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Abstract

In the context of oncological drug trials, the semi-parametric Cox proportional

hazards model is traditionally used to establish treatment efficacy based on patient

response to treatment. However, the analysis is limited to answering questions

about treatment efficacy only, since the focus is usually on a single event of interest

(such as significant tumour shrinkage). It would instead be in the interest of patients

to address whether a clinically effective drug is potentially beneficial, in terms of

whether it can treat cancer while being relatively tolerable compared to alternative

treatments. To address this, we propose modelling the entire patient history using a

semi-Markov multi-state model so that we can simultaneously consider all possible

events that can be experienced by patients. Furthermore, if one defines all possible

events to be detrimental to the patient, we can quantify differences in patient

benefit by considering each of the active and control treatment arms and the time

patients spend in one or more states.

We propose two general statistical procedures to compare patients in each

treatment arm. The first procedure is based on differences in expected sojourn time

in subsets of states of interest, while the second procedure is based on differences

in the survival function of the holding time in specific states. In each case, the test

statistic is a function of the maximum likelihood estimates of model parameters.

The delta method is used for statistical inference. Properties of the proposed

statistical procedures are assessed by means of a simulation study, including

analyses of power and effects of model misspecification. The main result is that

each test is able to detect significant patient benefit relatively easily, with limiting

factors being sample size and high rates of right-censoring.

Finally, a real dataset is analysed and our method is compared to each of the

Cox proportional hazards model and the Fine-Gray proportional hazards model.

The main conclusion is that our method is more flexible and insightful when

considering patient benefit.
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Chapter 1

Introduction

1.1 Background

Time-to-event analysis is widely used in clinical oncology drug studies to ascertain

the effectiveness of oncology drugs. Competing risks analysis methods are usually

employed, namely fitting a cause-specific hazard function associated with an

event of interest using the standard semi-parametric Cox proportional hazards

model ([Cox, 1972]). The Cox proportional hazards model was first proposed by

D.R. Cox, and it was R.L. Prentice et al. who built on Cox’s work for competing

risk modelling using cause-specific hazard functions ([Prentice et al., 1978]). The

Cox model has since become one of “the standard bases for analysis, particularly

of medical, epidemiological, and demographic data” ([Lawless, 2003, Chapter 7

Bibliographic Notes]). In trying to ascertain efficacy of a drug using the Cox model,

the focus is on a particular event of interest (such as response to a drug which

leads to a tumour shrinkage). All other events (such as premature discontinuation

of drug due to adverse effects, loss to follow-up, death, etc.) are treated as right-

censoring events [Wolbers et al., 2014, p. 2939], and without properly taking into

account the propensity of these other events acting upon the patient during the

course of treatment. This, by itself, may be acceptable if the main objective is

merely to determine treatment efficacy, all other things being equal. However,

such treatments can lead to other undesirable outcomes, such as adverse side

1



effects which lead to premature discontinuation of treatment. For the purposes

of this introduction, we may loosely define “benefit” as patients undergoing an

effective treatment and being able to tolerate it enough to complete the treatment

successfully. In this sense, the use of the Cox model to determine efficacy answers

little about patient benefit since we are not attempting to quantify or incorporate

information related to the other undesirable forces acting upon the patient (due

to their disease and/or undergoing the treatment). Such information is certainly

crucial to patients who are trying to decide how to best treat their illness, or if

they even should.

The U.S. Department of Health and Human Services, Food

and Drug Administration has recently issued a new draft guidance

([Food and Drug Administration, 2022]) to adjust the focus of drug devel-

opment, with a view on emphasising patient benefit rather than easily quantifiable

biological signals. Despite this, the statistical literature on patient well-being

and benefit in the context of clinical drug development is scarce. One example

that attempts to address patient benefit is [Oberoi et al., 2020], where the authors

consider what factors lead to patients being lost to follow-up. However, loss to

follow-up is but one undesirable outcome of a clinical trial, and there is a need to

consider all of them in tandem to begin discussing potential benefit to patients.

Besides being of interest to regulators, understanding patient benefit is also

relevant to pharmaceutical companies formulating new treatments, as modelling

results may convince payers to adopt a new “beneficial” treatment against already

marketed competitors. In addition to the information provided by the standard

Cox model, quantifying “patient benefit” as described above would give patients

extra information about treatment options (in addition to information about drug

efficacy) which they can weigh against their remaining life expectancy with and

without treatment.

This thesis seeks to address the lack of statistical methodology to quantify

potential benefit to patients so that they, their doctors, and their caretakers can
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make better-informed decisions about cancer treatments. Our contributions involve

the use of semi-Markov multi-state survival models and are detailed in Chapters 3

through 6, with Chapter 2 describing the necessary background material and

motivation. A more detailed description of the contents of this thesis can be found

in Section 1.2.

Multi-state models account for the entire patient history from the start of a

clinical trial up until either (i) they reach an absorbing state such as “death” or

“lost to follow-up” or (ii) the end of the observation period (if they are right-censored

because an absorbing state is never reached). This is as opposed to just considering

one event of interest in a competing risks model, as is currently the case when

analysing oncological clinical trial data. By incorporating information about the

entire patient history more carefully, we are able to answer questions more general

than just whether the treatment under consideration is effective given that the

patient completes their treatment.

The multi-state models we consider use an underlying semi-Markov process

to model the entire patient history. The main reason for choosing semi-Markov

processes for our models is that they allow us to choose sensible distributions to

model the biological processes that are common in clinical trials, as opposed to

the possibly unrealistic assumption in Markov models that requires exponential-

distributed holding times in a given state. Semi-Markov models are often modelled

with intensity transition functions (ITFs), which generalise cause-specific hazard

functions. The focus in this thesis is instead on the mixture model approach (which

we refer to as the “mixture approach”), popularised by [Larson and Dinse, 1985].

This approach involves modelling semi-Markov models by estimating transition

probabilities and parameters of proper probability distributions for a given pos-

sible transition. This choice is made due to higher overall interpretability and

flexibility. While [Larson and Dinse, 1985] popularised the mixture approach, it

has been known for significantly longer than that, as evident from the work

by [Weiss and Zelen, 1965]. However, our methods are broadly applicable should
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the ITFs approach be preferred. Since we recognise that it is the ubiquitous and

often preferred way of working with semi-Markov models, references to ITFs are

made in the thesis where appropriate. See [Asanjarani et al., 2021] for a detailed

comparison of both approaches, including advantages and disadvantages.

Traditionally, the EM algorithm is used to perform maximum like-

lihood estimation of the model parameters in a semi-Markov model,

with the transition probabilities modelled with the logistic function.

Standard errors are also estimated within the EM framework. See,

for example, [Larson and Dinse, 1985], [Meng and Rubin, 1991] and

many others. Bootstrap methods have also been used for construct-

ing confidence intervals (see, for example, [Butler and Bronson, 2012]

and [Castelli et al., 2007]). [Asanjarani et al., 2021] consider both the mix-

ture and intensity transition functions approaches and explore their relationships

in detail, while showing practical usage of the estimation methods on several

datasets. In the context of the mixture method, they use the SemiMarkov

package ([Król and Saint-Pierre, 2015]) in R to numerically estimate the standard

errors in their models. However, we have found the method of estimating

the parameters and standard errors using this package to be unclear and in

disagreement with results that should be expected from the theory. We propose

instead standard errors obtained by the use of the observed Fisher information to

estimate the expected Fisher information. This is easily done, e.g. via numerical

approximation by means of the Hessian obtained from an appropriate numerical

optimisation procedure. This is discussed in Section 4.2. Preceding that discussion,

we also present in Section 4.1 a new way to write the likelihood function, which

allows for an alternative expression of entries of the observed Fisher information

matrix. To the best of our knowledge, the likelihood has not been expressed in

this way in the literature. In addition to allowing for an alternative closed-form

expression for the observed Fisher information matrix, the new expression for the

likelihood allows for the possibility to make theoretical calculations for entries of
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the expected Fisher information matrix.

The work by [Weiss and Zelen, 1965] argues the merits of semi-Markov multi-

state models, and discusses various probabilities (such as state occupancy proba-

bilities and first passage time probabilities), as well as the distributions of total

sojourn times (which can involve passage through certain states of interest). Since

the computation of such quantities can involve convolutions, they propose using

Laplace transforms to linearise the integrals and make the computation more

convenient. They also fit a semi-Markov multi-state model to acute leukaemia

clinical trial data to estimate time taken until certain events of interest and also

the distribution function for time until patient death. This thesis also contains

discussion of the above quantities, specifically the state occupancy probabilities

and average total sojourn times. Furthermore, [Weiss and Zelen, 1965, Section 4]

alludes to some of the ideas mentioned in this thesis – for example they write “It

is then plausible to base a test of efficiency of a drug on the amount of time that a

patient is kept alive. Another alternative would be to base efficiency on the amount

of time that a patient is kept in a state of relative comfort.” This is very similar to

the idea of patient benefit as described in this section and in Section 3.1 of this

thesis. Furthermore, [Weiss and Zelen, 1965, Section 6] show calculations for the

density function of the total sojourn time until death, and also the density function

of the total sojourn time given passage through a state of remission. Hence, they

show expressions for the mean and variance of these quantities. This is similar to

calculations we present in Section 4.3.

However, we differentiate our work from [Weiss and Zelen, 1965] in several

ways. First, [Weiss and Zelen, 1965] present their methods in the context of “drug

comparison” as a general idea, and do not emphasise the difference between drug

efficacy and patient benefit as we do. Additionally, a large focus of our work

is on statistical inference whereas it was not a focus of [Weiss and Zelen, 1965]

at all. Specifically, we have suggested a specific meaning of patient benefit and

how to quantify it, and proposed hypothesis tests for inference. As mentioned,
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we have also proposed a new way to write the likelihood which allows for exact

calculations of the observed information matrix and possible theoretical calculation

of the expected information matrix. Furthermore, [Weiss and Zelen, 1965] derive

their results with slightly different starting points and assumptions from us in most

cases. See Section 4.3 for an explanation. Finally, the focus of our work is not on

the calculation of these useful quantities but on the application to show patient

benefit (or lack thereof).

1.2 Description of thesis contents

The structure and contents of this thesis are as follows.

Chapter 2 introduces the necessary background knowledge and theory. The

chapter describes the theory of survival analysis and estimation methods, as well

as how it is used in common competing risks models used to analyse clinical

data. Specifically, the Cox proportional hazards model and Fine-Gray proportional

hazards model ([Fine et al., 2001]) are introduced and compared. Then, semi-

Markov processes and how they are used in modelling are discussed. Estimation

and methods for simulating data are also discussed.

Chapter 3 defines patient benefit and then discusses the Cox and Fine-Gray

models in the context of patient benefit. The contribution is conducting and

interpreting the results of a simple simulation study as proposed by BAST Inc. Ltd.

The main result is that a larger “treatment effect” of an effective drug is required

before the Fine-Gray model will show that patients in active treatment have a

(significantly) higher probability of being better off. This is in contrast to the Cox

model, where even a small treatment effect will give the result that patients in

active treatment are doing relatively (and significantly) better. Also, an example is

given to show that even mildly effective drugs will be reported by the Cox model

to be effective, even if the drug happens to be highly toxic and causes a substantial

rate of premature discontinuation.

Chapter 4 shows how we can use semi-Markov multi-state models to quantify
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patient benefit. The contributions are:

(i) a new way to write the likelihood using the mixture approach which could

potentially be used for theoretical calculations and also to write a closed-form

expression for the observed Fisher information matrix,

(ii) a discussion of some computational considerations and proposing the use of

the negative of the inverse of the numerical Hessian to estimate the observed

Fisher information matrix,

(iii) presenting the probability distribution of a new quantity that might be used

to compute average total sojourn times given passage through a specific state

before reaching particular states of interest,

(iv) Two proposed hypothesis tests, one based on the quantity in (iii) (Test A)

and the other based on differences in survival function of holding time in a

particular state (Test B).

The contribution in Chapter 5 is a detailed simulation study and investigates

properties of the aforementioned proposed hypothesis tests given a specific setup.

There are three similar models under consideration: (i) with a large amount of

detectable benefit and no right-censoring (baseline model), (ii) the baseline model

but with added right-censoring, and (iii) a model with less detectable benefit and

with censoring. In each case, the correct parametric model is fitted, as well as two

misspecified models. Empirical type I error rates are presented, as well as some

measures of statistical power. The main results are that Test A appears to be

relatively robust to misspecification and right-censoring while Test B is not. Both

tests do not do well in the absence of sufficiently large sample size when there is

little detectable benefit. Some of the supplementary quantities of interest as per

Chapter 4 are also presented.

The contribution in Chapter 6 is a similar analysis to a real dataset in order to

decide whether there is any difference to patient benefit between both two treatment

arms: a control treatment and modified treatment. The main result is that, in
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that study, patients in modified treatment who progress after having completed

treatment might be dying at a faster rate that those in control treatment. On the

other hand, patients who progress after prematurely discontinuing treatment in the

control treatment arm appear to be the ones who are dying at a faster rate. In the

latter case however, results are less conclusive due to the relatively small (effective)

sample size and a high amount of right-censoring associated with progression after

discontinuing treatment.

Chapter 7 then concludes the thesis and offers a discussion regarding some of

the finer points related to modelling patient benefit using semi-Markov models.
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Chapter 2

Multi-state survival models

This chapter starts by introducing the basic ideas behind multi-state models in

Section 2.1, followed by a section discussing basic survival analysis in Section 2.2.

After this, the most common examples of competing risk models are introduced in

Section 2.3, after which semi-Markov processes are discussed in Section 2.4. Finally,

methods and considerations for data simulation are discussed in Section 2.5.

2.1 Multi-state models

Multi-state models are used to describe the evolution of states through time for a

subject under observation. More formally, a multi-state model can be described as

a general continuous-time stochastic process (Xt)t≥0 on a state space {1, 2, 3, . . . }

where Xt is defined as the current state of the subject at time t ≥ 0.

In a general model there may be one or more possible states to transition to,

after which further transitions could be possible until an absorbing state (if there

is one) is reached. Roughly speaking, an absorbing state is one where no further

transitions to other states are possible after it is reached. An example is the state

“death” for a patient in a clinical trial.

A competing risks model is one where a subject under observation starts out in

a given starting state, then transitions no more than once. The destination state is

one of several possible absorbing states which represent mutually exclusive events.

9



See Figure 2.1 for an example that depicts a possible clinical trial. Section 2.3

gives further details.

Figure 2.1: An example of a competing risks model depicting a possible clinical
trial.

Figure 2.2: The illness-death model as an example of a general multi-state model
with bi-directional transitions.

A more general multi-state model might involve several transitions through

different states before possibly being absorbed. There is also the possibility to allow

for bi-directional transitions between pairs of states. See Figure 2.2 for an example

showing a version of the ubiquitous illness-death model (see [Touraine, 2019], for

example) with the possibility to transition from the states “Healthy” to “Ill” and

then back to “Healthy”. Section 2.4 discusses such multi-state models where the

time between transitions is described by a semi-Markov process.

Example Suppose we label “Healthy”, “Ill”, “Death” as states “1”, “2”, and,

“3” respectively. Table 2.1 below shows a simple dataset from a version of the
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illness-death model described in Figure 2.2, where the transition “Ill → Healthy”

is not possible.

Individual From To Time (since start of process)
1 1 2 5
1 2 3 11
2 1 3 3
3 1 1 12

Table 2.1: A simple dataset from an illness-death model

Suppose there are three individuals, all starting in state 1. Each row in the

dataset represents one possible transition i → j , with “from” indicating the

value of i and “to” indicating the value of j. If “from” and “to” are equal, it

means that the individual never transitioned out of the “from” state by the end of

the observation period i.e. they are right-censored (right-censoring is defined in

Section 2.2). “Time” denotes the transition time with respect to the start of the

process in state 1.

The first individual takes the path 1 → 2 → 3 with transitions at times t = 5

and t = 11 since the start of the process, respectively. The second individual takes

the path 1 → 3 at time t = 3. The last individual stays in state 1 for t = 12 time

units and is not observed to leave state 1.

We discuss this example further in Section 2.4.1 and Section 2.4.5.

2.2 Basics of survival analysis

2.2.1 Survival function and hazard function

Throughout this thesis, the event time of an individual is assumed to be continuous.

This is a realistic assumption in the context of oncology studies.

Suppose the random variable T denotes the event time of a given individual.
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The survival function is defined as

S(t) = P (T > t) =

∞∫
t

f(u)du = 1− F (t) (2.1)

where f is the probability density function (pdf) of T and F (t) = P (T ≤ t) =
t∫
0

f(u)du is the corresponding (cumulative) distribution function (cdf). The survival

function expresses the probability of the individual being event-free up to time t.

The hazard function, denoted h(t), is defined as

h(t) = lim
∆t→0

P (t < T ≤ t+∆t|T > t)

∆t
. (2.2)

The hazard function expresses the rate of incidence of an event in a small interval

after time t, given that the individual is event-free up to time t. Using the definition

of the numerator in equation (2.2) and rearranging, we can also express the hazard

function as

h(t) =

[
lim
∆t→0

P (t < T ≤ t+∆t)

∆t

]
1

P (T > t)
=

f(t)

S(t)
(2.3)

where the expression in square parentheses is one of the definitions of the pdf of T ,

f(t).

Since S(t) = 1− F (t), we have that d
dt
S(t) = −f(t). Consequently, taking the

negative of the (natural) logarithm of S(t) and differentiating with respective to t

gives yet another way to express the hazard function since

− d

dt
log (S(t)) =

f(t)

S(t)
= h(t), (2.4)

where the last equality is from equation (2.3).

It is also possible to define the cumulative hazard function, H(t), where H(t) =
t∫
0

h(u)du. The cumulative hazard function can be viewed as a measure of “total

hazard” up to time t. It is then natural that the survival function can be expressed
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in terms of the cumulative hazard function. Substituting equation (2.3) into the

equation for the cumulative hazard function and using the Fundamental Theorem

of Calculus yields

H(t) =

t∫
0

− d

du
log (S(u)) du = −

[
log (S(t))− log (S(0))

]
= − log (S(t)) .

Multiplying by negative one and exponentiating yields the required expression:

S(t) = exp (−H(t)) . (2.5)

Hence,

f(t) = − d

dt
S(t) = h(t) exp (−H(t)) . (2.6)

2.2.2 Estimation

Suppose there are m independent observations of time-to-event data T1, T2, . . . , Tm

each having a distribution with associated pdf f(tj;θ) (j ∈ {1, 2, . . . ,m}) where

θ is a finite-dimensional parameter vector. A given individual’s event time T is

right-censored if we are unable to observe T but know it exceeds a certain value (say

C, with its own probability distribution). In other words, for the jth individual, we

observe Yj = min(Tj, Cj) and Tj > Cj means that the event time is right-censored.

In the context of oncology studies, right-censoring can occur if the individual has

participated in the study for time C after which the observation period of the study

comes to an end without them experiencing any event.
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Putting everything together, we can express a given individual’s event time and

whether or not it is censored by denoting for the jth individual the pair (Yj, δj)

where

δj =


1 if Tj ≤ Cj

0 if Tj > Cj

and Yj =


Tj if δj = 1

Cj if δj = 0.

This setup assumes independent random censoring i.e. all random variables

T1, T2, . . . , Tm, C1, C2, . . . , Cm are independent. [Lawless, 2003, Section 2.2.1.2]

describes this censoring scheme as “often realistic”.

Non-parametric estimation

A common non-parametric estimator for the survival function is the Kaplan-Meier

estimator [Kaplan and Meier, 1958], given by

Ŝ(t) =
∏
i:yi≤t

(
1− di

ri

)
, (2.7)

where di is the number of individuals observed to have experienced an event by

time t and ri is the number of individuals at risk of experiencing an event in a small

interval before time t. The Kaplan-Meier estimator is also the non-parametric

maximum likelihood estimator associated with S(t) when T is discrete.

Related to the Kaplan-Meier estimator is the Nelson-Aalen estima-

tor ([Nelson, 1969], [Nelson, 1972], [Aalen, 1978]), which is a non-parametric esti-

mator for the cumulative hazard function:

Ĥ(t) =
∑
i:yi≤t

di
ri
.

While these and other non-parametric methods are of interest, we mainly focus

on parametric methods and use non-parametric estimates for plotting figures to

visually assess the fit of our parametric models. As such, we will not go into further
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detail about the properties of any non-parametric methods discussed in this thesis.

Likelihood function and maximum likelihood estimation

The likelihood function associated with a sample Y of size m is

L(θ|y) =
m∏
i=1

f(yi;θ)
δiS(yi;θ)

1−δi . (2.8)

Whenever the event time is observed (δi = 1), the contribution to the likelihood is

the pdf associated with T , f(ti;θ). Otherwise, the contribution associated with a

right-censored observation (when δi = 0) is the probability of observing an event

time greater than the observed censoring time, i.e. S(ci;θ).

For a given sample Y = y and assuming the log-likelihood function, l(θ|y) =

log
(
L(θ|y)

)
, is sufficiently regular we can maximise equation (2.8) with respect to

θ to obtain the maximum likelihood estimate, θ̂. As an estimator, under further

regularity conditions (see [Arnab, 2017, Section 22.2.1] for more details), it is

asymptotically unbiased and consistent. Furthermore,
√
m(θ̂−θ0) → N

(
0, I−1(θ0)

)
in distribution asm → ∞, where θ0 denotes the true value of θ and N(µ,Σ) denotes

the multivariate Gaussian distribution with mean µ and covariance matrix Σ. Here,

I(θ) is the expected Fisher information matrix with (r, s) entry

E

[(
∂l

∂θr

)(
∂l

∂θs

)]
= E

[
− ∂2l

∂θs∂θr

]
.

Note that the above equation is only true whenever we have sufficient regularity

in the log-likelihood. See Section 5.5 and Section 5.6 of [van der Vaart, 2000] for

more details.

In practice, we use that θ̂ ∼ N
(
θ0, I

−1(θ0)
)
approximately for sufficiently large

m and, if necessary, we estimate the expected Fisher information matrix with the

observed Fisher information matrix, Î(θ̂), with (r, s) entry

− ∂2l

∂θs∂θr
.
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If we wish to make statistical inference about univariate functions of θ, e.g.

g(θ), we can invoke the delta method to approximate the asymptotic variance of

g(θ̂). See [van der Vaart, 2000, Chapter 3] for more details.

Theorem 2.2.1. (Delta method) Suppose θ̂ is a maximum likelihood estimator

of parameter vector θ0 with parameter space Θ, which satisfies
√
m(θ̂ − θ0) ≈

N(0, I−1(θ0)). Suppose h : Θ → R is a differentiable function with non-zero

gradient ∇h(θ) at θ0. Then,

√
m
(
h(θ̂)− h(θ)

)
→ N

(
0, {∇h(θ)}⊤I−1(θ){∇h(θ)}

)
in distribution as m → ∞.

2.3 Competing risks models

As discussed at the beginning of Section 2.1, a competing risks model is a special

case of a multi-state model where there is an initial state with no more than one

transition to one of several different absorbing states. More formally, an individual

with event time T faces competing risks if he/she can experience only one of K

different mutually exclusive events. One approach to model this is to consider the

joint probability distribution of (T1, T2, . . . , TK) and let T = min{T1, T2, . . . , TK}

i.e.. take the event time to be that of the first event to occur. This is known as the

latent variable approach. The issue with this is that {T1, T2, . . . , TK} is likely not a

set of independent random variables, and so we cannot establish (or even estimate

from typical data) the correlation between them since we never observe more than

one of theK events. In literature, this is referred to as the non-identifiability problem

– see [Cox, 1959] and [Tsiatis, 1975]. Indeed, Prentice et al. questioned whether such

a setup should be implemented without proper understanding of the interactions

between all the possible event times for each individual ([Prentice et al., 1978,

Section 3]). More discussion of this point, especially with respect to data simulation,

is discussed in Section 2.5.2.
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The preferred approach in the literature is to instead consider the bivariate

probability distribution of (T,D) where T is the usual event time and D (taking

values in {1, 2, . . . , K} in the absence of censoring) is the type of event associated

with the event time. A discussion of this joint distribution and related quantities

is in Section 2.3.1. Section 2.3.2 and Section 2.3.3 present the Cox proportional

hazards model and Fine-Gray proportional hazards model respectively, since these

are the most common models used for modelling the influence of covariates on

different types of individuals in the context of competing risks.

2.3.1 Cause-specific hazard function and subdistribution

hazard function

The cumulative incidence function (CIF) associated with event k, denoted Fk, is

defined as the joint probability of event k occuring by time T = t. Here, events

{1, 2, . . . , K} define a collection of mutually exclusive events. The CIF is given by

Fk(t) = P (T ≤ t,D = k).

It is noted that, for each k, Fk is not a proper distribution function since

limt→∞ Fk(t) = P (D = k) < 1 for all k ≥ 2. It is for this reason that the CIF is

sometimes referred to as the “subdistribution function”. However, if {1, 2, . . . , K}

is a collectively exhaustive set of events then lim
t→∞

K∑
i=1

Fi(t) = 1. We shall assume

this throughout the thesis.

It is most common in the competing risks framework to model the hazard

functions associated with event times. We can consider either the cause-specific

hazard (used in the Cox proportional hazards model, detailed in Section 2.3.2) or the

subdistribution hazard (used in the Fine-Gray proportional hazards model, detailed

in Section 2.3.3). The differences between the two different hazard functions are

first explored in order to build intuition and elucidate the underlying differences

between both models.
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The cause-specific (CS) hazard is defined as follows (cf. equation (2.2)):

hC
k (t) = lim

∆t→0

P (t < T ≤ t+∆t,D = k|T > t)

∆t
. (2.9)

The interpretation of this hazard function is the instantaneous rate of incidence of

event k for an individual at time t, given that the individual is event-free up to

time t. In other words, an individual is treated as “at risk” of event k at time t

unless they have already experienced an event. Since the K events of interest are

mutually exclusive, we can write the overall hazard function as the sum of the K

cause-specific hazards,

h(t) =
K∑
i=1

hC
i (t). (2.10)

Similarly to Section 2.2, we can re-express the CS hazard function by using the

definition of the numerator in equation (2.9). Equation (2.9) can then be written

as

hC
k (t) =

[
lim
∆t→0

P (t < T ≤ t+∆t,D = k)

∆t

]
1

P (T > t)
.

We can define the first term in square parentheses as the subdensity function for

event k, fk(t), which satisfies d
dt
Fk(t) = fk(t). Hence, we can write the CIF in

terms of the CS hazard function as:

Fk(t) =

∫ t

0

hC
k (u) exp (−H(u)) du =

∫ t

0

hC
k (u) exp

(
−

K∑
i=1

HC
i (u)

)
du. (2.11)

The integrand after the first equality is another expression for the subdensity

function (cf. equation (2.6)) while the second equality makes use of equation (2.10).

It is noted that the CIF is a function of all K events of interest (through their

respective CS cumulative hazard functions), and not just the kth event (through

its CS hazard function). Thus, it is impossible to estimate or make any inference

about the CIF for any of the k events without first estimating the CS hazard
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functions for all K events. The manner in which the CIF is decomposed as above

is also the reason that an increase in hazard for event k does not necessarily imply

an increase in CIF for that event (see [Haller, 2014, Sub-section 3.3.2]).

To further reinforce this point, suppose Sk(t) = exp
(
−HC

k (t)
)
is the cause-

specific survival function for event k and we wish to estimate it non-parametrically.

It is well-established in the literature that naively using 1 − Ŝk(t) yields over-

estimates of Fk(t) (here, Ŝk(t) uses the Kaplan-Meier estimator as per equa-

tion (2.7) except all the times of events D ≠ k are treated as right-censored

observations). [Putter et al., 2007] highlight this issue, and offer the intuition that

this bias arises due to the violation of the assumption that the censoring distribu-

tion is independent of the event times T1, T2, . . . , TK . In particular, right-censored

event times associated with D ̸= k automatically means that event k will never

happen. Since individuals are no longer at risk the moment a competing event

occurs (despite the Kaplan-Meier estimator assuming they still are), 1 − Ŝk(t)

overestimates Fk(t) unless K = 1 i.e. there are no competing risks.

The cause-specific hazard for event k is the basis for the Cox proportional

hazard model. However, as demonstrated above, fitting the model to competing

risks data only allows us to make inference about the relative rate of incidence

associated with event k, and nothing about the absolute risk (unless we model

the other K − 1 competing events). The lack of direct relationship between the

CS hazard for event k and the associated CIF provides the motivation for the

subdistribution hazard.

The subdistribution (SD) hazard is defined as

hS
k (t) = lim

∆t→0

P (t < T ≤ t+∆t,D = k|{T > t} ∪ {T ≤ t,D ̸= k})
∆t

. (2.12)

The interpretation of this hazard function is the instantaneous rate of incidence of

event k for an individual at time t given that either (i) the individual has survived

up to time t, or (ii) the individual has experienced a competing event. Individuals

are treated as “at risk” of event k at time t even if they have already experienced
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some other event D ̸= k. As a result, the subdistribution hazard is agnostic to the

occurrences of other events D ̸= k.

Once again, we can re-express equation (2.12) by using the definition of the

numerator and rearranging. The SD hazard function is

hS
k (t) =

[
lim
∆t→0

P (t < T ≤ t+∆t,D = k)

∆t

]
1

P ({T > t} ∪ {T ≤ t,D ̸= k})
.

The first term in square parentheses is, once again, fk(t). By definition of the

denominator term on the right, we have

P ({T > t} ∪ {T ≤ t,D ̸= k}) = 1− Fk(t).

