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Abstract

There is a remarkable isomorphism between a pair (metric, spinor), and a certain collection of
differential forms on a manifold M . This isomorphism holds for numerous examples from four
dimensions to eight dimensions.

In this thesis, we aim to understand reductions of the spin-frame bundle to various orbits of
spinors on a spin manifold, called spinorial G-structures, and then develop a schematic for explor-
ing the most “natural” second-order partial differential equation on the collection of differential
forms arising from a pair (metric, spinor).

The first part of the thesis deals with real and complexified stabilisers of Weyl spinors.
Understanding real stabilisers is done through the study of pure spinors, the real index, and
spinor bilinears. These three tools generate a large class of spinorial G-structures, for which
we construct a new class called mixed structures. We also apply this machinery to investigate
previously unexplored stabilisers in ten and twelve dimensions. Regarding complexified stabilis-
ers of Weyl spinors, we develop an elementary approach using k-simplices and combinatorics.
The novelty of this simpler scheme is two-fold. First, the study of the stabiliser of the spinor
is shifted to studying the group that leaves the collection of differential forms, arising from the
metric and spinor, invariant. Second, this method allows one to examine complexified stabilisers
in arbitrarily high dimensions, which classical methods do not allow.

The second part of the thesis explores the most natural second-order partial differential equa-
tions on a pair (metric, spinor). We are inspired by Plebanski’s theory of gravity in 4 dimensions.
He constructs an action functional, which when extremised, results in Einstein conditions on the
curvature. In this thesis, we construct all families of diffeomorphism invariant action functionals
in the examples of SU(2)- and SU(3)-structures. From our methods, we recover Plebanski’s
most natural second-order partial differential equations (PDEs) on the collection of differential
forms coming from the metric and spinor in the case of SU(2)-structures. Furthermore, we con-
jecture a schematic for natural second-order PDEs on the collection of differential forms coming
from the metric and spinor in the case of SU(3)-structures. In both examples, we show that the
linearised action functionals are completely determined by representation theory, and that there
is a family of Einstein-Hilbert actions of gravity in a vacuum.
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Chapter 1

Introduction

Gravity is the metric geometry of spacetime influenced by matter, and all matter content is
described by spinors. The geometric foundation of this concept lies in a somewhat remarkable
isomorphism between a pair (metric, spinor modulo sign) on a manifold M and a specific collec-
tion of differential forms on M . We express this isomorphism through the following relation:

(metric, spinor modulo sign) ⇐⇒ collection of differential forms. (1.0.1)

As detailed in the main body of the thesis, and as is well known within the differential
geometry community, this isomorphism holds for numerous cases, see [BK24] in four dimensions,
[CS02] in six dimensions, and [Bry87; Kar09] in seven dimensions.

A well-known example of (1.0.1) is presented in [Kar08; Kra24a] for eight dimensions. LetM
be an 8-dimensional spin manifold. In this setting, there exists an orbit in the space of 4-forms
characterised by the Cayley form, a 4-form stabilised by Spin(7) ⊂ GL(8,R). One can then
decompose the space of 4-forms into irreducible representations of Spin(7), such that certain
irreducible components are isomorphic to the spinor orbit stabilised by Spin(7). Furthermore,
it is known that the metric can be algebraically constructed from the Cayley form at each point
on the manifold. In this sense, the right-hand side of (1.0.1) holds as a necessary condition.
Conversely, if one begins with the spinor orbit stabilised by Spin(7), it is possible to construct
the space of Cayley forms within the space of 4-forms using spinor bilinears and the metric. In
this sense, the left-hand side of (1.0.1) holds as a sufficient condition.

A G-structure on an n-dimensional manifold M is the reduction of the principal GL(n,R)-
frame bundle. For a given G-structure, the breaking of GL(n,R) to G can be represented by
a collection of tensors that remain invariant under G’s action. In this thesis, the “tensors” we
refer to are a collection of differential forms and the metric. We show, in our examples, that the
metric is algebraically reconstructable from such a suitable collection of differential forms, and
thus, the right-hand side of (1.0.1) corresponds to the reduction of the principal GL(n,R)-frame
bundle. Conversely, suppose we have an n-dimensional spin manifold M . We introduce the
concept of a spinorial G-structure as the reduction of the spin-frame bundle to the stabiliser of
a spinor. We investigate cases where G, as the stabiliser of a spinor on the left-hand side of
(1.0.1), is isomorphic to a subgroup of GL(n,R) whose action is invariant on the collection of
differential forms on the right-hand side of (1.0.1).

The aim of this thesis is twofold. First, to explore generalisations of (1.0.1) to dimensions
higher than eight. Second, to examine how (1.0.1) can be applied to express interesting differen-
tial equations on a pair (metric, spinor) as partial differential equations (PDEs) on the collection
of differential forms.

In Part I, we gather all known facts related to possible spinor stabilisers in dimensions up to
eight and beyond. New techniques are developed to reproduce these known results, and some
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new findings are discovered. We distinguish between complexified stabilisers of Spin(n,C) and
real stabilisers of Spin(p, q).

In this part of the thesis, we focus on constructing a suitable collection of differential forms,
referred to as the canonical differential forms, derived from a spinor and a metric through
spinor bilinears, which we call geometric maps. In other words, we aim to explore the following
direction:

(metric, spinor modulo sign) Ô⇒ collection of canonical differential forms. (1.0.2)

As the collection of canonical differential forms emerges from the left-hand side of (1.0.2), the
stabiliser associated with the spinor is determined by the group whose action remains invariant
on the right-hand side of (1.0.2). This approach forms the basis for determining properties of
spinor stabilisers.

Let us begin by presenting the main results concerning Spin(n,C). Stabilisers of Spin(2n)
over C have been extensively studied, and classifications have been made up to and including
Spin(16). We provide a classification that relies on straightforward combinatorial techniques. It
is known that any Weyl spinor, for n > 3, is a linear combination of k ∈ {1, . . . ,2n} pure spinors.
A significant result, derived through combinatorics based on elementary relations between two
or more pure spinors, as constructed in Chapter 6, is that it is unnecessary to consider all k from
1 to 2n; instead, it suffices to examine up to a much smaller number. This allows for a simpler
method, compared to that found in the literature, to categorise spinor stabilisers in dimensions
up to and including fourteen. This categorisation is achieved by analysing the invariant action
of a group on the canonical differential forms. Furthermore, a novel result we obtain is that
this combinatorial approach can be extended beyond Spin(14,C) to categorise orbits in higher
dimensions.

For the real stabilisers of Spin(p, q), we consider three cases: Spin(2n,0), Spin(n,n), and
Spin(r, s), where n, r, s ∈ Z, with r ≠ s and r + s ∈ 2Z. It is known that SU(n) is the stabilising
subgroup of a pure spinor for Spin(2n), n ∈ N. In fact, for n ≤ 3, as all Weyl spinors are
pure, SU(n) is the only stabilising subgroup. Using geometric maps, one can compute a real
symplectic 2-form ω and a complex n-form Ω; these are the canonical differential forms that
remain invariant under the action of SU(n). Alternatively, starting with Spin(n,n), one has
many more choices of pure spinors to consider. The selection of pure spinors, resulting in
distinct spinorial G-structures, is governed by an integer known as the real index. For Spin(2n),
the real index is always zero, which explains why it consistently reduces to SU(n). Allowing a
different real index introduces a broader class of spinorial G-structures. For n < 4, all spinors are
pure; thus, for example, two non-parallel pure spinors correspond to a paracomplex structure,
associated with the reduction of Spin(n,n) to SL(n,R). In Chapter 3, we classify all spinorial
G-structures constructed for each type of pure spinor. Additionally, we identify a new class of
canonical differential forms associated with spinorial G-structures generated by pure spinors in
Spin(r, s), termed mixed structures — a blend of paracomplex and complex structures.

Returning to spinors in Spin(2n), for n > 3, there exist spinors that are no longer pure,
known as impure spinors. In Chapter 5, we classify the stabiliser of an impure spinor that
preserves the canonical differential forms in Spin(8) using octonions. We observe that in higher
even dimensions, there is a way to embed Spin(8)↪ Spin(2n) for n = 5 and n = 6. By analysing
various spinor orbits for n = 5 and n = 6, we demonstrate that our methods are comprehensive
in determining all real stabilisers of Spin(10), and we construct a previously undiscovered class
of real stabilisers for Spin(12).

In Part II, we concentrate on the problem of determining “natural” PDEs that can imposed
on a system built from a pair (metric, spinor), using (1.0.1). An essential precursor to our
discussion is the classification of all possible holonomy groups on a Riemannian manifold. Some
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of these holonomy groups arise as spinor stabilisers; hence, we define the reduction of the spin-
frame bundle to any holonomy group derived from a spinor stabiliser as a classical spinorial
G-structure. It is well known that the most natural first-order PDEs one can consider involve
the vanishing of the exterior derivatives of the collection of differential forms invariant under
the action of G1. In this thesis, we ask: Are there natural second-order PDEs that can be
constructed from the canonical differential forms invariant under the action of G? We approach
this question through the lens of action functionals, whereby critical points impose natural
second-order PDEs.

Our approach is inspired by Plebanski’s formulation of general relativity [Ple77]. In his
paper, he utilised an SU(2) gauge connection to construct a 4-dimensional action for gravity.
By extremising this functional, one recovers natural second-order PDEs: the Einstein conditions
on curvature. Our goal is to generalise his construction to higher dimensions. We achieve this
by constructing all independent action functionals that are diffeomorphism invariant and built
from the second-order derivatives of canonical differential forms and auxiliary fields. Ordinarily,
writing all independent action functionals is not straightforward, as it is not always evident
how to parameterise the auxiliary fields. To assist in this regard, we employ linearised analysis,
a procedure for constructing action functionals from infinitesimal actions of the general linear
group on the canonical differential forms. An important aspect of linearised analysis is that it is
constrained by representation theory, offering insight, for free, into the general structure of the
action functional and the forms the auxiliary fields should take.

In Chapters 8 and 9, we examine SU(2)- and SU(3)-structures. Specifically, we show that
the collection of differential forms on the right-hand side of (1.0.1) arises from spinors. Further-
more, we demonstrate that in each case, the metric can be reconstructed from this collection
of differential forms. In Chapter 8, we present a non-linear action functional of second-order in
derivatives of SU(2)-structures and show its equivalence to Plebanski’s formulation of gravity in
4 dimensions. In this way, we recover the most natural second-order PDEs one can formulate
with the canonical differential forms: the Einstein conditions on curvature. Finally, in both
Chapters 8 and 9, we conduct a linearised analysis for SU(2)- and SU(3)-structures, revealing
the novel result that a class of action functionals corresponds to the linearised Einstein-Hilbert
action of gravity in a vacuum.

1This characterisation acts as a first-order obstruction to an integrable classical spinorial G-structure.
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Chapter 2

Introduction

Spinors, that is, the spin groups and their representations, have been known to mathematicians
since the time of Euler, Hamilton, and Clifford [TT94]. However, it was Élie Cartan who first
provided a description of what we now understand as the spinor representations of spin(n)
[Car13]. As is often the case, the popularity of the field and its study surged when physicists
began investigating the intrinsic angular momentum (spin) of electrons. This exploration led to
the development of the non-relativistic limit electron spin model [Pau27], for which Wolfgang
Pauli was awarded the Nobel Prize, given below as:

σ1 = (
0 1
1 0

) , σ2 = (
0 −i
i 0

) , and σ3 = (
1 0
0 −1) . Here i ∈ C is the unit imaginary. (2.0.1)

The Pauli matrices (2.0.1) generate the Clifford algebra Cliff3 and subsequently the spin Lie
algebra spin(3) that acts on the space of spinors C2.

Dirac was the first to utilise Pauli matrices in the relativistic limit while attempting to solve
the Schrödinger equation for a free relativistic electron, described by the Klein-Gordon equation:

(◻ +m2)ψ = 0, (2.0.2)

as elaborated in his foundational paper [A M28]. Solutions to this equation lacked a quantum
interpretation; knowing the position of ψ precluded knowledge of its momentum. Dirac proposed
a novel solution, the “square root” of this equation, now known as the Dirac equation:

(iσµ∂µ −m)ψ = 0, (2.0.3)

where µ = {0,1,2,3}, with σ0 = I, the identity operator, and σ1,2,3 as defined in (2.0.1). This
theory had twofold consequences: first, the entity ψ was no longer a single function, but a vector
of functions. This inadvertently spurred a large field of mathematical study. The Dirac equation
(2.0.3) can be analysed on various backgrounds, i.e., different manifolds, leading to the study of
harmonic spinors and spinor analysis [Mic13].

Secondly, and more physically, Dirac’s theory led to the conjecture of a particle identical in
all respects to the electron except for its charge. The positron was discovered just four years
later by Carl D. Anderson, earning him a Nobel Prize [HA13]. The connection between the
square root of geometry and physics, as elucidated by [Tra93], dates back to [Gra80] regarding
the rational rigid representations of rotations. Clifford was the first to generalise these ideas,
leading to the development of Clifford algebra over a finite dimensional metric space (V, g) over
the field K = R or C.

15
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Definition 2.0.0.1. The Clifford algebra of (V, g), denoted Cliff(V ), is defined as

Cliff(V ) ∶= T (V )/⟨{v ∈ V ∣ v ⊗ v − g(v, v)}⟩. (2.0.4)

Where T (V ) ∶= ⊕∞k=1 ⊗k V is the tensor ideal.

It is known that there is a universal property that extends from V → A, where A is an
algebra to Cliff(V ) → A [Har90]. For example, suppose one takes A = End(ΛV ), then the
universal property is given by Γ-matrices, reminiscent of the same objects in physics, such that
its action on elements of ΛV is given by the Chevalley-Kähler formula [Che54], [Käh62], [Tra93]:

Γ(v) ⋅ ψ = v ∧ ψ + v ⌟ ψ. (2.0.5)

Where ∧ ∶ ΛkV → Λk+1V raises the degree of an element in Λ(V ), while ⌟ ∶ Λk → Λk−1 lowers of
the degree of an element in Λ(V ). Neatly, this information is encoded in the following diagram.

Cliff(V ) ΛV

V

Γ
(2.0.6)

Remark 2.0.0.1. As ΛV is a finite dimensional vector space, the naming scheme Γ-matrix makes
sense. Indeed, choosing a basis allows ΛV ≅ K2n , where n = dim(V ). So Γ ∈ End(ΛV ) ≅M2n(K).
Also, the Γ-matrices don’t have to send V to Cliff(V ) exclusively, one can instead take Cliff(W ),
where W is the complexification of V .

In this thesis, we explore the implications of Γ-matrices in depth, as these are the backbone
of the calculations we perform. For us, ΛV will be generated from an even-dimensional real
vector space, with the possibility of mixed signature. We can then choose a basis and explicate
(2.0.5). The choice of basis is crucial, as different choices can lead to different representations.
This is controlled by a mechanism called the pure spinor. Spinors are viewed as the square root
of geometry, with pure spinors being more fundamental, carrying the geometric properties of a
spinor through their behaviour as null vectors.

Consider the simple Pythagorean equation,

x2 + y2 = z2, (2.0.7)

whose solutions can be elegantly parametrised as:

x = p2 − q2, y = p2 + q2, z = 2pq, for p, q ∈ N. (2.0.8)

This can be written as a solution to a matrix equation:

(y + x z
z y − x) = 2(

p
q
)(p q) , (2.0.9)

with the interpretation that a null vector (x, y, z) (the determinant of the matrix above is zero)
is the square of a spinor (p, q) (the right-hand side of the above is the outer product of two
vectors). Cartan’s generalisation of this concept came of the form of maximally totally null
subspaces. As seen from the formula (2.0.5), null vectors are characterised by the spinors they
annihilate.

Following this, we proceed to review the construction of Clifford algebras, and their represen-
tations. First, through tensor products of matrix algebras, owed to [BW35]. Then to maximally
totally null subspaces, via (2.0.5) owed to [CB68].
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2.0.1 Construction through tensor products

The most popular construction of Clifford algebras and their representations on ΛV are produced
by exploiting the following theorem and corollary, introduced by Brauer and Weyl [BW35] with
a modern treatment given by [Har90].

Theorem 2.0.1.1. Let (V, g) be a metric space with signature (r, s), and define Cliff(V ) ∶=
Cliffr,s. One has the Cliffr,s is isomorphic, as an associative and unital algebra, to one of the
following matrix algebras

(r − s) mod 8 Matrix algebra

0, 6 MN(R)
2, 4 MN(H)
1, 5 MN(C)
3 MN(H)⊕MN(H)
7 MN(R)⊕MN(R)

where N = 2r+s.

Corollary 2.0.1.1.1. Let Cliffr,s as above, then

Cliffr+1,s+1 ≅ Cliffr,s ⊗RM2(R),
Cliffs+2,r ≅ Cliffr,s ⊗RM2(R),
Cliffr,s+2 ≅ Cliffr,s ⊗R H.

(2.0.10)

We prove this corollary to highlight the procedure one performs to generate higher dimen-
sional Clifford algebras from lower dimensional ones.

Proof. Begin with generators of γI of Cliff(r,s). Then the matrices

ΓI ∶= ( 0 γ
γ 0

) , ΓI+1 ∶= ( I 0
0 −I ) , ΓI+2 ∶= ( 0 I

−I 0
) (2.0.11)

anticommute, and (ΓI+1)2 = I, (ΓI+2)2 = −I. Thus, these matrices generate Cliff(r+1,s+1).
A suitable modification of this construction gives the second line in (2.0.10). Indeed, we can

instead define

ΓI ∶= ( 0 γ
−γ 0

) , ΓI+1 ∶= ( I 0
0 −I ) , ΓI+2 ∶= ( 0 I

I 0
) . (2.0.12)

Then ΓI generate the Clifford algebra Cliff(s,r) of opposite signature, and both ΓI+1,ΓI+2 square
to plus the identity.

The last line in (2.0.10) is proved by the following construction,

ΓI ∶= ( 0 γ
γ 0

) , ΓI+1 ∶= ( i 0
0 −i ) , ΓI+2 ∶= ( j 0

0 −j ) . (2.0.13)

Here i, j are two imaginary quaternions. These matrices anticommute, and ΓI+1, and ΓI+2 square
to minus the identity.

This is a recursive relation, implying the knowledge of a base case of Clifford algebras listed
below with verifiable isomorphisms [Har90]

Cliff0,1 ≅ C, Cliff1,0 ≅ R⊕R, Cliff0,2 ≅ H,
Cliff1,1 ≅M2(R), and Cliff2,0 ≅M2(R),

(2.0.14)
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generates a sequence of Clifford algebras up the chain until the desired dimension is reached.
Indeed, using (2.0.14) and corollary 2.0.10 one can cumbersomely iterate this until the required
dimension is achieved. Writing 2r+s×2r+s matrices to encode information about Clifford algebras
is usually not economical1. As this thesis deals with spinors in higher dimensions, we look to other
approaches to efficiently encode information about Clifford algebras and their representations.

2.0.2 Construction through maximally totally null subspaces

The treatment of Clifford algebras proposed by Cartan in [CB68] introduced the notion of maxi-
mally totally isotropic (null) subspaces, with a modern treatment found in [Har90]. This method
is quite abstract at first glance, as there is no concrete “model”. For example, Clifford algebras
are given by matrices, and their representations are understood as vectors in a 2n-dimensional
vector space. To compensate for this abstraction, we introduce creation and annihilation opera-
tors, inspired by their use in physics, to construct models on the space of polyforms (the space
of linear combinations of differential forms). By creation and annihilation operators, we refer to
∧ and ⌟ as defined in (2.0.5).

The advantage of this approach is that it provides efficient descriptions of spinors, especially
in higher dimensions. In fact, we will exploit the characterisation of spinors as quaternions and
octonions to further streamline this identification.

Abstractly speaking, consider a vector space V and (2.0.6), as before. Now, Γ maps V to
Cliff(V ), where W is the complexification of V .

Definition 2.0.2.1. Suppose that M(ψ) ⊂ W is the subspace that annihilates the spinor ψ ∈
Λ(W ) via the Clifford product (2.0.5). The spinor ψ is called pure or simple if dim(M(ψ)) =
dim(V ).

An important consequence of this definition is that pure spinors are Weyl.

In the construction of Clifford algebras, the complexified vector space W is considered for
representations of Cliff(W ). A viewpoint we adopt, first introduced by [TT94], is that pure
spinors are real slices of Cliff(W ). Suppose one has the Clifford algebra Cliffr,s embedded into
Cliffp,p ⊗C = Cliff2p ⊗C, here 2p = r + s. The appropriate real slice of this space corresponds to
Cliffr,s. However, this implies that there is more than one choice of Cliffr,s.

Using a tool called the real index, developed by [TT94], and another tool called geometric
maps, developed by Cartan, we elucidate what form a real slice takes in terms of creation and
annihilation operators. Additionally, we show that this model corresponds to an appropriate
geometric structure (complex, paracomplex or mixed structure) determined by a pure spinor
and geometric maps. Conversely, if one chooses a pure spinor, this corresponds to one of the
many real slices of Cliff2p ⊗ C. This, in turn, corresponds to a choice of geometric structure,
resulting in a specific model of creation and annihilation operators [BK22].

Remark 2.0.2.1. The two perspectives: construction by tensor products and construction
through maximally totally null spaces, were reconciled and extended by Chevalley [Che54], who
removed Cartan’s restriction of the base field being R or C by viewing spinors as minimal left
ideals of Clifford algebras. He rigorously proved several important theorems on the subject and
coined the term pure spinors2,3.

1There is an economical way to encode information about Clifford algebras if one uses division algebras such
as H, and O as seen in (2.0.13). In a dimension where this is possible, we will exploit this parametrisation.

2The adjective pure in algebra is reserved for objects that cannot be represented as a product [Tra93].
3Pure spinors, introduced by Chevalley, were initially disliked by physicists because they found it unsettling

that Dirac spinors were labelled as “impure” by Chevalley’s definition [BT89]—since pure spinors are necessarily
Weyl. We do not extend that sentiment and adopt Chevalley’s naming conventions.
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2.0.3 Chapter Overview

In chapter 3 we apply the above ideas at the linear level, specifically taking V = R2n, Rn,n, and
Rr,s for r + s even. We begin by defining the Clifford algebra for each V , its representations
over polyforms, and the spin Lie algebra. We formally define pure spinors and quantify what
a real slice of Cliff(W ) means. Pure spinors give the real slice and correspond to the canonical
differential forms of spinorial G-structures via the geometric map, which we also formally define.
In part I, it is assumed that we implicitly have access to the metric (1.0.2). We do this because
our aims are mainly concerned with classification. Having access to the metric allows one to raise
and lower the indices of the canonical differential k-forms. We shall refer to the corresponding
endomorphisms as geometric structures. Furthermore, we note that there can only be three
types of structures from a pure spinor: complex structures, paracomplex structures, and a new
type of structure called a mixed structure.

This chapter serves as a precursor to all other chapters in terms of notation and conventions.

Armed with the general theory from the previous chapter, in chapter 4, we construct exam-
ples of spinorial G-structures in low dimensions, specifically in dimensions 2, 4, and 6. Where
appropriate, we make comments on the geometry of the orbit in the local coordinate sense. It is
well known that spinors in these dimensions are always pure, so there is only one type of orbit
in these lower dimensions.

For brevity, we discuss only some examples of complex, paracomplex, or mixed structures
arising from general spinors. We encourage readers to refer to the article that this chapter is
based on for a complete classification of each type of spinorial G-structure in dimensions 2, 4,
and 6: Niren Bhoja and Kirill Krasnov. “Notes on Spinors and Polyforms I: General Case”. In:
arXiv (May 2022). url: http://arxiv.org/abs/2205.04866.

Eight dimensions mark the first instance where there is more than one type of orbit other
than the pure one. This implies a larger class of spinorial G-structures beyond just complex,
paracomplex, or mixed. In chapter 5, we aim to classify the orbits of impure spinors (spinors
that are not pure). In 8 dimensions, the orbits of spinors are understood through octonions. As
we will show, pure spinors are null complexified octonions. We can express any impure spinor
as a linear combination of two pure spinors. We then proceed to analyse various cases of the
coefficients of each pure spinor. We find that there is only one additional orbit that is not pure,
namely Spin(7).

A similar procedure is applied to Spin(4,4), but a much larger class of spinorial G-structures
is found. In ten dimensions, one can extend our constructions, and a detailed analysis of real
orbits is provided in [Kra22]. For impure spinors, there are Spin(7)-type and SU(4) orbits. In
12 dimensions, a general classification is not yet known. Nevertheless, using techniques from 8
dimensions, a previously unknown class of orbits has been discovered.

A classification for spinors over C in 12 dimensions was first done by [Igu70], and similarly,
those in 13 dimensions were classified by [GV78]. In 14 dimensions, spinors were classified by
[Pop80]; see also [Zhu92] and [Pop77]. The full classification for 16 dimensions was done by
[L V82], with special cases involving the use of the exceptional Lie group E8 by [DR93]. A
useful resource is the thesis [Cha97], which provides clear classifications for spinors in 12 and
14 dimensions using pure ones. These classifications are not easy to digest, and many complex
ideas from representation theory are used. We propose a simpler approach via pure spinors and
combinatorics.

Although the technology we develop can be used to analyse 16 dimensions and higher, it
becomes quite unwieldy, and hence we omit these constructions. This is evidenced by the
comprehensive classification provided by [L V82], where there are many possible orbits.

The final chapter, chapter 6, splits into two sections. In section 6.1, we aim to simplify the
understanding of orbits. Given a reasonable start, we can trace the problem to counting different

http://arxiv.org/abs/2205.04866
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permutations of simplices. Consider the space C2n, and let M(ψ0) be a maximally totally null
space for a pure spinor ψ0. Upon choosing a basis inM(ψ0), one can lift to Cliff(Cn) ⊂ Cliff(C2n),
allowing one to specify a completion of the lifted basis in Cliff(C2n) — the full lifted basis shall
be called a canonical basis. This canonical basis can then be used to construct every possible
impure spinor in the space S+, which consists of Weyl spinors of even chirality. Therefore, the
problem of classifying spinors in any dimension is reduced to combinatorics by these two facts:

• Any ψ ∈ S+ can be written as a linear combination of this canonical basis of 2n−1 pure
spinors.

• Theorem 3.2.2.4: Let ψ and ϕ be two (non-parallel) pure spinors. Then ψ + ϕ is a pure
spinor if, and only if, M(ψ) ∩M(ϕ) = n − 2.

In this chapter, we provide the general theory based on the two facts above. Diagrams
are parameterised by pure spinor representatives as vertices of some k-simplex, weighted by
∣M(ψ) ∩M(ϕ)∣. The tools we use for counting are occupation box numbers n1, . . . , ni, . . . , nk,
which count the number of directions shared by i pure spinors. This allows us to define geometric
objects such as vertices, edges, and higher-dimensional simplices. Each geometric object carries
information; for example, a vertex will be associated with a unique pure spinor, an edge with
the number of directions shared by 2 pure spinors, and so on.

This framework allows us to define concepts such as edge intersection numbers e and tetra-
hedral intersection numbers t. These numbers help us count the ways two spinors can share an
edge and the ways four spinors can share a tetrahedron. We develop formulas concerning edge
intersection numbers and box occupation numbers to find bounds on the maximal purity of an
impure spinor. This generates known results up to d = 7 [Cha97], at which point the formula
breaks down. We show that considering tetrahedral intersection numbers and box occupation
numbers and developing similar formulas to develop stricter bounds on the maximal purity of
an impure spinor for d > 8. An assumption made in the bounding process is verified to be true
in the following chapter.

In section 6.2, we sequentially consider different degrees k of an impure spinor. Normally,
one would need to consider k from 1 to 2d−1, but, as per the previous chapter, we only need to
consider k up to the bound we develop. In the process of incrementally increasing the dimensions
and degree of impurity, we write all unique diagrams, up to a representative for those diagrams,
and compare the results to known ones. We also show that they match known results (the simple
part of the stabilisers), up to and including dimension 14.

Furthermore, the diagrams are also uniquely associated with a canonical differential form
that we construct case by case and analyse to understand the orbit type. We demonstrate that
by the action of the Cartan subgroup of Spin(2n,C), one can rotate a spinor to a canonical
one, making the differential form an identifier of the orbit. This relates back to part I, where
we explicitly constructed geometric structures that characterised orbits of spinors. Consider the
following simple example.

Example 2.0.3.1. In 8 dimensions one can construct the diagram

A B0
ψA = 1
ψB = e1 ∧ e2 ∧ e3 ∧ e4 (2.0.15)

Where A,B on the edge refer to the spinors ψA,B . See that the weight 0 is in reference to the
fact that ∣M(ψA)∩M(ψB)∣ = 0. This is the unique diagram, up to choice of representative, that
characterises the stabiliser subgroup Spin(7). Upon choosing a representative ψ - general linear
combination of ψA and ψB , one can also write the canonical differential 4-form

B4(ψ)∝ Ω + Ω̄ + 1
2
ω2, (2.0.16)
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where Ω is the top holomorphic form in 4 complex dimensions, and ω is the symplectic form in
8 real dimensions.

We encounter a phenomenon where diagrams are necessarily unique, even if the spinor is
not. In twelve dimensions, there exists an impure spinor of degree 2 that is in the same orbit as
a higher-dimensional spinor of degree 4, allowing us to show that the bound constructed from
tetrahedral numbers is accurate. This feature extrapolates to higher dimensions and serves as a
basis for reduction in 14 dimensions for a type of impure spinor of degree 5.
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Chapter 3

Preliminaries of Polyforms &
Pure Spinors

3.1 Polyform Representations of Spinors

Polyforms are arbitrary linear combinations of differential forms on R2n. This section serves
as a preliminary to establishing notation and conventions, facilitating a connection between
Clifford algebras over R2n, Rn,n, and Rr,s, where r + s is even. We explore these connections
in terms of creation and annihilation operators on the space of differential forms. Additionally,
we discuss their representations over differential forms and introduce Dirac, Weyl, Majorana,
and Majorana-Weyl spinors as subspaces of differential forms. Finally, we describe the spin Lie
algebra using antisymmetric products of creation and annihilation operators.

3.1.1 Polyform Representations of Spin(2n)

Clifford Algebras

Let us start by considering the Clifford Algebra Cliff2n. Let R2n ≅ V be a real 2n dimensional
vector space with an inner product. We introduce the linear map J ∶ V → V such that J2 = −I,
that is J is a complex structure. Allowing V to be identified withW ⊕W̄ , whose real dimensions
are n. For our purposes, we consider W ≅ Cn as the −i eigenspace of J . Let {e1, . . . , en} be an
orthonormal basis in W , that is (ei, ej) = δij , and Λk(W ) as the space of k−forms, that is the
anti-symmetrisation of the (k,0) tensor space ⊗kW . Hence, for any v ∈ Λk(W ) one has

v = vi1,...,ike
i1...ik , for 1 ≤ i1, . . . ik ≤ n and vi1,...ik ∈ C. (3.1.1)

We introduce the notation ei1i2... above to mean ei1 ∧ ei2 ∧ . . ..

Definition 3.1.1.1. A polyform ψ is a k-form of varying degrees. Explicitly, ψ ∈ Λ(W ) =
⊕nk=1Λk(W ) .

We remark that Λ(W ) is a (obviously) graded, associative, anticommuting algebra with unit
(and inner product ⟨ , ⟩ defined later on). We will now introduce the following linear operators

on ai, a
†
i ∶ Λ(W )→ Λ(W ) defined as

ai(ψ) = ei ⌟ ψ, and a†
iψ = e

i ∧ ψ. (3.1.2)

Here for a k−form v ∈ Λk(W ), as defined above, the action of aj ∶ Λk → Λk−1 on v ∈ Λk(W ) is

23
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given as

aj(v) = ej ⌟ ψ ∶=
k

∑
m=1
(−1)m−1δjimvi1,...,im,...,ike

i1 ∧ . . . êim . . . ∧ eik . (3.1.3)

êim means to omit that term from the sum. Again taking v ∈ Λk(W ) the action of a†
j ∶ Λ

k → Λk+1

is given as
a†
j(v) = e

j ∧ ψ ∶= vi1,...,ike
j ∧ ei1...ik . (3.1.4)

The above creation and annihilation operators satisfy the commutation relations

aia
†
j + a

†
jai = δij , aiaj + ajai = 0, and a

†
ia

†
j + a

†
ja

†
i = 0, ∀ 1 ≤ i, j ≤ n. (3.1.5)

To construct the Clifford algebra one takes linear combinations of the above operators defined
as

Γi = ai + a†
i , and Γi+n = −i(ai − a†

i). (3.1.6)

An interesting note that will be useful later is that Γ ∶ V → Cliff(W ) is an algebra homomorphism
that maps a vector v ∈ V to a generator in Γ(v) ∈ Cliff(W ), so Γi = Γ(ei), see Lemma 9.7 and
Remark 9.10 in [Har90]. The action by Γ on Λ(W ) is referred to as the Clifford action, and the
choice of homomorphism Γ is called a model for Cliff(W ). These operators satisfy the Clifford
algebra relation,

ΓAΓB + ΓBΓA = 2δAB , for 1 ≤ A,B ≤ 2n. (3.1.7)

Hence Cliff2n ≅ Cliff(W ) is generated by the above so-called “gamma matrices”. We note that
there was a choice of a complex unit i in the above gamma matrices. If its position were reversed,
that is we took

Γi = i(ai + a†
i), and Γi+n = ai − a†

i (3.1.8)

then the result would have been

ΓAΓB + ΓBΓA = −2δAB , for 1 ≤ A,B ≤ 2n. (3.1.9)

This sign is important if our focus was solely on Clifford algebras, however, we will be concen-
trating on the spin algebra. This makes the sign immaterial.

Spin Lie Algebras, & Weyl Spinors

The spin Lie algebra is generated from the commutators of the gamma matrices generating
the Clifford algebra, that is, for any ΓA,ΓB ∈ Cliff2n, spin(2n) is generated by Γ[AΓB]. An
alternative description that can be used is

spin(2n) ∋ A(X) = 1

4
∑
A<B

XABΓAΓB . (3.1.10)

Here X is a real antisymmetric and trace-free (2,0) tensor. Furthermore, A is a Lie algebra
homomorphism from spin(2n) to gl2n(C) given by

[A(X),A(Y )] = A([X,Y ]) (3.1.11)

Here [X,Y ]AB =XA
CY

CB −Y ACXCB (the index B is raised using the metric δAB on V ≅ R2n)
is the commutator of two antisymmetric trace-free 2n × 2n matrices. Thus, A is in fact a Lie
algebra isomorphism between spin(2n) and so(2n).
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Definition 3.1.1.2. The even/odd subspaces of Λ(W ) are defined as

S+ ∶= ⊕
k∈Ωeven

n

Λk(W ), and S− ∶= ⊕
k∈Ωodd

n

Λk(W ), 1 (3.1.12)

where
Ωevenn ∶= {p ∈ 2Z ∣ 0 ≤ p ≤ n}, and Ωoddn ∶= {p ∈ 2Z + 1 ∣ 0 < p ≤ n}. (3.1.13)

Any vector in S± is called a Weyl spinor, and any vector in Λ(W ) ∶= S = S+ ⊕ S− is called a
(Dirac) spinor.

The Γ-matrices in Cliff2n map S± to S∓. As any element of X ∈ spin(2n) is the skew-
symmetrised product of any two Γ-matrices, the action of X on S± is an endomorphism X ∶
S± → S±. Thus, the Dirac representation of spin(2n) is reducible to the Weyl representations
S±.

Inner Product

Definition 3.1.1.3. Let ψ1, ψ2 ∈ S then the inner product on S is defined as

⟨ψ1, ψ2⟩ = σ(ψ1) ∧ ψ2∣top. (3.1.14)

Here σ ∶ S → S is the automorphism that reverses the order of each decomposable form in ψ1,
and ∣

top
is the projection of the polyform to the coefficient of volume form.

In the above definition, suppose λi1...ike
i1...ik is a decomposable k-from, such that λi1...ik ∈ C,

then
σ(ei1...ik) = eik...i1 . (3.1.15)

Furthermore, suppose ψ = λ1 + λvolvol, such that λ,λvol ∈ C, then

ψ∣
top
= λvol. (3.1.16)

Proposition 3.1.1.1. Take the inner product given by definition 3.1.1.3, and any A ∈ spin(2n).
Then one has

⟨Aψ1, ψ2⟩ + ⟨ψ1,Aψ2⟩ = 0. (3.1.17)

Proof. We shall first prove that ai and a
†
i are self-adjoint

⟨a†
jψ1, ψ2⟩ = σ(ej ∧ ψ1) ∧ ψ2∣top

= σ(ψ1) ∧ ej ∧ ψ2∣top
= ⟨ψ1, a

†
jψ2⟩.

(3.1.18)

To prove that aj is self-adjoint it is sufficient to assume that ψ1 ∈ Λk(W ) and ψ1 ∈ Λp(W ) such
that p + k = n. Suppose that ψ1 = ei1 ∧ . . . ∧ eik . Then for ajψ1 to not vanish, else the inner

product vanishes, ej must appear in ψ1. This results in σ(ajψ1) = (−1)jeik ∧ . . . ∧ êj ∧ . . . ei1 .
Furthermore, suppose ψ2 is also decomposable then ψ2 = (−1)jej ∧ el1 ∧ . . . ∧ elp , if ψ2 didn’t

1We also commonly refer to S± as Λeven/odd
(Cn
) (as W ≅ Cn).
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contain ej then the inner product vanishes.

⟨ajψ1, ψ2⟩ = σ(ajψ1) ∧ ψ2∣top
= (−1)jeik ∧ . . . ∧ êj ∧ . . . ei1 ∧ (−1)jej ∧ el1 ∧ . . . ∧ elp

= eik ∧ . . . ∧ ej ∧ . . . ei1 ∧ (−1)jel1 ∧ . . . ∧ ej ∧ . . . ∧ elp

= σ(ψ1) ∧ ajψ2∣top
= ⟨ψ1, ajψ2⟩.

(3.1.19)

This immediately implies that ΓA for 1 ≤ A ≤ n is self-adjoint. Let spin(2n) ∋ A = 1
4
XAB∑A<B ΓAΓB

then

⟨Aψ1, ψ2⟩ = ∑
A<B

1

4
XAB⟨ΓAΓBψ1, ψ2⟩

= ∑
A<B

1

4
XAB⟨ψ1,ΓBΓAψ2⟩

= − ∑
A<B

1

4
XAB⟨ψ1,ΓAΓBψ2⟩

= −⟨ψ1,Aψ2⟩.

(3.1.20)

On the line 3 in the above equation we use the anti-symmetry of gamma matrices for A ≠ B.

Majorana Spinors

We construct two antilinear operators, R,R′ ∶ S → S that square to ±I, and commute or anti-
commute with Cliff2n. Majorana spinors live in the eigenspace of R or R′ depending on which
one squares to the identity and (anti-)commutes with Cliff2n. The reality conditions are defined
as

R = Γ1 . . .ΓnC, and R′ = Γn+1 . . .Γ2nC. (3.1.21)

Where C is the conjugation map on C, taking any complex number to its complex conjugate.
We see that R is the product of all the “real” gamma matrices and R′ is the product of all the
“imaginary” gamma matrices. We now have the following propositions.

Proposition 3.1.1.2. The operators R and R′ either commute or anticommute with any ΓC ∈
Cliff2n for C ∈ {1, . . . ,2n} in the following way

RΓC = (−1)n−1ΓCR, (3.1.22)

and
R′ΓC = (−1)nΓCR′. (3.1.23)

The proof is not conceptually difficult, one simply computes the various cases for ΓC , R and
R′.

Proposition 3.1.1.3. The antilinear maps have square to ±I, depending on the dimension n,
in the following way

R2 = (−1)
n(n−1)

2 I, and (R′)2 = (−1)
n(n+1)

2 I. (3.1.24)
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Proof.

R2 = Γ1 . . .ΓnCΓ1 . . .ΓnC

= Γ1 . . .ΓnΓ1 . . .ΓnC
2

= (−1)
n(n−1)

2 Γn . . .Γ1Γ1 . . .Γn

= (−1)
n(n−1)

2 I

(R′)2 = Γn+1 . . .Γ2n ∗ Γn+1 . . .Γ2nC

= (−1)nΓn+1 . . .Γ2nΓn+1 . . .Γ2nC
2

= (−1)n(−1)
n(n−1)

2 Γ2n . . .Γn+1Γn+1 . . .Γ2n

= (−1)
n(n+1)

2 I
(3.1.25)

Definition 3.1.1.4. Suppose R ∈ {R,R′} as (3.1.21). The antilinear map R is called a reality
condition if it squares to +I and commutes with spin(2n).

What (3.1.1.2) and (3.1.1.3) then show is that for n = 2 mod 4, no reality conditions can exist
because neither operator squares to the identity. For n = 0 mod 4, both R and R′ are reality
conditions. If n = 1 mod 4 or n = 3 mod 4, then one of the two reality conditions exists, as one
will square to +I, and one to −I.

Theorem 3.1.1.1. R and R′ are the only reality conditions up to phase and ordering.

Proof. Lemma 12.75, and lemma 12.90 in [Har90].

In fact the proof found in [Har90] is given for the more general case (r, s), such that r+s ∈ 2Z.
We take r = 2n, s = 0 as a special case to prove our results. Thus, when we discuss Cliffn,n, a
compatible statement of theorem 3.1.1.1 will be true, i.e. specialise to r = s = n.

We now have sufficient data to define a Majorana spinor.

Definition 3.1.1.5. Suppose there exists a reality condition R. Then a spinor ψ ∈ S is called
Majorana whenever R(ψ) ∶= ψ̂ = ψ.

There is also another important definition that we need.

Definition 3.1.1.6. Suppose there exists a reality condition R. Suppose further that R ∶ S± →
S±. Then a spinor ψ± ∈ S± is called Majorana-Weyl whenever R(ψ±) ∶= ψ̂± = ψ±.

The above statement is true only when R is an even number of gamma matrices. Hence
since there are no Majorana-Weyl spinors in n = 2 mod 4. If n = 1 mod 4 or n = 3 mod 4 then
R ∶ S± → S∓, so chirality is not preserved under this map but Majorana spinors exist. This
means that there are only Majorana-Weyl spinors in n = 0 mod 4.

A Preferred u(n) Subalgebra

Recall that in our construction of Cliff2n we introduced a complex structure J that splits the
2n real dimension vector space V = W ⊕ W̄ . Where W and W are complex vector spaces
with dimension n, and we have chosen JW = −iW and JW̄ = −iW̄ . The symmetry of the
space then must be preserved by the choice J that was made. That is SO(2n) contains a U(n)
subgroup that preserves the complex structure J . This is seen more clearly by examining the
spin(2n) ≅ so(2n)−module S.

Definition 3.1.1.7. Let φ be a k-form. Then the integer k is defined as the degree of φ.

There is a preferred u(n) subalgebra in spin(2n) whose action on ψ ∈ S fixes the degrees of
any decomposable forms that comprise it. In the context of S = Λ(Cn), these are operators in
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spin(2n) that only contain the product aia
†
j for some i, j ∈ {1, . . . , n}. Explicitly, let us construct

the spin(2n) algebra as

Aspin(2n) =
n

∑
i,j=1

1

2
XijΓ[iΓj] −

1

2
ΞijΓ[i+nΓj+n] + Y ijΓ[iΓj+n]

= 1

2
Xij(ai + a†

i)(aj + a
†
j) −

1

2
Ξij(ai − a†

i)(aj − a
†
j) + Y

ij(ai + a†
i)(aj − a

†
j).

(3.1.26)

It is clear that Xij and Ξij are antisymmetric, while Y ij has no symmetry. Aspin(2n) can be

reduced to Au(n) by removing all products of the form aiaj and a
†
ia

†
j , resulting in the conditions

Xij = Ξij , and Y ij = Y ji. (3.1.27)

This gives
Au(n) =Xij(aia†

j + a
†
iaj) − iY

ij(aia†
j − a

†
iaj). (3.1.28)

Since a and a† are self-adjoint Au(n) is skew-hermitian.

Proposition 3.1.1.4. The vector representation of u(n) ⊂ spin(2n) on R2n is compatible with
the complex structure J .

Proof. To prove this we just need to check that the action of (3.1.28) on R2n preserves the
eigenspaces of J . The vector representation of spin(2n) is given by considering Cliff2n as a
module with the action on it through the commutator. The complex structure J splits Cliff2n =
span{ai ∣ 1 ≤ i ≤ n}⊕ span{a†

i ∣ 1 ≤ i ≤ n}, and hence we consider the vector y = yiai as what we
want to be preserved under the bracket. Furthermore, we have the relations between creation
and annihilation operators given as

[aia†
j , ak] = 2δjkai, [a

†
iaj , ak] = −2δikaj , and [a

†
ia

†
j , ak] = 2δjka

†
i − 2δika

†
j . (3.1.29)

It is clear that for any A ∈ spin(2n), [A,yiai] ∈ span{ai} ⇐⇒ A ∈ u(n).

3.1.2 Polyform Representations of Spin(n,n)

Clifford Algebra, Spin Lie Algebra, & Inner product

In a similar vein to the previous section, we study Cliffn,n. We begin by taking a vector space
with an inner product of real dimension 2n, V ≅ R2n. Previously, a complex structure was
imposed that broke the V into eigenspaces of complex dimension n. However, here we impose a
paracomplex structure I, a linear map that squares to +I, and splits V into maximally isotropic
subspaces E± ≅ Rn. This geometry will be defined more concretely in the next section. For now,
we just assume that V = E+ ⊕ E− exists. The inner product that is compatible with I means
that for any vectors v+ ∈ E+ and v− ∈ E−, (v+, v−) = 0. Let {e1, . . . , en} be an orthonormal
basis in E+, and let Λk(E+) be the space of k−forms, the anti-symmetrisation of ⊗kE+, and
Λ(E+) = ⊕nk=1Λk(E+) the space of polyforms. The linear operators bi, b

†
i ∶ Λ(E

+) → Λ(E+) are
defined as

biψ = ei ⌟ ψ,and b†iψ = e
i ∧ ψ (3.1.30)

The above creation and annihilation operators satisfy the commutation relations

bia
†
j + b

†
jbi = δij , bibj + bjbi = 0, and b

†
ib

†
j + b

†
jb

†
i = 0, ∀ 1 ≤ i, j ≤ n. (3.1.31)

The generators, gamma matrices, for the Clifford algebra Cliffn,n ≅ Cliff(E+) is given as

Γi = bi + b†i , and Γi+n = bi − b†i (3.1.32)
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It is easy to check that gamma matrices satisfy

ΓAΓB + ΓBΓA = ηAB for 1 ≤ A,B ≤ 2n. (3.1.33)

Here η is a diagonal metric of signature (n,n). Again there is a choice being made here, these
models of the Clifford generators aren’t unique. One can develop the same Clifford algebra
relation by taking appropriate complex linear combinations of b and b†. This is explored more
concretely, like the Cliff2n case, in the discussion of pure spinors.

The spin Lie algebra spin(n,n) is generated by Γ[AΓB] for any ΓA,ΓB ∈ Cliffn,n. Similar to
before, an alternative description used is

spin(n,n) ∋ A(X) = 1

4
XAB ∑

A<B
ΓAΓB . (3.1.34)

Where X is a real antisymmetric and trace-free (2,0) tensor. A is a Lie algebra homomorphism
between spin(n,n) and gl2n, and even more so is a Lie algebra isomorphism between spin(n,n)
and so(n,n). The space S = Λ(E+) is reducible to S+ = Λ+(E+) and S− = Λ−(E+), the spaces of
Weyl spinors.

The spin(n,n) inner product is still given by definition (3.1.1.3). This is because the creation
and annihilation operators are still self-adjoint.

Finally, as before, there are two antilinear operators R,R′ ∶ S → S that either square to ±I,
and commute or anticommute with Cliffn,n. Since S is real, the notion of imaginary gamma
matrices doesn’t exist any more, hence one has

R = Γ1 . . .Γ2nC, and R′ = C. (3.1.35)

Again, C is the complex conjugation map on C.

