
Development of Data Models and
Adaptation Strategy for

Self-Configuring Production Systems

Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy, July 2024.

Hamood Ur Rehman

20240963

Supervised by

Prof. Svetan Ratchev
Dr. Jack C. Chaplin
Mr. Leszek Zarzycki

Signature

Date 10 / 07 / 2024

hamood.urrehman
Stamp

Abstract

Manufacturing intelligence is the ability to gather and analyse data for

decision-making in production systems towards reaching an objective. This

project involves introducing intelligence in production systems for achieving

self-configuration. This is done by conceptualising and developing the intel-

ligent components that act as building blocks of the self-configuring produc-

tion systems and their application in the system. The approach taken for

the project is iterative and built from the bottom-up. A classification tool is

developed to study the capability of self-configuration in the current indus-

trial production system, followed by insight gathered through surveys. The

theoretical aspects involving self-configuration are discussed, and a general

adaptation strategy is developed that integrates self-configuration capabili-

ties in the intelligent components. These components are then manipulated

and controlled through the use of technologies. Tools and techniques in-

volving asset administration shell, state charts/state machines, multi-agent

system, information model and machine learning approaches were studied.

These technologies were implemented to achieve self-configuration, lever-

aging data gathered during operation. This research is applied to use cases

of an industrial leak test equipment MALT and on a force testing station

of the PRIME assembly system. The dissemination of work is highlighted,

and future possibilities are expanded.

i

Acknowledgements

I extend my deepest gratitude to the University of Nottingham and TQC

Ltd. for their support throughout this research project. I am immensely

grateful to my supervisors Prof. Svetan Ratchev, Dr. Jack C. Chaplin and

Mr. Leszek Zarzycki, whose guidance, expertise, and encouragement were

invaluable in shaping the direction of this research. I want to thank Dr.

Samanta Piano for providing feedback for improving the thesis.

I also wish to express my appreciation to the research participants and

work colleagues, especially Mr. Mark Jones, Mr. Phil Tonge and Mr.

Gavin Murray, whose contributions provided critical insights and enriched

the findings of this work.

I am indebted to the hosting partners of the project for their continual

encouragement and fruitful discussions, which significantly contributed to

the development of this research. I would like to express my appreciation

towards collaborators who worked together with me to produce research

outputs.

Additionally, I extend my heartfelt thanks to my family, especially my

father Nawaid Iqbal Sheikh (Late) for the unwavering support, patience,

and understanding during the long hours devoted to this research.

Finally, I am thankful to all members of the DiManD Innovative Training

Network (ITN) project for funding this research, arranging training schools,

and providing networking opportunities.

This research is funded by the European Union Marie Skodowska-Curie

Innovative Training Networks (H2020-MSCA-ITN-2018) program under

grant agreement number no. 814078.

ii

Contents

Abstract i

Acknowledgements ii

List of Tables vii

List of Figures viii

Acronym 1

Glossary 3

Chapter 1 Introduction 7

1.1 Introduction . 8

1.2 Problem Statement . 9

1.3 Research Domain . 12

1.4 Aims and Objectives . 14

1.5 Thesis Structure . 15

1.6 Publications . 18

Chapter 2 Literature Review 19

2.1 Introduction . 21

2.2 Concept of Configuration in Production Systems 23

2.3 Self-Configuration in Production Systems 29

2.4 Machine Learning Applications 35

2.5 Optimisation Algorithms for Parameter Determination . . . 38

2.6 Interoperability and Data Integration 40

iii

2.7 Applications of Self-Configuration 43

2.8 Research Gap . 48

Chapter 3 Methodology 63

3.1 Introduction . 64

3.2 Requirements of the Approach 65

3.3 Detailed Methodology . 67

3.4 Validation Methods . 75

3.5 Overview of the Approach 77

3.6 Thesis Structure . 79

3.7 Conclusion . 80

Chapter 4 Industrial Practice Survey For Adoption Of

Self-Configuring Production Systems 81

4.1 Introduction . 83

4.2 Survey Description . 85

4.3 Analysis And Result . 91

4.4 Threats to Validity . 103

4.5 Reflection on Impact . 104

4.6 Conclusion . 110

Chapter 5 A Level-Based Classification of Technical En-

ablers in Production Systems 112

5.1 Introduction . 113

5.2 A Level-Based Classification for

Self-Configuration . 114

5.3 Evaluating Enablers of Self-Configuration with the Level-

Based Classification . 125

5.4 Conclusion . 137

Chapter 6 Module Driven Configuration 139

6.1 Introduction . 140

iv

6.2 Overview of Framework . 141

6.3 Module Driven Configuration System

Model . 151

6.4 Conclusion . 182

Chapter 7 Standard Configuration Model for Produc-

tion Systems in Manufacturing 184

7.1 Introduction . 185

7.2 Concept of Configuration in Production Systems 186

7.3 Configuration Model . 186

7.4 Impact on Configuration . 197

7.5 Towards Capturing Configuration for Production Systems . . 201

Chapter 8 Self-configuring Production System: An Adap-

tation Strategy 203

8.1 Introduction . 205

8.2 Overview of the Adaptation Strategy 206

8.3 Capturing Configuration Module Information 215

8.4 Deployment of Engine for Capturing Information 216

8.5 State Chart to State Machine for Functionality Representation220

8.6 Machine Learning for Self-Configuration 223

8.7 Multi-Agent System Integration 227

8.8 Real Time Control . 235

8.9 Simulation . 238

8.10 Conclusion . 240

Chapter 9 Industrial Use-Case: Validating the Adap-

tation Strategy for Self-Configuring Produc-

tion Systems 242

9.1 Introduction . 243

9.2 Methodology . 244

v

9.3 Implementation . 248

9.4 Experiments . 271

9.5 Conclusion . 317

Chapter 10 Conclusion 321

10.1 Research Questions and Contributions 322

10.2 Summary of the Findings . 328

10.3 Outputs, Implications, and Novel Findings 334

10.4 Limitations . 336

Bibliography 347

Appendices 379

Appendix A Survey Questionnaires 380

A.1 Survey Questions . 380

A.2 Detailed Survey Questionnaire 384

A.3 Survey Response . 398

Appendix B Code Walkthrough 411

B.1 Code Walkthrough . 412

Appendix C State Chart 419

C.1 Understanding States and Actions in State Charts 419

Appendix D CAEX Standard 428

D.1 Utilising the CAEX Standard 428

vi

List of Tables

1.1 The accepted papers from this PhD research. 18

2.1 Definitions of Self-Configuration extracted from literature in

Chronological Order . 32

3.1 Components of generalised data model for self-configuration. 71

3.2 Mapping the research questions to the industrial use-cases. . 76

4.1 Maturity level of Production Systems for Enabling Self-Configuration107

4.2 Value Proposition Matrix for enabling Self-Configuration,

linking stakeholders to lifecycle. 108

5.1 Enablers of Self-Configuration 127

8.1 Data Pipeline Component Description for Production System209

8.2 Agent Description for Production System 229

10.1 Contributions to the Research Related to Chapters in the

Thesis . 328

vii

List of Figures

1.1 Thesis structure, relating chapters to the specific research

questions.The chapter-wise mapping of each research ques-

tion is shown. 16

2.1 Adopted methodology for literature review 22

2.2 Automated Configuration by Policy Rules, Database and

Network Association aided by Daemon Processes (Bachula

and Zajac (2013)). The configuration database is governed

by the associated policy rules. The production systems have

a digital interface on which these configurations can be ad-

justed. Background processes that ensure communication,

and connections are also running on the system. 26

2.3 Configuration Cloning by Template in Production Environ-

ment (Jones and Romig (1991)). The cloning template can

be altered through the interface and is displayed on HMI.

The machine data is used to configure the production sys-

tem through the template. 28

2.4 Relating Self-Configuration to value extraction levels (Kao

et al. (2015)) in Intelligent Systems. As the level increases,

more “value ” is obtained from the system. Configuration

Level is the highest data and machine interaction level, where

the machine can make independent decisions. 30

viii

2.5 Hierarchy of Self-properties. Relating self-configuration to

self-organisation/self-adaptation.The hierarchy begins at the

base, progresses to the major, and finally reaches the gen-

eral level. The self-* properties necessary for achieving self-

adaptation in production systems are highlighted at each

level with their respective self-* property. 34

2.6 Asset Administration Shell (AAS). Representation of an as-

set with its main components for I4.0 compliant communi-

cation with IoT infrastructure within a production facility. . 41

2.7 A production system consists of multiple granular objects

(modules). These modules can have different granular levels.

In this illustration, the granularity level is considered at the

gripper. Each module adds value, imparting functionality to

the system. 51

2.8 Decomposition Style in Production Systems. Modularity is

defined at different granularity levels depending on decompo-

sition styles. (a) Physical Decomposition, where granularity

is defined at each component in the system. For example,

in the picture, granular boundaries are considered at each

manufacturing asset. (b) Functional Decomposition, where

functionality is defined where the granularity boundary lies.

In the picture, the two assets and the conveyor system are

considered as a single granular boundary since their func-

tionality adds value. 53

ix

2.9 Modularity is dependent on a careful assessment of the phys-

ical and cyber components of the production system. Gran-

ularity is linked with modularity. The granularity level is

linked with the collection of mechatronic components re-

sponsible for functionalities within the production system.

In the picture, there are four modules. 54

3.1 The methodology approach taken for this research. 67

3.2 Simple data flow diagram of the research. Data from the

production system is stored in its asset administration shell.

A change in production conditions or performance require-

ments results in configuration setting change through the

interaction of agent systems and machine learning model. . . 70

3.3 Data modelling generalisation for capturing capability, re-

lationship, constraint, and operation information for self-

configuration. Information interchange happens between hard-

ware abstraction and AAS for self-configuration by querying

from endpoints during the execution of functionality. 71

3.4 Technological development for the self-configuration research.

Each stage behind the development of the adaptation strat-

egy is shown. 74

3.5 The leak testing setup: (a) the cylinder volumes under test

and MALT test system being a part of the test bench for

general leak testing (b) The PRIME force testing setup in-

volving a force test station, two robots and a shuttle on the

rail. 76

x

3.6 Proposed Self-Configuration Approach for the research. In-

tegrating Asset Representation, Agent System, and Param-

eter Optimisation. The diagram shows component mapping

with research problem objectives. These components work

together to assist in the realisation of the self-configuration

adaptation strategy . 78

3.7 Ph.D. Thesis structure, relating the contributions to needs

and dividing them into chapters. 79

4.1 Collaboration related to production system development.

The adaptation strategy targets the last configuration stage

of the production system development. 84

4.2 Structure of the questions in the surveys. 90

4.3 Focus of the surveys carried out. Planning is done to gain

insight from professionals on self-configuring aspects of pro-

duction systems. 91

4.4 An infographic of the Surveys. The main findings of the sur-

vey are presented. Relation between industrial challenges,

data in manufacturing, and self-configuring systems explored.

A need exists for addressing challenges in data security, de-

mand, and adaptation. Self-configuring systems will provide

a solution to the lack of skills in machine settings and the

shortage of field experts. 92

4.5 Criteria of intelligence in production system. Each criterion

of intelligence in the production system in the industry is

shown and participants are asked to rank their current sys-

tem on it. 94

xi

4.6 Conceptual business model indicating in detail the strategic

components, customer and market components, & value and

creation components for self-configuring production systems. 109

4.7 The status for innovation; A reflection on the initial and de-

sired business model through the introduction of self-configuration

in production systems. 110

4.8 An illustration for potential value utilisation/realisation by

self-configuration strategy in production systems. New value

generated by the solution can serve as direction for business

model. 110

5.1 Level Based Classification for Self-Configuration. The de-

gree of the capability in production system is outlined with

dividing the levels into two aspects of System Readiness and

System Execution. The System Readiness is from Level-0

to Level-3 and System Execution is from Level-4 to Level-5.

The Stage-Wise Transition (S1-S8) presents the transforma-

tion of production system for incorporating self-configuration

across levels. 116

5.2 Level Based Classification for Self-Configuration applied to

Enablers along with Stage-Wise transition Identification. Note

that there is only one occurrence of Stage 7 in the diagram

and none of Level-5. 131

5.3 Industrial production systems for demonstrating the applica-

bility of level-based classification: (a) Basic differential pres-

sure Leak Tester; (b) Multi-Application Leak Tester (MALT);

(c) Multi-Agent integrated with MALT System 132

5.4 Level Based Classification for Self-Configuration applied to

basic differential pressure Leak Tester 134

xii

6.1 Conceptual illustration of the framework, showing aspects

of the self-configuring production system. Production Sys-

tem Model presents a runtime of the Physical Production

System acting as its digital twin. Adaptation Strategy mon-

itors and controls the Production System Model in response

to changes. Production System Model updates the physical

system under guidance from Adaptation Strategy. 146

6.2 Adaptation Loop for the process in the framework to achieve

self-configuration in production systems. Evaluator, evalu-

ates the rules for the configuration change, change manager,

guides the configuration change for functionality and execu-

tor changes the configuration on the system. 150

6.3 The production system model is represented at three lev-

els of abstraction namely: Functionality, Configuration and

Constraint. 152

6.4 Module Evolution in the Configuration Change Process. The

illustration shows changes in module w.r.t variable change

(middle)(v5 to v6) and (right) new module introduction. . . 155

6.5 Representation of a Structural Module. Functionality, con-

figuration, and constraints are encapsulated in this Struc-

tural Module defined through operational semantics. A struc-

tural module consists of variables, rules (functionality rules

and variable rules), allocation and link. 157

6.6 Module Structure connected with the elements of AAS. Vari-

able rules govern variables. Functionality is executed sub-

jected to constraints defined by rules (functionality and vari-

able). Relationships are encapsulated in allocation and link.

. 158

xiii

6.7 Configuration space X × Y of variables X and Y . CC are

the candidate configurations satisfying relationship and con-

straints. A,B and C are those candidate configurations that

satisfy the production system requirements. 160

6.8 An illustration of a Module-based system having two mod-

ules hosting functionalities M1 and M2. Functionality rules

can be shared between modules, meaning they can govern

the functionality of both modules and also define a depen-

dency between them. 171

6.9 An example of a Module-based system having two modules

M1 and M2 hosting leak test functionality. Both modules

can perform leak test functionality subjected to rules (R).

Variable rules (Rv) are governing individual module vari-

ables and functionality rules (Rf) govern the functionality

behaviour of both modules. 172

6.10 An illustrative example of static configuration through the

framework in a Configurable Object Based System. The Gpr

and Fpr act on variables to update them through interface

Ipr. 178

6.11 Module-based system application on a production system

used to leak test products developed at an SME (TQC Ltd.).

The configuration in terms of variables, relationships, and

constraints is identified. The variable rules and functionality

rules are presented. 180

xiv

7.1 Envisioning the standard configuration model for production

control in Production System. Three layers model is estab-

lished (1) Configuration modelling layer that capture the

information, (2) Mapping layer that maps the model with

other submodels ; product, functionality, capability and ser-

vices, (3) Production control layer that executes functional-

ity in the production system with the configuration. 187

7.2 Establishing the scope of the configuration modelling in pro-

duction systems. The production system consists of config-

urable objects (physical or cyber objects), and there exists a

mapping of variables to values in those configurable objects

subjected to constraints. 187

7.3 The UML representation of Configuration in Production sys-

tem. Functionality presents configuration requirements, de-

pending on capability, product and service requirements.

Variable and Functionality rules impact the configuration.

(An explanation of the arrows in the UML diagram can be

found in figure 7.4) . 190

7.4 The arrows in UML represent relationships between classes.

An explanation of UML arrows in the research is illustrated. 191

7.5 The hierarchy of configuration operation.The dotted lines

represent the instances which carry out the specific type of

operation. Abstract instances carry out those abstract oper-

ations governed by a production plan, while internal physical

and external physical operation are carried out by the pro-

duction system instance. For a successful configuration op-

eration abstract operation, internal physical operation and

external physical operation should have matching capabili-

ties and requirements. 194

xv

7.6 The product contains an ID, specification, and configura-

tion. The attributes can possess values for a property. For

classifying the product, categorisation, and specification de-

scription may be used. 199

7.7 A simple capability and skill representation . The capability

is based on skill and drives its properties from configuration.

Skill is a more descriptive concept containing unique iden-

tification, description and assigned controller. Functionality

influences the capability directly as functionality generates

certain dependencies that must be fulfilled for it to execute. 200

7.8 A simple service representation. The service requirement is

dependent on configuration. Service matching is necessary

to determine the compatibility of the service with require-

ments. Each offered service has an Id, Skill (i.e. encapsulat-

ing capability), and a service description. 201

7.9 The UML representation of Configuration in Production sys-

tem. UML representation of individual components is de-

tailed, which is established in this chapter. 202

8.1 Mapping Level Based Classification for Self-Configuration to

Production system components. The classification features

are mapped to the system to provide the focus for manufac-

turers for improvement. 208

8.2 Design Principles of Adaptation Strategy. 210

xvi

8.3 The proposed Adaptation Strategy integrated with CAEX

Engine. CAEX stands for Computer Aided Engineering eX-

change, a standard used to describe the structure of man-

ufacturing data. The CAEX Engine aids the management

and exchange of engineering data in a standardized format

(more explained in a later section). It consists of three lay-

ers: Production System Coordination (High-Level), Produc-

tion System Runtime (Mid-Level), and Production System

Drivers & Control (Low Level). 212

8.4 A configurable object module is mapped to CAEX engine

components. The functionalities are mapped to the system

unit class object instantiated in terms of variables as internal

elements within an instance hierarchy with the correspond-

ing rules. The allocation and links are mapped to role class

library and interface class library respectively. 217

8.5 An illustration linking elements of an AAS to the CAEX

Engine. Variables are housed as IEs, initiated as an instance

of system unit class (SUC). The relationships are captured

in IEs, interface instances (I) and role classes (R). Constraint

information is captured in IEs and Is of CAEX engine. . . . 218

8.6 Asset Administration Shell representation of an asset with

its main components for I4.0 compliant communication with

IoT infrastructure within a production facility. 219

8.7 State Machine encapsulating functionality state charts as

behaviours. It provides valid transition control mechanism

for the production system to follow. 221

8.8 Proposed workflow for machine learning in the production

system. The workflow defines the approach to use dependent

on data and requirements. 224

xvii

8.9 Illustration of the mechanism for the prediction of configu-

ration values using the AutoML approach. 225

8.10 The generalised elaborative approach for predicting config-

uration values for configurable objects in production systems. 227

8.11 Sequence diagram for functionality execution using agent ap-

plication in self-configuring production systems. 230

8.12 RTC and the interaction of its components with hardware

abstraction for module-driven self-configuration. The ap-

plication layer interacts with the configuration module in a

production system through its interaction layer. Adaptation

strategy acts on the configuration module. 237

8.13 Illustration of simulation for configuration module. 239

9.1 Routing design with the interface for self-configuration demon-

stration. 249

9.2 Activating the state chart transition for self-configuration . . 253

9.3 Generating part Requirement for the Introduced Part 253

9.4 Setting Requirements for the Functionality 254

9.5 Matching functionality with requirements 255

9.6 Variable Value Determination for Functionalities 256

9.7 Deploying variables on production system and executing func-

tionalities . 257

9.8 A simple glimpse of the Tool Utility developed to aid the

Production System Coordination Layer 258

9.9 Routing design for MALT with an interface for self-configuration

demonstration. 261

9.10 Routing design for PRIME with an interface for self-configuration

demonstration. 262

9.11 An illustration of the logistic regression algorithm. 264

xviii

9.12 An illustration of Genetic Algorithm 266

9.13 NAS algorithm for determination of image detection and

classification ML Model . 267

9.14 Level Based Classification for Self-Configuration applied to

Multi-Application Leak Tester (MALT). The identified fea-

tures need to be improved to enable MALT to achieve self-

configuration. This happens through Stage-Wise Transition

explained before. 273

9.15 Capturing MALT system information in CAEX Engine. . . . 274

9.16 AAS for MALT . 275

9.17 Generic asset administration shell representation (left). Skill

submodel is developed, submodel elements contains the skill

API calls along with pertaining data that can be used by

the client services. Component manager is deployed when

the submodels are listed (right). 276

9.18 Detail of each submodel to execute “leak test” functionality. 276

9.19 Summary of experimentation carried out for developing base-

line and data-set for self-configuration on MALT. The pa-

rameters for each volume are varied over the range men-

tioned. The range is volume and MALT-specific (constraints).280

9.20 Sequence diagram for a distributed manufacturing environ-

ment with self-configuration and testing. 282

9.21 Self-Configuration library formulation with Endpoint hosted

on Google Cloud Platform (GCP). Developing parametric

optimisation code that is modular and can execute an ex-

periment in 4-5 lines. 285

xix

9.22 The leak testing setup: (a) the cylinder volumes under test

(b) MALT test system being a part of test bench for general

leak testing (c) Interface for leak testing; agent system drives

the execution. 288

9.23 Execution of the self-configuration framework on MALT sys-

tem. (a) PA (representing a product) is entered into the

system. (b) TA transports the product to the manufactur-

ing system (MALT) location. (c) Manufacturing system is

self-configured and test is executed by agent coordination

through components of data pipeline.(d) TA transports the

product from the system once test is carried out. 288

9.24 Sequence Diagram for self-configuration and Test Process

(JADE Interface). 289

9.25 Change in configuration settings of the manufacturing sys-

tem (MALT). (a) No configuration setting (b) Configuration

change after execution before test. 289

9.26 Validation of Adaptation Strategy for leak test functionality

on MALT. The time taken to determine a valid configura-

tion is significantly less through the research approach in

comparison to an Expert. Also, the approach allows updat-

ing this configuration automatically, while the expert has to

enter the values manually. 290

9.27 Mapping project research questions to MALT Use-Case Im-

plementation. 291

9.28 Level Based Classification for Self-Configuration applied to

Multi-Agent & ML integrated MALT System. The features

have been significantly enhanced making MALT capable of

self-configuration. 293

xx

9.29 Level Based Classification for Self-Configuration applied to

PRIME test station . 297

9.30 Capturing PRIME test station information from the CAEX

Engine . 298

9.31 AAS for PRIME test station 299

9.32 Architecture of the Cloud Based Machine Learning Pipeline

for Configuration Setting Detection. 303

9.33 ML Pipeline Deployment. (a) Precision vs Recall against

identified part labels, for fixture identification. Precision is

a measurement of positive label assignment (ratio between

the True Positives and all the Positives) and recall is the

measure of the model correctly identifying True Positives.

(b) Maximum confidence at Threshold = 0.5. (c) Dataset

size (total and test images). (d) Confusion Matrix repre-

senting True and Predicted Labels. 304

9.34 Sequence diagram for the force-test use-case incorporating

image oriented configuration setting. 307

9.35 Sequential diagram for functionality execution on the PRIME

test station. 310

9.36 PRIME experimental setup involving teststation, two robots

and a shuttle on rail. 310

9.37 The force test functionality execution on PRIME. The robots

and the test station are allocated respective locations. The

agent system routes the part to the test station where de-

pending on the fixture the part is identified and the force

test configured. 311

9.38 Configuration change in the PRIME test station (a) before

(b) after detecting the part. 311

xxi

9.39 Validation of Adaptation Strategy for force test functionality

on PRIME. The time taken to determine a valid configura-

tion is significantly less through the research approach in

comparison to an Expert. Also, the approach allows updat-

ing this configuration automatically, while the expert has to

enter the values manually. 312

9.40 Mapping project research questions to PRIME test station

Use-Case Implementation 312

9.41 Level Based Classification for Self-Configuration applied to

Multi-Agent & ML integrated PRIME test station. The fea-

tures have been significantly enhanced making MALT capa-

ble of self-configuration. 314

9.42 A practical example from TQC (Industrial Partner) on con-

figuration costs incurred in respective projects. This presents

a potential for value utilisation by self-configuration strat-

egy, reducing these costs during deployments. 319

9.43 A plot demonstrating the value utilisation potential on in-

dustrial partner data by adaptation strategy. 320

10.1 Contributions of the research towards the research questionss 324

10.2 Level Based Classification for Self-Configuration and Map-

ping to Production System. 330

10.3 An illustration of a Module-based system having two mod-

ules hosting functionalities M1 and M2. 331

10.4 The developed Adaptation Strategy with supporting tools

at a Glance. 331

10.5 Limitations of the research. More detail on this is expanded

on in this section. 337

C.1 A basic state representation using statecharts. 420

xxii

C.2 An collaborative illustration on state charts for a production

system. (a) Guards and actions during the transition,(b)

time-triggered transition, (c) segmented transition, (d) re-

gions ,(e) concurrent transitions, (f) complex transitions, (g)

state transition, (h) history states. 422

D.1 CAEX architecture for capturing information on the module

and operational semantics (Drath (2021)). 429

D.2 Representation of functionality operation as a Submodel in

Asset Administration Shell deployed through CAEX engine.

Context is a combination of identifier, kind, semantic ID,

qualifiable, and data specification for a production opera-

tion. Event defines the change happening as a result of

the operation, Submodel Collection contains information and

functions about the operations relevant for that production

system, Capability is the ability or extent of the operation,

and Operation contains information about the input, out-

put and in-out condition for the operation. Value and Value

Type are used to assign value as per a unit to the property. 432

xxiii

Acronym

Acronym Meaning

AAS Asset Administration Shell

AI Artificial Intelligence

API Application Programming Interface

C Configuration

CAEX Computer Aided Engineering Exchange

CO Configurable Object

CNP Contract Net Protocol

DiManD Digital Manufacturing and Design

DF Digital Factory

DM Digital Manufacturing

EU European Union

FMS Flexible Manufacturing Systems

GA Genetic Algorithm

GCP Google Cloud Platform

H2020 Horizon 2020

HMS Holonic Manufacturing Systems

ITN Innovative Training Network

I/O Input and Output

IoT Internet of Things

1

JADE Java Agent Development Framework

KPI Key Performance Indicators

MALT Multi-Application Leak Tester

ML Machine Learning

MSCA Marie Skodowska-Curie Innovative Training Net-

works

OEE Overall Equipment Effectiveness

Op Operation

PA Product Agent

PLC Programmable Logic Controller

PSO Particle Swarm Optimisation

RA Resource Agent

Rel Relationship

RL Reinforcement Learning

RMS Reconfigurable Manufacturing Systems

RQ Research Question

RTC Real Time Control

Q Question

SME Small and Medium-sized Enterprise

TA Transport Agent

UML Unified Modelling language

V Variables

2

Glossary

Some common terms used in this PhD thesis are defined :

Term Definition

Adaptation The process of making system configuration suit-

able for a purpose.

Alarm leak rate Threshold that triggers a ’fail’.

Alarm differen-

tial pressure

Pressure difference threshold also signaling a ’fail’.

Allocation Relating variables with data values.

Agent Program that performs actions autonomously

based on behaviours to meet goals. It can also in-

teract with other agents and perform negotiations.

Collectively agent system, consisting of more than

one agent, can show emergent behaviour.

AMPQ A robust, feature-rich messaging protocol ensuring

reliable and secure message delivery for enterprise

applications.

Capability The ability of a system to execute an operation.

Centralised

Database

A database that is located, stored, and maintained

in a single location

3

Cloning Template driven change under the assumption that

all machines have identical basic file systems and

specific configurations

Configuration A set of objects, the characteristics of these ob-

jects: their extrinsic and intrinsic properties, and

the connections between them.

Configurable

Object

Those components in the production system that

can be adapted (adjusted).

Constraint The limitations imposed on the production system.

Decomposition The process of simplifying a mechatronic aggre-

gate.

Fill time Duration of pressurisation.

Functionality Is the behaviour in the form of capabilities of con-

figurable object

Functionality

Rule

These are used to govern the behaviour of the pro-

duction system as the functionality is executed.

Granularity The size of an individual mechatronic aggregate.

Initial Delay A pause allowing the system to settle after pres-

surisation.

Isolation delay A pause after system isolation before measure-

ment.

Key Perfor-

mance Indicator

A quantifiable measure of performance over an ob-

jective.

Link Connection between variables and the production

system.

Machine Learn-

ing

The use of data and algorithms to generate insight

that improves with iterations.

4

Traditional

Manufacturing

Making or processing products from any form of

input using equipment or similar means.

Manufacturing

Asset

Something of value in manufacturing, such as a

component or a device.

Measuring time Duration of leakage measurement.

Modelling Capturing and presenting features of a production

system.

Module Structural representation of a configurable object.

Modularity The number of separate manufacturing aggregates

present in the production system

MQTT A lightweight publish/subscribe messaging pro-

tocol designed for low-bandwidth, resource-

constrained IoT devices.

Offset compen-

sation

Adjustment for inherent system leaks.

Optimisation Process of finding the best variable values for a

configurable object from among many possibilities

that suit an objective.

Product Something that is produced through a manufac-

turing activity.

Relationship This represents the association between config-

urable objects.

Runtime It is a layer of abstraction capturing system con-

figuration, functionalities, and constraints.

5

Self-

Configuration

It is the ability of a system to change its configu-

ration (i.e., parameters, calibration, and the con-

nection between different system modules) by in-

stalling, updating and (re)formulating to improve

or restore system functionality in response to ac-

tions and a changing environment.

Services External components that aid a production system

in an objective.

Skill The ability of the system at the moment to execute

the operation.

Stabilisation

time

Period for pressure to equalise within the product.

State The current status of the system awaiting a tran-

sition.

Test Pressure The pressure applied during testing.

Variables The objects in a configuration that can be config-

ured for an operation.These impact the operation

of the configurable object and the production sys-

tem.

Variable Rule The constraints that involve configurable object

variables and their values.

Vent off delay A delay before measurement to ensure complete

system pressurisation.

Venting time Duration of pressure release.

6

Chapter 1

Introduction

7

1.1. INTRODUCTION

Contents

1.1 Introduction . 8

1.2 Problem Statement 9

1.3 Research Domain . 12

1.4 Aims and Objectives 14

1.4.1 Aim . 14

1.4.2 Objectives . 14

1.5 Thesis Structure . 15

1.6 Publications . 18

1.1 Introduction

The advances in computer engineering, communication and information

technologies have significantly impacted the manufacturing environment

by finding applications in automation and robotic, data-driven decision-

making, industry 4.0, enhanced connectivity and customisation (Karabegović

et al. (2020); Kubler et al. (2013); Vaisi (2022); Kuan et al. (2011)). “In-

telligent manufacturing” is the term used to describe the next generation

of production systems where the production systems have the capability

of making intelligent decisions about themselves. It is expected that intel-

ligent manufacturing will be expanding in the years ahead, presented by

(Kostal et al. (2019)), as more technologies are integrated and applications

explored.

Technologies like machine learning, presented by (Sharp et al. (2018)), rein-

forcement learning, presented by (Aggour et al. (2019)) and cloud comput-

8

1.2. PROBLEM STATEMENT

ing, presented by (Wu et al. (2014)), enable intelligent decision-making on

devices and machines based on previous experiences and learning capabil-

ities. Integration of these technologies assists in making effective decisions

for machine production systems. Supporting frameworks that integrate

these technologies and present a viable approach to deliver smart decisions

lead to the current research trends.

Supporting intelligent decisions in manufacturing is accompanied by under-

standing the input requirements, and output requirements, such as product

information, customer requirements, process information and equipment

capability. These requirements vary significantly per the product, pro-

cess, and application criteria in production systems. Understanding these

requirements for a dynamic manufacturing environment and developing

strategies to address these changing requirements is a growing research

direction addressed in this thesis.

1.2 Problem Statement

Companies want to expand their business, get more customers, and address

the competition. To achieve this they want to make better products, give

more value to customers, and meet higher production targets. With ever-

changing market constraints, customer requirements and the need for mass

customisation for the business edge, the need for dynamic configuration

and equipment adaptation has become of paramount importance.

For achieving the business edge in the light of stated goals, it is desirable

by the companies that components in a production system demonstrate a

modular behaviour i.e., can be easily integrated at different points on the

system, and can perform its associated functionality. Additionally, they

9

1.2. PROBLEM STATEMENT

should store or utilise data for decision-making for the purpose of quality

control, traceability, and other performance criteria. It means that the

components must show intelligent behaviour and be able to adapt to the

requirements of the product being processed.

The ‘No-Faults-Forwards’ philosophy (Khan et al. (2014)) adopted in the

current manufacturing paradigm entails testing to be incorporated in all

processes in the operation sequence. This is important so that products

may be produced with high accuracy and repeatability. This also helps

companies to maintain a business edge as per discussed objectives. Mod-

ular components are essential for the ‘No-Faults-Forwards’ philosophy, as

these could be used anywhere on the production system, ensuring product

accuracy and repeatability. In order to realise such a modular component,

this research directs a solution towards incorporating intelligence in the

component level of the production system.

Research trends in the domain of intelligent manufacturing is mainly con-

centrated towards making the whole system intelligent, creating assump-

tions about the components (i.e. manufacturing assets) that form the build-

ing blocks of the production aggregate (Antsaklis et al. (1989); Zhong et al.

(2017); Antzoulatos (2017)). These assumptions involve the capabilities of

these components in relation to the output and input requirements. An ex-

ample can be an operation that a manufacturing asset, in the system, can

perform but under the consideration of the part clamped into the fixture.

This means that the operation is linked with the clamping requirement.

Another example could be the manufacturing asset’s parametric or setting

limitation.

This research contributes to the conceptualisation and development of self-

configuring production systems comprised of intelligent components and

10

1.2. PROBLEM STATEMENT

their application or utilisation in the system. These intelligent components

must be able to adapt to meet the requirements of the product, customer

requirements, and production system. Such is only possible if the limitation

of the previously discussed assumption is addressed. In this research, this

problem is addressed. Since these components should be able to adapt (i.e.

configured) as per requirements, they can be referred to as Configurable

Objects (CO).

The configuration settings, for a CO, on the production system are depen-

dent on the features of the product, the characteristic properties of the

environment where the equipment is kept, the connected processes, and

current business priorities.

The specific research questions can be listed as:

• Theoretical Foundations: What theoretical models are needed to

underpin the concept of self-configuration in production systems?

• Adaptation Strategy: How can a general adaptation strategy be

developed to integrate self-configuring COs into production systems?

• Technology, Tools, and Techniques: Which technologies, tools,

and techniques best facilitate self-configuration and leverage opera-

tional data for iterative improvement?

• Implementation: How can this approach be implemented in a real-

world scenario involving a product within the production system?

• Business Alignment: How can business objectives be translated

downstream to guide the self-configuration process at the production

system level?

11

1.3. RESEARCH DOMAIN

1.3 Research Domain

The research project is directed at the self-configuration of production sys-

tems. The manufacturing process may involve a production system to be

operated at different configuration settings, dependent on features, orien-

tation, and topology (i.e. the way the part is introduced into the system).

Configuration change in the production system is associated with changes

in physical parameters, variations in calibration settings or the use of differ-

ent system settings. Under conditions of time constraints, any performance

criteria or any other production scenario, a product can be operated on dif-

ferent configurations in the same production system.

The majority of the work in this area has been carried out at the configu-

ration change at the system level, but an approach to determine the right

configuration settings of the machine by the machine itself in regard to the

product and process remains a valid gap.

The focus of this research is towards understanding the domain of self-

configuration by modelling the configuration aspect and using data to adapt

the configuration as per needs. Technologies that realise this, by mapping

the data to value-based decisions, are also researched. The approach to the

determination of configuration settings, incorporating internal and external

data, is also an investigation focus.

The concept of self-configuration involves the machine’s capability to cap-

ture and utilise data. The data can be used for the decision-making aspect,

thereby extracting ‘value’ from it. A reasoning approach is of paramount

importance that captures and utilises data for decision-making. The rea-

soning approach should contribute to the objective of adapting the config-

urable object to the product requirements in a production system.

12

1.3. RESEARCH DOMAIN

Relating data to value can give a direction to achieving the objective of self-

configuration. Bärring (2019) groups data accumulated during production

operation into internal and external data streams. The internal stream of

data primarily involves that data, contributing to value, that influences the

internal state of the production system. The concept of self-configuration

is the configuration which the equipment adopts for performing operations

on the part or product. On the other side, external data groups those

data aspects, contributing to value, that influence the production system.

For self-configuration, it could be factors that affect the internal data like

volume, priorities, or other key performance indicators (KPIs).

The Research Question (RQ) can be framed as;

How to achieve self-configuration in production systems at the

machine level?

This research presents a methodology and approach to address this

gap in knowledge, with a focus on testing systems or testing incorporated

production systems. A leak testing machine, and a force and vision testing

machine, industrial use cases, serve as deployment and evaluation systems

for the developed approach. The developed approach that initially targets

the testing can be generalised to a wide variety of production systems. The

methods can be applied to machines in different application areas in manu-

facturing, the focus in this research because of its plug-and-play nature is on

testing machines.Tools and techniques are explored that may work to-

gether to achieve complete self-configuration of production systems. The-

oretical foundations and adaptation approach that basically utilises

all the tools and techniques is highlighted.

13

1.4. AIMS AND OBJECTIVES

1.4 Aims and Objectives

1.4.1 Aim

This research aims to develop a strategy for self-configuring production

systems, enabling them to automatically adapt to changing requirements

and optimise their operation.

1.4.2 Objectives

• Develop theoretical models: Create data and conceptual models

to capture, store, and effectively utilise configuration information in

production systems focused on testing applications.

• Establish configuration abstraction: Define relationships be-

tween elements of production system configuration, configuration change

operation, functionality execution under a configuration, rules gov-

erning configuration in systems, and capabilities in a system to guide

the self-configuration logic.

• Identify enabling technologies: Investigate and select the most

suitable technologies, tools, and techniques to achieve system self-

configuration in real time.

• Design system architecture: Construct a modular and adaptable

architecture that facilitates the self-configuration process.

• Validate implementation strategy: Develop and deploy an adap-

tation strategy that allows the production system focused on testing

applications to seamlessly reconfigure itself to meet changing internal

and external requirements.

14

1.5. THESIS STRUCTURE

1.5 Thesis Structure

To capture configuration settings and realise self-configuration, in the the-

sis the concept of configuration is discussed in detail with reference to

production systems in manufacturing. The concept of self-configuration is

elaborated with some focus on breaking it down to a set of features that

could be mapped to any production system. This is mainly done to make

the topic more relatable to the machines on the shop floor and spark an

interest towards achieving self-configuring objectives. Leveraging on the

developed interest, the building blocks of the system configuration are ex-

panded and the rules of the game are set. The information modelling for

the configuration is detailed and the strategy to achieve configuration is

presented. Tools and techniques are used to encapsulate the execution of

research towards the realisation of a self-configuration strategy. In a sim-

plistic view, the approach that is presented realises self-configuration by

capturing information (e.g. constraint, relationship, and variables). This

information is manipulated to achieve self-configuration by using an agent

system through machine learning (ML). More detail on this is discussed in

respective chapters. A brief description can be understood by the figure

1.1.

The thesis structure is as follows;

• Chapter 1 Introduction introduces the problem and establishes

the research definition and motivation. The domain and scope of re-

search are identified, and a general approach is represented. (Theoretical

Foundations)

• Chapter 2 Literature Review represents some literature and

background work on the thesis topic, along with identifying the Gap

15

1.5. THESIS STRUCTURE

Figure 1.1: Thesis structure, relating chapters to the specific research ques-
tions.The chapter-wise mapping of each research question is shown.

in the research area. (Theoretical Foundations)

• Chapter 3 Methodology discusses the methodology for the the-

sis, experimental setups and the approaches. Approach for adapta-

tion strategy, data modelling, tools and techniques are elaborated.

(Adaptation Strategy)

• Chapter 4 Industrial Practice Survey highlights the industrial

insight on self-configuration and gets the expert reflection on the

16

1.5. THESIS STRUCTURE

impact of self-configuration on production systems. This chapter also

serves as a means of validation of the research direction. (Business

Objective)

• Chapter 5 - Level Based Classification expands on the features

of self-configuration and maps them to industrial applications. This

chapter provides a means of transition towards a higher level of self-

configuration in production machines. (Adaptation Strategy)

• Chapter 6 Module Driven Configuration expands on the build-

ing blocks of the production system with regard to configuration. A

framework is presented, and a system model on that framework is

elaborated. (Theoretical Foundations)(Adaptation Strategy)

• Chapter 7 Standard Configuration Modelling details the

modelling of configuration in production systems, with a focus on

the framework. A means of capturing the configuration is presented.

(Adaptation Strategy)

• Chapter 8 Towards Achieving Self-Configuration uses the

theoretical concepts established in previous chapters to present an

adaptation strategy using tools and techniques. (Adaptation Strat-

egy)(Technology, Tools, and Techniques)

• Chapter 9 Industrial Use-Cases Two application cases are illus-

trated and discussed. The adaptation strategy is applied to achieve

self-configuration.(Implementation)(Business Objective)

• Chapter 10 Conclusion presents the thesis outcomes and contri-

butions. The findings are summarised, limitations expanded, and the

research reflected on. The significance of the research is elaborated

with a focus on a potential industrial use case.

