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Abstract 

 

The Arctic is under great pressure from a warming climate, and areas at particular risk are those underlain by 

permafrost.  Palsas are raised peatlands situated on permafrost, and are currently greatly degrading and releasing 

methane, a powerful greenhouse gas, into the atmosphere.  As palsas degrade, vegetation and methane production 

change, and measuring these changes is crucial for estimating the emissions from these ecosystems.  Assessing the 

ability of machine learning (ML) vegetation classification models to transfer between different palsa complexes 

across the region is important for mapping these ecosystems efficiently.  In this project, two ML classifiers (random 

forest (RF) and support vector machines (SVM)) were trained on data from three palsa complexes and tested on a 

further three sites.  Despite high overall accuracies on two of the training sites (>80% overall accuracy for the two 

most accurate models), both models performed poorly when transferred to the testing sites, despite two different 

sampling methods being trialled (overall accuracies for all testing sites <45%).  The testing sites closer to a training 

site had better overall accuracies and were most impacted by the removal of the closest training site from the 

training data, with minimum decreases of 5.9% and 12% for these two sites, suggesting variation in vegetation 

classes across the region.   

There were multiple possible reasons for the poor performance of these models, including the small number of 

training sites and training data, and the limitations of the ML methods themselves.  Due to the mixtures of species 

that make up the vegetation classes, a model that allows for the input of swatches of image rather than the point 

values that are necessary for the ML methods is suggested to improve accuracy, such as a Convolutional Neural 

Network (CNN). 

 

 

1. Introduction 

 

 

The Arctic region is experiencing warming at a rate 

four times faster than the global average (Rantanen et 

al., 2022), meaning that understanding and quantifying 

the impact of warming is crucial, especially due to the 

presence of permafrost.  Permafrost is any material 

found in the ground (soil, bedrock, etc.) that remains at 

or below 0 °C for a minimum of two years.  The soil 

above permafrost that thaws seasonally is known as the 

active layer, where biological activity happens.  The 

location and thickness of the permafrost (and active 

layer) is determined by a variety of site-specific factors 

that ultimately impact ground temperature (e.g. 

vegetation (Rouse, 1984), snow cover (Desrochers and 

Granberg, 1988), etc.), and as such, the same is true for 

the degradation of permafrost.  

 

Permafrost is warming at a rate following the increase 

in air temperature, with global permafrost temperature 

increasing by 0.29 ± 0.12°C in the period from 2007 to 

2016 (Biskaborn et al., 2019), leading to permafrost 

degradation.  The degradation of permafrost has an 

impact on ecosystems up to the global scale due to the 

large amount of carbon stored in the Arctic region.   

 

 

Approximately half of global soil carbon is stored in 

the Arctic, making it an area with potential to emit large 

amounts of greenhouse gases (GHGs) (Hugelius et al., 

2020; Köchy et al., 2015).  An ecosystem of particular 

importance in terms of carbon  

 

storage are wetlands, as these ecosystems are estimated 

to cover around 3.7 ± 0.5 million km2
 of land, storing 

415 ± 150 Pg C and  

nearly half of the area covered and its carbon stocks are 

affected by permafrost (Hugelius et al., 2020).   

 

Palsa complexes are systems of particular importance 

in the Arctic as they are greatly impacted by permafrost 

degradation due to their reliance on permafrost.  Palsa 

complexes consist of raised plateaus of peat formed 

around a frozen core of peat which are commonly 

bordered by areas of former palsa which has now 

degraded, becoming waterlogged, and sometimes 

thermokarst lakes (Ballantyne, 2018; Zuidhoff and 

Kolstrup, 2000).  Permafrost degradation in this 

ecosystem has been seen over large areas of the Arctic 

(Åkerman and Johansson, 2008; Borge et al., 2017; de 

la Barreda-Bautista et al., 2022; Luoto and Seppälä, 

2003; Olvmo et al., 2020; Sannel et al., 2016; Sannel 

and Kuhry, 2011; Sjögersten et al., 2023), and such 



degradation causes subsidence of the peat surface and 

eventually waterlogging (Olvmo et al., 2020; Sjöberg 

et al., 2015).  Degradation of permafrost sees an 

increase in active layer (Åkerman and Johansson, 

2008), which in palsa peatlands allows for an increased 

volume of peat within which biological activity can 

occur, such as the activity of methanogenic organisms 

which produce methane (CH4).  The shift from raised 

peat mounds to waterlogged wetland demonstrates a 

shift in ecosystem functioning in palsas where methane 

emissions greatly increase, as has been observed across 

a large number of sites in the Arctic (Glagolev et al., 

2011; Miglovets et al., 2021; Sjögersten et al., 2023; 

Varner et al., 2022; Walter et al., 2006; Walter Anthony 

et al., 2016).   

