
Cosmic Cartography: tracing the
large-scale structure around galaxy

clusters

Daniel James Cornwell

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

May 2024



If you believe in yourself, with a tiny pinch of magic, all your
dreams can come true

– Spongebob Squarepants

Supervisors: Prof. Alfonso Aragón-Salamanca
Prof. Meghan Gray
Prof. Frazer Pearce

Examiners: Prof. Scott Kay (University of Manchester)
Dr. Simon Bamford (University of Nottingham)

Submitted: 24 May 2024
Examined: 5 July 2024
Final version: 28 September 2024

i



Contents

Abstract vi

Acknowledgements viii

Published Work x

Chapter 1 Introduction 1

1.1 Large-scale structure: the cosmic web . . . . . . . . . . . . . . . . . 1

1.1.1 History of the cosmic web . . . . . . . . . . . . . . . . . . . 3

1.1.2 Observing the cosmic web . . . . . . . . . . . . . . . . . . . 3

1.1.3 Simulations of the cosmic web . . . . . . . . . . . . . . . . . 6

1.2 Components of the cosmic web . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Galaxy clusters . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1.1 Methods for observing clusters . . . . . . . . . . . 11

1.2.1.2 The environment of a galaxy cluster . . . . . . . . 12

1.2.2 Galaxy groups . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.3 Cosmic filaments . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 2 Simulation Data and Technical Analysis 20

2.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 MDPL2 MultiDark simulations . . . . . . . . . . . . . . . . 21

2.1.2 TheThreeHundred project . . . . . . . . . . . . . . . . . . . 21

2.1.3 Halo selection . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The Multi Object Spectroscopic WEAVE Survey . . . . . . . . . . 23

2.2.1 The WEAVE Wide Field Cluster Survey . . . . . . . . . . . 24

2.2.2 WEAVE target selection . . . . . . . . . . . . . . . . . . . . 25

2.2.3 WEAVE fibre allocation . . . . . . . . . . . . . . . . . . . . 25

2.3 Topological structures extractor . . . . . . . . . . . . . . . . . . . . 26

2.3.1 DisPerSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Input parameters . . . . . . . . . . . . . . . . . . . . . . . . 28

ii



Chapter 3 Filamentary networks in galaxy cluster simulations 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Galaxy cluster information . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 The WEAVE Wide-Field Cluster Survey . . . . . . . . . . . 35

3.2.2 TheThreeHundred galaxy cluster simulations . . . . . . . 36

3.3 Generation of mock observations . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Optimizing the WWFCS field positions . . . . . . . . . . . . 37

3.3.2 Deriving WWFCS cluster properties . . . . . . . . . . . . . 38

3.3.3 Generating the simulated cluster and galaxy samples . . . . 38

3.3.3.1 Creating mass-matched cluster samples . . . . . . . 39

3.3.3.2 Scaling cluster properties . . . . . . . . . . . . . . 41

3.3.3.3 Defining galaxy sample and properties . . . . . . . 41

3.3.4 Allocating spectroscopic fibres to mock galaxies using Con-

figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.5 Cosmic web extraction method . . . . . . . . . . . . . . . . 47

3.3.5.1 DisPerSE . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Recovery of cluster galaxies after Configure . . . . . . . . . 49

3.4.2 Filament network comparison metrics . . . . . . . . . . . . . 50

3.4.2.1 Skeleton distance . . . . . . . . . . . . . . . . . . . 50

3.4.2.2 Cluster connectivity . . . . . . . . . . . . . . . . . 52

3.4.3 Quantifying the quality of the recovered filament networks . 54

3.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.1 Caveats and potential tests . . . . . . . . . . . . . . . . . . 59

Chapter 4 Allocating galaxies to cosmic web environments 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 WEAVE Wide Field Cluster Survey . . . . . . . . . . . . . . 64

4.2.2 TheThreeHundred simulations of galaxy clusters . . . . . . . 64

4.3 Defining cosmic web environments . . . . . . . . . . . . . . . . . . . 65

4.3.1 Cosmic web extraction . . . . . . . . . . . . . . . . . . . . . 65

4.3.1.1 3D reference filament networks in simulations . . . 65

4.3.1.2 2D mock-observational filament networks . . . . . . 66

4.3.2 Filament thickness . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Assigning galaxies to cosmic web environments . . . . . . . . . . . . 68

iii



4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Overall performance of environment allocation . . . . . . . . 70

4.5.2 The dependence of the environmental identification success

on galaxy mass and cluster-centric distance . . . . . . . . . . 73

4.5.2.1 Evaluating a single cluster . . . . . . . . . . . . . . 73

4.5.2.2 Evaluating the entire simulated cluster sample . . . 77

4.5.3 The dependence of the environmental identification success

on cluster mass . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.1 Caveats and future tests . . . . . . . . . . . . . . . . . . . . 84

Chapter 5 Galaxy group detection in cluster outskirts 85

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 Data catalogues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Identifying the large-scale structure around galaxy clusters . . . . . 88

5.3.1 Ground truth galaxy groups . . . . . . . . . . . . . . . . . . 89

5.3.2 Cosmic web networks . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2.1 3D filament networks . . . . . . . . . . . . . . . . . 90

5.3.2.2 2D filament networks . . . . . . . . . . . . . . . . . 91

5.3.3 Node and group number densities . . . . . . . . . . . . . . . 92

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.1 Matching groups to nodes in 3D simulations . . . . . . . . . 94

5.4.2 Matching groups to nodes in 2D projections . . . . . . . . . 100

5.4.3 Radial dependence on matching nodes to groups . . . . . . . 101

5.4.3.1 3D filament networks . . . . . . . . . . . . . . . . . 101

5.4.3.2 2D filament networks . . . . . . . . . . . . . . . . . 102

5.5 Group mass estimation from cosmic web node density . . . . . . . . 103

5.5.1 High mass groups and node density matching . . . . . . . . 104

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 6 Conclusions and Future Work 108

6.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Filamentary networks in galaxy cluster simulations . . . . . 109

6.1.2 Allocating galaxies to cosmic web environments . . . . . . . 110

6.1.3 Galaxy group detection in cluster outskirts . . . . . . . . . . 112

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.1 Characterizing galaxy cluster mergers observationally . . . . 114

iv



6.2.2 Cosmic web environment classification with Machine Learning119

6.3 Upcoming observations . . . . . . . . . . . . . . . . . . . . . . . . . 122

Bibliography 125

Appendices 139

Appendix A Paper 1 appendix 140

A.1 Optimizing the WWFCS field positions . . . . . . . . . . . . . . . . 140

A.2 Galaxy cluster scaling . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 DisPerSE input parameters . . . . . . . . . . . . . . . . . . . . . . 144

Appendix B Paper 2 appendix 147

B.1 Cluster-to-cluster probability variation . . . . . . . . . . . . . . . . 147

Appendix C Paper 3 appendix 153

C.1 Non mass-weighted networks . . . . . . . . . . . . . . . . . . . . . . 153

v



Abstract

On the largest cosmological distance scales, the cosmic web forms the backbone

of the Universe. This network connects dark matter, galaxies and gas through a

variety of structures. Galaxies that reside in different cosmic web environments are

subject to a range of different physical mechanisms which can ultimately dictate

the evolutionary path they take. At one end of the density scale, galaxy clusters

exist that can quench and ultimately transform galaxies as they encounter the

intracluster medium and the high density of galaxies. This results in a higher

fraction of quiescent and early type galaxies in clusters compared to the field.

Further down the density scale are cosmic filaments. A substantial fraction of the

Universe’s mass budget is located in these environments. Filaments are a conduit

through which galaxies are funneled through into the dense core of a galaxy cluster.

Whilst there is strong evidence suggesting that galaxies experience environmental

influence long before they reach the core of a cluster, (pre-processing), exactly

where and when these changes take place is not well constrained.

Motivated by upcoming wide-field spectroscopic surveys of galaxy clusters, such

as the WEAVE Wide Field Cluster Survey (WWFCS), we begin with an in-

vestigation into the feasibility of extracting cosmic web filaments around galaxy

clusters with surveys like the WWFCS. We use hydrodynamic simulations from

TheThreeHundred project of galaxy clusters to design mock observations for

the WWFCS by taking into account observational selection effects. After extract-

ing cosmic web filaments around galaxy clusters using the topological structures

extractor DisPerSE in our mock observations, we compare them to the ‘ground

truth’ simulated case. Reassuringly, we find that surveys like the WWFCS will

succeed in providing detailed maps of the local cosmic web around galaxy clusters.
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We then turn our attention to one of the main questions we aim to answer in

this thesis: can we accurately allocate individual galaxies to different cosmic web

environments? This is a crucial test: for surveys like the WWFCS to draw con-

clusions on how galaxy evolution is impacted by its environment, we need to know

how accurately we can allocate galaxies to these environments in the first place.

In order to answer this question, we design a framework where we separately use

information available from simulations and from observations to classify galax-

ies as residing in the cluster core, filaments, and those that located in neither.

Whilst we report galaxy-to-galaxy and cluster-to-cluster variations in our ability

to classify galaxies, overall, characterizing filamentary galaxies is highly uncertain.

However, most importantly, we outperform a random classification of galaxies to

different environments. Taking into account our statistical treatment, surveys like

the WWFCS will be able to draw robust conclusions on how environment shapes

galaxy evolution. We also briefly discuss more recent work using Machine-Learning

to drastically improve our success rates.

Having established our ability to accurately map cosmic filaments in the infall

regions of massive galaxy clusters, we then consider the systematic identification

of galaxy groups. Like filaments, evidence suggests that galaxy groups can pre-

process galaxies prior to their accretion onto a cluster. Given that cosmic web

nodes are directly identifiable through observations, we test their co-location with

galaxy groups. In this study, we show a substantial fraction of massive groups

that are distant from the cluster core match to cosmic web nodes. DisPerSE can

therefore be used to identify both cosmic web filaments and galaxy groups with

relative success.

The work in this thesis uses simulations from TheThreeHundred project to

test, optimize and forecast the ability of upcoming surveys to trace the cosmic web

around galaxy clusters. Along with previous studies, we pave the way for wide-

field optical spectroscopic surveys of galaxy clusters to extract cosmic filaments

and galaxy groups.
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Chapter 1

Introduction

The ultimate aim of this thesis is to try and better understand our ability to

extract cosmological structures in close proximity to galaxy clusters. If we want

to eventually understand the role that different cosmic web environments play on

the evolution and formation of galaxies, then we need to investigate whether we

can accurately classify galaxies into such environments. In doing this, we need

to understand what exactly we mean by the cosmic web, as well as realizing the

individual components that comprise it. Only after laying down this groundwork

can we properly investigate their dependencies, and, in turn, the role that large-

scale structure plays in the mass assembly of galaxies.

In this chapter, we first introduce the cosmic web and its detection in Section 1.1.

In Section 1.2, we discuss the individual components of the cosmic web and meth-

ods that are used to detect them observationally. In Section 1.3, we talk about

the link between different cosmic web environments and the evolution of a galaxy

residing in them. Finally, in Section 1.4, we describe the structure of this thesis.

1.1 Large-scale structure: the cosmic web

The Universe we live in exhibits complex structures across a wide range of scales.

At some of the smallest scales, quantum mechanics dictates the presence and struc-

ture of subatomic particles that form nuclei. The atoms these comprise form the
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Figure 1.1: Cosmic web reconstruction using galaxies from the Sloan Digital Sky
Survey (SDSS). Top panel: the filament network created using the Monte Carlo
Physarum Machine, taking inspiration from the slime mold model. The bottom
panels shows three regions with the underlying SDSS galaxy positions and the
superimposed filament density field. The model can trace the underlying galaxy
distribution, taking in only galaxy coordinates, redshifts and masses. Taken from
Burchett et al. (2020).

building blocks of chemicals, compounds and organisms. The neuronal network is

an example of such a structure that exists on a human scale. This is a hierarchical

network in which neurons cluster into circuits, columns and different intercon-

nected functional areas (Vazza & Feletti, 2020). Nature has a way of replicating

these networks on larger scales. The ‘slime mold’ Physarum polycephalum is a uni-

cellular organism that is known to explore its environment for food sources and

shape itself into highly intricate networks. The slime mold has been used to re-

construct highly efficient transport networks, such as the Tokyo rail system (Tero

et al., 2010). However, the multi-scale nature of these networks extends further.

Within galaxies, filamentary structures extend on parsec1 scales that connect giant

molecular clouds (Jackson et al., 2010). On the largest scales, the Universe weaves

a vast network known as the cosmic web that connects different cosmic structures.

1The parsec, abbreviated as pc, is a unit often used for measuring cosmological distances.
1pc = 3.09× 1016m
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Whilst the cosmic web spans many more orders of magnitude in distance compared

to the neuronal networks of the brain and slime mold, it demonstrates a remark-

able similarity to these smaller-scale networks (e.g. Burchett et al. 2020; Vazza

& Feletti 2020). This implies a scale-free nature to these networks. Figure 1.1

illustrates how the ‘slime mold model’ is used to reconstruct the cosmic web. In

what follows, we describe the largest of these types of network: the cosmic web.

1.1.1 History of the cosmic web

Whilst Zel’dovich (1970) was the first to predict the presence of components of the

cosmic web, (namely pancakes and voids), the term ‘cosmic web’ was first coined

by Bond et al. (1996). They found that the final-state cosmic web is actually

present in embryonic form in the overdensity pattern of the initial fluctuations.

This structure arises due to the presence of small perturbations that propagate

through the early Universe’s primordial plasma, which is visible through temperate

fluctuations in the cosmic microwave background. This results in over and under-

densities, providing the seeds of structure growth (Springel et al., 2006). Over

cosmic time, these fluctuations are amplified through gravity and build highly

asymmetrical structures. Overdense regions firstly collapse to form walls, then

collapse through two principal axes to form filaments before finally forming clus-

ters (Arnold et al., 1982). The end result is the cosmic web – the dark matter

skeleton that connects the Universe.

1.1.2 Observing the cosmic web

At a similar time to the theoretical predictions of the cosmic web (Zel’dovich,

1970; Shandarin & Zeldovich, 1989), some of the first large-area galaxy redshift

surveys provided observational evidence of a local anisotropic distribution of mat-

ter. The first CfA redshift survey, conducted by Huchra et al. (1983), mapped 2400

galaxies down to m ≈ 14.5 using optical spectroscopy. In order to map galaxies

in three-dimensions, we need an estimate of their line-of-sight distance. From

spectroscopy one can measure redshift, via the relative change in wavelength of a

spectral feature. In an expanding Universe, the redshift is related to the distance

3



Figure 1.2: Comparison of the first redshift survey to provide evidence of a large-
scale network compared to a more recent, improved map. Top panel: approxi-
mately 2000 galaxies identified through spectroscopy in the first CfA survey (de
Lapparent et al., 1989). Bottom panel: approximately 700,000 galaxy identified
in the SDSS-MAIN survey (York et al., 2000), providing a much more detailed
picture of the cosmic web.
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to the source. For small cosmological distances, one can approximate distances

using the recessional velocity inferred from the redshift, via the Hubble Constant.

At greater distances, one needs to use a full cosmological model to convert redshift

to a distance. However, there is a complication: in addition to the cosmological

expansion, the observed redshift also includes components due to the peculiar

velocities of both the observer and the emitter in their local cosmological rest

frames. The correction for the observer’s velocity affects all measurements in a

systematic way. On the other hand, if we simply convert observed galaxy redshifts

to distances, they will scatter around the true distance. For nearby galaxies, the

observed redshifts are dominated by peculiar velocities. Further afield, distances

estimated from redshift are relatively accurate, and the cosmic web can be dis-

cerned. However, the blurring along the line-of-sight complicates the identification

of individual structures.

Subsequently, de Lapparent et al. (1989) complemented this survey and was the

first to detect a network of structures, including clusters and voids. Over the

following decades, numerous redshift surveys studied the cosmic cartography of

the low redshift Universe. Surveys such as the Sloan Digital Sky Survey (SDSS,

York et al. 2000), the Two-Degree Field Galaxy Redshift Survey (2dFGRS, Colless

et al. 2001), the Galaxy and Mass Assembly survey (GAMA, Liske et al. 2015), the

VIMOS Public Extragalactic Redshift Survey (VIPERS, Mohammad et al. 2018)

and, more recently, the Dark Energy Spectroscopic Instrument (DESI, Secco et al.

2022) all probe the distribution of galaxies over a wide area, providing compelling

observational evidence for the presence of a cosmic web. Over the last fifty years,

the detail of the map of the local Universe has improved tremendously, made

possible by higher fiber multiplexes resulting in improvements in sampling rates

of galaxies as well as the exploration of fainter magnitudes. This is illustrated

in Figure 1.2, where a much clearer depiction of the large-scale structure of the

Universe is presented by the SDSS in the bottom panel, compared to the CfA’s

‘slice of the Universe’ distribution in the top panel.

Through the aforementioned surveys, we are now able to visualize some of the

striking features present in the cosmic web. These features include nodes, (often

identified as clusters), long tendrils connecting nodes, known as cosmic filaments,

sheets (or walls), and void regions. We will go into more detail about these

structures in the following sections. The presence and evolution of these four

5



structures follows a well-defined process, described by the Zel’dovich formalism.

For a three-dimensional overdense region to collapse, its self-gravity must overcome

both the cosmological expansion and the tidal field due to surrounding structure.

This requirement may be reached in some directions, but not in others, so a

given region may only be collapsing along one or two axes. Generally, a three

dimensional overdense region collapses along all three directions under the force of

gravity. This initial density is not static, but is undergoing cosmological expansion.

However, the collapse is primarily along one direction, resulting in the formation of

a two dimensional sheet. Following this, the collapse continues through the next

most significant principal axes to form filaments before finally forming clusters

(Arnold et al., 1982). This well ordered sequence of anisotropic gravitational

collapse is illustrated in Figure 1.3. We note that this is a simplified model that

we are imposing on a more complicated reality to aid understanding.

Currently, observations alone can not provide a holistic view of the formation and

evolution of the cosmic web. One of the main reasons is that even at low red-

shift, certain low-contrast features of the cosmic web remain incredibly difficult

to distinguish from spurious patterns in the matter distribution. Cautun et al.

(2014) displayed the distributions of overdensities in different cosmic web struc-

tures and found that there are large overlaps in the density distributions between

each consecutive environment. For example, filaments have a broad overdensity

distribution which overlaps with nodes, walls and voids. As a result, characteriz-

ing the cosmic web is non-trivial, especially observationally. Fortunately, there are

other tools we can use that allow us to help plan and optimize the characterization

of cosmic structures in future observations.

1.1.3 Simulations of the cosmic web

It is important to note that our current understanding of the large-scale structure

of the Universe requires the presence of dark matter. Whilst we do not know what

dark matter is made of, it is theorized to be the underlying skeleton of the cosmic

web, which baryonic matter is later accreted on to. Cold dark matter (CDM) is

the most widely accepted paradigm. Simulations have shown that, without the

incorporation of CDM, baryonic matter would not have sufficient time to form the

structures we see in the present day (Davis et al., 1985). Furthermore, the most

6
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Figure 2. The formation of structure according to the Zel'dovich 
formalism. The sequence starts with the left-most ...

Figure 1.3: The formation and evolution of cosmic web structure, from an initial
overdensity to a galaxy cluster. The sequence starts in the left most panel where
an ellipsoidal overdensity collapses along one axis to form a sheet. This is followed
by a contraction along the second major axis to form a filament before finally fully
collapsing to form a cluster. This figure is taken from Cautun et al. (2014).

commonly used cosmological model also incorporates ‘dark energy’ (Λ) to explain

the accelerating expansion of the Universe (Riess et al., 1998; Perlmutter et al.,

1999). These contents form the basis of the ‘standard model’ of cosmology, known

as ΛCDM.

In terms of numerical simulations of large-scale structure, not knowing the nature

of dark matter is, counter-intuitively, currently not a huge hindrance. CDM is

collisionless and only interacts through gravity, meaning that computer simula-

tions ran only using dark matter particles are relatively inexpensive. Given that

evidence suggests that CDM outweighs baryonic matter by a factor of five to one,

dark matter only simulations are relatively successful at recreating observed large-

scale structure, (see Angulo & Hahn 2022 for a review), as well as the underlying

substructure of dark matter haloes (Kuzio de Naray et al., 2009). Also known as

N-body simulations, these involve using the equations of motion of a large number

of particles, as well as their interacting forces, and numerically integrating them

over time to study the evolution of a system from a set of initial conditions.

The Universe, however, does not only contain dark matter, and a lot of the astro-

physical processes that play an important role in the evolution of cosmic structures

are directly impacted by baryonic physics. As a result, to make N-body simula-
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tions more realistic, it is necessary to model with hydrodynamics. By simulating

with hydrodynamics, we can incorporate mechanisms that include baryonic, gas

and stellar physics. These processes are mainly confined to smaller, kpc scales,

such as active galactic nuclei (AGN) feedback, supernova feedback, radiative cool-

ing and shocks (Springel et al., 2001; Springel, 2005; Beck et al., 2015; Hopkins,

2015; Davé et al., 2019). Whilst including these features in the simulations is a

necessary component to understand galaxy formation and evolution, they are far

more computationally expensive than the dark matter only N-body simulations.

There currently exists a plethora of simulations that focus on different components

of the cosmic web. These range from large-scale cosmological box simulations to

zoom-in resimulations of overdense regions, such as galaxy clusters. I discuss the

simulations used in this work in detail in Chapter 2.1.2.

1.2 Components of the cosmic web

1.2.1 Galaxy clusters

Galaxy clusters are the densest region in the cosmic web that typically reside at the

location of nodes (Aragón-Calvo et al., 2010; Cohn, 2022). Being the most massive

gravitationally bound structures in the Universe, galaxy clusters host hundreds to

thousands of galaxies and are generally differentiated from other structures by

hosting a halo with mass exceeding 1014M⊙. They are virialized objects, meaning

that the kinetic energy of the cluster galaxies and intracluster gas is balanced

by the gravitational potential energy of the entire system. Galaxy clusters are

theorized to form via hierarchical structure formation. This is a ‘bottom-up’

process, in which small objects merge early on to form the most massive structures

that we identify today (Gunn & Gott, 1972).

Dark matter haloes do not have sharp boundaries. Instead, it is common practise

to use the following equation to define a radius based on the overdensity:

r∆ =

(
3M∆

4π∆ρcrit

)1/3

, (1.1)
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Figure 1.4: Observations of the galaxy cluster Abell 1689. Overlaid on a composite
Hubble Space Telescope image is the dark matter distribution, inferred through
lensing, in blue. The white contours correspond to the spatial distribution of mass
from Chandra X-ray data that traces the ICM in the galaxy cluster. Image credits:
NASA, ESA, E. Julio., (Scarlata et al., 2013).

where ∆ is the density contrast ((ρ − ρ̄)/ρ̄), M∆ is the mass enclosed within a

given radius r∆ and ρcrit is the critical density of the Universe. The values of ∆

differ depending on the types of observations one is using and what part of the

cluster region they are probing. Going forward, we will refer to R200, that is the

radius r at which the density drops below 200ρcrit. Simulations show that this

radius is sufficient to separate infalling material from the relaxed part of a cluster.

Typically, for galaxy clusters, this is between 1-3 h−1 Mpc. h is the dimensionless

equivalent of the Hubble Constant H0. Typically h = H0 / (100 km/s/Mpc), but

other definitions are found. Galaxy clusters are complex bodies and feature many

different components, most of which are directly or indirectly observable. In the

next few paragraphs, we briefly outlay the constituents of a galaxy cluster.

Firstly, is the dark matter halo: the galaxy cluster’s largest mass component,

contributing to approximately 90% of the total cluster mass (Gonzalez et al.,

2013). At low redshift, galaxy clusters have decoupled from the Hubble expansion

and contain gravitationally bound matter, which, in turn, is responsible for the
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accretion of baryonic matter. Whilst it is not possible to observe the dark matter

halo, indirect methods, such as gravitational lensing yield information about its

mass content and density (Soucail et al., 1988; Hoekstra et al., 2013). This is

illustrated in Figure 1.4 where the dark matter content of Abell 1689 is illustrated

in blue. Further to this, N-body simulations indicate that the radial density

profile of a dark matter halo can be modelled well by the Navarro-Frenk-White

profile (NFW; Navarro et al. 1997). Although problems exist with this model,

it is generally a good approximation and is further supported by weak lensing

measurements (Okabe et al., 2013).

The cores2 of galaxy clusters are high density regions, where a large number of

galaxies are packed into a relatively small volume of space. Within the virialized

core of the cluster is the Intracluster Medium (ICM), contributing to approxi-

mately 10% of the cluster’s mass budget (Lau et al., 2009). The ICM is the main

baryonic component of a galaxy cluster. It is a relatively low density (10−3 cm−3)

hot (107 K) plasma that permeates the cluster main halo and is visible at X-

ray wavelengths (Evrard, 1990; Mohr et al., 1999; Peterson & Fabian, 2006) and

through the Sunyaev-Zeldovich effect (Sunyaev & Zeldovich, 1972). The contours

in Figure 1.4 illustrates the X-ray emission from the ICM. Whilst the origin of

ICM is debated, a common theory is that ICM is heated through various hydro-

dynamic processes, such as AGN and supernova feedback. In turn, this is enabled

through continuous accretion of matter from cosmic filaments and through merger

events (Di Mascolo et al., 2023).

The brightest galaxy in a cluster is known as the BCG (brightest cluster galaxy)

which theoretically sits at the bottom of the cluster’s potential well and is sur-

rounded by lower mass satellite galaxies. The BCG is, therefore, often used as

a reference for the ‘centre’ of a galaxy cluster, which aligns well with the peak

of the X-ray emission (Lin & Mohr, 2004), although evidence suggests that this

can depend on the recent accretion history of the cluster (Martel et al., 2014).

BCGs are thought to form through the merger of several massive galaxies early in

the cluster’s history, as well as the ingestion of smaller satellite galaxies (Ostriker

& Hausman, 1977; Merritt, 1984). They are generally elliptical and are some of

the most massive galaxies in the Universe, sometimes exceeding stellar masses of

M∗ > 1012M⊙ (Zhao et al., 2015). Within the inner few hundreds of kiloparsecs of

2Throughout this thesis, we refer to the ‘core’ as the virialized region of a cluster
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the cluster exists Intracluster Light (ICL). ICL is hypothesized to be the light of

stars that have been stripped from interactions between cluster galaxies and the

ICM and traces the potential of the dark matter halo (Lin & Mohr, 2004). Whilst

the combination of the luminosity originating from the BCG and ICL contain a

significant fraction of the cluster’s total luminosity, together, they contribute to

less than 1% of the overall cluster’s mass (Gonzalez et al., 2013).

1.2.1.1 Methods for observing clusters

Now that we have discussed the typical ingredients of a galaxy cluster, we layout

common methods for observing them.

In 1958, George Abell published one of the first galaxy cluster catalogues, accumu-

lating a total of 2712 clusters (Abell, 1957). After identifying a set of crtieria, he

identified clusters visually by counting overdensities of galaxies that appeared in a

stack of photographs from the Palomar Observatory. Since, many of these objects

have been observationally verified as galaxy clusters and his catalogue is still used

to this day. There are several methods that are commonly used for classifying

and studying galaxy clusters. These include X-ray emission from the ICM (e.g.

Sarazin 1986), galaxy-galaxy cluster gravitational lensing (e.g. Broadhurst et al.

1995), photometric analysis of the properties of clustered galaxies (e.g. Gladders

& Yee 2000) and the spectral distortion of CMB photons by the hot ICM, known

as the Sunyaev-Zel’dovich effect (Sunyaev & Zeldovich, 1972). In this thesis, we

only focus on spectroscopy.

