0.2769±0.0539 0.1416±0.0130 0.2512±0.0118 0.2978±0.0907

M-Skipped-3-
ReLU

1.7 0.1071±0.0206 0.2666±0.0160 0.1771±0.0308 0.2904±0.0434 0.2844±0.0844

191

Table II: Best performing classification error between all adaptive DCT-BF kernel variations.

Abbreviations Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0864 0.0624±0.0382 0.2607±0.0199 0.2157±0.0174 0.2222±0.0253 0.3772±0.0021 0.1587±0.0095

MS3-AD-0816 0.0657±0.0231 0.2590±0.0117 0.2022±0.0337 0.2267±0.0240 0.3736±0.0050 0.1593±0.0103

MS3-AD-0804 0.0808±0.0315 0.2513±0.0193 0.2145±0.0106 0.2133±0.0231 0.3728±0.0009 0.1560±0.0106

MS3-AD-0801 0.0791±0.0239 0.2641±0.0247 0.3370±0.1377 0.1978±0.0139 0.3788±0.0015 0.1760±0.0399

MS3-AD-0416 0.1364±0.0660 0.2590±0.0270 0.2194±0.0202 0.2155±0.0329 0.3675±0.0057 0.1727±0.0117

MS3-AD-0404 0.0758±0.0152 0.2408±0.0234 0.2108±0.0202 0.2134±0.0115 0.3724±0.0019 0.1653±0.0179

MS3-AD-0401 0.0909±0.0455 0.2564±0.0088 0.2819±0.0721 0.2911±0.0391 0.3750±0.0032 0.1607±0.0050

MS3-AD-0204 0.2121±0.0263 0.2564±0.0117 0.2267±0.0165 0.1778±0.0234 0.3788±0.0071 0.1707±0.0121

MS3-AD-0801-opt 0.2727±0.0152 0.3487±0.0270 0.4669±0.0369 0.3800±0.0067 0.8343±0.0055 0.4187±0.0064

MS3-AD-0804-opt 0.1768±0.0532 0.2641±0.0270 0.3689±0.0454 0.2955±0.0234 0.71980.0146 0.2807±0.0101

MS3-AD-0816-opt 0.1010±0.0315 0.2410±0.0193 0.2623±0.0140 0.2289±0.0269 0.4147±0.0081 0.2073±0.0181

MS3-AD-0401-opt 0.1566±0.0437 0.2872±0.0347 0.3456±0.0459 0.3356±0.0509 0.7129±0.0054 0.2860±0.0140

MS3-AD-0404-opt 0.1717±0.0438 0.2615±0.0308 0.2487±0.0106 0.2400±0.0176 0.4426±0.0024 0.2107±0.0031

(MS3-AD-842-org) 0.0657±0.0231 0.2564±0.0044 0.2083±0.0056 0.1956±0.0214 0.3710±0.0048 0.1627±0.0050

(VGG16-PC*) 0.1717±0.0232 0.2718±0.0235 0.3419±0.0702 0.2489±0.0154 0.4123±0.0027 0.2253±0.0110

(MS3-base*) 0.2071±0.0631 0.2448±0.0155 0.2194±0.0215 0.2489±0.0539 0.37800.0066 0.1807±0.0046

Top-1 lowest MS3-AD-0864 MS3-AD-0404 MS3-AD-0816 MS3-AD-0204 MS3-AD-0416 MS3-AD-0804

Top-2 lowest
MS3-AD-0816

(MS3-AD-842-org)
MS3-AD-0816-opt (MS3-AD-842-org) (MS3-AD-842-org) (MS3-AD-842-org) MS3-AD-0864

Top-3 lowest - (MS3-base*) MS3-AD-0404 MS3-AD-0801 MS3-AD-0404 MS3-AD-0816

192

Table III: Best performing speed of convergence (reaching over 75% classification accuracy, measured in
epochs) between all adaptive DCT-BF kernel variations.

Abbreviations Covid19 Flowers Monkey Spider Breed Snake Breed Butterfly

MS3-AD-0864 8.33±1.15 21.00±7.21 15.00±1.00 18.00±7.21 0.00±0.00 6.33±1.15

MS3-AD-0816 7.00±1.73 20.00±3.46 21.67±9.24 17.00±0.00 0.00±0.00 6.00±0.00

MS3-AD-0804 8.00±1.00 23.00±6.08 11.67±2.08 17.00±3.00 0.00±0.00 5.33±0.58

MS3-AD-0801 7.67±1.53 25.00±8.00 14.00±1.73 16.00±4.58 0.00±0.00 5.67±0.58

MS3-AD-0416 8.00±1.00 18.67±7.09 13.33±1.12.00 11.00±3.00 0.00±0.00 6.67±0.58

MS3-AD-0404 7.00±1.00 16.00±4.00 13.00±2.00 16.33±2.89 0.00±0.00 6.67±1.15

MS3-AD-0401 6.00±2.00 20.33±8.39 12.00±2.65 15.33±2.08 0.00±0.00 6.33±1.15

MS3-AD-0204 10.00±1.73 12.33±14.98 15.33±2.31 16.33±1.53 13±0.00 7.33±0.58

MS3-AD-0801-opt 15.33±11.85 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MS3-AD-0804-opt 4.33±1.53 18.33±15.89 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MS3-AD-0816-opt 7.33±1.53 26.00±3.46 20.33±0.58 20.33±2.31 0.00±0.00 9.00±0.00

MS3-AD-0401-opt 9.67±3.79 19.33±503 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

MS3-AD-0404-opt 8.67±2.89 3.00±5.20 18.67±4.16 19.67±1.53 0.00±0.00 12.00±1.73

MS3-AD-842-org 7.67±0.58 20.67±4.16 13.67±2.31 17.00±1.73 0.00±0.00 5.33±0.58

VGG16-PC* 8.67±2.08 25.00±1.73 1.33±2.31 22.00±1.73 0.00±0.00 11.33±1.15

MS3-base* 9.00±3.61 16.33±3.06 15.00±2.00 16.67±2.08 0.00±0.00 8.00±1.00

193

Table IV: Average classification error, average convergence speed, and number of parameters between
several adaptive DCT-BF kernel variants and the former M-Skipped network across FGVC datasets.

Abbreviations Classification Error
Convergence Speed

(Epochs)
Number of Parameters

(mil)

MS3-AD-0864 0.2162 13.73 102.53

MS3-AD-0816 0.2144 14.33 102.53

MS3-AD-0804 0.2148 13.00 102.53

MS3-AD-0801 0.2388 13.67 102.53

MS3-AD-0416 0.2284 11.53 25.85

MS3-AD-0404 0.2131 11.80 25.85

MS3-AD-0401 0.2427 12.00 25.85

MS3-base* 0.2465 13.00 1.70

194

Table V: Classification error on the testing dataset for all attention variations on Adapt-DCT CNN.

Abbreviations Flowers Monkey Snake Breed Snake Breed Butterfly

MS3-0404

ECA-ORG
0.2231±0.0335 0.2169±0.0184 0.2133±0.0346 0.3673±0.0075 0.1620±0.0035

MS3-0404

ECA-AD
0.2205±0.0222 0.2059±0.0097 0.1778±0.0168 0.3734±0.0079 0.1580±0.0125

MS3-0404
ECA-AD-1C1A

0.2436±0.0494 0.2059±0.0097 0.2155±0.0329 0.3802±0.0015 0.1833±0.0129

MS3-0404

ECA-ADFC
0.2410±0.0311 0.2096±0.0074 0.3133±0.0933 0.3855±0.0084 0.1827±0.0300