Thus, we can write the SD hazard function as

hS
k (t) =

fk(t)

1− Fk(t)
. (2.13)

Similarly to how we obtained equation (2.4), we can take the negative logarithm

of 1− Fk(t) and differentiate with respect to t and then substitute equation (2.13)

to obtain

hS
k (t) = − d

dt
log (1− Fk(t)) , (2.14)

which is analogous to equation (2.4).

The relationship as per equation (2.14) now allows us to make direct inference

on the CIF for event k using the SD hazard for event k, without having to estimate

anything related to the other competing events. This is what we do when we fit

the Fine-Gray proportional hazards model to competing risks data. Thus, we can

now make inference directly on the absolute risk of an event k through the CIF for

event k (which is a probability).

Further discussion of the two approaches to competing risks modelling, including

merits and pitfalls, are discussed in detail in Section 2.3.4.
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2.3.2 Cox proportional hazards model

As mentioned before, the Cox proportional hazards regression model can be used to

model covariate dependence for event times. Suppose that there is only one event

of interest i.e. there are no competing risks. Given a finite-dimensional vector of

covariates z, the Cox proportional hazards model assumes the underlying hazard

function associated with event time T takes the form

h(t|z) = h0(t) exp(z
⊤β) (2.15)

for parameter vector β whose values determine covariate influence on the hazard

function. This specification is known as semi-parametric because the function h0 is

non-parametric while exp(z⊤β) depends on parameter vector β. The function h0

is called the baseline hazard, because it is the hazard at time t for an individual

with z = 0.

The model gets its name because, for two individuals i and j with covariate

vectors zi and zj respectively,

h(t|zj)
h(t|zi)

= exp
(
(zj − zi)

⊤β
)
. (2.16)

In other words, the hazard function changes proportionally with changes in z.

Equation (2.16), also known as the hazard ratio, gives us a nice interpretation. It

can be interpreted as the instantaneous rate of incidence of the event of interest

in a sub-population with characteristics given by zj who are still at risk of the

event, relative to the sub-population with characteristics given by zi. For example,

a hazard ratio of 2 means that the instantaneous rate of incidence of the event

for individuals with the characteristics given by zj is twice that of the individuals

with the characteristics given by zi. More generally, if the hazard ratio is greater

than (resp. less than) unity, it can be inferred that the positive change in covariate

values increases (resp. reduces) hazard. A unit hazard ratio implies that the hazard

does not change with the covariate values. It should also be noted that the hazard
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ratio as per equation (2.16) is independent of time.

Even if h0 is assumed to be parametric, it is not necessary to specify its

parameters if the only concern is estimating covariate effect. This is due to the

fact that the parameter vector β is estimated by maximising the partial likelihood

function (usually numerically) with respect to β. The following informal derivation

provides the heuristics.

Suppose there are m distinct (possibly right-censored) event times y =

(y1, y2, · · · , ym)⊤ and define zi as the covariate vector of the individual with event

time yi. Using equations (2.6) and (2.9), we can write the likelihood function as

L(θ,β|y) =
m∏
i=1

[
h0(yi|θ) exp

(
z⊤i β

)]δi
exp

(
−H0(yi|θ) exp

(
z⊤i β

))
=

m∏
i=1

{[
h0(yi|θ) exp

(
z⊤i β

)∑
j∈Ryi

h0(yi|θ) exp
(
z⊤j β

)]δi[ ∑
j∈Ryi

h0(yi|θ) exp
(
z⊤j β

) ]δi
×

exp
(
−H0(yi|θ) exp

(
z⊤i β

))}

where θ is the vector of parameters associated with the event-time distri-

bution of T . The second equality results from multiplying and dividing by[∑
j∈Ryi

h0(t) exp(z
⊤
j β)

]δi
. Here, Ryi is the risk set at time yi, which is the

set of individuals who have yet to experience an event by time yi and are still under

observation at time yi. This is as per the definition of the risk set in the CS hazard

function in equation (2.9). As per Section 2.2, δi denotes the censoring status of

the individual associated with event time yi.

Cox argued in [Cox, 1972] that most of the information about β is contained

within the first term in the product above, while the other terms mainly contain

information about θ. Hence, θ is treated as a nuisance parameter and the second

22



and third terms are ignored. Hence, the partial likelihood function is

PL(β) =
n∏

i=1

 exp(z⊤i β)∑
j∈Ryi

exp(z⊤j β)


δi

. (2.17)

The partial likelihood can be viewed as the conditional probability of observing

an (non-censored) event at time yi, given the number of individuals in Ryi at risk of

that event at that time. Another feature of the partial likelihood is that it does not

depend on the event times itself, but on how many events are at risk of happening

at time yi. Also, censored events do not contribute to the partial likelihood.

The setup above assumed distinct event times i.e. no tied event times, although

tied event times may occur in practice. Various methods have been proposed to

address this, including methods found in [Cox, 1972], [Breslow, 1974], [Efron, 1977],

and others. We will not discuss these methods here.

Rigorous proofs of the consistency and asymptotic Gaussian distribution

of the Cox model estimator β̂ were shown some years later by A.A. Tsiatis

in [Tsiatis, 1981], while P.K. Andersen and R.D. Gill showed simpler proofs of

these results using counting process theory in [Andersen and Gill, 1982]. In prac-

tice, we carry out inference similarly to how we would for a maximum likelihood

estimator derived from a full likelihood function, by using the observed Fisher

information associated with the sample.

Competing risks context

Suppose there are K competing events. Suppose, without loss of generality, that

we are interested in event k ∈ {1, 2, . . . , K}. The CS hazard function for event k

as per the Cox proportional hazards model is given by

hC
k (t|z) = h0,k(t) exp(z

⊤βk) (2.18)
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where h0,k is the baseline hazard for event k and βk is a vector of coefficients

associated with event k.

Define the partial likelihood function for event k given m event times,

PLk(β) =
m∏
i=1

 exp(z⊤i βk)∑
j∈Ryi

exp(z⊤j βk)


δi,k

(2.19)

where δi,k = 1 if the individual has event time yi and experiences event k, and 0

otherwise. Hence, event times associated with any event that is not k are treated

as right-censored ([Wolbers et al., 2014, p. 2939]).

Note that the partial likelihood function for all events i.e. the equivalent of (2.17)

is

PL(β) =
m∏
i=1

K∏
l=1

 exp(z⊤i βl)∑
j∈Ryi

exp(z⊤j βl)


δi,l

=
K∏
l=1

PLl(β). (2.20)

Thus, we can fit the CS hazard for any event k of interest in order to compare the

relative rates of incidence between two sub-populations without having to maximise

the partial likelihood functions for any D ̸= k.

As mentioned before, a limitation of the cause-specific hazard function (and

therefore the Cox model) is that it only tells us about covariate influence on the

relative rates of incidence of an event of interest k, but does not tell us anything

about covariate influence on the probability of the same event. This motivates the

Fine-Gray model, discussed in the following section.

2.3.3 Fine-Gray proportional hazards model

As mentioned in Section 2.2, the main appeal of modelling subdistribution hazard

functions is being able to make use of the one-to-one relationship between the CIF

and the subdistribution hazard as per equation (2.13).

Similarly to the Cox model, proportional hazards is also assumed in the Fine-
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Gray setup but at the SD hazards level, i.e.

hS
k (t|z) = hS

0,k(t) exp(z
⊤γk)

where γk is the parameter vector associated with covariate influence when consid-

ering event k. This is similar to the model specified in equation (2.18), with the

main difference being the interpretation of the parameter vector γk and associated

hazard ratio. The hazard ratio now gives the effect of covariates on the relative

change in probability of event k (as opposed to the effect of the covariate on relative

rate of incidence of event k in the Cox model). For example, a (SD) hazard ratio

of greater than unity now implies a positive relationship between the covariate

vector and the probability of event k. Note however that, unlike before with the

CS hazard ratio, we are not able to directly link the magnitude of change of the

SD hazard ratio with the magnitude of change of the CIF. All we are able to do is

comment that the direction of the change is the same. This is explored in detail

in [Austin and Fine, 2017] and is further discussed in Section 2.3.4.

Model estimation is done by maximising a partial likelihood function as be-

fore. However, since the risk set now involves individuals who have experienced a

competing event, the exact form of the partial likelihood depends on the model

assumptions about censoring. This is because, since we keep all non-censored

individuals in the risk set, even individuals who have experienced competing events

contribute to the likelihood. [Fine and Gray, 1999] present the score function for

three cases: namely (i) complete data (no censoring), (ii) “censoring complete”

data, and (iii) incomplete data. “Censoring complete” data refers to data where

the only source of censoring comes from administrative censoring i.e. individu-

als are right-censored only if they have not been observed to have an event by

the time the observation period is over (and not because they became lost to

follow-up). In such a case, the potential censoring time is always observable. In

cases related to general censoring, an adapted version of inverse probability of

censoring weighting [Robins and Rotnitzky, 1992] is used to weight the individuals
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who have experienced a competing event. Suppose one such individual experienced

a competing event at time tκ. We can weight this individual by the probability

that the individual is right-censored, given that we know that the individual’s

potential censoring time is after time tκ, i.e. we use the weight G(t) = P (C>t)
P (C>tκ)

. If

w(t) denotes the weight for this individual, we have that

w(t) =



1 if t < tκ

Ĝ(t)

Ĝ(tκ)
if t ≥ tκ

0 if right-censored

where Ĝ is the Kaplan-Meier estimator for the survival function of the censoring

time, P (C > t). This weight is time-dependent and decreasing in time.

The following Section 2.3.4 will discuss the merits and pitfalls of each of the

Cox and Fine-Gray proportional hazards models.

2.3.4 Discussion about both approaches to competing risks

modelling

In the context of drug trials, the results of the Cox model fit are best suited to

answer aetiological questions such as “Does the characteristic of ‘drug exposure’ (the

covariate) decrease the relative rate of incidence of disease progression?”. However,

the Cox model does not offer insight when it comes to changes in relative probability

of incidence of an event of interest, which is relevant when trying to address

questions related to patient prognosis such as “Does the characteristic of ‘drug

exposure’ reduce the probability of disease progression?”. Indeed, questions related

to aetiology and prognosis can have very different answers ([Wolbers et al., 2014,

p. 2939]). Instead, the Fine-Gray model is better suited to address such questions

related to prognosis. Given two individuals, each with a specific set of characteristics,

the Fine-Gray model can give an estimate of whether there is a difference in

probability of an event of interest occurring between them. It is for this reason that
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it is argued in [Latouche et al., 2013] that “understanding the effects of covariates

on cause-specific hazards and cumulative incidence functions go hand in hand” and

that results for both CS hazards and CIFs should be reported together.

The rest of this section brings up several points of discussion related to both of

these models, especially in the context of clinical trials.

Discussing the CS hazard ratio alone can be misleading

It has been established in the literature that reporting hazard ratios alone and

using its value to make inference about overall risk is misleading and flawed (see, for

example, [Sutradhar and Austin, 2018] and [Spruance et al., 2004]). This is due to

the fact that there is no clear relationship between the cause-specific hazard for an

event and its CIF (as established in Section 2.3.1). [Sutradhar and Austin, 2018]

illustrates that, for a given value of the hazard ratio, the actual hazard can take a

variety of different values. The intuition given is that the actual hazard depends

on the baseline hazard function, which can be small or large in magnitude (and is

not reported alongside the hazard ratio since it is not usually estimated).

The Fine-Gray model is less understood and harder to intuitively explain

As mentioned in Section 1.1, the use of the Cox proportional hazards model has

become widespread in many areas, especially biostatistics. Hence, the model is

well-understood and familiar to most. On the other hand, the Fine-Gray model

is not as commonly used and therefore less understood. This is enough of an

issue that [Austin and Fine, 2017] surveyed the literature in 2015 for studies which

used the Fine-Gray model and “found that many authors provided an unclear or

incorrect interpretation of the regression coefficients associated with this model”.

One of the examples given in the paper is that a publication reported that the

SD hazard ratio value of 2.31 meant that “patients with hyponatremia had a

2.31-fold higher risk of cardiovascular events” (which is incorrect, as mentioned in

Section 2.3.3). Other examples of publications with similar assertions were also
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cited. [Austin and Fine, 2017] clarified and discussed why such assertions are, at

most, only approximately true.

In a similar vein, a criticism of the Fine-Gray approach is that the risk set is

unnatural in the context of actual epidemiological studies [Andersen et al., 2012,

p. 868] and thus hard to explain intuitively. This is because individuals who have

died of other causes can never be at risk of experiencing event k in practice, and

yet such individuals remain in the risk set associated with the model. Consider

the case of an oncology study where a patient becomes lost to follow-up at some

time t. With respect to the assumptions of the model, it is true that he/she cannot

experience (for example) tumour size reduction after that (since we will never

observe it). However in reality, although it is never observed, it may be possible

that the patient experiences a tumour size reduction after being lost to follow-up.

In this way we might find it acceptable to keep such individuals in the risk set (as

per the Fine-Gray setup), rather than remove them from the risk set altogether

(as per the Cox setup). However, a patient who (for example) dies at some time t

before the end of study can never experience tumour size reduction after time t,

and so the above justification no longer makes sense.

Despite these issues, it remains the case that the Fine-Gray regression approach

allows the convenience of direct estimation and inference of CIFs associated with

an event k of interest without having to estimate CIFs associated with the other

K − 1 events.

Practical aspects of Fine-Gray model

[Austin et al., 2021] reports that, when the Fine-Gray model is used, there are

specific scenarios where the sum of estimated CIFs for K competing risks may

sum to a number greater than one. The authors advocate for caution when the

total probability of all K events is of interest, and suggest instead estimating

all the cause-specific hazards using equation (2.10) and then using equation (2.5)

to estimate S(t) = exp(−
∑K

i=1 H
C
k (t)). They found that using this equation,
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sometimes referred to in literature as the “all-cause survival function”, did not

result in this phenomenon.

Perhaps more interestingly, it is known that if the proportional hazards as-

sumption holds for the CS hazard function, it may not hold for the corresponding

SD hazard function ([Beyersmann et al., 2009, Section 4.3]). In particular, we can

use both equations (2.11) and (2.14) to work out that the CS hazard function is a

time-weighted multiple of the SD hazard function:

hC
k (t) =

[
1 +

∑K
i=1 Fi(t)− Fk(t)

1−
∑K

i=1 Fi(t)

]
hS
k (t). (2.21)

Using the hazard ratio as per the left-hand side of per equation 2.16 and substituting

the above equation (2.21) therefore gives:

hC
k (t|zj)

hC
k (t|zi)

=

[
1 +

∑K
i=1 Fi(t|zj)− Fk(t|zj)
1−

∑K
i=1 Fi(t|zj)

]
hS
k (t|zj)[

1 +

∑K
i=1 Fi(t|zi)− Fk(t|zi)
1−

∑K
i=1 Fi(t|zi)

]
hS
k (t|zi)

. (2.22)

Equation (2.22) shows that the CS and SD hazard ratios cannot simultaneously be

independent of time. The only scenario where both sets of proportional hazards

assumptions are guaranteed to hold is when K = 1. This suggests that model

misspecification is possible if, for example, the proportional hazards assumption

is only true under one framework but the other framework is used instead. In

practice, there are diagnostic tests for testing the proportional hazards assumption

(see e.g. [Grambsch and Therneau, 1994] and [Zhou et al., 2013]).

2.4 Semi-Markov processes

As mentioned in Section 2.1, multi-state models generalise competing risk mod-

els by allowing several (possibly bi-directional) transitions until an absorbing

state is reached (if one exists). If, in addition, there is an underlying semi-

Markov process (SMP) governing the state transitions and the times spent in
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the states then this is a semi-Markov multi-state model. Loosely speaking, a

semi-Markov process is an extension of a Markov process. In a Markov process,

the probability distribution associated with the next state is determined solely

by the current state. We can ignore the time spent in each state since it is well-

known that the time spent in each state follows an exponential distribution, which

does not retain memory of how long has already been spent in the current state

(the “memorylessness” property). Indeed, there are examples in the literature of

Markov multi-state models used in clinical studies or for other biomedical purposes

(for example, [Jackson et al., 2003], [Ventura et al., 2014], [Smith et al., 2019],

[Milic et al., 2021], and more).

In a SMP, the probability distribution of the next state still depends on the

current state, but the rate of departures from the current state is allowed to depend

on time. For this reason, we can generalise and allow the holding time in each

state to be from any appropriate distribution other than exponential. This is a

much more flexible and reasonable assumption when considering clinical trials. The

semi-Markov process can be viewed as a Markov process when time is ignored i.e.

only when the exact transition times are considered.

Section 2.4.1 describes the semi-Markov process, with Section 2.4.2 and Sec-

tion 2.4.3 respectively discussing the mixture approach and intensity transition

functions approach to modelling SMPs. Section 2.4.4 describes the relationships

of the two approaches in detail. Section 2.4.5 describes maximum likelihood

estimation. Finally, Section 2.4.6 shows some simple examples and applications.

2.4.1 Defining the semi-Markov processes

Let {Jn}n≥0 be a homogeneous first-order Markov chain on a state space S =

{1, 2, . . . , l} with associated probability pij = P (Jn+1 = j|Jn = i) of transitioning

from state i to j (i ̸= j). It is assumed that pii = 0 for all i and pij = 0 for all

j ̸= i whenever i is an absorbing state. Hence,
∑

j ̸=i pij = 1 if i is not absorbing,

and 0 if it is.
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Let also 0 = T0 < T1 < T2 < . . . be an increasing random sequence of jump

times associated with {Jn}n≥0 and, for n ≥ 1, let τn = Tn−Tn−1 be the sojourn (or

inter-arrival) time in Jn−1 before jumping to Jn. Then, (Xu)u≥0 is a semi-Markov

process (SMP) with states Xu := Jn for u ∈ [Tn, Tn+1). Given that the process is

in state i at time t, the joint density function associated with reaching state j in a

small interval after time t is given by

f̃ij(t) = lim
∆t→0

1

∆t
P (t < τn+1 ≤ t+∆t, Jn+1 = j|Jn = i). (2.23)

Note that each joint distribution is defined by sojourn times, and not the time

since the start of the semi-Markov process. The joint distribution associated with

the next state is therefore completely divorced from the past history as is the case

in a Markov process. It is for this reason that SMPs are sometimes referred to as

a “clock reset” process as opposed to a “clock forward” process as in some other

stochastic processes (see [Putter et al., 2007, Section 4.2]).

Example (cont’d): Suppose we have a simple dataset as per Table 2.2 from

the illness-death model as per Figure 2.2, except here the transition from “ill”

to “healthy” is not possible. This is a continuation of the example introduced in

Section 2.1. Now, there is an additional column showing the sojourn time, which is

Individual From To Time (since start of process) Sojourn time
1 1 2 5 5
1 2 3 11 6
2 1 3 3 3
3 1 1 12 –

Table 2.2: (Cont’d) A simple dataset from an illness-death model, first described
in Section 2.1. There is now an additional column showing the sojourn time in the
last observed state.

the time spent in the last observed state before leaving it, as opposed to the time

since the start of the SMP.

There are two related ways to characterise an SMP. The ubiquitous approach

that is most familiar in the literature is the intensity transition functions (ITFs)
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approach (see, for example, [Meira-Machado et al., 2009, Section 1]). ITFs are

analogous to the CS hazard function (equation (2.9)) in that they determine

both the next state j conditional on being in state i as well as the time spent in

state i. There is also the lesser-known mixture model approach as popularised

by [Larson and Dinse, 1985], although it has been known for significantly longer

than that (see, for example, [Weiss and Zelen, 1965]). This approach involves

directly (and separately) modelling the transition probabilities pij and the sojourn

time before transition to state j, conditional on being in state i and transitioning

to state j. For brevity and to prevent confusion, we henceforth refer to this method

as the “mixture approach”.

Our focus is on the mixture approach (Section 2.4.2), although we also discuss

the ITFs approach in Section 2.4.3. This is because we recognise ITFs as being

widely preferred and commonly used, and would like to clearly express the link

between our results (as derived mainly using the mixture approach) and the ITFs

approach. Section 2.4.4 concludes the discussion of the two approaches by discussing

their relationships.

2.4.2 The mixture approach

We can define a SMP with the sequence {(Jn, Tn)}n≥0 of states and jump times

and characterise the SMP by the transition probabilities of the embedded Markov

chain as well as the parameters of the sojourn time distributions in each state.

The transition probabilities are often expressed as a transition probability matrix

P with the (i, j) entry being pij and all diagonal entries pii = 0. We now define

the distribution function, density function, survival function, and hazard function

related to the sojourn time distribution function conditional on transition i → j
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being observed. We have

Fij(t) = P (τn ≤ t|Jn−1 = i, Jn = j) for all t ≥ 0, (2.24)

fij(t) = lim
∆t→0

1

∆t
P (t < τn ≤ t+∆t|Jn−1 = i, Jn = j) =

d

dt
Fij(t), (2.25)

Sij(t) = P (τn > t|Jn−1 = i, Jn = j) = 1− Fij(t), (2.26)

and hij(t) = lim
∆t→0

1

∆t
P (t < τn ≤ t+∆t|Jn−1 = i, Jn = j, τn > t). (2.27)

All of the above equations are analogous to similar equations seen in Section 2.2.

From equations (2.27) and (2.26), we can obtain

hij(t) =
fij(t)

Sij(t)
(2.28)

and Sij(t) = exp

(
−
∫ t

0

hij(u)du

)
(2.29)

(cf. equations (2.3) and (2.5) respectively). Finally, a useful quantity of interest

is the probability of staying in state i for at least t time units before leaving it,

namely

Si(t) = P (τn > t|Jn−1 = i) =
∑
k ̸=i

pikSik(t). (2.30)

This is also known as the survival time of the waiting (or holding) time in state i.

2.4.3 Intensity transition functions

On the other hand, we can characterise a SMP by the parameters associated with

intensity transition functions. The intensity transition function for transition i → j

is defined as

h̃ij(t) = lim
∆t→0

1

∆t
P (t < τn ≤ t+∆t, Jn = j|Jn−1 = i, τn > t). (2.31)
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As previously mentioned, the ITF is the analogue of the CS hazard function as

per equation (2.9). The interpretation of the ITF is now the probability rate of

going to a particular state j in a small interval after time t, given that the process

is in state i and there are no observed transitions by time t. Similarly to the

CS hazard, the intensity transition function is not to be treated like a hazard

function associated with a proper probability distribution. Instead, analogous to

the relationship between the CS hazard and all-cause hazard as per equation (2.10),

summing the intensity transition functions across all j ≠ i results in a hazard

function associated with a probability distribution. Denote h̃i(t) as the hazard

function associated with the holding time in state i. Then,

h̃i(t) =
∑
k ̸=i

h̃ik(t), (2.32)

and so this gives us another way to express the survival function associated with

the holding time as per equation (2.30):

Si(t) = exp

(
−
∫ t

0

∑
k ̸=i

h̃ik(u)du

)
. (2.33)

Since ITFs generalise the ideas met in traditional competing risks analysis, it is

natural to ask what the SMP analogue of the cumulative incidence function (CIF)

(as per equation (2.11)) is. Define for the SMP,

CIFij(t) = P (τn ≤ t, Jn = j|Jn−1 = i).

Then, using the same ideas as in the derivation of equation (2.11), we have

CIFij(t) =

∫ t

0

h̃ij(u)Si(u)du =

∫ t

0

h̃ij(u) exp

(
−
∫ u

0

h̃i(s)ds

)
du (2.34)

where the second equality uses equations (2.32) and (2.33).
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2.4.4 Relationships between both approaches

As mentioned at the beginning of Section 2.4, both of these approaches to SMPs

are related. Most of the equations in this section and Section 2.4.5 are as

per [Asanjarani et al., 2021], but with additional derivations and explanations.

In [Asanjarani et al., 2021], the mixture approach is referred to as “Approach I”

while the ITFs approach is referred to as “Approach II”.

Using the definition of conditional probability on equation (2.31) and manipu-

lating,

h̃ij(t) = lim
∆t→0

1

∆t
P (t < τn ≤ t|Jn−1 = i, Jn = j, τn > t)

× P (τn > t|Jn−1 = i, Jn = j)P (Jn = j|Jn−1 = i)P (Jn−1 = i)

P (τn > t|Jn−1 = i)P (Jn−1 = i)

=
hij(t)Sij(t)pij

Si(t)
(2.35)

=
pijfij(t)

Si(t)
(2.36)

where expression (2.35) results from the definition of the transition probability

associated with i → j and equations (2.26) and (2.27). Expression (2.36) results

from equation (2.28).

Since we can express Si(t) with the right-most expression in equation (2.30), it

is possible to express an intensity transition function purely in terms of mixture

approach quantities. Conversely, it is also possible to express the quantities

associated with the mixture approach in terms of intensity transition functions. To

do this, first multiply h̃ij(t) (as per expression (2.36)) by Si(t) on both sides of the

equation and integrate as follows:

∫ t

0

pijfij(u)du =

∫ t

0

h̃ij(u)Si(u)du. (2.37)

We note that the left side of equation (2.37) is pijFij(t). Then, we allow t → ∞.
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Since Fij(t) is a proper distribution function, we get

pij =

∫ ∞

0

h̃ij(t)Si(t)dt =

∫ ∞

0

h̃ij(t) exp

(
−
∫ t

0

∑
k ̸=i

h̃ik(u)du

)
dt (2.38)

where the second equality results from equation (2.33). Finally, we can manipulate

the equation for the intensity transition function in terms of equation (2.36) to get

fij(t) =
h̃ij(t)Si(t)

pij
=

h̃ij(t) exp
(
−
∫ t

0

∑
k ̸=i h̃ik(u)du

)∫∞
0

h̃ij(t) exp
(
−
∫ t

0

∑
k ̸=i h̃ik(u)du

)
dt

(2.39)

where the second equality results from equations (2.33) and (2.38). Since the

sojourn hazard function and distribution functions are both functions of the sojourn

time density function, we thus have mixture approach quantities purely as a function

of intensity transition functions, as required.

Note that the right side of equation (2.37) is precisely CIFij(t) as per equa-

tion (2.34). Thus, equation (2.37) gives us an alternative expression for the CIF in

terms of mixture approach quantities:

CIFij(t) =

∫ t

0

pijfij(u)du = pijFij(t). (2.40)

Hence, limt→∞CIFij(t) = pij (as we also saw in the derivation of equation (2.38)).

This gives the useful interpretation that each transition probability associated with

the embedded Markov chain of the SMP can be viewed as a “long-term” probability

of transitioning from state i to state j (given that the current state is i).

2.4.5 Estimation

First, we introduce notation used for the likelihood functions as per each approach.

Suppose we have m individuals under observation during a fixed time interval

[0, T ], where T is possibly random or an observed realisation of a random vari-

able. The states reached by the hth individual are represented by the sequence

{J (h)
0 , J

(h)
1 , . . . , J

(h)

N(h)} taking values in the discrete state space S = {1, 2, . . . , l}.
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Here, N (h) denotes the number of state transitions of the individual up to time

T . Sojourn times associated with each of {J (h)
0 , J

(h)
1 , . . . , J

(h)

N(h)} are represented

by {τ (h)1 , τ
(h)
2 , . . . , τ

(h)

N(h)}. Note that the last state reached by an individual by

time T could be non-absorbing as they might be right-censored there. In this

case then we are additionally interested in the time spent in the last observed

state, U (h) = T −
∑N(h)

i=1 τ
(h)
i . We also make the simplifying assumption that all

individuals start at the same value of J0, though this requirement can be relaxed

as required.

The key assumption made is that event histories of individuals are independent

and so we can write the likelihood L as

L =
m∏

h=1

L(h). (2.41)

Likelihood function for mixture approach

Generalising the ideas in [Larson and Dinse, 1985], [Asanjarani et al., 2021, Sec-

tion 3.1] gives the likelihood function for each individual as per the mixture approach

for the given data (J
(h)
0 , J

(h)
1 , . . . , J

(h)

N(h) , τ
(h)
1 , τ

(h)
2 , . . . , τ

(h)
N(h), U

(h), δ(h)),

L(h) =

{
N(h)∏
k=1

p
J
(h)
k−1J

(h)
k
f
J
(h)
k−1J

(h)
k
(τk)

}{
S
J
(h)

N(h)

(U (h))

}1−δ(h)

, (2.42)

where δ(h) is a censoring indicator taking value 1 when the individual is observed

to reach an absorbing state, otherwise taking value 0. We use equation (2.30) for

the second term involving right-censored transitions.

With the likelihood function specified, we use maximum likelihood estimation

to estimate a finite-dimensional parameter vector θ which consists of the transition

probabilities and the parameters associated with the distributions of the sojourn

time distribution functions. We note that optimising the likelihood function as per

equation (2.41) requires constrained optimisation since we have the constraint that

the transition probabilities associated with exiting a given non-absorbing state
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must sum to one.

Example (cont’d): Suppose we have a simple dataset as per Table 2.3 from

the illness-death model as per Figure 2.2, except here the transition from “ill”

to “healthy” is not possible. This is a continuation of the example introduced in

Section 2.1.

Individual From To Time (since start of process) Sojourn time
1 1 2 5 5
1 2 3 11 6
2 1 3 3 3
3 1 1 12 –

Table 2.3: (Cont’d) A simple dataset from an illness-death model, first described
in Section 2.1.

.