 

Methane is a GHG which has seen a large increase in 

atmospheric concentrations since the 1980’s (Turner et 

al., 2019) and which have accelerated from 2020 to 

2021 (Feng et al, 2023).  The output of methane into 

the atmosphere is of great importance due to its high 

warming potential, 16-38 times that of carbon dioxide 

(CO2) (IPCC, 2021).  The factor most responsible for 

this recent acceleration is the interaction between a 

warmed atmosphere and wetlands causing an increased 

release of methane from these ecosystems (Turner et 

al., 2019; Zhang et al., 2023). 

 

Variation in methane emissions in peatlands have been 

linked to vegetation (Sjögersten et al., 2023), so 

vegetation maps over a region may help in identifying 

areas of high methane emission.  The variation in 

methane emissions is in part due to the species-specific 

difference of plants in emitting methane (Hodgkins et 

al., 2014; McLaughlin et al., 2023; Sjogersten et al., 

2023; Strom et al., 2005). 

 

Mapping of palsa vegetation on this scale would not be 

possible without the now wide-scale use of UAVs for 

Earth Observation (EO), which allow for affordable 

data capture at the centimetre scale (Assmann et al., 

2018; Koh and Wich, 2012).  UAVs allow for data 

capture even in such challenging and remote 

environments as the Arctic (Assmann et al., 2018; 

Fraser et al., 2016; Malenovský et al., 2017; Mora et 

al., 2015).  Siewert and Olofsson (2020) emphasise 

how the use of UAVs allows for the capture of fine 

detail which cannot be captured from satellite images.  

The ability to capture a whole palsa complex in a short 

period of time is of great value where previously this 

level of detail would only be possible by an individual 

walking the whole site over a much longer period.  The 

use of a regional model and UAV would eliminate the 

time-consuming need to collect ground testing data 

from every site, saving valuable time which may allow 

for more data collection.  This is especially important 

in the Arctic, where vegetation is only present for a 

small portion of the year while snow is not present, 

meaning that efficiency of data capture is crucial as the 

system is changing quickly (Rantanen et al., 2022).   

 

Classification of vegetation within peatlands will allow 

for the area of each vegetation class, and so methane 

flux over the area, to be easily calculated.  Some 

classifiers often used in literature include Support 

Vector Machines (SVM; a classification using training 

data that lies closest to the boundary between classes in 

feature space to define where a hyperplane that 

separates classes lies) and Random Forest (RF; an 

ensemble learning method that employs multiple 

decision trees (DTs), hierarchical classifiers that split 

and classify data based on feature values into subtrees). 

 

Knowing how much methane peatlands are emitting 

allows for accurate estimates of methane emissions 

from this crucial ecosystem and may give knowledge 

of which peatlands are the most impacted by climate 

change within the study region.   

 

The aims of this project were to: i) assess the suitability 

of two machine learning (ML) models for classifying 

palsa vegetation types when transferred between 

regional sites, ii) compare two sampling types for 

training data across the two ML models, iii) ascertain 

whether there are any differences in vegetation within 

the region, and iv) identify which classes are the most 

and least successfully classified. 

 

2. Literature review 

 

 

Mapping of wetlands and peatlands finds its roots in 

mapping the extent of these ecosystems and their 

subtypes (Krankina et al., 2008; Peregon et al., 2009).  

A variety of methods have been used to classify 

wetlands by type, including semi-automated methods 

using statistical classifiers such as maximum-

likelihood classification (MLC) (Bronge and Naslund-

Landenmark, 2002).  After the development of machine 

learning (ML) classifications, these classifiers were 

compared with statistical classifiers, as can be seen in 

a study by Sanchez-Hernandez et al. (2007), who 

compared support vector machines (SVM), an ML 

method, and MLC, finding SVM to be superior in 

locating coastal saltmarsh habitats.   

