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Abstract

In this thesis, we present mathematical models used to describe maternal blood flow and

oxygen transport in the at-term human placenta. We take a computational approach using

discontinuous Galerkin finite element methods, which allows us to expand upon previous

work by considering a complex 2D placental geometry that respects the main structural

features of the placenta.

One third of stillbirths are related to placental dysfunction, and therefore the overarch-

ing motivation for this work is to better understand characteristics of diseased placentas.

This thesis studies maternal placental flow in three contexts, listed as follows.

Firstly, we study how placental efficiency is affected by changes in structural parameters.

We achieve this by generating a large number of flow and oxygen realisations, whereby

parameters such as the number and position of arteries and veins in our computational

domain are varied; this allows us to infer how changes in placental structure affect placental

function.

Taking the work in a second direction, we provide a method for comparing simulated

flows with MRI data. We achieve this by advecting particles due to an underlying flow

field, and modelling the evolution of each particle’s magnetic spin, from which we can

compute MRI signals. We compute these signals on simulated flow fields from our model

of maternal blood flow, and on simpler manufactured sub-voxel shear flow, rotational

flow, and accelerating flow fields; this allows us to infer the relationship between simple

sub-voxel flow fields, our model of maternal blood flow, and real placental MRI data.

Thirdly, we introduce a preliminary model of the recently-documented utero-placental

pump, where the entire placenta periodically reduces by up to 40% in volume, resulting in

periodic ejection of blood from the placenta. We achieve this by prescribing a simple form

of boundary motion in order to study the effect this has on flow and oxygen concentration.

We show that contractions of this nature do influence the oxygen transport dynamics, and

therefore could prove useful in understanding disease in the placenta.
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Chapter 1

Introduction

This thesis utilises a mathematical model of maternal blood flow and oxygen concentration

in the at-term human placenta, using a physiologically-informed 2D organ-scale geometry.

The solutions are approximated using discontinuous Galerkin finite element methods from

the existing numerical literature. The three main contributions of this thesis are to use

the aforementioned model and numerics to investigate how placental structure influences

flow and transport, to model MRI scans of flow, and to introduce a preliminary model of

the newly-discovered utero-placental pump phenomenon.

The remainder of this chapter presents a literature review of placental physiology and

existing placental mathematical modelling.

1.1 Placental physiology

The placenta is a crucial organ that is essential for our birth. It is unique in that it can be

straightforwardly examined ex vivo after delivery, enabling, for example, convenient ex

vivo perfusion experiments to investigate placental function [3, 4]. The role of the placenta

is detailed by Jensen and Chernyavsky in [5]. In summary, the placenta has two main

purposes: facilitating the transport of oxygen and nutrients from the mother to the fetus,

and transporting carbon dioxide and waste products from the fetus to the mother. In

human placentas, fetal blood flows through villous trees that are submerged in maternal

blood, which flows through the surrounding intervillous space (IVS). Fetal and maternal

blood do not directly mix: exchange between fetal and maternal blood takes place through

the large surface area of the villous tree.

A healthy delivered placenta is usually disk-like with a typical diameter of 22 cm,

thickness of 2.5 cm, and weight of 470 g at full-term [6]. However, the in vivo measurements

conducted by Afrakhteh et al. [7] using ultrasound have reported a larger average thickness
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of approximately 3.6 cm, the disparity arising due to leakage of maternal blood and a

pressure drop in the IVS after delivery, resulting in a collapse of placental structure and

decrease in placental volume [7, 8]. Structurally, the placenta comprises many smaller

functional units, partially separated from one another by so-called septal walls or septa.

Naming conventions for these functional units differ between authors, with common words

often found in the literature being lobe, lobule, cotyledon, and placentone [9]. The largest

unit is called a lobe, of which there are approximately 4–6, with each lobe containing

approximately 8–10 lobules. An average healthy placenta is expected to contain between

30 and 60 lobules [6, 9, 10]. Lobes are distinguished by taller surrounding septal walls

compared to lobules, with recent measurements of the smaller and taller wall heights to

respectively be on average 6.90mm and 14.07mm [11]. Placentones are idealised units

that correspond to one lobule containing one villous tree [5, 9]. Placentones in the interior

of the placenta are generally accepted to be approximately 40mm in diameter [8, 12], with

smaller placentones as small as 10mm in diameter at the placental margin [6]. Figure 1.1(a)

highlights lobes and lobules on the maternal side of a delivered placenta (i.e., the basal

plate). For consistency, for the remainder of this thesis we will employ the terminology

placentones to denote all functional units surrounded by septal walls of any height.

Figure 1.1(b) shows the structure of the placenta, with the maternal blood supply

entering and exiting at the bottom, and the fetal blood supply entering and exiting at

the top. Spiral arteries are the name given to maternal arteries entering the placenta.

Brosens wrote in 1988 [9] that they found most spiral arteries were found on the basal

plate or in the lower third of a septal wall, and estimated a total of 120 arterial openings

over the entire placenta; there has also been evidence of chorionic veins [6], and 5–6 larger

muscular veins thought to encircle the placenta, providing additional drainage [13]. The

exact number of arteries and veins in a placenta may significantly vary from placenta

to placenta, with current literature suggesting there to be 30–150 arteries and 50–200

veins for the maternal blood [6, 12, 14]. Whilst several studies have focussed on maternal

arterial flow (e.g., [14–17]), few studies have considered the venous drainage, despite this

being critical to the circulation of maternal blood, and therefore delivery of oxygen and

nutrients [18]. Furthermore, the location of vessels is not well understood; Chernyavsky,

Jensen, and Leach [12] outline the three main hypotheses for vein locations: random;

concentrated near the placental margins, and concentrated near the placental septa [19].

The placenta is an organ that develops through gestation, undergoing many struc-

tural changes from its initial development to delivery [21], which complicates placental

study. For example, ultrasound measurements indicate placental thickness measured

from the umbilical cord insertion site increases almost three-fold between the first and

third trimesters (first 14 weeks and after 27 weeks of pregnancy, respectively), increasing

from 12.90mm to 34.67mm [22]. As well as the placenta overall increasing in size, other

structural components separately undergo changes. For example, so-called ‘trophoblast
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Figure 1.1: (a) Annotated picture provided via private communications with Lopa Leacha and
Dimitrios Amanitisb. Picture of the basal plate of a human placenta, with grooves
showing visible septal walls. Coloured lines segment the placenta into 5 lobes, with
white ‘L’s indicating locations of individual lobules. (b) Modified diagram from
[20], showing how blood moves through the placenta. The chorionic plate is shown
towards the top of the picture, and the basal plate is at the bottom. Septal walls
separate individual placentones. Maternal blood enters the placenta via the spiral
arteries before percolating through the IVS and exiting through one of three types of
vein: basal plate, septal wall, or marginal sinus. Fetal blood enters via the umbilical
cord, flows through fetal vessels that cross the chorionic plate, before flowing through
the villous trees, and finally returning to the umbilical cord.
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Figure 1.2: Reproduced Figure from [23] showing a single placentone containing a villous tree.
The triangles on the left show that outward from the central cavity there is an
increasing maturation of villi and a decreasing concentration of blood oxygen.

plugs’ are present only from approximately 5 weeks of gestation, where cells partially block

the spiral artery and promote remodelling (widening) [15]. Another example is the villous

tree, which matures during gestation to become more specialised for diffusional exchange

[23]. This thesis will consider only at-term placentas.

The exchange of several solutes, including oxygen, takes place through the villous tree,

which has a huge surface area — approximately 10m2, or roughly 10% of the surface

area of an adult human’s lungs [24]. Efficient exchange often requires maternal blood

to access the whole of the villous tree (i.e., areas far from the basal plate), in order to

maximise possible uptake area. Figure 1.2 shows how blood enters through spiral arteries,

moves through the central cavity (CC), percolates through increasingly mature villous tree

material, and then finally exits through one of several veins — including septal wall veins,

marginal sinuses, and other veins located outside the originating placentone by passing

over septal walls; naturally, the oxygen concentration in the blood reduces as it passes

through the villous tree due to oxygen uptake. It has been postulated that villous density

close to spiral arteries must decrease during gestation, in order to account for so-called

‘mega-jets’ that permit deep penetration of nutrient-rich blood [16]. Hempstock et al.

[23] explain that villi nearer to the central cavity are of a larger diameter, and are less

specialised for diffusional exchange than their counterparts in the periphery; it is therefore

advantageous for high oxygen concentration blood to reach peripheral villi.

Nutrient delivery is essential for normal fetal growth, with poor delivery of nutrients

often linked to pregnancy complications such as stillbirth. A complication of disease

study is that some placental diseases are specific to humans [24], due to radical structural

variations between mammalian placentas [25]. Pre-eclampsia (PE), for example, is a

complex, multisystem disease that is unique to humans, characterised by sudden-onset
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hypertension [14, 26]. Fetal growth restriction (FGR) is another placental disease that is

often associated with stillbirth [27], and is defined as the failure of the fetus to achieve

its genetically-determined growth potential [28], with FGR placentas on average half

of the size of normal placentas [29]. PE and FGR are both generally considered to be

associated with structural defects in the placenta, leading to impaired nutrient delivery

and complications for both the fetus and mother, particularly when spiral arteries fail to

widen upon entering the IVS [20, 30]. In healthy placentas, spiral arteries widen from

0.5mm to 2–3mm, allowing upstream flow to slow from 1m s−1 to 0.1m s−1; however,

in diseased cases, the failure to widen can result in flow at 1m s−1 to directly enter the

placenta [14]. Whilst an increase in flow speed encourages deeper penetration of blood,

speeds that are too high will damage villous tree structures, creating an overall smaller

uptake area, and reduce blood transit times such that blood leaves the placenta with

higher-than-usual oxygen concentrations [14]. Understanding which structural changes

happen in disease, and the extent to which they impair blood flow and nutrient delivery,

may ultimately prove crucial for clinicians looking to treat these diseases. Another source

of nutrient delivery impairment has been suggested to be due to whether mothers choose

to sleep on their back or on their side; Couper et al. [31] report that maternal flow rates

lower by 27% when mothers are on their backs, as well as a 11.2% decrease in delivery of

oxygen to the fetus. This phenomenon occurs even in healthy late-gestation pregnancies,

which could be in part an explanation for late-gestation stillbirths.

The work of Burton et al. [14] and Roth et al. [32] focusses on the effects of high

flow speed from spiral arteries and the association with diseases such as FGR and PE,

and reported the presence of vortices and turbulence in areas surrounding the artery.

Even in healthy pregnancies, the speed of flow in the placenta varies greatly from the

basal plate to the sub-chorionic space (the region below the chorionic plate, see Figure

1.1(b)). Dellschaft et al. [20] gathered data on the speed in the placenta using MRI, and

categorised regions of fast flow (flow faster than 1× 10−3 ms−1) and slow flow (flow slower

than 5× 10−4 ms−1), finding that the faster regions were predominantly concentrated on

the basal plate. Additionally, they found that there was a distinct difference in the average

speed found in the IVS between healthy (4× 10−4ms−1) and diseased (7 × 10−4ms−1)

placentas [20].

In addition to dynamics which could arise directly from maternal and fetal blood flow,

there are several other forms of movement in the placenta, such as contractions of the villous

tree or contractions of the entire uterus; several authors have documented the properties

of such phenomena since as early as 1963 [33–36]. However, the newly documented ‘utero-

placental pump’ phenomenon is a contraction involving only the placenta [20]. Dellschaft

et al. [20] report that it has been found experimentally that placental volume can reduce by

up to 40% in these ‘utero-placental pump’ contractions over a 10-minute period, resulting

in a periodic ejection of blood from the IVS.
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Delivered placentas, whilst generally readily-available after birth, undergo significant

structural changes outside the uterus [8], rendering ex vivo experiments of limited use.

One way of overcoming the deflation issue is to perform perfusion experiments soon after

delivery, where a placentone is identified in a freshly delivered placenta, and both the

maternal and fetal blood supplies are catheterised [3, 37]; these have then been coupled

with mathematical models, giving a well-controlled system in which to test parameters

and gain physiological understanding [3]. In the case where placentas fail entirely, artificial

placentas have been developed, with variable success, since as early as the 1950s. Important

progress towards the ultimate goal of a functioning artificial human placenta has been

made in recent years, particularly through several important contributions that have been

made to the mathematical placental literature in the 2010s [3, 8, 10, 12, 14, 16, 38–42].

Mathematical modelling is a powerful tool in developing understanding of behaviour in

complex systems, such as the placenta and other organs. Digital twins are regarded as the

gold standard of organ modelling, where simulations directly model a specific real-world

organ. Sufficiently developed digital twins of the placenta would allow clinicians to study

disease and the effects of medical intervention in a risk-free environment. Whilst there are

currently no such models of the entire placenta, mathematical modelling of the heart has

made use of patient-specific geometries [43], with projects such as iHEART contributing

to collective understanding of the organ [44]. Upon the path leading to digital twins of the

human placenta lies several issues that must first be tackled by the modelling community;

Jensen and Chernyavsky [5] detail the important issues as modelling deformability of

villous trees, impact from the external environment, 3D morphology at a statistical level,

development of the placenta from early pregnancy, transport of multiple substances, and

understanding structural variations across placental mammalian species.

1.2 Flow and transport in the placenta

Most current mathematical models consider either the fetal or maternal blood flow in

isolation. This thesis focusses solely on modelling the maternal blood, but we now give a

brief overview of fetal modelling approaches.

Zhang and Lindsey [45] highlight the importance of computational models in the study

of fetal blood flow. The behaviour of fetal blood is often directly linked to the structure

of the villous tree, leading many recent studies to use anatomical images to study fetal

flow behaviour on the scale of individual villous tree ‘leaves’ [46–49]. Clark et al. [41] were

instead able to create an anatomically based geometric model of the entire fetal villous

tree, and used a simple flow model to study how fetal blood was affected by changes to the

structure of the tree. The umbilical cord carries the fetal blood to and from the placenta;

Kasiteropoulou, Topalidou, and Downe [50] studied the structure of the umbilical cord
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and how this impacts heat exchange, finding that the helicity of the cord plays a vital role

in fetal thermoregulation.

In the existing literature, there are generally two approaches to modelling maternal

blood flow [5]. Firstly, there are pore-scale (or micro-scale) models, where ‘pore’ refers

to the volume between villous tree branches; for example, Lecarpentier et al. [8] take 2D

anatomical images of the villous trees and use the Navier-Stokes equations to model blood

flow through the pores, although the method of imaging was not reported. An inherent

issue with this 2D approach is that tree material can form impenetrable barriers in the

plane, a constraint that 3D flow models may overcome. Perazzolo, Lewis, and Sengers [51]

use 3D anatomical images of the villous tree to model transport of oxygen from maternal

flow to the fetal capillaries, but are necessarily limited to a small region of villous tissue

to reduce computational costs. Serov et al. [40] use the micro-scale approach to simulate

flow through a ‘stream-tube placenta model’ and measure oxygen uptaken by the villous

tree, ultimately finding an optimal villous density of approximately 0.47 maximises oxygen

uptake, which is consistent with previous experimental measurements. Secondly, there are

tree-scale (or macro-scale) models, which model flow through gaps in the tree branches

as a porous medium via, for example, a Darcy-type description [8, 12, 52]; this involves

creating a resistance to flow, which can be described by a permeability k, for which the

size of k is inversely proportional to the effective flow resistance.

In 1977, Erian, Corrsin, and Davis [52] were the first to model maternal placenta flow

computationally. They modelled the placentone as a square, through which blood flowed

according to Darcy’s law, with a permeability field that varied with position, accounting

in a simple way for a less-permeable central cavity region. This porous medium approach

has been adopted more recently by Chernyavsky, Jensen, and Leach [12] where they

derive analytical expressions for the blood flow field, under the assumption of Darcy flow

in a 3D hemispherical domain representing a single placentone. Lecarpentier et al. [8]

computationally modelled flow through a single 2D placentone, from which they were able

to inform wall shear stress (WSS) villous tree measurements on several small areas cut

out from the domain. This work provides valuable insight into the stresses experienced by

cells in the villous tree, as it is believed that diseases such as PE may be attributed to

damage to the villous tree caused by high-speed flow [14].

The central cavity is a villous-free region above the spiral artery mouth, thought to

form among the villous tree material due to stresses from incoming maternal blood flow

[14, 16]. This region provides a lower resistance to flow, allowing incoming high-speed

flow to penetrate deeper into the placenta before entering the IVS. In the context of the

placenta, regions of high-speed flow (faster than 0.1m s−1) are referred to as ‘jets’ [16].

Ultrasound imaging have found so-called ‘mega-jets’, which are jets longer than half of

the placental thickness, and are components of a normal pregnancy [17]. Saghian et al.

[16] modelled flow entering the IVS throughout gestation, finding that the presence of
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mega-jets requires regions of less dense villous tree, such as the central cavity.

Some authors employ a hybrid between the micro- and macro-scale approaches, using

micro-scale simulations to determine values of local permeability, which then informs the

macro-scale dynamics through a spatially varying permeability field [8, 53]. Some authors

who use macro-scale models make further modelling enhancements such as varying the

permeability throughout the domain [8, 52], or modelling the effect of artery widening

before the maternal blood enters the IVS, to study what effect this has on fetal development

[14, 16, 32]. Whilst most of the mathematical placental literature studies third trimester

placentas (usually regarded as ‘fully developed’ or ‘at term’), some authors have investigated

the placenta throughout its development. For example, James et al. [15] computationally

investigated the effect of trophoblast plugs, with their work suggesting that trophoblast

plugs play an important role in rate-limiting flow to the placenta, and that malformation

of these plugs can lead to diseased placentas. Little is known about the rheology of blood

in the IVS when compared to blood rheology in narrow capillaries, which have been

well-characterised experimentally [5]. As far as we are aware, Lecarpentier et al. [8] is

the only author who adopts a shear-thinning model of the viscosity, whilst other authors

assume that blood in the IVS is Newtonian (e.g., [12, 14, 54]).

Exchange from mother to fetus is also an important aspect to study, for which the flow

of blood can be regarded as a vehicle in which to transport oxygen, nutrients, and waste

products. Some authors have modelled transport using a reaction-advection equation for

oxygen or nutrient concentration [12, 46, 51, 55], whilst others have supplemented the

reaction-advection equation using the so-called oxygen-haemoglobin dissociation curve,

which additionally describes the enhancement to advection due to oxygen’s affinity for

haemoglobin [40, 48, 54].

Given that the placenta lacks stiff supporting inner structures, a poroelastic description

is likely appropriate [5]. Moreover, throughout gestation, contractions of the placenta

and surrounding uterus have been widely reported [20, 34, 36]. However, as far as we are

aware, there is currently only one paper that presents a mathematical model that describes

contractions. Kato, Oyen, and Burton [39] focussed on the effect of actively contracting

villous trees, finding the contractions to be useful for both the fetal and maternal blood

circulations due to resulting displacements. Whilst the recently-discovered utero-placental

pump is yet to be mathematically modelled, it is thought that these contractions may be

related to the previous reports of contracting villous trees [20].

Little work has been undertaken on fully-coupled transport models describing both

maternal and fetal flow simultaneously, especially at the organ-scale. The first coupled

transport paper we are aware of is from 1973, where Hill, Power, and Longo [56] used

a simple compartmental model to describe the transport of oxygen and carbon dioxide

between maternal and fetal blood, which allowed the authors to investigate the relationship

between Haldane and Bohr effects and transport. More recently, the use of mathematical
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models in combination with perfusion experiments is summarised by Lewis, Cleal, and

Sengers [3], where the authors highlight several studies that have used compartmental

models — which describes how solutes may pass between mother, placenta, and fetus

— in order to study the bidirectional transport behaviour of various solutes in artificial

perfusion experiments [57–60]. Other related studies have modelled solute passing from

maternal flow to the fetal capillaries, but for simplicity neglect the fetal flow itself [51].

One of the most significant difficulties of placental study is that structural variability

is not well understood [5]. To illustrate this, Benirschke, Burton, and Baergen [6] took two

vastly different estimates of the number of spiral arteries from previous studies, where one

author estimated 263, whilst another estimated just 25; the disparity here is likely due to

difficulties in identifying the arteries, and also due to functional changes to the arteries

during development [6]. Contrasting estimates can also be found for other structural

features, such as the number and position of veins [12, 19], and the number of placentones

[6, 9, 19, 40]. In the absence of a concrete understanding of many important structural

features, several studies have used mathematical models to investigate their impact on

placental behaviour. For example, Chernyavsky, Jensen, and Leach [12], and more recently

Mekler et al. [54], studied how vein placement affects oxygen uptake to the villous tree;

they found that veins too close to the artery would exhibit ‘short-circuiting’ behaviour,

where flow is very much localised to the region between the arteries and veins, thus limiting

oxygen uptake. Chernyavsky, Jensen, and Leach [12] also studied how the height of the

villous-free central cavity influences oxygen concentration, finding deeper penetration of

oxygen for larger cavity sizes.

A standard model in the maternal mathematical literature has been to allocate one

artery and two veins on the basal plate to a placentone, with mathematical models of

maternal blood flow restricted to placentones, and therefore do not consider either septal

wall or marginal sinus veins. This is a clear limitation of existing studies as flux of blood

between neighbouring placentones, as would be expected in the sub-chorionic space (SCS)

[5], is necessarily neglected. Furthermore, additional drainage due to septal wall veins

and marginal sinus veins have not been considered in flow models, despite reports of

their existence in the literature [11, 13, 23]. Although there are several works related to

simulations of entire fetal villous trees (e.g., [38, 41]), as far as we are aware, there is not

any published work that tackles simulations of maternal blood flow on the scale of the

entire placenta.

In this thesis, we exclusively use a macro-scale model of maternal blood flow. This

approach eliminates the need for fine villous tree meshes, gives the permeability field

as a simple function of the spatial coordinates, and avoids challenges that arise with

impermeable villous tree structures in 2D. We will also adopt some of the modelling

enhancements in the aforementioned references, such as the inclusion of a central cavity

and a widening spiral artery. As noted by Jensen and Chernyavsky in [5], the described
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approaches for maternal haemodynamics are mostly restricted to single placentones; Jensen

and Chernyavsky further note that there is meaningful progress still to be made at the

whole-organ level, and with validating models against experimental data. We will therefore

solve a macro-scale model on a representative 2D slice of a whole placenta, which as far

as we are aware, is a novel contribution of this thesis. This 2D geometry is simpler than

an equivalent 3D geometry, but captures the main structural features of the placenta.

Our blood flow model will be supplemented with a model of oxygen transport so that we

may study oxygen uptake by the fetal villous tree. The thesis will then develop in three

separate settings: to investigate how placental structure influences flow and transport; to

model MRI scans of placental flow; and to introduce a preliminary model of utero-placental

pump.

1.3 Models of flow

Poromechanics more generally describes the behaviour of fluids saturating porous media,

where the fluid may be a liquid or a gas, and the structure is permeable (e.g., [61]); the

structure may also be elastic in the case of a biphasic poroelastic model. The simplest

example of steady flow through a porous medium is Darcy’s law. For a bounded domain

Ω ⊂ Rd, for d = 2, 3, Darcy’s law is given by

µ

k
u+∇p = 0, (1.1)

where u is the vector velocity field of the fluid, p is the scalar pressure field, k is permeability,

and µ is the dynamic viscosity of the fluid. We have omitted boundary conditions here for

ease of presentation.

The Navier-Stokes equations model time-dependent, viscous, Newtonian (non-porous)

fluid flow. The incompressible Navier-Stokes equations are given as: find u, p such that

ρ
∂u

∂t
+ ρ(u ·∇)u− µ∇2u+∇p = ρf , (1.2a)

∇ · u = 0, (1.2b)

where ρ is the density of the fluid, and f is some body force acting on the fluid. One may

define the Reynolds number as Re := ρUL
µ
, for some appropriate choices of velocity and

length scalings (U and L, respectively), which describes the ratio between inertial and

viscous forces. By assuming that the inertial forces are small compared to viscous forces,

the Reynolds number is low (i.e., Re ≪ 1), Equation (1.2) at leading order reduces to
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Stokes flow: find u, p such that

−µ∇2u+∇p = f , (1.3a)

∇ · u = 0. (1.3b)

In 1949, Brinkman [62] introduced a modification of Darcy’s law in Equation (1.1),

which we will refer to as the Brinkman equations: find u, p such that

−µ̃∇2u+
µ

k
u+∇p = 0, (1.4a)

∇ · u = 0, (1.4b)

where µ̃ is the so-called effective viscosity [63]. As well as this equation being second

order — and therefore allowing consistent application of boundary or interface conditions

with, say, the Navier-Stokes equations — Brinkman remarks that this equation has the

advantage of approximating Darcy flow in Equation (1.1) for small values of k, and Stokes

flow in Equation (1.3) for high values of k. Typically, most authors make the simplification

of µ̃ = µ [64].

In porous media applications where inertial effects are important, the so-called Navier-

Stokes-Darcy (or equivalently Navier-Stokes-Brinkman) equations may be more appropriate.

These equations consist of Navier-Stokes equations augmented by an additional Darcy

drag term and have previously been used to simulate solid obstacles in a fluid domain or

imposing no-slip boundary conditions [65, 66], and for directly modelling insect flight [67]

and flow involved in matrix acidising [68]. The Navier-Stokes-Darcy equations are given

by: find u, p such that

ρ
∂u

∂t
+

µ

k
u+ ρ(u ·∇)u− µ∇2u+∇p = ρf , (1.5a)

∇ · u = 0. (1.5b)

Other related models include the Brinkman-Forchheimer equations, where the drag is

modelled by both a Darcy-type term and a quadratic drag term that scales with u|u| [69,
70]. The additional Forchheimer term is generally applicable to flow of high Reynolds

number (Re > 100) [63].

In many porous flow applications, such as those in the placenta, there are regions of

‘free’ flow (often modelled by Stokes flow or the Navier-Stokes equations) and regions of

porous flow (often modelled by Darcy’s law or the Brinkman equations). The approach

adopted in this thesis is to use a single partial differential equation (PDE) on the entire

domain that captures effects of both free and porous flow in the appropriate regions.
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1.4 Numerical methods

Finite element methods (FEMs) are one of many choices of numerical methods for ap-

proximating solutions to PDEs. FEMs first appeared in work by Courant in 1943, where

the author used the idea of minimising a functional using linear approximations over

subregions, which is fundamental to the formulation required for deriving a finite element

method [71]. Clough in 1960 gave the method its name, describing how the methods could

be used on models of wing structure flexibility at Boeing [72]. The initial development

of FEMs are also credited by Gupta and Meek [73] to papers by Argyris and Kelsey

[74], Turner et al. [75], and Zienkiewicz and Taylor [76]. Since the initial work, many

different flavours of FEMs have been developed including the very popular continuous

Galerkin FEMs (CGFEMs) [77], discontinuous Galerkin FEMs (DGFEMs) which this

work exploits [78], as well as extended FEMs (XFEMs) [79], cut FEMs (CutFEMs) [80],

and the closely-related virtual element methods (VEMs) [81] and finite volume methods

(FVMs) [82] — some of which can be combined to make very powerful methods.

Whilst some studies of maternal placental flow have derived analytical expressions of

flow (e.g., [12, 14]), the vast majority of studies cited in this thesis have approximated

PDE solutions using one of two software packages: ANSYS Fluent [16, 54] or COMSOL

Multiphysics [8, 51, 55]. Whilst the details of the discretisations are not presented in these

studies, we can infer that discretisations of spatial derivatives use FVMs in ANSYS Fluent,

and either CGFEMs or FVMs in COMSOL Multiphysics.

Loosely speaking, DGFEMs are somewhat of a hybrid between classical CGFEMs

and FVMs [83], the latter being used extensively in computational fluid dynamics (CFD)

simulations. Cangiani et al. [83] highlight that DGFEMs are an excellent choice for mod-

elling in many practical settings due to their simple treatment of complicated geometries,

stability properties for large parameter variations, and favourable treatment of hyperbolic

terms in PDEs. In particular, DGFEMs are highly parallelisable from a computational

viewpoint as elements only involve communication across element faces, allowing some

computations to take place independently of each other [84].

For the numerical simulations undertaken here, we employ DGFEMs as our numerical

method of choice. We note that we specifically use the DGFEM symmetric interior penalty

method, which is both consistent and stable [78]. DGFEMs form a natural choice of

method for our application due to the inherent complicated placental geometries and fast

deceleration of flow as blood enters the placenta.
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1.5 Magnetic resonance imaging (MRI)

Magnetic resonance imaging (MRI) is an imaging technique that uses a strong magnetic field

and radio waves to generate images of biological tissue. These images are predominantly

used to non-invasively investigate pathology in the human body. This thesis will specifically

focus on the modelling of motion-sensitising MRI, where magnetic field pulses are applied

in a specific configuration to measure a velocity field (see [85] for a comprehensive summary

of MRI techniques).

Rinck [86] outlines the history of MRI development; MRI originated in 1946 from

the discovery of nuclear magnetic resonance (NMR) by Bloch [87] and Purcell et al. [88],

where particles emit electromagnetic signals under strong magnetic fields. The medical

applications of NMR were realised by Odeblad, who applied NMR to living cells and

excised animal tissue throughout the 1950s and 1960s (e.g., [89–91]). In the early 1970s,

Lauterbur and Mansfield created techniques that spatially encoded NMR signals, thus

permitting NMR imaging (i.e., MRI) for the first time. Lauterbur [92] produced the

very first MRI image of a living animal — a clam — in 1974, whilst Mansfield et al.

[93] created the first image of in vivo human anatomy — a finger — in 1977. Since the

1980s, commercial development of scanners and widespread use in hospitals have made

MRI scanners an indispensable technique for non-invasive imaging of pathology in vivo,

including the placenta.

Nuclear magnetisation is an intrinsic property of particles with an odd number of

protons and neutrons. Hydrogen has 1 proton and 1 neutron, and is predominantly used

for measurements due to its relative abundance in water and fat in the human body [94].

Nuclear magnetisation has both a strength and a direction, and its evolution in particles is

described by the Bloch-Torrey equation [94, 95]. Nguyen et al. [95] write the Bloch-Torrey

equation as: find M(r, t) such that

∂M(r, t)

∂t
= −iγ(G · r)M +∇ · (D∇M), (1.6)

where M(r, t) ∈ C is nuclear magnetisation, G is a magnetic gradient (to be introduced in

§5.1), r is displacement of particles, t is time, i is the imaginary unit, γ is the gyromagnetic

ratio, and D is a molecular diffusion matrix. MRI scanners make use of many non-

overlapping cuboidal voxels covering the domain of interest, from which MRI scanners

measure the collective nuclear magnetisation of the particles contained in each voxel; this

is achieved through the magnetic properties of the hydrogen atom, which is abundant

in water and fat [96]. Chapter 5 will infer MRI signals using Equation (1.6), where we

assume D = 0 (i.e., the Bloch equation) as so-called pseudo-diffusive effects dominate in

studies of blood flow [97, 98].
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While non-invasive imaging techniques such as MRI are useful in distinguishing healthy

and diseased placentas, their typical resolution may not accurately be able to detect

phenomena in regions of interest, such as spiral arteries. Spiral arteries are thought to be

of the order of 2.4mm in diameter at their widest (or even smaller in PE cases) [14], while

the resolution of MRI scanners used in a study by Dellschaft et al. [20] has voxel sizes

of 2.5mm× 2.5mm× 6mm. Placental imaging at scales below typical MRI scanners is

possible, with Tun et al. [99] imaging with an extraordinary level of detail using micro-CT;

however, this type of imaging is limited to a small total volume (8mm3 in the case of [99])

or can lead to very large datasets [100].