Suppose there is reason to believe that the sojourn times associated with

each possible transition all follow exponential distributions with respective rate

parameters λij for each i → j. The sets of parameters associated with each

transition 1 → 2, 1 → 3, and 2 → 3 are, respectively, (p12, λ12), (p13, λ13), and

(p23, λ23). However, since we must have p12 + p13 = p23 = 1, we can simplify the

likelihood to be in terms of just the parameters (p12, λ12, λ13, λ23):

L =p12f12(5)× p23f23(6)× p13f13(3)× S1(12)

=p12λ12 exp (−5λ12)× λ23 exp (−6λ23)× (1− p12)λ13 exp (−3λ13)×

(p12 exp (−12λ12) + (1− p12) exp (−12λ13))

where the last term results from equation (2.30). After this, the likelihood can

be maximised over the parameter space {(p12, λ12, λ13, λ23) : 0 < p12 < 1, λ12 >

0, λ13 > 0, λ23 > 0}.

Likelihood function for ITFs approach

We can use the fact that the respective integrands in equation (2.37) are equal, to

replace pJk−1JkfJk−1Jk(τk) in equation (2.42). This gives us
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L(h) =

{
N(h)∏
k=1

h̃
J
(h)
k−1J

(h)
k
(τk)SJ

(h)
k−1

(τk)

}{
S
J
(h)

N(h)

(U (h))

}1−δ(h)

, (2.43)

after which we use equation (2.33) to simplify the likelihood for each individual:

L(h) =

{
N(h)∏
k=1

h̃
J
(h)
k−1J

(h)
k
(τk) exp

(
−
∫ τ

J
(h)
k

0

h̃
J
(h)
k−1

(u)du

)}

×

{
exp

(
−
∫ U(h)

0

h̃
J
(h)

N(h)

(u)du

)}1−δ(h)

. (2.44)

Now, we use ideas first seen in [Hougaard, 1999] to rewrite equation (2.44) into

the form

L(h) =
∏
i,j∈S
i ̸=j

L(h)
ij . (2.45)

This allows us to separately optimise terms associated with individual transitions

i → j instead of optimising the entire likelihood at once by noting that

L =
m∏

h=1

L(h) =
m∏

h=1

∏
i,j∈S
i ̸=j

L(h)
ij =

∏
i,j∈S
i ̸=j

{
m∏

h=1

L(h)
ij

}
. (2.46)

In order to achieve the aforementioned separation as per equation (2.45), first

define for each h the variables τ
(h)

N(h)+1
= U (h) and artificial state J

(h)

N(h)+1
= −1 to

get rid of the censoring indicator in equation (2.44). We obtain

L(h) =
N(h)+1∏
k=1

h̃
J
(h)
k−1J

(h)
k
(τk)

[k ̸=N(h)+1] exp

(
−
∫ τ

(h)
k

0

h̃
J
(h)
k−1

(u)du

)
, (2.47)

where [·] is the Iverson bracket, taking value 1 when the statement in the bracket

is true, 0 otherwise.

We can verify that equation (2.47) is equivalent to equation (2.44) if we note

that h̃ij(t) must be zero by definition whenever state i is absorbing (and so must
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h̃i(t)) and if we define 00 ≡ 1.

Now, the only thing stopping us from grouping terms in the likelihood function

by transition i → j is that the hazard function of the holding time in the exponential

term of equation (2.47) requires simplification. To deal with that, first define:

δ
k−1,(h)
i→j =

[
{J (h)

k−1 = i, J
(h)
k = j}

]
and δ

k−1,(h)
i ̸→j =

[
{J (h)

k−1 = i, J
(h)
k ̸= j}

]
.

Now, we can finally write

L(h)
ij =

N(h)+1∏
k=1

{
h̃ij(τk) exp

(
−
∫ τ

(h)
k

0

h̃ij(u)du
)}δ

k−1,(h)
i→j

×

{
exp

(
−
∫ τ

(h)
k

0

h̃ij(u)du
)}δ

k−1,(h)
i ̸→j

. (2.48)

If we define Lij as

Lij =
m∏

h=1

L(h)
ij , (2.49)

then we can use equation (2.49) to optimise the full likelihood as per equation (2.41)

by optimising Lij for each possible i → j.

Example (cont’d): Suppose we have the same data as per Table 2.3 and now

want to write the likelihood as per the ITFs approach. Suppose we assume

exponential-like intensity transition functions i.e. h̃ij(t) = λ̃ij is constant. Then,

according to equations (2.48) and (2.49),

L12 = λ̃12 exp
(
− 5λ̃12

)
× exp

(
− 3λ̃12

)
× exp

(
− 12λ̃12

)
L13 = exp

(
− 5λ̃13

)
× λ̃13 exp

(
− 3λ̃13

)
× exp

(
− 12λ̃13

)
L23 = λ̃23 exp

(
− 6λ̃23

)
It is then easy to verify that L12×L13×L23 is equivalent to the likelihood function

L as defined in equations (2.43), (2.44), or (2.47).

40



Practical aspects of maximum likelihood estimation for each approach

In our work, we have preferred the mixture approach as compared to the ITFs

approach for its interpretability and ease in tweaking parameters for the sake of

simulation. The main drawback in doing so is that there are many more parameters

associated with the likelihood function as per equation (2.42) (mixture approach)

as opposed to the likelihood function as per equation (2.47) (ITFs approach). This

is due to the fact that we need to specify two sets of parameters for the mixture

approach (namely the transition probabilities and parameters of conditional sojourn

time distributions), whereas we only need one set of parameters for the ITFs as

per the ITFs approach. In particular, [Asanjarani et al., 2021] states that a model

with l states may need up to l2 − l more parameters when the mixture approach is

used.

Furthermore, when using the ITFs approach, the separation of the likelihood as

per equation (2.45) allows us to ease computational burden by maximising each Lij

(as per equation (2.49)) separately, provided that each transition i → j does not

share parameters with any other transition. It is worth noting that maximising the

likelihood as per the mixture approach could be eased by grouping the terms of the

likelihood by each state i, and optimising each group separately (again, provided

there are no shared parameters between states). This is the approach taken by the

authors of the flexsurv package [Jackson, 2016]. However, this is still generally

more expensive due to the larger number of parameters as compared to the ITFs

approach.

Inference

Since we use maximum likelihood estimation to estimate θ, we have similar prop-

erties of the maximum likelihood estimator θ̂ as described in Section 2.2.2.

Section 4.1 shows how the likelihood function as per equation (2.42) can be

written in a more general way which might be useful for computing the expected

Fisher information matrix analytically, or for computing an exact expression for
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the observed Fisher information. Definitions from graph theory are used for this

purpose. The appeal of closed-form expressions for the entries of the expected

Fisher information matrix is of theoretical interest and could be of use for exact

calculations of quantities of interest.

It may be considered too tedious to calculate the partial derivatives of the

log-likelihood, even for obtaining entries of the observed Fisher information matrix.

If so, the numerical estimates of the observed Fisher information matrix work well

in practice – see the end of Section 4.1, and also Section 4.2.

2.4.6 Example: Stanford heart transplant data

We consider an example using the Stanford Heart Transplant dataset found in

the survival package ([Therneau, 2023]) in R. Full details of this dataset are

found in [Crowley and Hu, 1977]. There are m = 103 individuals in the data, and

the data can be modelled using the same illness-death model as seen in previous

examples. There are three states: “Alive without transplant (1)”, “Alive with

transplant (2)” and “Dead (3)”. All individuals start at state 1. 69 individuals

experience the transition 1 → 2, 30 individuals experience the transition 1 → 3,

and 4 individuals are right-censored in state 1. Of the 69 individuals who reach

state 2, 45 transition to state 3 while the remaining 24 are right-censored in

state 2. All maximisation of likelihood functions was done using the Rsolnp

package ([Ghalanos and Theussl, 2015]) in R, which uses the optimisation method

as described in [Ye, 1987]. The optimisation method uses a sequential quadratic

programming (SQP) interior algorithm and is described as a “General Non-linear

Optimization Using Augmented Lagrange Multiplier Method” in the package

documentation.

For the mixture approach, we can set up a model which can be fully identified

with probability p12 and sojourn time hazard functions h12(t), h13(t), and h23(t).
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Suppose we wish to specify Weibull hazard functions i.e.

hij(t) =
aij
bij

(
t

bij

)aij−1

where aij and bij are the Weibull shape and scale parameters, respectively, for

transition i → j. We compute the likelihood as per equation (2.42) and maximise

to obtain the parameter estimates of (p12, a12, a13, a23, b12, b13, b23).

For the ITFs approach, suppose we specify Weibull-like intensity transition

functions i.e.

h̃ij(t) =
ãij

b̃ij

(
t

b̃ij

)ãij−1

.

We can then break up the likelihood as per equation (2.48) and maximise to obtain

the parameter estimates of (ã12, ã13, ã23, b̃12, b̃13, b̃23).

Once we fit the model using both approaches, a fair method to compare both

the model fits is to plot estimated survival functions of holding times in each of

state 1 and state 2 using the estimated parameters. We can use equation (2.30)

and equation (2.33) for Si(t) specified in terms of mixture approach parameters

and ITFs approach parameters, respectively. To visually assess the fits with the

data, we can compare each estimate of the survival function of the holding time

with an analogue of the Kaplan-Meier estimator as per equation (2.7). For each

state i, we have

Ŝi(t) =
∏

{q:tq≤t}

(
1− di,q

mi,q

)
(2.50)

where di,q is the number of transitions out of state i at a small interval after time

tq, and mi,q is the number of individuals at risk of transition out of state i during

a small interval before time tq.

Figure 2.3 shows plots of the estimates. The black lines are Kaplan-Meier

curves as per equation (2.50) while the red line and dotted blue lines are associated
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Figure 2.3: Stanford Heart Transplant data fit using both mixture and ITFs
approaches: The above figures show estimates of the survival functions of the
holding times in state 1 and 2 respectively. The black lines are Kaplan-Meier curves
while the red lines are parametric estimates of the respective survival function using
equation (2.30). The dotted blue lines are parametric estimates of the respective
survival functions using the ITFs approach using equation (2.33). Since state 2
only has one possible transition out of it (2 → 3), the sojourn time hazard function
and ITF are both equivalent.
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with parametric estimates of the survival functions using the mixture and ITFs

approach, respectively. We note that h23(t) = h̃23(t) because there is only one

possible destination state once we exit state 2. The figure of the survival function

associated with state 2 indeed shows that estimates of the survival function are

essentially identical regardless which approach is taken.

2.5 Simulating data

2.5.1 The mixture approach

To simulate data using the mixture approach, we first need the transition proba-

bilities associated with the Markov chain {Jn}n≥0 on states {1, 2, . . . , l} to decide

the next state. Once we have done this, we can simulate an event time associated

with the distribution of the conditional sojourn time directly. We have assumed

censoring involves first simulating a right-censoring time from a distribution of

choice and then checking after every transition whether the censoring time is

exceeded. Once the censoring time is exceeded, no further transitions are allowed

and the censoring time is the time spent in the last observed (non-absorbing) state.

The algorithm is presented below (Algorithm 1).
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Algorithm 1 Simulating semi-Markov multi-state model data based on mixture
approach

1: Set values of transition probabilities pij as well as parameters for hij(t) for all
possible transitions i → j. Decide on the sample size, m. For the following
steps, start with k = 1 and h = 1.

2: For individual h at state Jk−1,

(i) Set the value of T , which is either fixed or from a distribution of choice.
If right-censoring is not required, assume that T is infinite.

(ii) Simulate R from Uniform(0, 1) and carry out a multinomial experiment
to determine the next state Jk according to probabilities associated with
starting at state Jk−1.

(iii) Simulate a jump time Tk from the distribution with survival function
associated with hJk−1Jk(t).

(iv) • If
∑k

i=1 Ti < T and Jk is not an absorbing state, calculate the sojourn
time in the current state as τk = Tk−Tk−1 and store the values (Jk, τk)
(Recall that T0 = 0 by definition). Set k = k + 1 and repeat from
Step 2(ii).

• Else if
∑k

i=1 Ti < T and Jk is an absorbing state, set N (h) = k and
calculate the sojourn time in the current state as τN(h) = TN(h) −
TN(h)−1. Store the values (JN(h) , τN(h)) and move to Step 3.

• Else store the value of U = T −
∑k−1

i=1 Ti associated with the right-
censoring time spent in the most recent state Jk−1 and move to
Step 3.

3: If h = m, stop. Else set h = h+ 1 and repeat from Step 2.
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Example Suppose we wish to simulate data from an illness-death model with

possible states {1, 2, 3} and possible transitions 1 → 2, 1 → 3, and 2 → 3. We wish

to use Algorithm 1. Suppose we want the sojourn times for each transition to be

exponential-distributed with (constant) hazard rates h12(t) =
1
4
, h13(t) =

1
5
, and

h23(t) =
1
3
with transition probabilities p12 = 0.3, p13 = 0.7. Note we must have

p23 = 1. A single dataset of sample size m = 1000 is simulated. The value of T is

chosen to be infinite, i.e. the data are non-censored. Figure 2.4 below shows the

histograms of sojourn times associated with each of the transitions.

As we might expect based on the chosen probabilities p12 and p13, roughly 30%

(0.314) of individuals experienced transition 1 → 2 while roughly 70% of individuals

(0.686) experienced transition 1 → 3. The blue lines overlaid in the histograms are

the density functions of exponential distributions associated with the sojourn time

hazard rates defined above.

2.5.2 The ITFs approach

Simulating data using the ITFs approach is not as straightforward. We could use

the latent variable approach which, as discussed at the beginning of Section 2.3,

has been criticised in literature. We instead appeal to the underlying idea of

the algorithm proposed in [Beyersmann et al., 2009] for simulating data from a

competing risks model (with underlying CS hazard functions). The description of

the simulation principles can also be found in [Yu, 2015, Section 1.1.2].

Generalising the calculation made by the authors, we calculate the probability

that, given we are in state i at time t and a transition has occurred in a small

interval after time t, the destination state is j:

P (Jn = j|t < τn ≤ t+∆t, Jn−1 = i, τn > t) → h̃ij(t)∑
k ̸=i

h̃ik(t)
as ∆t → 0 (2.51)

from equations (2.31) and (2.32). Thus, the simulation approach (Algorithm 2

below) involves first simulating from the distribution associated with equation (2.33)
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Figure 2.4: Data simulated using mixture approach: Histograms of simulated
sojourn times for transitions 1 → 2 (686 individuals) with p12 = 0.3, 1 → 3 (314
individuals) with p13 = 0.7, and 2 → 3 (314 individuals) with p23 = 1, each with
exponential distributions with rates 1

4
, 1

5
, and 1

3
respectively. The blue lines that

have been overlaid are the respective density functions f12(t), f13(t), and f23(t).
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and then deciding the next state according to a multinomial experiment with

probabilities given by equation (2.51).

Algorithm 2 Simulating semi-Markov multi-state model data based on the ITFs
approach

1: Set values of parameters associated with h̃ij(t) for all possible transitions i → j.
Decide on the sample size, m. For the following steps, start with k = 1 and
h = 1.

2: For individual h at state Jk−1,

(i) Simulate a jump time Tk from the distribution associated with SJk−1

defined as per (2.33).

(ii) Simulate R from Uniform(0, 1) and carry out a multinomial experiment
to determine the next state Jk+1 according to the probabilities defined
in (2.51).

(iii) • If Tk < T and Jk is not an absorbing state, calculate the sojourn time
in the current state as τk = Tk − Tk−1 and store the values (Jk, τk).
Set k = k + 1 and repeat from Step 2(i).

• Else if Tk < T and Jk is an absorbing state, set N (h) = k and calculate
the sojourn time in the current state as τN(h) = TN(h) −TN(h)−1. Store
the values (JN(h) , τN(h)) and move to Step 3.

• Else store the value of U associated with the right-censoring time
spent in the most recent state Jk−1 and move to Step 3.

3: If h = m, stop. Else set h = h+ 1 and repeat from Step 2.

Example Suppose now that we wish to simulate from an illness-death model

as per the previous example, but instead wish to use Algorithm 2. Suppose we

define constant intensity transition functions h̃12(t) =
1
4
, h̃13(t) =

1
5
, and h̃23(t) =

1
3
.

with m = 1000. Once again, data are non-censored for simplicity.

Since intensity transition functions are not associated with proper probability

distributions, a reasonable way to verify the algorithm would be to check that the

estimated survival function of the holding time distribution starting from each

state i is close to the true survival function given by (2.33). Since the data are

non-censored, we can use the empirical distribution function associated with state

i to estimate Si(t).

In this simulated dataset, we find that 553 individuals experience transition

1 → 2 and then 2 → 3. 447 individuals experience transition 1 → 3. Figure 2.5
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below shows plots of the estimated survival functions of the holding state in each

of state 1 and 2. The blue lines that been overlaid are the respective true functions

S1(t) and S2(t).

Figure 2.5: Data simulated using ITFs approach: Plots of the estimated survival
functions of the holding time in state 1 and state 2 respectively. The survival
functions are estimated using empirical survival function. All 1000 individuals
experience a transition from state 1, while 553 individuals experience a transition
from state 2. The blue lines that have been overlaid are the respective true functions
S1(t) and S2(t).
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2.6 Incorporating covariate effects

The methods by which one can incorporate general covariate effects into semi-

Markov multi-state models will not be a focus of this thesis. Our focus will rather be

on one categorical covariate of interest, namely Z = 1 denoting a patient in active

treatment, and Z = 0 denoting a patient in control treatment (or any comparable

scenario). However, for the sake of completeness and for heuristic purposes, we

present an example where one might take a fully parametric approach and specify

a “Cox-like” proportional hazards model as per [Meira-Machado et al., 2009]. Fur-

ther discussion about incorporating multiple covariates in practice is discussed in

Section 7.2.

Specifically, in the case of the mixture approach with a covariate vector Z of

length p, we have a sojourn time hazard function of the form

hij(t|Z) = hij,0(t) exp
(
β⊤
ijZ
)

(2.52)

while for the ITFs approach we have

h̃ij(t|Z) = h̃ij,0(t) exp
(
β̃⊤
ijZ
)
. (2.53)

The quantities hij,0(t) and h̃ij,0(t) here denote the baseline sojourn time hazard

function and baseline intensity transition function respectively. In this setup, each

baseline function has its own set of associated parameters θ and θ̃ respectively,

say. Each of the exponential terms are multiplicative terms showing the effect of

covariates, similarly to that seen in the semi-parametric Cox proportional hazards

model as per equation (2.18).

The regression coefficients (and hence the hazard ratios) are interpreted dif-

ferently in the two approaches. The parameter βij affects only the sojourn time

hazard for transition i → j and not the direction of transitions (which is determined

solely by pij). However, since the intensity transition function determines both
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rate and direction of transitions, β̃ij affects both rate and direction of transitions

associated with the SMP.

Computing the likelihood via the ITFs approach is straightforward since one

can simply substitute equation (2.53) into equation (2.48) for each individual and

proceed. However, we need to make some extra computations to incorporate the

hazard function as per equation (2.52) into equation (2.42) correctly. First, we use

the relationship as per equation (2.29) and then substitute equation (2.52). After

which, we rearrange to get

Sij(t|Z) = exp

(
− exp

(
β⊤
ijZ
) ∫ t

0

hij,0(u)du

)
= Sij,0(t)

exp
(
β⊤
ijZ
)

(2.54)

where Sij,0(t) denotes the baseline sojourn time survival function associated with

hij,0(t). Now, we have an expression for the survival function of the holding time

in state i given covariates, analogous to equation (2.30),

Si(t|Z) =
∑
k ̸=i

pikSik(t|Z) =
∑
k ̸=i

pikSik,0(t)
exp
(
β⊤
ikZ
)
. (2.55)

Using equation (2.28), we also have an expression for the density function of the

sojourn time distribution given covariates,

fij(t|Z) = hij(t|Z)Sij(t|Z) = hij,0(t) exp
(
β⊤
ijZ
)
Sij,0(t)

exp
(
β⊤
ijZ
)
. (2.56)

Now, we can use the likelihood function as per equation (2.42) after substituting

equations (2.55) and (2.56).

We note that, after substituting equations (2.55) and (2.56) into equation (2.42),

the pij terms in equation (2.42) do not depend on Z while the rest of the terms do.

On the other hand, [Asanjarani et al., 2021] points out that using the likelihood as

per the ITFs approach does allow the probability associated with each transition

i → j to implicitly depend on Z. To address this, [Larson and Dinse, 1985]

proposed estimating pij(Z) using multinomial regression as per [Cox, 1970].
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Chapter 3

Competing risk models and

patient benefit

Clinical trial data are usually analysed using the Cox proportional hazards model to

ascertain how long it takes for a specific treatment of interest to reduce the tumour

size of patients, relative to patients in a control group. It has been mentioned in

Section 2.3.4 that the Cox proportional hazards model has the limitation that we

cannot use the results to make statements about the absolute rate of incidence

of events, which would be most useful for answering questions related to patient

prognosis. More broadly, it is of interest to ascertain whether most patients can

benefit from a course of treatment in a more general sense. This is because many

kinds of treatments, especially in clinical oncology, can result in undesirable patient

outcomes – for example, adverse and serious side effects which lead patients to

discontinue treatment. Since such outcomes are undesirable to patients, it is

important to adopt modelling approaches which consider all outcomes carefully.

In this chapter, we discuss the basic ideas behind “patient benefit” as we

understand it and what they should entail. Section 3.1 describes what patient benefit

should entail, while the next two sections use simulation studies to demonstrate

these ideas in more detail. In particular, Section 3.2 seeks to show the limitations

of the Cox model in the context of patient benefit by comparing it to the Fine-Gray

model, which in turn is shown to have limitations. Section 3.3 shows how a drug
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which is proven effective (according to the Cox model) could bring disbenefit to

patients. These two examples naturally lead us in the direction of semi-Markov

multi-state models in order to quantify patient benefit.

3.1 Defining patient benefit

Patients could be described as benefiting from a course of cancer treatment if,

relatively to patients in a control group (who might be on another type of treatment):

• the treatment under study reduces the rate of transitions to undesirable

states which arise as a result of the cancer, and

• the treatment does not dramatically increase the rate of transitions to unde-

sirable states which arise as a result of the treatment or participation in the

study.

The first point above encapsulates the “treatment effect” of a drug, which results

from the drug’s ability to mitigate the cancer. The second point above is related

to a drug’s toxicity or other factors outside of the cancer itself. Current methods

involving the Cox model only consider the first point, when it is necessary to simul-

taneously consider the second point too. An example in the literature of attempts

to consider the second point is [Oberoi et al., 2020], where the authors consider

what factors lead to patients being lost to follow-up. Section 3.3 demonstrates why

it is crucial to consider both points above together in order to describe patient

benefit. It uses simulated data that shows a drug which is found effective (as per

the Cox proportional hazards model) but dramatically increases the rate at which

patients discontinue prematurely due to adverse side effects, which in turn leads to

patients transitioning towards other undesirable states at a faster rate despite the

effectiveness of the drug. Informally, patients benefit when the drug is treating the

tumour while slowing down the rate of undesirable outcomes.

Tumour shrinkage is usually the main criterion to ascertain drug effectiveness

in conventional oncology drug trials, especially in early-phase trials. We note that,
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as a consequence of the first point in the definition of patient benefit above, the

“treatment effect” is no longer defined by tumour shrinkage. Instead, it is defined by

the tumour not getting significantly larger (cancer progression). The main reason

for this is to take a conservative approach to cancer treatment i.e. “No news is good

news”. More importantly, defining all further states as undesirable to the patient

means that patients benefit from treatment if they remain in their current state

longer than other patients in the control group. In doing so we extend the idea

of [Weiss and Zelen, 1965] to all non-absorbing states in the multi-state model. In

other words, we summarise potential patient benefit by determining whether being

in active treatment increases the holding times in states of interest compared to

being in the control. With this in mind, a natural quantity to study is the survival

function of the holding time in state i at time t, Si(t) = P (τn+1 > t|Jn = i) as

per equation (2.30). Since we can view Si(t) as the probability of being event-free

in state i up to time t, then patients in active treatment at time t in state i are

benefiting if they have a higher probability of being event-free up to time t.

However, the survival function of the holding time in particular states may

not offer sufficient information or give proper context as to what the drug under

study is doing well (or not doing well). Hence, we also propose several other

supplementary quantities of interest which can be presented in tandem, such as

CIFs, state occupancy probabilities, and other quantities. This is explored in

Section 4.3. One of the quantities, the average sojourn time spent in a chosen

subset of states, forms the basis of the hypothesis test as proposed in Section 4.4.1.

Since every state in the multi-state model is defined to be undesirable to the

patient, one might consider combining two or more states to define a composite out-

come in a clinical trial. While there are clear benefits, we highlight the importance

of modelling the patient history with care so that we may draw reliable conclusions

about patient benefit. It is for this reason that we have proposed a hypothesis

test and quantities of interest which are unrelated to the survival function of the

holding time (as discussed in the previous paragraph). We delay further discussion
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of composite outcomes until Section 7.1.

To conclude this section, we note that the above notion of patient benefit in this

section is defined loosely on purpose. We recognise that, ultimately, our two criteria

are qualitative and may not suit every scenario. We believe that the definitions can

be adapted to suit the situation, since the main objective most patients want to

achieve out of treatment would be to (i) prolong life and (ii) not suffer excessively

despite having a prolonged life. The intention of the methods presented in this

thesis is to suggest a variety of quantitative criteria to support decision-making

when a patient tries to weigh whether it is worth investing part of his/her limited

remaining lifespan into a potentially arduous treatment regime.

3.2 Cox model vs Fine-Gray model

Before formally discussing patient benefit, it is necessary to demonstrate the issues

associated with current competing risks methods which are commonly used. The

Cox model, as previously highlighted, is only useful when considering differences

in relative rates of incidence between treatment arms. Even though the following

study does not directly make use of the definition of patient benefit as described

in Section 3.1, we shall assume a simple “standard” medical trial and show how

results can differ when comparing differences between the results of each model.

The following simulation study was designed by BAST Inc. Ltd. The packages

survival ([Therneau, 2023]) and cmprsk ([Gray, 2022]) have been used to fit the

Cox and Fine-Gray models respectively.

3.2.1 Setup of study

We consider a simplified oncology study where there are two competing risks,

“response” and “dropout”. A right-censored observation is one where no event has

occurred by the end of the observation period i.e. the data are “censoring complete”

as described in Section 2.3.3. “Response” signifies the efficacy of treatment while
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“dropout” is considered to be linked to lack of tolerability i.e. intolerable adverse

side-effects that lead to patients leaving the study.

Event times for each of response and dropout events are simulated from

distributions which have Weibull-like cause-specific hazard functions, with

parameter values depending on the particular simulation setup. For each

setup, there are M = 200 virtual studies. The number of patients, m ∈

{100, 200, 300, 500, 1000, 2000, 4000, 8000}, for each setup is also varied.

The hazard function for “response” takes the form

h(t) = 0.0015t0.15 exp(γZ). (3.1)

Here, Z is a dichotomous drug exposure covariate (1 for above and 0 for below

the median), simulated from a Bernoulli(0.5) distribution. The coefficient γ ∈

{−2,−1.8, . . . , 2} signifies the influence of Z on the response. It can be viewed as

the strength of treatment effect of the drug, with negative γ signifying that the

drug has an adverse effect and positive γ signifying a positive effect.

The “dropout” hazard, on the other hand, takes the form

h(t) = l · t0.25 exp(Z) (3.2)

where l ∈ {0.0002, 0.0005, 0.001} depending on the setup. It is assumed, for

simplicity, that γ has no influence on the rate of drop outs.

It is assumed that each study lasts for 730 days (2 years) and the first tumour

assessment takes place on the second month of the study (t = 60). Hence, a right-

censoring time is generated for each patient by simulating from Uniform(60, 730).

The CS hazard functions’ parameter values are chosen to emulate a realistic

oncological clinical trial, which can last several years (2 years in this case). Addi-

tionally, patients are assumed to have gone through at least one tumour assessment.

This is why the lower bound of the Uniform distribution is chosen to be 60 days.

The event time and associated event for each patient are simulated according
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to Algorithm 2. After simulating the relevant datasets, the Cox and Fine-Gray

models are fitted to each dataset. For each combination of γ and m, we determine a

measure of whether the Cox model is identifying a significant drug effect (whenever

it exists) in each of the M studies. One way to do this is:

• for γ < 0 we measure the proportion of M studies which gives both estimated

hazard ratio (HR) less than 1 and p-value p < 0.05 for a left-tailed hypothesis

test

• for γ = 0, we measure the proportion of M studies with p < 0.05 for a

two-tailed hypothesis test

• for γ > 0, we measure the proportion of M studies which gives both estimated

HR greater than 1 and p < 0.05 for a right-tailed hypothesis test

Then, for each γ > 0 and m, we use the results of the Fine-Gray model fits

to compute the proportion of M studies which give estimated (Fine-Gray) HR

greater than 1 and p-value p < 0.05 for a right-tailed hypothesis test. This allows

a meaningful comparison of both models whenever there is supposed to be a

significant positive drug effect detected i.e. “whenever the Cox model considers

the treatment to be effective”. In essence, for a given positive γ, the proportion of

significant studies in the Cox model setup tells us the extent of demonstrable drug

efficacy (relative to the control group) while the proportion of significant studies

in the Fine-Gray model setup tells us the extent by which patients can have a

potential increase in probability of a positive response.

Since we are using statistical power as a performance measure, as

per [Morris et al., 2019, Section 5], the Monte Carlo standard error (MCSE)

for each model setup can be estimated by

MCSE =

√
p̂sig(1− p̂sig)

M
(3.3)

where p̂sig is the proportion of significant studies as discussed in the previous

paragraph. The Monte Carlo standard error is maximised when psig = 0.5, which
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gives us a value of approximately 3.536% when M = 200. As a balance between

computational effort and accuracy of results, we deemed this to be sufficient for

our purposes.