 

However, classification within wetlands was not 

possible until methods with better spatial resolution 

were developed, such as the use of unoccupied aerial 

vehicles (UAVs).  This allowed for characteristics 

within wetlands, such as vegetation type, to be mapped 

and enabled this data to be combined with other forms 

of data to study climatic effects on peatlands.  A recent 

example of this can be seen from De la Barreda-

Bautista et al. (2022) who combined vegetation maps 

from three palsa peatlands in Northern Sweden with 

InSAR data to study the subsidence of palsas on a 

variety of scales. 

 

SVM is a popular classification method due to its high 

performance with little training data, and its application 

has been seen across a variety of studies to classify 

vegetation.  For example, De la Barreda-Bautista et al. 



(2022) classified palsa wetlands using SVM, getting 

overall accuracy values ranging from 70 to 82%.  In 

addition, Sjögersten et al. (2023) used SVM to classify 

three palsa complexes in Northern Sweden, achieving 

a minimum accuracy of 70% in order to train a neural 

network to classify vegetation from satellite images.  

However, due to the UAV vegetation map not being the 

end product of this study, the classification may have 

the potential to reach higher overall accuracies, but this 

was not explored. 

 

Random forest (RF) classification is another method 

often used for vegetation mapping and was found to be 

favourable for mapping vegetation communities in 

comparison to Convolutional Neural Network (CNN) 

classifiers by Bhatnagar et al. (2020).  This was due to 

the need to retrain new CNN classifiers for different 

topologies, seasons, and atmospheric conditions, 

however, this study was based in Ireland, where the 

climate is vastly different to Northern Sweden.  

Another example of the use of RF classifiers can be 

seen in the study from Räsänen et al. (2019) from 

Northern Finland, who mapped vegetation 

communities within a wetland, comparing soft and 

hard RF classifications, reaching an overall accuracy of 

72%.  In this study, the use of textural features was 

found to be key in increasing overall accuracy.  

 

Various other methods have also been used, such as the 

Bagging Trees (BT) classifier, used by Bhatnagar et al., 

(2021) to classify a raised bog in Ireland, achieving an 

overall accuracy of 87%.  Another classification 

method comes through the use of multiresolution 

segmentation and an Object-Based Image Analysis, 

which has been used to reach overall classification 

accuracy of 86% when mapping dominant bog 

microforms for a site in South Patagonia, Argentina 

(Lehmann et al., 2016).   

 

Classification models mapping vegetation type are 

often developed on a case-by-case basis and fitted to 

the specific site(s) being mapped (Bhatnagar et al., 

2020; Bhatnagar et al., 2021; De la Barreda-Bautista et 

al., 2022; Lehmann et al., 2016; Räsänen et al., 2019; 

Sjögersten et al., 2023), and a regional classification 

method for palsa vegetation has not been attempted in 

the Arctic region.  In fact, studies examining the 

transfer of models within and between regions are few 

and far between, but model transferability has been 

tested in a variety of environments for several different 

purposes.  Foody et al. (2002) tested the transferability 

of a model to predict biomass across the moist zone 

tropical forest region, finding that when testing models 

on sites other than the one they were trained on, 

predictive accuracy declined.  A more recent example 

comes from Venter et al. (2024), who tested the 

transferability of biodiversity models between two 

preserves in Northern South Africa, finding that both 

generalised linear models and generalized boosted 

models were consistently poor regardless of modelling 

approach.  For vegetation classification, transferability 

of models has been assessed using RF to classify 

coastal vegetation (Juel et al., 2015).  When testing 

transferability of RF models across the coastline of 

Denmark, Juel et al. (2015) achieved a maximum 

accuracy of 54.2%.   

 

Despite these examples, transferability of vegetation 

classification ML models has not been assessed on 

palsa complexes in the region of Arctic Scandinavia, 

and the two popular ML classifications of SVM and RF 

have not been directly compared for this purpose.    

 

3. Methodology 

 

 

3.1     Study area 

 

Six peatland sites were the focus of this study, located 

approximately 200km North of the Arctic Circle within 

Sweden and Finland (68N 21E).  Three sites were 

located in close proximity to the border between the 

Kiruna municipality of Sweden and the Enontekiö 

municipality of Finland.  Two sites were near the 

village of Nikkaluokta, in the Gällivare Municipality, 

and the final site was located near Abisko, within the 

Kiruna municipality in northwestern Lapland (figure 

1).   