17

1.6. PUBLICATIONS

1.6 Publications

Table 1.1: The accepted papers from this PhD research.

Research Topic Journal/Conference Thesis
Chapters

Application of Multi-Agent
Systems for Leak Testing
(Rehman et al. (2021a))

2021 9th International Con-
ference on Systems and
Control (ICSC’2021).

8 and 9

Cloud-Based Decision Mak-
ing for Multi-Agent Produc-
tion Systems (Rehman et al.
(2021c))

EPIA2021 - 20th EPIA
Conference on Artificial.

9

A Framework for Self-
Configuration in Manufac-
turing Production Systems
(Rehman et al. (2021b))

12th Advanced Doctoral
Conference On Computing,
Electrical And Industrial
Systems (DOCEIS2021).

8 and 9

Service-based approach
to asset administration
shell for controlling testing
processes in manufacturing
(Rehman et al. (2022))

IFAC Manufacturing Mod-
elling, Management and
Control 2022.

7,8 and 9

A Modular Artificial Intel-
ligence and Asset Admin-
istration Shell Approach
to Streamline Testing Pro-
cesses in Manufacturing
Services (Rehman et al.
(2024))

Journal of Manufacturing
Systems.

7,8 and 9

The papers mentioned in table 1.1 are contributed as first/main author.

These research papers are derived from the contents of this thesis from the

chapters mentioned in the table. In-progress research papers, from this

PhD thesis, in the state of drafts are available and can be provided on

request. As a researcher working on the DiManD (Digital Manufacturing

and Design) project, the list of research work carried out in collaboration

can be accessed through the following link:

https://scholar.google.com/citations?hl=en&user=QULKUhUAAAAJ

18

Chapter 2

Literature Review

19

Contents

2.1 Introduction . 21

2.2 Concept of Configuration in Production Systems . . . 23

2.2.1 Traditional Configurations in Manufacturing . . 24

2.3 Self-Configuration in Production Systems 29

2.3.1 Concept of “Self-* in manufacturing” 29

2.3.2 Discussion on Self-Configuration in Literature . 33

2.4 Machine Learning Applications 35

2.5 Optimisation Algorithms for Parameter Determination 38

2.6 Interoperability and Data Integration 40

2.7 Applications of Self-Configuration 43

2.7.1 Automotive Assembly Line Optimisation 43

2.7.2 Smart Energy Grid Management 44

2.7.3 Pharmaceutical Manufacturing Flexibility . . . 44

2.7.4 Intelligent Warehouse Management 45

2.7.5 Agriculture Precision Farming 45

2.7.6 Industrial Robot Collaboration 46

2.7.7 Smart Healthcare Facilities 46

2.7.8 Smart Energy Management 47

2.7.9 Autonomous Fleet Management 47

2.7.10 Smart Retail Environments 48

2.8 Research Gap . 48

2.8.1 A Case for Granularity and Modularity in Pro-

duction Systems 48

2.8.2 Functional Decomposition in Production Systems 52

20

2.1. INTRODUCTION

2.8.3 The Need for a Configuration Abstraction in

Production Systems: 53

2.8.4 Addressing the Identified Limitations 57

2.8.5 Need for Exploring Self-Configuration in Pro-

duction Systems 60

2.1 Introduction

In the current manufacturing environment, it is crucial to quickly adapt

to different products, complex processes, and customer requirements (El-

Maraghy et al. (2021)). The idea of self-configuration in manufacturing

has become really important for being adaptable towards changing re-

quirements and improving production efficiency (Chatzigiannakis et al.

(2012)). This chapter looks at previous research to explain the concept

of self-configuration and how it helps deal with the tricky balance of mak-

ing products, handling processes, and meeting customer requirements.

A comprehensive review of relevant literature was conducted to understand

the current state of self-configuration in production systems, identify the-

oretical foundations, and pinpoint crucial research gaps (Chapter 2). This

review lays the groundwork for the development of the adaptation strategy.

Figure 2.1 illustrates the methodology for the literature review.

The goal of this chapter is to explore works carried out that may enable

production systems to figure out and use the best settings on their own,

finding a good balance between product, processes, and customer require-

ments. By exploring the idea of self-configuration in literature, this review

aims to guide the creation of flexible production systems, from theoreti-

cal aspects to practical operational use. The literature review focuses on

21

2.1. INTRODUCTION

Figure 2.1: Adopted methodology for literature review

the concept of configuration in production systems and explores dimen-

sions of self-configuration in various works. Machine learning applications

are elaborated along with optimisation algorithms, interoperability, and

data integration. It also looks into making different systems work together

better, keeping data reliable, and finding practical uses in industries by

exploring relevant research works. All of this helps to understand more

about the research in this field.

In this chapter, the exploration of the concept of self-configuration lays

the foundation for a discussion about the compromise between granularity

and modularity. This discussion, explained later, is pivotal to achieving

the equilibrium between customisation and efficiency. Increasing customi-

sation and requirements of bespoke products and tailored processes raise

questions about precisely setting up machines. So, the level of granularity

and modularity here becomes important. This literature review explores

22

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

this facet of self-configuration through the lens of adaptation to define,

select, operationalise and determine configurations in production systems

in terms of mechatronic aggregation (i.e. composition of manufacturing

assets).

This literature review also dwells on physical and functional decomposition

styles supported by various practical implementation cases in the indus-

try, each utilising an aspect of realising self-configuration capabilities. By

scrutinising an array of research works, the chapter seeks to unravel how

self-configuration is approached at different levels of granularity and modu-

larity, shaping the spectrum of possibilities for achieving self-configuration

in production systems.

2.2 Concept of Configuration in Production

Systems

Conventional Definition of Configuration: The definition of con-

figuration in the manufacturing industry is generalised as a set of objects

and their connections (Berns and Ghosh (2009)).

Problem with Conventional Definition: A manufacturing asset is

something of value in manufacturing, such as a component or a device

Sakurada et al. (2021). In the context of production systems from the above

definition, an object may be a manufacturing asset that can be configured

or a component in some manufacturing asset. It can be any software or

hardware belonging to that manufacturing asset (Borangiu et al. (2020);

Liang et al. (2024)). In this research, it is proposed:

23

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

It is important to consider the characteristics of the objects in a system:

their extrinsic and intrinsic properties, and the connections between them.

Connections for digital communication with and between objects are re-

quired in order to exploit the opportunities offered by digitalisation in

manufacturing (Borangiu et al. (2020); Liang et al. (2024)). These con-

nections may be physical, virtual, or a combination of the two (Monostori

et al. (2016); Somers et al. (2023)).

Requirements for Configuring an Object: In order to be config-

urable, an object (representing an asset) must have a set of variables (often

referred to as settings) to which values can be assigned to the production

system (Strasser et al. (2018)). A particular set of values defines a specific

configuration for functionality (Junker (2006); Bordel et al. (2017)). It is

possible that certain limitations exist which restrict the range of values

that can be assigned to each variable. Some variables may be dependent

on other variables or on the settings of connected objects (Radetzky et al.

(2019)). Similarly, the connection with and between objects in a produc-

tion system may be dependent on certain rules and constraints (Aldanondo

et al. (1999); Järvenpää et al. (2023)). In some cases, it may simply depend

on the choices made by the person in charge of the configuration (Günther

et al. (2009); Yang et al. (2023)).

2.2.1 Traditional Configurations in Manufacturing

The concept of configuration in production systems is explored in research

(Anderson (1994); Bordel et al. (2017)) as the reconfiguring of machines

whenever they are restarted. The configuration for machines defines the

values for process parameters and is either manually entered or updated at

24

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

a storage database where they can be extracted with regular updates (An-

derson (1994); Bordel et al. (2017)). These configurations will be different

for different operations to be performed.

Approaches to Configuring Production Systems: Most produc-

tion system equipment offers customisation of configuration parameters to

a certain degree (Kannisto et al. (2017)). These procedures for config-

uration are usually only compatible with vendor-specified software on a

configurable object and offer little to no integration with the functional-

ity of production systems (Weyer et al. (2015); Givehchi et al. (2017)).

The restriction extends towards automation, as the supported procedure

to the configuration has limited capability to be integrated with other con-

figurable objects of the production systems at the shop floor (Anderson

(1994)). The configuration information is usually (i.e. in most cases) stored

on the equipment itself, which means that once the machine is restarted it

needs to be entered or loaded again (Anderson (1994); Ferreira and Lohse

(2012)). Moreover, if there is some kind of breakdown in the equipment,

the process of using and extracting these parameters is greatly limited (Su-

rucu et al. (2023)). In production systems, the automated configuration is

usually realised by following approaches:

1. Configuring by using a central database.

2. Configuring through cloning.

Centralised Database

Development of a centralised database that enables configuration to be val-

idated and enforced by deliberation of policy rules (i.e. from a database

25

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

that contains if-else rules), network association (i.e. network environment

in which machine operates), and description (i.e. information about pro-

cess, product, and operation) (Bachula and Zajac (2013)).

Figure 2.2: Automated Configuration by Policy Rules, Database and Net-
work Association aided by Daemon Processes (Bachula and Zajac (2013)).
The configuration database is governed by the associated policy rules. The
production systems have a digital interface on which these configurations
can be adjusted. Background processes that ensure communication, and
connections are also running on the system.

As per figure 2.2, a production system consisting of objects that need to

be configured, carries a digital interface for default configuration settings

primarily involving parameter configurations, partitioning (i.e. for system

modularity) and allocation of space on memory, data storage information,

package/libraries to be carried (i.e. dependencies and requirements for

operation), address and network information, resource information (e.g.

robot, lathe, and others that its connects to), protocols to establish commu-

nication, prioritisation, and authorisation information (Anderson (1994)).

In addition to these, the production system also has some background

processes running that ensure device connection, communication, and syn-

chronisation during operation (such as recording states during PLC task

execution etc.) (Lal and Onwubolu (2007); Wan et al. (2013)).

26

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

Storage of the configuration parameters in an external database can be

considered a suitable alternative to configuration on a device (Shaw et al.

(2001); Perez-Leguizamo (2016)).

Issue On Configuring by Central Database: Mostly these platforms

which offer configuration change in a machine by central database are

vendor-specific and offer little to no interoperability (Givehchi et al. (2017)).

Small and large production setups utilise different levels of configuration

procedures (Anderson (1994); Scanzio et al. (2022)). Small production se-

tups are usually more inclined to vendor-specific procedures as these setups

lack well-defined data-oriented communication, transfer, and storage pro-

tocols (Opara-Martins et al. (2016)). However, such an approach makes

upgrade and installation quite challenging, requiring significant manual in-

volvement. Large production setups on the other hand are more robust

in their configuration setups as they drive the procedure to configuration

in the machine, thereby influencing the vendor to meet their needs (El-

Maraghy et al. (2009)). In the case of large setups where a number of

machines are employed, the configuration issue is still prevalent even if

provision has been made for automation (Lettner et al. (2013)).

Cloning

Cloning procedures are fundamentally vendor-specific, however, systems

have been developed to replicate the procedure with site-specific templates

that could easily be used to set up configurations for vendor-specific ma-

chines (Jones and Romig (1991)). Figure 2.3 illustrates the concept of

configuration setting by using the vendor-specific template. This system,

although viable, provides a major barrier to mass customisation where it

27

2.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

is assumed that all machines have identical basic file systems and spe-

cific configurations (Jones and Romig (1991); Lettner et al. (2013)). It

restricts configuration setups where specific manufacturing assets need to

be mapped with the right vendor specifications. Some research (Steiner and

Geer (1988); Lettner et al. (2013)) addresses the issue by suggesting system

modification, but this kind of modification results in hugely impacting the

vendor’s configuration system.

Figure 2.3: Configuration Cloning by Template in Production Environment
(Jones and Romig (1991)). The cloning template can be altered through the
interface and is displayed on HMI. The machine data is used to configure
the production system through the template.

Work has been done to address the machine-specific configuration issue,

i.e. changes to the template to meet the machine-specific changes. Earlier

work on this includes the development of typecast and mkserv(Anderson

(1994)) schemes that explored application machine-specific changes to the

configuration after cloning.

Issue on Configuring by Cloning: The underlying assumption in cloning

is that the system is static, meaning it is assumed that the machine’s

physical configuration remains the same (Feng (2009); Kramer and Magee

28

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

(1985)). This system becomes unstable when there is a huge variation

in physical configuration, frequent changes or changes in functionality re-

quirements, or new functionality is introduced in the production system

(Cannon (2003); Pethig et al. (2017)). Therefore, it becomes infeasible to

apply these approaches to current distributed manufacturing paradigms.

The type of configuration applied in such cases may be difficult to de-

termine (Anderson (1994); Kramer and Magee (1985)). The information

may depend on the previous state, a combination of prior, likelihood and

prediction states, goal parameters, communication, storage formats, and

functionality-related information (Wang et al. (2017)). Most of this infor-

mation may not be present explicitly and may need to be inferred (Bachula

and Zajac (2013); Ferreira and Lohse (2012)). The modularity requirements

of systems and services, owing to their dynamic nature, also pose obsta-

cles to the adoption of such template-based systems in environments for

changing existing configurations (Padayachee and Bright (2012)).

2.3 Self-Configuration in Production Systems

In this section, the concept of self-* is explored in the context of production

systems and related to configuration in manufacturing,

2.3.1 Concept of “Self-* in manufacturing”

The interaction between physical and data entities has the potential to

transform engineering systems (Kao et al. (2015)). This data can be linked

to machine functionalities introducing the “self-*” related aspects such as

self-awareness, self-comparison, and self-prediction. These “self-*” aspects

29

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

can further be combined and built up for purposes of self-configuration and

self-optimisation in intelligent production systems.

Figure 2.4: Relating Self-Configuration to value extraction levels (Kao et al.
(2015)) in Intelligent Systems. As the level increases, more “value ” is ob-
tained from the system. Configuration Level is the highest data and ma-
chine interaction level, where the machine can make independent decisions.

A data strategy presented by the UK Government highlights a new data

policy addressing the needs of data-driven technologies in industry and

steps towards implementing a “data-ecosystem” (UK (2020)). The het-

erogeneity of industrial data systems demands a cross-collaborative frame-

work for proper interaction. The development of homogeneity in industrial

systems is a multi-level approach, with basic steps starting at the lowest

connection level. In manufacturing these levels are the smart connection

level, data-to-information conversion level, cyber level, cognition level and

configuration level (Kao et al. (2015)). Figure 2.4 relates these levels of

value-extraction to self-configuration.

The properties of the system that make it capable of accommodating

the levels of value extraction are collectively categorised as self-* prop-

erties. Much work on “self-*” caters to the smart connection and data-

to-information levels of data and machine interaction. Common standards

and protocols have been significant enablers in achieving connection-level

integration (Koronios et al. (2006); Pushkov et al. (2021)). Integration at

the connection level remains a challenge in complex factory systems, which

30

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

may involve different machines, varied by functionality and supplier, oper-

ating at different conditions, time stamps and data formats (Givehchi et al.

(2017); Dafflon et al. (2021)).

The data-to-information level is constrained to information acquisition.

Significant work has been carried out at this level (Trendafilova and Van Brus-

sel (2001); Liao and Pavel (2012); Li et al. (2022)), which highlighted the

need for models that adapt over time in response to the varying informa-

tion received. Adaptation with respect to parameter variation over time is

also necessary to reach the cyber level (Tobon-Mejia et al. (2012); Radet-

zky et al. (2019)). The cognition level uses decision-making algorithms and

reasoning techniques to draw inferences from the cyber level (Iarovyi et al.

(2015); Rožanec et al. (2022)).

The variation in scalability and the complexity of distributed systems has

witnessed a growth in manufacturing systems that can automatically adjust

themselves (Khalgui and Mosbahi (2010); Banerjee et al. (2016)), such as

acting on feedback to control the production line and to take independent

decisions for the configuration of their current and future states (for e.g.

adaptive process control for machining operations (Altintaş (1994); Gheibi

et al. (2021))). Identified self-* properties include self-healing (Hayes et al.

(2008); Ammar et al. (2022)), self-stabilisation (Botygin and Tartakovsky

(2014); Binotto et al. (2013)), self-configuration (Scanzio et al. (2022)), self-

adaptation (Antzoulatos (2017); Guo et al. (2023)), self-optimisation (Co-

hen et al. (2008); Löppenberg and Schwung (2023)), self-protecting (Yan

and Vyatkin (2013); Strasser and Froschauer (2012); Casalicchio and Gua-

landi (2021)), self-organisation (Khalgui and Mosbahi (2010); Olsen et al.

(2005); Rodič (2021)), self-scaling (Morgan et al. (2021)), self-management

(Sterritt and Bustard (2003); Del Giudice et al. (2021)) and self-immunity

(Hofmeyr and Forrest (2000); Ammar et al. (2022)). These system proper-

31

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

ties also have interrelationships with each other (Berns and Ghosh (2009)).

Table 2.1: Definitions of Self-Configuration extracted from literature in
Chronological Order

Year Definition

2015 The ability to adapt the system to reach system objectives
(Collados et al. (2015)).

2016 The ability to automatically detect and handle changes to
the system (Fritze et al. (2016)).

2017 The ability to adapt the system to application domains and
be oriented to user requirements (Bordel et al. (2017)).

2018 The ability to implement policies that may adapt the system
under influence of a change or disturbance (Bordel et al.
(2018)).

2019 The ability to implement and enhance manufacturing
responsiveness under changing conditions (Lieberoth-Leden
et al. (2019)).

2020 The ability to implement high-level policies on components
that demonstrate capacity and capability of adjusting
system under objectives (Sakly (2020)).

2021 The ability necessary to enable smart manufacturing (SM)
for engineering applications using the inputs generated
automatically (Park et al. (2021)).

The concept of self-configuration can be best defined as the capability of

a system to adapt to changes by itself. This is elaborated through table

2.1. These changes can be either by re-configuring large complex processes

itself, or in adaptability in the architecture or component relationships to

maintain and improve performance by achieving desired quality standards

in response to changes (Cheng et al. (2004a); Kephart and Chess (2003);

Ammar et al. (2022)). It becomes evident by this that self-configuring

systems have a direct impact on functionality and maintainability. In this

research, “Self-Configuration” is defined as follows:

Self-Configuration is a property that deals with response. It is the

ability of a system to change its configuration (i.e., parameters,

calibration, and the connection between different system modules)

by installing, updating and (re)formulating to improve or restore

32

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

system functionality in response to actions and a changing envi-

ronment. In a production system, those components that can be

adapted (configured) are be referred to as Configurable Objects.

2.3.2 Discussion on Self-Configuration in Literature

The focus of the literature in this field is to improve flexibility in produc-

tion systems while promoting high automation levels (Black (2000); Fra-

gapane et al. (2022)). Highly automated production systems ensure rapid

production of product variety through autonomous organisation. Flexible

Manufacturing Systems (FMS) and Reconfigurable Manufacturing Systems

(RMS) (Black (2000); Yelles-Chaouche et al. (2021)) focused on the flex-

ibility offered due to the mechanisation of the production system and en-

hanced usage of modular elements in production systems. However, these

kinds of paradigm shifts need to be linked with production solutions that

can accommodate these shifts (Valilai and Houshmand (2013)). These

production solutions need to accommodate modularisation and flexible be-

haviour (Padayachee and Bright (2012); Campos Sabioni et al. (2022)).

Self-organisation/self-adaptation in production systems can be achieved

by using flexible modular devices (reconfiguration) and utilising innovative

techniques to adjust their settings (self-configurations) in order to adapt to

requirements (product, process, any other quantifiable objective) (Graessler

et al. (2019)).

IBM characterises a self-managed system as one comprising the four adap-

tation features of self-configuration, self-optimizing, self-healing, and self-

protecting. These features may be separated into three levels of hierarchy,

according to (Salehie and Tahvildari (2005)). Figure 2.5 illustrates these

levels of hierarchy and their corresponding self-properties. It is best to as-

33

2.3. SELF-CONFIGURATION IN PRODUCTION SYSTEMS

sume that the definition of self-configuration refers to a system’s ability to

modify automatically and dynamically (Scanzio et al. (2022)). To main-

tain and improve performance to the desired quality standards in response

to change, these modifications can either be made by reconfiguring large

complex processes on their own or by adaptability in architecture or com-

ponent relationships (Cheng et al. (2004b); Marrella et al. (2017)). This

makes it clear that self-configuring systems have an immediate influence

on functioning and maintainability (Scheifele et al. (2014)).

Figure 2.5: Hierarchy of Self-properties. Relating self-configuration to self-
organisation/self-adaptation.The hierarchy begins at the base, progresses
to the major, and finally reaches the general level. The self-* properties nec-
essary for achieving self-adaptation in production systems are highlighted
at each level with their respective self-* property.

There are multiple publications that deal with the control of self-organisational

behaviour, however, this comes with a huge variety of control solutions de-

pending on the type of flexible production system (Hülsmann and Windt

(2007); Qin and Lu (2021)). For instance, (Hees (2017)), offers an ap-

proach for selecting a configuration for a production system along with the

sequence of operations.

An obstacle to self-configuration is the emphasises on certain aspects like

context-awareness (Bannat et al. (2011)), data (Cengiz et al. (2021)), opti-

misation (Black (2000); Vaisi (2022)) and control (McFarlane et al. (2013)).

34

2.4. MACHINE LEARNING APPLICATIONS

However, they do not collectively try to consider them together as a whole

and provide a road map for a step-by-step transition.

Machine learning can be used to address this issue, as it can generate in-

sight by learning from accumulated data on all aspects of self-configuration

(Radetzky et al. (2019)). It can identify patterns and trends by leverag-

ing data, enabling production systems to make real-time adjustments and

adapt to changing scenarios (Andronie et al. (2021)). The next section

discusses machine learning in manufacturing applications.

2.4 Machine Learning Applications

Machine learning (ML) allows software to learn over time from data and

make decisions and predictions that improve over time. ML is being used to

improve decision-making, operations, and customer experiences in a wide

range of sectors. In the case of self-configuration ML can be used to assist

the system in responding and adapting to changes by processing historically

accumulated data for the respective system.

Many real-world problems have high complexity and unknown underlying

models, which makes them excellent candidates for the application of ML.

ML can be applied to various areas of computing to design and program

explicit algorithms with high-performance output, such as in the manufac-

turing industry, robotics (Wang et al. (2019)), e-commerce, medical appli-

cations (Wu et al. (2021)), and fault diagnosis (Tang et al. (2020)).

Distributed artificial intelligence (DAI) has attracted research interest be-

cause it can solve complex computing problems by breaking them into

simpler tasks. DAI algorithms can be divided into three categories: paral-

35

2.4. MACHINE LEARNING APPLICATIONS

lel AI, distributed problem-solving (DPS), and multi-agent systems (MAS)

(Wooldridge (2009)). Parallel AI involves the development of parallel algo-

rithms, languages, and architectures to improve the efficiency of classic AI

algorithms by taking advantage of task parallelism. DPS involves dividing

a task into several subtasks, and each subtask is assigned to one of a group

of cooperating nodes (called computing entities). Computing entities have

shared knowledge or resources and predefined communications with other

entities, which limits their flexibility (Bond and Gasser (2014)).

Machine vision and image processing techniques utilised in manufactur-

ing applications are used for integrated inspections to detect defects and

improve product quality in the process (Xie (2008)). In many cases, tradi-

tional machine learning has made great progress and produced reliable re-

sults (Neogi et al. (2014)), but different prepossessing methods are required,

including structure-based, statistical-based, filter-based, and model-based

techniques. To enhance performance for quality control, these techniques

can be combined with expert knowledge to extract representative features

(Pernkopf and O’Leary (2002); Wang et al. (2018)) that influence quality.

The integration of cloud technologies in manufacturing applications, ex-

emplified by agent architectures like PROSA (Van Brussel et al. (1998)),

extended the goal-based execution models for cloud adaptability supported

by ML applications. Manufacturing control and configuration benefit from

cloud services (Puliafito et al. (2015)), with task scheduling employing

agents (Renna (2011)) and machine learning. Healthcare applications uti-

lize cloud-connected technology with agents for ECG monitoring. Multi-

agent reinforcement learning addresses resource-constrained task schedul-

ing, potentially combining cloud-based data-driven decision-making. Cloud

technology also supports foresight in job shop scheduling and production

control through digital twins (May et al. (2021)).

36

2.4. MACHINE LEARNING APPLICATIONS

There is a growing integration of machine learning (Sharp et al. (2018)) and

cloud computing (De la Prieta and Corchado (2016), Zhang et al. (2010),

Wang and Liu (2012)) within manufacturing processes. While cloud com-

puting frequently serves as a platform for data storage and orchestration

(DAniello et al. (2021),Li and Jiang (2021),Tang et al. (2017)),machine

learning receives wider applications in areas like predictive maintenance

(Sittón and Rodŕıguez (2017)), process optimisation (Nie et al. (2022)),

and intelligent product design (Antzoulatos et al. (2017). Reinforcement

learning has emerged as a technique for scheduling and routing problems

(Silva et al. (2019),Zhou et al. (2021), Tang et al. (2017)), while artificial

neural networks appear in cyber-physical production system development

(Tran et al. (2019),DAniello et al. (2021),Ghadimi et al. (2018)). The

increasing use of these technologies indicates a shift towards data-driven

(Mourtzis et al. (2016)), self-optimising (Radetzky et al. (2019)) manufac-

turing environments.

However, it is observed that the objective of production optimisation usu-

ally involves the use of ML technology and possibly a cloud-computing

technology. The production optimisation can be considered an adaptation

requirement, therefore laying the foundation for using ML technologies with

cloud computing integration (possibly) to achieve self-configuration objec-

tives (i.e. adaptation objectives) in production systems. Some optimisation

approaches to parameter optimisation and determination are discussed in

the next section, while some details on achieving interoperability between

systems and data integration are discussed in the later section.

37

2.5. OPTIMISATION ALGORITHMS FOR PARAMETER
DETERMINATION

2.5 Optimisation Algorithms for Parameter

Determination

optimisation algorithms, in self-configuring production systems, enable the

precise determination of optimal parameters for various components and

functionalities. These algorithms, rooted in mathematical principles, are

powerful tools to navigate the intricate parameter space and identify val-

ues that yield desired outcomes (Sibalija (2019)). In the context of self-

configuration, optimisation algorithms play a crucial role in fine-tuning

parameters to achieve seamless adaptability, enhanced performance, and

efficient resource utilization (Chen et al. (2017)).

In self-configuring production systems, parameter determination is a criti-

cal process that ensures the system operates optimally under varying condi-

tions (Xu et al. (2016)). optimisation algorithms are applied to determine

parameters for individual modules, components, and functionalities that

collectively form the self-configuring system. For instance, in this research,

it is proposed that in a modular production setup, algorithms can be em-

ployed to optimise module configurations based on real-time data, produc-

tion demands, and quality objectives (Gao et al. (2022),Mount (2015)).

These algorithms dynamically adjust parameters to align with changing

requirements and environmental factors.

The types of optimisation algorithms for this research must be diverse and

well-suited to these systems’ complex and dynamic nature. Evolutionary

algorithms, including Genetic Algorithms and Particle Swarm optimisa-

tion (Pierreval and Tautou (1997)), are frequently used in exploring pa-

rameter spaces and uncovering configurations that lead to optimal system

behaviour. Gradient-based methods, such as Gradient Descent (Zhou et al.

38

2.5. OPTIMISATION ALGORITHMS FOR PARAMETER
DETERMINATION

(2022)), adapt parameters incrementally, ensuring the system continuously

converges towards improved configurations. Additionally, metaheuristic

algorithms like Simulated Annealing (Sibalija (2018)) provide valuable in-

sights into parameter adjustment by emulating physical processes.

As Industry 4.0 advances, the role of optimisation algorithms in self-configuring

or self-adapting production systems is expanding significantly (Vaisi (2022)).

The incorporation of artificial intelligence and machine learning techniques

Dey (2016) can enhance parameter determination by leveraging histori-

cal data (Blum and Schuh (2017)) and predictive analytics (Wang et al.

(2022)). The fusion of optimisation algorithms with sensor networks (Zhang

et al. (2019)) and edge computing (Shi and Dustdar (2016)) can enable

rapid adjustments based on real-time feedback. Moreover, research in

hybrid algorithms (Xia and Wu (2005)) (i.e. combining optimisation al-

gorithms) and adaptive optimisation (Kruger et al. (2011)) can address

complex scenarios with multiple objectives and constraints.

Agents in manufacturing serve as intelligent software entities that can au-

tonomously make decisions and interact within a production environment

(Leitão et al. (2016); Dittrich and Fohlmeister (2020)). Genetic algorithms

provide a powerful optimisation tool inspired by natural evolution, allowing

agents to find optimal solutions for complex problems like resource schedul-

ing or production line configuration (Abbasi and Houshmand (2011)). The

contract net protocol offers a distributed negotiation framework, enabling

agents to effectively coordinate tasks, allocate resources, and resolve con-

flicts (Yeung (2018)). Together, these technologies in this research can fa-

cilitate adaptable production systems, improving responsiveness to change

and optimising performance.

39

2.6. INTEROPERABILITY AND DATA INTEGRATION

2.6 Interoperability and Data Integration

The integration of diverse production systems demands a robust solution for

achieving interoperability and seamless data integration (Estrada-Jimenez

et al. (2021)). Asset Administration Shells (AAS) emerge as a critical

framework to address this challenge (Tantik and Anderl (2017)).

AAS provides a comprehensive and standardised representation of infor-

mation on the industrial asset (Beden et al. (2021)). This can be used to

develop a whole picture of the asset and assist in adaptation to changes

in production systems therefore making it essential to be used for achiev-

ing self-configuration (Tantik and Anderl (2017)). AAS enables real-time

monitoring, control, and optimisation of production processes (Zheng et al.

(2022)). There exist several realisations of AAS standards, some of which

are implemented in applications (Deuter and Imort (2021); Cavalieri and

Salafia (2021); Cavalieri et al. (2019)).

AAS provides a standardized, vendor-neutral approach to representing pro-

duction system components, capturing their functionalities, configurations,

and relationships (Beden et al. (2021)). AAS has seen significant interest

from enterprises, technology providers, and standardisation bodies due to

the increasing trend of digitalisation in manufacturing to promote adapta-

tion and responsiveness (Sakurada et al. (2021)).

The AAS is meant to be a digital representation of a real component. As a

result, it can be used interchangeably with the term ”digital twin” (Wenger

et al. (2018)). The major components of an asset administration shell are

depicted in figure 2.6 (Wenger et al. (2018)), namely: component manager,

manifest, header section, and body section. The detail of these components

are as follows:

40

2.6. INTEROPERABILITY AND DATA INTEGRATION

Figure 2.6: Asset Administration Shell (AAS). Representation of an asset
with its main components for I4.0 compliant communication with IoT in-
frastructure within a production facility.

• The Digital Factory (DF) Header Section contains the globally

unique identifiers for an AAS and its represented asset.

• The DF Body Section is composed of multiple submodels, each

representing a distinct part of the asset’s operation.

• The Component Manager links the AAS to a repository of sub-

models, their description, and their functions. It administers the

submodels of the assets. The Component Manager manages and pro-

vides access to the Internet of Things (IoT) network of the production

facility using a service-oriented architecture.

• The Manifest is present in both the header and body sections of

AAS. It can be considered as the directory of data content. Specifi-

cally, it contains the meta-information serving to provide meaning to

the data from AAS.

Submodels depict the various facets of an asset by a given standard. Sub-

41

2.6. INTEROPERABILITY AND DATA INTEGRATION

models include an Industry’s technical/specialised functionality. Among

the possible submodels are security, maintenance, drilling, welding etc.

More detail on AAS and its implementation is in chapters 7, 8 and 9.

In (Cavalieri and Salafia (2020)), A standard method to realise the descrip-

tion of AAS is shown by the author, who offers an Asset Administration

Shell model capable of representing IEC 61131-3 programs and their in-

teractions with Programmable Logic Controllers and each component in

the controlled plant. In (Tantik and Anderl (2017)), by providing a frame-

work for connecting existing equipment to external networks, the asset

management shell serves as a bridge. to improve network communica-

tion by creating new standards and platforms. In (Pethig et al. (2017)),

AAS is proposed to integrate the condition monitoring service. In (Wenger

et al. (2018)), when considering the possible impact on PLC operation,

distributed AAS is utilised to enhance performance. In literature, it is

proposed to deal with the problem of organised information sharing and

administration in cross-enterprise cooperative engineering. through the use

the Data Administration Shell (Löcklin et al. (2021)).

Current AAS has some limitations, mainly the lack of examples of ap-

plications in current manufacturing production systems. A lack of stan-

dardisation for direct adoption into the manufacturing environment also

hinders further propagation. In this research, AAS is used to achieve data

interoperability and integration in industrial applications through CAEX

standard.

The CAEX standard focuses on representing asset-related data in a vendor-

neutral, hierarchical XML format (Berardinelli et al. (2016)). This facili-

tates data exchange and engineering workflows across the entire lifecycle of

a product (Schleipen et al. (2008)). Compared to standards like Automa-

42

2.7. APPLICATIONS OF SELF-CONFIGURATION

tionML (Drath (2012)), CAEX emphasises a broader scope with less detail

on specific automation components (Berardinelli et al. (2016)). It also offers

support for simulations like OPC UA (Schleipen (2010)). Where CAEX

excels is in its vendor neutrality and its focus on the complete product

lifecycle (Berardinelli et al. (2016)). This makes it ideal for long-term data

consistency, reducing lock-in to specific vendors, and ensuring interoper-

ability across different engineering tools throughout the product’s lifespan

(Schleipen et al. (2008)).

2.7 Applications of Self-Configuration

This section discusses some applications and potential use cases that demon-

strate the practical aspect of self-configuration in different fields. These

show the deployment of self-configuration capability or some features of it

(explained in another chapter) in specific applications to achieve adaptation

and optimisation under changing conditions.

2.7.1 Automotive Assembly Line Optimisation

In automotive manufacturing, the challenge of configuring assembly line

parameters for different vehicle models and customisation options is widely

researched (Li et al. (2011)). Some work addresses this by introducing some

features of self-configuration in assembly operations. By integrating sensors

(Andronie et al. (2021)), actuators, and AI-driven algorithms, the produc-

tion line could automatically adjust conveyor speeds, robot trajectories,

and workstation setups based on the specific vehicle being assembled (An-

thony et al. (2007)). Such optimisation not only reduces setup times but

also minimises errors, leading to improved throughput and product quality

43

2.7. APPLICATIONS OF SELF-CONFIGURATION

(Ebrahimi et al. (2018)). Other research works have explored continuously

collecting data on a production system, part availability, and quality met-

rics (OEE)), enabling real-time adjustments to maximise efficiency in the

system while accommodating changing production requirements (Ebrahimi

et al. (2018)). Some research works explore adaptive process control to im-

prove processes while in production, e.g. thermal error compensation in

machine tools (Liu et al. (2019)). This process feedback is used to control

a key geometric KPI compensating for anomalies like in the case of tool

wear (Vishnu et al. (2023)).

2.7.2 Smart Energy Grid Management

In the energy sector, the integration of some aspects of self-configuration in

smart energy grids has allowed for dynamic optimisation of power distribu-

tion and resource allocation (Zaidi and Kupzog (2008)). Sensors distributed

throughout the grid collect real-time data on electricity consumption, gen-

eration, and grid stability (Cerpa and Estrin (2004)). Using AI-driven

algorithms, in research (Aguilar et al. (2021)), it is researched that the sys-

tem can autonomously adjust power flows, reroute energy distribution and

manage load balancing to ensure efficient and reliable energy delivery. By

utilising the self-configuration capability, the grid can respond to fluctua-

tions in demand and supply, adapting its configuration to minimize power

losses and reduce the risk of outages.

2.7.3 Pharmaceutical Manufacturing Flexibility

An increasing trend in pharmaceutical research is towards reconfiguring

systems to produce different drugs or dosages (Arden et al. (2021)). A po-

44

2.7. APPLICATIONS OF SELF-CONFIGURATION

tential research direction explored is integrating self-configuration features

in the production system to automatically adjust equipment settings, pro-

cess parameters, and quality control procedures accommodating changes

in product specifications through digital twins (Coito et al. (2022)). This

can enable rapid switching between production runs without the need for

extensive manual reconfiguration. The self-configuration integration can

reduce downtime between production changes, increase overall equipment

efficiency, and ensure compliance with stringent quality standards (Rein-

hardt et al. (2020)).

2.7.4 Intelligent Warehouse Management

In the logistics sector, self-configuration can be instrumental in optimising

warehouse operations. By integrating RFID technology, IoT devices, and

AI algorithms, warehouses can dynamically reconfigure storage layouts,

shelving heights, and picking routes based on incoming orders and inven-

tory levels (Lee et al. (2019)). Research has been carried out on warehouse

systems to continuously analyse real-time data for determining the most

efficient arrangement of goods, and minimising travel distances for work-

ers(Guo et al. (2020)). This self-configuration in warehouse management

can ensure streamlined operations, faster order fulfilment, and reduced op-

erational costs (Tirkolaee et al. (2019)).

2.7.5 Agriculture Precision Farming

Self-configuration can find application in precision farming, where it is re-

quired that agricultural equipment adjust its settings based on field con-

ditions and crop characteristics (Nayyar and Puri (2016)). Some research

45

2.7. APPLICATIONS OF SELF-CONFIGURATION

has focused on utilising smart tractors equipped with sensors, GPS, and

machine learning algorithms (Burrell et al. (2004)) that can autonomously

adapt planting, irrigation, and harvesting techniques to optimise crop yield

(Braun et al. (2018)). By analysing data on soil moisture, nutrient levels,

and weather patterns, the self-configuration-enabled system can determine

the ideal planting density, irrigation frequency, and harvesting timing for

each field section (Joseph and Ignatious Monterio (2019)).

2.7.6 Industrial Robot Collaboration

In manufacturing environments, self-configuration can enable safe and effi-

cient collaboration between human workers and industrial robots (Karabegović

et al. (2020)). Using advanced computer vision, motion tracking, and real-

time communication, robots have been able to dynamically adjust their

movements (Tamizi et al. (2023)), force exertion, and interaction pat-

terns based on the presence and actions of human coworkers (Garcia et al.

(2019)). By introducing self-configuration features in robot systems a robot

can avoid collisions, adjust its speed to match human operators, and adapt

its tasks to changing production needs (Jia et al. (2020)).

2.7.7 Smart Healthcare Facilities

Self-configuration can play a vital role in modern healthcare facilities, where

patient care and resource allocation need to be agile and adaptable (Lup-

ton (2013)). Hospital rooms can be equipped with smart sensors, IoT

devices, and AI-driven algorithms to self-configure based on patient needs

(Zhang et al. (2005); Ben Ida et al. (2020)), medical requirements, and

infection control protocols. The room environment, lighting, temperature,

46

2.7. APPLICATIONS OF SELF-CONFIGURATION

and medical equipment can be made to adjust automatically to ensure

patient comfort and safety. This self-configuration in healthcare settings

can optimise patient care, minimise energy consumption, and contribute to

efficient hospital operations (da Silveira et al. (2019)).

2.7.8 Smart Energy Management

Self-configuration is a crucial component towards smart energy manage-

ment systems that aims to optimise energy consumption and distribution

(Shen et al. (2022)). In smart grids, self-configuring devices such as smart

meters and sensors can continuously gather data on electricity usage, load

demand, and grid stability. Some research work uses AI-driven algorithms,

to enable the system to dynamically adjust energy distribution, reroute

power flow, and manage peak demand (Orehounig et al. (2015)). This

self-configuration feature ensures efficient energy utilisation, reduces grid

congestion, and supports the integration of renewable energy sources.

2.7.9 Autonomous Fleet Management

Self-configuration can revolutionise fleet management by enabling autonomous

vehicles to optimise their routes, speeds, and driving behaviours (Best et al.

(2018)). In transportation and logistics, trucks, drones, and delivery vehi-

cles can utilise aspects of self-configuration by monitoring real-time data

on traffic conditions, weather, and package volumes to dynamically adjust

their routes and schedules. AI algorithms, in literature. has shown to pro-

cess this information to optimise fuel efficiency, minimise delivery times,

and reduce operational costs (Taylor et al. (2021)).

47

2.8. RESEARCH GAP

2.7.10 Smart Retail Environments

The retail industry can use self-configuration to create personalised and

responsive shopping experiences (Xia et al. (2021)). Smart retail spaces

equipped with IoT devices, RFID tags, and AI-powered analytics can

dynamically adapt store layouts, product displays, and pricing strategies

based on customer behaviour and preferences. By analysing data on foot

traffic, purchase history, and inventory levels, the self-configuring retail

environment can optimise product placements, offer targeted promotions,

and adjust pricing in real-time (Har et al. (2022)).