Proposition 3.1.2.1.

R2 = (−1)n
2

I, (R′)2 = I (3.1.36)

Proof.

R2 = Γ1 . . .Γ2nCΓ1 . . .Γ2nC

= Γ1 . . .Γ2nΓ1 . . .Γ2n

= (−1)
n(n−1)

2 (−1)
n(n−1)

2 (−1)nI

= (−1)n
2

I,

(R′)2 = C2 = I. (3.1.37)

Proposition 3.1.2.2.

RΓC = −ΓCR, R′ΓC = ΓCR′ ∀ C ∈ {1, . . .2n} (3.1.38)

Proof. The commutation relations for R′ are obvious. Suppose that C ∈ {1, . . . n} then RΓC =
(−1)2n−1ΓCR and suppose C ∈ {n + 1, . . .2n} then RΓC = (−1)2n+1ΓCR. Since 2n ± 1 is always
odd, the result follows.

Theorem 3.1.2.1. R and R′, up to some phase and some ordering, are the only reality condi-
tion.

Proof. Lemma 12.75, and lemma 12.90 in [Har90].
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A Preferred gl(n) Subalgebra

In the construction of Cliffn,n there was a paracomplex structure introduced I that split the
2n real dimension vector space as V = E+ ⊕ E−. The symmetry for the choice of I must be
preserved. That is SO(n,n) contains GLn subgroup that preserves I. Like in the Cliff2n case,
we make this clear by examining the spin(n,n)−module S. There is a preferred gl(n) subalgebra
in spin(2n) whose action on ψ ∈ S fixes the degrees of any decomposable forms that comprise it.
Explicitly the general spin(n,n) Lie algebra element can be written as

Aspin(n,n) =
n

∑
i,j=1

1

2
XijΓ[iΓj] −

1

2
ΞijΓ[i+nΓj+n] + Y ijΓ[iΓj+n]

= 1

2
Xij(bi + b†i)(bj + b

†
j) −

1

2
Ξij(bi − b†i)(bj − b

†
j) + Y

ij(bi + b†i)(bj − b
†
j).

(3.1.39)

It is clear that Xij and Ξij are antisymmetric, while Y ij has no symmetry. Agl(n) is then created

by removing bibj and b
†
ib

†
j terms in Aspin(n,n). This results in the conditions

Xij = −Ξij , and Y ij = Y ji. (3.1.40)

Giving
Agl(n) = 2(Xij − Y ij)bib†j + 2Y

ijδijI. (3.1.41)

Where Xij is still antisymmetric but now Y ij is symmetric.

Proposition 3.1.2.3. The vector representation of gl(n) ⊂ spin(n,n) on R2n is compatible with
the paracomplex structure I.

Proof. The proof is the same structure as (3.1.1.4). Again, we consider vector representation
equivalent to the action of spin(n,n) on Cliffn,n via the commutator. Since I splits Cliffn,n =
span{bi ∣ 1 ≤ i ≤ n}⊕ span{b†i ∣ 1 ≤ i ≤ n}, and the same commutation relations hold for b↔ a and
b† ↔ a†. We see for any y ∈ span{bi} and A ∈ spin(n,n), [A,yibi] ∈ span(bi) ⇐⇒ A ∈ gl(n).

3.1.3 Polyform Representation of Spin(r, s)

The Maximal Index Model of Cliffr,s

For applications we care about, there is then no distinction between Spin(r, s) and Spin(s, r).
Therefore, without loss of generality, we can assume r ≥ s. Furthermore, we are interested in the
cases r + s ∈ 2Z, this is to guarantee that one has access to the Weyl representations, S±. We
can then write

Rr,s = R2n,0 ⊕Rs,s, such that n ∶= (r − s)/2. (3.1.42)

There is of course some choice in splitting Rr,s in this way, and we discuss the geometry involved
in this choice later.

We can now consider a mix of the creation and annihilation constructions on Λ(Cn) and
Λ(Rs). We introduce creation and annihilation operators ai, a

†
i , i = 1, . . . , n as those acting on

Λ(Cn). We introduce creation and annihilation operators bI, b
†
I , I = 1, . . . , s as those acting on

Λ(Rs). The Clifford generators then arise as operators on Λ(Cn ⊕Rs)

Γi ∶= ai + a†
i , Γi+n ∶= i(ai − a

†
i), for i = 1, . . . , n, and,

ΓI+2n ∶= bI + b†I , ΓI+2n+s ∶= bI − b†I , for I = 1, . . . , s.
(3.1.43)
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These Gamma matrices satisfy the Clifford algebra relations

ΓAΓB + ΓBΓA = 2gAB1, for 1 ≤ A,B ≤ 2n, where g = diag(+1, . . . ,+1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2n + s times

,−1, . . . ,−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
s times

). (3.1.44)

The Lie algebra is again generated by all products of pairs of distinct Γ-matrices. Lie algebra
acts on spinors, which are elements of the space of all polyforms S = Λ(Cn ⊕ Rs). This splits
into the subspaces of even and odd polyforms S = S+ ⊕ S−. The inner product (3.1.1.3) is still
an invariant inner product on S.

Reality conditions, Majorana spinors

As in the case of Cliff2n, we now show there are only two antilinear operators (up to a com-
plex multiple) that either commute or anticommute with all Γ-matrices. These operators are
obtained by taking the product of all real operators followed by the complex conjugation, or of
all imaginary operators again followed by the complex conjugation. Thus, we define

R = Γ1 . . .Γn
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n factors

n factors omitted
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ. . . . . . . . . . . . Γ2n+1 . . .Γ2n+2s

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2s factors

C, and R′ = Γn+1 . . .Γ2n
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n factors

C. (3.1.45)

Here, as before, C is the complex conjugation map on C. The commutativity properties of these
maps are summarised in the proposition

Proposition 3.1.3.1.

RΓA = (−1)n−1ΓAR, and R′ΓA = (−1)nΓAR′, where A ∈ {1, . . . ,2(n + s)}. (3.1.46)

Here the formulae are s-independent, and the squares of these maps are captured by the
following proposition,

Proposition 3.1.3.2.

R2 = (−1)
n(n−1)

2 1, and (R′)2 = (−1)
n(n+1)

2 1. (3.1.47)

Again the formulae are s-independent. Thus, the existence of the reality conditions and
Majorana spinors depends only on the number of complex directions in Cn ⊕Rs. There are no
Majorana spinors when n is even but not a multiple of four. There are Majorana spinors when
n is odd, and Majorana-Weyl spinors when n ∈ 4Z.

Theorem 3.1.3.1. R and R′ are the only reality conditions up to phase and ordering.

Proof. Lemma 12.75, and lemma 12.90 in [Har90].

A Preferred Subalgebra of spin(r, s)

We now look for a subalgebra that does not mix polyforms of different degrees. To this end, it is
useful to write a general Lie algebra element in terms of the creation and annihilation operators
a, b. We have

Aspin(r,s) =
1

2
Xij(ai + a†

i)(aj + a
†
j) −

1

2
X̃ij(ai − a†

i)(aj − a
†
j) + iY

ij(ai + a†
i)(aj − a

†
j)

+ 1

2
X IJ(bI + b†I )(bJ + b

†
J) +

1

2
X̃ IJ(bI − b†I )(bJ − b

†
J) + Y

IJ(bI + b†I )(bJ − b
†
J)

+ZiI++(ai + a
†
i)(bI + b

†
I ) +Z

iI
+−(ai + a

†
i)(bI − b

†
I )

+ iZiI−+(ai − a
†
i)(bI + b

†
I ) + iZ

iI
−−(ai − a

†
i)(bI − b

†
I ).

(3.1.48)
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Here all parameters X, X̃, Y , and Z are real. The conditions so that the operator above contains
both a creation and annihilation operator are

Xij = X̃ij , Y [ij] = 0, X IJ + X̃ IJ = 0, Y [IJ] = 0, ZiJ++ = ZiJ+− = ZiJ−+ = ZiJ−− = 0. (3.1.49)

Clearly this selects u(n)⊕ gl(s).

3.2 Pure Spinors

It does not take long after introducing the models for Cliff2n, Cliffn,n, and Cliffr,s in the previous
sections to start questioning: why are there certain factors of i in front of some generators, while
others lack these factors? Indeed, in the case of Spin(n,n), we could have developed a model
that preserved the correct split signature but resulted in non-real matrices. The aim of this
section is to uncover the hidden choices behind the construction of the Γ-matrices for various
signatures of Clifford algebras. These choices stem from pure spinors, which lay the foundation
for this entire thesis.

The canonical differential forms, constructed from geometric maps using these spinors, give
rise to the spinorial G-structures studied in later parts of the thesis. Furthermore, pure spinors
form a basis in the space of Weyl spinors, thus understanding the stabilisers of pure spinors
provides insights into the stabilisers of impure spinors—any Weyl spinor that is not pure. This
understanding enables classifications of spinor orbits over real and complex numbers.

In this section, we review pure spinors, the geometric maps that construct geometric struc-
tures — canonical differential forms with an index raised. We also discuss the real index, which
outlines the different types of spinorial G-structures emerging from pure spinors, and present
some crucial facts exploited in the remainder of the thesis to comprehend the orbits of Weyl
spinors. Additionally, we introduce a new geometric structure called a mixed structure—a
structure that is paracomplex on a split signature portion of Cliffr,s and a complex structure on
the compact part of Cliffr,s.

3.2.1 Maximally Totally Null Spaces & Pure spinors

Definition 3.2.1.1. Let V be a vector space with metric η of signature (r, s) and W its com-
plexification. Then

W ⊃M(φ) = {v ∈ V ∣ Γ(v)(φ) = 0} (3.2.1)

is called the null space of φ. Here Γ is the homomorphism that takes a vector in V to its Clifford
generator in Cliff(W ).

So fixing a spinor allows one to pick vector subspaces in W that correspond to it through
annihilation via the Clifford action. Furthermore, if r + s = 2n, which is the case we will always
discuss, then one can show dim(M(φ)) ≤ n. This motivates the following definition:

Definition 3.2.1.2. M(φ) is maximally totally null (MTN) or maximally isotropic whenever
dim(M(φ)) = n. The corresponding spinor φ is then said to be pure or simple.

It has been known since Cartan [CB68] that pure spinors are Weyl spinors. Cartan also gives
a useful algebraic characterisation of pure spinors. It is convenient to define

Definition 3.2.1.3 (geometric maps). Let φ,ϕ be Weyl spinors of Spin(r, s) such that r+s ∈
2Z, and the same chirality. Then a geometric map is defined as

Λk(V ) ∋ Bk(φ,ϕ) ∶= ⟨φ,Γi1 . . .Γikϕ⟩ for 1 ≤ i1 < . . . < ik ≤ n. (3.2.2)

As Γ-matrices anticommute with one another, the image of a geometric map is a differential
form. In fact, let φ = ϕ be Weyl spinors, then the image of this geometric map is called a
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canonical differential k-form, which is invariant under the stabiliser of φ, G ⊂ Spin(r, s). In
general, the group that stabilises the canonical differential form is smaller than G. In the cases
we care about, chapters 8 and 9, the stabiliser of the spinor and canonical differential form
coincide. As we are concerned with writing theories of gravity, we emphasise the stabiliser of
the canonical differential form.

Finally, we give conditions for when a spinor is pure using geometric maps. This was shown
by Cartan [CB68] in the following theorem.

Theorem 3.2.1.1. Suppose ϕ is a Weyl spinor of Spin(r, s) such that r + s ∈ 2Z, and consider
the geometric maps Bk(ϕ,ϕ). Then ϕ is a pure spinor if, and only if, for any k < dim(M(ϕ)),
Bk(ϕ,ϕ) = 0. Moreover, if k = dim(M(ϕ))

Bk(ϕ,ϕ)∝ f1 ∧ . . . ∧ fk. (3.2.3)

Here {f1, . . . , fk} is a basis that spans M(ϕ).

In sections to come, we freely raise and lower the indices of differential forms coming from
geometric maps and define these endomorphisms to be geometric structures. When r = 2n, s = 0,
these will correspond to complex structures. When r = s, these will correspond to paracomplex
structures. Finally, when r ≠ s ≠ 0 these correspond to a new type of structure called a mixed
structure.

3.2.2 The Real Index

Definition 3.2.2.1. If V is a real 2n dimensional vector space then W , its complexification, is
a complex 2n vector space. Hence, the maximum dimension of null isotropic space is n. Given
an MTN subspace N ⊂W , the real index r is the dimension of N ∩ V , i.e. the dimension of the
space of real vectors in N .

Using [KT92] one has the following formula to characterise r = ∣N ∩ V ∣,

r ∈
⎧⎪⎪⎨⎪⎪⎩

{p ∈ 2Z ∣ 0 < p < n} for n ∈ 2Z, or
{p ∈ 2Z + 1 ∣ 0 < p < n} for n ∈ 2Z + 1.

(3.2.4)

Hence it is clear that for Rr,s with r ≥ s the real index can be as large as s. At the same time,
in the case (2ρ,2σ) the real index of MTN subspace can be as small as zero, while in the case
(2ρ+1,2σ+1) the minimal value of the real index is one. One has the following theorem [KT92].

Theorem 3.2.2.1. The group SO(r, s) acts transitively on each set of all MTN subspaces of
W with a given real index and chirality.

Helicity arises because pure spinors are Weyl, recall there is a one-to-one correspondence
between the basis that constitutes the subspace of the Clifford algebra that annihilates pure
spinors and MTN subspaces of W . We can now connect the real index to a pure spinor via the
following theorems from [KT92], and [BT89].

Theorem 3.2.2.2. Let ϕ,ψ be even pure spinors. Then

• ∣M(ϕ) ∩M(ψ)∣ = p ∶= n − 2m , for some m ∈ N.

• ∣M(ϕ) ∩M(ψ)∣ = p ⇐⇒ Bk(ϕ,ψ) = 0 ∀ k ∈ N<p, and Bp(ϕ,ψ) ∝ e1 ∧ e2 ∧ . . . ∧ ep. Here
{e1, . . . , ep} is a basis for M(ϕ) ∩M(ψ).

• ∣M(ϕ) ∩M(ψ)∣ = 0 ⇐⇒ B0(ϕ,ψ) ≠ 0.

An analogous statement can be made about odd spinors too
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Theorem 3.2.2.3. Let ϕ,ψ be odd pure spinors. Then

• ∣M(ϕ) ∩M(ψ)∣ = p ∶= n − (2m + 1) , for some m ∈ N.

• ∣M(ϕ) ∩M(ψ)∣ = p ⇐⇒ Bk(ϕ,ψ) = 0 ∀ k ∈ N<p, and Bp(ϕ,ψ) ∝ e1 ∧ e2 ∧ . . . ∧ ep. Here
{e1, . . . , ep} is a basis for M(ϕ) ∩M(ψ).

• ∣M(ϕ) ∩M(ψ)∣ = 0 ⇐⇒ B0(ϕ,ψ) ≠ 0.

Finally, an important theorem due to Cartan [CB68].

Theorem 3.2.2.4. Let ϕ,ψ be two non-parallel pure spinors. If ∣M(ϕ) ∩M(ψ)∣ = n − 2 then
ϕ + ψ is a pure spinor2.

The next section now explores how pure spinors generate the models, indexed by r, through
the geometric map.

3.2.3 Pure Spinors and Complex Structures in Spin(2n)

Obviously, Cliff2n must always have r = 0. This is because if there did exist an MTN subspace
N ⊂ V , then the metric would no longer be definite, as the real coordinates in N ∩ V introduce
negative definite signatures. Therefore, the chosen model is the only one for a positive definite
signature.

Consider span{Γ(ei) + iΓ(ei+n) ∣ 1 ≤ i ≤ n} and span{Γ(ei) − iΓ(ei+n) ∣ 1 ≤ i ≤ n}, i.e.,

span{ai ∣ 1 ≤ i ≤ n} and span{a†
i ∣ 1 ≤ i ≤ n}, respectively. Thus, one can deduce the pure spinors

for this model that characterise it. They are e1 ∧ . . .∧ en, the volume form, and 1, the zero form
(or identity form).

The subalgebra of spin(2n) that stabilises these spinors is clearly su(n). Take the u(n)
subalgebra (3.1.28) and remove the trace components.

The complex structure can be derived from the following geometric map for a Weyl spinor
ψ.

MAB ∶= ⟨ψ̂,ΓAΓBψ⟩ for 1 ≤ A < B ≤ 2n. (3.2.5)

Where we recall that R(ψ) = ψ̂ for ψ ∈ S. We see that the insertion in the inner product above
to generate M is given by inserting a general Lie algebra element X ∈ spin(2n). If ψ is the
volume form or the identity polyform i.e. a pure spinor, then M is the symplectic form that
stabilises su(n). Raising an index, using δij on R2n, gives

MA
CMC

B ∝ δA
B . (3.2.6)

Thus rescaling the geometric map appropriately gives a complex structure J that is metric
compatible with our hermitian metric g on W

g(J ⋅, J ⋅) = g(⋅, ⋅) (3.2.7)

and gives the splitting of Cliff2n, i.e. the model that was chosen.

3.2.4 Pure Spinors and Paracomplex Structures in Spin(n,n)

We can now describe the geometry involved in the choice of a pair of maximal totally isotropic
subspaces Rn of Rn,n and thus the described model of Cliffn,n. The novelty as compared to the
case of Cliff2n is that choosing such a maximal isotropic subspace does not uniquely define its
complement in Rn,n.

2This is an important theorem for chapter 6 in the classification complexified stabilisers of impure spinors in
higher dimensions.
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As in the case of Cliff2n, the choice of a model can be encoded into a geometric map. In the
case of Cliff2n, the geometric map produced a complex structure on R2n that provided the split
of the complexification R2n⊗C into two maximally isotropic subspaces, Cn and C̄n. In the split
signature case Rn,n, the analogue of this is a choice of a paracomplex structure I ∈ End(Rn,n).
This is an operator that squares to plus the identity, I2 = +I, so that its eigenspaces of eigenvalue
±1 are real. This operator is also compatible with the split signature metric, but the compatibility
condition now involves a sign:

η(I ⋅, I ⋅) = −η(⋅, ⋅). (3.2.8)

As a consequence of this extra minus sign, the eigenspaces of I are totally null. Indeed,
if u, v ∈ E+, where E± ∶= {v ∈ Rn,n ∶ Iv = ±v}, then η(u, v) = −η(Iu, Iv) = −η(u, v), and so
E+ is totally isotropic, of dimension n, and thus maximally totally isotropic. The same holds
for E−. Thus, choosing a metric-compatible paracomplex structure I provides a decomposition
Rn,n = E+ ⊕E− into two maximal isotropic subspaces.

At this level, the story is analogous to that for R2n and Cliff2n. The novelty arises because
in Rn,n, a choice of a maximal totally isotropic subspace E+ does not define E−. Thus, a choice
of only E+ is not equivalent to a choice of a paracomplex structure I. The latter carries more
information than the former. And it is only E+ that is in correspondence with pure spinors, as
we now discuss.

Similarly to the case of Cliff2n, the described creation and annihilation operator model of
Cliffn,n comes with preferred pure spinors given by e1∧. . .∧en and 1, annihilated by span{Γ(ei)+
Γ(ei+n) ∣ 1 ≤ i ≤ n} and span{Γ(ei) − Γ(ei+n) ∣ 1 ≤ i ≤ n}, respectively.

In the case of Cliff2n, the stabiliser of e1 ∧ . . . ∧ en is su(n). It is clear that the analogous
subgroup in the case of Cliffn,n is sl(n), and indeed it is easy to see that e1 ∧ . . .∧en is stabilised
by sl(n) as in (3.1.41) with Y ijδij = 0. The difference with the Cliff2n case is that the stabiliser
of e1 ∧ . . . ∧ en is larger than sl(n).

Indeed, it is clear that e1 ∧ . . . ∧ en is also killed by all transformations (3.1.39) with

Y ij = 1

2
(Xij +Ξij), (3.2.9)

as these transformations involve the product of two copies of creation operators, and thus kill
the pure spinor e1 ∧ . . .∧en. Thus, the stabiliser algebra of the pure spinor is the sum sl(n)⊕N ,
where N is a nilpotent subalgebra of dimension n(n − 1)/2. A similar demonstration can be
given for 1. It is also stabilised by an sl(n) subalgebra as in (3.1.41) with Y ijδij = 0, however
the nilpotent part is now generated by

Y ij = −1
2
(Xij +Ξij). (3.2.10)

Hence, the stabiliser of 1 is still isomorphic to sl(n)⊕N because Y is only changed up to a
sign.

The novelty in the previous section was subtle, but the map R takes a pure spinor and gives
a pure spinor of the other type, up to a factor of i. For instance, if ψ = 1, then taking R = R,
ψ̂ = e1 ∧ . . . ∧ en. What this shows is that to characterise the model for Cliff2n, only one choice
of pure spinor is necessary.

The same cannot be said in the case of Cliffn,n. Since all spinors are real here, the notion of

ψ̂ is redundant. The naive assumption that

MAB ∶= ⟨ψ,ΓAΓBψ⟩ for 1 ≤ A < B ≤ 2n (3.2.11)

characterises the model is no longer true. Since R doesn’t map between the zero form and the
volume form, and vice versa, we are forced to construct a geometric map involving both of them.
Furthermore, since 1 ∈ E+ and e1 ∧ . . . ∧ en ∈ E−, we expect our geometric map to be a pairing
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⟨E+,E−⟩. So, without loss of generality, take any non-zero ψ1 ∈ E+ and ψ2 ∈ E−. Then one has

MAB ∶= ⟨ψ1,ΓAΓBψ2⟩ for 1 ≤ A < B ≤ 2n. (3.2.12)

Raising one of the indices using ηij on Rn,n gives an operator MA
B whose square is a multiple

of the identity. Hence, by rescaling, this gives an appropriate paracomplex structure I.

3.2.5 Mixed structures

A complex structure in R2n provides a decomposition R2n ⊗ C = E+ ⊕ E−, where both E± are
totally null and arise as the eigenspaces of the complex structure endomorphism. Similarly, a
paracomplex structure on Rn,n gives a decomposition Rn,n = E+ ⊕ E−, with E± again totally
null, but this time real.

The models of Cliffr,s we described rely on a structure that is an appropriate mix of complex
and paracomplex structures. The purpose of this subsection is to describe such more general
structures in geometric terms, with examples provided in the following sections.

We begin with a heuristic of what we would like in our approach to combining complex and
paracomplex structures. This leads to an axiomatisation once the principles have been fleshed
out.

We begin by imposing that a structure we do create gives an g−orthogonal decomposition

Rr,s = R2k,2l ⊕Rm,m. (3.2.13)

Second, the structure must select a pair of complementary MTN E± in both R2k,2l and Rm,m.
In other words, after a decomposition (3.2.13) is chosen, the structure must select a complex
structure J such that J2 = −I in R2k,2l, and a paracomplex structure I such that I2 = I in Rm,m.

Now, working backwards we would like to extend I, J to act on the whole of Rr,s, with

R2k,2l = Ker(I), and Rm,m = Ker(J). (3.2.14)

Since both I, J act by projecting on their respective factors, we have IJ = JI = 0. Taking
the complex linear combination K ∶= I + iJ means we have a linear map on Rr,s ⊗ C with the
property that

K2 = I2 + i(IJ + JI) − J2 = IRm,m + IR2k,2l = I. (3.2.15)

That is K is a paracomplex structure on Rr,s, apart from the fact that this map is complex-
valued. Another property the constructed map has is

KK̄ = I2 + J2 − i(IJ − JI) = K̄K. (3.2.16)

One can rephrase this as KK̄ = K̄K = P is real. This provides a reality condition on the
map. Note that because K2 = I we have also P 2 = I. But now P is a real map and a paracomplex
structure that defines the splitting, Rr,s = R2k,2l ⊕Rm,m being the P−eigenspaces of eigenvalue
+1 and −1 respectively.

Finally, we would like to describe metric compatibility between K and g on Rr,s. We have

g(KX,KY ) = g((I + iJ)X, (I + iJ)Y ) = g(IX, IY ) − g(JX,JY ). (3.2.17)

No mixed terms of the type g(IX,JY ) arise because both I, J project on to the metric
orthogonal components of Rr,s, R2k,2l and Rm,m respectively. Hence, we have

g(IX, IY ) = −g(X ∣2, Y ∣2), and g(JX,JY ) = g(X ∣1, Y ∣1). (3.2.18)

Here X ∣2 denotes the projection onto Rm,m, and X ∣1 denotes the projection onto R2k,2l. This
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means that we have

g(KX,KY ) = −g(X ∣2, Y ∣2) − g(X ∣1, Y ∣1) = −g(X,Y ). (3.2.19)

Thus, the operator K is metric-compatible in the same sense that a paracomplex structure
is.

The difference with the usual paracomplex structure is that K is complex-valued, but satis-
fies the reality condition (3.2.16). It is given by a complex linear combination of a paracomplex
and complex structures. We will refer to it as a structure of a mixed type, or a mixed struc-
ture for short. It is clear that as constructed, what this operator does is define an orthogonal
decomposition of Rr,s as kernels of its real and imaginary parts, as well as define a pair of
complex/paracomplex structures on the two factors R2k,2l ⊕Rm,m.

Having constructed an object with the desired properties, let us axiomatise it.

Definition 3.2.5.1. Let (V, g) be a real metric space, and let W be its complexification. Let
K ∶W ↦W be a linear map. If K satisfies

K2 = I, KK̄ = K̄K, and g(KX,KY ) = g(K̄X, K̄Y ) = −g(X,Y ), (3.2.20)

then K is called a mixed structure on V .

Proposition 3.2.5.1. The eigenvalue ±1 eigenspaces E± ⊂ W of K are of the same complex
dimension and are totally null.

Proof. Since K2 = I and g(KX,KY ) = −g(X,Y ), this shows that eigenspaces E± of K are null.
The metric g is non-zero only when pairing E± with E∓, this guarantees that E± are of the same
complex dimension.

These are the same facts as for paracomplex structures, but in the complexified setting. To
discuss a “real” version of K we introduce the product structure.

Definition 3.2.5.2. Let (V, g) be a real metric space. Let P ∶ V ↦ V such that P 2 = I, then P
is called a product structure on V . Furthermore, if P also satisfies g(PX,PY ) = g(X,Y ), then
P is called an orthogonal product structure on V .

Proposition 3.2.5.2. Let P be an orthogonal product structure, of a real metric space (V, g).
Let V ± be the eigenspaces of P with eigenvalues ±1, respectively, then V = V + ⊕ V −.

Proof. It is sufficient to show that V + is g−orthogonal to V −. Indeed, let X± ∈ V ± then

g(X+,X−) = −g(PX+, PX−) = −g(X+,X−). (3.2.21)

The namesake “product” makes sense now, meaning to factor the space in orthogonal com-
ponents.

Proposition 3.2.5.3. The operator P ∶= KK̄ = K̄K, where K is a mixed structure, is an
orthogonal product structure on V . That is P 2 = I, and P satisfies g(PX,PY ) = g(X,Y ).

Proof. Indeed, P is a real operator, and so P ∈ End(V ). Hence, P 2 = KK̄KK̄ = KK̄K̄K = I.
Now, using g(KX,KY ) = g(K̄X, K̄Y ), and K2 = I,

g(KX,KY ) = g(K̄X, K̄Y ) = g(KKK̄X,KKK̄Y ) = g(P (KX), P (KY )). (3.2.22)

Then by defining KX ∶= X̃ and KY ∶= Ỹ , shows P to be an orthogonal product structure.
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We now use P = KK̄ to provide the orthogonal decomposition V = V −K ⊕ V +K into the
eigenspaces of P .

Theorem 3.2.5.1. Let K be a mixed structure on V . Let V = V −K ⊕ V +K be the eigenspace
decomposition with respect to the orthogonal product structure P ∶= KK̄. Then K ∣V + is a
paracomplex structure and −iK ∣V − is a complex structure.

Proof. To prove this, we introduce the following notations

K ∣V + ∶= I, K ∣V − ∶= iJ. (3.2.23)

These notations are justified by the fact that both I, J are real operators. Indeed, applying K
to a vector X+ ∈ V + we have KX+ = KKK̄X+ = K̄X+, and so K acts on V + as a real operator
I ∶ V + → V +. Similarly, acting on a vector X− ∈ V − we have KX− = −KKK̄X− = −K̄X−, which
means that on V − the operator K acts as an imaginary operator, or as iJ with J ∶ V − → V −.

Some other useful properties can be proven. We have

K(V +) ⊂ V +, K(V −) ⊂ V −. (3.2.24)

Indeed, taking X̃ = KX+ and applying P we have PX̃ = K̄KKX+ = K̄X+ = KX+ = X̃, and
so X̃ ∈ V +. Similarly, for X̃ = KX− we have PX̃ = K̄KKX− = K̄X− = −KX− = −X̃. These
properties mean that the maps I, J are linear maps on V ± respectively

I ∶ V + → V +, J ∶ V − → V −. (3.2.25)

It remains to show that
I2 = IV + , J2 = −IV − , (3.2.26)

where IV ± are the projectors on V ± respectively. Indeed, we have I2 = (K ∣V +)2 =K2
V + because of

(3.2.24). Therefore I2 is the identity operator on V +. Similarly, (iJ)2 = (K ∣V −)2 = K2
V − , which

again equals to the identity. Thus J2 acts as minus the identity on V −.

3.2.6 Pure Spinors in the Maximal Index Case

Given the described model, we have two preferred spinors: the volume form, and the identity
polyform in Λ(Cn ⊕Rs). Their annihilators are Rr,s (complexified) acting by Clifford multipli-
cation have dimension n, and so is maximal. Therefore, they are both pure spinors.

It is interesting to compute the stabiliser of the volume form since the calculation regarding
the identity polyform is the same and yields an isomorphic stabiliser, as has been shown for
Cliffn,n and Cliff2n. Its stabiliser subalgebra does not contain terms from (3.1.48) that are built
from a pair of annihilation operators. Instead, it contains terms with a pair of creation operators
or with a creation and annihilation operator. The last group of terms must be constrained to
annihilate the pure spinor. The terms from the first line in (3.1.48) are those acting solely on
Λ(Cn). The subset of these terms that annihilates the pure spinor e1 ∧ . . . ∧ en is su(n). The
surviving terms in the second line of (3.1.48) generate sl(s) plus s(s − 1)/2 terms satisfying

Y IJ = 1

2
(X IJ + X̃ IJ). (3.2.27)

For the last line in (3.1.48), the conditions that there are no terms containing a pair of annihi-
lation operators are

ZiI++ = ZiI+−, and ZiI−+ = ZiI−−. (3.2.28)

There are thus 2ns real such terms. The stabiliser subalgebra is then su(n) ⊕ sl(s) ⊕A, where
A is the part of the stabiliser generated by s(s− 1)/2+ 2ns generators. The general element can
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be written as

Astab = 2(Xij − iY ijs )aia
†
j + (X

IJ − X̃ IJ − 2Y IJ
s )bIb

†
J + (X

IJ + X̃ IJ)bIbJ
+ (ZiJ+ bJ + iZiI− bI)ai + (ZiJ+ bJ − iZiI− bI)a

†
i ,

(3.2.29)

where Y ijs , Y
IJ
s are the symmetric parts of Y ’s and must be trace-free Y ijs δij = 0, Y IJs δIJ = 0.

The ZiI± are 2ns real quantities.

3.2.7 Pure Spinors in the r = 0 Case

We now consider the models that become possible when MTN of the real index that is not
maximal is chosen. To avoid overcomplicating the notation, we will only treat in the real index
r, such that r = 0 and r = 1.

We start by considering the case Cliff2ρ,2σ. In this case, the minimal possible real index is
zero. This means that we represent

R2ρ,2σ = R2ρ ⊕R2σ, (3.2.30)

and then choose a complex structure in both summands. The corresponding −i eigenvalue
eigenspace is Cρ ⊕Cσ, and spinors become realised as polyforms in Λ(Cρ ⊕Cσ).

We again introduce two pairs of creation and annihilation operators ai, a
†
i , i = 1, . . . , ρ and

ãI , ã
†
I , I = 1, . . . , σ. We referred to the second set as ã rather than b to reserve the name b to

operators that act on a number of copies of R rather than C. The Γ-matrices now become

Γi = ai + a†
i , Γi+ρ = i(ai − a

†
i), ΓI+2ρ = i(ãI + ã

†
I), and ΓI+2ρ+σ = ãI − ã†

I . (3.2.31)

Note that the placement of the imaginary unit is now opposite in the Cσ factor as compared to
the Cρ factor. This generates the correct Clifford algebra Cliff2ρ,2σ.

The discussion of the Lie algebra, inner product, and Weyl spinors is unchanged from the
previous cases. The only novelty is in the available antilinear operators. Again, these arise as
the product of either all real or all imaginary Γ-matrices followed by the complex conjugation.
Their squares can be deduced using (3.1.1.3). Thus, we define

R = Γ1 . . .Γρ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρ times

Γ1+2ρ+σ . . .Γ2ρ+2σ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ times

C, and R′ = Γ1+ρ . . .Γ2ρ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ρ times

Γ1+2ρ . . .Γ2ρ+σ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

σ times

C.
(3.2.32)

Again, C is the complex conjugation map on C. We then have

R2 = (−1)ρσ(−1)ρ(ρ−1)/2(−1)σ(σ+1)/2, and (R′)2 = (−1)ρσ(−1)ρ(ρ+1)/2(−1)σ(σ−1)/2. (3.2.33)

This can be rewritten as

R2 = (−1)(ρ−σ)(ρ−σ−1)/2, and (R′)2 = (−1)(ρ−σ)(ρ−σ+1)/2. (3.2.34)

This shows that their properties are controlled only by ρ − σ. So, the availability of Majorana
and Majorana-Weyl spinors depends only on the signature, and not on the model used.

The pure spinor arising in this model is e1 ∧ . . .∧ eρ ∧ e1+ρ ∧ . . . eσ+ρ. The general Lie algebra
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element can be written as

A(2ρ,2σ) =
1

2
Xij(ai + a†

i)(aj + a
†
j) −

1

2
X̃ij(ai − a†

i)(aj − a
†
j) + iY

ij(ai + a†
i)(aj − a

†
j)

− 1

2
XIJ(ãI + ã†

I)(ãJ + ã
†
J) +

1

2
X̃IJ(ãI − ã†

I)(ãJ − ã
†
J) + iY

IJ(ãI + ã†
I)(ãJ − ã

†
J)

+ iZiJ++(ai + a
†
i)(ãI + ã

†
I) +Z

iI
+−(ai + a

†
i)(ãI − ã

†
I)

−ZiI−+(ai − a
†
i)(ãI + ã

†
I) + iZ

iI
−−(ai − a

†
i)(ãI − ã

†
I).

(3.2.35)

The terms in the first two lines that kill the pure spinor form the subalgebra su(ρ)⊕ su(σ). The
terms in the last line that kill the pure spinor are those that do not have pairs of annihilation
operators and thus must satisfy

ZiI++ +ZiI−− = 0, and ZiI+− −ZiI−+ = 0. (3.2.36)

This gives 2ρσ real generators.

3.2.8 Pure Spinors in the r = 1 Case

In the case Cliff(2ρ+1,2σ+1) the minimal value of the real index is one. This corresponds to the
splitting

R2ρ+1,2σ+1 = R2ρ ⊕R2σ ⊕R1,1. (3.2.37)

The corresponding MTN subspace is obtained by choosing a complex structure in the first two
summands, and a paracomplex structure in the last one. The MTN subspace is then Cρ⊕Cσ⊕R.

To generate the corresponding model for the Clifford algebra we proceed as in the previous
subsection, but append one pair of real creation and annihilation operators b, b†. The Γ-matrices
are then

Γi = ai + a†
i ,

Γi+ρ = i(ai − a†
i),

ΓI+2ρ = i(ãI + ã†
I),

ΓI+2ρ+σ = ãI − ã†
I , and

Γ1+2ρ+2σ = b + b†,
Γ2+2ρ+2σ = b − b†.

(3.2.38)

By taking the products of distinct Γ-matrices, we obtain the Lie algebra. The inner product
construction remains unchanged. When we take the products of all real and all imaginary Γ-
matrices and subsequently apply complex conjugation, we generate the antilinear operators,
from which reality conditions can be established. The subtleties involved become most apparent
when considering specific examples; these will be explored in the next chapter. Additionally, we
hope that the procedure for writing the stabiliser of a pure spinor, indexed by the real index for
arbitrary signatures based on the three special cases we provide, is clear.



Chapter 4

Real Stabilisers of Spinors in Low
Dimensions

This chapter explores examples of pure spinors and their corresponding geometric structures. We
present a small subset of the comprehensive analysis found in [BK22], upon which this chapter is
based. An interesting observation made here is that the geometry arising from Majorana-Weyl
spinors is not particularly noteworthy. It is more fruitful to consider the complex Weyl spinor,
which is the approach we shall take in studying orbits in higher dimensions. The first interesting
examples occur in four dimensions and will be revisited in the latter half of the thesis when
studying SU(2)-structures.

4.1 Spinors in 2 Dimensions

4.1.1 Spin(2)

This has a polyform representation over Λ(C). Let us denote the complex coordinate on C by
z, and the basis vector in Λ1(C) by dz. We have a generic polyform of the form

Ψ = α + βdz (4.1.1)

Here α,β ∈ C. The even α and odd βdz parts here are the Weyl spinors. Cliff2 is generated by
the Gamma matrices

Γ1 = a + a†, and Γ2 = i(a − a†). (4.1.2)

Their action on Ψ is

Γ1(α + βdz) = αdz + β, and Γ2(α + βdz) = iαdz − iβ. (4.1.3)

If we associate with Ψ a 2-component column

Ψ = ( α
β
) , (4.1.4)

the Γ-matrices take the following form

Γ1 = (
0 1
1 0

) , Γ2 = (
0 −i
i 0

) . (4.1.5)

41
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The Lie algebra is generated by the product Γ1Γ2

spin(2) =
⎧⎪⎪⎨⎪⎪⎩
(is 0
0 −is)

RRRRRRRRRRR
s ∈ R

⎫⎪⎪⎬⎪⎪⎭
≅ u(1) (4.1.6)

The inner product (3.1.1.3) takes the following form

⟨Ψ1,Ψ2⟩ = (α1 + β1dz) ∧ (α2 + β2dz)∣
top

= α1β2 + β1α2.
(4.1.7)

This can be written in matrix form

⟨Ψ1,Ψ2⟩ = ΨT1 (
0 1
1 0

)Ψ2. (4.1.8)

There are two antilinear operators

R = Γ1C, R′ = Γ2C, (4.1.9)

with R2 = I, (R′)2 = −I. Thus, we can use R to impose the Majorana reality condition. We have

R( α
β
) = ( β∗

α∗
) , (4.1.10)

which means that Majorana spinors are of the form

ΨM = (
α
α∗
) . (4.1.11)

α∗ and β∗ are complex conjugates of α and β, respectively. The spinor dz ∈ S− is our
canonical pure spinor associated with this model. It has a trivial stabiliser. The other canonical
pure spinor is 1 ∈ S+. The generic Weyl spinors are multiples of these.

Remark 4.1.1.1. It is also interesting to discuss the Dirac equation. We now promote α,β to
functions α(z, z̄), β(z, z̄), of the complex null coordinates z, z̄ on R2. We take the usual relation

z = x1 + ix2, (4.1.12)

so that the complex structure acts J(x1) = x2, J(x2) = −x1, and J(z) = −iz. We have

∂

∂x1
= ∂

∂z
+ ∂

∂z̄
,

∂

∂x2
= i ∂
∂z
− i ∂
∂z̄
. (4.1.13)

The Dirac operator is

D ∶= Γ1
∂

∂x1
+ Γ2

∂

∂x2
= 2(a ∂

∂z
+ a† ∂

∂z̄
). (4.1.14)

This makes it clear that the solution to the Euclidean, massless Dirac equation is of the form

Ψ(z, z̄) = α(z̄) + β(z)dz. (4.1.15)

4.2 Spinors in 4 Dimensions

Things become much more interesting in dimension four. There are three signatures to consider.
The Euclidean, the Lorentzian and split: The Euclidean and Lorentzian cases have just one
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possible model each. In the case of the split signature there are two possible models, one
corresponding to the real index equal to two, the other with real index zero. Thus, there are two
types of pure spinors in the split case. For brevity, not all cases are considered, only the r = 0
cases.

4.2.1 Spin(4)

We choose a complex structure, thus identifying R4 with C2. We will call the arising null complex
coordinates z1,2, and the corresponding one-forms dz1,2. We introduce two pairs of creation and

annihilation operators a1,2, a
†
1,2. The Γ operators take the following form,

Γ1 = −i(a2 − a†
2), Γ2 = a2 + a†

2, Γ3 = −i(a1 − a†
1), and Γ4 = a1 + a†

1. (4.2.1)

We have adopted the numbering and the signs in the imaginary Γ-matrices that become conve-
nient below. A generic Dirac spinor (general polyform) is given by

Ψ = (α + βdz12) + (γdz1 + δdz2), (4.2.2)

where dz12 ∶= dz1 ∧ dz2 and α,β, γ, δ ∈ C. In matrix notations, the Dirac spinor is 4-component.
It is convenient to adopt the 2×2 block notations, in which Weyl spinors are 2-component. Thus,
we write

Ψ = ( ψ+
ψ−
) , where ψ+ = (

α
β
) , and ψ− = (

γ
δ
) . (4.2.3)

The action of the Γ operators is as follows

Γ1Ψ = −iβdz1 − iαdz2 + iδ + iγdz12,
Γ3Ψ = −iαdz1 + iβdz2 + iγ − iδdz12, and

Γ2Ψ = −βdz1 + αdz2 + δ − γdz12,
Γ4Ψ = αdz1 + βdz2 + γ + δdz12.

(4.2.4)

In matrix notations this becomes

Γ4 = (
0 I
I 0

) , and Γi = (
0 iσi

−iσi 0
) , for i = 1,2,3. (4.2.5)

Here σi are the usual Pauli matrices. It is this simple form of the resulting Γ-matrices that
motivated the choices made in (4.2.1), (4.2.2).

The Lie algebra is generated by products of distinct Γ-matrices. This gives a 4×4 Lie algebra
matrix that is block-diagonal. Let us refer to its 2 × 2 blocks as A,A′, where A acts on S+ and
A′ on S− respectively. We have

A = i(−ω4i + 1

2
ϵijkωjk)σi, and A′ = i(ω4i + 1

2
ϵijkωjk)σi. (4.2.6)

Here ω4i, ωjk are antisymmetric 2-tensors taking values in R. Both A,A′ are skew-hermitian
2 × 2 matrices. This demonstrates spin(4) = su(2)⊕ su(2).

The invariant inner product is determined by the following computation

⟨Ψ1,Ψ2⟩ = (α1 − β1dz12 + γ1dz1 + δ1dz2) ∧ (α2 + β2dz12 + γ2dz1 + δ2dz2)∣
top

= (α1β2 − α2β1) + (γ1δ2 − γ2β1).
(4.2.7)

Thus (4.2.7) can be restricted to an antisymmetric pairing between ⟨S+, S+⟩, or ⟨S−, S−⟩. In
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terms of matrices on can write

⟨Ψ1,Ψ2⟩ = ΨT1 (
ϵ 0
0 ϵ

)Ψ2, where ϵ ∶= iσ2 = ( 0 1
−1 0

) . (4.2.8)

For the possible reality conditions, both R = Γ2Γ4C and R′ = Γ1Γ3C square to minus the identity,
and so there are no Majorana spinors in this case. Of them R =R′ commutes with all Γ-matrices
and defines the hat operator

ψ̂+ =R(
α
β
) = ( −β

∗

α∗
) , and ψ̂− =R(

γ
δ
) = ( δ∗

−γ∗ ) , (4.2.9)

which squares to minus the identity. As before, α∗, . . . γ∗, are complex conjugates of α, . . . , γ.
For later purposes, we define ψ†

± ∶= ψ̂T± .
Two canonical pure spinors come with the model, the identity spinor, 1, and the top polyform,

dz12. They are both in S+. The stabiliser of both is the copy of su(2) ⊂ spin(4) whose action on
S+ is trivial.

It is clear that a generic Weyl spinor of Spin(4) is also pure. Indeed, one can write an even
Weyl spinor of the form ψ+ = (α−β∗R′)1. Thus, a generic Weyl spinor shares the same stabiliser
as 1, i.e. SU(2). The group Spin(4) acts transitively on the space of Weyl spinors of fixed norm

⟨ψ̂+, ψ+⟩. This space is the 3-sphere S3.
In the case of Cliff2n, pure spinors are in one-to-one correspondence with complex structures.

The complex structure on R4 corresponding to a generic Weyl spinor can be recovered as in
(3.2.1.3) via the following proposition.

Proposition 4.2.1.1. Let ψ+ ∈ S+ be a pure spinor of Spin(4). Then there exists a complex
structure Jψ+ on R4, corresponding to ψ+.

Proof. Using definition 3.2.1.3 gives

B2(ψ+, ψ̂+) = iΣiV i, (4.2.10)

where

Σi = dx4 ∧ dxi − 1

2
ϵijkdxj ∧ dxk (4.2.11)

is the basis of self-dual 2-forms and

V i ∶= Tr (ψ†
+σ

iψ+) = (2Re(α∗β),2Im(α∗β), ∣α∣2 − ∣β∣2) (4.2.12)

is a 3-vector with squared norm

∣V ∣2 = V iV i = (∣α∣2 + ∣β∣2)2 = ⟨ψ̂+, ψ+⟩2. (4.2.13)

If one raises an index of Σiµν , one obtains a triple of endomorphisms of R4 that satisfy the algebra
of the quaternions

Σiµ
ρΣjρ

ν = −δijδµν + ϵijkΣkµν . (4.2.14)

Hence object

Jψ+ ∶=
1

∣V ∣
ΣiV i, (4.2.15)

viewed as an endomorphism of R4, is then a complex structure that corresponds to the pure
spinor ψ+.

For ψ unit, B2(ψ+, ψ̂+) is an injection S1 ↪ S3. Then, one can project to V i the coefficients

of Σi in B2(ψ+, ψ̂+). The vector of coefficients, V⃗ , becomes a point on S2. Therefore, for any
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unit Weyl spinor, one sees the Hopf fibration given as

S1 ↪ S3 → S2. (4.2.16)

The construction (4.2.14) is very important, as we will see this come again in chapter 8.
There we will highlight the quaternionic nature of Spin(4) much more.

4.2.2 Spin(2,2) — r = 0 model

To construct this model, we choose an MTN subspace spanned by two complex vectors, obtained
as −i eigenvalue eigenvectors of a complex structure on R2,2. We refer to the corresponding null
complex coordinates as z1,2, and the corresponding one-forms as dz1,2. The general Dirac spinor
is the polyform

Ψ = α + βdz12 + γdz1 + δdz2, (4.2.17)

with α,β, γ, δ ∈ C. We introduce two pairs of creation and annihilation operators a1,2, a
†
1,2. The

Γ-matrices are given by

Γ1 = a1 + a†
1, Γ3 = a2 − a†

2, Γ2 = −i(a1 − a†
1), and Γ4 = i(a2 + a†

2). (4.2.18)

Here our choice of Γ1,2 is motivated to match Γ4,3 in (4.2.1). The other choices are motivated
by the desire to have nicer looking Γ-matrices. The Γ-matrices are then easily recoverable from
(4.2.5) and are given by

Γ1 = (
0 I
I 0

) , Γ2 = (
0 iσ3

−iσ3 0
) ,

Γ3 = (
0 −σ1

σ1 0
) , and Γ4 = (

0 −σ2

σ2 0
) .

(4.2.19)

The 2 × 2 blocks of the Lie algebra element are then

A = −iσ3(ω12 + ω34) + σ1(ω13 − ω42) + σ2(ω14 − ω23), and
A′ = iσ3(ω12 − ω34) − σ1(ω13 + ω42) − σ2(ω14 + ω23).