There were two main setups considered, namely

(i) l = 0.0002 in the dropout hazard to establish a baseline for each combination

of γ and m

(ii) increasing l to 0.0005 and then again to 0.001 in the dropout hazard for

specific combinations of γ and m to ascertain the effect of an increase in rate

of dropouts on the findings

We have noted in Section 2.3.4 that there is almost certainly model misspecifi-

cation if one has data which satisfies proportional cause-specific hazards and fits a

proportional subdistribution hazards model (as per this scenario). However, using

the methods described in [Beyersmann et al., 2009], we repeated the study with

a similar setup using data simulated from a model which satisfies proportional

subdistribution hazards and did not find any changes to the overall conclusions. In

the interest of brevity, we will only discuss the results as per the setup which uses

data simulated from the model with CS hazard functions as per equations (3.1)

and (3.2).

3.2.2 Results and findings

In the baseline setups (where l = 0.0002), the main findings are as follows:

• For small number of patients (m < 1000), we generally need γ > 0.3 to

demonstrate significant positive treatment effect in over 80% of studies using

the Cox model but we generally need γ > 0.5 to demonstrate an increase

in probability of positive response in more than 80% of studies using the

Fine-Gray model.

• For large number of patients (m ≥ 1000) any deviation away from γ = 0

results in essentially 100% of studies demonstrating significant positive drug
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effect for the Cox model but we generally need γ > 0.3 to demonstrate an

increase in probability of positive response in at least 80% of the studies

using the Fine-Gray model.

In essence, a stronger treatment effect is required in every case when data is

fitted to the Fine-Gray model, to demonstrate significant patient benefit i.e. the

Fine-Gray model says that the patient does not have a significant chance of having

an increase in probability associated with the treatment. Intuitively, this is due

to the need for the drug effect to overcome the dropout effect, since for small γ

dropouts are occurring at a higher rate than responses. Such drugs where the

treatment effect significantly outweighs the dropout effect are desirable to patients,

and so the relatively conservative nature of the Fine-Gray model is a merit when

patient benefit is concerned.

Additionally, and as expected, the so-called “blind spot” region for which the

models cannot as easily detect a significant drug effect per the Cox model becomes

narrower as the number of patients m increases. A similar observation is made

for the “blind spot” for detecting significant patient benefit as per the Fine-Gray

model. Thus the influence of exposure to the drug is more easily detected, even for

small γ, whenever m is sufficiently large.

Figure 3.1 below shows two plots of “proportion of significant studies” against

γ as per the criteria outlined in the beginning of the section. The plots are for

m = 100 and m = 8000.

Increasing the rate of drop outs

Now, the rate of drop outs is increased through l, by first increasing l to 0.0005 and

then to 0.001. To keep things computationally cost-effective, this is only done for

m ∈ {100, 4000}. The main findings, depicted in Figure 3.2 in a manner similarly

to Figure 3.1, are as follows:

• For small number of patients (m = 100), increasing the rate of dropouts

seems to widen the “blind spot” for both the Cox model and Fine-Gray model.

60



(a
)
S
tu
d
ie
s
w
it
h
b
a
si
c
se
tu
p
a
n
d
m

=
1
0
0
:
T
h
e
b
la
ck

li
n
e
is

a
ss
o
ci
a
te
d
w
it
h
th
e
C
ox

m
o
d
el
,
w
h
il
e
th
e
re
d
li
n
e
is

a
ss
o
ci
a
te
d
w
it
h
th
e
F
in
e-
G
ra
y

m
o
d
el
.
In

th
is

ca
se
,
w
e
n
ee
d
γ
>

0.
7
to

d
em

on
st
ra
te

si
gn

ifi
ca
n
t
p
os
it
iv
e
d
ru
g
eff

ec
t
in

ov
er

80
%

of
st
u
d
ie
s
u
si
n
g
th
e
C
ox

m
o
d
el

b
u
t
n
ee
d
γ
>

0.
9
to

d
em

o
n
st
ra
te

p
at
ie
n
t
b
en

efi
t
in

m
or
e
th
a
n
80

%
of

st
u
d
ie
s
u
si
n
g
th
e
F
in
e-
G
ra
y
m
o
d
el
.

F
ig
u
re

3.
1:

B
as
ic

se
tu
p
:
R
es
u
lt
s
of

si
m
u
la
ti
on

st
u
d
y
co
m
p
ar
in
g
C
ox

an
d
F
in
e-
G
ra
y
m
o
d
el
s
(m

=
10
0)
.

61



(b
)
S
tu
d
ies

w
ith

b
a
sic

setu
p
a
n
d
m

=
8
0
0
0
:
T
h
e
b
la
ck

lin
e
is

a
sso

cia
ted

w
ith

th
e
C
ox

m
o
d
el,

w
h
ile

th
e
red

lin
e
is

a
sso

cia
ted

w
ith

th
e
F
in
e-G

ray
m
o
d
el.

In
th
is

case,
w
e
n
eed

γ
>

0.1
to

d
em

on
strate

sign
ifi
can

t
p
ositive

d
ru
g
eff

ect
in

over
80%

of
stu

d
ies

u
sin

g
th
e
C
ox

m
o
d
el

b
u
t
n
eed

γ
>

0.3
to

d
em

on
strate

p
atien

t
b
en
efi
t
in

m
ore

th
an

80%
of

stu
d
ies

u
sin

g
th
e
F
in
e-G

ray
m
o
d
el.

In
ad

d
ition

,
th
e
region

for
w
h
ich

eith
er

a
sign

ifi
can

t
d
ru
g
eff

ect
o
r
sig

n
ifi
ca
n
t
p
a
tien

t
b
en

efi
t
(resp

ectively
)
ca
n
n
ot

b
e
d
etected

h
as

b
ecom

e
relatively

n
arrow

.

F
igu

re
3.1:

B
asic

setu
p
:
R
esu

lts
of

sim
u
lation

stu
d
y
com

p
arin

g
C
ox

an
d
F
in
e-G

ray
m
o
d
els

(m
=

8000).

62



However, the increase in width of the “blind spot” is more dramatic for the

case of the Fine-Gray model. For example, to demonstrate significant positive

drug effect in over 80% of studies with the Cox model when l increases from

0.0002 to 0.001 requires that γ increase from roughly 0.7 to roughly 0.9.

Achieving the same threshold with the Fine-Gray model when l increases

from 0.0002 to 0.001 requires that γ increase from 0.9 to 1.5.

• For a large number of patients (m = 4000), the increase in “blind spot” for

the Cox model as l increases from 0.0002 to 0.001 is negligible, with only a

minor change in the region around γ = 0. Furthermore, we detect positive

drug effect in well over 80% of studies under the Cox model regardless when

γ > 0.1. However, there is still significant widening of the “blind spot” for

the Fine-Gray model. In this case, to demonstrate patient benefit in over

80% of studies when l increases from 0.0002 to 0.001 requires that γ increase

from at least 0.4 to at least 0.8.

Once again, the intuition for the results obtained from the Fine-Gray model stem

from the need for the drug effect to overcome the dropout effect, the latter of which

is increasing. The Fine-Gray model properly accounts for the increase in drop outs

in the risk set to give a measure of absolute change in rate of incidence between

both groups of patients, while the Cox model just removes these drop outs from

the risk set and treats them as right-censored.

These results demonstrate that the Cox model is useful only for isolating and

reporting the effects of the treatment effect on the patient, while ignoring other

important factors which influence the patient while they are on treatment. However,

there are still issues associated with the Fine-Gray model that are challenging to

reconcile, such as the unnatural risk set associated with events such as “death”

(mentioned in Section 2.3.4).

Furthermore, more flexibility is required in our model if we are to prop-

erly account for possible events that influence patient benefit during the

course of treatment. Other extensions of the competing risks setup do ex-
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ist, such as semi-competing risks models. For example, [Fine et al., 2001]

and [Haneuse and Lee, 2016] discuss how the semi-competing risks setup can be

used when the event of interest is a non-absorbing state which can potentially

be right-censored by a competing absorbing state (such as “death”). While this

setup might suffice for simple clinical trials, it does not address more complex

setups where we may have several events of interest that strongly influence patient

benefit. For example, we may want to consider “loss to follow-up”, “treatment

discontinuation” or “death” as events of interest when considering patient benefit.

For this reason, we consider more general multi-state models.

We delay discussion of semi-Markov multi-state models to quantify patient

benefit until the next chapter, and instead first discuss the survival function of the

holding time as a measure to quantify patient benefit in the next section.

3.3 The survival function of the holding time

As mentioned at the beginning of this chapter, we can describe every possible state

that the patient can transition to as an undesirable state that should be avoided

for as long as possible. In other words, we can think of a drug being beneficial

to patients if patients have a higher survival probability of being event-free as

compared to patients in control treatment. This makes the survival function of the

holding time a natural quantity to consider when assessing patient benefit.

To illustrate this, we simulate a simple clinical trial dataset using Algorithm 2

from a competing risks model with proportional cause-specific hazard functions.

There are m = 1000 patients in the starting state called “Diagnosis” (state 1),

and three possible destination states: “Relapse” (state 2), “Death” (state 3)

and “Dropout” (state 4). There are 159, 220, and 500 transitions to each state

respectively. The rest of the 121 patients are right-censored in state 1. Figure 3.3

below depicts the setup.

The underlying cause-specific hazard functions are that of Cox-like proportional

hazard functions as per equation (2.53), with Weibull-like baseline hazard functions
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Figure 3.3: Diagrammatic representation of a simple multi-state model for an
oncology drug trial

h̃ij,0. We note that the model parameters are chosen such that the drug given

to the 500 patients in the active treatment arm (Z = 1) is only mildly effective

while being highly toxic. This is the reason half of the sample experience transition

1 → 4.

We naively fit a Cox proportional hazards model using the survival pack-

age [Therneau, 2023] on the data with the event of interest being a relapse, to

ascertain if the drug is working. Using similar notation to that in equation (2.53),

the reported result is ˆ̃β = −0.95 with associated 95% asymptotic confidence interval

(−1.33,−0.58). To contextualise, this is a reliable estimate since the true value

of β̃ is −0.9 in this case. Based on these results, one could conclude that the

drug is effective since, all else being equal, the drug given to patients in active

treatment is slowing down the rate of transitions to state 2 as compared to patients

in control treatment (Z = 0). The first point in our definition of patient benefit as

per Section 3.1 is satisfied.

However, this tells us nothing about whether the patient might be benefiting,

according to the second point of our definition in Section 3.1. For this, a simple plot

of estimated (parametric) survival functions for each treatment arm (Figure 3.4)

suffices to show that drug effectiveness is not telling the whole story. At any time

t, we can clearly see that patients in active treatment have a lower probability of
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being event-free. In other words, they have a higher probability of leaving state

1 towards other undesirable states and so are not benefiting. In this particular

instance, this is due to the fact that a large number of patients are experiencing

transition 1 → 4, with relatively short (holding) event times. The idea of using the

survival function of the holding time to quantify patient benefit forms the basis of

the hypothesis test proposed in Section 4.4.2.

Figure 3.4: The estimated survival functions of the holding time for a parametric
model fitted with Weibull-type intensity transition functions using data simulated
from a 4-state semi-Markov multi-state model similar to that of Figure 3.3. The red
line associated with Z = 1 (representing those on a course of particular treatment)
is always lower than the black line associated with Z = 1, indicating that those on
the course of treatment always have a lower probability of being event-free at any
time t. This suggests that patients on the treatment are worse off than those who
are not on the treatment.

68



Chapter 4

Quantifying patient benefit using

semi-Markov multi-state models

While Chapter 3 has demonstrated some underlying ideas using several examples

based on the ITFs approach, we now shift our focus towards the mixture approach.

The reason for this is that the mixture approach is more interpretable since the

quantities of interest can be expressed in terms of transition probabilities and

(conditional) sojourn time hazard functions. This also offers some flexibility e.g.

for tweaking simulation parameters. While the discussion will be focused on the

mixture approach, references to ITFs will be made where appropriate.

At this stage, we make the simplifying assumption that transitions between

any two states are uni-directional and that previously visited states cannot be

revisted. We also assume that there is at least one absorbing state. In other words,

all non-absorbing states are transient. Consequently, we must have a finite number

of state transitions before absorption. Furthermore, we also assume that every

patient has the same starting state. These assumptions are all reasonable in the

context of oncology trials, and can possibly be relaxed and the theory extended if

necessary. This point is further discussed in Section 7.3.

Section 4.1 shows how the likelihood function as per the mixture approach

(equation (2.42)) can be rewritten to allow for theoretical calculations such as the

expected Fisher information, or to provide an exact expression for the observed
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Fisher information (after taking partial derivatives). This is a potential alternative

to taking numerical approximations of the observed information. Section 4.2 con-

siders some practical considerations when fitting semi-Markov multi-state models,

while Section 4.3 introduces some quantities of interest which can give further

context when considering patient benefit. Finally, Section 4.4 proposes two new

statistical procedures to test for patient benefit.

4.1 A new way to express the mixture approach

likelihood function

While the formulation for the likelihood as per equation (2.42) is sufficient for

computation in practice, we adopt graph-theoretic notation to write the likelihood

in a more general form. Instead of writing the likelihood based on the observed

path taken by an individual, we write it in terms of every possible path that could

be taken from the starting state by the same individual.

There are examples in the literature representing Markov chains as directed

graphs (see [Gingell and Mendivil, 2023], for example) and we take a similar ap-

proach below. The reason for using graph-theoretic notation, as alluded to in the

previous paragraph, is to incorporate into the likelihood function information about

the probabilities of specific “paths” taken by individuals through the evolution

of the SMP. This information is crucial to expressing the entries of the Fisher

information matrix analytically, but also offers another way to compute the exact

observed Fisher information matrix.

As before, denote the homogeneous Markov chain associated with the SMP

as {Jn}n≥0 taking values in S = {1, 2, . . . , l}. However, we now formulate the

likelihood by making reference to every conceivable transition as opposed to a

realisation of the Markov chain {Jn}n≥0. Denote S+ ⊂ S as the set of states in S

which are not absorbing. Then, denote V ⊂ S+ × S as the ordered pairs of states

of the form (i, j) such that transitions are possible i.e. with pij > 0. Note that
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neither S+ nor V can be empty since it is assumed that we have a starting state

and that we can transition to at least one other state. Throughout we assume,

without loss of generality, that the starting state is always 1 ∈ S.

The embedded Markov chain associated with our semi-Markov multi-state

model can now be expressed as a directed graph G = (S,V) where the state space

S is the set of vertices and V is the set of directed edges that define all possible

transitions. For any (i, j) in S ×S, the associated matrix of transition probabilities

is an l× l matrix P with (i, j) entry pij . Note that P necessarily has each diagonal

entry equal to zero because we have assumed that pii = 0 for all i ∈ S+ and also

because pij = 0 for all absorbing states i ∈ S \ S+. As a consequence, all rows

associated with i ∈ S \ S+ must have entries all equal to zero. Such a setup makes

explicit that individuals must leave towards a different state if they are not trapped

in an absorbing state. However, if desired one can always change P to a proper

stochastic matrix by setting pii = 1 for all absorbing states i ∈ S \ S+.

We now state several definitions commonly seen in elementary graph theory in

order to formally define the notion of a “path” taken by individuals in our setup.

Definition 4.1.1. (Initial and terminal vertex) Suppose (i, j) ∈ V. Then, i is the

initial vertex and j is the terminal vertex of the (directed) edge (i, j).

Definition 4.1.2. (Path from state i to state j) Let i, j ∈ S with i ≠ j. A path

from i to j, denoted r(i, j), is (when it exists) a finite sequence of edges (transitions)

{v1, v2, . . . , vnij
} (vk ∈ V for all k = 1, 2, . . . , nij) such that (i) the initial vertex of

v1 is i and the terminal vertex of vnij
is j and (ii) the terminal vertex of vk is the

initial vertex of vk+1 for k = 1, 2, . . . , nij − 1. Here, nij = |r(i, j)| is the number of

transitions observed for the the given path r(i, j).

Definition 4.1.2 makes use of the assumptions of our setup and is slightly

different to more general definitions of a path often seen in elementary graph theory.

The definition is essentially saying that a path from i to j is made up of a sequence

of transitions such that (i) the first state is i, (ii) every destination state after the
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first transition is a new starting state for the next transition, and (iii) the final

state reached is state j.

Example Consider a Markov chain on state space S = {1, 2, 3, 4} and V =

{(1, 2), (2, 3), (3, 4)} with p12 = p23 = p34 = 1 and all other transitions with

probability zero. Then, by Definition 4.1.2, {v1, v2, v3} = {(1, 2), (2, 3), (3, 4)}

describes a path r(1, 4) from state 1 to state 4 with number of transitions n14 = 3.

On the other hand, {(1, 2), (3, 4)} does not make up a path from state 1 to state 4.

Since there may be several distinct paths from i to j, we write the list of paths

from i to j as r1(i, j), r2(i, j), . . . , rNij
(i, j), where Nij is their number.

Example Suppose S = {1, 2, 3} and we have p12 > 0, p13 = 1− p12, p23 = 1 with

state 3 being absorbing (p31 = p32 = 0). This setup describes the illness-death

model similarly to that discussed in Section 2.4.6. In this case, S+ = {1, 2} and

V = {(1, 2), (1, 3), (2, 3)}. Since there are two possible paths from state 1 to state

3, we can write, e.g. r1(1, 3) = {(1, 3)} and r2(1, 3) = {(1, 2), (2, 3)}.

One case we have neglected to account for in our definition of a path is when

we have individuals who start in state 1 but are not yet observed to experience the

first jump time T1 due to right-censoring. However, defining a path from state 1 to

itself as per Definition 4.1.2 is invalid since p11 = 0 and therefore (1, 1) /∈ V. In

such a case, we treat such individuals’ path r as unobserved, denoted by r = ∅.

We also need to introduce the idea of a sub-path.

Definition 4.1.3. Suppose i, j ∈ S and r(i, j) is a path from i to j. A sub-path u

of r(i, j) is any other path that makes up a contiguous sub-sequence of r(i, j). We

adopt the notation that u ⊆ r(i, j).

Example If r(1, 4) = {(1, 2), (2, 3), (3, 4)} is a path from state 1 to state 4, then

r(1, 2) = {(1, 2)} and r(2, 4) = {(2, 3), (3, 4)} are both sub-paths of r(1, 4).

Note that of course r(i, j) is always a sub-path of itself.
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To express the sojourn times for a given transition (i, j) ∈ V, let τij denote a

sojourn time in state i before transitioning to state j, conditional on an observed

transition from i to j. We define that τij = 0 if such a transition is unobserved.

Separately, for every i ∈ S+, let Ci denote a censoring time in state i, conditional

on reaching state i, if the individual is not observed to leave state i by the end of

the observation period. We have Ci = 0 if the individual is not observed to be

censored in state i given he/she has reached it, or if the individual never reaches

state i. By definition, at most one of Ci > 0 for i ∈ S+. The associated censoring

indicator for such observations is δi. We have that δi takes value 1 if the individual

is observed to leave state i, or else it takes value 0 otherwise i.e. if the individual is

observed to reach state i ∈ S+ but is not observed to leave it, or if the individual

is never observed to reach state i.

Putting it all together, for a given individual h, the data can be expressed as

(i) a particular realisation of a path r = r(h) (which is possibly the empty set),

(ii) a collection of sojourn times of the form τij = τ
(h)
ij for every (i, j) ∈ V, (iii) a

collection of censoring times Ci = C
(h)
i for every i ∈ S+, and (iv) a collection of

censoring indicators δi = δ
(h)
i for every i ∈ S+. Using the introduced notation but

dropping the superscript (h) for brevity, we write the likelihood for each individual

as

L =
∏
i∈S+
i ̸=1

{(
p1if1i(τ1i)

)δ1[(1,i)∈r]
S1(C1)

(1−δ1)

×
∏

j:(i,j)∈V

(
pijfij(τij)

)(N1i∑
z=1

[
rz(1,i)⊆r

])
δi[(i,j)∈r]

Si(Ci)

(N1i∑
z=1

[
rz(1,i)⊆r

])
(1−δi)

}
. (4.1)

Once again, [·] is the Iverson bracket, taking value 1 if the statement within the

square brackets is true, 0 otherwise. We adopt the convention that 00 := 1 if this

arises when evaluating the likelihood.

The likelihood as formulated above essentially conditions on reaching state i ̸= 1

before transitioning out to state j for every i ∈ S+ \ {1} and j ∈ S. The initial
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state 1 is treated separately to account for individuals who may not be observed

to leave state 1. The power of p1if1i(τ1i) in the likelihood is associated with an

individual starting in state 1 (which is guaranteed by assumption in our setup),

then leaving state 1, and then transitioning to state i in one step. Conditional on

the observed path r and i ∈ S+, these are three independent events with respect to

the individual’s history up to that point, and therefore the likelihood contribution

is p1if1i(τ1i) only if all three events occur. If the individual is not observed to

leave state 1, then the likelihood contribution is given by S1(C1). There cannot be

contributions associated with both p1if1i(τ1i) and S1(C1) terms since individuals

cannot be simultaneously observed to leave state 1 and be right-censored there.

For the second line of the equation, the power of pijfij(τij) is associated with an

individual taking one of N1i paths to state i from state 1, then leaving state i, and

then transitioning to state j. We have that [rz(1, i) ⊆ r] = 1 only if the particular

path rz(1, i) is a sub-path of the realised path r, and so
N1i∑
z=1

[rz(1, i) ⊆ r] is at most

1 since the individual cannot have taken more than 1 distinct sub-path originating

in state 1 and ending in state i. Similarly, the power of Si(Ci) is associated with

taking a path from state 1 to state i and whether or not they are observed to leave

state i. Again, these are both conditionally independent events with respect to

the patient history up to that point, and the likelihood has contributions Si(Ci)

only if both events occurred. Finally, similar to the argument for the first line of

the equation, for every i ∈ S+ there cannot be likelihood contributions of both

pijfij(τij) and Si(Ci) simultaneously since an individual cannot take a path from

state 1 to state i and then reach state j while simultaneously being censored in

state i. For these reasons, the likelihood function as per equation (4.1) reduces to

equation (2.42) once a path for the individual is realised, and so the equations are

equivalent.
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Assuming sufficient regularity in the log-likelihood, we can obtain entries of

the observed Fisher information matrix by taking second derivatives of the log-

likelihood:

−∂2logL
∂θs∂θr

=−
∑
i∈S+
i ̸=1

δ1[(1, i) ∈ r]
∂2

∂θs∂θr
log
(
p1if1i(τ1i)

)

− (1− δ1)
∂2

∂θs∂θr
log
(
S1(C1)

)
−
∑
i∈S+
i ̸=1

( N1i∑
z=1

[
rz(1, i) ⊆ r

])
δi[(i, j) ∈ r]

∂2

∂θs∂θr
log
(
pijfij(τij)

)

−
∑
i∈S+
i ̸=1

∑
j:(i,j)∈V

( N1i∑
z=1

[
rz(1, i) ⊆ r

])
(1− δi)

∂2

∂θs∂θr
log
(
Si(Ci)

)
. (4.2)

It should be possible to compute the expectation of this expression by, for example,

conditioning on δi and using the law of total expectation. This may require further

assumptions about the nature of the censoring process. For example, in this thesis

(to simulate data) we have assumed that there is a censoring time from an arbitrary

probability distribution generated at the start of the SMP. We then check after

every transition whether the sum of sojourn times up to the current state exceeds

this censoring time. If it is exceeded, then Ci > 0 for some state i where the

individual is right-censored. The value of Ci is defined analogously to U (h) as

described in the beginning of Section 2.4.5. We could also potentially rewrite

equation (4.2) in terms of ITFs parameters by substituting pij, fij(·), and Si(·)

with equations (2.38), (2.39), and (2.33) respectively.

In this thesis, all optimisation of the likelihood is done using R software.

The Rsolnp package ([Ghalanos and Theussl, 2015]) is used to optimise likelihood

functions that we have written independently. As previously mentioned, it can

be tedious to compute the entries of the Fisher information matrix by using

equation (4.2). Instead, we have opted for the convenient option of obtaining the

observed information matrix numerically. Specifically, we have used the inverse

of the negative of the numerical Hessian matrix (as computed by Rsolnp at θ̂) to
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approximate I−1(θ̂)/m, where I(θ) is the Fisher information matrix with entries

as per equation (4.2). We have found that this gives good results in practice – see

Section 4.2.

4.2 Computational considerations

As mentioned in the previous section, it can be tedious to compute the Fisher

information matrix with entries as per equation (4.2). The purpose of this section

is to demonstrate that using the negative of the numerical Hessian matrix evaluated

at θ̂ in place of the observed information gives good results. Note that this section

is not intended to exhaustively review what software packages are available for

fitting models with the mixture approach.

The negative of the numerical Hessian can be obtained, for example,

by writing code for the likelihood function and then choosing an appro-

priate package that can perform constrained optimisation. We have cho-

sen Rsolnp ([Ghalanos and Theussl, 2015]). The other purpose of this sec-

tion is to discuss the SemiMarkov ([Król and Saint-Pierre, 2015]) package used

by [Asanjarani et al., 2021] in their estimation. This package reports parameter

estimates and their standard errors without the need to write any code for the

likelihood function. However, we have found that there are issues with the results

obtained using this package, which makes our approach preferable. We elucidate

both of the aforementioned points with simulated data. Let us finally mention the

package flexsurv ([Jackson, 2016]) which allows one to model SMPs using both

the mixture and ITFs approach and obtain parameter estimates under a number

of model assumptions, with standard errors of estimates reported.

We now describe the setup of the simulation. First, we simulate M = 1000

datasets from a five-state model based on the mixture approach. We use empirical

standard errors as a measure of performance. We have S = {1, 2, 3, 4, 5}, S+ =

{1, 2, 3} and

V = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}.
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The underlying graph structure of this model is as shown in Figure 4.1

below. For each possible transition (i, j) ∈ V, we have exponential so-

journ time hazard functions hij(t) = aij. The parameter vector is θ =

(p12, p23, p34, a12, a13, a23, a24, a34, a35)
⊤ = (0.47, 0.32, 0.7, 7, 19, 4, 17, 5, 2)⊤. The

choice of graph structure and model parameters is motivated by the desire to

depict a simple model which might have some basis in reality. For example, state 1

would be the starting state, while states 4 and 5 could represent absorbing states

such as “Death” and “Lost to follow-up”. The transient states 2 and 3 could

represent states such as “Disease progression” or “Disease recurrence”.

Figure 4.1: The underlying graph structure of the model used for simulation of
data. This model is also used for the simulation study in Chapter 5.

There are m = 10000 individuals for each of the M = 1000 simulated datasets.

The data are simulated using Algorithm 1. We choose T from a continuous

Uniform(0.5, 1.5) distribution to decide right-censoring time in the last observed

state, if applicable. The parameters of the censoring distribution are chosen such

that there is a small amount of censoring in state 1, a moderate level of censoring in

state 2, and a relatively large amount of censoring in state 3. Specifically, given that
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individuals reach state i, there is approximately 4%, 8.4%, and 19.5% probability

of being censored in state i for i = 1, 2, 3 respectively.

According to [Morris et al., 2019, Section 5], the Monte Carlo standard error

(MCSE) can be estimated by

MCSE =

√√√√ V̂ar(θ̂i)

2(M − 1)
(4.3)

where Var(θ̂i) denotes the variance associated with the estimate of the ith component

of θ. Based on our results in Table 4.1 (discussed below, and ignoring the anomalous

results associated with the SemiMarkov package), the MCSE is about 0.7% in the

worst case.

Table 4.1 shows the results. The first row shows the true values of the model

parameters, while the second and third row give the average of the M = 1000

estimates as obtained by Rsolnp and SemiMarkov respectively. While SemiMarkov

does well for parameters associated with states 1 and 2, we notice the anomalous

results in red for parameters associated with state 3 which do not agree with the

true values nor the estimates obtained by using Rsolnp.

The fourth row shows the asymptotic standard deviation as calculated by taking

the appropriate entry of

√
Î−1(θ̂)/m. The fifth row instead estimates the standard

errors with the appropriate entry of the square root of the negative of the numerical

Hessian obtained with Rsolnp, evaluated at θ̂. We note similar results seen in the

fourth and fifth rows, justifying the use of the numerical Hessian for computational

convenience.

The last row consists of anomalous standard errors as reported by SemiMarkov.

Despite attempted personal communication with the author, it remains unclear

how the standard errors are obtained. To the best of our knowledge, this is not

explained in the documentation either. Furthermore, even though SemiMarkov

appears to use Rsolnp as a dependency for optimisation, the results obtained are

very different from ours. A further complication is that the standard errors are
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rounded off to 2 decimal places, with seemingly no way to obtain more accurate

figures. This is an issue in practice if one wanted to use the standard errors for

calculations. For example, standard errors below 0.005 are reported as 0. This can

be observed in Table 4.1.

4.3 Related quantities of interest

The survival function of the holding time in a particular state can tell us whether

patients in the active treatment arm are worse off due to having a lower prob-

ability of being event-free. However, we would need additional information

related to each transition out of that state to better understand the full pic-

ture. [Asanjarani et al., 2021] makes use of parametric and non-parametric plots of

the cumulative intensity transition function, which is analogous to the cumulative

cause-specific hazard function. The CIF as per equation (2.34) would also work for

such diagnostics, as well as provide a form of goodness-of-fit visual check when the

plots of parametric and non-parametric functions are compared. An example of

the CIFs being used for this purpose can be seen in Section 6.2.3.