There are typically two approaches to comparing in vivo MRI measurements of physical

blood flow and computational blood flow fields. One approach is to reconstruct a velocity

field from MRI measurements, for which there are several methods of reconstruction [101–

103]. However, sub-voxel velocity reconstructions from MRI signal data are non-unique,

complicating study of physical flow in this way (see discussion in §5.3). Nevertheless,

several authors have adopted this approach for the study of placental flow. Dellschaft

et al. [20] used a velocity reconstruction from MRI data to reconstruct maternal flow in

the placenta, allowing the authors to identify the locations of arteries in scan data, and to

quantify the higher flow speeds typically seen in diseased placentas.

Another approach to comparing physical and computational flow fields is to simulate

MRI measurements directly from the computational flow field, and use these to compare

like-for-like with in vivo MRI measurements. This approach is often called numerical

MRI or synthetic MRI. Numerical computation of MRI signals can be achieved by solving

the Bloch-Torrey equations, given in Equation (1.6). Nguyen et al. [95] numerically

computed MRI signals using finite element methods, and were able to investigate different

diffusion coefficients and what effect this has on the measured MRI signal. Li et al.

[104] expanded upon this work by developing a MATLAB toolbox for diffusion MRI,

with detailed comparison of results obtained by Cook et al. [105]. Some authors have

taken a different approach, instead using a method where the evolution of the positions

and magnetic spins of particles are tracked; MRI signals are then computed by taking

an ensemble average of the magnetic spins [106, 107]. Rafael-Patino et al. [107] used

a Monte-Carlo method for computing MRI signals of particles experiencing Brownian

motion; they investigated the influence of discretisation parameters on MRI signals, finding

high variability in their results when discretisation parameters are too coarse.

1.6 Thesis overview and structure

The overarching goal of this thesis is to lead to a deeper understanding of placental

dynamics, which will ultimately lead to improved pregnancy outcomes in the future. This
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thesis will introduce mathematical models of maternal blood flow and oxygen transport

on a 2D whole-organ geometry, which are then further developed in three ways: firstly,

varying structural parameters to study effects on placental efficiency; secondly, artificially

recreating MRI data for direct comparison to physical flow fields; and thirdly, introducing

a preliminary contraction model of the utero-placental pump. The research presented

in this thesis is largely computational and uses discontinuous Galerkin finite element

methods extensively, allowing for progress beyond existing studies that require symmetry

assumptions on vein placement and are restricted to smaller sub-organ regions.

In Chapter 2, we formulate our model for flow of maternal blood through the IVS

and associated transport of oxygen. Blood flow is described by the Navier-Stokes-Darcy

equations, where we model the presence of the fetal villous tree as a rigid porous medium,

while oxygen transport and uptake is modelled via a simple reaction-advection-diffusion

equation. The novelties presented here include using a physiologically-representative 2D

slice of a whole placenta.

In Chapter 3, we introduce the numerical methods used for discretising the mathematical

models in Chapter 2. In particular, these methods discretise the underlying second-order

operator with a symmetric interior penalty DGFEM, and temporal derivatives with a

backward Euler finite difference approximation. We then make a detailed numerical

comparison between the behaviour of the steady-state Navier-Stokes-Darcy equations with

related models currently used in the placental literature, as well as some basic numerical

experiments illustrating the behaviour of transported oxygen and time-dependent flow.

As far as we are aware, this is the first time that DGFEMs have been applied to the study

of placental haemodynamics.

Chapter 4 considers the steady-state blood flow and oxygen transport models from

Chapter 2, and their corresponding discretisations from Chapter 3, to investigate the effects

of structural variations on placental function. The value of a computational approach

is realised here, as we can simulate many realisations of flow and oxygen transport,

for which each simulation is characterised through values of eight chosen measures of

‘placental efficiency’. The work presented here gives a more comprehensive study of

parameter variations than those previously performed in the literature, and does so on a

physiologically representative 2D slice of a whole placenta.

Taking the work in a different direction, Chapter 5 firstly presents an overview of how

MRI scanners make their measurements and how we can replicate these numerically. Next,

some numerical examples of simple flow fields and how these affect MRI measurements

are presented, before applying this procedure to the steady-state velocity model from

Chapter 2 approximated using the numerical methods in Chapter 3. Finally, a comparison

to physical MRI data and some common types of fitting are made. The results presented

here provide insight into the behaviour of MRI signals due to different underlying velocity

fields, how these relate to MRI signals computed on simulated placenta flows, and how
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these can be directly compared to MRI measurements of physical flow in the placenta.

In Chapter 6, we consider a preliminary model of the utero-placental pump discovered

by Dellschaft et al. [20] in 2020. We achieve this by taking the time-dependent velocity

and transport models from Chapter 2, along with a new moving mesh discretisation to

account for an introduced domain velocity.

Finally, Chapter 7 reviews the thesis and its main conclusions, along with a number of

possible extensions to this work.
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Chapter 2

Model development

In this chapter, we will formulate a mathematical model of maternal blood flow in the

placenta using Navier-Stokes-Darcy as introduced in Chapter 1, coupled to a model of

oxygen transport. We model the placenta as a rigid porous medium, with resistance to

maternal flow through the intervillous space (IVS) corresponding to the presence of the

fetal villous tree. We consider two choices of domain representative of key structural

features in the placenta. One represents a single placentone, similar to the work by

Lecarpentier et al. [8]. The other represents a more realistic geometry: a 2D slice through

a whole placenta composed of six neighbouring placentones, separated by septal walls,

with each placentone containing one artery and two veins; two larger marginal sinus veins

are also included at the periphery of the domain, in addition to veins on the septal walls.

A novel contribution of this thesis is to model maternal blood flow on a 2D slice of a

placenta (rather than restricting study to a single placentone).

We will begin in §2.1 by introducing two geometries used to represent a 2D slice of a

single placentone and a 2D slice of a placenta. We will then present the blood flow and

oxygen concentration models in §2.2 and §2.3, respectively. We conclude in §2.4 with a

summary of the models and how they will be used throughout the thesis.

2.1 Geometries

Here, we will outline two geometries: one representing a single placentone as used by

Lecarpentier et al. [8], and one representing a 2D slice of a whole placenta.
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2.1.1 2D placentone

Taking inspiration from Lecarpentier et al. [8], we construct a simple 2D geometry of a

single placentone. This is formed of a rectangle with a semicircle placed on top. We also

add a diverging artery at the centre of the bottom rectangle to represent a diverging spiral

artery (see [14]), and two square regions on either side for veins. There is also an elliptical

region above the artery to represent the central cavity and results in a lower resistance to

flow. A diagram of this geometry is shown in Figure 2.1(a).

Specifically, we choose the placentone dimensions such that the width and longest height

are the same at 40mm [8, 12]. Lecarpentier et al. [8] take the diameters of arteries and

veins to be 2mm. However, Burton et al. [14] instead opt to use an artery that changes in

size along the length of the artery, which is consistent with physiological observations. We

choose to adopt the latter approach. Following [14], we apply arterial boundary conditions

at a distance of 10mm from the basal plate, and take the artery diameter to be 0.5mm

which linearly diverges in the last 3mm to a 2.4mm opening. We also choose a different

vein diameter to that of [12], as veins are typically smaller than arteries1. We therefore

assume veins have a diameter of 1.5mm and we apply venous boundary conditions at a

distance of 1.5mm from the basal plate. Sharp corners close to the arteries and veins

are filleted with a small radius2. We also centre-align the inlet, and take the outlets with

8mm between their centres and the side walls. We additionally add a semi-elliptical region

directly above the inlet to represent the central cavity, which is a region free of villous

tree structure, and is taken to have a semi-major axis length of 10mm and semi-minor

axis length of 5mm with its centre at the top of the inlet. The region outside this is the

IVS which is surrounded by villous tree material.

To aid later discussions of this geometry, we split the domain into several non-

overlapping subdomains, as illustrated in Figure 2.1(b). The central cavity subdomain

is denoted as ΩCC, the vein subdomain with Ωv, the artery subdomain as Ωa, and the

IVS subdomain as ΩIVS; we also have an inner and outer cavity transition region, respec-

tively denoted by ΩT− and ΩT+ . The whole domain is constructed of the union of these

non-overlapping subdomains, denoted as Ω = ΩCC ∪ Ωv ∪ Ωa ∪ ΩIVS ∪ ΩT− ∪ ΩT+ . The

boundary of the domain is Γ := ∂Ω. The inlet edge at the bottom of Ωa is denoted as

Γin ⊂ Γ, and the outlet edges at the bottom of Ωv are denoted as Γout ⊂ Γ.

1Provided by private correspondence with Lopa Leach (lopa.leach@nottingham.ac.uk).
2Filleting in this context refers to smoothing sharp corners of the geometry. See, for example, the

top-left inset in Figure 2.1(a) where corners of the vein are filleted.
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Figure 2.1: Not to scale. Diagrams illustrating the 2D placentone geometry introduced in
§2.1.1. (a) Diagram illustrating a simple 2D geometry for a single placentone with
dimensions. The red box shows a zoomed-in view of the inlet location, and the blue
box shows a zoomed-in view of one of the veins. (b) Diagram illustrating subdomains
corresponding to Ω and its subdomains. The coloured boxes again show zoomed-in
views with Γin and Γout indicated. Sizes of the cavity transition region are illustrated
using s0, s1, and s2, and sizes of the vein transition region are illustrated only for
y0 for ease of presentation; these sizes are used in Appendix A to define Ψ.
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2.1.2 2D placenta

A shortcoming of the single placentone model geometry described above is that flux of

blood between neighbouring placentones is necessarily neglected, and additional drainage

due to septal wall veins and marginal sinus veins have not been considered in flow models.

We therefore present work on a physiologically representative 2D slice of a whole human

placenta. This geometry consists of six adjacent placentones that are placed along an arc

of a circle and is illustrated in 2.2(a).

To be precise, we assume a typical 3D placenta to be a spherical cap with a diameter

of 220mm and maximum height of 36.26mm, containing 30–60 placentones with widths

decreasing toward the periphery [6, 7, 9]. We therefore estimated that a 2D planar

cross-section could contain approximately 6 placentones. We note that this assumes that

this cross-section intersects perfectly through the centre of all inlets and outlets, and note

that 6 placentones is possibly an under- or over-estimate of the true number found in a

2D slice; taking the image shown in Figure 1.1(a) as an example, we see that the numbers

and sizes of placentones may vary greatly depending upon where the slice is taken; values

from the literature also suggest that the number of placentones vary greatly from placenta-

to-placenta [6, 9, 40]. We assume that there are impermeable walls (septal walls) of width

3mm and heights of either 6.90mm or 14.07mm between placentones [11], with the two

choices of height distinguishing between taller walls found between lobes and shorter walls

found between lobules. We assume that all 6 placentones are located on an arc of a circle

of centre p ≡ (p1, p2)
⊺, which is constructed such that the maximum height is 36.26mm [7];

we note that the figures quoted here are to two decimal places, as they are averages over

many samples. We have also added two corner outlets (called marginal sinuses) of widths

3mm in order to model additional drainage in each of the corners [13]. Following the work

of several previous authors, we assume that placentones contain at most one artery and

two veins on the basal plate of each placentone, where arteries diverge as they meet the

central cavity [8, 12, 14]. We will also assume that septal walls contains at most 1 vein on

the left side, top, and right side of each septal wall. Furthermore, we reduce the size of the

placentones as they get closer to the periphery, with horizontal widths 40mm, 33.85mm,

and 28.65mm from inner-most to outer-most placentones, forming a geometric progression.

Central cavities are also added above arteries, which are normally-oriented to the basal

plate, and decrease in size toward the periphery in proportion to the placentone widths.

Each central cavity is created by an ellipse of semi-major axis 10mm and semi-minor axis

5mm that is tangential to a line passing directly through its spiral artery – note that,

unlike the 2D placentone, the cavity edges may not be normal where they meet the basal

plate. We fillet the domain and split into non-overlapping subdomains, as done for the

placentone geometry. These regions are illustrated in Figure 2.2(b).
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We highlight that this 2D placenta geometry is a first-step towards modelling organ-

scale maternal blood that respects larger structural features such as septal walls and

marginal sinus veins. In contrast with previous studies on a placentone geometry, we

allow the basal plate arteries, basal plate veins, and septal wall veins to be placed in any

position along the basal plate, subject to a small number of constraints.

This thesis will make use of the 2D placentone and placenta geometries in the following

places. §3.4.1 will initially make use of the placentone geometry with one artery and two

veins, all of which remain in nominal positions along the basal plate. Next, §3.4.2 will take

the placenta geometry with one artery and one vein per placentone, in order to create an

asymmetric flow pattern. §4.2 will relax the assumption of the regular positioning and

number of vessels, instead allowing any combination of vessels in any position. Chapters 5

and 6 take the asymmetric placenta problem from §3.4.2 to respectively compute MRI

signals from simulated placental flow and compute flow on a contracting placenta.

2.2 Blood flow model

Previous authors using macro-scale models for maternal blood flow take flow through the

villous tree as porous flow, and to treat other flows as ‘free’ flow. Here, we will introduce

a model that respects this approach, and make comparisons to other popular choices in

the literature [8, 12, 16, 52, 54] in §2.2.2 and 2.2.3.

One of the main contributions of this thesis is to use the Navier-Stokes-Darcy (NSD)

equations to model maternal blood flow on a 2D placenta geometry. Whilst there is work

that uses NSD and related models [65–68], as far as we are aware there is only one work

that uses a single Navier-Stokes-type PDE to model flow in the context of the placenta

[54]. This approach is advantageous for the numerical methods we will employ, gives a

physiologically sensible transition region between ‘free’ and porous flow, and avoids non-

physical boundary layers that may occur when coupling, for example, the Navier-Stokes

and Brinkman equations [62]. To be clear, our model of maternal blood flow is: find u, p

such that

ρ
∂u

∂t
+Ψ

µ

k
u+ ρ(u ·∇)u− µ∇2u+∇p = f f in Ω, (2.1a)

∇ · u = 0 in Ω, (2.1b)

where the problem is supplemented with a suitable initial condition and boundary conditions

(to be given in §2.2.1), ρ is the density of the fluid, µ is the dynamic viscosity, f f is a body

force acting on the flow, and the coefficient of the reaction term varies spatially, i.e., Ψ(x)µ
k
.

We assign Ψ = 1 in areas of villous tree, Ψ = 0 in areas of no villous tree, with a smooth
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Figure 2.2: Not to scale. Diagrams illustrating the 2D placenta geometry introduced in §2.1.2.
(a) Diagram illustrating the dimensions associated with the 2D placenta geometry.
This shows larger placentones with diameter 40mm near the centre, placentones of
diameter 33.85mm in the middle, and smaller placentones of diameter 28.65mm
near the periphery. Walls of two different heights are included between the six
placentones. The red box shows a zoomed-in view of the spiral artery’s dimensions,
which are now rotated to be perpendicular to the basal plate. One blue box shows the
dimensions associated with the smaller basal plate and septal wall veins, whilst the
other shows the dimensions associated with the larger marginal sinus vein. Overall,
each placentone contains at most one artery and two basal plate veins, and each
wall contains at most three septal wall veins. Green arrows show how arteries and
veins may be omitted. (b) Diagram illustrating the sub-regions of Ω on the 2D
placenta geometry, with transition region sizes indicated. The coloured boxes again
show zoomed-in views with Γin and Γout indicated.



Figure 2.3: Diagram illustrating Ψ on a placentone as described in §2.2. Blue regions correspond
to Ψ = 0 and red regions correspond to Ψ = 1. The definition of Ψ is formally
presented in Appendix A. The value is dependent upon the subregions of Ω and
transition sizes that are illustrated in Figure 2.1.

transition on the region in between. The shape of this smooth transition follows a tanh

profile. Figure 2.3 illustrates an example of the profile of Ψ in the placentone geometry,

and Appendix A contains the details on the precise definition of this function.

Through the remainder of §2.2, we will define two alternative blood flow models, as

these form common choices in the current literature, and present the boundary conditions

and parameters we will use in these problems. Approximations to these problems will

then be compared later in §3.4; for simplicity, these comparisons will consider only the

steady-state equations. We will consider:

• §2.2.1: Boundary conditions and model parameters common to all flow problems,

• §2.2.2: Brinkman in ΩIVS ∪ ΩT+ and Stokes in Ω \ (ΩIVS ∪ ΩT+),

• §2.2.3: Navier-Stokes-Darcy in ΩIVS ∪ ΩT+ and Navier-Stokes in Ω \ (ΩIVS ∪ ΩT+).

2.2.1 Boundary conditions and placenta parameters

For all velocity model choices, we prescribe the same boundary conditions: a parabolic

inflow velocity profile, with a ‘directional do-nothing’ condition on outflow, and no velocity

slip elsewhere. These choices correspond to boundary conditions of the form

(µ∇u− pI) · n = gf,N on Γout,

u = gf,D on Γ \ Γout,
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Parameter Description Nominal value Range Reference

b1, a1 Axes of central cavity 10mm and 5mm — [8]

— Artery location 20mm (from side) — [8, 12]

— Vein location 8mm (from side) — [8, 12]

2ra Artery width (mouth) 2.4mm 0.5–3mm [14]

— Artery width (upstream) 0.5mm — [14]

2rv Vein width 1.5mm — —

2rms
v Marginal sinus vein width 3mm — —

— Central cavity width 10mm — [8, 12]

τ Central cavity transition 4.8mm — —

— Vein transition 1.2mm — —

— Small septal wall heights 6.90mm 5.26–9.54mm [11]

— Tall septal wall heights 14.07mm 12.15–17.75mm [11]

— Number of arteries (3D) — 30—150 [6, 12, 14]

— Number of veins (3D) — 50—200 [12]

— Number of placentones (3D) — 30—60 [6, 10]

Table 2.1: Placental structural parameter nominal values and ranges found in the placental
literature.

where Γ := ∂Ω is labelled in Figures 2.1(b) and 2.2(b), and n(x) is the unit outward-

pointing normal at a point x. We note that the outflow condition is a common choice used

in the numerics community [108, 109]. The boundary conditions themselves are given by

gf,D = −UR2 − r2

R2
n on Γin, (2.3a)

gf,N = 0 on Γout, (2.3b)

gf,D = 0 on Γ \ (Γin ∪ Γout), (2.3c)

where n is the unit outward-pointing normal on Γin, r(x) is the distance to from a point x

to the centre of Γin, R is the artery radius, and U is the maximum flow amplitude at the

centre of the inlet.

Tables 2.1 and 2.2 give lists of parameters used throughout this thesis’ analyses, where

the nominal values listed are used in all simulations unless otherwise stated.

§2.2.2 and §2.2.3 will now outline two alternative models of maternal blood flow, taken

directly from, or closely related to, those chosen in the literature.
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Parameter Description Nominal value Range Reference

L Placentone width 4× 10−2m 1–4× 10−2m [8, 12]

k Villous tree permeability 1× 10−8m2 1–0.0001× 10−6m2 [8, 12]

µ Blood viscosity 4× 10−3 Pa s — [12]

ρ Blood density 1× 103 kg/m3 — [12]

D Oxygen diffusivity 1.667× 10−5m2/s 1–1.667× 10−5m2/s [12, 110]

R Oxygen uptake 1.667× 10−2 s−1 — [12]

— Artery blood speed (mouth) 0.1m s−1 0.037–0.3m s−1 [12, 14, 17, 111]

U Artery blood speed (upstream) 0.35m s−1∗ 0.5–4m s−1 [12, 14, 16]

Table 2.2: Maternal blood parameter nominal values and ranges found in the placental litera-
ture. ∗The upstream speed of 0.35m s−1 was selected such that flow at the mouth is
approximately 0.1m s−1.

2.2.2 Stokes and Brinkman (S-B)

We solve Brinkman in the IVS, and Stokes elsewhere: find u, p such that

µ

k
u− µ∇2u+∇p = 0 in ΩIVS ∪ ΩT+ , (2.4a)

−µ∇2u+∇p = 0 in Ω \ (ΩIVS ∪ ΩT+), (2.4b)

∇ · u = 0 in Ω, (2.4c)

with boundary conditions given in Equation 2.3. This is the simplest of the three velocity

models, and the only model which is linear everywhere. This model is related to work by

Chernyavsky, Jensen, and Leach [12] and Erian, Corrsin, and Davis [52] who use Darcy’s

law. We opted to use the Brinkman equation instead of Darcy’s law in the porous region

for two reasons: firstly, Brinkman captures the drag effects associated with resistance

of flow through the villous tree, and secondly, allows for simple application of interface

conditions due to both equations being of the same order [62].
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2.2.3 Navier-Stokes and Navier-Stokes-Darcy (NS-NSD)

We solve steady-state Navier-Stokes-Darcy in the IVS, and steady-state Navier-Stokes

elsewhere: find u, p such that

µ

k
u+ ρ(u ·∇)u− µ∇2u+∇p = 0 in ΩIVS ∪ ΩT+ , (2.5a)

ρ(u ·∇)u− µ∇2u+∇p = 0 in Ω \ (ΩIVS ∪ ΩT+), (2.5b)

∇ · u = 0 in Ω, (2.5c)

with boundary conditions given in Equation 2.3. This example follows work by Lecarpentier

et al. [8] who use Navier-Stokes and Brinkman, and Saghian et al. [16] who use a related

model of Navier-Stokes and Darcy, which therefore makes this a useful benchmark model.

We note here that this model is the sharp interface case of steady-state NSD.

2.3 Oxygen transport model

We focus on modelling transport of oxygen from maternal blood to fetal blood. We model

this using a reaction-advection-diffusion equation for oxygen concentration, where the

advective velocity is the blood flow field obtained from §2.2 (NSD).

The reaction-advection-diffusion equation is given by: find c such that

∂c

∂t
−D∇2c+∇ · (uc) + ΨRc = fc in Ω, (2.6)

where t is time, D is a scalar diffusion coefficient, R is a reaction coefficient, u(x) is a

prescribed convective transport velocity on Ω obtained from the approximation to Equation

(2.1), fc is a body force, c is a concentration with c(x) ∈ [0, 1], and Ψ(x) is the smooth

transition function from §2.2. We note that consider the same transition function Ψ from

the blood flow model here, as this corresponds to the presence of fetal tree. To this

reaction-advection-diffusion equation, we apply a Dirichlet condition specifying an inlet

concentration, and a zero Neumann condition elsewhere. Boundary conditions are applied

of the form

c = gc,D on Γin,

∇c · n = gc,N on Γ \ Γin.
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The boundary conditions are given as

gc,D = 1 on Γin, (2.8a)

gc,N = 0 on Γ \ Γin. (2.8b)

2.4 Summary

In this chapter, we have introduced models of maternal blood flow and oxygen transport

in the human placenta, along with accompanying physiological geometries that capture

the main structural features of the placenta.

Taking inspiration from Lecarpentier et al. [8], we first introduced a placentone geometry,

representing a smaller functional unit of the placenta. Differing from previous work with

maternal blood flow on placentones, we included a diverging spiral artery that respects

the natural widening of the artery as it meets the placenta [14], along with veins that

are smaller than the relatively wide arteries. We secondly introduced a geometry that

represents a 2D slice through a whole placenta, which captures structural features of the

placenta on a larger scale. We remarked that our geometry is an idealisation of reality, since

the number of placentones can vary greatly from placenta-to-placenta and also depends

upon how the slice is taken; the 2D slice further assumes that vessels are perfectly aligned

with the slice. Nevertheless, this geometry allowed us to include septal walls, decreasing

placentone width towards the periphery, and additional drainage veins, which matches

physiological observations and goes a step beyond the current mathematical models of 2D

maternal flow in the placenta.

Following work by Mekler et al. [54], we next introduced a Navier-Stokes-type math-

ematical model of maternal blood flow in the placenta, where the resistance due to the

presence of the fetal villous tree varies smoothly throughout the domain. This model is

advantageous for the numerical methods we will employ, and gives a physiologically sensible

transition region between ‘free’ and porous flow. We also introduced two alternative models

of blood flow, which will be compared in §3.4.1.
Next, we introduced a simple model of oxygen transport, where the advective velocity

is taken from the blood flow model described above, and is similar to the model of

Chernyavsky, Jensen, and Leach [12]. This is a simple model, which most notably neglects

additional oxygen binding dynamics. Other authors model this behaviour in the context of

the placenta (see, for example, [40, 48, 54]). For our application, a similar approach would

involve a modification to the advection term of our reaction-advection-diffusion equation.

The parameters chosen for the geometry in Table 2.1, and blood flow and oxygen
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transport models in Table 2.2, have been selected from the existing placenta literature.

Whilst most choices are common in the modelling literature, several of these parameters

vary greatly between different experimental studies (see discussion on numbers of arteries

and placentones in §1), and changes to some parameters would have a significant impact

on modelling results. Later in this thesis, Chapter 4 investigates the effects of variations

in some of these parameters have on flow and oxygen transport. However, this is not

comprehensive, and does not address some of the modelling assumptions that we have

made. For example, we assume that the IVS permeability is uniform outside the central

cavity, and that the shape of the central cavity is elliptical; changes in both of these

assumptions would likely have an impact on the results presented in this thesis.

This chapter, and the one that follows, underpins almost all the work in the remainder

of the thesis. In the chapters that follow, we will use both the Navier-Stokes-Darcy (NSD)

and the coupled reaction-advection-diffusion equation on the placenta geometry to study

the behaviour of maternal blood flow and oxygen concentration in the placenta. Chapter

3 will first introduce numerical methods for computing approximate solutions to these

equations. The thesis then develops in three separate directions. Firstly, Chapter 4

considers variations in both the number and position of vessels on the placenta geometry,

in order to quantify the effects on placental function, and also considers variations to six

parameters in Tables 2.1 and 2.2. Secondly, Chapter 5 uses a model of magnetic spin

evolution on particles advected by our maternal blood flow field, allowing us to compute

synthetic MRI measurements on our simulated flow fields, and provides a way to make

direct comparisons between our simulations and MRI data. Finally, Chapter 6 introduces

a basic model of the newly-discovered placental contractions to investigate its effect on

flow and oxygen concentration.

The next chapter will introduce the numerical methods we employ for discretising the

Navier-Stokes-Darcy and reaction-advection-diffusion equations.
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Chapter 3

Numerical methods

As mentioned in Chapter 1, this work exploits DGFEMs to approximate our PDE solution;

we will not detail the full derivation of the symmetric interior penalty DGFEM method

that we employ, but we will instead introduce the general idea and some DGFEM-specific

notation. Full details can be found in [78, 83].

This chapter will state numerical methods for the blood flow and oxygen transport

problems presented in Chapter 2. To be clear, we will detail the numerical discretisation

for NSD, given in Equation (2.1), and the reaction-advection-diffusion equation, given in

Equation (2.6). Discretisations for the two other velocity models, given in Equations (2.4)

and (2.5), can be calculated through simple modifications of the appropriate coefficients in

the NSD discretisation. The numerical methods we employ will discretise spatial derivatives

using a DGFEM, and discretise temporal derivatives using a first-order backward Euler

scheme. DGFEMs form a natural choice for our application due to their handling of

complicated geometries, such as the placentone and placenta geometries presented in

§2.1, and due to their favourable treatment of hyperbolic terms in the flow and transport

problems [83].

The structure for this chapter is as follows. In §3.1, we introduce some preliminaries and

notation required for describing our numerical methods. Next, §3.2 presents discretisations

of the PDEs introduced in Chapter 2. §3.3 shows convergence of our numerical method

at optimal rates. Then, §3.4 presents numerical experiments for our blood flow model,

along with detailed comparison to two other related and commonly-chosen models from

the literature; this section also presents a problem where placental vessels are placed

asymmetrically, which forms the basis of the subsequent analysis in Chapters 5 and 6. §3.5
provides some simple steady-state numerical experiments for the coupled oxygen transport

problem; then, §3.6 presents some time-dependent numerical experiments for both the

blood flow and oxygen transport problems. Finally, in §3.7 we present an overview of the

numerical methods employed, and a short summary of the results from the experiments.
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3.1 DGFEM discretisations

We begin by recalling the PDEs of interest from Chapter 2. For the blood flow problem,

we have

ρ
∂u

∂t
+Ψ

µ

k
u+ ρ(u ·∇)u− µ∇2u+∇p = f f in Ω, (2.1a repeated)

∇ · u = 0 in Ω, (2.1b repeated)

with boundary conditions

(µ∇u− pI) · n = gf,N on Γout,

u = gf,D on Γ \ Γout,

where we recall that Ω is the domain and Γ := ∂Ω is the boundary with Γin ⊂ Γ, Γout ⊂ Γ,

and Γin ∩ Γout = ∅. For the oxygen concentration problem, we have

∂c

∂t
−D∇2c+∇ · (uc) + ΨRc = fc in Ω, (2.6 repeated)

with boundary conditions

c = gc,D on Γin,

∇c · n = gc,N on Γ \ Γin.

We assume that the domain Ω is open and bounded, with Ω ⊂ Rd, d = 2 and piecewise

linear boundary ∂Ω; note that the following notation does not restrict d = 2, but this is a

simplification we make in this thesis. Following [83], we denote the mesh by Th, which we

assume is a shape-regular partition of Ω, which for simplicity consists of non-overlapping

d-dimensional open simplicial (i.e., triangles for d = 2) elements, κ ∈ Th, such that

Ω̄ = ∪κ∈Thκ̄, where κ̄ denotes the closure of κ; an example of a computational mesh using

triangles is shown in Figure 3.1. We remark that Th uses a piecewise linear representation

of the boundary of Ω. Writing r, s ∈ N0 to denote the polynomial degree on a κ ∈ Th, we
introduce the finite element spaces

Vh(Ω, Th) := {v ∈ L2(Ω)d : v|κ ∈ Pr(κ)
d, κ ∈ Th}, (3.1)

Qh(Ω, Th) := {q ∈ L2(Ω) : q|κ ∈ Pr−1(κ), κ ∈ Th}, (3.2)

Ch(Ω, Th) := {c ∈ L2(Ω) : c|κ ∈ Ps(κ), κ ∈ Th}, (3.3)
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Figure 3.1: Diagram illustrates an example 2D mesh using triangular elements.

where Pn(κ), n ≥ 0, denotes the space of polynomials of total degree n on κ, and L2(Ω)

denotes the space of square-integrable functions on Ω. We determine approximate solutions

to our PDE models by searching for the velocity, pressure, and oxygen concentration in Vh,

Qh, and Ch, respectively. For notational convenience, we will write these spaces without

their arguments throughout Chapter 3 where Ω and Th remain fixed; however, we will

make use of the notation with arguments in Chapter 6, where the mesh is not fixed due

to boundary movement. We note here that the spaces are chosen such that the pressure

space, Qh, has one lower polynomial degree than the velocity space, Vh; this ensures that

the Babus̆ka-Brezzi inf-sup condition is satisfied [112]. From this point onward, it will be

assumed that r = 2 and s = 1 for simplicity.