Optical spectroscopy and photometry are regularly used to infer the light profiles

of galaxies in and around clusters. The flux from galaxies can be measured quickly

over large wavelength ranges, known as color bands, (photometry), or over much

smaller wavelength increments, (spectroscopy). Whilst there is much information

that can be extracted using photometry, high-quality photometric redshifts alone

are not sufficient for accurately determining cluster membership. Instead, the

spectrum of a galaxy can provide a more robust determination of its redshift and

its baryonic properties. Whilst this method has longer integration times and is

more costly, at low redshift, the uncertainities in the redshift measurements are

typically reduced from ±0.1 to ±0.001 (Hopkins, 2015). The error in the line-of-
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Figure 1.5: An illustration of the morphology density relation. This figure depicts
some of the first observational evidence of the connection between the morphology
of a galaxy and the density of its environment. It displays the fraction of differ-
ent galaxy types, (elliptical, lenticular and spiral/irregular) in different projected
densities. Taken from Dressler (1980).

sight distance, derived from Hubble’s law, can be reduced from hundreds of Mpcs

to tens of Mpcs, allowing a much more accurate cluster membership quantifica-

tion. As a result, spectroscopic surveys of galaxy clusters and their members are

preferentially used for detailed studies of galaxy cluster environments. Examples

of such are the WINGS (Fasano, G. et al., 2006) survey and the GOGREEN sur-

vey (Balogh et al., 2017). Both of these surveys provide follow up spectroscopy of

the cluster members from clusters previously identified in X-ray/by the SZ effect.

1.2.1.2 The environment of a galaxy cluster

Galaxy clusters are regions of significant astrophysical interest due to their extreme

environments. They are unique laboratories for investigating how hydrodynamic

and gravitational interactions may influence the evolution of a galaxy. Such pro-

cesses include ram pressure stripping (Gunn & Gott, 1972), galaxy harassment
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(Moore et al., 1998) and starvation (Larson et al., 1980), which can all act to

influence the morphology and star formation rates of these galaxies. One of the

first quantitative studies in this area was that of Dressler (1980), who discovered

the so called ‘morphology density relation’. As illustrated in Figure 1.5, in high

density environments, early-type elliptical and lenticular galaxies are more com-

monly located. Conversely, in low density environments, galaxies are more likely

to be late-type spirals. This finding implies a connection between galaxy evolution

and their surrounding environment, providing early evidence for this relationship.

Beyond the core of the cluster is the cluster infall region. In hierarchical cluster-

ing, galaxy cluster sized haloes accrete smaller haloes over time. This results in

the accreted objects having radially infalling velocities as well as velocities with

large random motions (Diaferio & Geller, 1997). It is in this region where the

gravitational influence of the cosmic web skeleton overcomes that of the cluster

and hence, is a region of large complexity. Further to this, there is evidence that

galaxies experience environmental effects in the infall region of clusters, a term

coined pre-processing (Zabludoff & Mulchaey, 1998). This further has the poten-

tial to influence their intrinsic properties before they are accreted on to the cluster

(Cortese et al., 2006). In the next few sections, we describe in detail the possible

cosmological structures that provide the channels for such pre-processing.

1.2.2 Galaxy groups

Second to galaxy clusters, galaxy groups exhibit the largest dark matter haloes

of all cosmic structures. The definition of a galaxy group varies throughout the

literature, (see Lovisari et al. 2021 for a review on galaxy groups). Examples of

groups include Compact groups : a small number of galaxies, usually between 3

and 10 (Taverna et al., 2023), that are in close proximity and are relatively isolated

(Hickson et al., 1992). Hickson (1982) created a catalogue of compact groups in

1982, one of which is Stephan’s Quintet (Stephan, 1881). Fossil groups : galaxies

that are embedded in a giant X-ray halo, typical of a group, and are theorized to

be the latest stage in galaxy evolution, as several group galaxies merge into one

galaxy (Ponman & Bertram, 1993).

More massive galaxy groups with higher number densities are more likely to retain
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an ‘intragroup medium’ and will be more influential in reshaping the properties

of galaxies. Criteria for defining galaxy groups vary; some N-body simulations

require a halo mass of M500 > 1013M⊙ (Le Brun et al., 2014), whilst other studies

using spectroscopic observations suggest a halo mass of 1012.5M⊙. The review on

galaxy groups by Lovisari et al. (2021) suggested that astronomers use the ‘rule of

thumb’ that systems with 50 galaxies or more are clusters, and less than this are

groups. Either way, there is clearly a contention regarding the ‘true’ definition of

galaxy groups as it varies depending on the scale of the study and the scientific

motivation.

Throughout this thesis, we are focused on galaxy groups that are in close proximity

to galaxy clusters and are strong candidates for presenting signs of pre-processing.

Galaxy clusters accrete a significant fraction of their z = 0 galaxy population

through galaxy groups (McGee et al., 2009) and, therefore, are interwoven into

the large-scale cosmic web. Their presence in the infall region of clusters can

significantly influence the galaxy-galaxy merger rates (Vijayaraghavan & Ricker,

2013) as they can easily sweep up field galaxies and grow quickly. Group members

are also likely influenced by their group environment prior to their accretion onto

the main halo of the cluster, shown in simulations (Bahé & McCarthy, 2014; Jung

et al., 2018), and observations (Jaffé et al., 2016; Bianconi et al., 2017; Haines

et al., 2018; Benavides et al., 2020; Lopes et al., 2023).

Currently, there exists a range of techniques that successfully detect groups in

larger-scale observations. One of the most common is the Friends-of-Friends (FoF)

percolation algorithm (Huchra & Geller, 1982), which has been used, for example,

in the 2dFGRS (Eke et al., 2004), the SDSS (Berlind et al., 2006) and GAMA

(Robotham et al., 2011). However, in the infall region of galaxy clusters, group-

finding is a non-trivial task. Inside the cluster’s potential well, galaxies have large

random motions relative to one another. In addition, infall motions towards the

cluster and filaments also dramatically perturb the galaxy distribution (Kuchner

et al., 2021). Therefore, with respect to the observer, galaxies in the vicinity of

clusters and groups may have similar distances, but their large random motions

lead to very different redshifts. This manifests as long, artificially extended struc-

tures, known as the ‘Fingers of God’ (FoG; Tully & Fisher, 1978). The length of

the FoG for a massive cluster with velocity dispersion of 1400 km s−1 corresponds

to 20 h−1 Mpc extending in each direction (Kuchner et al., 2021). Therefore, in
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the vicinity of galaxy clusters, we are limited to more laborious, non-systematic

methods of group detection that are used on a cluster-by-cluster basis. For exam-

ple, previous studies have relied on visually inspecting 3D maps of the galaxies in

RA, DEC, and redshift space to detect possible galaxy overdensities (Jaffé et al.,

2013) or the Dressler-Shectman test that compares the local velocity and velocity

dispersion for each galaxy against a global value (Dressler & Shectman, 1988).

These and other methodologies are successful on a single cluster basis but become

very time consuming when considering multiple clusters, where hundreds of groups

are observed. We address this problem in Section 5.

1.2.3 Cosmic filaments

Cosmic filaments are arguably the most striking feature in the cosmic web. Since

z ≈ 2, cosmic filaments host half of the mass budget of the Universe, despite only

contributing to 6% of its volume (Cautun et al., 2014). Their ubiquity is evident

in Figure 1.6, where the cosmological box is connected through long ridges known

as filaments. This same figure shows the remarkable multi-scale nature of these

features. On the largest scales, filaments can be seen connecting the bright peaks

in the density field, where galaxy clusters are located at their intersection (Aragón-

Calvo et al., 2010). The bridges that connect clusters to clusters are often tens

of megaparsecs in length, as found in observations (e.g. Finoguenov et al. 2003)

and in simulations (e.g. Galárraga-Espinosa et al. 2022). In the middle and lower

panel of Figure 1.6, a 100 and 20 h−1 Mpc cut out of the native simulations are

displayed. It is here where we can see an increase in the number of thinner cosmic

filaments that feed the core of a galaxy cluster, as seen as the bright peak in the

center of the zoom-in plots. These filaments are typically several megaparsecs in

length, as found in observations (e.g. Tanimura et al. 2020) and simulations (e.g.

Rost et al. 2021) and act as highways that funnel galaxies and groups into the

virialized cluster core.

Whilst there have been several studies on the multiscale length of filaments, their

thickness is much more difficult to quantify. As previously mentioned, filaments are

a later evolutionary state of cosmic walls and are therefore, a constantly evolving

component of the cosmic web. Subsequently, filaments do not have definitive

boundaries, and their thickness depends on the type of study and definitions used.
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Figure 1.6: An illustration of the multi-scale nature of cosmic filaments in the
larger-scale cosmic web. This picture is taken from the Millennium simulation
(Springel et al., 2005), a cosmological hydrodynamic simulation. The first box
shows the full simulation box, then each consecutive panel zooms in on the same
region, showing a variety of distance scales, from the cosmic web to high density
galaxy clusters that are connected by cosmic filaments.
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Studies have shown that their radii can typically lie anywhere between 0.7 and

5 h−1 Mpc (Kuchner et al., 2020; Dolag et al., 2006). Further to this, there is

evidence that suggests that filaments do not have a uniform thickness, such that

they generally get thicker closer to nodes of the cosmic web (Rost et al., 2021).

The complex environment of cosmic filaments is further evidenced through the

ambiguity in their detection. Observationally, on the largest scales, there are cur-

rently two main methodologies used to characterize cosmic filaments. The first is

from optical spectroscopy of galaxies through redshift surveys, which is possible

due to galaxies tracing the dark matter skeleton of the cosmic web. Simply put,

with spectroscopy, precise redshifts, (and therefore, distances), can be calculated,

allowing a robust estimation of the 3D position of galaxies, with the largest un-

certainty in their line of sight distance. In tracing the positions of a large number

of galaxies, the density field can be calculated, from which there are a variety of

methods to detect the spine of a cosmic filament, as outlined in a review by Libe-

skind et al. (2017), and we further discuss in Chapter 2.3. Examples of catalogues

of filaments derived via the aforementioned survey type are: Tempel et al. (2015);

Alpaslan et al. (2016); Malavasi et al. (2016).

The second main methodology developed to tackle the mapping of cosmic filaments

is through stacked X-ray emission of the warm hot intergalactic medium (WHIM).

Numerical simulations indicate that a substantial fraction of baryons are found in

filaments in the form of a hot plasma, known as the ‘Warm Hot Intergalactic

Medium’ (WHIM; Aragón-Calvo et al. 2010; Cautun et al. 2014; Martizzi et al.

2019). However, due to the diffuse nature of filaments and their low contrast in

density, it is often required to stack filaments in order to derive a statistically

significant signal. Identification of cosmic filaments through X-rays also firstly

relies on the detection of filaments through alternative means, namely optical

spectroscopy. Furthermore, it is required to mask out the hot plasma emission from

galaxy groups and clusters, adding further complexity to their detection. Finally,

using the predefined catalogue of filaments, one would record the X-ray count

around a certain distance to the spine of the filament in the appropriate energy

band(s). Examples of filamentary detections through stacked X-ray emission are:

Tanimura et al. (2020); Vernstrom et al. (2021).

The majority of work carried out in this thesis focuses on the detection of cos-
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mic filaments in the infall region of galaxy clusters, in preparation for upcoming

wide-field spectroscopic surveys. In this regime, there are a range of additional

complexities that add significant difficulty to detecting cosmic filaments, even with

the capabilities of next generation wide-field multi-object spectroscopic surveys.

We further test and optimize the observational detection of cosmic filaments in

Chapter 3 & 4.

1.3 Pre-processing

There is an ever increasing amount of evidence suggesting that the cluster envi-

ronment is paramount in affecting the evolution of galaxies, as we alluded to in

Section 1.2.1, and is most notably manifested in the morphology density relation.

However, the role that separate cosmic web environments play in the evolution

and mass assembly of galaxies in the infall region of clusters is much less well

understood. Recent studies show that the transition of galaxies from ‘field-like’

to ‘cluster-like’ can occur at 2-3 virial radii (Haines et al., 2015, 2018; Kuchner

et al., 2017; Bianconi et al., 2017; Tawfeek et al., 2022; Werner et al., 2021). This

implies that galaxies in groups and filaments in the infall regions of clusters ex-

perience gravitational and/or hydrodynamical interactions during their infall, far

before they traverse the cluster environment.

With respect to galaxy groups, research suggests that galaxies that sit in groups

in the infall region of clusters have a reduced star formation compared to galaxies

outside of groups in the same region (Bianconi et al., 2018). Vijayaraghavan &

Ricker (2013) found that galaxies in groups experience pre-processing in the form

of the removal of their hot halo and increased galaxy-galaxy merger rates. Cortese

et al. (2006) also demonstrated that, in this region, galaxies in groups can suffer

ram pressure stripping as well as starburst periods from galaxy-galaxy mergers.

With respect to cosmic filaments, observational and simulation based studies sug-

gest that galaxies that reside closer to the spine of a filament are typically more

massive, redder and more star forming (Alpaslan et al., 2016; Malavasi et al., 2016;

Chen et al., 2017; Kraljic et al., 2017; Ganeshaiah Veena et al., 2018; Laigle et al.,

2017; Sarron et al., 2019). Whilst this suggests that the filamentary structures
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typically act to inhibit the supply of gas to galaxies, there is also evidence for a HI

enhancement near filaments of the cosmic web (Kleiner et al., 2016; Vulcani et al.,

2019), implying that galaxies are able to accrete cold gas from the filamentary

environment. Both of these results point towards the presence of pre-processing

and is therefore, a main target of upcoming wide-field observational surveys.

The infall region of a galaxy cluster is evidently a complex region. Coincidentally,

much of our knowledge of the physical mechanisms at play here are limited by

a lack of detailed spectroscopic observational data. In this thesis, we describe

some of the final steps that are taken in preparing for observational surveys that

are aimed at tackling these kinds of problems. After all, if we want to understand

how cosmic web environments influence galaxy evolution, can we actually robustly

classify them?

1.4 Structure of this Thesis

This thesis is structured as follows. In Chapter 2, we describe the simulation

dataset that is used in this work. We also describe the astronomical survey moti-

vating this work and the technical details of software used in this thesis. Chapter 3

presents our investigation into the feasibility of extracting cosmic web filaments

after applying survey-like selection effects to mock galaxy clusters. After applying

these selection effects, we investigate the reconstruction of the cosmic web around

galaxy clusters by calculating different properties of the filamentary networks. In

Chapter 4 we build on the research presented in Chapter 3 and investigate the allo-

cation of mock galaxies to different cosmic web environments, using hydrodynamic

simulations. We demonstrate the difficulty in allocating galaxies to filamentary

environments and the need for large statistical samples of galaxies in filaments. In

Chapter 5, we present a theoretical study into the detection of galaxy groups in

close proximity to galaxy clusters using a topological structures extractor. Finally,

the conclusions of this thesis, a summary of ongoing/future work and applications

of this thesis to future observations are discussed in Chapter 6.
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Chapter 2

Simulation Data and Technical

Analysis

This Chapter describes in detail the simulation data and software employed in

this thesis. Firstly, and most importantly for this work, we discuss the technical

details of the simulation datasets in Section 2.1. In Section 2.2 we describe the

survey that motivates the studies carried out in this thesis. In Section 2.3, we

discuss the cosmic web extractor used in this work.

2.1 Simulations

We begin this section by describing the simulation dataset that forms the foun-

dation of the work carried out in this thesis. In preparation for observations,

we can use state of the art dark matter and hydrodynamic simulations to better

constrain cosmic web environments. All of the work carried out in this thesis

uses the TheThreeHundred galaxy cluster simulations (Cui et al., 2018, 2022).

These are a set of resimulations of cluster regions from a larger dark matter only

box: the MDPL2 Multidark Simulation (Klypin et al., 2016). We describe these

simulations and the halo selection algorithim in Sections 2.1.1 - 2.1.3.
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2.1.1 MDPL2 MultiDark simulations

The MultiDark simulations1 are a widely used set of simulations. These simula-

tions range in box size and resolution, from a comoving length of 4h−1 Gpc to

0.25h−1 Gpc (Klypin et al., 2016). The work carried out in this thesis is built

on the MDPL2 MultiDark Planck simulation. MDPL2 is a periodic cube of co-

moving length 1h−1Gpc containing 38403 dark matter particles, each with mass

1.5× 109 h−1M⊙. MDPL2 uses Planck cosmology (ΩM = 0.307,ΩB = 0.048,ΩΛ =

0.693, h = 0.678, σ8 = 0.823, ns = 0.96). The Plummer equivalent gravitational

softening length is 7h−1 kpc.

As MDPL2 is a dark matter only simulation, it is possible to simulate large cos-

mological volumes as the particles are only subject to gravitational interactions

with each other. The initial conditions are seeded at a redshift of 100 using

the Zeldovich approximation. The MDPL2 simulation then uses the L-Gadget-

2 cosmological code (Springel, 2005), which is a modification of the widely used

Gadget-2, a smoothed particle hydrodynamics code (SPH). Halo catalogues were

then extracted using a range of halo finders, one of which we describe briefly in

Section 2.1.3.

2.1.2 TheThreeHundred project

In this work, we employ TheThreeHundred2 simulation project (Cui et al.,

2018). TheThreeHundred is a set of zoom-in resimulations of the Multidark

Dark Matter only (MDPL2) cosmological simulation. This simulation suite ex-

tracts 324 spherical regions centered on each of the most massive clusters (Mvir >

8 × 1014h−1M⊙) identified at z = 0. It follows them back to their initial con-

ditions and resimulates the hydrodynamics of the volume surrounding a 15 h−1

Mpc radius sphere enclosing the cluster and its environment at a higher resolu-

tion. Outside of this high resolution region are a set of consecutive shells, hosting

lower mass resolution particles that reproduce the tidal fields of the large-scale

structure at a reduced computational cost. The highest resolution dark matter

1https://www.multidark.org/
2https://the300-project.org/
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particles are divided into dark matter and gas, following the cosmological baryonic

fraction using the Planck 2015 cosmology: Ωb/ΩM ≈ 0.16. This gives a combined

mass resolution of mDM +mgas = 1.5× 109h−1M⊙. There are 128 individual time

snapshots for all 324 zoomed-in Lagrangian regions, ranging from z = 17 to z = 0.

These zoom-in re-simulations have been run with the SPH codes: Gadget-

MUSIC (Sembolini et al., 2012), Gadget-X (Beck et al., 2015; Rasia et al.,

2015) and mesh-less code GIZMO-SIMBA (Davé et al., 2019; Cui et al., 2022).

We only focus on Gadget-X which incorporates full-physics galaxy formation,

star formation and feedback from both SNe and AGN. In this work, we are only

using the information about the simulated dark matter haloes and not the galaxies.

TheThreeHundred simulations provide a useful testbed to develop the obser-

vational strategy and forecast the performance of upcoming wide-field surveys

around galaxy clusters. Firstly, the large volume of the parent dark-matter simu-

lation (MDPL2) ensures a high number of massive clusters are available for sta-

tistical purposes. Secondly, the high-resolution re-simulations reach out as far as

15h−1Mpc from each cluster centre, comparable to the area that the WEAVE ob-

servations will cover. The extensive information available from the cluster centre

all the way to beyond 5R200 allows us to study all the environments present – from

individual galaxy halos to filaments, groups, and the cluster core.

2.1.3 Halo selection

As we are interested in developing observational strategies of identifying large-

scale structure, we require a tool for converting clumps of bound particles in the

simulation data into galaxy haloes. The work in this thesis utilizes the widely used

AMIGA Halo Finder (Gill et al., 2004; Knebe et al., 2011) to determine the halo

properties. AHF operates by identifying peaks in the matter density field, and

returns the position and velocity of each halo and subhalo, as well as properties

such as their radii, their velocities and masses. The position of the haloes are

defined by centre of mass of the particles bound to that halo. Similarly, the velocity

of a halo is the average of the velocities of the particles bound to that halo. The

final result is a list of halo catalogues for each of the 324 resimulated clusters, for all

128 snapshots. In this thesis, we use the information from the z = 0 snapshot and
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only use the following columns: Xc, Yc, Zc, Vxc, Vyc, Vzc,Mvir, Rvir, E, b, c, fMhires,

which corresponds to the x,y,z positions of the clusters in kpc, the velocities in

the same planes in km/s, the virial mass and radius in solar masses and kpc, the

moment of inertia tensor3, the sphericity and asphericity4 of the haloes and the

fraction of mass in high-resolution particles.

The direct outputs of AHF place the resimulated regions with respect to the larger

MDPL2 cosmological box. We briefly run through the post-processing procedure

we use to appropriately center the clusters. To do this, we firstly place the positions

and masses of the haloes in proper coordinates from comoving coordinates, using

h = 0.7. Then, we place the most massive cluster halo at the origin and restrict

haloes to fall within 15h−1 Mpc of the cluster main halo. Finally, as is typically

done is observational studies of clusters, we put the velocities of the haloes in the

reference frame of the cluster. Any further modifications of the halo catalogues

we describe in the upcoming chapters.

2.2 The Multi Object Spectroscopic WEAVE Sur-

vey

WEAVE (William Herschel Telescope Enhanced Area Velocity Explorer) is a next

generation multi-object-spectrograph (MOS). At the time of writing this thesis,

the instrument is currently undergoing commissioning after first light data was

taken in December of 20225. The spectrograph makes use of ∼ 1000 individual

fibres deployable over a 2-degree-diameter field-of-view, with both high resolution

spectral observing modes (R ∼ 20000) and low resolution modes available (R ∼
5000). The instrument also includes 20 small deployable integral field units (mini-

IFUs), as well as one large IFU. In this thesis we are only concerned with the MOS

observing mode. Further details on the instrument can be found in Balcells et al.

2010; Dalton et al. 2014; Dalton 2016; Jin et al. 2023.

The high source densities achievable from WEAVE’s high fibre multiplex will

3the moment of inertia tensor is used to calculate the principal axes of a particle distribution.
4the sphericity is defined as the ratio of the third principal axis to the first principal axis.

Asphericity is the ratio of the second principal axis to the first principal axis.
5https://www.ing.iac.es/PR/press/weave_LIFU_first_light.html.
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enable a large range of scientific studies to be undertaken in the coming years. Such

research areas include low redshift stellar spectra, intermediate redshift stellar

populations of field galaxies and high redshift quasars. WEAVE will carry out a

number of sub-surveys in the next few years, one of which is the WEAVE Wide-

field Cluster Survey (WWFCS; Kuchner et al. in prep). The WWFCS is one of

three WEAVE Cluster surveys, the other two being the Nearby Cluster Survey

and the Cosmological Cluster survey (Jin et al., 2023). In the next section, we

describe the WWFCS survey details.

2.2.1 The WEAVE Wide Field Cluster Survey

The WWFCS will utilize the 1000 fibre-fed MOS to study the infall regions of

galaxy clusters in unprecedented detail. The WWFCS will observe up to 20 clus-

ters at low redshift (0.04 < z < 0.07) and will return spectra for thousands of

cluster members for each cluster, out to several virial radii. The sample consists

of galaxy clusters previously observed in the WINGS (Fasano, G. et al., 2006) and

OmegaWINGS (Moretti, A. et al., 2017) surveys. The WINGS sample covers a

wide range of cluster masses (σ = 500 − 1200 kms−1; logLX = 43.3 − 45 ergs−1;

virial masses log(Mcl/M⊙) = 13.8 − 15.5). From the WINGS sample, approxi-

mately 20 clusters have been selected that are in a suitable declination range (10

< dec < 60 degrees), have a reasonable RA distribution and are covered by the

SDSS footprint so that there are homogeneous images available for target selection.

The WWFCS selected clusters have velocity dispersions and X-ray luminosities

that are statistically indistinguishable from the parent sample and are therefore,

unbiased in terms of their mass distribution (Kuchner et al. in prep). The WWFCS

will use the low spectral resolution mode and obtain optical spectra in the 366

nm < λ < 959 nm range. These spectra will yield accurate redshifts, velocity

dispersions as well as quantitative information on the star formation histories of

the different galaxy populations.
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2.2.2 WEAVE target selection

Based off current target density estimates, the natural survey depth is r = 19.75,

which translates to a stellar mass limit of approximately 109M⊙ (Kuchner et al.,

2020). Therefore, the target selection includes galaxies that are r < 19.75 and are

also subject to a colour cut −0.1 < g−r < 1.2 which retains all normal, non-dust-

reddened, cluster galaxies. To complement this, the survey will incorporate high-

quality photometry from Pan-STARRS1 (PS1; Beck et al. 2020) for determination

of the source redshifts as we have a complete footprint of all of the cluster regions.

A photometric redshift cut of ±0.1, (which corresponds to 2.5 standard deviations

(σ)), will be applied to eliminate sources that are likely not in the vicinity of

the cluster. On average, it is expected that we will have between 4000 and 6000

galaxies in each cluster structure (Jin et al., 2023), Kuchner et al. in prep.

2.2.3 WEAVE fibre allocation

An integral part of the preparation for WEAVE observations is to carry out a

realistic allocation of spectroscopic fibres to the science objects, since, this process

can potentially distort and limit the spatial information that can be derived from

said observations. Geometric and mechanical constraints (such as fibre collisions

and overlap) mean that it is not possible to assign fibres to all the galaxies on

a pointing. Optimising fibre allocation is not a trivial task, and sophisticated

software is generally used to reduce costly human intervention. Configure is the

program that WEAVE will use to find an optimal set of assignments of fibres to

positions on the sky (Terrett et al., 2014). Each field (or pointing) will contain

not only science targets, but also a set of calibration objects and guide stars, as

illustrated in Figure 2.1. Configure uses a probabilistic technique named ‘simu-

lated annealing’ (Kirkpatrick S., 1983) to mimic the thermal motion of a system

to be optimized. The ‘energy’ of each fibre with a target assigned to it is given by

(1.0+ s)/p, where s is a measure of how straight the fibre is and p, the target pri-

ority, is an integer value between 0 and 10 that is used to prioritize objects on the

fields. In our case, we assign a maximum priority of 10 to all of the cluster mock

galaxy members, and lower values to other targets (Table 3.1). The algorithm

then optimises the fibre allocation by finding the configuration with the lowest
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Figure 2.1: Configured field for an example WEAVE Observer Block (OB). The
black outermost circle indicates WEAVE’s 2-degree-diameter field of view. Each
line corresponds to a fiber that has been placed on an object. For reference, black
lines are science targets, cyan lines are calibration stars, blue lines are blank sky
targets and green lines are guide stars. This is Figure 2 in Jin et al. (2023).

‘energy’ by swapping the position of fibres until the minimum is found.

This process determines the objects that will be allocated a fibre and therefore

decides which targets will have spectroscopic information. In our case, it may

play a crucial role in determining the accuracy in extracting cosmic-web informa-

tion from the WWFCS observations, and its effect will be thoroughly tested in

Chapter 3.

2.3 Topological structures extractor

A key element of this thesis is the extraction of cosmic web components. In this

section, we describe the main tool we use to do so in our work.
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Figure 2.2: Visualization of the Delaunay tessellation for a simulated cluster from
TheThreeHundred project. The size of the cell corresponds to the inverse of
the density whilst the brightness corresponds to the density.

2.3.1 DisPerSE

To map the large-scale structure around clusters and extract filaments, we uti-

lize the topological structures extractor DisPerSE (Sousbie, 2011; Sousbie et al.,

2011), which uses the concept of Morse theory (Stein et al., 1963) and the theory

of persistence applied to matter distributions. The software takes, as input, a

discrete set of points in 2D or 3D to reconstruct the volume as cells, faces, edges

and vertices. The Delaunay Tessellation Field Estimator (DFTE; Schaap & van

de Weygaert 2000; Cautun & van de Weygaert 2019) calculates the density field

by performing a Delaunay tessellation: it divides the space into triangles (tetra-

hedra in 3D) whose vertices are formed by the point distribution. The size of the

triangles (tetrahedra) is a measure of the local density and is defined at the loca-

tion of each sampling point by the inverse of the area (volume) of its surrounding

Delaunay triangles (tetrahedra). The density estimates are then interpolated to

any other point by assuming that the density inside each triangle (tetrahedra)

varies linearly. To construct the filamentary network from the density field, Dis-

PerSE then extracts the critical points, (points where the gradient of the density
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field is zero), such as maxima, minima and saddle points. Nodes are identified as

the maxima. Arcs linking maxima to saddle-points trace the filamentary struc-

tures. The output of this algorithm is a list of segments that combine to form a

filamentary skeleton that trace the topologically significant regions in the density

field.