(4.2.20)

Here ωij , for 1 ≤ i, j ≤ 4 are antisymmetric 2-tensors valued in R. Both A,A′ are trace-free
matrices with imaginary diagonal and the off-diagonal elements being complex conjugates of each
other. These matrices form su(1,1), and so the Lie algebra is spin(2,2) = su(1,1) ⊕ su(1,1).
Thus, this version of the creation and annihilation operator model exhibits the isomorphism
Spin(2,2) = SU(1,1) × SU(1,1). The invariant inner product is still given by (4.2.8).

The novelty as compared to the previous real index two model is that the spinors are now
complex. However, there are now two non-trivial antilinear operators that can be constructed,
R = Γ1Γ3C and R′ = Γ2Γ4C. Unlike the case of Cliff4 where their analogues both square to minus
the identity, now they both square to plus the identity, and either one of them can be used to
define the notion of Majorana spinors. For concreteness, let us use R′ as the reality condition
operator. In matrix form we have

R′ = ( σ
1C 0
0 σ1C

) . (4.2.21)

The operator R has the same action on S+, and is minus this on S−. The action of R′ preserves
S+ (and S−), and allows us to define Majorana-Weyl spinors. It is clear that a Majorana-Weyl
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spinor in both S± is of the form

ψMW = (
α
α∗
) . (4.2.22)

Thus, a Majorana-Weyl spinor is parametrised by a single complex number, α and its complex
conjugate α∗. However, a general spinor in the case of this model is complex 2-dimensional, and
we need such complex spinors to recover the complex structure from a pure spinor. Thus, we
take a generic Weyl spinor ψ+ ∈ S+. This leads to a proposition similar to proposition 4.2.1.1.

Proposition 4.2.2.1. Let ψ+ ∈ S+ be a pure spinor of Spin(2,2). Then there exists a complex
structure J on R2,2, corresponding to ψ+.

Proof. We compute, using definition 3.2.1.3,

B2(R(ψ+), ψ+) = i(∣α∣2 + ∣β∣2)(dx1dx2 + dy1dy2) − 2iIm(α∗β)(dx1dy1 + dx2dy2)
+ 2iRe(α∗β)(dx1dy2 − dx2dy1).

(4.2.23)

This is a pure imaginary 2-form, which can be interpreted as a complex structure when one of
its indices is raised and it is rescaled appropriately. The best way to do this is to introduce a
triple of self-dual 2-forms

Σ3 = dx1dx2 + dy1dy2, Σ1 = dx1dy2 − dx2dy1, and Σ2 = dx1dy1 + dx2dy2. (4.2.24)

Then
B2(R(ψ+), ψ+) = iΣiVi, (4.2.25)

where
V⃗ = (2Re(α∗β),−2Im(α∗β), ∣α∣2 + ∣β∣2). (4.2.26)

The objects Σi, viewed as endomorphisms of R2,2 satisfy

Σ3
µ
ρΣ3

ρ
ν = −δµν , Σ1

µ
ρΣ1

ρ
ν = δµν , and Σ2

µ
ρΣ2

ρ
ν = δµν . (4.2.27)

This shows that

Jµ
ν ∶= 1

∣α∣2 − ∣β∣2
Σiµ

νVi (4.2.28)

squares to minus the identity and is a complex structure.

In particular, when ψ+ = (1,0) or ψ+ = (0,1) this complex structure is plus or minus Σ3.
Thus, complex structures on R2,2 are parametrised by points on the hyperbolic plane H2, as in
the case of R4 they are parametrised by points of S2. Once again, it needs to be emphasised
that we have access to this complex picture only when we consider general complex-valued Weyl
spinors.

Having the antilinear operators R, and R′ at our disposal (which agree on S+) we can
compute

⟨R′(ψ+), ψ+⟩ = ∣β∣2 − ∣α∣2. (4.2.29)

The action of Spin(2,2) on S+ viewed as complex 2-component columns preserves this invariant.
We note that when ψ+ is a spinor of a fixed norm (4.2.29), B2(R(ψ+), ψ+) is a point on AdS3 of
a fixed radius of curvature a ∈ R>0 determined as follows

(V1)2 + (V2)2 − (V3)2 = −(∣α∣2 − ∣β∣2)2 ∶= −a2. (4.2.30)

Projecting to Vi, the coefficients of Σi in B2(R(ψ+), ψ+), determines a point on the hyperbolic
sheet H2. Thus, we encounter an instance of the non-compact version of the Hopf fibration

S1 ↪ AdS3 →H2, (4.2.31)
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which is a precise analogue of the usual S1 ↪ S3 → S2 that was encountered in the case of R4.
One of the two copies of SU(1,1) does not act on S+, while the other acts transitively on

AdS3. Thus, the stabiliser of any point on the with fixed radius of curvature ∣β∣2 − ∣α∣2 = a2 is
SU(1,1) and

AdS3 = Spin(2,2)/SU(1,1) ≅ SU(1,1). (4.2.32)

This completely analogous to what we had in the R4 case where the analogous statement was
S3 = SU(2). What is worth stressing is that all this becomes possible only in the setting of
generic Weyl spinors without any Majorana reality condition imposed.

Remark 4.2.2.1. Other geometric date stored in a generic Weyl spinor are as follows. We
compute, using definition 3.2.1.3,

B2(ψ+, ψ+) = 2iαβ(dx1dx2 + dy1dy2) + (α2 − β2)(dx1dy1 + dx2dy2)
+ i(α2 + β2)(dx1dy2 − dx2dy1).

(4.2.33)

Here the concatenation of two differential forms above is the suppression of the wedge product1.
Furthermore, this 2-form is decomposable

B2(ψ+, ψ+) = U ∧ Ũ , where
U = 2iαβdy1 + (α2 − β2)dx2 − i(α2 + β2)dx1, and

Ũ = 1

α2 + β2
(−2αβdx2 + i(α2 − β2)dy1 + (α2 + β2)dy2).

(4.2.34)

For example, for the canonical spinor ψ+ = (0,1) we get B2(ψ+, ψ+) = −(dx1 + idx2)(dy1 − idy2),
and for ψ+ = (1,0) we have B2(ψ+, ψ+) = (dx1 − idx2)(dy1 + idy2).

It is interesting to see how much of the above picture survives if we impose the Majorana
condition. Indeed, consider the following proposition

Proposition 4.2.2.2. Consider ψMW = (α,α∗), as in (4.2.22). Then the stabiliser is SU(1,1)×
R ⊂ Spin(2,2).

Proof. Let us begin by parametrising α = a + ib. The Lie algebra (4.2.20), by reparameterising
appropriately, is given as

A = ( is x − iy
x + iy s

) , for s, x, y ∈ R. (4.2.35)

Solving AψMW = 0 gives the following set of equations

bs + ax − by = 0,
as + bx + ay = 0.

(4.2.36)

Consider the case where a ≠ 0,b ≠ 0. Solving for s, x and y in terms of a and b gives

A = y

(b2 − a2)
( i(b2 + a2) 2ab − i(b2 − a2)

2ab + i(b2 − a2) i(b2 + a2) ) . (4.2.37)

A is nilpotent of degree 2. Thus the subgroup stabilising ψMW , for a ≠ 0,b ≠ 0, is

y

(b2 − a2)
( c0 + i(b2 + a2) 2ab − i(b2 − a2)

2ab + i(b2 − a2) c0 + i(b2 + a2)
) , for some c0 ∈ R. (4.2.38)

1We shall continue this notation for the rest of this chapter.
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It is quite clear that the transformations written above for any c0, a,b, y ∈ R is SU(1,1) × R ⊂
Spin(2,2). The reduced cases where a = 0,b ≠ 0, and a ≠ 0,b = 0 follow the same pattern as
above, i.e. the transformation preserving ψMW is SU(1,1).

One can quite easily extrapolate this statement to ψMW = (α,α∗) to see the stabiliser is still
SU(1,1) ×R.

Geometrically, a generic Weyl spinor (of fixed norm) represents a point on AdS3. But,
Majorana-Weyl spinors have zero norm, ∣α∣2 − ∣α∗∣2 = 0, and thus correspond to points on the
light-cone of a point in AdS3.

Remark 4.2.2.2. To see geometric data encoded by a Majorana-Weyl spinor, we take a general
Majorana-Weyl spinor (4.2.22) in S+, and compute the 2-form B2(ψMW , ψMW ). We have

B2(ψMW , ψMW ) = 2i∣α∣2(dx1dx2 + dy1dy2) + i(Im(α2))(dx1dy1 + dx2dy2)
+ i(Re(α2))(dx1dy2 − dx2dy1).

(4.2.39)

This 2-form is purely imaginary and decomposable. For example, for α = 1, we have

B2(ψMW , ψMW ) = 2i(dx1 + dy1)(dx2 + dy2).

Thus, a Majorana-Weyl spinor only carries information about two real null directions, which
are the directions spanningM(ψMW ). Here we exhibit the stabiliser of the canonical differential
form being smaller than the stabiliser of the spinor. Indeed, the subgroup in Spin(2,2) that
stabilises the 2-form is SL(2,R) ≅ SU(1,1) ⊂ SU(1,1) ×R ⊂ Spin(2,2).

The two types of Weyl spinors that arise in the case of Spin(2,2) are only visible when the
spinors are complex-valued.

• The spinors of non-zero norm, (4.2.29), are points in AdS3 of a fixed radius of curvature,
and AdS3 ≅ SU(1,1). Thus, spinors of the first type are in correspondence with MTN
subspaces of R2,2 of real index zero.

• The spinors of zero norm are Majorana-Weyl spinors, and SU(1,1) acts on this orbit with
a non-trivial stabiliser. Thus, spinors of the second type are in correspondence with MTN
subspaces of real index two.

Therefore, this example sets the precedent: we lose collapse to a less rich geometry if we impose
the Majorana condition. We shall see this again for spinors in 6 dimensions.

4.3 Spinors in 6 Dimensions

4.3.1 Spin(6)

As usual, only the real index zero model is possible in this case. We choose a complex structure
on R6, and introduce 3 complex null coordinates z1,2,3, as well as the corresponding one-forms

dz1,2,3. We introduce 3 pairs of creation and annihilation operators a1,2,3, a
†
1,2,3. The Dirac

spinor is a polyform

Ψ = α1dz23 + α2dz31 + α3dz12 + α4 + β1dz1 + β2dz2 + β3dz3 − β4dz123, (4.3.1)

with all coefficients complex-valued. The reason the last term is included with the minus sign
will become clear when we consider the inner product.

We act upon this Dirac spinor with the following Gamma matrices

Γ1 = a1 + a†
1,

Γ4 = i(a1 − a†
1),

Γ2 = a2 + a†
2,

Γ5 = i(a2 − a†
2), and

Γ3 = a3 + a†
3,

Γ6 = i(a3 − a†
3).

(4.3.2)
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All Γ-matrices work out to be

ΓI = (
0 γI
γ†
I 0

) , I = 1, . . . ,6, (4.3.3)

where γI are the following 4 × 4 matrices

γ1 =
⎛
⎜⎜⎜
⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
, γ2 =

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎟
⎠
,

γ3 =
⎛
⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎟
⎠
, γ4 = i

⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

⎞
⎟⎟⎟
⎠
,

γ5 = i
⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟
⎠
, and γ6 = i

⎛
⎜⎜⎜
⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎟
⎠
.

(4.3.4)

They are all antisymmetric. The commutator of these Γ-matrices is block-diagonal, with skew-
hermitian trace-free 4×4 blocks on the diagonal. This exhibits the isomorphism spin(6) = su(4).

The inner product pairs even to odd polyforms, and so is a pairing ⟨S+, S−⟩. Explicitly, we
get

⟨Ψ, Ψ̃⟩ = −
4

∑
I=1
αIβ̃I +

4

∑
I=1
βIα̃I. (4.3.5)

It is in order to have the same signs here that we have put the minus sign in the last term in
(4.3.1).

There are two antilinear operators that can be constructed, R = Γ1Γ2Γ3C and R′ = Γ4Γ5Γ6C.
The first of these squares to minus the identity, while (R′)2 = I. So, it is R′ that gives us a good
real structure. It works out to be given by

R =R′ = ( 0 C
C 0

) . (4.3.6)

Given a Weyl spinor ψ+ ∈ S+, we can construct

⟨R(ψ+), ψ+⟩ =
4

∑
I=1
∣αI ∣2. (4.3.7)

Thus, there is a positive-definite Hermitian invariant quadratic form on S+.

Remark 4.3.1.1. A simple computation shows, for a generic Weyl spinor ψ+ of fixed norm, the
stabiliser is su(3) ⊂ spin(6). Hence, one has Spin(6) ≅ SU(4) acts on the subset in S+ of spinors
of fixed norm squared transitively, with the stabiliser SU(3). In turn, one has

S7 = SU(4)/SU(3). (4.3.8)

Given that Weyl spinors are pure in this dimension, and directions of pure spinors define complex
structures in R6, we see that the space of complex structures on R6 is S7.

For a Weyl spinor, ψ+, the object B1(ψ+, ψ+) vanishes because the matrices (4.3.4) are anti-
symmetric. The only non-vanishing object that can be constructed without using the operator
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R is B3(ψ+, ψ+). From general grounds, we know that B3(ψ+, ψ+) is given by the wedge prod-
uct of the three complex null directions in M(ψ+) (theorem 3.2.1.1). The objects that can be
constructed using R are the norm (4.3.7) as well as B2(R(ψ+), ψ+). This is a 2-form that gives
the complex structure that corresponds to ψ+ when one of its indices is raised and is rescaled
appropriately. For example, for the identity polyform 1 ∈ S+ one gets

B2(R(1),1) = i(dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6), (4.3.9)

while for dz123 ∈ S− the result is the same with the extra minus sign in front. In this case,
B2(R(1),1) is invariant under U(3). Together with a compatible hermitian form, U(3) reduces
to SU(3). This is one of the few cases where the stabiliser of the spinor coincides with the
stabiliser of the differential form (and the compatible hermitian metric).

4.3.2 Spin(3,3)— r = 1 model

There are two possible models. A model with real index three, that works with 3 real null
coordinates, and has all Γ-matrices built from the creation and annihilation operators with
real coefficients. This model is explicitly real, and it is natural to take in it all spinors to be
Majorana(-Weyl). The other model has real index one, and takes two complex and one real null
direction. As we will show, it is sufficient to only consider the latter model, for which we now
spell out the details.

We make a modification of the minimal index case of Spin(4,2), found in [BK22]. Declaring
the complex coordinates to be z1,3, and the real null coordinate to be u. There are two pairs of

creation and annihilation operators a1,3, a
†
1,3 and one pair b, b†. The general Dirac spinor is then

Ψ = α1dudz3 + α2dz31 + α3dz1du + α4 + β1dz1 + β2du + β3dz3 − β4dz31du. (4.3.10)

All coefficients are complex-valued. The inner product is then still given by (4.3.5). We take the
Γ-matrices to be

Γ1 = a1 + a†
1,

Γ4 = i(a1 − a†
1),

Γ2 = b + b†,
Γ5 = b − b†, and

Γ3 = i(a3 + a†
3),

Γ6 = a3 − a†
3.

(4.3.11)

The directions 1,2,4 are now positive-definite, while 3,5,6 are negative-definite. The modified
Γ-matrices are

Γ2 = (
0 γ2
γ†
2 0

) , Γ5 = −i(
0 γ5
γ†
5 0

) , (4.3.12)

where γ2, γ5 are still given by (4.3.4).
The complex conjugation operators are given by R = Γ1Γ2Γ5Γ6C and R′ = Γ3Γ4C. They both

square to plus the identity, and so either can be used to define Majorana-Weyl spinors. We have

R =R = ( ρ 0
0 ρ

)C, ρ = ( 0 −I
−I 0

) . (4.3.13)

A simple computation shows any element of the Lie algebra spin(3,3) ≅ sl(4,R) commutes with
the real structure defined by R.

As in all cases considered before, the only object that can be constructed from a Weyl
spinor ψ+ ∈ S+, without involving complex conjugation, is B3(ψ+, ψ+): the product of the three
null directions spanning M(ψ+). There are no invariants of ψ+ that can be constructed in
this signature. Indeed, in 6 dimensions, the invariant pairing is ⟨S±, S∓⟩. Furthermore, as
R ∶ S+ → S+, one can not construct an invariant pairing between ψ+ and R(ψ+). But the
action of Spin(3,3) on S+, prior to imposing the Majorana-Weyl condition, cannot be transitive.
Indeed, we expect two different types of orbits corresponding to two different types of MTN that
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are possible in this signature.
To see how this arises, let us compute B1(R(ψ+), ψ+). We get

B1(R(ψ+), ψ+) = (−2Re(α1α
∗
2) + 2Re(α3α

∗
4))dx1 + (2Re(α1α

∗
4) − 2Re(α2α

∗
3))dx6

+ (2Im(α1α
∗
4) − 2Im(α2α

∗
3))dx3 + (2Im(α1α

∗
2) + 2Im(α3α

∗
4))dx4

+ (∣α1∣2 − ∣α2∣2 − ∣α3∣2 + ∣α4∣2)dx2

+ (−∣α1∣2 − ∣α2∣2 + ∣α3∣2 + ∣α4∣2)dx5.

(4.3.14)

This is a null vector in R3,3, which vanishes when the spinor is Majorana-Weyl, i.e. α3 = −α∗1 , α4 =
−α∗2 . We also note that the canonical spinor ψ+ = 1 is not Majorana, and B1(R(1),1) = dx2+dx5.
We then explain the two types of spinor in S+ below.

1. When the spinor ψ+ is not Majorana-Weyl there is a real direction in M(ψ+) that can
be recovered by computing B1(R(ψ+), ψ+), as well as two complex directions that are the
other two factors in B3(ψ+, ψ+). In this case, B3(ψ+, ψ+) is invariant under U(2) ×R. Of
course, the stabiliser of a generic Weyl spinor is larger than this group. Furthermore, a
single generic Weyl spinor, ψ+ ∈ S+ defines only its MTN. To recover a complementary
subspace, and thus a structure of the mixed type, one needs another spinor ψ− such that
⟨ψ+, ψ−⟩ /= 0. For example, we have

B2(−dz31du,1) = i(dx1 ∧ dx4 + dx3 ∧ dx6) + dx2 ∧ dx5, (4.3.15)

which is the mixed structure whose null eigenspaces are those on which the model is
constructed.

2. When the spinor ψ+ is Majorana-Weyl the only non-vanishing geometric object that can
be constructed is B3(ψ+, ψ+), and it is given by the product of 3 real directions spanning
M(ψ+). In this case, B3(ψ+, ψ+) is invariant under SL(3,R). Of course, the stabiliser
of the Majorana-Weyl spinor is larger than this group. As for a generic Weyl spinor, a
Majorana-Weyl spinor, ψ+, defines only its MTN. To recover a complementary subspace,
and thus a paracomplex structure, one needs another spinor ψ− such that ⟨ψ+, ψ−⟩ /= 0. For
example,

B2(−dz31du − du,1 − dz31) = 2dx1 ∧ dx6 + 2dx2 ∧ dx5 + 2dx3 ∧ dx4, (4.3.16)

which gives a paracomplex structure with 3 real null directions dx1±dx6,dx2±dx5,dx4±dx3.

The analysis above shows minimal real index, r = 1, model is richer in geometry. This is
because in the r = 3 model, all spinors are real, and thus one can only generate a paracomplex
structure. In the r = 1 model, there are both Weyl and Majorana-Weyl spinors, so we can
generate mixed and paracomplex structures (complex structures cannot be generated as r can
never be zero).

Of course, the metric was assumed in all cases to raise the indices of the canonical differential
forms, allowing access to complex, paracomplex, and mixed structures — after all, the goal here
is to understand the stabilisers of different (Weyl) spinors. In the latter half of the thesis, we will
focus on complex structures only, as a formula exists to generate the metric from the canonical
differential forms.
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Chapter 5

Real Stabilisers of Spinors in
Higher Dimensions

In [BK22], it is demonstrated that Weyl spinors of Cliff4 and Cliff2,2 correspond to 2-component
columns with complex entries, which can be identified with H and H′, respectively. In contrast,
for Cliff8 and Cliff4,4, the Majorana-Weyl spinors are identified with O and O′, facilitated by
the triality of spinor and vector representations. This identification necessitates imposing a
reality condition. To fully understand this, a detailed description of the Majorana-Weyl spinors
is required.

Once this identification is established, we can complexify the representation, following the
philosophy that the Majorana condition excludes relevant information. It is crucial to note that
although there is a classification of spinors in Spin(8), it pertains to the complexified case. Here,
considering Spin(8,0) — the real case — we find that a pure spinor is stabilised by SU(4).
There are two impure orbits: one represented by a unit real octonion, stabilised by Spin(7),
and another by a general unit complexified octonion, stabilised by SU(4). The integrability
of these pure spinor orbits, corresponding to classical G-structures, is discussed. Later, the
discussion extends to the orbits of Spin(4,4), which present additional complexities. Moreover,
the integrability of the SL(4)-structure among Spin(4,4) stabilisers, which is non-classical, is
elaborated in [Kra24b].

A significant outcome is the realisation that impure spinors in 10 and 12 dimensions are
derived from the impure spinors of Spin(8). Pure spinors in these dimensions are associated
with classical stabilisers SU(5) and SU(6). We demonstrate that the closure of the canonical
differential forms derived from pure spinor orbits is equivalent to integrability of a classical
SU(5)-structure in 10 dimensions and a classical SU(6)-structure in 12 dimensions. With regard
to impure spinors, in 10 dimensions we discuss all stabilisers rooted from impure spinors of
Spin(8). Similarly, in 12 dimensions, using impure spinors of Spin(8) and imposing certain
conditions, we discuss several new stabilisers.

5.1 Spin(8) and Octonions

5.1.1 Creation and annihilation operator construction

To construct Cliff8 we choose a complex structure, which identifies R8 with C4. We denote the
complex coordinates by z1,...,4, and the coordinate one-forms by dz1,...,4. We introduce four pairs

of creation and annihilation operators aI, a
†
I , I = 1, . . . ,4. We introduce the following Γ-matrices

Γ4+I ∶= aI + a†
I , ΓI ∶= −i(aI − a

†
I ), where I = 1,2,3,4. (5.1.1)
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Spinors are polyforms, i.e. elements of Λ(C4), in general with complex coefficients. Weyl spinors
are even or odd degree polyforms. Note that we have chosen the same signs as in (4.2.1).

The interesting antilinear operator that arises in this case is given by the product of all four
imaginary Γ-matrices with the complex conjugation,

R ∶= Γ1Γ2Γ3Γ4∗, (5.1.2)

It is easy to check that R commutes with all the gamma-matrices. It is also easy to check that
R2 = I, so R is a real structure. Since R is composed of an even number of gamma-matrices, it
preserves the spaces of Weyl spinors. Hence, we can define Majorana-Weyl spinors for Spin(8).

5.1.2 Majorana-Weyl spinors explicitly

It is now convenient to choose a basis eI = dzI of basic one-forms. Then a general odd or even
polyform, that is also real, can be written as follows

ψ− ≡ ψ−(u) = u1e1 + u∗1e234 + u2e2 + u∗2e314 + u3e3 + u∗3e124 + iu∗4e4 + iu4e123,
ψ+ ≡ ψ+(u) = u1e41 + u∗1e23 + u2e42 + u∗2e31 + u3e43 + u∗3e12 + iu∗4 + iu4e4123,

(5.1.3)

where the quantities uI, with I = 1, . . . ,4, are complex numbers, and u∗I are the complex conjugates
in C. This particular choice of the complex coordinates uI, and in particular the choices made for
the coordinate e4, will become justified below by the desired form of the action of the Γ-matrices.

The inner product is a pairing ⟨S+, S+⟩, ⟨S−, S−⟩. If we take two positive spinors ψ+(ũ), and
ψ+(u), the product ⟨ψ+(ũ), ψ+(u)⟩ is computed by taking the polyform ψ+(ũ) in the reverse
order, wedging with ψ+(u) and projecting on the top component. A simple computation gives

⟨ψ+(ũ), ψ+(u)⟩ = 2Re
4

∑
I=1
ũIu

∗
I . (5.1.4)

Thus, Majorana-Weyl spinors are identified S± ≅ C4, with the invariant pairings on S± being
given by the standard definite Hermitian metric on C4.

The form of the inner product makes it clear that the basis {e41, e42, e43, I} of S+ in (5.1.3) is
totally null. To make contact with octonions that are usually described in a non-null basis, it is
necessary to switch to a different parametrisation of polyforms. We parametrise the polyforms
by the real and imaginary parts of uI and write

u1 = α1 + iα5, u2 = α2 + iα6, u3 = α3 + iα7, and u4 = α0 + iα4. (5.1.5)

We will denote the components of the positive polyform by α and the negative polyform com-
ponents by β. We then have

ψ+ = α1(e41 + e23) + α2(e42 + e31) + α3(e43 + e12) + α4(1 − e4123)
+ iα5(e41 − e23) + iα6(e42 − e31) + iα7(e43 − e12) + iα0(1 + e4123), and

ψ− = β1(e1 + e423) + β2(e2 + e431) + β3(e3 + e412) + β4(e4 − e123)
+ iβ5(e1 − e423) + iβ6(e2 − e431) + iβ7(e3 − e412) + iβ0(e4 + e123).

(5.1.6)



55

5.1.3 The action of Γ-matrices

We now introduce a 16-component column

Ψ = ( ψ
+

ψ−
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α0

α1

⋮
α7

β0
β1
⋮
β7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.1.7)

A computation shows that the Γ-matrices become the following 16 × 16 matrices

Γ0 = (
0 I
I 0
) , Γa = (

0 −Ea
Ea 0

) for a ∈ {1, . . . ,7}, (5.1.8)

where

E1 = −E01 +E27 −E36 +E45, E2 = −E02 −E17 +E35 +E46,

E3 = −E03 +E16 −E25 +E47, E4 = −E04 −E15 −E26 −E37,

E5 = −E05 +E14 +E23 −E67, E6 = −E06 −E13 +E24 +E57, and

E7 = −E07 +E12 +E34 −E56.

(5.1.9)

5.1.4 Octonions

The space of octonions O is a normed algebra with the property ∣xy∣ = ∣x∣∣y∣ (i.e. a composition
algebra). The usual octonions (unlike split octonions) also have the property that the norm
of every non-zero element is not zero, which makes them into a division algebra. It is non-
commutative and non-associative, but alternative, which can be stated as the property that the
subalgebra generated by any two elements is associative.

A general octonion is an object

q = q0I +
7

∑
a=1

qae
a, (5.1.10)

where ea are unit imaginary octonions. The unit octonions anticommute and square to minus
the identity. The octonion conjugate changes the sign of all the imaginary octonions. The
octonionic pairing is

(q, q) = ∣q∣2 = qq = (q0)2 +
7

∑
a=1
(qa)2. (5.1.11)

Here, q is the octonionic conjuation on O. We encode the octonionic product by the cross-
product in the space of imaginary octonions. Thus, we write

O = R⊕ ImO. (5.1.12)

Let e1,...,7 be a basis in the space of imaginary octonions. The cross-product in ImO can be
encoded by the following 3-form

C = e567 + e5(e41 − e23) + e6(e42 − e31) + e7(e43 − e12). (5.1.13)

This encodes the cross-product in the sense that C(ea,eb,ec) = (ea×eb,ec), where the standard
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metric on R7 is used. So, for instance e5 × e6 = e7. C is also referred to as an associative cali-
bration, the Hodge-dual to C in 7 dimensions, ∗C, is referred to as the coassociative calibration
[SW10].

5.1.5 Octonionic model for Cliff8

The octonionic product can also be encoded into 8 × 8 matrices. To this end, we represent a
general octonion as an 8-component column. Then the operators of left multiplication by unit
imaginary octonions can be checked to be given by Lea = Ea, where Ea are precisely the same
matrices already encountered in (5.1.9). Coming back to our model for the Clifford algebra,
Cliff8 we see that the general linear combination of the Γ-matrices is,

q0Γ0 +
7

∑
a=1

qaΓa = (
0 Lq̄
Lq 0

) . (5.1.14)

We thus see that Cliff8 is generated by matrices (5.1.14) that act on 2-component columns with
entries in O. Majorana-Weyl spinors are then identified with copies of O.

5.1.6 Pure Spinor Orbits in Spin(8)

In the creation and annihilation operator model, pure spinors are decomposable polyforms. In
particular, the model comes with two preferred pure spinors, the identity polyform, and the top
polyform. For Cliff8, both are in S+, and both are null spinors. It is also clear from (5.1.3) that
only the linear combinations i(1 + e4123) and 1 − e4123 are Majorana-Weyl spinors. Majorana-
Weyl spinors can be identified with O, and are never null. Thus, we cannot see pure spinors if
we restrict our attention to Majorana-Weyl spinors.

To describe pure spinors we need complexified real polyforms, which are then identified with
complexified octonions. Hence, in the octonionic description of Cliff8 the generic Weyl spinor
is a complexified octonion. In particular, pure spinors are necessarily complexified octonions,
because they are null.

Let us see how this works for the two canonical pure spinors. The identity octonion I ∈ Re(O),
and purely imaginary unit octonion e4 ∈ Im(O) are encoded as

I = i(1 + e4123), and u ∶= e4 = 1 − e4123 1. (5.1.15)

This means that the pure spinors 1, e4123 ∈ S+ are given by

1 = 1

2i
(I + iu), and e4123 = 1

2i
(I − iu). (5.1.16)

We have the operation of complex conjugation that reverses the sign in front of i. In fact, this is
the complex conjugation operator R, an antilinear operator that acts on polyforms, interpolating
between 1 and e4123. This operation should not be confused with the octonion conjugation.

For Spin(8), the only possible numbers of insertions of Γ-matrices between two Weyl spinors
of the same chirality are zero, two, and four. The product of two Γ-matrices restricted to
S+ is expressible as either Ea or EaEb with a, b = 1, . . . ,7. Both are antisymmetric. Thus,
B2(ψ+, ψ+) = 0. This shows that null spinors with B0(ψ+, ψ+) = 0 are pure. Because the inner
product of a Majorana-Weyl spinor with itself is the norm squared of the corresponding octonion,
the Majorana-Weyl spinors are not pure.

In (5.1.16), we have an example of two canonical pure spinors. In the octonion description,
they become complex linear combinations of two unit octonions. From general considerations, we

1The convenient notation of denoting u as the imaginary unit octonion e4 is used throughout the rest of this
chapter.
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know that either of these two pure spinors defines a complex structure in R8 and that B4(ψ+, ψ+)
is the product of four null directions spanning one of the eigenspaces of this complex structure.
It is interesting to compute both the complex structure and B4(ψ+, ψ+) explicitly for a given
representative.

Proposition 5.1.6.1. The symplectic form defined by the pure spinor ψ+ = 1 is proportional
to I ∧ u − ω. Where

ω ∶= e15 + e26 + e37. (5.1.17)

Proof. The complex structure comes from B2(R(ψ+), ψ+). We have R(1)∝ e4123 and so

B2(R(ψ+), ψ+)∝ ⟨(I + iu),ΓΓ(I − iu)⟩. (5.1.18)

The components of this 2-form in the I, x ∈ Im(O) directions are

⟨(I + iu),ΓIΓx(I − iu)⟩ = ((I + iu), Lx(I − iu)),and
⟨(I + iu),ΓxΓy(I − iu)⟩ = ((I + iu), Lx̄Ly(I − iu)).

(5.1.19)

We also have

((I + iu), Lx(I − iu)) = 2iu,
((I + iu), LxLy(I − iu)) = 2i(e15 + e26 + e37) ∶= 2iω.

(5.1.20)

Thus, overall, we have the following 2-form in R8

1

2i
⟨(I + iu),ΓΓ(I − iu)⟩ = I ∧ u − ω. (5.1.21)

Hence, raising an index with the metric gives a complex structure reducing Spin(8) to SU(4).
The complex structure is present from a choice of complex structure on O. A natural choice is
Lu of left multiplication by the unit imaginary octonion u. The eigenvectors of eigenvalue −i
are given by

I + iu, e1 + ie5, e2 + ie6, and e3 + ie7. (5.1.22)

The Kähler form arising is proportional to I ∧ u + ω, which is (5.1.21) up to the sign in front of
the last term. Consider instead the operator Ru of right multiplication by u. Its −i eigenvectors
are now

I + iu, e1 − ie5, e2 − ie6, and e3 − ie7, (5.1.23)

and the corresponding Kähler form is proportional to (5.1.21). Thus, the sign discrepancy comes
from a choice of left or right multiplication by unit imaginary octonion u.

We can alternatively recover the complex structure with its (0,1) and (1,0) directions by
computing B4(ψ+, ψ+) or B4(R(ψ+),R(ψ+)). We know that both are decomposable and are
given by the product of four (0,1) null directions, or four (1,0) directions.

Proposition 5.1.6.2. The top holomorphic form that encodes the complex structure for ψ+ = 1
is proportional to (I + iu) ∧Ω ∶= Ω8. Where

Ω ∶= (e1 − ie5) ∧ (e2 − ie6) ∧ (e3 − ie7). (5.1.24)

Proof. Thus, we want to compute

⟨(I − iu),ΓΓΓΓ(I − iu)⟩ ∈ Λ4(R8). (5.1.25)
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The various components of this 4-form that we need are given by

⟨ψ,ΓIΓxΓyΓzψ⟩ = (ψ,LxLȳLzψ), and
⟨ψ,ΓxΓyΓzΓwψ⟩ = (ψ,LxLȳLzLw̄ψ),

(5.1.26)

where on the right-hand side the spinor ψ is interpreted as a (complexified) octonion. A com-
putation gives

((I − iu), LxLyLz(I − iu)) = 2iΩ,
((I − iu), LxLyLzLw(I − iu)) = 2u ∧Ω.

(5.1.27)

This means that
i

2
⟨(I − iu),ΓΓΓΓ(I − iu)⟩ = (I + iu) ∧Ω. (5.1.28)

The 4-form obtained as ⟨(I+ iu),ΓΓΓΓ(I+ iu)⟩ is given by the product of the complex conju-
gate directions. To summarise, we learn that the complex structure on R8 ≅ O that corresponds
to the complex conjugate pair of pure spinors I+ iu and I− iu is given by Ru, the right multipli-
cation by u. Furthermore, the differential forms constructed from the pure spinors are stabilised
by SU(4), so there is a reduction from Spin(8) to SU(4) if one chooses a pure spinor orbit. This
was an enlightening example for the next section, where we will show that a general complex
Weyl spinor corresponds to an SU(4)-structure as well.

5.1.7 Impure Spinor Orbits in Spin(8)

There are two classes of orbits for Spin(8). The first are Majorana-Weyl spinors, or real octo-
nions, with a stabiliser of Spin(7). Then a generic Weyl spinor, or complexified octonions, is
considered. This type of spinor will have an SU(4) stabiliser.

We begin by analysing Majorana-Weyl spinors. Such spinors cannot be pure. First, such
a spinor has a non-vanishing norm ⟨ψM , ψM ⟩, which coincides with the norm squared of the
corresponding octonion. Second, the group Spin(8) acts on the space of Majorana-Weyl spinors
of fixed norm and of one helicity transitively, with the stabiliser Spin(7). So, we have

S7 = Spin(8)/Spin(7). (5.1.29)

This can be seen from the fact that the Majorana-Weyl representation is isomorphic to the vector
representation S+ ≅ R8.

A Majorana-Weyl spinor of Spin(8) thus has Spin(7) as the stabiliser, and endows R8 with
a Spin(7)-structure. This is the 4-form B4(ψM , ψM) — the Cayley form, whose stabiliser in
GL(8,R) is Spin(7). Any unit Majorana-Weyl spinor is in the Spin(8) orbit of this spinor. It is
instructive to compute this 4-form explicitly for a representative.

Proposition 5.1.7.1. The Cayley form for the choice of Majorana-Weyl spinor ψM = I is
proportional to I ∧C + ∗C, where

C ∶= e567 + e5(e41 − e23) + e6(e42 − e31) + e7(e43 − e12), and
∗C ∶= e1234 + e67(e41 − e23) + e75(e42 − e31) + e56(e43 − e12).

(5.1.30)

Note that C is just the associative calibration that encodes the octonion product, and ∗C is
its Hodge dual in R7, the coassociative calibration.
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Proof. The components of this 4-form are given by (5.1.26), hence,

(I, LxLyLzI) = −C, and (I, LxLyLzLwI) = − ∗C. (5.1.31)

Thus, overall, we have
Λ4(R8) ∋ ⟨I,ΓΓΓΓI⟩ = −I ∧C − ∗C. (5.1.32)

We note, for future use, that

C = u ∧ ω + Im(Ω), ∗C = Re(Ω) ∧ u + 1

2
ω ∧ ω. (5.1.33)

A generic Weyl spinor of Spin(8) is a complexified octonion. When the spinor is not null, we can
always rescale it by a complex number to make it unit. As explained in [Cha97], see page 33, a
complex impure spinor defines a certain pure spinor. Indeed, assuming ψ is unit and denoting
λ = ⟨R(ψ), ψ⟩, consider

ψ̃ = λψ −R(ψ)√
λ2 − 1

. (5.1.34)

Then ⟨ψ̃, ψ̃⟩ = −1 and ψ + ψ̃ is null and therefore pure. Because the stabiliser of R(ψ) is the
same as the stabiliser of ψ (since the stabiliser is real), this stabiliser also coincides with that of
ψ̃ and thus ψ + ψ̃. This means that the stabiliser of ψ is that of a pure spinor, which is SU(4).

The above discussion suggests that a general complex spinor continues to define a complex
structure on R8. To see this, we begin by showing that ψ (and ψ̃) can take canonical forms.

Lemma 5.1.7.1. Let ψ and ψ̃ unit Weyl spinors as above. Then they can take the following
forms.

ψ = cosh τI + i sinh τu, and R(ψ) = cosh τI − i sinh τu, (5.1.35)

and
ψ̃ = sinh τI + i cosh τu, and R(ψ̃) = sinh τI − i cosh τu. (5.1.36)

Here τ is a real parameter.

Proof. A complex spinor has a well-defined real and imaginary parts ψ = α + iβ, for α,β ∈ O.
Two invariant scalars can be constructed

⟨ψ,ψ⟩ = ∣α∣2 − ∣β∣2 + 2i(α,β), and ⟨R(ψ), ψ⟩ = ∣α∣2 + ∣β∣2. (5.1.37)

Rescaling the spinor to make it unit, implies ∣α∣2 − ∣β∣2 = 1, (α,β) = 0. Also, using the action of
Spin(8) we can make α a multiple of I, and then use Spin(7) that stabilises I to make β (which
is orthogonal to α) to be a multiple of u. Thus ψ takes the form,

ψ = cosh τI + i sinh τu, and R(ψ) = cosh τI − i sinh τu. (5.1.38)

Using λ = cosh2 τ + sinh2 τ = cosh(2τ) and (5.1.34) allows ψ̃ to take the form,

ψ̃ = sinh τI + i cosh τu, and R(ψ̃) = sinh τI − i cosh τu. (5.1.39)

The arguments above imply that

ψ + ψ̃ = 2(cosh τ + sinh τ)(I + iu), (5.1.40)

which is the pure spinor we already considered above. Indeed we have the following,
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Lemma 5.1.7.2. The Kähler form B2(ψ,R(ψ)) that encodes the complex structure for ψ, i.e.
the complex structure defined by the pure spinor I + iu, is given as i sinh(2τ)ω8, where ω8 is a
symplectic form in 8 dimensions.

Furthermore, the complex 4-form B4(R(ψ),R(ψ)) is given as

cosh(2τ)Im(Ω8) − i sinh(2τ)Re(Ω8) −
1

2
ω8 ∧ ω8 (5.1.41)

(the so-called complex Cayley form [Kra24b]). Here Ω8 is a top holomorphic form in 8 dimensions
(5.1.28).

Proof. Computing the following

(ψ,LxR(ψ)) = i sinh(2τ)u, and (ψ,LxLyR(ψ)) = i sinh(2τ)ω, (5.1.42)

this gives
⟨ψ,ΓΓR(ψ)⟩ = i sinh(2τ)(I ∧ u − ω) ∶= i sinh(2τ)ω8. (5.1.43)

To compute the 4-form B4(ψ,ψ) we need the following results

(R(ψ), LxLyLzR(ψ)) = i sinh(2τ)Re(Ω) − cosh(2τ)Im(Ω) − u ∧ ω, and

(R(ψ), LxLyLzLwR(ψ)) = − cosh(2τ)Re(Ω) ∧ u − i sinh(2τ)Im(Ω) ∧ u −
1

2
ω ∧ ω.

(5.1.44)

This means that

⟨R(ψ),ΓΓΓΓR(ψ)⟩ = cosh(2τ)(I ∧ Im(Ω) + u ∧Re(Ω))
− i sinh(2τ)(I ∧Re(Ω) − u ∧ Im(Ω))

− 1

2
(I ∧ u − ω) ∧ (I ∧ u − ω)

∶= cosh(2τ)Im(Ω8) − i sinh(2τ)Re(Ω8) −
1

2
ω8 ∧ ω8.

(5.1.45)

The complex Cayley form, B4(R(ψ),R(ψ)), is SU(4) invariant. Indeed, because the blocks
I∧Im(Ω)+u∧Re(Ω) and I∧Re(Ω)−u∧Im(Ω) are the imaginary and real parts of the holomorphic
4-form Ω8 (5.1.28), they are SU(4) invariant. The last term is the product of the two copies of
the Kähler (1,1)-form, which is again SU(4) invariant. This leads to a statement on integrability
of SU(4)-structures derived from Weyl spinors.

Proposition 5.1.7.2. The complex Cayley form, B4(R(ψ),R(ψ)), is an integrable SU(4)-
structure if, and only if, the exterior derivative of dB4(R(ψ),R(ψ)) = 0.

This is proved in Proposition 5 of [Kra24b]. The SU(4)-structure here is not generated by a
pure spinor, but a complex Weyl spinor2. This is one of the few cases where we have understood
the integrability of a non-classical spinorial G-structure.

5.2 Spin(4,4) and Split Octonions

5.2.1 Real model

The link to split octonions arises if we consider Majorana-Weyl spinors. These are easiest to
describe in the real model, which starts by selecting a paracomplex structure on R4,4. However,

2A pure spinor, also generates a SU(4)-structure whose integrability corresponds to being parallel with respect
to the Levi-Civita connection.
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Majorana-Weyl real spinors do not capture all possible spinor types that arise, as we have
witnessed in the previous chapter. For this reason, it is better to develop everything in a complex
model from the beginning, and then impose the Majorana condition if needed. Nevertheless, we
start by describing the simpler real model and then switch to the complex description. The real
model arises by selecting a paracomplex structure on R4,4. Let R4 be one of the resulting totally
null subspaces, and let uI, for I = 1, . . . ,4, be the null coordinates and duI the basic one-forms.
It is more convenient to use the notation duI = eI. We introduce four pairs of creation and
annihilation operators aI and a

†
I . We define the Γ-matrices as follows.

Γ0 = a4 + a†
4, Γ1 = a1 + a†

1, Γ2 = a2 + a†
2,

Γ3 = a3 + a†
3, Γ4 = a4 − a†

4, Γ5 = a1 − a†
1,

Γ6 = a2 − a†
2, and Γ7 = a3 − a†

3.

(5.2.1)

The Majorana-Weyl spinors are even and odd polyforms in Λ(R4) with real coefficients. The
basic polyforms eIJ... ∶= eI ∧ eJ ∧ . . . are all null with respect to the invariant inner product, which
will be described below. For this reason, to establish a link with the split octonions in the usual
non-null basis, we introduce a non-null basis in Λ(R4). This leads us to write,

S+ ∋ ψ+ = α1(e41 − e23) + α2(e42 − e31) + α3(e43 − e12) + α4(1 − e4123)
+ α5(e41 + e23) + α6(e42 + e31) + α7(e43 + e12) + α0(1 + e4123), and

S− ∋ ψ− = β1(e1 − e423) + β2(e2 − e431) + β3(e3 − e412) + β4(e4 − e123)
+ β5(e1 + e423) + β6(e2 + e431) + β7(e3 + e412) + β0(e4 + e123).

(5.2.2)

The invariant inner product is a pairing ⟨S±, S±⟩. A simple computation gives

⟨ψ+, ψ+⟩ = 2((α0)2 + (α1)2 + (α2)2 + (α3)2 − (α4)2 − (α5)2 − (α6)2 − (α7)2), and
⟨ψ−, ψ−⟩ = 2((β0)2 + (β1)2 + (β2)2 + (β3)2 − (β4)2 − (β5)2 − (β6)2 − (β7)2).

(5.2.3)

We now form a Dirac spinor, which is a 16-component column

Ψ = ( ψ
+

ψ−
) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

α0

α1

⋮
α7

β0
β1
⋮
β7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (5.2.4)

where we put the 8 αi components of ψ+ on top and 8 βj components of ψ− at the bottom of
the column. The order in which the components appear is 0,1, . . . ,7. The Γ-matrices become
the following Γ-matrices in this basis

Γ0 = (
0 I
I 0
) , Γa = (

0 −Ẽa
Ẽa 0

) for a ∈ {1, . . . ,7}, (5.2.5)
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where

Ẽ1 = −E01 −E23 −E45 +E67, Ẽ2 = −E02 −E31 −E46 +E75,

Ẽ3 = −E03 −E12 −E47 +E56, Ẽ4 = S04 − S15 − S26 − S37

Ẽ5 = S05 + S14 − S27 + S36 Ẽ6 = S06 + S17 + S24 − S35,and

Ẽ7 = S07 − S16 + S25 + S34.

(5.2.6)

5.2.2 Split octonions

Split octonions O′ form a non-associative normed composition algebra. It is not a division
algebra because there are null elements. A split octonion is an object

q̃ = q̃0I +
7

∑
a=1

q̃aẽ
a. (5.2.7)

The unit imaginary octonions ẽa anticommute and satisfy

(ẽ1)2 = (ẽ2)2 = (ẽ3)2 = −I, (ẽ4)2 = (ẽ5)2 = (ẽ6)2 = (ẽ7)2 = I. (5.2.8)

Thus, the split octonions I, ẽ1, ẽ2, ẽ3 generate a copy of H ⊂ O′. The octonion pairing is given
by

(q̃, q̃) = q̃q̃ = (q̃0)2 + (q̃1)2 + (q̃2)2 + (q̃3)2 − (q̃4)2 − (q̃5)2 − (q̃6)2 − (q̃7)2, (5.2.9)

where the conjugation, denoted by a bar, changes the signs of all the imaginary generators.

The product rules are most efficiently encoded into the following 3-form on Im(O′) = R7

C̃ = ẽ123 − ẽ1(ẽ45 − ẽ67) − ẽ2(ẽ46 − ẽ75) − ẽ3(ẽ47 − ẽ56). (5.2.10)

This encodes the vector product via

(u × v,w) = w ⌟ v ⌟ u ⌟ C̃. (5.2.11)

Here u⌟ is the operator of insertion of a vector field u into a differential form. For example
ẽ1 × ẽ2 = ẽ3, but ẽ1 × ẽ6 = −ẽ7 because the octonion pairing is negative-definite on directions
4,5,6,7.