2.8 Research Gap

2.8.1 A Case for Granularity and Modularity in Pro-

duction Systems

Granularity can be defined as: The size of an individual mechatronic aggre-

gate. Modularity can be defined as: The number of separate manufacturing

aggregates present in the production system (Chiriac et al. (2011)).

Granularity can be considered the main dimension for achieving self con-

figuration objectives in production systems. The approach to achieve self-

configuration is based on the value-addition factor brought about by the

manufacturing equipment (Ribeiro and Björkman (2017)). At a fundamen-

tal level, automation in production systems is leveraged around getting

throughput performance, therefore promoting the integration of manufac-

turing assets to form a production system to achieve the particular goal

(Ribeiro and Björkman (2017)).

48

2.8. RESEARCH GAP

The concept of value-addition in automation for achieving self-configuration

revolves around adaptive configuration change under response. This re-

sponse may originate from requirements (i.e. variables) of functionality in

the manufacturing asset as it is introduced in the production system, or

from product requirements. In this research, for the self-configuration ap-

proach, the granularity is fixed to manufacturing asset functionality. There-

fore, in this thesis, it is proposed that granularity in production systems

may be assumed to be a mechatronic aggregate that possesses form and

functionality at a level not too wide where several functionalities may be

represented (i.e. at that aggregate) but not too narrow where individ-

ualisation is at such a level that granularity is represented at non-value

added components, adding significantly to complexity as the system is pro-

grammed.

In Holonic Manufacturing Systems (Leitão and Restivo (2003)) the holon

acts as the building block that is simultaneously a part and a whole. Holon,

although possessing a concept similar to the granularity concept discussed

above, does not have a limit and relies on physical or logical decomposition

rather than functionality.

The production system, assumed to be represented by granular manufac-

turing assets, needs an adaptation architecture that addresses the following;

• The granular level is able to traverse information for a decision as

the functionality is executed to other granular components. Simply,

information transfer is possible between these granular objects and

functionality is dependent on it.

• These granular levels are represented in the form of a structure. This

research proposes these in the form of modules.

49

2.8. RESEARCH GAP

Cyber-physical systems, more especially production systems, as discussed

above may be represented using granular components. These granular com-

ponents must be at a technical level that imparts/adds value on the system.

This research proposes that these be represented in the form of modules

(Chapter 6). However, there can be concerns about the definition of that

level and the number of levels to be considered.

Each granular level is represented by a function that encapsulates require-

ments (in the form of variables). The granular level is fixed at the func-

tionality offered that adds value to the production system. A production

system consists of multiple granular objects, therefore being a combination

of functionalities to achieve an objective.

The capture of the granular object is carried out through a module (dis-

cussed in Chapter 6). Figure 2.7 presents an illustration of the granularity

concept in the module.

In a production system, a granular object offers a functionality represented

in a module. As these modules, having a form and structure, are removed

from the system, the offered functionality is also removed. However, it is

not proposed that more modularity is achieved just by raising granularity

to a higher level. Production system design must cope with data trans-

fer requirements between modules to perform production operations. This

means that two modules may be linked together to perform an operation,

where a module depends on data from another module. Combining them

to a higher level of granularity does not mean an increased level of modu-

larity, and just increases the complexity of programming. It may also add

some incompatibility in data transfer and complexity in dependency among

modules at different granularity levels.

Hence, modularity must be defined at those granularity levels that observe

50

2.8. RESEARCH GAP

Figure 2.7: A production system consists of multiple granular objects (mod-
ules). These modules can have different granular levels. In this illustration,
the granularity level is considered at the gripper. Each module adds value,
imparting functionality to the system.

value addition from a production perspective. Identifying the modular-

ity level in the production system is contextual and highly dependent on

the decomposition style considered. Researchers need to examine differ-

ent levels of granularity (i.e. how finely a system is broken down) within

production systems. This will help determine the points where modular-

ity starts generating the most value. Different ways of breaking down a

production system might lead to different optimal modularity levels. Re-

searchers must investigate various decomposition methods to understand

how this influences the ideal structure in the production system. Research

must contribute to the system’s need for flexibility and its optimal modular

structure.

51

2.8. RESEARCH GAP

2.8.2 Functional Decomposition in Production Sys-

tems

The modularity level is dependent on the type of decomposition style se-

lected. These styles are of two types;

• Physical Decomposition is a production system decomposition

style where a one-to-one mapping exists between the cyber part and

its physical component. This kind of decomposition style assigns the

actuation to the physical boundaries of the production system.

• Functional Decomposition is the decomposition style where the

module boundaries are adjusted to the system functionality. In a

production system, a robot and gripper can be considered a single

module as they add value to the system by their functionality (i.e.

pick and place).

Both decomposition styles require an assessment of the physical and func-

tional requirements for selection. Granularity levels are defined after this

assessment for a system. In a production system, there is no complete

physical decomposition, as some functions need to be considered in the

cyber component to control the system. An issue may also exist with the

functional decomposition as the function may be possible, but the physi-

cal barrier of the system may undermine the modularity. This is explored

by the functionality and variable rules (elaborated in Chapter 6). Figure

2.8 illustrates the decomposition in the production system concept and the

decomposition styles (i.e. physical and functional decomposition). Figure

2.9 illustrates the assessment of developing modules based on physical and

functional characteristics.

52

2.8. RESEARCH GAP

Figure 2.8: Decomposition Style in Production Systems. Modularity is de-
fined at different granularity levels depending on decomposition styles. (a)
Physical Decomposition, where granularity is defined at each component
in the system. For example, in the picture, granular boundaries are con-
sidered at each manufacturing asset. (b) Functional Decomposition, where
functionality is defined where the granularity boundary lies. In the picture,
the two assets and the conveyor system are considered as a single granular
boundary since their functionality adds value.

2.8.3 The Need for a Configuration Abstraction in

Production Systems:

Existing literature highlights the need for a well-defined configuration ab-

straction for production systems. This is needed to facilitate the self-

configuration in a production system. This abstraction should encompass:

• Asset Definition: Clear specification of what constitutes a manu-

facturing asset.

• Asset Components: Explicit outlining of extrinsic and intrinsic

elements.

• Connections: Elucidation of the relationships between asset com-

ponents.

53

2.8. RESEARCH GAP

Figure 2.9: Modularity is dependent on a careful assessment of the physical
and cyber components of the production system. Granularity is linked with
modularity. The granularity level is linked with the collection of mecha-
tronic components responsible for functionalities within the production sys-
tem. In the picture, there are four modules.

Objects and their associated variables embody a specific domain, implying

they can be represented independently. Within production systems, this

translates to systems comprised of single or multiple assets, where object

variables can be manually assigned or depend on other variables.

Limitations of Current Configuration Approaches: In case of con-

figuring by central database, the approach does not take into account the

case of equipment where the machine decides for itself what parameters it

needs to operate on.

Utilising a centralised database to control the configuration procedure en-

ables dynamic change without localised access and integration of services

with the existing manufacturing assets. This reduces the need to validate

and examine configuration settings on production systems in order to fig-

54

2.8. RESEARCH GAP

ure out the errors. An added security advantage is present as a change in

configuration is driven, usually, by a centralised control policy. However,

there can be disadvantages in terms of longer start-up times and complex

setups for low-level machine configurations.

In configuring a system by cloning the main issue is the method’s static

nature making it unsuitable for distributed production systems, or situ-

ations involving frequent variation in physical configurations, functional

requirements, or the introduction of new functionalities.

Building a Configuration Approach: Most of the publications, how-

ever, do not address the configuration issue, overly relying on some kind of

algorithm to give the right settings. This becomes problematic in the case

of the shift observed towards mass customisation. Usually, the algorithms

fulfil a certain set of conditions and do not interact with the production

systems directly (has little knowledge of the changes happening). However,

for a production system to be completely self-configurable, it must be capa-

ble of identifying changes and responding to them in real-time while using

the said algorithms. Therefore, it is necessary to highlight the change in

the production system, identifying the elements that contribute to this and

making them capable of self-configuration.

The development of a configuration approach, for a production system, that

accesses and updates the parameters even when the machine is down, over-

comes the limitations of cloning and a centralised configuration database.

This is carried out in this research.

The previous section elaborates on the significance of self-configuration

in different fields. However, most of the applications where some fea-

tures or aspects of self-configuration in these fields have been realised are

55

2.8. RESEARCH GAP

usually one-offs to the specific field and implementation. They cannot

be transferred to another field and not be generalised. These applica-

tions are enough to demonstrate the feasibility of self-configuration or self-

adaptation but cannot be carried over into another field of application,

especially production systems which is the application theme of this PhD

research. Moreover, these applications do not follow any standard tool or

technology to implement features of self-configuration.

To understand the implementation of features of self-configuration, it is

first necessary to align the research with real-world industrial perspectives.

This is done to develop an understanding towards industrial requirements

for self-configuration and its impact on production systems. To gather

this insight, surveys are needed that will attune the research direction to

practical industrial requirements.

A framework is needed that can be applied to production systems in dif-

ferent application domains. This framework needs to promote modular

architecture deployments and use standard tools and technologies. This

thesis aims to address these deficiencies. To generalise for all production

systems, detailed knowledge of assets that make up the production sys-

tem is required. The knowledge of how these assets can be grouped (i.e.

granularity) to implement features of self-configuration is also essential.

The key limitations observed are:

1. Most implementations of self-configuration in various fields are spe-

cific to those fields and lack transferability.

2. Existing applications lack adherence to standard tools or technolo-

gies.

3. A framework applicable across diverse production system domains is

56

2.8. RESEARCH GAP

needed.

4. An in-depth knowledge of the constituent assets and their configu-

rations is required for self-configuration. An insight into industrial

requirements for self-configuration is needed.

5. Grouping of assets to effectively implement self-configuration features

needs to be explored.

2.8.4 Addressing the Identified Limitations

The limitations identified in the research gap can be addressed as;

• Need for a generalised framework: There exists a need for a

robust framework that accommodates dynamic changes arising from

product variations, shifting customer demands, and the integration

or removal of production assets in the system. This framework must

address the composition of the production system components, organ-

ising them into aggregates to ensure adaptability while maintaining a

structured system for simplified management. This framework should

manage constraints (e.g. KPIs, priorities etc.) while defining interac-

tions among these aggregates and interface with external systems like

machine learning models for data-driven insights. This framework

should allow for operation-driven system configuration, supporting

changes in the system while accommodating changing functionality

requirements. This framework becomes important in enabling man-

ufacturing systems to be adaptable and responsive to dynamic shifts

in their operational environment.

Gathered from the literature review, the framework’s objectives are

aligned with the requirements identified in the research and can be

57

2.8. RESEARCH GAP

listed as follows:

1. The framework must enable the system to dynamically adapt its

behaviour in response to changes in production settings, physical

parameters, or calibration settings (Anthony et al. (2007)). This

ensures optimal performance under varying conditions.

2. The framework must target modular production systems based

on manufacturing aggregates (Padayachee and Bright (2012)).

This will allow for the independent configuration of individual

modules and enable granular control over functionality.

3. The framework should establish a clear connection between gran-

ularity (i.e. level of detail) and modularity (i.e. organisation of

aggregates into modules), addressing the interdependence be-

tween these concepts (Chiriac et al. (2011)). This facilitates a

structured approach to self-configuration.

4. The framework should incorporate mechanisms to handle con-

straints introduced by variables and functionalities within the

system (Strasser et al. (2018)). This ensures that self-configuration

settings align with the limitations of the production environ-

ment.

5. The framework should support interactions with external sys-

tems for enhanced decision-making capability (Andronie et al.

(2021)).

6. The framework will not only handle changes in variables and

relationships but also adapt to scenarios where new variables

are introduced as part of enhanced functionality (Antzoulatos

(2017)). This ensures that the framework can adapt to evolvable

production systems.

58

2.8. RESEARCH GAP

7. The framework must possess a high degree of expressiveness and

generality to target a variety of self-configuration scenarios in

complex production systems (Guo et al. (2023)).

• Need for transferability: A production system comprises intercon-

nected components, each serving a distinct role. A self-configuration

strategy is needed, that offers a structured methodology to navigate

this complexity. Its primary objective is to attain comprehensive

control over the production process in all manufacturing application

scenarios. Such a strategy enables precision at various composition

levels within the production system. The strategy should allow the

independent configuration of individual components, optimising the

overall system performance effectively. Such a strategy will ensure

adaptability and efficient responses to evolving production require-

ments.

• Detailed asset and configuration knowledge: An approach is

needed that focuses on promoting interoperability by capturing the

configuration of elements that make up the production system. The

approach should define the constituent elements of configuration, pro-

viding in-depth knowledge of configuration in the assets that make

up the production system. It should offer a structured representa-

tion of the configuration and deal with managing configurations for

changing requirements. By examining these configuration elements,

representing assets and dealing with configuration change activities,

the approach will circumvent proprietary protocols, foster compat-

ibility among assets, and enable seamless integration within digital

manufacturing, thus addressing standardisation and interoperability

challenges. An industrial insight gathered through surveys is needed

to develop a practical understanding of assets and their configuration

59

2.8. RESEARCH GAP

along with readiness to adopt a strategy for self-configuring these

assets.

• Standard tools and technologies: Utilising standard tools and

technologies for realisation will make the adoption of self-configuration

in manufacturing environments easier. The standardised tools and

technologies need to be explored for self-configuration. These should

be able to capture information on production systems in real-time

and work together to optimise the system. The use of these tools

and technologies should be compatible with applications across the

manufacturing domain.

• Grouping assets: The production system needs to be studied to

identify the grouping of assets to implement self-configuration. This

introduces the inquiry into the principle that should govern the group-

ing of these assets.

The limitations addressed in this section are discussed in detail in the

corresponding chapters.

2.8.5 Need for Exploring Self-Configuration in Pro-

duction Systems

The investigation into self-configuration within production systems gains

significance against the backdrop of a manufacturing landscape charac-

terised by intricate customization demands, process intricacies, and evolv-

ing customer expectations. At its core, the research aims to navigate the

intricate web of variables inherent in production, seeking to strike an opti-

mal balance between product, process, and customer requirements.

60

2.8. RESEARCH GAP

To promote interoperability in the production system, there exists a need

to model configuration in the production system at a granular level. It is

assumed that granularity in a production system is at the manufacturing

asset functionality. It is proposed that each granular manufacturing asset

introduces a functionality in the production system.

Central to this pursuit is the concept of granularity, which is a key in-

gredient in achieving the harmony between customisation and efficiency.

By dynamically determining the right granularity level, manufacturers can

unlock a self-configuring mechanism that seamlessly aligns production con-

figurations with specific product attributes and process intricacies. This

self-adaptation is crucial in a world where personalised products are not

merely a luxury but an imperative.

The crux of the matter lies in the choice of decomposition style whether

to opt for physical or functional decomposition. This choice inherently

shapes the granularity levels and, by extension, the adaptability of the

production system. The research delves into this the decision-making pro-

cess, delving into how each decomposition style impacts the precision of

self-configuration and the ability to meet the product, process, and cus-

tomer requirements.

The information in the module must be captured and collected in the form

of a standard. The control mechanism in the production system then may

use the information for executing tasks.

This research aims to help manufacturers adapt their production systems

by understanding the complex dynamics of granularity and decomposition

styles. The goal is to develop a systematic framework that enables these

systems to autonomously discern and implement the optimal system set-

tings, physical parameters, and calibration settings, driven by KPIs (e.g.

61

2.8. RESEARCH GAP

time constraints, priorities, efficiency, production rate etc.), thus transcend-

ing the conventional confines of fixed configurations.

62

Chapter 3

Methodology

63

3.1. INTRODUCTION

Contents

3.1 Introduction . 64

3.2 Requirements of the Approach 65

3.3 Detailed Methodology 67

3.3.1 Extensive Literature Review 67

3.3.2 Industrial Practice Survey 68

3.3.3 Level-Based Classification 68

3.3.4 Module-Driven Configuration 69

3.3.5 Data Modelling for Self-Configuration 69

3.3.6 Adaptation Strategy Development 71

3.4 Validation Methods 75

3.4.1 Industrial Use-Cases 75

3.4.2 Research Findings 77

3.5 Overview of the Approach 77

3.6 Thesis Structure . 79

3.7 Conclusion . 80

3.1 Introduction

This chapter presents a structured approach to addressing the research

question, namely to achieve self-configuration in production systems at the

machine level.

The research focuses, as established in the research gap (see Chapter 2),

on the configuration and the configuration changes associated with produc-

tion system settings, physical parameters, and calibration settings, driven

64

3.2. REQUIREMENTS OF THE APPROACH

by time constraints, shop-floor performance criteria (e.g. efficiency, pro-

duction rate) and other KPIs. Additionally, the research focus includes a

generalised framework for self-configuration, a guiding adaptation strategy

that is transferable, a detailed study of the configuration of assets in a

production system, and technologies for enabling self-configuration.

In this chapter, the methodology employed to investigate and develop so-

lutions for achieving self-configuration is discussed. The research question

is further expanded into several needs, including theoretical aspects, adap-

tation strategy, technology, tools, and techniques, implementation, and

business objectives. These needs provide direction towards the research

process. This research adopts a multifaceted, iterative methodology to ad-

dress the research question of achieving self-configuration in production

systems at the machine level.

3.2 Requirements of the Approach

As identified in the research gap (Chapter2) the self-configuration solution

should possess the following characteristics:

• Integrability: The approach must seamlessly integrate with existing

production systems and technologies.

Justification: The literature review revealed a lack of generalised

frameworks that can be easily adapted to various production applica-

tions. Existing solutions are tailored to the specific system, limiting

their transferability. To address this, the solution should emphasise

wider integration through technologies and data standards, for en-

abling wider adoption.

65

3.2. REQUIREMENTS OF THE APPROACH

• Adaptability: It should be customisable to accommodate diverse

production scenarios and testing requirements.

Justification: The literature highlights the need for a self-configuration

approach that can handle a wide variety of product changes and

changing business objectives. Adaptability is important to ensure

that the developed solution remains applicable across different man-

ufacturing contexts.

• Real-time capability: The system should make and implement

configuration decisions based on real-time data and production con-

ditions.

Justification: Existing approaches rely on offline analysis or pre-

defined rules, restricting their ability to respond to dynamic changes.

Real-time decision-making is critical to ensure system adaptation to

unexpected changes.

• Data-driven: Decisions should be informed by historical production

data, KPIs, and machine learning insights.

Justification: A data-driven approach allows for continuous im-

provement and adaptation based on actual production performance.

The literature review shows an increasing shift towards intelligent,

data-driven decision-making. Machine learning models can be used

to utilise data to respond to dynamic changes.

66

3.3. DETAILED METHODOLOGY

3.3 Detailed Methodology

An illustration of the research approach taken for this thesis is presented

in figure 3.1. The methodology approach is detailed in the following sub-

sections.

Figure 3.1: The methodology approach taken for this research.

3.3.1 Extensive Literature Review

A comprehensive literature review was conducted to understand the current

state of self-configuration in production systems. The methodology for the

literature review was detailed in Chapter 2.

This review provided a comprehensive understanding of theoretical founda-

tions, practical implementations, and open research challenges, particularly

concerning integrating self-configuration at the machine level within pro-

duction systems.

67

3.3. DETAILED METHODOLOGY

3.3.2 Industrial Practice Survey

An industry-focused survey was designed and executed to gather insights

into real-world needs and current practices relating to self-configuration

(Chapter 4). The surveys targeted industry professionals and academics,

aiming to understand current self-configuration capabilities, challenges faced

in manual configuration processes, and the perceived benefits of automated

self-configuration. Survey findings informed the development of the adap-

tation strategy, ensuring its relevance to industrial practice. These surveys

validate the research direction and ensures its practical relevance.

Survey findings revealed that time-consuming manual configuration poses

a significant challenge for many production environments. This insight

reinforced the need for the adaptation strategy to focus on automated,

efficient configuration processes.

3.3.3 Level-Based Classification

A novel classification system is established to categorise the features and

levels of self-configuration, bridging theoretical concepts with industrial

applications (Chapter 5). This classification clarifies the scope of self-

configuration and its potential impact.

Building upon insights from the literature review, this Level-Based Classi-

fication categorises production systems in terms of their self-configuration

features. This classification distinguishes between different levels of auton-

omy and decision-making capabilities. The classification system facilitates

a structured understanding of the current status of self-configuration, po-

tential scope and impact of self-configuration implementation in production

systems.

68

3.3. DETAILED METHODOLOGY

3.3.4 Module-Driven Configuration

A detailed system model is developed to represent and understand the

configurable elements within production systems (Chapter 6). The frame-

work emphasises modularity, where self-configuring modules encapsulate

functionalities and their associated configuration settings. This framework

provides the building blocks for understanding configuration and imple-

menting self-configuration and aids in analysing the relationships between

configurable elements under constraints.

3.3.5 Data Modelling for Self-Configuration

Data modelling involves techniques for information capture, representation

using Asset Administration Shells (AAS), state chart usage for function-

ality coordination, and integration of machine learning (ML) models for

configuration updates (Chapter 7 and 8). This addresses interoperability

challenges and provides data-driven insights for self-configuration

AAS facilitates interoperability, enabling data exchange between diverse

production system modules. State charts are employed for coordinating

functionality execution, ensuring the correct sequencing of configuration

steps, and transitions. Machine learning (ML) models are integrated to

analyse data and provide system configuration. These models will be

trained on historical production data, KPIs, and sensor readings (i.e. pres-

sure sensor, camera vision).

Figure 3.2 illustrates a simple data flow methodology for the research. The

details of this approach is expanded in the later overview section.

69

3.3. DETAILED METHODOLOGY

Figure 3.2: Simple data flow diagram of the research. Data from the pro-
duction system is stored in its asset administration shell. A change in
production conditions or performance requirements results in configura-
tion setting change through the interaction of agent systems and machine
learning model.

Enabler for Interoperability

In this research, AAS is employed as the means to represent the digital

footprint of assets in the production system. This ensures compatibility and

effective interfacing of submodels representing functionalities of different

assets within the AAS.

A generalised approach to capture data/information about the asset in-

volves the identification of components that constitute the production sys-

tem, its pertaining information and their sub-model elements. A brief

overview of this generalised data model is presented in figure 3.3. Effec-

tively the encapsulation of relationship, capability, constraints, and opera-

tions is carried out through this generalised modelling.

A description of all these components is presented in table 3.1. This imple-

mentation is provided in Use-As basis and can be adapted to serve the need

of implementation. This data modelling is used for capturing information

on the production system (Chapter 7) and using that information in the

adaptation strategy (Chapter 8) to realise self-configuration.

70

3.3. DETAILED METHODOLOGY

Figure 3.3: Data modelling generalisation for capturing capability, rela-
tionship, constraint, and operation information for self-configuration. In-
formation interchange happens between hardware abstraction and AAS for
self-configuration by querying from endpoints during the execution of func-
tionality.

Table 3.1: Components of generalised data model for self-configuration.

Components Description

AAS Informa-
tion

Contains information about the production system, the
manufacturing asset belongs to. Any relevant identifi-
cation and reference.

Asset Informa-
tion

Contains information on the manufacturing asset. Iden-
tifies the asset from other assets within the system.

Submodel Ele-
ment

Contains information about the functionality of the
manufacturing asset in the system. An asset can have
one or more Submodel elements. These functionalities
can store information on skills, settings, calibration, re-
sults or any other specific to the asset.

3.3.6 Adaptation Strategy Development

The adaptation strategy is the central contribution of this research, inte-

grating theoretical insights, industrial insights, and data modelling (Chap-

ter 8). The strategy provides a systematic approach for achieving self-

71

3.3. DETAILED METHODOLOGY

configuration within production systems, addressing changes in system set-

tings, physical parameters, and calibration settings driven by performance

criteria and KPIs. The strategy integrates AAS for asset representation,

state charts for functionality orchestration (ensuring correct sequencing of

steps and transitions), and ML-based decision-making. The ML models

analyse real-time data and historical performance metrics to suggest opti-

mal configurations within production constraints. The strategy requires a

proof of concept about the technologies being used. Therefore, each tech-

nology must be conceptualised for the application, developed and tested.

Requirements for Tools and Techniques

The tools and techniques that need to be developed should consist of the

following:

• Coordinating Functionality Execution: There is a requirement

for coordinating functionality in the production system to achieve the

stated aims. This tool has the following requirements:

– All transitions involved in the execution of functionality must

be accurately captured. For e.g. connecting, parameter update

and execution etc.

– Functionalities of a wide variety of manufacturing applications

should be able to be represented using the tool.

• Controlling Functionality: There is a requirement for orienting

and combining actions with behaviours. Provides a means of control

for functionality execution. This tool has the following requirements:

– The control technology must be able to coordinate with con-

nected tools to perform operations while taking into account

72

3.3. DETAILED METHODOLOGY

information from these tools.

– Can be easily integrated and is scalable to meet different man-

ufacturing application requirements.

• Information Capture: There is a requirement to capture produc-

tion system information in real-time. Also, it should be able to in-

teract with other layers of the adaptation strategy for information

interchange. This tool has the following requirements:

– Must be able to capture complete information on the produc-

tion system and its assets acting as a digital twin (i.e. digital

representation).

– Can be updated in real time.

– Should follow a standard so that can easily be applied to wider

manufacturing applications.

• Querying Information: There is a requirement to query and

update information. This guides the configuration change. his tool

has the following requirements:

– Must be able to interface with the information capture and co-

ordination tool.

– Control tool can access this for querying information for real-

time decisions.

– Can update information in the information tool in real-time.

• Interaction Between Layers: There is a requirement to interact

between different layers of the adaptation strategy. This tool has the

following requirements:

– Can integrate all layers of the adaptation strategy.

73

3.3. DETAILED METHODOLOGY

– Can work with all tolls employed in all layers of adaptation

strategy.

• Hardware Abstraction: There is a requirement to interact with the

physical system for executing functionality.This tool has the following

requirements:

– Can interact with the coordination tool.

– Has the capability to extract information from the system, up-

date information and execute functionality.

The techniques in place are then integrated to serve the purpose of self-

configuration. Figure 3.4 presents a step-by-step technological development

for the architecture.

Figure 3.4: Technological development for the self-configuration research.
Each stage behind the development of the adaptation strategy is shown.

The technological development enlisted can be evaluated by accessing them

against the enlisted needs:

• KPI Integration is contributing towards Querying Information.

(Data Component)

74

3.4. VALIDATION METHODS

• State Charts and State Machines is contributing towards Coordi-

nating Functionality Execution. (Control System)

• Asset Administration Shell is contributing towards Information Cap-

ture. (Asset Representation)

• Cloud-Based ML Pipeline is contributing towards Interaction Be-

tween Layers. (Parameter Optimisation)

• Agent System/PLC Code/API is contributing towards Controlling

Functionality and Hardware Abstraction. (Control System)

The manner in which these tools contribute to the research objectives is

listed in the implementation chapter (Chapter 9).

3.4 Validation Methods

3.4.1 Industrial Use-Cases

The research presents industrial use cases demonstrating the self-configuration

approach in leak-testing and force-testing applications (Chapter 9). These

use cases validate the adaptation strategy and its potential impact in real-

world production environments. The leak-testing application aims to find

the right configuration setting for product volume and test pressure. The

force-testing application determines test configuration guided by image

recognition of the fixture. The setups for the industrial use-cases is illus-

trated in figure 3.5. Table 3.2 provides the mapping of the specific research

questions established in Chapter 1 to the implementation objectives of in-

dustrial use cases. This mapping of the implementation objectives enables

validating this research against the objectives.

75

3.4. VALIDATION METHODS

Figure 3.5: The leak testing setup: (a) the cylinder volumes under test and
MALT test system being a part of the test bench for general leak testing (b)
The PRIME force testing setup involving a force test station, two robots
and a shuttle on the rail.

Table 3.2: Mapping the research questions to the industrial use-cases.

Research Questions Implementation Objective

What theoretical models are needed
to underpin the concept of self-
configuration in production systems?

Capture information on indus-
trial use case functionality.

How can a general adaptation strat-
egy be developed to integrate self-
configuring COs into production sys-
tems?

Classify industrial use cases in
terms of features, model their
configuration and define the gran-
ularity.

Which technologies, tools, and tech-
niques best facilitate self-configuration
and leverage operational data for iter-
ative improvement?

Utilise the tools and techniques
developed in this research to
achieve self-configuration in in-
dustrial use cases.

How can this approach be implemented
in a real-world scenario involving a
product within the production system?

Demonstrate functionality ex-
ecution after self-configuration
through adaptation strategy.

How can business objectives be trans-
lated downstream to guide the self-
configuration process at the production
system level?

Integrating business objectives to
industrial use cases to determine
the best setting for functionality.

76

3.5. OVERVIEW OF THE APPROACH

3.4.2 Research Findings

Key findings from this research contribute to the field of smart manufac-

turing (Chapter 9). These include the developed adaptation strategy for

self-configuration, the classification system for production systems, explo-

ration into agent systems for manufacturing control, integration techniques

through interoperability, and a framework for understanding configuration

in production systems.

3.5 Overview of the Approach

The approach to self-configuration consists of multiple constituent compo-

nents.The approach is detailed in figure 3.6. The components are listed as

follows;

• Asset Representation: This gives digital representation to the

physical manufacturing asset. A manufacturing asset is an aggre-

gate responsible for performing operations (i.e. functionality). In

this research, AAS provides digital representations of physical assets,

their capabilities, and configuration settings.

• Control System: The control system executes functionality, by

communicating with asset representation. This is a tool that is used

to achieve the objective.

In this research, the developed component orchestrates functionality

execution, communicates with asset representations, and implements

configuration changes in the physical system.

• Data Component: Internal and external data elements capture

data for initial machine settings and business objectives. These will

77

3.5. OVERVIEW OF THE APPROACH

Figure 3.6: Proposed Self-Configuration Approach for the research. Inte-
grating Asset Representation, Agent System, and Parameter Optimisation.
The diagram shows component mapping with research problem objectives.
These components work together to assist in the realisation of the self-
configuration adaptation strategy

guide the self-configuration. A tool that supports information capture

in the production system must be utilised.

In this research, a system must be developed for capturing real-time

production data, KPIs, and other relevant information.

• Parameter Optimisation: The parameter optimisation is realised

within the adaptation strategy.

In this research, machine learning models analyse data to suggest

optimal configurations aligned with KPIs.

78

3.6. THESIS STRUCTURE

Self-Configuration Adaptation Strategy: This strategy provides

guidance for achieving self-configuration in production systems. The infor-

mation gathering tool, asset representation, control system and parameter

optimisation are used with theoretical insights to develop an approach to

the realisation of self-configuration in production systems. It provides a

systematic framework for achieving self-configuration.

3.6 Thesis Structure

The thesis structure is illustrated in figure 3.7. Potential contributions are

divided into thesis chapters and related to the needs of the RQ.

Figure 3.7: Ph.D. Thesis structure, relating the contributions to needs and
dividing them into chapters.

79

3.7. CONCLUSION

3.7 Conclusion

This methodology chapter outlines a comprehensive and structured ap-

proach to addressing the research question. The combination of a thorough

literature review, practical insights from the Industrial Practice Survey, and

a novel classification system provides a strong foundation for the develop-

ment of the adaptation strategy. The emphasis on data modelling, inter-

operability, and the integration of state charts and ML techniques ensures

a robust and data-driven solution. Validation through industrial use cases

and the identification of key research findings further solidify the potential

impact of this work.

80

Chapter 4

Industrial Practice Survey For

Adoption Of Self-Configuring

Production Systems

81

Contents

4.1 Introduction . 83

4.2 Survey Description . 85

4.2.1 Objectives and Research Questions 87

4.2.2 Target of Survey 89

4.2.3 Survey Format 90

4.3 Analysis And Result 91

4.3.1 Industrial Challenges in Adopting Intelligent

Production Systems 91

4.3.2 Data in Manufacturing 96

4.3.3 Self-Configuring Production Systems in Manu-

facturing . 99

4.3.4 Survey Discussion: 102

4.4 Threats to Validity 103

4.4.1 Internal Validity 103

4.4.2 External Validity 104

4.5 Reflection on Impact 104

4.5.1 Reference Market/Stakeholders 106

4.5.2 Maturity Level 106

4.5.3 Value Proposition Matrix 108

4.5.4 Integrated Business Model (IBM) - GAP Matrix108

4.5.5 Status for Innovation 109

4.5.6 Potential Value Utilisation 109

4.6 Conclusion . 110

82

4.1. INTRODUCTION

4.1 Introduction

In manufacturing industries, the configuration in production systems is set

at the start of the production operation, dependent on the product, process,

and customer requirements (Rehman et al. (2021b)). These configurations

mainly rely on previous settings for a similar product, the production re-

strictions (i.e. on and by the system), the engineer’s expertise, or converg-

ing from an arbitrary configuration to a setting for the product. This takes

a lot of time to achieve the correct configuration, as several cycles of cor-

rections need to be done due to multiple dependencies. With the growing

demand in customisation requirements, this increases time to market and

costs associated with the production operation (Tuck and Hague (2006)).

Capturing configuration in production systems is previously discussed in

the literature chapter. There have been strategies such as cloning or loading

through a database where a suitable configuration can be set for a produc-

tion system, making the configuration operation faster (Bachula and Zajac

(2013); Lee et al. (1997); Jones and Romig (1991)). These existing strate-

gies cannot be applied to the current shift in the manufacturing paradigm,

due to the mass customisation of the product. Previously, it was acknowl-

edged that the process must remain independent of the product, which

means that the production equipment performs the functionality without

having any relevance to the product (e.g. test station just performs the

operation and does not take into account that the product needs to be in

a fixture).

In Chapters 2 and 3, the definition of self-configuration is proposed to

address the instated configuration capture issue in production systems in-

volving configurable objects. This is mainly done to promote the flexibility

of automation and the ability to respond to changes in production systems.

83

4.1. INTRODUCTION

By achieving self-configuration, time to market can be reduced, as less time

is needed to overhaul the system to specific product needs.

As seen in figure 4.1 setting configuration for a production system is a

collaborative endeavour taking into account various dependencies like the

product, process (functionality), customer requirements and expertise. It

also requires constant verification to preserve the functionality aspects of

the production system. A strategy for self-configuring production systems

is proposed in this thesis.

Figure 4.1: Collaboration related to production system development. The
adaptation strategy targets the last configuration stage of the production
system development.

Despite the advantage, there is a significant lack of interest in self-configuration

in industrial practices. This chapter focuses on the determination of in-

dustrial readiness and the barriers that manufacturing organisations face

when implementing such a strategy. There have been studies that focus

on the modularisation of equipment to achieve some kind of reconfigura-

tion in terms of the physical arrangement, but integration is often taken

84

4.2. SURVEY DESCRIPTION

as an assumption. Simply, it is typically understood that as long as the

physical arrangement is possible, then the equipment modules are able to

work/adapt. This work addresses the strategy to adjust settings for a

production system (i.e. self-configuration) on existing production systems.

The work in this chapter illustrates the data infrastructure capability in ex-

isting production systems and organisations. The barriers to the adoption

of smart production systems and their adaptation for self-configuration are

surveyed.

Therefore, this study presents an empirical survey to assess the current

industrial readiness, needs and challenges that the industries face towards

adaptation of Self-Configuring production systems.

4.2 Survey Description

The survey was carried out in three parts, following the methodology pre-

sented in Fernández-Sáez et al. (2015). This methodology is briefly stated

as follows:

1. Problem Identification and Goal Setting: The research sought

to understand the challenges hindering the adoption of intelligent and

self-configuring production systems within the manufacturing indus-

try, particularly for SMEs. The goals of these surveys are:

• Identify barriers to adoption.

• Understand the state of data infrastructure and value extraction

in manufacturing.

• Gauge industry readiness and requirements for self-configuring

production systems.

85

4.2. SURVEY DESCRIPTION

2. Research Design: The study employed a primarily descriptive survey-

based approach to gathering insights from industry professionals.

Three interconnected surveys were designed to progressively explore

the core research areas. This allowed for triangulation of data to gain

a more comprehensive understanding.

3. Sampling: Experienced manufacturing professionals (e.g. practi-

tioners, researchers, academics) with a focus on SMEs. A combina-

tion of purposive sampling (i.e. targeting specific groups relevant to

the study) and convenience sampling (i.e. using accessible networks

like NMN and the DiManD project) was used in these surveys.

4. Data Collection and Analysis: Online surveys were the primary

mode of data collection. Three carefully designed survey question-

naires were piloted and refined before wider distribution. The sur-

veys used a mix of closed-ended (e.g., multiple-choice) and open-

ended questions to capture both quantitative and qualitative data.

The collected data likely underwent both qualitative and quantita-

tive analysis. Statistical analysis was done of closed-ended questions

for identifying trends, percentages, and potential correlations. The-

matic analysis of open-ended responses was done to uncover deeper

insights, opinions, and potential challenges or requirements.

5. Interpretation and Reporting: The analysis was used to con-

clude the research questions, addressing barriers, data infrastructure,

and the potential for self-configuring manufacturing systems. The

findings are illustrated in this chapter.

86

4.2. SURVEY DESCRIPTION

4.2.1 Objectives and Research Questions

The survey attempts to address the barriers and challenges faced by the

manufacturing industry towards adopting intelligent production systems,

where intelligence is regarded as the ability to act autonomously and make

decisions. The survey is also used to gain insight into data infrastructure

in the manufacturing industry with a focus on value extracted from the

gathered data. These surveys are combined with another series of ques-

tions to get industry professionals’ opinions on self-configuring production

system requirements. The result of the survey is analysed and a com-

parison of self-configuration requirements to the data infrastructure and

barriers/challenges is provided.

The objective of these surveys is to get awareness of the barriers/chal-

lenges and data infrastructure present in manufacturing towards achieving

self-configuring production systems. These surveys will also assist in the

identification of existing gaps and further research directions on this mat-

ter. The Questions (Q) in each survey are mapped to the current industrial

insights with the motivation for self-configuration.

In the first survey “Industrial Challenges in Adopting Intelligent Produc-

tion Systems”, the focus is on industrial understanding of intelligent pro-

duction systems and the major challenges and barriers faced in adoption.

This survey also probes the experience of industry professionals with exist-

ing intelligent systems, their opinions on the most beneficial characteristics

for productivity, and where intelligence should reside within a system. This

helps in assessing industrial readiness towards ever-increasing complexity

in manufacturing that requires the distribution of intelligence among pro-

duction system components, challenges of adoption of such components

and the potential timeline for overcoming these challenges.

87

4.2. SURVEY DESCRIPTION

In the second survey “Data in Manufacturing”, the value of data gathered

in manufacturing is ascertained. The series of questions helps in under-

standing the relationship between gathered data and value through identi-

fication, filtration, and processing. The value attained from the data can

be linked to economic benefits (e.g. increase in productivity/quality). To

acquire value, through this survey, the ‘useful’ aspect of gathered data, ‘use-

ful’ filtering and analysis, ‘useful’ transformation and ‘good’ decisions are

to be understood. The questions also assess the frequency of data-driven

decision-making, challenges in data analysis, the types of data analysis

techniques used (i.e. descriptive, diagnostic, predictive, prescriptive), and

the industrial network protocols employed within the organisation.

In the third survey “Self-Configuring Production Systems in Manufac-

turing”, the decision-making capability of production systems concerning

specifically setting up parameters, optimisation and executing functional-

ity, i.e. self-configuration, is explored. Through this survey, the industrial

readiness level for this decision-making in current production systems is

determined. It examines current practices for setting up machines, opin-

ions on the benefits of machines that adjust their settings automatically,

the necessary technological upgrades, and the most advantageous appli-

cations. The questions also delve into the perceived challenges, potential

solutions for common manufacturing issues, and strategies for adopting

such machines.

88

4.2. SURVEY DESCRIPTION

4.2.2 Target of Survey

Target Population:

The target population for the survey were experienced industry practition-

ers, researchers, and academicians. The focus was on people working or

associated with SMEs. The target population were involved in roles such

as engineers, production managers, quality technicians, and researchers

specialising in manufacturing.

To reach this population, a combination of purposive and convenience sam-

pling was used. The University of Nottingham and TQC Ltd. partnered

to identify relevant participants.

Sampling Technique:

A combination of purposive sampling (i.e. targeting specific groups relevant

to the study) and convenience sampling (i.e. using accessible networks like

NMN and the DiManD project) was used for the surveys.

The survey was carried out in Nottingham, United Kingdom with the as-

sistance of the University of Nottingham and TQC Ltd. The initial set of

actions consisted of an assessment of answers to the pilot surveys dispatched

at TQC Ltd. The assessment was carried out to determine the quality of

the answers received and to ascertain if additional questions need to be

added. These surveys were then dispatched to Nottinghamshire Manufac-

turing Network (NMN). Finally, the surveys were carried out among early-

stage researchers and beneficiaries of the DiManD Horizon 2020 project to

get a wide range of responses.