This section suggests a few other additional quantities. While the first passage

time (Section 4.3.2) and state occupancy probability (Section 4.3.3) are not new

concepts, we have described expressions for these quantities in terms of mixture

approach parameters. The expression for the conditional distribution of total

sojourn times as per Section 4.3.1 forms the basis for the proposed hypothesis

test as per Section 4.4.1. While all these quantities are similar to that seen

in [Weiss and Zelen, 1965], the results as per Sections 4.3.1 and 4.3.2 have been

obtained independently using a somewhat different approach. In a nutshell, instead

of using the holding time in each state associated with Si(t) and the first passage

time distribution as starting points, we have made specific assumptions and then

worked directly with the knowledge that the total time spent in the SMP for

given starting state and destination state(s) makes up a mixture random variable,

with components of the mixture being a sum of sojourn times given transitions
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which make up the path, and component probabilities given by probabilities of

specific paths. Note that, like all the parametric quantities in this thesis which can

be estimated with the maximum likelihood estimator, it is possible to construct

confidence intervals for these quantities using the delta method.

4.3.1 Distribution of total sojourn times given passage

through a given state

One such quantity that can be considered alongside the survival function of holding

time in particular states is the distribution of the total sojourn time after reaching a

given state i ∈ S+ and reaching one of several other possible states j1, j2, . . . , jq ∈ S

of interest, conditional on reaching one of the j1, j2, . . . , jq through state i. Here,

i ̸= jν for any ν ∈ {1, 2, . . . q}. To formalise this, first define J ⊆ S \{1} such that,

for some fixed i ∈ S+, i /∈ J . Let η denote the total sojourn time after reaching

i ∈ S+ and then taking a path to some jq ∈ J , conditional on passing through

state i to reach any state in J . Define τ(rwq(i, jq)) = (τv1 , τv2 , . . . , τvnwq,ijq
)⊤ as

the nwq ,ijq -vector of sojourn times associated with each path rwq(i, jq) that starts

in i and ends in a given jq. Here, wq ∈ {1, 2, . . . , Nijq} for each jq ∈ J and each

subscript v1, v2, . . . denotes a member of rwq(i, jq) such that τvr is shorthand for

τvr,1,vr,2 where vr,s is the sth entry of vr for s ∈ {1, 2}. Define 1(nwq ,ijq) as a vector

of nwq ,ijq with all entries equal to 1. Then, η is a sum of random variables, given by

η =

|J |∑
q=1

Nijq∑
wq=1

η(wq) (4.4)

with each component of the sum η(wq) =
∑|J |

q=1

∑Nijq

wq=1 1(nwq ,ijq)
⊤τ(rwq(i, jq)) giving

the total sojourn time after reaching state i and then reaching given jq ∈ J ,

conditional on reaching a state in J through state i. The distribution of η is a

mixture, with each component having density and associated weight respectively
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given by

fη(wq)(u) =f1(nwq,ijq )
⊤τ(rwq (i,jq))

(u) (4.5)

and p(wq) =

(
N1i∑
z=1

P
nz,1j

(1,i)

)
P

nwq,ijq

(i,jq)

/ |J |∑
q=1

Nijq∑
wq=1

(
N1i∑
z=1

P
nz,1j

(1,i)

)
P

nwq,ijq

(i,jq)
(4.6)

for each jq ∈ J .

We have that η(wq) is a sum of independent random variables, with mixture

(conditional) density function fη(wq)(u). It is possible that fη(wq)(u) is easy to obtain

in closed form. Otherwise, fη(wq) = fv1 ∗ · · · ∗ fvnwq,ijq
where g1 ∗ g2 denotes the

convolution of functions g1 and g2. These integrals could be computed numerically,

otherwise one could carry out Laplace transforms to linearise the convolution and

make it easier to compute the integrals – see, for example, [Weiss and Zelen, 1965].

Hence η =
∑|J |

q=1

∑Nijq

wq=1 η(wq) with (conditional) mixture density function

fη(u) =

|J |∑
q=1

Nijq∑
wq=1

p(wq)fη(wq)(u). (4.7)

Each weight as per equation (4.6) is the conditional probability of observing

that particular path. The numerator is associated with taking any of N1i paths

from state 1 to state i, and then taking a particular path from state i to jq. Since

state i must be reached from state 1,
∑N1i

z=1 P
nz,1j

(1,i) appears in both the numerator

and denominator. After factoring these terms out and simplifying, we obtain

p(wq) = P
nwq,ijq

(i,jq)

/ |J |∑
q=1

Nijq∑
wq=1

P
nwq,ijq

(i,jq)
(4.8)

for each jq ∈ J . This makes sense intuitively since, given state i is reached, the

Markov property ensures that the probability associated with transitions after

reaching state i do not depend on the past history. Hence, each of the conditional

probabilities depends only on the sub-path taken from state i to jq instead of the

entire path taken from state 1 to state jq.
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Examples A special case of η would be for i = 1 and jq ∈ J = S \ S+ i.e. J

is the set of absorbing states. Then, η is the total sojourn time before reaching

any absorbing state jq ∈ J , and the denominator of p(wq) in equation (4.8) is

simply
∑|J |

q=1

∑Nijq

wq=1P
nwq,1jq

(1,jq)
= 1 because reaching any absorbing state from state

1 is guaranteed. The numerator is simply P
nwq,1jq

(1,jq)
, which is the probability of

observing a particular path from state 1 to jq. A more general example can be seen

by considering the 5-state model as per Figure 4.1. We have S = {1, 2, 3, 4, 5}, V =

{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}. If i = 2 and J = {4, 5} then, given state 2

is reached, there are three distinct sub-paths that start in state 2 and end up at

either state 4 or 5. These sub-paths are r1(2, 4) = {(2, 4)}, r2(2, 4) = {(2, 3), (3, 4)},

and r1(2, 5) = {(2, 3), (3, 5)}. Hence, each component of η is given by


τ24 with probability p24/(p24 + p23p34 + p23p35)

τ23 + τ34 with probability p23p34/(p24 + p23p34 + p23p35)

τ23 + τ35 with probability p23p35/(p24 + p23p34 + p23p35).

(4.9)

If i = 2 and J = {3} then η = τ23 with probability p23/p23 = 1 since this is

associated with the conditional event of passing through state 2 to reach state 3,

of which there is only one way to do so.

One advantage of writing η in this way is that it is relatively straightforward to

calculate quantities such as expectation and variance since

E (η) =

|J |∑
q=1

Nijq∑
wq=1

p(wq)E [η(wq)] (4.10)

and

Var (η) =E
(
η2
)
− [E (η)]2

=

|J |∑
q=1

Nijq∑
wq=1

p(wq)E
[
(η(wq))

2]−
 |J |∑

q=1

Nijq∑
wq=1

p(wq)E [η (wq)]

2

. (4.11)
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Equation (4.10) forms the basis for the hypothesis test proposed in Section 4.4.1.

If it is desired to extend the calculations to consider the more general case

where we may have several states of interest i1, i2, · · · ∈ I to pass through before

reaching a state in J , then one could do so if one carefully defines the conditioning

event to include all the paths that pass through iu ∈ I (u = 1, 2, · · · ) and also

possibly passing through one or more other states in I before reaching a state in

J .

4.3.2 Distribution of the first passage time

Since we have assumed that all non-absorbing states in S are transient, the first

passage time from state 1 to state k ∈ S \ {1} can be defined as the time taken

to reach state k given the SMP started at time 0 in state 1. Let Uk be the first

passage time associated with state k. Using similar ideas seen Section 4.3.1, Uk

can be written as a sum of random variables as follows:

Uk(z) = 1(nz,1k)
⊤τ(rz(1, k)) with probability p(z) = P

nz,1k

(1,k) . (4.12)

We note that, because some states k ∈ S might never be reached, the distribution

of Uk is improper in general i.e. 0 < limu→∞ FUk
(u) ≤ 1.

Similarly to how the density function of η is obtained, we can write the subden-

sity function as

fUk
(u) =

N1k∑
z=1

p(z)fUk(z)(u). (4.13)

The distribution of the first passage time may be useful information in the context

of patient benefit, but may not be of deep interest on its own. However, the

expression is used for our derivation of the expression for the state occupancy

probability as per Section 4.3.3.
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4.3.3 State occupancy probabilities

The state occupancy probability associated with state k at time u is defined as

the probability of being in state k at time u of the SMP. Using our notation for

the SMP as per Section 2.4.1, the state occupancy probability can be denoted

Pk(u) = P (Xu = k|X0 = 1) for k ∈ S. Since our setup assumes that each state

can be visited at most once and that all non-absorbing states are transient, we can

write the state occupancy probabilities in terms of the subdensity function of Uk

as per equation (4.13) and survival functions of holding times:

Pk(u) = 1{1}(k)S1(u) +
(
1− 1{1}(k)

) u∫
0

fUk
(v)
(
Sk(u− v)

)
1S+\{1}(k)

dv. (4.14)

Here, 1A(x) is the indicator function taking value 1 if x ∈ A, 0 otherwise.

If k = 1, the probability of still being in state 1 given that the SMP started

in state 1 is precisely the survival function of the holding time in state 1, which

tends to 0 as t → ∞. This is the first term in equation (4.14). Otherwise, Pk(t)

involves only the second term and its contribution depends on whether k ∈ S \ S+

or k ∈ S+ \ {1}. If k ∈ S \ S+, then the state-k occupancy probability is simply

FUk
(t). If k ∈ S+ \ {1} then it means that state k is visited for the first time at

time v, followed by a stay in state k for u− v time units before leaving state k. If

fUk
is known, then fUk

∗ Sk is relatively straightforward to compute or estimate.

Example Consider an illness-death model as described in previous examples,

with S = {1, 2, 3}, S+ = {1, 2}, and V = {(1, 2), (1, 3), (2, 3)}. Let the sojourn

time hazard function for given (i, j) ∈ V be exponential-distributed i.e. hij(t) = aij

for all (i, j) ∈ V. Let p12 = 0.36, a12 = 0.2, a13 = 0.3, a23 = 0.1. Figure 4.2 below

shows the model and its parameters.
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We are able to use equation (4.14) to find

P1(t) =S1(t) = p12 exp (−a12t) + (1− p12) exp (−a13t) , (4.15)

P2(t) =
p12a12

a12 − a23

(
exp (−a23t)− exp (−a12t)

)
, (4.16)

and P3(t) =(1− p12)
(
1− exp (−a13t)

)
+ (4.17)

p12
a12 − a23

(
−a12

(
1− exp(−a23t)

)
− a23

(
1− exp(−a12t)

))
.

We can visualise the state occupancy probabilities for each state by plotting

Figure 4.2: Illness-death model used to derive state occupancy probabilities.

them against time as per Figure 4.3. Figure 4.3a shows the state occupancy

probabilities for states 1 (green), 2 (blue) and 3 (red) respectively. We must have

P1(t) + P2(t) + P3(t) = 1 for any t ≥ 0. Figure 4.3b shows a different way to

visualise this information. The boundary between the green and blue areas is

P1(t) = S1(t) and the boundary between the blue and red areas is P1(t) + P2(t).

Hence, the size of each coloured area when considering any vertical strip on the

figure represents the relative chance that individuals are likely to be in that state.

For example, when considering the interval (9.8, 10.2) (with interval endpoints

given by the vertical black lines), the majority of individuals are going to be in

state 3. In fact, the total proportion of the red area in the figure is over 50% when

considering the interval (0, 40). This tells us that relatively little time is spent in

transient states 1 and 2 as compared to absorbing state 3.
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(a) The figure shows state occupancy probabilities for states 1 (green), 2 (blue) and 3
(red) respectively.

(b) The boundary between the green and blue areas is P1(t) = S1(t) and the boundary
between the blue and red areas is P1(t) + P2(t). Hence, the size of each coloured area
when considering any vertical strip on the figure represents the relative chance that
individuals are likely to be in that state. When considering the interval (9.8, 10.2) (with
interval endpoints given by the vertical black lines), the majority of individuals are going
to be in state 3.

Figure 4.3: Visualising state occupancy probabilities for the illness-death model
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4.4 Proposed hypothesis tests

We propose formal parametric hypothesis tests to quantify and evaluate potential

patient benefit between two groups of interest e.g. a group on active treatment

versus a control group. The first test, denoted Test A, is based on differences of

the conditional expected total sojourn times given passage through a particular

state before reaching other states of interest (as per Section 4.3.1), while the second

test, denoted Test B, is based on the differences between the survival functions of

the holding time between treatment arms, for specific time intervals of interest.

The former test might be useful as a more general “global” test checking

for overall benefit, while the latter test could be used to deep-dive into specific

states of interest. The details are in Section 4.4.1 and 4.4.2 respectively. The

underlying distributions of the test statistics involve using the asymptotic Gaussian

distribution of the maximum likelihood estimator and the delta method as described

in Section 2.2.2.

For simplicity, we consider a single covariate Z ∈ {0, 1} denoting the treatment

arm (where Z = 1 denotes active treatment), but these ideas can potentially be

generalised and extended to the situation with a general covariate vector. For

example, we could have Cox-type proportional hazards as per Section 2.6, or some

other appropriate setup. See Section 7.2 for further discussion.

4.4.1 Test based on average total sojourn times

First, we propose a test that seeks to establish whether there are significant

differences in the (conditional) average total sojourn time between treatment

groups. This test is based on the expectation defined in equation (4.10) associated

with the distribution of total sojourn times after a particular state i is reached,

before ending up in one of the states j1, j2, . . . , jq of interest after passing through

state i. We call this test “Test A”.

The null hypothesis would be that the expectations of the conditional random

variable η (as defined in Section 4.3.1) between treatment groups are identical,
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and therefore there is no (average) difference in benefit to the patient. Note that

since every state in the multi-state model is defined to be detrimental to patients,

significant differences in the expected values of η|Z = z (z ∈ {0, 1}) imply that the

group with the higher average sojourn time is better off since they are (on average)

resisting transitions to other undesirable states for longer compared to the other

group.

To formalise this, define µz = E(η|Z = z) for each of z = 0, 1. Then,

gA(θ) = µ1 − µ0 (4.18)

is the function of θ required to construct our test statistic TA(θ̂), where θ̂ is the

maximum likelihood estimator of the model parameters. The expression for TA(θ̂)

is shown in equation (4.19) below.

Suppose

H0 : µ1 − µ0 = 0 vs H1 : µ1 − µ0 > 0

to test for the presence of benefit to the patient. It would also be possible to specify

a two-tailed alternative hypothesis, if desired. We make use of our knowledge of

the asymptotic distribution associated with the maximum likelihood estimator, as

well as the delta method, described in Section 2.2.2 to ascertain the asymptotic

distribution of function gA(θ̂) under H0 and therefore construct the test statistic,

TA(θ̂). Using the delta method, the test statistic is

TA(θ̂) =
gA(θ̂)

VA

(4.19)

under H0, where VA =

√
{∇gA(θ̂)}⊤I−1(θ̂){∇gA(θ̂)}/m. The test statistic has an

approximate standard Gaussian distribution under H0.

Large positive values of the test statistic lead us to reject H0, and suggest that

patients in active treatment are benefiting on average, while large negative values
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suggest these patients are suffering more than the control arm on average.

In practice, it might make the most sense to define i as the starting state and

{j1, j2, . . . , jq} = S \ S+ i.e. the set of all absorbing states. In other words, the test

is for differences in average total sojourn time before absorption. If there are specific

reasons to choose other states for i and j1, j2, . . . , jq, then it would be possible to do

so. This test result alone, however, may not be sufficiently informative as it merely

gives a general overview without exploring what might be causing differences in

patient benefit (if any). For this reason, in the next Section 4.4.2 we propose a

test that considers the survival function of the holding time in specific states of

interest.

4.4.2 Test based on differences in survival function of hold-

ing time

As mentioned in the previous section, it may be necessary to ascertain which states

are contributing to benefit (or disbenefit) for patients. Suppose, then, it is of

interest to test for a difference in holding time distributions between treatment

arms in state i ∈ S+. We call this “Test B”.

The null hypothesis would be that the survival functions of the holding time in

state i between both arms are “identical”, and therefore there is no difference in

patient benefit. We propose a general function of the form

gB(θ) =

∫
E

(
Si(·|Z = 1)− Si(·|Z = 0)

)
dµ (4.20)

to derive the test statistic. Here µ is an appropriately chosen measure and E is a

subinterval of R≥0. Hence, the null and alternative hypotheses are

H0 :

∫
E

(
Si(·|Z = 1)− Si(·|Z = 0)

)
dµ = 0 vs

H1 :

∫
E

(
Si(·|Z = 1)− Si(·|Z = 0)

)
dµ > 0.

90



Once again, the alternative hypothesis could be two-sided, if desired.

For example, if we wish to compare the survival functions of the holding times

at a specific point t0 > 0 then we can choose µ to be the Dirac measure taking

value 1 at t0 ∈ E = R≥0. If, more generally, we wish to consider some notion of

“average” benefit in the time interval (a, b) then we can take µ to be the Lebesgue

measure on (a, b) with E = (a, b). Note that in the latter scenario, setting a = 0

and b = ∞ gives equation (4.20) as the difference of the expected holding times in

state i between the active and control treatment groups.

The test statistic is obtained analogously to that in equation (4.19):

TB(θ̂) =
gB(θ̂)

VB

(4.21)

where VB =

√
{∇gB(θ̂)}⊤I−1(θ̂){∇gB(θ̂)}/m. Once again, TB(θ̂) has an approxi-

mate standard Gaussian distribution under H0.

The intuition behind this test statistic is that there should be no difference in

the time spent in state i (on “average”) if both treatments are equally beneficial,

and so we reject the null hypothesis if the test statistic is significantly different

from zero. If the test statistic is significantly large in magnitude and positive

(resp. negative), then it suggests that patients in active treatment are benefiting

(resp. disbenefiting) in state i.

It might also be possible to transform the function gB for computational

savings, especially when using the intensity transition functions approach. For

instance, performing the test at time t0 using the Dirac measure and substituting

equation (2.33) into equation (4.20) yields

gB(θ) = exp

(
−
∑
i ̸=k

H̃ik(t0|Z = 1)

)
− exp

(
−
∑
i ̸=k

H̃ik(t0|Z = 0)

)
(4.22)

where H̃ij is the cumulative intensity transition function associated with transition
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i → j. From this, we can deduce that H0 is true if and only if

∑
i ̸=k

H̃ik(t0|Z = 1) =
∑
i ̸=k

H̃ik(t0|Z = 0).

We can then use gB(θ) =
∑

i ̸=k H̃ik(t0|Z = 1) −
∑

i ̸=k H̃ik(t0|Z = 0) in the test

statistic for Test B (equation (4.21)) instead of equation (4.22).

It is worth pointing out that Test B differs from the class of quadratic empirical

distribution function (EDF) test statistics (see, for example, [Stephens, 1974]) such

as the Anderson-Darling test ([Anderson and Darling, 1952]) in that the integrand

is not quadratic nor restricted to being non-parametric. Furthermore, the proposed

test is not a goodness-of-fit test since we are not so concerned about whether the

holding time distributions are actually different, but whether there is an “overall”

difference in the time taken to leave the current state i in a given time interval. We

could very well fail to reject the null hypothesis when, in fact, the distributions of

the holding times between each treatment arm are very different (but the integral

of the difference in survival functions is approximately zero in a given interval

(a, b)).

In practice, it might make the most sense to perform the above test with the

Lebesgue measure on some time interval (a, b) and with E = (a, b), and to perform

this test in several states of interest. We can choose a and b sensibly based on e.g.

previously established pharmacological evidence or other criteria. Note, however,

that rejecting the null hypothesis does not give us much information about what

is causing the potential difference in benefit between the treatment arms. To

determine which of the transitions out of state i might be causing the benefit (or

disbenefit), one would need to further investigate all the transitions out of state

i. Furthermore, it might be helpful to consider other quantities, such as state

occupancy probabilities, alongside the test results to give a broader picture of

patient benefit. The quantities discussed in Section 4.3 might be most useful for

this, and examples of such applications can be found in Section 5.6.
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Chapter 5

Results: Simulation study

assessing proposed tests

The goal of this section is to demonstrate some of the properties of the proposed

hypothesis tests as per Section 4.4, by using simulated data.

Three different model setups are considered, with the empirical Type I error

rates and statistical power assessed in each case. All the true models involve

Weibull sojourn time hazard functions, but misspecified models (exponential and

gamma distributions) are also fitted to the data to see the effect of misspecification.

This is of particular interest since some of Weibull shape parameters are chosen to

have values relatively close to unity, making the sojourn time distributions “almost”

exponential-distributed.

Section 5.1 describes the common elements of each model and the data simulated

from them, with exact details in the next three sections. Specifically, Section 5.2

discusses the baseline setup, with Section 5.3 repeating the analysis after adding

significant amounts of right-censoring. Section 5.4 repeats the analysis after

reducing the amount of detectable benefit when there is also right-censoring.

Results related to some of the quantities of interest as per Section 4.3 are shown in

Section 5.6. A summary of results associated with various hypothesis tests can be

found in figures and tables, especially in each of Section 5.2.2, Section 5.3.2, and

Section 5.4.2. The estimated power functions shown in these sections are for tests
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of size α = 0.05, with power functions for other values of α found in Section B.2,

Section B.3, and Section B.4.

The summary tables of results in each of these three sections are also presented

again in Section 5.5, for convenience. Finally, a short discussion of the results is

given in Section 5.7.

5.1 General setup and description of tests

The purpose of this section is to facilitate easy navigation of this chapter, by

describing the common characteristics of all the models considered in the simulation

study setups. Details of the hypothesis tests and the results are also given.

5.1.1 General setup

The graph structure of the model chosen for the simulation study is a 5-state model

similar to the one depicted in Figure 4.1, reproduced in Figure 5.1 below:

Figure 5.1: Underlying graph structure of 5 state model used for simulation study.

The underlying graph structure is kept consistent for all three setups under con-
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sideration. Section 5.2.1 describes the baseline setup, with Section 5.3.1 describing

the baseline setup with significant amounts of right-censoring added. Section 5.4.1

describes the setup where there is a reduced amount of detectable benefit while

also having right-censoring.

There is a single covariate, Z, taking values 1 and 0 for active treatment and

control treatment respectively. In each case, there is an equal proportion of patients

in each treatment arm. Active treatment is associated with benefit to patients.

For each setup, the parameters are chosen such that there is negligible difference

between treatment arms in states 1 and 2, with the bulk of significant benefit

being associated with state 3 for patients in active treatment. The exact model

parameters and other characteristics of each model setup are detailed in each of

the aforementioned sections.

Furthermore, the survival functions of the holding time in state 3 for each

treatment arm intersect at a specific interior time point (t0, say) in every scenario,

with S3(t|Z = 1) < S3(t|Z = 0) for all t < t0 and S3(t|Z = 1) > S3(t|Z = 0) for

all t > t0. This becomes relevant when considering Test B. More details can be

found in Section 5.1.3.

As mentioned in Section 4.2, any model with this graph structure is somewhat

realistic in the sense that a real clinical trial could have one or two absorbing states

(e.g. “death” and “lost to follow up”) as well as one or two non-starting transient

states (e.g. “disease progression” and “premature discontinuation of treatment”).

Two different sample sizes are chosen for each setup: m = 10000 to as-

certain large sample properties, and m = 1000 to ascertain real-world perfor-

mance. A sample size of 1000 is realistic and, in fact, not that large in the

context of clinical oncology – see [Miller et al., 2020], [Fehrenbacher et al., 2020],

and [Mamounas et al., 2019] for examples, of which the latter two have m > 3000.

Finally, M = 1000 datasets are simulated for each scenario and sample size.

For a given significance level α, probability of type I error as well as power of

the proposed tests in the different scenarios are chosen as performance measures.
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Hence, similarly to Section 3.2.1, the MCSE for each model and scenario can be

estimated by

MCSE =

√
p̂(1− p̂)

M
(5.1)

where p̂ is either the estimated probability of type I error or estimated power of the

hypothesis test, as appropriate. For M = 1000, the MCSE is just under 1.6%. As

reliable results were desired without overly costly computation, this MCSE value

was deemed to be sufficiently low.

5.1.2 Model estimation

Each model is estimated via the method of maximum likelihood, as described in

Section 2.4.5. The mixture approach is used to specify each model.

For each transition i → j, all true models involve Weibull sojourn time hazard

functions of the form

hweib
ij (t) = aijbij(aijt)

bij−1,

where aij is the rate parameter and bij is the shape parameter.

To assess the effects of model misspecification, exponential and gamma models

are also fitted to the data. For each transition i → j, the exponential sojourn time

hazard function is

hexp
ij = aij

where aij is the rate parameter. The gamma sojourn time hazard function is

hgamma
ij =

a
dij
ij tdij−1 exp (−aijt)

Γ (dij)− γ(dij, aijt)
,

where aij is the rate parameter, dij is the shape parameter, Γ (s) =
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∫∞
0

us−1 exp (−u) du is the gamma function, and γ(s, x) =
∫ x

0
us−1 exp (−u) du

is the lower incomplete gamma function.

As before, all models parameters are estimated using Rsolnp

([Ghalanos and Theussl, 2015]) in R, with reported numerical Hessian ma-

trices used for the estimation of all observed Fisher information matrices.

5.1.3 Description of tests and how results are obtained

Test A: Testing for differences in average total sojourn time before

absorption

This test is based on that described in Section 4.4.1. The quantity of interest as per

equation (4.18), and we define η as the average total sojourn time before absorption,

given that the starting state is state 1. Thus, we can compare the average total

sojourn time in the different states before absorption for each treatment arm. This

gives a general measure of whether there is potential patient benefit associated

with the treatment of interest (Z = 1). Let us then consider,

H0 : E(η|Z = 1) = E(η|Z = 0) vs H1 : E(η|Z = 1) > E(η|Z = 0).

The test statistic is as defined in equation (4.19), with approximate standard

Gaussian distribution under H0.

To check the Type I error, the procedure is as follows. First, for a given study,

we estimate E(η|Z = 0) using the estimated parameters in the usual way. However,

E(η|Z = 1) is computed with parameters estimated using data from another

simulation replication which is associated with Z = 0. In this way, H0 is true since

the test statistic is associated with gA(θ) = 0 and so gA(θ̂) ≈ 0 as a result. Since

H0 is true, we evaluate the proportion of times in the M = 1000 simulations where

we erroneously reject H0 i.e. whenever the test statistic TA(θ̂) = gA(θ̂)
VA

> q1−α,

where q1−α denotes the (1− α) quantile of the standard Gaussian distribution. We

let ε denote the estimated value of the Type I error, α, for common values 0.01,
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0.05 and 0.10. The left column of the respective tables in each of Section 5.2.2,

Section 5.3.2, and Section 5.4.2 show the estimated values of ε for each α and

sample size (either m = 10000 or m = 1000). This is done for all three model fits.

To check the power of the test, we repeat the procedure as per the previous

paragraph except we correctly estimate gA(θ) = E(η|Z = 1)− E(η|Z = 0), which

should be significantly more than zero. We then check the proportion of times we

(correctly) reject H0. The proportion of studies in which we correctly reject H0

is denoted ρ. The right column of the respective tables in each of Section 5.2.2,

Section 5.3.2, and Section 5.4.2 show the estimated values of ρ for each α and

sample size (either m = 10000 or m = 1000). This is done for all three model fits.

Test B: Testing for differences between treatment arms with two varia-

tions of the test comparing holding times in state 3

The following two tests are variations of that described in Section 4.4.2. Test B1

compares the survival functions of the holding time associated with each treatment

arm at a specific time point, while Test B2 compares the survival functions in a

given time interval instead.

Test B1

As mentioned at the beginning of Section 5.1, the bulk of significant benefit is

associated with state 3 for patients in active treatment (Z = 1). Furthermore,

S3(t|Z = 1) < S3(t|Z = 0) for all t < t0 and S3(t|Z = 1) > S3(t|Z = 0) for all

t > t0 where t0 is the (only) interior intersection point of both survival functions.

Suppose then we use a Dirac measure to ascertain the difference in survival functions

of the holding time in state 3 between treatment arms, with reference to t0. Then,

consider the null and alternative hypotheses

H0 : S3(t0|Z = 1) = S3(t0|Z = 0) vs H1 : S3(t0|Z = 1) > S3(t0|Z = 0).

Hypothesis H0 is clearly true under these conditions. The test statis-
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tic is defined as per equation (4.21), with the numerator as gB1(θ̂) =(
Ŝ3(t0|Z = 1)− Ŝ3(t0|Z = 0)

)
. We use equation (2.30) for S3(·), and the hat

denotes that the survival function is estimated with the maximum likelihood

estimate.

Since H0 is true, we evaluate the proportion of times in theM = 1000 simulations

where we erroneously reject H0 i.e. whenever TB1(θ̂) =
gB1(θ̂)
VB1

> q1−α. We let ε

denote the estimated value of the Type I error, α, for common values 0.01, 0.05 and

0.10. The left column of the respective tables in each of Section 5.2.2, Section 5.3.2,

and Section 5.4.2 show the estimated values of ε for each α and sample size (either

m = 10000 or m = 1000). This is done for all three model fits.