2.3.2 Input parameters

When running DisPerSE, there are two main user chosen input parameters: the

persistence and the smoothing. Further to this, there is an optional argument to

specify how the boundary conditions are dealt with. The last option is to use

mass-weighting in the structures extraction. These features are defined as the

following:

1. Persistence: Persistence is the ratio of the density value between a topolog-

ically significant pair of critical points (Kraljic et al., 2022). Expressed in

terms of numbers of σ, persistence quantifies the significance of the critical

pairs in the Delaunay tessellation of a random discrete Poisson distribution

and is analogous to the signal-to-noise ratio often used in observational as-

tronomy. Figure 2.3 shows a filament network plotted with two differing

persistence thresholds. The top row uses a persistence of 2σ and the bottom

row uses a persistence of 3σ. It is evident there are features in the lower

persistence network that do not appear in the higher persistence network

as a result of filtering noise and removing less significant filaments. When

extracting filaments with DisPerSE, setting a higher persistence threshold

returns only the most robust, topologically significant, large scale structure.

Lower persistence values enable the detection of smaller tendrils. Therefore,

there is a trade-off between the number of filaments that are extracted and

their astrophysical significance.

2. Smoothing : Smoothing is the second main input parameter that dictates

the rigidity of a filament network. Smoothing is achieved by averaging the

position of each vertex with that of its direct neighbors. A low level of

smoothing means the filament paths are not forced into straight lines. A

higher smoothing level results in much more rigid filament paths.
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Figure 2.3: Example filament network extracted in 2D with different persistence
thresholds. Top row: persistence = 2σ. Bottom row: persistence = 3σ. All plots
correspond to the same cluster. Left column: KDE smoothed matter density
distribution with the extracted filament network overlaid. Right column: filament
network only. This is taken from Figure 5 in Cornwell et al. (2022).
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3. Boundary conditions : Boundary conditions are the criteria that we apply to

deal with the apparent physical boundaries in the input particle distribu-

tions. A careful consideration of the appropriate treatment of the boundary

is needed. Given that we are extracting topological structures over a finite

volume, performing a hard cut on the input particles at the bounding box

causes the generation of spurious filaments near the boundary. To account

for this, DisPerSE includes an optional argument to deal with the bound-

aries. These options include a mirrored distribution, a periodic boundary

condition, a smoothed boundary condition (a surface of guard particles out-

side of the bounding box are added by interpolating the estimated density

computed from the distribution inside the bounding box) and a void bound-

ary condition (cf. Sousbie, 2011). We discuss the use of this argument further

in Section 3.3.5.1.

4. Mass-weighting : mass-weighting associates to each vertex of the tessellation

a weight corresponding to the mass of the halo at that vertex. Using mass

weighting requires an adaption of the input persistence, such that we require

a higher persistence to recover a similar looking network compared to a

non-mass weighted network. This is due to the higher contrast in density

computed during the tessellation due to the large halo mass range used

in TheThreeHundred. The choice of using mass-weighting has some

observational support from the fact that galaxies in filaments tend to be

more massive (as well as redder and less star-forming) than field galaxies

away from them (Malavasi et al., 2016; Chen et al., 2017; Laigle et al., 2017;

Kraljic et al., 2017; Sarron et al., 2019). Furthermore, Kuchner et al. (2020)

showed that mass-weighting the filamentary networks makes the filamentary

networks more reliable.
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Chapter 3

Filamentary networks in galaxy

cluster simulations

A large fraction of the work completed in this thesis revolves around the extraction

of cosmological structures around galaxy clusters. One of the final steps in taking

hydrodynamical simulations to fully-informative mock observations is allocating

a realistic fibre configuration. Only then can we understand the success and limi-

tations in our ability to reconstruct filamentary networks around galaxy clusters.

This is an essential test as without it, we will be unsure as to how well the struc-

tures we extract in future surveys will represent the ‘ground truth’. I.e., by taking

out this work, we can question whether the filament networks we extract with the

WWFCS are representative of those existing in the real Universe. In this chap-

ter, we investigate this by using TheThreeHundred galaxy cluster simulations

to design WEAVE-like mock observations. After incorporating the observational

selection effects, such as the projection, fibre configuration and application of mag-

nitude limits, we quantify the difference in the large-scale structure we trace in the

simulations compared to our ‘mock observations’. Future wide-field spectroscopic

observations of galaxy clusters will target a high percentage of galaxies. Further-

more, we show that these surveys possess the ability to accurately trace cosmic

filaments and reconstruct global parameters of the networks, such as the cosmic

connectivity. Finally, we discuss the outlook of this work with regards to these

upcoming observations. The content in this chapter was published in Cornwell

et al. (2022).
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3.1 Introduction

For the past few decades, research has focused on galaxy clusters when study-

ing the interplay between environment and galaxy evolution (Gray et al., 2009;

Balogh et al., 2017). There is a well supported relation that finds higher fractions

of quiescent and early type galaxies in clusters compared to outside of clusters

(Morphology-Density relation, Dressler et al. 1997). Typically, this is explained

through astrophysical effects that quench and transform galaxies as they encounter

the extremely dense intra-cluster medium of cluster cores during their infall. Ram

pressure stripping is one of several possible mechanisms quenching galaxies in-

falling onto a cluster (Zinger et al., 2018; Arthur et al., 2019). However, the

majority of the gas lies outside the boundaries where the clusters are virialized,

and in the intergalactic medium within filaments (Walker & Lau, 2022; Galárraga-

Espinosa et al., 2022; Gouin et al., 2022).

Galaxy clusters are therefore not isolated islands, but assemble, replenish and

grow via ongoing mergers with smaller clusters, groups and clumps of gas, as

well as through a constant flow of gas and galaxies from filaments. The most

prominent of these filaments have hot gas temperatures and dense cores that have

the possibility to strip the gas from galaxies, but also to replenish galaxies with

pre-enriched filamentary gas (Vulcani et al., 2019), impacting their mass assembly

and star formation histories in very different ways (Laigle et al., 2017; Song et al.,

2020). It is clear that the challenge of understanding galaxy evolution must include

the impact of the large-scale geometry and flows of the cosmic web, and that

galaxy transformation begins well before the galaxies fall into the cluster (“pre-

processing”, Zabludoff & Mulchaey 1998). Physical processes in the outskirts of

galaxy clusters are therefore fundamentally different from cluster cores, and thus

important areas for the study of cluster assembly and their connection to the

filaments of the cosmic web (Sarron et al., 2019; Salerno et al., 2020; Gouin et al.,

2020; Malavasi et al., 2022). However, they are challenging to capture.

Whilst filaments can be identified by mapping the gas distribution of galaxy clus-

ters in simulations (Kuchner et al., 2020; Vallés-Pérez et al., 2020; Gouin et al.,

2022), galaxies tend to trace these features of the cosmic web and can therefore

be used to detect filaments observationally (Einasto et al., 2020; Malavasi et al.,
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2020). To correctly identify filaments that feed clusters, we require a large area,

high sampling density and depth to cover a sufficient number of galaxies over a

broad range of masses. Large-area surveys such as the Sloan Digital Sky Survey

(SDSS, York et al. 2000), the Two-Degree Field Galaxy Redshift Survey (2dFGRS,

Colless et al. 2001), the Galaxy and Mass Assembly survey (GAMA, Liske et al.

2015), the VIMOS Public Extragalactic Redshift Survey (VIPERS, Mohammad

et al. 2018), and the Dark Energy Spectroscopic Instrument (DESI, Secco et al.

2022) all probe the distribution of galaxies over large redshift ranges, providing

strong observational evidence for the presence of a cosmic web. However, they

either lack statistically significant samples of galaxy clusters, or the necessary

sampling or detail required for an investigation on pre-processing by filaments

feeding clusters. Targeted spectroscopic studies that focus on clusters may pro-

vide the required sampling, but they are either only available as case studies of

stand-out targets such as Virgo (Castignani et al., 2021, 2022), or do not extend

far enough to bridge cluster infall regions to the large-scale cosmic web filaments

(e.g., OmegaWINGS Gullieuszik et al. 2015; Moretti, A. et al. 2017 or GOGREEN

Balogh et al. 2017).

To address the need for observing programmes that combine high sampling and

statistical power, we look towards next generation wide-field, multi-object spec-

troscopic (MOS) surveys of galaxy clusters as they will enable detailed study into

the far-reaching lower-density cluster outskirts. They are designed to reveal the

complex interplay between the properties of galaxies and their position in the

cosmic web filaments that feed the clusters. Examples of next generation MOS

surveys are the upcoming WEAVE Wide Field Cluster Survey (WWFCS; Kuch-

ner et al. in prep) and the 4MOST CHileAN Cluster galaxy Evolution Survey

(CHANCES; Haines et al., 2023). We motivate our studies with the WWFCS,

which will cover 20 low redshift (z ∼ 0.05) galaxy clusters in a mass range of

log(Mcl/M⊙) = 13.8− 15.5 out to and beyond 5R200. For each cluster, thousands

of new spectra will be obtained with a galaxy stellar mass limit of 109M⊙, extend-

ing our current understanding of these systems to include the infall regions and

low-mass galaxies.

Given the challenging task of accurately mapping filaments in the vicinity of mas-

sive clusters, both in terms of extreme contrasts of interlaced high and low density

regions, 2D projections, and complications due to the Finger of God effect, (Kuch-
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ner et al., 2021), careful preparation is required. We have planned, tested, and

fine-tuned our steps to map and characterise the infall regions of these clusters

with a large statistical sample of simulated clusters from TheThreeHundred sur-

vey, and investigated strategies for doing so in redshift space (Kuchner et al., 2020,

2021; Kuchner et al., 2022; Rost et al., 2021). To confidently carry out the observa-

tional programme with the 1000-fibre fed MOS WEAVE at the Wiliam Herschel

Telescope (Dalton et al., 2014), we now take the final step from simulations to

fully-informative mock observations to understand the success and limitations of

identifying filaments around clusters.

Our goal for this chapter is to quantify what effect the physical constraints of

assigning fibres to targets—a necessary and important step in the design of a

MOS survey—has on filament finding. Our previous investigations assumed that

all theoretical cluster structure members are targeted and return spectra, thus

featuring in the mapping and subsequent analysis. However, in reality, instruments

only have a finite capacity to place fibres on targets, and physical restrictions

imposed by the geometry and size of the instrumental components require us to

make decisions that will ultimately influence the success of finding filaments. In

addition, limitations of a realistic target selection may lead to losing valuable

fibres to background galaxies. Fibre collisions in dense regions like groups and

substructures in the outskirts, as well as decisions on which galaxies should receive

higher priority than others, directly link to the input for filament identification

algorithms and thus could impact the analysis of pre-processing in infall regions.

In this Chapter, we therefore close the circle of comparing simulations to observa-

tions, from a theoretical 3D volume to a fully configured 2D projection. We design

a framework for determining the feasibility of reliably characterizing the large scale

structure from galaxies that can be observed in current wide-field cluster surveys,

using concrete constraints that are matched to the WEAVE instrument and the

WWFCS.

This chapter is structured in the following way: Section 3.2 describes the data we

have used. This includes the spectroscopic survey inspiring this chapter and the

numerical simulations used to create mock observations. Section 3.3 reports our

generation of mock observations and a summary on how we extract the cosmic

web. Section 3.4 displays the results and discussion, we describe the accuracy in
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which we trace the large-scale structure surrounding our simulated clusters and

explain the importance of our results in probing the success of next-generation

spectroscopic surveys. We present our conclusions on the likely success of filament

retrieval from WWFCS in Section 3.5.

3.2 Galaxy cluster information

The framework presented in this chapter is designed with the WWFCS in mind,

but should also work for similar surveys making the adjustments required by the

specific observational strategy and constraints. We will use simulation outputs in

tandem with algorithms underpinning the observational processes of next gener-

ation wide-field cluster surveys. This section describes the planned observations

and simulated data relevant to this work.

3.2.1 The WEAVE Wide-Field Cluster Survey

As described in Chapter 2.2, the WWFCS will obtain thousands of galaxy spectra

per cluster for up to 20 low redshift galaxy clusters (0.04 < z < 0.07). Careful

consideration of the observing strategy is required for each individual cluster. Due

to variations in their masses and redshifts, the resulting angular diameter distance

of the cluster region will vary from cluster to cluster. An example WWFCS ob-

serving strategy is illustrated in Figure 3.1. We show a simulated galaxy cluster

(cf. Section 3.2.2) overlaid with WEAVE 2-degree diameter MOS fields (white

circles). The inner yellow dashed circle corresponds to the cluster’s R200, the ra-

dius at which the density is equal to two hundred times the critical density of the

Universe. The outer yellow dot-dashed circle corresponds to 5R200. Note the large

over- and under-dense regions reaching far out from the very dense cluster core.

The large field of view we will be able to cover with WEAVE will allow us to ex-

plore and map these environments – including filaments – in great detail, reaching

much larger cluster-centric distances than hitherto possible (beyond 5R200), and

also study the properties of the galaxies that inhabit them.
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Figure 3.1: Example simulated cluster from TheThreeHundred with a similar
mass and redshift to the cluster Abell 602, one of the WWFCS targets. The pro-
jected dark matter density distribution is shown, derived using a Kernel Density
Estimation (KDE) with a 500 kpc smoothing scale. This box has a depth of 10
Mpc. The green dots indicate the positions of galaxy-mass halos. Each white cir-
cle encloses a WEAVE field with a 2 degree diameter. The central yellow dashed
circle corresponds to R200 and the larger dot-dashed yellow circle to 5R200.

3.2.2 TheThreeHundred galaxy cluster simulations

In this work, we use TheThreeHundred project of galaxy cluster resimula-

tions, as described in detail in Section 2.1.2. This dataset has already been used

previously to generate theoretical expectations with the WWFCS in mind. For

instance, Kuchner et al. (2021) quantified the impact of redshift space distortions

(’Fingers of God’) on the identification of cosmic filaments. They found that trying

to correct for this effect statistically in the virialized regions of clusters and groups

does not lead to a more reliable extraction of the ‘true’ filamentary networks. For

this reason, Kuchner et al. (2021) forecast that the identification of the cosmic web

in the regions surrounding massive clusters using spectroscopic surveys should rely

primarily on the 2D positions of the galaxies on the sky. However, they also point

out that accurate spectroscopic redshifts are crucial in defining and isolating the

cluster volume from which these galaxies should be selected.
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3.3 Generation of mock observations

This section describes the framework we have developed to create mock observa-

tions and their optimization using the simulated clusters. We also discuss how we

use WEAVE’s fibre allocation algorithm to generate realistic WWFCS-like ‘simul-

observed’ galaxy samples from the simulations, and the method for identifying the

cosmic web using these samples. In other words, we describe the steps we take to

go from simulations to observations.

3.3.1 Optimizing the WWFCS field positions

It is important to optimize the observational strategy of upcoming wide-field spec-

troscopic surveys to improve the reliability of the filament extraction process while

maximising the observational efficiency. The WWFCS can place MOS fibres on

targets over a 2-degree-diameter field (Figure 3.1). In order to map the filamen-

tary structures that feed clusters it is necessary to maximise the spatial coverage,

reaching out to and beyond 5R200. Such radial coverage is a good compromise

between the available observing time and the need to cover as far as possible into

the infall regions around the clusters (Kuchner et al. , in prep.). We therefore

need to design a tiling strategy to cover a circular region around the clusters that

reaches 5R200 using the minimum number of WEAVE fields (or pointings). The

tiling strategy we have used to find the optimal position of the WEAVE pointings

for each WWFCS cluster is described in detail in Appendix A.1 (see examples

in Figures 3.1, 3.3, and 3.4). The ‘simul-observations’ described below follow the

same strategy. We note that by applying this optimisation process we have been

able to reduce the required number of pointings (and thus the required observing

time) by ∼ 15% from our initial estimate, allowing us to increase the number of

clusters we will be able to observe in the available time from ∼ 16 to ∼ 17–19

without compromising the accuracy of our filament mapping.
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3.3.2 Deriving WWFCS cluster properties

In order to develop mock observations from the simulations, we need to determine

the properties of the clusters selected for the WWFCS. We firstly calculate R200

andM200 of the clusters using their spectroscopic redshift z and velocity dispersion

σ from the WINGS survey (Moretti, A. et al., 2017) using the following equation

(Poggianti et al., 2010; Finn et al., 2005):

R200 =
1.73σ

1000km s−1

1

(ΩΛ + ΩM(1 + z)3)1/2
. (3.1)

Here, R200 is measured in Mpcs and σ is measured in km/s. The cluster mass in-

side R200 (M200) can then be estimated using this value and the critical density of

the universe. The complete list of the WWFCS targets and their properties can be

found in Kuchner et al. (in prep.). The bottom panel of Figure 3.2 shows the mass

distributions of the WWFCS cluster sample (blue) and those from TheThree-

Hundred simulations (orange). The mass distribution of the simulated clusters is

skewed towards higher masses than those of the clusters selected for the WWFCS.

This is to be expected since TheThreeHundred resimulates the most massive

haloes in a large cosmological volume, making it possible to find the rarest ob-

jects. By contrast, the clusters selected for the WWFCS are more representative

of clusters at low redshift and deliberately span a large range in X-ray luminosity

(Section 2.2). We address this mismatch in next section.

3.3.3 Generating the simulated cluster and galaxy samples

We discuss now the generation of the clusters and galaxies that will be included in

our mock observations using the halo data from TheThreeHundred. The main

aim is to create mock sample analogues to the ones we expect from the WWFCS.

First, we impose some quality constraints on the cluster halos in the simulations

so that we only select the highest quality data. We confine our study to the high

resolution region of the cluster re-simulation, a spherical region with a radius of

15h−1Mpc centered on the cluster centre. We then require that the mass fraction

in high resolution particles for the zoom simulation needs to be greater than 0.99
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(fMhires > 0.99). This criterion rejects low-resolution dark matter particles that

may have travelled inwards into the high resolution region during the simulation of

the clusters evolution. Finally, we only accept halos with a mass greater than the

simulation resolution (3×1010h−1M⊙), corresponding to 20 dark matter particles,

as explained in Kuchner et al. 2020.

3.3.3.1 Creating mass-matched cluster samples

In order to make a meaningful comparison between the clusters from TheThree-

Hundred simulations and the WWFCS clusters, we need to create a sample of

simulated clusters whose masses match those of the observational sample. Past

studies have shown that for a flat Universe, on scales large enough to neglect

baryonic physics, dark matter halos evolve self similarly (Kaiser, 1986; Mostoghiu

et al., 2018). Self-similarity implies that the dark matter distribution (and hence

the location of dark-matter halos) in less massive galaxy clusters is well repre-

sented by that of more massive clusters that have been scaled down appropriately

taking into account their mass ratio.

To have reasonable statistics, our goal is to create a mass-matched sample of

simulated WWFCS cluster analogues containing 10 simulated clusters for each

WWFCS cluster. Because dark matter halos evolve self similarly on large scales,

we are able to do so using the large sample of simulated clusters from TheThree-

Hundred project.

We describe in detail the methodology behind the mass-scaling of the simulated

clusters in Appendix A.2. In short, when the mass of a WWFCS cluster is too

small to be able to find similar mass clusters in TheThreeHundred simulations,

we use a mass scaling factor MF to reduce the mass of all the simulated clusters

to approximately match the mass of the WWFCS cluster. The mass of each

individual dark matter halo in the relevant cluster simulation is also scaled down

by the same factor, and included in the halo sample if its mass is above a mass

threshold. These mass thresholds are chosen to ensure that the number of galaxy-

mass halos in each simulated cluster approximately matches that expected in the

the observed cluster. For each WWFCS cluster, ten analogue clusters with similar

masses are randomly selected from the scaled clusters.
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Figure 3.2: Bottom panel: normalized cluster count as a function of cluster
mass showing the mass distribution of the WWFCS clusters (solid blue line) and
TheThreeHundred un-scaled clusters (MF = 1, solid orange line), and scaled
by MF = 2 (green dashed line) and MF = 5 (red dot-dashed line). Three scal-
ing values (MF = 1, 2, and 5) are sufficient to fully cover the mass range of the
WWFCS cluster sample. Top panel: the number of galaxy halos contained within
5R200,scaled for each simulated cluster as a function of cluster mass is displayed by
the small dots and the coloured density distribution. Red crosses correspond to
the mass-matched simulated clusters (ten per WWFCS cluster). This gives an
indication of the approximate number of galaxies that can be ‘observed’ in each
cluster simul-observation.

Figure 3.2 demonstrates that three values of the mass-scaling factor MF (1, 2 and

5) are sufficient to provide enough mass-matched simulated clusters. Of course,

MF = 1 implies no scaling is applied. The bottom panel shows the mass distri-

bution of the WWFCS clusters (black) together with that of the un-scaled and

scaled TheThreeHundred clusters. The orange, green and red histograms rep-

resent the mass distributions of all 324 simulated clusters with MF = 1, 2, and 5

respectively.
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3.3.3.2 Scaling cluster properties

Having built a mass-matched sample of simulated clusters, we now describe how

the spatial properties of the clusters and subhaloes (linear and angular size, halo

positions) are likewise scaled.

The radius of the mass-scaled clusters R200,scaled can be derived from the relation-

ship between R200 and M200, adapted from Poggianti et al. 2010,

R3
200 =

M200

K × h2(ΩΛ + (1 + z)3Ω0)
, (3.2)

where K = 2.32 × 1014M⊙Mpc−3, making M200 = M200,scaled. The spatial coor-

dinates x, y and z of all the halos in the cluster (and thus their clustercentric

distances) are therefore multiplied by a factor R200,scaled/R200,unscaled.

For each WWFCS cluster the angular diameter distance is calculated using their

redshifts (Moretti, A. et al., 2017) with the adopted cosmology. Next, for each

of the corresponding ten analogue simulated clusters, we convert 3D positions to

angular distances between the haloes and the centre of their clusters, and thus

their relative positions on the simulated sky.

The top panel of Figure 3.2 displays the number of galaxy halos contained within

5R200,scaled from their cluster centers as a function of cluster mass (small dots and

density distribution). The red crosses correspond to the clusters in the mass-

matched sample (ten per WWFCS cluster). Note that the planned WWFCS

observations will generally cover well beyond ∼ 5R200 (cf. Kuchner et al., in prep.;

see also Figure 3.1 and Appendix A.1), and therefore the number of potential

targets for each cluster shown in the figure is a conservative lower limit.

3.3.3.3 Defining galaxy sample and properties

To bring our mock ‘observational’ sample closer to the real observations, each

of the WWFCS clusters’ mass-matched simulated analogues are placed at the

appropriate redshift and sky location. We then allocate WEAVE pointings using

the field positions determined in Appendix A.1. Only halos covered by these

41



pointings will be considered as possible spectroscopic targets.

Galaxy-size dark-matter halos in each simulated cluster are then given in-fibre

magnitudes in the SDSS r-band (similar to the ones that will be used the observa-

tional target selection) following a simple procedure that ensures the target galax-

ies have comparable numbers and magnitude ranges to the planned observations.

The actual galaxy magnitudes have no impact on the findings of this chapter, but

the fibre allocation program Configure (Terrett et al., 2014) requires them as

input. Explicitly, the total r-band magnitude of a galaxy is estimated from the

mass of the simulated halo using the equation

rtotal = W − 2.5 log10(Mhalo/M⊙), (3.3)

where W is a constant that is calculated by mapping the least massive halos in

each simulated cluster (Appendix A.2) to the planned r-band limit of the WWFCS

spectroscopic observation (rtotal < 19.75, corresponding to an approximate galaxy

stellar mass limit of ∼ 109M⊙, Kuchner et al., in prep). An average offset between

total and in-fibre magnitudes of 1.75mag, estimated through a least-square fit to

the appropriate SDSS magnitudes, is then applied. The in-fibre magnitude limit

of the WWFCS galaxy sample is therefore rfibre < 21.50, which sets the planned

exposure times of ∼ 1 hour. This exposure time is expected to yield reasonable

signal-to-noise (S/N > 5 per Å, for all the spectra up to this magnitude limit), and

we therefore expect close to 100% redshift completeness for the observed (and thus

mock) galaxies (see Kuchner et al. in prep.).We use a simple procedure to allocate

magnitudes to the galaxy-sized dark matter halos here, as the results in this chap-

ter only require accurate spatial distributions of mock galaxies and their expected

number densities. Our simple approach ensures this without relying on uncertain

model galaxy properties. As Cui et al. (2018) show (see, e.g., their Figure 8), large

uncertainties still remain in the model observed magnitudes and colours, and the

results depend strongly on the specific baryonic model used, particularly at low

galaxy masses. While the simulations have appropriate resolution to yield reliable

masses and locations for the dark matter haloes, the additional step of predicting

observable properties through the available hydrodynamic or semi-analytic models

would require making uncertain choices which are not necessary for our purposes.

At this point we have created a set of 160 simulated galaxy clusters (10 per
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Figure 3.3: A demonstration of the process of ‘configuration’, the allocation of
spectroscopic fibres to targets, on a simulated cluster mass-matched to WWFCS
cluster RX0058 (M ∼ 4.3× 1014M⊙, R200 ∼ 1.54Mpc), an average mass WWFCS
cluster. Left panel: mock ‘observation’ of the simulated cluster containing 8 2-
degree diameter WEAVE fields. Blue points show the positions on the sky of the
simulated galaxies. Middle panel: zoom-in on the central field from the plot on
the left, with the simulated target galaxies before fibre configuration shown as red
points. There are 667 simulated cluster members that are potentially observable
in this field. Right panel: the same central field after configuration, where 567
cluster members have been assigned a fibre (blue dots), while galaxies without a
fibre are shown in red.

WWFCS target cluster), populated them with mock galaxies, placed them at the

appropriate redshift and sky position, and covered them with WEAVE pointings

exactly as those planned in the observations.

3.3.4 Allocating spectroscopic fibres to mock galaxies us-

ing Configure

To make a more realistic analogue to the planned observations, before running

Configure (see Section 2.2.3 for details) we pollute our target catalogues with

background objects. We randomly place 1400 background objects on eachWEAVE

field, corresponding to a number density ∼ 450 deg−2. This is somewhat larger

than the galaxy number density corresponding to an in-fibre magnitude limit

rfibre < 21.5, the planned WWFCS limit. We note that the background objects

are not designed to be representative of the larger-scale cosmic web, but are im-

plemented to test the usage of free fibres (i.e., fibres that haven’t been assigned

to cluster members according to their photometric redshifts). This is especially
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Figure 3.4: Results for the full configuration process of one simulated analogue
to cluster RX0058. We plan to observe this cluster using 8 WEAVE individual
pointings (black circles). The central pointing will be observed twice given the
high density of targets in the cluster core. For this cluster, 74% of its simulated
galaxies have at least one fibre allocated and 69% background objects also have
allocated fibres. Top left: all cluster members (blue dots) that could be assigned a
fibre. Top middle-left: galaxies with one fibre assigned (green dots). Top middle-
right: galaxies with two fibres assigned (red dots). Top right: combined sample of
target galaxies with one or two fibres (purple dots) Bottom left: galaxies with no
fibre allocated (grey crosses). Bottom middle-left: background objects allocated
one fibre (orange dots) and blank sky positions assigned one fibre (salmon dots).
Bottom right: fractional target completeness (i.e., fraction of cluster galaxy targets
with one or two fibres; see Section 3.4.1) in clustercentric distance bins. R200 and
the radius of the central WEAVE field are plotted for reference. The bin width is
1/6 of of the radius of one WEAVE pointing (i.e., 1/6 of one degree).

44



relevant further away from the cluster center as fibres are then free to be placed

on background targets if they are brighter than the magnitude limit. In this

chapter, we stress-test this assumption by putting a slightly exaggerated number

of background targets in the catalog to compete with higher priority cluster tar-

gets. If their spectroscopic redshifts from the WWFCS reject them from cluster

membership, they will not feature in the filament finding, as described in Sec-

tion 3.3.5.1. For this chapter, we assume that the vast majority of our WEAVE

target selection—based on magnitude, colour and precise photometric redshifts—

correctly rejects galaxies that lie outside the volume in space that corresponds to

TheThreeHundered volume. This is supported by our tests using available observa-

tional data of the cluster centers. While we will only know the exact number after

analysing early WEAVE observations, we can expect that not every background

galaxy will be identified correctly. In practice, we will therefore use a range of

priorities for background objects. However, given the high quality of the J-PLUS

photometric redshifts (Cenarro et al., 2019), in combination with conservative

colour and magnitude cuts, we expect the percentage of interlopers to be small

and that the majority of background objects can be accurately de-prioritised. We

keep them in the target catalog for the sole reason that unallocated fibres can

be used and they do not feature in our filament finding, as described in Section

3.3.5.1.