Participants were primarily located in Europe.

89

4.2. SURVEY DESCRIPTION

4.2.3 Survey Format

Three surveys (3) were carried out covering challenges/barriers, data infras-

tructure and self-configuring production systems. Each survey was divided

into logical sections that build on the survey theme incrementally, going

into more detail with later questions. Figure 4.2 illustrates this logical

divide into sections giving the format of the survey. The challenges/bar-

rier survey and data in the manufacturing survey are related to the self-

configuring production system survey. Figure 4.3 details the link between

these surveys with a focus on self-configuration.

Figure 4.2: Structure of the questions in the surveys.

• The first section consists of background questions on the participant.

They involve questions on residents’ country, occupation, job position

and work experience.

• The second section consists of organisational questions that target the

main theme of the respective survey. The technical questions deal in

more detail with the theme of the survey, asking in-depth questions

90

4.3. ANALYSIS AND RESULT

Figure 4.3: Focus of the surveys carried out. Planning is done to gain
insight from professionals on self-configuring aspects of production systems.

on the topic of the survey theme. These questions aim to address

practical aspects of the theme, asking the target population about

challenges/barriers, data and self-configuration.

4.3 Analysis And Result

Figure 4.4 illustrates a brief overview of the surveys. This figure shows

an overview of the main findings of each survey. The surveys carried out

highlight a need for addressing challenges in data security, demand, and

adaptation. A solution to the lack of skills in machine settings and the

shortage of field experts is also desired.

4.3.1 Industrial Challenges in Adopting Intelligent

Production Systems

This survey aimed to gather insights from a variety of participants, includ-

ing academia, non-profit organizations, government entities, and industry

professionals. The survey included questions about the characteristics re-

quired to make a production system ‘intelligent’, the criteria of intelligence

91

4.3. ANALYSIS AND RESULT

Figure 4.4: An infographic of the Surveys. The main findings of the survey
are presented. Relation between industrial challenges, data in manufac-
turing, and self-configuring systems explored. A need exists for addressing
challenges in data security, demand, and adaptation. Self-configuring sys-
tems will provide a solution to the lack of skills in machine settings and
the shortage of field experts.

in production systems observed at manufacturing facilities, and the best

criteria for increasing productivity without excessive complexity or cost.

Additionally, it addressed where intelligence should be located in produc-

tion systems, the capability of current manufacturing infrastructures to

support intelligent production systems, and challenges faced in adopting

intelligent production systems, along with estimated timeframes for over-

coming these challenges.

Survey Participants:

• A total of 33 participants responded.

92

4.3. ANALYSIS AND RESULT

• The majority of respondents (51.5%) were from industry (SMEs).

• Participants had diverse backgrounds, with engineers (30%) and re-

searchers (20%) being the most prevalent. The rest were (17 %)

Project managers, (3%) innovation managers, (3%) technology man-

agers, (7%) software projects, (10%) directors, (7%) production en-

gineers, (3%) R&D managers.

• A significant proportion of respondents (44%) had more than 20 years

of experience. This was followed by 7% participants with 10 to 20

years of experience. The survey also received responses from profes-

sionals with 5 to 9 years of experience (16%), and less than 5 years

of experience (19%).

Key Survey Findings:

1. Characteristics for an Intelligent Production System.

• The majority of industry professionals defined intelligence in

production systems as having machine-to-machine communica-

tion capability (72.7%).

• A significant percentage believed that intelligent systems should

be capable of making decisions and analysing data themselves

(69.6%).

• Cooperative relationships between intelligent machines and pre-

diction capabilities were also considered essential (60% and 51%,

respectively).

2. Criteria of Intelligent Production Systems at Manufacturing Facili-

ties. The criteria is illustrated in figure 4.5.

93

4.3. ANALYSIS AND RESULT

Figure 4.5: Criteria of intelligence in production system. Each criterion of
intelligence in the production system in the industry is shown and partici-
pants are asked to rank their current system on it.

• For information handling, most production systems were iden-

tified as being at Level-1 and Level-2 (36.4%).

• Problem identification was typically at Level-2 (39.4%).

• Decision-making in production systems was most commonly at

Level-3 (33.3%).

3. Preferred Criteria for Increasing Productivity.

• Respondents favored a shift to Level-3 for information handling

(36.4%).

• Problem identification should ideally be at Level-3 (48.5%).

• Current Level-3 was considered the best for decision-making in

production systems (51.5%).

4. Location of Intelligence.

• A majority believed that intelligence should reside on the pro-

duction system itself (54.5%).

• Some respondents (33.3%) suggested shared intelligence on a

network connected to the production system.

94

4.3. ANALYSIS AND RESULT

• A portion (18.2%) considered intelligence on both the produc-

tion system and a shared network.

5. Manufacturing Infrastructure.

• About a third of industry respondents (33%) didn’t think they

had the right manufacturing infrastructure for incorporating in-

telligence.

• A smaller percentage (24%) believed they had the appropriate

infrastructure.

6. Challenges in Adoption of Intelligent Production Systems.

• Challenges related to data security, bias/resistance to change,

high cost/investment, business process re-engineering, uncer-

tainty in demand, and adapting to changing conditions were

highlighted.

• Responses were distributed across these challenges.

7. Timeframes for Overcoming Challenges.

• Most challenges could be addressed within 2-3 years, with some

progress possible in 9-12 months.

• This indicates that the industry is not far from accepting intel-

ligent production systems, and challenges can be tackled on a

priority basis.

These findings provide valuable insights into how industry professionals

perceive and approach the adoption of intelligence in production systems,

including their definitions, criteria, challenges, and the state of their infras-

tructure. It’s evident that there’s a growing interest in making production

systems more intelligent, with a focus on machine-to-machine communica-

tion and decision-making capabilities.

95

4.3. ANALYSIS AND RESULT

4.3.2 Data in Manufacturing

This survey aimed to collect information from a diverse group of partici-

pants from different sectors, including industry, academia, government, and

other areas. It focused on the role of data in manufacturing, particularly

in the context of production systems. Here are some key findings:

Survey Participants:

• There were 30 participants who responded to the survey.

• The majority of respondents (63%) were from the industry, particu-

larly SMEs.

• Various professional backgrounds were represented, including engi-

neers (21%), researchers (21%), directors (11%), (7%) engineering

manager, (7%) project engineer, (7%) production engineer, (4%) op-

erations director, (4%) supplier development, (4%) head of depart-

ment, (4%) finance director, (4%) consultant and (6%) others.

• Most participants (60%) had over 20 years of experience. This was

followed by (17%) with 10 to 20 years of experience. The survey also

had responses from professionals with 5 to 9 years of experience (7

%), and less than 5 years of experience (17%).

Key Survey Findings:

1. Relevant Manufacturing Activities.

• The most relevant and “useful” activity in manufacturing, ac-

cording to a majority of respondents (53.3%), is related to ful-

96

4.3. ANALYSIS AND RESULT

filling customer requirements. This suggests a strong customer-

centric focus.

• Activities that reduce risks, defects, and improve quality were

considered important by 23.3% of respondents.

2. Data Categorization.

• Historical data about observed processes was the most signifi-

cant method for categorizing “useful” data, according to 30% of

respondents.

• Data source-based and mathematical inferences were also con-

sidered significant (26.6% each).

3. Impact of Data at Different Stages.

• Customer data was seen as most important during requirement

gathering.

• Guidelines were considered vital during conceptual design.

• Material data and guidelines played a key role in various design

phases.

• Process data was crucial for production planning and manufac-

turing.

• Customer and lifecycle data were influential during dispatching.

4. Data Impact on Productivity.

• A majority (86.7%) believed that data impacts decision-making

on the shop floor, underscoring the importance of data in real-

time operations.

5. Challenges in Data Analytics.

97

4.3. ANALYSIS AND RESULT

• Combining and utilizing insight from analysed data were rated

as the most challenging aspects of data analytics (56.7% each).

• Collecting data from various sources was also seen as challenging

(56.7%).

6. Time and Effort in Data Analytics Stages.

• The diagnostic stage required the most effort (39.7%), while the

prescription stage required the least effort and time (26.7%).

7. Use of Data Analysis Techniques.

• The majority of respondents had some knowledge of data anal-

ysis techniques at their organisations.

• For descriptive data analysis, statistical reporting was the most

commonly used technique (26.7%).

• For diagnostic data analysis, root cause analysis and FMEA were

the leading techniques (13.3%).

• Data visualization was also commonly used (13.3%).

8. Use of Predictive Data Analysis Techniques

• A majority (40%) had some knowledge of predictive data anal-

ysis techniques.

• For predictive data analysis, trend analysis, what-if analysis and

simulation were the most commonly used techniques.

9. Use of Prescriptive Data Analysis Technique.

• A significant number (33%) had some knowledge of prescriptive

data analysis techniques.

• Discrete choice modelling and linear programming were com-

monly used techniques (6%).

98

4.3. ANALYSIS AND RESULT

10. Industrial Network/Automation Protocols.

• EtherNet I/P was the most commonly used industrial network/au-

tomation protocol (56.6%).

• Manual data gathering (46.7%) was also prevalent.

• Other protocols, like WLAN (33.3%), EtherCAT (26.7%), and

OPC UA (20%), were also in use.

These findings provide valuable insights into the role of data in manufac-

turing, data categorization, data impact, and the utilisation of data anal-

ysis techniques. The survey indicates that data plays a significant role in

decision-making and product development across different manufacturing

stages. EtherNet I/P is a widely used protocol, suggesting a need for data

communication and automation in manufacturing settings.

4.3.3 Self-Configuring Production Systems in Manu-

facturing

In a survey about self-configuring production systems in manufacturing,

industry professionals and research academics provided insights:

Survey Participants:

1. Survey Demographics: The survey received responses from 43%

industry professionals and 57% academics. The participants had var-

ious backgrounds, with 57% being researchers, 14% directors, 14%

engineers, and 15% involved in production operations. Experience

levels varied, with 14% having over 20 years of experience, 14% with

99

4.3. ANALYSIS AND RESULT

10 to 20 years, 57% with 5 to 9 years, and 14% with less than 5 years

of experience.

Key Survey Findings:

1. Entering Machine Settings: When asked how settings in a ma-

chine were typically entered before operation, 72% preferred manual

entry, 14% used digital interfaces, and 14% used a combination of

both.

2. Determining Machine Settings: For determining machine set-

tings, 57% relied on product and process requirements, 29% on cus-

tomer requirements, and 14% on in-house developed machine settings.

3. Benefits of Self-Adapting Machines: A majority (57%) believed

that machines automatically adjusting their settings would signif-

icantly reduce time and costs. Some (29%) thought it would re-

duce costs and increase productivity, while others (14%) considered

it could decrease process time.

4. Technological Infrastructure for Self-Adaptation: Respondents

(43%) felt that a data connection between systems was required for

enabling self-configuring machines. Others (29%) believed a stan-

dardized data format, along with data connection, was needed. Some

(28%) thought no change in their technological infrastructure was

necessary.

5. Beneficial Applications: Respondents saw the most beneficial ap-

plications for self-adapting machines in production optimization (43%)

and in setup and changeover processes before operation (43%).

100

4.3. ANALYSIS AND RESULT

6. Domains of Application: Respondents believed self-adapting ma-

chines would be most beneficial in the domains of factory automation,

machining, assembly, and machine efficiency. These machines could

also impact downtime minimization and promote process integration.

7. Adoption Strategies: There was no clear consensus on the best

strategy for adopting self-configuring production systems. The op-

tions included incremental adoption, big bang adoption, parallel adop-

tion, and incremental parallel adoption, with varying preferences (28-

29%).

8. Evaluating Self-Adapting Capability: All respondents (100%)

agreed that a tool for evaluating their machines’ self-adapting capa-

bility would be helpful.

9. Challenges in Implementation: Respondents identified the major

challenges in implementing self-adapting machines, including a lack

of knowledge about product/process and production systems (rated

as a major challenge by the majority). Other challenges included the

lack of process benchmarks, infeasibility of deployed solutions, and

compatibility issues.

10. Addressing Manufacturing Issues: Respondents believed that

self-configuring machines would significantly address common man-

ufacturing issues, particularly overcoming the lack of skill in setting

up machines, high implementation costs, and compatibility issues.

11. Solving Operational Challenges: For operational challenges, re-

spondents believed self-configuring machines could significantly ad-

dress problems related to experience requirements, predicting the

right settings under constraints, and reacting to market demand.

101

4.3. ANALYSIS AND RESULT

These insights reflect the views of industry professionals and academics on

the potential benefits, challenges, and strategies related to self-configuring

production systems in manufacturing.

4.3.4 Survey Discussion:

The findings across the three surveys provide a holistic view of the current

landscape regarding intelligent and adaptive manufacturing:

Desire for Intelligence:

A clear understanding and desire exists for intelligent systems that utilise

machine-to-machine communication and data-driven decision-making ca-

pabilities. It is noted, however, that the current state of infrastructure in

manufacturing facilities may not be able to realise this. There are prevalent

concerns about data security, cost of systems, demand variation and result

adaptation. Skill gaps are apparent, especially where machines need to be

configured to account for these hurdles.

Utilising Data:

Data is recognised to impact decision-making, yet most data analytics ef-

forts are concentrated in the diagnostic phase. The potential power of pre-

dictive and prescriptive analytics is recognised, but adoption is lower. This

presents an opportunity for improved production efficiency and foresight.

The use of a common communication protocol between manufacturing as-

sets shows a positive trend towards automation. In the same way, there

exists an ongoing challenge of integrating data sources from diverse systems

102

4.4. THREATS TO VALIDITY

with potentially incompatible protocols.

Self configuration Challenge:

The findings show that self-configuring systems will reduce time, cost, and

complexity. This presents a strong case to reduce the reliance on manual

settings and make production lines more responsive. The findings indicate

that there is no single dominant adaptation strategy, hinting at the need for

customised approaches depending on the individual manufacturing setup.

The core challenge, as demonstrated by the findings, remains the field

expertise and skill gap to set up the machines. It requires an understanding

of the complex relationships between products, processes, and the machines

themselves.

4.4 Threats to Validity

4.4.1 Internal Validity

A threat to the internal validity of the survey can be the sample size of the

respondents. A diverse range of participants from different backgrounds

and experience levels are included in the surveys to overcome this. Re-

sponses were received from participants belonging to different sectors, but

mostly from manufacturing automation, being the main focus of the sur-

veys.

Another threat to the internal validity faced in these surveys that can arise

is that the respondents do not understand the questions. Each survey

theme is introduced and contextualised at the beginning of each survey to

103

4.5. REFLECTION ON IMPACT

overcome this. Each question has been explained in much detail and for

clarity has also been related to industrial applications if possible. Pilot sur-

veys were conducted to ensure survey questions were delivered accurately

and mitigate ambiguity. After receiving feedback from the pilot surveys,

certain questions were clarified and reformatted.

4.4.2 External Validity

The external threats to validity may be related to the demographics of the

respondents. The survey was mainly limited to the manufacturing organ-

isations in the United Kingdom. Responses were also received from other

countries. However, most responses originate from the UK. Therefore, the

results cannot be generalised for all manufacturing companies. The sur-

vey represents responses from manufacturing organisations well enough to

represent a trend for self-configuration.

4.5 Reflection on Impact

Based on the surveys, it is observed that the data infrastructure for the real-

isation of self-configuration is present. Most of the configuration operation

is carried out manually or automatically on existing production systems.

There are some requirements on configuration settings on the product and

process, along with customer requirements.

As per responses gathered from the three surveys, it is observed that there

exists a need for self-configuration in production systems. There are chal-

lenges and barriers to the adoption of this ‘smarter’ production system,

but most of the data infrastructure is in place. There exists a realisation

104

4.5. REFLECTION ON IMPACT

in manufacturing industries on increasing productivity by leveraging data-

driven decision-making advantage. Through the surveys, it is observed that

most professionals realise the limits of their organisational capability and

also have some ideas in place for overcoming their restrictions. For the

research in this thesis, this input was crucial in shaping the configuration

concepts, interoperability approach, and adaptation strategy.

One interesting insight observed from the surveys is the need for a tool

that assists in evaluating the current capability of production systems for

self-configuration ability. This will be quite useful as a means of identify-

ing potential areas of improvement and providing direction towards self-

configuration.

Configuration in a production system is dependent on data and on multi-

ple aspects during the data processing stages. The data that impacts the

production system can be categorised, and each category can be important

at different stages of the production life cycle. In a manufacturing organi-

sation, there are multiple techniques that are effective in developing insight

at different stages of production. These techniques have data requirements

and other prerequisites. The adaptation strategy that makes the produc-

tion system automatically adjust its settings must take into account these

factors in all scenarios that might impact production.

The survey response (figure 4.4) outlines that there exists a need for self-

configuring production systems. In this section, the value that such an

application can add to a business in terms of a business model is explored.

The reference market for such an application is discussed, along with an

evaluation of the maturity level of such markets. Going into more depth,

the value proposition at the production system lifecycle is analysed. Af-

ter identifying the value, it is related to the business model and value

105

4.5. REFLECTION ON IMPACT

dimensions about strategic, customer, market, and creation components

are explored. The status of innovation is highlighted and supported by

illustration and validation.

4.5.1 Reference Market/Stakeholders

The self-configuration adaptation strategy for production systems can be

applied to specialised applications that require product, process, and experience-

oriented setup of configuration settings. These reference markets may be

in automotive, aerospace, testing, and pharmaceuticals among others. The

reference markets may fall within any area of application that requires a

highly customised production system set up to meet varying demands.

4.5.2 Maturity Level

Enabling reference markets to adopt self-configuring production systems,

is essential to determine the maturity of the current production systems.

Chapter 5 discusses this, where a method to classify production systems

for self-configuration is provided. Table 4.1 discusses the self-configuration

in respect to three dimensions: creation, proposition and capturing.

106

4.5. REFLECTION ON IMPACT

Creation Production systems should be able to capture and handle data

requirements for the configuration change strategy. The fol-

lowing must be in place;

• Data management capability (collection, storage, con-

version, and transmission) in the production system.

• Control system for the production process.

• Optimisation capability.

• Operational identification and context awareness

through the controller (hardware and software).

• Monitoring capability through production system-

specific interfaces.

• Self-capability in the production system (i.e., has the

capability to infer meaning from the state).

Proposition The configuration change strategy can give autonomy to the

production system to make decisions based on product, pro-

cess, and business goal needs. Such production systems focus

on business-specific objectives rather than spending effort on

changing settings to accommodate those needs.

Capturing The configuration change strategy saves time, i.e. the machine

takes the decision itself. Also, less reliance on experience-

oriented personnel to change settings. More compliance with

changing day-to-day business needs.

Table 4.1: Maturity level of Production Systems for Enabling Self-
Configuration

107

4.5. REFLECTION ON IMPACT

4.5.3 Value Proposition Matrix

The value proposition matrix expands the value to the production system

life-cycle. The new value brought by realising self-configuring adaptation

strategy in existing production systems is traced to the domain (of realisa-

tion) and life-cycle stages (Table 4.2). In the business model, the new value

can be taken advantage of by the owners of the domain at each life-cycle

stage.

LifecycleValue
Proposition Creation Purchase Use Renewal Transfer
Control New Value
Skill Manufacturer New Value

New Value Customer

Workflow Production System
Platform Supplier
WorkStation

Manufacturer
Customer

Manufacturer

Module New Value Manufacturer New Value
Customer

Table 4.2: Value Proposition Matrix for enabling Self-Configuration, link-
ing stakeholders to lifecycle.

4.5.4 Integrated Business Model (IBM) - GAP Ma-

trix

The business model is further expanded along with the value gained by a

focal company (FC) that uses the potential self-configuration strategy. An

effective way to demonstrate this is by GAP Matrix using strategic com-

ponents, customer, and market components, & value and creation com-

ponents. This matrix helps to rethink the whole business model while

factoring in the newly added value from the self-configuration adaptation

strategy. Figure 4.6 illustrates the GAP matrix of a focal company that

uses the self-configuration strategy.

108

4.5. REFLECTION ON IMPACT

Figure 4.6: Conceptual business model indicating in detail the strategic
components, customer and market components, & value and creation com-
ponents for self-configuring production systems.

4.5.5 Status for Innovation

The realisation of a self-configuring adaptation strategy enables a shift in

existing business models and all of its associated sub-models. In figure

4.7 the initial status of the business is mapped without the offer of self-

configuration capability for the focal company. The desired status is the

envisioned target that the focal company can aim for as motivation for

adopting the self-configuration strategy.

4.5.6 Potential Value Utilisation

Figure 4.8 simplifies the value capture to the respective domains and high-

lights the basic essentials that focal company must contribute to at a very

basic level. This also presents an opportunity for market and value capture

109

4.6. CONCLUSION

Figure 4.7: The status for innovation; A reflection on the initial and desired
business model through the introduction of self-configuration in production
systems.

Figure 4.8: An illustration for potential value utilisation/realisation by self-
configuration strategy in production systems. New value generated by the
solution can serve as direction for business model.

by offering the module and control for self-configuring capability in existing

production systems.

4.6 Conclusion

A survey to capture industrial insight on self-configuration was carried out.

A potential business model taking advantage of the introduction of self-

configuration capability in existing systems was presented. The discussion

110

4.6. CONCLUSION

on the surveys affirms the research gap and validates it through industrial

insight. These findings are:

1. Industrial professionals acknowledge the need to address challenges

associated with data security, cost of smart production systems, vari-

ation in demand and result adaptation required.

2. Most industrial practitioners feel that self-configuring production sys-

tems will solve the problem related to the skill shortage of field experts

and skills required for machine setting.

3. The surveys highlighted a lack of machine-to-machine communica-

tion, lack of automated decision-making, lack of incorporating intel-

ligence and lack of updates in manufacturing infrastructure as main

challenges towards the adoption of intelligent production systems.

4. Interestingly, from the surveys it is observed that companies and

institutes are moving in the direction of integrating more data-driven

decision-making.

5. Machine setting is still mainly a manual task, and dependent on prod-

uct and process requirements.

These findings clearly highlight a need for self-configuring production sys-

tems, presenting new opportunities (i.e. new value) for system integrators,

researchers and associated companies. To understand the self-configuration

in production systems, the next chapter evaluates the current status of the

systems on the shop floor in terms of identified features of self-configuration.

Chapter 6 maps the configuration of manufacturing assets that constitute

the production systems, and Chapter 8 and Chapter 9 attempt to realise

self-configuration in systems to gain the new perceived value.

111

Chapter 5

A Level-Based Classification of

Technical Enablers in

Production Systems

112

5.1. INTRODUCTION

Contents

5.1 Introduction . 113

5.2 A Level-Based Classification for

Self-Configuration 114

5.2.1 Methodology . 116

5.2.2 Classification Requirements 117

5.2.3 Features of Self-Configuration 118

5.2.4 Stages of Self-Configuration 120

5.3 Evaluating Enablers of Self-Configuration with the Level-

Based Classification 125

5.3.1 Evaluation of Enablers of Self-configuration . . 126

5.3.2 Industrial Application of Level-Based Classifi-

cation of Production Systems 132

5.3.3 Challenges to the Application of

Self-Configuration 133

5.3.4 Limitations of the Level-Based Classification

Method 136

5.4 Conclusion . 137

5.1 Introduction

A level-based classification system was developed that breaks down the con-

cept of self-configuration to its features that must be individually realised.

The novelty in this research is identifying and relating these features into

an integrated classification, providing a methodological approach to imple-

113

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

ment self-configuration in practical applications (i.e. production systems).

The possible enablers, challenges and future direction is also discussed.

The chapter is divided into four sections, with the establishment of the

concept and details of the proposed classification system in the first two

sections and insight into self-configuration in production systems along with

future trends in the next three. Section 1 deals with the introduction and

the context of the chapter. Section 2 presents the novel level-based classi-

fication for production systems to achieve self-configuration, and proposes

stage-wise transitions to navigate up the levels in practice. Section 3 exam-

ines enablers and application of self-configuration in manufacturing. The

key approaches currently in use are discussed, while major challenges to

self-configuration implementation are identified. Finally, Section 4 con-

cludes the chapter.

5.2 A Level-Based Classification for

Self-Configuration

To implement self-configuration in a dynamic setting, it is necessary to

identify the “when” and “how” conditions of the event that causes con-

figuration change in order to minimise perturbation and maximise out-

comes. A learning mechanism can aid in robust self-organisation by service-

orchestration, making the system more effective, efficient, adaptive, respon-

sive and advantageous (Leitão et al. (2013); Ribeiro et al. (2008); De Souza

et al. (2008)). One of the approaches to identifying “how” and “when” self-

configuration should occur was studied by (Rodrigues et al. (2015)) where

templates were used from a top-down perspective, and artificial intelligence

from a bottom-up perspective to change the structural adaptation of the

114

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

system. A system for self-configuration should be capable of adapting,

and be constantly looking for new improved configurations during opera-

tion. This expands the system functionality for adaptation at the operation

level (EIMaraghy and Urbanic (2004)).

Studies dealing with the incorporation of self-configuration (self-adaptation)

into manufacturing in terms of key enablers, approaches and challenges,

from the literature present a clear idea that self-configuration is composed

of multiple “features” acting together. This observation is used to de-

velop a level-based classification for production systems, proposed in this

thesis, based on criteria for self-configuration realisation. The classification

levels are captured in figure 5.1, and described in more detail in the follow-

ing sections. Each feature can be detailed by identifying the relevant stage

and level where it lies for the production system. This, in a sense, presents

a road-map on how to proceed with self-configuration for the respective

production system.

The levels, features, and stages are distinguished into two degrees of adop-

tion for self-configuration in manufacturing systems: System Readiness and

System Execution.

System Readiness: The levels that a system has to fulfil to make it

capable of self-configuration.

System Execution: The levels that a system has to fulfil to accomplish

the effect of self-configuration and improve on the effect.

115

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

Figure 5.1: Level Based Classification for Self-Configuration. The degree
of the capability in production system is outlined with dividing the levels
into two aspects of System Readiness and System Execution. The System
Readiness is from Level-0 to Level-3 and System Execution is from Level-4
to Level-5. The Stage-Wise Transition (S1-S8) presents the transformation
of production system for incorporating self-configuration across levels.

5.2.1 Methodology

A four-tiered developmental process highlighted in (Baetge (1974)) is used

as the method for creation of the level-based classification. This is car-

ried out to promote a systematic classification development for the self-

configuration target. Since, the classification is of a practical nature, as an

initial step the production system it is to be applied on, must be defined

116

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

and delimited. Secondly, the elements of the classification must be instated.

Third, the relationship between the elements should be established in the

wider scope of application. Finally, the evaluation and validation must be

carried out and examined.

5.2.2 Classification Requirements

There exists two categories of requirements that the classification must

adhere to. The first one is the General Requirements aimed at modelling

the classification. This encompasses application direction and description,

adaptability relative to degree of realisation, utilisation for application,

low effort to apply and infer findings by the application of classification

(Neuhausen (2001)).

The other requirement is towards complimenting the classification for self-

configuring applications, therefore limiting the scope of classification. This

requires that the production system with self-configuration must be under-

stood. In case of Specific Requirements first, the classification should have a

general validity. It means it must be possible to generalise the classification

over a wide array of production systems. Secondly, it must be possible to

analyse production system at holistic, superordinate and qualitative level

using the classification. Third, the classification must be described with

the aid of its features and the relevant levels, making it independent of

technological implementation. Fourth, the stages of the classification must

be able to be differentiated based on their properties.

117

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

5.2.3 Features of Self-Configuration

The features of self-configuration are deduced based on analysis carried

out for self-configuring and self-organising production systems. The fea-

tures that enable self-configuration are self-capability, data management

(collection, combination, storage, conversion, and transmission), operation

identification, optimisation, monitoring, and control (Antzoulatos (2017);

Sanchez et al. (2020); Leitão and Restivo (2003)). A brief description of

these features is as follows:

• Self-capability encompasses the ability of a system to realise its

state and potential, be aware of its function and environment, and

set up necessary mechanisms for self-management.

• Data management encapsulates the capability for data collection,

storage, conversion, and transmission dealing with the complete data

life-cycle in production system

– Data Collection: The system must be capable of collecting

and combining data streams from multiple data sources. The

cognitive/learning inferences should enable the system to extract

useful information from the data collected, along with mitigating

noise in the accumulated data.

– Data Storage: Storage should be dynamic with the system

being capable of determining data location, and the value of

data as per latency and performance requirements for either

processing at edge or in the cloud.

– Data Conversion: The system must be capable of filtering

useful information for cognitive inferences and accumulating in-

formation for goal-directed behaviour.

118

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

– Data Transmission: Protocols and standards must promote

interoperability between machines/systems and must be adapt-

able. Experience across the system could be leveraged for self-

configuration to make the system more adaptable to changes.

• Operational identification for self-configuration is moving towards

the objective like maximum efficiency, the best performance and low-

est cost, and ensuring correct behaviour execution as per that ob-

jective. To manipulate the system for this, the process improvement

should focus on operational awareness and execution directed to goals

and desired behaviour.

• Optimisation for self-configuration is directed by the objective func-

tion (i.e. function that defines the criteria for optimisation for the

system). A system that realises self-configuration embeds tuning of

system parameters and state-transition management in order to op-

timise the objective function.

• Monitoring of the constituent components that make up the system

and overcome disruptions is essential for self-configuring capability.

The monitoring must be connected to automated and cognitive in-

ference driven control.

• Control through utilising insight generated by the system to direct

self-configuration behaviour. Event triggers can be used to offer high

and low-level control in distributed manufacturing systems. Self-

configuration uses effective monitoring to offer control capability to

the target system.

119

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

Levels of Self-Configuration

The levels (see figure 5.1) in the classification vary from Level-0 to Level-5

representing a scale of self-configuration capability, with Level-5 signifying

complete self-configuration. The features of self-configuration under dis-

cussion are split into multiple levels of capability, and maturity for each

feature is achieved by transitioning from Level-0 to Level-5. This transi-

tion through levels is done in stages to make it practical to be deployed

in industrial applications. This is achieved through stage-wise transition

from one stage to the next. This kind of approach allows the completion

of the third and fourth requirements of classification development.

5.2.4 Stages of Self-Configuration

Self-configuration is achieved via a stage-wise transition, in which each

stage represents a combination of features at certain levels of maturity, as

illustrated in the classification diagram (fig 5.1). Using existing models

of Bauer et al. (2019) for autonomous production systems, the stages are

adapted to define the stages of self-configuring production systems.

Determination of where a feature of the system lies within the classification

is carried out by the identification of the maturity of the feature along the

levels. A stage is associated with a feature based on the maturity along the

levels where most of the characteristics of the features in that application

lie.

There are eight (8) proposed stages for the transition from no self-configuration

ability to fully implemented self-configuration. Stages 1 to Stage 4 fall

within the System Readiness degree, while Stage 5 and Stage 6 are transi-

tional stages that make the system ready for the System Execution degree.

120

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

Stage 7 and Stage 8 are responsible for producing and maintaining the ef-

fect of self-configuration in the System Execution degree. This stage-wise

transition assists in associating the current self-configuration capability of a

system with a direction of progression to higher levels of self-configuration.

Stages of level transition for self-configuration can be related to cost and

complexity. The stages, increasingly, add to the complexity of the system

and also the associated cost. A trade-off exists, depending on the system’s

requirements, on the level that must be reached by the system in terms of

capability, associated cost, and complexity. These stages can be stated as:

• Stage-1 Information Stage: The system gains the partial capa-

bility for accumulating and combining data from data sources along

with processing the data for analytics. Transmission capability is

limited to accumulated data transfer only. Operational awareness is

present, but no optimisation capability is available. Basic monitoring

of the system state is carried out with partial human-driven control.

Example: A production system that can gather data for limited pro-

cessing, but cannot act on the accumulated data, i.e. make decisions

itself. It can record information in a storage medium, that can be

extracted through a human operator. Context awareness is present,

meaning that it can record and map information during an operation.

• Stage-2 Extraction Stage: The system becomes capable of com-

bining data from sources with data stored locally. The system has

more capability to extract useful portions of data along with optimi-

sation of key tasks.

Example: A production system that can gather all relevant data

for processing, and can combine data for analysis. The storage in

this production system is still done locally. Optimisation (e.g. time,

121

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

value, or cost) conditions can be fed to the production system and

some settings can be made to reach the optimisation objective.

• Stage-3 Awareness Stage: The system develops a sense of aware-

ness about its condition. Data capability is increased with the sys-

tem capable of combining data from multiple sources, and storage

is possible locally and on a network. Monitoring capability becomes

enhanced with more focused monitoring of information.

Example: The production system has the ability to collect data for

processing, store that data locally in a storage medium, and transfer

it over a network onto a server. Each operation in the system can be

monitored, along with changes in state identified during operations.

• Stage-4 Context Stage: The system develops an awareness of its

environment (i.e., becomes a cyber-physical system). The system

effectively filters useful information from the gathered data. Data

transmission capability is increased with more sharing of information

across devices and linked with a common knowledge base. Automated

control is present, guided by effective monitoring algorithms.

Example: In addition to the example of Stage 3, useful information

like time or a value can be extracted from the production system. It

also has context awareness, i.e. relates the change in state to an out-

come (i.e. programmed) like a pass/fail decision based on differential

pressure feedback from the machine.

• Stage-5 Self Stage: The system becomes ready for the initial stages

of self-configuration. The capability of system for self-optimisation,

healing and protecting are introduced. Information useful for decision-

making is gathered. The system develops data transmission capabil-

ity across machine platforms. Objective functions are used for op-

122

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

timisation as per specified goals, with the system monitoring and

driving the control strategy.

Example: The production system has a protective mechanism built-

in that observes and identifies undesired behaviours and assists the

system to act as per objectives. The user can provide an objective

function, accounting for cost, time or any other, that the production

system can utilise during operation.

• Stage-6 Adaptation Stage: The system is able to adapt to changes

without assistance. Data collection could be carried out without dis-

ruptions and self adjusts to eliminate disrupting factors. The system

could store data in a network or cloud storage. A disruption man-

agement mechanism is present.

Example: The production system becomes more reactive, i.e. if there

is a disturbance/disruption then the system takes steps to overcome

it (i.e. by means of control logic or otherwise). Also, the system is

capable of adapting the production system to meet the requirements

set (product, process, or KPIs).

• Stage-7 Partial Self-Management Stage: The system is capable

of combining data without disruption, and data is collected depend-

ing on the goals. Machine learning could be incorporated for smart

decision-making with data transmission to control machine config-

uration. Process improvement is the main focus at this stage, with

optimisation directed towards parameter tuning. The system is capa-

ble of gathering and monitoring information about all its constituent

components. Based on these cognitive inferences, control of the sys-

tem can be driven.

Example: The production system becomes smarter with links to ma-

123

5.2. A LEVEL-BASED CLASSIFICATION FOR
SELF-CONFIGURATION

chine learning pipelines, that assist in decision-making to reach objec-

tives. The system is capable of gathering useful data that contributes

to the goal. Parameter tuning is supported by machine learning

pipelines. Automated control is mainly relied on.

• Stage-8 Self-Management Stage: The system gains complete con-

trol over its configuration, as it becomes completely self-managed.

The system can process portions of data at the Edge (i.e. near the

data source), while other portions could be dispatched to the cloud for

analytics. Experience sharing can be enabled in the system, making

the configuration more effective with subsequent iterations. Event-

based triggers are available that provide enhanced control function-

ality.

Example: The production system has the capability to learn over

time in regard to objectives. High-computational resources may be

linked to the system for making smarter decisions. The production

system operates on an event-trigger mechanism and gathers relevant

data to support the event to optimise as per the objective.

These stages show how progression towards higher levels of self-configuration

emerges from progression in maturity levels of the contributing features.

This level-based system can be used to understand a system’s readiness for

self-configuration capability and depending on the requirements achieve the

balance of functionality with cost and complexity. The stage-wise transition

is necessary to make sure that self-configuration can be realised in earnest

by evaluating the current state of production system of self-configuration

readiness. Only once the system reaches Stage-5 it can realise initial effects

of self-configuration. Progressing from Stage-5 also leads to progression on

self-configuration realisation.

124

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

5.3 Evaluating Enablers of Self-Configuration

with the Level-Based Classification

The level-based classification of self-configuration in the production system

can be used in two ways. Firstly, it can be used to evaluate a manufacturing

system, to determine the stage of self-configuration it is capable of by

breaking down the domain into features and evaluating the maturity level

of each of those features.

Alternatively, the classification can be used to evaluate possible contribut-

ing technologies. Technologies applied to a manufacturing system can help

increase the maturity level of specific features. By understanding which

features and levels they contribute to, technologies can be identified to

fill in gaps a system may have to reach higher stages of self-configuration

capability.

This section discusses four potential enablers of self-configuration and eval-

uates them with the level-based classification. This serves as a study

into the applicability of these technologies to self-configuration, and also a

demonstration and validation of the classification.

The features of self-configuration discussed in the model presented in Sec-

tion 3 can be influenced by the technology or technologies utilised. The

technologies that enable the realisation of self-configuration can highlight

the features targeted and areas that may be lacking. In this section, pos-

sible enablers of self-configuration are examined with their respective lev-

els and stages. Challenges are presented that demonstrate the aspects of

features that must be improved with each technology for complete self-

configuring production systems.

125

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

5.3.1 Evaluation of Enablers of Self-configuration

Self-configuration focuses on the operational aspect of the production sys-

tem, acting on extracted information to make decisions and take actions.

This level enables machine to machine communication, experience sharing,

optimisation and monitoring along with dealing with parameter tuning and

design improvement. To obtain this, it is necessary to utilise those tech-

nologies that achieve such or similar behaviour.

In manufacturing intelligence literature, many technologies are proposed to

aid in fulfilment of self-configuration objective, four are examined as they

provide a good spread of options for implementation (Table: 5.1). Some of

their details and approaches to achieve self-configuration or similar effect

are described in the following subsections. The following sections detail a

brief description of each technology followed by the evaluation.

Multi-Agent Systems

Self-configuration can be accomplished by agent-based control and com-

munication in a production system environment. “Agent” in the context

of a multi-agent system refers to an intelligent software agent which mon-

itors and controls the production equipment. A combination of passive,

active and cognitive agents make up the multi-agent system environment,

with increasing levels of intelligence, autonomy, and capability. Multi-agent

systems use multiple individually simple agents to collectively achieve com-

plex control paradigms for self-configuration, and show complex behaviour

emerging from simplistic individual processes.

Bachula et al. (Bachula and Zajac (2013)) have described a three-stage

framework for agent-based control in a discrete manufacturing system envi-

126

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

Table 5.1: Enablers of Self-Configuration

Enablers Description

Multi-Agent
Systems

Consists of independent software agents
responsible for a resource or portion of a
resource. Agents co-ordinate among themselves
to form emergent behaviours from simple
individual behaviours to form a distributed
control paradigm.

Grid Computing Consists of multiple computers, often
distributed geographically, networked together
to accomplish joint tasks. Requires systems to
maintain sense of state. Grid computing has the
capability to combine distributed resources and
co-ordinate among them for stateful execution
to target goal.

Control Theory Uses system controllers for controlling behaviour
in a designed system. Consists of target system
and controller. The controller implements a
control strategy and produces signals that adapt
target systems as per the desired goal.

Component
Based
Development

An architecture based on system functionality
components and connectors that govern
interaction between such components. This
prompts structural self-awareness in the system,
important for self-configuration.

ronment. The technology employed in their research focuses on cooperative

agents, resulting in a plug and play control system. This plug and play con-

trol gives the capability to the distributed production system of being able

to configure itself based on agent behaviour. Multi-agent systems have been

applied in decentralised manufacturing environments where their capability

for intelligent decision-making, agent-to-agent communication and cooper-

ation are relied on for production control (Leitão et al. (2016)). These

capabilities make a firm case for their application to self-configuration and

self-organisation of such systems.

127

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

Grid Computing

The autonomic principles of grid computing address the ability of grid

systems to adapt to changes for maintaining system performance and re-

covering from any perturbation (Messig and Goscinski (2005)). Grid sys-

tems maintain a sense of state that helps them to identify and manipulate

themselves as per desired criteria. Works on grid computing have used

configuration broker for web services to maintain reliable web service and

stateful resource access (Messig and Goscinski (2005)). Other works use

similar approaches in telecommunication (Yan et al. (2007)) and wireless

applications (Ahuja and Myers (2006)). However, grid computing has seen

little acceptance in manufacturing.