5.2.3 Octonionic model for Cliff4,4

One can encode the operators of left multiplication by a unit octonion into 8×8 matrices. Indeed,
we encode an octonion into an 8-component column

q̃ →
⎛
⎜⎜⎜
⎝

q̃0
q̃1
⋮
q̃7

⎞
⎟⎟⎟
⎠
. (5.2.12)

It is then a straightforward computation to see that the operators of left multiplication by a unit
octonion precisely match the matrices in (5.2.6) Lẽa = Ẽa.

q̃0Γ0 +
7

∑
a=1

q̃aΓa = (
0 Lq̃
Lq̃ 0

) , (5.2.13)

where Lq̃ is the operator of left multiplication by a split octonion q̃ ∈ O′.
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5.2.4 The complex model

We now develop the complex model of Cliff4,4. The starting point is a complex structure on
R4,4, so that R4,4 gets identified with C4. Let zI , I = 1, . . . ,4 be the corresponding complex
(null) coordinates, and eI = dzI the basic one-forms. The metric on R4,4 becomes the following
indefinite Hermitian metric

e3ē3 + e4ē4 − e1ē1 − e2ē2. (5.2.14)

A general Dirac spinor is a polyform in Λ(C4), with complex coefficients. The Γ-matrices that
square to plus the identity are given by

Γ0 = a4 + a†
4, Γ3 = i(a4 − a†

4), Γ2 = a3 + a†
3, and Γ1 = i(a3 − a†

3). (5.2.15)

Note that these generate a copy of Cliff4, and act only on the e3, e4 polyform directions. The
Γ-matrices that square to minus the identity are

Γ4 = i(a2 + a†
2), Γ7 = a2 − a†

2, Γ6 = i(a1 + a†
1), and Γ5 = a1 − a†

1. (5.2.16)

The link to split octonions arises if we consider Majorana-Weyl spinors, so we must understand
the reality conditions first.

5.2.5 Reality conditions

There are two antilinear operators, the product of all real Γ-matrices followed by the complex
conjugation, and the product of the imaginary ones followed by the complex conjugation. Both
square to plus the identity, and so give a possible reality condition. They only differ in their
action (by a sign) on odd polyforms, and agree on even polyforms. It turns out to be better to
use

R = Γ3Γ1Γ4Γ6C (5.2.17)

as the reality condition. A simple calculation shows that the following polyforms parametrised
by C4 are real

ψ− = u1e1 − u∗1e423 + u2e2 − u∗2e431 + u3e3 + u∗3e412 + iu∗4e4 + iu4e123, and
ψ+ = u1e41 − u∗1e23 + u2e42 − u∗2e31 + u3e43 + u∗3e12 + iu∗4 + iu4e4123.

(5.2.18)

This should be compared to (5.1.3). Only some signs are different as compared to the Cliff8

situation. We parametrise the even polyforms by the real and imaginary parts of uI

u1 = α5 + iα6, u2 = α7 + iα4, u3 = α2 + iα1, and u4 = α3 + iα0. (5.2.19)

We get the following real parametrisation of even and odd polyforms

ψ+ = α5(e41 − e23) + α7(e42 − e31) + α2(e43 + e12) + α0(1 − e4123)
+ iα6(e41 + e23) + iα4(e42 + e31) + iα1(e43 − e12) + iα3(1 + e4123), and

ψ− = β5(e1 − e423) + β7(e2 − e431) + β2(e3 + e412) + β0(e4 − e123)
+ iβ6(e1 + e423) + iβ4(e2 + e431) + iβ1(e3 − e412) + iβ3(e4 + e123).

(5.2.20)

The spinor norms are then

1

2
⟨ψ+, ψ+⟩ = (α0)2 + (α1)2 + (α2)2 + (α3)2 − (α4)2 − (α5)2 − (α6)2 − (α7)2, and

1

2
⟨ψ−, ψ−⟩ = (β0)2 + (β1)2 + (β2)2 + (β3)2 − (β4)2 − (β5)2 − (β6)2 − (β7)2.

(5.2.21)
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We now place the components α,β into a 16-component column (5.2.4), and work out the matrix
representation of the Γ-matrices. We get precisely the matrices of the form (5.2.5) with (5.2.6),
which also justifies the choices for the signs of the Γ-matrices.

5.2.6 Pure Spinors Orbits in Spin(4,4)

In contrast to the Spin(8) case, we now have several types of pure spinors. This is a precursor
to the next section, which aims to classify all orbits of Spin(4,4). In this section, we describe
certain representatives and compute their stabilisers to show the various geometric structures,
based on the complex model.

The complex model was obtained by choosing a complex structure on R4,4, and so in reverse
the canonical pure spinors that this model comes with, namely, 1, e4123 ∈ S+ give back this
complex structure. To see this, we translate the polyforms into split octonions. As in the case of
Spin(8), we need to complexify the octonions to see (at least certain types of) the pure spinors.
We have

Proposition 5.2.6.1. The stabiliser of ẽ3 = i(1 + e4123), and I = (1 − e4123), hence 1 = 1
2
(I −

iẽ3), and e4123 = − 1
2
(I + iẽ3), is SU(2,2).

Proof. We now need the following results

((I + iẽ3), Lx(I − iẽ3)) = 2iẽ3,
((I + iẽ3), LxLy(I − iẽ3)) = 2i(ẽ12 + ẽ74 + ẽ56).

(5.2.22)

This means that
1

2i
⟨(I + iẽ3),ΓΓ(I − iẽ3)⟩ = I ∧ ẽ3 − (ẽ12 + ẽ74 + ẽ56). (5.2.23)

This is a (1,1)-form of the complex structure that this (complex conjugate) pair of pure spinors
defines. To see what this complex structure is, let us consider the right multiplication by ẽ3.
The −i eigenvectors of Rẽ3 are

z3 ∶= I + iẽ3, z4 ∶= ẽ1 − iẽ2, z1 ∶= ẽ7 + iẽ4, and z2 ∶= ẽ5 + iẽ6. (5.2.24)

We then have
⟨(I + iẽ3),ΓΓ(I − iẽ3)⟩ = z∗3 ∧ z3 + z∗4 ∧ z4 − z∗1 ∧ z1 − z∗2 ∧ z2, (5.2.25)

where z∗i is complex conjugation of the imaginary unit i. Thus, Rẽ3 is the complex structure
that corresponds to the pure spinors 1, and e4123.

Let us also state the result for the stabiliser of the spinor I − iẽ3. The general Lie algebra
element on S+ is

Aspin(4,4) = waẼa −wabẼaẼb. (5.2.26)

The stabiliser of I − iẽ3 is the subalgebra determined by the following 13 constraint equations

w1 = w23, w45 = w67, w2 = w31, w46 = w75,

w4 = w73, w51 = w26, w7 = w34, w16 = w25,

w5 = w36, w14 = w27, w6 = w53, w71 = w24, and

w3 = w12 +w56 +w74.

(5.2.27)

The stabiliser is thus dim(Spin(4,4)) −#constraints = 28 − 13 = 15 dimensional. Given that it
preserves a complex structure in R4,4, the stabiliser coincides with SU(2,2).

Similarly for paracomplex structures, one has
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Proposition 5.2.6.2. Consider the null split octonion

1

2
(I + ẽ4) = 1 − e4123 + i(e42 + e31), (5.2.28)

This has stabiliser containing SL(4,R). The subgroup that stabilises (5.2.28) and

1

2
(I − ẽ4) = 1 − e4123 − i(e42 + e31). (5.2.29)

is SL(4,R).

Proof. We have

((I − ẽ4), Lx(I + ẽ4)) = 2ẽ4, and
((I − ẽ4), LxLy(I + ẽ4)) = −2(ẽ15 + ẽ26 + ẽ37).

(5.2.30)

Therefore
⟨(I − ẽ4),ΓΓ(I + ẽ4)⟩ = 2(I ∧ ẽ4 + ẽ15 + ẽ26 + ẽ37). (5.2.31)

We thus see that the pair of pure spinors I − ẽ4, I + ẽ4 defines the paracomplex structure whose
real null eigenvectors are

I + ẽ4, ẽ1 + ẽ5, ẽ2 + ẽ6, and ẽ3 + ẽ7. (5.2.32)

As an operator on O′ this paracomplex structure is described by Rẽ4 .

Let us state the stabiliser in this case. The stabiliser of I + ẽ4 is given by the 7 following
constraint equations

w1 −w14 +w5 +w45 = 0, w23 +w27 −w36 +w67 = 0,
w2 −w24 +w6 +w46 = 0, w13 +w17 −w35 +w57 = 0,
w3 −w34 +w7 +w47 = 0, w12 +w16 −w25 +w56 = 0, and
w4 +w15 +w26 +w37 = 0,

(5.2.33)

and so is dim(Spin(4,4)) −#constraints = 28 − 7 = 21 dimensional. This is of course larger than
dim(SL(4,R)) = 15. This example displays the case that one has a larger group of transforma-
tions stabilising a single pure spinor in the example of split signatures subsection 3.2.4. Now, in
addition, if we impose that I − ẽ4 is stabilised, we get six new constraint equations

w1 +w14 −w5 +w45 = 0, w23 −w27 +w36 +w67 = 0,
w2 +w24 −w6 +w46 = 0, w13 −w17 +w35 +w57 = 0,
w3 +w34 −w7 +w47 = 0, w12 −w16 +w25 +w56 = 0,

(5.2.34)

which together with the previous set gives a subalgebra of dimension dim(Spin(4,4))−#constraints =
28−7−6 = 15. Given that one preserves a paracomplex structure in R4,4, the stabiliser coincides
with SL(4,R).

The above is a special case of SL(4,R)-structures in 8 dimensions. [Kra24b] approaches
SL(4,R) stabilisers in a similar fashion, and then seeks to understand the integrability conditions
of these structures in a comparable manner to SU(4)-structures in 8 dimensions. We shall give
some details in the next section, when analysing impure orbits.

Now consider the spinors

1

2
(I − iẽ3) − 1

2
(ẽ4 + iẽ7) = 1 + ie42, and 1

2
(I + iẽ3) + 1

2
(ẽ4 − iẽ7) = −e4123 + ie31. (5.2.35)
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Both are null spinors, with a non-vanishing inner product between them. The first of them is
annihilated by

Γ1 − iΓ2, Γ5 + iΓ6, Γ0 + Γ4, and Γ3 + Γ7, (5.2.36)

and the second by the complement of these four vectors

Γ1 + iΓ2, Γ5 − iΓ6, Γ0 − Γ4, and Γ3 − Γ7. (5.2.37)

So, they are a pair of pure spinors with null subspace spanned by two real and two complex
vectors. Note that we can rewrite these pure spinors as

1

2
(I − ẽ4) − i

2
(ẽ3 + ẽ7), and 1

2
(I + ẽ4) + i

2
(ẽ3 − ẽ7). (5.2.38)

Both are of the form α + iβ where α,β are real pure spinors with (α,β) = 0. One then has

Lemma 5.2.6.1. The mixed structure defined by the spinors (5.2.35) is given as

I ∧ ẽ4 + ẽ37 + iẽ12 + iẽ56. (5.2.39)

Proof. One has the following facts

((I − iẽ3 − ẽ4 − iẽ7), Lx(I + iẽ3 + ẽ4 − iẽ7)) = 4ẽ4,
((I − iẽ3 − ẽ4 − iẽ7), LxLy(I + iẽ3 + ẽ4 − iẽ7)) = −4i(ẽ12 + ẽ56 − iẽ37).

(5.2.40)

This means that we have

⟨(I − iẽ3 − ẽ4 − iẽ7),ΓΓ(I + iẽ3 + ẽ4 − iẽ7)⟩ = 4(I ∧ ẽ4 + ẽ37 + iẽ12 + iẽ56). (5.2.41)

Raising an index of (5.2.39) gives a complex endomorphism on R4,4 whose square is propor-
tional to the identity, and is a sum of a paracomplex structure in the directions I,4,3,7 and the
imaginary unit times the complex structure in the directions 1,2,5,6. The stabilisers associated
to the complex and paracomplex structure are characterised as follows.

Proposition 5.2.6.3. The stabiliser of 1
2
(I − iẽ3) − 1

2
(ẽ4 + iẽ7) and 1

2
(I + iẽ3) + 1

2
(ẽ4 − iẽ7) is

SU(1,1) × SL(2,R).

Proof. The stabilising algebra in spin(4,4) of (I − iẽ3 − ẽ4 − iẽ7) is determined by the following
set of 13 constraint equations

w16 −w25 = 0, w12 +w56 = 0, w15 +w26 = 0, w37 +w4 = 0,
w1 +w14 = 0, w27 −w23 = 0, w2 +w24 = 0, w35 +w57 = 0,
w5 −w45 = 0, w36 +w67 = 0, w6 −w46 = 0, w13 −w17 = 0, and
w3 +w34 +w47 −w7 = 0.

(5.2.42)

The dimension of the stabiliser is thus dim(Spin(4,4))−#constraints = 28−13 = 15. Demanding
that the complementary spinor (I + iẽ3 + ẽ4 − iẽ7) is also stabilised produces 9 more constraint
equations

w1 −w14 = 0, w27 +w23 = 0, w2 −w24 = 0, w35 −w57 = 0,
w5 +w45 = 0, w36 −w67 = 0, w6 +w46 = 0, w13 +w17 = 0, and
w3 −w34 +w47 +w7 = 0.

(5.2.43)
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Simplifying the above 22 constraint equations gives

w16 −w25 = 0, w12 +w56 = 0,
w15 +w26 = 0, w4 = w73, w3 = w74,

w7 = w34, w1,2,5,6 = 0, w41 = w42 = w45 = w46 = 0, and
w27 = w23 = w35 = w57 = w36 = w67 = w13 = w17 = 0.

(5.2.44)

At the level of the Lie algebra one sees a copy of su(1,1) ⊂ spin(4,4) acting on the two complex
null directions {ẽ1 − iẽ2, ẽ5 + iẽ6}, as well as a copy of sl(4,R) ⊂ spin(4,4) acting on the two real
null directions {I + ẽ4, ẽ3 + ẽ7}. As these Lie subalgebras commute, the stabilising subgroup is
SU(1,1) × SL(2,R)

We have thus described the three representatives of the different types of pure spinors in
Spin(4,4). One gives a complex structure (5.2.6.1), one paracomplex (5.2.6.2), and the third
type gives a structure of the mixed type (5.2.6.3). Of these, only the pure spinor giving the
paracomplex structure is real. In the next section, we shall construct these geometric structures
from general complex Weyl spinors.

5.2.7 Classifying Impure Orbits of Spin(4,4)

We now enter into a less familiar territory, as there seems to be no known classification of the
orbits of the real Spin(4,4) on the complex Weyl spinors, apart from the already considered case
of pure and Majorana spinors. This is in contrast to the case of Spin(8), where there is only one
possible type of general spinors, with the stabiliser SU(4).

We begin with Majorana spinors, which are simply the split octonions. There are three
possible types of such spinors: Non-null, spacelike (or timelike), and null. We have determined
the stabiliser of a null octonion in (5.2.33). As we have seen in the previous subsection, a null
octonion is a pure spinor stabilised by Spin(7). Similarly, the stabilisers of spacelike or timelike
null octonions (pure spinors) are also 21 dimensional, and in both cases are given by Spin(4,3).

For future use, we compute explicitly the stabiliser subalgebra of ψ = I. It is given by the
following 7 constraint equations

w1 = w23 −w45 +w67, w2 = −w13 −w46 −w57, w3 = w12 −w47 +w56,

w4 = −w15 −w26 −w37, w5 = w14 −w27 +w36, w6 = w17 +w25 −w35, and

w7 = −w16 +w25 +w34.

(5.2.45)

To classify general Spin(4,4) spinors, we use the same idea that worked in the Spin(8) case.
We consider a general complex spinor, which is a complexified split octonion ψ = α+iβ, α,β ∈ O′,
(the relations (5.1.37) are still valid). However, since the signature is mixed, the norm squared
does not need to be positive. We can still assume that the spinor is not null (because if it is
null, it is pure) and rescale it to unit length. Thus, ∣α∣2 − ∣β∣2 = 1 and (α,β) = 0.

There are four cases to consider.

1. When ∣β∣2 > 0 both α,β have positive norm and can be chosen to be multiples of I, and ẽ3.
The unit spinor can be chosen to be

ψ = cosh τI + i sinh τ ẽ3. (5.2.46)

Here, τ is a real parameter. It is clear that the analysis in the case of Spin(8) is unchanged,
and this spinor defines a pure spinor that is a multiple of I+iẽ3, whose stabiliser is SU(2,2).
Thus, the general spinor of this type still defines a complex structure, and its stabiliser is
SU(2,2).
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2. Take −1 < ∣β∣2 < 0. This means that ∣α∣2 > 0, and we can still choose α to be a multiple of
I. This leads us to consider the unit spinor

ψ = cos θI + i sin θ ẽ4. (5.2.47)

Here θ is a real parameter, and we have ⟨R(ψ), ψ⟩ = cos2 θ − sin2 θ = cos(2θ). Denoting
λ = cos(2θ) we can form the complement

ψ̃ = λψ −R(ψ)
i
√
1 − λ2

= i sin θ I + cos θ ẽ4. (5.2.48)

This is again a spinor of norm minus one, and so

ψ ± ψ̃ = (cos θ + i sin θ)(I ± ẽ4) (5.2.49)

are both null and thus pure spinors. They are (complex) multiples of the spinors (I ± ẽ4)
that we have already encountered before. Recall that a paracomplex structure can be
constructed only when we have access to a pair of pure spinors with a non-vanishing inner
product. As ψ defines these two pure spinors (I ± ẽ4), we have the stabiliser SL(4,R).
When θ = π

4
, one recovers Lorentzian Cayley forms, whose integrability is discussed in

[Kra24b].

3. Suppose ∣β∣2 < −1. This means that both α,β have negative norms. For example, we can
choose α ∝ ẽ4, β ∝ ẽ7. This leads us to consider the unit spinor

ψ = sinh τ ẽ4 + i cosh τ ẽ7, (5.2.50)

with real parameter τ . Then λ = ⟨R(ψ), ψ⟩ = − cosh(2τ) and the complement is given as

ψ̃ = λψ −R(ψ)√
λ2 − 1

= − cosh τ ẽ4 − i sinh τ ẽ7. (5.2.51)

This is again a spinor of norm minus one, and the spinor

ψ + ψ̃ = (sinh τ − cosh τ)(ẽ4 − iẽ7) (5.2.52)

is pure. This spinor defines a complex structure on R4,4 with the Kähler form

1

2i
⟨(ẽ4 − iẽ7),ΓΓ(ẽ4 + iẽ7)⟩ = I ∧ ẽ3 + ẽ12 + ẽ47 + ẽ56. (5.2.53)

Thus, the general spinor of this type still defines a complex structure, and its stabiliser is
SU(2,2).

4. Finally, if β is null, this forces the octonion α to be unit, and so we are led to consider the
spinor

ψ = I + i(ẽ3 + ẽ4). (5.2.54)

(5.2.54) is a complex spinor whose real part is an identity octonion, and the imaginary
part is a null octonion. Then, λ = ⟨R(ψ), ψ⟩ = 1, and the construction of ψ̃ is no longer
applicable. It is clear that the geometric map arising in this case knows both about the
geometry related to I, and that of the real pure spinor ẽ3 + ẽ4. The identity octonion
defines the Spin(4,3) invariant 4-form −I∧ C̃ +∗C̃ on R4,4. Here C̃ is the 3-form, invariant
under Spin(4,3) transformations, built from a null purely imaginary basis in Im(O′). The
pure spinor ẽ3 + ẽ4 defines its null subspace that can be seen to be spanned by

I − ẽ7, ẽ3 + ẽ4, ẽ2 − ẽ5, and ẽ1 + ẽ6. (5.2.55)
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To understand the geometry arising better, we compute

⟨(I + iẽ3 + iẽ4),ΓΓ(I − iẽ3 − iẽ4)⟩ = 2i((I + ẽ7) ∧ (ẽ3 − ẽ4) + (ẽ2 + ẽ5) ∧ (ẽ1 − ẽ6)). (5.2.56)

The 2-form that arises is thus a sum of two decomposable pieces, each built entirely from
null vectors that are complementary to those in (5.2.55). This has stabiliser sl(4,R)⊕N .
Where N is a 6 dimensional nilpotent algebra. Which means, at the level of the Lie algebra,
the stabiliser is contained in spin(4,3) ∩ (sl(4,R)⊕N).
It is also interesting to compute the stabiliser of I + iẽ3 + iẽ4. It is clear that the stabiliser
of ψ is in the intersection of the stabilisers of the pure spinors I and ẽ3 + ẽ4. Both are
stabilised by two different copies of spin(4,3) ⊂ spin(4,4) of dimension 21. An explicit
calculation shows that this intersection is given by (5.2.45) supplemented by the following
4 constraint equations,

w16 = w25, w12 +w15 +w26 +w56 = 0,
w23 −w24 −w35 +w45 = 0, and −w13 +w14 −w36 +w46 = 0.

(5.2.57)

Hence the stabilising algebra is dim(Spin(4,4))−dim(Spin(4,3))−#constraints = 28−7−4 =
17 dimensional.

Again, to summarise the more complicated results of this section. There are several types of
impure spinor controlled by the parameter ∣β∣2.

Theorem 5.2.7.1. Let ψ be a unit Weyl (impure) spinor of Spin(4,4). Then one can write
ψ = α + iβ ∈ O′ ⊗C. The stabilisers of ψ for various values of ∣β∣2 are given as:

• ∣β∣2 > 0 leads to an SU(2,2) stabiliser.

• −1 < ∣β∣2 < 0 leads to an SL(4,R) stabiliser.

• ∣β∣2 < −1 leads to an SU(2,2) stabiliser.

• ∣β∣2 = 0 leads to a 17 dimensional stabiliser inside spin(4,3)∩ (sl(4,R)⊕N) subject to the
constraint equation (5.2.45) and (5.2.57).

5.3 Spin(10) and Octonions

In the discussion of 10 dimensions, we take the approach of parametrising the space spinors using
complexified octonions. This results in a reduction to 8 dimensions. We see that there are two
types of stabilisers of impure spinors, given by: SU(4) ×U(1) and Spin(7) ×U(1). In addition,
we discuss the integrability of the pure spinor orbit stabilised by SU(5).

5.3.1 creation and annihilation operator construction

To construct Cliff10 we choose a complex structure, which identifies R10 ≅ C5. We denote the
complex coordinates by z1,...,5, and the coordinate one-forms by dz1,...,5. We introduce five

pairs of creation and annihilation operators aI, a
†
I , I = 1, . . . ,5. We also introduce the following

Γ-matrices
Γ4+I ∶= aI + a†

I , ΓI ∶= −i(aI − a†
I ), where I = 1,2,3,4,5. (5.3.1)

Notice that Cliff8 ⊂ Cliff10, and hence Λ(C4) ⊂ Λ(C5). So there is a choice of Λ(C4) ≅ (O⊗C)2
(given explicitly in section 5.1). Therefore, Weyl spinors in 10 dimensions have the following
parametrisation,

ψ+ = α + β ∧ dz5, and ψ− = γ ∧ dz5 + δ. (5.3.2)
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Where α, γ ∈ S+4 ≅ O ⊗ C and β, δ ∈ S−4 ≅ O ⊗ C. S±4 are the even and odd Weyl spaces of
Λ(C4), respectively. We therefore identify Γ1,...,8, via (5.1.14), through Lx on Λodd(C4) and Lx̄
on Λeven(C4), where x ∈ O, and x̄ is the octonionic conjugate. Writing the Dirac spinor (5.3.2)

as a vector, one has ψ = (ψ+ ψ−)
T = (α β γ δ)T.

The Γ−matrices can be seen as real endomorphisms on (O⊗C)4 ≅ C32

Γx =
⎛
⎜⎜⎜
⎝

0 0 0 Lx̄
0 0 Lx 0
0 Lx̄ 0 0
Lx 0 0 0

⎞
⎟⎟⎟
⎠
, Γ9 =

⎛
⎜⎜⎜
⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟
⎠
, and Γ10 =

⎛
⎜⎜⎜
⎝

0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

⎞
⎟⎟⎟
⎠
. (5.3.3)

In 10 dimensions, spinors of opposite chirality are paired, that is the spinor bilinear is of the
form ⟨S±, S∓⟩. The conjugation operator is defined as the following

R = Γ1 . . .Γ4Γ9C. (5.3.4)

R commutes with all the other Γ−matrices and squares to the identity. Since it is a product of
an odd number of generators, one can take a spinor ψ+ ∈ S+, and can construct ⟨R(ψ+), ψ+⟩.
Concretely,

ψ+ = (
α1 + iα1

β2 + iβ2
) ∈ S+, then R(ψ+) = (

α1 − iα1

β2 − iβ2
) ∈ S−, (5.3.5)

for α1,2, β1,2 ∈ O. Hence

⟨R(ψ+), ψ+⟩ = ∣α1∣2 + ∣α2∣2 + ∣β1∣2 + ∣β2∣2. (5.3.6)

Before we begin the analysis, we would like to introduce a different characterisation of Weyl
spinors in Spin(8) to that of section 5.1, only to make notation more compact. As before, let
ψ = α1 + iα2 where α1,2 ∈ O. Also as previously, one imposes ∣ψ∣2 = 1, so that ∣α1∣2 − ∣α2∣2 = 1 and
(α1, α2) = 0. Hence,

∣α1∣ = cosh(τ), and ∣α2∣ = sinh(τ). (5.3.7)

Now the notational change: ψ can be rewritten as

ψ = eτΨ + e−τ Ψ̂, for τ ∈ R. (5.3.8)

Here Ψ ∶= 1
2
( α1

∣α1∣ + i
α2

∣α2∣) is a pure spinor, i.e. a null complexified octonion (see [Kra22] for more

details on the construction) and Ψ̂ ∶= 1
2
( α1

∣α1∣ − i
α2

∣α2∣) is the complex conjugate.

5.3.2 Pure Spinors in 10 Dimensions

It is covered in [Kra22] what pure spinors are in 10 dimensions. But briefly speaking, one can
parametrise ψ+ as

ψ+ = (α1 + iα2

β1 + iβ2
) , (5.3.9)

where α1,2, β1,2 ∈ O. Then by theorem 3.2.2.3 one derives algebraic conditions fromB1(ψ+,Γψ+) =
X + iY = 0. Resulting in

β1ᾱ1 − β2ᾱ2 = 0, β1ᾱ2 − β2ᾱ1 = 0, (α1, α2) = (β1, β2) = 0,
∣α1∣2 = ∣α2∣2 and ∣β1∣2 = ∣β2∣2.

(5.3.10)

The last 4 conditions are familiar, they imply that α and β are pure spinors of Spin(8).
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5.3.3 Impure Spinor Orbits in 10 Dimensions

By (5.3.10) we can see that a canonical impure spinor in 10 dimensions is of the form

ψ̃+ = ( eταΨα + e−ταΨ̂α
tβe

τβΨβ + t∗βe−τβ Ψ̂β
) for τα,β ∈ R, and tβ ∈ C/{0}. (5.3.11)

We have no complex parameter for Ψα by rotating ψ+ to a unit vector. Furthermore, assuming
that tβ is non-zero allows us to impose that ∣tβ ∣2 = 1. We now invoke a powerful result by [Bry20]
that shows one can rotate Ψ to kill the β component, reducing it to

Lemma 5.3.3.1. Let ψ̃+ as (5.3.11). Then one can transform ψ̃+, by the action of Spin(10) to

ψ+ = (e
ταΨα + e−ταΨ̂α

0
) for τα ∈ R. (5.3.12)

This means that understanding the orbit structure of Spin(10) reduces to understanding the
orbits of (5.3.12), which is already understood because this is an impure spinor in 8 dimensions.

To find the stabilisers, let us compute the 5-form in various cases for the value of τα. First,
consider a generic impure spinor, i.e. τα ≠ 0.

B5(ψ+, ψ+) = (cosh(2τ)Re(Ω8) −
1

2
ω8 ∧ ω8 + isinh(2τ)Im(Ω8)) ∧ dz̄5. (5.3.13)

The subgroup that stabilises this must then contain SU(4) ×U(1). Here again Ω8 is the (4,0)-
form ψ+ along with ω8 is the Kähler form in 8 dimensions, that produces a compatible hermitian
metric reducing Spin(10) to SU(4). The dz̄5 is stabilised by U(1) and is the complex coordinate
spanning the direction orthogonal to O.

Now suppose that τα = 0, the resulting spinor is real and the 5-form is

B5(ψ+, ψ+) = (Re(Ω8) −
1

2
ω8 ∧ ω8) ∧ dz̄5. (5.3.14)

If we choose Ψα = 1
2
(I+iu), i.e. ψ+ is a unit octonion, we can see the manifest Spin(7) symmetry.

Thus, the stabiliser contains Spin(7) ×U(1). We can summarise the above as follows

Theorem 5.3.3.1. Let ψ+ be of the form (5.3.12). Then, for various values of τα, one can
compute the following stabilisers.

• τα ≠ 0 leads to a stabiliser containing SU(4) ×U(1).

• τα = 0 leads to a stabiliser containing Spin(7) ×U(1).

Finally take ψ+ = Ψα, since this is pure we expect the 5-form to be

B5(ψ+, ψ+) = Ω8 ∧ dz̄5 ∶= Ω10. (5.3.15)

This is the top holomorphic form in 10 dimensions and hence stabilised by SU(5). We also note
that

B2(R(ψ+), ψ+) = 2iω10. (5.3.16)

Where ω10 is the Kähler form in 10 dimensions.

Proposition 5.3.3.1. Let M be a spin manifold of 10 dimensions, and suppose that ψ+ is a
spinor stabilised by SU(5) ⊂ Spin(10). The set of canonical differential forms associated to the
SU(5)-structure is given as B5(ψ+, ψ+) = Ω10, and

1
2i
B2(R(ψ+), ψ+) = ω10. The SU(5)-structure

is integrable if, and only if, the exterior derivatives of its canonical differential forms vanish.
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Proof. The structure of the proof resembles those found in [CS02] and [Kra24b]. Indeed, If the
above structures are integrable, then ∇Ω10 = ∇ω10 = 0, hence the projection to dΩ10, and dω10

vanish.

In the other direction, from general principles, it is known that integrability of SU(5) struc-
tures is controlled by the vanishing of intrinsic torsion, which takes values in

Λ1 ⊗ su(5)⊥ = [[Λ1,0 ⊗Λ2,0]]⊕Λ1

≅ W1
°

≅[[Λ3,0]]

⊕W2 ⊕ W3
°

≅[[Λ2,1
0 ]]

⊕W4
°
≅Λ1

⊕W5
°
≅Λ1

. (5.3.17)

The exterior derivatives of Ω10, and ω10 take values in

dΩ10 ∈ Λ6,0 ⊕Λ5,1 and

dω10 ∈ Λ3 ≅ [[Λ3,0]]⊕ [[Λ2,1
0 ]]⊕Λ1.

(5.3.18)

The Nijenhuis tensor, valued inW1⊕W2 that controls the integrability of the complex structure
and so vanishes when dB5(ψ+, ψ+) = 0 Ô⇒ dΩ10 = 0. Furthermore, the Λ5,1 ≅ Λ1 part of dΩ10

vanishing implies that W5 ≅ Λ1 vanishes too. Again, it is known, see [Sal89], and discussion in
[CS02], that the components of dω10 control W1,3,4. As dB2(R(ψ), ψ) = 0 Ô⇒ dω10 = 0, W1,3,4

vanish.

In the proof above we have used standard notation for real complexified differential forms
and standard results decomposition of the intrinsic torsion space (5.3.17), found in, for example,
chapter 3 of [Sal89], and [CS02].

5.4 Spin(12) and Octonions

In 12 dimensions, much less is known about the real orbits. In 10 dimensions, the classification
was made by [Bry20], and in the language of pure spinors, it was rediscovered by [Kra24b].
The analysis of real stabilisers of Weyl spinors in 12 dimensions is difficult to approach unless
certain assumptions about the spinor are made. We shall show it is possible to parametrise a
Weyl spinor in 12 dimensions via even and odd Weyl spinors in 10 dimensions. After imposing
Majorana type constraints, we show there is a canonical class of spinors orbits one can consider.

5.4.1 creation and annihilation operator construction

Extending the case above, one identifies {wI ∣ 1 ≤ I ≤ 12} be real coordinates of R12. We
then endow a complex structure that identifies R12 ≅ C6: zI = wI + iwI+4, z = w9 + iw11, and
z̃ = w10+ iw12. The one-forms are then given as dz1,2,3,4,dz,dz̃. We introduce 6 pairs of creation

and annihilation operators aI, a
†
I , a, a

†, ã, ã†, I = 1, . . . ,4. We also introduce the Γ-matrices that
generate Cliff12 as,

Γ4+I ∶= aI + a†
I , ΓI ∶= −i(aI − a†

I ), for i = 1,2,3,4, Γ9 = a + a†,

Γ10 = − i(a − a†), Γ11 = ã + ã†, and Γ12 = −i(ã − ã†).
(5.4.1)

Similar to 10 dimensions, the coordinates are chosen suggestively to induce octonions. Indeed,
Cliff8 ⊂ Cliff12, hence (O⊗C)2 ≅ Λ(C4) ⊂ Λ(C6). In fact, the Clifford algebra has a representation
over (O⊗C)8. We choose to characterise the Weyl representations as follows.
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S+ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ+ = αdz + βdz̃ + γ + δdz ∧ dz̃ =
⎛
⎜⎜⎜
⎝

α
β
γ
δ

⎞
⎟⎟⎟
⎠

RRRRRRRRRRR
α,β ∈ S−4 , γ, δ ∈ S+4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

, and

S− =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ− = α̃dz + β̃dz̃ + γ̃ + δ̃dz ∧ dz̃ =
⎛
⎜⎜⎜
⎝

α̃

β̃
γ̃

δ̃

⎞
⎟⎟⎟
⎠

RRRRRRRRRRR
α̃, β̃ ∈ S+4 , γ̃, δ̃ ∈ S−4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

(5.4.2)

Identifying the orientation of a Dirac spinor as ψ = (ψ+ ψ−)T. In addition, the Lie algebra

action on Weyl spinors S+ ≅ (O⊗C)4 is given as

⎛
⎜⎜⎜
⎝

A + is p∗ + iq∗ −Lx1 − iLy1 Lx2 − iLy2
−p − iq A − is −Lx2 − iLy2 −Lx1 + iLy1

Lx̄1 − iLȳ1 −Lx̄2 − iLȳ2 A′ + it −p + iq
−Lx̄2 − iLȳ2 Lx̄1 + iLȳ1 p∗ − iq∗ A′ − it

⎞
⎟⎟⎟
⎠
, where (5.4.3)

A,A′ ∈ spin(8), p, q ∈ C, x1,2, y1,2 ∈ O, s, t ∈ R.

5.4.2 Pure Spinors in 12 Dimensions

To characterise pure spinors in 12 dimensions, we need a similar approach to that in 10 dimen-
sions. In 12 dimensions, ⟨S±, S±⟩ is the appropriate pairing. Hence, one can only insert 0, 2,
4, or 6 Γ-matrices in the pairing. Furthermore, by antisymmetry, B0(ψ+, ψ+) = B4(ψ+, ψ+) = 0.
Thus, the only non-trivial differential forms one can construct are B2(ψ+, ψ+) and B6(ψ+, ψ+).
If ψ+ is pure, then the 2-form B2(ψ+, ψ+) vanishes. First, let us compute the components of
B2(ψ+, ψ+) in a basis,

⟨ψ+,Γ9Γ10ψ
+⟩ = −(α,α) − (β,β) − (γ, γ) − (δ, δ),

⟨ψ+,Γ11Γ12ψ
+⟩ = −(α,α) − (β,β) + (γ, γ) + (δ, δ),

⟨ψ+,Γ9Γ12ψ
+⟩ = i [−(α,α) + (β,β) − (γ, γ) + (δ, δ)] ,

⟨ψ+,Γ10Γ11ψ
+⟩ = i [−(α,α) + (β,β) + (γ, γ) − (δ, δ)] ,

⟨ψ+,Γ9Γ11ψ
+⟩ = 2i [(α,β) + (γ, δ)] ,

⟨ψ+,Γ10Γ12ψ
+⟩ = −2i [(α,β) − (γ, δ)] , and

⟨ψ+,ΓxΓyψ+⟩ = (α, (LxLȳ −LyLx̄)β) − (γ, (Lx̄Ly −LȳLx)δ).

(5.4.4)

(−,−) in the above formulas is the natural bilinear on O⊗C between two complexified octonions,
see 5.1.37. In addition, the components that are not written, like ⟨ψ+,ΓxΓ9ψ

+⟩, ⟨ψ+,ΓxΓ10ψ
+⟩

etc., are exactly zero. Writing

ψ+ =
⎛
⎜⎜⎜
⎝

α
β
γ
δ

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

α1 + iα2

β1 + iβ2
γ1 + iγ2
δ1 + iδ2

⎞
⎟⎟⎟
⎠
, for α1,2, β1,2, γ1,2, δ1,2 ∈ O, (5.4.5)

a spinor in 12 dimensions is pure if B2(ψ+, ψ+) = 0 (theorem 3.2.1.1), thus one has,

∣α1∣2 = ∣α2∣2, ∣β1∣2 = ∣β2∣2, ∣γ1∣2 = ∣γ2∣2, ∣δ1∣2 = ∣δ2∣2, and
(α1, α2) = (β1, β2) = (γ1, γ2) = (δ1, δ2) = 0.

(5.4.6)
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These are exactly the conditions for the components α,β, γ, δ ∈ O ⊗ C to be pure spinors in 8
dimensions.

5.4.3 Orbits of Spin(8)-type Spinors in Spin(12)

As mentioned previously, the strategy of using spinors in 8 dimensions as roots of analysis allows
us to generate a new class of orbits in 12 dimensions. This is done by considering the following
even Weyl spinor in 12 dimensions. Let Ψ be an even spinor in 12 dimensions, characterised by
(5.4.2). Then Ψ takes the form

Ψ = αdz + βdz̃ + γ + δdz ∧ dz̃ = (γ + βdz̃) + (α − δdz̃) ∧ dz, (5.4.7)

where α,β ∈ S−4 , γ, δ ∈ S+4 . Imposing a modified Majorana constraint, R(γ +αdz) = −(β − δdz)∧
dz̃3 (Where R is the product of all real Γ-matrices in 12 dimensions), implies one can then
consider

Ψθ =
⎛
⎜⎜⎜
⎝

0
0

cos(θ)I + i sin(θ)u
cos(θ)I − i sin(θ)u

⎞
⎟⎟⎟
⎠
. (5.4.8)

Indeed, we see that the first spinor γ +αdz is an even spinor of 10 dimensions, and β + δdz is an
odd spinor in 10 dimensions. In 12 dimensions, there is no concept of Majorana-Weyl spinors.
However, since the action of R interpolates between Weyl spinors of 10 dimensions (this exactly
why we wrote Ψ in the form (5.4.7)), it is fruitful to consider instead: R(γ+αdz) = −(β−δdz)∧dz̃.
This condition implies that δ = γ∗ and −β = α∗. Following that, at least at the Lie algebra level,
it is not difficult to show there exists a subalgebra of spin(12) (5.4.3) that can kill α, and −α∗ = β
simultaneously. This results in

Ψ = γ + γ∗dz ∧ dz̃. (5.4.9)

The final simplification that we make is to use a canonical parameterisation of a generic impure
spinor in Spin(8), again given in [Bry20], i.e. γ = cos(θ)I+ i sin(θ)u4. Thus, Ψ takes the desired
form (5.4.8).

Although Ψθ is complex, the inner product ⟨Ψθ,Ψθ⟩ = ∣γ∣2 is real. This implies that any
differential forms we compute will be real (or purely imaginary). Indeed,

Proposition 5.4.3.1. Consider Ψθ such that θ ≠ 2πk, θ ≠ π/4+πk for k ∈ Z. Then the stabiliser
of ψθ contains SU(4) × SU(2). Furthermore, the real symplectic form is given as

B2(Ψθ,Ψθ) = isin(2θ)ω8 + icos(2θ)(X ∧ Y + X̄ ∧ Ȳ ). (5.4.10)

Proof. The non-zero, and unique components of the 2-form are given as,

B2(Ψθ,Ψθ)x,y = −isin(2θ)(ux, y),
B2(Ψθ,Ψθ)9,10 = −2i,
B2(Ψθ,Ψθ)11,12 = 2i,
B2(Ψθ,Ψθ)9,11 = 2icos(2θ), and
B2(Ψθ,Ψθ)10,12 = −2icos(2θ)

(5.4.11)

One then computes the following 2-form as

B2(Ψθ,Ψθ) = isin(2θ)ω8 + 2i(−dw9dw10 + dw11dw12 + cos(2θ)dw9dw11 − cos(2θ)dw10dw12).
(5.4.12)

3The minus sign is to ensure that overall sign of the complexified octonions in Ψθ are positive.
4One is also free to use the parameterisation for an impure spinor given by (5.3.8).
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Here ω8 is the Kähler form in 8 dimensions, and the concatenation of decomposable differential
forms is the suppression of the wedge product. At first glance, it is unclear the stabiliser of
the directions {dw9,dw10,dw11,dw12}. However, one can consider the following coordinate
transformation

X = sec(2θ)dw9 + itan(2θ)dw11 − dw12,

Y = sec(2θ)dw11 − itan(2θ)dw9 − dw10,

X̄ = sec(2θ)dw9 − itan(2θ)dw11 − dw12,

Ȳ = sec(2θ)dw11 + itan(2θ)dw9 − dw10.

(5.4.13)

Therefore, B2(Ψθ,Ψθ) is the desired result. Furthermore, notice, by raising an index with the
metric, there are two complex structures present. One reduces 8 of the 12 real dimensions to 4
complex dimensions, and the remaining 4 directions reduce 2 complex dimensions independently.
Hence, the stabiliser must contain SU(4) × SU(2).

Proposition 5.4.3.2. Consider Ψθ such that sin(θ) = cos(θ), that is θ = π/4 + πk for k ∈ Z.
Then the stabiliser of ψθ contains SU(6), one can also compute the 2-form B2(Ψθ,Ψθ) as

B2 (Ψθ,Ψθ) = 2iω8 + 2i(−dw9dw10 + dw11dw12). (5.4.14)

Proof. It is not difficult to compute B2(Ψθ,Ψθ) above. Notice (5.4.14) is symplectic form in 12
dimensions. Raising the index of the symplectic form gives us a complex structure, hence the
stabiliser must contain SU(6).

Even further,

Proposition 5.4.3.3. Consider Ψ0, that is Ψθ such that θ = 0. Then the stabiliser of ψθ contains
Spin(7) × SU(2).

Proof. If θ = 0, then the spinor is a real octonion. This means that it is stabilised by Spin(7) ⊂
Spin(8) ⊂ Spin(12). Furthermore, computing the 2-form gives

B2(Ψ0,Ψ0) = icos(2θ)(X ∧ Y + X̄ ∧ Ȳ ). (5.4.15)

The above is a symplectic form in the 4 directions {dw9,dw10,dw11,dw12}, raising an index
with the metric converts it to a complex structure in 4 dimensions. Hence, the stabiliser of a
real octonion is Spin(7) × SU(2).

Finally, take ψ+ = Ψα and the rest of the components to be zero, i.e. a pure spinor. The
6-form B6(ψ+, ψ+) is calculated to be

B6(ψ+, ψ+) = Ω12. (5.4.16)

This is the top holomorphic form in 10 dimensions and hence stabilised by SU(6). We also note,

B2(ψ+, ψ+) = 2iω12. (5.4.17)

Here ω12 is the symplectic form in 12 dimensions. As in the 10 dimensional case, we can make
a statement concerning integrability of a SU(6)-structures derived from pure spinors.

Proposition 5.4.3.4. Let M be a spin manifold of 12 dimensions, and suppose that ψ+ is a
spinor stabilised by SU(6) ⊂ Spin(12). The set of canonical differential forms associated to the
SU(6)-structure is given as B6(ψ+, ψ+) = Ω12, and

1
2i
B2(R(ψ+), ψ+) = ω12. The SU(6)-structure

is integrable if, and only if, the exterior derivatives of its canonical differential forms vanish.
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Let us summarise the stabilisers we have found in the section, in the following table.

Stabiliser Spinor Representative

SU(4) × SU(2) Ψθ such that θ ≠ 2πk, θ ≠ π/4 + πk for k ∈ Z.
SU(6) Ψθ such that θ = π/4 + πk for k ∈ Z.

Spin(7) × SU(2) Ψθ such that θ = 0.
SU(6) Ψ is a pure spinor.

(5.4.18)

The classification of Spin(12,C) (see section 6.2) tells us there are three types of complexified
stabilisers for impure orbits: Spin(7,C)×SL(2,C), SL(6,C), and Sp(6,C), and the complexified
stabiliser for the pure spinor orbit is SL(6,C).

The real stabilisers we computed in table (5.4.18) correspond to the complexified stabilisers
as follows:

• In the impure cases.

1. Spin(7,C) × SL(2,C) relates to Spin(7) × SU(2).
2. SL(6,C) relates to SU(4) × SU(2), and SU(6).

• In the pure case, the complex spinor stabiliser corresponds to SU(6).

Notice that the complexified stabiliser Sp(6,C) is omitted above. This omission is due to
uncertainty regarding whether this stabiliser persists in the real setting, and if it does, what its
realisations are. This situation is likely a result of relaxing the modified Majorana constraint
we imposed on a spinor in 12 dimensions and attempting to analyse stabilisers from that point
onwards. Furthermore, the real stabilisers mentioned above, corresponding to their respective
complexifications, represent only a single “slice” of all possibilities. We are unsure if there are
additional real stabilisers not captured by the class of spinors we have considered, or if these
real stabilisers are the only realisations of the complexified stabilisers.



Chapter 6

Complexified Stabilisers of
Impure Spinors in Higher
Dimensions

6.1 Setting up the combinatorial problem and applications

Consider the vector space C2d and the associated Clifford algebra Cliff(C2d). Suppose we choose
a pure spinor ψ0. Then the maximally totally null space of ψ0, M(ψ0), is the space spanned by
a space isomorphic to Cd. Let {ei ∣ 1 ≤ i ≤ d} be a null basis in this space where g(ei, ej) = 0.
This null basis allows for a lift to Cliff(Cd) ⊂ Cliff(C2d), corresponding to the generators that
annihilate ψ0. We define these operators using the standard annihilation operator notation ai.

Additionally, there exists another maximally totally null space such that Cliff(Cd)⊕Cliff(Cd) =
Cliff(C2d). This null space can be generated from ψ0 and corresponds to a choice of null basis

{ēi ∣ 1 ≤ i ≤ d} ⊂ C
d
, where g(ēi, ēj) = 0 and g(ei, ēj) = δij . These operators are defined using the

standard creation operator notation a†
i .

Now consider the space

S = Span
⎧⎪⎪⎨⎪⎪⎩
∏

i1<i2<...ik
a†
i1
a†
i2
. . . a†

ik
ψ0∣k ∈ N<n

⎫⎪⎪⎬⎪⎪⎭
. (6.1.1)

Then consider the subspace

S+ = Span
⎧⎪⎪⎨⎪⎪⎩
∏

i1<i2<...ik
a†
i1
a†
i2
. . . a†

ik
ψ0∣k ∈ 2N<n

⎫⎪⎪⎬⎪⎪⎭
. (6.1.2)

It is suggestive, but also quite clear, that S ≅ Λ(Cd) and S+ ≅ Λeven(Cd) above is the irreducible
Weyl representation. Taking motivation from physics, we define the vacuum state to be ψ0 in
(6.1.2), as every other state is generated from this one.

It is also clear that these 2d−1 vectors of S+ are pure spinors, and so any spinor in S+ can
be written as a linear combination of at most 2d−1 pure spinors. This motivates the following
definition,

Definition 6.1.0.1. Let ψ be a Weyl spinor in S+, equivalently a polyform in Λeven(Cd). Then
ψ is called an impure spinor of degree k if it can be written as a linear combination of pure
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spinors

ψ =
k

∑
α=1

cαψα, (6.1.3)

such that ψα are pure spinors, cα ∈ C, and for any ψα and ψβ , ∣M(ψα) ∩M(ψβ)∣ < d − 4.

The condition on the dimension of the intersection of maximally totally null subspaces, as
discussed by Cartan and Chevalley [CB68; Che54], states that if ψ and ϕ are two (non-parallel)
pure spinors, then ψ +ϕ is a pure spinor if, and only if, M(ψ)∩M(ϕ) = n− 2. This was why we
imposed the condition ∣M(ψα) ∩M(ψβ)∣ < d − 4 in definition 6.1.0.1.