Finally, the input catalogues fed to Configure contains also blank sky positions

for sky-subtraction purposes. These correspond to real celestial positions devoid

of objects visible in SDSS images of the target clusters. They are given a priority

of 1. Although in all cases we have more suitable sky positions, Configure is set

to allocate a maximum of 50 sky fibres per field, as per the observational strategy

described in Kuchner et al., in prep.

Therefore, each WEAVE field target list consists of Ngal cluster galaxies, deter-

mined by the simulated cluster galaxy sample (see Section 3.3.3.3 and Figure 3.2),

Nsky sky positions, and Nback = 1400−Ngal −Nsky background targets. As men-

tioned above, the exact number of background objects does not matter, and we

limit Nback in this way to keep the size of the target catalogues small enough to

keep the Configure running time manageable.

To fully ‘configure’ a cluster’s mock-observation we need to apply the Configure

45



software to each individual WEAVE field (or pointing) sequentially, taking into

account that these pointing overlap (Figures 3.3 and 3.4) and that the central

pointing will be observed twice in order to deal with the high density of targets

in the cluster core (Kuchner et al., in prep.). The aim of the process is to max-

imise the number of target galaxies with at least one fibre allocated. Maximizing

the number of galaxies with measured spectroscopic redshifts, particularly in the

cluster outskirts and infall regions, is a key goal of the observational strategy that

will enable a more accurate mapping of the cosmic web.

Each field intersects a minimum of 3 other fields, meaning that target objects in

the overlap region have multiple chances of having a fibre allocated. To obtain

information on data quality and repeatability, it is desirable to have some repeated

observations, but we do not want these to have a significant impact on the final

sample of galaxies with redshifts. We therefore aim at no more than ∼ 10–20%

of the cluster galaxies to be observed twice and we chose to not artificially select

an upper limit on the number of galaxies observed twice as we want to minimize

the number of empty fibres. We thus allow target galaxies to have at most two

fibres allocated (in separate pointings), but sky positions and background galaxies

are only allocated one fibre at most. This process is controlled by the Configure

targeting priorities (Table 3.1)1.

For all simulated clusters we sequentially apply Configure to each WEAVE field

(see Figure 3.4). We start with the central one, which we configure twice, and

then continue with the outer fields. After each step we update the priorities

for all objects in the target list taking into account whether an object (cluster

galaxy, background galaxy or sky position) has been allocated a fibre in a previous

iteration. If a cluster galaxy has already been allocated one fibre, its priority is

reduced to 1. If it has already been allocated 2 fibres, its priority goes to 0.

Background galaxies and sky positions with fibres allocated previously get also

a priority of 0 (Table 3.1). The process is illustrated with one example for the

cluster RX0058 in Figures 3.3 and 3.4.

Obviously we are not able to allocate a fibre to each target cluster galaxy. In the

typical cluster shown in these figures, 74% of the cluster galaxies have at least one

1In this exercise we do not include the flux calibration targets and guide stars since given
their small numbers they have a negligible effect in our results.
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Table 3.1: Target priorities used in Configure.

Object type Target priority p
Cluster galaxy 10
Background galaxy 1
Sky position 1
Cluster galaxy with one fibre already allocated 1
Background galaxy with one fibre already allocated 0
Sky position with one fibre already allocated 0

fibre assigned, with little radial variation beyond the radius of the inner WEAVE

field. The success rate there is higher despite the higher density because this field

is observed twice. Beyond that, no strong spatial biases are apparent. We note

that a high density of background targets may impact the completeness of our

target galaxies in the outskirts of clusters, despite the different target priorities

we have applied. Furthermore, for each WEAVE field, the target completeness

varies spatially due to fibre placement issues (Hughes et al., 2022). In the next

section, we will analyse quantitatively the effect the configuration process has on

our ability to map the large-scale structure and filaments around galaxy clusters.

3.3.5 Cosmic web extraction method

The rationale of this chapter is to assess the ability of upcoming spectroscopic

surveys such as the WWFCS to accurately map and characterise the cosmic web.

We describe in this section the techniques we use for that purpose.

3.3.5.1 DisPerSE

In what follows, DisPerSE is run in 2D on the sky positions of the simulated

cluster galaxies to mimic the observations since, uncertainties in the radial po-

sition of the galaxies due to peculiar velocities mean than filament extraction in

2D is preferable when redshifts (and not true distances) are available (Kuchner

et al., 2020, 2021). A full description of the structures extraction tool DisPerSE

is provided in Chapter 2.3.

In the analysis that follows we will use a persistence of 2.5σ for the simulated ref-
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erence network and 2.1σ for the network obtained from the analogue observations

(after Configure is applied). We use different persistence values as the underlying

density field will change upon target selection for each cluster. These choices are

justified in Appendix C. There is also a smoothing parameter that is input into

the Disperse runs that influences the rigidity of the identified filament paths. We

chose a smoothing parameter of 5, as used in Kuchner et al. (2020), although using

values between 1 and 5 has virtually no impact our results.

As described in Chapter 2.3, careful treatment of the boundaries is required.

Whilst it has been shown that the smoothed boundary condition can be used

successfully for observational catalogues confined to limited volumes, it is not suf-

ficient for our WEAVE pointings. The complex 2D geometrical shape defined by

the positions of the WEAVE pointings that will tile each cluster and its envi-

ronment (Appendix A.1) influences the features that are detected by DisPerSE,

particularly near the boundaries. If the shape of the field tiling is not properly

accounted for, artificial nodes are detected that trace the outer boundary of the

sky region covered by the WEAVE fields. To avoid that, we populate the region

outside the boundaries of the area covered by the planned WEAVE pointings with

a random uniform distribution of artificial galaxies that will act as ‘guard particles’

to prevent the appearance of these artificial nodes and their associated filaments.

The surface density of the artificial galaxies is chosen to be similar to that of clus-

ter galaxies in the outer regions. In practice, the number density of galaxies that

lie beyond 2R200 is computed for each cluster, and a random uniform distribution

of ‘guard particles’ with this number density is added outside the outer boundary

of the ‘observed’ fields, reaching 7.5R200. After testing different values for this

radius, we find that the recovered networks are very similar when one increases

the guard particle boundary beyond 7.5R200. This is sufficiently far away from

the cluster centre to prevent the true filamentary network being distorted by the

irregular boundaries.

The positions of cluster members and ’guard particles’ are fed into DisPerSE

and, once the filament network is computed by the filament finder, we truncate

the network outside of the ‘observed’ region, keeping only the filament segments

inside. This procedure works remarkably well, and visual inspection indicates

that spurious nodes and filaments associated with the boundaries are eliminated

without affecting the filament network inside the observed fields.
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3.4 Results and discussion

With all the necessary elements in place, in what follows we will compare the

filamentary networks that are extracted using DisPerSE before and after applying

the MOS ‘fibre configuration’ process. In other words, we will quantify the dif-

ference between the filaments extracted when all simulated galaxies are fed into

DisPerSE with those we obtained if we only use the ‘mock-observed’ galaxy sam-

ple, where some galaxies are lost due to fibre-positioning constraints. This will

allow us to forecast the impact that realistic observational constraint will have

on the information we can derive about the filamentary networks around clusters

from spectroscopic survey like the WWFCS.

3.4.1 Recovery of cluster galaxies after Configure

Physical constraints from the fibre positioner imply that we will never have a

100% completeness of cluster galaxies. Some galaxies won’t be targeted as they

will appear too close together as well as the constraint of fibre overlap. Therefore,

the first test to quantify the success of the WEAVE-like MOS fibre configuration

is to estimate the fraction of simulated cluster galaxies with at least one fibre

assigned. A high fraction – particularly outside the cluster core – will help us

achieve our science goals. The overall average fraction of galaxies covered by the

WEAVE pointings with at least one fibre allocated (overall target completeness)

is 72.7% ± 1.7%, where the errors denote the scatter of the values for the 160

simulated clusters. If we restrict our calculation to the regions outside the central

pointing, which is dominated by the cluster core, the corresponding fraction (outer

target completeness) is 81.7% ± 1.3%. We argue that this value is more relevant

than the overall one when dealing with the characterisation of the filament network

since the whole cluster core will behave just as a single node (Kuchner et al., 2020,

2021).

We have checked whether the fraction of galaxies selected by configure depends

on galaxy mass. If we divide the galaxy sample at the median mass into two equal

subsamples, we find that the fraction of high-mass galaxies that are “configured”

is ∼ 77%, while the corresponding fraction of low-mass galaxies is ∼ 69%. This
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is due to the fact that the central regions of the cluster, which contain a higher

fraction of massive galaxies – high-mass galaxies cluster more strongly than low-

mass ones – are observed twice. Beyond ∼ 2R200 the fractions are approximately

equal.

We find that, whilst the overall target completeness stays relatively constant as

a function of cluster mass, the outer target completeness decreases slightly for

higher cluster masses. This not surprising since the more massive clusters will

have larger cores and a higher surface density of galaxies at all radii. In any case,

the sample size reduction induced by the observational constraints seems moderate

at all radii.

Note also that the very high number of WEAVE fibres will allow us to observe

thousands of background objects per cluster (Figure 3.4), providing a thorough

test of the accuracy of our photometric redshifts and the quantification of any the

possible biases their inclusion in the target selection may introduce (see Kuchner

et al., in prep.).

3.4.2 Filament network comparison metrics

We have found that the completeness rates we find are encouragingly high, sug-

gesting that the sample size statistics will not be very severely impacted by the

observational constraints. We now need to check whether this sample reduction

introduces any biases or changes in the properties of the recovered filamentary

networks.

3.4.2.1 Skeleton distance

A useful metric designed to quantify the accuracy of filament extraction is the

‘skeleton distance’ Dskel (Laigle et al., 2017; Malavasi et al., 2016; Sarron et al.,

2019). After running the cosmic web extractor software (DisPerSE in our case), we

obtain a series of segments that delineate the cosmic filamentary structure. When

comparing two different networks derived in the same region of space, Dskel mea-

sures the distance between the start of a segment in the reference network and the
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nearest one in the other network. The segments that are found are much smaller

than the length of a typical filament, allowing us to use the position of the start

of a segment as a proxy of a segments position. This is illustrated in Figure 3.5.

The left panel shows two filamentary networks, the reference one derived from the

full simulated cluster galaxy sample in red, and the ‘configured’ network recov-

ered from the mock-observed galaxy sample in green. The middle panel shows an

enlarged version of the pink-boxed region of the left panel, where the differences

between the red and green networks are largest, showing the individual segments.

The right panel illustrates how we calculate cluster connectivity and is discussed in

3.4.2.2. The Dskel values are calculated for each segment in the reference network

by finding the distance to the nearest segment in the ‘configured’ network. Note

that the calculation can also be done in the opposite direction, starting from the

segments in the ‘configured’ network instead, and the distribution of Dskel values

will not be necessarily the same (see below). In both cases, the distribution of

Dskel values quantifies how well both filament networks match each other.

Figure 3.6 shows the reference network (left panel) and the ‘configured’ network

(middle panel) for one of the simulated clusters mass-matched to one of the

WWFCS target clusters, RX0058. The right panel shows the normalised proba-

bility distribution function for Dskel, calculated going from the reference network

to the ‘configured’ one (R2C, in green) and vice-versa (C2R, in red). The median

values are indicated. Both medians are much smaller than the typical radius of

filaments (∼ 1Mpc; Kuchner et al. 2020). A large proportion of Dskel > 1 Mpc

would indicate that a filament in this cluster has no counterpart in the corre-

sponding mock-observational cluster. Note that, typically, the median Dskel,R2C

is smaller than the median Dskel,C2R because there are generally more segments

in the reference network than in the ‘configured’ one, and thus the likelihood of

finding a nearer corresponding segment is higher in the R2C direction. If both

networks are very similar, both Dskel median values will not only be very small,

but also very similar to each other. Therefore, the median values of Dskel and their

ratio can be used to quantify the accuracy of filament network reconstruction and

also to derive the optimal parameters used by DisPerSE (see Appendix A.3).

Another measure of the similarity between the reference and ‘configured’ filament

networks is provided by the fraction of Dskel values that are larger than ∼ 1Mpc

(the typical radius of filaments). The right panel of Figure 3.6 shows that this

51



10 5 0 5 10
X/Mpc

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0
Y/

M
pc

Reference network
Configured network

2.0 1.5 1.0 0.5 0.0 0.5 1.0
X/Mpc

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Y/
M

pc

2 1 0 1 2
X/Mpc

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Y/
M

pc

Figure 3.5: Illustration of the methods used to calculate Dskel and cosmic connec-
tivity. Left panel: the reference filament network (red) and ‘configured’ network
(green) are plotted on top of the KDE-smoothed halo density distribution of a
simulated cluster, an analogue to WWFCS cluster RX0058. A filament is the
amalgamation of many discrete segments, as clearly seen in the middle panel.
Middle panel: zoom-in on the region shown by the pink box on the left panel,
where the two networks show large differences to demonstrate how Dskel is calcu-
lated (see Section 3.4.2.1). Right panel: zoom-in on the cluster core (yellow box in
the left panel), only plotting the reference network for illustrative purposes. The
circle corresponds to R200 and is used to calculate the connectivity as the number
of filaments that stem from the main node and cross the R200 circle, (see Section
3.4.2.2). For this cluster, the connectivity has a value of three.

fraction is also reassuringly small (∼ 10%) in both cases.

3.4.2.2 Cluster connectivity

Another useful parameter to quantify the accuracy of the filament network derived

from the mock observations is the cluster connectivity C. We define connectivity

as the number of filaments that stem from the main node (cluster core) and termi-

nate beyond R200 away from the cluster centre. This definition is slightly different

from that of Laigle et al. (2017), where the authors use the cluster virial radius

instead of R200. The last panel in Figure 3.5 gives an example of how C is cal-

culated – there are three filaments stemming from the main node of the network

(cluster core) that cross the circle with R200 radius, resulting in a cluster con-

nectivity of three. A weak positive correlation between cluster connectivity and

cluster mass has been reported in the literature (Sarron et al., 2019; Darragh Ford

et al., 2019; Gouin et al., 2021), albeit with considerable scatter. Our simulated

clusters show a similar correlation. If the recovered filament network is similar to
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Figure 3.6: Illustration of the recovery of the filament network around a simu-
lated analogue of the RX0058 cluster, the same cluster as Figure 3.5. Left panel:
KDE-smoothed density distribution of the simulated cluster galaxies with refer-
ence filament network in red. Middle panel: as the left panel, but showing the
density distribution and filament network (green line) recovered from the ‘con-
figured’ (mock-observed) galaxy sample. Right panel: Dskel distribution function
obtained going from the reference network to the ‘configured’ network (R2C) and
vice-versa (C2R), as described in the text. The thick vertical line represents the
medians of each distribution, while the shaded yellow region correspond to the
25th and 75th percentiles. The dot-dashed black line represents the typical radius
of a filament (∼ 1Mpc). The values of the medians and the percentage of seg-
ments with Dskel > 1Mpc are shown in the legend. We normalized the PDF’s to
have a common peak value.
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the reference one, their connectivity should be the same. Therefore, comparing

network connectivities will also allow us to assess the accuracy of the recovered

filaments.

3.4.3 Quantifying the quality of the recovered filament

networks

We are now in a position to use the Dskel and connectivity metrics to assess

quantitatively the impact of the WWFCS observational strategy and constraints

on the recovery of the filament networks surrounding galaxy clusters.

As described above, Figure 3.6 illustrates the filament network comparison pro-

cess for a single simulated cluster, mass-matched to RX0058. Visually, there is

remarkable similarity in the reference and ‘configured’ filament networks. For this

particular cluster, 71.8% of the simulated cluster galaxies have at least one MOS

fibre allocated, which is close to the average for the whole sample. The median

values of Dskel are 0.12Mpc going in the R2C direction and 0.16Mpc going in the

C2R direction (cf. Section 3.4.2.1). These values are much smaller than ∼ 1Mpc,

the typical radius of filaments. Moreover, only 8% and 10% of the filamentary

segments lie at a distances greater than ∼ 1Mpc.

The cluster connectivity of the reference network is 3, while one of the filaments

in the ‘configured’ network bifurcates inside R200, increasing the connectivity to

4. Changes in connectivity of ±1 are not uncommon, indicating that the recovery

is not perfect. However, larger changes in connectivity are rare (see below).

These results, if replicated for the whole cluster sample, are very encouraging,

suggesting that the data provided by the WWFCS will allow the reliable recovery

of the filamentary structures around clusters since the impact of the observational

constraints will be moderate.

Figure 3.7 confirms that the Dskel results shown for the RX0058 analogue are

indeed typical of the whole sample. We can therefore stack the Dskel distribu-

tions for the 160 simulated clusters (Figure 3.8) and derive representative average

quantities for the whole sample. On average, the median values of Dskel,R2C and

54



0.0

0.2

0.4

0.6

0.8

1.0

1.2
RX0058

R2C D > 1 Mpc: 15.2 %
C2R D > 1 Mpc: 6.6 %
R2C = 0.13 Mpc
C2R = 0.11 Mpc

A602
R2C D > 1 Mpc: 14.9 %
C2R D > 1 Mpc: 12.8 %
R2C = 0.15 Mpc
C2R = 0.15 Mpc

A671
R2C D > 1 Mpc: 11.1 %
C2R D > 1 Mpc: 12.0 %
R2C = 0.13 Mpc
C2R = 0.14 Mpc

Z2844
R2C D > 1 Mpc: 6.9 %
C2R D > 1 Mpc: 11.3 %
R2C = 0.11 Mpc
C2R = 0.14 Mpc

0.0

0.2

0.4

0.6

0.8

1.0

1.2
RX1022

R2C D > 1 Mpc: 8.6 %
C2R D > 1 Mpc: 15.5 %
R2C = 0.12 Mpc
C2R = 0.15 Mpc

A1291
R2C D > 1 Mpc: 9.8 %
C2R D > 1 Mpc: 12.7 %
R2C = 0.1 Mpc
C2R = 0.13 Mpc

A1668
R2C D > 1 Mpc: 16.5 %
C2R D > 1 Mpc: 10.2 %
R2C = 0.15 Mpc
C2R = 0.14 Mpc

A1795
R2C D > 1 Mpc: 13.1 %
C2R D > 1 Mpc: 13.9 %
R2C = 0.11 Mpc
C2R = 0.13 Mpc

0.0

0.2

0.4

0.6

0.8

1.0

1.2
A1831

R2C D > 1 Mpc: 14.6 %
C2R D > 1 Mpc: 6.4 %
R2C = 0.13 Mpc
C2R = 0.11 Mpc

A2107
R2C D > 1 Mpc: 11.5 %
C2R D > 1 Mpc: 7.3 %
R2C = 0.12 Mpc
C2R = 0.1 Mpc

A2124
R2C D > 1 Mpc: 16.2 %
C2R D > 1 Mpc: 11.1 %
R2C = 0.17 Mpc
C2R = 0.15 Mpc

A2149
R2C D > 1 Mpc: 10.8 %
C2R D > 1 Mpc: 9.8 %
R2C = 0.11 Mpc
C2R = 0.13 Mpc

10 4 10 3 10 2 10 1 100 1010.0

0.2

0.4

0.6

0.8

1.0

1.2
A2169

R2C D > 1 Mpc: 16.7 %
C2R D > 1 Mpc: 9.2 %
R2C = 0.13 Mpc
C2R = 0.12 Mpc

10 4 10 3 10 2 10 1 100 101

A2572a
R2C D > 1 Mpc: 17.9 %
C2R D > 1 Mpc: 7.0 %
R2C = 0.16 Mpc
C2R = 0.1 Mpc

10 4 10 3 10 2 10 1 100 101

A2622
R2C D > 1 Mpc: 10.9 %
C2R D > 1 Mpc: 10.7 %
R2C = 0.12 Mpc
C2R = 0.13 Mpc

10 4 10 3 10 2 10 1 100 101

Dskel/Mpc

PD
F

A2626
R2C D > 1 Mpc: 15.2 %
C2R D > 1 Mpc: 7.0 %
R2C = 0.15 Mpc
C2R = 0.12 Mpc

Figure 3.7: Dskel distributions for all the simulated WWFCS cluster analogues.
Each panel shows the individual cluster comparison (thin lines) and the average
for the 10 simulated cluster mass-matched to each WWFCS cluster (thick lines).
The format of each panel follows that of the right-hand panel of Figure 3.6. There
is little variation in Dskel over different WWFCS analogue clusters and the Dskel

median is always much less than a typical filament radius of 1Mpc.
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sity function (lower panel) of the Dskel distributions corresponding to all the sim-
ulated clusters shown in Figure 3.7. The positional difference in the networks is
minimal – our mock observations of filaments around galaxy clusters successfully
recreate the ’true’ simulated filament network.

Dskel,C2R are 0.13± 0.02Mpc. The values are not only reassuringly small, but also

almost exactly the same when going in both directions, strongly suggesting the

compared filament networks are very similar. Furthermore, typically only 11–13%

of the corresponding filamentary segments are more that 1Mpc away from each

other.

Figure 3.9 shows a comparison between the connectivity of the reference filament

networks Creference and that of the ‘configured’ ones Cconfigured. The mean values

corresponding to each WWFCS match very well, with no significant bias, and the

small scatter indicates changes in C are generally kept within the ±1 range.

In summary, the quantitative tests we have carried out for the whole cluster sample

confirm our initial assessment that the impact of the observational constraints

imposed by the WWFCS on the recovery of the filament networks around galaxy

clusters will be very moderate.
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‘configured’ filament networks. The 1-to-1 line is shown in black. Each point
corresponds to the mean connectivity of the 10 mass-matched analogues of each
WWFCS cluster, and the error bars show the ±1σ scatter.
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3.5 Summary and Conclusions

The outskirts and infall regions of galaxy clusters act as the points of contact link-

ing the large-scale structure of the Universe to the highly dense virialized cores of

the clusters themselves, containing some of the key environments affecting galaxy

evolution. Since next generation spectroscopic surveys such as the Weave Wide

Field Cluster Survey (WWFCS2) will explore and map in detail these complex re-

gions, in this chapter we forecast how successful such surveys will be at identifying

the filaments that link together the ‘nodes’ in the large-scale structure – clusters

and groups – and channel galaxies into them.

We aim at quantifying the impact the observational limitations will have on our

ability to detect the filamentary structures that feed the clusters in the WWFCS.

To achieve that aim we have used a large sample of simulated massive galaxy

clusters from TheThreeHundred project (Cui et al., 2018) and created a set of

simulated cluster galaxy samples closely matching the selection and observational

constraints imposed by the WWFCS (Kuchner et al., in prep.). For each one

of the 16 WWFCS target clusters we have extracted 10 mass-matched analogue

clusters from the simulations and built mock-observed galaxy samples reaching

beyond ∼ 5R200, where cosmic filaments trace and connect galaxy clusters to the

cosmic web. We summarise our main results below.

1. We have then followed closely the strategy, selection, and observational con-

straints of the WWFCS. Applying the same MOS fibre configuration tool

that the WEAVE spectrograph will use, we find that, on average, we are

able to allocate fibres to 72.7% ± 1.7% of all the target galaxies. More im-

portantly, outside the cluster core – in the outer regions that are crucial for

filament identification – the success rate increases to 81.7% ± 1.3%. The

number of cluster galaxies that are targeted ranges from 1284 – 4062. The

high completeness that the WEAVE observations will allow, together with

the large field coverage, are key to the success of the survey.

2Although in this chapter we have focused on the WWFCS, our methodology could easily be
adapted and applied to other wide-field spectroscopic surveys.
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2. In each of the simulated cluster regions we have used the filament finder

DisPerse (Sousbie, 2011) to trace the cosmic-web filament skeleton before

and after the observational constraints (including MOS fibre positioning)

are imposed on the galaxy samples. We then compared quantitatively the

resulting filament networks and find that we are able to recover the origi-

nal network remarkably well. Specifically, we find that the median distance

between corresponding filament segments Dskel in the reference and recov-

ered networks is only 0.13± 0.02Mpc on average, an much smaller than the

typical filament radius of ∼ 1Mpc. Furthermore, only ∼ 11 − 13% of all

recovered filament segments lie at a distance larger than 1Mpc away from

their corresponding reference segment.

3. As a further test on the integrity of the recovered filament networks we com-

puted their connectivity, the number of filaments that stem from the cluster

core and terminate beyond R200 away from the cluster centre. We find that

the connectivities of the reference and recovered networks match very well,

without any significant bias, indicating that their global properties are also

recovered well.

These findings make us confident that the WWFCS will be able to reliably trace

cosmic-web filaments in the vicinity of massive galaxy clusters. The next step,

when we start receiving data from WEAVE, will be to identify the galaxies that

belong to these filaments, and compare their properties (e.g., mass, metallicity, star

formation, stellar populations) to those of galaxies inhabiting other environments

such as groups, the clusters cores, and the general field. With the combination

of a statistical sample of clusters together with high target sampling rate, the

WWFCS will provide a detailed look at the influence of all environments in the

cluster infall regions on galaxy evolution.

3.5.1 Caveats and potential tests

Upon reflection of this work, we have noticed a potential bias in the methodology

we have employed for calculating Dskel. The right panel of Figure 3.5 illustrates
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that there are a higher sampling of filament segments closer to the cluster core,

potentially due to the large densities that are found in this region. Furthermore, in

the core, the maximum separation of filamentary segments between a “mock obser-

vational” network and a “simulated” network is capped at roughly 1 - 2 Mpc. As

a result, a large proportion of our Dskel distributions that lie at Dskel < 1 Mpc will

correspond to segments inside the cluster core. This implies that our Dskel metric

is biased and not truly representative of the accuracy of filament reconstruction.

An important potential test would be to calculate Dskel by omitting the segments

within R200. This would provide a better test of the reconstruction of filaments

in the outskirts of clusters. We conclude that our Dskel distributions would likely

be more heavily skewed towards larger distances. However, this change would not

effect the calculation of the connectivity.
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Chapter 4

Allocating galaxies to cosmic web

environments

The mass content and morphology of different cosmic web structures, such as

clusters, filaments, groups and voids are distinctly different. The influence of the

environment of lower density contrast structures, such as cosmic filaments, on

galaxy evolution is currently a topic of debate. In Chapter 3, we established a

framework for extracting large-scale cosmic filaments around galaxy clusters af-

ter designing mock observations. A goal of future surveys such as the WWFCS

is to understand the role that different cosmic web environments play on galaxy

evolution. However, to be able to probe this relationship, we need to understand

how accurately we can allocate individual galaxies to different environments in

the first place. As we have shown that the WWFCS will accurately reconstruct

filamentary networks around galaxy clusters, we now test the environmental clas-

sification of individual galaxies using TheThreeHundred project. Especially in

close proximity to the core of a galaxy cluster, allocating galaxies to cosmic web

filaments in observations is highly uncertain. Despite this, crucially, our success

rates outperform a random classification. This means that with large spectro-

scopic samples of galaxies that the WWFCS will provide along with the correct

statistical treatment we provide in this chapter, we will be able to draw robust

conclusions on the relationship between galaxy properties and their environment.

The content of this Chapter was published in Cornwell et al. (2023a).
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4.1 Introduction

Galaxy clusters are an intrinsic part of the cosmic web. As a result, along with the

galaxies inhabiting them, they co-evolve with the cosmic web. As clusters grow

through galaxy infall and mergers with other clusters and groups, their dynamical

state changes, and this can also influence the environmental effects their galaxies

experience (Ribeiro, A. L. B. et al., 2013; Morell et al., 2020; De Luca et al., 2021).

Galaxy groups and their central galaxies can also be significantly affected by the

presence of filamentary structures that feed into them (Poudel et al., 2017). It

is therefore clear that a complete understanding of how the environment affects

galaxy evolution requires a thorough mapping and study of the cosmic web around

galaxy clusters.

The importance of clusters and filaments is emphasised by the fact that, even

though filaments and clusters only contain 6% and 0.1% respectively of the volume

of the present-day universe, they harbour 50% and 11% of the mass (Cautun et al.,

2014). Since the physical processes galaxies experience depend on environment, it

is vital not only to map these environments accurately, but also to be able to find

well-defined subsets of galaxies in each environment.