 

The mean annual temperature (MAT) in Abisko from 

the period of 1990-2020 was 0.3°C and the mean 

annual precipitation (MAP) was 347.2mm, and for the 

same period, the mean monthly temperature (MMT) in 

July (when data was collected) was 12.2°C, while in 

2024, the MMT rose to 14.6°C (http://www.smhi.se, 

last access: 13 August 2024).  The MMT in 

Nikkaluokta in July for the 1991-2020 period was 

12.7°C, while in July 2024 it was 14.7°C 

(http://www.smhi.se, last access: 13 August 2024).  In 

Enontekiö, temperature and precipitation values are 

taken over a larger area, spanning the three study sites 

on the Sweden-Finland border.  The MAT from 1981-

2010 was < -1°C and the MMT in July in 2022 was 

12.8°C, while the MAP 1981-2010 was 450-500mm 

(https://en.ilmatieteenlaitos.fi, last access: 7 August 

2024).  There is a difference of >1°C in MAT between 

the more Northern sites on the Sweden-Finland border 

and the Southern sites in Nikkaluokta, and this 

difference in temperature may impact vegetation 

composition on palsa complexes and palsa degradation. 

 

The sites lie in the sub-Arctic climatic zone within the 

Arctic Circle, and as such experience 24 hours of 

sunlight during summer months.  As all sites are within 

a zone of discontinuous or sporadic permafrost (Brown 

et al., 1997) this means that 50-90% (discontinuous) or 

0-50% (sporadic) of the land surface is underlain by 

permafrost.   

 

The sites consist of areas of raised palsa usually 

underlain with permafrost which degrade into areas of 

fen wetland which can be submerged beneath the water 

table, where no permafrost is present.  Raised palsa 

areas tended to be drier, and as such the vegetation was 

dominated by dwarf shrubs, including Betula nana, and 



Empetrum nigrum and some herbaceous species, Rubus 

chamaemorus in particular.  In addition, numerous 

small areas were dominated by lichens and bryophytes 

(Sphagnum spp.).  The flooded fen areas mainly tended 

to be vegetated by a mixture of bryophytes (Sphagnum 

spp.), sedges (Carex and Eriophorum species), 

deciduous shrubs (Betula nana and Salix species) and 

herbaceous species, mainly consisting of Comarum 

palustre.  The degrading edges of palsa were vegetated 

by a mix of the wetter and drier species, with the drier 

species dominating the top of slopes, transitioning to 

the water edge, where the sedge and bryophyte species 

dominated. 
 

 
Figure 1. A map displaying the testing and training 

sites used in this project, showing their locations in 

comparison to each other and the Arctic Circle. 

Base map from www.lantmateriet.se under the 

Open Data License; Creative Commons, CC0. 

3.2     Drone image collection 

 

Images were collected from the study sites during July 

2022 (Kasivarrentie sites 1 and 2, Saarikoski and 

Storflaket) and July 2024 (Nikkaloukta and Voanjal).  

A DJI Phantom 4 Multispectral unoccupied aerial 

vehicle (UAV) flew over each site taking images 

through six different sensors – one RGB sensor to 

image visible light and five monochrome sensors 

(Blue: 450 nm ± 16 nm; Green: 560 nm ± 16 nm; Red: 

650 nm ± 16 nm; Red edge (RE): 730 nm ± 16 nm; 

Near-infrared (NIR): 840 nm ± 26 nm) to take 

multispectral images.  The number of images collected 

at each site ranged from 1601 to 6551 (see table 1).  At 

each site, 5-6 UAV targets were placed around the edge 

of the UAV path to be used as ground control points 

(GCPs) during processing. Radiometric calibration was 

not attempted at any of the sites.   

 

3.3     Ground verification point collection 

 

During the same period of fieldwork, ground 

verification points were collected using a differential 

GPS (dGPS; Trimble R8s; vertical error of 1.5 cm), 

where the vegetation class or abiotic class and location 

were recorded.  A random sampling method was used 

to collect ground verification points from each of the 

sites.  The number of ground verification points per 

class collected from each site (see table 2) varied 

depending on the accessibility and abundance of the 

classes, for example, some parts of the site were so 

heavily waterlogged they were inaccessible.  The dGPS 

was also used to take a location from the centre of each 

of the UAV targets so the UAV images may be 

accurately geolocated. 

 

3.4     Classes 

 

Nine vegetation classes and two abiotic classes were 

used to characterise the vegetation found at the sites, 

based on the vegetation types used in Sjögersten et al. 