The degree of an impure spinor will be very important in calculations to come. We will explain
later how stabilisers of impure spinors are understood through the intersection of maximally
totally null (MTN) spaces of the pure spinors that constitute an impure one. We want to
minimise the number of MTN spaces analysed, thus we shall try to bound the degree k.

For convenience, we also define the following

Definition 6.1.0.2. Let ψα be a pure spinor as above, then we define the concatenation of
directions that constitute M(ψα) as the spinor ψ.

Example 6.1.0.1. Consider M(ψ3) = Span{a1, a2, a†
3, a

†
4} in d = 4. Then we will exploitatively

write,
ψ3 = a1a2a†

3a
†
4. (6.1.4)

With these foundations, we are equipped to start counting possible orbits. ψ can be repre-
sented, according to definition 6.1.0.1, by a k-simplex with edges weighted by the dimension of
the intersection of maximally totally null subspaces. A powerful corollary of these techniques is
the computability of orbits. However, in dimensions larger than 14 classifying diagrams is no
longer tractable. For example, the classification of spinors in 16 dimensions [L V82] is notably
lengthy, reflecting the fact that the number of diagrams one can generate is substantially larger
than in fourteen dimensions. These computations are omitted in this thesis.

As was mentioned before, we associated to each diagram a canonical differential form. We
review the geometric map here again, because we are using a slightly different convention,

Bk(Ψ,Ψ) ∶=
1

k!
⟨Ψ,ΓI1 . . .ΓIkΨ⟩M

I1 ∧ . . . ∧M Ik . (6.1.5)

Here M I1 , . . . ,M I2d ∈ Λ1(C2d) is a basis in the space of 1−forms in C2d.

It is useful to recast this calculation as one in terms of creation and annihilation operators.
We write,

M i = m
i + m̄i

2
, and M i+d = m

i − m̄i

2i
. (6.1.6)

Then the geometric map takes the form

Bk(Ψ,Ψ) =
1

k!
⟨Ψ, (ai1mi1 + a†

i1
m̄i1) . . . (aikm

ik + a†
ik
m̄ik)Ψ⟩. (6.1.7)

Following [BK23], the goal of this chapter is to use the machinery of geometric maps to
understand parts of stabilising algebras of (Weyl) spinors found through combinatorial means.
As the combinatorics is exhaustive, it is sufficient to pick a representative in a spinor orbit
and compute the canonical differential forms. Analysing the group actions that leave the forms
invariant allows us to access part of the stabiliser. Then, as we already have a list of all possible
stabilisers, [Cha97; Pop80], we can match our stabilisers to the literature.
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6.1.1 Occupation numbers

Let us consider each of the 2d basis vectors {ai, a†
i} in C2d as a box. Each of the spinors ψα is

a pure spinor whose null subspace M(ψα) is d-dimensional, and thus occupies precisely d of the
2d available boxes. This observation motivates the definition.

Definition 6.1.1.1. The box occupation numbers are defined as the number of boxes occupied
by 0,1, . . . , k pure spinors in d dimensions, and denoted by

n0, n1, . . . , nk. (6.1.8)

Each box is occupied by some number (possibly zero) of pure spinors, and thus each is
counted. Another way to restate this definition is that nk counts the number of shared directions
in (6.1.2). For example, if n2 = 5, there are 5 null directions shared by 2 pure spinors. Or n3 = 4,
implies there are 4 null directions shared by 3 pure spinors. A consequence of definition 6.1.1.1
is,

Proposition 6.1.1.1. Let ni be the box occupation number, k the degree of an impure spinor
in d dimensions, then

nk + . . . + n0 = 2d, (6.1.9)

Proof. Fix, without loss of generality, nk ∈ {0, . . . , d}, i.e. there are k pure spinors that share nk
directions, pure spinors are Weyl and so can’t share more than d directions. This means there
are 2d − nk directions to allocate for nk−1 . . . , n0. Without loss of generality, fix nk−1. Then as
previously there are 2d−nk −nk−1 directions left to allocate between for nk−2 . . . , n0. Eventually
one will no longer have any directions left to allocate and so 2d − nk − . . . − n0 = 0, giving the
desired result.

We now begin to write formulas that follow a consistent pattern. Consider n1, which simply
represents the dimension of the Maximally Totally Null (MTN) space of a pure spinor. Geo-
metrically, we can visualise this as a vertex. n2 extends this concept by querying the number
of shared directions between two pure spinors, effectively connecting the vertices with an edge
whose weight corresponds to the number of directions shared. Progressing further, n3 pertains
to information about three pure spinors. This can be visualised as a triangle, where the weight
represents the number of shared directions. It is evident that embedded within n3 are three
edges (incorporating information about n2) and three vertices (incorporating information about
n1). Within a k-simplex, it is relevant to ask about the counts of lower-dimensional simplices
embedded within it. This consideration leads us to explore the counting formula.

Proposition 6.1.1.2. Let ni be the box occupation number, k the degree of an impure spinor
in d dimensions, then

knk + (k − 1)nk−1 + . . . n1 = kd. (6.1.10)

Proof. The formula relates the number of total number of boxes that can be occupied to how
they are distributed in terms of pure spinors. Fix nk, meaning there will be k spinors sharing
nk directions. For each direction, one has (k

1
) boxes filled, but there are nk lots of these, so

nk ×(k1) = knk occupied boxes contributing from these k pure spinors. Continuing along, we find
the total number of boxes occupied given by the sum

(k
1
)nk + . . . + (

k − r
1
)nk−r + . . . + (

1
1
)n1. (6.1.11)

Now the total number of boxes is occupied is not difficult to see being k × d, there are k pure
spinors and each pure spinor spans d directions. The result follows from equating kd and
(6.1.11).
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Finally, there is a duality relation between occupation number. Indeed, If a pure spinor
occupies some box, it does not occupy the dual to its box. For example, if a†

i is occupied then ai
cannot be occupied by the same pure spinor, because the space spanned by the boxes occupied
by some pure spinor must be totally null. Hence,

Proposition 6.1.1.3. Let ni be the box occupation number, k the degree of an impure spinor
in d dimensions, then

nk = n0, nk−1 = n1, etc. (6.1.12)

In view of this duality, the two relations (6.1.9) and (6.1.10) are equivalent, thus we only
need one of them, e.g. (6.1.9).

Example 6.1.1.1. Let us consider a simple example in dimension eight of a spinor that is
not pure. This spinor is a sum of two pure spinors whose null subspaces do not intersect. Let
one of these pure spinors, say ψA, be the vacuum state in (6.1.2) from which all other possible
basis pure spinors are built. It is convenient to denote pure spinors by their corresponding null
subspaces. And so we take

ψA = a1a2a3a4. (6.1.13)

Let us consider another spinor defined as

ψB = a†
1a

†
2a

†
3a

†
4, (6.1.14)

where, similarly, we represent a pure spinor by its null subspace. In this case, d = 4, and the
occupation numbers are n2 = n0 = 0 and n1 = 8. This implies that there are no directions (boxes)
that are occupied by either zero or two pure spinors, and every box is occupied by precisely one
pure spinor. Another useful interpretation, highlighting the concept of duality and the idea of
boxes, is demonstrated through the following table:

Pure Spinor a1 a2 a3 a4 a†
1 a†

2 a†
3 a†

4

ψA
ψB

A filled box corresponds to a direction that the spinor spans, and an empty box, quite intuitively,
indicates a direction the spinor does not span. When stating n2 = n0 = 0, it means no column
has two filled boxes or is completely empty, while n1 = 8 indicates that there are eight columns
each with only one box filled. This visualisation not only clarifies duality but also shows that if
one fills horizontally four boxes, as is the case with ψA and ψB , then any empty column in one
spinor corresponds directly to a filled column in the other, thus illustrating the combinatorial
construction clearly.

Example 6.1.1.2. Let us consider a more complex example of a general spinor in eight di-
mensions, represented by a linear combination of all pure spinors listed in (6.1.2). Here, k = 8,
indicating that there are eight different possible states in (6.1.2). It is straightforward to observe
that each of the available 8 boxes is occupied by exactly 4 different pure spinors, so n4 = 8.
Another way to express this is to note that in a table of the type presented previously, 4 boxes
are highlighted in every column, satisfying all relationships. However, at this stage, such a table
would be too large to illustrate, and the corresponding diagram too complex to draw. We will
later see that there is no need to consider k = 8, based on some straightforward analyses.

6.1.2 Edge intersection numbers

Definition 6.1.2.1. Let ψ be an impure spinor constituted by k pure spinors. Introduce an
index I ∈ {1, . . . , k(k − 1)/2} that labels edges with a label I that connects vertices α,β. The
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edge intersection dimension is defined as the dimension of the intersection subspace of the null
subspaces M(ψα), and M(ψβ). Explicitly,

eI ≡ eα̂β = dim(M(ψα) ∩M(ψβ)). (6.1.15)

Define e ∶= ∑I eI as the edge intersection number.

As we know the possible edge intersection dimensions are d − 2, d − 4, . . ., where we assume
that the pure spinors in the sum (6.1.3) are distinct, and so their null subspaces cannot intersect
in d, and d − 2 dimensions. Below, it will be useful how to take this constraint into account.

There is a relation between the occupation numbers and the sum of the intersection numbers.

Theorem 6.1.2.1. Let ni be the box occupation number, and k the degree of an impure spinor
in d dimensions. Then

k(k − 1)
2

nk +
(k − 1)(k − 2)

2
nk−1 + . . . + n2 = e. (6.1.16)

Proof. Similarly to the proof of theorem 6.1.1.2, we are counting the total contribution from
each edge of a k-simplex from k pure spinors. The right-hand side is obvious as there are (k

2
)

edges each carrying some weight eI so the total contribution is just the sum. On the other hand,
if one fixes nk, meaning there will be k spinors sharing nk directions, then for each direction
there are (k

2
) shared edges. Of course there are nk lots of these and so for k pure spinors one

contributes nk × (nk). Continuing along, one finds the total contribution of edges given by the
sum

(k
2
)nk + . . . + (

k − r
2
)nk−r + . . . + (

2

2
)n2. (6.1.17)

The result follows from equating (6.1.17) to the total contribution from each edge, i.e. the
right-hand side of (6.1.16).

Let us illustrate the relation (6.1.16) on the two examples already considered.

Example 6.1.2.1. For the spinor of purity k = 2 in eight dimensions the two pure constituents
ψA = a1a2a3a4, and ψB = a†

1a
†
2a

†
3a

†
4 have intersection number zero. So, we represent their linear

combination of a simplex consisting of two vertices, and the edge connecting them. The edge
has intersection number zero. This corresponds to a diagram,

A B0
ψA = a1a2a3a4,
ψB = a†

1a
†
2a

†
3a

†
4. (6.1.18)

The only non-vanishing occupation number is n1 = 8, which does not appear in (6.1.16). The
right-hand side is also zero, as the only intersection number is zero in this case.

Example 6.1.2.2. Let us now consider the spinor obtained as the general linear combination
of all possible pure spinors in 8 dimensions. In this case, we get a simplex with 8 vertices, and
the occupation numbers are n4 = 8. There are 28 edges. On one hand, the left-hand side of the
formula dictates that one must have (4 × 3

2
) × 8 = 48. On the other hand, if we consider from

each vertex, there emanates an edge with intersection number zero, as well as six edges with
intersection number two. Then there are 24 edges with intersection number two. Hence, both
sides of equation (6.1.16) match.

6.1.3 Tetrahedral intersection numbers

Definition 6.1.3.1. Let ψ be an impure spinor constituted by k pure spinors. Introduce an
index J ∈ {1, . . . , k(k−1)(k−2)(k−3)/24} that labels the tetrahedra, with a label J that connects
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four vertices α,β, γ, δ. The tetrahedral intersection dimension is defined as the dimension of the
intersection subspace of the null subspaces M(ψα), M(ψβ), M(ψγ), and M(ψδ). Explicitly,

tJ ∶= tα̂βγδ = dim(M(ψα) ∩M(ψβ) ∩M(ψγ) ∩M(ψδ)). (6.1.19)

Define t ∶= ∑J tJ as the tetrahedral intersection number.

We now have a relation similar to (6.1.16)

Theorem 6.1.3.1. Let ni be the box occupation number, and k the degree of an impure spinor
in d dimensions. Then

k(k − 1)(k − 2)(k − 3)
24

nk +
(k − 1)(k − 2)(k − 3)(k − 4)

24
nk−1 + . . . + n4 = t (6.1.20)

We omit the proof of theorem 6.1.3.1, as this is a simple extension of proofs given in theorems
6.1.1.2 and 6.1.2.1.

Example 6.1.3.1. In d = 4 there are 22−1 = 2 Weyl spinors in (6.1.2), so no tetrahedron can be
constructed, thus we consider d = 6. This is the minimum dimension that a tetrahedron can be
constructed as there are 23−1 = 4 Weyl spinors. It is constructive to consider an example via a
table

pure spinor a1 a2 a3 a†
1 a†

2 a†
3

ψ1

ψ2

ψ3

ψ4

Without loss of generality, ψ1 can be declared the vacuum state, so we are left to play with
ψ2,3,4. These spinors must span the whole Weyl space and so, up to permutation, the contents of
the table are all that one can write. Now, reading the table, one sees that the there are 2 boxes
always filled per column, in other words n2 = 6. Furthermore, we see that the edges intersect in 1
dimensions each, so the sum of all edge intersection dimensions is 6. We also notice that n4 = 0,
hence, there is no shared direction between 4 pure spinors. This in turn implies the tetrahedral
intersection number is zero.

Example 6.1.3.2. Consider the complete set of pure spinors in eight dimensions, the next
minimal case after. There are eight pure spinors and n4 = 8. There are in total 70 tetrahedra,
but most have intersection number zero. There are eight tetrahedra with a non-zero intersection
number, and they are given by

a1a2a3a4, a
†
2a

†
3a1a4, a

†
2a

†
4a1a3, a

†
3a

†
4a1a2, all share direction a1.

a1a2a3a4, a
†
1a

†
3a2a4, a

†
1a

†
4a2a3, a

†
3a

†
4a1a2, all share direction a2.

a1a2a3a4, a
†
1a

†
2a3a4, a

†
1a

†
4a2a3, a

†
2a

†
4a1a3, all share direction a3.

a1a2a3a4, a
†
1a

†
2a3a4, a

†
1a

†
3a2a4, a

†
2a

†
3a1a4, all share direction a4.

a†
1a

†
2a

†
3a

†
4, a

†
1a

†
2a3a4, a

†
1a

†
3a2a4, a

†
1a

†
4a2a3, all share direction a†

1.

a†
1a

†
2a

†
3a

†
4, a

†
1a

†
2a3a4, a

†
2a

†
3a1a4, a

†
2a

†
4a1a3, all share direction a†

2.

a†
1a

†
2a

†
3a

†
4, a

†
1a

†
3a3a4, a

†
2a

†
3a1a4, a

†
3a

†
4a1a2, all share direction a†

3.

a†
1a

†
2a

†
3a

†
4, a

†
1a

†
4a2a3, a

†
2a

†
4a1a3, a

†
3a

†
4a1a2, all share direction a†

4.

(6.1.21)

Thus, there are eight tetrahedra with t = 1, and (6.1.20) holds.
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What we have shown is that theorem 6.1.3.1 provides bounds for our counts. Indeed, we
must have t ≤ d−7 in order to obtain a linear combination of pure spinors that cannot be further
reduced, indeed, for d = 8, t = 8 − 7 = 1. As simplicies embed themselves into higher dimensional
ones, for any dimensions higher than d = 8, one always expects this relation to hold.

We will now analyse what all the equations imply together with the constraints on the edge
and tetrahedral intersection numbers. We consider the case of k odd and even separately.

6.1.4 Bounds on The Degree of Impure Spinors

We now analyse the bounds on the degree of impurity of a spinor k. It was noted that considering
k ∈ {0, . . . ,2d−1} is superfluous due to additional conditions on edge intersection numbers, for
example. We begin by analysing the formula in theorem 6.1.2.1. Other formulas we have
generated help us understand the relationships between k and the underlying dimension d. We
will find that for d < 8, there is a neat bound that reproduces standard results in the literature.
For d ≥ 8, the formulas for bounds on purity either break down or become trivially true.

We then appeal to the formula for tetrahedral intersection numbers in theorem 6.1.3.1, similar
to our approach with edge intersection numbers. These formulas are necessary to analyse spinor
orbits in the next chapter 6.2 and need to be divided into two types. The reason is that
intersection numbers can only be of the form d−2p where p ∈ {0, . . . , ⌊d

2
⌋}. Therefore, either one

reduces to a minimal edge number of 0, or 1.

Bounds via Edge Intersection Numbers

Beginning with odd purity, we derive a bound on k dependent on the underlying dimension d as
follows,

Proposition 6.1.4.1. Let ni be the box occupation number, and k the degree of an impure
spinor in d dimensions, such that k > 1 is odd. Then one has, for d < 8,

k ≤ d

8 − d
. (6.1.22)

Proof. As k is odd, k + 1 is even. Furthermore, as all occupation numbers are in pairs related
by the duality, proposition (6.1.1.3), equation (6.1.9) becomes

nk + nk−1 + . . . + n(k+1)/2 = d. (6.1.23)

Then using (6.1.23) with the relation (6.1.16), one can write the formula in (6.1.2.1) in terms of
the higher occupation numbers

e = k(k − 1)
2

nk +
(k − 1)(k − 2)

2
nk−1 + (

(k − 2)(k − 3)
2

+ 1)nk−2

+ . . . + ((k − a)(k − a − 1)
2

+ a(a − 1)
2

)nk−a + . . . +
(k − 1)2

4
n(k+1)/2.

(6.1.24)

Here a goes up to the maximal value amax = (k − 1)/2. Substituting

n(k+1)/2 = d − nk − nk−1 − . . . − n(k+3)/2. (6.1.25)
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in the above equation gives,

e − (k − 1)
2

4
d = (k(k − 1)

2
− (k − 1)

2

4
)nk + (

(k − 1)(k − 2)
2

− (k − 1)
2

4
)nk−1

+ . . . + ((k − a)(k − a − 1)
2

+ a(a − 1)
2

− (k − 1)
2

4
)nk−a + . . .

(6.1.26)

The n(k+1)/2 term has been subtracted, so the last term on the right-hand side is one containing
n(k+3)/2. One can check that the coefficients in front of all the terms on the right-hand side are
positive, and so the left-hand side is a non-negative number. On the other hand, as we have
already discussed, the maximal value of the edge intersection dimensions in 2d dimensions is
d − 4. This is so that no sum of the impure spinor is pure. And so the right-hand side of the
above is less than or equal to

k(k − 1)
2

(d − 4) − (k − 1)
2

4
d = (k − 1)

4
((k + 1)d − 8k). (6.1.27)

This must be non-negative, because the sum on the left-hand side of (6.1.26) is non-negative,
which gives, for k > 1

(k + 1)d − 8k ≥ 0 Ô⇒ k(d − 8) + d ≥ 0. (6.1.28)

Rearranging the equation above to make d the subject achieves the desired result.

The condition that d < 8 is imposed is to ensure k has a value, for example d = 8, and for k
to be positive, for example d > 8. We will incorporate bounds for d ≥ 8 in the next section.

Example 6.1.4.1. For d = 6, one has k ≤ 6
8−6 ≤ 3. This means that one must consider k = 3 and

k = 1. For d = 7, k ≤ 7
8−7 ≤ 7 so one must consider k = 7,5,3 and 1. Finally, for d ≥ 8 the formula

breaks, k must be a positive integer, and there is no condition for the bounds on k.

We now perform a similar analysis for the even number of pure spinors. We have

Proposition 6.1.4.2. Let ni be the box occupation number, and k the degree of an impure
spinor in d dimensions, such that k is even and d < 7. Then one has, for d < 8,

k ≤ 8

8 − d
. (6.1.29)

Proof. Using duality, like was done in the odd case, and (6.1.1.1) one obtains

2nk + 2nk−1 + . . . + 2nk/2+1 + nk/2 = 2d. (6.1.30)

The expression for the intersection number in terms of the independent occupation numbers is
now

e = k(k − 1)
2

nk +
(k − 1)(k − 2)

2
nk−1 + (

(k − 2)(k − 3)
2

+ 1)nk−2

+ . . . + ((k − a)(k − a − 1)
2

+ a(a − 1)
2

)nk−a + . . . +
k(k − 2)

8
nk/2.

(6.1.31)

Substituting
nk/2 = 2d − nk − . . . − 2nk/2+1 (6.1.32)

and taking the factor of dk(k − 2)/4 to the left-hand side gives

e − k(k − 2)
4

d = ((k − 1)(k − 2)
2

− k(k − 2)
4

)nk−1 + . . . (6.1.33)
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and using the fact that the maximal possible value of the edge intersection dimension is d − 4,
hence we get the maximal possible value of the left-hand side to be

k(k − 1)
2

(d − 4) − k(k − 2)
4

d = k
4
(k(d − 8) + 8). (6.1.34)

Thus, as the right-hand side of (6.1.26) is positive,

k(d − 8) + 8 ≥ 0. (6.1.35)

Rearranging for k gives the desired result.

d < 8 was imposed for the same reason as the k odd case. This condition will be relaxed in
the next section.

Example 6.1.4.2. For d = 4,5 this gives k ≤ 2, which tells us that there the only impure spinors
are those consisting of two pure spinors in these numbers of dimensions. This is a known result,
which we have reproduced by our method.

Example 6.1.4.3. For d = 6 we get k ≤ 4, and for d = 7 we get k ≤ 8.

Bounds via Tetrahedral Intersection Numbers

As was explained, to understand d ≥ 8 one appeals to tetrahedral intersection numbers. Let us
now analyse the consequences

Theorem 6.1.4.1. Let ni be the box occupation number, and k the degree of an impure spinor
in d dimensions, such that k > 3 is odd. Then one has

k2(28 − 3d) − 56k + 15d ≤ 0. (6.1.36)

Proof. As was done before use duality and rewrite (6.1.20) as

t = k(k − 1)(k − 2)(k − 3)
24

nk +
(k − 1)(k − 2)(k − 3)(k − 4)

24
nk−1

+ (k − 2)(k − 3)(k − 4)(k − 5)
24

nk−2 +
(k − 3)(k − 4)(k − 5)(k − 6)

24
nk−3

+ ((k − 4)(k − 5)(k − 6)(k − 7)
24

+ 1)nk−4 + . . .

+ ((k − a)(k − a − 1)(k − a − 2)(k − a − 3)
24

+ a(a − 1)(a − 2)(a − 3)
24

)nk−a

+ . . . + (k − 1)(k − 3)
2(k − 5)

96
n(k+1)/2.

(6.1.37)

We then again use (6.1.25). All terms on the right-hand side will contain an occupation number,
except for n(k+1)/2. We then move this term over to the left-hand side, and leave all other
terms, containing the occupation numbers, on the right-hand side. This results in the following
left-hand side of the above equation:

t − (k − 1)(k − 3)
2(k − 5)

96
d. (6.1.38)

This must be non-negative. Recall, the largest value of each tetrahedral intersection dimension
that does not lead to a reduction in the number of pure spinors is d − 7. As the number of
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tetrahedra is k(k − 1)(k − 2)(k − 3)/24, the following inequality must be satisfied

k(k − 1)(k − 2)(k − 3)
24

(d − 7) − (k − 1)(k − 3)
2(k − 5)

96
d ≥ 0. (6.1.39)

For k > 3 this is equivalent to

4k(k − 2)(d − 7) − (k − 3)(k − 5)d ≥ 0, (6.1.40)

or
k2(28 − 3d) − 56k + 15d ≤ 0. (6.1.41)

We do not need to consider the dimensions up to and including d = 6, because we already
know that the maximal value of k in d = 6 is k = 3.

Example 6.1.4.4. The new constraints first arise in d = 7, where we get that k ≤ 5. This
is a constraint stronger than the one we had previously by considering only edge intersection
numbers.

Example 6.1.4.5. A completely new case is d = 8, where we had no constraint coming from
edge intersection numbers. In this case, we have an equivalent inequality 4k2−56k+120 ≤ 0 ⇐⇒
(k − 7)2 − 19 < 0. The largest such integer that satisfies this inequality is k = 11, which gives us
a new bound on the number of pure spinors in the case of sixteen dimensions.

A repetition for k even, as was done with k odd, regarding tetrahedral intersection numbers,
can also be performed. However, this results in a weaker bound. We state and prove it for
completeness.

Theorem 6.1.4.2. Let ni be the box occupation number, and k the degree of an impure spinor
in d dimensions, such that k > 2 is even. Then one has

k2(28 − 3d) − k(112 − 6d) + 12d + 84 ≤ 0. (6.1.42)

Proof. We first rewrite (6.1.20) using duality

t = k(k − 1)(k − 2)(k − 3)
24

nk +
(k − 1)(k − 2)(k − 3)(k − 4)

24
nk−1

+ (k − 2)(k − 3)(k − 4)(k − 5)
24

nk−2 +
(k − 3)(k − 4)(k − 5)(k − 6)

24
nk−3

+ ((k − 4)(k − 5)(k − 6)(k − 7)
24

+ 1)nk−4 + . . .

+ ((k − a)(k − a − 1)(k − a − 2)(k − a − 3)
24

+ a(a − 1)(a − 2)(a − 3)
24

)nk−a

+ . . . + k(k − 2)(k − 4)(k − 6)
192

nk/2.

(6.1.43)

We then substitute the value of nk/2 from (6.1.30), and take the term containing the dimension
2d to the right-hand side. We use the fact that the maximal value of t for each tetrahedron is
t = d − 7. This gives the following inequality that must be satisfied

k(k − 1)(k − 2)(k − 3)
24

(d − 7) − k(k − 2)(k − 4)(k − 6)
96

d ≥ 0. (6.1.44)
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For k > 2 this is equivalent to

4(k − 1)(k − 3)(d − 7) − d(k − 4)(k − 6) ≥ 0. (6.1.45)

expanding above and rearranging gives the desired result.

For d = 7 this gives k ≤ 6, and for d = 8 this gives k ≤ 12. Of course, these are weaker
conditions to what we have already found.

6.1.5 Rotating a spinor

Before stating representatives of orbits, we shall show that for a generic linear combination of
pure spinors, there is a Cartan subalgebra in spin(2d,C) that allows us to rescale the spinor to
an overall factor. We introduced the spin Lie algebra in chapter 3, via creation and annihilation
operators. The Cartan subalgebra in spin(2d) ≅ so(2d) is the maximally commuting subalgebra
generated by d one-dimensional generators for d ≥ 4. The Cartan algebra will be taken as
h = {λi(aia†

i − a
†
iai) ∣ i ∈ {1, . . . , d}}. Since the algebra is commuting, exponentials of the

generators also commute. The generic element has the form

Xh =
d

∑
i

exp(λi(aia†
i − a

†
iai)) =

d

∏
i=1

cosh(λi)I + sinh(λi)(aia†
i − a

†
iai) (6.1.46)

Consider a generic spinor ψ = ∑kα=1 cαψα, where ψα is a pure spinor. The action of Xh on ψ will
only rescale the factors in front of each pure spinor, that is,

Xhψ =
k

∑
α=1

ραcαψα. (6.1.47)

However, ρα can only be of the form cosh(λi) ± sinh(λi) = e±λi , with the sign dependent on the
spinor. We shall show, case-by-case, that one can pick a subset h′ ⊂ h, usually k − 1 generators
of the d generators such that

Xh′ψ = Λ
k

∑
i=1
ψα ∶= ψ̃. (6.1.48)

The reason that want to be able to rescale the coefficients cα is to make computations of the
geometric maps, Bk(ψ) easier, and thus the analyses of the simple parts of their stabilisers.

6.2 Classification and Geometry up to and including 14
dimensions

We now explicitly solve the combinatorial problem in each given dimension, listing the possible
graphs allowed by the combinatorial analysis, demonstrating a possible spinor representing each
graph, and finding the (simple parts of the) stabiliser. In this section, we reproduce the known
classification of orbits up to and including fourteen dimensions.

6.2.1 Eight dimensions

It is well-known that every Weyl spinor in dimensions two, four, and six is pure, with stabiliser
sl(d,C). The first non-trivial problem arises in dimension eight. From the general analysis
above, we expect to be able to construct an impure spinor of purity two in this case. We are
thus looking at k = 2. Proposition 6.1.1.2 gives 2n2 +n1 = 8. Note that as we only have two pure
spinors, so n2 = e, where e is the intersection number. But given that the largest value of e is
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d − 4 = 4 − 4 = 0, we must have n2 = 0. So, the only solution is given by two pure spinors whose
null subspaces are complementary

ψ1 ψ20
ψ1 = a1a2a3a4,
ψ2 = a†

1a
†
2a

†
3a

†
4. (6.2.1)

Define ψ = c1ψ1 + c2ψ2, for ψ1,2 as above. Then one has

Proposition 6.2.1.1. Take ψ in (6.2.1). Then the stabiliser of ψ̃ contains Spin(7,C).

Proof. First, we show there exists a Cartan subalgebra Xh ⊂ spin(8,C) such that ψ ↦ ψ̃ =
Λ(ψ1 +ψ2),for some Λ ∈ C to be determined. Choose h′ = λ1(a1a†

1 − a
†
1a1). Acting Xh′ on ψ and

imposing that it rescaled by an overall factor Λ, one has the following system of equations

λ1 = ln(Λ/c1), and − λ1 = ln(Λ/c2). (6.2.2)

Solving the above gives Λ2 = c1c2. More specifically, λ1 = ln(√c2/
√
c1) or λ1 = ln(√c1/

√
c2)

depending on the sign of the square root of Λ. Hence, for a choice of λ1, we can determine the
factor Λ.

To understand the simple part of stabiliser of this spinor, the most convenient strategy is to
compute all non-vanishing spinor bilinears Bk(ψ). In eight dimensions only B4(ψ1,2) /= 0. Each
of these 4-forms is decomposable and is given by the product of the null directions spanning the
null subspace of ψ1,2

B4(ψ1) =m1 ∧m2 ∧m3 ∧m4, B4(ψ2) = m̄1 ∧ m̄2 ∧ m̄3 ∧ m̄4. (6.2.3)

Recall, (6.1.7), mi are the coordinates representing the annihilation operator in the basis ex-
pansion, and similarly, m̄i are the coordinates representing the creation operator. Given two
pure spinors as above, we also have the following non-vanishing images of the geometrics maps:
B0(ψ1, ψ2), B2(ψ1, ψ2), B4(ψ1, ψ2) as,

B0(ψ1, ψ2) = Λ2, B2(ψ1, ψ2) = Λ2ω, B4(ψ1, ψ2) =
Λ2

2
ω ∧ ω, (6.2.4)

where
ω =m1 ∧ m̄1 +m2 ∧ m̄2 +m3 ∧ m̄3 +m4 ∧ m̄4. (6.2.5)

This shows that

B4(ψ̃) = Λ2 (m1 ∧m2 ∧m3 ∧m4 + m̄1 ∧ m̄2 ∧ m̄3 ∧ m̄4 +
1

2
ω ∧ ω) . (6.2.6)

It is not difficult to see that ψ is a multiple of a unit spinor whose B4 is the Cayley form in 8
dimension. Therefore, the stabiliser of ψ contains Spin(7,C).

6.2.2 Ten dimensions

Again, we know that the only possible impure spinor is one with k = 2. We have 2n2 + n1 = 10
and n2 = e. The only possible value for e is d − 4 = 1 (the intersection number must take odd
values for odd d). Thus, the only possible solution is n2 = 1 and n1 = 8. A possible solution
representing this is two pure spinors whose null subspaces are

ψ1 ψ21
ψ1 = a1a2a3a4a5,
ψ2 = a†

1a
†
2a

†
3a

†
4a5. (6.2.7)

We have chosen the null direction common to both pure spinors to be a5. It is clear that the
spinor given by a linear combination of these two pure spinors is rooted in the unique impure
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spinor in 8 dimensions, as described in proposition 6.2.1.1. The additional dimension does not
play any role. The rotation of this spinor to one with an overall scale factor is identical to the
one described earlier.

Below, we will see that there is a similar impure spinor of purity two in any dimension. Its
stabiliser contains Spin(7), which leaves the Cayley form in 8 dimensions invariant.

6.2.3 Twelve Dimensions

We expect to consider the degree of impure spinors, in twelve dimensions, k ≤ 3. However, we
also need to consider the case k = 4, as the elimination of this case, as not independent, is what
leads to the bound provided by the tetrahedral intersection number, t ≤ d − 7, in the first place.

Impurity of degree 2

The equation relating the occupation numbers is 2n2 + n1 = 12. We also have n2 = e, and the
dimensions of intersecting edges are d − 4 = 6 − 4 = 2, and d − 6 = 6 − 6 = 0. When the edge
intersection number is e = 2, we have n2 = n0 = 2, n1 = 8. A possible representative of such a pair
of pure spinors is

ψ1 ψ22
ψ1 = a1a2a3a4a5a6,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6. (6.2.8)

Define ψA = ∑2
α=1 cαψα, for ψ1,2 as above. Then one has

Proposition 6.2.3.1. Take ψA in (6.2.8). Then, the stabiliser of ψA contains Spin(7,C) ×
SL(2,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(12,C) such that ψA ↦ ψ̃A = Λ∑2
α=1 ψα,

for some Λ ∈ C. Now, computing B6(ψ̃A) shows it proportional to the product of the Cayley form,
Φ, invariant under the action of Spin(7), in the 8-dimensional space spanned by m1,2,4,5 and
m̄1,2,3,4, and the wedge product of the null directions m̄5,6 invariant under the action SL(2,C).
Finally, at the level of the Lie algebra, the algebras commute. Thus, the stabiliser contains
Spin(7,C) × SL(2,C).

When the dimension of the intersection is zero, we have n1 = 12 and so the pure spinors are
complementary,

ψ1 ψ20
ψ1 = a1a2a3a4a5a6,
ψ2 = a†

1a
†
2a

†
3a

†
4a

†
5a

†
6. (6.2.9)

Define ψB = ∑2
α=1 cαψα, for ψ1,2 as above. Then one has

Proposition 6.2.3.2. Take ψB in (6.2.9). Then, its stabiliser contains sl(6,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(12,C) such that ψB ↦ ψ̃B = Λ∑2
α=1 ψα,

for some Λ ∈ C. Construct the geometric map B2(ψ̃B) = Λ2(m1 ∧ m̄1 + . . .+m6 ∧ m̄6). Now, any
g ∈ SL(6,C) acts as g ⋅mi for i ∈ {1, . . . ,6}, and simultaneously, g−1 ∈ SL(6,C) acts as g−1 ⋅ m̄i

for i ∈ {1, . . . ,6}. Thus, B2(ψB) remains invariant under the overall action of SL(6,C).

One sees that the spinors representatives above are the only two possible solutions with purity
k = 2.

Impurity of Degree 3

Now consider possible solutions arising with a triple of pure spinors. The occupation numbers
are related via n3 + n2 = 6. If we denote the edge intersection dimensions by e1, e2, e3, we have

3n3 + n2 = e1 + e2 + e3. (6.2.10)
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Using the relation between n2, n3 one can write

n3 =
1

2
(

3

∑
I=1

eI − 6) . (6.2.11)

At the same time, the maximal possible edge intersection number in this number of dimensions
is e = 2. This means that there is a unique solution in the case of k = 3 — all edge intersection
dimensions having value e1,2,3 = 2. This gives n3 = n0 = 0, so that n2 = n1 = 6. A possible
representative is the following list of 3 pure spinors

ψ1

ψ2

ψ3

2 2

2

ψ1 = a1a2a3a4a5a6,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6,

ψ3 = a1a2a†
3a

†
4a

†
5a

†
6.

(6.2.12)

Define ψ = ∑3
α=1 cαψα where ψα are given as the pure spinors above. One then has

Proposition 6.2.3.3. Take ψ in (6.2.12). Then, its stabiliser contains Sp(6,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(12,C) such that ψ ↦ ψ̃ = Λ∑2
α=1 ψα,for

some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra h′ ⊂ h
generated by {λ1(a1a†

1 − a
†
1a1), λ5(a5a

†
5 − a

†
5a5)}. Solving Xh′ψ = ψ̃, one derives the conditions

Λ2 = c2c3, λ1 =
1

2
ln(c2

c1
) , and λ5 =

1

2
ln(c3

c1
) . (6.2.13)

Thus, B2(ψ̃) is given as

B2(ψ̃) = −2Λ2(m̄5 ∧ m̄6 + m̄1 ∧ m̄2 +m1 ∧m2). (6.2.14)

B2(ψ̃) is a symplectic form constructed from a basis spanned by {m1, m̄1,m2, m̄2, m̄5, m̄6}, hence
the subgroup that leaves this differential form invariant is Sp(6,C).

Impurity of Degree 4

The relation between the occupation numbers is 2n4 + 2n3 + n2 = 12. Furthermore, the relation
between the occupation numbers and the edge intersection number of the resulting tetrahedron
is

6n4 + 3n3 + n2 =
6

∑
I=1

eI . (6.2.15)

We now express n2 via n4, n3 and substitute into the above equation to get

4n4 + n3 =
6

∑
i=1
ei − 12, (6.2.16)

The maximal possible value of the edge intersection number is e = 2, and so the maximal value
of the sum of the intersection numbers is 12. We thus see that there is a single solution of the
combinatorial problem in this case

n4 = n0 = 0, n3 = n1 = 0, and n2 = 12. (6.2.17)



91

A possible representative of this solution is the following list of four pure spinors

ψ1

ψ2

ψ3

ψ4

2 2

22

2

2
ψ1 = a1a2a3a4a5a6,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6,

ψ3 = a1a2a†
3a

†
4a

†
5a

†
6,

ψ4 = a†
1a

†
2a3a4a

†
5a

†
6.

(6.2.18)

To understand the geometry of this orbit, we compute B2(ψ), where ψ = ∑4
α=1 cαψα.

Proposition 6.2.3.4. Take ψ in 6.2.18. Then its stabiliser contains SL(6,C).

Proof. Given that ψ is a linear combination of 4 pure spinors, and B2 vanishes for each pure
spinor (only B6 is different from zero), the non-zero contributions to B2(ψ) come from pairs
of different pure spinors. However, each such pair intersects precisely in two dimensions, and
B2(ψα, ψβ), for two pure spinors that intersection in two dimensions, is a multiple of the wedge
product of the corresponding null directions. It is then clear that B2(ψ) is given by the following
six terms

B2(ψ) = c1c3a1a2 + c1c4a3a4 + c1c2a5a6 + c2c4a†
1a

†
2 + c2c3a

†
3a

†
4 + c3c4a

†
5a

†
6. (6.2.19)

Let us consider the terms involving only the directions 1,2, i.e., c1c3a1a2+c2c4a†
1a

†
2. We want to

show that there is a different canonically normalised null basis b1, b2, b
†
1, b

†
2 in the space spanned

by a1, a2, a
†
1, a

†
2, such that

c1c3a1a2 + c2c4a†
1a

†
2 = λ(b1b

†
1 + b2b

†
2), (6.2.20)

where λ is some constant. We define

b1 = αa1 + βa†
2, b†1 = γa2 + δa

†
1, b2 = αa2 − βa

†
1, b†2 = δa

†
2 − γa1,

which satisfies
g(b1, b2) = g(b†1, b

†
2) = 0, g(b1, b†1) = g(b2, b

†
2) = αδ + βγ. (6.2.21)

It is then easy to check that the 2-form b1b
†
1 + b2b

†
2, where the wedge product of directions is

assumed, does not have any a1a
†
1, a2a

†
2 terms when αδ = βγ. Hence,

b1b
†
1 + b2b

†
2 = 2αγa1a2 − 2βδa

†
1a

†
2. (6.2.22)

We then choose δ = (2α)−1, γ = (2β)−1 to have the canonical normalisations. Then (6.2.20) holds
for

α2

β2
= −c1c3

c2c4
, λ2 = −c1c2c3c4. (6.2.23)

Thus, (6.2.20) is indeed possible for an appropriate choice of a canonically normalised null basis

in the space spanned by a1, a2, a
†
1, a

†
2. This means that there exists another canonical basis

b1, b
†
1, . . . , b6, b

†
6 in C12 such that

B2(ψ)∝ b1 ∧ b†1 + . . . + b6 ∧ b
†
6. (6.2.24)
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Thus B(ψ) as in (6.2.24) is invariant under the action of sl(6,C), see proposition 6.2.3.2.

This shows that the purity four spinor in twelve dimensions is in the same Spin(12) orbit
as the purity two spinor (6.2.9) with the stabiliser sl(6,C). Which implies that the tetrahedral
intersection number in 6 dimensions must be zero. This is important in the reduction of orbits
that we will find in higher dimensions. Keep this in mind as we look for something similar in
fourteen dimensions.

6.2.4 Fourteen Dimensions

We now consider the more difficult case of fourteen dimensions. As we know, just taking the edge
intersection number constraints, we have the upper bound k ≤ 8. However, this is not optimal
because there is also the tetrahedral intersection number constraint. This arises because the
maximal tetrahedral intersection number for d = 7 is zero. Taking into account these constraints,
we have seen that k ≤ 6 in this number of dimensions. As before, we consider different values of
k case by case.

Impurity of Degree 2

The occupation numbers are n2, n1, n0, which satisfy n2 = n0. The only equation one can write
is 2n2 + n1 = 14. We also have n2 = e, the dimension of the intersecting null subspace. This
dimension can take values 7 − 4 = 3 and 7 − 6 = 1. In the first case, we have n2 = n0 = 3, n1 = 8.
A possible representative of the solution is

ψ1 ψ23
ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6a7. (6.2.25)

Define ψA = ∑2
α=1 cαψα, for ψ1,2 as above. Then one has

Proposition 6.2.4.1. Take ψA in (6.2.25). Then, its stabiliser contains Spin(7,C) × SL(3,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(14,C) such that ψA ↦ ψ̃A = Λ∑2
α=1 ψα,

for some Λ ∈ C. Notice that ψA is the same type of spinor as in 8 dimension, (6.2.1.1), except
there are an extra 3 null directions. Hence, B7(ψ̃A) is the wedge product of the Cayley form,
invariant under Spin(7), in the directions m1,2,3,4, and m̄1,2,3,4, and the wedge product of the
null directions m5,6,7, invariant under the action of SL(3,C). Thus, the stabiliser contains
Spin(7,C) × SL(3,C).

When the dimension of the intersecting null subspace is e = 1 we have n2 = n0 = 1 and n1 = 12.
A possible pair of spinors realising this solution is

ψ1 ψ21
ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a

†
5a

†
6a7. (6.2.26)

Define ψB = ∑2
α=1 cαψα, for ψ1,2 as above. Then one has

Proposition 6.2.4.2. Take ψB in (6.2.26). Then, its stabiliser contains SL(6,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(14,C) such that ψB ↦ ψ̃B = Λ∑2
α=1 ψα,

for some Λ ∈ C. Notice that ψB is the same type of spinor as the 12 dimensional spinor (6.2.9),
except there is an extra null oscillator, a7, present, that plays no role. Therefore, the stabiliser
contains SL(6,C).
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Impurity of Degree 3

There is a single independent equation n3+n2 = 7 in this case, which in particular implies n2 ≤ 7.
As before, we envisage drawing a triangle with the 3 spinors sitting at its vertices, and putting
the pairwise intersection numbers on the edges. It is clear that

3n3 + n2 =
3

∑
i=1
ei ∶= e, (6.2.27)

which, rewritten in terms of n3, becomes

n3 =
1

2
(

3

∑
i=1
ei − 7). (6.2.28)

Suppose that e = 9. Then the maximal possible value of each edge intersection dimension
is 3, and so the maximal value of n3 is 1, implying n2 = 6. A possible triple of pure spinors
realising this solution is

ψ1

ψ2

ψ3

3 3

3

ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6a7,

ψ3 = a1a2a†
3a

†
4a

†
5a

†
6a7.

(6.2.29)

It is clear that this is just the 12 dimensional solution (6.2.12), with one extra oscillator added.
Hence, the stabiliser contains Sp(6,C).

The only other possible solution in the purity three case is e1 = e2 = 3, e3 = 1, implying the
edge intersection number to be 7. This gives n3 = n0 = 0, and thus n2 = n1 = 7. A possible
representative of this solution is

ψ1

ψ2

ψ3

3 3

1

ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6a7,

ψ3 = a†
1a

†
2a

†
3a4a

†
5a

†
6a

†
7.

(6.2.30)

Define ψ = ∑3
α=1 cαψα, where ψα are the pure spinors above. One then has

Proposition 6.2.4.3. Take ψ in (6.2.30). Then, its stabiliser contains SL(3,C) × SL(3,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(14,C) such that ψ ↦ ψ̃ = Λ∑2
α=1 ψα,for

some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra h′ ⊂ h
generated by {λ1(a1a†

1 − a
†
1a1), λ5(a5a

†
5 − a

†
5a5)}. Solving Xh′ψ = ψ̃, one derives the conditions,

Λ2 = c1c3, λ1 =
1

2
ln(c1

c2
) , and λ5 =

1

2
ln(c3

c2
) . (6.2.31)
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Computing B3(ψ̃) gives

B3(ψ̃) = −2Λ2(m̄5 ∧ m̄6 ∧ m̄7 +m1 ∧m2 ∧m3 −
1

2
m̄4 ∧ λ). (6.2.32)

Where λ = m̄1 ∧m1 + . . . + m̄7 ∧m7. It is clear that λ is stabilised by SL(6,C). But notice
that m̄5 ∧ m̄6 ∧ m̄7 and m1 ∧m2 ∧m3, individually, are top forms in 3 dimensions. Thus, they
are both stabilised by two separate SL(3,C)s inside SL(6,C). Hence, the stabiliser contains
SL(3,C) × SL(3,C).

Impurity of Degree 4

The equation relating the occupation numbers in this case reads 2n4+2n3+n2 = 14. The relation
to the edge intersection number is given by

6n4 + 3n3 + n2 =
6

∑
i=1
ei ∶= e. (6.2.33)

Expressing n2 = 14 − 2n3 − 2n4, we get

4n4 + n3 =
6

∑
i=1
ei − 14. (6.2.34)

When the edge intersection dimensions are maximal, all have value 3, we have two possible
solutions. In the first case n4 = n0 = 0, n3 = n1 = 4, and so n2 = 6. A possible representative of
this solution is

ψ1

ψ2

ψ3

ψ4

3 3

33

3

3
ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6a7,

ψ3 = a†
1a2a

†
3a4a5a

†
6a

†
7,

ψ4 = a1a†
2a

†
3a4a

†
5a

†
6a7.

(6.2.35)

Define ψA = ∑4
α=1 cαψα, where ψα are the pure spinors above. One then has

Proposition 6.2.4.4. Take ψA in (6.2.35). Then, its stabiliser contains SL(4,C).

Proof. First, there exists a Cartan subalgebraXh ⊂ spin(14,C) such that ψA ↦ ψ̃A = Λ∑2
α=1 ψα,for

some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra h′ ⊂ h
generated by {λ1(a1a†

1 − a
†
1a1), λ2(a2a

†
2 − a

†
2a2), λ3(a3a

†
3 − a

†
3a3)}. Solving Xh′ψA = ψ̃A, one

derives the conditions

Λ2 = c1c2, λ1 =
1

2
ln(c2

c4
) , λ2 =

1

2
ln(c2

c3
) , and λ3 =

1

2
ln(c3c4

c1c2
) . (6.2.36)

Computing B3(ψ̃A) gives

B3(ψ̃A) = −2Λ2(m̄5 ∧ m̄6 ∧ m̄7 − m̄2 ∧ m̄4 ∧ m̄5 + m̄1 ∧ m̄4 ∧ m̄7

−m1 ∧m3 ∧ m̄5 −m2 ∧m3 ∧ m̄7 + n3 ∧m6 ∧ m̄4).
(6.2.37)
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Consider the following vectors,

vT = (m3 ∧ m̄5 m3 ∧ m̄7 −m3 ∧ m̄4 −m̄4 ∧ m̄7 m̄4 ∧ m̄5 m̄5 ∧ m̄7) ,and
wT = (m1 m2 m6 m̄1 m̄2 m̄6.)