We then consider the power of the test i.e. the probability of rejecting H0 when

H0 is not true. We investigate by calculating the proportion of times we reject H0

when we perform the test at t0, and then increase time in increments of 0.01 to

see how quickly the power function increases. Each of Section 5.2.2, Section 5.3.2,

and Section 5.4.2 show figures which plot the estimated power as a function of

time. This is done for all three model fits. Additionally, the right column of the

relevant tables in each of these sections show the values of t which give us at least

80% power, denoted t80%. If the test is correctly rejecting H0, then the test can be

considered relatively powerful if the quantity t80% − t0 (which must be positive) is

relatively small.

Test B2

Consider now the test with null and alternative hypotheses

H0 :

∫ t1

0.2

S3(u|Z = 1)du =

∫ t1

0.2

S3(u|Z = 0)du

vs H1 :

∫ t1

0.2

S3(u|Z = 1)du >

∫ t1

0.2

S3(u|Z = 0)du

where the lower limit of each integral, 0.2, is chosen arbitrarily. This test

is concerned with detecting benefit in the interval (0.2, t1). For fixed t1, the
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test statistic and its distribution under H0 is obtained similarly to that de-

scribed for Test B1. This time, the numerator of the test statistic is gB2(θ̂) =∫ t1
0.2

(
Ŝ3(u|Z = 1)− Ŝ3(u|Z = 0)

)
du. Due to the fact that both survival functions

of holding time in state 3 intersect only once (at t0) such that S3(t|Z = 1) <

S3(t|Z = 0) for all t < t0 and S3(t|Z = 1) > S3(t|Z = 0) for all t > t0, we find that

gB2(θ) =
∫ t1
0.2

(
S3(u|Z = 1) − S3(u|Z = 0)

)
du < 0 for 0.2 < t1 < t∗, where t∗ is

the time point such that gB2(θ) = 0. This signifies negative “overall benefit” in

0.2 < t1 < t∗, and we start to have positive benefit once we allow t1 > t∗.

We thus use this as a starting point for checking the estimated Type I error,

similarly to the method used for Test B1, by carrying out the test at t1 = t∗

(where H0 is true). The left column of the respective tables in each of Section 5.2.2,

Section 5.3.2, and Section 5.4.2 show the estimated values of ε for each α and

sample size (either m = 10000 or m = 1000). This is done for all three model fits.

To estimate the power of this test, we now vary t1 from 0.21 to 6 in increments

of 0.01 and, for each t1, calculate the proportion of times H0 is rejected when it

should be rejected. We pay particular attention to t1 > t∗, where there is positive

“overall benefit”. Each of Section 5.2.2, Section 5.3.2, and Section 5.4.2 show figures

which plot the estimated power as a function of time. This is done for all three

model fits. Additionally, the right column of relevant tables in each of these sections

show the values of t which give us at least 80% power, denoted t80%. If the test is

correctly rejecting H0, then the test can be considered relatively powerful if the

quantity t80% − t∗ (which must be positive) is relatively small.

5.2 Baseline model setup

Section 5.2.1 describes the baseline model in detail, while Section 5.2.2 discusses

tables and figures summarising the findings associated with Type I errors and

statistical power.
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5.2.1 Description of baseline model

There are M = 1000 datasets simulated from a 5 state model based on the

mixture approach. We have S = {1, 2, 3, 4, 5}, S+ = {1, 2, 3} and V =

{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (3, 5)}. Figure 5.2 depicts the multi-state model.

There are 5000 patients in each treatment arm, and the numbers alongside the

arrows depict the average number of observed transitions.

For each possible transition (i, j) in V, we have Weibull sojourn time hazard

functions (as described in Section 5.1.2). We choose sample size m = 10000 and

m = 1000 for each dataset, the former to assess large sample properties and the

latter to assess real-world performance. There are an equal proportion of individuals

in each of active and control treatment (Z = 1 and Z = 0 respectively), with

parameters chosen differently based on treatment arm (more details are below).

The parameter vector has length 30 with values as per Table 5.1 below.

p12 a12 a13 b12 b13
0.47 8 20 0.791 0.899
p23 a23 a24 b23 b24

Z = 0 0.32 4.2 17.5 0.903 0.939
p34 a34 a35 b34 b35
0.7 5.1 2.1 0.957 0.903
p12 a12 a13 b12 b13
0.3 5 41 0.709 0.905
p23 a23 a24 b23 b24

Z = 1 0.2 2.3 35 0.784 0.887
p34 a34 a35 b34 b35
0.7 13.9 1.1 0.256 0.475

Table 5.1: (Baseline model) Chosen parameter values for the simulated data with
Weibull sojourn time hazard functions.

In almost every state, the shape parameters are specifically chosen to be close to

unity, so that event times associated with each transition are “close” to exponential.

The exception is in state 3 for the active treatment group (Z = 1), as this state is a

main focus for analysis. The shape parameters in state 3 associated with the active

treatment arm are significantly below unity, which leads to significant differences

between the survival functions of the holding time in both treatment arms (see
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(a) Z = 0

(b) Z = 1

Figure 5.2: (Baseline) 5-state model with six possible transitions depicting the
baseline model. There are 5000 patients in each treatment arm, and the numbers
alongside the arrows depict the average number of observed transitions.

Figure 5.3 for an illustration). The results will show that there is a large amount of

patient benefit to be found by patients in active treatment (Z = 1) who reach state

3. The case where the state 3 shape parameters are closer to unity (so that there is

relatively less benefit for patients in active treatment) is discussed in Section 5.4.

Note that even though the transition probability for 3 → 4 is identical for each

treatment arm, the different hazard rates for 3 → 4 and 3 → 5 for each treatment

arm lead to different survival functions of holding time in state 3. The survival

functions of holding times in states 1 and 2 do not have significant differences

between treatment arms and will not be discussed. The respective figures of the

102



Figure 5.3: True survival functions of holding times for each treatment arm in state
3 for baseline model.

survival functions of holding time in states 1 and 2 can be found in Section B.1.

To summarise, the key features of the data simulated from this model are that

the active and control treatment arms have no significant differences in how quickly

they leave any state except for state 3, with easily detectable differences in the

rate at which they leave it. The transitions all have Weibull hazard functions for

given transitions i → j, with shape parameters bij close to unity (mostly slightly

less than 1), except in state 3 where the shape parameters are significantly lower.

As discussed in Section 5.1.3, for Test B1 we are concerned with t0, the interior

point of intersection of the two survival functions of holding time associated with

state 3 such that gB1(θ) = 0. For Test B2 we are concerned with t∗, which is

the value of t1 such that gB2(θ) = 0. In this setup, gB1(θ) ≈ 0 when t0 ≈ 0.272.

Figure 5.4a shows this visually by means of a plot of the values of gB1(θ) as a

function of time. Furthermore, we have that gB2(θ) ≈ 0 when t1 = t∗ ≈ 0.353.

Figure 5.4b illustrates this by showing a plot of gB2(θ) as a function of time. We

note that the function gB1, as a function of time, has a global maximum. This
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(a) (Baseline) Plot of gB1(θ) as a function of time. The vertical red line is at t0 ≈ 0.272
which leads to gB1(θ) ≈ 0.

(b) (Baseline) Plot of gB2(θ) as a function of time. The vertical red line is at t0 ≈ 0.353
which leads to gB2(θ) ≈ 0.

Figure 5.4: (Baseline) Both gB1(θ) and gB2(θ) as functions of time. The function
values are calculated using the true parameter values of θ.
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means that the power of Test B1 may not be monotonic (non-decreasing). On

the other hand, the function gB2 is non-decreasing and so we should expect the

power of Test B2 to be monotonic (non-decreasing).

5.2.2 Results

Test A

Table 5.2 summarises the results for Test A associated with the baseline setup.

We can see from the first column of Table 5.2 that, regardless of sample size, the

empirical type I error rates look sensible for the most part. The empirical type I

error rates seem a little low relative to the respective nominal levels in some cases

when fitting the correctly-specified model to the data, but this is most likely due to

sampling variability. This issue can most likely be mitigated by choosing a larger

value for the number of simulated datasets (M) and therefore reducing the Monte

Carlo standard error of the simulation. We note that datasets of different sample

sizes were simulated to verify the value of the empirical type I error rate in this

case and we did not find this anomaly to be a consistent issue.

Figure 5.5 shows the distributions of gA(θ̂) for each model fit and sample size.

The thick black line is the theoretical asymptotic Gaussian distribution of gA(θ̂),

while the dotted blue, brown, and orange lines are that for the Weibull, exponential,

and gamma fits respectively. The variance of the asymptotic Gaussian distribution

of gA(θ̂) is approximated by taking the inverse of the negative average of M = 1000

numerical Hessian matrices as reported by Rsolnp ([Ghalanos and Theussl, 2015]).

The vertical red line denotes the true value of the difference in average total sojourn

time, gA(θ).

One observation is that we have almost identical distributions of gA(θ̂) when the

exponential and gamma model fits are concerned. It is noted that these misspecified

models add bias to our estimates – this is more apparent when m = 1000. For

m = 1000, even the correct Weibull model fit appears to add some positive skew

to the shape of the distribution. This suggests that a sample of size m = 1000 may
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Figure 5.5: (Baseline) Distribution of gA(θ̂), for each of m = 10000 and m =
1000. The thick black lines are the respective theoretical asymptotic Gaussian
distributions with variances approximated by taking the inverse of the negative
average of M = 1000 numerical Hessian matrices while the dotted blue, brown,
and orange lines are estimated densities for the Weibull, exponential, and gamma
fits respectively. The vertical red lines denote the true values of the average total
sojourn time, gA(θ), in each case.
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be insufficient in this scenario to assume that gA(θ̂) is approximately Gaussian-

distributed. The non-Gaussian shape of the distribution of the test statistic is most

likely caused by some of the rarer transitions relative to the total sample size.

Despite these observations, the second column of Table 5.2 shows that we are

still able to correctly reject H0 when there is a clear difference in the average

total sojourn time between treatment arms. This is regardless of the sample size.

Overall it would appear that model misspecification is not a major detriment in

this scenario, when Test A is concerned. This is because the estimates seem to be

robust enough to capture the fact there is significant positive benefit for patients

in active treatment.

Test B

Table 5.3 and Table 5.4 summarise the results for Test B1 and Test B2, respec-

tively. It is evident from the first column of each table that Weibull model fit

results in sensible values for empirical type I error rates, but the exponential and

gamma model fits lead to values which are very high. In fact, the empirical type

I error rates are close to one in most cases, regardless of sample size. Figure 5.6

illustrates the reason for this. It shows the true survival function of the holding

time in state 3 for each treatment arm (thick black lines) while the blue, brown,

and orange lines depict the average of the M = 1000 parametric fits associated

with the Weibull, exponential and gamma models respectively.

It can be observed that all the models fit the survival function of the holding

time for the control treatment arm (Z = 0) well, but the exponential and gamma

models are very poor fits for the survival function associated with the active

treatment arm (Z = 1). Neither model is able to fully capture the fact that the

rate of leaving state 3 is decreasing with time when the active treatment arm

is concerned. Thus, at t0 = 0.272, both gB1(θ̂) and gB2(θ̂) are unambiguously

significantly positive under the exponential and gamma model fits. This is what

leads to the high rejection rates seen in the tables.
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Figure 5.6: (Baseline) Parametric model fits: the survival function of holding time
for each treatment arm in state 3, for each of m = 10000 and m = 1000. The thick
black lines are the true survival functions while the blue, brown, and orange lines
are that of the average of M = 1000 fits associated with the Weibull, exponential,
and gamma models respectively.
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It is for this reason that there are no sensible values of t80% in the second column

of each table whenever the exponential and gamma models are being considered,

as there is almost 100% rejection of H0 even at values of t << 0.272 (for Test

B1) and t1 << 0.353 (for Test B2) when patients in active treatment are actually

worse off due to having lower probabilities of being event-free. This can be seen in

Figures 5.7a and 5.7b which show the estimated power functions.

On the other hand, because the Weibull model fit of the survival function of

the holding time in state 3 is good when Z = 1, we have power functions which

look sensible since there does not seem to be significant rejection before each of

t = 0.272 (Test B1) or t1 = 0.353 (Test B2). The power of each test increases

only when we start to have positive deviation away from each of these two values.

Overall, it seems that Test B can be very sensitive to poor model fits and is not

robust to model misspecification.

See Section 5.5 for copies of Tables 5.2 – 5.4, displayed alongside tables associated

with the other model setups discussed this chapter.

5.3 Model with significant right-censoring

Section 5.3.1 describes the setup for a model similar to the baseline model, except

with a significant amount of right-censoring incorporated. Section 5.3.2 discusses

the findings and makes comparisons to the results in Section 5.2.2.

5.3.1 Description of model

The setup of this model is almost identical to that described in Section 5.2.1.

The only difference is that right-censoring is incorporated. Specifically, the data

are simulated using Algorithm 1 where there is a single random censoring time

simulated at the start of the semi-Markov process. Then, the SMP is allowed to

evolve until either an absorbing state is reached, or the censoring time is exceeded

before an absorbing state is reached. If the censoring time is exceeded before an
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(a) Estimates of power of Test B1 as a function of time.

Figure 5.7: (Baseline) Estimates of test power associated with Test B as described
in Section 5.1.3.
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Figure 5.7: (Baseline) Estimates of test power associated with Test B as described
in Section 5.1.3.
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absorbing state is reached, the last (non-absorbing) observed state is noted and

the time spent in that state is the right-censoring time in that state.

The distribution of the censoring time generated at the start of the SMP is

chosen to be Uniform(0.05, 1.5). The parameters of this distribution are chosen

deliberately such that the proportion of patients censored in state 3 is relatively

large. This setup would represent an example of a clinical trial which is too short.

As before, there are 5000 patients in each treatment arm. Figure 5.8 shows the

average number of transitions for each i → j as well as the average numbers

censored in each non-absorbing state. The numbers alongside the arrows depict

the average number of observed transitions, while the numbers in brackets in the

boxes depict the average numbers right-censored in those states.

We can see that an average of roughly 6853 patients reached state 3, of which

roughly an average of 1571 were censored there. This is a censoring rate of roughly

22.9% in state 3 given that patients reach state 3, and a censoring rate of roughly

15.7% in state 3 overall. Furthermore, by comparing with Figure 5.2, we can see

that the number of observations associated with 3 → 5 is reduced drastically. This

is because many of such observations have been right-censored due to the fact

that the parameters associated with 3 → 5 are associated with a much lower rate

of transition out of state 3. This means that patients associated with transition

3 → 5 are having much larger transition times compared to their peers who

experience transition 3 → 4. It will be seen in Section 5.3.2 that, whenever there is

model misspecification, this will lead to very different results as compared to those

obtained in Section 5.1.3.
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(a) Z = 0

(b) Z = 1

Figure 5.8: 5-state model with six possible transitions depicting the baseline model
with censoring. Figure 5.2 depicts the multi-state model. There are 5000 patients
in each treatment arm. The numbers alongside the arrows depict the average
number of observed transitions, while the numbers in brackets in the boxes depict
the average number right-censored in those states.
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5.3.2 Results and comments

Test A

The results for Test A are summarised in Table 5.5. We observe that we are

rejecting H0 when we should be – in the case of m = 10000 we have 100% rejection

rate regardless of fit and regardless of α, while for m = 1000 we have well above

80% rejection rate for α = 0.05 and α = 0.10.

Figure 5.9 shows the distributions of gA(θ̂) for each model fit, as before. The

bold black line is associated with the theoretical Gaussian asymptotic variance

of the estimator gA(θ̂) (which takes the censoring into account). However, this

time the estimated distributions look different from before. Regardless of sample

size, we notice a relatively large variance when the Weibull fit is concerned, and

there is a larger amount of (negative) bias associated with the misspecified models.

Another interesting observation is that the variance of gA(θ̂) associated with the

exponential fit has much smaller variance than that of the other fits, though the

bias is the largest.

Further investigation reveals that the Weibull parameter estimates associated

with Z = 1 and state 3 (where the right-censoring rate is the highest and 3 → 5 is a

rare transition) have a high amount of variability when m = 1000, especially for the

rate parameters. Furthermore, histograms of these rate parameters (Figure 5.10)

depict positively-skewed distributions as opposed to approximate Gaussian distri-

butions. Based on this, it is most likely that the variances associated with the

respective asymptotic Gaussian distributions are not well-approximated by using

the inverse of negative average of M = 1000 numerical Hessian matrices, and so the

results in Table 5.5 for the Weibull fit are likely to be unreliable when m = 1000.

As previously mentioned, this particular scenario depicts a clinical trial which

ends too prematurely. These findings emphasise the importance of ensuring clinical

trials are not ended too prematurely. This point is further discussed in Section 7.1.
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Figure 5.9: (Baseline with censoring) Distribution of gA(θ̂), for each of m = 10000
and m = 1000. The thick black lines are the respective theoretical asymptotic
Gaussian distributions with variances approximated by taking the inverse of the
negative average of M = 1000 numerical Hessian matrices while the dotted blue,
brown, and orange lines are estimated densities for the Weibull, exponential, and
gamma fits respectively. The vertical red lines denote the true value of the average
total sojourn time, gA(θ), in each case.
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Figure 5.10: (Baseline with censoring) Distribution of M = 1000 Weibull rate
parameter estimates associated with Z = 1 and state 3 for m = 1000. The vertical
red lines denote the true parameter values. It can be seen that the maximum
likelihood parameter estimates show a large amount of variability and do not look
approximately Gaussian.

Test B

Table 5.6 and Table 5.7 summarise the results for Test B1 and Test B2 respectively.

Noting that the results form = 1000 may be unreliable as per the findings associated
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with Test A, the first column of both tables 5.6 and 5.7 show sensible empirical type

I error rates for the Weibull model fit. However, surprisingly, we no longer observe

the unusually high values of ε associated with the misspecified models as seen in

Table 5.3. In fact, they look reasonable save for a few larger values associated with

α = 0.10. Figure 5.11 might offer a reasonable explanation – it appears that the

estimated survival functions of holding time in state 3 associated with misspecified

models are closer to their true values as compared to the baseline model (compare

this with Figure 5.6). The reason for this is most likely because of the observation

in Section 5.3.1 that a larger proportion of censored observations are associated

with transition 3 → 5 and these right-censored observations are associated with

very large transition times. In fact, for these misspecified models the average of

M = 1000 estimates of p34 for Z = 1 is consistently under-estimated (with average

values close to 0.50) when the true value is 0.7. Equivalently, p35 = 1 − p34 is

consistently over-estimated for Z = 1. The fact that so many of the large transition

times (associated with 3 → 5) are unobserved is leading to poor estimates of all

the parameters associated with state 3. See Appendix A for further exploration

and discussion of this result.

Despite this phenomenon, we find that we have sensible-looking power functions

as per Figures 5.12a and 5.12b. However, it seems that the results cannot be trusted

due to the aforementioned observations. It would appear that the detrimental

effects of misspecification on Test B are exacerbated greatly by significant amounts

of right-censoring. Once again, these results demonstrate that the effects of model

misspecification might be greatly exacerbated in certain scenarios where clinicial

trials end too prematurely. This point is discussed in Section 7.1.

See Section 5.5 for copies of Tables 5.5 – 5.7, displayed alongside tables associated

with other model setups discussed in this chapter.
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Figure 5.11: (Baseline with censoring) Parametric model fits: the survival function
of holding time for each treatment arm in state 3, for each of m = 10000 and
m = 1000. The thick black lines are the true survival functions while the blue,
brown, and orange lines are that for the average of M = 1000 fits associated with
the Weibull, exponential, and gamma models respectively.
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(a) Estimates of power of Test B1 as a function of time.

Figure 5.12: Estimates of power of Test B as described in Section 5.1.3.
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(b) Estimates of power of Test B2 as a function of time.

Figure 5.12: Estimates of power of Test B as described in Section 5.1.3.
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5.4 Model with significantly reduced patient ben-

efit

Section 5.4.1 describes the setup for a model similar to the baseline model, except

with less detectable benefit in addition to right-censoring. Section 5.4.2 discusses

the findings and makes comparisons to the results in the previous Sections 5.2.2

and 5.3.2.

5.4.1 Description of model

The setup of this model is almost identical to that described in Section 5.2.1, except

now the amount of potential benefit to patients in the active treatment arm (Z = 1)

is altered. This is achieved by increasing the values of shape parameters associated

with state 3 so that patients transition out of state 3 more quickly as compared

to the baseline model. For Z = 1, the new shape parameters are now b34 = 0.630

(increased from b34 = 0.256) and b35 = 0.835 and (increased from b35 = 0.475).

The same Uniform(0.05, 1.5) distribution is chosen to simulate censoring times

for each individual at the start of the SMP. We can see from Figure 5.13 that an

average of roughly 6848 patients reached state 3, of which an average of roughly

1281 were censored there. This is a censoring rate of roughly 18.7% in state 3 given

that patients reach state 3, and a censoring rate of roughly 12.8% in state 3 overall.

This is less than that of the baseline model with censoring as per Section 5.3.2

(22.9% and 15.7% respectively). This is unsurprising, since we know that patients

leave state 3 at a faster rate in this model compared to the baseline model.

Since the model parameters have changed, the survival functions of holding

times in state 3 between both treatment arms have less significant differences.

Consequently, values of gA(θ), gB1(θ), and gB2(θ) have reduced overall. The new

set of survival functions of holding time for each treatment arm can be seen in

Figure 5.14. Figures 5.15a and 5.15b, respectively, show the new values of gB1(θ)

and gB2(θ) as functions of time (solid lines). The dashed lines are the associated
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(a) Z = 0

(b) Z = 1

Figure 5.13: 5-state model with six possible transitions depicting the model with
less benefit and with censoring. There are 5000 patients in each treatment arm. The
numbers alongside the arrows depict the average number of observed transitions,
while the numbers in brackets in the boxes depict the average number right-censored
in those states.
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values of each quantity as per the baseline model. Now, we have t0 = 0.425 which

gives rise to gB1(θ) ≈ 0 and t∗ ≈ 0.764 which gives rise to gB2(θ) ≈ 0.

Figure 5.14: True survival functions of holding times in states 3 for model with
less detectable benefit.

An interesting consequence of choosing the shape parameters as such is that

now the conditional distributions associated with every possible i → j are all “close”

to exponential. This is because now every shape parameter is not much smaller

than unity. This will have an impact on our results in Section 5.4.2.
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(a) (Less benefit and with censoring) Plot of gB1(θ) as a function of time. The red vertical
line is at t0 = 0.425 which leads to gB1(θ) ≈ 0. The dashed line is gB1(θ) associated
with the baseline model.

(b) (Less benefit and with censoring) Plot of gB2(θ) as a function of time as per the solid
line. The vertical red line is at t = 0.764 which leads to gB2(θ) ≈ 0. The dashed line is
gB2(θ) associated with the baseline model.

Figure 5.15: (Less benefit and with censoring) Plots of gB1(θ) and gB2(θ) as
functions of time. The function values are calculated using the true parameter
values of θ.
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5.4.2 Results and comments

Test A

Now that there is less detectable benefit together with censoring, we make a few

interesting observations. First, by comparing Figure 5.9 and Figure 5.16, we observe

that the estimates of gA(θ) seem to have less variation than in the previous models.

This is likely due to the fact that there are no obvious issues in the parameter

estimates associated with state 3 that were observed in Section 5.3.2. Reducing

the values of the shape parameters associated with Z = 1 and state 3 reduced

the rate of right-censoring, which likely led to less uncertainty in the parameter

estimates. Also, since the hazard rates associated with each given i → j are “close”

to exponential as previously highlighted, the effects of model misspecification are

also likely to be less significant. However, inspection of Figure 5.16 suggests it is

still the case that negative bias is introduced for the misspecified models.

Another observation is that, because the amount of detectable benefit is rela-

tively small, the power of the test reduces. The fact that the amount of detectable

benefit is small can be observed from Figure 5.16, where the true value of gA(θ) is

relatively close to zero.

We see from the second column of Table 5.8 that we fail to attain 80% rejection

rate for any α associated with the exponential model fit when m = 10000. A

similar observation is made for every model fit when m = 1000.
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Figure 5.16: (Less benefit and with censoring) Distribution of gA(θ̂), for each of
m = 10000 and m = 1000. The thick black lines are the respective theoretical
asymptotic Gaussian distributions with variances approximated by taking the
inverse of the negative average of M = 1000 numerical Hessian matrices while
the dotted blue, brown, and orange lines are estimated densities for the Weibull,
exponential, and gamma fits respectively. The vertical red lines denote the true
value of the average total sojourn time, gA(θ), in each case.

133



Test B

The results for Test B are similar, if not worse, than seen in the results for Test A.

One observation from the left columns of tables 5.9 and 5.10 is that empirical type I

error rates are far from the true value of α whenever the model is misspecified. We

also don’t have as much power as the previous models, even when m = 10000. This

can be seen from the relative values of t80%− t0 for Test B1 (top row, right column

of Table 5.9) and t80% − t∗ for Test B2 (top row, right column of Table 5.10)

respectively. This can also be observed visually in the top part of Figure 5.18a for

Test B1 and especially in the top part of Figure 5.18b for Test B2.

Looking at the bottom row, right column of Table 5.10: the situation is worse

still when m = 1000 since we cannot attain at least 80% rejection rate for any

model when Test B2 is concerned. The bottom part of Figure 5.18b shows that

the power remains constant at around 60% as t gets larger. Considering that

Figure 5.15b suggests that gB2(θ) is monotonic non-decreasing and concave (the

integral cannot be decreasing after t = 0.764 for the model with less benefit), it

makes sense that if there is insufficient benefit to detect then waiting for longer

will not change anything with respect to test power.

On the other hand, for Test B1 (m = 1000), we observe from the bottom row,

right column of Table 5.9 that there are a few cases where we attain a valid value of

t80%, but inspecting Figure 5.18a shows that there is at least 80% rejection only in

specific time intervals. This result makes sense since we can see from Figure 5.15a

that gB1(θ) (as a function of time) has a global maximum for some t close to 1.

Hence, maximum benefit is detected only close to t = 1 in this case.

Despite these observations, we note that we are estimating the survival functions

of the holding time in state 3 correctly, on average. This can be seen from Figure 5.17.

The reasons for this are as discussed in the beginning of this section, during the

discussion of the results associated with Test A.

See Section 5.5 for copies of Tables 5.8 – 5.10, displayed alongside tables

associated with the other model setups discussed in this chapter.
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Figure 5.17: (Less benefit with censoring) Parametric model fits: the survival
function of holding time for each treatment arm in state 3, for each of m = 10000
and m = 1000. The thick black lines are the true survival functions while the blue,
brown, and orange lines are that for the average of M = 1000 fits associated with
the Weibull, exponential, and gamma models respectively.
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(a) Estimates of power of Test B1 as a function of time.

Figure 5.18: (Less benefit and with censoring) Estimates of power of Test B as
described in Section 5.1.3
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(b) Estimates of power of Test B2 as a function of time.