As the name suggests, DGFEMs admit discontinuities in the approximation of the

PDE solution. Following [83], we introduce the notation to describe averages and jumps

between adjacent faces — in this context, faces correspond to the (d − 1)-dimensional

boundaries of each d-dimensional element. There are two types of faces: interior faces and

boundary faces; we write FI to denote interior faces between two elements, and FB to

denote exterior (boundary) faces that lie on Γ ≡ ∂Ω. We set F := FB ∪ FI and note that

FB ∩ FI = ∅.
For matrix, vector, and scalar quantities (respectively, A, u, and p), the average

operator defined on an interior face F = κ̄+ ∩ κ̄− ∈ FI between two elements κ+, κ− ∈ Th,
is given by

{{A}} := 1

2
(A+ +A−),

{{u}} := 1

2
(u+ + u−),

{{p}} := 1

2
(p+ + p−),

where ·± denote the trace values of A, u and p from inside element κ±. We may similarly
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introduce the jump operator for vectors and scalars on an interior face, F ∈ FI , as

[[u]] := u+ ⊗ nκ+ + u− ⊗ nκ− ,

[[u]] := u+ · nκ+ + u− · nκ− ,

[[p]] := p+nκ+ + p−nκ− ,

where nκ+ and nκ− denote the outward unit normals to κ+ and κ−, respectively, on F .

Similarly, the average and jump operators on boundary faces, F ∈ FB, where F ⊂ ∂κ+,

are defined as

{{A}} := A+,

{{u}} := u+,

{{p}} := p+,

[[u]] := u+ ⊗ nκ+ ,

[[u]] := u+ · nκ+ ,

[[p]] := p+nκ+ .

For all simulations in this thesis, we implement our DGFEM solver using AptoFEM

[113], which is a general-purpose finite element method software package written in Fortran

that permits DGFEM spaces, and interfaces to extremely fast third party matrix-solving

packages such as MUMPS [114]. Nonlinear equations are solved using a Newton solver,

and linear equations are solved directly by MUMPS. Meshes are generated using Gmsh

[115], and solution data is visualised in ParaView [116] and Matplotlib [117].

3.2 Equation discretisations

In Chapter 2, we introduced several PDEs describing fluid flow and oxygen transport. We

will now discretise these equations using DGFEM in space and a first-order backward

Euler scheme in time for simplicity.

3.2.1 Navier-Stokes-Darcy discretisation

Here we detail the numerical discretisation for NSD, given in Equation (2.1). Discretisations

for the alternative flow models given in Equations (2.4)–(2.5) can be calculated through

simple modifications of the appropriate coefficients for the following discretisation. For

the spatial discretisation, we use a DGFEM together with a Lax-Friedrichs numerical flux
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approximation for the nonlinear convection term, following work undertaken by Cliffe,

Hall, and Houston [118].

Firstly, we make some definitions to ease the writing of the discretisations. Following a

similar procedure to [118–120], we define two bilinear forms:

Af(u,v) := µ

∫
Ω

∇hu : ∇hv dx− µ

∫
FI∪Γf,D

({{∇hv}} : [[u]] + {{∇hu}} : [[v]]) ds

+ µ

∫
FI∪Γf,D

σ[[u]] : [[v]] ds,

(3.4)

Bf(v, q) := −
∫
Ω

q∇h · v dx+

∫
FI∪Γf,D

{{q}}[[v]] ds, (3.5)

where Γf,D,Γf,N ⊆ FB denote the boundary faces on the Dirichlet and Neumann boundaries,

respectively, u,v ∈ Vh, p, q ∈ Qh, σ is the DGFEM symmetric interior penalty parameter,

and ∇h denotes the broken gradient operator: the usual gradient operator, ∇, defined
element-wise. We note that in the finite element context, u and v respectively correspond

to the so-called trial and test functions in the space of Vh. We define |κ| to denote the

area of an element, and |F | to denote the length of a face. For the triangular meshes we

are working with in this thesis, we select σ = 10 r2

h
[83, 121, 122], computed locally on a

face with total degree r and mesh width h, which for F ∈ FI is calculated as

h|F := min

(
|κ+|
h+
⊥
,
|κ−|
h−
⊥

)
,

and for F ∈ FB is calculated as

h|F :=
|κ+|
h+
⊥
,

where

h±
⊥ :=

|κ±|
|F |

,

and κ+ and κ− are the neighbouring elements to the face. Loosely speaking, h⊥ can be

thought of as the orthogonal distance from a face to the opposite mesh vertex.

We must also introduce a semilinear form that approximates the nonlinear advection

term that appears in Equations (1.2) and (1.5). We firstly introduce the function

uΓ :=


u− on FI ,

u+ on Γf,N,

gf,D on Γf,D.

(3.6)
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We now introduce the Lax-Friedrichs flux for F ∈ F given by

Hf(u
+,uΓ,n)|F :=

1

2
((u+ ⊗ u+) · n+ (uΓ ⊗ uΓ) · n+ α(u+ − uΓ)), (3.7)

where α := 2max(|u+ · n|, |uΓ · n|). Details regarding the derivation of α can be found in

Appendix C. The aforementioned semilinear form is then defined by

Cf(u,v) := −ρ
∫
Ω

(u⊗ u) : ∇hv dx+ ρ
∑
F∈F

∫
F

Hf(u
+,uΓ,nF ) · v+ ds

− ρ
∑
F∈FI

∫
F

Hf(u
+,uΓ,nF ) · v− ds, (3.8)

where F ≡ FB ∪ FI is the set of all faces, and nF is the unit outward-pointing normal on

a face F .

A simple bilinear form is also introduced for the reaction term:

Mf(u,v) :=
µ

k

∫
Ω

Ψ u · v dx. (3.9)

We finally define the following functionals for imposing the forcing function and

boundary conditions:

Ff,gf,D,gf,N
(v) :=

∫
Ω

f f · v dx−
∫
Γf,N

gf,N · v ds+

∫
Γf,D

(gf,D ⊗ n) : ∇hv ds

+ σ

∫
Γf,D

v · gf,D ds, (3.10)

Gf,gf,D
(q) :=

∫
Γf,D

q gf,D · n ds. (3.11)

The steady-state (i.e., ∂u
∂t
≡ 0) Navier-Stokes-Darcy discretisation is then given by:

find (uh, ph) ∈ (Vh, Qh) such that

diffusion︷ ︸︸ ︷
Af(uh,vh)+

advection︷ ︸︸ ︷
Cf(uh,vh)+

reaction︷ ︸︸ ︷
Mf(uh,vh)+

pressure︷ ︸︸ ︷
Bf(vh, ph)−

incompressibility︷ ︸︸ ︷
Bf(uh, qh)

=

forcing and boundary conditions︷ ︸︸ ︷
Ff,gf,D,gf,N

(vh)−Gf,gf,D
(qh), (3.12)

for all (vh, qh) ∈ (Vh, Qh). The label on each term shows how each term in the discretisation

relates back to the original PDE. We note here that the boundary conditions are applied

weakly, in which the approximate solution is not required to satisfy the boundary conditions

exactly, and instead enforces the boundary conditions through additional terms in the

discretisation [123].
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For the time-dependent Navier-Stokes-Darcy discretisation, we first state the weak

formulation of the momentum equation in the form:

ρ

∫
Ω

∂u

∂t
· v dx =

∫
Ω

L(u, p) · v dx, (3.13)

where L is the spatial differential operator for all terms beside the time derivative of the

momentum equation for NSD, given in Equation (2.1a). We define the following bilinear

form for this term:

Lf(u,v) := ρ

∫
Ω

∂u

∂t
· v dx. (3.14)

Assuming the RHS of Equation (3.13) is discretised in space as presented in Equation

(3.12), we have a choice on how the time derivative is discretised. As is generally standard

in the FEM literature, we discretise the time derivative term using a finite difference

method, and for simplicity use a simple first-order backward Euler approximation. For

uniform time-stepping, this involves choosing a constant step size ∆t, which defines the

distance between subsequent approximations at times {t0+n∆t |n ∈ {0, 1, 2, ...}}, where t0

is the initial time. The backward Euler method is derived from making an approximation

of the form:
∂un+1

∂t
≈ un+1 − un

∆t
, (3.15)

and approximating the right-hand side of Equation (3.13) at time tn+1, where {un |n ∈
{0, 1, 2, ...}} are subsequent approximations of u in time. For our problem, this equates to:

ρ

∫
Ω

(un+1 − un) · v
∆t

dx =

∫
Ω

L(un+1, pn+1) · v dx.

We introduce an additional bilinear form definition to make use of this approximation:

Ef(u,v) :=
ρ

∆t

∫
Ω

u · v dx. (3.16)

The time-dependent Navier-Stokes-Darcy discretisation is then given by: find (un+1
h , pn+1

h ) ∈
(Vh, Qh) such that

time︷ ︸︸ ︷
Ef(u

n+1
h ,vh)− Ef(u

n
h,vh)+

diffusion︷ ︸︸ ︷
Af(u

n+1
h ,vh)+

advection︷ ︸︸ ︷
Cf(u

n+1
h ,vh)+

reaction︷ ︸︸ ︷
Mf(u

n+1
h ,vh)+

pressure︷ ︸︸ ︷
Bf(vh, p

n+1
h )−

incompressibility︷ ︸︸ ︷
Bf(u

n+1
h , qh) =

forcing and boundary conditions︷ ︸︸ ︷
Ff,gf,D,gf,N

(vh)−Gf,gf,D
(qh), (3.17)

for all (vh, qh) ∈ (Vh, Qh), given the DGFEM approximation of the velocity at the previous

time-step, un
h ∈ Vh, n ∈ {0, 1, 2, ...}, including an initial condition of u0

h. For the time-

dependent simulations presented later in this thesis, we obtain u0
h from the steady-state
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Navier-Stokes-Darcy discretisation presented in Equation (3.12).

Discretisations for the other blood flow models can be written by simple modification

of the coefficients on each term of the NSD discretisation.

3.2.2 Reaction-advection-diffusion discretisation

The discretisation for the reaction-advection-diffusion equation given in Equation (2.6)

is similar to the one given above for the velocity approximation. In particular, we will

again use a DGFEM for the spatial discretisation. The main difference with the oxygen

transport model is that the convection term is linear, as u is known a priori due to a

one-way coupling between the blood velocity and oxygen transport models.

Similar to the definition of Af for the velocity model discretisation, we follow work by

Cangiani et al. [83] and define

Ac(c, η) := D

∫
Ω

∇hc · ∇hη dx−D

∫
FI∪Γc,D

({{∇hc}} · [[η]] + {{∇hη}} · [[c]]) ds

+D

∫
FI∪Γc,D

σ[[c]] · [[η]] ds, (3.18)

where we again select σ = 10 s2

h
on a face with total degree s and mesh width h, and

c, η ∈ Ch, and Γc,D,Γc,N ⊆ FB denote the boundary faces of the Dirichlet and Neumann

boundaries, respectively, for the oxygen concentration problem.

The advection discretisation term for the reaction-advection-diffusion equation is

simpler than that of the velocity model, as it is linear in c. We firstly introduce the

function

cΓ :=


c− on FI ,

c+ on Γc,N,

gc,D on Γc,D.

(3.19)

We also introduce the Lax-Friedrichs flux for F ∈ F by

Hc(c
+, cΓ,n)|F :=

1

2
((u+ · n)c+ + (u− · n)cΓ + α(c+ − cΓ)), (3.20)

where α := |{{u}} · n|. The bilinear form for this advection term is then given by

Cc(c, η;u) := −
∫
Ω

c u ·∇hη dx+
∑
F∈F

∫
F

Hc(c
+, cΓ,nF )η

+ ds

−
∑
F∈FI

∫
F

Hc(c
+, cΓ,nF )η

− ds. (3.21)
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Two simple bilinear forms must also be introduced for the reaction and time terms,

respectively given as:

Mc(c, η) := R

∫
Ω

Ψ c η dx, (3.22)

Lc(c, η) :=

∫
Ω

∂c

∂t
η dx. (3.23)

We once again employ a simple first-order backward Euler approximation of the time

derivative, which is used by defining:

Ec(c, η) :=
1

∆t

∫
Ω

c η dx. (3.24)

We finally define the following functional for imposing the boundary conditions:

Fc,gc,D,gc,N(η) :=

∫
Ω

fcη dx−
∫
Γc,N

gc,N η ds+

∫
Γf,D

gc,D (∇hη · n) ds

+ σ

∫
Γc,D

gc,D η ds. (3.25)

The time-dependent reaction-advection-diffusion equation is given by: find cn+1
h ∈ Ch

such that

time︷ ︸︸ ︷
Ec(c

n+1
h , ηh)− Ec(c

n
h, ηh)+

diffusion︷ ︸︸ ︷
Ac(c

n+1
h , ηh)+

advection︷ ︸︸ ︷
Cc(c

n+1
h , ηh;u

n+1
h )+

reaction︷ ︸︸ ︷
Mc(c

n+1
h , ηh)

= Fc,gc,D,gc,N(ηh),︸ ︷︷ ︸
forcing and boundary conditions

(3.26)

for all ηh ∈ Ch, given un+1
h , where un+1

h is the approximation to Equation (3.12) at time

level tn+1, given cnh, n ∈ {0, 1, 2, ...}, including an initial condition of c0h. We note that the

steady-state discretisation involves simply discarding the time terms given in Equation

(3.26).

We will now perform a convergence study through mesh refinement using the method of

manufactured solutions in order to verify our implementation of these numerical methods.

3.3 Convergence to analytical solution

Here, we will briefly test our code that implements the numerical discretisations of

the Navier-Stokes-Darcy equation (Equation (2.1)) and the reaction-advection-diffusion

equation (Equation (2.6)) using the method of manufactured solution (MMS). We will

show that we obtain optimal convergence rates through mesh and time-step refinement.

MMS is one commonly employed method for verifying correct implementation of finite
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element code [124]. The overarching aim of MMS is to select an analytical solution that

solves the PDE that has been discretised, where this solution is of sufficient complexity to

ensure that all derivatives are properly exercised. By taking the approximate solutions

that arise from the discretisation, we may then measure an error between the exact and

approximate solutions. By computing successively higher resolution approximations, we

may study the behaviour of the error, for which there are typically so-called ‘a priori’ error

bounds that describe the rate at which the error should decrease.

Our approach to this involves selecting an appropriate analytical solution for the

velocity, pressure, and oxygen concentration fields (u, p, c, respectively), then setting the

forcing function equal to the residual of the PDE with these solutions. In order to test the

discretisations in both space and time, we separately increase the resolution and study the

corresponding convergence rates in the L2-norm.

We specifically select analytical solutions on domain Ω:

u1 := − cos(t)(y cos(y) + sin(y)) exp(x), (3.27a)

u2 := cos(t)y sin(y) exp(x), (3.27b)

p := cos(t)2 exp(x) sin(y), (3.27c)

c := cos(t) exp(x− y), (3.27d)

where u ≡ (u1, u2)
⊺, and boundary conditions are appropriately selected. We then select

forcing functions f f and fc such that these analytical solutions solve the PDEs. Between

each approximate and exact solution, we calculate ∥u− uh∥L2 , ∥p− ph∥L2 , and ∥c− ch∥L2 ,

where the L2-norm over Ω is defined as

∥u∥L2 :=

√∫
Ω

u2 dx. (3.28)

For simplicity, in these tests we set all problem coefficients for Equations (2.1) and (2.6)

to unity, the final time T = 1, the time-step ∆t := 0.01, and Ω := [0, 1]2.

For the numerical methods presented here, we expect spatial convergence rates in the

L2-norm between an exact and approximate solution of O(hp+1) [83], where h is related

to element widths and p is the (fixed) polynomial degree of the space, and temporal

convergence rates of O(∆t) due to the first-order time-stepping scheme. For the solution

spaces we have chosen in Equation (3.3) with r = 2 and s = 1, we therefore expect

||u− uh||L2 = O(h3) +O(∆t), (3.29a)

||p− ph||L2 = O(h2) +O(∆t), (3.29b)

||c− ch||L2 = O(h2) +O(∆t). (3.29c)
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(a) (b)

Figure 3.2: Visualisations of the convergence rates of the tests outlined in §3.3. Graphs show
(a) spatial convergence, and (b) temporal convergence of the velocity, pressure, and
oxygen concentration fields.

Clearly, spatial or temporal errors may dominate depending upon the chosen discretisation

parameters, so we select a small ∆t when investigating spatial convergence, and select a

small h when investigating temporal convergence.

We use NDoF to denote the number of degrees of freedom associated with the Navier-

Stokes-Darcy discretisation, which in 2D with fixed polynomial degrees is related to the

mesh width by

NDoF ∝ h−2.

Figures 3.2(a) and 3.2(b) respectively present the convergence rates under spatial and

temporal refinement, which agree with the expected rates from Equation (3.29).

We will now present further numerical experiments on physical problems. For the

remainder of the thesis, we will set f f ≡ 0 and fc ≡ 0, except in Chapter 6 where we again

use MMS.

3.4 Blood flow numerical experiments

One of the key contributions of this thesis is employing the Navier-Stokes-Darcy (NSD)

equation for modelling maternal blood flow on a 2D whole-organ placenta geometry. §3.4.1
will therefore present this model alongside two other common choices in the literature,

highlighting the difference in behaviour between each model. §3.4.2 will then present only

the NSD flow model on a placenta geometry with vessels placed asymmetrically, which

will be used as the basis of the investigations in Chapters 5 and 6.
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3.4.1 Model comparison

We select model parameters from Tables 2.1 and 2.2 and use the discretisations from §3.2
to approximate solutions to the NSD model, as well as the two other models discussed in

§2.2.2 and §2.2.3. For simplicity, we consider only the steady-state versions (∂u
∂t
≡ 0) all

three flow models, and assume that vessels in the placenta geometry are located only on the

basal plate and appear symmetrically. We approximate solutions on both the placentone

and placenta geometries. A side-by-side comparison is shown for the 2D placentone and

2D placenta geometries in Figures 3.3 and 3.4, respectively.

Focussing firstly on the simulation using NSD on a placentone presented in Figure

3.3(a), the flow is symmetric about the artery, forming two small recirculation zones in

the central cavity (CC). The flow then decelerates as it passes from the CC to the IVS,

with some of the flow decelerating even further as it passes higher up into the IVS. The

flow then accelerates again when exiting through one of the two basal plate veins. It is

worth mentioning that the colours corresponding to the velocity magnitude here are given

on a logarithmic scale, rather than a linear scale. This is because the flows presented

here decelerate very quickly after leaving the artery, due to the low permeability of the

IVS (see Table 2.2 and §2.2). By plotting on a logarithmic scale, we can more clearly see

the behaviour of the fluid in all regions of the domain. To demonstrate this, the same

simulation from Figure 3.3(a) is plotted again on a linear scale in Figure 3.5, where almost

all the flow appears close to zero outside of the artery. We notice that by visualising

on a logarithmic scale, we can see some discontinuities near the boundaries, visible on

the edges of the underlying mesh triangulation; these discontinuities are relatively small

at O(1× 10−5)m s−1 and are due to the weak imposition of boundary conditions by the

numerical method (see §3.2.1 for further details).

Turning our attention to the other two simulations presented in Figure 3.3, we see

that all three models demonstrate largely the same behaviour, whereby high-speed flow

is concentrated in the central-cavity, artery, and veins. However, one notable difference

between the S-B simulation in Figure 3.3(b) and the others is that there are no recirculations

in the CC. Another notable difference is visible in Figure 3.3(c), showing a simulation

NS-NSD, where the blood velocity decelerates quickly when crossing the CC-IVS interface,

which is unlike the simulations for NSD and S-B, respectively shown in Figures 3.4(a) and

3.4(b). The difference with NSD is due to the chosen transition width, τ , from Table 2.1

for the smooth transition function in NSD, which allows flow to decelerate more smoothly

between porous and free flow. The reason for differences with S-B is due to the fluid inside

the CC decelerating much more gradually in the case of S-B. A related observation is that

the recirculation zones for NS-NSD appear further from the basal plate than for NSD,

which again is due to the chosen smooth transition width for NSD. Appendix B further

Adam M Blakey • Placental haemodynamics 40 of 157



(a) (b)

(c)

Figure 3.3: Velocity plot on placentone geometry (§2.1.1) presenting the results of §3.4.1 for
the three velocity models: NSD from equation (2.1), S-B from equation (2.4),
and NS-NSD from equation (2.5). Plots show a logarithmically-scaled velocity
colouring and streamlines shown in black for (a) NSD, (b) S-B, and (c) NS-NSD.
All models apply boundary conditions and problem parameters presented in §2.2.1.



(a)

(b)

(c)

Figure 3.4: Velocity plot on placenta geometry (§2.1.2) presenting the results of §3.4.1 for
the three velocity models: NSD from equation (2.1), S-B from equation (2.4),
and NS-NSD from equation (2.5). Plots show a logarithmically-scaled velocity
colouring and streamlines shown in black for (a) NSD, (b) S-B, and (c) NS-NSD.
All models apply boundary conditions and problem parameters presented in §2.2.1.
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Figure 3.5: Velocity plot for NSD from Equation (2.1) on placentone geometry, with linearly-
scaled velocity colouring and streamlines shown in white. Boundary conditions and
problem parameters presented in §2.2.1.
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investigates the differences in flow between the three models on a placentone.

Figure 3.4 presents the simulations for the three velocity models on a placenta geometry.

The overall behaviour is similar to that described above in the placentone geometry, except

flow may now exit through one of the newly introduced marginal sinus veins, or through

basal plate veins located in other placentones. There are only a small number of streamlines

that cross septal walls in these numerical experiments, which is due to the symmetry of

the placement of vessels in this particular problem. In the next subsection, §3.4.2 will

present a flow on a geometry with asymmetrically-placed veins to see what impact this

has on the flow field.

This section has shown that IVS flow is very similar for all three velocity models, with

differences between some of the models in the central cavity region; in particular, the

S-B model failed to capture some of the high-speed flow features present in the cavity of

the other two models due to the relatively high Reynolds number at the artery mouth

(Re ≈ 60). We select NSD as our blood flow model for the remainder of this thesis as (i)

it is advantageous for the DGFEMs we employ (due to not requiring interface conditions

at the porous interface), (ii) gives a physiologically sensible transition region between

‘free’ and porous flow, and (iii) avoids non-physical boundary layers that may occur when

coupling two fluid PDEs [125]. It is worth noting that this model also adds flexibility for

future model development beyond this thesis, where regions apart from the central cavity

and vessels could be specified with a lower resistance to flow due to the absence of fetal

tree material.

3.4.2 Asymmetric flow

We now compute the solution on the placenta geometry where we have included all basal

plate arteries in the centre of each placentone, but have included only one basal plate

vein per placentone to encourage an asymmetric flow pattern in the placenta (as such

asymmetries would be typical in a physical placenta). We place basal plate veins in the

widest placentones with 8mm between their centres and the side walls, and place veins in

other placentones proportionally according to the width of each placentone. Note that

the larger marginal sinus veins are included here, but not any septal wall veins. We again

select model parameters from Tables 2.1 and 2.2 and use the discretisations from §3.2 to

approximate solutions to the steady-state NSD model. The flow field is shown in Figure

3.6, where the velocity magnitude is shown on a logarithmic colour scale, and streamlines

are shown in black.

In this simulation, we see much faster flow in many areas of the domain than that of

the simulation where veins have been placed symmetrically about the artery (shown in

Figure 3.4(a)). Most notably, we see a much higher proportion of blood flowing over the
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Figure 3.6: Velocity plot of NSD from Equation (2.1) on the placenta geometry, with only one
basal plate vein per placentone, as described in §3.4.2. Shows logarithmically-scaled
velocity colouring and streamlines shown in black.

septal walls. Related to this, there is roughly an order of magnitude faster flow near the

chorionic plate (i.e., the top of the domain) as blood traverses the placenta in order to exit

either through another placentone’s basal plate vein or through one of the two marginal

sinus veins.

Despite this faster flow over the septal walls, we recall that the speed of flow is

logarithmically coloured here, meaning that the flow over the walls is more than two

orders of magnitude slower than the inlet speed. Although cross-placentone flow may

be an important mechanism of placenta functionality, the faster regions of flow remain

concentrated near the spiral artery mouth. Interestingly, this fast flow region is larger than

the region shown in the symmetric simulation (Figure 3.4(a)), stretching in a dome-like

shape over the area between each basal plate artery and vein pair. This is giving the

blood an opportunity to ‘short-circuit’, where flow almost immediately exits the placenta,

potentially advecting high concentrations of oxygen with it.

The simulation presented in this section demonstrates an order of magnitude faster flow

near the chorionic plate when veins are placed asymmetrically. Whilst several mathematical

studies have assumed symmetric placement of veins, this is physiologically unlikely, with

large variations in numbers of veins and their placement between different placentas (see

discussion in Chapter 1). The simulation presented here will be used as the basis of

investigations in Chapters 5 and 6, where we will respectively investigate MRI signals and

placental contractions. The next section presents the corresponding oxygen concentration

field to this asymmetric velocity field.

3.5 Oxygen transport numerical experiments

Here, we present a basic numerical experiment to demonstrate the behaviour of the steady-

state oxygen transport model, advected by blood flow according to the NSD flow model in

Equation (2.1). Figure 3.7 shows oxygen concentration on the placenta geometry, where

the basal plate veins have been placed asymmetrically as presented in §3.4.2, and model
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Figure 3.7: Oxygen concentration plot for the reaction-advection-diffusion equation from Equa-
tion (2.6), with one vein per placentone as described in §3.5. The colour scale
varies between 0 (no concentration) and 1 (maximum concentration). Under- and
over-shoots in the approximate solution are respectively coloured in black and grey.

parameters are selected from Table 2.2 according to common choices in the literature.

We see that the oxygen penetrates the IVS radially from each artery in high concentra-

tion (c ≈ 1), following the streamlines of the underlying flow from Figure 3.6 through the

IVS, and ultimately exiting through any one of the basal plate or marginal sinus veins. The

oxygen concentration above most placentones lowers to c ≈ 0 towards the chorionic plate,

with the gradient at which concentration lowers toward the chorionic plate differing greatly

from placentone-to-placentone. In the left-most placentone, very high concentrations of

oxygen reach the chorionic plate, which is then transported out a marginal sinus vein, also

in high concentration. In fact, most of the exiting blood through all of the veins contains

a high oxygen concentration. This is physiologically surprising, as this is oxygen that

could have been uptaken by the villous tree given the right conditions, but instead exits

the placenta and returns to the maternal circulation. We will investigate oxygen uptake

further in Chapter 4.

The oxygen concentration is notably low above the central septal wall, likely due to

the symmetry in the vessel placement in the two centre-most placentones. Differing from

previous studies that consider oxygen transport on placentones, the flow in this placenta

geometry can transport oxygen over the septal walls, and does so most notably above the

outer-most septal walls. In these cases, oxygen is advected to neighbouring placentones,

ultimately exiting through a basal plate vein or marginal sinus vein. Interestingly, the

oxygen in these cases decreases far more than those that exit through closer veins; this

is due to the longer transit time of the oxygen, which allows more oxygen to be uptaken

by the villous tree, as the blood is drawn over longer distances at relatively slow speed

before exiting. We also see in these cases a very small region of low oxygen concentration

trapped between two regions of higher concentration; this is due to the streamlines of the

underlying flow, which do not cross, and have here advected oxygen of low concentration

from near the chorionic or basal plates.

An advantage of using DGFEM in approximating of the blood flow field is the reduction

in spurious oscillations, which are typically present in flow fields such as this with continuous

finite element methods. However, the discontinuous oxygen concentration field instead
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results in small, contained numerical artefacts in the oxygen concentration field. In

particular, numerical artefacts may be present in areas where there are steep gradients

in the oxygen concentration field. For this problem, there is an overshoot above c = 1

in the right-most placentone originating from a recirculation zone. A convergence study

verified that these artefacts reduce in amplitude under mesh refinement, and have minimal

impact on any resulting quantities computed from the oxygen concentration field (i.e., the

measures computed later in Chapter 4).

Overall, most of the high oxygen concentration is confined to placentones here, which is

due to the number and positioning of the arteries and veins. Later in the thesis, Chapter 4

will investigate how the number and placement of vessels affects the oxygen concentration

field in more depth.

3.6 Time-dependent blood flow and oxygen transport experiments

We have so far presented only steady-state numerical experiments corresponding to flow at

peak systole. We will now present some numerical experiments that are time-dependent,

and use the time-dependent versions of the discretisations of both the blood flow and

oxygen transport models that were presented in §3.2 on the 2D placenta geometry. We

once again select parameters from Tables 2.1 and 2.2 and place veins asymmetrically as

presented in §3.4.2.
We follow work by Carson et al. [126] and apply a pulsatile boundary condition on the

inlet arteries, where we use the profile given in Figure 4(H) of [126] to give the amplitude,

which is representative of in vivo pulsatile flow. We used WebPlotDigitizer1 to read in

the amplitude data A(t) from [126], and shifted and scaled the data such that t = 0

corresponds to the first peak and U(0) = 0.35m s−1; we then assumed periodicity between

the first and second peaks to give amplitudes for all t. We run the simulation for t ∈ [0, TN ],

where TN = 3.34 and corresponds to five cardiac cycles. A(t) is illustrated in Figure 3.8,

which corresponds to the amplitude of the Poiseuille flow on all six artery inlets. This

involves applying modified boundary conditions to the flow to

gf,D = −A(t)R
2 − r2

R2
n on Γin, (3.30a)

gf,N = 0 on Γout, (3.30b)

gf,D = 0 on Γ \ (Γin ∪ Γout), (3.30c)

where n is the unit outward-pointing normal on Γin, r(x) is the distance from a point x to

the centre of Γin, R is the artery radius, and A(t) is the amplitude of the Poiseuille inlet

1https://apps.automeris.io/wpd/
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Figure 3.8: Amplitude of the Poiseuille flow in §3.6 that uses data from Figure 4(H) of [126].
The profile presented here has been scaled such that the amplitude ranges between
A = 0.12m s−1 and A = 0.35m s−1, and spans t ∈ [0, TN ], which corresponds to
five cardiac cycles with TN = 3.34. Five green vertical lines correspond to times
t = 0, t = 0.500, t = 0.667, t = 2.002, and t = 3.336, and correspond to the five
snapshots in time of the flow and oxygen concentration fields visualised in Figures
3.9(a)–3.9(e) and 3.10(a)–3.10(e).

flow. The procedure we employ is to generate solutions of both the blood flow and oxygen

concentration by first solving their steady-state equations, and then feeding this as an

initial condition into the time-dependent equations. In this simulation, basal plate veins

have been placed asymmetrically as presented in §3.4.2, model parameters are selected

from Table 2.2, and we select ∆t = 0.033 36 s (i.e., 100 time-steps for t ∈ [0, 3.336] s).