The identification of cosmic filaments has been rigorously tested and applied in

large-area surveys where a variety of detection methods have been adopted, such

as the widely used discrete persistent structure extractor tool DisPerSE (Sousbie,

2011; Sousbie et al., 2011). DisPerSE has been successfully applied to optical

surveys such as SDSS (Malavasi et al., 2020) and GAMA (Kraljic et al., 2017).

Cosmic filaments are also detectable in X-rays (Vernstrom et al., 2021) and follow-

up X-ray studies of filaments found in the SDSS has resulted in a 5σ detection

of their X-ray emission (Tanimura et al., 2020). Several other geometrical web

extractors exist that use alternative methods (see Libeskind et al. 2017 for a review

on cosmic web tracing algorithms). Whilst these cosmic web finders are effective

at mapping these environments over scales of hundreds of Mpc, mostly far from

galaxy clusters, observationally characterizing the environment in the vicinity of

massive clusters remains a challenge. This is due primarily to the complexity of

the infall regions around clusters – where multiple filaments converge – and the

large peculiar velocities induced by the cluster dynamics (Tempel et al., 2016;
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Kuchner et al., 2021). It is therefore clear that mapping the cosmic web in the

vicinity of clusters requires special attention.

This will be addressed by next-generation wide-field spectroscopic surveys covering

regions of tens of Mpc around galaxy clusters. Examples of such surveys include

the WEAVE Wide Field cluster Survey (WWFCS; Jin et al., 2023, Kucher et al.

in prep) and the 4MOST CHileAN Cluster galaxy Evolution Survey (CHANCES;

Haines et al., 2023). This chapter focuses on the first of these survey. To fully

exploit the extensive data generated by the WWFCS, we are developing specific

analysis techniques to test and optimize the detection and characterisation of the

filamentary networks around the clusters (Kuchner et al., 2020, 2021; Kuchner

et al., 2022; Cornwell et al., 2022) using simulated clusters from TheThree-

Hundred project (Cui et al., 2018, 2022). Specifically, Kuchner et al. (2021)

investigated the practicalities of extracting filament networks around the clusters

in the presence of the observed “Fingers of God” (FoG) due to the galaxies’ pe-

culiar velocities. They concluded that, because the distance uncertainties induced

by these peculiar velocities are comparable with the depth of the volume explored,

filament extraction near galaxy clusters need to rely on two-dimensional projec-

tions on the sky. This does not mean that the spectroscopic redshifts are not

necessary – they are crucial to reliably select the galaxies that belong to the rel-

evant volume around the cluster with an accuracy of ∼ 10Mpc. Such accuracy

cannot be achieved with photometric redshifts.

Bringing the TheThreeHundred simulations one step closer to observations,

we showed in Chapter 3 that filaments can be successfully extracted from datasets

similar to those expected from the WWFCS. In this chapter, we go an additional

step forward and quantify our ability to allocate galaxies to the different environ-

ments around the simulated mock-observed clusters. The resulting statistics will

be necessary when studying the properties of galaxies as a function of environment

in a robust statistical way.

This chapter is structured as follows. Section 4.2 describes the (expected) ob-

servational and simulated datasets. Section 4.3 presents the reference filament

networks derived from the simulated galaxy samples and defines the ‘true’ en-

vironment of each galaxy. Section 4.4 describes how the filaments are found in

the mock WWFCS-like observations, and how the ‘observed’ environment of each
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galaxy is determined. Section 4.5 compares the ‘true’ and ‘observed’ environments

of the galaxies, and provides the necessary statistics to quantify the success (or

otherwise) of the comparison. Section 4.6 summarises the conclusions.

4.2 Dataset

4.2.1 WEAVE Wide Field Cluster Survey

We describe the observational survey motivating this work in Section 2.2. During

our description of the observational strategy in Chapter 3, we stated that, even

though each WEAVE field can target close to one thousand objects in a single

pointing, and we will observe each cluster with several pointings, it is not feasible

to target every single galaxy in the cluster region due to instrumental limitations.

WEAVE uses an algorithm named Configure (Terrett et al., 2014) to optimise

fibre allocation. In Chapter 3, we showed that Configure is able to allocate fibres

to ∼ 75% of the target galaxies overall, reaching 81% outside R200 and that this

is enough to reliably reconstruct the filament networks around the clusters. In

the current chapter, we base our analysis on mock-observed (i.e., “configured”)

simulated galaxy samples in clusters and their outskirts.

4.2.2 TheThreeHundred simulations of galaxy clusters

Our team has successfully exploited the TheThreeHundred simulations to plan

the WWFCS observations and make predictions about the properties of the ob-

served galaxy samples (Kuchner et al., 2020, 2021; Cornwell et al., 2022), demon-

strating that reliable mock observations that mimic the WWFCS can be generated

from this suite of simulations. Specifically, in Chapter 3 we mass-matched each

of the 16 main clusters targeted by the WWFCS with 10 clusters in TheThree-

Hundred simulations, and mock WWFCS observation were created for all 160 of

them. For the purpose of this work, we take the galaxy’s stellar mass to be one

tenth of the dark matter halo mass, as justified in Kuchner et al. (2020). Going

forward, we refer to these cluster galaxy samples as the 2D mock-observations.

64



Throughout this chapter we will also use the galaxies in the full 3D simulated

clusters before “configurations” and refer to these as the “true simulated cluster

galaxy samples”.

In the next section we outline how we identify the “true” cosmic web structures in

the simulations that we will later compare with the ones extracted from the mock

observations.

4.3 Defining cosmic web environments

4.3.1 Cosmic web extraction

Following our work in Chapter 3, we employ the widely used structures extractor

algorithm DisPerSE (Sousbie, 2011; Sousbie et al., 2011) to identify filaments in

the simulation boxes at z = 0, which is explained in detail in 2.3. To match the

expected depth of the WWFCS, we use as ‘mock galaxies’ all the halos in the

simulations with a dark matter mass larger than 1010M⊙, approximately corre-

sponding to stellar masses larger than 109M⊙
1. Furthermore, following Kuchner

et al. (2020) and following our description in Section 2.3, in this work we incorpo-

rate mass-weighting.

4.3.1.1 3D reference filament networks in simulations

In order to get consistent and reliable ‘true’ filament networks from the simulations

we need to choose some critical input parameters for DisPerSE. Building on the

work in Chapter 3, we use a persistence value of 4.6σ and a smoothing of 5. With

the persistence ratio threshold, we vary the robustness or significance of filaments

to local variations in the density field. In our case, we intend to extract the primary

filaments that are responsible for the majority of cluster accretion. Note that the

use of mass-weighting requires a higher persistence value to obtain networks that

are similar to non-mass-weighted networks obtained with a lower persistence. The

1We note that the halo and stellar mass limits are slightly higher for more massive clusters,
as described in Chapter 3
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second parameter, smoothing, creates smoother networks by averaging the position

of each vertex with that of its direct neighbors.

4.3.1.2 2D mock-observational filament networks

We also need to define filament networks using a mock-observational dataset sim-

ilar to the one WEAVE will provide. The main two differences from the original

simulations are that we will not observe every single galaxy (see Section 4.2.1) and

that we will not have radial distances but only redshifts (or radial velocities). As

explained in Chapter 3, despite these limitations, reliable 2D filamentary networks

(projected on the plane of the sky) can be extracted from the simulated datasets.

Again, we use the mass-weighted DisPerSE algorithm to identify the components

of the cosmic web in 2D and chose a persistence of 2.6σ and a smoothing of 5.

The 3D and 2D filament networks around a simulated example cluster are shown

in Figure 4.1.

4.3.2 Filament thickness

One important issue to consider when allocating galaxies to filaments is the thick-

ness of the filaments themselves. In other words, how close to the spine of a

filament does a galaxy have to be in order to be considered a ‘filament galaxy’?

This is not trivial since filaments do not have sharp boundaries. Some studies

show that the thickness of filaments may depend on their length: longer filaments

may be thinner, on average, than shorter ones (Malavasi, Nicola et al., 2020).

Additionally, Rost et al. (2021) used the gas and dark matter distributions from

TheThreeHundred to suggest that filaments are the thickest closest to the

nodes. Kuchner et al. (2020) used the transverse gas density profile of filaments in

the same simulations and derived a characteristic filament radius ∼ 0.7–1h−1Mpc

for massive clusters. However, there is no theoretical or observational motivation

for holding the filament thickness constant for the networks surrounding differ-

ent clusters. The mass range of the clusters selected for the WWFCS spans more

than an order of magnitude (Jin et al. 2023; Cornwell et al. 2022; Kuchner et al. in

prep.). If the thickness of the filaments surrounding clusters with different masses
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Figure 4.1: Illustration of an example cluster with the different cosmic web envi-
ronments identified in 3D (directly from the simulations) and in 2D (from the mock
observations based on WWFCS observational constraints). The environment as-
signed to a given galaxy may not be the same in 2D and 3D due to projection
effects. Cluster core galaxies are shown in blue, filament galaxies in orange, and
the rest of the galaxies (neither core nor filament, NCF) in green. We also overlay
the associated filament network around this cluster, shown by the red lines. This
simulated cluster has similar mass to RX0058, one of the targets in the middle of
the mass range of the WWFCS sample.
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is kept constant, the fraction of the total volume occupied by filaments inside a

sphere of radius ∼ 5R200 would be significantly larger for less massive clusters.

Self-similarity considerations on the dark matter distributions suggest that this

should not be the case. In the absence of stronger evidence, it is reasonable to

assume that the thickness of filaments surrounding a given cluster scales with the

cluster’s R200, and therefore with M
1/3
cluster. Hence,

Rfil = R0 ∗
(

Mcluster

⟨MTheThreeHundred⟩

)1/3

, (4.1)

where R0 = 0.7h−1Mpc is the average filament radius calculated using the full

TheThreeHundred cluster simulations (Kuchner et al., 2020), ⟨MTheThreeHundred⟩
is the average cluster mass in the TheThreeHundred sample (6.5× 1014M⊙),

and Mcluster is the mass of the cluster at the centre of a specific filament network.

This thickness is kept constant for all filaments surrounding this particular cluster.

As discussed above, this is an over-simplification, but alternative recipes could be

easily applied. We keep this one for simplicity throughout the chapter.

4.4 Assigning galaxies to cosmic web environ-

ments

In this section, we provide a framework for assigning mock galaxies to the different

cosmic web environments associated with galaxy clusters. This is an essential but

non-trivial process if we wish to understand how each environment affects the

galaxies’ properties and evolution.

Kuchner et al. (2020) showed that filamentary structures inferred from 3D galaxy

positions well resemble that of the underlying dark mark matter and gas particles.

As a result, we can trust that as simulations provide full 3D positional informa-

tion, they allow a ‘true’ environmental assignments to each galaxy. Observations

will provide accurate sky positions and radial velocities, but the radial distances

will have uncertainties that are large in comparison with the physical dimensions

of the volume considered (a sphere with a radius ∼ 5R200), meaning that the

environmental assignments from the observations can only be done in 2D (see
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Table 4.1: Fraction of galaxies in each environment and fraction of the total
volume/surface area occupied by each environment within r < 5R200, in 3D and
2D.

Environment 3D population 3D volume 2D population 2D surface area
Cluster 10% 1% 15% 4%
Filament 38% 6% 45% 19%
NCF 52% 93% 40% 77%

Section 4.3.1.2). This means that the environment associated to a galaxy from

the observational data may not coincide with the ‘true’ environment. We need to

quantify statistically how often that occurs.

We assign each galaxy to different environments according to the following criteria:

1. Cluster core galaxy: galaxies that lie at a radial distance from the cluster

centre r < R200 in 3D or 2D. The blue points in Figure 4.1 show these

galaxies.

2. Filament galaxy: galaxies that lie outside the cluster core (r > R200) and

close to the filament spine (rspine < Rfil), where rspine is the perpendicular

distance from the spine of the filament and Rfil is the filament thickness

determined using Equation 4.1. These galaxies are represented by the orange

points, whilst the filaments’ spines are shown as red lines in the figure.

3. NCF galaxy (neither core nor filament): galaxies that lie outside of the

cluster core and outside of filaments (r > R200 and rspine > Rfil). They are

shown as green points.2

The proportion of galaxies identified in each environment, together with the frac-

tion of the total volume/surface area that each environment occupies around the

simulated galaxy clusters in 3D and 2D are presented in Table 4.1. Not surpris-

ingly, we find that the densest environments are the cluster cores, followed by

filaments, with the NCF region being much less dense. Within 5R200, the cluster

cores contain ∼ 10% of the galaxies, while they occupy only 1% of the volume,

2We note that is not an exhaustive list of cluster substructure and we focus in Chapter 5 on
the detection of galaxy groups in mock observations.
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and filaments contain ∼ 36% of the galaxies in ∼ 6% of the volume. As a com-

parison, over much larger regions (∼ 500Mpc scales), Cautun et al. (2014) found

that filaments contain ∼ 6% of the volume, whilst accounting for half of the total

mass budget. Similarly, they also found that nodes, which are proxies for cluster

cores (Cohn, 2022), contain ∼ 10% of the mass but only 0.1% of the volume.

Table 4.1 also shows that the density contrast between the different environments

is significantly reduced when we move from 3D to 2D due to projection effects.

4.5 Results

In what follows we will quantify statistically how often the ‘true’ environment

assigned to a galaxy in 3D (directly from the simulations) agrees with the one

identified in 2D, once the limitations imposed by observation such as the WWFCS

are taken into account (see Sec. 4.2.1). This information is essential in order

to interpret the observational data correctly when trying to infer how different

environments affect galaxy properties and evolution.

4.5.1 Overall performance of environment allocation

In Figure 4.2, we display three confusion matrices to assess how well we can

allocate galaxies to different environments using WWFCS-like data. A confusion

matrix is a way of visualizing the success of binary classification. In our case, we

allocate galaxies to different environment using the mock observations (2D) and

compare them to the ‘true’ environment determined from the full 3D simulations,

as described in previous sections. We use the following standard definitions of

true-positive, true-negative, false-positive and false-negative for environment X

(where X can be core, filament or NCF):

TP = number of true-positives = number of galaxies identified as belonging to

environment X in the mock observations (2D) and to the same environment

X in the simulations (3D).

TN = number of true-negatives = number of galaxies identified as belonging to
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Figure 4.2: Confusion matrices comparing the environment identification for galax-
ies in 3D (models) and 2D (simulated mock observations). In each panel, the top
left box represents the false positive rate, the bottom left box is the true posi-
tive rate, the top right box is the true negative rate, and the bottom right is the
false negative rate. Left panel: galaxies identified as core galaxies. Middle panel:
galaxies identified as filament galaxies. Right panel: galaxies identified as nei-
ther core nor filament galaxies (NCF). The accuracy (Equation 4.2) and precision
(Equation 4.3) are displayed at the top of each panel.

environment Y (̸=X) in the mock observations (2D) and to environment Y

in the simulations (3D).

FP = number of false-positives = number of galaxies identified as belonging to

environment X in the mock observations (2D) and to environment Y in the

simulations (3D).

FN = number of false-negatives = number of galaxies identified as belonging to

environment Y in the observations (2D) and to environment X in the simu-

lations (3D).

Furthermore, we define accuracy as

Accuracy =
TN + TP

TP + TN + FP + FN
, (4.2)

and precision as

Precision =
TP

TP + FP
. (4.3)

In the left panel of Figure 4.2 we illustrate the success of classifying cluster core

galaxies. For this environment, we get an accuracy of 95% and a precision of 68%.
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For clarity, we briefly define the “rates” that are used in the panels in Figure 4.2.

We use the left panel as an example:

1. FP rate: the fraction of galaxies incorrectly identified in 2D as not belonging

to the cluster core. FPR = FP
(FP+TN)

.

2. TN rate: the fraction of galaxies correctly identified in 2D as not belonging

to the cluster core. TNR = TN
(FP+TN)

.

3. TP rate: the fraction of galaxies correctly identified in 2D as belonging to

the cluster core. TPR = TP
(TP+FN)

.

4. FN rate: the fraction of galaxies incorrectly identified in 2D as belonging to

the cluster core. FNR = FN
(TP+FN)

.

This convention follows for the filament galaxies and NCF galaxies in the middle

and right most panel.

The true-positive identification rate is 67%. Because of projection effects, about

one third of the galaxies identified as belonging to the core in 2D are either in front

or behind the core itself. For obvious reasons, the ‘outside’ row of the confusion

matrix shows that all galaxies that are outside the core in 2D are also outside in

3D.

The second and third panels evaluate our success (or lack thereof) at identifying

filament and NCF galaxies in the 2D mock observations. The true-positive rate

for filament galaxies (fraction of galaxies correctly identified in 2D as belonging to

filaments) is relatively small (51%), while we are able to correctly identify galaxies

not belonging to filaments in 73% of the case (true-negative rate). Conversely, we

have a higher success at identifying NCF galaxies (true-positive rate of 68%) than

at rejecting them (true-negative rate of 59%). This can be easily understood by

considering projection effects and the fraction of the total surface area covered by

each one of these environments.

These results indicate that identifying the correct environment of a galaxy in the

vicinity of a cluster is not straightforward, and the resulting statistical uncertain-

ties cannot be ignored when interpreting the observations. We will investigate
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next how these uncertainties depend on the distance of a galaxy to the cluster

centre and its mass.

4.5.2 The dependence of the environmental identification

success on galaxy mass and cluster-centric distance

In this section we will quantify our success at assigning environments to galaxies

using the information provided by spectroscopic surveys like the WWFCS. The

goal is to be able to answer the question: if we assign a given environment to a

galaxy based on the observations, what is the probability that it is truly in that

environment? And, importantly, how does this change with a galaxy’s position

and mass?

4.5.2.1 Evaluating a single cluster

We start by using a typical cluster to describe the process. We choose a simulated

cluster with a mass similar to WWFCS cluster RX0058, the cluster shown in

Figure 4.1. We first divide all the galaxies in mass and 2D cluster-centric radial

distance bins. For all the galaxies in bin (i, j), where i corresponds to a mass bin

and j to a radial distance bin, we calculate the probability PXXij that a galaxy

has been correctly allocated to environment X in the mock observations (2D) as

the ratio of the number of galaxies allocated to environment X in 2D whose ‘true’

3D environment is also X, NXXij, and the total number of galaxies allocated to

environment X in 2D NXij. In other words,

PXXij =
NXXij

NXij

. (4.4)

Conversely, we calculate the probability PXYij that a galaxy has been incorrectly

allocated to environment X in 2D when its ‘true’ 3D environment is Y ( ̸=X)

as the ratio of the number of galaxies allocated to environment X in 2D whose

‘true’ 3D environment is Y, NXYij, and the total number of galaxies allocated to
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Figure 4.3: The first 9 panels (3 × 3 grid) display the probabilities of identify-
ing galaxies in different environments (cluster core, cosmic filaments, or neither
core nor filament, NCF)) as a function of galaxy stellar mass and cluster-centric
distance in one example cluster. For every bin, we calculate the probability of cor-
rect identification PXXij (panels in the top-left to bottom-right diagonal) as well
as incorrect identifications PXXij (other panels) using Equations 4.4 and 4.5. For
illustration we show this for one model cluster, the same one shown in Figure 4.1.
In the bottom row we show the spatial distribution of galaxies in the different
environments for the same model cluster. The left panel in the bottom row shows
all the galaxies that are identified as core galaxies in 2D, with the ones correctly
identified as belonging to the core in blue, misidentified filament galaxies in red,
and misidentified NCF galaxies in green. Similarly, the middle panel of the bot-
tom row shows all the galaxies identified as filament galaxies in 2D, with the ones
correctly identified as filament galaxies in red, and misidentified NCF galaxies in
green. The filament network is shown as black lines. Finally, the right panel in
the bottom row shows galaxies that are identified as NCF galaxies in 2D, with the
ones correctly identified NCF galaxies in green and misidentified filament galaxies
in red. The line-of-sight of the cluster is indicated by the purple arrow, parallel
to the z axis.
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environment X in 2D NXij. Hence,

PXYij =
NXYij

NXij

. (4.5)

We calculate this probability in four galaxy stellar mass bins and five cluster-

centric distance bins, covering the ranges 109M⊙ < M∗ < 1011M⊙ and 0 < r <

6R200 (note that all cluster regions are fully covered out to 5R200 by the WWFCS

pointings, and in some cases we reach beyond 6R200). The resulting probabilities

in each mass and radial bins for the chosen cluster are shown in Figure 4.3.

The first row of this figure displays the probability of identifying a galaxy as

belonging to the cluster core in 2D when its true 3D environment is the core, a

filament or NCF (left, centre and right panels). For example, if we look in the

0 < r < 1R200 and 109M⊙ < M∗ < 109.5M⊙ bin in the first row, we assign a

probability of 0.76 for correctly identifying core galaxies as such, a probability of

0.15 for misidentifying a core galaxy as a filament galaxy, and a probability of 0.09

for misidentifying a core galaxy as an NCF galaxy. Reassuringly, the probability

of correctly identifying a core galaxy is the highest by a large margin – although

there is some contamination due to projection effects, identifying core galaxies is

relatively easy. This is illustrated in the bottom left panel of Figure 4.3, where

‘true’ core galaxies correctly identified in 2D as belonging to the core are plotted

as blue dots, those belonging to filaments in red, and those belonging to NCF in

green. The incorrect identifications are purely a product of the contamination of

the true cluster core sample due to projecting the 3D galaxy distribution in 2D.

The second row of Figure 4.3 shows the probability of identifying a galaxy as

belonging to a filament in 2D when in 3D it is a core galaxy, a filament galaxy,

or an NCF galaxy (left, centre, and right panels respectively). The left panel

is blank because it is not possible to identify a true core galaxy as a filament

galaxy in 2D since in our framework the 2D filament networks inside a circle with

projected radius of R200 are not taken into account (see 3). The middle panel shows

the probabilities of correctly classifying filament galaxies, while the right panel

present the probability of misidentifying them as NCF galaxies. Notwithstanding

the statistical fluctuations, the likelihood of a correct identification for filament

galaxies is generally higher than that of a misidentification, but not by much (see

Section 4.5.2.2). The middle panel of the bottom row in Figure 4.3 shows the

75



0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.66

0.68

0.65

0.65

Observed: core; true: core; random = 0.10

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

ba
bi

lit
y

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.14

0.14

0.16

0.17

Observed: core; true: filament; random = 0.37

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.2

0.18

0.19

0.18

Observed: core; true: NCF; random = 0.52

0 2 4 6
9.0

9.5

10.0

10.5

11.0

G
al

ax
y

st
el

la
r

m
as

s
lo

g 1
0
M
∗

Observed: filament; true: core; random = 0.10

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.49 0.47 0.48 0.47 0.44

0.52 0.53 0.52 0.5 0.5

0.54 0.52 0.52 0.53 0.5

0.57 0.56 0.57 0.56 0.54

Observed: filament; true: filament; random = 0.37

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.51 0.53 0.52 0.53 0.56

0.48 0.47 0.48 0.5 0.5

0.46 0.48 0.48 0.47 0.5

0.43 0.44 0.43 0.44 0.46

Observed: filament; true: NCF; random = 0.52

0 2 4 6
9.0

9.5

10.0

10.5

11.0
Observed: NCF; true: core; random = 0.10

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.31 0.29 0.28 0.27 0.29

0.33 0.33 0.32 0.31 0.31

0.35 0.34 0.34 0.33 0.34

0.38 0.41 0.41 0.4 0.4

Clustercentric distance R/R200

Observed: NCF; true: filament; random = 0.37

0 2 4 6
9.0

9.5

10.0

10.5

11.0

0.69 0.71 0.72 0.73 0.71

0.67 0.67 0.68 0.69 0.69

0.65 0.66 0.66 0.67 0.66

0.62 0.59 0.59 0.6 0.6

Observed: NCF; true: NCF; random = 0.52

Figure 4.4: The same as the top 3 × 3 panels of Figure 4.3 but averaged over all
clusters. The probability of randomly classifying a galaxy correctly in the title of
each plot (see text for details). The information in this Figure is also included in
Table B.1.

spatial distribution of the ‘true’ filament galaxies correctly identified in 2D as

belonging to filaments (red dots), and the NCF galaxies misidentified in 2D as

belonging to filaments (green dots). The 3D filament network is shown as black

lines.

In a similar way, the third row of Figure 4.3 presents the probability of classifying

a galaxy in 2D as an NCF galaxy when it is truly in the cluster core, in a filament,

or correctly identified as an NCF galaxy. Again, the left panel is blank because,

by our definition, a true core galaxy cannot be classified as NCF. As before, the

likelihood of correct identification of NCF galaxies is generally a bit higher than

that of misidentification. The right panel of the bottom row in this figure shows

the spatial distribution of the ‘true’ NCF galaxies correctly identified in 2D as

NCF (green dots), and the galaxies belonging to filaments in 2D in red. The 3D

filament network is also shown as black lines.
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4.5.2.2 Evaluating the entire simulated cluster sample

We repeat the process described in Section 4.5.2.1 for the whole sample of 160

simulated clusters presented in Chapter 3, see Section 4.2.2, and compute the

classification probabilities for each galaxy mass and radial bin in all the simulated

clusters. These probabilities are then averaged in order to improve the statistics,

and the standard deviation for each bin calculated. With this information we

are now able to evaluate robustly any possible dependence on galaxy mass and

radial position. Moreover, with such a large simulated cluster sample we will

explore cluster-to-cluster variations in Section 4.5.3. The average probabilities for

each mass and radial bin are displayed in Figure 4.4 using the same format as

Figure 4.3, with the corresponding standard deviations shown in Figure B.1.

When assessing our ability to identify the environment of a galaxy correctly, we

need to compare it with that of a random allocation; after all, if all our machinery

does not perform better than random, no statistical inference will be possible.

We calculate the probability of randomly allocating an environment to a galaxy

by shuffling the environment labels for all galaxies in the 3D simulations and re-

calculating the probabilities for all clusters individually, and then averaging them.

In doing so, we are using the 3D population statistics from Table 4.1 as a prior in

the random allocation since, in the absence of any other information, this is our

‘best guess’ distribution of galaxies in each cosmic web environment. The average

random probabilities are displayed in the titles of each panel of Figure 4.4 for easy

reference. Reassuringly, the random probabilities thus calculated are very close to

the true fractions shown in Table 4.1, as expected. Note that, when interpreting

the results, we want the estimated probabilities to be higher than those drawn

from random distributions for the panels on the top-left to bottom-right diagonal

(corresponding to correct identification), and lower than the random ones for the

rest of the panels (incorrect identifications).

The first row of Figure 4.4 clearly indicates that the probability of identifying core

galaxies does not depend significantly on galaxy mass or distance to the cluster

centre. The average probability of success is 0.67, clearly showing that we perform

much better than random when identifying cluster core galaxies.

The middle panel of the second row shows that the probability of correctly iden-
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tifying filament galaxies varies from ∼ 0.44 to ∼ 0.57. These probabilities are

always better than the random chance (∼ 0.37), but in some cases not by much –

thereby once again emphasizing that identifying filament galaxies in the vicinity

of massive clusters is difficult, but with large enough samples the statistics will be

able to beat the noise. The likelihood of success increases significantly with galaxy

mass. The most likely explanation is that filament galaxies are, on average, more

massive than field galaxies outside filaments, as previously found in simulations

(e.g., Ganeshaiah Veena et al. 2018) and observations (e.g., Malavasi et al. 2016;

Kraljic et al. 2017). These works indicate the galaxy stellar mass increases when

getting closer to the spine of the filaments. In our own simulations, the filament

galaxy samples contain more massive galaxies than the NCF samples (the median

galaxy mass in filaments is ∼ 17% higher), enhancing the probability of correct

identification at high masses. There is also a small increase in the probability of

correctly identifying galaxies when the distance to the cluster centre decreases.

This can be explained by the fact that closer to the cluster core the fraction of

the volume (and projected area) contained in filaments is larger when compared

to that occupied by NCF galaxies. As a result, the fraction of filament galaxies

misidentified as NCF due to projection effects is smaller closer to the core.

The right panel in the middle row shows that we are a bit better than random at

preventing NCF galaxies from contaminating the filament sample at most masses

and radial distances, but for the lowest mass galaxies and largest radial distances

we fare a bit worse (by up to ∼ 4%). At very large distances from the cluster,

the volume occupied by NCF galaxies is so much larger than that occupied by

the filaments that projection effects become too strong. When interpreting the

properties of filament galaxy samples identified this way it is very important to

be aware that in some regions of the parameter space the filament samples will

suffer from low purity .