(6.2.38)

Then v ∈ Λ2(C4) ≅ C6 and w ∈ C6. One can act on both vectors by the same transformation in,
sl(4,C) ≅ so(6,C) and thus vTw = B3(ψ̃A) remains invariant under the action. So the stabiliser
contains SL(4,C).

In the other case, n4 = 1, n3 = 0, implying n2 = 12. It is clear that in this solution, all
four pure spinors share a common null direction. In other words, the tetrahedral intersection
number, t, has value 1. However, this is not allowed by our tetrahedral intersection constraint
t ≤ d− 7. Alternatively, we are effectively dealing with a purity four spinor in 12 dimensions. As
we know, this purity four spinor is actually a purity two spinor. Therefore, the solution in this
case is in the same Spin(14) orbit as the purity two solution with an intersection number of one.
Consequently, we will not consider it any further.

Let us also find solutions with the edge intersection numbers less than maximal. When there
is a single edge intersection dimension with value one, we have ∑6

i=1 ei = 16. In this case, we
necessarily have n4 = 0, implying that n3 = 2, n2 = 10. A possible representative of this solution
is

ψ1

ψ2

ψ3

ψ4

3 3

31

3

3
ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a4a5a6a

†
7,

ψ3 = a1a2a†
3a

†
4a

†
5a6a

†
7,

ψ4 = a†
1a

†
2a

†
3a

†
4a

†
5a

†
6a7.

(6.2.39)

Define ψB = ∑4
α=1 cαψα, where ψα are the pure spinors above. One then has

Proposition 6.2.4.5. Take ψB in (6.2.26). Then, its stabiliser contains SL(2,C) × Sp(4,C).

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(14,C) such that ψB ↦ ψ̃B = Λ∑2
α=1 ψα,

for some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra
h′ ⊂ h generated by {λ2(a2a†

2 − a
†
2a2), λ3(a3a

†
3 − a

†
3a3), λ4(a4a

†
4 − a

†
4a4)}. Solving Xh′ψ = ψ̃B , one

derives the conditions

Λ2 = c1c4, λ2 =
1

2
ln(c4

c3
) , λ3 =

1

2
ln(c2c3

c1c4
) , and λ4 =

1

2
ln(c4

c2
) . (6.2.40)

Now, consider the subalgebra χ ⊂ spin(14,C) that stabilises ψ̃B . By computing, χψ̃B = 0 one
finds the stabiliser to split as χ = sl(2,C) ⊕ sp(4,C) ⊕ h. h is a remaining part of the stabiliser
that isn’t sl(2,C) or sp(4,C). Even further, sl(2,C) and sp(4,C) are given as creation and
annihilation operators as:

sp(4,C) =Span{a1a†
4 − a5a

†
2, a4a

†
1 − a2a

†
5, a5a

†
1 + a2a

†
4, a1a

†
5 + a4a

†
2, a1a

†
1 − a2a

†
2, a4a

†
4 − a5a

†
5,

a1a
†
2, a2a

†
1, a4a

†
5, a5a

†
4}, and

sl(2,C) =Span{a1a†
1 + a2a

†
2 + a4a

†
4 + a5a

†
5 − 2a3a

†
3 − 2a6a

†
6,2a6a

†
7 − a7a3 + a

†
1a

†
2 + a

†
4a

†
5,

− a7a†
6 + 2a

†
3a

†
7 + a1a2 + a4a5}.

(6.2.41)
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It can easily be shown that these two subalgebras commute. On top of that, computing B3(ψ̃B)
gives

B3(ψ̃B) = −2Λ2((n1 ∧n2 +n4 ∧n5)∧n3 − (n̄1 ∧ n̄2 + n̄4 ∧ n̄5)∧ n̄6 + n̄6 ∧n3 ∧n7 + n̄7 ∧λ). (6.2.42)

Where λ = n̄1n1 + . . . + n̄7n7. It is not difficult to check that the actions by the generators in
sl(2,C), or sp(4,C) kill B3(ψ̃B). Thus, the simple part of the stabilising subgroup is SL(2,C)×
Sp(4,C).

Finally, when ∑6
i=1 ei = 14, then there are two edge intersection dimension with value one,

i.e. n4 = n3 = 0, n2 = 14 with possible representative of this solution as

ψ1

ψ2

ψ3

ψ4

3 1

31

3

3
ψ1 = a1a2a3a4a5a6a7,
ψ2 = a†

1a
†
2a

†
3a

†
4a5a6a7,

ψ3 = a1a2a3a†
4a

†
5a

†
6a

†
7,

ψ4 = a†
1a

†
2a

†
3a4a

†
5a

†
6a

†
7.

(6.2.43)

Define ψC = ∑4
α=1 cαψα, where ψα are the pure spinors above. One then has

Proposition 6.2.4.6. Take ψC in (6.2.43). Then, its stabiliser contains G2 ×G2.

Proof. First, there exists a Cartan subalgebraXh ⊂ spin(14,C) such that ψC ↦ ψ̃C = Λ∑2
α=1 ψα,for

some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra h′ ⊂ h
generated by {λ3(a3a†

3−a
†
3a3, λ4(a4a

†
4−a

†
4a4, λ5(a5a

†
5−a

†
5a5)}. Solving Xh′ψC = ψ̃C , one derives

the conditions

Λ4 = c1c
2
2c3
c4

, λ4 =
1

2
ln(c3c2

c1c4
) , λ5 =

1

2
ln(c3c4

c1c2
) , and λ3 =

1

2
ln( Λ2

c1c3
) . (6.2.44)

Computing B3(ψ̃C) gives

B3(ψ̃C) = 2Λ2(1
2
m4 ∧ λ +m1 ∧m2 ∧m3 +m5 ∧m6 ∧m7

− 1

2
m̄4 ∧ λ − m̄1 ∧ m̄2 ∧ m̄3 − m̄5 ∧ m̄6 ∧ m̄7).

(6.2.45)

One now makes the following transformation,

mi ∶= xi + x̄i, and m̄i ∶= xi − x̄i for i ≠ 4. (6.2.46)

This results in the following:

B3(ψ̃C) = Λ2(x̄1 ∧ x̄2 ∧ x̄3 + x̄1 ∧ (x2 ∧ x3 − m̄4 ∧ x1)
+ x̄2 ∧ (x3 ∧ x1 − m̄4 ∧ x2) + x̄3 ∧ (x1 ∧ x2 − m̄4 ∧ x3)

+ x5 ∧ x6 ∧ x7 + x5 ∧ (x̄6 ∧ x̄7 +m4 ∧ x̄5)
+ x6 ∧ (x̄7 ∧ x̄5 +m4 ∧ x̄6) + x7 ∧ (x̄5 ∧ x̄6 +m4 ∧ x̄7)).

(6.2.47)

The first line exhibits a G2 structure, while the last line exhibits a G2 structure of a different
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type. This shows that the stabiliser contains given by G2 ×G2.

We have exhausted all combinations for degree 4 spinors. We are left now only to discuss
k = 5.

Impurity of Degree 5

The relation between the occupation numbers is n5 + n4 + n3 = 7. The relation with the edge
intersection number is

10n5 + 6n4 + 3n3 + n2 =
10

∑
i=1
ei, (6.2.48)

where of course n2 = n3 by duality. Eliminating n3 = 7 − n5 − n4, we get

6n5 + 2n4 =
10

∑
i=1
ei − 28. (6.2.49)

This immediately shows, for the right-hand-side above to be non-negative, the edge intersection
number must have value at least 28.

The largest possible value of the edge intersection number is 30. This means that necessarily
n5 = 0. We then have a possible solution with all 10 edge intersection dimensions with value
3 and n4 = 1. However, n4 = 1 means that there are four pure spinors that all share a single
common null direction. As we know, this means that these four pure spinors effectively live in
12 dimensions, where they correspond to a reducible configuration of purity two. So, this is not
a new orbit.

The other possibility is when there are 9 edges with an edge intersection dimension value of
3 , and the last remaining one with edge intersection dimension with value 1. This gives the
solution n5 = n4 = n0 = n1 = 0, n3 = n2 = 7. A possible representative of this solution is

A

B

C

D

E

3

3

3

3

3 3

1

3
3

3

ψA = a1a2a3a4a5a6a7,
ψB = a†

1a
†
2a

†
3a

†
4a5a6a7,

ψC = a†
1a2a3a

†
4a5a

†
6a

†
7,

ψD = a1a†
2a3a

†
4a

†
5a6a

†
7,

ψE = a†
1a

†
2a

†
3a4a

†
5a

†
6a

†
7.

(6.2.50)

Define ψ = ∑5
α=1 cαψα, where ψα are the pure spinors above. One then has

Proposition 6.2.4.7. Take ψ in (6.2.50). Then its stabiliser contains G2.

Proposition 6.2.4.8.

Proof. First, there exists a Cartan subalgebra Xh ⊂ spin(14,C) such that ψ ↦ ψ̃ = Λ∑2
α=1 ψα,for

some Λ ∈ C to be determined. We shall choose the subalgebra of the Cartan subalgebra h′ ⊂ h
generated by {λ1(a1a†

1−a
†
1a1), λ2(a2a

†
2−a

†
2a2), λ3(a3a

†
3−a

†
3a3), λ4(a4a

†
4−a

†
4a4)}. Solving Xh′ψ =

ψ̃, one derives the conditions

Λ2 = c1c2, λ1 =
1

2
ln(c2c4

c25
) , λ2 =

1

2
ln(c4c5

c1c3
) ,

λ3 =
1

2
ln(c1c2

c4c5
) , and, λ4 =

1

2
ln(c2

c5
) .

(6.2.51)
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Computing B3(ψ̃) gives

B3(ψ̃) = 2Λ2(1
2
m̄4 ∧ λ − m̄5 ∧ m̄6 ∧ m̄7 + m̄2 ∧ m̄3 ∧ m̄5 − m̄1 ∧ m̄3 ∧ m̄6

−m1 ∧m2 ∧m3 +m6 ∧m7 ∧m1 −m5 ∧m7 ∧m2

+m4 ∧ (m7 ∧ m̄3 + n1 ∧ m̄5 +m2 ∧ m̄6)).

(6.2.52)

Where λ = m̄1 ∧m1 + . . . + m̄7 ∧m7. Introduce the following coordinate change

xi =mi +mi+4, xi+4 = xi =mi −mi+4, x̄i = m̄i + m̄i+4, x̄i+4 = m̄i =mi − m̄i+4

for i ∈ {1,2,3}, and t =m4 + m̄4, and t̄ =m4 − m̄4.
(6.2.53)

In this basis, the 3-form becomes

B3(ψ̃) = Λ2(t̄ ∧ (x̄1 ∧ x1 + x̄2 ∧ x2 + x̄3 ∧ x3) + x1 ∧ x2 ∧ x3 + x̄1 ∧ x̄2 ∧ x̄3

− t ∧ (x̄5 ∧ x5 + x̄6 ∧ x6 + x̄7 ∧ x7) + x5 ∧ x6 ∧ x7 + x̄5 ∧ x̄6 ∧ x̄7

− 1

4
(x1 − x5) ∧ (x2 − x6) ∧ (x3 − x7) −

1

4
(x̄1 + x̄5) ∧ (x̄2 + x̄6) ∧ (x̄3 + x̄7))

(6.2.54)

The 3-form above shows ψ̃ is stabilised by a Lie subalgebra in g2 × g2 ∶= g2 × g′2. Furthermore,
g2 = sl(3,C)⊕ sl(3,C)⊥ (g′2 = sl(3,C)′ ⊕ sl(3,C)′⊥), where sl(3,C)⊥ (sl(3,C)′⊥) is the orthogonal
6-dimensional Lie algebra inside g2 (g′2). The last line in B3(ψ̃) shows that sl(3,C) ⊂ g2 must be
identified with sl(3,C)′ ⊂ g′2. Therefore, the Lie subalgebra that stabilises B3(ψ̃) is isomorphic
to h = sl(3,C) ⊕ sl(3,C)⊥ ⊕ sl(3,C)′⊥. However, h is not a Lie subalgebra unless one identifies
sl(3,C)⊥ ⊂ g2 with sl(3,C)′⊥ ⊂ g′2. This results in h ≅ sl(3,C)⊕sl(3,C)⊥, that is to say, a diagonal
copy of g̃2 ⊂ g2 × g′2.

The G2 stabiliser contains all other stabilisers unique to Spin(14), except the G2 ×G2 sta-
biliser. Indeed, remove the edge with weight 1 and the two vertices sharing this edge in (6.2.50),
this recovers the SL(6) stabiliser. If, however, one removes one of the edges with weight 3 and
the two vertices sharing this edge in (6.2.50), then one recovers the Sp(4) × SL(2) stabiliser.
There is no way to construct a degeneration to G2 ×G2 via the method of removing an edge and
corresponding vertices.

Impurity of Degree 6

The relation between the occupation numbers gives n3 = 14 − 2n6 − 2n5 − 2n4. Relating this to
the edge intersection number gives

15n6 + 10n5 + 7n4 + 3n3 =
15

∑
i=1
ei, (6.2.55)

where n4 = n2 by duality. Substituting the expression for n3 in terms of n4,5,6 we get

9n6 + 4n5 + n4 =
15

∑
i=1
ei − 42. (6.2.56)

The largest possible value of the edge intersection number is 45. This shows that n5 = n6 = 0.
When the sum of the edge intersection dimensions is 45 we get n4 = n2 = 3 and n3 = 8. However,
as we already know from the previous considerations, we cannot have n4 different from zero, as
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then the tetrahedral intersection number is different from zero. So, the sum of edge intersection
number must be 42. However, this is not possible, because its possible values are 45,43,41, . . .
So, there is no solution with k = 6 that gives rise to an irreducible configuration of pure spinors
in this case.
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Chapter 7

Introduction

The goal of this part of the thesis is to study classical G-structures to construct natural second-
order partial differential equations using canonical differential forms, inspired by Plebanksi. In
low enough dimensions, the only spinorial G-structures we can construct are classical ones,
since all Weyl spinors are pure. Indeed, we shall consider SU(2)- and SU(3)-structures in 4
and 6 dimensions, respectively. The integrability of these structures is equivalent to parallel
spinors on the manifold, which is equivalent to covariantly constant canonical differential forms
of the spinorial G-structures, which is equivalent to holonomy group contained in a specific
G ⊂ Spin(2n). The aforementioned is measured through a tool called intrinsic torsion.

7.0.1 G-structures, Holonomy & Intrinsic Torsion

We define spinorial G-structures, and how one can link them to the study of integrable G-
structures through the use of intrinsic torsion.

Definition 7.0.1.1. Let M be a spin manifold of dimension n. A spinorial G-structure, on a
manifold M , is the reduction from the principal Spin(n)-spin-frame bundle to a Spin(n) ⊃ G-
spin-frame subbundle P . Then, let ρ ∶ G → GL(S) be the spin representation of G on a finite
dimensional space S. Since, G acts freely on P ×S on the right, naturally by the principal bundle
action on the first coordinate and by ρ on the second coordinate,

(u,ψ) ⋅ g = (u ○ g, ρ(g−1) ⋅ ψ), for u ∈ P, and ψ ∈ S. (7.0.1)

The quotient space, ρ(P ) ∶= (P × S)/G, is called the associated spinor bundle to the spinorial
G-structure.

Indeed, P /G ≅ M , via the free principal bundle action right-action. Hence, the map π ∶
ρ(P ) ∶= (P ×V )/G→ P /G is just a projection from ρ(P ) toM , with fibres the finite dimensional
representation S.

In this thesis, we take S = Λ (C⌊n2 ⌋), called the Dirac representation. Whenever possible, we
instead take the Weyl, Majorana or Majorana-Weyl representations inside the Dirac represen-
tation in the definition above.

Holonomy, Parallel Spinors, and Integrability

We begin by recalling Berger’s celebrated classification of Holonomy groups on an oriented
Riemannian manifold [Ber60].

Theorem 7.0.1.1. Let M , be an oriented simply-connected, irreducible (not locally a product
space), and non-symmetric (not locally a symmetric space) n-dimensional Riemannian manifold.
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Then G must equal

SO(n), U(n
2
) , SU(n

2
) , Sp(n

4
)Sp(1), Sp(n

4
) , G2 (n = 7), or Spin(7) (n = 8). (7.0.2)

This is a list of not just groups but representations too — the action of G on its tangent
spaces. The groups we are most in this thesis: SU(n

2
), for n = 4, and n = 61. This is because

we shall construct canonical differential forms using the Weyl representations. In doing so, we
can discuss Einstein conditions on the curvature of a spin manifold, using these integrability
conditions of these differential forms.

Kähler

Hyper-Kähler

Quaternionic-Kähler

Calabi-Yau

G2 Spin(7)

SU(n2 ) Sp(n4 ) Sp(n2 )Sp(1)U(n2 )

Ricci Flat

n = 7 n = 8
Exceptional

(7.0.3)

Definition 7.0.1.2. S is called a tensor if it is a section of ⊗s TM ⊗⊗t T ∗M ∶= T s,t(M).

We can then relate holonomy group G to the canonical tensors invariant under the G-action.

Proposition 7.0.1.1. Let ∇ be a connection on TM of a manifold M . Then, ∇ induces a
connection T s,t(M) and any subbundle, for example Λk(T ∗M).

Definition 7.0.1.3. Let S be tensor. Then S is covariantly constant, or parallel, if ∇S = 0.

We can now link holonomy to parallel tensors.

Proposition 7.0.1.2. Let M be a manifold from (7.0.3), ∇ a Riemannian connection on TM ,
and H = Holx(∇) ⊂ GL(TxM) the holonomy group. Then, S is covariantly constant if, and only
if, S on each fibre of E is fixed by the natural action of H.

[Wan95] and [MS00] gave a classification for the holonomy group to be contained in Spin(n)
rather than SO(n), using the condition of parallel spinors (theorem 7.0.1.2). That is, given a
covariant derivative ∇ induced from the Riemannian one, a spinor ψ is parallel if, and only if,
∇ψ ≡ 0.

Theorem 7.0.1.2. Let (M,g) be a simply connected spin manifold whose holonomy represen-
tation is irreducible. Then M carries a parallel spinor if, and only if,

Holonomy Group H ⊂ Spin(n) Dimensions of spin manifold M

SU(m) m ∈ 2N (Calabi-Yau)
Sp(k) k ∈ 4N (Hyper-Kähler)
G2 n = 7 (Exceptional)

Spin(7) n = 8 (Exceptional)
1We shall make some comments concerning G2 in 7 dimensions, and Spin(7) in 8 dimensions throughout

chapters 8 and 9.
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This leads us to define,

Definition 7.0.1.4. Let M be a spin manifold. A spinorial G-structure is called classical if it a
SU(m)-structure on M with dimension m ∈ 2N, a Sp(k)-structure on M with dimension k ∈ 4N,
a G2-structure on M with dimension 7, or a Spin(7)-structure on M dimension with dimension
8.

Furthermore, recall if a classical spinorial G-structure is integrable then it is Ricci-flat. In-
deed, it is proven in [Hit74] that ifM admits a parallel spinor, thenM is Ricci-flat. Subsequently
[MS00],

Theorem 7.0.1.3. Let M be an oriented connected manifold of dimensions n, and suppose H
is a holonomy subgroup. Suppose there exists an embedding ϕ from H into Spin(n). If π ○ϕ = ι,
(where π is the projection from Spin(n)→ SO(n), and ι is the inclusion of the holonomy group
into SO(n)), then M carries a spin structure whose holonomy group is isomorphic to H.

The above theorem shows there is a subclass of spinorial G-structures amenable to integra-
bility via parallel tensors from holonomy considerations. Indeed, in this thesis we show that for
a SU(2)-structure on a spin manifold of dimension 4, and a SU(3)-structure on a spin manifold
of dimension 6, using the geometric map one can compute a set of canonical differential forms
from a generic Weyl spinor. Then computing the covariant derivative of these differential forms,
we show that imposing they are parallel is equivalent to integrable SU (n

2
)-structure (for n = 4

and n = 6).
This leads us to intrinsic torsion, the tool that allows one to parameterise the covariant

derivative of canonical differential forms. Consequently, this give a concrete representation of
the covariantly constant differential forms.

To reiterate, for an oriented manifold, the allowed G-structures must come from Berger’s
classification by way of holonomy considerations. G-structures are integrable when they are
parallel with respect to an induced connection on TM . Integrability of spinorial G-structures
can be studied through parallel tensors if one restricts to classical G-structures. In that case,
the set of canonical differential forms are constructed from the geometric map and the met-
ric from algebraic relations between the canonical differential forms. Classical G-structures are
then integrable whenever the set of canonical differential forms is parallel with respect to the
metric connection induced from TM . From this discussion, it is reasonable to drop the adjec-
tive “classical” and refer to classical spinorial G-structures as G-structures when there is no
ambiguity.

Intrinsic Torsion

Intrinsic torsion is a tool one can use to understand integrability. By this we mean, the covariant
derivatives of the canonical differential is the intrinsic torsion space. Thus, the intrinsic torsion
vanishes if, and only if, the G-structure is integrable. Intrinsic torsion is intimately linked to
G-structures, and in fact it is connection independent, i.e. one does not need to fret over a choice
of connection used to covariantly differentiate the canonical differential forms.

Definition 7.0.1.5. Let M be a manifold and ∇ a connection on TM . The torsion is a linear
operator defined as2

T (∇) ∶ End(TM)⊗ T ∗M → T ∗M ⊗Λ2(TM), (X,Y )↦ ∇XY −∇YX − [X,Y ]. (7.0.4)

Torsion can be shown to be tensorial, and is then a section of the bundle TM ⊗ Λ2T ∗M .
A section T (∇) of TM ⊗ Λ2T ∗M is said to be torsion free if T (∇) = 0. Suppose ∇ is fixed,

2This definition only makes sense on TM as we have the action defined on vector fields in TM , this isn’t the
case for a general vector bundle E over M . However, in our case as there is a one-to-one correspondence between
connections on TM and P , so we don’t need to fret over these details.
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heuristically, one can ask how far away is ∇ from being torsion-free. Consider, then, another
connection ∇′ on TM , or equivalently on the P the principal fibre bundle overM . Now, define the
tensor α ∶= ∇−∇′. Furthermore, α is a section of ad(P )⊗T ∗M from the view point of connections
on P . But ad(P ) ⊂ TM ⊗ T ∗M ≅ End(g). Hence, α is a section of TM ⊗ T ∗M ⊗ T ∗M , and can

be written as αabc = ∇abc −∇
′a
bc. Then using the definition of torsion, one has

T (∇)abc − T (∇′)abc = ∇abc −∇acb −∇
′a
bc +∇

′a
cb = −αabc + αacb. (7.0.5)

Thus the torsion free-condition for a varying ∇′ is that T (∇)abc = αabc − αacb. However, what
we wanted is an obstruction, intrinsic torsion, to the torsion-free condition without needing
dependence on a connection, ∇. This is possible if one considers the following linear map σ and
various linear spaces under the image σ, see [Joy00].

Definition 7.0.1.6. Let G be a Lie group, g its Lie algebra, and define V ∶= Rn. Hence, G acts
faithfully on V , and define,

σ ∶ g⊗ V ∗ ↪ (V ⊗ V ∗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≅End(V )

⊗V ∗ → V ⊗Λ2(V ∗), αabc ↦ αabc − αacb. (7.0.6)

Finally, define the following vector spaces.

W1 ∶= V ⊗Λ2(V ∗), W2 ∶= Im(σ), W3 ∶= V ⊗Λ2(V ∗)/Im(σ), and W4 ∶= Ker(σ). (7.0.7)

W2,3,4 fit into the short exact sequence

0Ð→W4 Ð→ g ⊗ V ∗ σÐ→W2 Ð→W3 Ð→ 0. (7.0.8)

Let ρi ∶ G → GL(Wi) be the natural representations of G on Wi. If M is a manifold and P a
principal G-frame bundle, then ρi(P ) are vector bundles over M . One can now make the key
observations

• T (∇) is a section of ρ1(P ).

• If ∇ and ∇′ are two different connections on TM , then T (∇)−T (∇′) is a section of ρ2(P ),
a vector subbundle of ρ1(P ).

• Most importantly, if ∇ and ∇′ are two different connections on TM , then T (∇) and T (∇′)
project to the same section T 0 of the quotient bundle ρ3(P ) = ρ1(P )/ρ2(P ).

• The difference of any two torsion-free connections is a section of ρ4(P ). If T 0 = 0, then the
space of torsion-free connections are in one-to-one correspondence with sections of ρ4(P ).
Furthermore, if Ker(σ) = {0}, there is only one unique torsion-free connection ∇.

The second to last bullet point states there is a quantity, T 0, that is independent of the connection
chosen and solely depends on the G-structure, i.e. intrinsic torsion3.

Consider a spin manifold M , and a classical spinorial H-structure. Define h to be the Lie
algebra of H, and h⊥ to be its orthogonal complement in spin(n) ≅ so(n). Then, because
Λ2(V ∗) ≅ so(n), and W2 ∶= Im(σ) ≅ V ⊗ h,

W3 ≅ (V ⊗ so(n))/(V ⊗ h) ≅ V ⊗ h⊥. (7.0.9)

Thus, for any point p ∈ P , T 0(p) takes values in V ⊗ h⊥ ≅ Λ1(V ∗)⊗ h⊥.

3As we are discussing G-structures in this thesis we shall drop the adjective intrinsic when it is not ambiguous
to do so.
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From holonomy considerations, we know that the integrability is characterised by the co-
variant derivative of all H-invariant tensors. [Sal89], together with other propositions we have
considered above, states

Theorem 7.0.1.4. Let M be an spin manifold, equipped with a classical G-structure that
stabilises a spinor ψ. Then, pointwise on the G-spin-frame subbundle, the covariant derivatives
of set the canonical differential forms take values in Λ1(T ∗M)⊗ h⊥.

Thus, intrinsic torsion and the covariant derivatives take values in the same space, Λ1(T ∗M)⊗
h⊥. So if all canonical differential forms are parallel, then intrinsic torsion vanishes too, and vice
versa.

7.0.2 Geometric Flow as a Gradient Flow

Let M be a 7-dimensional compact manifold. The question of when a G2-structure can be
deformed to a torsion-free one (integrable and hence Ricci flat) is not easy to answer. [Lot20]
reviews the types of flows that have been constructed for the problem, but we will only briefly
outline one. Karigiannis [Kar05; Kar09; Kar08] initiated the idea of performing a gradient flow
of the action of GL(7,R) and GL(8,R) on the tangent space to G2- and Spin(7)-structures in
the direction of intrinsic torsion. This philosophy was concretised in [DGK23] by writing all pos-
sible independent diffeomorphism-invariant and only second-order in derivatives G2- (Spin(7)-
[Dwi24]) invariant tensors, and performing a gradient flow on these instead.

Inspiration from Flowing G2-structures

Suppose ϕ is a G2-structure that is not parallel. It decomposes the spaces of differential forms on
a compact 7-dimensional manifoldM . Then one can take the GL(7,R) action on ϕ to determine
the infinitesimal action on the space of 3-forms [Kar08; Kar05; Bry05; Bry87]

D ∶ GL(7,R)→ Ω3(M), A↦ d

dt
∣
t=0
eAt ⋅ ϕ. (7.0.10)

As GL(7,R) is the space of matrices, it can be split into symmetric and antisymmetric parts. h
is the symmetric part of A that determines the torsion, and X is the vector field corresponding to
the antisymmetric part of A that determines the torsion. These are profoundly simple techniques
to parameterise the torsion space. A more general flow equation for ϕ can then be written down
using h and X

∂

∂t
ϕijk = 3h[ilϕ∣l∣jk] +X lψlijk. (7.0.11)

A similar set of equations can be written for the Hodge-dual 4-form ψ, the metric, and the
volume form. We wish to mimic these ideas for SU(2)- and SU(3)-structures to generate all
pieces to parameterise the intrinsic torsion in terms of tensors within GL(n,R). Recall:

• The torsion of a G2 structure ϕ is characterised by dϕ and d(∗ϕ) [FG82].

• The torsion of a Spin(7) structure Φ is characterised by dΦ [Fer86].

The fact that integrability can be measured by exterior derivatives of the canonical differential
forms is what we wish to exploit in the thesis to write higher dimensional linear theories of
gravity. However, we shall still discuss the metric connection, ∇, as it allows us to explore higher
dimensional non-linear theories of gravity.
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7.0.3 Plebanksi-formalism

Normally, the most general theory is not simple to write down, as it is not always obvious
what the parametrisation of the auxiliary field(s) should be. Let us go back to the work of
Plebanksi on Einstein structures in 4 dimensions [Ple77] to elucidate this. The unique guage
and diffeomorphism invariant action that can be written is

S[Σ,A,Ψ] = ∫
M

Σ⃗T (dA + 1

2
A ∧A) − 1

2
Σ⃗TΨΣ⃗ − Λ

6
Σ⃗T Σ⃗. (7.0.12)

Here A is and SU(2) gauge connection, Ψ is a symmetric 3 × 3 matrix, Σ⃗ = (Σ1,Σ2,Σ3) is a
vector of the triple of self-dual 2-forms invariant under the action SU(2), and Λ is the cosmological
constant. Varying with respect to the vector Σ⃗, gives

F (A) ∶= dA + 1

2
A ∧A = (Ψ + Λ

3
I) Σ⃗. (7.0.13)

F is the curvature of A. The quantity in the brackets above is the Ricci curvature tensor,
by algebraically moving Σ⃗ to the left-hand side of the equation implies that Rµν = Λgµν , i.e.
Einstein conditions.

We now try to generalise the approach Plebanski took. We define the following schematic

Definition 7.0.3.1. Plebanski-formalism is the procedure of constructing the linear combination
of all independent diffeomorphism invariant action functionals built from canonical differential
forms, their exterior derivatives, and auxiliary fields one wishes to extremise.

Remark 7.0.3.1. We wish to impose more invariance on the action functional, however diffeo-
morphism invariance is a good starting place. As we see in the example below. It is unclear how
to impose additional invariance such that one constrains to Einstein conditions in Plebanski’s
original work.

We briefly discuss Plebanksi-formalism in 8 dimensions, via Spin(7) structures. This gives the
blueprint to the approach we take with SU(2)- and SU(3)-structures. Inspired by Karigiannis
et al. we hope the torsion can be written in terms of some symmetric and antisymmetric tensors
inside GL(8,R). Indeed, this was already done in [Kar08]. However, one can also see that
torsion is completely determined by 3-forms and so there is a compact parameterisation via
exterior derivatives of Φ, the canonical tensor of the Spin(7)-structure

∇iΦabcd = 4Ti[apΦ∣p∣bcd], where ∗ dΦ =
2

5
J3(T ). (7.0.14)

Here J3 ∶ Ω3(M)→ Ω3(M) is an invertible operator defined in equation (2.13) of [Kra24a]. This
parameterisation of the torsion leads to application of the Plebanski-formalism as follows,

S[Φ,C] = ∫
M

Φ ∧ (dC − 6C ∧Φ C) +
κ

6
(C)2vΦ + constraint terms on curvature. (7.0.15)

Here C is an auxiliary 3-form, vΦ = 1
14
Φ ∧ Φ, and (C ∧Φ C)abcd = CabpCcdqgpq. By constraint

terms, we mean the terms we deem necessary to extremise to Ricci flat, or Einstein conditions,
these are fixed by hopefully choosing an appropriate value of κ and auxiliary function C. Thus
the above is the a one-parameter family of diffeomorphism-invariant Lagrangians that are second
order in derivatives of Φ but first order in C. For κ = 0, this corresponds to C being the torsion,
and the gradient flow of the functional is elliptic (modulo gauge), ensuring that short-time and
unique solutions exist. If κ = −2, this corresponds to the non-linear completion of the linearised
theory. Unlike the Plebanski’s formulation of gravity in 4 dimensions, there is no obvious way
to fix C such that one extremises to Einstein conditions on the curvature, and this remains an
open problem.
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Finally, the tangent space to canonical differential forms and the metric can be modelled by
an infinitesimal action of 2-tensors in GL(n,R) ≅ TM ⊗ T ∗M . This leads to following

Definition 7.0.3.2. Define linearised analysis as the procedure of constructing all independent
action functionals built from two derivatives of 2-tensors in GL(n,R) ≅ TM ⊗ T ∗M , and their
products, from the representation theory of the subgroup G, the invariant differential forms are
invariant under.

Furthermore, define the non-linear completion to be the subspace of action functionals built
from Plebanski-formalism that linearise to the action functionals built from a linearised analysis.

Hence, linearised analysis gives insight in to how one should write a theory of gravity in
higher dimensions.

7.0.4 Chapter Overview

Chapter 8 is dedicated to SU(2)-structures, which provide the most complete picture we have
in terms of formulating a philosophy aligned with Plebanski-formalism. The study of SU(2)-
structures in 4 dimensions is challenging yet simultaneously easier than in other dimensions with
other G-structures. The remarkable accidental isomorphism

su(2)⊕ su(2) ≅ so(4) ≅ spin(4), (7.0.16)

dictates the role that intrinsic torsion plays, the orthogonal complement to su(2) is also a Lie
algebra. Generally, the intrinsic torsion space is merely a vector space. However, as su(2)⊥ ≅
su(2), one must keep tract of this additional algebraic structure when discussing intrinsic torsion.

In the work by [FS24], the second copy of su(2) that acts covariantly on the SU(2)-structures
is not tracked. However, this thesis, along with [BK24], aims to use it to characterise the tor-
sion. By the holonomy principal, the covariant derivative of the tensors characterising SU(2)-
structures provides access to the full torsion space. Thus, we consider tensor products of irre-
ducible SU(2) representations as pieces of the covariant derivatives of SU(2)-structures in these
representations.

For future purposes, we exploit that the torsion from G-structures of this type can be written
as exterior derivatives of SU(2)-structures, a weaker condition than the full covariant derivative.
Upon completing this exercise, we can proceed to characterise parts of the Riemann curvature
tensor that torsion gives access to (by taking another covariant derivative). We find that it
provides access to the Ricci tensor and scalar curvature, but not the anti-self-dual part of the
curvature.

Motivated by the ideas of [Kar08] and [DGK23], we then consider a diffeomorphism-invariant
and second-order in derivatives theory of SU(2)-structures.

To this end, we perform a linearised analysis to construct a second-order in derivatives
diffeomorphism-invariant Lagrangian from perturbed SU(2)-structures and the perturbed metric
they algebraically construct. This calculation shows that the space of second-order derivatives
diffeomorphism-invariant Lagrangian splits into two pieces: a linearised theory of gravity in a
vacuum (developed solely from the metric perturbation) and a second piece that couples the
metric with an extra field allowed by the representation theory of SU(2).

If one imposes gauge invariance, the second Lagrangian cannot exist, as it is no longer gauge
invariant. This means that only the gravitational theory is allowed. Finally, we propose that
the action functional in (8.5.6.0.1) is the best second-order theory, as its critical points are the
Einstein conditions, equivalent to the first-order theory constructed by Plebanski.

The techniques explored in SU(2)-structures are extended to SU(3)-structures in 6 dimen-
sions in chapter 9. The approach deviates in two places. Firstly, for SU(3)-structures, the
intrinsic torsion is characterised by a vector space, unlike in the 4-dimensional case. Indeed,

spin(6) ≅ su(3)⊕ su(3)⊥ ≅ su(3)⊕ (R⊕R6). (7.0.17)
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On one hand, torsion does not carry additional algebraic structure. On the other hand, this
makes torsion less easily characterisable. To simplify the identification, we transition to repre-
sentations over complex forms,

Λp,q(M) = Λp,0(M)⊗Λ0,q(M), (7.0.18)

of holomorphic and anti-holomorphic types. We decompose the torsion space accordingly and
then characterise it in the complex setting. Upon completing this exercise, we interpret the
torsion in terms of exterior derivatives of the SU(3)-structures. Much work has already been
done on the real front, see [BV07] and [CS02]. Finally, we understand which parts of the Riemann
curvature tensor are accessible and express the full Ricci tensor and scalar curvature in terms of
torsion.

As in the previous chapter, we perform a linearised analysis of the space of second-order
diffeomorphism-invariant Lagrangians. Although we construct a real theory, the notation we use
invokes complex coordinates, as this is more compact. In previous linearised theories, such as
SU(2) or Spin(7), the most general second-order diffeomorphism-invariant Lagrangian is built
from two Lagrangians: one resembling general relativity and one where the extra field of the
theory couples to the metric. In 6 dimensions, although there is an exclusively linearised theory
of gravity in a vacuum, there are many extra fields that couple to the metric and themselves,
making the basis of independent Lagrangians seven-dimensional, from the neat one-dimensional
case of SU(2). Unlike the SU(2) theory, and much like the Spin(7) theory, there is no clear
understanding of gauge fixing that can be exploited. Furthermore, for similar reasons, the non-
linear completion is not understood and is therefore omitted in this thesis.



Chapter 8

SU(2)-structures in 4 dimensions

8.1 Geometry from Spinors

We begin by reminding the reader of the Clifford algebra Cliff4, and the geometric maps that
one can compute for a general Weyl spinor. The generators of the Clifford algebra are given as

Γ1 = −i(a2 − a†
2), Γ2 = a2 + a†

2,

Γ3 = −i(a1 − a†
1), Γ4 = a1 + a†

1.
(8.1.1)

Taking the generic Weyl spinor ψ = α + βdx12, the geometric maps B2(ψ̂, ψ) and B2(ψ,ψ) are
computed as

B2(ψ̂, ψ) = iΣiV i, and B2(ψ,ψ) = iΣiW i. (8.1.2)

Here

Σi = dx4 ∧ dxi − 1

2
εijkdxi ∧ dxj (8.1.3)

are 2-forms in 4 dimensions, and V ∈ R3 and W ∈ C3 are given by

V = (Re(αβ∗), Im(αβ∗), ∣α∣2 − ∣β∣2), W = (α2 − β2, α2 + β2,2αβ). (8.1.4)

It is clear the that the stabiliser of ψ is the su(2) ⊂ spin(4) that annihilates even spinors. Setting
α = 1 and β = 0 one generates

−iB2(ψ̂, ψ) = Σ3, and − iB2(ψ,ψ) = Σ1 − iΣ2. (8.1.5)

Since every spinor in 4 dimensions is pure, it is possible to rotate to this canonical spinor. Then,
there is a set of intriguing conditions given as follows

Σi ∧Σj = 1

2
δijdx1234, equivalently Ω ∧Ω = 0,

Ω ∧ ω = 0, and Ω ∧ Ω̄ = 1

2
ω ∧ ω.

(8.1.6)

Here ω is Kähler 2-form in 4 dimensions, and Ω is the top holomorphic form in 4 dimensions. The
description above is very specific, there are conditions on the 2-forms that need to be specified,
these are 5 conditions on the 2-forms, thus the space of admissible 2-forms has dimensions
18 − 5 = 13. This is of course the dimensions of GL(4,R)/SU(2) the space of SU(2)-structures.
The geometry of non-parallel SU(2)-structures in 4 dimensions is given by Ω and ω and on each
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fibre the metric can be recovered by the formula

gω,Ω(X,Y ) = ω(JX,Y ). (8.1.7)

Here J is extracted from the Re(Ω) by the formula

J ij = 4ϵil1l2l3Re(Ω)ja1Re(Ω)l2l3 , (8.1.8)

ϵ is the antisymmetric tensor that is non-zero whenever the indices are not the same. Analogously,
the image of the geometric maps B2(ψ, ψ̂), and B2(ψ,ψ) in 4 dimensions declare a subspace of
self-dual 2-forms Σi that satisfy certain algebraic relations (the imaginary quaternion algebra)
with respect to a metric given by the formula

gΣ(X,Y )volg = −
1

6
εijkιXΣi ∧ ιY Σj ∧Σk. (8.1.9)

We briefly explain now SU(2)-structures as equivariant maps. Define E be the bundle over M
such that the pullback of each point on M is (R3, ⟨, ⟩,∧), that is, the vector space R3 with a
standard inner product and a cross product. Notice that (R3, ⟨, ⟩,∧) ≅ su(2).

Next, consider the following bundle over M , such that the pullback of each point over the
manifold is (Λ2(M), gΣ). Here gΣ is the metric defined in (8.1.9). Notice that the self-dual
2-forms, via gΣ, Λ

+ ⊂ Λ2(M) can be identified with su(2).
Then an SU(2)-structure the bundle map Σ ∶ E → Λ2(M), for p ∈M , that is an isometry on

to its image. Similarly, for any p ∈M

Λ+ ≅ su(2) ⊂ so(4) = Λ2(M). (8.1.10)

In turn one has
Σ ∶ E → Λ+, (8.1.11)

is a bundle isomorphism preserving the Lie algebra structure of su(2).

Remark 8.1.0.1. There is an identification between E and Λ− (the space of anti-self-dual
2-forms), this comes from a different metric gΣ′ as explained in [BK24].

This leads to our discussion of SU(2)-structures being different from those that have been
explained even as recently as [FS24]. This is because we keep both representations SU(2) ×
SU(2) ⊂ Spin(4), where they do not. The upshot of keeping the algebraic structure of g⊥ means
one need not break GL(4,R) to O(4,R), a unique case not studied among other G-structures.
The only drawback is decomposing tensors with respect to both SU(2)s.

We now have the necessary tools to begin analysing the intrinsic torsion, as we identify
su(2) ≅ E ≅ g⊥ ⊂ so(4)1. It is clear that g⊥ is a Lie algebra, which in this setting is unique.
G-structures in general do not follow this pattern and are only linear structures (see chapter 9).
This makes the analysis below much richer, as one has to take into account the extra structure
carried by E.

8.2 Decomposition of E -valued Differential Forms

Again, in our case, g⊥ ≅ su(2) ≅ E, and so the intrinsic torsion, by the holonomy principal,
must be an object with values in Λ1(M) ⊗ E. The differential forms that defines the SU(2)-
structure take values in Λ2(M)⊗E, and so do their covariant derivatives ∇XΣ in any direction
X ∈ TM . For this reason, we need to understand the decomposition of the spaces Λ1(M) ⊗E,
and Λ2(M)⊗E into irreducible representations of SU(2) × SU(2).

1We abuse notation but by su(2) we mean the bundle over M such that the pullback at each point is the Lie
algebra su(2).
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Irreducible representations of SU(2) are the spin k/2 representations that we denote by Sk.
They are of dimension dim(Sk) = k + 1. As we have previously discussed, there are two different
SU(2)’s in the game. One SU(2) is the group with respect to which the 2-forms Σi are invariant.
This motivates the following definition,

Definition 8.2.0.1. Let Σi be the self-dual 2-forms defined by equivariant map defined in
(8.1.11).

The copy of SU(2) ⊂ Spin(4) that stabilises Σi shall be denoted SU−(2). We define the
irreducible representations of SU−(2) as Sk− .

On the other hand, the copy of SU(2) ⊂ Spin(4) that acts covariantly on Σi shall be denoted
as SU+(2). We define the irreducible representations of SU+(2) as Sk+ .

By these definitions, one has

Λ1(M) = S+ ⊗ S−, Λ2(M) = S2
+ ⊕ S2

−, such that E ≅ S2
+∣p, (8.2.1)

leading to the following lemma.

Lemma 8.2.0.1. The decomposition of Λ1(M)⊗E, and Λ2(M)⊗E into irreducible represen-
tations is given as

Λ1(M)⊗E ≅ (S3
+ ⊗ S−)⊕ (S+ ⊗ S−), and

Λ2(M)⊗E ≅ S4
+ ⊕ S2

+ ⊕C∞(M)⊕ (S2
+ ⊗ S2

−).
(8.2.2)

Proof. A standard exercise in looking up the decomposition of tensor products of irreducible
SU(2) representations, see for example tables in [FKS20].

8.2.1 Algebra of Σs

To obtain explicit formulas for the irreducible parts of E-valued differential forms, we need some
identities satisfied by the 2-forms Σi. Bryant introduced algebraic formulae for G2-structures
in [Bry05] called ϵ-identities. A similar procedure has been completed by [Kar08] for Spin(7)-
structures ([Kar09] and [DGK23] for G2 structures), where a larger program of algebraic iden-
tities are considered and recently for SU(3)-structures [BV07], as we will see in chapter 9.
Although these formulae can be written index-free, we choose to consider their indicial variants,
which are most suited for our type of calculations, where Σi are complex structures that satisfy
the quaternionic algebra.

First, one of the two indices of these differential forms can be raised with the metric they
define, to convert these into objects in End(TM). We then have a triple of such endomorphisms
of the tangent bundle, satisfying the algebra of the imaginary quaternions

Σiµ
αΣjα

ν = −δijδµν + ϵijkΣkµν . (8.2.3)

There are also useful relations

ΣiµνΣ
i
ρσ = gµρgνσ − gµσgνρ + ϵµνρσ, (8.2.4)

and
ϵijkΣjµνΣ

k
ρσ = −2Σi[µ∣ρ∣gν]σ + 2Σ

i
[µ∣σ∣gν]ρ. (8.2.5)

Here, throughout this chapter (and next chapter 9), the square bracket on indices means one
antisymmetrises the indices. For example, let A be a (2,0) tensor, then

A[µν] =
1

2
(Aµν −Aνµ). (8.2.6)
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Similarly, if one uses circular brackets on indices that means one symmetrises the indices. For
example, let A be as (8.2.6), then

A(µν) =
1

2
(Aµν +Aνµ). (8.2.7)

8.2.2 Decomposition of Λ1
(M)⊗E

One can decompose Λ1(M) ⊗ E using a self-adjoint operator on it and then considering its
spectrum. Therefore, one defines

Definition 8.2.2.1. Let Σi be SU(2)-structures, and Aiµ ∈ Λ1(M) ⊗ E. Define the pointwise

linear operator JΣ ∶ Λ1(M)⊗E → Λ1(M)⊗E as, JΣ(A)iµ ∶= ϵijkΣjµαAkα.

It is not difficult to show that JΣ is pointwise self-adjoint with respect to the metric on
Λ1(M)⊗E, g̃ = g ⊗ gΣ. Here g is the standard inner product on Λk, and gΣ is the metric given
on E, see equation (8.1.9). Furthermore, a simple calculation using (8.2.3) shows that

J2
Σ = 2I + JΣ. (8.2.8)

This means that the eigenvalues of JΣ are 2,−1. The eigenspaces of JΣ are precisely the irre-
ducible representations appearing in the first line in (8.2.2). It is also easy to check that objects
of the form

ξαΣiαµ ∈ Λ1(M)⊗E (8.2.9)

are eigenvectors of eigenvalue 2. The dimension of the subspace spanned by {ξαΣiαµ ∣ ξ ∈
Λ1(M)} is 4-dimensional. Acting JΣ on ξαΣiαµ scales tensor by a value of 2. Thus the following
characterisation can be made:

(Λ1(M)⊗E)4 ∶= (S+ ⊗ S−) ≅ {ξαΣiαµ, ξ ∈ TM}. (8.2.10)

Using (8.2.2), the remaining space 8-dimensional irreducible representation must be identified
as follow

(Λ1(M)⊗E)8 ≅ (S3
+ ⊗ S−). (8.2.11)

Objects in this space are in the orthogonal complement of (8.2.10) in Λ1(M)⊗E, that scale by
a factor of −1 when acted upon by JΣ.

8.2.3 Decomposition of Λ2
(M)⊗E

We can also describe the irreducible subspaces of Λ2(M)⊗E as eigenspaces of a certain operator
in E-valued 2-forms, similar to how we used JΣ to decompose Λ1 ⊗E.

Definition 8.2.3.1. Let Σi be SU(2)-structures, and Biµν ∈ Λ2⊗E. Define the pointwise linear

operator J2 ∶ Λ2 ⊗E → Λ2 ⊗E as, J2(B)iµν = ϵijkΣ
j
[µ
αBk∣α∣ν].