We will consider only five snapshots in time in the body of this thesis for ease of

presentation. Videos visualising these fields through time at every time-step are available

here2. Figures 3.9 and 3.10 respectively present snapshots of blood flow and oxygen

concentration fields at the five discrete snapshots in time. Note that each snapshot is

indicated in Figure 3.8 with green vertical lines. Panel (a) of Figures 3.9 and 3.10 give the

initial steady-state fields of the flow and oxygen concentration, respectively; we remark

that these are identical to the fields presented in Figures 3.6 and 3.7, respectively. Panel

(b) gives the fields at the first local minimum of the amplitude profile. Panels (c), (d), and

(e) respectively give the fields at the second, fourth and sixth (and final) local maxima of

the amplitude profile. We remark that the precise trajectories of each of the streamlines

differs between each snapshot due to the flow field changing through time.

It is not surprising that Figures 3.9(a) and 3.9(c)–3.9(e) are very similar, given that

they all correspond to peaks in amplitude of the inlet velocity. However, a notable feature

2Velocity field: https://r.blakey.family/phd-video-oiv; oxygen concentration field: https://r.
blakey.family/phd-video-oit.
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that changes between these snapshots is that the recirculation zones in all the placentones

have disappeared by t = TN , as shown in Figure 3.9(e). This is likely due to numerical

dissipation of the time discretisation, which ‘smooths out’ the flow as time progresses.

Figure 3.9(b) is a little different to the others, due to the reduced inlet speed here; overall,

the flow field exhibits very similar behaviour, but the flow is slower in most areas of the

domain.

The most intriguing feature of these results is that, although the speed of the flow

noticeably changes with lower amplitude in Figure 3.9(b), there is almost no perceivable

change in the oxygen concentration field across all time-steps. This is primarily due to

|u| ≪ 1 × 10−1ms−1 everywhere except in the central cavity, arteries, and veins; we

therefore only expect changes in c in these areas of relatively fast flow on this timescale.

However, almost all of the placentones have c ≈ 1 uniformly in these fast flow regions.

An exception in this particular simulation is in the furthest-right placentone, where there

is a small recirculation zone of low concentration beside the artery mouth, which arises

from the initial condition. As time progresses, the evolution of the velocity field moves

the recirculation zone, therefore advecting with non-zero speed the low concentrations

of oxygen in this recirculation zone. This effect eventually draws low concentrations of

oxygen away from the recirculation zone into the IVS and towards the marginal sinus. We

highlight that this behaviour is due to the initial condition of this particular problem, and

is unlikely to be relevant to more general situations with a similar setup.

In summary, applying a pulsatile inlet flow that follows the cardiac cycle has very little

effect on flow and oxygen concentration in the simulation we have presented. Whilst there

may be other situations where pulsatile inlet flow has a more discernable effect on oxygen

transport, most of the remaining simulations in this thesis will consider only steady-state

flow and transport at peak systole, except for Chapter 6 where time dependence is imposed

through boundary motion.

We will now conclude this chapter with a summary of what has been presented and

how these discretisations will be used throughout the remainder of the thesis.

3.7 Summary

In Chapter 3, we have introduced a DGFEM discretisation of the models of maternal

blood flow and oxygen transport from Chapter 2, including a convergence study and some

basic numerical experiments on the steady-state versions of these models, which included

a comparison between our choice of blood flow model with two related choices. We also

briefly presented a numerical experiment of the time-dependent version of NSD and the

oxygen-transport model.

§3.1 began by introducing the finite element spaces in which the approximate solutions
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(a)
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Figure 3.9: Visualisation of the blood flow field (Equation (2.1)) with a pulsatile inflow condition
in §3.6 at times (a) t = 0, (b) t = 0.500, (c) t = 0.667, (d) t = 2.002, and (e)
t = 3.336. Colours are logarithmically scaled, and streamlines at each time-step
are shown with black lines. A video visualising all time-steps can be viewed here:
https: // r. blakey. family/ phd-video-oiv
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Figure 3.10: Visualisation of the oxygen concentration field (Equation (2.6)) with a pulsatile
inflow condition in §3.6 at times (a) t = 0, (b) t = 0.500, (c) t = 0.667, (d)
t = 2.002, and (e) t = 3.336. Colours are linearly scaled. A video visualising all
time-steps can be viewed here: https: // r. blakey. family/ phd-video-oit

https://r.blakey.family/phd-video-oit


are sought. §3.2 then introduced the full equation discretisations, where spatial derivatives

have been discretised using a DGFEM, and temporal derivatives have been discretised

using a backward Euler finite difference approximation. We chose a Lax-Friedrichs flux to

approximate the advective terms on element faces, which is a form of upwind flux.

Next, §3.3 used the method of manufactured solution (MMS) to investigate the

convergence rates of the time-dependent versions of the blood flow and oxygen transport

models. We found that we achieved optimal spatial and temporal convergence rates for the

finite element spaces and time discretisation method we have used. However, a limitation

of our time discretisation is that it is only first-order accurate, which in practice limits us

to a choice of small time-step. Whilst backward Euler is unconditionally stable, an obvious

improvement in terms of accuracy would be to employ a time discretisation scheme from,

e.g., the Runge-Kutta family, where higher-order discretisations are available.

We then performed several blood flow numerical experiments. Firstly, §3.4 presented

example blood flows on both the placentone and placenta geometries for NSD and the

two related velocity models for the parameters outlined in Tables 2.1 and 2.2. We showed

that NSD displays roughly the same behaviour in the IVS of the other two alternative

velocity models, with some notable differences in the CC, and the advantage that it gives a

physiologically sensible transition region between ‘free’ and porous flow. We also presented

a numerical experiment on the placenta geometry where veins are placed asymmetrically

in §3.4.2. In this example, we found that high-speed flow remained close to the basal

plate, but increased flow speed by an order of magnitude in the region closest to the

chorionic plate. This asymmetric experiment is important, as it introduces asymmetries

that would be typical in a physical placenta; this experiment therefore forms the basis of

the investigations in Chapters 5 and 6.

Next, §3.5 presented the distribution of oxygen concentration on the asymmetric

placenta geometry, where the underlying advective flow is governed by NSD. Overall,

the oxygen concentration perfuses radially from the spiral artery, which agrees with the

results of Chernyavsky, Jensen, and Leach [12]. Interestingly, oxygen was found to exit

the placenta in high concentration; this is oxygen that could be uptaken by the villous

tree given the right conditions, and will be investigated further in Chapter 4.

Finally, §3.6 presented a time-dependent blood flow and oxygen numerical experiment,

where the time-dependence was driven by a pulsatile inflow arising from the cardiac cycle.

We found that the pulsatile inflow had very little effect on the oxygen concentration field,

due to the high concentration of oxygen near the spiral artery. The analyses of Chapters 4

and 5 will consider only steady-state flow, but Chapter 6 will introduce time-dependent

flow that is imposed through boundary motion.

An obvious extension to the work in this thesis would be to consider maternal flow in

3D, rather than the 2D description we have adopted. Other studies do consider maternal

flow in 3D (e.g., [12, 54]), but rely on several strong assumptions, such as symmetry
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of vessels or simplifications to the geometry. This is not the case for the asymmetric

results presented here in 2D, with the symmetry assumptions relaxed further in Chapter 4.

Considering flow in 2D in this thesis also allows for a more feasible computational study

than an equivalent 3D study. As far as we are aware, there is no published work that

tackles 3D maternal flow in such a general computational framework. However, work such

as Crowson et al. [1] is likely to be an exciting development, where an organ-scale 3D

geometry of the placenta is used to determine how structural variations affect placental

function.

The following three chapters of this thesis now develop in three different ways: Chapter

4 will vary structural parameters to study effects on placental efficiency; Chapter 5

will artificially recreate MRI data for direct comparison between simulated and physical

placental flow fields; and Chapter 6 will introduce a preliminary contraction model of the

utero-placental pump.
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Chapter 4

Effects of placental structure on placental

efficiency

One of the main functions of the placenta is to deliver oxygen and nutrients to the

developing fetus, with impaired delivery being characteristic of diseases such as fetal

growth restriction (FGR) or pre-eclampsia (PE) [5, 14, 20, 30, 40]. In this chapter, we will

use the blood flow and oxygen transport models from Chapter 2 and numerical methods

from Chapter 3 to study changes in the flow and oxygen concentration fields due to

structural variations in the placenta. We will primarily investigate changes to these fields

via seven different proxy quantities that capture the main features of the flow and oxygen

transport fields.

In Chapter 1, we commented on the difficulties in determining the number of vessels in

the placenta. Several papers in the literature include measurements or estimates of the

number of spiral arteries in the placenta, of which there are thought to be between 30 and

150 [6, 9, 12]. Information on the number of veins is scarcer: according to Chernyavsky,

Jensen, and Leach [12], the placenta may contain between 50 and 200 veins in total. The

wide range of numbers of arteries and veins suggests either a high variation in individual

placentas or a lack of understanding. It is therefore important to understand how the

numbers of arteries and veins, and the ratio between them, affects the placenta.

As well as the number of vessels (where we refer to ‘vessels’ as arteries and veins

collectively), there is also uncertainty in their position. Most mathematical studies on

vessels thus far have been limited to, for example, symmetric placement of basal plate

veins [12], or to study of the shape of arteries [14, 32]. Mekler et al. [54] in 2022 took this

a step further, investigating the effects of the number and asymmetric placement of basal

plate veins; they found that higher numbers of veins placed symmetrically overall reduced

oxygen concentration throughout the domain, which is likely related to the short-circuiting

behaviour originally reported by Chernyavsky, Jensen, and Leach [12], where flow exits
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through veins soon after entering the placenta. We expand upon the work of Mekler et al.

[54] in §4.2 by considering variations in the number and placement of arteries and veins

across a 2D slice of a placenta.

In addition to the number and position of vessels, there are of course many other

structural changes that have an impact on placental function. An example of this is

the diameter of the spiral arteries, which is thought to play a role in diseased placentas.

In healthy placentas, blood enters through a narrow artery of approximately 0.5mm

that widens to 2–3mm, allowing upstream flow at approximately 1m s−1 to slow to

approximately 0.1m s−1; however in diseased cases, the failure to widen can result in flow

at 1m s−1 to directly enter the placenta, causing damage to the villous tree material [14].

Another example of an impactful structural change is the density of the villous tree

structure, which has been investigated mathematically. Serov et al. [40] used a stream-tube

model of the villi to find an optimal villous tree density; in order to maximise oxygen

uptake, they found a careful balance was required between the effects of reduced flow rates

but increased uptake area from dense villous tree structure, and the effects of fast flow

with a reduced uptake area from a coarse villous tree structure.

Therefore, in addition to studying variations in the number and placement of vessels

in §4.2, we will also consider variations of seven other parameters in §4.3: artery width,

vein width, septal wall heights, oxygen diffusivity, oxygen uptake rate, permeability of the

villous tree, and inlet blood speed.

Firstly, in §4.1, we will define seven quantities to be used as a proxy for measuring

placental efficiency. Secondly, in §4.2, we will study how the number and positions of

vessels affect placental efficiency; in particular, we will relax the assumption that arteries

and veins are placed symmetrically in each placentone in specific positions. Thirdly, in

§4.3, we will study the dependence of placental efficiency due to changes in seven other

parameters described above. Finally, we will conclude in §4.4 with an overview of the

results and remarks on the physical consequences.

4.1 Measures of placental efficiency

To investigate the effects of changes to placental structure and flow parameters on placental

function, we introduce seven measures of placental efficiency. Each of these measures

gives a single scalar value that characterises the flow and oxygen concentration fields; we

use these measures on an ensemble of simulations to infer, for example, how the number

of arteries may affect the amount of oxygen uptaken by the villous tree, or how the

permeability of the villous tree affects the amount of slow flow in the placenta.

The first gives a measure of blood flow speed by taking the integral average of the
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velocity magnitude over a given domain Ω:

v̄(Ω) :=
1

|Ω|

∫
Ω

|u| dx, (4.1)

where u is the velocity of the blood flow, and |Ω| :=
∫
Ω

dx. The second measures the

fraction of ‘slow flow’ in the domain, i.e., the area fraction in which the flow speed is below

a threshold, V ms−1:

vslow(V ) :=
1

|Ω|

∫
Ω

1(|u| < V ) dx, (4.2)

where 1(|u| < V ) denotes the indicator function1. The third measures the flux of blood

through a given surface:

vflux(S) :=
1

|S|

∫
S

u · n dS, (4.3)

where |S| :=
∫
S

dS, and when S ⊆ ∂Ω, n denotes the unit normal in the outward-facing

direction; when S lies in the interior of Ω, we take n to be the unit normal in the

increasing x-direction (pointing to the right in Figure 2.2(a)). By taking the boundary

between neighbouring placentones, where the six placentones are labelled {Ω1,Ω2, ...,Ω6},
we compute our fourth measure, which we will refer to as the ‘cross-flow flux’:

vcross :=
5∑

i=1

|vflux(Ωi ∩ Ωi+1)|. (4.4)

The next two measures are related to the oxygen c transported by the blood flow. To

measure the amount of oxygen uptaken by the entire villous tree, we define:

c̄ :=
R

|Ω|

∫
Ω

Ψc dx, (4.5)

where R is the uptake rate of the villous tree from Table 2.2, and Ψ defines the smooth

transition region described in §2.2. We also introduce a measure of the oxygen flux through

a given surface:

cflux(S) :=
1

|S|

∫
S

c (u · n) dS. (4.6)

The final measure is to do with the energy flux of the flow. Quantities related to

energy fluxes have been useful in informing clinical care of the heart. Patients with heart

defects have benefitted from procedures that overall minimises the energy flux loss, thereby

ensuring efficient cardiac output [127, 128]. We therefore apply a measure to study the

1The indicator function is defined at a point as 1(|u| < V ) :=

{
1 if |u| < V,

0 if |u| ≥ V.
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kinetic energy flux in the context of the placenta, and is given through a surface by

Ekinetic(S) :=

∫
S

1

2
ρ |u|2 (u · n) dS. (4.7)

Previous studies have indicated that structural changes to the placenta play a role in

the development of disease. The choice of these seven measures provide a low-dimensional

view of the flow and oxygen transport fields, and therefore help us easily quantify important

flow and oxygenation characteristics.

For the remainder of this chapter, we investigate the dependence of the measures

described above on placental structure via ensembles of blood flow and oxygen transport

simulations in which the structural features are varied uniformly-at-random (i.e., both

randomly and uniformly). In §4.2 we study how variations in the numbers and positions of

vessels affect these measures, whilst in §4.3 we study how variations in seven other model

parameters affect the measures. §4.4 ends the chapter with a summary of results.

4.2 Variation of number and position of vessels

Chernyavsky, Jensen, and Leach [12], and more recently Mekler et al. [54], studied the effect

that basal plate vein position has on nutrient uptake within a single placentone by varying

the distance from the artery to neighbouring veins; they found that a careful balance

was required between uptake rate and distance between the artery and veins in order to

permit deep perfusion of nutrients, and that veins too close to arteries can provide a ‘short

circuit’ for blood from the artery to the vein [12, 54]. Literature modelling the maternal

blood flow in placentones has thus far generally taken a 1:2 ratio of artery-to-veins placed

symmetrically about the inlet artery [8, 12, 52], or have placed veins exclusively on the

basal plate at specific distances from the artery [54]. To overcome some of these restrictions,

we will relax the assumption that basal plate vessels must be placed symmetrically and

in specific locations, and we will also include veins on septal walls. We will therefore use

the placenta geometry from §2.1.2 with various numbers of arteries, basal plate veins, and

septal wall veins; we will also vary the positions of all of these vessels. We will, however,

assume that the marginal sinus veins are always present for simplicity.

Throughout §4.2, we will fix all parameter values from Tables 2.1 and 2.2, and instead

vary both the number and position of the arteries and veins. We vary uniformly-at-random

the number and position of all arteries and veins, up to a maximum of NA = 6 arteries

(one per placentone) and NV = 27 veins (2 per placentone, 3 per wall), where for simplicity

we retain the 2 larger marginal sinus veins in all simulations. The positions of arteries

and veins are constrained to avoid overlap, and so that the central cavity associated with

every given artery does not intersect with the chorionic plate and septal walls. Figure
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Figure 2.2(a) (repeated): Diagram illustrating our 2D placenta geometry repeated from §2.1.2.

2.2(a) (repeated here from §2.1.2) shows a sketch of an example domain illustrating the

ways in which various arteries and veins may appear. The proceeding results are obtained

from an ensemble of Nsim = 1000 realisations2 of the computational domain as described

in Algorithm 4.1, where U(a, b) denotes the discrete uniform distribution, and L, T,R

respectively denote a ‘left’, ‘top’, and ‘right’ position; L, T,R ∈ {0, 1} and are used in the

tuples on line 4 of Algorithm 4.1 to denote chosen left and right veins on the basal plate

of each placentone, and chosen left, top, and right veins on each septal wall. A ‘0’ denotes

a vein that is omitted, and a ‘1’ denotes a vein that is present.

Figures 4.1–4.5 present the main results of §4.2 for all seven efficiency measures, which

we will discuss in depth throughout the remainder of §4.2. We highlight that each individual

graph presents data for the same ensemble of simulations, but are visualised in several

different ways.

4.2.1 Effects on v̄(ΩIVS) and c̄

We first discuss the influence of these structural variations on flow and oxygen uptake, as

measured by v̄(ΩIVS) and c̄ (Equations (4.1) and (4.5)). We note that we have selected

ΩIVS in which to calculate v̄, as flow in the central cavity can be much faster [8]. Figure 4.1

2An additional 100 simulations are run specifically for NA = 6 and NV = 27 to ensure that there is a
sufficiently large sample size for when we consider subsets of the data.
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Algorithm 4.1: Algorithm to generate Nsim simulations with varying numbers

and positions of vessels.

1 for n = 1 to Nsim do

2 Sample NA ∼ U(1, 6)
3 Sample NV ∼ U(0, 27)
4 Uniformly-at-random select:

• Number of arteries ni
a ∈ {0, 1} per placentone

• Number of basal plate veins ni
bp = (L,R);L,R ∈ {0, 1} per placentone

• Number of septal wall veins nj
sw = (L, T,R);L, T,R ∈ {0, 1} per wall

subject to
∑6

i=1 n
i
a = NA and

∑6
i=1 |ni

bp|+
∑5

j=1 |nj
sw| = NV

5 for i = 1 to 6 placentones do

Place ni
a at continuously uniformly random positions along basal plate, such

that:

• There is room for left and right basal plate veins, if they exist

• There is room for the central cavity

6 Place ni
bp at continuously uniformly random positions in the remaining

space

end

7 for j = 1 to 5 walls do

Place ni
sw at continuously uniformly random positions along the left side,

top, and right side of septal walls

end

8 Generate mesh Th with selected vessels and positions

9 Compute uh and ch from simulation, and compute all seven measures of

placental efficiency

10 end
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summarises the results from all Nsim simulations. Figure 4.1(a) shows the median values

of v̄(ΩIVS) and c̄ obtained from our ensemble, plotted as a dashed blue line as a function

of NA, NV, and the ratio NV/NA. The shaded region surrounding the median corresponds

to the area between the 25th and 75th percentile of the data (i.e., the interquartile range).

Individual outlier points are plotted outside this region. Orange lines denote subsets of

the data, as indicated in the inset legends. We re-emphasise that the positions of the

vessels are random and do not correlate to the choice of the number of vessels on the

horizontal axes. The coloured crosses indicate specific realisations, for which we visualise

the corresponding velocity and oxygen concentration fields in Figure 4.1(b). These specific

realisations are chosen in large part to demonstrate extreme choices in the number of

vessels.

Upon studying Figure 4.1(a), we firstly note that the coloured crosses (indicating

the four chosen realisations) sometimes fall outside the shaded areas; these particular

simulations were chosen to demonstrate the relatively high variability in the data presented

here. Secondly, there are some clear correlations between the number of arteries and both

v̄(ΩIVS) and c̄; according to the results presented here, placentas with NA = 6 maximise

both the average speed of the blood flow and the uptake of oxygen. Conversely, the

maximal values of v̄(ΩIVS) for the number of veins is when NV = 0, which is because

marginal sinuses are always available here as a route of venous drainage and will draw the

blood flow across the domain.

As can be seen in the corresponding four visualisations of the velocity fields in Figure

4.1(b), the flow is, in general, much slower when NV is higher; this is because, when there

are more veins, fluid has the opportunity to ‘short-circuit’ and exit through nearby veins,

rather than be drawn across the placenta. This is illustrated when comparing the red- and

green-boxed simulations in Figure 4.1(b), where in the former the fluid speed is at least

an order of magnitude slower than the latter in many parts of the domain. The maximal

values of c̄ are again when NA = 6 or NV = 0, but the effect of the veins is less powerful

here. Instead, it is the number of arteries that has the greatest effect on c̄, although there

is a clear plateau as NA approaches 6; this is further shown in the second column, where

the variability for varying NV is very large, which is due to the number of arteries in

each simulation dominating in the value of c̄. Interestingly, for NV/NA, there is a much

less variable relationship for both v̄(ΩIVS) and c̄, shown by the smaller shaded region

surrounding the dotted median line, showing that this ratio is important in determining

v̄(ΩIVS) and c̄ for a given simulation. The maximal values for both v̄ and c̄ are obtained

when NV/NA = 0.

The orange lines plot a subset of the data so that we can more clearly see the effects

of varying NA and NV separately. The values of v̄(ΩIVS) and c̄ for varying NA and fixed

NV = 27 in the first column are plotted in orange and are clearly less variable than when

any NV is considered in blue, and shows that having more veins overall decreases both
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Figure 4.1: (a) Graphs that show how v̄(ΩIVS) and c̄ vary according to the number of vessels.
From left to right, each column has grouped the data from all Nsim simulations
according to NA, NV, and NV/NA. In each panel, the blue dotted line corresponds
to the median, and the surrounding blue shaded region corresponds to the area
between the 25th and 75th percentile of the data. Individual outlier points are plotted
outside this region. Orange lines visualise a subset of the data, as indicated by the
inset legends. (b) Four selected simulations out of Nsim, visualising the velocity
field (top) and the oxygen concentration field (bottom); the numbers of arteries NA

and veins NV are indicated. The coloured crosses in (a) correspond to the coloured
boxes surrounding the simulations in (b). The colour scales are small in subfigure
(b), but range as before: |u| ∈ [3.5× 10−6, 3.5× 10−1] and c ∈ [0, 1].
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v̄(ΩIVS) and c̄; this supports the idea that more veins may lead to more short-circuiting

behaviour and oxygen leaving the placenta in relatively high concentration [12, 52]. Indeed,

this is also the case when considering the second column, where NV is varied. Fixing

now NA = 6 and considering variations in NV shown in orange in the second column, we

see that high numbers of arteries overall increases v̄(ΩIVS) and c̄, which is sensible when

considering the increased flux of blood and oxygen entering the placenta.

Existing MRI studies have measured the mean flow speed in vivo to be between

0.4mms−1 and 0.94mms−1 [8, 20, 40]; this range corresponds to the data shown for

NA = 1 and NA = 2, but v̄(ΩIVS) is in general higher for other numbers of vessels. The

faster mean speeds measured in our simulations could be due to the study of 2D flow in

this thesis, or because a large number of arteries in this setting is unphysical. Furthermore,

the MRI study by Dellschaft et al. [20] found that diseased placentas in general had a

faster mean speed of 0.7mms−1, as opposed to 0.4mms−1 for healthy placentas. From

this, our results suggest that placentas with a large number of arteries or small number

of veins may be characteristic of placental disease; however, an interesting contradiction

arises here, as these are the cases where oxygen uptake is maximised in our results, which

in itself suggests that these are the best-performing placentas.

In summary, these results show that increasing NA increases both v̄(ΩIVS) and c̄, with

the effect most pronounced for c̄, and reducing NV increases both v̄(ΩIVS) and c̄, with the

effect most pronounced for v̄(ΩIVS). Plotting v̄(ΩIVS) and c̄ against the ratio NV/NA gave

a smaller interquartile range, and overall for higher NV/NA gave decreasing values of the

two measures.

4.2.2 Effects on vslow

For a given simulation, we define four velocity thresholds under which to define ‘slow

velocity’:

• Vthreshold = v̄(ΩIVS) m s−1: average speed of this simulation over ΩIVS.

• Vthreshold = v̄(Ω) m s−1: average speed of this simulation over Ω.

• Vthreshold = 0.0005m s−1: threshold taken by definition of slow velocity in Dellschaft

et al. [20].

• Vthreshold = 0.0026m s−1: threshold equals v̄(Ω) calculated from the placenta simula-

tion in §3.4.1.

We emphasise that the first two of these thresholds relate to the average speed of the given

simulation, whereas the last two of these choices are fixed across all simulations.
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Figure 4.2: Graphs that show how vslow varies with changes in the number of arteries and veins.
The first column plots these measures for varying the number of arteries from 1 to
6, the second column plots these measures for varying the number of veins from 0
to 27, and the third column plots these measures for the ratio between the number
of veins and the number of arteries. In each panel, the dotted lines correspond to
the median, and the surrounding shaded regions correspond to the area between the
25th and 75th percentile of the data, with individual outlier points plotted outside
these regions. The legend above the plots indicates the choice of Vthreshold.

We chose the threshold Vthreshold = 0.0005m s−1 as it has been previously categorised

as a threshold for ‘slow flow’ in the literature; Dellschaft et al. [20] found that MRI

scans of the placenta contained regularly spaced regions of relatively fast-moving blood

(|u| > 0.001m s−1) interspersed with regions of slow-moving blood (|u| < 0.0005m s−1);

they were able to identify regions of fast-moving blood to be close to spiral arteries, with

the slow regions likely occurring in the surrounding IVS.

The final choice of threshold, Vthreshold = 0.0026m s−1, was chosen by computing v̄(Ω)

on the symmetric placenta simulation of NSD presented in §3.4.1. We chose to compare

against this simulation because of its similarity to the position and number of vessels that

have previously been used in the mathematical modelling literature [8, 12].

Inspecting Figure 4.2, these first two thresholds show that, regardless of the number

and positions of vessels, the percentage of flow slower than the average speed remains

roughly constant at approximately 30%; this is not immediately obvious by the flow

simulations we’ve investigated so far.

There is, however, a slight separation between vslow(Vthreshold) for Vthreshold = 0.0005m s−1

and 0.0026m s−1, with the former decreasing more rapidly with increasing NA. Although

there is a separation in these values of vslow, the overall trends are the same, with vslow

decreasing for larger NA and increasing for larger NV; these results in general agree with

those presented in §4.2.1. Dellschaft et al. [20] found that diseased PE placentas generally

had a lower proportion of slow-moving flow than healthy placentas; from the results

presented here, this could suggest that placentas with either a small number of arteries or
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a large number of veins could be characteristic of PE placentas. However, a disparity arises

here, as MRI scan slices of healthy placentas gave approximately 57% of slow-moving

blood below this threshold [20], which is much higher than any of the values presented

here. As previously suggested, this could be due to the 2D study of flow here.

4.2.3 Effects on venous drainage

We now investigate the exit routes by the blood and the oxygen by considering vflux and

cflux for basal plate, septal wall, and marginal sinus veins. For those results presented in

Figure 4.3, we compute
vflux(S)

vflux(Γin)

and
cflux(S)

cflux(Γin)

for three different choices of S: namely, we take these to be S ⊆ Γout according to whether

veins are placed on the basal plate (Γout,bp), septal wall (Γout,sw), or marginal sinus (Γout,ms).

We see little influence on route of exit for varying NA. Instead, and unsurprisingly, the

route of exit is strongly dependent upon the number of veins NV. Fluid is conserved here,

so we remark that

vflux(Γout,bp)

vflux(Γin)
+

vflux(Γout,sw)

vflux(Γin)
+

vflux(Γout,ms)

vflux(Γin)
= 1.

Therefore, as expected, we clearly see 100% of the fluid exits through the marginal sinuses

when NV = 0.

On the other hand, the oxygen flux exits the placenta at a lower concentration than

how it entered, due to some of the oxygen being uptaken by the villous tree. For NV = 0,

approximately 85% of the entering oxygen is exiting through the marginal sinus veins.

Although not clearly illustrated here, calculating the sum of the blue, orange, and green

curves (i.e., calculating cflux(Γout)/cflux(Γin)) gives values between 60% and 90% for all

choices of numbers of vessels. This is a notably high concentration, considering that this

is oxygen that could have been uptaken by the villous tree to be delivered to the fetus,

which is arguably the placenta’s most important function that we consider.

As NV increases, the routes of exit for flow and oxygen slowly shift towards the basal

plate and septal wall veins, for which there appears to be a slight preference for septal

wall veins; however, this effect could be occurring simply because there are more septal

wall veins through which blood can exit.

We note that all three columns contain a relatively large amount of variability, especially

in the third column for varying NV/NA; this suggests that vflux and cflux are more sensitive
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Figure 4.3: Graphs that show how vflux and cflux vary with changes in the number of arteries
and veins. The first column plots these measures for varying the number of arteries
from 1 to 6, the second column plots these measures for varying the number of
veins from 0 to 27, and the third column plots these measures for the ratio between
the number of veins and the number of arteries. In each panel, the dotted lines
correspond to the median, and the surrounding shaded regions correspond to the
area between the 25th and 75th percentile of the data, with individual outlier points
plotted outside these regions. The legend above the plots indicates the choice of S.
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Figure 4.4: Graphs that show how vcross varies with changes in the number of arteries and
veins. The first column plots these measures for varying the number of arteries
from 1 to 6, the second column plots these measures for varying the number of
veins from 0 to 27, and the third column plots these measures for the ratio between
the number of veins and the number of arteries. In each panel, the dotted lines
correspond to the median, and the surrounding shaded regions correspond to the
area between the 25th and 75th percentile of the data, with individual outlier points
plotted outside these regions. Blue data points correspond to all Nsim simulations,
whereas orange data points are some subset of this data.

to something apart from the number of vessels, such as the position of the vessels. The

third column shows more variability than the other two columns due to how NA and NV

were sampled, meaning that there is a reduced number of simulations for higher numbers

of NV/NA.

4.2.4 Effects on cross-placentone flow

We now discuss the effects on vessel variations on vcross in Figure 4.4. This is an interesting

feature to study because previous mathematical studies have mostly focussed on only single

placentones [8, 12], whereas the study here focusses on a placenta with six placentones,

which permits blood to move over the top of the septal walls.