Figure 5.18: (Less benefit and with censoring) Estimates of power of Test B as
described in Section 5.1.3
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5.5 Copies of Test A and Test B summary tables

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.007 0.037 0.083 ρ (Weibull) 1 1 1

ε (Exp.) 0.009 0.049 0.098 ρ (Exp.) 0.989 0.996 0.997
ε (Gamma) 0.007 0.046 0.093 ρ (Gamma) 0.998 0.998 0.998

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.007 0.033 0.080 ρ (Weibull) 1 1 1

ε (Exp.) 0.009 0.049 0.098 ρ (Exp.) 0.988 0.993 0.994
ε (Gamma) 0.008 0.039 0.078 ρ (Gamma) 1 1 1

Table 5.11: (Baseline, Test A) Copy of Table 5.2

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.008 0.044 0.093 ρ (Weibull) 1 1 1

ε (Exp.) 0.008 0.049 0.106 ρ (Exp.) 1 1 1
ε (Gamma) 0.006 0.051 0.086 ρ (Gamma) 1 1 1

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.003 0.034 0.081 ρ (Weibull) 0.473 0.876 0.967

ε (Exp.) 0.006 0.048 0.091 ρ (Exp.) 0.818 0.952 0.982
ε (Gamma) 0.003 0.040 0.092 ρ (Gamma) 0.192 0.944 0.994

Table 5.12: (Baseline with censoring, Test A) Copy of Table 5.5

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.018 0.045 0.094 ρ (Weibull) 0.789 0.942 0.969

ε (Exp.) 0.013 0.051 0.100 ρ (Exp.) 0.374 0.627 0.745
ε (Gamma) 0.013 0.045 0.107 ρ (Gamma) 0.689 0.893 0.954

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.002 0.044 0.090 ρ (Weibull) 0.01 0.165 0.333

ε (Exp.) 0.005 0.055 0.109 ρ (Exp.) 0.018 0.136 0.239
ε (Gamma) 0.003 0.045 0.091 ρ (Gamma) 0.010 0.157 0.302

Table 5.13: (Less benefit with censoring, Test A) Copy of Table 5.8

140



Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.005 0.050 0.090 t80% (Weibull) 0.32 0.31 0.30

ε (Exp.) 0.997 0.998 1 t80% (Exp.) - - -
ε (Gamma) 0.998 0.999 0.999 t80% (Gamma) - - -

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.006 0.043 0.099 t80% (Weibull) 0.42 0.38 0.37

ε (Exp.) 0.997 0.997 0.999 t80% (Exp.) - - -
ε (Gamma) 0.828 0.943 0.978 t80% (Gamma) - - -

Table 5.14: (Baseline, Test B1) Copy of Table 5.3

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.004 0.038 0.094 t80% (Weibull) 0.32 0.31 0.31

ε (Exp.) 0.004 0.024 0.062 t80% (Exp.) 0.33 0.32 0.31
ε (Gamma) 0.016 0.081 0.169 t80% (Gamma) 0.32 0.31 0.30

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.012 0.047 0.101 t80% (Weibull) 0.46 0.41 0.39

ε (Exp.) 0.002 0.055 0.100 t80% (Exp.) 0.43 0.38 0.36
ε (Gamma) 0.021 0.064 0.123 t80% (Gamma) 0.46 0.41 0.38

Table 5.15: (Baseline with censoring, Test B1) Copy of Table 5.6

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.004 0.038 0.094 t80% (Weibull) 0.32 0.31 0.31

ε (Exp.) 0.004 0.024 0.062 t80% (Exp.) 0.33 0.32 0.31
ε (Gamma) 0.016 0.081 0.169 t80% (Gamma) 0.32 0.31 0.30

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.012 0.047 0.101 t80% (Weibull) 0.46 0.41 0.39

ε (Exp.) 0.002 0.055 0.100 t80% (Exp.) 0.43 0.38 0.36
ε (Gamma) 0.021 0.064 0.123 t80% (Gamma) 0.46 0.41 0.38

Table 5.16: (Less benefit with censoring, Test B1) Copy of Table 5.9
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Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.005 0.050 0.091 t80% (Weibull) 0.45 0.43 0.42

ε (Exp.) 0.997 0.998 1 t80% (Exp.) - - -
ε (Gamma) 0.998 0.999 0.999 t80% (Gamma) - - -

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.006 0.043 0.101 t80% (Weibull) 0.72 0.62 0.57
t80% (Exp.) 0.997 0.997 0.999 t80% (Exp.) - - -
ε (Gamma) 0.832 0.945 0.977 t80% (Gamma) - - -

Table 5.17: (Baseline, Test B2) Copy of Table 5.4

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.004 0.038 0.094 t80% (Weibull) 0.46 0.44 0.43

ε (Exp.) 0.005 0.034 0.079 t80% (Exp.) 0.48 0.45 0.44
ε (Gamma) 0.017 0.082 0.173 t80% (Gamma) 0.42 0.43 0.46

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.012 0.046 0.094 t80% (Weibull) 0.83 0.69 0.62
t80% (Exp.) 0.021 0.059 0.106 t80% (Exp.) 0.75 0.61 0.55
ε (Gamma) 0.022 0.063 0.126 t80% (Gamma) 0.84 0.68 0.62

Table 5.18: (Baseline with censoring, Test B2) Copy of Table 5.7

Type I error Power
(m = 10000) (m = 10000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.013 0.047 0.102 t80% (Weibull) 1.22 1.08 1.03

ε (Exp.) 0.001 0.008 0.018 t80% (Exponential) 1.31 1.17 1.11
ε (Gamma) 0.002 0.020 0.044 t80% (Gamma) 1.26 1.12 1.06

Type I error Power
(m = 1000) (m = 1000)

α 0.01 0.05 0.10 α 0.01 0.05 0.10
ε (Weibull) 0.014 0.049 0.106 t80% (Weibull) NA NA NA
t80% (Exp.) 0.008 0.029 0.067 t80% (Exp.) NA NA NA
ε (Gamma) 0.007 0.037 0.087 ε (Gamma) NA NA NA

Table 5.19: (Less benefit with censoring, Test B2) Copy of Table 5.10
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5.6 Related quantities of interest

As mentioned in Section 4.3, it is helpful to consider other quantities of interest in

assessing patient benefit, as average total sojourn times and survival functions of

the holding time in particular states do not give a complete picture. We present

results associated with the simulated data and show some potential effects of model

misspecification and insufficient sample size. It is worth noting once again that the

utility of the methods in this section (or any other method involving such functions

of θ) is that one can quantify uncertainty by constructing confidence intervals

derived using the delta method.

We might be interested in another state besides state 3 and want to investigate,

for example, the expected value of η, where η is defined as the sojourn time given

passage through state 2 before being absorbed. We can use equation (4.10) for this

and compute the expected values E(η|Z = 0) and E(η|Z = 1) relatively easily. We

are able to, if desired, investigate the quantities separately instead of studying the

difference in means (through gA(θ̂)). Table 5.20 shows the results. The expected

values estimated from the M = 1000 sets of parameter estimates associated with

Weibull, gamma, and exponential model fits can be compared with the true values.

The estimates reported are the sample means of the M = 1000 estimates of

E(η|Z = z), denoted η̄|Z = z for z ∈ {0, 1}. The numbers in parentheses are

95% (parametric) bootstrap confidence intervals for the respective expected values,

given by the 0.025 and 0.975 sample quantiles (respectively) of the bootstrap

sample. The quantile function in R is used for this purpose. See [Efron, 1979]

and [Efron, 1982] for details about the bootstrap method, and [Efron, 1985] for

details about bootstrap confidence intervals.

Table 5.20 shows η̄|Z = z, for both sample sizes m = 10000 and m = 1000 for

all three models. We observe that the expectation of η is underestimated in the

cases where the model is misspecified, with the exponential model performing worst.

Furthermore, there is relatively larger bias and variance in the estimates associated

with E(η|Z = 1). These results are consistent with the results seen in the previous
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Sections 5.1.3, 5.3.2, and 5.4.2 when discussing Test A. Figure 5.19 below shows

the distributions associated with M = 1000 estimates of the expected sojourn time

given passage through state 2, where one can see a visual representation of the

results reported in Table 5.20. The vertical red lines are the respective true values

while the blue, orange, and brown lines are estimated densities under the Weibull,

gamma, and exponential model fits respectively.

We are also able to visualise the state occupancy probabilities of the baseline

model similarly to that shown in the example in Section 4.3.3. Figure 5.20 below

shows, for each of Z = 1 and Z = 0, the visualisations associated with the true

state occupancy probabilities. The state occupancy probabilities for both states

4 and 5 are combined for convenience, since they are the only absorbing states.

It would be possible to analyse the state occupancy probabilities of each of these

states separately, especially if one of the states can be considered more undesirable

than the other. See Section 7.1 for a discussion of composite outcomes in clinical

trials.

We observe that individuals in the active treatment arm (Z = 1) have a

relatively lower chance of ending up in any absorbing state by a given time as

compared to their peers in control treatment (Z = 0). This is consistent with the

setup and how the hazard rate of exiting state 3 is reducing with time. We observe

that at around t = 3, there is still a small but significant chance of being in state 3

for individuals with Z = 1 as compared to their peers with Z = 0.
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Figure 5.19: (Baseline) The distribution associated with each estimated expected
sojourn time given passage through state 2, derived from M = 1000 estimates
of E(η|Z = z). The red vertical lines represent E(η|Z = 0) (dotted line) and
E(η|Z = 1) (solid line). The estimated density functions under the true Weibull
model fit, gamma model fit, and exponential model fit are in blue, orange, and red
respectively.
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Figure 5.20: (Baseline) Visualising the state occupancy probabilities associated
with the true model.
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5.7 Further discussion

In this section, we summarise the results of the simulation study in this chapter.

Note that discussions of statistical power in this section are in the context of a given

value of α (either 0.01, 0.05, or 0.10). The type I error is reasonably controlled

for since the empirical probability of type I errors are reasonably close α when the

true (Weibull) model is fitted.

Overall, it seems that both Test A and Test B have different uses, and

different advantages and drawbacks. For example, we observe that Test A is

largely robust to model misspecification, despite the misspecification causing bias

and potentially increasing the variance of gA(θ̂). Whenever there is benefit to

detect (in the form of a significant difference in total average sojourn times), the

test works reasonably well. Aside from the baseline model with censoring where

the model fits for m = 1000 were suspect, the only scenario where Test A started

to show major issues was in the model with less benefit and censoring, where the

test had difficulty detecting the relatively small amount of benefit therein.

On the other hand, Test B was more problematic with respect to model

misspecification. It was not robust in many cases, and did not seem to give reliable

results except when the model was correctly specified. Once again, the test could

not easily discern whether there was benefit in the model with less detectable

benefit, especially when m = 1000. Test B1, while likely less useful in practice,

was relatively better in detecting differences in the survival function at specific

time points. Test B2, which is more useful due to the ability to choose a time

interval of interest rather than a specific time point, was less sensitive to differences

in “overall” patient benefit in the interval of interest.

The related quantities of interest as per Section 5.6 also allow us to focus on

specific states of interest and to have a clearer picture of patient benefit. For

example, we can see from the visualisation of the state occupancy probabilities

(Figure 5.20) that patients in active treatment (Z = 1) take significantly longer to

reach an absorbing state. In an actual clinical trial, this would be evidence of clear
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benefit to patients since they might be able to remain in active treatment while

avoiding undesirable absorbing states (such as “death” or “loss to follow-up”) for

as long as possible.

As noted in Section 5.3.2, a significant rate of censoring impacts the results very

much, even when the sample size is large (m = 10000). When m = 1000, even the

model fit for the correctly-specified model suffered. This is partly due to the fact

that states which are more likely to be reached later on may have smaller relative

sample size and more individuals right-censored there if the observation period of

the clinical study is not long enough. From the results, we can see that proper

model specification, large sample sizes, and sufficiently long observation periods

all play a role in ensuring reliable results. It is worth stressing that there may be

cases where data with sample sizes smaller than m = 1000 might show sufficient

evidence of patient benefit, provided the benefit is relatively large. We do see

some evidence of this in certain states associated with the real dataset discussed in

Chapter 6. However, this is difficult to determine a priori when planning clinical

studies. However, as mentioned at the beginning of this chapter, it is not unsual to

find m >> 1000 in oncological clinical trials. Further discussion about these issues

can be found in Section 7.1.
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Chapter 6

Results: Application to real data

This section shows the methods applied to a real clinical dataset originating in

continental Europe. A data sharing agreement has been signed by the clinical

owners of the data, but the identity of the clinical study data cannot be shared in

this thesis.

We start with a brief description of the data in Section 6.1. Then, analysis of the

data is in Section 6.2, where we discuss both the Cox proportional hazards model

(as it might be implemented to ascertain relative differences in drug efficacy), and

the Fine-Gray proportional hazards model (as it might be implemented to ascertain

absolute differences in drug efficacy). We also consider a semi-Markov multi-state

model to ascertain patient benefit, by first carrying out some exploratory analysis

before performing variations of Test A and Test B. Section 6.3 discusses the

findings.

6.1 Setup

The original purpose of the study associated with this data was to try and determine

whether a modified treatment regime (denoted by Z = 1) leads to any advantages

over a standard treatment regime (denoted by Z = 0). This dataset consists of

m = 366 cancer patients in 2 treatment arms, with equal proportion. There are a

total of 114 censored observations, of which 68 are associated with the standard
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treatment arm and 46 are associated with the modified treatment arm. All patients

had solid tumours, which were radiologically verified. The first and last entries

into the database were recorded on July 2010 and January 2015 respectively. The

median follow-up time was recorded as 21.6 months. The study protocol was

reviewed by an institutional review board, and all participants gave informed

consent.

In Section 6.2, the Cox and Fine-Gray proportional hazard models are both

fitted to the data to provide a reference point. Then, after fitting the semi-Markov

multi-state model, we have taken a parametric bootstrap approach in assessing

the proposed hypothesis tests and supplementary quantities of interest. In other

words, we assume that the estimated model is a good fit and the simulate 1000

datasets from the (assumed) true model. See [Efron, 1979] and [Efron, 1982] for

details about the bootstrap method

The aim is to use the estimated distributions of the corresponding test statistics

to draw conclusions about patient benefit. Right-censoring is incorporated into

the simulated data by first estimating (from the real data) the probability of being

censored in a particular state (given the state is reached) and then carrying out a

binomial experiment to decide if a given individual is censored after reaching that

state. The censoring time is then decided by simulating a censoring time from a

Weibull distribution fitted to the (true) censored event times in each state.

The description and results associated with each of Test A and Test B are in

Section 6.2.3.

6.2 Data analysis

6.2.1 Cox proportional hazards model

First, we consider a simple traditional analysis similar to that undertaken in most

clinical trials, where we consider if there are differences between the treatment

arms with respect to progression-free survival (PFS) and overall survival (OS).
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PFS is defined as the time taken until cancer progression, and “death” times are

treated as right-censored times with respect to “progression” times as per standard

competing risks methodology. OS is defined as the time taken until patient death.

Note that there is no competing risk when considering OS since every patient will

eventually die.

A Cox proportional hazards model of the form hP(t|Z) = hP,0(t) exp(βPZ) is

fitted for PFS. For OS, a similar model of the form hO(t|Z) = hO,0(t) exp(βOZ) is

fitted. The results are obtained using the survival package [Therneau, 2023] in

R, and shown in Table 6.1 below. The results suggest that there is no difference

between modified and standard treatment regimes when it comes to PFS, though it

seems that modified treatment adversely affects overall survival. Figure 6.1 below

shows Kaplan-Meier plots to visualise the differences between treatment arms.

Estimate Hazard ratio
βP 0.1317 (0.349) 1.1407 (0.866, 1.503)
βO 0.2860 (0.024) 1.3311 (1.038, 1.706)

Table 6.1: (Real data) Estimates and hazard ratios for the Cox PH models specified
for the data. Subscripts P and O denote progression-free and overall survival
respectively. The numbers in parentheses for the estimates are p-values while
the numbers in parentheses for the hazard ratios are 95% asymptotic confidence
intervals.

6.2.2 Fine-Gray proportional hazards model

We could also do a similar analysis using the Fine-Gray proportional hazards

model. Now, we have hS
P(t|Z) = hS

P,0(t) exp(γPZ) and hS
O(t|Z) = hS

O,0(t) exp(γOZ)

for PFS and OS, respectively. The superscript S denotes the subdistribution hazard

function. The cmprsk package [Gray, 2022] is used in R to fit the models.

Table 6.2 shows the results. In this case, the overall conclusions are similar. The

results suggest that there is no difference between modified and standard treatment

when PFS is concerned, though it seems that modified treatment adversely affects

overall survival. Note that the results for OS are almost identical whether we use

the Cox model or Fine-Gray model. This is because there is only one possible
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transition (towards death) when considering overall survival, and therefore the Cox

and Fine-Gray models are equivalent i.e. βO = γO. The equivalence of the CS and

SD hazard functions when there are no competing risks can also be seen by using

equation (2.21) and setting K = 1.

Estimate Hazard ratio
γP 0.0611 (0.660) 1.0630 (0.809, 1.400)
γO 0.2860 (0.024) 1.3311 (1.040, 1.710)

Table 6.2: (Real data) Estimates and hazard ratios for the Fine-Gray PH models
specified for the data. Subscripts P and O denote progression-free and overall sur-
vival respectively. The numbers in parentheses for the estimates are p-values while
the numbers in parentheses for the hazard ratios are 95% asymptotic confidence
intervals.
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Figure 6.1: (Real data) Progression-free survival function and overall survival
function for each treatment arm.
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6.2.3 Semi-Markov multi-state model

On the other hand, we have sufficient information to build a semi-Markov multi-state

model which consists of 5 states. We have S = {1, 2, 3, 4, 5}, where each state in S

respectively describes “diagnosis/ongoing treatment”, “progressive disease type 1”,

“death”, “premature discontinuation of treatment”, and “progressive disease type 2”.

Patients continue to be followed-up on despite discontinuing treatment prematurely

(state 4) and thus it is not an absorbing state. Furthermore, there are 2 types of

progression defined. “Progression 1” (state 2) denotes progressive disease that was

detected while on active treatment (or within 4 weeks before or after treatment was

stopped prematurely), while “Progression 2 (state 5)” denotes progressive disease

that was detected at least 4 weeks after a premature discontinuation of treatment.

We have S+ = {1, 2, 4, 5} and V = {(1, 2), (1, 3), (1, 4), (2, 3), (4, 3), (4, 5), (5, 3)}.

Figure 6.2 depicts this model.

There are two important points to bring up at this juncture. First, we have

specified two different types of progressive disease states. One reason for this is

because we expect that there may be inherent biological differences between the

patients who progress without prematurely discontinuing treatment and the patients

who progress some time after having discontinued active treatment prematurely.

Specifically, there is the possibility that patients die at different rates depending

on which type of progression they experience. Since there is a chance that the

underlying transition probabilities and/or transition rates of patients may change

depending on their past history, we need to account for this carefully lest we violate

the Markov assumption. For example, if we combined both types of progression

and treated them as a single state, then we would be asserting (perhaps falsely)

that patients who progress all die at the same rate regardless of whether they

finished their full course of treatment or not. The second point to note is that,

in an ideal scenario, there should be an extra state in the model to account for

the patients who are lost to follow-up. The reason is that not accounting for

such patients (and instead treating them as right-censored as is usually done in
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(a) Z = 0

(b) Z = 1

Figure 6.2: (Real data) 5-state model with six possible transitions depicting the
real dataset (m = 366). The numbers in square brackets are the states as per S.
The numbers alongside the arrows depict the number of observed transitions while
the numbers in the round brackets are the number of right-censored observations.
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such studies) would cause a violation of the non-informative censoring assumption

which is important in such multi-state models. In this case, the dataset did not

distinguish between the right-censored individuals from the ones who were lost

to follow-up. The assumption made is that there is a relatively low number of

patients who are lost to follow-up. See Section 7.3 and Section 7.4 respectively for

more discussion on these points.

The data are stratified by treatment arm, and Weibull sojourn time hazard

functions are chosen for each transition i → j in a given sub-sample. Specifically,

we have

hij(t|Z = z) = bz,ijaz,ij
(
az,ijt)

bz,ij−1 (6.1)

for each of z = 0, 1. Here, az,ij and bz,ij respectively denote the rate and shape

parameter for given z and transition i → j.

Exploratory analysis

Figure 6.3 depicts the estimated survival functions of holding times in each of the

non-absorbing states. The dotted lines denote Z = 0 while the solid lines denote

Z = 1. The blue lines are the estimated function values based on the parametric

model fits, while the black stepped lines are estimated function values based on

the Kaplan-Meier estimator. The light green lines are confidence intervals derived

using the delta method.
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(a) Survival functions of the holding times in each of the non-absorbing states 1 and 2.

Figure 6.3: Survival functions of the holding times in each of the non-absorbing
states.
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(b) Survival functions of the holding times in each of the non-absorbing states 4 and 5.

Figure 6.3: (Real data) Survival functions of the holding times in each of the
non-absorbing states.
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We note that there does not appear to be any major differences between the

treatment arms when we consider the survival functions of the holding time in

states 1 (ongoing treatment) or 4 (premature discontinuation). However, there

seem to be differences between both treatment arms after patients arrive in either

of the progression states (states 2 or 5). Looking at the patients who progressed

without any premature discontinuation of treatment (state 2), it seems that patients

undergoing modified treatment (Z = 1) left state 2 at a faster rate than patients

in the standard treatment (Z = 0) arm. On the other hand, the situation is

potentially reversed for patients who progressed some time after having prematurely

discontinued treatment (state 5). Since there is only one exit out of each of the

progression states (towards death (state 3)), we might claim the possibility of

patients having benefit from the modified treatment regime only if they did not

fully complete the treatment. However, the conclusion is less certain since there is

some overlap in the confidence intervals associated with state 5.

It is unclear whether the treatment is beneficial for patients in state 1, since

there do not seem to be appreciable differences between the survival functions in

both treatment arms.

Without doing any formal analysis, we look more closely at patients in states 1

and 4, and we show cumulative incidence functions in Figure 6.4 below to determine

what happens to patients who reach these states. With respect to progression,

it seems that there might be some minor increase in rate of progression if one is

in the modified treatment arm, but it is not clear just by inspecting the figure.

On the other hand, after reaching state 4 (premature discontinuation), it seems

that that there is a significant-looking decrease in the rate of progression but a

significant-looking increase in the rate of death if one is in the modified treatment

arm. These estimated probabilities are conditional on reaching state 4, so other

quantities of interest may be more appropriate for making inference about patients

in general.
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Figure 6.4: (Real data) CIFs associated with transitions out of state 1 (above) and
state 4 (below)
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Test A

Since we expect that there are differences between patients who experience pro-

gressive disease before fully completing treatment as compared to patients who

progress some time after completing treatment, we carry out two variations of

Test A to ascertain whether there might be differences in benefit for each type of

patient.

First, define η1 as the total sojourn time after leaving the “Progression 1 (state

2)” state, conditional on passage through the “Progression 1 (state 2)” state before

reaching “Death (state 3)”. Using the notation introduced in Section 4.3.1, we

have i = 2 and j = 3. There is only one sub-path, r(2, 3) = {(2, 3)} which satisfies

the condition, and the conditional probability of this path is one. The associated

total sojourn time is τ23. Hence, the quantity of interest is

gA1(θ) = E(τ23|Z = 1)− E(τ23|Z = 0) (6.2)

with corresponding test statistic

TA1(θ̂) =
gA1(θ̂)

VA1

, (6.3)

where VA1 =

√
{∇gA1(θ̂)}⊤I−1(θ̂){∇gA1θ̂)}/m.

Similarly, define η2 as the the total sojourn time after leaving the “Progression

2 (state 5)” state, conditional on passage through the “Progression 2 (state 5)”

state before reaching “Death (state 3)”. Now, i = 5 and j = 3. Once again, there

is only one sub-path which satisfies the given condition, and so the conditional

probability of the path is one. The required sub-path is r(5, 3) = {(5, 3)} and the

associated total sojourn time is τ53. Hence, the quantity of interest is

gA2(θ) = E(τ53|Z = 1)− E(τ53|Z = 0). (6.4)
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with corresponding test statistic

TA2(θ̂) =
gA2(θ̂)

VA2

, (6.5)

where VA2 =

√
{∇gA2(θ̂)}⊤I−1(θ̂){∇gA2θ̂)}/m.

Both of these test statistics have an approximate standard Gaussian distribution

under H0.

As described in Section 6.1, we have simulated M = 1000 datasets, each with

bootstrap sample size m = 366. The estimated parameters of the Weibull model

fitted on the real data is assumed to be that of the true model, and right-censoring

is also incorporated. Table 6.3 shows the mean estimate of each quantity gA1(θ) and

gA2(θ), as well as 95% bootstrap confidence intervals (see [Efron, 1985]) derived by

computing the 0.025 and 0.975 sample quantile from each sample. The endpoints

of the bootstrap confidence intervals are obtained using the quantile function in

R.

Figure 6.5 shows estimated density functions associated with the distributions

of gA1(θ̂) and gA2(θ̂), obtained using the estimates of gA1(θ) and gA2(θ) derived

from M = 1000 bootstrap sample datasets.

Mean estimate Empirical 95% conf. interval
gA1(θ) -280.0848 (-482.6259, -74.0890)
gA2(θ) 86.8428 (-155.0721, 311.8801)

Table 6.3: (Real data) Average of M = 1000 estimates of gA1(θ) and gA2(θ). The
numbers in parentheses are the 95% bootstrap confidence intervals derived by
computing the 0.025 and 0.975 sample quantile from each bootstrap sample. We
observe that gA1(θ) appears to be significantly less than zero, due to 0 not being
in the bootstrap confidence interval.
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Figure 6.5: (Real data) Estimated density functions associated with distributions
of gA1(θ̂) and gA2(θ̂), obtained using the estimates of gA1(θ) and gA2(θ) derived
from M = 1000 bootstrap datasets. The dotted line is associated with gA1(θ̂) while
the solid line is associated with gA2(θ̂).
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The results suggest that there is no difference in average sojourn time between

treatment arms given that patients progress after premature discontinuation of

treatment (state 5) before dying. However, since the 95% bootstrap confidence

interval does not contain zero, it seems that there is evidence that, given progression

without prematurely discontinuing treatment (state 2) and then dying, patients in

the modified treatment arm (Z = 1) are dying faster (on average) than patients

in the standard treatment arm (Z = 0). These results are consistent with that

observed during the exploratory analysis of the data. However, it is noted that

the results are associated with a relatively large amount of uncertainty as the

confidence intervals are relatively wide. This is most likely due to the relatively

small sample size associated with the original data.

Test B

Estimated power functions, under the assumption that the estimated Weibull

parameters are that of the true model, are derived by computing the proportion

of times the null hypothesis is (correctly) rejected for every time point. Using all

M = 1000 of the simulated datasets, we perform a two-tailed test based on Test

B for state 2, and a corresponding right-tailed test for state 5. We use equation

(4.20) and take E = (30, 300) ⊂ R≥0 and µ as the Lebesgue measure. That is,

gB(θ) =

300∫
30

(
Si(t|Z = 1)− Si(t|Z = 0)

)
dt (6.6)

for each of i ∈ 2, 5. The corresponding test statistic for each state is

TB(θ̂) =
gB(θ̂)

VB

, (6.7)

where VB =

√
{∇gB(θ̂)}⊤I−1(θ̂){∇gBθ̂)}/m. Once again, the test statistic has an

approximate standard Gaussian distribution under H0.

In other words, we try to ascertain if there are differences in “average” benefit
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between treatment arms in the interval beginning 30 days after entering each of

these states, until 300 days after entering the same states. The results (discussed

below) suggest that, when α = 0.05,

(i) there is evidence that benefit between treatment arms in state 2 is different,

and

(ii) there is lack of evidence that patients undergoing modified treatment are

benefitting more than patients undergoing standard treatment, if they dis-

continued treatment prematurely.

Figure 6.6 shows the estimated power functions. Similarly to that seen in

Chapter 5, the power of the test in each state is estimated by evaluating the

proportion of times H0 is correctly rejected when the test is carried out for each of

M = 1000 bootstrap datasets. This is done for every time point between 31 days

and 300 days (inclusive). The vertical red line denotes 300 days.

We observe that, although the sample size is very small (m = 366), in state

2 we reject H0 over 80% of the time (when it is true) even when the upper limit

of the integral associated with the numerator of the test statistic is just below

200 days. On the other hand, we do not attain at least 80% rejection rate at any

point when we consider state 5. However, this should not be surprising since the

overlap in confidence intervals for the survival function of the holding time in state

5 (Figure 6.3) suggests that there may not be appreciable differences in the survival

functions between treatment arms.

6.3 Discussion

The main takeaway is that semi-Markov multi-state models are more flexible and

give greater insight as compared to a traditional Cox model analysis. The Cox model

analysis suggests that patients undergoing modified treatment die faster, but when

using the semi-Markov multi-state model it becomes apparent that the patients

who prematurely discontinue treatment potentially die at a different rate from
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Figure 6.6: (Real data) Test B: Estimated power functions showing the rejection
rates associated with a two-tailed test for state 2 and a right-tailed test for state 5,
respectively. The power of the test in each state is estimated by evaluating the
proportion of times H0 is correctly rejected when the test is carried out for each of
M = 1000 bootstrap datasets. The quantity of interest, gB(θ), uses equation (6.6)
in the derivation of the test statistic. The curve is plotted starting at 31 days, and
the vertical red line denotes 300 days.
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patients who do not prematurely discontinue treatment. It is worth acknowledging

that we may have obtained similar general conclusions if we augmented the Cox

model with information about whether or not a patient discontinued treatment

prematurely. However, such an approach would likely have required introducing

time-varying covariates to account for the fact that patients might discontinue

treatment during the follow-up period. Taking such an approach may not have

been obvious nor is it the usual consideration in clinical trials, since the main

consideration is efficacy as opposed to overall patient benefit.

In Section 5.7, it was mentioned that smaller sample sizes could give sufficient

power when it comes to the proposed hypothesis test as per Section 4.4.2. This

is certainly the case when considering the results associated with state 2, since

we have detected potential benefit for patients in active treatment despite the

relatively small sample size. While we did not find an appreciable difference in

patient benefit when considering patients undergoing active treatment in state 5,

it is worth noting that the effective sample size in state 5 is significantly less than

366, since only 41 patients reach state 5, of which 14 remain right-censored there.

This is compared to 162 patients who reach state 2, of which 45 are right-censored.

Hence, we would need more information to draw firm conclusions about patient

benefit in state 5.

This example clearly shows why it is important to consider the entire patient

history when attempting to evaluate patient benefit, as there is useful information

about what is working (or equally, not working) about the treatments.
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Chapter 7

Discussion

Throughout this thesis, we have emphasised the importance of considering the

entire patient history to ascertain benefit to the patient, as opposed to focusing

on the treatment effect of a given treatment. We have proposed semi-Markov

multi-state models, as well as statistical procedures, which seek to quantify patient

benefit as we have defined it. That being said, our proposed methods should be

considered alongside, and not in place of, current methods. This is because models

such as the Cox proportional hazards model are still useful for ascertaining drug

efficacy, all else being equal.

When considering both hypothesis tests proposed in this thesis, Test A seems

to be quite robust to factors such as model misspecification and significant amounts

of right-censoring (provided sample size is sufficiently large), while Test B seems

to be less so. This emphasises the need for clinical studies which last sufficiently

long (so that there is less right-censoring) and an appropriately specified model

for each transition i → j. Having sufficiently large sample size (discussed in more

detail in Section 7.1) is also important, especially in cases where the detectable

benefit is small. We have also shown in Chapter 6 that the methods can be used

on real data, and that we may gain different insights by implementing the methods

to explore potential patient benefit.

Unfortunately, multi-state models are often complex since we are interested in

making inference about many events of interest (as opposed to just one event of
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interest as per the Cox model). We saw in Chapter 5 that the five-state model

proposed has anywhere between 18 and 30 parameters for each model specification,

which can be relatively computationally expensive when it comes to estimation

and calculation of other quantities of interest. Furthermore, statistical power can

be a concern if the sample size is too small relative to the number of parameters.

Models could be simplified greatly by specifying specific forms of hazard functions

e.g. parametric proportional hazards, or defining composite outcomes. However,

these methods have their own associated drawbacks.