Control Theory

Control theory drives the production system by using the manufacturing

system controllers. The central production system controller implements a

control strategy through manufacturing controllers. This strategy is based

on the desired goal provided for the production system. Control driven

approaches have been extensively applied to introduce self-* behaviours in

manufacturing. (Priego et al. (2014)) presents a supervisor architecture for

enabling system availability in spite of failure, therefore maintaining the

system state at the control level. (Council and others (1998)) identified

self configuration as a key challenge for automation systems. The work

done by (Priego et al. (2014)) looked to propose a configuration mechanism

coupled with a model driven development technique to ensure control is

maintained in the event of a system failure. This was accomplished by

restoring functionality of a controller to a backup when failure occurs. The

research argued that the recovery of the functionality is a function of the

128

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

execution point in which the system has failed.

With the rigidness of the 61131-3 standard (Elements (2018)), PLC con-

troller configuration could be achieved only when the system is not run-

ning (although hot-swapping of portions of code may still be possible while

within the same CPU cycle without stopping the manufacturing process).

The swapping approach is viable but causes significant downtime (Zoitl

(2009)). For this to be possible the system control needs to stop running,

the new complete program needs to be loaded, and finally, execution re-

sumed. A functional block approach that uses the IEC61499 standard for

PLC control due to its distributed architecture is most useful to achieve

self-configuration behaviour.

Other research works targeting dynamic reconfiguration like that described

in (Botygin and Tartakovsky (2014)) used a dynamic ranking table for

optimising control system workload. Similarly, (Binotto et al. (2013)) used

the order arrival time and controller workload to set configuration balance

across controllers. Energy optimisation (Guo et al. (2009)), fault control

(Merz et al. (2012)) and network failure control (Streit et al. (2014)) all

have served as drivers for self-configuration based on objective.

Component Based Development

Component-based development deals with the encapsulation of reusable

functionality and self-sufficiency for self-configured production systems at

the framework levels. Autonomic components provide the ability to export

profiles that contain information about functional, operational, and con-

trol aspects. This information includes knowledge about their behaviour,

adaptability to other systems, resource prerequisites, performance and in-

teraction (Chirn and McFarlane (2000)). In this methodology, aspects of

129

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

composition formalism, smart components, and hot swapping may serve

as enablers for self-configuration. Composition formalism can help in gen-

erating configurations for the equipment under constraints (Cheng et al.

(2004a)). Smart components can adapt to changes serving as building

blocks for production systems (Jann et al. (2003)) and hot swapping (Ap-

pavoo et al. (2003)) can help in self-configuration by code replacement,

code swapping or module change.

Level-Based Classification of Enablers of Self-configuration

The level-based classification is applied to the aforementioned technological

enablers. Figure 5.1 can be seen as a framework for incorporating level-

based classification on a production system. The technological aspects

that are collectively responsible for self-configuration can be divided by the

capability of each constituent feature. Each feature can then be detailed

by identifying the relevant stage and level where it lies. This, in a sense,

presents a road-map on how to proceed, i.e., what stage-wise transition to

be taken for increased self-configuration capability.

Figure 5.2 also clearly illustrates that the enablers alone are currently in-

sufficient to realise higher stages and levels of self-configuration. They can

only be achieved when these enablers are linked with different technologies.

In this way, these enablers act as a bridge between different technologies

to achieve the purpose of self-configuration.

By understanding the target stage of self-configuration (i.e. which will be

a trade-off between functionality and the cost/complexity of implementa-

tion), the use of the classification enables the identification of the most

relevant technologies, but also potential gaps. For example, the enabler

multi-agent systems have most of the features at Level 4, and this cor-

130

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

Figure 5.2: Level Based Classification for Self-Configuration applied to
Enablers along with Stage-Wise transition Identification. Note that there
is only one occurrence of Stage 7 in the diagram and none of Level-5.

responds generally to self-configuration stage 6. However, to achieve full

stage 6 self-configuration, limitations in the data transmission and data

conversion features would need to be overcome, requiring the integration

of additional technologies machine-to-machine communication standards

for example.

131

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

5.3.2 Industrial Application of Level-Based Classifi-

cation of Production Systems

Level-based classification can be applied to industrial production systems to

evaluate their fitness for self-configuration as per their constituent features.

The capability of features in respective industrial applications is identified

along with its stage and the level where it is present. This assists in setting

up a target level for features and provides a direction to achieve the de-

sired self-configuration capability. To demonstrate the applicability of the

novel level-based classification, three related industrial production systems

are considered: basic differential pressure Leak Tester, Multi-Application

Leak Tester (MALT) and then MALT integrated with a multi-agent system

(JADE). Figure 5.3 shows these systems for demonstrating the application

of level-based classification.

Figure 5.3: Industrial production systems for demonstrating the applicabil-
ity of level-based classification: (a) Basic differential pressure Leak Tester;
(b) Multi-Application Leak Tester (MALT); (c) Multi-Agent integrated
with MALT System

Differential pressure decay leak testing is used to sensitively detect leaks in

production parts and is one of the most commonly applied industrial leak

132

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

test methods. An absolute sensor is used to relate the difference between

test pressure and atmospheric pressure, and a pressure transducer is used

to measure leaks during the testing process. Functionality involves filling

the test part and reference part with air, stabilising and measuring the

relative change in pressure between the two parts. Applying the level-

based classification on this basic industrial production system yields most

of its features at Level-0 or Level-1. The production system is at the very

basic degree of System Readiness for self-configuration. Details about the

features, their respective levels and stages for this system can be seen in

figure 5.4.

The application of level-based classification on Multi-Application Leak Tester

(MALT) and Multi-Agent integrated with MALT System is detailed in

Chapter 9.

5.3.3 Challenges to the Application of

Self-Configuration

The technologies proposed for enabling self-configuration in manufacturing

present opportunities and challenges in their applications. Figure 5.2 eval-

uates the technological approaches for self-configuration in manufacturing

system by relating their features with the developed classification. This

presents a clear indication of the level and stage where each of the tech-

nologies lie in terms of contribution to the features of self-configuration.

Based on this analysis, the challenges for self-configuration are identified.

Control Challenge: There exists a need for effective control that not

only provides functionality to operations, but also the measurement for oc-

curred failures. The self-configuration process could involve modification to

133

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

Figure 5.4: Level Based Classification for Self-Configuration applied to
basic differential pressure Leak Tester

one or more parameters, a sequence change, variation in information flow,

communication paths and channels, or a modification to a physical com-

ponent’s functionality. For this, a dynamic control mechanism is required

along with robust monitoring. This allows for variations in one compo-

nent without influencing other components as a change is detected. This

maintains the stability of the system (Zoitl (2009)). One assumed property

of self-configuration is that the self-configuration process does not disturb

the control process, but is aided by it. Moreover, preconditions need to

be executed for actions to take place. Therefore, in control applications,

134

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

real-time constraints must be met for safe execution. However, the imple-

mentation of such an enabling architecture that supports such stochastic

environments is a major challenge (Brennan et al. (2002)).

Knowledge and Framework Challenge: For self-configuration, there

is a lack of knowledge about the technical infrastructure required for such

a capability to be present in the equipment. This comes in addition to the

general lack of information on how to implement self-configuration in pro-

duction systems, the constituent feature components, and the transitional

approach to reach complete self-configuration. The level-based classifica-

tion introduced in this chapter contributes to this aspect, supplemented by

the following chapters that add to this.

Trust and Interoperability Challenge: For equipment to transfer and

co-relate data between different data streams, free movement of data is

required. Increasing concerns over data sensitivity, intellectual property,

data ownership and management, require a strong data governance policy

that could be linked with the production systems (Raptis et al. (2019)).

However, due to the lack of interoperability between protocols, systems,

products, and devices such policies rarely exist. Due to vendor specific

standards of many system components, interoperability requirements fail

to match the desired infrastructure requirements for self-configuration. The

capability to handle data growth and the security of acquired data act as

a challenge for data management and realisation of self-* abilities (Raptis

et al. (2019)).

135

5.3. EVALUATING ENABLERS OF SELF-CONFIGURATION WITH
THE LEVEL-BASED CLASSIFICATION

5.3.4 Limitations of the Level-Based Classification

Method

The level-based classification system offers a valuable tool for evaluating

a manufacturing system’s potential for self-configuration. However, some

limitations exist, particularly the lack of extensive testing across various

cases.

• Limited Validation: The system has not been thoroughly tested

and validated across a wide range of manufacturing systems with di-

verse functionalities and complexities. The inability to fully evaluate

a system’s capability to achieve self-configuration through its features

is limited by this constraint. This research contributes to this by pre-

senting a framework that enables to understand the building blocks of

configuration in production system so that the concepts discussed in

this chapter may be carried over to other manufacturing applications.

• Subjectivity in Feature Evaluation: Assigning maturity levels

to a system’s features can involve some subjective judgment. There

might be variations in how different users evaluate the same features.

• Focus on Enablers: The classification system focuses on identi-

fying technologies that can contribute to self-configuration (i.e. en-

ablers) rather than providing a detailed roadmap for implementation.

Additional steps would be required to translate the classification re-

sults into practical actions for achieving self-configuration in a specific

system. This research contributes towards providing this roadmap by

presenting an Adaptation Strategy.

Reasons why the level-based classification system was not subjected to

136

5.4. CONCLUSION

testing across various cases:

• Complexity of Manufacturing Systems: Manufacturing systems

vary in size, automation, and complexity, requiring testing across a

wide range of facilities and equipment. This would be a significant

undertaking beyond the scope of project.

Future Developments

Despite the limitations, the level-based classification system offers a foun-

dation for further development. Some future developments by which it

could be improved:

• Standardisation of Feature Evaluation: Develop more objective

criteria for assigning maturity levels to a system’s features, reducing

the potential for subjectivity.

• Case Study Development: Apply the classification system to a

wider range of real-world manufacturing scenarios, documenting the

results and using them to refine the classification.

• Integration with Implementation Tools: Combine the classifi-

cation system with practical tools or guidelines to help manufacturers

translate the classification results into concrete steps for achieving

self-configuration. This research works on it.

5.4 Conclusion

This chapter presents a novel model for evaluating production systems

and enabling technologies with respect to their maturity or application to

137

5.4. CONCLUSION

self-configuration. This enables users to understand where technologies

could be used, where gaps may exist in their system, and where develop-

ments should be prioritised. The concepts of “self” and “configuration”

are defined and coupled with the idea of “self-*” in manufacturing. This

is used to establish the definition of self-configuration in manufacturing.

A level-based system for classifying self-configuration capability in produc-

tion systems is presented, with stage-wise transition to higher degrees of

self-configuration. The stage-wise transition is related to the balance be-

tween functionality versus the cost and complexity of implementation in

production environment. An industrial use-case of a test process based on

manufacturing system (MALT) is demonstrated on a developed framework

to achieve such self-configuration by mapping to the proposed level-based

classification features.

138

Chapter 6

Module Driven Configuration

139

6.1. INTRODUCTION

Contents

6.1 Introduction . 140

6.2 Overview of Framework 141

6.2.1 Need for a Framework 141

6.2.2 Design Principles 142

6.2.3 Framework Overview and Key Concepts 146

6.3 Module Driven Configuration System

Model . 151

6.3.1 Framework Architecture and Abstraction

Levels 151

6.3.2 Overview of the Architecture 154

6.3.3 Configurable Objects 159

6.3.4 Modules . 162

6.3.5 Module Based Production System 169

6.3.6 Module Based System Application 175

6.4 Conclusion . 182

6.1 Introduction

This research introduces an integrated framework to achieve self-configuration.

This direction aims to achieve some modularity and separation between

production system functionality and self-adaptive behaviour. In this re-

search, the framework forms the building blocks towards understanding the

self-configuration concept. Therefore, the proposed framework maintains a

strict separation of concern between components of the production system

140

6.2. OVERVIEW OF FRAMEWORK

and the behaviour required to achieve an objective (i.e., self-configuration).

This is pivotal in understanding the system’s self-adaptive behaviour sepa-

rate from its functionalities. This also makes the production system more

maintainable. This framework will undergo testing and validation in sub-

sequent chapters.

The conceptual model is defined and the underlying principles for the pro-

posed generalised framework are elaborated. Next, the architectural ele-

ments of the framework are introduced that can be used to construct a

production system model and then to achieve self-configuration through

their application.

6.2 Overview of Framework

This section elaborates on the proposed framework. The need for the

framework is first introduced followed by the design principles behind the

framework. Next, the conceptual model is developed from the proposed

framework and related to a generalised model for a self-adaptive produc-

tion system (self-configuration). Finally, the adaptation loop is discussed

which uses the framework on the components of the production system to

control functionalities.

6.2.1 Need for a Framework

In a manufacturing environment, changes can occur due to factors like prod-

uct variations, changing customer demands, and the addition or removal of

production modules. To effectively manage such dynamic behaviour and

ensure smooth operations by adapting configurations, a framework is re-

141

6.2. OVERVIEW OF FRAMEWORK

quired. This is further emphasised by the increasing need for flexibility and

scalability. Usually, expanding manufacturing facilities involves introduc-

ing systems for added functionalities. Incorporating these add-ons into the

existing production systems requires a framework that can handle changes

seamlessly.

The framework should address the level of detail of the components in the

system that bring functionality, and the organisation of these components

into aggregates that can be configured. This ensures that each of these

aggregates can adapt to the specific functionality while maintaining some

structure, making the whole system easier to manage and update.

These dynamic systems will have some constraints on functionality and the

associated variables. The constraints ensure the safe and efficient working

of the system. The framework must manage these constraints while defin-

ing interactions between these aggregates. Mass customisation and data-

driven decision-making propagate a more effective adaptability requirement

in systems. Therefore, the required framework should also offer interaction

with external systems like machine learning models, providing insights and

parameter values based on accumulated data.

The framework must be modular to enable the application to functionality-

based system configuration. This supports changes in functionality vari-

ables and relationships, but also attains a configuration as new variables

are introduced as part of upgraded functionality.

6.2.2 Design Principles

The proposed framework aims to cover most aspects of the self-configuration

needs for production systems. Each principle serves as a guiding concept

142

6.2. OVERVIEW OF FRAMEWORK

to achieve the objectives (discussed in the section 2.8.4) effectively within

the framework:

• Generality: To make the framework applicable across various man-

ufacturing applications and to simplify modelling complexities in pro-

duction systems. This aim drives the design principle of “generality”.

– Principle Definition: Generality refers to the framework’s

ability to address a wide range of manufacturing applications

without requiring domain-specific expertise or experts.

– Framework-specific Meaning: In the context of this frame-

work in this research, “generality” means that the design focus

for the framework is towards developing architectural abstrac-

tions, such as modular components (i.e. aggregates) and con-

straints, their interactions, to model the production system.

– Enabling the Aim: The principle of “generality” enables the

aim by ensuring that system engineers, regardless of their do-

main expertise, can use this framework to design self-configuring

production systems for any manufacturing application.

– Objectives Targeted: 2,3 and 8.

• Exactness: To provide the basis for implementing and analysing

self-configuration in production systems. This aim leads to the design

principle of “exactness”.

– Principle Definition: Exactness implies that the framework

has structured operational semantics for module-based design.

– Framework-specific Meaning: Within this framework, “ex-

actness” signifies that there are well-defined rules and proce-

dures, as explained in later sections, for module-based design,

143

6.2. OVERVIEW OF FRAMEWORK

ensuring exact self-configuration adaptation in applications.

– Enabling the Aim: The principle of “exactness” enables the

aim by providing a structured approach that allows for the ac-

curate implementation and analysis of self-configuration in pro-

duction systems.

– Objectives Targeted: 5,6 and 7.

• Separation: To separate the functionality of the production sys-

tem from its self-adaptive (i.e. self-configuration) behaviour, reduc-

ing complexity in integrating these aspects. This aim leads to the

design principle of “separation”.

– Principle Definition:Separation involves distinguishing the pro-

duction system’s functionality from its self-configuration require-

ments, simplifying the integration process.

– Framework-specific Meaning: In the context of this frame-

work in this research, “separation” means that specific rules ad-

dress the system’s functionality and adaptive behaviour sepa-

rately.

– Enabling the Aim: The principle of “separation” enables

the aim by streamlining the integration process and minimising

complexities that can arise from combining functionality and

self-configuration requirements.

– Objectives Targeted: 1,5 and 7.

• Runtime: To maintain a runtime abstraction layer that assists in

monitoring, reasoning, and adapting the production system while it

is operational. This aim leads to the design principle of “runtime”.

– Principle Definition: Runtime involves having a digital twin

144

6.2. OVERVIEW OF FRAMEWORK

abstraction layer that operates alongside the production system,

facilitating real-time monitoring and adaptation.

– Framework-specific Meaning: Within this framework, “run-

time” means the existence of three levels of abstractionconfig-

uration, functionality, and constraintsthat facilitate monitoring

and adaptation while the production system operates.

– Enabling the Aim: The principle of “runtime” enables the

aim by providing a digital twin layer that allows for real-time

changes and adaptations in the production system.

– Objectives Targeted: 5,6 and 8.

• Enforcement: To implement self-configuration in a production sys-

tem by enforcing constraints. This aim drives the design principle of

“enforcement.”

– Principle Definition: Enforcement implies that the frame-

work can impose specific behaviours in a production system.

– Framework-specific Meaning: In this framework, “enforce-

ment” signifies the capability to define configurations through

variables and constraints, managed by a runtime digital twin.

– Enabling the Aim: The principle of “enforcement” enables the

aim by allowing the framework to exert control over a production

system’s functionality.

– Objectives Targeted: 4, 6 and 7.

These design principles are defined to address the objectives established in

the previous section (6.2.1) and enable the framework to effectively tackle

self-configuration challenges in production systems.

145

6.2. OVERVIEW OF FRAMEWORK

6.2.3 Framework Overview and Key Concepts

In this section, the building blocks of the framework are defined and the

relations that constitute the proposed framework are elaborated. The con-

cept and the terminologies behind the self-configuration approach modelled

in the proposed framework are discussed.

Introduction to Framework Concepts

It is proposed that there are two main concepts in the framework; the

Production System Model and the Adaptation Strategy, as depicted

in figure 6.1.

Figure 6.1: Conceptual illustration of the framework, showing aspects of
the self-configuring production system. Production System Model presents
a runtime of the Physical Production System acting as its digital twin.
Adaptation Strategy monitors and controls the Production System Model
in response to changes. Production System Model updates the physical
system under guidance from Adaptation Strategy.

• Production System Model: The production system model is the

representation of the physical production system. This model presents

a runtime of the physical production system, providing a digital twin

146

6.2. OVERVIEW OF FRAMEWORK

of the system and enabling its adaptation as per the adaptation strat-

egy.

Since an accurate representation of the physical production system in

real-time for adaptation strategy is needed, it is required that the pro-

duction system model be a true abstraction of the production system.

In this research, it is proposed that the framework has an abstrac-

tion layer with three levels. These capture the system configuration,

functionality, and constraints.

1. Configuration, Functionality & Constraints: In this re-

search, it is proposed that the framework captures the complete

architecture of the physical production system in the produc-

tion system model while ensuring that there exists a mapping

between the representation and the physical production system.

This mapping will then ensure that changes in one can imple-

ment a reflective change in the other. This mapping should be

updated regularly to maintain consistency between the produc-

tion system model and the production system.

2. Modularity: The proposed framework promotes the addi-

tion and removal of configuration modules based on production

system functionality, bringing a sense of modularity. Internally,

the relationships between variables in a configuration module are

subjected to rules defined at design. This separation of function-

ality rules and variable rules is present to establish the formation

of configuration topologies. These rules are dependent on the

fundamental architectural design of the production system it-

self. For example variable rule can be a certain parameter value

restriction for a functionality in a manufacturing asset, func-

tionality rule can be the interdependence of two components in

147

6.2. OVERVIEW OF FRAMEWORK

different manufacturing assets for configuring the parameters.

• Connection: The production system model is connected to the pro-

duction system bi-directionally. This ensures that any change carried

out in one affects the other. Such kind of conformance between both

is necessary to ensure consistency for the adaptation strategy.

This can be achieved by getting a representation of the production

system model and updating the information (i.e. about the differ-

ence) in the physical production system. Similarly, reflective changes

can be identified in the production system, and they can be updated

in the production system model. Now, this is possible but an ineffi-

cient approach as it requires integrating of approach (i.e. something

in between) that identifies the change and updates both ways.

In this research, it is proposed that the framework captures the com-

plete architecture of the physical production system in the production

system model while ensuring that there exists a mapping between

the representation and the physical production system. This map-

ping will then ensure that changes in one can implement a reflective

change in the other. This mapping should be updated regularly to

maintain consistency between the production system model and the

production system.

• Adaptation Strategy: This ensures the monitoring and control-

ling of the production system model. The strategy works to sense the

need for a configuration change and under set requirements carries it

out. This is decided based on functionality rules and variable rules.

The step change is decided (i.e. for configuration change) and the

effective decision is updated in the production system model.

148

6.2. OVERVIEW OF FRAMEWORK

Elaboration on the Framework Concepts

The concept presents a holistic view of self-configuring production sys-

tems. This framework, which is built upon this conceptual model, adheres

to several design principles (6.2.2). These principles underpin the frame-

work’s implementation, emphasizing two key aspects: the Production Sys-

tem Model and the physical production system. The core strength of this

framework lies in its ability to represent the production system within the

Production System Model.

Configuration Change in Action

To illustrate the practical application of the framework, consider this sce-

nario: Suppose a manufacturing system in a production system is expe-

riencing a high number of parts to process, then the production system

must adapt by delegating the incoming parts to a similar manufacturing

system. This can be modelled by routing and a quick configuration change

to meet part and customer requirements using this framework. Therefore,

it is necessary to study the production system and the components (i.e.

manufacturing assets) in it to capture it completely so that the framework

can be used to respond to the needs.

Adaptation Strategy - A Closer Look

The adaptation strategy is composed of the steps involved in achieving self-

configuration in production systems. The figure 6.2 illustrates the adapta-

tion loop involving the elements of the self-configuration in the adaptation

strategy.

149

6.2. OVERVIEW OF FRAMEWORK

Figure 6.2: Adaptation Loop for the process in the framework to achieve
self-configuration in production systems. Evaluator, evaluates the rules for
the configuration change, change manager, guides the configuration change
for functionality and executor changes the configuration on the system.

In the Adaptation Strategy, there is an evaluator that evaluates the func-

tional rule and variable rule for a configuration change. After evaluation,

the configuration change can be loaded into the production system, comple-

menting the product and process requirements. These changes are relayed

to the system responsible for the change on the production system (e.g. can

be agents, a script etc.). The change-inducing system utilises an executor

for changing the configuration.

The production system model is linked to the evaluator so that real-time

constraints and rules can be applied to the production system. In sum-

mary, the evaluator, executor, and change manager are the fundamental

elements of the adaptation strategy. This means that the proposed frame-

work relies on offline programming with real-time applications to achieve

self-configuration.

150

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

6.3 Module Driven Configuration System

Model

6.3.1 Framework Architecture and Abstraction

Levels

This section details the basic architecture of the proposed framework and

the accompanying elements. This section aims to clarify the concepts in-

troduced in the previous section.

Introduction to Framework Architecture

The proposed framework represents the production system by maintaining

a runtime. The runtime, in a production system model, is a layer of ab-

straction capturing system configuration, functionalities, and constraints.

The production system model can then be used to achieve self-configuration

by utilising the adaptation strategy.

Abstraction Layers in the Production System Model In the pre-

vious section, it is proposed that the Production System Model, in

runtime, is a layer of abstraction, this is further detailed in the figure 6.3.

Production System Model is structured into three distinct levels:

• Functionality (First Level): The first level captures the func-

tionality of the production system. This includes representing the

commands necessary to initiate specific behaviours, alongside client-

server system functionalities. This level captures the behaviour of the

production system through a standardised data representation (i.e.

151

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Figure 6.3: The production system model is represented at three levels of
abstraction namely: Functionality, Configuration and Constraint.

ontologies and semantics) in conjunction with the production system

interfaces.

• Configuration (Second Level): The second level of the abstrac-

tion layer captures the system’s configuration in terms of variables.

These variables are derived from functionality requirements. In this

context, variables are considered as representations of Configurable

Objects (CO). COs encompass all elements within a production

system, both physical and cyber, that are responsive to configuration

change. Relationships between variables are established and governed

by rule constraints. For example, settings within a production system

can be represented using parameters, with relationships specifying

connections between variables. Variable rules define the necessary

constraints on these variables and are employed by an evaluator to

explore the rules between variables and COs.

• Constraints (Third Level): The third level, which forms the

abstraction layer, captures the constraints acting on the variables in

152

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

a configuration. A configuration is represented by the variables, their

relationships, and the constraints binding them. A change produced

in either of these elements of configurable objects results in a new

configuration. This level handles the changes that can happen if a

variable is changed and its impact on relationships and constraints.

For example, in a production system, a product requirement is re-

ceived that demands the replacement of a configurable object. The

proposed framework allows for the change in configuration through

clearly defined functionality rules. These are called functionality

rules, first to establish separation from variable rules, and second

to be associated with production system functionality (as they di-

rectly impact these). E.g. for a leak test system functionality rule

can be related to a change in the pneumatic module raising the pres-

sure testing capability to 50KPa for a product variant and the variable

rule can limit a parameter value based on system design. More detail

on these rules is presented in section 6.3.4.

Configuration Changes in the Framework The change in relation-

ships between variables can also be handled by the proposed framework.

For example, a production system requires a change in a configurable ob-

ject that increases the parametric limit of a variable, previously if that

parameter went beyond a value there existed a relationship to trigger an

alarm. The relationship can now be handled by the variable rule change

in the constraint level of the proposed framework. Therefore, the effect

of such configuration change can be seen in action once the functionality

is executed with the changed configurable object. As the changed config-

urable object is introduced, the relationship is changed implicitly according

to variable rules.

153

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Therefore, in the proposed framework the change in configuration can be

handled for both change in variables, and change in relationships (by func-

tionality rules). These two types of layers and their associated rules (i.e.

functionality and variable) capture the self-configuration approach by map-

ping the configuration space.

6.3.2 Overview of the Architecture

The self-configuration approach requires that the three levels of abstraction

be captured. In this section, the Structural Module as the fundamental

concept is presented and considered as a basic unit for self-configuring

production systems for capturing these three levels. This section discusses

how structural modules encapsulate key elements, such as functionality,

variable rules, and functionality rules, and explores their role in adapting

to configuration changes.

Introduction to Structural Modules Each Structural Module con-

tains:

1. Functionality: Representing behaviour in form of capabilities of

configurable object.

2. Variable Rules: Governing limitations on the configurable object

variables and their values.

3. Functionality Rules: Effects relationships between configurable

objects and also the effect of changing variables in configurable ob-

jects behaviour.

154

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Interplay of Multiple Modules In this research, it is considered that

there may exist multiple modules in a production system, which in the case

of distributed (i.e. evolvable) manufacturing may also evolve over time. A

production system contains a superposition of several of these modules,

representing sharing its configurable objects. In the proposed framework,

it is assumed that these configurable objects can be added and removed, so

the framework has the capability to add and remove connections in mod-

ules. This is carried out through functional and variable rules. This change

in configuration as a means of reasoning through variable and functionality

rules enforces accurate behaviour in production systems.

Illustrating Module Changes To illustrate this concept, consider fig-

ure 6.4, which provides a visual representation of module structure and its

evolution within the framework.

Figure 6.4: Module Evolution in the Configuration Change Process. The
illustration shows changes in module w.r.t variable change (middle)(v5 to
v6) and (right) new module introduction.

Let’s consider that there are three configurable objects that are defined

in the form of three modules (left), Separation between these interacting

modules is shown using dotted lines. As visible, the upper module consists

of variables v1, v2 and v3, the central module consists of variables v3 and v4,

and finally the lower module consists of variables v4 and v5. The variables in

155

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

a configuration housed in a structural module have relationships, defining

the connection between them. Also, some variables are shared between

modules, showing dependency, relation, and constraints.

Lets’ assume that a configuration change happens that induces a change

in the variable from v5 to v6. As per the variable rules defined in the

module, the v5 is disconnected from the module and v6 connected. This

update does not in any way affect the central and upper modules in terms

of functionality.

Another configuration change happens, and a new configurable object is

introduced in the system (right) having variables v7 and v8. Functionality

rules, impact the central module and a new relationship is established.

As a result, the central module relationships are modified and the central

module houses more variables. In addition, a new module that houses the

two new variables is introduced.

Module Types and Structure Module types capture the type of con-

figuration, so the type of variables, along with the interaction between

variables and the corresponding functionality rules. A production system

is represented by the superposition of a number of modules capturing con-

figuration in configurable objects. Utilising this, the architecture can cap-

ture configurations of configurable objects and the functionality of those

objects. More detail on this is presented in section 6.3.4.

Structural Module Representation The structural module is repre-

sented by the following figure 6.5 in the proposed framework. Modules

can be best expressed as the structural representation that deals with the

deployment of variables in a configuration for a configurable object in a

156

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

logical link. Links are graph-like structures that consist of possible connec-

tions between variables and production systems. Allocation can be used

to relate the variables with data values, therefore the configuration, to the

connection in links.

Figure 6.5: Representation of a Structural Module. Functionality, configu-
ration, and constraints are encapsulated in this Structural Module defined
through operational semantics. A structural module consists of variables,
rules (functionality rules and variable rules), allocation and link.

Along with these, the definition of the module encompasses the variable

rules and functionality rules. The variable rules define the interaction

between variables in configuration for a configurable object present in a

module. Functionality rules define the rules that can be used to govern the

configurable objects, the links, and their allocations.

A Module Example Figure 6.6 illustrates a module example to under-

stand the module structure with links and allocation and its connection to

elements of AAS. It is assumed that the variables v1,v2, and v3 are linked

with a value through an allocation. Assuming the allocation to be “A”,

then the links “L” can be established as updating the allocated values to

the production system.

If such logic is followed then the variable, their relationships, and their

constraints can be represented using a module-based proposed framework,

as shown in the figure.

157

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Figure 6.6: Module Structure connected with the elements of AAS. Variable
rules govern variables. Functionality is executed subjected to constraints
defined by rules (functionality and variable). Relationships are encapsu-
lated in allocation and link.

The use of links and allocation within modules is highlighted as an effective

means of structuring complex production system interactions. These con-

cepts are deemed straightforward to comprehend and manipulate, yet they

can represent intricate connections within production systems. The pro-

posal underscores the advantage of separating links and deployment from

system functionality, enabling independent manipulation and adaptability

to a broader range of production systems. Each module in module-based

production systems encapsulates its functionality and interactions. It’s

suggested that a module’s structure, concerning configuration-related in-

teractions, remains unchanged until a functionality rule action is initiated.

Consequently, in typical scenarios, the production system maintains a static

architecture. While the execution of functionality doesn’t alter the module

structure, functionality rules can introduce architectural changes as needed.

158

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Notably, these changes in module structure do not impact configurable ob-

jects but only affect their variables. Hence, during execution, configurable

objects maintain their configuration state, albeit with potential changes in

variable values, while links and allocation remain constant.

Summarising, the proposed framework relies on a structural representation

known as module as the basic unit of architecture. These modules can be

superimposed in a production system to represent its configurable objects.

Now, the configurable objects are presented with their instances before

proceeding to module types and their instances.

6.3.3 Configurable Objects

A Configurable Object (CO) can be precisely characterized as follows:

In a production system, a Configurable Object is a representation of a

configurable object type denoted as COt. This representation takes the

form of a labelled transition system (CC, I, V, T), where:

• CC is a set of configurations consisting of variables, relationships,

and constraints that fulfil certain production objective criteria. Each

configuration, often referred to as setting, is responsible for physical

system operation behaviour.

As a simple example, consider configurations comprising two discrete

variables X and Y shown in figure 6.7.

X × Y = CC ∪ CC ′ (6.1)

CC ⊆ X × Y (6.2)

159

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Figure 6.7: Configuration space X × Y of variables X and Y . CC are the
candidate configurations satisfying relationship and constraints. A,B and
C are those candidate configurations that satisfy the production system
requirements.

CC ⊨ Relationship× Constraints (6.3)

The candidate configurations CC is a subset of configurations that

satisfy relationships and constraints on the variables but not neces-

sarily the requirements (e.g. KPIs) of the production system. Con-

sidering that A, B and C are the configurations that meet these

requirements.

{A,B,C} ⊆ CC (6.4)

{A,B,C} ⊨ Relationship× Constraints×Requirements (6.5)

• I is a finite set of interfaces that provide a connection to the con-

figurable objects. These provide links to the configurable object,

through which changes can be made.

• V is a finite set of variables and their associated values.

• T ⊆ CC × I × (G(V)× F (V))× CC is a set of labelled transitions,

with Update(V) = G(V)× F (V) where G(V) is the guard on V and

160

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

F (V) is the corresponding update function acting over V .

V ariables× V alues → V (6.6)

F : V → V (6.7)

G : V → Boolean (6.8)

By the above definition statement, every transition represented as τ =

(CCi, i, update, CCj) ∈ T can also be instated as τ = CCi
i update−−−−−→ CCj ∈

T . It is assumed that a configurable object has a variable mapping V

available through an interface i ∈ I that is available for interaction (i.e. to

be configured).

The semantics of the configuration object type COt is illustrated as (S,
∑

,→

) where

• S represents a set of states that are a result of the realisation of

V . An update on V will give a different set of states S ′.The states

represent the behaviour that the machine follows during functionality

execution as it takes up a configuration setting.

•
∑

is a set of labels.

• → are transitions given by rule;

τ :=
CCi

i update−−−−−→ CCj ∈ T G(v) v′ = Fτ (v) i ∈ I

S
i update−−−−−→ S ′

S ′ is achieved through the transition from S under interface i, through

update with accessible variable under interface i iff (1) τ = CCi
i update−−−−−→

CCj is a possible transition of T , (2) G(v) is the guard imposed on variable

mapping v, (3) Update occurs as Fτ (v) is possible, and finally (4) accessible

161

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

variables in configurable object exist through interface i such that i ∈ I. If

such a transition is possible, then a change in configuration is possible in a

configurable object resulting in a set of states for functionality execution.

Applying the Concept: In manufacturing, a Configurable Object (CO)

is a manufacturing aggregate in a production system that can be config-

ured. This aggregate has different settings (i.e. Candidate Configurations)

to perform functionality (i.e. Variables, relationships and constraints). In-

terfaces are the different ways to connect the machine to the production

line. Labelled Transitions are the step-by-step instructions for changing

the machine’s settings or connections.

The “semantics” of a CO are like understanding what happens when a

recipe is followed and functionality executed. States are snapshots of the

machine in different configurations, labels are like tags on each step, and

transitions are the actual steps.

So, using a CO means starting with a machine configuration (i.e. a set

of states representing the behaviour of functionality as it executes) and

following the recipe’s steps (i.e. transitions) to execute functionality. This

flexibility allows adapting manufacturing systems for different tasks with-

out building entirely new machines. It’s like having a versatile recipe for

factory machines, each configuration giving a separate set of states.

6.3.4 Modules

Modules can be considered as dynamic entities that constitute interact-

ing elements. The modules can be described as an embodiment of three

concepts, namely; functionality, link, and allocation (see figure 6.6).

162

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

The functionality consists of the operation of the production system like

pick and place, leak test etc. These functionalities have certain variable

requirements. The link is used to establish the association between the

functionality-specific variable requirements and provide a link to the pro-

duction system. The allocation maps the data values to the variable and

is then updated on the production system through a link.

The variables, forming the configuration, present within the module influ-

ence the states during functionality execution. These variables in the mod-

ule, based on functionality, are dependent on variable rules. This means

that if these rules governing the variables in the module change then it

affects the variables. However, this change must be accompanied by some

constraints. This change results in modifying the module for different can-

didate configurations.

Applying the Concept: In the context of manufacturing, modules can

be considered as flexible building blocks that comprise three fundamental

elements: functionality, links, and allocation. Functionality defines what

a particular module does in a manufacturing process, such as a welding

station that requires specific variables like temperature and pressure. Links

connect and update different modules, so the welding station can get the

temperature data from another part of the production system. Allocation

is similar to equipping each module with the correct tools and information

it needs to perform its role effectively.

These modules are not static; they can adapt to changing production re-

quirements. For example, if a car manufacturer introduces a new type

of seat, the welding module’s requirements might change. However, these

changes must comply with predefined rules and constraints to maintain

163

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

the overall efficiency of the production system. Manufacturing modules

are adaptable components that follow guidelines for an efficient production

process.

Links and Allocation

The link and allocation are abstract representations that are used to assign

and update values to the module variables. Links are used to demonstrate

connections between the variables through instances of generalised link

types for the production system. A link type Lt is represented by a tuple

characterised by (N(Lt), P (Lt), Cn(Lt)), where,

• N(Lt) is the collection of possible links (i.e. interfaces) that a link

type can take, with the production system.

• P (Lt) is the primitives that actuate the link types (i.e.necessities for

establishing connection).

• Cn(Lt)) represents the constraint on link types (e.g. subnet, ports

etc.). They are a subset of the constraints imposed by functionality,

related to connection.

The link types are dependent on the production systems. These links are

related to variables through an allocation. These allocations A are mapping

of data values to the variables accessed by the link types through N(Lt)

satisfying P (Lt) under subjected Cn(Lt).

Applying the Concept: In manufacturing, links and allocation function

as the communication pathways and parameter provisions that facilitate

the operation of production modules. Think of a car assembly line where

164

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

different modules handle tasks like welding and painting. Links represent

how crucial information, like temperature requirements from the painting

module, is transmitted to others, ensuring each module knows what to

do. Allocation ensures that each module has the data to perform its task,

like equipping the welding module with the necessary settings. If the car

manufacturer decides to introduce a new paint colour, this would require

adjustments in links (i.e. as per the new colour requirement) and allocation

(i.e. to provide the right paint settings and other data).

However, these changes must complement predefined rules and constraints

to maintain efficient production.

Module Types

A module type M t is represented by a tuple ((V,A, L), Cn) where,

• The triple (V,A, L) are the components that capture the configura-

tion of a production system. These components correspond to a set

of variables V representing configuration C for functionality, an allo-

cation A that assigns data values to these variables, and the link L

that updates these variables on the physical system.

• The constraint Cn is basically of two types, one specific to variables

derived through functionality requirements and the other belonging

to functionality-specific constraints. The variable constraints are

given by the form (v, Cnv, iv, gv, fv) where v is the variable from the

variable set, Cnv is the rule on that variable, gv corresponds to the

variable guard, and fv corresponds to the data update function ap-

plied to that variable. The functionality constraints is given by the

form (vf , Cnvf , ivf , gvf , Avf) where vf is the variable from the variable

165

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

set derived from functionality, Cnvf is the rule on that variable from

functionality, gvf corresponds to the variable guard against function-

ality, and Avf corresponds to the allocation related constraints from

functionality, like one variable in a module is linked to another vari-

able in another module therefore needs to be configured in relation

to each other.

The structure of the module type may be dynamic but remains static during

functionality execution. The dynamic nature is due to an update in triple

(V,A, L) and a change in rules pertaining to it.

Applying the Concept: In manufacturing, a module type (M t) serves

as a blueprint for configuring a production process. It consists of three

key elements: variables, which represent the process’s settings or condi-

tions (e.g., conveyor belt speed); allocation, which specifies how settings

are assigned to these variables (like setting a pressure value among pos-

sible pressure values); and links, which facilitate information flow to and

between different systems (e.g., conveying data to physical production sys-

tems). These elements ensure a production system operates as intended.

Additionally, module types include constraints, such as variable rules (e.g.,

speed limits for safety) and functionality constraints (e.g., adjusting re-

source allocation based on machine speed). While module types can adapt

over time, they remain fixed during production. Essentially, module types

offer a dynamic framework for configuring and managing manufacturing

processes with rules and constraints defining their behaviour.

For example, in an automobile assembly line, consisting of modules of a

module type, variables could include parameters like welding machine tem-

perature, allocation might determine what variable values are assigned, and

166

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

links would ensure that information is communicated to the assembly line

module. Variable constraints could restrict machine temperature within

safe limits, and functionality constraints might dictate that if a welding

machine operates at a higher temperature, then an alarm can be raised.

Functionality and Variable Constraints

The variable and functionality constraints affect the module structure,

which individually are defined by forms (v, Cnv, iv, gv, fv) and (vf , Cnvf , ivf ,

gvf , Avf) respectively. In this section, the constraints Cn component for

both are elaborated.

More precisely, the constraints may be defined as:

Cn ::= CnV | CnA | CnL | Cni ∧ Cnj | ¬Cn (6.9)

Constraint CnV represents the rules applied to the parametric values of

variables, it can be a range or a fixed value. CnA represents the constraint

on allocation, and CnL is the constraint on linking with the production

system.

The production system constraints are evaluated based on the constraint

Cn and the module structural components V , A, and L. Variable con-

straints are evaluated by confirming that the proposed configuration CC

fulfils variable constraints.