Finally, the bottom row of Figure 4.4 completes the picture for the galaxies that

are allocated to the NCF category. The probabilities very much mirror what was

found for filament galaxies. We are quite successful (in some cases, 20 percentage

points above random) at distinguishing NCF galaxies from filament ones, although

the NCF sample will contain significant contamination from filament galaxies.

There is very little radial dependence, but we find some galaxy mass dependence

in the opposite sense to the one found for filament galaxies: we are slightly more
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successful at identifying NCF galaxies at lower galaxy masses, as expected from

the discussion above.

4.5.3 The dependence of the environmental identification

success on cluster mass

In Appendix B.1 (see Figure B.1) we show that there are significant cluster-to-

cluster variations in the probabilities discussed above. This suggests there may

be a systematic dependence of our ability to identify galaxy environments on

the properties of the central cluster and the filamentary network that surrounds

it. The most obvious cluster property to consider is the cluster mass since the

galaxy clusters in the WWFCS sample span over 1 order-of-magnitude in mass

(from ∼ 7 × 1013M⊙ to over ∼ 1015M⊙). We consider two properties of the

filamentary network that may also have an effect: the total length of all filaments

in the network, and number of nodes identified by DisPerSE. These properties

encode the complexity and extent of the network, and may therefore influence

the probabilities we calculate. Fortunately, both network length and number of

nodes correlate reasonably well with cluster mass (Figure 4.5), and therefore, for

the purpose of parameterising the relatively small cluster-to-cluster systematic

variations, it suffices to use the cluster mass as main parameter.

We divide the clusters into three different mass bins, spanning the full WWFCS

mass range: 7.3 × 1013M⊙ < Mcluster < 2.5 × 1014M⊙, 2.5 × 1014M⊙ < Mcluster <

5.0 × 1014M⊙, and 5.0 × 1014M⊙ < Mcluster < 1.2 × 1015M⊙. Each bin contains

∼ 50 simulated clusters. To determine if our success in environmental classification

correlates systematically with cluster mass, we calculate the difference in average

probabilities between the most massive cluster bin and the least massive one. This

is computed for every mass and radial distance bin, and shown in Figure 4.6.

For the most massive clusters there is a small but systematic excess in the proba-

bility of correctly identifying cluster core galaxies. The difference comes from the

fact that the probability of contamination from NCF galaxies is systematically

larger for the least massive clusters. This can be understood because the length

of the filament network is smaller for clusters with low masses (Figure 4.5), and

therefore the fraction of the volume occupied by NCF galaxies is larger, mak-
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Figure 4.5: Correlation between filament network properties and the mass of the
central cluster for the 160 simulated clusters mass-matched to the WWFCS sample
based on TheThreeHundred simulations. The top panel shows the number of nodes
in the network as a function of cluster mass. The lower panel shows the total
length of all filaments in each network also as a function of cluster mass. Points
correspond to the average for the 10 simulated clusters in each mass bin, with the
error bars showing the corresponding scatter (standard deviation). Clear positive
correlation are found between cluster mass and the number of nodes or the length
of the filament network.
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Figure 4.6: Residual probabilities of the environmental classification showing the
dependency on cluster mass. These are calculated as the difference between the
average probabilities for the most massive third of the clusters (Mcluster > 5 ×
1014M⊙) and the least massive third (Mcluster < 2.5×1014M⊙). A positive residual
indicates that a given probability is higher for the more massive clusters.
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ing projection effects worse. The contamination of the core sample from filament

galaxies changes very little across cluster masses given the relatively small volume

occupied by filaments.

The second row of Figure 4.6 shows that for high mass clusters we are systemati-

cally more successful at identifying filament galaxies correctly, while still perform-

ing generally better than random for lower mass clusters. This result is statistically

significant since the differences in probabilities are generally and systematically

larger that the 0.01–0.02 uncertainties. It is likely that the reason for this is sim-

ply that in more massive clusters the length of the filament network and thus the

fraction of volume occupied by them is larger3 (Figure 4.5), implying that the the

projection effects leading to the misidentification of filament galaxies are smaller

for high mass clusters.

Reciprocally, similar arguments explain how the probability of correctly identifying

NCF clusters is higher in low-mass cluster regions (third row of Figure 4.6). The

fractional volume occupied for NCF galaxies increases as the mass of the cluster

decreases due to the opposite trend shown by filament galaxies.

We conclude that relatively small but systematic variations with cluster mass (and

correlated filamentary network properties) exist in the probabilities of correctly

identifying the environment of galaxies, and it is therefore useful to calculate

separate tables for different masses. Given the size of the variations, it suffices

to divide the clusters in three mass bins – further granularity would reduce the

statistical accuracy of the calculated probabilities without significantly altering

the results. Table B.1 presents in numerical form the probabilities calculates for

the complete cluster sample, as shown in Figure 4.4. Similarly, Tables B.2, B.3,

and B.4 contain the probabilities for high-, intermediate-, and low-mass clusters.

3As a consequence of the correlation between cluster mass and total length of the filament
network shown in Figure 4.5 we also find a clear positive correlation between the cluster mass
and the fraction of volume occupied by filaments inside r < 5R200.
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4.6 Conclusions

Galaxies experience different physical processes in different environments. Next

generation wide-field spectroscopic surveys will be able to accurately map out in

detail the distribution of galaxies in the cosmic web around galaxy clusters. In

3 we laid down the framework for developing mock observations to accurately

forecast the success in reconstructing cosmic filaments around galaxy clusters for

one such survey, the WEAVE wide-field cluster survey (WWFCS). In this chapter,

we assess the feasibility and accuracy of assigning individual galaxies to different

cosmic web environments using a large sample of simulated galaxy clusters from

TheThreeHundred project (Cui et al., 2018). In order to do so, we compare

the ‘true’ environments we assign to galaxies using the 3D information provided

by the simulations with the ‘observed’ environment we assign to the same galaxies

using mock observations that take into account the observational constraints and

selection effects of the planned WWFCS. We summarize our main findings below.

1. Filaments occupy only ∼ 6% of the volume enclosed in a sphere with radius

5R200 around massive galaxy clusters, but contain ∼ 38% of the galaxies

with masses above 109M⊙. This is calculated using filament thicknesses that

decrease with the mass of the main halo (see Sec. 4.3.2). In comparison,

galaxies that are neither in the cluster core nor in filaments (NCF) make up

∼ 52% of the galaxy population, whilst occupying 93% of the volume. The

cluster core itself (defined as the sphere with radius R200) contains ∼ 1% of

the volume and ∼ 10% of the galaxies. To understand how these different

environments affect the properties and evolution of the galaxies that inhabit

them we need to be able to associate galaxies to the correct environment

and to quantify statistically the uncertainties involved.

2. When we allocate galaxies to different environments in the mock observa-

tions and compare them to the allocations from the ‘true’ simulations we

find that, combining all cluster and galaxy masses, and at all cluster-centric

distances, we are able to identify core, filament, and NCF galaxies with sta-

tistical accuracies (precisions) of 95% (68%), 63% (51%) and 62% (68%)

respectively (see definitions in Equations 4.2 and 4.3). This indicates that,

while cluster core galaxy samples can be built with a high level of complete-
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ness and moderate contamination, the filament and NCF galaxy samples

will be significantly contaminated and incomplete due to projection effects,

even with good-quality spectroscopic redshifts. This is also explained by

the method in which we calculate Dskel in Chapter 3. We note that had

we calculated Dskel using the method discussed in Section 3.5.1, the lack of

success in assigning galaxies to filaments would have been more expected.

3. In our framework, we calculate the probabilities of galaxies being correctly

assigned to a given environment, together with the probabilities of misiden-

tifying them as a belonging to a different one (Figure 4.4 and Table B.1). We

do that as a function of galaxy mass and cluster-centric distance. We find

that, outside the cluster core (beyond ∼ R200), identifying filament galaxies

is marginally more successful at high galaxy masses and low cluster-centric

distances, while the reciprocal is true for NCF galaxies. Generally, the suc-

cess of the environment allocation is significantly better than random, but

sometimes only marginally so. We conclude that identifying the cosmic web

environments of galaxies in the vicinity of massive clusters (within a sphere

of radius ∼ 5R200 from the cluster centre) is remarkably difficult due to

projection effects exacerbated by the magnitude of the galaxies’ peculiar

velocities (Fingers-of-God).

4. We also find that the calculated probabilities vary with the mass of the cen-

tral cluster and, by association, with properties of the filamentary network

such as the number of nodes or the total length of the filaments. We there-

fore calculate the probabilities for different cluster mass ranges (Tables B.4,

B.3, and B.2), and find that identifying filament galaxies is marginally more

successful around the most massive clusters because their filament networks

occupy a relatively larger fraction of the total volume considered.

We conclude that, in the infall regions surrounding masssive galaxy clusters, as-

sociating galaxies with the correct cosmic web environment is highly uncertain.

However, applying our statistical framework and probabilities to large spectro-

scopic samples like the WWFCS will allow us to observationally extract robust

and well-defined conclusions on relationships between galaxy properties and their

environments.
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4.6.1 Caveats and future tests

There are other ways to produce the random probabilities that we use to compare

our results to in Section 4.5.2.2. For example, one could only shuffle the environ-

ment tags of the filamentary and NCF galaxies given that the core galaxies are

based on a pre-defined R200. Furthermore, one could also randomize the environ-

ment tags within bins of galaxy mass and cluster-centric distance. We note that

this choice could influence the significance of the results described in this Chapter

as we would expect a larger number of high mass galaxies to appear in filamentary

environments, (e.g. Sarron et al. 2019).
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Chapter 5

Galaxy group detection in cluster

outskirts

In the infall region of galaxy clusters, individual galaxies often exist in group sized

dark matter haloes. Evidence suggests that galaxies that are being accreted onto

a cluster through galaxy groups can experience environmental processing by the

group itself before it reaches the virialized core of the cluster. As a result, they are

regions of great interest for surveys such as the WWFCS and their characterization

requires special attention. In this chapter, we investigate the identification of

galaxy groups in the infall regions of galaxy clusters using the structures extractor

DisPerSE. We investigate the co-location of galaxy groups with the critical points

from DisPerSE and find that a high fraction of cosmic web nodes are correctly

identified as galaxy groups. The fraction of matches increases with group mass and

with distance from the host cluster centre. Finally, we show that when a perfect

match occurs between a cosmic web node and a galaxy group, the DisPerSE node

density δ serves as an estimate of the group’s mass, albeit with significant scatter.

The content of this chapter was published in Cornwell et al. (2023b).
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5.1 Introduction

Some galaxies exist in galaxy cluster sized dark matter haloes. Such galaxies are

subject to frequent interactions, both with neighbouring subhaloes and satellites,

as well as with the intracluster medium. The impact of the environmental density

on the properties of a galaxy can be clearly seen in the morphology density rela-

tion: at greater environmental densities, there is a higher fraction of early type

galaxies (Dressler, 1980). Beyond the virial radius, galaxies are fed into the cluster

via cosmic filaments and/or groups (Sarron et al., 2019; Mart́ınez et al., 2015),

where they experience “pre-processing” (Zabludoff & Mulchaey, 1998). Whilst

the extent and location of pre-processing is still debated, recent studies at low and

intermediate redshifts have shown that galaxies experience this effect before they

reach first infall (Tawfeek et al., 2022; Werner et al., 2021), providing motivation

for the study of the influence of filaments and groups on galaxy evolution. Next

generation wide-field, multi-object spectroscopic surveys, such as the WEAVE

Wide Field Cluster Survey (WWFCS; Jin et al., 2023) and the 4MOST CHileAN

Cluster galaxy Evolution Survey (CHANCES; Haines et al., 2023) will directly

address the need for this study. By obtaining thousands of galaxy spectra out to

several virial radii around low-redshift clusters, these surveys will investigate the

impact of the cosmic web around galaxy clusters and the properties of the galaxies

that lie within it.

Cosmic web nodes denote areas in the large scale distribution where filaments in-

tersect. They generally align with peaks in the density field which signal the pres-

ence of massive haloes, typically representing clusters or galaxy groups. With this

in mind, Cohn (2022) used DisPerSE, a topological structures extractor (Sous-

bie, 2011; Sousbie et al., 2011), to test the matching of the location of galaxy

cluster-sized haloes (M200 > 1014h−1 M⊙) to cosmic web nodes in the Millennium

simulation (Springel et al., 2005). Using a variety of input network parameters

and matching techniques, they found that 75% of galaxy clusters are matched

to a DisPerSE node, implying that galaxy clusters represent peaks in the cosmic

web. Furthermore, (Galárraga-Espinosa et al., 2024) fine-tuned their DisPerSE

input parameters based off the matching of peaks in the Delaunay density field to

massive haloes. Both of these studies were performed on cosmological box scales.

However, it is unknown whether the matching of nodes to high-mass haloes ex-
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tends to group-sized haloes and to scales comparable to that of the WWFCS,

(regions encompassing galaxy cluster outskirts, typically out to 5R200). Further-

more, the complexity of the infall region of galaxy clusters, being the interface

between the dense, non-linear cluster core and the larger-scale cosmic web, adds

significant complexity to this matching.

Motivated by upcoming wide-field observations of galaxy clusters, in this chapter,

we investigate the reliability of using DisPerSE to systematically locate galaxy

groups in and around clusters by the simple process of identifying nodes in the

filament network. The motivation is to encapsulate the individual components of

the cosmic web (the clusters, groups and filaments) together, as one evolving field.

This Chapter is organized as follows: in Section 5.2, we describe the simulation

data used in this project. In Section 5.3, we introduce our reference galaxy groups

and describe the identification of cosmic web nodes. In Section 5.4 we interpret

the outcome of matching cosmic web nodes to galaxy groups. In Section 5.5 we

discuss the feasibility of using cosmic web node densities to interpret the mass of

galaxy groups. Finally, in Section 5.6, we present our conclusions.

5.2 Data catalogues

In this chapter, we use a sub-sample of simulated galaxy clusters fromTheThree-

Hundred that we assembled in Chapter 3 and also used in Chapter 4. For each

galaxy cluster, we take all of the haloes identified by the AHF that exceed a halo

mass of 1.5×1011h−1M⊙ which corresponds to the accumulative mass of 100 high-

resolution dark matter particles. This cut lies well above the stellar mass limit

of the WWFCS, (see Chapter 2 & Jin et al. 2023). We assume that in the real

observations, every halo that we use in this analysis will host a galaxy.

Motivated by the WWFCS, we carry out the analysis in this chapter using both

the full 3D cluster simulations and the 2D-projected cluster data: i.e., the 3D

simulated clusters correspond to the full 3D cluster region, using the x, y and

z positions of the simulated haloes; and the 2D projections correspond to the

same clusters projected into 2D, using the x and y positions and omitting the

z component. Kuchner et al. (2021) showed that it isn’t currently feasible to
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Figure 5.1: A mass-matched simulated cluster analogue of WWFCS cluster
RX0058 (M200 = 4.3× 1014M⊙). It corresponds to Cluster 237 from TheThree-
Hundred. Left: the full 3D simulated galaxy cluster. Galaxy haloes are plotted
as black dots and the 3D filament network is plotted as red lines. The larger grey
sphere corresponds to d3D = 5R200; the smaller orange spheres represent galaxy
groups, and the central green sphere illustrates the cluster core (d3D = R200 = 1.3
Mpc). The nodes of this particular network outside 1.5R200 are shown as blue
triangles. Right: an illustration of the 2D projection of the same galaxy cluster.
A kernel density estimate (KDE) is used to represent the halo density distribution
with a smoothing scale of 500 kpc. The positions of the ‘true’ galaxy groups and
the nodes identified by DisPerSE are shown as orange circles and blue triangles,
respectively. The filament network is shown by the red lines. The green circle
corresponds to d2D = R200.

reconstruct filamentary networks in 3D in surveys such as the WWFCS, hence

why we project the networks in 2D for this approximation.

5.3 Identifying the large-scale structure around

galaxy clusters

In the following section we discuss the identification of galaxy groups and cosmic

web networks around our simulated galaxy clusters.
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5.3.1 Ground truth galaxy groups

In order to address the main science question in this chapter, whether cosmic web

nodes coincide with the location of galaxy groups, we firstly need to identify the

‘true’ galaxy groups.

Motivated by the forthcoming WWFCS observational strategy (Kuchner et al.,

2022), we identify group centres in the TheThreeHundred simulations using

haloes contained in the region 1.5R200 < d < 5.5R200, where d is the radial distance

to the cluster centre. We stay well clear of the complex cluster core regions, where

the peculiar velocity and the converging filament networks makes the identification

of groups difficult and unreliable. This also ensures that the selected volume for

all clusters is completely contained within the high resolution region and also

follows the scales that the WWFCS will probe. The group haloes are then selected

as objects with 1D velocity dispersion σv > 300 h−1 km/s (this is derived from

the subhalo velocities and corresponds to a halo mass of ∼ 1013M⊙). In the

TheThreeHundred database all galaxies within a sphere of R200 of the group

halo are labelled as group galaxies. However, in this work, we call ‘groups’ the

individual haloes that exceed this mass/velocity dispersion threshold, and are not

concerned with group subhaloes (or group members).

In the 160 simulated galaxy clusters that we study there are 1775 galaxy groups

in the 3D simulated clusters and 2430 in the 2D projections. The group catalogue

used in the 2D projections is the same as the 3D group catalogue but is projected

onto x and y positions. The difference in the number of groups in the 3D sample

and the 2D sample stems from restricting to 1.5R200 < d3D < 5.5R200 in 3D

(volume) and 1.5R200 < d2D < 5.5R200 in 2D (surface area). In the 2D sample,

there are background and foreground group interlopers.

5.3.2 Cosmic web networks

We make use of the widely used structures extractor algorithm DisPerSE (Sousbie,

2011; Sousbie et al., 2011) to identify filaments in the simulated clusters, which

is explained in detail in Section 2.3. For the purpose of this work, we reiterate

that critical points identified as nodes are the maxima of the Delaunay tessellated
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density field.

Previously, we have discussed the importance of mass weighting to find nodes

and robust filaments using the same simulations (Kuchner et al., 2020; Cornwell

et al., 2023a). Here, we apply this mass-weighting for our main analysis, but also

consider the non mass-weighted networks for comparison.

In this chapter, we aim to test the matching of DisPerSE nodes to galaxy groups

close to massive galaxy clusters. We run DisPerSE on the haloes that exceed the

mass cut of M > 1.5×1011h−1M⊙. We firstly perform this test on our 3D filament

networks that are ran on the 3D simulated clusters. Then, we aim to extend this to

our 2D projections by running the filament networks on the 2D projected clusters

(clusters projected in 2D), described in Section 5.2.

5.3.2.1 3D filament networks

In order to retrieve consistent, representative filament networks with DisPerSE,

we need to decide on the input parameters. We choose to approximately match the

number of nodes to the number of groups so that we can make a direct comparison

between the two. To evaluate the matches, we define completeness and purity in

the following way:

Purity =
Number of nodes matched to groups

Number of nodes
, (5.1)

Completeness =
Number of groups matched to nodes

Number of groups
, (5.2)

which can be computed for the 3D reference simulations and the 2D projections.

In our context, the purity we calculate is used to answer: “when we find a node,

how often is it truly a group?” For comparison, the completeness can be thought

of as: “of all the groups that exist, how many can we find just by identifying

nodes?” For example, if we use a low persistence, it is possible we will have many

more nodes than groups. This will result in a high completeness but a low purity

as there will be more nodes that have the potential to match to a group. By

approximating the number of groups to the number of nodes, we avoid making

the choice of maximizing the purity or the completeness.
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For the 3D simulated mass-weighted networks, we use a persistence of 3.3σ. We

use a smoothing of 5, following the work in Chapter 4, and note that smoothing

does not significantly alter the positions of the critical points. To avoid a bias in

our statistics, (for example, matching multiple nodes to a group), we further clean

the filament networks by omitting any cosmic web node that is within 0.5 Mpc of

another node, which is the case for approximately 15 nodes for the whole cluster

sample (i.e., less than 1%). In this process we keep the node with the highest

density field value (δ), which is the density contrast computed in the Delaunay

tessellation (see below). Summed over all 160 clusters, there are 1818 DisPerSE

nodes at clustercentric distances 1.5R200 < d3D < 5.5R200, compared to 1775

groups.

5.3.2.2 2D filament networks

In order to make a direct link to observations (see Kuchner et al. 2021 and Chap-

ter 3 for details), we produce filament networks using the 2D projections of the

simulated galaxy clusters. We run DisPerSE on the x and y positions of the haloes

and apply mass-weighting to construct the 2D projected filament networks. Here,

we use a persistence of 2.7σ and a smoothing of 5. After cleaning the networks in

the same manner as described above, we produce 2327 nodes, compared to 2430

groups in the range 1.5R200 < dclus,2D < 5.5R200.

We note that when observing real cluster regions we don’t know a priori the true

number of groups, which we have used to set the persistence value. As we have

done here, one can use simulations to estimate the expected number of groups for

clusters of a given mass, and use that to set the persistence value to derive the

observed filament network.

An example simulated galaxy cluster is shown in Figure 5.1. In the left panel, we

see the full 3D cluster with the filament network (derived using mass-weighting)

overlaid in blue. Galaxy groups are illustrated as orange spheres where their

radius corresponds to R200 of the group itself. Cosmic web nodes are shown as

blue triangles. We show the corresponding 2D projection of the same cluster in

the right panel. Here, a kernel density estimate is used to display the cluster

density field, and the filament networks are plotted in red. As before, we show the
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positions of the galaxy groups and cosmic web nodes as yellow circles and blue

triangles.

5.3.3 Node and group number densities

To test whether DisPerSE nodes match with galaxy groups around clusters, we

first compare their number densities as a function of radius, both in 3D and in

projected 2D. To do this, we calculate the volume and surface number density

of groups and nodes in a range of concentric shells for each cluster, where the

volume and surface number densities are calculated in units of (r3D/R200)
−3 and

(r2D/R200)
−2 respectively.

The number density of groups and nodes follows a monotonic decline with clus-

tercentric distance both in 3D and 2D (Figure 5.2). Close to clusters, the number

density of nodes and groups are different, both in 3D and 2D: in the innermost ra-

dial bins we identify significantly fewer nodes per unit volume (area) than groups.

We therefore expect that this mismatch may affect the completeness of the match-

ing of nodes to groups near the cluster cores. This discrepancy is especially relevant

in light of our initial decision to approximately align the total numbers of nodes

and groups. We interpret this as due to the cluster core dominating the local

density field and thereby diminishing the likelihood of persistence pairs forming

close to the cluster core. Beyond 2.5R200, the number density of nodes and groups

begin to converge and agree within each other’s standard error. We discuss the

implications of these results in more detail in the following section.

5.4 Results

Motivated by surveys such as the WWFCS, we investigate whether cosmic web

nodes as detected with DisPerSE match to galaxy groups in the outskirts of galaxy

clusters. We carry out this analysis with haloes in cluster simulations in 3D and

in projected 2D.
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Figure 5.2: The radial number density of galaxy groups and cosmic web nodes
decrease as a function of cluster distance. The top panel shows results from
mass-weighted DisPerSE 3D filament networks, the bottom from projected 2D
networks. The points show the mean number densities and the error bars are the
corresponding standard errors. We find the largest discrepancy between nodes
and groups at small clustercentric distances.
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5.4.1 Matching groups to nodes in 3D simulations

To test the coincidence between nodes and groups, we compute the nearest neigh-

bour from every node to every group in each individual cluster. For there to be a

successful match, we require that the node be within a radial distance of R200 of

the corresponding group centre. Where there are matches between multiple nodes

and groups, we take the node with the highest density as calculated by DisPerSE.

Figure 5.3 quantifies the success in matching cosmic web nodes to galaxy groups

in the mass-weighted case. The top left panel of Figure 5.3 shows the relationship

between distance of a node to a galaxy group and the group mass, represented by

a color map. The green dot-dashed vertical line represents the upper limit of what

we label a ‘perfect match’. Anything considered a ‘perfect match’ is where the

distance between a node and a group is essentially zero, i.e., below the simulation

resolution limit. The dashed red line illustrates the boundary of what we consider

to be a close match to a group: this corresponds to R200 of the respective group

that we are analyzing. There are two main peaks in the distribution, as replicated

in the lower left panel, with the dominant peak in the ‘perfect match’ range and

the secondary peak corresponding to a slightly lower instance of non-matches. For

the 3D simulated clusters, out of the 1818 nodes, 1011 are associated with galaxy

groups (56%). The lack of node–group pairs in Figure 5.3 with distances in the

10−4 ≲ R/R200 ≲ 10−1 range is due to mass-weighting and the fact that nodes are

always located at the centre of a halo: if a less massive halo resides very close to a

group-mass halo (R/R200 ≲ 10−1) the node would ‘latch’ to the group-mass halo

itself, and not the lower-mass halo.

For illustration, in Figure 5.4 we display the filament network from one model

galaxy cluster in our sample. In the top left panel we show the network in black,

with the nodes as blue triangles and groups as orange discs. We also show the other

DisPerSE critical points, saddle points (local density minima) and bifurcations

(where two or more filaments intersect without a maximum being present). The

other panels then zoom in on three different regions that exemplify a ‘no match’

between a node and a group, a ‘close match’ and an instance of a ‘perfect match’,

enclosed by a red, yellow and green mesh sphere. In our example in the top

right panel, DisPerSE does not place a node where a group is. Instead, a node
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Figure 5.3: An illustration of the level of success between the matching of cosmic
web nodes and galaxy groups in the 3D reference simulation (left) and the 2D
projections (right). Top two panels: a colour map showing the normalized distance
(in units of R200) of each node to its nearest group against the mass of the group in
the 3D simulations (left) and the 2D projections (right). The colour corresponds
to the density of points. The dashed red line represents our criteria for a close
match and the dot-dashed green line corresponds to a perfect match. The bottom
two panels show the corresponding 1D histogram of the distance of each node to
a group. In 3D, most cosmic web nodes successfully match to a galaxy group.
However, the link is significantly weakened in 2D.
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Figure 5.4: An example galaxy cluster (M200 = 4.3 × 1014M⊙) with the Dis-

PerSE critical points and group haloes overlaid. The top left panel shows the full
smoothed filament network in black. The cosmic web nodes are shown as blue
triangles, the bifurcation critical points are displayed as green pentagons, and
the saddle points are illustrated as red stars. We have also displayed the galaxy
groups as orange circles for reference. As explained in the text and demonstrated
in Figure 5.3, we calculate the distance between each node and each galaxy group
within the cluster and show an example of a non-match, a close match and a
perfect match as red, yellow, and green mesh spheres respectively. The top right
panel illustrates a zoom in on a ‘non-match’ between a node and a galaxy group,
where we have also plotted the haloes from the simulation. The bottom left panel
is a zoom in on an example of a ‘close match’ and the bottom right panel shows
an example of a ‘perfect match’. In the top right and lower left panels we have
plotted the closest node to a group, showing where a cosmic web node has not
latched on to the closest group. The radius of the mesh spheres in the upper right
and lower two plots correspond to R200 of the group halo.
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Figure 5.5: A confusion matrix illustrating the relative success of the matching
of cosmic web nodes to galaxy groups in the 3D simulations (top panel) and the
2D projections (lower panel). The bottom row of each matrix is calculated by
the number of nodes with/without groups divided by the total number of nodes.
The top row is calculated as the number of groups with/without nodes divided
by the total number of groups. We only consider groups and nodes in the region
1.5R200 < r < 5.5R200.
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Figure 5.6: Mass distribution of all galaxy groups and those groups considered
successful matches to nodes. We present the results for the 3D simulated clusters
in the top panel and the results for the 2D projections in the lower panel. We
display the normalized histograms of the group masses in black and the histogram
for all galaxy groups that are close matches to nodes in red. The mass distributions
appear significantly different, such that in the 3D reference simulations, groups
that are close matches to nodes tend to be more massive than the general group
sample.
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is identified at a distance of 1.75Mpc. In the bottom left panel, the node has

been associated with a halo that is a subhalo of a galaxy group, but not the main

group halo, and it is therefore a successful match but not a perfect match. This

corresponds to the data points between the dash-dotted green line and the dashed

red line in Figure 5.3. This demonstrates that while mass-weighting helps, it does

not always result in a direct match from the galaxy group halo to a node. In the

bottom right panel, the cosmic web node has latched on to a group-sized halo.