Increasing NA has an interesting influence on vcross in that the median plotted in blue

is non-monotonic, with the maximum median value attained at roughly NA = 4. The

orange curve for NV = 27 makes this even clearer, with almost no cross-flow flux at all

when NV = 27 and NA = 6; this suggests that high vcross benefits from more arteries

(giving overall more flow) and strongly asymmetric artery placement (roughly speaking,

when NA ̸= 6). That said, both the number of outlier points and the shaded blue area

drastically increase in size for higher NA, showing that the variability is also increasing

here; this is due to variations in NV dominating the value of vcross.

Turning our attention to the second and third columns we learn that, like the effects on

venous drainage, NV has by far the most influence on cross-placentone flux here. When NV

is small, there is a high amount of variability in where those veins are positioned, which
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Figure 4.5: Graph that shows how Ekinetic varies with changes in the number of arteries and
veins. The first column plots these measures for varying the number of arteries
from 1 to 6, the second column plots these measures for varying the number of
veins from 0 to 27, and the third column plots these measures for the ratio between
the number of veins and the number of arteries. In each panel, the dotted lines
correspond to the median, and the surrounding shaded regions correspond to the
area between the 25th and 75th percentile of the data, with individual outlier points
plotted outside these regions. Blue data points correspond to all Nsim simulations,
whereas orange data points are some subset of this data.

in extreme cases could be placed far from arteries. In these cases, assuming a negligible

amount of drainage through the marginal sinus veins, blood would be drawn over several

septal walls to exit through those veins. In contrast, when NV is high, there is a high

likelihood that veins are close to arteries, allowing blood to easily exit through nearby

veins. This further reinforces the idea of short-circuiting being commonly available when

NV is high.

4.2.5 Effects on kinetic energy flux

We finally discuss the effects of vessel variations on Ekinetic in Figure 4.5. We will specifically

study the energy flux loss ratio (EFLR), which is calculated by

Ekinetic(Γin)− Ekinetic(Γout)

Ekinetic(Γin)
.

This gives a measure of how kinetic energy is lost as the blood passes through the villous

tree.

The most straightforward relationship is the one for varying NA in the first column;

we see that for increasing NA, there is a relatively small decrease in the energy measure

shown in blue, with an even smaller decrease visible when fixing NV = 27 in orange. For

the data points for any choice of NV in blue, there is a higher variability as NA increases,

which is due to simulations with small NV having a large effect there; this is especially

evident through the fact that there is not a high variability for NV = 27 and there is a
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much larger change in behaviour for lower numbers of veins, as previously discussed.

Focussing now on the second column for varying NV, we see that there is non-monotonic

behaviour for increasing NV: the energy briefly decreases from NV = 0 to low NV, but

then increases up to a plateau for a larger number of veins. The visualisation for NA = 6

in orange exaggerates this behaviour, which has an even sharper decrease in value for

smaller numbers of veins. This is interesting behaviour, as it suggests that there is a

unique situation present in the flow when NV is small that overall expels more kinetic

energy between entering and exiting the placenta.

We will now assume that the number and position of all vessels are fixed, and instead

consider variations in seven different parameters.

4.3 Variation of seven other parameters

Similar to §4.2, we will vary structural parameters to investigate their effects on the seven

chosen measures of efficiency. Specifically, we will separately investigate the effects due to

variations in artery mouth widths (ra), vein widths (rv), septal wall heights (h), oxygen

diffusivity (D), oxygen uptake rate (R), maximum permeability of the IVS (k), and inlet

blood flow speed (U). Note that the number and position of the vessels remain fixed in

this study and are positioned in the same way as the simulations presented in §3.4.1 (i.e.,

1 artery and 2 basal plate veins per placentone). This is a constraint that may affect our

results, but was chosen because of its similarity to the position and number of vessels that

have previously been used in the mathematical modelling literature [8, 12].

We vary the artery mouth widths from 2ra = 0.5mm (no widening of artery) to

2ra = 3mm [14]; we recall from Table 2.1 that the nominal value for the artery width

used elsewhere in this thesis is 2ra = 2.4mm. Similarly, we vary the vein widths from

2rv = 1mm and 2rv = 3mm, where we recall that the nominal width is 2rv = 1.5mm.

We take the septal wall heights to vary at fractions of h/h0 = 1/3 and h/h0 = 2 times

their original heights from Table 2.13. For the oxygen diffusivity and oxygen uptake rate,

we vary these from 0.1 and 5 times their nominal values; this involves varying between

D = 1.667 × 10−10mm2/s and D = 8.335 × 10−9mm2/s, and R = 1.667 × 10−3 s−1 and

R = 8.335× 10−2 s−1. We follow work by Lecarpentier et al. [8] and choose to vary the

maximum permeability between k = 1 × 10−10m2 and k = 1 × 10−6m2. Finally, we

follow the work of references [12, 14, 16] and choose to vary the inlet blood speed between

U = 0.1m s−1 and U = 1m s−1, where we recall that the nominal speed is U = 0.35m s−1.

The algorithm for generating these simulations is much more straightforward than

in §4.2, as we choose to keep the numbers and positions of vessels as they are presented

3This involves the small and tall walls respectively varying 2.30–13.80mm and 4.69–28.14mm.
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in §2.1.2. Specifically, the variations in each of these parameters are chosen uniformly

on the ranges described above and simulations run with these chosen parameters4. We

run Nsim = 1000 simulations for each of these seven parameter variations (7000 total

simulations). Figures 4.6 and 4.7 present the main results of §4.3 for all seven efficiency

measures, which we will discuss throughout the remainder of §4.3; we highlight that the

simulations presented in each of the seven columns are a different ensemble of simulations,

in contrast to the results presented in §4.2. We make clear that the choice of seven

parameters and seven efficiency measures is a coincidence.

The most striking feature of Figures 4.6 and 4.7 is that almost all the efficiency measures

change very little due to variations in each of the seven parameters compared to the vessel

variations. We split the discussion into two parts: §4.3.1 will discuss the results of Figure

4.6, and §4.3.2 will discuss the results of Figure 4.7.

4.3.1 Effects due to geometrical variations

Here, we focus on the results of Figures 4.6(a) and 4.6(b), which in each column separately

considers variations in artery width, vein width, and septal wall height for all seven

efficiency measures.

In the first column, artery width variations have by far the least impact on the efficiency

measures out of these three parameters. We note that the variations we have performed

here vary all six artery widths simultaneously, and change only the artery mouth width,

not the artery width at the base on Γin; we are therefore not affecting the flux of blood

entering through the arteries, instead affecting only the speed at which it exits into the

central cavity. However, this is still unexpected, as other studies have suggested that small

artery mouth widths would substantially increase flow rates and decrease overall oxygen

uptake [14].

In the second column, we vary the vein widths. We remind the reader that in this

particular setup, there are no septal wall veins, and we specifically perform variations in

the basal plate vein widths along their entire lengths, which therefore affects the size of

both the mouth and base of these veins. The third row of Figure 4.6(a) and the second

row of Figure 4.6(b) show in the second column that smaller vein widths lead to more flow

to exit out of the marginal sinus, with correspondingly higher concentrations of oxygen.

This behaviour is due to a slight preference for the flow to exit through the much wider

(3mm) marginal sinus veins when the basal plate veins are small. It therefore makes sense

that for small vein widths that vcross is also elevated, as flow will be drawn across the

domain in this case. A final related feature is present in the kinetic EFLR (energy flux

4Due to the behaviour of the permeability, we select the permeabilities logarithmically uniformly, i.e.,
k ∼ 10X , X ∼ U(−10,−6).
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(a)

Figure 4.6: Graphs that show how each of the seven measures of placental efficiency from §4.1
vary with changes in three different structural parameters. The seven rows are
labelled the y-axis, utilising each of the efficiency measures once. In each panel, the
dotted lines correspond to the median, and the surrounding shaded regions correspond
to the area between the 25th and 75th percentile of the data, with individual outlier
points plotted outside these regions. In panels that contain a legend, each colour
indicates a different quantity computed on the vertical axis. The first column plots
these measures for varying spiral artery mouth width, the second column plots these
measures for varying vein width, and the third column plots these measures for
different proportions of original wall height. (a) Presents the results including the
first four efficiency measures: v̄, vslow, vflux, and vcross. (continued on next page)
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(b)

Figure 4.6: (continued) (b) Presents the results including the next three efficiency measures: c̄,
cflux, and Ekinetic.
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loss ratio), which is lowered for smaller vein widths. This is again due to the preference

for the marginal sinus veins, and mirrors the results discussed in §4.2 when the marginal

sinus vein drainage was preferred.

We recall that the variations to septal wall heights are ratios (h/h0) between 1/3 and

2 times their nominal heights (h0), which are chosen at one of two sizes: one taller height

to represent wall heights between lobes, and another smaller height to represent wall

heights between lobules (see Figure 2.2(a) and accompanying discussion in §2.1.2). Like
artery width, septal wall heights have very little impact on the seven measures of placental

efficiency, with the only notable effect that vcross decreases for increasing septal wall height.

This makes physical sense, as for taller wall heights, there will be a smaller gap between

the walls and the chorionic plate for flow to pass through, which could therefore decrease

the overall flux of blood crossing between placentones. However, it is not obvious that this

would have such a small influence on the other efficiency measures. The small influence is

due to the relatively low-speed flow passing over the walls, which have previously been

visualised with logarithmically-scaled colours.

Overall, these parameter variations had a much smaller effect on the efficiency measures

compared to the vessel variations presented in §4.2. Surprisingly, the only parameter

variation that had a discernable effect was the vein widths, which is due to the larger

marginal sinus veins being preferred. It was unexpected that artery widths influenced

the measures very little, given that studies have previously suggested that non-widening

arteries are likely to have a significant effect on placental function [14]. We will give a

discussion on this feature in §4.4. We also found that variations in the wall height had

little effect on the measures; although vcross decreased slightly for increasing wall height,

there was no other obvious disruption to the flow and oxygen concentration fields, due to

the relatively low-speed flow.

Next, we will consider the results of Figure 4.7.

4.3.2 Effects due to changes to the villous tree, oxygen diffusivity, and

inlet blood speed

Here, we focus on the results of Figures 4.7(a) and 4.7(b), which in each column separately

considers variations in oxygen diffusivity, oxygen uptake rate, maximum permeability of

the villous tree, and the inlet blood flow speed for all seven efficiency measures. We remark

that panels containing flow markers for variations in the oxygen concentration field are

hidden, as they are not affected by the variations; this is because changes in D and R only

affect c, not u.

The first column of Figures 4.7(a) and 4.7(b) considers variations in the oxygen

diffusivity, which has the smallest effect on the efficiency measures. This suggests that
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(a)

Figure 4.7: Graphs that show how each of the seven measures of placental efficiency from §4.1
vary with changes in four different flow and structural parameters. The seven
rows are labelled the y-axis, utilising each of the efficiency measures once. In
each panel, the dotted lines correspond to the median, and the surrounding shaded
regions correspond to the area between the 25th and 75th percentile of the data,
with individual outlier points plotted outside these regions. In panels that contain
a legend, each colour indicates a different quantity computed on the vertical axis.
The first column plots these measures for varying oxygen diffusivity, the second
column plots these measures for varying oxygen uptake rate, the third column plots
these measures for varying permeability of the villous tree, and the fourth column
plots these measures for varying inlet blood speed. Note that panels containing flow
markers are hidden for variations in the oxygen concentration model. (a) Presents
the results including the first four efficiency measures: v̄, vslow, vflux, and vcross.
(continued on next page)
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(b)

Figure 4.7: (continued) (b) Presents the results including the next three efficiency measures: c̄,
cflux, and Ekinetic.
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the transport of oxygen here is not diffusion-limited and is instead limited by some other

factor in this parameter regime.

We now concentrate on the oxygen uptake rate, shown in the second column of Figures

4.7(a) and 4.7(b). The first row of Figure 4.7(b) measures c̄ and shows a direct increase for

increasing oxygen uptake rate, which suggests that the oxygen uptake here is limited by the

speed at which the villous tree can absorb oxygen; however, this curve starts to flatten for

higher uptake rates, suggesting that for higher uptake rates that there is another limiting

factor in uptake in play (for example, instead limited by advection). Related to this,

increasing oxygen uptake rate also causes a direct reduction in the oxygen concentration

exiting the placenta, as shown in the second row of Figure 4.7(b); this is not surprising

and is of course advantageous to placental function.

The third column of Figures 4.7(a) and 4.7(b) considers variations of k, which is

the maximum permeability of the villous tree; we recall that the effective resistance to

flow is controlled by Ψµ
k
in Equation (2.1). When the resistance to flow is lower (i.e.,

k ≈ 10−6), v̄ increases due to higher-speed flow penetrating deeper into the IVS; vcross

and vflux(Γout,ms)/vflux(Γin) both also increase here, due to the deeper penetration of blood,

which makes it easier for blood to cross septal walls to then exit through the marginal sinus

veins rather than through the basal plate veins. It is not surprising that vslow decreases

in this regime, with an increase in oxygen exiting through the marginal sinus veins that

matches the increase in flow. We also see a small increase in oxygen uptake, which is due

to oxygen being transported deeper into the IVS, into regions where there typically is very

little oxygen for the villous tree to uptake. The kinetic EFLR remains roughly constant,

except for a slight increase when resistance to flow is lower (i.e., k ≈ 10−6); this is because

the fluid experiences more kinetic energy loss when resistance to flow is higher.

Finally, we consider the blood inlet speed, shown in the fourth column of Figures

4.7(a) and 4.7(b). v̄ directly increases for higher U , whilst c̄ decreases; these phenomena

have been reported in the literature, with the reduction in oxygen uptake thought to

be due to faster circulation times in which the villous tree has a reduced opportunity

in which to uptake oxygen [14]. Related to this, there is a corresponding increase in

cflux(Γout,bp) for faster inflow; it is not immediately obvious that the oxygen flux through

Γout,ms remains roughly constant for all values of U , although it is clear that is it related

to the behaviour of vflux(Γout,ms). Changes in U don’t have a considerable impact on

vslow, vflux, and Ekinetic. However, vcross displays a very interesting feature: whilst there

is a roughly linear relationship for most choices of U , the values of vcross illustrated at

U = 0.9m s−1 do not continue this pattern. In fact, the data itself is partitioned into

vcross ∈ [6.0× 10−4, 7.1× 10−4] and vcross ∈ [9.2× 10−4, 10.1× 10−4].

To further investigate the behaviour of vcross for varying U , we visualise the velocity

field for one simulation in each of the two groups. Figure 4.8(a) shows a simulation

with U = 0.8866m s−1 and has vcross = 6.0 × 10−4, and 4.8(b) shows a simulation with
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U = 0.8850m s−1 and has vcross = 10.1× 10−4. We note that these simulations have been

selected due to their similar values of U but contrasting values of vcross. Figures 4.8(c)

and 4.8(d) respectively show a zoomed view of the right-most placentone for these two

simulations, where we can see the jets of blood have a preference for either the left or

right side of the central cavity, likely due to a bifurcation in the underlying PDE; related

to this, we also see fewer streamlines cross the right-most wall in Figure 4.8(a) than in

Figure 4.8(b), which is why vcross is elevated in the latter simulation. This feature will be

summarised and discussed further in §4.4.
Apart from the variations in number and location of vessels, this section has found

that variations in k and U have the greatest impact on the efficiency measures.

4.4 Summary

Throughout Chapter 4, we have investigated the effects of various structural variations

on placental function, as measured by seven chosen measures of placental efficiency. The

value of the computational approach taken in this thesis is realised here, as this allowed us

to explore these variations comprehensively across a large ensemble of realisations. §4.2
focussed specifically on variations in the number and positions of vessels, where numbers

and positions of vessels were varied uniformly-at-random over 1000 realisations, and §4.3
independently varied seven other parameters over 7000 realisations.

Existing work on the positioning of basal plate veins has been conducted by Chernyavsky,

Jensen, and Leach [12], but this was restricted to a placentone with two symmetrically-

placed basal plate veins. Others, such as Mekler et al. [54] investigated the effects of

many basal plate veins and their symmetry, but these were again limited to a single

placentone and assumed the spiral artery was placed centrally. This thesis has considered

a physically-relevant 2D placenta geometry for the first time, and has therefore allowed

for a more physiologically relevant study of the influence of structural parameters than

previous studies. Our results found the same ‘short-circuiting’ behaviour reported by these

previous studies, where blood exits through nearby veins and overall lowers oxygen uptake

[12, 54]. Whilst the results of this thesis are restricted to 2D, the computational demand

is much lower than an equivalent 3D study.

In general, the results presented in §4.2 showed high variability in the values of the

efficiency measures outside the interquartile range when comparing these against the

varying numbers of arteries and veins, but showed a much lower variability when compared

against the ratio of veins-to-arteries; this suggests that the ratio may be more important

in determining flow and transport behaviour. Three of the seven parameters varied in §4.3
had very little effect on the seven placental efficiency measures; these were variations in

the artery mouth width, septal wall height, and oxygen diffusivity. This was surprising in
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(a)

(b)

(c) (d)

Figure 4.8: Velocity plot with a linear velocity magnitude colour scaling for simulations with (a)
U = 0.8866m s−1, and (b) U = 0.8850m s−1. (c) and (d) respectively show zoomed
in views of the right-most placentones shown in (a) and (b).
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the case of the artery width, given that studies have suggested that small artery widths

are related to diseased placentas, where flow enters the placenta at an order of magnitude

faster [14]; however, we note that the mechanism through which placental function is

decreased could be due to damage to villous tree structure from the high-speed flow, rather

than the behaviour that the small artery width directly influences. The other four choices

of parameters — namely vein width, oxygen uptake rate, permeability of the villous tree,

and inlet blood flow speed — had much more of an influence on our efficiency measures.

We found that when there was a large number of veins, the flow was on average slower,

due to the flow short-circuiting and exiting through nearby veins; this mirrors behaviour

presented by Chernyavsky, Jensen, and Leach [12] and Mekler et al. [54]. Dellschaft et al.

reported that diseased placentas generally had much less slow-moving blood, which from

our results suggests that placentas with either a small number of arteries or large number

of veins could be characteristic of disease. The fraction of slow flow in our simulations was

two times lower than that reported in vivo by Dellschaft et al. [20], which could be due to

the relatively large number of vessels to domain size in the 2D flow presented here, and

highlights one of the restrictions of our 2D study.

We found that the number of arteries, the IVS permeability, the inlet blood flow speed,

and (unsurprisingly) the oxygen uptake rate had the biggest influence on oxygen uptake.

For the variations in the number of arteries, we found that the uptake rate is most affected

due to each artery introducing a higher flux of flow and oxygen. For the variations in

permeability, we instead found that higher speed flow penetrated deeper into the placenta,

allowing a larger surface area for oxygen uptake. The results of Serov et al. [40] found an

optimal density of the villous tree to enable the highest oxygen uptake, which balances

resistive flow and uptake effects. However, our results found no such optimal value, instead

finding that a more permeable villous tree gave the highest uptake. A reason for this is,

unlike Serov et al. [40], we did not simultaneously investigate changes to the uptake rate

due to increased villous surface area, which is likely the driver of an optimal villous density.

Additionally, we found that higher inlet blood flow speeds decreased oxygen uptake, which

supports the work of Burton et al. [14].

We also studied venous drainage routes, finding that flow had a slight preference for

septal wall veins over basal plate veins for all choices of number of vessels; however, we

remarked that this could simply be due to the higher number of septal wall veins available

for exit (15 septal wall veins, as opposed to 12 basal plate veins). Interestingly, we found

oxygen leaving the placenta at a high concentration (approximately 85% of what entered)

in almost all the variation studies. This is oxygen that could have been uptaken by the

villous tree to be delivered to the fetus, but instead exits the placenta and returns to the

maternal circulation.

The approach of this chapter was to consider several thousand realisations of flow

and oxygen concentration fields. On this scale, we cannot make useful comparisons by
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visualising every individual flow and oxygen transport field, and therefore we turned to

seven lower-dimensional measures, where each measure was chosen such that the main

features of the fields are captured. However, there are several other choices of measure

that would have given us further insight into flow and oxygen transport behaviour. For

example, measures characterising vessel position or outlet routes via particle tracking

would likely have been of value in this chapter’s analysis, as these are features that our

measures do not capture and are likely important to blood flow and oxygen transport.

Furthermore, studies of the heart have used energy measures that incorporate the fluid

pressure (e.g., [127, 128]), which likely would have been relevant to our study of variations

involving the villous tree.

Three venous drainage aspects we did not investigate were (i) the position of veins, (ii)

the relative importance of septal wall veins and basal plate veins, and (iii) the impact of

removal of marginal sinuses. Therefore, an interesting piece of future work could be to

either vary the number of septal wall veins separately from basal plate veins (so that we

understand their sole influence), or to study the effect of septal wall vein position more

carefully; for example, the green- and red-boxed simulations from Figure 4.1(b) appear

to show a large flux of blood being drawn to septal wall veins that occur higher up on

the septal walls. A further simplification during §4.2 is that we varied the position of the

vessels simultaneously to the number of vessels; an obvious next step would be to consider

these effects separately.

The number and position of vessels are an assumption that may affect results, especially

in §4.3 where vessels were placed symmetrically. For simplicity, we parameterised our 2D

placenta geometry such that there were at most one artery per placentone, two basal plate

veins per placentone, three septal wall veins per septal wall, and two permanently retained

larger marginal sinus veins; in reality, there may be no such restrictions, and could have

an effect on the results presented here.

We compared some of our results to previous experimental data of mean placenta speed

and slow flow percentage. Overall, we found that our simulated flow speeds were faster

than what is reported in the literature, and that our slow flow percentage was roughly

twice as small as what is reported by Dellschaft et al. [20]. This disparity could be due to

the 2D study of flow in this thesis, or due to unphysical parameter regimes chosen for the

variations.

A unique aspect we studied in comparison to other studies is the flux of blood passing

between placentones, which other studies have necessarily neglected due to considering

only placentone geometries. We found that the amount of blood passing over septal walls

(termed ‘cross-flow flux’ here) on average had a non-monotonic relationship with the

number of arteries. Our results indicated that there needs to be a careful balance between

more arteries driving an overall larger volume of blood, and asymmetric placement of

arteries to encourage flow to exit through non-adjacent veins. However, we did also find
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that there was a much larger variation in cross-flow flux for varying numbers of arteries,

likely due to effects from the number of veins. Variations in the number of veins were

much more impactful, giving much higher cross-flow flux for lower numbers of veins; higher

numbers of veins likely created opportunities for entering arterial flow to short-circuit

and easily exit through nearby veins. Study of the cross-flow flux for varying inlet blood

flow speed highlighted an interesting bifurcation phenomenon, where the jets of blood

entering the peripheral placentones would prefer either the left or right side of the central

cavity, even when the values of U were relatively similar. Bifurcations of the steady 2D

Navier-Stokes equations have been documented by Cliffe et al. [129], where they obtained

a critical Reynolds number at which a bifurcation occurs of Re ≈ 40.6 in the context of

a widening channel domain that expands with a 3-to-1 ratio; whilst the widening spiral

artery of the placenta and widening channel domains are different, the Reynolds number

at the base of the spiral artery mouth in our aforementioned simulations was Re ≈ 110, so

it is reasonable that these phenomena are related.

One key observation of this chapter is that, of the parameter variations we have

considered in this chapter, variations in the number of vessels are the most impactful on

flow and oxygen concentration behaviour. Additionally, oxygen uptake is arguably the

most important function of the placenta that we consider here; overall, our results found

that low numbers of arteries, high numbers of veins, low permeability of the villous tree,

and high-speed inlet blood flow reduce oxygen uptake, which may be characteristic of

placental diseases such as PE and FGR.

The following chapter will take this thesis in a different direction to this chapter,

instead investigating how we may compute numerical MRI signals from a computed

velocity field. This allows us to directly compare MRI signals from real-world placentas

with our computed MRI signals of our simulations of maternal blood flow.

Adam M Blakey • Placental haemodynamics 80 of 157



Chapter 5

Numerical MRI

This chapter presents a method for numerical MRI (or synthetic MRI), where MRI signals

are computed numerically for some underpinning flow field. Specifically, we will use either

a manufactured simple flow field, or a simulated velocity field using the blood flow model

introduced in §2.2, to compute the evolution of the nuclear magnetisation of particles

following this velocity field — from which a single measurement of the MRI signal is

taken at the so-called echo time. This approach provides a means of comparing our

computational flow fields with in vivo placental flow data obtained from MRI scans.

In §5.1, we will introduce some preliminaries on how MRI scanners make their mea-

surements. Next, §5.2 will present an algorithm for computing the MRI signals, which

involves tracking the displacement of many particles that accumulate so-called magnetic

spin due to an applied magnetic field, and measuring these spins at the so-called echo

time. §5.3 will give some simple examples of MRI behaviour on some simple test flow

fields at the voxel-level, before §5.4 presents MRI signals computed from our placental

flow simulations. §5.5 will fit the data to an empirical model of MRI signal attenuation.

§5.6 ties the chapter together, presenting results comparing MRI behaviour on in vivo

placental scans and numerical MRI data from computational flow fields. §5.7 concludes

the chapter with a summary of the presented results.

5.1 MRI preliminaries

We will ultimately compare in silico placental MRI data with in vivo placental MRI data,

but first we present an overview of how MRI scanners make their measurements and how

we can replicate this numerically. An important characteristic of motion-sensitising MRI

is its lack of uniqueness in specifying the underlying velocity field. In fact, there are many

velocity fields that may give the same MRI measurements. This phenomenon is discussed
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further in §5.3. This non-uniqueness property clearly causes complications when inferring

underlying velocity fields from in vivo MRI data; the approach of this chapter is a first

step to interpreting MRI data as flows by instead numerically calculating MRI signals

from computational flow fields, and then comparing these numerical MRI signals directly

with in vivo MRI signal data. The remainder of this section gives a description of the

details presented in Chapter 9 of Bernstein, King, and Zhou [85] on motion-sensitising

gradients.

An MRI image domain is made up of many non-overlapping voxels covering the area

of interest. Voxels are rectangular cuboids, within which MRI makes its measurements1.

Within each voxel, there are a number of hydrogen particles, each of which has a magnetic

spin ϕ associated with it. These individual particles are themselves sometimes referred to

as spins. The nuclear magnetisation of individual particles can be written as M = e−iϕ.

It is the magnitude of the collective nuclear magnetisation within each voxel that MRI

measures, often referred to as the signal and denoted by S.

A magnetic gradient is applied over the entire domain, where in this particular setup

the magnetic field varies linearly from one side of the domain to the other. The size

of this gradient is usually denoted by G or g. Magnetic gradients of a selection of

strengths are applied through so-called pulse profiles, where the choice of pulse profile

significantly changes the resulting MRI images. Typically, these pulse profiles are applied

in succession three times: once for each of the coordinate directions. There are two main

choices that make up the resulting magnetic gradient pulse profile: waveform and pulse

sequence. Waveforms describe the shape of lobes in the sequence2, where each period

of non-zero magnetic gradient strength is referred to as a ‘lobe’; these lobes may be, for

example, sinusoidal or rectangular. Pulse sequences describe the ordering and timing

of the application of lobes. Figure 5.1 is reproduced from [85] and shows 3 different

waveforms for the same pulse sequence for a magnetic gradient G in a single direction. We

note that the first row in this figure shows a radio frequency (RF) pulse; RF pulses are

used in combination with magnetic gradients here to initially align magnetic spins in the

same direction in an effect called refocusing, and also to aid in the collection of signals.

The remainder of this chapter does not explicitly talk about RF signals, as they are not

important for our application, but we acknowledge that they are important in real MRI

scanners.

We will focus on pulsed-gradient spin echo (PGSE) motion-sensitising gradients, with a

rectangular waveform, which use magnetic gradients to detect motion of hydrogen particles

in tissues. Following Nguyen et al. [95], we start by introducing a time profile, which is

1For simplicity, this thesis only considers MRI measurements in 2D; we will continue to use the word
‘voxels’, rather than ‘pixels’, to describe the 2D squares used in this thesis nevertheless.

2In this context, ‘lobes’ refer to the form of the gradient pulse, not placental lobes.
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Figure 5.1: Figure 9.4 from [85], showing 3 commonly used diffusion-gradient waveforms in
gradient-echo pulse sequences, in combination with an RF sequence.

given by

f(t) =


1, t ∈ [t1, t1 + δ],

−1, t ∈ [t1 +∆, t1 +∆+ δ],

0, otherwise,

(5.1)

where t = 0 corresponds to the spins being reset to ϕ = 0, t1 is the starting time of the

first gradient pulse, and δ and ∆ respectively describe the length of the lobes and length

between the first lobe starting and the second lobe starting. Measurements of the signal

are then taken at the chosen echo time tE > t1 + ∆ + δ. The evolution of G between

t = 0 and t = tE ms is referred to as a sequence. For this application, we fix t1 = 3.2ms,

δ = 15.9ms, ∆ = 30.9ms, and tE = 53ms [20]. f(t) is illustrated in Figure 5.2(a). From

this, we can construct our magnetic gradient as

G(t) := g [f(t− Tx)x̂+ f(t− Ty)ŷ + f(t− Tz)ẑ] , (5.2)

where g is constant and controls the amplitude of G, ·̂ denotes the unit vectors in the

coordinate directions, and Tx, Ty, Tz denote the starting times of each sequence for the x-,

y-, and z-directions, respectively. The sequences are applied sequentially, as illustrated in

Figure 5.2(b).

The so-called b-value parameterises the magnetic gradient strength, related to G(t)

through the following [85]:

b = (2γ)2
∫ tE

0

∥k(t)∥2 dt, (5.3)
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Figure 5.2: (a) Sketch of the time profile given in Equation (5.1) between t = 0 and t = tE. (b)
Magnetic gradients applied sequentially in the 3 coordinate directions, for which the
magnitude of the magnetic gradients is illustrated here. For each sequence, the spin
is initialised ϕ = 0 at t = Tx, Ty, Tz, and measurements are taken at t = Tx + tE,
t = Ty + tE, and t = Tz + tE.

where k is defined by

k(t) =
γ2

2π

∫ t

0

G(s) ds, (5.4)

and γ is the gyromagnetic ratio [85], fixed as γ = 42.57 × 2π × 106 rad s−1T−1 for our

application [20]. Using Equations (5.1) and (5.2), Le Bihan [130] states that this relation

may be simplified to

b = γ2g2δ2(∆− δ/3), (5.5)

where we assume that the sequences are non-overlapping (i.e., Tx + tE < Ty and Ty + tE <

Tz).

An isochromat is an ensemble of individual particles on a scale smaller than voxels,

whose individual magnetic spins ϕ are assumed to evolve in the same way [131]. Depending

upon the strength of the magnetic field at an isochromat’s location, the magnetic spin

may evolve differently. The evolution of the jth isochromat’s spin is given by

ϕj(t) = γ

∫ t

0

G(τ) · rj(τ) dτ, (5.6)

where rj is the displacement of the jth isochromat, given as rj(t) = xj(t) − xj(0), and

xj(t) is the position of the jth isochromat at time t (see [85]). We note here that this

corresponds to integrating the Bloch-Torrey equation in Equation (1.6) with D = 0 (i.e.,

the Bloch equation [85]); this simplification is made due to the stronger effects of so-called

pseudo-diffusion present in studies of blood flow [97, 98].