Functionality Rules Functionality rules are used to govern the be-

haviour of the production system as the functionality is executed. These

rules impact the behaviour of the functionality, affecting the configura-

tion in terms of provided variables, the allocation of data values to these

167

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

variables and the link to the production system. They are represented as

updates to variables by module structure components V,A, L.

The assignments of guards and actions can be used to apply functionality

rules on a module to provide variables for self-configuration and the relevant

changes for links and allocations. The actions are as follows;

Action : Rf := Expressions (6.10)

The action is carried out in the form of expressions established in detail in

Chapter 8.

Variable Rules Variable rules define the rules concerning the variables

in a module structure. They deal with all interactions happening implic-

itly among variables for functionality execution. These involve limiting

a parameter value, restricting it to a range or imposing a dependency of

parameter value on others within the same module.

For actions, and expressions governing the variable rules are given by;

Action : Rv := Expressions (6.11)

The variable rules are derived from functionality and environment in a

production system. The restrictions on functionality by these rules are

imposed until they are satisfied. The expression governs the manner of

change or the kind of change possible. The expressions are established in

detail in Chapter 8.

168

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Applying the Concept: In the context of manufacturing, module de-

sign entails setting rules and constraints that govern the behaviour of a

production system. These rules impact the structure of modules, which

consist of variables representing various production parameters (e.g., ma-

chine speeds, temperature) and functionality-derived variables related to

specific production functions. Constraints come in different forms, such as

limiting variable values, regulating module allocations, and defining con-

nections with the production system. These constraints are applied to the

production system’s configuration to ensure that it complies with variable,

allocation, and link constraints.

Functionality rules play a crucial role in defining how the production system

behaves and how modules configure themselves. For instance, a functional-

ity rule might dictate that when a certain condition is met, a specific action

occurs, like creating a new variable, deleting an existing one, or updating

an allocation or link. Variable rules further define interactions within the

module by specifying how variables are accessed and manipulated. Over-

all, in a manufacturing scenario, these rules, and constraints ensure that

modules adapt and configure themselves appropriately during production

For example, in an automotive assembly line, functionality rules can adjust

the speed of robotic arms based on quality control feedback, while variable

rules can specify what limit these parameters can have.

6.3.5 Module Based Production System

In the proposed framework, the production system is defined in the form of

modules driven by functionalities. The configuration can be adapted based

on functionality requirements and subjected to functionality and variable

constraints. A production system may have multiple modules depending

169

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

on functionalities, and variables V of these functionalities will depend on

rules. Therefore, it can be argued that each module presents a functional-

ity, i.e. adds value to the production system, bringing with it the required

set of variables, hence the configuration. There are variable rules that con-

front the variable logic in the respective module, and functionality rules

that represent the rule logic for relationships and other constraints on vari-

ables. The rules can also be used to observe some kind of constraint among

different modules applied to functionality variables collectively.

In a production system, there can be multiple functionalities belonging

to multiple configurable objects (i.e. manufacturing assets) put together

to perform production system operations. Considering that a production

system consists of two modules for two functionalities, the module-based

system application can be best illustrated in figure 6.8. The rule applied

to both modules shows a kind of coordination between variables in a con-

figuration. This section introduces this kind of coordination in detail and

elaborates on the operational semantics of the module-based production

system.

The production system consists of a finite set of modules, consisting of

knowledge defined from previous sections and module instances m of type

M t.

Rules Constraints

The rule constraint that deals with module-based production system appli-

cations is similar to individual variable and functionality rule constraints

discussed for single modules in previous sections. The tuple is defined in

the form of (V,Cn, I,G,R). Here, the constraints Cn acting on the system

are defined by;

170

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Figure 6.8: An illustration of a Module-based system having two modules
hosting functionalities M1 and M2. Functionality rules can be shared be-
tween modules, meaning they can govern the functionality of both modules
and also define a dependency between them.

Cn ::= CnV | CnA | CnL | Cni ∧ Cnj | ¬Cn (6.12)

In the above definition, the constraint can be on the specific configura-

tion value CnV , or a constraint on allocation on the production system

CnA, or a constraint on link with production system CnL. There can be

a constraint applied through the compositional logical operation of rule

constraints along with negated constraints.

These constraints are applied to module configurations on its context pa-

rameters, which can be represented as (M,m) where M is a set of module

instances and the module instance m given by m = (m → (V,A, L) | m ∈

M).

171

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

The module instance m belonging to set M models constraints based on

components V,A, L. The constraints on the module are evaluated by con-

firming that the proposed configuration C belonging to module instance m

fulfils all the constraints on V,A, L compositional and negated constraints.

For a module-based system, the guards (using constraints), and actions can

be represented as:

guard : G := GI | GV | GF (6.13)

Action : R := Expression

Simply, the guard in the case of a module-based production system may

be a guard on variables V , on the interface I or on the functionality F .

The action is carried out in the form of expressions established in detail in

Chapter 8.

Figure 6.9: An example of a Module-based system having two modules M1

and M2 hosting leak test functionality. Both modules can perform leak
test functionality subjected to rules (R). Variable rules (Rv) are governing
individual module variables and functionality rules (Rf) govern the func-
tionality behaviour of both modules.

172

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Operational Semantics

A module-based production system MPS (figure 6.9)is represented by:

MPS ∈ {CC ×M t ×Rv} ×Rf (6.14)

MPS ∈ {M} ×Rf (6.15)

This definition consists of a set of candidate configurations CC, a set of

module types M t, and a set of variable and functionality rules governing

the modules R.

A module-based production system executes through functionality opera-

tion and requires a change in configuration within a module as new modules

are introduced in the system or a requirement is presented. The operational

semantics of a module-based production system are presented as a labelled

transition system [MPS] = (CC,
∑

,→). Here:

• the set CC consists of candidate configuration.

• the set of labels
∑

corresponds to change on configuration, under

functionality operations actions or effect of variable and functionality

rules.

• the set of transitions →=−→
Rv

∪ −→
Rf

, where transitions are defined

by rules in a module and rules between modules in a module based

system.

The rules and concepts are used to capture operational semantics-related

information in the coming chapter and also govern the expression-based

execution of the process.

173

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Applying the Concept: In this framework, consider a manufacturing

facility that produces gas cylinders and one of its crucial processes is leak

testing. The production system consists of distinct modules, each resem-

bling a specialized production unit. In this case, the modules represent

various stages in the leak testing process, such as initial inspection, pres-

sure testing, and final inspection. All these modules are incorporated into

a machine.

These modules are driven by specific functionalities: the initial inspection

module checks for any visible defects, the pressure testing module performs

the leak test, and the final inspection module ensures the quality of the

tested cylinders. Each module has its set of variables, such as testing

pressure levels, testing duration, and inspection criteria, which are vital for

configuring the leak testing process.

Variable rules set constraints on these variables, ensuring that testing pa-

rameters stay within safe and efficient limits. Functionality rules dictate

the system’s behaviour; for example, if the pressure testing module de-

tects an abnormality in a cylinder, a functionality rule might trigger an

immediate rejection of the cylinder. This coordination ensures that the

leak testing process remains effective and safe. The system’s operational

semantics involve dynamic transitions between configurations, allowing the

plant to adapt in real-time. If the production demand increases, a function-

ality rule could add a new pressure testing module, maintaining flexibility

and efficiency in response to production needs.

174

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

6.3.6 Module Based System Application

The proposed framework facilitates the self-configuration deployment in

production systems through a module-based approach. In the module-

based system, each module representing a configurable object consists of

components that interact to achieve self-configuration through interfaces

(i.e. each variable has an interface) and data points (i.e. representing

values in configuration space). Each module, representing a configurable

object, has variables that need to be configured under certain constraints

known as variable and functionality rules.

There can be multimodule interactions between configurable objects, as the

rules can be shared between modules. If the rule permits, the variable (i.e.

in their values) can be the same in modules belonging to different config-

urable objects. It is assumed that in this approach the self-configuration

only executes interactions in the module during the starting of an operation

but remains static during the operation itself. Also, the variables, desired

by functionality, to be configured are set at design time and do not change

at production system configuration.

The question arises of how the static configuration can be used to have

some kind of dynamic configuration in a machine. The functionality is

linked with a module, representing a configurable object, therefore making

it easier to move toward dynamic configuration as the configurable object is

changed physically in a production system. Since functionality introduces

variables that need to be configured, therefore a new variable is introduced

every time a module is changed. The only restriction here is that the

system remains static during functionality execution, however, the system

can again be configured before starting another functionality execution.

175

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Configurable Object-Based System

In this framework, the production system is composed of modules that are

governed by rules for self-configuration. The interaction between variables

between different modules may be permitted subject to constraint rules,

i.e. functionality rules. An interaction between variables happens when

such a rule is enabled and an interface exists between two variables. So it

can be said that if the interaction is enabled between two or more variables

present in different modules through rule constraints, then completion of

the interaction consists of the variable taking a value somewhat related

to the manner in which constraints bind the variables. A more formal

definition is as follows;

A production system of configurable objects Pr(CO) is a tuple given by

(CO,Pr) where,

• CO = {co1,con} is a set of finite configurable objects in a produc-

tion system, and

• Pr can be best understood as an interaction between the configurable

objects to execute functionality for production operation. Interaction

pr is a triple (Ipr, Gpr, Fpr) where

– Gpr is a guard on variables in configurable objects pertaining to

interaction pr through the provided interface Ipr, and

– Fpr is an update function on the variable, through which the

change happens on the variable, and finally

– Ipr is the interface for interaction pr through which configurable

object interacts.

The semantics of a production system of configurable objects based on a

176

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

module based system can be given as (C,
∑

,→).

By controlling the guard and update function, the manner of interaction

between variables between configurable objects can be controlled. The new

values acquired by this for each configurable object become the configura-

tion of the configurable object for the production operation.

The semantics provide the implementation basis for the proposed frame-

work, coordinating interaction between modules representing configurable

objects. The change to the configuration of the configurable object hap-

pens in terms of its variables under constraints that remain static during

production operation. Therefore, for the configurable object-based system,

the interaction happens in steps:

1. Each module represents functionality, a production system can have

several of these modules. The register information about the module

must contain information about its variables, the constraints (e.g.

relationship, KPIs etc.) and the information on how the variables

between configurable objects are linked. These are defined in variable

and functionality constraints.

2. At the start of production operation, the variables are configured as

per the allocation and link components (module-based systems).

3. The interaction between configurable objects happens through the

transition rule.

4. The functionality of the production system is carried out.

An illustrative example is presented in figure 6.10 representing the update

of variables from one configuration to another in a Configurable Object

Based System.

177

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

Figure 6.10: An illustrative example of static configuration through the
framework in a Configurable Object Based System. The Gpr and Fpr act
on variables to update them through interface Ipr.

Towards Dynamic Configuration

This framework has been introduced to provide a solution to address dy-

namic behaviour in the production system. In the module-based produc-

tion system, the dynamic behaviour is due to changes in functionality as

modules are added or removed. A production system that implements

a module-based system consists of multiple modules, each responsible for

a functionality, composed of variables forming a configuration. In that

sense, a module based system implementation connects granularity with

modularity represented in the form of modules providing multiple func-

tionalities and interfaces. This provides a direction towards adaptation of

a self-configuring production system where each module is responsible for

its own functionality accompanying its own set of variables, relationships,

and constraints.

For dynamic self-configuration, the framework introduces the variable and

functionality constraints that address the changing configuration variable

requirements. A constraint dictates on how the variables interact with

themselves (i.e. value/range) and among each other (i.e. relationship). The

178

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

framework elaborates on the components necessary to make self-configuration

possible in production systems. These constraints act on configuration in-

stances from the candidate configuration space.

The framework proposes a structured set of interactions as a module with

its components. The components can be shared between different modules

to account for changing needs in production systems. A production system

may have multiple modules that account for different functionalities in the

production system. These functionalities will bring a set of variables that

are subjected to certain constraints known as variable rules and function-

ality rules. These variables can then be allocated a set of values and linked

to the production system to execute the functionality.

The allocation allows interaction with external systems like machine learn-

ing models so that the system learns from historical data and take decisions

(gets values) from insights. The module-based system implementation in

the system keeps the whole structure in the production system modular.

This modular nature allows that the proposed framework can be applied to

achieve dynamic configuration. In this framework, the allocation compo-

nent makes the allocation of values to variables possible. These variables

in our proposed framework can be interacted to through an interface, for

allocation and linking.

The proposed framework contains instances of modules of a module type.

Therefore, the module-based system is quite generic, targeting various

functionality-based dynamic configurations in production systems. This

framework encompasses the essence of self-configuration, as it allows not

only dynamic change between variables (i.e. relationships) pertaining to

constraints but also self-configuration change as new variables are intro-

duced as part of upgraded functionality. Hence, by this framework, expres-

179

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

siveness is provided to all degrees of self-configuration.

A Manufacturing Example

Let’s apply the representation to a practical manufacturing application

example involving a single workstation module within a self-configuring

modular manufacturing system.

Figure 6.11: Module-based system application on a production system used
to leak test products developed at an SME (TQC Ltd.). The configuration
in terms of variables, relationships, and constraints is identified. The vari-
able rules and functionality rules are presented.

Scenario In this example, a single workstation, developed at an SME

(TQC Ltd.), is used to demonstrate the application of a module-based

system. The test system as seen in figure 6.11 is used to test various

products for an automobile customer. For the “leak test” functionality, the

variables are identified. The values for the functionality and the product

are allocated through relationships and updated to the production system

and its inherent assets through links.

The MALT which is a leak test equipment inside the system is only capable

of, in this machine, a test pressure of a maximum of 60kPa. There are

180

6.3. MODULE DRIVEN CONFIGURATION SYSTEM
MODEL

communication requirements for the product under test. The machine is

capable of attempting to communicate with the product up to 5 times. The

functionality rule is on the number of test valves to operate on at a single

time. The test valves on the product need to be opened up in combinations

to perform a leak test. Although the machine is capable of actuating more

than 6 valves at a time, it would damage the product and therefore such a

functionality rule is imposed.

Key Insights from the Example In the manufacturing example, the

pressure limit of the testing equipment (60kPa) is a constraint that must be

respected during configuration. Similarly, the number of valves that can be

opened simultaneously is also a constraint. These limitations influence the

possible configurations of the workstation to ensure its proper operation

(i.e. leak testing).

The manufacturing example reinforces the concept of dynamic configura-

tion. Since each module (MALT unit) represents a specific functionality

like leak testing, adding or removing modules alters the capabilities of the

system as a whole. In this case, adding more MALT modules will enhance

the system’s capability to test more complex volumes, as both MALTs can

work together to test a complex product in a shorter time. This change

necessitates updating the configuration to adapt to the new functionality

requirements. Constraints play a role in ensuring the system’s configura-

tion leads to valid outcomes as per requirements.

The insights from the example can be instated as:

• Constraints: The manufacturing example highlights the impor-

tance of clearly defined constraints, both variable (e.g., pressure limit

of the testing equipment) and functionality (e.g., the maximum num-

181

6.4. CONCLUSION

ber of valves to operate simultaneously) constraints.

• Relationships: The example shows how specific functionality (i.e.

leak testing) dictates the required variables (e.g. test pressure, valve

combinations).

• Complexity: Even a seemingly simple scenario like a single work-

station leak testing demonstrates the complexity of configuration set-

ting and the rules that govern it.

6.4 Conclusion

Module-based systems, presented in this research, represent a structured

way to design intricate and adaptable systems. In this paradigm, systems

are divided into smaller modules, each with its own set of rules, function-

ality, and variables. These modules can be customized, connected, and

tweaked to meet specific needs, making them highly agile in the face of

change.

This approach simplifies system design, upkeep, and expansion. Modules

can be built, tested, and improved separately, which not only saves time

but also cuts down on costs. Additionally, their modular nature makes it

easy to incorporate third-party components, fostering innovation.

The power to configure modules dynamically and set rules for their interac-

tions empowers module-based systems to be self-configuring, self-optimizing,

and self-repairing. They can adapt to varying workloads, component glitches,

or shifting goals, ensuring their dependability and efficiency. Module-based

system will undergo testing and validation in subsequent chapters.

However, successfully implementing module-based systems requires care-

182

6.4. CONCLUSION

ful planning, taking into account module types, configuration parameters,

variables, rules, and interconnections. The design process should align with

the unique needs of the application. Moreover, ensuring smooth commu-

nication and synchronisation between modules is vital for achieving the

desired system behaviour. A way of capturing configuration information in

modules is represented in the next chapter.

183

Chapter 7

Standard Configuration Model

for Production Systems in

Manufacturing

184

7.1. INTRODUCTION

Contents

7.1 Introduction . 185

7.2 Concept of Configuration in Production Systems . . . 186

7.3 Configuration Model 186

7.3.1 Formulation of Configuration 190

7.3.2 Configuration Operation and Instance 193

7.4 Impact on Configuration 197

7.4.1 Product and Functionality 197

7.4.2 Capability . 199

7.4.3 Service . 200

7.5 Towards Capturing Configuration for Production Sys-

tems . 201

7.1 Introduction

The work is divided into sections; Section 2 discusses applying the driven

Configuration approach, established in the previous chapter, to the config-

uration of production systems. Conventional means of configuring produc-

tion systems are explained in detail in the literature review chapter. Using

the module-based approach, configuration in production systems is cap-

tured through a proposed configuration model. The configuration model

is discussed in Section 3 with the impacts on the configuration being ex-

plored in Section 4. Section 5 deals with the application of the configuration

model. This chapter is aimed at establishing theoretical aspects regarding

configuration that may be manipulated to achieve self-configuration.

185

7.2. CONCEPT OF CONFIGURATION IN PRODUCTION SYSTEMS

7.2 Concept of Configuration in Production

Systems

Applying the Module Driven Configuration approach, a module is estab-

lished where the configuration brings about functionality. This configura-

tion needs to be modelled for the production system. To capture informa-

tion on the configuration, per requirements of the module-based approach,

is referred to as “Configuration Modelling”. Figure 7.1 illustrates the con-

figuration model for production control in production systems derived from

elements of module-driven configuration. This gives insight into the vari-

ables on which the configuration relies, the possible rules and constraints.

The “Model Mapping” is the allocation and linking of the variables to

the manufacturing asset (i.e. configurable object). The Model Mapping

also encapsulates the variable and functionality rules that map the vari-

ables to product, functionality, capability, and services. The “Production

Control” is the utilisation of the configuration to execute functionality. It

may be carried out through PLC, agent system or any other controller.

7.3 Configuration Model

The production system is composed of entities or components that work

together, executing functionality according to a directive (PLC event trig-

ger etc.) to achieve a goal. These entities or components can be fixed, i.e.,

used as-is basis, or configured to meet the requirement of the process and

product. These components are called Configurable Objects. Figure 7.2

establishes the scope of the configuration modelling in production systems

consisting of configurable objects. It is assumed that configurable objects

186

7.3. CONFIGURATION MODEL

Figure 7.1: Envisioning the standard configuration model for production
control in Production System. Three layers model is established (1) Con-
figuration modelling layer that capture the information, (2) Mapping layer
that maps the model with other submodels ; product, functionality, capa-
bility and services, (3) Production control layer that executes functionality
in the production system with the configuration.

Figure 7.2: Establishing the scope of the configuration modelling in pro-
duction systems. The production system consists of configurable objects
(physical or cyber objects), and there exists a mapping of variables to val-
ues in those configurable objects subjected to constraints.

always introduce variables that need to be configured, dependent on func-

tionality. All of these variables can be configured but may be restricted in

a manner through variable and functionality rules.

A production system can have multiple configurable objects (i.e. in the

form of modules) operating together, collectively forming production sys-

187

7.3. CONFIGURATION MODEL

tem functionality. These configurable objects are accompanied by a map-

ping of variables to values, i.e. “Allocation”. These variables represent

the aspects of the configurable objects that can be changed, i.e., can take

suitable values.

The information model conceptualisation of configuration in a module is a

representation of the variables that make up configuration, their relation-

ships, constraints, operations, and expressions governing those and associ-

ated rules. The information model is used to capture data on configuration

in the production system and give meaning to individual components. The

general representation for configuration in the production system must pro-

vide both horizontal and vertical integration.

The configuration consists of three main ingredients;

1. A production system consists of configurable objects representing

manufacturing assets, where each asset introduces a functionality. A

manufacturing aggregate that has the capability to be configured in

a production system is known as a Configurable Object represented

by a module.

2. Relationship that exists between these configurable objects, repre-

sented by functionality rules.

3. Constraint or group of constraints acting on the configurable objects

that make up the production system, represented by variable rules.

The manufacturing aggregate that is able to adapt (i.e. configured) must

be defined as an independent entity, i.e. modular, with a unique identifier.

These objects derive an abstract representation for the complexity of the

whole production system and define a sense of granularity. The relation-

ships capture the manner in which these configurable objects are linked

188

7.3. CONFIGURATION MODEL

to each other. Constraints encode the structural and functional rules that

govern the configurable objects, their relationships, and the execution of

functionality in a production system. The relationships, rules, and con-

straints are captured through variable and functional rules (Chapter 6).

Configurable Objects: A group of components or entities come to-

gether to achieve a purpose of production. These groups of components

are referred to as configurable objects, bringing about functionality. These

components may be able to adapt as per product and process requirements

through rules, therefore being Configurable Objects (G). The configuration

settings, for a Configurable Object, on the production system are depen-

dent on the features of the product, the characteristic properties of the

environment where the equipment is kept, the connected processes, and

current business priorities. The configuration model for the configurable

object contains a description of all information necessary to define the ob-

ject, that is the logical and structural representation of the data that is

necessary to define each component.

Relationship: In production systems, relationships represent the link-

ages between configurable objects. This is captured in the functionality

rules. For e.g., a relationship exists between a test equipment and the

fixture.

Constraint: These are the limitations imposed on the configurable ob-

jects and their associated relationships. These can be product limitations,

process criteria or business objective. These directly affect the performance

of the production system. Constraints on the variables are provided by

variable rules.

189

7.3. CONFIGURATION MODEL

Figure 7.3: The UML representation of Configuration in Production sys-
tem. Functionality presents configuration requirements, depending on ca-
pability, product and service requirements. Variable and Functionality
rules impact the configuration. (An explanation of the arrows in the UML
diagram can be found in figure 7.4)

The following sections elaborate on the model of elements in figure 7.3.

The purpose is to understand configuration in production systems and use

that to automate the configuration process.

7.3.1 Formulation of Configuration

Configuration, in a production system, is composed of configurable objects,

represented in the form of modules that include functionality-dependent

variables, the relationship between these variables and their associated con-

190

7.3. CONFIGURATION MODEL

Figure 7.4: The arrows in UML represent relationships between classes.
An explanation of UML arrows in the research is illustrated.

straints these are subjected to. The set of Configurable Objects (CO) is

given as;

CO = {CO1, CO2....COn} (7.1)

The configurable object can be defined based on variables.

V COi
= {V 1, V 2,, V k} (7.2)

Relations exists in the form of ordered pairs, of the form (COi,COj) where

for COj is only possible if COi is present. This presents a condition of

dependency between configurable objects, to be more elaborative in their

variables. Therefore, for the COi and COj case, the relationship between

variables in configurable objects can be written as (VCOi
,VCOj

). This kind

of dependency is mentioned in the functionality rules of the module. These

ordered pairs are not only limited to unitary dependence, which means

there can be multiple constitutive configurable object dependencies. This

can be represented by (VCOi
.VCOj1

, VCOj2
). The relationship between con-

figurable objects can be written as ;

191

7.3. CONFIGURATION MODEL

RelVCO
= (VCOi

, VCOj
) (7.3)

Constraints are defined by the user to the configuration for the function-

ality. Constraints may be influenced by process, product, or objective. In

a configuration in the production system, the constraints act on variables

and their relationship, limiting them in values. The capability of the sys-

tem can also impact the constraints, which in turn limit the variables and

their relationships.

Configuration (C) in a production system is a combination of the config-

urable objects, their relationships, and the constraints.

C ∈ CO ×RelCO × Constraint (7.4)

Since configurable objects consist of variables that are dependent on func-

tionality having relationships and constraints, then the expression can be

expanded;

C ∈ PV CO ×RelVCO
× ConstraintVCO

(7.5)

Constraints are driven by expressions and can be presented in variable and

functionality rules. Configuration has a dynamic nature because a change

in any product, process, capability, or service may cause an impact on

configuration (i.e. variables, relationships, and constraints).

192

7.3. CONFIGURATION MODEL

7.3.2 Configuration Operation and Instance

Operations are those representative activities that are used to describe the

configuration, i.e. setting up the configuration for the functionality and

all aspects that deal with executing a functionality with that configuration

in a production system. Since configuration in production systems is be-

ing modelled, this section deals with operation in relation to configuration

change, called Configuration Operation.

Such Operations can be divided into Abstract and Physical Operations. At

the CO level for configuration change, the operations that do not involve

physical resources like cloud service-matching and part change etc. areAb-

stract Operations. Physical Operations are related to the behaviour

of the CO like pressure setting, stabilisation setting etc.

In a leak test system for testing leakages in cylinder volumes, the operation

involved in setting up test parameters like test pressure and measure time

are Physical Operations. The leak test system will also be configured to

store the test data and the results on a local server. Such operations that

do not impact the behaviour of CO (leak test system) and will be involved

in enabling this communication for the system are Abstract Operations.

OPCO = OPAbs | OPPhy (7.6)

The Physical Operations can be further classified into internal and external

physical operations based on their roles. Internal physical operations

are related to the preparation action for physical execution (i.e. functional-

ity), and external physical operations are those operations constituting

193

7.3. CONFIGURATION MODEL

actions that impact on state (i.e. execute the functionality).

OPPhy = OPPhyI | OPPhyE (7.7)

Figure 7.5 gives a brief overview of the configuration operation and its

types. A suitable description of these operations and details is presented

in the following sections. This is used in the Module Driven Configuration

(see Chapter 6) approach to capture information for variable and function-

ality rules. A mechanism for formulating expressions is defined as a means

of combining them for developing complex expressions. While utilising the

established terminologies, the reserved keyword “abstract” is used to de-

scribe resource-independent configuration operations. Whereas, “physical”

operations are for resource-dependent configuration operations.

Figure 7.5: The hierarchy of configuration operation.The dotted lines repre-
sent the instances which carry out the specific type of operation. Abstract
instances carry out those abstract operations governed by a production
plan, while internal physical and external physical operation are carried
out by the production system instance. For a successful configuration oper-
ation abstract operation, internal physical operation and external physical
operation should have matching capabilities and requirements.

194

7.3. CONFIGURATION MODEL

Configuration Instance

As established in the previous sections, configuration modelling is based on

variables of the configurable objects in a production system, their relation-

ships, and the constraints that impact them. Configuration in production

systems can be best understood as;

Configuration in production systems is a representation of a fixed encapsu-

lation of configurable objects, and by this context available variables, that

the system could take depending on relationships and constraints.

Modelling each individual variable that is configurable, gives the configu-

ration for the production system. In order to satisfy the relationship and

constraint requirements for the configuration, the following conditions must

be met:

1. Capability is present in configurable object (i.e. manufacturing asset)

to realise the configuration. For e.g. capability to operate on a certain

pressure value.

2. Realisation must be present in the configurable object. It means that

the production system should be context-aware, and able to realise a

change in variables as instructed.

3. A configuration could be formed and maintained. Once the variables

are changed, they must be updated on the production system. This

sets the requirement for allocation and linkage in the system.

Configuration modelling is only possible for those variables that possess

the capability to be changed. Along with this, the configurable object

must possess the ability to realise changes, i.e. if a certain parametric

195

7.3. CONFIGURATION MODEL

value is changed in the settings, the configurable object must be able to

adapt as per that value.

A configurable object must be synchronous with the changes happening

in itself. Effectively, the configurable object must be able to detect and

maintain changes. For instance, an additional component like a fixture is

substituted on the production system, so the configurable object must be

able to identify a combination with the fixture and maintain it. In the same

aspect, the configurable object must be able to realise the arrangement

with other such configurable objects and link up with them to execute a

functionality.

A configuration operation involves multiple steps to achieve the desired

configuration for executing functionality. The abstract, internal physical

and external physical operations define the input to the configurable object,

any aspect added/removed, and the output from the configurable object.

Through this, the configuration operation defines the associated activities

that deal with changes in configuration.

Transitioning to Configuration

From the above, the configuration operation guides through configuring a

system. Effective distributed control in the production system (Mcfarlane

and Giannikas (2013)) is possible when the configuration operations are

executed for the configuration change in a defined manner.

Let’s assume that Psin are the activities involved with input, Padd repre-

sents any add-on to the configuration operation and Psout gives the output

activities. For functionality to be executed on a production system, the

variables must be configured. This is called transition to a configuration.

196

7.4. IMPACT ON CONFIGURATION

(Psin, Padd, Psout) → V (7.8)

The above equation represents a mapping of variables to values V in a

configurable object. This represents the relationship for the variable as per

the definition of configuration in production systems. It can be a single

value or a range of values specified.

7.4 Impact on Configuration

The configuration for any configurable object holds under a set of condi-

tions/constraints. These constraints impact the configuration of the object,

resulting in a change in configuration settings. Product, functionality, ca-

pability, and service are the main influencers that impact configuration.

These aspects are related and discussed in detail in this section, with a focus

on their relative impact on configuration. Abstraction is the condition

in which they impact and a generalised representation is developed and

presented.

7.4.1 Product and Functionality

In terms of product and functionality in a production system, certain re-

quirements must be fulfilled, as proposed in this research , so that they can

be linked up with the configuration. These involve the complete informa-

tion required to represent the product, including its bill of materials, its

sub-assemblies and parts. These requirements for a production system are

stated as follows:

197

7.4. IMPACT ON CONFIGURATION

1. The production system should contain a specified sequence of func-

tionalities that need to be performed from the start to the end of the

cycle. For e.g. the whole test sequence for a product.

2. Requirement for each functionality must be defined for each product.

The dependency from the production system on product configura-

tion must be accurately laid out.

3. The module that performs functionality in a production system must

contain information about identification. For e.g., a product must

be tested at a certain pressure than it can only be processed on the

module that can offer functionality at that pressure.

4. The production system must have the ability to integrate and act on

some objective during the functionality sequence. This is required to

distinguish among modules like a test station module but be different

from a loading module in identification.

Similarly, the requirements for the functionality can be elaborated as:

1. Machine information should be consistent (i.e. remains static)) for

the duration of execution of the functionality.

2. Contextual awareness of the functionality should be present in a pro-

duction system. The system has the capability to infer meaning from

context.

3. Functionality should be consistent with production system require-

ments.

Functionality F expressions for product guides and influence the configu-

198

7.4. IMPACT ON CONFIGURATION

ration. They can lead towards different configurations through transition.

Ci

EF−−→ Cj (7.9)

This representation of functionality captures the transition of a configura-

tion from one to another, guided by an expression. This description can be

used to relate functionality to configuration and criteria.

F ∈ PFC (7.10)

Figure 7.6 provides a simple representation of the product.

Figure 7.6: The product contains an ID, specification, and configuration.
The attributes can possess values for a property. For classifying the prod-
uct, categorisation, and specification description may be used.

7.4.2 Capability

Capability is best understood as the skill of the equipment to execute func-

tionality. Capability is a generalised representation of the tools, resources,

199

7.4. IMPACT ON CONFIGURATION

and skills required to execute a certain functionality. Capability is guided

by product specifications and machine requirements. Skill is dynamic for

a resource in a production system, and is dependent on the state of the

system, dependency on product and functionality, and transition from one

product state to another. Figure 7.7 gives a more detailed view of the skill

and capability in the production system. So, in this aspect, a resource

having a capability may not have the skills to execute functionality un-

der certain conditions. E.g., the capability may be present in the system

to pressure test a product but not the skill to execute it as the product

features are not fulfilling the fixture requirement currently in which the

product may be clamped .

Figure 7.7: A simple capability and skill representation . The capabil-
ity is based on skill and drives its properties from configuration. Skill
is a more descriptive concept containing unique identification, description
and assigned controller. Functionality influences the capability directly as
functionality generates certain dependencies that must be fulfilled for it to
execute.

7.4.3 Service

Services can be integrated with the configuration model as they directly

impact configuration. However, for this to be possible, it is necessary that

these services can also be configured. These services are mainly linked

200

7.5. TOWARDS CAPTURING CONFIGURATION FOR
PRODUCTION SYSTEMS

to product and functionality requirements. Another aspect of this is the

requirement of configuration to be dynamic, as various services may be

required during functionality execution. Figure 7.8 shows a brief overview

of the service and its link with product and functionality.

Figure 7.8: A simple service representation. The service requirement is
dependent on configuration. Service matching is necessary to determine
the compatibility of the service with requirements. Each offered service
has an Id, Skill (i.e. encapsulating capability), and a service description.

7.5 Towards Capturing Configuration for Pro-

duction Systems

In summary, this chapter explores the concept of configuration in produc-

tion systems, breaks it down to a certain level of granularity, and discusses

the representation for capturing configuration in production systems. Es-

tablished means of configuration in manufacturing are explored and the

need for a standard model for it is established.

Configuration in a production system consists of configurable objects, their

relationships and their associated constraints (see section 7.3). Configura-

tion operations are defined as activities used to describe configurations and

aspects that deal with changes in configuration within configurable objects

201

7.5. TOWARDS CAPTURING CONFIGURATION FOR
PRODUCTION SYSTEMS

(see section 7.3.2). The abstract and physical configuration operation con-

cept is presented. Configuration transitions are defined in a configurable

object in the production system.

The impact of product, functionality, capability, skill, and service on the

configuration of a production system in manufacturing is also discussed.

This forms the building block for capturing configuration for any produc-

tion system for the Module Driven Configuration Model. A representation

of configuration in production systems with details of individual compo-

nents is illustrated in figure 7.9.

Figure 7.9: The UML representation of Configuration in Production sys-
tem. UML representation of individual components is detailed, which is
established in this chapter.

202

Chapter 8

Self-configuring Production

System: An Adaptation

Strategy

203

Contents

8.1 Introduction . 205

8.2 Overview of the Adaptation Strategy 206

8.2.1 Implementation Requirements 209

8.2.2 Structure of Adaptation Strategy 212

8.3 Capturing Configuration Module Information 215

8.4 Deployment of Engine for Capturing Information . . . 216

8.4.1 Connecting Module-Driven Configuration with

the CAEX Engine 216

8.4.2 Linking to Asset Administration Shells (AAS) . 217

8.4.3 Dynamic Updating of Information 218

8.4.4 Facilitating Communication with Lower Layers 218

8.4.5 Understanding Asset Administration Shells (AAS)219

8.5 State Chart to State Machine for Functionality Rep-

resentation . 220

8.5.1 State Charts to State Machine for Self-configuration220

8.5.2 Achieving Self-Configuration for Functionality

Stat Machines defined as State Machine Be-

haviours . 221

8.5.3 Configuring State-Specific Actions: 222

8.5.4 Tracking State Changes: 222

8.6 Machine Learning for Self-Configuration 223

8.6.1 Enhancing Machine Learning in the Produc-

tion System for Production Systems: 223

8.6.2 Workflows for Streamlined Machine Learning

Integration: . 223

204

8.1. INTRODUCTION

8.6.3 Proposed Workflow Overview: 224

8.6.4 Predicting Configuration Values: 224

8.7 Multi-Agent System Integration 227

8.7.1 Realisation of Self-configuration in Production

Systems . 228

8.7.2 Using Expressions for Self-Configuration in Pro-

duction System 231

8.7.3 Industrial Application for Agents 234

8.8 Real Time Control . 235

8.8.1 Enhancing Adaptation Strategy with Real-Time

Control and Hardware Abstraction: 235

8.8.2 Hardware Abstraction for Self-Configuration: . 236

8.8.3 Real-Time Control and Hardware Abstraction

Interaction: . 236

8.8.4 Service Actors and Their Role: 237

8.9 Simulation . 238

8.9.1 Simulation for Self-Configuration Module: . . . 238

8.9.2 Detailed Simulation Process: 239

8.9.3 Intercommunication within the Self-Configuration

Module: . 239

8.10 Conclusion . 240

8.1 Introduction

It is assumed that a production system consists of multiple configurable

objects (Chapter 6), in this sense a way of representing such information

205

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

for all of these objects is needed using the information model (chapter7)

discussed. As this information is captured, an approach to achieve the best

configuration under conditions (e.g. KPIs, priority) using machine learning

pipelines is presented in this chapter.

The structure and principles of the Adaptation Strategy are laid out. The

information-capturing mechanism in the strategy is explained with a link

to the configuration module defined. Functionality representation by state

machine through state chart is elaborated. Machine Learning for self-

configuration is generalised. Achieving self-configuration through agent-

based system integration is demonstrated. Real-time control and simula-

tion of the production system through the strategy are expanded.

Section 2 covers the adaptation strategy. Section 3 and Section 4 intro-

duce the engine for capturing information and discuss the deployment of

the engine. Section 5 elaborates on functionality representation. Section

6 expands on Machine Learning for Self-Configuration. Section 7 deals

with enabling self-configuration through multi-agent system integration.

Sections 8 and 9 expand on real-time control and simulation integration.

8.2 Overview of the Adaptation Strategy

In modern manufacturing, the ability to adapt rapidly to changing pro-

duction needs and conditions is important to meet business objectives.

Achieving such adaptability, often termed “self-configuration”, requires a

systematic strategy. This section introduces a self-configuration adaptation

strategy for production systems.

206

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

The Need for a Self-Configuration Strategy A production system

is a complex web of interconnected components, each serving a specific

purpose. To achieve a high level of adaptability, it is essential to have a self-

configuration strategy. It provides a structured approach, using previously

established module and module-driven configuration concepts.

The purpose of this strategy is to achieve complete control over the pro-

duction process. In other words, it allows for a high level of control at

different granularity levels in the configuration of production systems. This

means that each individual component can be configured independently to

optimize the overall system’s performance. For instance, changes in the

temperature can affect how the camera is calibrated.

Three Layers of Adaptation Strategy The self-configuration adap-

tation strategy, in this research, consists of three fundamental layers:

• Production System Coordination Layer: The layer that cap-

tures the module functionality and can be tailored to capture different

functionalities of different modules.

• Production System Runtime: This layer provides the core fea-

tures derived from module-based system and configuration modelling,

as well as maintaining a runtime during deployment (Chapter 6).

• Production System Drivers and Control: The layer where the

functionality is executed as per changed configuration.

Relating Adaptation Strategy to Level Based Classification A

mapping of the level-based classification of the production system is car-

ried out and shown in this figure 8.1. It presents the components of the

207

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

Figure 8.1: Mapping Level Based Classification for Self-Configuration to
Production system components. The classification features are mapped to
the system to provide the focus for manufacturers for improvement.

self-configuration framework and their interactions. The area where each

feature of the level-based classification must be targeted to achieve com-

plete self-configuration is presented.

The controller of the production system hosts most of these features such

as self-capability, data collection, data storage, and control. The controller

is the gateway to the production system, therefore, for self-configuration,

most of the features should target this component. For self-configuration,

a means of converting and transmitting the collected data is needed, so

the feature of data conversion and data transmission is conceptualised to

work between the controller and data pipeline. Operational identification

for real-time operational awareness and direction targets the data pipeline

and controller component of the framework. The components of the data

pipeline are detailed in table 8.1.

208

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

Going into detail of production system, by definition established before, will

consist of manufacturing assets and services that coordinate to produce

products. At the system level, the features of data transmission, data

collection and control need to be present to ensure functionality with the

controller of the production system.

Table 8.1: Data Pipeline Component Description for Production System

Component Description

Runtime Check Check the manufacturing system against the re-
lationship, constraint, requirements (product and
process), and capability conditions. This gives ad-
ditional depth to operational execution. It pro-
vides a check on the current state of the produc-
tion system.

Objective Defi-
nition

A target corresponding to cost, time or any per-
formance parameter in terms of guiding parameter
is set for the product being produced.

System Adapta-
tion

The system is configured as per the target guid-
ing parameter by coordinating with the prediction
serving component.

Operational and
Conditional Ex-
pression

Define the operation skill requirements and the
manner in which these skills need to be executed.
More detail on this and the approach to formulate
is presented in work by Rehman et al. (2021a).

Prediction Serv-
ing

This component of the data pipeline acts as a
gateway for the ML model deployed (previously
trained). This is used to serve the requests
by the system adaptation component for self-
configuration.

8.2.1 Implementation Requirements

The adaptation strategy, which forms the foundation of the strategy to

achieve self-configuration in module-driven production systems, is guided

by a set of implementation requirements that map to design principles of

module-driven configuration (Chapter 6) and features of level-based clas-

sification (Chapter 5). Figure 8.2 illustrates the design principles detailed

209

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

Figure 8.2: Design Principles of Adaptation Strategy.

as:

• State Transition: The ability to capture and manage state infor-

mation is a fundamental requirement. Transitioning from one state

to another represents module functionality. In the proposed archi-

tecture, this is carried out through State Charts. The State Chart

are captured into State Machine behaviour. These behaviours can be

directed through Agent-based or real-time control.