There are also other important points of consideration when fitting semi-

Markov multi-state models to clinical trial data. We expand upon some of the

aforementioned discussion points, and other discussion points, below.

7.1 Clinical trial design considerations

Based on the results shown in Chapter 5, it is apparent that a relatively large

sample size is needed to make reliable inference. This is more so for models with

less detectable benefit (Section 5.4). For all the models discussed in Chapter 5, we

seem to be limited by the transitions in the model which have the least number of

observations. For example, in our simulated data example, transition 3 → 5 is rare

(relative to the total sample size). In particular, having states with many possible

exits or states which can only be reached after experiencing several transitions are

examples of complexity which may reduce the effective sample size associated with

particular states or transitions.

A method proposed in the literature to preserve effective sample size is to define

composite outcomes, which would involve combining one or more states in the

multi-state model. The main advantage, as per [Cordoba et al., 2010], is that the

use of composite outcomes “increases statistical efficiency because of higher event

rates, which reduces sample size requirement, costs, and time;”. [Ross, 2007] echoes

this as a major advantage, stating that the approach provides an “overwhelming

advantage of statistical efficiency, leading to more feasible trial size and increased
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probability of timely completion”. However, the drawbacks of such an approach

are also highlighted. For example, an assumption made when defining composite

outcomes is that all the individual events used to define it are equally important.

[Armstrong and Westerhout, 2017] state “It is clear that such an interpretation is

neither realistic nor aligned with the perceptions of clinicians, patients, and other

trial stakeholders.”. Furthermore, it is difficult to reconcile whenever the individual

events within the composite outcome consist of both desirable and undesirable

outcomes for the patient. These issues are why we have opted to define all states

in the multi-state model as undesirable to the patient, and then consider each state

carefully on its own merits (or lack thereof).

A Bayesian approach may also mitigate some of the issues related to lim-

ited sample size. For example, [Muehlemann et al., 2023] state “Informative pri-

ors can be leveraged when there are relevant data external to the trial being

planned. In such cases, Bayesian methods may result in a reduced sample size.”.

However, there is need for caution when using informative priors since, as per

[Ursino and Stallard, 2021], “Choice of a prior distribution must therefore be done

carefully, since the use of informative priors may be seen as introducing bias into

posterior inferences and inflating type I error rates.”. The authors also discuss the

additional computational burden that potentially results from choosing a Bayesian

approach.

Despite all this, excessively large sample sizes are not crucial if there already

exist large differences between treatment arms. For example, we observed that

inference was acceptable for the model described in Section 5.2 (baseline model)

when m = 1000 but the sample size was not remotely large enough for the model

as per Section 5.4 (model with less benefit and with censoring) to detect benefit

which was present in the active treatment arm. A sample size of m = 366 also did

reasonably well in at least one state where there were clear differences between

treatment arms with respect to the fitted model in Chapter 6, associated with the

real dataset.
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Section 5.3 highlighted that high rates of censoring in addition to insufficient

effective sample size can lead to unreliable model estimates, and that the uncertainty

in the estimates propagate to the different quantities of interest used to assess

patient benefit. It is for this reason that we have stressed the importance of

sufficiently long clinical trials which are not prematurely cut short, in addition

to trials with a sufficient number of patients. Note that we are referring to

administrative censoring as per [Fine and Gray, 1999], discussed in Section 2.3.3

of this thesis. Discussion about censoring that arises from patients being lost to

follow-up is discussed in Section 7.4.

Since effective sample size, model complexity, and rate of right-censoring are all

factors which can limit reliable inference, an area for potential further research is

to determine more generally simple criteria to determine when inference becomes

unreliable in specific models or scenarios. In addition to the scenarios already

discussed, we noted that in the example as per Section 5.4, we started running

into obvious numerical and estimation issues in optimising the likelihood and

obtaining the (numerical) observed Fisher information matrix for certain models

when m = 500. Hence, bootstrap methods (either parametric or non-parametric)

may prove useful to test the effect of different sample sizes on the sensitivity and

stability of proposed models.

7.2 Incorporating multiple covariates

The methods presented in this thesis, especially those related to the proposed

hypothesis tests, are a “proof of concept” and require extension when considering

several covariates, especially if at least one of them is continuous. There are many

available models which can allow for the incorporation of multiple covariates, such

as the “Cox-like” proportional hazards model shown in Section 2.6. However,

many of the commonly-used models make restrictive assumptions (such as the

aforementioned proportional hazards assumption) which may not reflect real data.

As mentioned earlier in this chapter, this is an issue because the proposed methods
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are not always robust to poorly specified models.

A proposed solution in [Younes and Lachin, 1997] involves modelling the con-

ditional survival function given covariate Z as

g(S(t|Z)) = g(S0(t)) + β⊤Z (7.1)

where g is a link function and S0(t) = exp
(
−
∫ t

0
h0(u)du

)
is a base-

line survival function assumed to be independent of the covariates. To

avoid estimating the nuisance parameters associated with the baseline sur-

vival function, [Younes and Lachin, 1997] use the methods in [Rosenberg, 1995]

to estimate the baseline hazard function h0(t) using B-splines. Fur-

ther work using such “generalised link-based additive modelling” has

been done since [Younes and Lachin, 1997], including [Dettoni et al., 2020]

and [Eletti et al., 2023] among others.

An advantage of such generalised link-based additive modelling methods is the

potential to fit models involving interval-censored data, which are very common in

clinical studies. This is because events (such as cancer progression) are actually

interval-censored, since the exact event times are not observed but are known to

take place in a time interval (l, r] where l and r are usually patient follow-up times.

On the other hand, such generalised link-based additive modelling methods have

traditionally been used in the ITFs framework and so further work is required to

adapt the methods so that the mixture approach can be used instead. It is worth

noting that [Eletti et al., 2023] propose an algorithm to estimate the transition

probabilities by simulating data from a model that uses ITFs estimated using a

generalised link-based additive model.

7.3 Potential violation of the Markov assumption

There might be scenarios where the history of the patient might inform future

transitions. We have seen, for example, the case of the dataset in Chapter 6 where
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we specified two different types of progressive disease states because of the concern

that patients who progress after discontinuing treatment prematurely seem to die

at a different rate from patients who did not discontinue treatment prematurely.

Another scenario where the Markov assumption might be violated in practice is

when there are bi-directional transitions or states which can be visited more than

once.

For example, if a patient recovers from illness to become healthy and then

becomes ill again some time later, he/she may recover at a significantly different rate

than the first time he/she contracted the illness. In order to address the potential

violation of the Markov assumption, we may consider introducing additional states

where appropriate to account for such scenarios. In this specific example, we might

remedy the situation by introducing two different types of “Healthy” states - one

for patients who have never before contracted the illness, and the other for patients

who have previously contracted the illness. Of course, the disadvantage here is the

additional complexity. As discussed in Section 7.1, such additional complexity can

lead to problems in estimation and inference if the effective sample size associated

with each state is not sufficiently large.

To address the violation of the Markov assumption, [Larson and Dinse, 1985,

Section 4.3] discuss the possibility of adding the past history as a covariate and

then testing formally whether the covariate is significant. If it is not significant,

then it might be possible to assert that the Markov assumption is not violated and

then proceed without adding extra states. To relate to our earlier “healthy/ill”

example, we can consider starting with adding a covariate denoting “has contracted

illness in the past”. If the covariate parameter is significantly different from zero,

then we have evidence that Markov assumption is violated, and we might consider

adding another type of “healthy” state in the model as described earlier.

176



7.4 The assumption of non-informative censoring

It is the case that many studies do not record patients who are censored differently

from patients who become lost to follow-up. If we naively treat being lost to

follow-up the same as being censored, then it is clear that the censoring process is

potentially dependent on the underlying multi-state process since something related

to the study itself (which leads to patients withdrawing from the study) could be

contributing to the rate of censoring. [Lee and Wolfe, 1998] also acknowledge this,

saying “Some study designs are likely to yield independent censoring, . . . Other

mechanisms are very likely to yield dependent censoring, e.g., censoring due to

subjects selectively dropping out of the study,”, and [Ferreira and Patino, 2019]

share the different ways such missing data could be classified asmissing completely at

random (MCAR), missing at random (MAR), or missing not at random (MNAR).

Various methods to handle such missing data exist in the literature (see, for

example, [Kang, 2013]).

Ideally, one would be able to properly design clinical studies and allocate

resources so that patients are never lost to follow-up. Then, we could have

“censoring complete” data as described in Section 2.3.3, where patients are right-

censored only if they have not yet experienced an event by the end of the observation

period. However, this may not be possible in practice. The solution we propose

involves treating “lost to follow-up” as a separate state to ensure the censoring

process remains non-informative. However, this may have its own issues if, for

example, the number of patients lost to follow-up is small (recall transition 3 → 5 in

Chapter 5 as a possible comparison, for example). Additionally, it may be difficult

to ascertain whether the patients are lost to follow-up because of something

potentially related to the multi-state process (e.g. excessively toxic drug leading to

patient withdrawing from study, or patient’s cancer progressing and they decide

it is better to withdraw from treatment) or something unrelated (e.g. patient

deciding to move to a different city early on during the study). It is an area of

potential further research to investigate how to best deal with this assumption being
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violated in practice. It is noted that the work by [Dettoni et al., 2020] implements

a generalised link-based additive model (discussed in Section 7.2) that allows for

informative censoring.

7.5 Concluding remarks

This thesis has shown that the use of the ubiquitous Cox proportional hazards

model (Section 2.3.2) alone is not appropriate for quantifying patient benefit as we

have defined it. A more suitable model for quantifying patient benefit is one that

answers questions about absolute risk rather than relative risk (the latter of which

the Cox model seeks to quantify). While the Fine-Gray proportional hazards model

(Section 2.3.3) does quantify absolute risk, it still has certain limitations such as

being harder to interpret and its unnatural risk set. Semi-Markov multi-state

models address the shortcomings of each of the aforementioned models, and provide

the tools necessary to quantify potential patient benefit.

We again emphasise that the current methods (such as the Cox proportional

hazards model) are still useful, but only if we are interested in assessing a drug’s

treatment effect (all else being equal). We believe that the methods we propose

could be used alongside, and not necessarily in place of, the current methods used

to analyse clinical study data.

While the definition of patient benefit can be subjective, the methods proposed

in this thesis provide a natural means to compute probabilities and other statistics

which can be considered in the analysis of potential benefit. Once patient benefit is

broadly defined, as per Chapter 3.1, to be “an effective treatment that (relatively)

slows down patients transitioning to undesirable states”, then it can be left to

clinicians and other stakeholders to decide how to best quantify this benefit.

However, we still propose two different hypothesis tests in Section 4.4 – one based

on differences in total average sojourn times between treatment arms (Test A),

and the other based on differences between the survival functions of holding time

in particular states of interest (Test B). The latter is based on the fact that the
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definition of patient benefit entails preventing undesirable events for as long as

possible, and so the survival function of the holding time in state i at time t (which

is the probability of being event free in state i at time t) becomes a natural quantity

to consider.

Overall, we have shown from the results that there are definite merits to using

semi-Markov multi-state models to quantify and assess potential patient benefit.

A major benefit is the ability to use the estimated model parameters to estimate

functions such as the survival function of the holding time, CIFs, or state occupancy

probabilities, etc.. We also have the flexibility to perform statistical inference and

quantify uncertainty on the estimation of any such function using the delta method.

However, despite this, we recognise that the methods proposed could be tedious to

implement. This is mainly due to the fact that many of the quantities proposed

could involve integrals without closed form expressions. Furthermore, the delta

method requires partial derivatives with respect to the parameter vector, which can

be numerous if there are many parameters in the model. Despite this, it remains

the case that quantifying patient benefit can help cancer patients, their doctors,

and care-givers to make better-informed decisions about how to best spend the

patients’ limited remaining lifespan.

179



180



References

[Aalen, 1978] Aalen, O. (1978). Nonparametric inference for a family of counting

processes. The Annals of Statistics, pages 701–726.

[Andersen et al., 2012] Andersen, P. K., Geskus, R. B., de Witte, T., and Putter, H.

(2012). Competing risks in epidemiology: possibilities and pitfalls. International

Journal of Epidemiology, 41(3):861–870.

[Andersen and Gill, 1982] Andersen, P. K. and Gill, R. D. (1982). Cox’s regression

model for counting processes: a large sample study. The Annals of Statistics,

pages 1100–1120.

[Anderson and Darling, 1952] Anderson, T. W. and Darling, D. A. (1952). Asymp-

totic theory of certain “goodness of fit” criteria based on stochastic processes.

The Annals of Mathematical Statistics, 23(2):193–212.

[Armstrong and Westerhout, 2017] Armstrong, P. W. and Westerhout, C. M.

(2017). Composite end points in clinical research: a time for reappraisal. Circu-

lation, 135(23):2299–2307.

[Arnab, 2017] Arnab, R. (2017). Survey sampling theory and applications. Aca-

demic Press.

[Asanjarani et al., 2021] Asanjarani, A., Liquet, B., and Nazarathy, Y. (2021).

Estimation of semi-Markov multi-state models: a comparison of the sojourn times

and transition intensities approaches. The International Journal of Biostatistics.

181



[Austin and Fine, 2017] Austin, P. C. and Fine, J. P. (2017). Practical recom-

mendations for reporting Fine-Gray model analyses for competing risk data.

Statistics in Medicine, 36(27):4391–4400.

[Austin et al., 2021] Austin, P. C., Steyerberg, E. W., and Putter, H. (2021). Fine-

Gray subdistribution hazard models to simultaneously estimate the absolute

risk of different event types: cumulative total failure probability may exceed 1.

Statistics in Medicine, 40(19):4200–4212.

[Beyersmann et al., 2009] Beyersmann, J., Latouche, A., Buchholz, A., and Schu-

macher, M. (2009). Simulating competing risks data in survival analysis. Statistics

in Medicine, 28(6):956–971.

[Breslow, 1974] Breslow, N. (1974). Covariance analysis of censored survival data.

Biometrics, pages 89–99.

[Butler and Bronson, 2012] Butler, R. W. and Bronson, D. A. (2012). Bootstrap

confidence bands for sojourn distributions in multistate semi-markov models

with right censoring. Biometrika, 99(4):959–972.

[Castelli et al., 2007] Castelli, C., Combescure, C., Foucher, Y., and Daures, J.-P.

(2007). Cost-effectiveness analysis in colorectal cancer using a semi-markov

model. Statistics in Medicine, 26(30):5557–5571.

[Cordoba et al., 2010] Cordoba, G., Schwartz, L., Woloshin, S., Bae, H., and

Gøtzsche, P. C. (2010). Definition, reporting, and interpretation of composite

outcomes in clinical trials: systematic review. BMJ, 341.

[Cox, 1970] Cox, D. (1970). The analysis of binary data. London: Chapman and

Hall.

[Cox, 1959] Cox, D. R. (1959). The analysis of exponentially distributed life-times

with two types of failure. Journal of the Royal Statistical Society Series B:

Statistical Methodology, 21(2):411–421.

182



[Cox, 1972] Cox, D. R. (1972). Regression models and life-tables (with discussion).

Journal of the Royal Statistical Society: Series B, 34(2):187–220.

[Crowley and Hu, 1977] Crowley, J. and Hu, M. (1977). Covariance analysis of

heart transplant survival data. Journal of the American Statistical Association,

72(357):27–36.

[Dettoni et al., 2020] Dettoni, R., Marra, G., and Radice, R. (2020). Generalized

link-based additive survival models with informative censoring. Journal of

Computational and Graphical Statistics, 29(3):503–512.

[Efron, 1977] Efron, B. (1977). The efficiency of Cox’s likelihood function for

censored data. Journal of the American statistical Association, 72(359):557–565.

[Efron, 1979] Efron, B. (1979). Bootstrap Methods: Another Look at the Jackknife.

The Annals of Statistics, 7(1):1–26.

[Efron, 1982] Efron, B. (1982). The Jackknife, the Bootstrap and Other Resampling

Plans. Society for Industrial and Applied Mathematics.

[Efron, 1985] Efron, B. (1985). Bootstrap confidence intervals for a class of para-

metric problems. Biometrika, 72(1):45–58.

[Eletti et al., 2023] Eletti, A., Marra, G., and Radice, R. (2023). A spline-based

framework for the flexible modelling of continuously observed multistate survival

processes. Statistical Modelling, 23(5-6):495–509.

[Fehrenbacher et al., 2020] Fehrenbacher, L., Cecchini, R. S., Geyer Jr, C. E.,

Rastogi, P., Costantino, J. P., Atkins, J. N., Crown, J. P., Polikoff, J., Boileau,

J.-F., Provencher, L., et al. (2020). NSABP B-47/NRG oncology phase III

randomized trial comparing adjuvant chemotherapy with or without trastuzumab

in high-risk invasive breast cancer negative for HER2 by FISH and with IHC 1+

or 2+. Journal of Clinical Oncology, 38(5):444.

183



[Ferreira and Patino, 2019] Ferreira, J. C. and Patino, C. M. (2019). Loss to follow-

up and missing data: important issues that can affect your study results. Jornal

Brasileiro de Pneumologia, 45:e20190091.

[Fine and Gray, 1999] Fine, J. P. and Gray, R. J. (1999). A proportional hazards

model for the subdistribution of a competing risk. Journal of the American

statistical association, 94(446):496–509.

[Fine et al., 2001] Fine, J. P., Jiang, H., and Chappell, R. (2001). On semi-

competing risks data. Biometrika, 88(4):907–919.

[Food and Drug Administration, 2022] Food and Drug Administration

(2022). Patient-focused drug development: selecting, developing, or

modifying fit-for-purpose clinical outcome assessments (draft guidance).

https://www.fda.gov/regulatory-information/search-fda-guidance-

documents/patient-focused-drug-development-selecting-developing-

or-modifying-fit-purpose-clinical-outcome. Accessed: 2024-03-31.

[Ghalanos and Theussl, 2015] Ghalanos, A. and Theussl, S. (2015). Rsolnp: Gen-

eral Non-linear Optimization Using Augmented Lagrange Multiplier Method. R

package version 1.16.

[Gingell and Mendivil, 2023] Gingell, K. and Mendivil, F. (2023). Random walks,

directed cycles, and Markov chains. The American Mathematical Monthly,

130(2):127–144.

[Grambsch and Therneau, 1994] Grambsch, P. M. and Therneau, T. M. (1994).

Proportional hazards tests and diagnostics based on weighted residuals.

Biometrika, 81(3):515–526.

[Gray, 2022] Gray, R. J. (2022). cmprsk: Subdistribution analysis of competing

risks. https://cran.r-project.org/package=cmprsk.

184

https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-selecting-developing-or-modifying-fit-purpose-clinical-outcome
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-selecting-developing-or-modifying-fit-purpose-clinical-outcome
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-selecting-developing-or-modifying-fit-purpose-clinical-outcome
https://cran.r-project.org/package=cmprsk


[Haller, 2014] Haller, B. (2014). The analysis of competing risks data with a focus

on estimation of cause-specific and subdistribution hazard ratios from a mixture

model. PhD thesis, lmu.

[Haneuse and Lee, 2016] Haneuse, S. and Lee, K. H. (2016). Semi-competing risks

data analysis: accounting for death as a competing risk when the outcome of

interest is nonterminal. Circulation: Cardiovascular Quality and Outcomes,

9(3):322–331.

[Hougaard, 1999] Hougaard, P. (1999). Multi-state models: a review. Lifetime

data analysis, 5(3):239–264.

[Jackson, 2016] Jackson, C. (2016). flexsurv: A platform for parametric survival

modeling in R. Journal of Statistical Software, 70(8):1–33.

[Jackson et al., 2003] Jackson, C. H., Sharples, L. D., Thompson, S. G., Duffy,

S. W., and Couto, E. (2003). Multistate Markov models for disease progression

with classification error. Journal of the Royal Statistical Society Series D: The

Statistician, 52(2):193–209.

[Kang, 2013] Kang, H. (2013). The prevention and handling of the missing data.

Korean Journal of Anesthesiology, 64(5):402.

[Kaplan and Meier, 1958] Kaplan, E. L. and Meier, P. (1958). Nonparametric

estimation from incomplete observations. Journal of the American Statistical

Association, 53(282):457–481.

[Król and Saint-Pierre, 2015] Król, A. and Saint-Pierre, P. (2015). SemiMarkov:

An R package for parametric estimation in multi-state semi-markov models.

Journal of Statistical Software, 66(6):1–16.

[Larson and Dinse, 1985] Larson, M. G. and Dinse, G. E. (1985). A mixture model

for the regression analysis of competing risks data. Journal of the Royal Statistical

Society: Series C, 34(3):201–211.

185



[Latouche et al., 2013] Latouche, A., Allignol, A., Beyersmann, J., Labopin, M.,

and Fine, J. P. (2013). A competing risks analysis should report results on all

cause-specific hazards and cumulative incidence functions. Journal of Clinical

Epidemiology, 66(6):648–653.

[Lawless, 2003] Lawless, J. F. (2003). Statistical Models and Methods for Lifetime

Data (Second Edition). John Wiley & Sons, Inc.

[Lee and Wolfe, 1998] Lee, S.-Y. and Wolfe, R. A. (1998). A simple test for

independent censoring under the proportional hazards model. Biometrics, pages

1176–1182.

[Mamounas et al., 2019] Mamounas, E. P., Bandos, H., Lembersky, B. C., Jeong,

J.-H., Geyer, C. E., Rastogi, P., Fehrenbacher, L., Graham, M. L., Chia, S. K.,

Brufsky, A. M., et al. (2019). Use of letrozole after aromatase inhibitor-based

therapy in postmenopausal breast cancer (NRG Oncology/NSABP B-42): a

randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology,

20(1):88–99.

[Meira-Machado et al., 2009] Meira-Machado, L., de Uña-Álvarez, J., Cadarso-
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Appendix A

Further exploration of results in

Section 5.3.2

Section 5.3.2 showed results where a model with significant censoring caused bias

in the estimates of the survival function, and made it appear as though the models

fitted on censored data perform “better” than those associated with similar data

without censoring. We briefly discuss why this can happen through the results of a

simple simulation study, and describe under what circumstances the issue becomes

most obvious.

A.1 Simulation setup and findings

We consider a model with 2 states and one possible transition (in other words, a

standard survival model). The true distribution associated with event times is a

Weibull distribution with rate parameter a = 2 and shape parameter b = 0.35. We

simulate 1000 datasets of sample size m = 10000 where the data are non-censored,

and another 1000 sets of data of the same sample size where the data are censored.

The censoring times are simulated from a Uniform(0.001, 10) distribution. This

results in an average censoring rate of about 14.55%.

We then fit the (correct) Weibull model on each dataset and obtain an average

parameter vector estimate for each of the non-censored datasets as well the censored
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datasets. After this, we plot the true survival function and compare it with the

fitted survival functions associated with average parameter vectors for both types

of data (non-censored and censored). Finally, we mis-specify the model with

exponential and gamma distributions and repeat the same procedure each time.

Figure A.1 below shows a plot of the relevant survival functions. The solid

black line is that of the true survival function. Blue, brown, and orange lines are

associated with Weibull, exponential, and gamma model fits respectively. Dot-dash

and dotted lines are associated with non-censored and censored data respectively.

Figure A.1: Survival functions associated with the true model and relevant model
fits. The data are from a Weibull model with rate parameter a = 2 and shape
parameter b = 0.35. The censoring times are from a Uniform(0.001, 10) distribution,
which results in an average censoring rate of approximately 14.55%. The solid
black line is that of the true survival function. Blue, brown, and orange lines are
associated with Weibull, exponential, and gamma model fits respectively. Dot-dash
and dotted lines are associated with non-censored and censored data respectively.
Confidence intervals are obtained using the delta method.

As seen in Section 5.3.2, we find that there is no perceivable difference whether

or not there is censoring when the true model is fitted to the data. However,
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differences in fitted survival functions become apparent when the models are

misspecified.

We now repeat the above simulation for each of b = 0.6 and b = 0.8 (with

a left unchanged). A known property of the Weibull distribution is that b < 0

results in a hazard function which decreases with time while b > 0 results in a

hazard function that increases with time (with b = 1 resulting in the exponential

distribution, which has a hazard function which is constant with respect to time).

Hence, the parameters of the censoring distribution are adjusted in each case in

order to maintain a similar level of average censoring. When b = 0.5, the censoring

distribution is Uniform(0.001, 5.9) and when b = 0.8 the censoring distribution is

Uniform(0.001, 3.8). In each case, the average censoring rate is roughly 14.52%

and 14.72% respectively. Table A.1 summarises all the information associated with

the simulation study.

Weibull(rate, shape) Censoring distribution Censoring rate
(2, 0.35) Uniform(0.001, 10) 14.55%
(2, 0.50) Uniform(0.001, 5.9) 14.52%
(2, 0.80) Uniform(0.001, 3.8) 14.72%

Table A.1: Summary of parameters and censoring rates associated with simple
simulation study involving Weibull data. The data are all from Weibull models
with rate parameter 2, but different shape parameters. The censoring distributions
are slightly different in each case to ensure a roughly equal amount of average
censoring.

Figure A.2 shows survival functions similar to that seen in Figure A.1, but

associated with the larger shape parameters of b = 0.5 and b = 0.8. Other than

slight differences when b = 0.5 we find that there are no dramatic differences in

model fits owing to differences in censoring.

A.2 Discussion

When there is no censoring and the Weibull model has shape parameter b = 0.35,

there is initially a very high rate of exits out of the initial state. As time passes,

the rate of exits out of the initial state decreases. This is due to the fact that b < 1
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Figure A.2: Survival functions associated with the true model and relevant model
fits for different shape parameters. The solid black line is that of the true survival
function. Blue, brown, and orange lines are associated with Weibull, exponential,
and gamma model fits respectively. Dot-dash and dotted lines are associated with
non-censored and censored data respectively. The top figure shows fitted survival
functions associated with data that are from a Weibull model with rate parameter
a = 2 and shape parameter b = 0.50. The bottom figure shows fitted survival
functions associated with data that are from a Weibull model with rate parameter
a = 2 and shape parameter b = 0.80. The average censoring rate in each case is
roughly 14.52% and 14.72% respectively.
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and is reflected by the true survival function in Figure A.1 having a steep drop just

after t = 0 which very quickly flattens out. The exponential and gamma fits are

not fully able to capture this aspect of the Weibull model, with the exponential

fit performing much worse. However, when censoring is introduced, a significant

proportion of the relatively large event times are obscured by censoring. Given

that the model is misspecified and now most of the large event times are not

observed, there is greater difficulty in estimating the survival function associated

with a censored event. The maximum likelihood estimate then tends to suggest an

exponential (or a gamma) distribution with a lower rate parameter than would

have been otherwise obtained without censoring. This can be seen in Figure A.1.

On the other hand, as we increase b towards unity, the Weibull model becomes

“closer” to an exponential model and so the rate of exits out of the initial state

become relatively more constant. This means that there are less relatively large

event times as compared to when b = 0.35. Noting that we have kept the rate

of censoring relatively similar, any censored observations are now likely to be

associated with relatively small event times compared to when b = 0.35. For the

misspecified models this leads to far less uncertainty in estimating the survival

function associated with censored events. We can see from Figure A.2 that when

b = 0.8, the misspecified model fits are indistinguishable regardless of censoring.

Overall, these results demonstrate that the effects of model misspecification

might be greatly exacerbated in certain scenarios where clinicial trials end too

prematurely.
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Appendix B

Chapter 5 simulation study

additional figures

B.1 True survival functions of holding times as-

sociated with state 1 and state 2

(a) True survival functions of holding times in state 1 for the simulation study in Chapter 5.
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(b) True survival functions of holding times in state 2 for the simulation study in
Chapter 5.

Figure B.1: rue survival functions of holding times in states 1 and 2 for the
simulation study in Chapter 5.

198



B.2 Baseline model: Test B power functions
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Figure B.2: (Baseline) Estimates of power of Test B1 as described in Section 5.1.3,
for α = 0.01.
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Figure B.3: (Baseline) Estimates of power of Test B1 as described in Section 5.1.3,
α = 0.10.
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Figure B.4: (Baseline) Estimates of power of Test B2 as described in Section 5.1.3,
for α = 0.01.
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Figure B.5: (Baseline) Estimates of power of Test B1 as described in Section 5.1.3,
for α = 0.10.
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B.3 Baseline model with censoring: Test B power

functions
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Figure B.6: (Baseline with censoring) Estimates of power of Test B1 as described
in Section 5.1.3, for α = 0.01.
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Figure B.7: (Baseline with censoring) Estimates of power of Test B1 as described
in Section 5.1.3, α = 0.10.
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Figure B.8: (Baseline with censoring) Estimates of power of Test B2 as described
in Section 5.1.3, for α = 0.01.
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Figure B.9: (Baseline with censoring) Estimates of power of Test B2 as described
in Section 5.1.3, for α = 0.10.
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B.4 Model with less benefit and with censoring:

Test B power functions
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Figure B.10: (Less benefit with censoring) Estimates of power of Test B1 as
described in Section 5.2.2, for m = 10000 and α = 0.01.
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Figure B.11: (Less benefit with censoring) Estimates of power of Test B1 as
described in Section 5.1.3, for α = 0.10.
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Figure B.12: (Less benefit with censoring) Estimates of power of Test B2 as
described in Section 5.1.3, α = 0.01.
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Figure B.13: (Less benefit with censoring) Estimates of power of Test B2 as
described in Section 5.1.3, for α = 0.10.
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