The MRI signal itself is measured at the echo time, tE. For a magnetic gradient

applied only in one axis direction, the complex nuclear magnetisation at time t for the jth
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isochromat is given by [85] to be

Mj(t) := e−iϕj(t). (5.7)

The total nuclear magnetisation in a voxel at time t is then given by

M̄(t) :=
Nx∑
j=1

Mj(t), (5.8)

and the corresponding signal at the echo time is given by

Sx :=
∣∣M̄(Tx + tE)

∣∣ , (5.9)

where the sum is over all Nx isochromats in a given voxel. Similar expressions follow for

Sy and Sz; for clarity, we have

Sy :=
∣∣M̄(Ty + tE)

∣∣ , (5.10)

Sz :=
∣∣M̄(Tz + tE)

∣∣ . (5.11)

The total signal in a given voxel is then computed as

S := Sx + Sy + Sz. (5.12)

Our approach here focusses on motion-sensitising MRI, where the dependence of S

upon b can help reveal flow characteristics. We will now introduce an algorithm for

computing S for a given b, where particles are advected by an underlying velocity field.

5.2 Algorithm for computing numerical MRI signals

For all the simulations presented throughout the remainder of Chapter 5, we take voxels of

size 2.5mm×2.5mm spanning the entire domain of interest. We then distribute the initial

positions of many isochromats such that there are 20× 20 equally-spaced isochromats in

each voxel, where the jth isochromat’s initial position is denoted by x0
j . Given the initial

positions of each isochromat, we evolve the position of each isochromat according to the

following:

xn+1
j = xn

j + u(x0
j) ∆t, (5.13)

for time points tn between t = 0 and t = tE: {tn := n∆t | 0 ≤ n ≤ Nt}. Note that we fix

u at t = 0 for computational simplicity. We discretise spin evolution from Equation (5.6)
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in a similar way:

ϕn+1
j = ϕn

j + γG(Td + tn+1) · (xn+1
j − x0

j) ∆t, (5.14)

where Td is replaced by one of Tx, Ty, Tz depending upon the coordinate direction in which

the spins are being measured.

Algorithm 5.1 gives the general algorithm for computing S, which is calculated over

every voxel and many choices of b. In specific terms for our application, we start by

selecting the set of isochromat positions that lie in the given voxel. We next obtain a

steady-state velocity field; §5.3 will use some simple manufactured flow fields, whereas

§5.4 will use a placental velocity field obtained from Chapters 2 and 3. For each b, we

calculate G(t) given in Equation (5.2), where g is calculated through Equation (5.5), and

b is chosen as 5001 equally-spaced values between b = 0 s/mm2 and b = 500 s/mm2. For

simplicity, we take 531 equally-spaced time points between t = 0 and t = tE ≡ 53ms.

In each voxel, a value of S is computed for every value of b; calculations for each S can

therefore be done independently, which allows for easy parallel execution if desired. We

note that this procedure may advect isochromats outside the voxel in which they are being

measured; this isn’t significant due to the short timescales and slow velocities involved.

Algorithm 5.1: Numerically generates a signal S, given: a set of initial positions

for each isochromat, a steady-state velocity field, a gradient sequence, and a set of

discretised time points. This algorithm is used in each voxel for every choice of b.

input : {x̄j}: Set of sampled initial positions for each of the Nx isochromats.

u(x): Steady velocity field.

G(t): Gradient sequence for a particular field strength, b.

{tn}: Set of Nt time-steps, each separated by ∆t.

1 foreach d ∈ {‘x’, ‘y’, ‘z’} (dimension) do

2 Initialise spins for all isochromats: {ϕ0
j} ← {0}

3 Initialise positions for all isochromats: {x0
j} ← {x̄j}

4 for n = 0 to Nt − 1 (time-steps) do

5 for j = 1 to Nx (isochromats) do

6 xn+1
j ← xn

j + u(x0
j) ∆t

7 ϕn+1
j ← ϕn

j + γ G(Td + tn+1) · (xn+1
j − x0

j) ∆t

8 end

9 end

10 Sd ←
∣∣∣∑Nx

j=1 exp
(
−iϕNt

j

)∣∣∣
11 end

12 S ← Sx + Sy + Sz

output :S

We will now use some simple manufactured flows to understand the dependence of
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MRI signal (S) upon magnetic field strength (b) through S-vs-b graphs. Graphs such as

these are useful to study, as different patterns can provide insight into the underlying

sub-voxel flow field.

5.3 MRI for simple manufactured flows

Here, we will present a series of carefully designed example cases aimed at understanding

the behaviour of MRI signals over different 2D velocity fields. For simplicity, each example

is defined on the domain Ω := [0, 1]2m2, with a single voxel spanning the entire domain.

We choose 5001 equally-spaced b-values ranging 0–500 s/mm2, with a 20 × 20 grid of

isochromats that are initially equally-spaced over Ω. Some of these examples will then be

referred to when discussing the results of §5.4.

5.3.1 Shear flow

In the following three examples, we have a velocity field describing shear flow, given by

u(x) =

U1 ŷ if x < 0.5,

U2 ŷ if x ≥ 0.5,
(5.15)

where U1 and U2 are scaling constants, and ŷ is the unit normal vector in the y-direction.

The following subsubsections consider three different choices of U1 and U2 and the effect

these have on S.

5.3.1.1 Example 1

We initially select U1 = 0.005m s−1 and U2 = 0.01m s−1. This velocity field is visualised

in Figure 5.3(a).

We denote S, Sx, and Sy at b = 0 respectively by S0, Sx,0, and Sy,0, and denote the

normalised signals by

S̄ := S/S0, (5.16a)

S̄x := Sx/Sx,0, (5.16b)

S̄y := Sy/Sy,0. (5.16c)

We note that S = Sx + Sy here, since there is no z-component to the signal in the 2D
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simulations presented in this thesis; we also note that S̄, S̄x, S̄y ∈ [0, 1]. Figure 5.3(b)

presents these normalised signals against b, where we see that S̄ oscillates between 0.5 and

1, with a decreasing frequency as b increases.

To understand why the oscillations are confined between 0.5 and 1, let’s consider

Equation (5.12), which states that the total signal S for this 2D example is composed of

signals from both the x- and y-directions (for simplicity, we set Sz ≡ 0 for the 2D flows

in this thesis). The blue and green lines in Figure 5.3(b) respectively show the x- and

y-components of the normalised signal (S̄x and S̄y) plotted against b. In the case of this

artificially-created 2D velocity field, there is no movement in the x-direction, and therefore

isochromats experience no variation in magnetic field strength, consequently giving no

signal loss for Sx (i.e, Sx ≡ 1). We note that full signal will always be retained at b = 0

(S̄x,0 = 1 and S̄y,0 = 1), and in the most extreme case S̄y will lose all signal (S̄y = 0) for

some b > 0. This therefore gives S̄ = 1 when S̄y = 1, and S̄ = 0.5 when S̄y = 0.

To understand the frequency decrease, we recall Equation (5.6), which shows that

ϕ depends upon the integral of G; in turn, Equation (5.5) indicates that b depends

quadratically on g, meaning that the frequency decrease is quadratic in b. Figure 5.3(c)

instead plots S against g, for which we see that the frequency is constant for increasing g.

Figure 5.3(b) shows that S̄y oscillates between 0 and 1, and at minima the derivative is

discontinuous. This effect where signal is recovered quickly from S = 0 is sometimes known

as a rebound or rebounding. The non-unity values of S̄y can be explained by visualising

the nuclear magnetisation using Equation (5.8). Figure 5.3(d) shows the different values of

M̄(Ty+tE) for different choices of b, where the colour of the arrow varies from lightest green

(b = 0 s/mm2) to darkest green (b = 2 s/mm2); we choose to only visualise M̄(Ty + tE)

here because there is no signal loss for M̄(Tx + tE); this shows how Sy decreases with

increasing b in this range. Although not illustrated, at approximately b = 10.5 s/mm2, the

magnitude of M̄(Ty + tE) (i.e., Sy) is approximately zero, giving a minimum in Figure

5.3(b), for which the derivative is discontinuous as M̄(Ty + tE) passes through the origin.

We recall from Equation (5.8) that M̄(Ty + tE) is computed from the sum of several

unit magnitude complex numbers which encode the spins for each individual isochromat;

Figure 5.3(e) visualises the set of all isochromats in the voxel for b = 2 s/mm2 denoted by

{Mj(Ty+ tE)}, with M̄(Ty+ tE) also shown. We highlight that the most important feature

of this test case is that the isochromats are clustered into two groups, corresponding to

the two choices of fluid speed on either side of the domain; this is due to Equation (5.6)

and the dependence of spin ϕ upon the displacement r, which will accumulate at one of

two rates.
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(a)

(b) (c)

(d) (e)

Figure 5.3: The shear flow example from §5.3.1.1 with U1 = 0.005m s−1 and U2 = 0.01m s−1,
showing visualisations of (a) the velocity field for each isochromat, (b) S against
b, (c) S against g, (d) M̄(Ty + tE) for different choices of b, and (e) individual
isochromat values of {Mj(Ty + tE)} for b = 2 s/mm2.



5.3.1.2 Example 2

We will now give another example of a shear flow velocity field, which is visualised in

Figure 5.4(a), this time with U1 = 0.0025m s−1 and U2 = −0.0025m s−1. Figure 5.4(b)

shows the S-vs-b graph for this example. Interestingly, this graph is identical to the one

shown in Figure 5.3(b). Figure 5.4(c) shows the values of M̄(Ty + tE) from b = 0 s/mm2

(lightest green) to b = 2 s/mm2 (darkest green), which shows that the argument of the

complex number M̄(Ty + tE) (i.e., ϕ) is unchanging, whilst the magnitude of M̄(Ty + tE)

(i.e., S) does change — and does so in precisely the same way as the previous example.

Lastly, Figure 5.4(d) shows each individual isochromat’s spin for b = 2 s/mm2, which are

again clustered into two groups that are separated by the same phase as the previous

example.

Crucially, this second test is an example of the non-uniqueness of MRI signals when

measuring two different flow fields; the important message here is that is it the difference in

relative speed between the groups that causes gives the behaviour in S: since the difference

between the two velocity scalings are equal in both examples (|U2−U1| = 0.005m s−1), they

exhibit exactly the same signal curve against b. This is shown succinctly by Equation (5.6),

which shows that the evolution of ϕ depends upon the displacement of the isochromats,

each of which displace with velocity u(x0).

5.3.1.3 Example 3

One final example of shear flow is to take U1 = 0.01m s−1 and U2 = 0.01m s−1, which we

note gives a constant flow. This velocity field is visualised in Figure 5.5(a). The S-vs-b

graph is shown in Figure 5.5(b), which attains full signal for all choices of b. Because

U2 − U1 = 0 here, Figure 5.5(d) shows that there is no signal loss for all b. Although

Figure 5.5(c) shows the angle of M̄(Ty + tE) changing for different b, all the isochromats

remain in a single group, therefore giving S̄ = 1.

5.3.2 Rotational flow

For the next example of velocity field, we introduce a rotational flow, given by

u(x, y) =

(
−U1y/L

U2x/L

)
, (5.17)
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(a) (b)

(c) (d)

Figure 5.4: The shear flow example from §5.3.1.2 with U1 = 0.0025m s−1 and U2 =
−0.0025m s−1, showing visualisations of (a) the velocity field for each isochro-
mat, (b) S against b, (c) M̄(Ty + tE) for different choices of b, and (d) individual
isochromat values of {Mj(Ty + tE)} for b = 2 s/mm2.
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Figure 5.5: The shear flow example from §5.3.1.3 with U1 = 0.01m s−1 and U2 = 0.01m s−1,
showing a visualisation of (a) the velocity field for each isochromat, (b) S against
b, (c) M̄(Ty + tE) for different choices of b, and (d) individual isochromat values
of {Mj(Ty + tE)} for b = 2 s/mm2.

Adam M Blakey • Placental haemodynamics 92 of 157



where L = 1m is the length of the domain. For simplicity, we select U1 = 0.01m s−1 and

U2 = 0.01m s−1, which gives the velocity field illustrated in Figure 5.6(a).

The S-vs-b graph is shown in Figure 5.6(b); similar to the previous examples, we observe

oscillations with decreasing frequency as b increases (or equivalently constant frequency

as g increases). Figure 5.6(c) also shows a familiar pattern for each b to those shown in

the shear flow examples. Figure 5.6(d) plots the individual spins for each isochromat for

b = 2 s/mm2, which, unlike the previous examples, cluster into 20 values associated with

the number of isochromats lying in the y-direction. b = 9.4 s/mm2 corresponds to the

first local minimum of S̄ ≈ 0 in Figure 5.6(b), which is where the isochromats become

equally-separated and therefore give a signal of S̄ = 0. Figure 5.6(e) shows the individual

spins distributed equally for b = 9.4 s/mm2.

We note that the amplitude of the oscillations decreases as b increases in Figure

5.6(b). In previous examples, full signal (S̄ = 1) was regained through an effect known

as refocusing — where spins coincide at b > 0. Refocusing does not happen to the same

extent here due to the spins clustering into 20 values (due to the number of sample points),

rather than just 2. For b = 19.3 s/mm2, Figure 5.6(b) shows a local maximum of S̄ ≈ 0.22.

Figure 5.6(f) plots the individual spins again for this choice of b, which shows 14 different

phases in which isochromats cluster into, with 6 of those phases in the lower right showing

two isochromats overlapping (indicated by the darker gray arrow opacity). The lowering

amplitude of S̄ is therefore due to a weakening refocussing effect, where fewer isochromats

overlap with the same phase, resulting in a gradually smaller value of S̄.

5.3.3 Accelerating flow

In this final simple flow example, we have a velocity profile describing accelerating flow,

given by

u(x) = UeX(x−L)x̂, (5.18)

where U is a scaling for the velocity, X is a scaling for the position, L is the length of

the domain, and x ≡ (x, y)⊺. For simplicity, we select U = −0.01m s−1, X = 2.3026m−1,

and L = 1m; we note that this choice of parameters yields a negatively accelerating flow

(i.e., a decelerating flow) and is compressible (i.e., ∇ · u ̸= 0). Figure 5.7(a) visualises this

velocity field.

Figure 5.7(b) shows the corresponding S-vs-b graph, where we note that S̄y ≡ 1 because

there is no flow in the y-direction, which is unlike the previous flow examples. We notice

that S̄x has oscillations, but none of these dephase enough to give S̄x = 0, unlike the

previous examples we have considered. Interestingly, the amplitude of the oscillations

increases for increasing b, although the general trend of S̄x decreases in value.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: The rotational flow example from §5.3.2 with U1 = 0.01m s−1 and U2 = 0.01m s−1,
showing visualisations of (a) the velocity field for each isochromat, (b) S against b,
and (c) M̄(Ty + tE) for different choices of b. (d), (e), and (f) respectively show
individual isochromat values of {Mj(Ty + tE)} for b = 2 s/mm2, b = 9.4 s/mm2,
and b = 19.3 s/mm2.
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Figure 5.7(c) shows M̄(Tx + tE) between b = 0 s/mm2 (lightest blue) and b = 2 s/mm2

(darkest blue). In this chosen range of b, M̄(Tx + tE) is quite similar to M̄(Ty + tE) for the

rotational flow presented in Figure 5.6(d). However, as Figure 5.7(b) shows, the values of

S̄x for higher b are quite different due to M̄(Tx+ tE) not passing through the origin. Figure

5.7(d) shows the individual spins of each isochromat, which, unlike the previous examples,

are not evenly spaced around M̄(Tx+ tE); instead, there are a higher density of isochromat

spins ϕ closer to zero. Carefully considering the rotational example in only the y-direction,

we note that the isochromats have a linear variation in the velocity field, which leads to an

equal distribution of spin accumulation rates; however, the accelerating flow instead has an

exponential variation in the velocity field, which produces a higher density of slower-moving

isochromats near x = 0m (that displace a smaller amount than faster-moving isochromats

near x = 1m), which in turn makes these isochromats accumulate less spin (see Equation

(5.6)).

5.3.4 Summary of simple manufactured flows

These simple examples have given us an understanding of how local flow fields affect MRI

signal, S, according to variations in the magnetic field strength, b. We inspected, in detail,

the behaviour of individual isochromats under different velocity fields and their dependence

upon the underlying velocity field, and what overall effect this has on a voxel’s measured

MRI signal.

We found that almost all of our flow examples gave some sort of oscillatory behaviour

in S for increasing b, with the notable exception being constant flow, where maximum

signal is always retained. In particular, we found several oscillating signals that recovered

sharply from S = 0, which are known as rebounds. We also found that the frequency of

the aforementioned oscillations in S decreased quadratically in b, due to the relationship

between b and G.

We also gave an example of two different shearing flow velocity fields that produced

exactly the same MRI signals, thus demonstrating non-uniqueness in S-vs-b patterns in

specifying the underlying velocity field. The rotational flow example gave an amplitude

reduction in the S oscillations, which was due to a weakening refocussing effect; this was

where only some of the individual isochromat phases coincided at local maxima, and

therefore gave a lower overall signal. The accelerating flow example gave an interesting

S-vs-b graph, where the signal overall reduced, but actually increased in amplitude for

b > 50. From this point onward, we will use S in place of S̄ to simplify the notation when

it is clear that S is normalised.

We will now calculate MRI signals on a flow field computed from our model of placental

blood flow.
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(a) (b)

(c) (d)

Figure 5.7: The accelerating flow example from §5.3.3 with U = −0.01m s−1 and X = ln(10),
showing (a) a visualisation of the velocity field for each isochromat, (b) S against
b, (c) M̄(Tx + tE) for different choices of b, and (d) individual isochromat values
of {Mj(Tx + tE)} for b = 2 s/mm2.
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(a) (b)

Figure 5.8: (a) S for b = 1 s/mm2 on a real MRI scan, showing the placenta and attached
fetus, with (b) showing a zoomed in view on the red box. Two highlighted voxels
are coloured in blue and green for later discussion. Data provided via private
correspondence with George Hutchinsona and Penny Gowlandb.

ageorge.hutchinson1@nottingham.ac.uk
bpenny.gowland@nottingham.ac.uk

5.4 MRI for placental flows

This section will briefly provide visualisations of real and simulated MRI data, which will

be explored in greater depth in §5.6.
The ‘standard’ MRI pictures that are usually used in a medical setting are a 3D stack

of 2D images in x-y space showing S in each voxel for a fixed b (i.e., for a fixed choice of

magnetic field strength). An example MRI image for b = 1 s/mm2 on a single z-slice of a

real placenta and surrounding area is shown in Figure 5.8(a). These pictures are often

referred to as ‘signal maps’. Signal maps allow for study of changing S-value over a 3D

stack of 2D x-y slices, whereas the S-vs-b graphs allow for study of changing S-value over

different magnetic field strengths b. Although we will not explore signal maps in any great

depth, we introduce them here to visualise placental structure for later discussion. Figure

5.8(b) shows a zoomed-in view of Figure 5.8(a), with two voxels marked in blue and green

for later discussion.

We will now use the mathematical model of the blood flow field from Chapter 2,

with the numerical methods from Chapter 3 to simulate blood flow in the placenta, and

then use the algorithm from §5.2 to compute S in each voxel for many choices of b. We

will specifically choose the problem setup from §3.4.2, where basal plate veins have been

placed asymmetrically. The flow field from this simulation is shown in Figure 3.6, which is
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repeated here for convenience.

The voxels used by Dellschaft et al. [20] are 2.5mm× 2.5mm× 6mm in size; for the

simulations that we perform here, we therefore take our 2D ‘voxels’ (or equivalently ‘pixels’)

as 2.5mm × 2.5mm in size. The grid of voxels spans the entire simulation domain Ω,

which for the sizes involved here corresponds to 91 voxels in the x-direction and 19 voxels

in the y-direction. Figure 5.9(a) shows the outline of the placenta geometry with voxels of

size 2.5mm× 2.5mm overlaid on top, with a simplified visualisation of the velocity field of

Figure 3.6 shown through logarithmically-scaled arrows that are computed using the mean

velocity in each voxel; for clarity, the mean velocity in each voxel in this visualisation is

calculated as

ū =
1

400

400∑
j=1

uj, (5.19)

where uj is the velocity of the jth isochromat. The direction of the arrows point in the

direction of ū, and the length of the arrows are proportional to

log

(
|ū|
10−5

)
,

with a threshold below |ū| = 10−5ms−1, where the arrows are given zero length.

The local flow in the blue and green highlighted voxels of Figure 5.9(a) are respectively

shown in Figures 5.9(b) and 5.9(c), which are visualised for all 400 isochromats in these

voxels; we note that on this occasion the arrows are coloured and scaled linearly. In brief,

the local flow field of the blue voxel is one that is roughly moving from the bottom-right

corner to the left side, decelerating slightly as it moves across the domain. The local flow

field of the green voxel shows high-speed flow entering from the bottom-right corner and

spreading out to exit through the left and top sides; we note that the flow decelerates as it

does so, with a faster rate of deceleration for the flow that exits on the left side. We note

that the colour bars are not consistent between these plots, with the flow in the green

voxel travelling approximately an order of magnitude faster.

We will now briefly introduce a typical fitting technique for MRI data.

5.5 Fitting an empirical signal model

It is standard practice in the MRI literature to use the so-called ‘IVIM model’ (Intra-Voxel

Incoherent Motion) to fit the relationship between S and b [20, 98]. The IVIM model is

an empirical bi-exponential curve with two decay rates denoted by D and D∗. For blood,

these diffusion rates are typically separated by an order of magnitude [98]: 10D ≈ D∗.

The IVIM model assumes that isochromats are partitioned into two disjoint groups, where
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Figure 3.6 (repeated)

(a)

(b) (c)

Figure 5.9: Figure 3.6 shows the simulated placenta velocity field from §3.4.2, where black
streamlines are plotted, and the colour scale is logarithmic. (a) shows the same
simulated placenta velocity field with voxels overlaid; the visualisation here plots
the mean velocity among isochromats in each voxel, with logarithmic arrow lengths;
two coloured voxels are indicated for later discussion. (b) and (c) give the local
velocity field for each isochromat in the indicated coloured voxels from (a); note
that these colours and arrows are scaled linearly, and the colour bar ranges differ
between these plots.

Adam M Blakey • Placental haemodynamics 99 of 157



fIVIM denotes the fraction of isochromats that only decay with rate D∗. The IVIM model

can be written as:

S = S0((1− fIVIM) exp(−bD) + fIVIM exp(−bD∗)), (5.20)

where all four parameters (S0, fIVIM, D, and D∗) are fitted to given data points (b, S).

An application of the IVIM model in this context is to infer local flow from existing signal

data [98].

A physical interpretation of D and D∗ is often adopted, designating D as molecular

diffusion, and D∗ as so-called pseudo-diffusion [98]. In the context of modelling placental

MRI signal data, pseudo-diffusion is thought to correspond to ‘turbulent’ or shearing

movement in the placenta [20].

We will now take the IVIM model of Equation (5.20) to fit to data from both real and

simulated MRI data. There are many ways in which to fit the data, but we chose to follow

the approach of Le Bihan [98]; this involves fitting using a least-squares regression method,

where initial guesses for D∗ and D are first calculated from two separate mono-exponential

decays of the form

S = S0 exp(−bD∗) or S = S0 exp(−bD),

the former for S data associated with b ∈ [0, 110] s/mm2, and the latter for S data

associated with b ∈ [110, 500] s/mm2.

Figure 5.10(a) visualises the value of fIVIM over each voxel in our simulated placental

flow, with Figure 3.6 repeated above for comparison. These pictures are often referred to

as ‘IVIM maps’. Figure 5.10(a) shows most notably that areas of high fIVIM are associated

with areas of high-speed flow in the IVS, but not areas of high-speed flow in other areas

such as arteries or veins.

Next, Figures 5.10(b) and 5.10(c) show the IVIM map for the real placental imaging

data in Figures 5.8(a) and 5.8(b), respectively, which are again repeated here for comparison.

Figure 5.10(c) shows a large area of high fIVIM surrounding the blue and green highlighted

voxels; notably, Figure 5.10(c) does not show a high value of fIVIM in the area below

these voxels, where 5.8(b) shows a protruding area of high S. Drawing parallels from

the distribution of fIVIM in the simulated flow, we therefore expect that the protruding

area corresponds to a spiral artery, with flow in the area of high fIVIM corresponding to

high-speed flow in the IVS. This reaffirms the arguments made by Dellschaft et al. [20].

Fitting the S-vs-b data to the empirical IVIM model has allowed us to determine areas

of high-speed flow in the IVS, with the IVIM map presented in Figure 5.10(c) key in

locating the spiral artery in the real MRI data. We will now make comparison between

simulated placental flow and real MRI data, along with comparisons to specific examples

Adam M Blakey • Placental haemodynamics 100 of 157



Figure 3.6 (repeated)

(a)

Figure 5.8(a) (repeated) Figure 5.8(b) (repeated)

(b) (c)

Figure 5.10: Figure 3.6 visualises the blood flow field from §3.4.2, and (a) shows the corre-
sponding IVIM map. Figure 5.8(a) (repeated) shows S for b = 1 s/mm2 on a real
MRI scan, showing the placenta and attached fetus, with Figure 5.8(b) (repeated)
showing a zoomed in view on the red box; panels (b) and (c) respectively show the
corresponding IVIM maps, with the same blue and green voxels highlighted.



of the manufactured accelerating flow.

5.6 Comparison of signals

We will now turn our attention to the S-vs-b graphs for both the simulated placenta and

real MRI scan data, and present the main results of this chapter. The corresponding S-vs-b

graphs for the blue and green voxels of the simulated placental flow are respectively given

in Figures 5.11(a) and 5.11(b). The locations of these two chosen voxels are important:

the blue voxel lies in the transition region between the central cavity and IVS, relatively

far from the spiral artery; the green voxel lies within the central cavity, close to the spiral

artery mouth.

In §5.5, we found that the voxels surrounding the protruding area of high S contained

high values of fIVIM; this, combined with the proximity to the edge of the placenta, gave

us confidence that these voxels are likely close to a spiral artery. We have chosen the blue

and green highlighted voxels of the real MRI data in Figure 5.8(b) carefully, such that

the placement mirrors the positioning of the coloured voxels for the simulated flow. The

S-vs-b graphs for the blue and green voxels of the real MRI data are given respectively

in Figures 5.11(c) and 5.11(d). We remark that there is a relatively low resolution in b

when compared to previous examples we have presented, due to limitations in the imaging

process; this data uses 19 selected b-values3. We also remark that this data, unlike the

simulated flow, is susceptible to noise contamination because it is real data from a physical

MRI scanner.

We first make a comparison between the blue voxels for the simulated flow and real

MRI data, for which the S-vs-b graphs are respectively given in Figures 5.11(a) and 5.11(c).

Although correspondence is not perfect here, we can see some clearly similar features;

namely, in both graphs the signals decrease rapidly up to b ≈ 100 s/mm2, which then

briefly increase to a peak at b ≈ 200 s/mm2, before decreasing again up to b ≈ 500 s/mm2.

For this particular local flow field on the simulated placental flow, S̄, S̄x, and S̄y are all

very similar to each other. By visual inspection, we notice that these S-vs-b graphs for the

blue voxels are quite similar to the graphs presented for the accelerating flow in §5.3.3. In
fact, by appropriately selecting values of U and X in Equation (5.18), we can obtain a very

similar graph here. We select U = −0.005m s−1 and X = 0.75, for which S-vs-b graph is

given in Figure 5.11(e). Again, this S-vs-b graph for the manufactured flow decays up to

b ≈ 100 s/mm2, rebounding, and then decaying towards b ≈ 500 s/mm2. To be clear, we

have not fitted for the choices of U and X in this example; instead, we selected a choice of

3The data provided to us by George Hutchinson (george.hutchinson1@nottingham.ac.uk) and Penny
Gowland (penny.gowland@nottingham.ac.uk) uses b ∈ {0, 1, 3, 9, 18, 32, 54, 88, 110, 147, 180, 200, 230, 270,
300, 350, 400, 450, 500} s/mm2.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Presents six S-vs-b graphs on simulated placental flow, real MRI scan data, and
manufactured flow data. (a) and (b) respectively present the S-vs-b graphs for
the blue and green voxels indicated in the simulated placental flow in Figure 3.6.
(c) and (d) respectively present the S-vs-b graphs for the blue and green voxels
indicated in the real MRI scan data in Figure 5.8(b). (e) and (f) present two
choices of the accelerating flow from §5.3.3, with the parameters respectively chosen
as U = −0.005m s−1, X = 0.75, and U = −0.01m s−1, X = 1.



the parameters that exhibited approximately the same behaviour.

Next, we compare the green voxels for the simulated flow and real MRI data, respectively

given in Figures 5.11(b) and 5.11(d). We also select a different accelerating flow with

U = −0.01m s−1 and X = 1, for which the S-vs-b graph is shown in Figure 5.11(f). The

agreement between these three graphs is less clear than the comparison made for the blue

voxels; however, all of these graphs do contain the same initial fast decay in signal for low

b, and then oscillate with lowering frequency as b increases. Again, we make it clear that

we did not fit for U and X here.

Through our analysis of the manufactured flows in §5.3, we found that smaller differences

in flow speed across the voxel would result in lower frequency oscillations. This feature is

present here, demonstrated by the local flow fields and S-vs-b graphs presented for each of

the blue and green voxels here. We also found that for rotational and accelerating flow (of

which, both flows share characteristics of the local flow fields presented for the simulated

placental flow in Figures 5.9(b) and 5.9(c)) had an overall decaying pattern in S as b

increased.

Although there are obvious limitations to inferring flows by using their S-vs-b graphs

— for example, due to their non-uniqueness in specifying the underlying flow field — we

have carefully selected voxels in the simulated flow and real MRI data such that they are

positioned close to spiral arteries. Therefore, provided the blood flow model is adequate

in capturing flow features, a natural interpretation is that the local flows in these two

selected voxels from the MRI data are likely to be decelerating, and specifically are likely

to be similar to the local flows presented in Figures 5.9(b) and 5.9(c).

Whilst the IVIM model has been used in previous studies to identify regions of fast flow

in the placenta (e.g., [20]), this interpretation lacks directional information and fails to

capture the rebound behaviour present in the S-vs-b graphs presented here. The method

presented here gives an alternative interpretation of flow apart from that given by the

IVIM model, which incorporates local flow behaviour provided by our mathematical model

of maternal blood flow.