Related to the design principles of Exactness and Enforcement of

module-driven configuration approach and features of Operational

identification and Control of level-based classification.

• Monitoring and Control: A key component of the adaptation

strategy is the incorporation of monitoring and control mechanisms.

Self-configuration hinges on the system’s context awareness, which

necessitates robust monitoring services. Monitoring services must

be integrated with the strategy and ensure proper control through

control services.

Related to the design principle of Runtime of module-driven configu-

ration approach and features ofMonitoring and Control of level-based

210

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

classification.

• Interfaces and Communication: Interfaces must be present for

each component in the adaptation strategy. This will assist in com-

municating between different components of each layer, and also pro-

vide a means of communication between layers themselves.

Related to the design principle of Runtime of module-driven configu-

ration approach and features of self-capability and data management

of level-based classification.

• Distributed Operation: The adaptation strategy should promote

distributed operations. The proposed strategy works well in this re-

gard, as it can be deployed at the module level in the production

system.

Related to the design principle of Runtime of module-driven con-

figuration approach and features of Optimisation and Operational

identification of level-based classification.

• Resource Specification: Resources for the production operation

need to be completely defined and linked to the Adaptation strategy.

Resource linking is proposed at the low-level layer, where state charts

at the top level and engines in the middle layer can affect the resource.

Related to the design principles of Exactness of module-driven config-

uration approach and features of Operational identification and Data

management of level-based classification.

• Modularity: The components of each layer should be kept modular.

This assists in the possibility of applying the strategy to a wide range

of production applications.

Related to the design principles of Separation and Generality of

module-driven configuration approach and features of Operational

211

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

identification and Self-capability of level-based classification.

8.2.2 Structure of Adaptation Strategy

Figure 8.3: The proposed Adaptation Strategy integrated with CAEX En-
gine. CAEX stands for Computer Aided Engineering eXchange, a standard
used to describe the structure of manufacturing data. The CAEX Engine
aids the management and exchange of engineering data in a standardized
format (more explained in a later section). It consists of three layers: Pro-
duction System Coordination (High-Level), Production System Runtime
(Mid-Level), and Production System Drivers & Control (Low Level).

The structure of the adaptation strategy is illustrated in figure 8.3 by in-

tegrating three key layers: the Production System Coordination (High-

Level), Production System Runtime (Mid-Level), and Production System

Drivers & Control (Low-Level).

212

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

The Three Layers of the Adaptation Strategy

1. Production System Runtime Layer: This layer consists of in-

formation on the runtime of the production system. The runtime

embodies a practical way of monitoring and verifying of production

system state. This means that runtime captures all information about

production system configuration, operation, state, and functionality.

It is proposed that in this research, the runtime layer possess the

following characteristics;

• Heterogeneity and Mobility: This layer should be able to

represent different types of information and provide a manage-

ment interface.

• Relationship and Dependency: Relationships exist between

different information components. This layer must capture these

relationships to ensure the correct behaviour of applications.

• Contextualisation: Complete information of the production

system state must be captured and managed by linked manage-

ment systems.

• Information Quality: The layer should be able to maintain

information at the same consistency to support reasoning, i.e.

the same information quality should be available throughout the

operation.

• Reasoning: The runtime layer should have the capability to

support the execution of functionality. Also, the layer should

be able to reason while taking into account relationships and

contextual information.

• Modelling Formalism: The layer is able to translate infor-

mation from real-world concepts to modelling constructs, and

213

8.2. OVERVIEW OF THE ADAPTATION STRATEGY

contextual information.

• Efficient Access: The layer must be able to provide easy and

efficient access to production system information through access

to data objects.

This layer based on the characteristics captures information about

the configuration of the production the configuration operation, the

state, and the functionality. This assists in the correct execution of

functionality and improves the execution by identification and pre-

diction of changes, constraints, or errors.

In the context of the Adaptation Structure, the ‘runtime’ is the layer

that embodies the real-time operation and monitoring of the produc-

tion system. It’s a dynamic layer that ensures real-time awareness of

the system’s status.

2. Production System Coordination Layer: This layer encap-

sulates the manner of functionality execution in the form of state

charts. Each state chart represents a system’s functionality. These

state charts can be encapsulated into the behaviours of a state ma-

chine. This layer deals with the coordination of the other two layers

(i.e. low and mid-level) via these state machines. Planning is carried

out at this level, as behaviours in the state machine can be manipu-

lated to match customer and functionality needs (e.g. KPIs).

3. Production System Drivers & Control Layer: This layer deals

with hardware drivers, hardware control and hardware abstraction.

The layer incorporates real-time control through a production system-

specific API or PLC event trigger. The RTC can trigger functional-

ities through a linked production system. This layer also contains

Service Actors and Service Observers that provide an interface with

214

8.3. CAPTURING CONFIGURATION MODULE INFORMATION

third-party components (e.g. cloud services). The layer also interacts

with the simulation service through state observers and changes the

production system functionality according to simulation goals.

8.3 Capturing Configuration Module Infor-

mation

The module and operational semantics for production systems in manu-

facturing can be represented by a model that captures the information

dynamically. The model must be vendor-neutral to represent data and

elements in a production system, i.e., the manufacturing system and its

resources.

The information, represented in the model, follows an object-oriented paradigm,

making it feasible to define the module as an object. So, the information

model may contain objects that encapsulate both physical and digital com-

ponents containing different aspects as data objects.

Objects represented in this model may form a hierarchy and shows com-

position and aggregation. Also, each object contains attributes that may

describe properties related to geometry, operations, and behaviour among

others.

The CAEX (Computer Aided Engineering Exchange) standard has been

used for modelling information about production systems in manufacturing

(Drath (2012)). The information on the standard is in the appendix.

215

8.4. DEPLOYMENT OF ENGINE FOR CAPTURING INFORMATION

8.4 Deployment of Engine for Capturing In-

formation

This section details the relationship of Module Driven Configuration with

the CAEX engine. Then the CAEX engine elements are mapped to the

asset administration shell providing a means of integrating AAS with the

concept of module driven configuration.

8.4.1 Connecting Module-Driven Configuration with

the CAEX Engine

The module-driven configuration approach can be related to the developed

CAEX Engine for capturing configuration in production systems. The in-

dividual components of a module can be mapped to the CAEX engine

components. As detailed in the appendix, the CAEX engine has four main

components Instance Hierarchy (IH), System Unit Class (SUC), Role Class

Library (R) and Interface Class Library (I). Figure 8.4 illustrates the map-

ping between a module and the engine components.

As per figure 8.4, the configuration module is mapped to the engine com-

ponents. The functionality of the configurable object, represented in terms

of variables, is housed in the Instance Hierarchy in the form of internal ele-

ments(IE). Each variable is represented in one IE in the instance hierarchy

(IH). IE contains the variable name, its description, its value, and all other

properties necessary for detailing the variable. The IE is instantiated as an

instance of the system unit class object.

The configurable object is represented in the system unit class library and

then instantiated as an IE in the instance hierarchy. The allocation in

216

8.4. DEPLOYMENT OF ENGINE FOR CAPTURING INFORMATION

Figure 8.4: A configurable object module is mapped to CAEX engine com-
ponents. The functionalities are mapped to the system unit class object
instantiated in terms of variables as internal elements within an instance hi-
erarchy with the corresponding rules. The allocation and links are mapped
to role class library and interface class library respectively.

the module where the values are assigned to the variables is mapped to

role class library elements. The information about linking the configured

variables to the production system is stored in the interface class library

and the IE for each variable.

8.4.2 Linking to Asset Administration Shells (AAS)

Previously, an information capture model was presented for the configura-

tion module (Chapter 6). The AAS for a configurable module consists of

variables, their relationships, and constraints. The relationships are repre-

sented in the module using “Allocation” and “Link”. The variables in the

AAS are connected in terms of functionality. The constraints in the AAS

are represented in the functionality and variable rules. Since the AAS and

configuration module are linked together, in the same manner, the engine

assists in deploying an AAS representation.

217

8.4. DEPLOYMENT OF ENGINE FOR CAPTURING INFORMATION

8.4.3 Dynamic Updating of Information

As the AAS is updated, the configuration module is updated and is trans-

lated to the update in engine elements. The capturing of the configuration

of a configurable object in this manner becomes dynamic, as a change in

AAS is realised with a change in the engine elements. Figure 8.5 gives an

example of the change happening in AAS and the way it affects the engine

elements through its mapping.

Figure 8.5: An illustration linking elements of an AAS to the CAEX En-
gine. Variables are housed as IEs, initiated as an instance of system unit
class (SUC). The relationships are captured in IEs, interface instances (I)
and role classes (R). Constraint information is captured in IEs and Is of
CAEX engine.

8.4.4 Facilitating Communication with Lower Layers

The captured information in the engine can be used to interact with the

low-level architecture components. This can be to a real-time control com-

ponent or service actors/observers. For instance, in the case of real-time

control agent systems may take this information to ascertain configuration

before execution of functionality.

218

8.4. DEPLOYMENT OF ENGINE FOR CAPTURING INFORMATION

8.4.5 Understanding Asset Administration Shells (AAS)

As depicted in Figure 8.6, an asset administrative shell is composed of four

major components (Wenger et al. (2018)), namely: component manager,

manifest, header section and body section.

Figure 8.6: Asset Administration Shell representation of an asset with its
main components for I4.0 compliant communication with IoT infrastructure
within a production facility.

• The DF (digital factory) Header Section contains the globally

unique identifiers for an AAS and its represented asset.

• The DF Body Section is composed of multiple submodels, each

representing a distinct part of the asset’s operation./

• Component Manager links the administration shell to a repository

of submodels, their description and their functions. It administers

the submodels of the assets. The Component Manager manages and

provides access to the IoT network of the production facility using a

service-oriented architecture.

• Manifest is present in both the header and body sections of AAS.

It can be considered as the directory of data content. Specifically,

219

8.5. STATE CHART TO STATE MACHINE FOR FUNCTIONALITY
REPRESENTATION

it contains the meta-information serving to provide meaning to the

data from AAS.

8.5 State Chart to State Machine for Func-

tionality Representation

As discussed in the architecture of the Adaptation Strategy the high-level

layer consists of State Machine that encapsulates state charts representing

functionality. In this section, explanations and directions for representing

functionality through statecharts is detailed. The overview of state charts

and state machines are discussed in the appendix section.

8.5.1 State Charts to State Machine for Self-configuration

In this approach, implementation has been carried out that encapsulates

state charts that represent functionality in state machines. Figure 8.7 pro-

vides an overview of ISA-88 state machine and its encapsulation of state

charts into valid behaviours. The state machine guarantees that only ‘valid’

transitions can be executed. It is based on ISA-88 standard (Hawkins et al.

(2010)) for batch and continuous production.

The states and transitions that can be triggered on particular states are

defined by a state machine. Here are a few instances:

• Only when the state machine is currently in the “idle” state will a

“start”-transition cause it to enter the “starting” state.

• The state machine will change its present state to “complete” when-

ever the production of an order has been finished. Only in this state

220

8.5. STATE CHART TO STATE MACHINE FOR FUNCTIONALITY
REPRESENTATION

can it be restarted.

• Nothing happens in case of a “stop”-transition while in the “stopped”

state. No illegitimate transitions are allowed to be fired.

Figure 8.7: State Machine encapsulating functionality state charts as be-
haviours. It provides valid transition control mechanism for the production
system to follow.

8.5.2 Achieving Self-Configuration for Functionality

Stat Machines defined as State Machine Be-

haviours

The state machine, as per ISA88 standards, offers the capability to execute

specific actions within the various active states. These active states are

an integral part of the state machine and are Starting, Execute, Holding,

221

8.5. STATE CHART TO STATE MACHINE FOR FUNCTIONALITY
REPRESENTATION

Unholding, Suspending, Unsuspending, Completing, Resetting, Stopping,

Aborting, and Clearing.

In the context of module-driven configuration, self-configuration is facili-

tated through the use of state machines. These state machines adhere to

the ISA88 standards and can execute predefined actions in specific active

states, ensuring that the production system can dynamically adjust and

configure itself (i.e. self-configure).

8.5.3 Configuring State-Specific Actions:

To implement self-configuration, custom actions are created to define how

the production system should behave in various states. These states, such

as ‘starting,’ ‘executing,’ ‘suspending,’ and others, are used to apply a

module-driven configuration approach. To create a behaviour (i.e. how the

functionality performs at a state), logic is implemented as the production

system enters a particular state. These behaviours include anything from

initialising movements to configuring hardware or software settings.

Self-configuration occurs seamlessly within the module-driven configuration

approach as a part of functionality execution, as the system is configured

during state transitions.

8.5.4 Tracking State Changes:

To make the system capable of self-configuration, it’s essential that the

state changes are monitored in real-time. This is where state change ob-

servers come into play, responding to state changes as they happen. This

behaviour in functionality records the effect of each state transition.

222

8.6. MACHINE LEARNING FOR SELF-CONFIGURATION

This integrated approach allows system to achieve self-configuration by

employing module-driven configuration principles. As the system transi-

tions between states, custom actions and observers work together to ensure

that the system adapts and configures itself seamlessly to meet the specific

requirements of each state.

8.6 Machine Learning for Self-Configuration

8.6.1 Enhancing Machine Learning in the Production

System for Production Systems:

In the context of production systems, machine learning (ML) integra-

tion enables self-configuration by predicting parameter values that can be

updated in the production system. In this section, a generalized work-

flow for incorporating ML capabilities to predict variable values within a

configurable object is presented. This approach aims to streamline self-

configuration and produce results that match the requirements (e.g. cost,

time or other KPIs).

8.6.2 Workflows for Streamlined Machine Learning

Integration:

Functionality presents requirements of variables that need to be configured.

A generalised workflow for providing machine learning capability for pre-

dicting the values of these variables in a configurable object is presented.

These workflows can be used to apply machine learning to the production

system use cases. The workflows are important as they can be used to effi-

223

8.6. MACHINE LEARNING FOR SELF-CONFIGURATION

ciently get the results from a set of inputs for self-configuration purposes.

They are, in essence, like fingerprints, unique to the specific requirements

of each production system.

8.6.3 Proposed Workflow Overview:

These workflows are provided as a basis for possible integration directions

with machine learning services. Figure 8.8 shows the proposed workflows

for the deployment of machine learning in production systems. The work-

flow is based on tabular data having structured data in rows and columns.

The motivation to provide these workflows is to integrate ML components,

keeping the implementation modular instead of focusing on ML component

specifications.

Figure 8.8: Proposed workflow for machine learning in the production sys-
tem. The workflow defines the approach to use dependent on data and
requirements.

8.6.4 Predicting Configuration Values:

To predict configuration values, several paths are available within this ap-

proach as illustrated in figure 8.9:

224

8.6. MACHINE LEARNING FOR SELF-CONFIGURATION

Figure 8.9: Illustration of the mechanism for the prediction of configuration
values using the AutoML approach.

1. AutoML Approach: When training code is unavailable, AutoML

can be employed. The data collected from the production system

is utilized for tabular classification or forecasting. This approach

is code-oriented or code-less. In a code-less setup, the production

system dataset is hosted in a data warehouse service, and an AutoML

service is used to derive configuration values. In the code-oriented

approach, custom code is crafted for AutoML-based prediction. In

either case, the ML model can be deployed on an endpoint, allowing

production systems to request real-time configuration values.

2. Off-The-Shelf Approach: In scenarios where training code is avail-

able, off-the-shelf standard approaches like SQLML can be harnessed.

225

8.6. MACHINE LEARNING FOR SELF-CONFIGURATION

These approaches are employed for classification and forecasting us-

ing tabular data. A custom-designed approach can also be used,

incorporating techniques such as hyperparameter tuning and Tensor-

Flow/Keras. The data is processed with code developed by the user,

and the model is regularly evaluated and updated for precise con-

figuration value predictions. Endpoint deployment enables real-time

processing and utilization by production systems.

3. Custom-Designed Approach: In the case of the own-designed ap-

proach, figure 8.10 illustrates the generalised approach. The training

code is deployed based on the training data. Techniques like hyper-

parameter tuning and TensorFlow/Keras can be used for predicting

configuration values. This generalised approach can be used to in-

tegrate and model a variety of production system models based on

custom designs. These models can then be deployed on endpoints to

serve in real-time.

Figure 8.10 details an elaborative approach for predicting configuration

based on the proposed workflows. Through these detailed workflows and

approaches, the integration of machine learning into the self-configuration

process for production systems becomes accessible and efficient. The choice

between AutoML, standard approaches, or custom designs depends on the

availability of training code and specific system requirements. Regardless of

the method chosen, the outcome is streamlined self-configuration, ensuring

production systems adapt effectively to their operational needs.

226

8.7. MULTI-AGENT SYSTEM INTEGRATION

Figure 8.10: The generalised elaborative approach for predicting configu-
ration values for configurable objects in production systems.

8.7 Multi-Agent System Integration

An approach to the realisation of self-configuration in production systems

is presented in this section based on adaptation strategy. While this ap-

proach incorporates various components, including agents and expressions,

227

8.7. MULTI-AGENT SYSTEM INTEGRATION

it’s important to clarify that this section focuses on a particular aspect of

the self-configuration framework. Agents are selected as enablers of self-

configuration, as established in Chapter 4.

8.7.1 Realisation of Self-configuration in Production

Systems

Agent driven Self-configuration in Production Systems

A production system comprises numerous assets (i.e. configurable objects),

that perform manufacturing processes, with services to produce products

as per customer requirements. The use of agents in this research is lim-

ited to a single configurable device, i.e., a single manufacturing system,

that can be expanded to include multiple manufacturing systems and their

interconnection to form the production system as a whole.

Agents Involved in Self-Configuration

The application involves six actors namely the operator, the manufacturing

system, the Transport Agent (TA), the Product Agent (PA), the Resource

Agent (RA), and a data management pipeline. The pipeline consists of

services involved in managing the data, using the accumulated data and

coordinating with other services and agents to achieve self-configuration.

The service description, agents (Table: 8.2), pipeline, and their connection

for self-configuration are elaborated on in the next section.

228

8.7. MULTI-AGENT SYSTEM INTEGRATION

Table 8.2: Agent Description for Production System

Agent Description

Transport
Agent
(TA)

TA is responsible for transporting the product between
manufacturing systems in a production system.

Product
Agent
(PA)

PA is instantiated to represent one product as it is en-
tered into the production system. A product, repre-
sented by PA, has a name along with functionality re-
quirements to produce it.

Resource
Agent
(RA)

RA is responsible for handling resources. One RA is re-
sponsible for one resource represented by a name, func-
tionality, and location. This resource is a asset that
executes a process on the product

Sequence of Agents Framework for Self-Configuration

Configuration in a manufacturing system comprises process parameters,

communication and connectivity settings, and calibration settings. The

movement of data in the research for self-configuration is achieved through

agent technology that controls operations occurring during execution. The

agent technology communicates with the data pipeline components to per-

form self-configuration. The interactions between agents, the production

system, the data pipeline, and the operator is shown in the sequence dia-

gram (figure 8.11);

1. At the start of the production cycle all the manufacturing system

registers on a Directory Facilitator (DF) Service. It has an associated

name, location, and a functionality (process it can execute) offered.

For the purpose of simplicity, each manufacturing system executes

one functionality. Each asset is represented by a RA.

2. The PA requests DF service for the functionality and finds the re-

spective RA that is able to execute the desired functionality.

3. If multiple RAs are able to execute functionality, then the best RA is

229

8.7. MULTI-AGENT SYSTEM INTEGRATION

Figure 8.11: Sequence diagram for functionality execution using agent ap-
plication in self-configuring production systems.

selected through negotiations based on Contract Net Protocol (CNP).

4. As the RA is selected, the TA transports the product to the asset

(represented by the chosen RA).

5. The data pipeline connects with the asset. It configures the system

to meet the configuration as per product requirements. For this to

occur, it checks for the runtime conditions for the resource in regard

to the product. If all conditions are satisfied, then the functionality

is ready to be executed.

230

8.7. MULTI-AGENT SYSTEM INTEGRATION

6. The asset needs to be configured as per requirements. The ML ser-

vices connected to the data pipeline configure the production system

and functionality is executed.

7. Once the functionality is performed, the RA returns with a confirma-

tion and PA moves instructs the TA to move to the next location to

perform the next functionality.

8. If no more functionality is required, then PA requests the TA to move

the product out of the system.

The run-time conditions assist in checking the current state of the system

and matches it with the desired future states. Let’s consider that there is

a need for a part to be picked up by a robot. The robot may possess the

capability to pick up the part but if it is already holding a component the

check against the run-time condition will return as negative. Apart from

capability, the run-time conditions can be verified against relationships,

constraints, and specific (e.g. product and process) requirements. The Key

Performance Indicator (KPI) serves as an anchor for self-configuration, i.e.,

the self-configuration in the asset is driven by KPI as a guiding parameter.

As stated before, the system adapts to changes to improve functionality.

The guiding parameter provided as KPIs is used by the self-configuring

component of the data pipeline, optimising the system to the best possible

setting for that parameter.

8.7.2 Using Expressions for Self-Configuration in Pro-

duction System

Expressions drive the functionality of the production system by influencing

the agent system. Expressions are of two types; “conditional” and “oper-

231

8.7. MULTI-AGENT SYSTEM INTEGRATION

ational”. Conditional expressions govern the behaviour of the agent when

executing a functionality while on the other hand operational expressions

are concerned with the behaviour of the production system itself.

Operational expressions, involving the execution or performance of the op-

eration, are formulated in a logic-based language that can be understood by

agent systems. These expressions are responsible for the manner in which

the production system carries out its execution for any part.

Let ‘T’ be an operational expression that constitutes of a set of function-

alities to be executed. These functionalities are executed sequentially, in

parallel or in an interleaved manner. The operational expression ‘T’ can

therefore be considered as a set of functionalities and their associated con-

ditions;

T = {C1S1, C2S2, C3S3, ..., CnSn} (8.1)

The ‘T’ operational expressions are comprised of functionality ‘S’ under

condition ‘C’ executed in the mentioned manner. The behaviours in which

these functionalities under conditions are executed are represented in ex-

pressions given as follows;

Tsequential = CiSi.CjSj (8.2)

Tchoice = CiSi

⊕
CjSj (8.3)

Tparallel = CiSi || CjSj (8.4)

Tinterleaved = CiSi | CjSj (8.5)

These expressions can be formulated either to demonstrate sequential,

choice, parallel or interleaved behaviour individually or in combination.

232

8.7. MULTI-AGENT SYSTEM INTEGRATION

The interleaved behaviour represents a case of functionality synchronisa-

tion where one functionality waits till other functionality is ready to be

executed. The rules that guide the behaviour, based on Aceto et al. (2005),

along with its general abstraction, are represented by the following expres-

sions with i, j,k representing functionalities and condition instances :

T =
Premise1, P remise2.....P remisen

Conclusion
.Condition (8.6)

Tchoice =
CiSi.CjSj

CiSi−−→ CjSj

CiSi.CjSj

⊕
CkSk

CiSi−−→ CjSj

.Ci (8.7)

Tsequential =
CiSi

CiSi.CjSj
CiSi−−→ CjSj

.Ci (8.8)

Tparallel =
CiSi

a−→ C ′
iS

′
i CjSj

a−→ C ′
jS

′
j

CiSi || CjSj
a−→ C ′

iS
′
i || C ′

jS
′
j

.(a ∈ θ =
∑

(CiSi)∩ (CjSj)) (8.9)

Tinterleaved =
CiSi

a−→ C ′
iS

′
i

CiSi || CjSj
a−→ C ′

iS
′
i || CjSj

.a /∈ θ (8.10)

Here a = action and θ = Set of Intersecting Actions

Such kind of representation of operational expression governs the execution

of operations specific to the part being operated on. As the part being oper-

ated on is identified its expression is loaded , the agent uses that expression

to perform the test.

Operational and conditional expressions are responsible for agent function-

ality execution for any testing operation carried out by the production

system. An operational expression is accompanied by multiple conditional

expressions for each functionality. These coupled expressions can be loaded

into the agent responsible for the execution, as the part is identified. These

expressions can be housed in a storage component on a scalable, extensi-

233

8.7. MULTI-AGENT SYSTEM INTEGRATION

ble database service that is queried by the agent system to load the best

possible expressions for the identified parts.

8.7.3 Industrial Application for Agents

The industrial application for agents is explored in this section, where rout-

ing is designed to serve as a simulation for production systems. This de-

signed application compliments the proposed sequence diagram and ex-

pressions. This realisation connects the assets in the production system

to the data pipeline components. A smart controller is necessary for the

realisation of the proposed approach, i.e., establishing a connection and

communicating with pipeline components. Data collected by the controller

is stored locally or externally, converted, and transmitted to the pipeline

where it is processed by the pipeline components. As per the sequence

diagram, runtime conditions are checked and the system is adapted as per

objective definition through the prediction serving component. The agents

control the functionality of the manufacturing system.

The pipeline automation is achieved through event-driven trigger functions

that listen to an event occurrence. These fetch events happening in real-

time and instantiate the data pipeline components.

The functionalities and the location of the manufacturing system are en-

tered and assigned in the layout. Each asset in the production system cor-

responds to one RA. The requirement of functionality is entered through

the interface instantiated by a PA. The PA instructs TA, after negotiation

through CNP, to transport the product to the asset location. As the prod-

uct reaches the location, the system coordinates with the data pipeline

components to adapt the asset, configuring as be defined objective and

234

8.8. REAL TIME CONTROL

achieving self-configuration.

The primary focus on agent-driven application is towards self-configuration

in production systems and coordinating functionality through the corre-

sponding expression concepts. While this approach demonstrates a feasible

method for achieving self-configuration, the complete adaptation strategy

may encompass other components such as CAEX implementation, state

charts, and more, depending on the specific application.

The application can serve as a foundational concept for more extensive self-

adaptation strategies, providing a deeper level of insight into the dynamics

of production systems. Furthermore, in a complete implementation, dif-

ferent elements like CAEX, state charts, and other mechanisms could be

used in conjunction with agents and expressions to enable comprehensive

self-configuration and adaptation of production systems.

8.8 Real Time Control

8.8.1 Enhancing Adaptation Strategy with Real-Time

Control and Hardware Abstraction:

The adaptation strategy proposes the usage of Real-Time Control (RTC)

linked to hardware abstraction. The purpose of separation is to keep the

RTC independent of the hardware component. This provides the ability to

use hardware-specific API or PLC event triggers for controlling production

system functionality guided by RTC.

235

8.8. REAL TIME CONTROL

8.8.2 Hardware Abstraction for Self-Configuration:

Hardware abstraction, for self-configuration, is concerned with 2 parts;

1. Communication with Configurable Objects: Hardware abstrac-

tion offers a means to communicate with the configurable objects

within a production system.

2. Resource Management: It facilitates resource addressing on the

configurable object, enabling both configuration and the execution of

functionality.

This level of abstraction can deal with any PLC or API for a configurable

object. As guided by the RTC the hardware abstraction creates an instance

of connection with the hardware. Depending on the type of connection,

resources can be addressed to configure and execute functionality. The

resources can be addressed through specific commands (API Calls, PLC

function inputs) and configuring the configurable object, the commands

can then be used to send a signal to the production system to execute

functionality.

8.8.3 Real-Time Control and Hardware Abstraction

Interaction:

Figure 8.12 illustrates in detail the RTC and its interaction with hardware

abstraction. The user application, for self-configuration, interacts with

mid and top-level layers of the adaptation strategy and through hardware,

abstraction configures the manufacturing asset.

236

8.8. REAL TIME CONTROL

Figure 8.12: RTC and the interaction of its components with hardware
abstraction for module-driven self-configuration. The application layer in-
teracts with the configuration module in a production system through its
interaction layer. Adaptation strategy acts on the configuration module.

8.8.4 Service Actors and Their Role:

Service Actors can also link and instantiate commands to hardware abstrac-

tion. These service actors are third-party services like (e.g. MQTT, AMPQ

etc.) that instantiate commands on hardware after detecting changes in

Service Observers. These service actors and service observers can interact

with the simulation environment to gather the best configuration for the

configurable object.

Incorporating RTC and hardware abstraction within the adaptation strat-

egy enriches the self-configuration process. By decoupling RTC from hard-

ware specifics, it enables a more flexible and efficient approach to configur-

ing and controlling production systems.

237

8.9. SIMULATION

8.9 Simulation

8.9.1 Simulation for Self-Configuration Module:

The simulation component acts as a digital representation of the physical

asset. The simulation environment also contains data flow, that feeds data

from the physical asset to the simulation environment. In the approach,

data is represented using CAEX engine previously elaborated. This engine

captures the production system information in an AAS. More detail on

AAS is detailed in the previous section.

The simulation environment is capable of handling multiple data repre-

sentations to account to different configurable objects in production sys-

tems. The simulation environment supports optimisation through software

libraries processing data from the digital representation. The simulation

environment can act on the provided KPIs (e.g. time, cost etc.) to infer

the best possible configuration.

The significance is that the optimization algorithms are designed to be

modular and distinct from the simulation environment. This modularity

allows flexibility in addressing various optimization targets within specific

constraints. Depending on different KPIs or combinations thereof, distinct

optimization algorithms may be preferred. The execution of these opti-

mization procedures can occur locally or through Cloud-Based Services,

adding an extra layer of adaptability to the system.

238

8.9. SIMULATION

Figure 8.13: Illustration of simulation for configuration module.

8.9.2 Detailed Simulation Process:

Figure 8.13 illustrates in detail the simulation carried out. The KPI is set

for the simulation environment based on which the optimisation algorithm

is selected. The simulation environment using the optimisation library se-

lects the best possible configuration setting for a functionality. The output

in form of the optimisation configuration is received and loaded into the

production system. The functionality can then be executed.

8.9.3 Intercommunication within the Self-Configuration

Module:

An essential aspect of this module is communication, which occurs between

the physical representation of the asset, its digital counterpart in the simu-

lation, and the optimization library. Various communication methods can

be employed depending on the specific application domain. These methods

239

8.10. CONCLUSION

encompass OPC UA, MQTT, TCP/IP, and others, each chosen to best suit

the requirements of the self-configuration system.

The simulation component, within the larger self-configuration strategy,

acts as a critical bridge between the physical asset and the digital self-

configuration process, enabling the system to dynamically adapt and opti-

mize its functionality as conditions change.

8.10 Conclusion

This chapter contributes towards providing the structure and principle

of the adaptation strategy. Overview of the strategy involves detailing

its three layers Production System Coordination Layer, Production System

Runtime and Production System Drivers and Control based on implemen-

tation requirements. A way of capturing information to aid the adaptation

strategy towards achieving self-configuration is explored through CAEX

standard.

This chapter provides details of the implementation process while util-

ising the adaptation strategy. The standard tools that can be used to

self-configure systems while using the strategy are explored, showcasing

the research effort. The information captured through a CAEX standard

is detailed for manufacturing assets in systems. A means of capturing

functionality in terms of state chart and state machine behaviours is elabo-

rated. Multi-Agent system for coordinating functionality and control serves

as an enabler for realising self-configuration through the proposed self-

configuration strategy. Real-Time control is provided through APIs and

PLC event triggers, along with service actors and observers through the in-

teraction of the adaptation strategy with the hardware. Simulation aspects

240

8.10. CONCLUSION

are explained to support routing and determining the most suitable con-

figuration. This chapter serves as the basis for industrial implementation

of the strategy in the next chapter.

241

Chapter 9

Industrial Use-Case:

Validating the Adaptation

Strategy for Self-Configuring

Production Systems

242

9.1. INTRODUCTION

Contents

9.1 Introduction . 243

9.2 Methodology . 244

9.2.1 Production System Coordination 245

9.2.2 Production System Runtime 246

9.2.3 Production System Drivers & Control 247

9.3 Implementation . 248

9.3.1 Mapping Level-Based Classification features to

the Industrial Application 248

9.3.2 State Chart and State Machine Representation

for Functionalities 252

9.3.3 Multi-Agent Integration for Self-Configuration . 260

9.3.4 Deploying Machine Learning Pipelines of Cloud

for Self-Configuration 263

9.3.5 Real-Time Control of Test System 268

9.4 Experiments . 271

9.4.1 MALT . 271

9.4.2 PRIME . 295

9.5 Conclusion . 317

9.5.1 Potential Cost Saving by Adaptation Strategy: 319

9.1 Introduction

This chapter deals with implementing the adaptation strategy established

in the previous chapter. The guidance provided by the adaptation strategy

243

9.2. METHODOLOGY

is used to realise self-configuration capability in two industrial use cases.

This chapter aims to validate of the research carried out in this PhD thesis.

The implementation carried out through this adaptation strategy is related

to the objectives of the research established in Chapter 3.

The validation of the research is carried out on MALT and PRIME test

station. MALT(Multi-Application Leak Test) is a leak test module de-

veloped by an SME (TQC Ltd.) that provides the ability to test leaks

in a part under pressure. Variations in part features, functionality condi-

tions or any constraints can cause the test configuration to change. This

self-configuration application aims to assist in the adaptation of test con-

figurations due to change. There can be different levels of granularity as

MALT can be provided either as a part of a large production system or

stand-alone. PRIME test-station is used to test a part under force for

deformation. Like the MALT use-case variations in part features, func-

tionality conditions or any constraints can cause the test configuration to

change. The PRIME test station is one station in the PRIME assembly sys-

tem. This self-configuration application aims to automatically determine

the force test configuration setting for the part.

9.2 Methodology

The Adaptation Strategy established in Chapter 8 drives the methodology

for applying the developed approach. The solution to the self-configuration

problem is realised through a three-level approach: Production System Co-

ordination, Production System Runtime and Production System Driver &

Control. Each of these layers requires a separate realisation (i.e. imple-

mentation), and then integration to achieve self-configuration. Each layer

244

9.2. METHODOLOGY

of the Adaptation Strategy and the respective realisation is discussed in

the following sections:

9.2.1 Production System Coordination

This layer encapsulates the functionality execution in the form of state

charts. These state charts are incorporated into State Machine behaviours.

The functionality execution is based on customer and functionality needs,

therefore the KPIs. This High-Level layer directly interacts with the other

two layers to execute functionality.

For both the leak testing system (MALT) and the force test in PRIME,

state charts are developed to capture functionality and customer needs.

Parts are identified based on fixture identification, and settings for each test

are determined accordingly. The state charts coordinate the functionality

in the MALT and PRIME test station from part identification to execution.

The transitions carried out in the state charts are as follows;

• Activating the state chart transition for self-configuration for spe-

cific functionality in the production system (MALT or PRIME test

station).

• Generating part requirements for the functionality execution. These

can be a picture, a parameter requirement, a certain customer-imposed

condition or a functionality restriction.

• The KPIs are set for the functionality, dependent on the part re-

quirement previously generated. These KPIs can also be dependent

on customer or functionality needs.

245

9.2. METHODOLOGY

• These KPIs are related to variables for the test that need to be up-

dated (configured).

• The values of these variables are determined through external inter-

faces (e.g. machine learning pipelines or a pipeline hosted on Google

Cloud).

• The updated values are then applied at the respective test station,

and the functionality is executed.

These state charts for the leak test production system (MALT) or PRIME

test station are incorporated as behaviour in the state machine. The state

machine uses the tool utility developed to coordinate the functionality.

9.2.2 Production System Runtime

Information about the state and configuration of each test system is stored

in the Runtime layer. This layer represents a means through which the

services, APIs or PLC can verify and monitor the current condition of the

test system. The runtime layer captures:

• Information about the production system, the identifiers, operations,

functionalities, and all relevant properties in a standardised format.

• Relationships between parameters relevant to the specific test, such

as leak rate, volume, test pressures (for MALT) or maximum force,

force time, and camera images (for PRIME).

• The captured information is related to the state of the respective test

system, the fixture in place, and the product being tested. Therefore,

this layer captures all information necessary for the linked manage-

ment system to make that inference. In the respective test case, the

246

9.2. METHODOLOGY

state charts coordinate the functionality execution, so this layer in-

teracts with the production coordination layer to determine the state

of the test system.

• This layer captures information in the form of submodels. There

are multiple submodels in the test system representing functionality,

documentation, and API Calls among others. These submodels are

accessed through the relevant interfaces.

• Submodels can be interfaced in combination so that reasoning can

be established through relationship query and contextualization. For

instance, fixture information can be used to determine force config-

uration, while fixture information, configuration variables and image

information are stored in different submodels.

The developed CAEX Engine captures this information in the form of an

Asset Administration Shell (AAS) of each test system. The submodels of

the test system in this research represent the functionalities, documenta-

tion, settings, and configuration.

9.2.3 Production System Drivers & Control

This layer deals with the PLC control of the respective test stations through

event triggers from the Coordination layer. Real-time control (RTC) is en-

capsulated in this layer through linkage with runtime information capture.

The RTC executes PLC calls (PRIME) or MALT API Calls depending on

updated parameters, executing functionality (e.g. force test or leak test),

and modifying configurations.

A demonstration is carried out for leak testing and force test use-cases

to execute the functionality with an updated configuration. This layer is

247

9.3. IMPLEMENTATION

coordinated through the production system coordination layer to execute

functionality after updating setting values as per functionality and cus-

tomer requirements.

9.3 Implementation

This section goes in detail on each aspect of the three-level Adaptation

Strategy realisation. State Chart transitions are detailed with encapsula-

tion into State Machines for MALT and PRIME test station functionalities.

Information capture through CAEX is elaborated in connection with As-

set Administration Shell. Tool Utility for coordination of self-configuration

process is expanded. The ML Endpoint deployment, multi-agent integra-

tion, expression development are explained. Real-Time Control is carried

out to achieve self-configuration.

9.3.1 Mapping Level-Based Classification features to

the Industrial Application

MALT Leak Test Application:

The level-based classification features are taken as a means to model self-

configuration ability for the industrial use case. The controller for the

MALT serves as the main focal point of feature deployment. For this re-

search, a simulation environment was modelled so that an example routing

may be set up. Figure 9.1 illustrates this simulated routing. The agents

(i.e. enablers of self-configuration) move the product to the leak test system

(MALT) for the functionality to execute. The monitoring feature of the

proposed classification covers the complete monitoring of the whole system,

248

9.3. IMPLEMENTATION

including all changes happening in it. A MALT interface and simulation

interface is developed that monitors the product as it moves through to the

test system and testing is carried out. The simulation interface also moni-

tors the product information, the routing through the system, the number

of products present in the system and the mean time to produce the prod-

uct. This gives a complete holistic view of the production system, giving

highest Level-5 to the feature of “monitoring”.

Figure 9.1: Routing design with the interface for self-configuration demon-
stration.

MALT controller is the main focus for implementing the features for self-

configuration. MALT controller is developed so that it can record the

changes that happen to its pneumatic module, can be calibrated, con-

nect with other systems and record information that can be processed.

It is able to realise it state, and display graphs to represent them along

with the pass/fail outcomes inferred from the results. Therefore, a “self-

management” feature was developed for achieving self-configuration on the

MALT. Data recording capability on the controller can store data from

tests, and information about connecting to the environment, along with

different configuration settings for the system (MALT) giving it features of

249

9.3. IMPLEMENTATION

“data collection” and “data storage”.

The controller in MALT is capable of communicating with other systems by

TCP/IP communication for “data transmission” and is able to send/receive

data in a compatible format, i.e., supports “data transmission”. To account

for “operational identification” the MALT is integrated with an agent sys-

tem that coordinates with the data pipeline to achieve self-configuration (as

per requirements). The data pipeline handles the “optimisation” function-

ality for the MALT system for test purposes. Here in the data pipeline, the

runtime conditions are checked, objectives defined, conditions formulated

and the system adapted through agents by prediction serving components

(endpoints).

The application of the self-configuration framework on MALT is carried out

once these features are implemented and the controller is integrated with

data pipeline and agent system (JADE). Previous Chapter 5 talks about

level-based classification in detail. For the purpose of research, the data

pipeline is hosted in a cloud environment. Google Cloud Platform (GCP)

is used for this application.

PRIME Force Test Application:

The developed level-based classification can be applied to the PRIME test

case. The PRIME test station is used to test parts under force. In this

context, the Beckhoff PLC serves as the central focal point for deploying

the self-configuration features. A simulation environment is created, set-

ting up an example routing for the product being tested and the agent

systems deployed. Agents, in our approach, acting as the enablers of self-

configuration, move the product to the test station where the functionality

is to be executed. The proposed classification system, through its features,

250

9.3. IMPLEMENTATION

ensures complete monitoring of the system, including all changes happening

in it. The simulation interface, along with a Beckhoff HMI PLC interface,

monitors the product’s movement through the system, the number of prod-

ucts present, and the mean time to produce the product.