(2023) (figure 2).  Three vegetation classes were 

assigned to vegetation on intact or degrading palsas, 

separating them into six classes depending on the state 

of the palsa, these being dry lichen (or dry lichen 

subsiding), dwarf shrub (or dwarf shrub subsiding) and 

moist moss (or moist moss subsiding).  Three 

vegetation classes were found in areas where the palsa 

was entirely degraded and became partially flooded, 

and consisted of willow wetland, sedge/Eriophorum 

wetland (shortened to sedge wetland) and Sphagnum 

wetland.  The two abiotic classes were bare ground and 

water.  Detailed descriptions of the vegetation classes 

can be found in De la Barreda-Bautista et al. (2022). 

 

 
Figure 2. Images from the six main vegetation 

types from De la Barreda-Bautista et al. (2022).  

Top row: vegetation types that can be found on 

intact and degrading palsas.  Bottom row: fen 

vegetation types found in waterlogged wetland 

areas. 

 

 

 

http://www.lantmateriet.se/


3.5     Reflectance map and orthoimage production 

 

All images were manually assessed to remove any 

images with defects which would reduce the quality of 

the orthoimage to be produced (e.g. blurring, 

significant changes in lighting).  Images were then 

imported into Pix4D mapper, where geometrically 

verified matching was used to estimate the orientation 

of the images and create automatic tie points.  Ground 

control points (GCPs) were added at this stage, and 

manually located to ensure accurate geolocation of 

reflectance maps and digital surface model (DSM) (see 

figure 3).  Varying numbers of images were calibrated 

and used in this step, meaning they were used in the 

final orthoimages.  Next, a Dense Point Cloud was 

generated, from which a DSM was produced (figure 4).  

Reflectance maps were then produced for each spectral 

band and an orthoimage was produced using the RGB 

imagery. 

 

 

Figure 3. A processing image from Pix4D mapper 

of the automatic tie points (grey dots) and ground 

control points (green and blue circle and arrows) 

for one of the testing sites, Voanjal. 

 

Figure 4. A processing image from Pix4D 

mapper of the Dense Point Cloud and ground 

control points (green and blue circle and 

arrows) for Voanjal. 

 

3.6     Sample point selection 

 

A number of terrain characteristics and vegetation 

indices were calculated in RStudio using the Terra 

package and added to a raster stack for each site 

consisting of the multispectral reflectance maps (red, 

green, blue, RE and NIR), vegetation indices 

(Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI) and 

Enhanced Vegetation Index (EVI)), DSM, and terrain 

characteristics (slope, Terrain Ruggedness Index (TRI), 

Topographic Position Index (TPI), flow direction and 

aspect).  The DSM and terrain characteristic layers 

were resampled to 1m resolution using bilinear 

resampling to allow the terrain characteristics to 

capture the larger forms of the palsas rather than 

smaller variations within.   

 

Three sites were selected to act as training sites so that 

a site in each location could be left untrained by the 

models to test the model’s performance on sites it had 

not been trained on.  The training sites are 

Kasivarrentie sites 1 and 2; and Voanjal, leaving 

Saarikoski, Storflaket and Nikkaluokta for testing.  For 

each training site, a minimum of 15 polygons were 

constructed in QGIS containing each class from which 

sample points were then randomly selected in RStudio.  

It was ensured that the areas within the polygons did 

not include the ground verification points so that testing 

and training data did not overlap.  Sample points were 

selected randomly from within the polygons. 

 

Both a stratified and equally weighted training dataset 

was produced.  The number of ground verification 

points per site for each class was used to weight the 

number of sample points collected from each site for 

the stratified sampling dataset, equalling 600 points for 

each class over all sites.  For the equally weighted 

dataset, 200 points were sampled from each class 

within each site.  This number was selected as it means 

that the number of training points is above the number 

recommended by Mather and Koch (2022) based on the 

number of spectral bands the classification uses.  Only 

the equally weighted training data was used when the 

removal of a training site was tested to ensure that 400 

training samples for each class remained from which to 

train the models. 

 

3.7     Modelling 

 

The caret package within RStudio was used to classify 

the vegetation using two different ML methods – RF, 

using the randomForest package; and SVM, using the 

kernlab and e1071 packages.  Preprocessing was used 

to centre and scale the SVM models, and a grid search 

was used to select the optimal hyperparameters (C and 

sigma) for this model.  The same method was used to 

select the optimal hyperparameter for the RF model 

(mtry).   