5.7 Summary

At the beginning of this chapter, we introduced the basic physics underpinning signal

measurement of motion-sensitising gradients in MRI scanning, focussing on a typical

waveform and pulse sequence for this application. We introduced an algorithm for

numerically calculating measured signals, S, in each voxel for a given velocity field and

magnetic gradient strength. For computational simplicity, we made the simplification that

particles follow the velocity field from their initial position; future work could therefore

consider particle trajectories along the streamlines of the flow.
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We then calculated S on some simple manufactured velocity fields of shearing, rotational,

and accelerating flow; this allowed us to understand the relationship between S and b in

detail with these simple velocity fields, and is one of the main contributions of this chapter.

In particular, we characterised how so-called ‘rebounds’ in signal occur through rephasing

of isochromat spins. We also highlighted that there is a non-uniqueness issue with MRI,

whereby multiple velocity fields may give the same S-vs-b graph.

We next used the velocity field from the problem presented in §3.4.2, where flow

is asymmetric due to basal plate vein locations, reflecting the asymmetries that would

ordinarily occur in a real placenta. We then overlaid a grid of voxels spanning our placenta

domain and inspected the local velocity fields for two selected voxels.

The empirical IVIM [98] was then introduced, from which we fitted simulated placental

flow and in vivo data to the IVIM model. The fit parameters allowed us to locate a likely

location for a spiral artery in the real MRI data.

We finally computed MRI signals, S, in each voxel for each choice of magnetic field

strength, b, on our simulated placental flow field; we used the resulting graphs on two

carefully selected voxels to make comparisons both to the simple manufactured flows and

to in vivo data provided by our collaborators, finding notable similarities in the S-vs-b

graphs, which allowed us to infer local flow fields from the real MRI data.

The voxels for comparison were chosen manually here, and therefore future work could

consider an automated method for locating comparable voxels between simulated and real

MRI data. Alternatively, future work could instead compute MRI signals from a simulated

3D placental flow field that uses the same physiological geometry as the real MRI data,

allowing for a direct comparison between voxels.

One of the main roles of the placenta is to deliver oxygen to the fetus, which is

not considered in this particular chapter; however, certain blood flow features (such

as the distribution of slow flow) are characteristic of placental dysfunction and could

be investigated further using the techniques described here. Although we used motion-

sensitising MRI gradients, other specialised gradients exist and have been applied for

measuring oxygen in blood in the placenta [20].

Crucially, the work presented here provides an alternative method for interpreting

signals from real MRI data, both through comparisons to the simulated flow data and the

simple manufactured flows. The majority of the presented methods are unspecific to the

placenta and could be reapplied to MRI of other organs such as the brain.
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Chapter 6

Utero-placental pump

In 2020, Dellschaft et al. [20] were the first to report the so-called ‘utero-placental pump’

phenomenon. The utero-placental pump is a type of placental contraction that involves

only the placenta, and is therefore unlike previously documented Braxton-Hicks that

involves contractions of the entire uterus [36].

Here, we will outline a preliminary model of the utero-placental pump, utilising the

same blood flow model, oxygen transport model, and placenta geometry from Chapter 2.

We impose boundary motion as a first step to understand how shape change during the

utero-placental pump influences oxygen transport, rather than model the mechanism of

the contractions. This work uses a prescribed so-called ‘domain velocity’, which specifies

how the domain should evolve; we will use the domain velocity through methods known as

moving mesh methods, which specify how the discretisation handles the domain movement.

As far as we are aware, this is the first model of maternal blood flow that considers the

utero-placental pump, and lays the computational framework for understanding oxygen

transport and placental disease during these contractions.

In §6.1, we will begin by introducing a modified DGFEM scheme that is valid for

time-dependent domains Ω(t). §6.2 will then present some basic numerical experiments

that show optimal convergence rates under spatial mesh and time-step refinement, and

show how NSD (Navier-Stokes-Darcy) behaves with solid boundary movement. §6.3 will

provide the main results of this chapter, with domain movement applied to the asymmetric

placenta problem originally presented in §3.4.2. §6.4 will conclude with an overview of the

results and future work.
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6.1 DGFEM discretisations

We will first derive finite element methods for moving domains, where each point in the

domain evolves according to domain velocity w(x, t). We start by taking a general scalar

time-dependent PDE problem: find u such that

∂u

∂t
= Lu, (6.1)

where L is some spatial differential operator. As is typical for deriving finite element

methods, we multiply Equation (6.1) by an appropriate test function and integrate to give:∫
Ω

∂u

∂t
v dx =

∫
Ω

(Lu)v dx. (6.2)

We next state the Reynolds Transport Theorem from Aris [132].

Theorem 6.1. Let Ω(t) be a time-dependent closed domain for t ∈ [0, T ], with points

moving continuously according to domain velocity w(x, t) ≡ dx
dt

in Ω(t), and F(x, t) be any

scalar function. Then

d

dt

∫
Ω(t)

F dx =

∫
Ω(t)

∂F
∂t

dx+

∫
∂Ω(t)

F(w · n) ds, (6.3)

where n(t) denotes the outward unit normal to Ω(t), and ∂Ω(t) is the closed surface forming

the boundary of Ω(t).

Proof. Proof can be found in Aris [132].

Using Equation (6.3) with F = uv in combination with the product rule, the LHS of

Equation (6.2) can be written as

d

dt

∫
Ω(t)

uv dx−
∫
Ω(t)

u
∂v

∂t
dx−

∫
∂Ω(t)

uv(w · n) ds =
∫
Ω

∂u

∂t
v dx. (6.4)

We next state the divergence theorem from Matthews [133].

Theorem 6.2. Let G be a continuously differentiable vector field defined in Ω. Then∫
Ω

∇ · G dx =

∫
∂Ω

G · n ds, (6.5)

where n denotes the outward unit normal to Ω, and ∂Ω is the closed surface forming the

boundary of Ω.

Proof. Proof can be found in Matthews [133].
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Using Equation (6.5) with G = uvw in combination with the product rule, Equation (6.4)

can be written as

d

dt

∫
Ω(t)

uv dx−
∫
Ω(t)

(
u
∂v

∂t
+ u(w ·∇v) +∇ · (uw)v

)
dx =

∫
Ω

∂u

∂t
v dx. (6.6)

We assume that the test functions move with the domain velocity, which is a valid

assumption for simplex meshes with flat faces [134]:

∂v

∂t
+w ·∇v = 0.

This allows us to write Equation (6.6) as

d

dt

∫
Ω(t)

uv dx−
∫
Ω(t)

∇ · (uw)v dx =

∫
Ω

∂u

∂t
v dx. (6.7)

For the equivalent vector problem, i.e.,

∂u

∂t
= Lu, (6.8)

with test functions v, this relation is

d

dt

∫
Ω(t)

u · v dx−
∫
Ω(t)

[∇ · (u⊗w)] · v dx =

∫
Ω

∂u

∂t
· v dx. (6.9)

6.1.1 Navier-Stokes-Darcy discretisation

We recall that the NSD equations describing the blood flow in Chapter 2 were given by

ρ
∂u

∂t
+Ψ

µ

k
u+ ρ(u ·∇)u− µ∇2u+∇p = f f in Ω, (2.1a repeated)

∇ · u = 0 in Ω. (2.1b repeated)

The weak formulation for this problem is given by: find u, p in some appropriate space

such that

time︷ ︸︸ ︷
Lf(u,v)+

diffusion︷ ︸︸ ︷
Af(u,v)+

advection︷ ︸︸ ︷
Cf(u,v)+

reaction︷ ︸︸ ︷
Mf(u,v)+

pressure︷ ︸︸ ︷
Bf(v, p)−

incompressibility︷ ︸︸ ︷
Bf(u, q)

=

forcing and boundary conditions︷ ︸︸ ︷
Ff,gf,D,gf,N

(v)−Gf,gf,D
(q), (6.11)
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for all v, q in some appropriate space. We recall the following two definitions:

Cf(u,v) := −ρ
∫
Ω

(u⊗ u) : ∇hv dx+ ρ
∑
F∈F

∫
F

Hf(u
+,uΓ,n) · v+ ds

− ρ
∑
F∈FI

∫
F

Hf(u
+,uΓ,n) · v− ds, (3.8 repeated)

Lf(u,v) := ρ

∫
Ω

∂u

∂t
· v dx. (3.14 repeated)

Substituting Equation (6.9) into (3.14) we find

Lf(u,v) = ρ
d

dt

∫
Ω(t)

u · v dx− ρ

∫
Ω(t)

[∇ · (u⊗w)] · v dx. (6.12)

Since Equation (6.11) contains a linear combination of Cf and Lf, we combine the final

term of the bilinear form in Equation (6.12) into the advection bilinear form of Equation

(3.8) to obtain the following modified bilinear forms:

C̄f(u,v;w) := −ρ
∫
Ω(t)

(u⊗ [u−w]) : ∇hv dx+ ρ
∑
F∈F

∫
F

H̄f(u
+,uΓ,n;w) · v+ ds

− ρ
∑
F∈FI

∫
F

H̄f(u
+,uΓ,n;w) · v− ds, (6.13)

L̄f(u,v) := ρ
d

dt

∫
Ω(t)

u · v dx, (6.14)

where n is the unit outward-pointing normal, uΓ is defined in §3.2.1, and H̄ is a modified

Lax-Friedrichs flux for F ∈ F given by

H̄f(u
+,uΓ,n;w)|F :=

1

2
((u+ ⊗ [u+ −w]) · n+ (uΓ ⊗ [uΓ −w]) · n+ α(u+ − uΓ)), (6.15)

with

α = max(|2u+ · n−w · n|, |2uΓ · n−w · n|, |u+ · n−w · n|, |uΓ · n−w · n|). (6.16)

A derivation of α is outlined in Appendix C. We emphasise that the additional outer

product term involved in Equation (6.9) is ‘absorbed’ by the inclusion of w in Equation

(6.13).

We have a choice over the way in which mesh points are updated between each

discretised mesh T n
h → T n+1

h . For simplicity, we choose a forward Euler approximation
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here, meaning we update each node in the mesh from T n
h to T n+1

h with

xn+1 = xn +∆t w(xn, tn). (6.17)

We denote the continuous piecewise linear spatial interpolant between mesh nodes of the

domain velocity on T n+1
h as In+1w. We note that w is used piecewise through time to

update node positions, and In+1w denotes the domain velocity that will appear in the

weak formulation.

Similar to Chapter 3, we will use a finite difference method for discretising the time

derivative. We choose to use a backward Euler approximation to approximate this LHS.

For our problem, this equates to the problem: find u, p in some appropriate space such

that

ρ

∫
Ωn+1

(un+1) · vn+1

∆t
dx− ρ

∫
Ωn

(un) · vn

∆t
dx = Af(u

n+1,vn+1) + C̄f(u
n+1,vn+1; In+1w)

+Mf(u
n+1,vn+1) +Bf(v

n+1, pn+1)−Bf(u
n+1, qn+1) = Ff,gf,D,gf,N

(vn+1)−Gf,gf,D
(qn+1),

for all v, q in some appropriate space, where Ωn ≡ Ω(tn) for notational simplicity, and

we note that terms on the RHS are evaluated at time level tn+1. Here, un+1 and un are

respectively the approximations of the velocity on the current and previous mesh, pn+1

is the approximation of the pressure on the current mesh, vn+1 and vn are respectively

the velocity test functions on the current and previous mesh, and qn+1 is the pressure

test function on the current mesh. We define a modified bilinear form to use the time

discretisation:

Ēf(u,v; Ω) :=
ρ

∆t

∫
Ω

u · v dx. (6.18)

The discretisation of the Navier-Stokes-Darcy equations given in Equation (2.1) on a

moving domain is therefore given by: find (un+1
h , pn+1

h ) ∈ Vh(Ω
n+1, T n+1

h )×Qh(Ω
n+1, T n+1

h )

such that

time︷ ︸︸ ︷
Ēf(u

n+1
h ,vn+1

h ; Ωn+1)− Ēf(u
n
h,v

n
h; Ω

n)+

diffusion︷ ︸︸ ︷
Af(u

n+1
h ,vn+1

h )+

advection︷ ︸︸ ︷
C̄f(u

n+1
h ,vn+1

h ; In+1w)

+

reaction︷ ︸︸ ︷
Mf(u

n+1
h ,vn+1

h )+

pressure︷ ︸︸ ︷
Bf(v

n+1
h , pn+1

h )−
incompressbility︷ ︸︸ ︷

Bf(u
n+1
h , qn+1

h ) =

forcing and boundary conditions︷ ︸︸ ︷
Ff,gf,D,gf,N

(vn+1
h )−Gf,gf,D

(qn+1
h ),

(6.19)

for all (vn+1
h ,vn

h, q
n+1
h ) ∈ Vh(Ω

n+1, T n+1
h )×Vh(Ω

n, T n
h )×Qh(Ω

n+1, T n+1
h ), given the ap-

proximation of the velocity at the previous time-step, un
h ∈ Vh(Ω

n, T n
h ).
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6.1.2 Reaction-advection-diffusion discretisation

We recall that the reaction-advection-diffusion equation in Chapter 2 was given by

∂c

∂t
−D∇2c+∇ · (uc) + ΨR c = fc in Ω, (2.6 repeated)

for which the weak formulation is given by: find c such that

time︷ ︸︸ ︷
Lc(c, η)+

diffusion︷ ︸︸ ︷
Ac(c, η)+

advection︷ ︸︸ ︷
Cc(c, η;u)+

reaction︷ ︸︸ ︷
Mc(c, η) =

forcing and boundary conditions︷ ︸︸ ︷
Fc,gc,D,gc,N(η), (6.20)

for all η in some appropriate space, given u, which is an approximation to Equation (2.1)

(Navier-Stokes-Darcy). We recall the definition of the bilinear form for discretising the

time term:

Lc(c, η) :=

∫
Ω

∂c

∂t
η dx. (3.23 repeated)

Substituting Equation (6.7) into Equation (3.23) we find that

Lc(c, η) =
d

dt

∫
Ω(t)

c η dx−
∫
Ω(t)

∇ · (cw)η dx. (6.21)

Similar to the discretisation of the fluid problem on a moving mesh in §6.1.1, we will

combine the additional mesh advection term into a modified advection bilinear form. The

modified advection and time bilinear forms are respectively given by

C̄c(c, η;u,w) :=−
∫
Ω

c [u−w] ·∇hη dx+
∑
F∈F

∫
F

H̄c(c
+, cΓ,n;w)η+ ds

−
∑
F∈FI

∫
F

H̄c(c
+, cΓ,n;w)η− ds,

(6.22)

L̄c(c, η) :=
d

dt

∫
Ω

c η dx, (6.23)

where n denotes the outward-pointing unit normal on a face, cΓ is defined in Equation

(3.19) (see §3.2.2), and H̄c is a modified Lax-Friedrichs flux for the oxygen concentration

problem given on F ∈ F by

H̄c(c
+, cΓ,n;w)|F :=

1

2
(([u+ −w] · n)c+ + ([u− −w] · n)cΓ + α(c+ − cΓ)), (6.24)

with α := |{{u−w}} · n|.
From this, we also introduce a modified bilinear form to utilise a backward Euler
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approximation for the oxygen concentration problem:

Ēc(c, η; Ω) :=
1

∆t

∫
Ω

c η dx. (6.25)

The discretisation of the reaction-advection-diffusion given in Equation (2.6) on a

moving domain is therefore given by: find cn+1
h ∈ Ch(Ω

n+1, T n+1
h ) such that

time︷ ︸︸ ︷
Ēc(c

n+1
h , ηn+1

h ; Ωn+1)− Ēc(c
n
h, η

n
h ; Ω

n)+

diffusion︷ ︸︸ ︷
Ac(c

n+1
h , ηn+1

h )+

advection︷ ︸︸ ︷
C̄c(c

n+1
h , ηn+1

h ;un+1
h , In+1w)

+

reaction︷ ︸︸ ︷
Mc(c

n+1
h , ηn+1

h ) =

forcing and boundary conditions︷ ︸︸ ︷
Fc,gc,D,gc,N(η

n+1
h ), (6.26)

for all ηn+1
h , ηnh ∈ Ch(Ω

n+1, T n+1
h )×Ch(Ω

n, T n
h ), given un+1

h and cnh, n ∈ {0, 1, 2, ...}, where
un+1
h is the approximation arising from Equation (6.19) on Ωn+1. We recall that In+1w is

the continuous piecewise linear interpolant between mesh nodes of the domain velocity on

T n+1
h .

Algorithm 6.1 provides a simple moving domain algorithm which may be employed

to generate a sequence of meshes {T n
h }Nn=1, given T 0

h . In essence, this algorithm is simply

updating mesh nodes with the forward Euler update given in Equation (6.17) before

computing un+1
h and cn+1

h .

Algorithm 6.1: Algorithm for generating blood flow and oxygen concentration

solutions on a moving mesh with domain velocity w(x, t).

1 Obtain an initial condition u0
h, e.g., by solving steady-state NSD on an initial mesh

T 0
h .

2 for n = 0 to N − 1 do

3 Copy mesh data structure T n+1
h ← T n

h

4 foreach node in mesh, xn+1 ∈ T n+1
h do

5 Set mesh node positions: xn+1 = xn +∆t w(xn, tn)

6 end

7 Compute un+1
h using the discretisation of Equation (6.19) on mesh T n+1

h .

8 Compute cn+1
h using the discretisation of Equation (6.26) with advection

velocity un+1
h on mesh T n+1

h .

9 end
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6.2 Numerical experiments

In this section, we will present numerical experiments of the blood flow model with a moving

mesh. §6.2.1 will first apply boundary conditions independently of the mesh movement,

where we show that our discretisation converges optimally under mesh refinement with a

prescribed mesh velocity. §6.2.2 will then consider a simple example where the boundary

conditions are dependent upon the mesh velocity, and therefore influence flow dynamics.

According to Nobile and Formaggia [134], the Discrete Geometric Conservation Law

(DGCL) states that the moving mesh formulation must produce the exact solution of

a uniform flow field on moving meshes; this specifically refers to the situation where

the boundary conditions are independent of the mesh movement. We remark here that

under constant and linearly-varying mesh velocities, we were able to verify that our

implementation reproduced exact solutions of uniform flow.

6.2.1 Convergence tests

Similarly to §3.3, we will briefly test our code that implements the moving mesh numerical

methods using the method of manufactured solutions (MMS), showing that we obtain

convergence rates through mesh and time-step refinement.

We again select the analytical solutions introduced in §3.3, which are

u1 := − cos(t)(y cos(y) + sin(y)) exp(x), (3.27a repeated)

u2 := cos(t)y sin(y) exp(x), (3.27b repeated)

p := cos(t)2 exp(x) sin(y), (3.27c repeated)

c := cos(t) exp(x− y), (3.27d repeated)

where u ≡ (u1, u2)
⊺, and boundary conditions are appropriately selected. We then select

forcing functions f f and fc such that the analytical solutions solve the PDEs. We must

now also select a mesh velocity, which we choose from Étienne, Garon, and Pelletier [135]

as

w1 := t(1− x2)(y + 1)/32, (6.28a)

w2 := t(1− y2)(x+ t(1− x2)/32 + 1)/32, (6.28b)

where w ≡ (w1, w2)
⊺. We note that the boundary conditions are independent of the mesh
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(a) (b)

Figure 6.1: Visualisations of the convergence rates of the tests outlined in §6.2.1. Graphs show
(a) spatial convergence, and (b) temporal convergence of the velocity, pressure, and
oxygen concentration fields under a moving mesh.

movement here. We again expect errors to take the form

||u− uh||L2 = O(h3) +O(∆t), (3.29a repeated)

||p− ph||L2 = O(h2) +O(∆t), (3.29b repeated)

||c− ch||L2 = O(h2) +O(∆t). (3.29c repeated)

For simplicity, in these tests we set all problem coefficients for Equations (2.1) and (2.6)

to unity, and initially set Ω0 := [0, 1]2. Figures 6.1(a) and 6.1(b) respectively present the

convergence rates under spatial and temporal refinement, which agree with the expected

rates from Equation (3.29), and are very similar to the convergence rates presented in

§3.3.

6.2.2 Boundary motion

We now present an example of flow where part of the moving boundary has a no-slip

boundary condition applied, which therefore influences flow dynamics. The flow problem

we solve is again the Navier-Stokes-Darcy equations of Equation (2.1), initially on the

unit square domain Ω0 = [0, 1]2, where we for simplicity set µ = ρ = k = 1, and set the

smooth transition function Ψ ≡ 1 everywhere. Differing from the previous moving mesh

numerical experiments, we apply a no-slip Dirichlet condition on the left and right sides

of the domain, which for this moving domain problem is written gD = w; we retain a

free-flow Neumann condition of gN = 0 on the top and bottom of the domain. This choice

of boundary conditions on the initial domain is visualised in Figures 6.2(a).

We begin the simulation with an initial condition of u0
h ≡ 0 and run between times
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y = 0

y = 1

x

y

(b)

Figure 6.2: Visualisation of the boundary conditions applied to the problem described in §6.2.2,
which applies a zero Neumann condition on the top and bottom sides of the domain,
and a no-slip Dirichlet condition on the left and right sides. Ω is shown at times
(a) t = 0, and (b) t = 0.5 for the domain velocity detailed in Equation (6.30) and
§6.2.2.

t ∈ [0, 1], with time-step size ∆t = 0.01. We select the domain velocity w ≡ (w1, w2)
⊺ as

w1 = W (x− xc) sin

(
2πt− T0

T

)
, (6.30a)

w2 = W (y − yc) sin

(
2πt− T0

T

)
, (6.30b)

where we select xc = yc = 0.5, T0 = 0, T = 1, and W = 1 here. This domain velocity

corresponds to smooth expansion and contraction about centre (xc, yc) = (0.5, 0.5) for

t ∈ [0, 1], with a minimal domain area of Ω at t = 0 and t = 1, and a maximal area at

t = 0.5. Furthermore, we note that this gives a maximal rate of expansion at t = 0.25 and

maximal rate of deflation at t = 0.75. The maximum domain size at t = 0.5 is visualised

in Figure 6.2(b).

Figures 6.3(a)–6.3(d) respectively visualise the flow at times t = 0.02, t = 0.25, t = 0.52,

and t = 0.75. A video visualising the velocity field through time at every time-step is

available here1. At t = 0.02, Figure 6.3(a) shows the flow drawn through the top and

bottom sides and aligning in the direction of the domain velocity on the boundary, which

is at that moment pointing outward from the centre of the square domain. The domain

velocity then accelerates up to a maximum domain velocity at t = 0.25, as illustrated

in Figure 6.3(b), which shows high-speed blood concentrated in the centre of the top

1https://r.blakey.family/phd-video-mmv-square
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and bottom sides, and also in the four corners of the domain. The domain velocity then

decelerates as the area reaches its maximum size at t = 0.5; Figure 6.3(c) shows the

velocity field at t = 0.52, just after the maximum area is reached, where we note the

reversal in the streamline directions as the domain begins to contract and eject flow out of

the top and bottom sides. Finally, Figure 6.3(d) shows the domain at t = 0.75 at the most

rapid point of contraction, which unsurprisingly looks very similar to the flow at t = 0.25

except for a reversal in flow direction.

In order to model flow in a contracting placenta, we will now apply the numerical

methods from §6.1 to NSD with placental flow parameters and the asymmetric placenta

problem from §3.4.2.

6.3 Preliminary utero-placental pump motion

The utero-placental pump (or placental contraction) is a newly discovered phenomenon,

first reported by Dellschaft et al. [20] in 2020. This phenomenon is distinct from other

types of contractions, as it involves contractions of the placenta, rather than contractions

such as Braxton-Hicks contractions, which instead involve contractions of the entire uterus

[36]. Dellschaft et al. [20] reported that the placenta was observed over 10-minute intervals

to periodically reduce by up to 40% in volume, resulting in the periodic ejection of blood

from the IVS. The mechanism of these contractions is not yet known, but it is thought

that these contractions may be related to previous reports of contracting villous trees [20,

34]. One theory of the evolutionary role of these contractions is that they assist maternal

circulation by ejecting stagnant deoxygenated blood so that it may be replaced by freshly

oxygenated blood; however, this is yet to be shown experimentally [20].

In this section, we will prescribe a simple domain velocity that is inspired by MRI scan

data. Using this domain velocity, we will then compute the resulting flow and oxygen

concentration fields using the moving mesh discretisation presented in §6.1.

6.3.1 Selection of domain velocity

We begin by using the data from Gowland et al. [136], which is reproduced in Figure

6.4(a) and shows various quantities calculated from MRI scan data during a placental

contraction. We choose to focus specifically on the volume change during the period of

fastest volume reduction, which is indicated in the black box. The volume change data

here is calculated by tracing the placenta outline of a 3D stack of 2D MRI scan images,

and is measured against the initial placental volume calculated at time t = 0.
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(a) (b)

(c) (d)

Figure 6.3: Visualisations of flow for four instances in time for the problem in §6.2.2. (a)-(d)
respectively show flow at t = 0.02, t = 0.25, t = 0.52, t = 0.75. Linear colour
scaling is shown for |u| ∈ [0, 1] with black or white streamlines shown on top. Axes
are shown surrounding the domain, showing the domain of size Ω = [0, 1]2 at t ≈ 0
and Ω ≈ [−0.2, 1.2]2 at t ≈ 0.5.
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(a)

(b)

Figure 6.4: (a) Graph taken from Gowland et al. [136] and overlaid with a black box to indicate
the region we are interested in modelling in this thesis. Specifically, this is the
placental volume change during the period of fastest volume reduction of a placental
contraction between approximately 15 and 16 minutes. (b) A simpler visualisation
of (a) on the region of interest. §6.3.1 describes the simplifications we make of
assuming a linear decrease in volume during the period of fastest volume decrease
(indicated by the red dotted line), and an appropriate area decrease for an equivalent
2D area change for this 3D volume change (indicated by the green cross). We
then assume that the areas and volumes increase at the same rate, back to their
original sizes at t = 17.9 minutes. Grey vertical lines indicate the snapshots at
which Figures 6.5 and 6.6 are visualised.
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For ease of presentation, we plot again the volume change data points in this region of

interest in Figure 6.4(b), plotted using blue lines. This shows the largest volume change of

−33.8% at t = 16.1 minutes. Prior to this, there is a roughly linear decrease in volume

from t = 14.8 minutes. Extrapolating the straight line passing through both of these

points (red dotted line), we find the point at which this line meets the horizontal axis to

be at t = 14.3 minutes (red dot). We make the assumption that the volume increase after

a placental contraction is at the same rate as the volume decrease. We therefore model

the contraction behaviour between T0 := 14.3 and TN := 17.9 minutes, with maximum

volume at times T0 and TN minutes, and a minimum volume at T0+TN

2
= 16.1 minutes.

A complication with using this data is that it concerns a 3D volume. We therefore

need to calculate an analogous 2D area change to an equivalent 3D volume. Denoting

percentage change in a 2D area by ∆2, and percentage change in 3D volume by ∆3, we

assume for simplicity that the relationship between a 2D area change and 3D volume

change is given through the following relationship:

(1 + ∆2)
1
2 = (1 + ∆3)

1
3 . (6.31)

In our case, ∆3 = −33.8% at the smallest measured volume, which through Equation

(6.31) gives a 2D area change of ∆2 = −24.0%, which is indicated in Figure 6.4(b) with a

green cross.

Next, we prescribe a domain velocity. For simplicity, we assume that the placenta

contracts uniformly in both directions and follows a sinusoidal speed through time. We

therefore select the domain velocity w ≡ (w1, w2)
⊺ from §6.2.2:

w1 = W (x− xc) sin

(
2πt− T0

T

)
, (6.30a repeated)

w2 = W (y − yc) sin

(
2πt− T0

T

)
, (6.30b repeated)

where (xc, yc) is selected as a centre of inflation within the 2D placenta, T0 = 14.3

and T = TN − T0 = 3.6 minutes, and W is chosen appropriately such that at time
T0+TN

2
minutes there is a 2D area change of ∆2 = −24.0%; here, this corresponds to

W = −8.04× 10−5ms−1.

To summarise, we have used MRI scan data of placental volume change during a

placental contraction to inform a domain velocity for use in our mathematical model.

Specifically, we made a simplification to only consider the period of fastest volume decrease

in this data, and calculated an equivalent area change for our 2D geometry from this

3D data. We then selected a simple form of domain velocity that gives an equivalent

maximum area reduction on our 2D placenta geometry between T0 = 14.3 and TN = 17.9

minutes.
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We will now introduce the problem we aim to address.

6.3.2 Problem setup

Using the domain velocity from §6.3.1, we will now specify the moving boundary problem

we intend to compute approximations to.

For the flow problem, we consider a small modification to the boundary conditions to

those presented in §2.2.1. We recall boundary conditions are applied in the form

(µ∇u− pI) · n = gf,N on Γout,

u = gf,D on Γ \ Γout,

and we select these boundary condition functions such that there is a zero Neumann

condition on outflow, a parabolic inflow velocity profile, and no velocity slip elsewhere. We

additionally choose the amplitude of this parabolic inflow such that the flux of incoming

blood is constant through time. We note that, in order to impose no-slip boundary

conditions on solid walls, the velocity must take the value of the domain velocity w at the

boundary. The modified boundary conditions for this moving boundary problem are given

by

gf,D = −A(t)R(t)2 − r2

R(t)2
n on Γin, (6.34a)

gf,N = 0 on Γout, (6.34b)

gf,D = w on Γ \ (Γin ∪ Γout), (6.34c)

where n is the unit outward-pointing normal on Γin, r(x) is the distance from a point x to

the centre of Γin, R(t) is the artery radius, A(t) := U R(0)
R(t)

is the modified amplitude of the

Poiseuille flow to retain constant inlet flux, and U is the peak flow speed given in Table

2.2.

For the oxygen transport problem, we keep the same boundary conditions as those

presented in §2.3; namely, boundary conditions are applied of the form

c = gc,D on Γin,

∇c · n = gc,N on Γ \ Γin,
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and the boundary condition functions are given as

gc,D = 1 on Γin, (2.8a repeated)

gc,N = 0 on Γ \ Γin. (2.8b repeated)

We will now use the prescribed domain velocity from §6.3.1 and the problem setup

presented here, together with the numerical methods from §6.1, to compute the blood flow

and oxygen transport fields under this domain movement.

6.3.3 Placenta motion

We take our initial domain Ω0 to be the 2D placenta domain with dimensions specified in

§2.1.2 and asymmetric placement of vessels as presented in §3.4.2. We use the steady-state

approximations on Ω0 as the initial conditions for the time-dependent blood flow and

oxygen concentration problems. For these simulations, we have selected a time-step size

of ∆t = 0.036min = 2.16 s. We note that each time-step is longer than a typical cardiac

cycle, and we therefore do not apply any corresponding adjustment to the amplitude to

account for pulsatile inlet flow. We chose this relatively large time-step size for simplicity,

and because of the relatively slow domain velocity scaling of W = −8.04× 10−5ms−1.

We will consider only five snapshots in time in the body of this thesis for ease of

presentation. Videos visualising these fields through time at every time-step are available

here2. Figures 6.5 and 6.6 provide the main results of this chapter. These figures

respectively visualise the blood flow and oxygen transport fields in five snapshots in time,

which are indicated in Figure 6.4(b) by grey vertical lines.