As previously seen, a similar pattern holds for J2. It is a self-adjoint operator on Λ2 ⊗E →
Λ2 ⊗E with respect to the metric g̃ = g ⊗ gΣ. In addition, a computation gives

J2
2 (B)iµν =

1

2
Biµν +

1

2
ϵµν

αβBiαβ +
1

2
J2(B)iµν +

1

2
Σi[µ

αΣj
ν]
βBjαβ ,

J3
2 (B)iµν =

1

2
ϵµν

αβBiαβ + 2J2(B)iµν +Σi[µ
αΣj

ν]
βBjαβ , and

J4
2 (B)iµν =

1

2
Biµν +

3

2
ϵµν

αβBiαβ +
5

2
J2(B)iµν +

5

2
Σi[µ

αΣj
ν]
βBjαβ .

(8.2.12)
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This implies
J4
2 − 2J3

2 − J2
2 + 2J2 = 0 or J2(J2 − 2)(J2 − 1)(J2 + 1) = 0, (8.2.13)

which shows that the eigenvalues of J2 are 2,1,−1,0.

Lemma 8.2.3.1. Consider the decomposition of Λ2(M) ⊗ E given in lemma 8.2.0.1. Let
(Λ2(M) ⊗ E)k be an eigenspace of J2, where k is the pointwise dimension of the eigenspace.
Then

(Λ2(M)⊗E)5 ≅ S4
+, (Λ2(M)⊗E)3 ≅ S2

+, (Λ2(M)⊗E)1 ≅ C∞(M),
and (Λ2(M)⊗E)9 ≅ S2

+ ⊗ S2
−.

(8.2.14)

In the proof below we shall explicitly identify the eigenvalues associated to each eigenspace
of J2 listed above.

Proof. To characterise the eigenspaces we consider an arbitrary 3 × 3 matrix M ij = M ij
s +

M ij
a ,M

ij
s =M

(ij)
s ,M ij

a =M
[ij]
a and compute

J2(M ijΣjµν) = Tr(M)Σiµν −M jiΣjµν = Tr(M)Σiµν −M ij
s Σjµν +M ij

a Σjµν . (8.2.15)

This means that the eigenspace of J2 of eigenvalue 2 is C∞(M) spanned by multiples of Σiµν ,

take M ∝ I3×3. The eigenspace of eigenvalue 1 is S2
+ spanned by M ij

a Σjµν . The eigenspace of

eigenvalue −1 is S4
+ spanned by M ij

s Σjµν with Tr(Ms) = 0.
We can also apply the operator J2 to objects of the type h[µ

αΣi∣α∣ν]. We get

J2(h[µαΣi∣α∣ν]) =
1

2
hα

αΣiµν . (8.2.16)

If one takes h ∝ I4×4, then the eigenspace of eigenvalue 2 is C∞(M) spanned by multiples of
Σiµν . This means that the space S2

+⊗S2
− spanned by h[µ

αΣi∣α∣ν], with Tr(h) = 0, is the eigenspace
of J2 of eigenvalue 0. Thus, the desired result is achieved.

8.3 Intrinsic Torsion and Curvature

8.3.1 Intrinsic Torsion

From general principles, it follows that the torsion of a G-structure should be described by an
object valued in Λ1(M)⊗ g⊥, which in our case is Λ1(M)⊗E. At the same time, the intrinsic
torsion quantifies non-integrability of the G-structure, and thus the failure of the canonical dif-
ferential forms defining this G-structure to be parallel with respect to the Levi-Civita connection.
Thus, we expect that ∇µΣiαβ should be expressible via the intrinsic torsion Aiµ ∈ Λ1(M) ⊗ E.
The following proposition is a statement to this effect

Theorem 8.3.1.1. There exists a set of objects Aiµ ∈ Λ1(M)⊗E such that

∇µΣiαβ = −ϵijkAjµΣkαβ . (8.3.1)

Proof. Comparing the right-hand side of the formula (8.3.1) with the set of objects that appear in
lemma 8.2.3.1, we see that equation (8.3.1) is equivalent to saying there are no contributions from
the S4

+,C
∞(M), and S2

+ ⊗ S2
− irreducible components in Xµ∇µΣiαβ ∈ Λ2(M) ⊗ E, ∀Xµ ∈ TM .

The S4
+,C

∞(M) components are extracted as

2Σ(i∣αβ∣∇µΣj)αβ = ∇µ(Σ
i∣αβ∣Σjαβ) = 4∇µδ

ij = 0. (8.3.2)
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Here we have used the fact that the operation of raising-lowering of the indices commutes with
∇µ. Similarly, the S2

+ ⊗ S2
− component is extracted as

2Σi(µ
α∇ρΣiν)α = ∇ρΣ

i
µ
αΣiνα = 3∇ρgµν = 0. (8.3.3)

This shows that no undesired components are present in ∇µΣiαβ and that (8.3.1) holds.

8.3.2 Bianchi Identity

Establishing a version of the formula (8.3.1) is one of the more laborious parts of the analysis of
a non-integrable G-structure. The rest of the analysis is much more algorithmic. Let us consider
the projection of the Riemannian curvature tensor by our G-structures Σi, this is given by the
Bianchi identity as

Corollary 8.3.2.0.1. Let Rµνρσ be a Riemann curvature tensor on a compact 4-dimensional
spin manifold M , and let Σi be SU(2)-structures. One then has

πΣ(R)iµνρσ ∶= Rµν[ραΣi∣α∣σ] = −
1

2
ϵijkF jµνΣ

k
ρσ, (8.3.4)

where we have defined the curvature of the connection Aiµ as

F iµν ∶= 2∇[µAiν] + ϵ
ijkAjµA

k
ν . (8.3.5)

M is spin because the construction of Σ comes from a generic Weyl spinor in 4 dimensions.

Proof. One computes using (8.3.1),

2∇[µ∇ν]Σiρσ = −2ϵijk(∇[µA
j
ν]Σ

k
ρσ +A

j
[ν∇µ]Σ

k
ρσ)

= −2ϵijk(∇[µAjν]Σ
k
ρσ +A

j
[µϵ

klmAlν]Σ
l
ρσ)

= −ϵijkF jµνΣkρσ.

(8.3.6)

The result then follows from the identity

2Rµν[ρ
αΣi∣α∣σ] = 2∇[µ∇ν]Σ

i
ρσ. (8.3.7)

We observe that, in the case of SU(2)-structures in four dimensions, the intrinsic torsion
assembles itself into an su(2)-valued one-form, or an SU(2) connection. This is exactly why one
can define a curvature 2-form (8.3.5).

Since the left-hand side in (8.3.4) is the projection of the Riemann tensor inside Λ2(M) ⊙
Λ2(M) onto E. Here, and throughout, ⊙ is the symmetric product. There is no loss of informa-
tion if we multiply both sides of (8.3.4) with ϵijkΣjρσ to get

Rµν
ρσΣkρσ = 2F kµν . (8.3.8)

This is the most useful form of the “Bianchi identity” (8.3.4), using the terminology of [DGK23].
In words, the self-dual part of the Riemann curvature Rµνρσ with respect to the pair of indices
{ρ, σ} equals a multiple of the curvature tensor F iµν , which is also the curvature of the intrinsic

torsion Aiµ. The fact that the intrinsic torsion assembles itself into an SU(2) connection does not
have analogues in the case of other G-structures, see chapter 9, and [Kra24a]. This is because
the intrinsic torsion is valued in g⊥ ⊗Λ1(M), and only in this case is g⊥ a lie algebra.
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8.3.3 Ricci tensor and Curvature

We can extract the Ricci tensor from (8.3.8) via

Σiµ
αRανρσΣ

i
ρσ = (gµρgασ − gµσgαρ + ϵµαρσ)Rανρσ = −2Rµν , (8.3.9)

where we used (8.2.4). On the other hand, applying this to the right-hand side of (8.3.8) we get

Rµν = −ΣiµαF iαν . (8.3.10)

Thus, in particular,
R = ΣiµνF iµν . (8.3.11)

If one contracts both sides by Σ one can write F as a function of Σ and the Ricci scalar R,

F iµν = ΨijΣjµν −
R

6
Σiµν +R[µαΣi∣α∣ν]. (8.3.12)

Here Ψij is the matrix of components of the chiral half of the Weyl curvature. Using Rµν =
R̃µν + 1

4
Rgµν , where R̃µν is the trace-free part of the Ricci curvature, we can also rewrite this as

F iµν = ΨijΣjµν +
R

12
Σiµν + R̃[µαΣi∣α∣ν]. (8.3.13)

The first two terms here are self-dual as 2-forms, the last is anti-self-dual.

As is well-known, the Riemann curvature can be viewed as a symmetric endomorphism of
Λ2(M). Then one can decompose curvature into its self-dual and anti-self-dual blocks. This can
be usefully captured by the following matrix representation

Curvature = ( W
+ +R Rc0

Rc0 W − +R ) . (8.3.14)

Here W ± are the two chiral halves of the Weyl curvature, and Rc0 is the trace-free part of the
Ricci tensor. The trace-part is denoted by R and is the scalar curvature. We re-characterise the
above matrix to highlight properties of self-duality (SD) and anti-self-duality (ASD)

SD

ASD

SD ASD

Rc0

Rc0 W − +R

W + +R F iµν

(8.3.15)

The first and second rows correspond in (8.3.15) to the {ρ, σ} indices in the curvature tensor
Rµνρσ. As these correspond to objects in Λ2(M), they split as self-dual and anti-self dual
parts. Similarly, the first and second columns in (8.3.15) correspond to the {µ, ν} indices in the
curvature tensor Rµνρσ. This again splits in the same way as SD and ASD parts.

Thus, we see that the curvature F iµν of the intrinsic torsion encodes precisely the first row of
the matrix (8.3.14). This means one only has access to the self-dual part of the Weyl curvature,



118

W +, but one does have access to all the Ricci curvature.

8.3.4 Einstein Condition

It is now clear that the Einstein condition can be encoded as one on the curvature F iµν . Indeed,
the Einstein equation states

Rµν = Λgµν . (8.3.16)

We then propose

Proposition 8.3.4.1. The Ricci curvature is Einstein, in the sense of (8.3.16), ⇐⇒ F iµν is

self-dual ⇐⇒ Rc0 = 0.

Proof. Using equation (8.3.10), one satisfies the Einstein condition (8.3.16) if, and only if,

F iµν = (Ψij +
R

36
δij)Σjµν . (8.3.17)

This is because the Ricci tensor must vanish, see 8.3.15, else the ASD part remains. Here Ψij is
an arbitrary symmetric trace-free 3×3 matrix, which encodes the W + part of the curvature, and
R the Ricci scalar. Comparing (8.3.17) to the general form of F iµν , as in (8.3.13), one sees the

Einstein condition is equivalent to the anti-self-dual part, Rc0 vanishing. Finally, if one takes
R = 12Λ, then one recovers (8.3.16).

8.4 Linearised Analysis

The purpose of this section is to consider perturbations of SU(2)-structures, and construct the
most general diffeomorphism invariant Lagrangian for such perturbations. This linearised story
provides a very good intuition for the non-linear story in the next section.

8.4.1 Perturbation of SU(2)-Structures

The tangent space to the GL(4,R) orbit of Σi contains irreducible representations (Λ2⊗E)3+1+9,
the subscript here is notation for the decomposition of the 12-dimensional space into an irre-
ducible 1-dimensional trace part, an irreducible 9-dimensional trace-free symmetric part, and an
irreducible 3-dimensional antisymmetric part. We can parametrise these spaces as

(Λ2 ⊗E)1+9 ∋ 2h[µαΣi∣α∣ν], and (Λ
2 ⊗E)3 ∋ 2ϵijkΣjµνξk, (8.4.1)

with hµν being a symmetric tensor and ξi ∈ E. The role of the numerical factors chosen is to
simplify some formulas that follow. This means that perturbations of Σiµν , which we denote by

δΣiµν ∶= σiµν can be parametrised as

σiµν = 2h[µαΣi∣α∣ν] + 2ϵ
ijkΣjµνξ

k. (8.4.2)

The inverse is given by

hµν = −
1

2
σi(µ

αΣi∣α∣ν) −
1

12
ηµνΣ

iρσσiρσ, and ξ
i = − 1

16
ϵijkΣjµνσkµν . (8.4.3)

Transformation Properties under Diffeomorphisms

Let us consider a background triple of 2-forms Σi. The diffeomorphisms act δXΣi = LXΣi =
iXdΣi + diXΣi. In the case of a constant triple of 2-forms we get, δXσ

i = diXΣi. In index
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notation
δXσ

i
µν = 2∂[µXαΣi∣α∣ν]. (8.4.4)

This means that

δXhµν = ∂(µXν), and δXξ
i = 1

4
Σiµν∂µXν . (8.4.5)

Transformation Properties under SU(2)

In addition to diffeomorphisms, we can also consider how quantities transform under the SU(2)
transformations that rotate Σi. The infinitesimal version of these transformations is

δϕσ
i
µν = 2ϵijkΣjµνϕk. (8.4.6)

Under these transformations
δϕhµν = 0, and δϕξi = ϕi. (8.4.7)

8.4.2 Second-order Action Functional

We now determine the most general diffeomorphism invariant linear action functional that can
be written in terms of fields hµν and ξi, subject to the transformation properties (8.4.5). We
first write the general linear combination of all possible terms. The types of terms are dictated
by simple representation theory. So that one is free to integrate by parts, later in this section,
it is assumed that the 4-dimensional spin manifold, M , in question is compact.

Theorem 8.4.2.1. The most general linear second-order in derivatives Lagrangian that one can
write is

L = ρ
2
(∂µhνρ)2 +

α

2
(∂µh)2 − βh∂µ∂νhµν − γ(∂µhµν)2 +

λ

2
(∂µξi)2 + µ(∂µhµν)(∂αξi)Σiαν . (8.4.8)

Proof. First, we can write the most general linear combination of terms that can be constructed
solely from hµν . This is standard and independent of the dimension. We write this as

ρ

2
(∂µhνρ)2 +

α

2
(∂µh)2 − βh∂µ∂νhµν − γ(∂µhµν)2. (8.4.9)

We then need to determine all possible terms involving two copies of ξi, as well as hξ terms.
The fields h and ξ are characterised as hµν ∈ (S2

+ ⊗ S2
−) ⊕ C∞(M), and ξi ∈ S2

+. We have the
following tensor products,

(S2
+ ⊗ S2

−)⊗ S2
+ = (S4

+ ⊗ S2
−)⊕ (S2

+ ⊗ S2
−)⊕ S2

−, and S
2
+ ⊙ S2

+ = S4
+ ⊕C∞(M). (8.4.10)

We need to combine these irreducible pieces with those arising from the symmetrised product
of two partial derivatives, which is in S2

+ ⊗S2
− ⊕C∞(M). This makes it clear that the only term

that can be constructed from two copies of ξi is (∂µξi)2. There is also just a single term that
can be constructed from hµν and ξi, which is

(∂µhµν)(∂αξi)Σiαν . (8.4.11)

The result then follows from summing all independent pieces.

We now calculate the effect of a diffeomorphism on L, and find the following,

Corollary 8.4.2.1.1. Let L be the most general linear second order theory as written in theorem
8.4.2.1. The most general diffeomorphism invariant Lagrangian is

L = ρLGR + µL′, for ρ,µ ∈ R. (8.4.12)
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Such that

LGR =
1

2
(∂µhνρ)2 −

1

2
(∂µh)2 − h∂µ∂νhµν − (∂µhµν)2,

L′ = −1
4
(∂µh)2 −

1

2
h∂µ∂νhµν −

1

4
(∂µhµν)2 − (∂µξi)2 + (∂µhµν)(∂αξi)Σiαν .

(8.4.13)

Proof. We integrate by parts where necessary (using the assumption that M is compact), and
use the symbol ≈ to denote equality up to modulo integration by parts. Then computing the
diffeomorphism of L one has

δXL ≈ (ρ − γ +
µ

4
)∂2(∂µhµν)Xν − (α + β)∂2h(∂X)

+ (−β + γ + µ
4
)(∂X)(∂µ∂νhµν) − (

λ

4
+ µ
2
)∂2ξiΣiµν∂µXν .

(8.4.14)

Equating the coefficients in front of the independent terms to zero, and parametrising the solution
by ρ,µ we have

β = −α = ρ + µ
2
, γ = ρ + µ

4
, and λ = −2µ. (8.4.15)

What we see is that the space of diffeomorphism invariant theories is two-dimensional. There
is a classical part, the linearised theory of the background metric seen from general relativity.
Furthermore, there is a non-classical part due to the extra field ξ inherent from discussing SU(2)-
structures. It can couple to both the metric and itself, resulting in a modified theory of general
relativity.

We note that this is a very similar story to what happens in the case of Spin(7)-structures
in eight dimensions, see [Kra24a]. In that context, as here, the most general diffeomorphism
invariant Lagrangian is also given by a linear combination of two terms.

We further comment that in SU(3), see chapter 9, the most general theory is no longer a
sum of two diffeomorphism invariant Lagrangians. In SU(2) and Spin(7), only a vector field can
couple to the classical theory, but in 6 dimensions there are many more fields that can couple.

The Lagrangian (8.4.12) is diffeomorphism invariant (modulo integration by parts). It is also
invariant under global (i.e. rigid) SO(3) rotations acting on E. However, it is clear that it is also
possible to demand local SO(3) invariance. From (8.4.7) we see that these transformations act
only on ξi. It is clear that the Lagrangian L′ is not invariant under such local transformations.
Therefore, only LGR is both diffeomorphism and SU(2) gauge invariant. It is therefore to be
expected that there exists a unique non-linear Lagrangian for Σiµν , which is second order in
derivatives, with both diffeomorphism and SU(2) gauge invariance. We can also expect this
non-linear action to have critical points that are Einstein metrics. This is exactly what happens,
as we shall now verify.

8.5 Action Functionals

In preparation to the construction of the action, we will first show that the intrinsic torsion is
completely determined by the exterior derivative dΣi.

8.5.1 Torsion as Exterior Derivatives

In (8.3.1) we have related the torsion Aiµ to the covariant derivative ∇µΣiαβ of the 2-forms Σi.
We now explain that the knowledge of the exterior derivative is sufficient,
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Theorem 8.5.1.1. The intrinsic torsion is determined by the exterior derivatives of the 2-forms
Σi. Specifically, we have

A = 1

4
(JΣ − I)(∗dΣi), (8.5.1)

where JΣ is the operator from definition (8.2.2.1) and ∗dΣi is the Hodge dual of the 3-form dΣi.

Proof. We project the equation (8.3.1) to the space of 3-forms, anti-symmetrising over all 3
indices. We have

∂[νΣ
i
αβ] = −ϵ

ijkAj[νΣ
k
αβ]. (8.5.2)

We can write this in index-free differential form notations as

dΣi + ϵijkAjΣk = 0. (8.5.3)

To solve this, we multiply with the ϵ tensor and use the self-duality of Σiµν

ϵµναβ∂νΣ
i
αβ = −2ϵijkAjνΣkµν = 2(JΣ(A))iµ, (8.5.4)

where JΣ is the operator on Λ1(M)⊗E that was introduced in (8.2.2.1). We can write this in
an index-free way as

∗dΣi = 2JΣ(A). (8.5.5)

The JΣ operator is invertible, with the inverse given by

J−1Σ =
1

2
(JΣ − I). (8.5.6)

This establishes (8.5.1).

We have an immediate, well-known corollary.

Corollary 8.5.1.1.1. An SU(2)-structure is integrable if, and only if, dΣi = 0.

Finally, let us use (8.5.1) to construct an indicial expression as follows

Corollary 8.5.1.1.2. Let A ∈ Λ1(M)⊗E be the intrinsic torsion from a set of SU(2)-structures
Σi, then

Aiµ = −
1

4
ϵµ
αβγ∂αΣ

i
βγ −

1

4
ϵijkΣjαβ∂µΣ

k
αβ −

1

2
ϵijkΣjαβ∂βΣ

k
µα. (8.5.7)

Proof. We have
(∗dΣ)iµ = ϵµαβγ∂αΣiβγ , (8.5.8)

and

Aiµ =
1

4
(JΣ − I)(∗dΣ)iµ = −

1

4
ϵµ
αβγ∂αΣ

i
βγ +

1

4
ϵijkΣjµ

αϵα
βγδ∂βΣ

k
γδ. (8.5.9)

We can simplify the last term using

ϵµνρσΣiασ = 3δ[ρα Σiµν]. (8.5.10)

We shall find this expression is useful for the action functionals described below.

8.5.2 Bianchi Identity

One can now derive a useful Bianchi identity in terms of the curvature F and torsion A
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Corollary 8.5.2.0.1. Let the intrinsic torsion be parameterised by A ∈ Λ1(M) ⊗E. One can
write

ϵijkF jΣk = 0, (8.5.11)

where,

Λ2(M)⊗E ∋ F i = dAi + 1

2
ϵijkAjAk. (8.5.12)

Proof. A useful consequence of (8.5.3), obtained by taking its exterior derivative is

ϵijkdAjΣk − ϵijkAjdΣk = 0. (8.5.13)

We now substitute dΣk from (8.5.3) as dΣk = −ϵklmAlΣm, we then use AjAl = (1/2)ϵjlsϵspqApAq
to rewrite

ϵijkAjϵklmAlΣm = ϵijk (1
2
ϵjlmAlAm)Σk. (8.5.14)

The result follows from rearranging the above expression, using identities for contractions of the
ϵ tensor and that the curvature of A can be written F i = dAi + 1

2
ϵijkAjAk.

We note that (8.5.11) can be interpreted as the statement that there is no S2
+ component in

the decomposition of the F ∈ E ⊗Λ2 into its irreducible components.

8.5.3 Transformation Properties under Diffeomorphisms

Under infinitesimal diffeomorphisms along a vector field X, δXΣi = diXΣi + iXdΣi. We now
assume that the intrinsic torsion solves (8.5.3) and determine how it transforms under diffeo-
morphisms. We have the following theorem,

Theorem 8.5.3.1. Let A ∈ Λ1(M) ⊗ E be the intrinsic torsion of the SU(2)-structure {Σi}.
Then for a vector field X ∈ TM , A transforms covariantly under diffeomorphisms i.e.

δXA
i = diXAi + iXdAi. (8.5.15)

Proof. Taking the variation of (8.5.3) we have

d(iXdΣi) + ϵijkδXAjΣk + ϵijkAj(diXΣi + iXdΣi) = 0. (8.5.16)

We can also insert the vector field X into (8.5.3) to get

iXdΣi + ϵijk(iXAj)Σk − ϵijkAjiXΣk = 0. (8.5.17)

Substituting iXdΣi from here into (8.5.16) we have

d(ϵijkAjiXΣk − ϵijk(iXAj)Σk) + ϵijkδXAjΣk + ϵijkAjdiXΣk

+ ϵijkAj(ϵklmAliXΣm − ϵklm(iXAl)Σm) = 0.
(8.5.18)

The terms in the first line become

ϵijkdAjiXΣk − ϵijkd(iXAj)Σk + ϵijk(iXAj)ϵklmAlΣm + ϵijkδXAjΣk, (8.5.19)

where we have used (8.5.3) again. The first term in the second line can also be simplified. We
again use AjAl = (1/2)ϵjlsϵspqApAq to get

ϵijkAjϵklmAliXΣm = ϵijk(1
2
ϵjlmAlAm)iXΣk. (8.5.20)
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This means that (8.5.18) can be rewritten as

ϵijkF jiXΣk + ϵijk(δXAj − d(iXAj))Σk

+ ϵijk(iXAj)ϵklmAlΣm − ϵilkAlϵkjm(iXAj)Σm = 0,
(8.5.21)

where we changed the names of the dummy indices suggestively. The last two terms can be
simplified using the identity

ϵijkϵklm + ϵilkϵkmj + ϵimkϵkjl = 0. (8.5.22)

This gives,
ϵijkF jiXΣk + ϵijk(δXAj − d(iXAj) − ϵjpqAp(iXAq))Σk = 0. (8.5.23)

We can finally insert X into (8.5.11) to rewrite the first term here as −ϵijkiXF jΣk. Overall,
this produces terms that are all of the type of operator JΣ acting on an E-valued 1-form. The
operator JΣ is invertible, which allows us to write

δXA
i = d(iXAi) + ϵijkAj(iXAk) + iXF i. (8.5.24)

The first two terms here assemble into the covariant derivative of iXA
i, computed using the

connection Ai. The last term is the insertion of X into the curvature F i. Using the formula
(8.5.12) for F i, and noting a cancellation, one achieves the desired result.

It should be noted that (8.5.24) is a very useful formula that we will need below.

8.5.4 Transformation Properties under SU(2) Gauge Transformations

Let us also determine how the torsion transforms under the local SU(2) gauge transformations.

Theorem 8.5.4.1. Let A ∈ Λ1(M)⊗E be the intrinsic torsion of the SU(2)-structures Σi. Then
under infinitesimal gauge transformations, δϕΣ

i = ϵijkϕkΣk, A transforms in the usual way with
the parameter −ϕi as

δϕA
i = −dϕi − ϵijkAjϕk, (8.5.25)

Proof. Taking the variation of (8.5.3) we have

d(ϵijkϕjΣk) + ϵijkδϕAjΣk + ϵijkAjϵklmϕlΣm = 0. (8.5.26)

The first term gives a contribution containing dϕi, as well as one with dΣi. The latter can be
transformed using (8.5.3). This gives

ϵijk(δϕAj + dϕj)Σk + ϵijkAjϵklmϕlΣm − ϵijkϕjϵklmAlΣm = 0. (8.5.27)

The last two terms can again be transformed using (8.5.22). This puts all terms in the same
form of JΣ acting on an E-valued 1-form. Because JΣ is invertible, we get the desired result
under the usual gauge transformation with parameter −ϕi.

One then has the following corollary regarding gauge transformations of the curvature F .

Corollary 8.5.4.1.1. Let F ∈ Λ2(M)⊗E be the curvature of the torsion, A ∈ Λ1(M)⊗E. Then
F i transforms covariantly, i.e.

δϕF
i = ϵijkϕjF k. (8.5.28)

8.5.5 Diffeomorphism Invariant Action

We have confirmed that the torsion transforms covariantly under diffeomorphisms. This means
that any action that is schematically of the type ∫ A2 is diffeomorphism invariant. Now, the
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representation theoretic decomposition (8.2.10), (8.2.11) of A ∈ Λ1 ⊗E shows that there are two
irreducible components of the intrinsic torsion. This means that there are only two quadratic
invariants that can be constructed from A. One can always take as a basis of such invariants
the quantities (Aiµ)2 and AiµJΣ(A)iµ. This leads to the following theorem,

Theorem 8.5.5.1. The most general diffeomorphism invariant action that can be constructed
is

S[A(Σ)] = a∫ (Aiµ)2 + b∫ AiµJΣ(A)iµ, (8.5.29)

where a, b ∈ R.

It can be confirmed that the linearisation of this general diffeomorphism invariant action
(8.5.29) coincides with the linearised action (8.4.12).

8.5.6 Diffeomorphism and SU(2) Invariant Action

Let us now impose the requirement that the action is both diffeomorphism and SU(2) gauge
invariant. At the linearised level, we have seen that this has the effect that only one of the two
diffeomorphism invariant terms survives, and one gets linearised Einstein-Hilbert action. It is
clear that from the two terms A2 and AJΣ(A) the first one is not gauge invariant. Using physics
terminology, this term is a mass term for the connection, which cannot be gauge invariant. Let
us discuss the other term.

Corollary 8.5.6.0.1. The action,

S[Σ] = ∫ A(Σ)iµJΣ(A(Σ))iµ, (8.5.30)

is diffeomorphism and SU(2) invariant.

Proof. To see this, it is best to rewrite it using some integration by parts identities. Consider

∫ ΣidAi. Integrating by parts, assuming M is compact, we have

∫ ΣidAi ≈ −∫ dΣiAi = −∫ ϵijkAiAjΣk. (8.5.31)

In the last equality we have used (8.5.3). The quantity on the right-hand side is a multiple of
AJΣ(A). This means that

∫ ΣiF i = ∫ Σi(dAi + 1

2
ϵijkAjAk) ≈ −1

2
∫ ΣiϵijkAjAk. (8.5.32)

The integrand on the left is built from objects that transform covariantly under local SU(2)
gauge transformations and is invariant under them. The integral is then both diffeomorphism
and gauge invariant. This means that this is also the case for the object on the left-hand side.
This establishes that there is a unique action for SU(2)-structures in dimension four that is both
diffeomorphism and SU(2) gauge invariant.

Our action has the schematic of torsion squared, and expanding the definition of JΣ(A) gives

S[Σ] = −1
2
∫
M

ΣiϵijkAj(Σ)Ak(Σ). (8.5.33)

As we shall see below (8.5.33) is the best action one to write. Best, in the sense that, it is the
unique diffeomorphism and gauge invariant action, and, as we shall see below, its critical points
give Einstein conditions on the curvature. One can substitute the expression for A(Σ) given by
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(8.5.7) to obtain a second order in derivatives action for Σ. If one supplements (8.5.33) with a
constraint term

−1
2
(Ψij + Λ

3
δij)ΣiΣj , (8.5.34)

then this action is exactly the same as Plebanski’s action [Ple77], see below. Hence,(8.5.33) is a
reformulation of his original theory, again see below, theorem (8.5.6.1).

Plebanski Action and Einstein Condition

We can now discuss the Plebanski action, which is a first-order in derivatives version of (8.5.33).
The idea is to write an action that is a functional of both Σi and an independent E-valued one-
form field Ai, such that the Euler-Lagrange equations for Ai coincide with (8.5.3). A suitable
candidate is ∫ ΣiF i. One can then to supplement by a constraint terms that guarantee that Σi

satisfy the quaterion algebra. One is also free to add to this action the volume form with an
arbitrary coefficient. Plebanski [Ple77] was the first to consider such an action given as,

S[Σ,A,Ψ] = ∫
M

Σi(dAi + 1

2
ϵijkAjAk) − 1

2
(Ψij + Λ

3
δij)ΣiΣj . (8.5.35)

Here, Ψij is an arbitrary traceless symmetric 3× 3 matrix, whose components serve as Lagrange
multipliers to impose the constraints ΣiΣj ∼ δij . Indeed, the variation with respect to the field
Ψij gives ΣiΣj ∼ δij , which are the algebraic conditions that need to be satisfied by an SU(2)-
structure defining 2-forms Σi. It is also not difficult to see that its Euler-Lagrange equation
arising by varying with respect to Ai is precisely (8.5.3), and the Euler-Lagrange equation
arising by varying with respect to Σi is precisely (8.3.17).

This establishes the following

Theorem 8.5.6.1. The critical points of (8.5.33), or equivalently of (8.5.35), are SU(2)-structures
whose associated metric is Einstein.
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Chapter 9

SU(3)-structures in 6 dimensions

In 6 dimensions, every spinor is pure. This corresponds to the same orbit SU(3) (see Section
4.3). We shall not reconstruct the geometric map from scratch, as was done in Chapter 8. This is
because, in 4 dimensions, we wanted to highlight the Hyper-Kähler nature of SU(2)-structures.

In 6 dimensions, there are two differential forms that characterise the SU(3)-structure: ω,
the symplectic form, and Ω, the complex volume form in Λ3,0(M). [Koe11] gives a formula to
generate the complex structure regardless of the dimension d as

J ij = cεil1...ld−1Re(Ω)jl1...l(d/2)−1Re(Ω)ld/2...ld−1 . (9.0.1)

c is an appropriate normalisation, and ε is the antisymmetric symbol that is ±1. As Ω is con-
structed from a general Weyl spinor, its open orbits are the full space of 3-forms. In 6 dimensions,
as seen through [Hit00a], this is given as GL(6,R)/SU(3). In d > 6, this construction is still
possible as seen by (9.0.1), however, the orbit of ρ = Re(Ω) cannot be be open, similar to Spin(7)-
structures in 8 dimensions [Kar08]. Concretely, in 6 dimensions define a basis {dw1, . . . ,dw6}
on T ∗M . This allows our almost symplectic structure and complex volume form to be specified
as follows

ω0 = dw1 ∧ dw2 + dw3 ∧ dw4 + dw5 ∧ dw6, and

Ω0 = (dw1 − idw2) ∧ (dw3 − idw4) ∧ (dw5 − idw6).
(9.0.2)

Using (9.0.1) the almost complex structure J0 is found to be,

J0(dw1) = dw2, J0(dw3) = dw4, and J0(dw5) = dw6. (9.0.3)

Leading to the identification,

Ω0 = Re(Ω0) + iIm(Ω0) = Re(Ω0) + iJ0Re(Ω0). (9.0.4)

Finally, on each fibre we define the metric to be

g0(X,Y ) ∶= ω0(X,JY ). (9.0.5)

Like in the previous chapter, we also assume that our spin manifold is compact so that we may
exploit integration by parts.

9.0.1 ϵ identities

We shall now define Re(Ω0) ∶= C0 and J0Re(Ω0) ∶= Ĉ0. The following identities are found
in [BV07] and are used tacitly. We give them here for completeness and because we change
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notation. Define the following

C0 = Cijkdwijk, Ĉ0 = Ĉijkdwijk, and ω0 = ωijdwij . (9.0.6)

Here wi1i2... ∶= wi1 ∧wi2 . . . This gives the following identities

Cipqωpq = 0, ĈipqCjpq = −4ωij , ωipωpj = −δij , Cijpωpr = Ĉijr,
ĈijpCklp = −ωikδjl + ωjkδil + ωilδjk − ωjlδik,
Ĉijpωpr = −Cijr, and CijpCklp = ĈijpĈklp = −ωikωjl + ωjkωil − δilδjk + δjlδik.

(9.0.7)

9.1 Decomposition of Exterior Algebra

Let M with the data (ω,Ω) be a 6-dimensional manifold. Then Ω allows the construction of an
almost complex structure J . Hence, the 6-dimensional tangent bundle TM can be split into ±i
eigenspaces of J , labelled T 1,0M and T 0,1M , respectively1. Explicitly if { ∂

∂wi ∣ i ∈ {1,2,3,4,5,6}}
is a real basis for a local section in TM then locally J is an endomorphism such that

J ( ∂

∂wl
) = ∂

∂wl+3
, and J ( ∂

∂wi+3
) = − ∂

∂wi
, for l = 1,2,3. (9.1.1)

It is not hard to see that it squares to minus the identity map. Define in this neighbourhood
zµ ∶= xµ + iyµ, and z̄µ the complex conjugate. Then define

∂

∂zµ
∶= 1

2
( ∂

∂wµ
− i ∂

∂wµ+3
) Ô⇒ ∂

∂z̄µ
∶= 1

2
( ∂

∂wµ
+ i ∂

∂wµ+3
) , (9.1.2)

so that

J ( ∂

∂zµ
) = i ∂

∂zµ
, and J ( ∂

∂z̄µ
) = −i ∂

∂z̄µ
. (9.1.3)

The data {ω,Ω} gives rise to a hermitian metric by (9.0.5). So we are able to write, in complex
coordinates,

g = Jαµωµβ̄(dzα ⊗ dz̄β + dz̄β ⊗ dzα) ∶= gαβ̄dzα ⊙ dz̄β , (9.1.4)

The symmetry gαβ̄ = gβᾱ, and the relation g = iω is apparent. In other words, lowering an index
by g is equivalent to interchanging between barred to unbarred coordinates, similarly the inverse
form, g−1 i.e. gᾱβ , raises the index, performing the same interpolation. We give the following
definition.

Definition 9.1.0.1. Consider A ∈ T 0,2 ≅ T ∗M ⊗ T ∗M . This space is reducible under J . We
then define the symmetric, antisymmetric, hermitian and skew-hermitian pieces of A as

A =Mµνdz
µ ∧ dzν +Mµ̄ν̄dz̄

µ ∧ dz̄ν +Nµνdzµdzν +Nµ̄ν̄dz̄µdz̄ν

+Cµν̄dzµ ∧ dz̄ν + Sµν̄dzµdz̄ν .
(9.1.5)

Here,M ∈ Λ2,0, M̄ ∈ Λ0,2, N ∈ S2,0, N̄ ∈ S0,2, C ∈ [[Λ1,1]], and S ∈ [[S1,1]]. Λp,q are complexified
antisymmetric (p, q)-tensors, while Sp,q are complexified symmetric (p, q)-tensors, and [[W ]]
denotes the real part of a complexified vector space W .

The last line in (9.1.5) is the most interesting to analyse. In the space of hermitian forms,
there is the line element given by the “trace”, i.e., the hermitian metric g. This separates reduced
hermitian forms into “trace-free” hermitian forms plus the metric, i.e.,

S = (sµν̄ + gµν̄)dzµdz̄ν ∈ S1,1
0 ⊕Rg. (9.1.6)

1Similar notation throughout this chapter is used and commonly associated with complex geometry, see [Sal89].
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Similarly, noting that ω = −ig is skew-hermitian, a similar decomposition can be made. This
skew-hermitian tensor is the (1,1)-form compatible with the complex structure, J . Hence,

C = (cµν̄ + igµν̄)dzµ ∧ dz̄ν ∈ Λ1,1
0 ⊕Rω. (9.1.7)

This further decomposition comes from the reduction of u(3) to su(3) structures. These specify a
complex 3-form Ω and its complex conjugate Ω̄. Thus, there is a refinement to the decomposition
of T 0,2:

T 0,2 = Λ2,0 ⊕ S2,0 ⊕Λ1,1
0 ⊕ S

1,1
0 ⊕Rg ⊕Rω. (9.1.8)

Lemma 9.1.0.1. Consider the M,N, etc. as defined in (9.1.5). Then one has

M = 1

2
Mµν (gνσ̄dzµ ⊗

∂

∂z̄σ
− gµσ̄dzν ⊗ ∂

∂z̄σ
) ,

M̄ = 1

2
Mµ̄ν̄ (gν̄σdz̄µ ⊗

∂

∂zσ
− gµ̄σdz̄ν ⊗ ∂

∂zσ
) ,

N = 1

2
Nµν (gνσ̄dzµ ⊗

∂

∂z̄σ
+ gµσ̄dzν ⊗ ∂

∂z̄σ
) ,

N̄ = 1

2
Nµ̄ν̄ (gν̄σdz̄µ ⊗

∂

∂zσ
+ gµ̄σdz̄ν ⊗ ∂

∂zσ
) ,

C = 1

2
Cµν̄ (gν̄σdzµ ⊗

∂

∂zσ
− gµσ̄dzν ⊗ ∂

∂z̄σ
) , and

S = 1

2
Sµν̄ (gν̄σdzµ ⊗

∂

∂zσ
+ gµσ̄dzν ⊗ ∂

∂z̄σ
) .

(9.1.9)

This lemma is a simple consequence of lowering indices with the inverse of the hermitian
metric. The above then become a model for the decomposition of gl(6,R) with respect to
{ω,Ω}.

9.1.1 Decomposition of 2-forms

To decompose the space of 2-forms we consider the infinitesimal action of GL(6,R) on ω mim-
icking [Kar09] as follows2. Let A ∈ gl(6,R), and then eAt ∈ GL(6,R), the action is then given
as

eAt ⋅ ω = −igαβ̄(eAtdzα) ∧ (eAtdz̄β) . (9.1.10)

We know from general theory the orbit of ω is generic, so one should be able to recover Λ2(M)
by the action above. Indeed,

Proposition 9.1.1.1. Consider the action of A ∈ gl(6,R) on ω. Then the orbit of ω is Λ2(M),
explicitly,

d

dt
∣
t=0
eAt ⋅ ω = d

dt
∣
t=0
e(M+M̄+S))t ⋅ ω = i(M − M̄) − iS (9.1.11)

Proof. Differentiating with respect to t and then setting it to zero one has

d

dt
∣
t=0
eAt ⋅ ω = −igαβ̄ [(Adzα) ∧ dz̄β + dzα ∧ (Adz̄β)] . (9.1.12)

For the rest of the proof we use lemma 9.1.0.1 implictly.

2We shall use the same techniques when decomposing the space of 3-forms via Ω and Ω̄ in the next section.
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Consider N as above (9.1.5), then

d

dt
∣
t=0
eNt ⋅ ω = − i

2
Nµνdz

α ∧ (gαβ̄gνσ̄dzµ
∂

∂z̄σ
(dz̄β) + gαβ̄gµσ̄dzν

∂

∂z̄σ
(dz̄β))

= − i
2
Nµνdz

α ∧ (δανdzµ + δαµdzν)

= i

2
Nµν(dzµ ∧ dzν + dzν ∧ dzµ) = 0.

(9.1.13)

Similar to the above, one can show

d

dt
∣
t=0
eN̄t ⋅ ω = 0. (9.1.14)

The reason that N and N̄ vanish is due to the fact they are symmetric, that is the + between
the first and second terms on the first line of (9.1.13). This means that if one considered the
orbits of M and M̄ they would be non-vanishing, they would map to themselves with a factor
of ±i in front. That is to say

d

dt
∣
t=0
eMt ⋅ ω = iM, and

d

dt
∣
t=0
eM̄t ⋅ ω = −iM̄. (9.1.15)

Next, consider the hermitian and skew-hermitian spaces. Taking C, as above (9.1.5),

d

dt
∣
t=0
eCt ⋅ ω = − i

2
Cµν̄gαβ̄ (gν̄σdzµ

∂

∂zσ
(dzα) ∧ dz̄β − gµσ̄dzα ∧ dzν ∂

∂z̄σ
(dz̄β))

= − i
2
(gλβ̄Cαν̄gν̄λ − gατ̄Cµβ̄gµτ̄)dzα ∧ dz̄β

= − i
2
(Cαβ̄ −Cαβ̄)dzα ∧ dz̄β = 0.

(9.1.16)

The reason that this term vanishes is that it is skew-hermitian. This means that if one considers
S it is non-vanishing, i.e.

d

dt
∣
t=0
eSt ⋅ ω = −iSµν̄dzµ ∧ dz̄ν . (9.1.17)

Equation (9.1.16) makes sense because the extra factor of i changes C from skew-hermitian
to hermitian and S from hermitian to skew-hermitian, and skew-symmetric objects are zero
under skew-symmetric tensor products. So if one considers the orbit of the infinitesimal action
of A ∈ GL(6,R), then the kernel of this map is the space of symmetric complex tensors S2,0⊕S0,2

and skew-hermitian tensors [[Λ1,1]]. Furthermore, the image of this map is contained in the
space of 2-forms, which by the complex structure J splits as {±1}−eigenspaces. Under this map,
the image of skew-symmetric complex tensors Λ2,0⊕Λ0,2 is sent to itself (the −1 eigenspace) in the
space of 2-forms. Furthermore, this map sends hermitian tensors to skew-hermitian tensors (the
+1 eigenspace). Counting dimensions, these are both real 9-dimensions, so they are isomorphic
to one another via (9.1.12).
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9.1.2 Decomposition of 3-forms

To decompose the space of 3-forms we need to consider the infinitesimal action of GL(6,R) on
Ω and Ω̄. Let A ∈ gl(6,R), then eAt ∈ GL(6,R), and the action on Ω is given as

d

dt
∣
t=0
eAt ⋅Ω = 3Ωαβγ(Adzα) ∧ dzβ ∧ dzγ , (9.1.18)

and

d

dt
∣
t=0
eAt ⋅ Ω̄ = 3Ωᾱβ̄γ̄(Adzᾱ) ∧ dzβ̄ ∧ dzγ̄ . (9.1.19)

Now the following proposition,

Proposition 9.1.2.1. Consider the action of A ∈ gl(6,R) on Ω and Ω̄. Then the orbit of Ω and
Ω̄ is Λ3,0 ⊕Λ2,1 and Λ0,3 ⊕Λ1,2, explicitly,

d

dt
∣
t=0
e(g+ω)t ⋅Ω↪ Λ3,0,

d

dt
∣
t=0
eN̄t ⋅Ω↪ Λ2,1

0 ,
d

dt
∣
t=0
eM̄t ⋅Ω↪ Λ0,1,

d

dt
∣
t=0
e(g+ω)t ⋅ Ω̄↪ Λ0,3,

d

dt
∣
t=0
eNt ⋅ Ω̄↪ Λ1,2

0 , and
d

dt
∣
t=0
eMt ⋅ Ω̄↪ Λ1,0.

(9.1.20)

Proof. As was done in the previous proposition, we use lemma 9.1.0.1 implicitly. Now, it is clear
from the beginning that the action (9.1.18) on barred coordinates is zero. So N , and M are in
the kernel i.e.

d

dt
∣
t=0
eMt ⋅Ω = d

dt
∣
t=0
eNt ⋅Ω = 0. (9.1.21)

Then consider N̄ and M̄ , under (9.1.18) they become

d

dt
∣
t=0
eM̄t ⋅Ω = 3Mᾱν̄g

ν̄σΩσβγdz̄
α ∧ dzβ ∧ dzγ ,and

d

dt
∣
t=0
eN̄t ⋅Ω = 3Nᾱν̄gν̄σΩσβγdz̄α ∧ dzβ ∧ dzγ .

(9.1.22)

Then consider c, an element of [[Λ1,1
0 ]]

d

dt
∣
t=0
ect ⋅Ω = 3

2
cµν̄g

ν̄σΩσβγdz
µ ∧ dzβ ∧ dzγ . (9.1.23)

Using

cµν̄ = JµαJν̄ β̄Cαβ̄ , and gν̄σ = J ν̄ λ̄Jσρgλ̄ρ (9.1.24)

(9.1.23) becomes

d

dt
∣
t=0
ect ⋅Ω = 3

2
cµν̄g

ν̄σΩσβγdz
µ ∧ dzβ ∧ dzγ

= −3
2
cµν̄g

ν̄σΩσβγdz
µ ∧ dzβ ∧ dzγ .

(9.1.25)

Hence
d

dt
∣
t=0
ect ⋅Ω = 0. (9.1.26)
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The information we relied on was (9.1.24), i.e. the action of J on 2-tensors with a barred and
an unbarred index is the same as the identity transformation. This means that for s ∈ [[S1,1

0 ]]
the same result will hold

d

dt
∣
t=0
est ⋅Ω = 0. (9.1.27)

If we then consider the elements in [[Λ1,1]] and [[S1,1]] one has

d

dt
∣
t=0
egt ⋅Ω = 3Ω, and d

dt
∣
t=0
eωt ⋅Ω = 3iΩ. (9.1.28)

Under the map, (9.1.18), the kernel is Λ2,0 ⊕S2,0 ⊕ [[S1,1
0 ]]⊕ [[Λ

1,1
0 ]]. The same exercise for Ω̄,

that is the orbit for A ∈ gl(6,R) yields,

d

dt
∣
t=0
eMt ⋅ Ω̄ = 3Mανg

νσ̄Ωσ̄β̄γ̄dz
α ∧ dz̄β ∧ dz̄γ , d

dt
∣
t=0
eNt ⋅ Ω̄ = 3Nανgνσ̄Ωσ̄β̄γ̄dzα ∧ dz̄β ∧ dz̄γ ,

d

dt
∣
t=0
egt ⋅ Ω̄ = 3Ω̄, d

dt
∣
t=0
eωt ⋅ Ω̄ = −3iΩ̄, d

dt
∣
t=0
eM̄t ⋅ Ω̄ = d

dt
∣
t=0
eN̄t ⋅ Ω̄ = 0, and

d

dt
∣
t=0
ect ⋅ Ω̄ = d

dt
∣
t=0
est ⋅ Ω̄ = 0.

(9.1.29)

One can see that the kernel is Λ0,2⊕S0,2⊕ [[S1,1
0 ]]⊕ [[Λ

1,1
0 ]]. To make the characterisation with

the space of 3-forms, we consider M ∈ Λ1,0 and M̄ ∈ Λ0,1. Then

ξµg
µσ̄Ωσ̄β̄γ̄dz̄

β ∧ dz̄γ ↪ Λ0,2, and ξµ̄g
µ̄σΩσβγdz

β ∧ dzγ ↪ Λ2,0. (9.1.30)

Counting dimensions gives an isomorphism

Λ2,0 ≅ Λ0,1, and Λ0,2 ≅ Λ1,0. (9.1.31)

From standard representation theory, the space of real 3-forms splits as

Λ3 ≅ Λ3,0 ⊕Λ0,3 ⊕Λ2,1
0 ⊕Λ1,2

0 ⊕Λ1,0 ⊕Λ0,1. (9.1.32)

From dimension counting one sees that for A ∈ gl(6,R)

d

dt
∣
t=0
eAt ⋅Ω↪ Λ3,0 ⊕Λ2,1

0 ⊕Λ0,1, and
d

dt
∣
t=0
eAt ⋅ Ω̄↪ Λ0,3 ⊕Λ1,2

0 ⊕Λ1,0. (9.1.33)

The images of (9.1.18) and (9.1.19), and (9.1.31) prove the proposition.