 

One SVM and RF model was trained using data from 

all training sites for both the equally weighted and 

stratified sampling data.  In addition, the equally 

weighted data was split by site and used to train an 

SVM and RF model on data from two sites in every 

combination.   

 

3.8     Assessing accuracy 

 

The accuracy of the two models was assessed at each 

site by getting the models to predict the class of the 

ground verification points and comparing the 

prediction to the class recorded at the location.  Overall  
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accuracy was then calculated in RStudio for the model 

as a whole and at each site.  Confusion matrices were 

used to assess the class-wise predictions of each model 

for all sites combined and for each site separately.   

 

Due to the similarity in overall accuracy between the 

models, z-scores were calculated to test whether there 

was a significant difference in the accuracies between 

the models.    

 

4. Results 

 

 

4.1     Overall accuracy 

 

Overall accuracy across all sites was highest when 

predicted by the SVM model with equally weighted 

sampling (52.5%).  This model was significantly more 

accurate than the SVM model with stratified sampling 

(48.5%) with a z-score of 4.37, above the threshold for 

99% confidence of a significant difference in predictive 

accuracy between the two models.  For the RF models, 

no significant difference was found when comparing 

overall accuracy across all sites for the equally 

weighted (51.5%) and stratified (51.9%) sampling 

methods (z-score = 0.23). 

 

Comparing between the two different models (SVM 

and RF) resulted in a z-score of 0.73 when comparing 

between the models with equally weighted sampling, 

indicating no significant difference in predictive 

accuracy between the two different models. 

 

The overall accuracies of each site for the models are 

displayed in table 3, and it is evident that Kasivarrentie 

site 1 and Voanjal have the highest overall accuracies 

in every model, which was anticipated as the training 

data was collected from these sites.  Voanjal had a 

smaller range of overall accuracies, all >80%, while 

Kasivarrentie ranged from 60% to 89.4%, with greater 

overall accuracies from the models with equally 

weighted sampling, as this site had a smaller number of 

ground verification points, meaning that less training 

data was taken from this site for the stratified sampling 

training dataset.  

 

The overall accuracy of Kasivarrentie site 2 ranged 

from 33.9% to 43.8% (Table 3), despite one third of the 

training data originating from this site.  When models 

were trained with data from only Kasivarrentie site 1 

and Voanjal, the overall accuracy of the models 

decreased to 49.2% for the SVM model, a decrease in 

accuracy of 3.3%, and 51.2% for the RF model, 

showing a smaller decrease of 0.3%.  When the same 

models were trained without training data from either 

of the other two training sites, the overall accuracy 

decreased by a larger degree, ranging from 42.3% to 

44.1%.   

 

The overall accuracy of all the testing sites combined 

followed a similar pattern to the overall accuracy 

combining all sites.  The highest overall accuracy for 

the testing sites was from the SVM method with 

equally weighted sampling, achieving 41.9% overall 

accuracy, followed by the RF model with stratified 

sampling, with 40.2% overall accuracy.  The RF model 

with equally weighted sampling and the SVM model 

with stratified sampling had the lowest overall 

accuracies, getting 38.4% and 37.4% respectively.  Z-

scores were used to see if the models performed 

significantly differently.  Comparing the two different 

sampling methods for RF saw no significant difference 

(z-score = 1.52) as the z-score was below the 95% 

confidence threshold.  Similarly, there was no 

significant difference between the two models with the 

highest accuracy (z-score = 1.07).  There was 95% 

confidence that the SVM model with equally weighted 

sampling had significantly better predictive accuracy 

than the RF model with stratified sampling (z-score = 

2.11), and there was 99% confidence that the 

performance of the SVM model with equally weighted 

sampling was significantly better than the SVM model 

with stratified sampling (z-score = 3.97).  

Of the testing sites, Nikkaluokta had the highest overall 

accuracy, averaging approximately 50% (Table 3), and 

had the highest overall accuracy when predicted by the 

SVM model with equally weighted sampling, and the 

lowest overall accuracy from the SVM model with 

stratified sampling.  Saarikoski had a greater range of 

overall accuracy values than Nikkaluokta, ranging 

from 35.9% to 45.5%.  The model with the lowest 

overall accuracy for Saarikoski was the equally 

weighted RF model, while the highest overall accuracy 

for this site was reached using the equally weighted 

SVM model.  The testing site with the lowest overall 

accuracy was Storflaket, ranging from 23.9% to 31.9% 

with the same pattern as Saarikoski.   