Panel (a) of Figures 6.5 and 6.6 give the initial steady-state fields of the flow and

oxygen concentration, respectively; we remark that these fields are identical to the fields

presented in §3.4.2 and §3.6.
Despite the varying domain size, the blood flow field changes very little from the

steady-state solution as time progresses, with only small changes in the slower regions

of the domain; an example of a small change in flow is shown in Figure 6.5(b), where

previously slow blood near septal walls is advected by the moving boundary at a slightly

higher speed.

On the other hand, the oxygen concentration field changes noticeably more, with clear

changes in the solution between each of the five snapshots in time. Figure 6.6(b) shows the

oxygen concentration field at time t = T0 +
T
4
, which corresponds to the point of fastest

domain decrease due to the sinusoidal domain velocity. Here, we see oxygen advected

2Blood flow field: https://r.blakey.family/phd-video-mmv; oxygen transport field: https://r.

blakey.family/phd-video-mmt
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(a)

(b)

(c)

(d)

(e)

Figure 6.5: Visualisation of the blood flow field during a contraction at times (a) t = 14.30min,
(b) t = 15.20min, (c) t = 16.10min, (d) t = 17.72min, and (e) t = 17.9min.
Colours are logarithmically scaled, and streamlines at each time-step are shown
with black lines. A video visualising all time-steps can be viewed here: https:

// r. blakey. family/ phd-video-mmv
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(a)

(b)

(c)

(d)

(e)

Figure 6.6: Visualisation of the oxygen concentration field during a contraction at times (a)
t = 14.30min, (b) t = 15.20min, (c) t = 16.10min, (d) t = 17.72min, and (e)
t = 17.9min. Colours are linearly scaled. A video visualising all time-steps can be
viewed here: https: // r. blakey. family/ phd-video-mmt
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(a) (b)

Figure 6.7: Graphs show how (a) v̄(Ω) (Equation (4.1)) and (b) c̄ (Equation (4.5)) vary
throughout a contraction of the problem presented in §6.3. Horizontal dotted lines
indicate the value of these measures at time t = T0.

away from the basal plate, leaving small regions on the basal plate where no oxygen is

present. It is interesting to see in this snapshot that there is a change near recirculation

zones in the central cavities, where high concentrations of oxygen become encircled by

lower concentration oxygen. As the oxygen concentration field evolves from Figure 6.6(a)

to Figure 6.6(c), the furthest right placentone contains a region to the left of the artery

where oxygen concentration reduces over time; this is because oxygen is uptaken by the

villous tree here and oxygen is not being replaced. As time progresses and the domain

enlarges to Figure 6.6(e), this region is again filled with oxygen.

Overall, the oxygen concentration appears to decrease whilst the domain contracts,

and appears to fill more of the domain in higher concentration during the latter domain

expansion. To solidify our understanding of this and the effect on flow speed, we measure

both the average speed and the uptake by the villous tree at each instant in time. Although

each of the two previous chapters are distinct from the work presented here, we restate two

of the efficiency measures from Chapter 4, which respectively give instantaneous measures

of the speed and amount of oxygen uptaken by the entire villous tree:

v̄(Ω) :=
1

|Ω|

∫
Ω

|u| dx, (4.1 repeated)

c̄ :=
R

|Ω|

∫
Ω

Ψc dx, (4.5 repeated)

where u is the velocity of the blood flow, c is the oxygen concentration field, |Ω| :=
∫
Ω

dx,

R is the uptake rate of the villous tree from Table 2.2, and Ψ defines the smooth transition

region described in §2.2. Figures 6.7(a) and 6.7(b) respectively visualise v̄(Ω) and c̄ through

our simulation.
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The solid blue line in Figure 6.7(a) shows that the average speed of the blood increases

when the domain contracts, and decreases again when the domain expands. Interestingly,

the peak of v̄(Ω) corresponds to t = 15.9min, which is 0.2min before the domain is at its

smallest; as the domain velocity is decelerating toward this minimal domain size, this could

be due to inertial effects on the blood which cause an augmented maximum. Likewise,

there is a minimum 0.2min before the maximum domain size is regained at t = 17.9min.

Figure 6.7(b) shows slightly different behaviour, where the solid orange line shows

oxygen uptake is lowest during the period of most rapid contraction and highest during

the period of most rapid expansion; these correspond to what we saw when visualising the

oxygen concentration field in Figure 6.6(e), where certain areas of the domain appeared to

have lower oxygen concentration during the contraction and higher oxygen concentration

during the expansion. The most significant feature of this graph is that the oxygen uptake

is increased when the placenta returns to its original size at t = 17.9min, indicated by

the solid line being higher than the dotted line. This simulation therefore supports the

theory that placental contractions could assist maternal circulation by ejecting stagnant

deoxygenated blood and improve oxygen delivery to the fetus [20].

We will now close this chapter with some closing remarks, limitations of our contraction

model, and suggested future work.

6.4 Summary

In this chapter, we have introduced a basic model of prescribed boundary motion in order

to investigate the effects of the recently-observed ‘utero-placental pump’ contractions on

maternal blood flow and oxygen transport dynamics. These are contractions that involve

only the placenta and have been observed over 10-minute intervals to periodically reduce

placental volume by up to 40% [20].

In §6.1, we used the Reynolds Transport Theorem to derive modified numerical

methods for the flow and oxygen transport problem, which were valid on moving domains,

and required minimal modification to the existing semilinear and bilinear forms of the

discretisation. We then validated our numerical methods in §6.2 in two different ways: first,

we used the method of manufactured solution (MMS) and showed that we obtain optimal

spatial and temporal convergence rates under refinement; and secondly, we presented a

physical problem where no-slip boundary conditions on an oscillating wall influence flow

dynamics, which gave physically sensible flow dynamics.

The main results of the chapter were presented in §6.3, where we used volume infor-

mation from MRI scan data to inform a domain velocity that represents a domain size

change comparable to those found during a ‘utero-placental pump’ contraction. Our results

found that the blood flow field remained largely undisturbed, despite the relatively large

Adam M Blakey • Placental haemodynamics 125 of 157



domain size change; we noted that this is likely due to the long timescales upon which

these contractions take place. We did, however, find that the oxygen concentration field

was more visibly influenced by the boundary motion than the velocity field, with overall

decreased oxygen uptake during the contracting phase and increased oxygen uptake during

the expansion phase. Our simulation showed that contractions of this form do have an

impact on oxygen concentration dynamics and oxygen uptake by the villous tree.

For clarity, the model of the utero-placental pump we have presented here is highly

simplified and does not consider the physical mechanisms driving the contractions. In

particular, we have assumed a simple form for the domain velocity, and used this over

a shorter 3.6min period covering the fastest volume change rate, rather than the full

26min presented in the data of Gowland et al. [136]. Furthermore, the results of Dellschaft

et al. [20] show very little change in the thickness of the placenta between the chorionic

and basal plates, with the contraction primarily taking place in the horizontal direction

(when viewed in the orientation we have presented in this thesis); future work taking

this approach could therefore simulate the entire contraction length and consider domain

velocities that cause shape change only in the horizontal direction.

The time-dependent simulations presented in this chapter assume that the villous tree

density and oxygen uptake rate remain constant throughout contractions. However, this

is physically unlikely, as the smaller domain size would likely result in a denser villous

tree structure with reduced permeability and a higher uptake rate (see, for example, Serov

et al. [40]). Although not presented in this thesis, we ran two additional steady-state

simulations to briefly investigate how domain size and uptake rate contribute to the values

of v̄ and c̄. Firstly, we considered a steady-state simulation where the domain is fixed at

time t = T0 +
T
2
≡ 16.10min (i.e., the smallest domain size); we found that v̄ increased

by approximately 34% whilst c̄ reduced by approximately 31% from the values at time

t = T0. These changes are more than 2 times larger than the changes induced by the

contractions, which indicates that there remains some uninvestigated inertial effects due to

the time-dependent contractions. Furthermore, we ran a second simulation on the smaller

domain where k and R were linearly increased according to the 24% domain size reduction;

this simulation found a further increase of 1% to v̄ and an increase of 22% to c̄. Notably

in the case of c̄, this enhanced uptake rate on the smaller domain size is insufficient in

recovering c̄ on the original larger domain size. Clearly, there is more to be investigated

with time-dependent permeability and uptake rate. In particular, it is not clear that there

exists a linear relationship between the domain size and both the villous tree density and

oxygen uptake rate in this context. Therefore, future studies could further consider the

effect that villous tree density and shape has on flow dynamics and oxygen uptake during

contractions.

The cause of these contractions is currently unknown [20], but it is thought that

they may be related to previous reports of contracted villous trees, which are sometimes
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anchored (i.e., connected) to the basal plate [20, 39]. An interesting extension to this

work would be to use the work of Kato, Oyen, and Burton [39] in designing a model of

the utero-placental pump that respects the data of Gowland et al. [136]. An alternative

modelling approach could reapply one of the works from the existing fluid-structure

interaction literature (e.g., [61, 137–140]), where the mechanism of interaction between

the maternal blood and surrounding contracting tissue could be modelled; this is rather

than imposing a prescribed boundary motion like we have in this thesis.

The evolutionary role of the contractions is unknown, but it has been suggested that

they assist maternal circulation by ejecting stagnant deoxygenated blood so that it may

be replaced by freshly oxygenated blood [20]. Dellschaft et al. [20] have also suggested the

possibility that these contractions may have a role to play in diseased placentas, with the

shape of a healthy contracted placenta resembling the shape of a diseased placenta.

We will now conclude this thesis with some conclusions and future work.
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Chapter 7

Conclusion

7.1 Thesis summary

In this thesis, we have presented a mathematical model of maternal blood flow and oxygen

concentration in the at-term human placenta, using a physiologically informed 2D organ-

scale geometry. One third of stillbirths are related to placental dysfunction, and therefore

the overarching motivation for this work has been to better understand the characteristics

of diseased placentas, which will ultimately lead to improved pregnancy outcomes in the

future.

Modelling of the placenta is complicated by several factors including its development

through gestation, its inherent multiscale nature, and the structural variability between

placentas. Motivated by several previous studies, we considered maternal blood flow in

the at-term human placenta, where we modelled the presence of the fetal villous tree as a

rigid porous medium. Maternal blood flow was modelled using the Navier-Stokes-Darcy

(NSD) equations, which captured the effects of free flow in areas such as the central cavity

(CC) and the effects of porous flow in the intervillous space (IVS), with a physiologically

sensible transition region between. We used these equations on a physically relevant

geometry representing a 2D slice through a whole placenta, which captured structural

features on a larger scale than previous studies; in particular, this geometry included six

adjacent placentones that were partially separated by septal walls, as well as septal wall

and marginal sinus veins. We then coupled the blood flow to a reaction-advection-diffusion

equation that modelled oxygen transport, so that we could study the oxygen uptake by

the fetal villous tree. As far as we are aware, this is the first time that a representative 2D

whole-organ geometry has been used in the study of maternal flow.

The approach of this thesis has been computational, where we have extensively used

discontinuous Galerkin finite element methods (DGFEMs) to discretise spatial derivatives,
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which is advantageous in this application due to the method’s simple treatment of com-

plicated geometries, stability properties for large parameter variations, and favourable

treatment of hyperbolic terms in PDEs. We believe this to be the first time that DGFEMs

have been applied to the study of placental haemodynamics. We first used our DGFEM

to compare the behaviour of the steady-state NSD flow field with related models currently

used in the placental literature; here, flow in the IVS was observed to be similar across all

models, with notable differences in behaviour in the CC. We also performed numerical

experiments of blood flow and oxygen transport on the 2D placenta geometry with veins

placed asymmetrically; we found that flow speed increased by an order of magnitude in

the region closest to the chorionic plate, and oxygen concentration perfused radially from

the spiral artery. This asymmetric experiment was important due to its physical relevance,

and therefore formed the basis of the later MRI and utero-placental pump investigations.

For time-dependent problems, we used a simple first-order backward Euler time-stepping

scheme, which allowed us to briefly investigate the effects of pulsatile inflow on flow and

oxygen transport; for our particular problem set-up, we found that pulsatile inflow had

very little influence on flow and oxygen dynamics. We also derived a moving mesh DGFEM

valid on moving domains, which allowed us to study the effects of a placental shape change

on flow and oxygen dynamics. We verified our implementation of the numerical methods

by achieving optimal spatial and temporal convergence rates in tests using the method

of manufactured solution (MMS), and by comparing physical numerical experiments of

placental flow with results in the existing placental literature.

Whilst the overarching structure of the human placenta is well documented, contrasting

estimates of the number and position of vessels in the experimental literature suggest that

there is either a high variation between individual placentas or a lack of understanding.

Furthermore, there are a number of conflicting hypotheses on where these vessels are located.

This uncertainty has brought about two mathematical studies that have investigated the

effect of vein placement on oxygen uptake [12, 54]. We expanded upon this work by

considering variations in the number and placement of both arteries and veins across our

2D placenta geometry, in addition to variations in other structural parameters such as

the artery diameter and the IVS permeability. We used seven scalar-valued measures as a

proxy for characterising the flow and oxygen concentration fields, thereby allowing us to

investigate the impact of structural variations on placental function over several thousands

of realisations. In summary, our results found the same ‘short-circuiting’ effects that have

been previously reported, that fewer veins drastically increased speeds across the placenta,

and that the permeability of the IVS had by far the greatest effect on oxygen uptake. We

also compared these results to previous experimental studies, allowing us to infer how

structural changes may play a role in placental disease.

This thesis also presented a numerical MRI (or synthetic MRI) method for inferring

sub-voxel velocity fields of in vivo placenta data. We introduced the basic physics
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underpinning signal measurement of motion-sensitising gradients in MRI scanning, along

with an algorithm for computing signals of particles advected by fluid flow. We used this

algorithm to compute MRI signals for a selection of simple manufactured flow fields and

investigated the behaviour of signals in detail. Using an empirical signal decay model, we

were able to identify a likely location for an artery in the in vivo data; the artery position

allowed us to use MRI signals of (i) the simple manufactured flow, (ii) the simulated

maternal flow, and (iii) the in vivo flow data, to infer a local flow field of the in vivo flow

data.

The recently-documented utero-placental pump is a contraction involving only the

placenta, where placental volume can reduce by up to 40% over a 10-minute period, resulting

in a periodic ejection of blood from the IVS. The mechanism of these contractions is

currently unknown, which led us to develop the first preliminary model of this phenomenon,

whereby we prescribed boundary motion as a first step to understand how shape change

influences oxygen transport; we achieved this using a moving mesh DGFEM and a domain

velocity that was inspired by MRI data. Our modelling showed that contractions of this

form do have an impact on oxygen concentration dynamics and the oxygen uptake by the

villous tree.

To summarise, this thesis extends the existing literature in the following ways: (i)

considers maternal flow on a physically relevant 2D whole-organ geometry, (ii) applies

DGFEMs to study maternal flow in the placenta, (iii) investigates the effects of structural

variations on placental function in great detail, (iv) provides a means of comparing

computational flow fields with in vivo MRI data, and (v) develops the first preliminary

model of the utero-placental pump as a first step in understanding how this phenomenon

influences oxygen transport.

7.2 Future work

7.2.1 Model development

We adopted the incompressible Navier-Stokes-Darcy (NSD) equations for modelling mater-

nal blood flow in the at-term placenta, which captured the effects of both free and porous

flow through a spatially-varying permeability field. Our investigations in §3.4.1 found that

flow using this model gave similar flow in the IVS to two alternative flow models, with

notable differences near the central cavity. The linear Stokes-Brinkman model presented

in §2.2.2 may therefore prove sufficient in capturing the main flow features that take

place outside the central cavity with a smaller computational cost. On the other hand,

whilst simplifications of the model may be of value, the NSD blood flow model is the most
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general of the presented models, as it permits considerable flexibility in the specification of

the spatially-varying permeability field. The choice of permeability field could be further

exploited in future studies by, for example, using anatomical images to infer a permeability

field that varies in regions of the IVS besides the central cavity and vessels.

We used a reaction-advection-diffusion equation to model the transport of oxygen

concentration dissolved in blood, where the advective velocity was taken from the blood

flow model described above. This was a simple model which assumes that uptake by

the fetal vasculature is proportional to the oxygen concentration in the maternal blood;

future work could consider the additional oxygen binding dynamics that have been used

by previous authors (e.g., [40, 48]), or consider the transport of other nutrients and waste

products in the placenta.

The geometry we considered throughout this thesis was a highly simplified model of

true placental structure, constructed by taking a 2D planar cross-section through a 3D

spherical cap using approximations of placental dimensions. We made several simplifying

assumptions, including that the cross-section intersects perfectly through the centre of all

vessels, as well as an assumed shape and size of these vessels. An obvious extension to our

work is to consider organ-scale maternal flow on a representative 3D placenta geometry,

constructed either through a similar procedure to what is presented in 2D in this thesis,

or from in vivo imaging data. Nevertheless, the 2D approach here has been essential in

supporting the preliminary work of the University of Nottingham’s Wellcome Leap In

Utero project, SWiRL.

7.2.2 Numerical methods

We employed a discontinuous Galerkin finite element method (DGFEM) to discretise

spatial derivatives, and a simple backward Euler scheme to discretise temporal derivatives.

The first-order accuracy of the backward Euler scheme limited us to a choice of relatively

small time-step sizes. An obvious improvement would be to select another unconditionally

stable scheme such as the trapezoidal rule, backward differentiation formula (BDF), or a

scheme from the Runge-Kutta family; these schemes would permit larger time-step sizes

and would allow for longer time simulations.

The computational meshes used in this thesis comprised many different size elements,

with a coarse mesh deeper into the IVS, and a finer mesh in the vessels and surrounding

central cavity; in general, we found a relatively high mesh resolution was required to

resolve spurious overshoots in the oxygen concentration problem, with the mesh used for

the asymmetrical study in §3.4.2 (and related studies through Chapters 5 and 6) consisting

of 2 335 705 mesh elements. A simplification we made was that the computational mesh

must remain the same between the blood flow and oxygen concentration discretisations;
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future work could relax this assumption, thereby using a coarse mesh for the blood flow

approximation and a fine mesh for the oxygen transport approximation, which would

ultimately lower the overall computational cost. Furthermore, techniques such as artificial

viscosity or adaptivity could also be employed, allowing the use of meshes with fewer

elements and thereby further lowering the computational cost.

7.2.3 Effects of placental structural on placental efficiency

The approach of Chapter 4 was to consider several thousands of realisations of flow

and oxygen concentration fields, each characterised by seven lower-dimensional measures.

There are likely several other choices of measure that would have given us further insight

into the flow and oxygen transport behaviour, and therefore a better understanding of

placental disease, such as measures characterising vessel position, or outlet routes via

particle tracking.

The first part of this chapter considered variations in both the number and position

of vessels. These variations were considered simultaneously, and therefore an obvious

next step would be to consider these effects separately. In addition, the geometry was

parameterised with at most two basal plate veins per placentone, three septal wall veins,

and two permanently retained marginal sinus veins. Future work could consider geometries

without these restrictions, and also investigate the role that each type of vein has in blood

flow and oxygen transport.

The second part of this chapter considered variations in seven other parameters, with

fixed numbers and positions of vessels; this was an assumption, and subsequent work

could investigate the different choices of vessel placement in combination with these other

parameter variations. Our results most notably found that our study of variations in

artery width had minimal impact on the measures, despite physiological reports that small

artery widths are associated with disease (e.g., [14]). We noted that this was likely due

to damage to the villous tree, rather than behaviour that small artery widths directly

influence, and therefore future work could consider a model of villous tree damage. Future

work could also consider the effects of other likely impactful parameter variations, such as

the cavity transition width and artery shape, and their influence on placental disease.

Whilst the results of this thesis are restricted to 2D, the computational demand is

much lower than an equivalent 3D study; this comprehensive 2D study has allowed us to

focus the more computationally intensive investigations of Crowson et al. [1].
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7.2.4 Numerical MRI

Chapter 5 introduced a method for numerical MRI, where signals are computed numerically

for some underlying flow field. For computational simplicity, we made the simplification

that each particle’s velocity remained constant for the duration of the MRI pulse. Future

work could therefore consider particle trajectories along the streamlines of the flow.

The approach of this chapter allowed us to infer a local flow field in the MRI data by

manually selecting voxels with similar behaviour. However, there are inherent issues in

locating comparable voxels between simulated and physical flow data without computing

simulated flow fields on the same placental geometry. Future work could compute flow and

numerical MRI signals on a comparable 3D geometry, or design an automatic algorithm that

selects similar voxels in both the physical MRI and simulated MRI data for comparison.

This thesis only considered motion-sensitising MRI sequences; an interesting extension

would therefore be to compute MRI signals using our simulated oxygen concentration

field, and compare this to in vivo MRI oxygenation data. Additionally, the majority of

the presented methods are unspecific to the placenta, as they only require an underlying

flow field. Therefore, future work could reapply these techniques to MRI of other organs

such as the brain.

7.2.5 Utero-placental pump

As far as we are aware, Chapter 6 presented the first mathematical model of the utero-

placental pump. For simplicity, we considered a representative volume change using a

prescribed domain velocity. Future work taking this approach could investigate the effect

of different choices of this domain velocity that better match physiological observations,

such as a domain velocity that changes placental shape in only the horizontal direction.

Furthermore, an interesting extension to this work would be to consider the appropri-

ateness of contracting villous trees in describing the utero-placental pump, for instance

by reapplying the work of Kato, Oyen, and Burton [39]. Alternatively, other biophysical

mechanisms could be investigated which respect the data of Gowland et al. [136].
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Appendix A

Details on the smooth transition function

To mathematically define an expression for Ψ(x) in §2.2, we first introduce some auxiliary

variables. The simple idea here is that we assign Ψ = 1 in areas of villous tree and Ψ = 0

in areas of no villous tree.

The central cavity is defined by half an ellipse (a semi-ellipse) with a semi-minor axis

of a1 and a semi-major axis of b1, where 2a1 = b1 with a1 denoting the semi-axis that is

tangential to the basal plate. We then add two more ellipses at equal distances inside

and outside the first ellipse, which acts as a transition region. We introduce a smooth

transition function defined as

βs0,s1,s2(s) :=


0 if 0 ≤ s < s0,

1
2

[
tanh

(
γ
{

s−s1
s2−s1

})
tanh(γ)

+ 1

]
, if s0 ≤ s ≤ s2,

1 if s2 < s,

(A.1)

where s2 − s0 gives the transition width, and we assume the relation s1 ≡ s0+s2
2

. We note

that β differs from tanh, as tanh has asymptotes at ±1, whereas β has no such asymptotes;

β instead attains maximum and minimum values by taking a ‘cut-off’ value, parameterised

by γ, outside which β attains its extrema. We note that the scaling γ is included so that

β is continuous everywhere, and is fixed γ = 0.999. These differences are illustrated in

Figure A.1(a).

The ellipses which form the geometry of the smooth transition region at the boundary
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Figure A.1: (a) Curve of β(s) in relation to s0, s1, and s2. (b) Curve showing a slice of Ψ
on a placentone along y = 0 (i.e. on the basal plate) at the bottom of the cavity
region, where a0, a1, and a2 respectively denote the semi-minor axes of the inner,
centre, and outer ellipses.

of the central cavity are defined by

r0(θ) :=
a0b0√

a20 sin
2(θ) + b20 cos

2(θ)
, (A.2)

r1(θ) :=
a1b1√

a21 sin
2(θ) + b21 cos

2(θ)
, (A.3)

r2(θ) :=
a2b2√

a22 sin
2(θ) + b22 cos

2(θ)
, (A.4)

where x ≡ (x, y)⊺ are 2D Cartesian coordinates, and

θ(x) := arctan

(
y − c2
x− c1

)
, (A.5)

r(x) :=
√

(x− c) · (x− c) (A.6)

are 2D polar coordinates with r = 0 at c ≡ (c1, c2)
⊺ and θ = 0 is tangential to the interface

between ΩCC and Ωa (pointing in the anticlockwise direction). Here, c is the point at the

centre of where an artery meets the placenta. The transition width, τ , is defined such that

τ = a2 − a0 and 2τ = b2 − b0. The transition region in the central cavity is illustrated in

Figure A.2(a).

The smooth transition regions in the veins are defined using

m(x) := (x− c) · n̂,

where n̂ := n/|n|, n = c− p, and p ≡ (p1, p2)
⊺ is the centre of the large circle that traces

out the curve on the basal plate. Here, c is the point at the centre of where a vein meets

the placenta.
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Figure A.2: (a) Illustrates the semi-minor and semi-major axes defined in Appendix A for the
central cavity transition, including the marked point at the top of the centre of the
inlet artery. (b) Illustrates parameters used in defining the smooth transition over
the outlet veins.

The coefficient Ψ is then given as

Ψ(x) :=



0, if x ∈ Ωa ∪ ΩCC,

βr0,r1,r2(r(x)), if x ∈ ΩT− ∪ ΩT+ ,

βy0,y1,y2(m(x)), if x ∈ Ωv,

1, if x ∈ ΩIVS,

(A.7)

where y2 − y0 is chosen to give a transition region in the veins with y1 ≡ y0+y2
2

, which

are shown in Figure A.2(b). A slice of Ψ(x) on the placentone geometry along y = 0 is

illustrated in Figure A.1(b).
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Appendix B

Detailed comparison of flow models

This appendix follows the results of §3.4 and discusses them in more detail.

On the 2D placentone simulations presented in Figure 3.3, we immediately notice that

the flow for S-B in Figure 3.3(b) is the only flow that does not exhibit recirculations

in the central cavity. Figures 3.3(a) and 3.3(c) have mostly similar behaviour. To see

in which regions of the domains these models differ, we take differences of the solution

on the placentone geometry for each combination of model (i.e. for models i and j

respectively having velocity fields ui and uj, we compute velocity magnitude using the

usual Euclidean norm over Ω: ∥ui − uj∥L2). We will refer to these fields as ‘difference

fields’. We study the difference fields only on the placentone geometry, as the differences

in flow velocity are mostly localised to the arteries. The difference fields between all three

velocity models are presented in Figure B.1; note that the difference fields are visualised

with a logarithmically-scaled colour scale, so differences may appear exaggerated. The

difference fields involving S-B in Figures B.1(a) and B.1(c) are relatively large, especially

in the central cavity region, but also in the upper section of the diverged artery. The

difference field involving NSD with NS-NSD is shown in Figure B.1(b), which are clearly

similar due to NSD and NS-NSD in themselves behaving similarly. We notice that the

difference field in the artery is very small, and in fact small just above the artery, but

grows larger further away from the artery mouth. Returning to Figure 3.3, we can see

the centre of the recirculation zones for NSD sit closer to the artery than those shown for

NS-NSD, therefore increasing the value in the difference field in the cavity here; this effect

is also likely sensitive to the chosen cavity transition, τ .

To make a quantitative comparison, we also compute the L2-norm between each

combination of solutions. That is to say, for velocity fields ui and uj, we compute

∥ui − uj∥L2 :=

√∫
Ω

(ui − uj) · (ui − uj) dx. (B.1)
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(a) (b)

(c)

Figure 3.3 (repeated): Velocity plot on placentone geometry (§2.1.1) presenting the results of
§3.4.1 for the three velocity models: NSD from equation (2.1), S-B
from equation (2.4), and NS-NSD from equation (2.5). Plots show a
logarithmically-scaled velocity colouring and streamlines shown in black
for (a) NSD, (b) S-B, and (c) NS-NSD. All models apply boundary
conditions and problem parameters presented in §2.2.1.



NSD S-B NS-NSD

NSD (Equation (2.1)) 0 - -

S-B (Equation (2.4)) 8.43× 10−3 0 -

NS-NSD (Equation (2.5)) 8.69× 10−3 1.31× 10−2 0

Table B.1: L2-norm of solutions on the placentone geometry using each combination of the
three velocity models.

These norms are given in Table B.1. We notice that the largest norm is between S-B and

NS-NSD, which likely is contributed to by the lack of recirculations with S-B. This analysis

overall shows us quantitatively that all three models are ‘close’ under the L2-norm, and

agrees with the qualitative comparisons we made in §3.4.1.

Adam M Blakey • Placental haemodynamics 139 of 157



(a) (b)

(c)

Figure B.1: Difference fields on a placentone, visualised with a logarithmic colour scaling.
Differences are computed between approximations to (a) NSD and S-B (Equations
(2.1) and (2.4)), (b) NSD and NS-NSD (Equations (2.1) and (2.5)), (c) S-B and
NS-NSD (Equations (2.4) and (2.5)).



Appendix C

Lax-Friedrichs flux α parameter

We will derive the α parameter used in the modified Lax-Friedrichs flux in Equation (6.15);

a similar procedure may be followed for the standard Lax-Friedrichs flux in Equation (3.7)

by selecting w ≡ 0.

The Lax-Friedrichs flux used in Chapter 6, H̄, is defined in Equation 6.15; H̄ is a

numerical flux function that approximates (u⊗ [u−w]) ·n. To help the reader, we rewrite

these equations below:

H̄f(u
+,uΓ,n;w) :=

1

2
((u+ ⊗ [u+ −w]) · n+ (uΓ ⊗ [uΓ −w]) · n+ (αu+ − αuΓ)),

(6.15 repeated)

where

uΓ :=


u− on FI ,

u+ on ΓN ,

gD on ΓD,

(3.6 repeated)

and α is an estimate of the largest eigenvalue (in absolute value) of the following Jacobi

matrix in the neighbourhood of the boundary of the element it is computed on (i.e. ∂κ)

[141]:
∂

∂u
[(u⊗ [u−w]) · n] .

Writing u ≡ (u1, u2)
⊺, n ≡ (n1, n2)

⊺, and w ≡ (w1, w2)
⊺, we have

(u⊗ [u−w]) · n ≡

[
u1(u1 − w1) u1(u2 − w2)

u2(u1 − w1) u2(u2 − w2)

][
n1

n2

]
.

Taking the derivative with respect to u gives

∂

∂u
[(u⊗ [u−w]) · n] ≡

[
u1n2 + (u−w) · n u1n2

u2n1 u2n2 + (u−w) · n

]
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for which the eigenvalues are 2u · n−w · n and u · n−w · n; therefore, we obtain

α = max(|2u+ ·n−w ·n|, |2uΓ ·n−w ·n|, |u+ ·n−w ·n|, |uΓ ·n−w ·n|). (6.16 repeated)
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vative LDG Method for the Incompressible Navier-Stokes Equations”. In: Mathe-

matics of Computation 74.251 (Oct. 5, 2004), pp. 1067–1096. issn: 0025-5718. doi:

10.1090/S0025-5718-04-01718-1.

[120] S. Giani and P. Houston. “Goal-Oriented Adaptive Composite Discontinuous

Galerkin Methods for Incompressible Flows”. In: Journal of Computational and

Applied Mathematics 270 (Nov. 2014), pp. 32–42. issn: 03770427. doi: 10.1016/j.

cam.2014.03.007.
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