Thus, we have recovered that the orbit of Re(Ω) = 1
2
(Ω + Ω̄) is generic in Λ3.

9.2 Characterising the Torsion Space

The torsion space is given by g⊥ ⊗ [[Λ1,0]] ≅ [[Λ1,1]] ⊕ [[S1,1]] ⊕ [[Λ2,1]] ⊕ [[Λ1,0]]. These are
irreducible representations for su(3). We re-write in another form

g⊥ ⊗ [[Λ1,0]] = (1⊕ 8)⊕ (1⊕ 8)⊕ (3⊕ 6̄)⊕ (3̄⊕ 6)⊕ (3⊕ 3̄). (9.2.1)

We write it this way to highlight that the total dimension of the torsion space is 42, we also wish
to highlight that there are 10 irreducible subspaces. This is an important count for the linearised
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theory, as this number dictates the number of free independent Lagrangians one expects to write.
We parameterise the torsion as follows. First consider, A ∈ [[Λ1,1

0 ]], and B ∈ [[S1,1
0 ]]. JB ∈

[[Λ1,1]], thus can instead use a complex (1,1)-form η and parameterise the space (1⊕8)⊕(1⊕8),
in (9.2.1), using Re(η) ∶= A and Im(η) ∶= JB. Next, the space (3⊕ 6̄)⊕ (3̄⊕6) in (9.2.1) can be
described through a one-form κ ∈ [[Λ1,0]] ≅ 3⊕ 3̄ and real symmetric 2-tensor h ∈ [[S2,0]] ≅ 6⊕ 6̄.
Finally, the space (3⊕ 3̄) can be characterised by another real one-form λ ∈ [[Λ1,0]].

9.2.1 Intrinsic Torsion of SU(3)-structures

To be able to use the power of the techniques developed by [Kar09] we need to convert the
SU(3)-structures to real ones. ω is already real, and so we start there. The covariant derivative
∇ω lies in the real version of the decomposition of 2-forms. We have shown that there is no
component of ∇ω lying in [[Λ1,1]], and S2,0 (hence S0,2). We proceed to show the following
theorem,

Theorem 9.2.1.1. Let X be a vector field on the 6-dimensional spin manifold M with an
SU(3)-structure {ω,Ω}. Then one has

Xα∇αωµνdwµν = −τµλJλνdwµν . (9.2.2)

Here τ ∈ [[Λ2,0]].

Proof. One must consider a symmetric tensor in [[S1,1]], then its real action on ω has the form

S = JµρSρνdwµν . (9.2.3)

We show that this component is orthogonal to the direction of ∇Xω =Xµ∇µωαβdwαβ by taking
the inner product with (9.2.3)

2Xµ∇µωαβJαρSρβ = 2XµSρβgρκ∇µωαβωακ. (9.2.4)

We have used metric compatibility of the connection to commute g, and now use

0 = ∇µ(δακ) = ∇µ(ωαβωακ) = ∇µωαβωακ + ωαβ∇µωακ. (9.2.5)

The above shows that ∇µωαβωακ is antisymmetric. This, in turn, shows that the contraction
on the right-hand-side of (9.2.4) is zero as a symmetric tensor is completely contracted with an
antisymmetric tensor. As objects in [[S2,0]], and [[Λ1,1]] do not appear in the decomposition
of 2-forms, the only space that ∇Xω can be in is [[Λ2,0]].

Similarly, we now prove the following statement for the real and imaginary parts of Ω, C and
Ĉ = JC.

Theorem 9.2.1.2. Let X be a vector field on the 6-dimensional spin manifold M with an
SU(3)-structure {ω,Ω}. Then one has

Xρ∇ρCαβγdwαβγ = (τ̃αµCµβγ + λĈαβγ)dwαβγ . (9.2.6)

Here τ̃ ∈ [[Λ2,0]] and λ ∈ [[Λ0]]. Furthermore,

Xρ∇ρĈαβγdwαβγ = (∗(τ̃αµĈµβγ) − λCαβγ)dwαβγ . (9.2.7)

Proof. The second equation (9.2.7) follows from the first and taking the Hodge dual. Recall that
the space Λ2,1

0 ⊂ Λ3 is parameterised by a complex symmetric 2-tensor N̄ by

Λ2,1
0 ∋ Nᾱλ̄g

λ̄νΩνβγdz
ᾱβγ . (9.2.8)
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Taking then the real part of this equation gives us access to the parameterisation in [[Λ2,1
0 ]].

Let N = h − iJh for some real function h ∈ [[S2,0
0 ]], one has

[[Λ2,1
0 ]] ∋ hαλC

λ
βγdw

αβγ . (9.2.9)

This component is orthogonal to the direction ∇XC = Xσ∇σCµνρdwµνρ by taking the inner
product with (9.2.9)

6Xσhµλ∇σCµνρCλνρ. (9.2.10)

Now we use
0 = ∇σ(gµλ) = ∇σ(CµνρCλνρ) = ∇σCµνρCλνρ + Cµνρ∇σCλνρ. (9.2.11)

The above shows that ∇σCµνρCλνρ is antisymmetric. Next, consider the space Λ0, parametrised
by real smooth function a and b in C∞(M) as

Λ0 ∋ (agµλ̄ + ibωµλ̄)gλ̄ρΩρτσdwµτσ. (9.2.12)

Taking the real part one then has

[[Λ0]] ∋ (aCµνρ + bĈµνρ)dwµνρ. (9.2.13)

Finally, using
0 = ∇σ(gµλ) = ∇σ(CµνρCλνρ) = 2∇σCµνρCλνρ. (9.2.14)

Thus ∇XC is orthogonal to C in (9.2.13). The rest of the cases need not be considered as they
do not appear in the decomposition of real 3-forms.

9.2.2 Reparametrising & Extracting Torsion

Let us begin with ∇XC. In this first instance, we recall that for 2-form in Λ2,0, one can write it
as a vector field in Λ0,1 contracted with Ω (9.1.31). This means in the real case one can write

τ ∶=XγCγαβdwαβ , and τ̃ ∶= Y γCγαβdwαβ , for some X,Y ∈ Λ1(M). (9.2.15)

Then using the relation that JC = Ĉ one can write the ∇Xω in component form

∇Xωµν =XλĈλµν , (9.2.16)

and in a similar vein one can write

∇XCαβγ = Y λCλ[α∣µ∣Cµβγ] + λσĈαβγ . (9.2.17)

We now have the following lemma

Lemma 9.2.2.1. Let X and Y as above, then X = 3
2
Y .

Proof. Firstly, we use the relation C ∧ ω = 0, and C ∧ Ĉ = (2/3)ω ∧ ω ∧ ω to show

∇XC ∧ ω + C ∧∇Xω = 0 Ô⇒ Y λCλ[α∣µ∣Cµβγωσρ] +XλĈλ[σρCαβγ] = 0
Y λωλ[αωβγωσρ] +XλĈλ[σρCαβγ] = 0
(Y ⌟ ω) ∧ ω ∧ ω + (W ⌟ Ĉ) ∧ C = 0.

(9.2.18)

On the other hand,

C ∧ Ĉ = 2

3
ω ∧ ω ∧ ω Ô⇒ (X ⌟ Ĉ) ∧ C + 2

3
(X ⌟ ω) ∧ ω ∧ ω = 0 (9.2.19)
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This must mean that X = 3
2
Y .

This completes the picture for what the torsion should look like in index form.

Theorem 9.2.2.1. Let ω and Ω be SU(3)-structures, then the covariant derivatives, i.e. torsion,
is given component-wise as

∇σωµν =
3

2
Tσ;λĈλµν , ∇σCαβγ = Tσ;λωλ[αωβγ] + λσĈαβγ , and

∇σĈαβγ =
1

2
Tσ;[αωβγ] − λσCαβγ .

(9.2.20)

Here a tensor of the type Tσ;λ refers to a an object in Λ1(M)⊗Λ1(M). The semicolon is to
emphasise there are is no symmetry in the indices. Also, for the last expression we recall that
∇X Ĉ is the Hodge dual to ∇XC, and that ∗ω = (1/2)ω ∧ ω. One has that T ∈ Λ1(M)⊗Λ1(M),
and λ ∈ Λ1(M) so

T = A +B + κ ⌟ C + h + ag + bω ∈ Λ1(M)⊗Λ1(M). (9.2.21)

Where A ∈ [[Λ1,1
0 ]], B ∈ [[S

1,1
0 ]], a, b ∈ [[Λ0]], κ,λ ∈ [[Λ1,0]], and h ∈ [[S2,0]]. We now proceed

to extract the torsion terms above in terms of exterior derivatives of ω, C and Ĉ, we exploit the
characterisation made by [CS02] to write

(dw)µνρ = −
3

2
bCµνρ +

3

2
aĈµνρ + λ[ρωµν] + hλ[ρCλµν],

(dC)σρµν = aω[σρωµν] + κ[σCρµν] −A[σρωµν], and
(dĈ)σρµν = bω[σρωµν] − κλωλ[σCρµν] −B[σλω∣λ∣ρωµν].

(9.2.22)

It is convenient to take the hodge duals of the second two terms written

∗(dC)µν = 2aωµν + κλĈλµν −
1

2
Aµν , and

∗(dĈ)µν = 2bωµν − κλCλµν +
1

2
J[µ

λBν]λ.

(9.2.23)

It is very easy to extract the tensors from the exterior derivatives by contracting appropriately
with the background forms ω, C and Ĉ.

Lemma 9.2.2.2. Let a, b ∈ [[Λ0]], and κ,λ ∈ [[Λ1,0]] be components of the torsion, (9.2.21),
then one has

a = 1

36
(dw)µνρĈµνρ, b = −

1

36
(dw)µνρCµνρ, λσ =

3

4
(dw)µνσωµν , and

κσ =
1

4
∗ (dC)µν Ĉµνσ.

(9.2.24)

Proposition 9.2.2.1. Let A ∈ [[Λ1,1
0 ]], B ∈ [[S

1,1
0 ]], and h ∈ [[S2,0]] be components of the
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torsion, (9.2.21), then one has

hλ[ρCλµν] =
1

24
(dw)αβγCαβγCµνρ −

1

24
(dw)αβγ Ĉαβγ Ĉµνρ

− 3

4
(dw)αβ[ρωαβωµν] + (dw)µνρ,

Aµν =
2

9
(dw)αβγ Ĉαβγωµν +

1

2
∗ (dC)αβ ĈαβλĈλµν − 2 ∗ (dC)µν , and

J[µ
λBν]λ =

2

9
(dw)αβγCαβγωµν +

1

2
∗ (dC)αβ ĈαβλCλµν − 2 ∗ (dĈ)µν .

(9.2.25)

Remark 9.2.2.1. We do not extract the symmetric parts, because they are more useful in these
forms, in keeping with Plebanski-formalism. Indeed, the goal is to be able to write an action
functional, hence one requires the auxiliary fields to be differential forms, which inherently are
antisymmetric. The tensors B and h are not antisymmetric unless they are contracted with J
and C, respectively.

We can now state the following corollary,

Corollary 9.2.2.1.1. ω and Ω are parallel SU(3)-structures if, and only if, dω, dC and dĈ
vanish if, and only if, the tensors characterising the torsion space g⊥ ⊗ [[Λ1,0]] vanish.

9.3 Curvature

The space of curvature tensors {Rijkl} ∈ K ⊂ Λ2(M)⊙Λ2(M) satisfy the Bianchi identity,

Rijkl +Riljk +Riklj = 0. (9.3.1)

The decomposition of Λ2(M)⊙Λ2(M) into SU(3) irreducible representations is given as

Λ2(M)⊙Λ2(M) = S2(1⊕ 3⊕ 3̄⊕ 8)
= (1⊕ 3⊕ 3̄⊕ 8)⊕ (1⊕ 6⊕ 6̄⊕ 8)
⊕ (1⊕ 3⊕ 3̄⊕ 8⊕ 15⊕ 15⊕ 27⊕ 6⊕ 6̄).
∶= Λ4(V )⊕Ricci⊕Weyl.

(9.3.2)

We now have the decomposition of Riemann tensors given as the direct sum of Ricci and Weyl.
Next, recall that

g⊥ = 1⊕ 3⊕ 3̄, and g = 8. (9.3.3)

One can ask how the products of each sit in the space of Riemann tensors, more specifically
what components lie in the Ricci and Weyl parts.

S(g⊥ ⊗ g⊥) = 2(1)⊕ 3⊕ 3̄⊕ 8⊕ 6⊕ 6̄,

S(g⊗ g) = 27⊕ 8⊕ 1, and

g⊥ ⊗ g = 15⊕ 15⊕ 6⊕ 6̄⊕ 3⊕ 3̄⊕ 8.

(9.3.4)

The above shows that the decomposition of the Ricci tensor lies in the +i eigen-subspace with
respect to J , which is 1⊕ 8, and in the −i eigen-subspace with respect to J , which is 6⊕ 6̄.

There are two ways to project the Riemann curvature tensor: either through the background
real 2-form ω or the real background 3-forms C and Ĉ. We wish to characterise the portion of
the curvature that can be accessed by the torsion, which is facilitated by the following theorem.
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Theorem 9.3.0.1. [Bianchi Identity] One can access the parts of the curvature tensor R by
projecting onto the background forms ω, C and Ĉ as follows

πω(R)ρσ;µν ∶= Rρστ [µω∣τ ∣ν] =
3

2
∇[ρTσ]τCτµν +

3

4
T[ρ

τTσ][τωµν]

+ T[ρτλσ]Cτµν ,

πC(R)ρσ;αβγ ∶= Rρστ [αC∣τ ∣βγ] = ∇[ρTσ]τωτ[αωβγ] +∇[ρλσ]Cαβγ

− 1

2
λ[ρTσ][αωβγ], and

πĈ(R)
ρσ;

αβγ ∶= Rρστ [αĈ∣τ ∣βγ] =
1

2
∇[ρTσ][αωβγ] −

1

2
T [ρ[α∇σ]ωβγ]

−∇[ρλσ]Cαβγ + λ[ρTσ]τωτ[αωβγ].

(9.3.5)

Where have suppressed the semicolon in the expression above for T . It isn’t difficult to
compute the above using algebraic identities involving C and ω, for example C ∧ ω = 0, the
identity for curvature tensors on a k-form β

Rab
c
[µ1
β∣c∣...µk] = ∇[a∇b]βµ1...µk

, (9.3.6)

and theorem (9.2.2.1). What we can proceed to show is that information about curvature is
encoded only in orbit of ω. Indeed, if one contracts πC,Ĉ(R) with Ĉ, and applies appropriate
identities, one has the resulting corollary

Corollary 9.3.0.1.1. Let πC,Ĉ(R) as above. Then under the following maps one has

πC(R)ρσ;[α∣βγ∣Ĉβγδ] = Rρστ [αC∣τβγ∣Ĉβγδ] = 2πω(R)ρσ;αδ, and
πĈ(R)

ρσ;
[α∣βγ∣Ĉβγδ] = Rρστ [αĈ∣τβγ∣Ĉβγδ] = 0

(9.3.7)

If one chose to contract both πC,Ĉ(R) with C the same result holds.

The curvature tensor can be considered as an object in (Λ2⊙Λ2)−Λ4. We want to understand
are the parts of the torsion that can be accessed by these projections πω,C,Ĉ(R). Corollary
9.3.0.1.1 shows that, to access the projections of the curvature tensor parameterised by intrinsic
torsion, it is only useful to consider πω(R). Recall, the orbit of ω in Λ2 reduces is [[Λ2,0]],
theorem (9.2.1.1). Therefore,

πω ∶ (Λ2 ⊙Λ2) −Λ4 → Λ2 ⊗ [[Λ2,0]], (9.3.8)

writing the above in terms of irreducible representations, one gets

Λ2 ⊗ ([[Λ2,0]]) ≅ (3⊕ 3̄⊕ 8⊕ 1)⊗ (3⊕ 3̄)
≅ 1⊕ 8⊕ 4(3⊕ 3̄)
⊕ 2(6⊕ 6̄)⊕ (15⊕ 15).

(9.3.9)

Compare this result with (9.3.4), and notice there are an extra three copies of 3 ⊕ 3̄. One
expects that in expanding the torsion T in terms of its irreducible representations via the formulas
in theorem (9.3.0.1), these extra copies of 3⊕ 3̄ don’t appear. Furthermore, from this analysis,
one sees that 27, a copy of 1, and a copy of 8 do not appear. These are exactly the parts of the
Weyl curvature we don’t have access to. Let us now write the Ricci tensor and Ricci scalar from
πω(R).
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Theorem 9.3.0.2. The Ricci tensor, in local coordinates, is given as

Rρν ∶= πω(R)(ρ∣σ;µ∣ν)gσµ =
3

8
(∇τTρµCτµν +∇τTνµCτµρ)

− 3

8
(∇ρT τµCτµν +∇νT τµCτµρ)

+ 3

16
(TρτTµ[τωµν] + TντTµ[τωµρ])

+ 3

16
(T τµTρ[τωµν] + T τµTν[τωµρ])

+ 1

4
(TρτλµCτµν + TντλµCτµρ)

+ 1

4
(T τµλρCτµν + T τµλνCτµρ).

(9.3.10)

The Ricci scalar, in local coordinates, is given as

R ∶= Rρνgρν = −
3

2
∇τTµνCτµν +

3

4
T τµT ν [τωµν] +

1

4
T τµλνCτµν . (9.3.11)

The torsion completely determines (9.3.9), the Ricci tensor sits inside this decomposition and
is characterised by the equations above. This leads to the following corollary.

Corollary 9.3.0.2.1. Let M be a spin manifold in 6 dimensions equipped with an SU(3)-
structure {ω,Ω}. M is Ricci flat if, and only if, the intrinsic torsion space completely vanishes.

Furthermore, we then have a characterisation that an SU(3) structure is parallel, or integrable
if, and only if, the Ricci tensor is vanishing. So M is an SU(3) manifold if, and only if, the
intrinsic torsion vanishes if, and only if, it is Ricci flat.

9.4 Linearised Analysis

We conclude this chapter by constructing an action that is linearised in the background fields:
the metric and the SU(3)-structures ω and Ω – similar to SU(2). To begin to understand what
constitutes a linearised diffeomorphism invariant Lagrangian, one needs to consider the tangent
space to the orbits of these structures. We write ∂a ∶= pa (∂̄a ∶= p̄a) as notational convenience
for now. This is because we understand the behaviour of the derivative, locally, and how the
symmetric product of two derivatives can pair with themselves and other other tensors. We
begin by decomposing:

Λ1 ⊙Λ1 = 6⊕ 6̄⊕ 8⊕ 1. (9.4.1)

It is understood that 1 corresponds to pap̄
a, 8 corresponds to pap̄b (without the trace), 6

corresponds to papb, and 6̄ corresponds to p̄ap̄b. To understand what field content we need to
consider the tangent space to it, it is not hard to see that the tangent space to the SU(3)-
structures consist of irreducible representations 3, 3̄, 6, 6̄, 8, 1, and 1̃. Here 1̃ ≅ 1 and is written
as such to emphasise there is another field present different to that lying in 1. As we are taking
symmetric pairings of the fields we only need to consider

6⊙ 6 = 6̄⊕ 15,

6⊗ 6̄ = 1⊕ 8⊕ 27,

6⊗ 3 = 8⊕ 10

6⊗ 3̄ = 3⊕ 15,

6⊗ 8 = 3̄⊕ 6⊕ 1̄5⊕ 24,

8⊙ 8 = 1⊕ 8⊕ 27,

8⊗ 3 = 3⊕ 6̄⊕ 15,

3⊙ 3 = 6,
3⊗ 3̄ = 1⊕ 8.

(9.4.2)
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Of course, there are also the products with the trivial representation 1 and 1̃. Furthermore, any
missing decompositions are complex conjugates of the above.

9.4.1 Complex Lagrangian

Armed with the representation theory above, we can write terms that one expects in the complex
linearised Lagrangian. Now,

3 ≅ Λ2,0 ≅ Λ0,1, 6 ≅ S0,2 ≅ Λ2,1
0 , 8 ≅ S1,1

0 ≅ Λ1,1
0 , and 1̃ ≅ 1 ≅ C∞(M)g ≅ C∞(M)ω. (9.4.3)

along with any complex conjugates. Our tensor fields will be constructed as follows

• Let Nαβdz
α ⊙ dzβ be a tensor fields in 6̄, and let Mαβdz

α ∧ dzβ be a tensor fields in 3.
Then define H =M +N be a field with no symmetries in 3⊕ 6̄. This means H̄ is a field in
3̄⊕ 6.

• Let h be a field in 8⊕ 1, h is a real tensor field.

• Finally, let c be a real field in 1̃ ≅ 1.

One now couples all the fields and using representation theory we can determine all possible
kinetic terms in the linearised theory

• HH̄ corresponds to decomposition (3⊕ 6̄)⊗ (3̄⊕ 6) = 4(8)⊕ 2(1)⊕ 10⊕ 1̄0⊕ 27. Hence,
there are 4 terms with derivatives of type pap̄

b and 2 terms with derivatives of type p2. It
should be noted that since there are representations and their complex conjugate (consider
NN+MM terms) there are derivatives with 4 real degrees of freedom and a single derivative
with 1 complex degree of freedom.

• HH corresponds to the decomposition (3 ⊕ 6̄) ⊙ (3 ⊕ 6̄) = 3 ⊕ 3̄ ⊕ 2(6) ⊕ 2(15). Hence,
there are 2 terms with derivatives of type papb. Since there are complex conjugate terms,
one will have derivatives with 2 complex degrees of freedom.

• Hh corresponds to the decomposition (1⊕8)⊗(3⊕ 6̄) = 3(3)⊕3(6̄)⊕15⊕ 1̄5⊕24. Hence,
there are 3 derivatives of the types p̄ap̄b. Since there are complex conjugate terms, there
will be derivatives with 3 complex degrees of freedom.

• Hc corresponds to the decomposition 3⊕ 6̄. There is a derivative of type p̄ap̄b: since there
are complex conjugate terms, the derivative will have 1 complex degree of freedom.

• hh corresponds to the decomposition (1 ⊕ 8) ⊙ (1 ⊕ 8) = 2(1) ⊕ 2(8) ⊕ 27. There are 2
derivatives of type pap̄b and 2 of the type p2. Hence, the derivatives will have 4 real degrees
of freedom.

• hc corresponds to the decomposition (1 ⊕ 8) ⊗ 1̃. Hence, there is a derivative of type p2

and pap̄b and hence 2 real degrees of freedom.

• c2 corresponds to 1̃ ≅ 1, and so the derivative has 1 real degree of freedom.

Therefore, there are 7 complex derivatives (and their conjugates) and 11 real derivatives consti-
tuting the kinetic terms in the linear Lagrangian.
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Diffeomorphism transformation properties

We wish to determine the transformation rules for the fields that we have introduced. Let A be
the perturbation of a real 2-form parameterised as follows

A = Aµνdzµν +Aµν̄dzµν̄ + complex conjugate (c.c.). (9.4.4)

Since it is tangent to ω it has the form

A = d

dt
∣
t=0
e(M+S)t ⋅ ω + c.c. (9.4.5)

This characterisation was made in the previous section and these pieces have been described
already. Explicitly

A = ωµλ̄gλ̄ρMρνdz
µν + ωµλ̄gλ̄σSσν̄dzµν̄ . (9.4.6)

Under diffeomorphism the various pieces of A transform differently, we have

δA = δAµνdzµν + δAµν̄dzµν̄ + c.c. (9.4.7)

Knowing that ω is a constant background 2-form, under diffeomorphism, i.e. the Lie derivative
& Cartan’s magic formula, that variation in 3 and 8⊕ 1 is given as

δAαβ = δiMαβ = ∂[αξ∣µ∣ωβ]ν̄gµν̄ , and δAαβ̄ = δiSαβ̄ = ∂[αξ∣µ̄∣ωβ̄]νgµ̄ν . (9.4.8)

Here ξ generates the diffeomorphisms. Simplifying the above gives,

δMαβ = ∂[αξβ] and δhαβ̄ = ∂(αξβ̄). (9.4.9)

The diffeomorphism of the trace is extracted by tracing the second equation giving

δh = 1

2
(∂ξ + ∂ξ). (9.4.10)

Where we define ∂µξ
µ ∶= ∂ξ, and ∂µ̄ξµ̄ ∶= ∂ξ. As we will see further on, δh is the real part of the

perturbation of a complex function f . This is why we see two copies of 1. There is a perturbation
associated with the imaginary part of f . This is extracted by considering B, a non-degenerate
perturbation of a complex 3-form of the following kind

B = Bαβγdzαβγ +Bᾱβγdzᾱβγ . (9.4.11)

It is tangent to Ω and so has the form

B = d

dt
∣
t=0
e(M+N+g+ω)t ⋅Ω. (9.4.12)

Taking the variation of the various components B

δBᾱβγ = ∂ᾱξµ̄Ωνβγgµ̄ν , and δBαβγ = 3∂αξµ̄Ωνβγgµ̄ν . (9.4.13)

Consider the variation Bᾱβγ ∈ Λ2,1. B can be written as the sum of a complex symmetric (0,2)
tensor N , and an complex antisymmetric (0,2) tensor M which have a single index contracted
with the complex (3,0) form Ω, i.e. Bᾱβγ = (Nᾱµ̄ +Mᾱµ̄)Ωνβγgµ̄ν . Then taking the variation
and recalling (9.4.13), one has

∂ᾱξµ̄Ωνβγg
µ̄ν = δBᾱβγ = (δNᾱµ̄ + δMᾱµ̄)Ωνβγgµ̄ν . (9.4.14)
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The antisymmetric part has already been extracted in (9.4.9), this means that

δNµ̄ν̄ = ∂(µ̄ξν̄). (9.4.15)

Since Bαβγ = fΩαβγ , for the function f = h + ic, the respective traces of the metric and the
(1,1)-form.

δBαβγ = δfΩαβγ = 3∂αξµ̄Ωνβγgµ̄ν . (9.4.16)

Now multiplying both sides by Ωλ̄τ̄ φ̄, and contracting indices totally on the left-hand side gives

δfΩαβγΩλ̄τ̄ φ̄g
λ̄αgτ̄βgφ̄γ = 3∂αξµ̄Ωνβγgµ̄νΩλ̄τ̄ φ̄gλ̄αgτ̄βgφ̄γ . (9.4.17)

We now use the following identities

ΩαβγΩλ̄τ̄ φ̄g
λ̄αgτ̄βgφ̄γ = 12, and ΩνβγΩλ̄τ̄ φ̄g

τ̄βgφ̄γ = 4(gνλ̄ − ωνλ̄), (9.4.18)

one has
δf = ∂αξµ̄(gαµ̄ − ωαµ̄). (9.4.19)

The above recovers (9.4.10), but one also uncovers the perturbation

δc = 1

2i
(∂ξ − ∂ξ). (9.4.20)

This is the other field 1. In summary,

Lemma 9.4.1.1. Consider the tensor fields parameterising the gl(3,C) orbit to the SU(3)-
structures and metric. Then the diffeomorphisms along a holomorphic vector field ξ are given
as

δHαβ = ∂αξβ , δhαβ̄ = ∂αξβ̄ , δh =
1

2
(∂ξ + ∂ξ), and δc = 1

2i
(∂ξ − ∂ξ). (9.4.21)

9.4.2 Diffeomorphism Invariant Linearised Lagrangian

We now vary the 25 terms that can be written in the Lagrangian. As stated previously, 7 are
complex derivatives, so we write down 18 terms with an overall scaling factor Λi. We shall
vary all 18 terms and write them below, using integration by parts liberally (we assume our
6-dimensional manifold is compact), and assuming total derivatives vanish.

Λ1 ∶ ∂σ̄∂κδ(H σ̄β̄Hκ
β̄) = ∂ᾱξβ̄∂2Hᾱβ̄ + ∂αξβ∂2Hαβ ,

Λ2 ∶ ∂σ̄∂κδ(H β̄σ̄Hκ
β̄) + c.c = ∂ξ∂ᾱ∂β̄Hᾱβ̄ + ∂βξα∂2Hαβ + c.c,

Λ3 ∶ ∂σ̄∂κδ(H ᾱσ̄Hᾱ
κ) = ∂ξ∂ᾱ∂β̄Hᾱβ̄ + ∂ξ∂α∂βHαβ ,

Λ4 ∶ ∂2δ(H ᾱβ̄Hᾱβ̄) = ∂ᾱξβ̄∂2Hᾱβ̄ + ∂αξβ∂2Hαβ ,

Λ5 ∶ ∂2δ(H β̄ᾱHᾱβ̄) = ∂β̄ξᾱ∂2Hᾱβ̄ + ∂βξα∂2Hαβ ,

Λ6 ∶ ∂σ∂κδ(HµνHαβ)ΩσµνΩκαβ + c.c = −2∂σ∂µξν∂κHαβΩ
σµνΩκαβ + c.c = 0,
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Λ7 ∶ ∂σ∂κδ(HµνHαβ)ΩσµαΩκνβ + c.c = 2∂σ∂µξα∂κHνβΩ
σµνΩκαβ + c.c = 0,

Λ8 ∶ ∂σ∂κ̄δ(hσβ̄hκ̄β̄) =
1

2
(∂ξ + ∂ξ)∂µ∂ν̄hµν̄ + ∂µξν̄∂2hµν̄ ,

Λ9 ∶ ∂σ∂κ̄δ(hκ̄σh) =
1

2
(∂ξ + ∂ξ)(∂2h + ∂µ∂ν̄hµν̄),

Λ10 ∶ ∂2δ(hαβ̄hαβ̄) = 2∂µξν̄∂2hµν̄ ,
Λ11 ∶ ∂2δ(h2) = (∂ξ + ∂ξ)∂2h,
Λ12 ∶ ∂σ̄∂κ̄δ(H σ̄ν̄hκ̄ν̄) + c.c = −∂µξν̄∂2hµν̄ + ∂αξβ∂2Hαβ + ∂ξ∂α∂βHαβ + c.c,

Λ13 ∶ ∂σ̄∂κ̄δ(H ν̄σ̄hκ̄ν̄) + c.c = ∂ξ∂µ∂ν̄hµν̄ + ∂βξα∂2Hαβ + ∂ξ∂α∂βHαβ + c.c,

Λ14 ∶ ∂σ̄∂κ̄δ(H σ̄κ̄h) + c.c = ∂ξ∂2h + 1

2
(∂ξ + ∂ξ)∂α∂βHαβ + c.c,

Λ15 ∶ ∂σ̄∂κ̄δ(H σ̄κ̄c) + c.c = ∂ξ∂2c + 1

2i
(∂ξ − ∂ξ)∂α∂βHαβ + c.c,

Λ16 ∶ ∂σ̄∂κδ(hσ̄κc) =
1

2
(∂ξ + ∂ξ)∂2c + 1

2i
(∂ξ − ∂ξ)∂µ∂ν̄hµν̄ ,

Λ17 ∶ ∂2δ(hc) = 1

2i
(∂ξ − ∂ξ)∂2h + 1

2
(∂ξ + ∂ξ)∂2c,

Λ18 ∶ ∂2δ(c2) = −i(∂ξ − ∂ξ)∂2c.

Where ∂2 ∶= ∂α∂ᾱ. Collecting like terms gives the following set of equations that must be set to
zero

∂ᾱξβ̄∂2Hᾱβ̄ ∶ Λ1 +Λ4 + Λ̄12,

∂αξβ∂2Hαβ ∶ Λ1 +Λ4 +Λ12,

∂β̄ξᾱ∂2Hᾱβ̄ ∶ Λ̄2 +Λ5 + Λ̄13,

∂βξα∂2Hαβ ∶ Λ2 +Λ5 +Λ13,

∂ξ∂ᾱ∂β̄Hᾱβ̄ ∶ Λ2 +Λ3 + Λ̄12 + Λ̄13,

∂ξ∂α∂βHαβ ∶ Λ̄2 +Λ3 +Λ12 +Λ13,

∂ξ∂ᾱ∂β̄Hᾱβ̄ ∶
1

2
Λ̄14 +

1

2i
Λ̄15,

∂ξ∂α∂βHαβ ∶
1

2
Λ14 −

1

2i
Λ15,

∂ξ∂µ∂ν̄hµν̄ ∶
1

2
Λ8 +

1

2
Λ9 + Λ̄13 +

1

2i
Λ16,

∂ξ∂µ∂ν̄hµν̄ ∶
1

2
Λ8 +

1

2
Λ9 +Λ13 −

1

2i
Λ16,

∂µξν̄∂2hµν̄ ∶ Λ8 + 2Λ10 −Λ12 − Λ̄12,

∂ξ∂2h ∶ 1
2
Λ9 +Λ11 + Λ̄14 +

1

2i
Λ17,

∂ξ∂2h ∶ 1
2
Λ9 +Λ11 +Λ14 −

1

2i
Λ17,

∂ξ∂2c ∶ Λ̄15 +
1

2
Λ16 +

1

2i
Λ17 − iΛ18,

∂ξ∂2c ∶ Λ15 +
1

2
Λ16 −

1

2i
Λ17 + iΛ18.

(9.4.22)

Re-writing the above equations gives

Λ1 +Λ4 +Re(Λ12) = 0,
Im(Λ12) = 0,

Re(Λ2 +Λ13) +Λ5 = 0,
Im(Λ13 +Λ2) = 0,

Re(Λ12 +Λ13 +Λ2) +Λ3 = 0,

Im(Λ12 +Λ13 +Λ2) = 0,
Re(Λ14) + Im(Λ15) = 0,
Im(Λ14) −Re(Λ15) = 0,
2Re(Λ13) +Λ8 +Λ9 = 0,

2Re(Λ13) −Λ16 = 0,

2Re(Λ12) −Λ8 − 2Λ10 = 0,
2Re(Λ14) +Λ9 + 2Λ11 = 0,

2Im(Λ14) −Λ17 = 0,
2Re(Λ15) +Λ16 = 0,

Λ17 + 2Λ18 = 0.

(9.4.23)
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The solutions are then

Im(Λ12) = Im(Λ13) = Im(Λ2) = 0,
Re(Λ12) = −Λ1 −Λ4,

Re(Λ2) = −
1

2
Λ16 −Λ3 +Λ1 +Λ4,

Re(Λ14) = −Im(Λ15),

Λ11 =
1

2
Λ16 − (Λ1 +Λ4 +Λ10) −Re(Λ14),

−Re(Λ13) = Re(Λ15) = Im(Λ14) =
1

2
Λ17 = −

1

2
Λ16 = −Λ18,

Λ5 = Λ3 −Λ1 −Λ4,

Λ8 = −2(Λ1 +Λ4 +Λ10),
Λ9 = −Λ16 + 2(Λ1 +Λ4 +Λ10).

(9.4.24)

There are 15 equations above that reduce 21 of the 25 parameters to 6 free ones

{Λ1,Λ3,Λ4,Λ10,Re(Λ14),Λ16}. (9.4.25)

Furthermore, as the terms with Λ6,7 (and their complex conjugates) vanish under diffeomor-
phisms, there are 2 more complex free parameters, which means there are 10 free parameters in
the theory:

{Λ1,Λ3,Λ4,Λ6,Λ7,Λ10,Re(Λ14),Λ16}. (9.4.26)

We now conclude this chapter with the following theorem.

Theorem 9.4.2.1. The space of linearised diffeomorphism invariant Lagrangians on a compact
6-dimensional spin manifold M with SU(3)-structure, {ω,Ω}, is constructed from a basis of
8 pieces: 6 pieces parameterised by real parameters and 2 pieces parameterised by complex
parameters, as follows

L ≈ LGR +LH +LH′ +L16 +L14 +L4 +L3 +L1. (9.4.27)

Here each piece is given as

LGR ≈ Λ10 (∂2hαβ̄hαβ̄ − 2∂σ∂κ̄hσβ̄hκ̄β̄ + 2h∂σ∂κ̄hσκ̄ − ∂2h) ,

LH ≈ Λ6 (∂σ∂κHµνHαβΩ
σµνΩκαβ) ,

LH′ ≈ Λ7 (∂σ∂κHµνHαβΩ
σµαΩκνβ) ,

L16 ≈ Λ16

⎛
⎝
(∂σ̄∂κ̄H ν̄σ̄hκ̄ν̄ + ∂σ∂κHνσhκν) + (∂σ̄∂κH β̄σ̄Hκ

β̄ + ∂σ∂κ̄HβσH κ̄
β)

− i ((h − ic)∂σ̄∂κ̄H σ̄κ̄ − (h + ic)∂σ∂κHσκ) − 1

2
∂2(h − c)2 − (h − c)∂σ∂κ̄hσκ̄

⎞
⎠
,

L14 ≈
Λ14

2
((h − ic)∂σ̄∂κ̄H σ̄κ̄ + (h + ic)∂σ∂κHσκ − 2∂2h2) ,

L4 ≈
Λ4

2
(h∂σ∂κ̄hσκ̄ − ∂σ∂κ̄hσβ̄hκ̄β̄ + 2∂2Hαβ (Hαβ −Hβα)) ,

L3 ≈
Λ3

2
(∂2HαβHαβ + (∂σ̄∂κH β̄σ̄Hκ

β̄ + 2∂σ∂κ̄HβσH κ̄
β) + ∂σ̄∂κH ᾱσ̄Hᾱ

κ) ,
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L1 ≈ Λ1

⎛
⎝
2h∂σ∂κ̄h

σκ̄ − 2∂σ∂κ̄hσβ̄hκ̄β̄ − ∂2h2 − ∂2HαβHβα +
1

2
(∂σ̄∂κH β̄σ̄Hα

β̄ + ∂σ∂κ̄HβσH κ̄
β)

− 1

2
(∂σ̄κ̄H σ̄ν̄hκ̄ν̄ + ∂σ∂κHσνhκν)

⎞
⎠
.

Remark 9.4.2.1. LGR is the linearisation of the Einstein-Hilbert Lagrangian. One can exhibit
its canonical form by further integrating by parts LGR, and rescaling Λ10 → − 1

2
Λ10.



Chapter 10

Discussions

We now make some concluding remarks about the work completed in this thesis, and possible
avenues of study one could pursue.

10.1 Non-Classical Spinorial G-structures

10.1.1 Classification of Real Spinors and Integrability

The stabilisers of the impure orbits of Spin(8) were SU(4) and Spin(7). By embedding Spin(8)
into Spin(10) and Spin(12), we parameterised impure orbits using octonions. This yielded the
stabilisers SU(4) × U(1) and Spin(7) × U(1) within Spin(10), and SU(4) × SU(2), SU(6), and
Spin(7) × SU(2) within Spin(12). However, many more stabilisers in 12 dimensions, at least,
cannot be accessed using Spin(8) alone.

In the analysis of 12 dimensions, we used a modified Majorana constraint to reduce the
difficulty of the problem. This neat trick, effective in 10 dimensions, and a convenient param-
eterisation of spinors in 8 dimensions, allowed us to access new stabilisers. If one relaxes the
modified Majorana constraint, the classification of stabilisers becomes too difficult, as we can
no longer eliminate components with the aforementioned trick. Hence, the best way to move
forward in classifying all real stabilisers in higher dimensions remains uncertain.

Spin(10) ψ1

ψ0

ψ3

Spin(7) ×U(1)

SU(5)

SU(4) ×U(1)

g0

g1

g2

Spinor Stabliser Metric

✓

?

?

Figure 10.1: ψ0,1,2 are representatives of an orbit, with stabiliser SU(5), Spin(7) × U(1), or
SU(4) ×U(1). The metric at each point is generated only for ψ0, g1,2 are not known for now.

Next, let us consider the integrability of non-classical spinorial G-structures. Recall that
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there are three types of spinorial G-structures in 10 dimensions: SU(5), SU(4) × U(1), and
Spin(7) × U(1). Consider the set of canonical differential forms associated with the classical
SU(5)-structure that stabilises a pure spinor in 10 dimensions, ψ0, denoted as {ω10,Ω10}. One
can algebraically reconstruct the metric using the formula g(X,Y ) = ω10(J10X,Y ) (where J10 is
the complex structure derived from Ω10 via the formula (9.0.1)), and then evaluate the covariant
derivatives of ω10 and Ω10 with respect to the Levi-Civita connection, ∇. If they are parallel
with respect to ∇, then the SU(5)-structure is integrable.

We have shown in the main text (see proposition 5.3.3.1) that the exterior derivatives are
both necessary and sufficient for the integrability of the SU(5)-structure. On the other hand, as
shown in figure 10.1, we have not yet provided a formula to generate a metric in 10 dimensions for
SU(4)×U(1)- or Spin(7)×U(1)-structures. Consequently, the conditions for integrability of these
new structures with respect to the Levi-Civita connection remain unclear. However, we can com-
pute the closure of canonical differential forms associated with SU(4)×U(1)- and Spin(7)×U(1)-
structures. Work in this direction has been initiated in [Kra24b] regarding SL(4,R)-structures
in 8 dimensions. These speculations lead one to make the following conjecture:

Conjecture on Closure. Let M be a compact spin manifold of dimension n, and let ψ be a
spinor be stabilised by G ⊂ Spin(2n). A non-classical spinorial G-structure is integrable (the
associated canonical differential forms are parallel with respect to a metric connection built from
algebraic relations between the canonical differential forms) if and only if each differential form
in the set of canonical differential forms is closed.

Finally, the examples exhibited from Spin(n,n) are even more mysterious. Hitchin’s gener-
alised geometry, as discussed in [Hit00b], appears to be the most natural framework to study
spinorial G-structures where G ⊂ Spin(n,n). We hope in the future to at least motivate the
reconstruction of the metric from a collection of differential forms for non-classical spinorial G-
structures in Spin(2n), and to better understand Hitchin’s generalised geometry to apply it to
spinorial G-structures in Spin(n,n). It would be fantastic if there was a generalised framework
that could then be applied to spinorial G-structures inside Spin(r, s).

10.1.2 Classification of Complex spinors

The beauty of chapter 6 lies in the elementary nature of its design. It begins with the considera-
tion of pure spinors and swiftly connects these to geometric shapes and counting principles. This
method recovers all classical results for simple parts of stabilisers, and moreover, these results
are extracted via geometric maps, as introduced in previous chapters. However, this method
encounters issues in higher dimensions, inherent to both the approach taken and the objects
studied. In 14 dimensions, the space of Weyl spinors is 27 = 128, while the dimension of the
group is 7 × 13 = 91. Here, the space of spinors exceeds that of the group, thus constraining the
orbits.

In 16 dimensions, the space of Weyl spinors amounts to 28 = 256, but the dimension of the
group is 8 × 15 = 120. The larger space of spinors means that orbits are no longer constrained.
[L V82] has meticulously documented all the stabilisers. This significant achievement has, un-
fortunately, not been translated into English; nonetheless, the results are outstanding. One does
not need to read or understand the Cyrillic script to appreciate the extensive list provided.

We verified many of the orbits using brute force code, constrained by the occupation number
formulas, as outlined in [Wel23]. A preliminary analysis through the code demonstrates its
capability to reproduce the same results as those found in [DR93], which constructed some of
the orbits in [L V82] using the symmetries of E8 ⊃ Spin(16). Further work is necessary to refine
the brute force approach and/or to enhance our algebraic understanding of spinors for d > 8.
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10.2 Integrability and Higher Dimensional Gravity

The Plebanski formalism, as explained in chapter 7 and elaborated in part II, appears to be
the most natural generalisation for gravity-type theories one could propose. This is hopefully
demonstrated through the discussion of SU(2)-structures in chapter 8. The story for SU(3),
however, is less than complete. While all the ingredients to write a Plebanski-type action func-
tional are present, they have not yet coalesced into a full theory due to the challenging selection
of suitable auxiliary field(s). We hope to revisit this in the future and further investigate the Ple-
banski formalism for SU(3)-structures, aiming to achieve an Einstein condition by extremising
the action.

The analysis of the Plebanski formalism required unique approaches for SU(2) and SU(3).
However, one hopes there is an underlying theory that extends to all SU(m)-structures for
m ∈ Z≥4. For instance, in 8 dimensions, using the tools developed throughout this thesis, it can
be shown that the GL(8,R) action is not generic on SU(4)-structures. Indeed, the orbit of the
action on the real part of the holomorphic top form is contained within [[Λ4,0]]⊕ [[Λ3,1]] ⊂ Λ4.
This analysis resembles that of Spin(7), where the space of admissible 4-forms is also not generic
in Λ4, [Bry87; Kar09]. Furthermore, we were able to show that the most natural second-order in
derivative conditions on the canonical differential forms in 4 dimensions are Einstein conditions.
However, we were not able to do the same in 6 dimensions. This is a difficult question because
SU(2) gauge invariance gave a unique action function to extremise. While in the case of SU(3)
one has an 8-parameter family of action functionals, even at the linearised level. There is no
clear gauge one can impose, like was done in 4 dimensions, to construct the most natural set of
second order PDEs.

Turning to a more physically conceptualised approach, even the linearised theory performed
in 6 dimensions presents challenges, due to a plethora of fields coupled to themselves and the
metric. G2 provides a more illustrative example case to understand the symmetries of the theory.
This is because, in the current studies of the linearised theory, only a vector field needs to be
coupled to the metric. Additionally, there is an inherent link between SU(3) and G2 — one can
calibrate a G2 structure to exhibit SU(3)-structures. Specifically, by selecting a time direction
in 7 dimensions, a generic 3-form in 7 dimensions decomposes into Re(Ω) and ω, while its
Hodge dual breaks into Im(Ω) and ω ∧ω (where Ω and ω represent a complex 3-form and a real
symplectic 2-form, respectively, in the remaining 6 dimensions). Work is currently ongoing to
study the linearised theory of G2-structures, such that SU(3)-structures are clearly exhibited.

10.3 Flows of G-structures

A large scheme of interesting ideas that have not been explored is geometric flows as gradient
flows from the second-order diffeomorphism invariant Lagrangians that we have written for
SU(2), and could write, for SU(3). This seems like a fruitful path from the level of Ricci flow.
Recall for(M,g), a Riemannian manifold, the Ricci flow is defined as

∂

∂t
g = −2Ric(g). (10.3.1)

Here Ric is the Ricci tensor. The intuition for this equation comes from being able to deform
the metric in the direction in the direction of its curvature in hopes of extremising to the most
“natural” metric. As we are inspired by physics, we instead consider the following flow

S[g] = ∫
M

R
√
−g, Ô⇒ ∂

∂t
g = −Ric + 1

2
Rg (10.3.2)

where R is the Ricci scalar, and the right-hand-side is the Einstein-Hilbert action for gravity in
a vacuum. This does not behave as a good system of differential equations. However, this can
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be remedied by Perelman’s trick, [Per02] exhibiting this flow as a coupled system of differential
equations, consisting of a Ricci-flow and heat-flow equation. Indeed, if one considers the action
functional,

S[g] = ∫
M
(R + ∣∇f ∣2)e−f

√
−g, Ô⇒

∂

∂t
g = −2Ric, and

∂f

∂t
= −∆f + ∣∇f ∣2 −R,

(10.3.3)

then this system does have short-time, and unique solutions. An application that we have yet
to apply but is a promising first step is to take the gradient flow of

S[Σ] = −1
2
∫
M

ΣiϵijkAj(Σ)Ak(Σ), (10.3.4)

and see if one can apply a Perelman-type trick. We hope that other theories that we construct,
as a generalisation of the Einstein-Hilbert theory, are also obtainable in a similar fashion.
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