 

When the models were trained with data from only two 

sites, the absence of one site from the training data led 

to significant decreases in the overall accuracies of the 

two testing sites in close proximity to one or more 

training site (Saarikoski and Nikkaluokta).  For 

Saarikoski, the decrease in overall accuracy of this site 

was seen with the removal of data from Kasivarrentie 

site 2, as the models trained with the use of data from 

this site ranged from 37.3% to 45.9%, and the models 

without data from this site had overall accuracies of 

28.2% (RF) and 31.4% (SVM).  For Nikkaluokta, the 

removal of training data from Voanjal resulted in a 

decrease of overall accuracy from values ranging from 

50.9% to 53.6% down to 39.6% (RF) and 38.9% 

(SVM).  Overall accuracy of Storflaket showed no 

trends across both classifiers due to the removal of 

training data from a single site.  

  

4.2     Class-wise accuracy 

 

When looking at the differences in classification of the 

different classes, there is a clear difference in 

sensitivity between the biotic and abiotic classes.  

Sensitivity of the bare ground class ranged from 73.7% 

to 84.2%, and for water, ranged from 86.2% to 93.1%  
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sensitivity.  Meanwhile, the highest sensitivity was 

achieved in the dry lichen and sedge wetland classes, 

with dry lichen sensitivity ranging from 42% to 68.1%, 

and sedge wetland from 56.6% to 71.1%.  

 

The lowest sensitivity was for the willow wetland and 

moist moss subsiding classes, with sensitivity ranging 

from 12.3% to 16.8%.  Willow wetland was most often 

misclassified as sphagnum wetland, with mean 

classification as sphagnum wetland at 41.3% across all 

models, however it was also commonly misclassified 

as dwarf shrub and dwarf shrub subsiding, while moist 

moss subsiding was not misclassified consistently as 

another class. 

5. Discussion 

 

 

The poor overall accuracies of all models (<45%) when 

predicting testing sites only, indicate that the ML 

models trained for this project are not suitable for 

classifying vegetation types of palsa complexes across 

a region.  Similar studies have achieved similar poor 

results; Juel et al. (2015) conducted a similar study 

classifying coastal vegetation in Denmark, obtaining a 

maximum overall accuracy of 56.6%, and Eischeid et 

al. (2021) only commented that direct transfer of 

models was not possible when mapping disturbance in 

Arctic tundra sites due to macro-F1 scores <50%.   

 

A possible reason for the lower overall accuracy on 

testing sites found in this study compared to Juel et al. 

(2015) may be the low number of training sites (3) 

compared to the 53 sites used for training by Juel et al. 

(2015).  A larger number of training sites would allow 

for greater capture of regional variation within classes, 

as the removal of one class at a time from the training 

data showed that the training sites closest to the testing 

sites led to the largest decrease in overall accuracy of 

the testing site.  The overall accuracy of Saarikoski 

decreased by a minimum of 5.9% when data from 

Kasivarrentie site 2 was removed from the training 

dataset, and the overall accuracy of Nikkaluokta 

decreased by a minimum of 11.3% when data from 

Voanjal was removed from the training data.  This may 

be due to the reduced distance between these sites 

(approx. 8km between Nikkaluokta and Voanjal; 

approx. 9km between Kasivarrentie site 2 and 

Saarikoski).  This means that there may be extremely 

localised trends in vegetation, as a similar decrease was 

not seen in overall accuracy from Saarikoski when 

training data from Kasivarrenite site 1 was not included 

in model training despite the sites being approximately 

23km apart and having similar surroundings (i.e. all 

located in close proximity to well-travelled roads, etc.).  

This trend indicates that these sites follow Tobler’s first 

Law, “everything is related to everything else, but near 

things are more related than distant things” (Tobler, 

1970).  This is further confirmed as Storflaket did not 

see a significant decrease across both models with the 

removal of training data from any single site, and it was 

>55km from all training sites.   

In addition, Storflaket had consistently lower overall 

accuracy, which may have been due to the large 

distance separating this site to all training sites.  The 

closest training site to Storflaket was Voanjal, 

approximately 56km away, while the other training 

sites were both >100km away, compared to the other 

testing sites which had a training site <10km away.   