We quantify the success of matching nodes and groups using a confusion matrix

in Figure 5.5. Summing over all of the clusters, we calculate a purity of 56%

and a completeness of 68%. Whilst we have statistically demonstrated that there

is a link between the positions of cosmic web nodes and galaxy groups, we note

that there remains significant contamination, with 44% of nodes not matching to

groups and 32% of groups not matching to nodes. 1

In the top panel of Figure 5.6 we show the normalized mass distribution of the en-

tire sample of galaxy groups as well as the mass distribution of galaxy groups that

are close matches to nodes. More massive groups are more likely to match Dis-

PerSE nodes. To quantify this, we perform a Kolmogorov-Smirnov test, which is a

non-parametric test of the equality of two continuous, one dimensional probability

distributions. We test the null hypothesis that the cumulative mass distribution of

groups could be drawn from the ‘close match’ to node group mass distribution and

chose a significance threshold of 0.05. We record a p-value of 10−6 which allows

us to reject the null hypothesis. In other words, galaxy groups that are located

at cosmic web nodes have an intrinsically different mass distribution to that of

the general group population: they are typically more massive. This result agrees

with Cohn (2022). They further found that matched clusters to nodes tend to

occur in nodes of higher density (correlated with cluster/group mass, see below),

and have a slightly less recent major merger. This is something we will explore in

Chapter 6.2.

1We note that the purity and completeness are largely influenced by the persistence. By
increasing the persistence, there will be less critical points and therefore, less nodes. In turn,
this would decrease the completeness but increase the purity.
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5.4.2 Matching groups to nodes in 2D projections

We expect that matching nodes to groups is more challenging in projected 2D.

One of the obvious reasons is that we are losing 1/3 of the spatial information

when we project the simulated cluster volumes. On the other hand, it is possible

that in the 2D projections, we may produce false matches between nodes and

groups. This is where a node is close to a group ‘on the sky’, meaning they are

a match in the 2D projections, but their real line-of-sight distance is large and

would result in a non-match in the 3D simulations. With this in mind, in this

section we investigate the success and limitations of the matching of cosmic web

nodes to galaxy groups in 2D projections.

The right panels of Figure 5.3 illustrate that the matching of cosmic web nodes to

galaxy groups is significantly different compared to the 3D reference simulations.

There is one main peak in the distance distribution that straddles the boundary

of a ‘close match’ but lies preferentially in the ‘no match’ region. This is echoed

in the bottom panel of Figure 5.5, where we present the purity and completeness.

Overall, we find that of the 2327 cosmic web nodes, 662 of them match to galaxy

groups (a purity of 28%). The corresponding completeness is significantly worse

than the 3D case and is calculated to be 26% compared to 68%. In the bottom

panel of Figure 5.6, we display the mass distributions of the galaxy group sample

and the mass distributions of those groups that are close matches to nodes. We

perform the same KS test, using the same null hypothesis and significance thresh-

old and calculate a p-value of 10−5. We note that the mass distribution of groups

here is contaminated by the projection into 2D and may add to the spurious peaks

seen in the distribution.

As expected, the matching between nodes and groups in 2D returns a lower purity

and completeness than in the 3D simulations. The dimensional reduction severely

impacts the success in matching. However, Figure 5.2 shows a convergence in the

number density of nodes and groups at greater distances from the cluster core.

With this in mind, in the next section we examine the matching of cosmic web

nodes to galaxy groups as a function of clustercentric distance.
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Figure 5.7: Fraction of groups in nodes (completeness) as a function of cluster-
centric radius, summed over our entire 3D simulated cluster sample and the 2D
projected sample. We evaluate this fraction at four intervals from 1.5R200 to
5.5R200. The red triangles display the completeness in matching the entire group
sample in 3D and the black triangles illustrate the completeness in 2D. We show
the case where we limit to the most massive galaxy groups as red squares in 3D
and in black squares in 2D. Error bars indicate the standard error. The green
dashed line shows the average fraction obtained over much larger scales (Cohn,
2022) for comparison. In 3D, cosmic web nodes match well to very massive galaxy
groups, with a success rate close to 100%.

5.4.3 Radial dependence on matching nodes to groups

5.4.3.1 3D filament networks

We start by testing the radial matching of cosmic web nodes to galaxy groups using

the same radial bins discussed in 5.3.2.1 and present the findings in Figure 5.7.

Here, the y axis is a measure of the fraction of cosmic web nodes that reside

in galaxy groups divided by the total number of groups in that radial bin – the

completeness. This is calculated for each cluster and the mean is represented by

the red triangles with the error bars representing the standard error.

Generally, for the entire group catalogue, the success rate improves as we increase

the clustercentric distance. This is to be expected – close to the cluster core

the main halo dominates the density field and therefore prevents the formation of

critical points that exceed our persistence threshold. As the gravitational influence
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of the cluster decreases, more persistence pairs can form and are therefore more

likely to align with the high mass groups. Encouragingly, as the clustercentric

distance increases, the success rate approaches that of Cohn (2022), although

we must bear in mind that the mass range of the haloes we use (1011 M⊙ <

Mhalo < 1015 M⊙) is much larger than the one used by this author (M > 1014 M⊙);

furthermore, we are probing very different distance scales (tens of Mpcs compared

to hundreds of Mpcs). Nevertheless, our relatively high success at matching nodes

and groups in the complex vicinity of clusters (at least in 3D) seems promising. We

note that the mass-weighting scheme we use in DisPerSE plays a very important

role (cf. Appendix A) and is largely responsible for the success in matching nodes

to galaxy groups.

In Figure 5.7 we also display the success rate for massive galaxy groups, using

the same mass threshold as the Cohn (2022) work (M > 1014 M⊙). Limiting

the sample to these high mass groups, we find that completeness jumps to 100%.

This implies that the derivation of DisPerSE nodes can be used in the detection

of nearly all massive galaxy groups in close proximity to clusters when one applies

mass-weighting.

5.4.3.2 2D filament networks

We repeat the analysis for the 2D projected networks. Contrary to the results

of Section 5.4.3.1, we find that there is no improvement in the success rate with

increasing radius, resulting in a flat rate of approximately 26%. However, when we

consider only the higher mass groups, we find a stark improvement in the matching

of nodes to galaxy groups: 63% of M > 1014 M⊙ groups match to a cosmic web

node. Interestingly, there appears to be little dependence on the clustercentric

distance.

We conclude that the effect of the large contamination rates in the purity and

completeness of the node-matched group sample prevent us from using Disperse

to identify a robust sample of galaxy groups. However, we have shown that our

approach is much more successful when considering only the most massive groups.

Therefore, we expect to be able to identify ∼ 63% of all galaxy groups with

M > 1014M⊙ using nodes identified by DisPerSE. Furthermore, for all group
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Figure 5.8: Correlation between the mass of a galaxy group and the density of
the node that it matches to in the 3D reference clusters (red dots; see text for
details). The dotted black line shows the regression line obtained by fitting only
the data in the complete sample, as discussed in the text. The sample is complete
for log10 δ > 2 (indicated by the blue dashed line). The 1σ and 2σ scatter are
overlaid using two different shades of yellow. The node density of the cosmic web
can be used to estimate the mass of a galaxy group, albeit with large scatter.

masses, DisPerSE can be applied to observations to locate potential galaxy groups

using cosmic web nodes, and then the resulting sample can be verified and cleaned

using alternative, perhaps more ad-hoc and less systematic methods.

5.5 Group mass estimation from cosmic web node

density

We have shown that it is possible to locate a significant fraction of galaxy groups

using cosmic web nodes in 3D. We now examine whether we can use DisPerSE

to estimate the masses of these groups. In what follows, we demonstrate that

the node density of the cosmic web provides information on the masses of galaxy

groups that are associated with them.

As mentioned in Section 5.3.2.1, DisPerSE outputs a list of density values that are

calculated during the Delaunay tessellation for each identified critical point. We

have demonstrated that, in 3D, there is a tendency for cosmic web nodes to match
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to galaxy groups and we therefore further investigate the possibility of using the

density of the nearest node to a galaxy group in order to estimate its mass. We do

this by taking the galaxy groups that are a ‘perfect match’ to a node and record its

corresponding node density. In Figure 5.8 we show that there is a strong positive

correlation between these two parameters, albeit with considerable scatter.

We then fit a least-squares regression line to the sample of nodes for which a

complete mass-selected sample of corresponding groups can be identified in the

simulations. Visual inspection of Figure 5.8 indicates that groups with masses

that correspond to node densities of log10 δ > 2, indicated by the blue dashed line

in the figure, constitute such a complete sample. We only fit a regression line to

that complete sample to avoid any Malmquist-like biases. The figure shows that

an extrapolation of this line to lower group masses is a fair representation of the

trend at all masses. The equation of the regression line is

logM200
= 0.48 log10 δ + 12.07. (5.3)

Using this regression line it is possible to obtain a rough estimate for the mass of

the groups selected as DisPerSE-identified nodes, but the scatter is large, roughly

a factor of ∼ 3.

5.5.1 High mass groups and node density matching

We have shown that there is a strong positive correlation between the node density

and mass of its closest matched halo. It is therefore possible to select the highest

mass groups (M > 1014 M⊙) by finding a suitable cut in the node density. In this

section, we test the matching of high mass groups to high density nodes in order

to uncover whether this method is a robust strategy for detecting massive galaxy

groups.

Using equation 3 we find that a group mass of 1014 M⊙ corresponds to δ ∼ 10000

in the node density. By considering only the highest mass groups and the nodes

above this density threshold, we repeat the analysis in Section 5.4.1 by quantifying

the matching of high mass groups to high density nodes. We note that we exclude

clusters from this analysis that do not match to any high mass galaxy groups.
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Figure 5.9: Same as Figure 5.5 for the 3D reference simulations but for high mass
groups (M > 1014M⊙) selected as high density nodes, as described in Section 5.5.

Figure 5.9 illustrates the results from this analysis. We find that the fraction of

high-density nodes in high mass galaxy groups (purity) is 60%, very similar to that

of the entire group sample. However, the fraction of high mass groups matching

high density nodes (completeness) decreases to 27%. We attribute this to there

being a greater number of groups (89) than nodes (42) above the mass and density

thresholds. When we limit the node density, we exclude some cases where nodes

match with galaxy groups but lie below the density threshold, thereby negatively

affecting the matching of massive groups to high-density nodes. We conclude

that, although there is a strong correlation between the group mass and cosmic

web node density, restricting the node density in this way does not significantly

improve purity or completeness.

5.6 Conclusions

Galaxies experience different physical processes in different cosmic web environ-

ments. Next generation wide-field spectroscopic surveys will, for the first time, be

able to accurately map the distribution of galaxies to cosmic web features around

statistical samples of galaxy clusters, where pre-processing is present. In this

chapter, we present and evaluate a novel approach for identifying galaxy groups

(haloes with σv > 300h−1 km/s) near massive galaxy clusters utilizing the critical

points identified as network nodes using the DisPerSE software, (which we run
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on haloes with more than 100 dark matter particles). We summarize our main

findings below.

1. We have tested the matching of cosmic web nodes, (derived from mass-

weighted filament networks from DisPerSE), to galaxy groups in and around

massive galaxy clusters in 3D and projected 2D cluster simulations. We find

a purity of ∼ 56% and a completeness of ∼ 68% in 3D and a purity of ∼ 28%

and a completeness of 26% in 2D.

2. We find that the galaxy groups that closely match with cosmic web nodes

tend to be the more massive ones.

3. In the 3D reference simulations, we find a slight improvement in the frac-

tional number of nodes within galaxy groups as we move further away from

the cluster core. This suggests that the cluster core’s complexity hinders the

accurate matching of density field maxima to galaxy groups. Conversely, in

the cluster outskirts the success rate increases due to the dominant influence

of the large scale cosmic web rather than the cluster core. Within the range

of 3–5R200, the number of nodes in groups reaches a maximum of approx-

imately ∼ 75%, matching the results obtained by Cohn (2022) over much

larger spatial scales. In contrast, in the 2D projections, we do not see any

radial trend.

4. Limiting our analysis to only the most massive galaxy groups (M > 1014M⊙),

we find that 100% of cosmic web nodes match to galaxy groups in the refer-

ence 3D simulations. We also find a stark improvement in the success rate

for 2D projections, increasing from ∼ 28% to ∼ 63%.

5. We find a strong positive correlation between the mass of the groups and

the DisPerSE-determined density of their matching nodes. This correlation

(equation 3) can be used to obtain a rough estimate of the group mass within

a factor of ∼ 3.

In summary, we have shown that the widely-used topological filament finder Dis-

PerSE can be used as a powerful tool for identifying galaxy groups around clus-

ters. It can be further complimented with other group finding algorithms. We

have tested the strengths and weaknesses of this approach with future wide-field
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surveys of galaxy clusters in mind. While we used simulated galaxy clusters in

this study, its accuracy can be scrutinized with diverse group-finding methods and

observational data, thus opening new avenues for the study of galaxy groups and

their role in galaxy evolution.
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Chapter 6

Conclusions and Future Work

Throughout this thesis, we have used the hydrodynamical simulations from The

ThreeHundred, coupled with the topological structures extractor DisPerSE, to

test and optimize our ability to extract different cosmic web environments. This

work began with an investigation into our ability to reconstruct cosmic web fil-

aments using mock observations of galaxy clusters, matched to clusters observed

with the WWFCS. This allowed us to verify that despite the selection effects of

the WWFCS, we can accurately map the pathways that cosmic filaments trace.

Following this, we then tested our ability to associate individual galaxies to differ-

ent cosmic web environments. Finally, we investigated the possibility of detecting

galaxy groups in close proximity to clusters using DisPerSE. We found that fu-

ture surveys can use this framework for detecting massive galaxy groups in the

outskirts of galaxy clusters, whilst simultaneously being able to extract robust

filamentary networks.

In this chapter, we summarize these results in more detail, and discuss future

implications of the work in this thesis.

6.1 Summary of results

In this section, we summarise the work from Chapter 3, Chapter 4, Chapter 5.
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6.1.1 Filamentary networks in galaxy cluster simulations

We begin this thesis with a study into the feasability of extracting filamentary

networks around galaxy clusters. Currently, there is evidence suggesting that fil-

amentary environments can act to suppress star formation in galaxies (e.g. Hoo-

sain et al. (2024)). There is further observational evidence suggesting filaments

can act to enhance the HI content of galaxies that reside in them (Kleiner et al.,

2016). Next generation wide-field spectroscopic surveys, such as the WWFCS and

4MOST CHANCES, will aim to probe the impact of cosmic web filaments on

galaxy evolution close to galaxy clusters. Therefore, understanding our ability to

extract cosmic web filaments by creating mock observations is an important test.

Using TheThreeHundred simulations of galaxy clusters, we mass-matched 10

galaxy clusters to each individual cluster that will be observed in the WWFCS.

After applying the projection effects and the instrumental selection effects, we took

the last steps in designing fully informative mock observations from simulations.

Our findings included:

1. After applying the same MOS fibre configuration tool that the WEAVE

spectrograph will use, we find that, on average, we are able to allocate fibres

to 72.7% ± 1.7% of all the target galaxies. More importantly, outside the

cluster core – in the outer regions that are crucial for filament identification

– the success rate increases to 81.7%±1.3%. The number of cluster galaxies

that are targeted ranges from 1284 to 4062. The high completeness that the

WEAVE observations will allow, together with the large field coverage, are

key to the success of the survey.

2. In each of the simulated cluster regions we have used the filament finder

DisPerse (Sousbie, 2011) to trace the cosmic-web filament skeleton before

and after the observational constraints (including MOS fibre positioning)

are imposed on the galaxy samples. We then compared quantitatively the

resulting filament networks and find that we are able to recover the origi-

nal network remarkably well. Specifically, we find that the median distance

between corresponding filament segments Dskel in the reference and recov-

ered networks is only 0.13± 0.02Mpc on average, an much smaller than the
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typical filament radius of ∼ 1Mpc. Furthermore, only ∼ 11 − 13% of all

recovered filament segments lie at a distance larger than 1Mpc away from

their corresponding reference segment.

3. As a further test on the integrity of the recovered filament networks we com-

puted their connectivity, the number of filaments that stem from the cluster

core and terminate beyond R200 away from the cluster centre. We find that

the connectivities of the reference and recovered networks match very well,

without any significant bias, indicating that their global properties are also

recovered well.

4. We discuss the possibility of recalculating Dskel by omitting the segments

inside R200. As our current Dskel distributions are likely biased by the higher

concentration of segments inside of R200, this would provide a better test

of the mapping of filaments in our “mock observational” networks to the

“simulated” networks in the outskirts of clusters. In doing this, our median

Dskel values would likely be larger. We note that this may also better explain

the lack of success we had in Chapter 4 in assigning galaxies to filaments.

This chapter enabled us to confirm that next generation surveys will be able to

extract high-quality filamentary structures close to galaxy clusters.

6.1.2 Allocating galaxies to cosmic web environments

After the initial work in designing, optimizing and testing the observational strat-

egy in Chapter 3, we test our ability in allocating individual galaxies to different

cosmic web environments in Chapter 4. If future spectroscopic surveys are to

draw robust conclusions on the role different cosmic environments play on galaxy

evolution, we must ask ourselves the question: can we reliably allocate individual

galaxies to different cosmic web environments in the first place?

By taking into account the projection effects and fibre configuration technique that

the WEAVE instrument will use, we assign individual galaxies to three different
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types of environment: the cluster environment (C), filamentary environments (F)

and the aptly named ‘neither cluster nor filamentary environments’ (NCF). After

assigning galaxies to these three environments, we found that:

1. Filaments occupy only ∼ 6% of the volume enclosed in a sphere with radius

5R200 around massive galaxy clusters, but contain ∼ 38% of the galaxies

with masses above 109M⊙. This is calculated using filament thicknesses that

decrease with the mass of the main halo (see Sec. 4.3.2). In comparison,

galaxies that are neither in the cluster core nor in filaments (NCF) make up

∼ 52% of the galaxy population, whilst occupying 93% of the volume. The

cluster core itself (defined as the sphere with radius R200) contains ∼ 1% of

the volume and ∼ 10% of the galaxies. To understand how these different

environments affect the properties and evolution of the galaxies that inhabit

them we need to be able to associate galaxies to the correct environment

and to quantify statistically the uncertainties involved.

2. When we allocate galaxies to different environments in the mock observa-

tions and compare them to the allocations from the ‘true’ simulations we

find that, combining all cluster and galaxy masses, and at all clustercentric

distances, we are able to identify core, filament, and NCF galaxies with sta-

tistical accuracies (precisions) of 95% (68%), 63% (51%) and 62% (68%)

respectively (see definitions in Equations 4.2 and 4.3). This indicates that,

while cluster core galaxy samples can be built with a high level of complete-

ness and moderate contamination, the filament and NCF galaxy samples

will be significantly contaminated and incomplete due to projection effects,

even with good-quality spectroscopic redshifts.

3. In our framework, we calculate the probabilities of galaxies being correctly

assigned to a given environment, together with the probabilities of misiden-

tifying them as a belonging to a different one (Figure 4.4 and Table B.1).

We do that as a function of galaxy mass and clustercentric distance. We find

that, outside the cluster core (beyond ∼ R200), identifying filament galaxies

is marginally more successful at high galaxy masses and low clustercentric

distances, while the reciprocal is true for NCF galaxies. Generally, the suc-

cess of the environment allocation is significantly better than random, but

sometimes only marginally so, and this also depends on the method used for
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generating the random probabilities. We conclude that identifying the cos-

mic web environments of galaxies in the vicinity of massive clusters (within a

sphere of radius ∼ 5R200 from the cluster centre) is remarkably difficult due

to projection effects exacerbated by the magnitude of the galaxies’ peculiar

velocities (Fingers-of-God).

4. We also find that the calculated probabilities vary with the mass of the cen-

tral cluster and, by association, with properties of the filamentary network

such as the number of nodes or the total length of the filaments. We there-

fore calculate the probabilities for different cluster mass ranges (Tables B.4,

B.3, and B.2), and find that identifying filament galaxies is marginally more

successful around the most massive clusters because their filament networks

occupy a relatively larger fraction of the total volume considered.

In this Chapter 4 we conclude that in the infall regions of masssive galaxy clusters,

associating galaxies with the correct cosmic web environment is highly uncertain.

However, applying our statistical framework and probabilities to large spectro-

scopic samples like the WWFCS will allow us to observationally extract robust

and well-defined conclusions on relationships between galaxy properties and their

environments.

In addition, we have recently developed a ‘proof of concept’ framework which

shows that we can use Machine Learning (ML) to improve upon our classifications

published in Chapter 4. In Weaver et al. (2023), we train a Random Forest (RF;

Ho 1995) classifier on information that is observational derivable. This study

showed that, on average, we can improve the precision of filament classification

by ∼ 11%. We discuss this work further in Section 6.2

6.1.3 Galaxy group detection in cluster outskirts

In Chapter 5, we investigate a new method to systematically detect galaxy groups

in close proximity to galaxy clusters. Galaxy groups, (defined as objects with

1D velocity dispersion σv > 300 h−1 km/s, Kuchner et al. 2021), are abundant

in the infall region of galaxy clusters and can influence galaxy evolution before

galaxies are accreted onto the cluster (Bianconi et al., 2018). Therefore, they are
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a region of significant astrophysical interest. As explained in Section 1.2.2, galaxy

groups in the vicinity of massive clusters are difficult to detect. Currently, we are

limited to laborious, non-systematic methods of group detection that are used on

a cluster-by-cluster basis. Consequently, developing a tool to automatically detect

these objects would be hugely beneficial.

In Chapter 3 & 4, we showed that we can accurately extract cosmic filament

networks around galaxy clusters. In Chapter 5, to round off the motivation for

the science carried out in this thesis, we test the use of the filament extractor

DisPerSE in detecting galaxy groups. We have tested the matching of cosmic web

nodes, to galaxy groups in and around massive galaxy clusters in 3D and projected

2D cluster simulations. We found that:

1. We return a purity of ∼ 56% and a completeness of ∼ 68% in 3D and a

purity of ∼ 28% and a completeness of 26% in 2D in locating galaxy groups

using cosmic web nodes.

2. Galaxy groups that closely match with cosmic web nodes tend to be the

more massive ones.

3. In the 3D reference simulations, we found a slight improvement in the frac-

tional number of nodes within galaxy groups as we move further away from

the cluster core. This suggests that the cluster core’s complexity hinders the

accurate matching of density field maxima to galaxy groups. Conversely, in

the cluster outskirts the success rate increases due to the dominant influence

of the large scale cosmic web rather than the cluster core. Within the range

of 3–5R200, the number of nodes in groups reaches a maximum of approx-

imately ∼ 75%, matching the results obtained by Cohn (2022) over much

larger spatial scales. In contrast, in the 2D projections, we do not see any

radial trend.

4. Limiting our analysis to only the most massive galaxy groups (M > 1014M⊙),

we found that 100% of cosmic web nodes match to galaxy groups in the

reference 3D simulations. We also found a stark improvement in the success

rate for 2D projections, increasing from ∼ 28% to ∼ 63%.

5. We found a strong positive correlation between the mass of the groups and

the DisPerSE-determined density of their matching nodes. This correlation
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(equation 3) can be used to obtain a rough estimate of the group mass within

a factor of ∼ 3.

In summary, we have shown that the widely-used topological filament finder Dis-

PerSE can be used as a useful tool for identifying galaxy groups around clusters.

It can be further complimented with other group finding algorithms.

6.2 Future work

In the final section, we describe extensions to the work carried out in this thesis

and their possible implications for future surveys.

6.2.1 Characterizing galaxy cluster mergers observation-

ally

Galaxy clusters are not isolated islands, but assemble, replenish and grow via

ongoing mergers with smaller clusters, groups and clumps of gas, as well as through

a constant flow of gas and galaxies from filaments. As a result of the ongoing

dynamical activity, the infall of matter is highly anisotropic meaning that clusters

are far from being spherical (Carter & Metcalfe, 1980; Fabricant et al., 1984).

Furthermore, there is evidence suggesting that galaxy cluster mergers can influence

the morphologies and colours of galaxies residing in them (Contreras-Santos et al.,

2022; Piraino-Cerda et al., 2023). Estimating a galaxy cluster’s recent accretion

history is therefore important for understanding the mass assembly of the clusters

themselves and the evolution of cluster galaxies.

We are at quite an advanced stage in a recent project that aims to understand the

success and limitations that upcoming wide-field spectroscopic surveys will have

in mapping the recent dynamical history of a galaxy cluster. With the thousands

of optical spectra these surveys will provide, we will gain extensive information

about the dynamical properties of galaxies in galaxy clusters, (for example, the

distributions of their positions, masses, velocities), as well as topological properties
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of the local cosmic web (i.e. the distribution of cosmic web nodes and the paths

the filaments trace).

Whilst it is fairly common practise to use the dynamics of galaxies in clusters to

infer the dynamical state of a galaxy cluster, it is largely unknown whether the

topology of the local cosmic web can be used to probe the cluster’s mass accretion

history. To motivate our use of the topological features of the cosmic web in our

analysis, we refer to Chapter 5, where we cite the study of Cohn (2022). They

found that clusters with a recent major merger are less likely to be identified as

a node of the cosmic web. With this in mind, the basic idea of this project is to

understand what combination of wide-field observable properties are the strongest

indicators of the dynamical state of a cluster.

In this work, we use the outputs of the Multi-Dark Planck 2 (MDPL2) dark matter

only N-body simulation (Klypin et al., 2016), which we describe in Section 2.1.1.

We use the outputs of AHF ran on the 324 most massive haloes at z = 0. We also

make use of the major merger history catalogues generated in Contreras-Santos

et al. (2022) to divide the sample of 324 clusters into 52 merging clusters and 192

non-mergers at z = 0. The definition of merging and non-merging clusters we use

in this work is based on the ‘relaxation’ (χDS) of a galaxy cluster, and is described

in Haggar et al. (2020). It combines in quadrature the centre of mass offset (the

offset between the centre of mass of the cluster and the density peak of the cluster

halo, as a fraction of R200), the subhalo mass fraction (the fraction of cluster mass

contained in subhaloes) and the virial ratio (a measure of how well the cluster

obeys the virial theorem). A merger finishes when the cluster has relaxed, i.e.,

when χDS > 1. In this work, we tag any cluster that is unrelaxed at z = 0 as a

merger. We tag any cluster as a non-merger if it has not started a 1:2 merger in

the last 5 Gyrs.

We have used a range of previously used and some novel parameters to understand

the dynamical activity of a cluster. These include: the skewness (µ3) and kurtosis

(µ4) of the radial velocity distribution, the triaxiality of the haloes in the cluster

core (c/a and b/a, where a, b, c are the longest, second longest and third longest

axis of the moment of inertia tensor), the distance between the main cluster halo

and the second densest cosmic web node (Dnode) and finally, the ratio of density of

the ‘main’ node to the second densest node δ2
δ1
. We calculate the above parameters

115



in the 3D ‘ground truth’ galaxy cluster simulations and sufficiently adapt them

where necessary in the mock 2D projections where we apply a cluster membership

algorithm. We provide the details for all of this work in an upcoming paper,

Cornwell et al. in prep., and discuss some of the main findings below.

Figure 6.1 illustrates the cumulative distributions of the third and fourth order

moment of the radial velocity profiles. We perform a Kolmogorov-Smirnov test

between the distribution of skewnesses for the merging and non-merging samples,

(we also repeat this test separately using the kurtosis distributions). We test the

null hypothesis that the skewness distribution of merging clusters could be drawn

from that of the non-merging clusters and chose a significance threshold of 0.05.

The top panel reveals that there is no statistical difference in the skewness between

the merging and the non-merging sample. However, in the bottom panel, we show

that the merging clusters have a more positive distribution of kurtosis on average,

meaning that the radial velocity distributions are truncated and more peaked. We

repeat the KS-test for the kurtosis of the velocity distributions. In 3D, we record a

p-value of 0.003 and in the mock observations, a p-value of 0.024. This result is in

line with Vijayaraghavan et al. (2015) who found that in a major cluster merger,

during first pericentre passage, there is a spike in the kurtosis of the radial velocity

distribution. This could be due to the more weakly bound haloes being stripped

from the cluster they were initially bound to.