 

Another possible limitation of the training data is the 

amount and variation of training data collected from 

each site.  Kasivarrentie site 2, despite being a training 

site, had low overall accuracy (33.9 – 43.8%), but 

removal of this site from the training data resulted in a 

decrease in the overall accuracy of Saarikoski by a 

minimum of 5.9%.  This suggests that the training data 

captured some of the variation of vegetation in both of 

these sites, but the spread of training data across 

Kasivarrentie site 2 did not capture all of the variation 

in vegetation classes within this site.  The collection of 

more data from each of the training sites may allow for 

more accurate classification, as the models in this study 

were trained on 6,600 training samples altogether, 

while the more accurate models in the study from Juel 

et al. (2015) were trained on 21,000 training samples.   

 

The poor performance of the models may be due to the 

data itself.  Although multispectral data provides a 

greater number of spectral measurements than RGB 

imaging, the five broad bands provided by the sensor 

used in this project may not allow for enough 

differentiation between vegetation types.  A possible 

solution for this may be the use of hyperspectral data, 

providing many additional narrow spectral band 

measurements, meaning that differences between 

vegetation classes may be captured to be used for 

classification.  Hyperspectral data has been seen to be 

superior to multispectral data when modelling for a 

variety of purposes, including for vegetation 

classification (Lee et al., 2004; Marshall and 

Thenkabail, 2015; Sluiter and Pebesma, 2010). 

 

In addition, images from UAVs often have different 

spectral reflectance values across separate sites, due to 

differences in weather, season, etc., meaning that 

radiometric calibration is often used to compensate for 

these differences.  As radiometric calibration was not 

used when the UAV was operated, differences in the 

reflectance between the sites could be posited as a 

possible reason for the low overall accuracy achieved 

on the testing sites.  However, Cubero-Castan et al. 

(2018) investigated the radiometric accuracy that could 

be achieved without radiometric calibration and found 

that using Pix4D mapper allowed for the calculation of 

accurate reflectance values.  The weather conditions 

were highly different during UAV data capture for the 

Nikkaluokta and Voanjal sites (i.e. overcast weather 

conditions on Nikkaluokta and sunny conditions on 

Voanjal), however, the removal of training data from 

Voanjal resulted in a significant decrease in accuracy 

for Nikkaluokta, suggesting that the lack of radiometric 

calibration did not hamper the classification models. 



The difference in sensitivity between the biotic and 

abiotic classes may be due to the uniformity of the 

abiotic classes.  This means that there is little variability 

in these classes, meaning that the training data used in 

this project was suitable to classify the water and bare 

ground classes to a sensitivity >70% for bare ground 

and >85% for water. 

 

Differences in sensitivity between biotic classes may 

be due to the similarity in appearance between classes, 

for example, the three fen classes (sedge wetland, 

sphagnum wetland and willow wetland) share some 

species.  The willow wetland class was any 

waterlogged area with the presence of a Salix species, 

meaning that other species present periodically 

included Sphagnum species, also found in the 

sphagnum wetland class, and Betula nana also found in 

the dwarf shrub and dwarf shrub subsiding classes, and 

these classes were those that the willow wetland class 

was most misclassified as.  These misclassifications 

may be a result of both models (RF and SVM) using 

point data as input, meaning that the combination of 

multiple species would be missed by the classifier.  A 

model more suited for the identification of classes 

consisting of a mixture of species may be a deep 

learning model such as a convolutional neural network 

(CNN), as the input data for this model can consist of 

sections of images (Rawat and Wang, 2017), allowing 

for the model to learn the different reflectance values 

of the combination of species characteristic of these 

classes.  In comparison, the two modelling methods 

implemented in this study required input of point data 

which would encompass only one vegetation species.  

In addition, neural networks have proven to be superior 

for vegetation classification, even when trained on 

point data (Berberoglu et al., 2000). 

 

6. Conclusion 

 

 

In conclusion, with the small number of sites from 

which data was collected, the ML methods which were 

assessed did not prove accurate enough to be applied 

region wide.  The use of more training sites and the 

collection of more training data from each site were 

considered as methods to increase accuracy of ML 

classification of palsas.  However, the use of 

hyperspectral data to better capture differences 

between vegetation types due to the larger number of 

spectral bands, and the use of a deep learning model 

such as a CNN, which may better capture the mixture 

of species that make up each of the vegetation classes 

due to input of these models which can be greater than 

one pixel, may lead to more accurate vegetation 

classifications.  
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