We repeat the same statistical test to probe the difference in the triaxiality of

merging clusters from non-merging clusters. Crucially, when restricting haloes to

R200, the distribution of merging and non-merging clusters can be drawn from

the same distribution, (p-value > 0.05). Therefore, we extend our test to include

haloes within 2R200, where the dynamical timescale is approximately the same as

our chosen merger/non-merger timescale cutoff of 5 Gyrs. We find a surprising

result: merging clusters are more spherical and slightly more oblate than non-

merging clusters. In the 2D projected clusters, a similar trend is seen, such that

merging clusters are less elliptical at this radius. Both of these tests are significant

given our chosen threshold, (p-value < 0.05). We hypothesize that the presence

of a merger ‘sweeps-up’ the mass outside of the cluster core, resulting in a more

uniform halo distribution outside of the cluster core. However, further simulation

based work is needed to scrutinize the physics driving this result.
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Figure 6.1: Third and fourth order moments (skewness and kurtosis) of the radial
velocity distribution for merging and non-merging galaxy clusters. Top panel: A
cumulative distribution function of the skewness µ3 of the radial velocity distribu-
tion for merging and non merging clusters. In blue, we show the distributions of
the merging clusters and in orange, we show the distributions of the non-merging
clusters. We also show the distinction between the 3D and 2D clusters as full
lines and dashed lines respectively. We display the p-value from the resulting KS
test between the two distributions in the bottom of each plot for the 3D and 2D
sample. Bottom panel: the same but for the kurtosis µ4. Merging clusters have
a larger kurtosis on average, indicating a compression of the line-of-sight radial
distribution.
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Figure 6.2: Topological metrics used to differentiate between merging and non-
merging clusters. Top: CDF of the clustercentric distance to the second densest
node Dnode, as computed by DisPerSE. In blue we show the merging clusters and
in orange we show the non-merging clusters. Further to this, we illustrate the
distributions as a full line in the 3D case and as a dashed line in the 2D case.
Bottom: CDFs of the ratio of node densities δ2

δ1
for merging and non-merging

clusters in 3D and 2D. We display the p-value from the resulting KS test between
the two distributions in the bottom of each plot. Merging clusters have a shorter
distance to the secondary node and a higher node density ratio, indicating a
perturbation in the halo distribution in the cluster.
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In Figure 6.2, we show the cumulative distribution functions (CDFs) of the two

novel topological metrics we use to investigate the dynamical activity of a cluster.

It is evident that in both 3D and 2D, Dnode is smaller for merging clusters. In

other words, merging clusters have a more prominent secondary node closer to the

cluster core. This indicates that there is a disturbance to the underlying density

field. In the bottom panel of Figure 6.2, we show the same test but using the

node density ratio metric. The large offset between the merging and non-merging

distributions in 3D indicate a more influential secondary node, agreeing with the

result in the top panel. However, with the dimensional reduction implemented in

2D, we do not see the same signal. This implies that the ability of the Delaunay

tessellation to reproduce the ‘true’ density field constructed in 3D is strongly

impacted. Therefore, for the topological metrics we investigate, Dnode appears to

be a more robust indicator of dynamical state for future surveys.

To round off this project, we are now investigating what features most strongly in-

dicate dynamical activity in clusters. To take this a step further, we are interested

in understanding whether we can combine the different diagnostics we have tested

to supply a pure sample of clusters that have recently undergone a major merger

or are dynamically relaxed. This work could have both astrophysical and cosmo-

logical implications. In terms of galaxy evolution, with surveys like the WWFCS

and CHANCES, it could allow investigations into the dependency of galaxy prop-

erties on a cluster’s dynamical state. In a cosmology context, sets of dynamically

relaxed clusters are required for testing models of dark energy (Mantz et al., 2010)

and providing constraints on the gas mass fraction of clusters (Mantz et al., 2021).

Along with other methods used to define the dynamical state of a cluster, it is

possible that we will be able to derive a robust recent accretion history for these

clusters, enabling the aforementioned studies.

6.2.2 Cosmic web environment classification with Machine

Learning

In Chapter 4, we performed a statistical analysis that probed our ability to allo-

cate mock galaxies to different cosmic web environments, namely the cluster core,

filaments and galaxies that are in neither. One of the main conclusions from this
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work was that assigning galaxies to filaments is incredibly difficult, due to the pro-

jection of the galaxies and the low contrast nature of filamentary environments.

However, the salient point from this work was that for all types of galaxies, we

can perform better than a random allocation, meaning that with large samples of

galaxies, we will be able to beat the noise and draw robust conclusions on how

filamentary environments impact galaxy evolution.

A recent work by Farid et al. (2023) showed that, using the MDPL2 simulations, it

is possible to use Machine Learning (ML) to classify galaxies as orbiting, infalling

and interlopers in the infall regions of massive galaxy clusters. Inspired by this

work, we have recently embarked on a new project, where we are investigating

whether the application of ML can improve upon the probabilities we calculated

in Chapter 4, with the main aim of improving the filamentary environment clas-

sification.

In this project, we are initially using a Random Forest (RF; Ho 1995) classifier.

Briefly, a RF classifier uses an ensemble of decision trees to group datasets into

smaller subgroups that have similar features. It is a relatively simplistic ML

algorithm that prevents over-fitting of data. For its input data, it uses a set of

elements, each of which has a number of features, and is assigned to a class. For

our work, an element is a galaxy around the simulated clusters, a feature is a

property of these galaxies and the class is the environment classification it falls in

to. The features we use are all observable parameters. A non-exhaustive feature

list is: the mass and sky position of a galaxy, its radial velocity, the number of

galaxies in a cluster and the distance to the nearest cosmic filament reconstructed

in 2D. An extensive list of the features and choice of hyperparameters is provided

in Weaver et al. (2023) and Weaver et al., in prep. A class is a binary classification,

for example, a filament galaxy or a non-filament galaxy.

A RF works by firstly constructing a single decision tree that takes a random sub

sample of elements and features1. The data is initially split into two subsets by

slicing it as cleanly as possible using one of the features. Then, each subsequent set

is split based on a different feature and the algorithm iterates through this process

until a decision tree is constructed that separates the data into numerous subsets.

1the selection of a random sample of elements and features for each individual tree results in
minimal overfitting.
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Figure 6.3: Distribution of x − vc projected phase space of haloes classified as
filamentary for a single cluster. The reconstruction of the parameters plotted in
this phase space diagram better match the ground truth. This illustrates that RF
classification is more successful in classifying filament galaxies than the work we
carried out in Chapter 4. Figure adapted from Weaver et al. (2023).

In our case, the tree ceases to bifurcate when an enforced maximum tree depth is

reached and, consequently, each subset mostly contains elements of a single class.

Secondly, the RF classifier repeats this whole process using a subset of elements,

reconstructing a large number of decision trees that samples the entire training

data and features. Finally, these trees are combined to act as an ensemble, and

are averaged over to enable predictions of which class an element will fall into. In

turn, the hyper-parameters of the RF algorithm can be fine tuned, allowing an

optimization of the RF network.

We have recently published a ‘proof of concept’ research note where we present our

preliminary results (Weaver et al., 2023). Using a RF classifier, we can improve

the precision of filament galaxy allocation by over 11% compared to the results

presented in Chapter 4. Figure 6.3 shows the x - vc projected phase space (PPS)

for a single cluster, (where x and vc are the x position and the line of sight velocity

of a galaxy that is classified as a filament galaxy). In black, it shows the galaxies

that are ‘truly’ filamentary, in blue it shows the galaxies assigned as filamentary
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using the methodology we explained in Chapter 4 and in red, the results from

the RF classification used in Weaver et al. (2023). For this example cluster, it is

clear that we can more accurately reproduce the ‘true’ PPS using a RF classifier

compared to the work presented in Chapter 4. These preliminary results show

that ML can be used as a powerful tool in identifying filamentary galaxies.

The next steps in this project are to firstly understand what combination of fea-

tures returns the classification with the highest precision and accuracy. Secondly,

we will fine-tune the hyperparameters with the aim of increasing the number of

successful classifications. Lastly, as in Farid et al. (2023), we are also investigating

whether other ML classifiers can help us improve upon these results. With surveys

like the WWFCS and CHANCES on the horizon, these findings are essential. By

driving an increase in the accuracies and precisions in galaxy environment classi-

fication, we will be able to draw more robust conclusions on how galaxy evolution

is shaped by low contrast environments – a key motivation of these surveys.

6.3 Upcoming observations

The next several years will bring about a variety of rich, detailed observational

surveys of galaxy clusters. These observations include a range of high quality

optical spectroscopic surveys and deep X-ray observations, covering the cluster

core and associated substructure, such as cosmic filaments and infalling galaxy

groups. Below, we name a few examples of exciting next generation surveys that

may aim to utilize and build on the work carried out in this thesis.

Whilst we have talked extensively about the WEAVE Wide Field Cluster Survey,

an upcoming survey with similar scientific aims is the 4MOST CHileAN Cluster

galaxy Evolution Survey (CHANCES; Haines et al., 2023). This survey will utilize

a multi-object spectrograph fit to the VLT and target 150 galaxy clusters, out to

z = 0.45, enabling spectroscopy of thousands of galaxies per cluster out to 5R200.

Similarly to the WWFCS, CHANCES will probe down the galaxy stellar mass

function to ≈ 109M⊙, aiming to quantify the impact of environment on galaxy

evolution across three orders of magnitude in stellar mass. Given the larger redshift

range than the WWFCS, CHANCES will also aim to probe the evolution of cluster
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galaxies over the last 4 Gyrs. This survey will be able to infer where and when pre-

processing occurs as the cluster itself is evolving. Finally, with complimentary X-

ray observations of the ICM with the CHEX-MATE survey (Arnaud et al., 2021),

CHANCES will robustly identify how the dynamical state of a galaxy cluster may

influence the galaxies residing in it.

The work carried out in this thesis will compliment the WWFCS/CHANCES per-

fectly. The framework we have described in Chapter 3, 4 & 6.2.2 demonstrated the

relative success and limitations in cosmic web environment classification. Taking

into account the proper statistical treatment that we developed will enable the

aforementioned surveys to draw robust and well quantified conclusions on the

role that the cosmic web plays in the mass assembly and evolution of individual

galaxies. Furthermore, given CHANCES complimentary X-ray observations, the

merger history diagnostics we are developing in Section 6.2.1 can be validated

against the more commonly used X-ray measurements with CHEX-MATE. They

could also be potentially combined to provide a more robust description of the

accretion history over a range of timescales.

In addition to these ground based spectroscopic surveys that will sample a rela-

tively small number of clusters, Euclid (Sartoris et al., 2016) will provide imaging

for > 105 clusters. Whilst the target densities are expected to be lower than the

WWFCS/CHANCES, such a large sample of clusters will provide excellent cluster

statistics. Also, it will produce rigorous constraints on cosmological parameters

and the dynamical evolution of dark energy. Finally, in the next decade, the MO-

SAIC spectroscopic instrument will be fit to the ELT and commissioned (Jagourel

et al., 2018). This survey will be able to probe how galaxies are shaped by their

cosmic environment back to the epoch of the peak of cosmic star formation at

z ≈ 2 (Madau & Dickinson, 2014).

The near future of cosmic web science, along with the astrophysics of galaxy

clusters and galaxy evolution, is incredibly exiting. By merging insights from up-

coming observations with cutting-edge simulations, we will be able to draw robust

conclusions on how galaxies are influenced by their specific cosmic web environ-

ments. This knowledge will significantly enhance our understanding of the com-

plex journeys galaxies undergo during their formation and evolution. The research

presented in this thesis contributes to these advancements by developing frame-
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works that enable the observational characterization of galaxies in low-density

environments.
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Appendix A

Paper 1 appendix

A.1 Optimizing the WWFCS field positions

As mentioned in Section 3.3.1, the WWFCS performs observations by arranging

2 degree fields into a mosaic pattern, covering the cluster core, infall region and

outskirts (Figure 3.1). To optimize the observational strategy, we aim to design

the field positions in a way that maximizes the cluster coverage. Firstly, we place

two fields at the core of each cluster, the region of the highest number density.

This is so we can maximise the number of targeted cluster members over the total

field of view. To optimize the tiling for each cluster, we adopt the following regime,

such that if
Area within 5R200 for N - 1 fields

Area within 5R200 for N fields
> 97%, (A.1)

then we can remove one field, (we use 97% to ensure that we are still covering

a significant area within 5R200). We iterate through this process by removing

fields in the outer region of the cluster, manually inspecting each time one is

removed, until the 97% threshold is exceeded. Starting from a ’naive’ geometric

tiling pattern (illustrated in Figure A.1, top), the total number of WEAVE fields

required to cover the 16 clusters was 155, adding up to 147 250 fibre hours. Using

the new optimised tiling method (illustrated in Figure A.1, bottom) the total

number of fiber hours is reduced to 130 390. For the example shown in Figure

A.1, even though we have removed four fields, we are still covering out to 5R200.
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Figure A.1: An example field layout of cluster A2572a before this work (top) and
after this work (bottom). The red circles are individual 2-degree diameter WEAVE
fields whilst the black outer circle represents the angular diameter corresponding
to 5R200 of this cluster. The numbers displayed are the total number of fields
required to cover this cluster N , the cluster redshift and R200 taken from (Moretti,
A. et al., 2017).
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Figure A.2: WEAVE field pattern for each WWFCS cluster. The caption in each
panel states the name of the cluster, 5R200 in degrees and the number of fields N
used for each observation.
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Figure A.3: Cumulative sum of individual halo masses of simulated galaxies for
one galaxy cluster in TheThreeHundred that has been modified using the three
MF . All haloes follow the criterion set for selecting ’high–quality data’ from the
simulations, as described in Section 3.3.3. Different colours represent different
scale factors that have been applied to the simulated catalogues. The vertical
dotted lines represent different mass resolutions.

Of the clusters, 12 out of 16 have full coverage out to 5R200, whilst overall we have

lost a total of 0.06% area within 5R200.

A.2 Galaxy cluster scaling

This sections details our method for scaling down the mass of the clusters from

TheThreeHundred to match the WWFCS selected clusters, as mentioned in Section

3.3.3.1.

Firstly, we arbitrarily chose three mass-scaling factors: MF = 1, 2 and 5, which

the simulated cluster mass is divided by. We chose the most-massive halo in the

corresponding cluster catalogue to act as a proxy for the cluster. Also, we increase

our cluster catalogue sample size by a factor of 3 by including each 2D-plane, (xy,

xz, yz). The resulting mass distributions of the clusters that have been scaled

down by MF are in Figure 3.2, where we have demonstrated that by choosing

these mass factors, we have covered the entire WEAVE mass range.

For each scaling factor MF , we divide the mass range into 20 mass bins.To create a

statistically significant sample, we draw from these bins with the aim of identifying

10 mass-matched simulated analogue clusters for each of the 16 WEAVE clusters.
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Our total sample of analogue clusters is thus 160. The presence of companion

clusters within 5 < R < 15 Mpc of the WWFCS clusters (the radius of the

simulation volume) is unknown, therefore we do not exclude analogue clusters

with secondary clusters within this distance. Within the sample of 160 analogue

clusters there are six such configurations.

In scaling the mass of the clusters from the simulations to match WEAVE, we

have to also individually scale the mass of all the associated halos for each cluster.

Figure A.3 displays the cumulative number of simulated halos that lie above a

mass interval for one cluster. We see that for higher mass scaling factors (MF )

we are shifting the masses of all the haloes associated with the cluster to lower

values.

We are limited in our recovery of haloes by two thresholds: The ’scaled’ simulation

mass resolution and the observational mass resolution. In the case where we don’t

scale the simulations, (MF = 1), the mass resolution limit is that of the dark

matter particles in the simulations (Kuchner et al., 2021), given by the dotted

grey line in Figure 3.4. For MF > 1, we reduce the simulation mass resolution by

dividing it by the mass scaling factor MF . Whilst we can change the simulated

mass resolution threshold, there is a hard limit on the observational mass limit.

For F > 3, the mass resolution stays at the observational limit Mobs = 10 ×
1010M⊙, (corresponding to the r band limit used for WEAVE: rtotal < 19.75 which

is equivalent to a stellar mass of 109M⊙, (Kuchner et al., in prep)). At MF > 3,

we artificially lose halos that are massive enough to be simulated, but are too small

to meet the WWFCS observational criteria. However, as shown by the top panel

in Figure 3.2, we are still obtaining thousands of cluster galaxies per cluster. This

reduction in the cluster member population mimics the expected relation of lower

mass cluster’s hosting fewer subhaloes (see for example Poggianti et al. 2010).

A.3 DisPerSE input parameters

As mentioned in Section 3.3.4, to extract the filament networks with DisPerSE we

need to set a persistence threshold. We introduce a metric Ψ with 3 key parame-

ters:
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Figure A.4: This figure illustrates how the change in the density field when ‘con-
figuring’ a cluster makes a change in the persistence parameter necessary when
extracting the filament network. Left panel: KDE-smoothed density field of a sim-
ulated cluster analogue to WWFCS target RX0058, with the filaments identified
by the topological structures extractor DisPerSE traced on top (using our choice
of persistence for the ‘pre-configured’ model, 2.5σ. Middle panel: the ‘mock-
observational’ cluster with filaments extracted using the same persistence, 2.5σ.
Right panel: the same but with our choice of persistence for the ‘configured’ model,
2.1σ. Lowering the persistence yields a more accurate reconstruction of the cosmic
web around galaxy clusters.

1) Dskel median (the positional difference in the reference network spine and the

configured network spine),

2) Dskel ratio: the ratio of the two methods of calculating Dskel,

3) Cluster connectivity of ’configured’ network (C, number of filaments that stem

from the main node and terminate outside R200) comparison to reference network.

All of the above parameters are normalized against their maximum output given a

persistence and are equally weighted. We compute this metric in a suitable range

of persistences 2 < σ < 3, in 0.1σ intervals, and the persistence that minimizes

Ψ returns the most accurate reconstruction of the filamentary network. A Ψ of

three corresponds to the worst possible reconstruction of the network, whilst Ψ

values close to zero represent the most accurate filamentary mapping. We have

automated a process in determining the best persistence given a reference skeleton.

Our scientific rationale requires a high completeness, therefore, we explore low

persistence values that not only map out the most robust structure, but also

filaments that connect nodes with smaller persistence ratios. After analysing Ψ

for different networks for different clusters, we selected a persistence of σ = 2.5
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for the reference network and σ = 2.1 for the configured network. In the process

of ‘configuring’ a cluster, we are effectively altering the underlying density field

and therefore, it is necessary to change the input persistence, as demonstrated in

Figure A.4. Although varying the persistence cluster-by-cluster can change Dskel,

the median and PDFs of Dskel do not vary significantly with changes in persistence

when averaged over all 160 clusters.
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Appendix B

Paper 2 appendix

B.1 Cluster-to-cluster probability variation

To investigate whether there are significant cluster-to-cluster variations in the

probabilities of correctly associating galaxies with their environments, we calcu-

late the standard deviation of these probabilities over all clusters and present them

in Figure B.1. The measured scatter is generally well above the statistical uncer-

tainty (the standard error for the probability values is between 0.01 and 0.02),

demonstrating that there are significant cluster-to-cluster variations. We explore

these in Section 4.5.3.
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Figure B.1: The cluster-to-cluster scatter (standard deviation) of the probabilities
shown in Figure 4.4.
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Core 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 0.66/0.14/0.20 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

109.5 < M < 1010.0 0.68/0.14/0.18 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.0 < M < 1010.5 0.65/0.16/0.19 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.5 < M < 1011.0 0.65/0.17/0.18 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

Filaments 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.49/0.51 −1/0.47/0.53 −1/0.48/0.52 −1/0.47/0.53 −1/0.44/0.56

109.5 < M < 1010.0 −1/−1/−1 −1/0.52/0.48 −1/0.53/0.47 −1/0.52/0.48 −1/0.50/0.50 −1/0.50/0.50

1010.0 < M < 1010.5 −1/−1/−1 −1/0.54/0.46 −1/0.52/0.48 −1/0.52/0.48 −1/0.53/0.47 −1/0.50/0.50

1010.5 < M < 1011.0 −1/−1/−1 −1/0.57/0.43 −1/0.56/0.44 −1/0.57/0.43 −1/0.56/0.44 −1/0.54/0.46

NCF 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.31/0.69 −1/0.29/0.71 −1/0.28/0.72 −1/0.27/0.73 −1/0.29/0.71

109.5 < M < 1010.0 −1/−1/−1 −1/0.33/0.67 −1/0.33/0.67 −1/0.32/0.68 −1/0.31/0.69 −1/0.31/0.69

1010.0 < M < 1010.5 −1/−1/−1 −1/0.35/0.65 −1/0.34/0.66 −1/0.34/0.66 −1/0.33/0.67 −1/0.34/0.66

1010.5 < M < 1011.0 −1/−1/−1 −1/0.38/0.62 −1/0.41/0.59 −1/0.41/0.59 −1/0.40/0.60 −1/0.40/0.60

Table B.1: Probability of galaxies being identified in different cosmic web environments for model clusters of all masses.
These probabilities are shown for each environment as a function of galaxy stellar mass and clustercentric distance in a
similar arrangement as in Figure 4.4. For each mass and distance bin, three numbers are given, each corresponding to each
one of the columns in Figure 4.4. A number ‘−1’ indicates that a given situation is not possible, and corresponds to a white
cell in Figure 4.4. For instance, we cannot have galaxies classified as ‘core’ at projected radial distances larger than R200,
and therefore the corresponding probabilities are not defined. Note that the numbers and information presented in this table
are exactly the same as those presented in Figure 4.4. We provide them here in tabular form for easy access.



Core 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 0.69/0.14/0.18 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

109.5 < M < 1010.0 0.70/0.14/0.17 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.0 < M < 1010.5 0.66/0.17/0.18 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.5 < M < 1011.0 0.64/0.17/0.19 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

Filaments 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.52/0.48 −1/0.50/0.50 −1/0.48/0.52 −1/0.50/0.50 −1/0.47/0.53

109.5 < M < 1010.0 −1/−1/−1 −1/0.55/0.45 −1/0.55/0.45 −1/0.53/0.47 −1/0.54/0.46 −1/0.53/0.47

1010.0 < M < 1010.5 −1/−1/−1 −1/0.56/0.44 −1/0.53/0.47 −1/0.54/0.46 −1/0.56/0.44 −1/0.53/0.47

1010.5 < M < 1011.0 −1/−1/−1 −1/0.60/0.40 −1/0.58/0.42 −1/0.58/0.42 −1/0.58/0.42 −1/0.56/0.44

NCF 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.35/0.65 −1/0.33/0.67 −1/0.32/0.68 −1/0.31/0.69 −1/0.31/0.69

109.5 < M < 1010.0 −1/−1/−1 −1/0.34/0.66 −1/0.34/0.66 −1/0.35/0.65 −1/0.33/0.67 −1/0.33/0.67

1010.0 < M < 1010.5 −1/−1/−1 −1/0.37/0.63 −1/0.36/0.64 −1/0.36/0.64 −1/0.34/0.66 −1/0.33/0.67

1010.5 < M < 1011.0 −1/−1/−1 −1/0.37/0.63 −1/0.43/0.57 −1/0.42/0.58 −1/0.40/0.60 −1/0.40/0.60

Table B.2: Probability of galaxies being identified in different cosmic web environments for high mass model clusters
(5.0× 1014M⊙ < Mcluster < 1.2× 1015M⊙). The format is the same as in Table B.1.



Core 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 0.64/0.15/0.21 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

109.5 < M < 1010.0 0.68/0.13/0.19 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.0 < M < 1010.5 0.64/0.15/0.21 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.5 < M < 1011.0 0.66/0.16/0.17 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

Filaments 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.49/0.51 −1/0.47/0.53 −1/0.49/0.51 −1/0.49/0.51 −1/0.44/0.56

109.5 < M < 1010.0 −1/−1/−1 −1/0.50/0.50 −1/0.51/0.49 −1/0.51/0.49 −1/0.48/0.52 −1/0.49/0.51

1010.0 < M < 1010.5 −1/−1/−1 −1/0.51/0.49 −1/0.50/0.50 −1/0.49/0.51 −1/0.49/0.51 −1/0.47/0.53

1010.5 < M < 1011.0 −1/−1/−1 −1/0.53/0.47 −1/0.52/0.48 −1/0.55/0.45 −1/0.54/0.46 −1/0.51/0.49

NCF 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.33/0.67 −1/0.32/0.68 −1/0.33/0.67 −1/0.27/0.73 −1/0.30/0.70

109.5 < M < 1010.0 −1/−1/−1 −1/0.32/0.68 −1/0.33/0.67 −1/0.31/0.69 −1/0.31/0.69 −1/0.31/0.69

1010.0 < M < 1010.5 −1/−1/−1 −1/0.32/0.68 −1/0.31/0.69 −1/0.31/0.69 −1/0.31/0.69 −1/0.36/0.64

1010.5 < M < 1011.0 −1/−1/−1 −1/0.39/0.61 −1/0.37/0.63 −1/0.38/0.62 −1/0.39/0.61 −1/0.36/0.64

Table B.3: Probability of galaxies being identified in different cosmic web environments for intermediate mass model clusters
(2.5× 1014M⊙ < Mcluster < 5.0× 1014M⊙). The format is the same as in Table B.1.



Core 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 0.67/0.13/0.20 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

109.5 < M < 1010.0 0.65/0.14/0.20 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.0 < M < 1010.5 0.63/0.16/0.21 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

1010.5 < M < 1011.0 0.63/0.18/0.19 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1 −1/−1/−1

Filaments 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.48/0.52 −1/0.47/0.53 −1/0.47/0.53 −1/0.45/0.55 −1/0.43/0.57

109.5 < M < 1010.0 −1/−1/−1 −1/0.49/0.51 −1/0.50/0.50 −1/0.50/0.50 −1/0.48/0.52 −1/0.46/0.54

1010.0 < M < 1010.5 −1/−1/−1 −1/0.52/0.48 −1/0.53/0.47 −1/0.51/0.49 −1/0.53/0.47 −1/0.48/0.52

1010.5 < M < 1011.0 −1/−1/−1 −1/0.51/0.49 −1/0.57/0.43 −1/0.63/0.37 −1/0.57/0.43 −1/0.55/0.45

NCF 0 < r < 1R200 1R200 < r < 2R200 2R200 < r < 3R200 3R200 < r < 4R200 4R200 < r < 5R200 5R200 < r < 6R200

109.0 < M < 109.5 −1/−1/−1 −1/0.29/0.71 −1/0.26/0.74 −1/0.26/0.74 −1/0.26/0.74 −1/0.28/0.72

109.5 < M < 1010.0 −1/−1/−1 −1/0.32/0.68 −1/0.29/0.71 −1/0.29/0.71 −1/0.29/0.71 −1/0.30/0.70

1010.0 < M < 1010.5 −1/−1/−1 −1/0.33/0.67 −1/0.35/0.65 −1/0.33/0.67 −1/0.33/0.67 −1/0.33/0.67

1010.5 < M < 1011.0 −1/−1/−1 −1/0.42/0.58 −1/0.42/0.58 −1/0.45/0.55 −1/0.39/0.61 −1/0.50/0.50

Table B.4: Probability of galaxies being identified in different cosmic web environments for low mass model clusters (2.5×
1014M⊙ < Mcluster < 5.0× 1014M⊙). The format is the same as in Table B.1.



Appendix C

Paper 3 appendix

C.1 Non mass-weighted networks

For comparison, we repeat the process of determining the distance between each

cosmic web node to its nearest galaxy group but without mass-weighting. Overall,

the matching is much less successful than in the mass-weighted case: without mass-

weighting we only find 43% of the cosmic web nodes match galaxy groups. We

demonstrate this in Figure C.1. The presence of a third peak, seen in the lower

left histogram at distances R/R200 ∼ 10−1, is due to the node latching on to a

subhalo within the group halo. This result implies using mass-weighting in the

filament finding process very significantly improves our ability to locate galaxy

groups using network nodes.
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Figure C.1: The same plot as Figure 5.3 but for the non mass-weighted case,
completed in 3D. In the right panel we show the mass distributions of the entire
group sample and compare it to the sample of groups that are close matches to
nodes, as done in Figure 5.6.
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