The Beckhoff PLC is designed to record any changes that occur in the

attached pneumatic modules and can be calibrated to connect with other

systems (i.e. as per granular decompositions), allowing it to record informa-

tion that can be processed. The mapped features of the self-configuration

enable the PRIME test station to achieve self-management, data collection

and data storage capabilities, through identification of the components.

The controller (Beckhoff PLC) can be used to achieve this, by mapping

the features. Furthermore, the Beckhoff PLC can communicate with other

systems using OPC UA for efficient data transmission.

To achieve operational identification, the Beckhoff PLC is integrated with

an agent system that coordinates with the data pipeline to facilitate self-

configuration. The data pipeline handles the optimisation functionality

for the Beckhoff PLC system, which includes checking runtime conditions,

defining objectives, and formulating conditions. These tasks are accom-

plished through the agents by prediction-serving components (ML end-

points). In the current deployment, the ML endpoint hosts the images of

the fixture that are analysed by Convolutional Neural Networks (CNN) to

determine the best force configuration setting for testing.

As the features are mapped with the PRIME test station and integrated

with the agent system (JADE) along with the data pipeline, the self-

configuration can be applied to the production system through the Adap-

tation strategy. This approach provides a complete view of the production

system, with the highest level, level 5, attributed to the monitoring feature.

251

9.3. IMPLEMENTATION

The data pipeline is hosted in a cloud environment, and the application is

executed using the Google Cloud Platform (GCP).

9.3.2 State Chart and State Machine Representation

for Functionalities

For the MALT Leak Test Application:

In this application, the Adaptation Strategy is deployed to enable the self-

configuration process for the MALT. The state charts and state machine

representations encapsulate the production system’s functionality using

event-driven mechanisms. This event-driven approach forms the high-level

layer of the Adaptation Strategy, responsible for coordinating the produc-

tion system in the specific use case of leak testing.

Application of State Charts and Sate Machine to MALT: For

the supporting case study, which is the leak testing operation, Yakindu

Statechart tool is utilised. This tool is instrumental in capturing all the

events that can trigger self-configuration within the production system for

leak testing operations. Yakindu Statechart employs compositional mod-

elling formalisms to represent the internal behaviour of production systems,

essentially creating a logical structure from a collection of simpler modules.

The self-configuration state chart essentially involves triggering the self-

configuration process either by introducing a part into the production sys-

tem or by requesting the functionality to be executed on a part (figure

9.2). Events such as “Identify Part” are responsible for analysing intro-

duced parts in terms of their features.

252

9.3. IMPLEMENTATION

Figure 9.2: Activating the state chart transition for self-configuration

Figure 9.3: Generating part Requirement for the Introduced Part

The identified part generates a list of part requirements, which are prereq-

uisites for executing the desired functionality. These Part Requirements

are then matched with the configurable variables of the system, for the

self-configuration process (figure 9.3).

The settings required for the functionality are determined through a com-

posite state called ”Setting Requirement.” Customer and process require-

ments are identified and set, thereby establishing the parameters necessary

253

9.3. IMPLEMENTATION

to configure the production system for the desired operation (figure 9.4).

Figure 9.4: Setting Requirements for the Functionality

The activation of functionality, in this case, the ”Basic Leak Test,” depends

on the configuration of variables that need to be changed. These variables,

crucial for the functionality, are determined through state transitions and

endpoints (figure 9.5).

Once the variable values are established through endpoints, they are al-

located to the production system, ensuring that the functionality can be

executed with the correct configuration (figure 9.6) . The allocation of

variables in the production system is established through linkage, and the

configuration changes are carried out on the test system (figure 9.7).

The state charts developed can be encapsulated within an ISA-88 state

machine, a standard for batch control. This encapsulation involves mul-

tiple process stages, including initiation, execution, holding, unholding,

suspending, unsuspending, completing, resetting, stopping, aborting, and

clearing.

Capturing Information in Asset Administration Shell: The ex-

plained state chart and state machine representations above form the High-

Level Production System Coordination layer. The information encapsu-

254

9.3. IMPLEMENTATION

Figure 9.5: Matching functionality with requirements

lated through these state transition assist in executing the functionality.

The high-level layer uses the data captured in the Production System Run-

time (Mid-level) layer. The mid-level layer, as discussed in the previous

chapter, contains information on the runtime of the production system.

In this research, a Configurable Object (CO) is considered as the production

system component (i.e. cyber or physical) that may be configured. The

CO object entity, as discussed in previous chapters, is a superposition of

255

9.3. IMPLEMENTATION

Figure 9.6: Variable Value Determination for Functionalities

a number of modules. A change in module structure represents a change

in functionality driven by variables, but not a change in CO. During the

start of the production operation, the variables are configured, according to

allocation and linkages. The interaction between all COs in a production

system is carried out through transition rules mapped in the state chart

high-level layer.

In order to represent the production system for the MALT leak test use

case, all information pertaining to executing the leak test functionality

needs to be captured. To support this a model is needed that captures this

information, stores it and is dynamic in nature. The model explained in

previous chapters promotes a vendor-neutral mode of capturing informa-

tion.

256

9.3. IMPLEMENTATION

Figure 9.7: Deploying variables on production system and executing func-
tionalities

Tool Utility for Assisting Coordination of Functionality Execu-

tion: A Tool Utility is developed that aids in coordinating functionality

execution in the MALT. This tool interacts with the Asset Administra-

tion Shell (AAS) to establish contextualization and relationships for the

Production System Coordination layer. The high-level layer executes func-

257

9.3. IMPLEMENTATION

tionality based on this coordination. The tool utility is depicted in figure

9.8.

Figure 9.8: A simple glimpse of the Tool Utility developed to aid the Pro-
duction System Coordination Layer

The tool captures information through part activation, feature extraction,

and part recognition. It relates recognised parts to customer and process

requirements. In the case of MALT, the “Basic leak test” functionality

requirements include part volume, test pressure, and leak rate/differential

pressure. These requirements are linked to variables for configuration.

For the PRIME Force Test Application:

Application of State Charts and Sate Machine to PRIME: In the

PRIME force test application, state charts and state machines are used to

encapsulate the ”force test” functionality of the production system. These

258

9.3. IMPLEMENTATION

state charts and state machines operate at the high-level coordination layer

and play a crucial role in orchestrating the execution of the force test in

the PRIME test station.

The self-configuration state chart defines the activation of the self-configuration

process. It can be initiated by introducing a part into the production sys-

tem, which is identified based on a fixture, or by requesting the execution

of the functionality on a specific part.

Events such as “Identify Part” and “Part req” generate lists of requirements

necessary for the part to undergo the functionality. These requirements are

related to customer and functionality specifications.

The “Setting Requirement is a composite state responsible for configur-

ing the customer requirements and process requirements, which in turn

define the functionality. Customer requirements are established through

events such as “get Customer Requirements” and “set Customer Require-

ments”. Similarly, events like ”get Process Requirement” and ”set Process

Requirement” relate the customer requirements with the functionality re-

quirements, forming the Process Requirement composite state.

The “Activate Functionality” state triggers the execution of the force test

functionality on the PRIME test station. This state governs the identifi-

cation of variables that need to be configured based on the requirements

generated earlier. The values of these variables are determined through the

event “set variable value” and are obtained via endpoints, often hosted on

Google Cloud.

The encapsulation of these state charts and state machines within an ISA-

88 state machine defines the self-configuration process’s different stages,

which include starting, executing, holding, unholding, suspending, unsus-

259

9.3. IMPLEMENTATION

pending, completing, resetting, stopping, aborting, and clearing.

Capturing Information in Asset Administration Shell: The Con-

figurable Object (CO) model is used for representing the “force test” func-

tionality in the system, specifically in the context of a force test equip-

ment module (i.e. PRIME test station). The self-configuration adaptation

strategy based on a configurable object model captures information on vari-

ables, relationships, and constraints using an AAS representation connected

through an interface.

The CO model enables the high-level coordination of the production system

through state transition rules, using data captured in the mid-level runtime

layer. The PRIME force test module consists of digital and physical objects

encapsulated within a module representing the force test functionality.

Tool Utility for Assisting Coordination of Functionality Execu-

tion: The Tool Utility captures information through part activation,

feature extraction, and part recognition, which is linked to customer and

process requirements for the part. The functionality of the production sys-

tem depends on its configuration, consisting of variables, their relationships,

and constraints.

9.3.3 Multi-Agent Integration for Self-Configuration

Agent System Deployment on MALT:

The digital information about the physical asset is deployed in the form of

Asset Administration Shell. The presented strategy is practically applied

to a distributed manufacturing environment. The simulated routing for the

260

9.3. IMPLEMENTATION

distributed manufacturing environment is shown in the figure 9.9.

Figure 9.9: Routing design for MALT with an interface for self-
configuration demonstration.

The functionality of this layout is linked with multi-agent system execu-

tion environment. Initially, resources are allocated to a location through

the interface in the simulated layouts. There are three type of agents in

the environment namely; Transport Agent (TA), Product Agent (PA) and

Resource Agent (RA). Resources, with their skill, name and location, as

they are entered through the interface are handled by one RA. There exists

one RA per resource. PA is instantiated to represent the product as it is

entered into the system. A product is accompanied by a name and the

required skills necessary to produce it. Each PA represents one product.

Agent System Deployment on PRIME Test Station:

A corresponding layout was designed to demonstrate the approach (figure

9.10).

The functionality of the layout is linked with a multi-agent system execu-

tion environment. Initially, resources are allocated to a location through

261

9.3. IMPLEMENTATION

Figure 9.10: Routing design for PRIME with an interface for self-
configuration demonstration.

the interface in the simulated layouts. The implementation requires a set

of agents with defined responsibilities that are each instantiated when re-

quired. Some agents may each have a physical asset associated with it and

provides an interface to the virtualized ”skills” performed by the physical

asset. The list of agents and their functionalities are the same as those

defined for the previous use-case.

Agent programming is implemented with the JADE (Java Agent Devel-

opment Environment) platform like the previous use-case (MALT). The

agents deployed in JADE use cloud based classification input generated by

vision model trained on the dataset (for fixture identification), as input

leading to further actions. All the actors in the production environment

are controlled by means of agents.

In the current use case, the agent execution and simulation is performed

after the deployment of six agents: PA (Product Agent) , MA (Monitoring

Agent), TA1 (Transport Agent), TA2, TA3 and RA (Resource Agent). RA

and TA represent the set of stations and their required transportation,

262

9.3. IMPLEMENTATION

respectively. TA and RA were not deployed individually, rather resources

1, 2 and 3 are represented by agent RA and conveyors by the agent TA,

resources being each robot in the setup and a test station.

The simulation is performed within two variants, based on cloud based

decision process, set by the MA for the variation in hinge assembly.

9.3.4 Deploying Machine Learning Pipelines of Cloud

for Self-Configuration

Machine Learning Deployment for MALT:

Self-Configuration is essentially system adaptation under changes to restore

or improve functionality. The system adaptation component of the self-

configuration library takes the guiding parameter and optimises the system

device to the best possible settings for that parameter (Algorithm 1). For

this to happen it needs to query from established endpoints as the nature of

self-configuration is dynamic. These endpoints can be deployed locally to

take in configuration settings from the server deployed or may send requests

to inquire about those values from endpoints deployed elsewhere (i.e. cloud)

(Algorithm 2). These endpoints load these configuration settings after

processing on ML/GA pipelines. A simplistic view of algorithm execution

is presented (figure 9.11).

263

9.3. IMPLEMENTATION

Algorithm 1: Algorithm for Self-Configuration

Result: Test Result

Initialise IP, Port, KPI;

Connect to Equipment(IP, Port);

Set KPI;

Change Configuration;

while Configuration Not Changed do

Confirm connection;

Set Response Variable;

Execute setting.Response(KPI) from Endpoint;

Send Request and get Response;

Get Configuration ;

Load Configuration ;

Set Parameters ;

Confirm Configuration as Response;

end

Run test;

Figure 9.11: An illustration of the logistic regression algorithm.

264

9.3. IMPLEMENTATION

Algorithm 2: ML Endpoint for Self-Configuration

Result: Predict: String

Initialise Global model;

Initialise Bucket Name, Project Id, GCS Model File;

Initialise Client;

Create Bucket Storage;

Create Blob;

Download file to destination in function Download ModelFile();

if not model then

Download ModelFile() from Storage ;

Assign model = Load File;

else

Load File as model

end

Initialise Params;

Get Request ;

Generate mode Predict as Predict;

Return Predict;

The genetic algorithm (GA) is taken for both selecting both the best possi-

ble resource in the Contract Net Protocol (CNP) aspect implementation of

the strategy and also selecting the best possible configuration setting value.

Figure 9.12 provides an overview of GA.The approach taken here basically

makes a Target (Best) Chromosome by combining KPIs in a tuple. Each

PA and RA generate their own represented chromosome tuple. The best

chromosome is determined based on the aspect of its closeness with the

target solution. In the case of configuration setting, the configuration set-

tings have their own chromosome representation and the best chromosome

selected gives the configuration setting that is to be loaded. This endpoint

approach is useful for selecting a configuration when no historical data is

265

9.3. IMPLEMENTATION

(a) An overview of the genetic
algorithm

(b) Solution Space
representation for GA. The

algorithm searches for solution
chromosomes near to the

target chromosome.The best
selection is with minimum
number of generations to

reach the target chromosome

Figure 9.12: An illustration of Genetic Algorithm

present.

The usage of GA and ML pipelines will depend on the product and process

requirements, as well as the presence of historical data. If no historical data

is present, then a configuration may be selected through the GA pipeline

and improved with iterations. In manufacturing setups, if historical data

is accumulated, then ML pipelines can be used to query the optimum con-

figuration. The advantage of ML pipeline over GA pipeline lies in giving

the optimum configuration that can be used to execute functionality, while

in the case of GA it will be an approximate configuration that needs some

iterations to reach the optimum. GA pipeline could be very beneficial in

evaluating the most suitable resource (i.e. asset) to execute functionality in

the system with changing needs (e.g. priority, cost, buffer or other KPIs).

Once the suitable resource is approximated, ML pipeline could determine

the best optimum configuration for the product. The suitability of the

resource is evaluated and improved over time with iterations.

266

9.3. IMPLEMENTATION

Machine Learning Deployment for PRIME test station:

Cloud computing is used to enhance the capability of the adaptation strat-

egy by bridging it with service-oriented architecture. The agent looks for

certain events that act as a trigger for it to execute its functionality. ML

pipeline housed in the cloud can be instantiated by means of event trigger

functions of the PLC through agents. The agent and the cloud platform

rely on a gateway to realize their functionality. The event trigger functions

are used by the MA to activate the capture of images of the data matrix

on the fixture and send them to cloud storage. This population of images

in cloud storage triggers additional functionality and decision-making by

the ML pipeline. The insight generated by the ML pipeline, here the con-

figuration settings, based on the captured images in the cloud platform, is

sent to the station which then uses it to execute an operation.

The algorithm for ML processing used for image detection and classifica-

tion is Neural Architecture Search (NAS) where a dataset and task (image

detection and classification) are provided. This is used to find the design

of a machine learning model, that performs best among all other models

for a given task as the model is trained under the provided dataset. NAS

uses a search strategy to find the best model from all possible models that

maximise performance. Figure 9.13 illustrates the NAS algorithm.

Figure 9.13: NAS algorithm for determination of image detection and clas-
sification ML Model

The three constituents of NAS include search space, search strategy and

performance estimation. Search space defines the neural architecture selec-

267

9.3. IMPLEMENTATION

tion basis like chain or multi-branch network, micro/macro-search or cell-

search (Elsken et al. (2019)). Search strategy and performance estimation

employ multiple methods selected on the search space selected previously

(Elsken et al. (2019)) such as random search, reinforcement learning, and

evolutionary algorithms. The model derived from this approach can be

used directly for the purpose. Google Cloud Platform (GCP) based its

AutoML service on a novel architecture NASNET that uses NAS for image

classification. NASNET redesigns the search space, so the best layer can be

found and stacked multiple times in a flexible manner for the final network.

This network was used to perform a search strategy on image datasets and

best best-learned architecture was selected for image detection and classi-

fication. More detail on the work can be found in the work done by the

Google Research Team (Zoph et al. (2017)).

9.3.5 Real-Time Control of Test System

Control of MALT:

Realisation of the developed framework is carried out through an imple-

mentation that connects the manufacturing system to the data pipeline

components. A smart controller is necessary for realisation of the proposed

approach, i.e., establishing a connection and communicating with pipeline

components. Data collected by the controller is stored locally or exter-

nally, converted, and transmitted to the pipeline where it is processed by

the pipeline components. As per the sequence diagram, runtime condi-

tions are checked and system adapted as per objective definition through

prediction serving component. The agents control the functionality of the

manufacturing system.

268

9.3. IMPLEMENTATION

A data pipeline was set up that connected the components to the controller

of an industrial leak testing rig TAMI (Test bench for leakage identification

on aircraft fluid mechanical installations)and dry-air leak testing device

MALT (Micro Application Leak Test). Agent systems were utilised based

on JADE (Java Agent Development Framework) that control individual

skills.

Control of PRIME Test Station:

The developed solution was implemented by connecting the PRIME test

station to the data pipeline components, which involved a Beckhoff PLC.

The PLC established a connection and facilitated communication with the

pipeline components. The data collected consisted of images of the data

matrix of part fixtures stored on the GCP cloud environment. These images

acted with the ML models to deliver insights to the agents (on PLC) for

configuration settings. A prediction serving component checked runtime

conditions and adapted the system (i.e. changed configuration) based on

objectives and part requirements.

In the PRIME force test case, a data pipeline was set up, connecting the

PLC control to the decision-making ML endpoint through agent systems.

Agent systems based on JADE were utilized to control individual skills. In

this case the skill, or functionality, of the force-test is used.

Force test, in PRIME test station, involves the application of a force of a

certain value maximum on the hinge assembly. The force is maintained for a

certain time period, i.e. the hinge is exercised. The deformation/deflection

is measured under force application. The resulting deformation/deflection

result indicates the pass/fail status of the product.

269

9.3. IMPLEMENTATION

The test station skill “force test” and the location was entered and as-

signed in the layout. Each manufacturing system corresponded to one RA

(Resource Agent). The product skill requirement, such as force-test, was

entered through an interface instantiated by a PA (Product Agent). The

PA instructed the TA (Transport Agent) through CNP (Contract Net Pro-

tocol) to transport the product to the manufacturing system location. As

the product reached the location, the system coordinated with the data

pipeline components to adapt the manufacturing system and achieve self-

configuration. The experimental setup and agent system execution can be

visualized through the provided figures.

The PLC controller played a crucial role in implementing the self-configuration

features. It recorded changes on its IO module and sensors (camera and

force), could be calibrated, connected with other systems, and stored data

for processing. The controller’s capabilities included data collection, data

storage, data transmission through TCP/IP communication with other sys-

tems, and operational identification. The PLC controller was integrated

with an agent system that coordinated with the data pipeline to achieve

self-configuration goals. The data pipeline handled optimization function-

ality for the test system, considering runtime conditions, objectives, condi-

tions, and system adaptation through agents and prediction serving com-

ponents (ML Endpoints).

270

9.4. EXPERIMENTS

9.4 Experiments

9.4.1 MALT

Introduction

This section demonstrates the effectiveness of the developed self-configuration

strategy for the MALT leak testing system. The experiment is designed to

validate the system’s ability to dynamically adapt the leak testing process

in response to the following challenges:

1. Variability in Parts: This experiment tests the data and concep-

tual models developed in this research (Objective 1). By adapting

testing parameters to parts of different volumes, the experiment will

assess the ability of the adaptation strategy to capture and utilise

configuration information. It will also examine how well the system

can dynamically identify and adjust to varying part features, validat-

ing the configuration abstraction of the system elements (Objective

2).

2. Dynamic Production Requirements: The experiment addresses

the system architecture objective (Objective 4). By evaluating the

system’s ability to maintain optimal configuration in the face of chang-

ing priorities, the experiment will assess the modularity and adapt-

ability of the architecture.

3. Reduction of Expert Dependency: This experiment is designed

to validate the implementation strategy (Objective 5). By minimis-

ing the need for specialised knowledge in leak testing, the experiment

will test the system’s ability to seamlessly adapt the system settings

271

9.4. EXPERIMENTS

based on the defined configuration rules (Objective 2). This will

demonstrate the practical application of the identified enabling tech-

nologies (Objective 3).

Application of Level-Based Classification on MALT:

MALT (Multi-Application Leak Test) is a leak test module developed by an

SME (TQC Ltd.) that provides the ability to test leaks in a part under pres-

sure. Level-based classification is applied to identify the features that can

be improved through stage-wise transition for achieving self-configuration.

figure 9.14 illustrates the application of level-based classification.

Capturing Information on MALT:

MALT, as a leak test production system,is represented as a module that

has the functionality of a leak test. The MALT leak test equipment mod-

ule consists of objects that encapsulate digital and physical aspects. The

CAEX Engine developed can capture configuration pertaining to the func-

tionality of the leak test for MALT.

The AAS for the MALT captures the configuration for the functionality

leak test in terms of variables, their relationships, and constraints. For

the MALT, as a configurable module, variables capture the configuration

settings, and relationships are represented using “Allocation” and “Link”.

These variables are connected in terms of the leak test functionality. The

constraints on the functionality are represented in the functionality and

variable rules.

The CAEX engine is connected to AAS representation for the leak test

functionality. The AAS is connected to the MALT through an interface.

272

9.4. EXPERIMENTS

Figure 9.14: Level Based Classification for Self-Configuration applied to
Multi-Application Leak Tester (MALT). The identified features need to
be improved to enable MALT to achieve self-configuration. This happens
through Stage-Wise Transition explained before.

Therefore, the CAEX engine assists in deploying AAS for the production

system and configuring it as per functionality requirements. Figure 9.15

illustrates the captured information through CAEX Engine for MALT sys-

tem components.

273

9.4. EXPERIMENTS

Figure 9.15: Capturing MALT system information in CAEX Engine.

Representing Information in AAS:

As the AAS for MALT is updated through the CAEX Engine, the con-

figurable module connected is also updated through the interface. The

dynamic configuration change is established as a change instantiated by

the CAEX engine in the AAS elements and is translated to the MALT

system.

Figure 9.16 shows the AAS representation for MALT. The AAS consists of

submodels “Skill”, “Settings”, “Result” and “Calibration”. The submodel

“Settings ” contains information about the setting parameters. These pa-

rameters need to be configured for executing functionality. CAEX engine

configures these parameters based on requirements captured through state

charts.

274

9.4. EXPERIMENTS

Figure 9.16: AAS for MALT

This submodel also contains information on the range of certain parameters

(e.g. pressure) in the system, along with the dependency relationship. The

submodel can be updated in the AAS through CAEX engine and interact

with the MALT system through submodel json file. This means that the

interface in the MALT is capable of updating its configuration through

each submodel, and does not entail that the whole AAS be provided for

updating the configuration. However, this also means that there exists

a strict structural requirement on the submodel that is provided to the

interface. Figure 9.17 represents the structure of the submodel that must

be provided.

Figure 9.18 details the components of the submodels. The submodel “Cal-

ibration” contains information on the calibration data for the sensors on

the production system. In the case of MALT, the calibration data corre-

sponds to the two pneumatic modules present in the equipment capable

of performing tests. The submodel “Results” captures the result of each

functionality executed (i.e. test carried out) in a submodel collection. The

“Skill” submodel houses the information related to the leak test function-

275

9.4. EXPERIMENTS

Figure 9.17: Generic asset administration shell representation (left). Skill
submodel is developed, submodel elements contains the skill API calls along
with pertaining data that can be used by the client services. Component
manager is deployed when the submodels are listed (right).

Figure 9.18: Detail of each submodel to execute “leak test” functionality.

ality as the event “Basic Test”. The API Calls that use the configuration

to execute the functionality are stored as a submodel collection. The ca-

pability of the functionality and the detail of the functional operation are

also stored in this submodel.

276

9.4. EXPERIMENTS

Tool Utility for Coordinating Leak Test Functionality:

The Tool Utility generates a variable list based on functionality corre-

sponding to its configuration, consisting of variables, relationships, and

constraints. For MALT, the ”Basic leak test” functionality is set through

the tool. The values of these variables are identified through machine learn-

ing pipelines hosted at endpoints and assigned to the production system

for execution.

The deployment of variable values involves linking to the system and exe-

cuting the functionality with the updated configuration.

Experimental Methodology

Test Plan: A comprehensive plan was designed. The details of the plan

are as follows:

Objectives: The experiment aimed to determine the best suitable con-

figuration setting for leak testing.

Leak testing is the process of determining the leakage flow rate from a

part under test. The leak-testing production system consists of multiple

processes. “Basic Leak Test” involves filling the part under the test process

(i.e. over-pressure) with a testing medium or subjecting it to a complete

vacuum and allowing it to stabilise under pressure. The pressure change

is measured under leakage flow. This change in pressure or for simplicity

proportional value of leakage flow rate is used as an indicator to pass or fail

on part. There are several variations for leak testing such as differential

pressure measurement pressure decay, dosing leak test, chamber leak test,

blockage testing, and coarse or gross leak test (Mount (2015)).

277

9.4. EXPERIMENTS

Testing is carried out at normal room conditions on a clean, dry, room

temperature stabilised product. These conditions are maintained devoid

of excess moisture due to the temperature-sensitive nature of the dry-air

leak testing consideration. This testing process plays an important role in

ensuring product quality, product’s integrity, safety, and reliability.

The test products consist of multiple test volumes 0.1L, 0.2L, 0.4L, 0.8L,

3L and 10L. The experiment aims to validate the adaptation strategy for

volume-based configuration determination under KPIs.

Test Case: The product is tested to determine the most suitable leak test

configuration setting. This test’s main focus is ensuring the adaptation

strategy correctly identifies volume and sets the corresponding leak test

parameters. It should demonstrate that the system can maintain consistent

pass/fail outcomes under constraints and do so efficiently in comparison to

manual configuration settings. The test case can be briefly detailed as:

• Basic Volume Identification: The system determines the cylinder

volume for which the test is to be performed.

• Volume Range Adaptation: The system identifies the suitable

configurations for executing the test on the volume under test, i.e.

candidate configuration.

• KPI Constraint: The system identifies the most suitable config-

uration setting based on KPI constraint. Here, in this experiment,

it is taken as the accuracy of the configuration setting for giving the

correct leakage rate.

• Configuration Adaptation: The system adapts the new config-

uration setting based on KPI constraint from the candidate configu-

278

9.4. EXPERIMENTS

ration.

Performance Metrics: The tests performed will measure:

• Accuracy of volume identification

• Accuracy of the resulting configuration (compared to expert-derived

settings)

• Configuration time

• Pass/Fail outcomes against the configuration settings for the product

volume

Baseline Establishment Before introducing self-configuration capabil-

ities, a baseline assessment of the MALT system’s performance was con-

ducted. A series of leak tests were performed using manual configura-

tion on a set of representative products with volumes ranging from 0.1L

to 10L. These baseline results will serve as the benchmark against which

the self-configuring system’s improvements will be measured. Figure 9.19

summarises the experimentation carried out for developing baseline and

data-set for MALT.

Validation

• Performance Comparison: Leak test configuration settings were

analysed against the baseline, to validate the accuracy of settings.

• Expert Review: Configuration settings were validated by a domain

expert to ensure correctness and optimality.

279

9.4. EXPERIMENTS

Figure 9.19: Summary of experimentation carried out for developing base-
line and data-set for self-configuration on MALT. The parameters for each
volume are varied over the range mentioned. The range is volume and
MALT-specific (constraints).

Experimental Setup

Hardware

• MALT leak test system

• Representative product samples (0.1L, 0.2L, 0.4L, 0.8L, 3L and 10L).

Software

• Agent system

• CAEX engine

• ML endpoints for configuration generation

• MALT interface API for data logging and analysis

Experiments and Results

Goal: Demonstrate self-configuration in response to varying product vol-

umes.

280

9.4. EXPERIMENTS

The goals for the MALT experimentation can be summarised as follows:

1. Configuration Capture: Capture the configuration settings for

leak test functionality in terms of variables, relationships, and con-

straints through the information model, and CAEX engine. The cap-

tured information should be compliant with the AAS standard.

2. Self-Configuration Capability: Using the features identified dur-

ing level-based classification, incorporate self-configuration capability

by improving features.

3. Optimisation and Adaptation: Using adaptation strategy and

ML/GA endpoint deployment achieve self-configuration.

4. Agent System: Implement an agent system, as enabler, for coordi-

nating with data pipelines to achieve self-configuration goals.

5. Cloud-Based Data Pipeline: Host data pipeline components in

a cloud environment (e.g., Google Cloud Platform) for better data

processing and coordination.

Procedure: A sequence diagram that completely represents the interac-

tion of product in the environment is presented in figure 9.20.

The sequence diagram (figure: 9.20) shows the flow of information be-

tween the agents during the operation. The agents are asset administra-

tion shell (AAS), system device (MALT as a Use-case), Transport Agent

(TA), Product Agent(PA) , Resource Agent (RA), ML Endpoint on Cloud

(Configuration Library, Database/ML Data Pipeline) and DF Service (for

querying and registering). The step-wise approach to self-configuration in

the developed strategy is presented as follows;

281

9.4. EXPERIMENTS

Figure 9.20: Sequence diagram for a distributed manufacturing environ-
ment with self-configuration and testing.

• At the start of the operation all the resources register with the Di-

rectory Facilitator (DF) Service.

• The AAS contains information about the product introduced in the

system, its criterion, KPIs, objectives and all other representative

information.

• These information features are extracted and relevant skills are iden-

tified.

• An objective/target/fitness function is fetched from the asset admin-

istration that corresponds to the target for the product being pro-

duced.

282

9.4. EXPERIMENTS

• The PA requests the DF Service for the skills and find the RA that is

able to execute the skill. It then inquires the location of the skill. The

PA selects the best resource to execute the skill based on Contract

Net Protocol (CNP) negotiation with the RA by using the genetic

algorithm (GA).

• The product is transported to the selected resource. and current con-

figuration of the resource loaded and recorded in AAS as a submodel.

• The run-time conditions are checked for the resource (RA) with re-

gard to the product (PA). The run-time conditions include relation-

ship, capability, constraint, and operation requirements. If all the

necessary conditions are satisfied, then the skill is able to be exe-

cuted on that resource.

• The Operational Expressions are loaded that define the skill require-

ment as well as sequence for the self-configuration assisted test to

happen.

• The Operational Expression is executed that establishes the connec-

tion with the system device. The KPIs (key performance indicators)

are loaded for the system to be configured according to it. KPIs serve

as guiding parameters.

• The system is adapted (configured) as per KPI provided. The test

is executed. The configuration parameters are queried individually

from the ML/GA endpoints deployed.

• An experimentation is planned by providing the experimentation cri-

teria along with the parameters necessary. These criteria and param-

eters are loaded that define the manner of self-configuration. These

are basically provided/loaded in the form of conditional expressions.

283

9.4. EXPERIMENTS

• The test is executed, and the configuration instance is updated in

AAs.

• Once the experiment is performed, the RA confirms the PA of skill

execution and the PA requests the TA to move to perform next skill.

• If no more skill is required then PA requests the TA to move the

product out of the system.

The run-time condition checks give depth to operation execution (skill ex-

ecution). This could be best understood as a check on the current state of

the system device. Considering that a part needs to be picked up by the

robot. Although the robot has the capability to pick up the part if it is

already in the state of holding another component the check condition will

return as a negative. Similarly, the approach checks the state condition

against relationship, constraint, capability, and specific requirements (i.e.

product and process). This matching of conditions is done by the respec-

tive AAS of the resource against the AAS of the product. This approach is

taken as AAS of both resource and product are updated regularly during

execution to account for the influence of changing state during operation.

The Self-Configuration library that is developed relies on the input from

the User that is fed through AAS for the product and resource. The KPIs

can be one entity or many, depending on the desired criteria. KPIs in

the self-configuration approach can be I/O states that can drive PLC con-

trol, delay parameters for feedback control or guidance parameter such

as a unique feature or business parameter. KPIs serve as an anchor for

self-configuration, i.e. the self-configuration library configures the system

device based on these guiding parameters. Figure 9.21 illustrates the self-

configuration library formulation with the endpoints hosted in the cloud.

284

9.4. EXPERIMENTS

Figure 9.21: Self-Configuration library formulation with Endpoint hosted
on Google Cloud Platform (GCP). Developing parametric optimisation
code that is modular and can execute an experiment in 4-5 lines.

The ML Endpoint for self-configuration of the current system device in-

volves logistic regression. The model trained is deployed on the Google

Cloud platform endpoint, trained on a data set for 0.1L-3L test volumes

and can be processed through the library directly. The connector in the

library extracts the settings based on the “key” value (figure 9.21). This

method extensively relies on the baseline data set to make accurate predic-

tions for the configuration settings. For this experiment, the configuration

settings for a test volume of 10L were predicted using the endpoint through

the library.

Expression for Leak Test Functionality Execution: Product Agent

(EA1) looks for the skills required for testing based from an “operational”

expression. The “operational” expression lists down the skill required by

product being tested as well as the sequence of execution for that part.

This expression is stored in cloud based and loaded by EA1 based on part

identification.

TEA1 = Cϕ basic.Cϕ cond.CST1 stab.CFA1 fill.

Cϕ param.Cϕ iter.TEA1

(9.1)

285

9.4. EXPERIMENTS

The EA1 searches for the agents responsible for these skills. These agents

then look for the “conditional” expressions that define the behaviour on

how these skills may be executed. Cϕ is a null condition that means no

condition expression is present for executing the skill.So the expression may

be simplified;

TEA1 = basic.cond.CST1 stab.CFA1 fill.param.iter.TEA1 (9.2)

TI1 agent is responsible for “basic” skill that starts the connection with the

test system, CA1 executes “cond” skill that uses condition to change test

parameters, ST1 changes the stabilisation time through “stab” skill, FA1

and PA1 induces change to fill time and any parameter (taken as argument)

through “fill” and “param” skill respectively. IT1 is the agent responsible

for “iter” skill that gives number of test iterations to be performed and

executes the tests as per those iterations. Giving each agent responsibility

of individual skill gives capability to define test for each part driven by

“operational” expression. Here, TI1, CA1, ST1, PA1, FA1, and IT1 are a

group of agents previously established as resource agents.

These agents once they have received request to execute a skill look for a

conditional expression from cloud service. This expression is loaded and

the skill behaviour modified as per expression. For the purpose of this

test the fill time and stabilisation time was varied by each increment. The

conditional expressions are;

CFA1 = i ∗ fill (9.3)

where i = 1...i increments

CST1 = stabilisation time+ i ∗ t (9.4)

286

9.4. EXPERIMENTS

where i = 1...i increments and t = constant

These expressions are loaded from cloud service and execution of the test

carried out.

Executing Leak Test Functionality: Leak testing process involves the

process of determination of leakage flow rate of product under test. The

product being tested is subjected to complete vacuum or filled under pres-

sure. The product is then stabilised over time. The differential pressure

is measured against a reference. The differential pressure or proportional

leakage flow rate value gives the part or fail for the product. A correspond-

ing layout is designed for demonstrating the approach working.

The skills and the location of the manufacturing system are entered and

assigned in the layout. Each manufacturing system is corresponding to

one RA. The requirement of product skill is entered through the inter-

face instantiated by a PA, here it is leak testing. The PA instructs TA,

after negotiation through CNP, to transports the product to the manufac-

turing system location. As the product reaches the location, the system

coordinates with the data pipeline components to adapt the manufacturing

system, configuring as be defined objective and achieving self-configuration.

The experimental setup and agent system driving execution can be visu-

alised through figure 9.22.

A simple demonstration of the approach working can be witnessed through

the figure 9.23 and the sequence diagram through the figure 9.24. The

configuration change of the manufacturing system before and after can be

seen in figure 9.25.

287

9.4. EXPERIMENTS

Figure 9.22: The leak testing setup: (a) the cylinder volumes under test
(b) MALT test system being a part of test bench for general leak testing
(c) Interface for leak testing; agent system drives the execution.

Figure 9.23: Execution of the self-configuration framework on MALT sys-
tem. (a) PA (representing a product) is entered into the system. (b)
TA transports the product to the manufacturing system (MALT) location.
(c) Manufacturing system is self-configured and test is executed by agent
coordination through components of data pipeline.(d) TA transports the
product from the system once test is carried out.

Results:

288

9.4. EXPERIMENTS

Figure 9.24: Sequence Diagram for self-configuration and Test Process
(JADE Interface).

Figure 9.25: Change in configuration settings of the manufacturing system
(MALT). (a) No configuration setting (b) Configuration change after exe-
cution before test.

Validation of Adaptation Strategy on MALT: This approach pro-

vides a means to adapt MALT to product, process, and KPI requirements.

As an advantage, this approach assists in achieving self-configuration for

leak test functionality on the MALT by updating configuration specific

to requirements. Figure 9.26 provides a comparison on the configura-

tion achieved through the deployed approach and the configuration derived

289

9.4. EXPERIMENTS

through an expert.

Figure 9.26: Validation of Adaptation Strategy for leak test functionality
on MALT. The time taken to determine a valid configuration is significantly
less through the research approach in comparison to an Expert. Also, the
approach allows updating this configuration automatically, while the expert
has to enter the values manually.

The 10L volume was presented to the system as a test volume, and then

configuration settings were determined by the system and the expert. The

time taken by both to reach the optimal configuration under constraint

was recorded (figure 9.26). The adaptation strategy was able to configure

and execute functionality in 1.65 sec in comparison to an expert that took

19370 sec respectively.

Figure 9.26 demonstrates the application of self-configuration on the test

volumes (from the experimentation section). The same configuration was

determined as optimal by the expert in a significantly longer duration. This

was carried out in an industrial setting, providing a clear improvement and

significant cost-saving.

Mapping to Research Questions: The implementation is mapped to

the research questions established of the research project as seen in figure

9.27.

290

9.4. EXPERIMENTS

Figure 9.27: Mapping project research questions to MALT Use-Case Im-
plementation.

Overall Findings

The results of the MALT experiments validate the research by achieving

its objectives in the following manner:

1. Theoretical Foundations: The adaptation of the leak test system

to the varying volumes and utilisation of data to determine configu-

ration settings demonstrates the usefulness of the developed data and

conceptual models.

2. Configuration Abstraction: The adaptation and leak test func-

tionality execution under changing volumes validates the abstraction

developed for the configuration and the self-configuration logic.

3. Enabling Technologies: The reduction of expert dependency for

determining leak test settings and the implementation of adaptation

291

9.4. EXPERIMENTS

strategy through the developed tools confirms usefulness of enabling

technologies for self-configuration in MALT.

4. System Architecture: MALT modules and adaptability to suit

the leak test requirements show the ability of the system to adapt for

functionality execution based on the developed architecture.

5. Implementation Strategy: The self-reconfiguration of MALT for

leak testing and reduced expert reliance validates the implementation

strategy.

Level-Based Classification on MultiAgent andML Integrated MALT:

Applying level-based classification on improved MALT clearly demonstrates

that features that contribute to self-configuration have been enhanced and

now lie at a higher level compared to the baseline. Figure 9.28 illustrates

the application of level-based classification.

Realisation of Adaptation Strategy on MALT: The use case dis-

cusses the implementation of the adaptation strategy on MALT. This adap-

tation strategy realises the tools developed to capture information, con-

figure the system and execute functionality. In terms of the Adaptation

Strategy levels, the realised tools and their descriptions are as follows:

• High Level - Production System Coordination

– State Charts: Activates the self-configuration process. Initiates

information capture, configuration change, and functionality ex-

ecution through coordination of state machine actions.

– State Machine: Coordinates the functionality execution by in-

teracting with other layers. Groups state charts into stages to

292

9.4. EXPERIMENTS

Figure 9.28: Level Based Classification for Self-Configuration applied to
Multi-Agent & ML integrated MALT System. The features have been
significantly enhanced making MALT capable of self-configuration.

orient the state chart actions in a batch control behaviour.

• Mid Level - Production System Runtime

– Asset Administration Shell: Captures MALT information in

real-time. It is the digital footprint of the physical asset. The

AAS is used to represent the Configurable Object (MALT) in the

form of a module. State, configuration, requirement, and func-

293

9.4. EXPERIMENTS

tionality information is represented in submodels of the AAS.

The low-level layer uses this information to produce configura-

tion changes and execute leak test functionality as per require-

ment through a single source of truth guided by the high-level

coordination layer.

– CAEX Engine: Assists in querying information hosted in AAS

by providing an interface in the AAS structure of MALT. The

coordination level interacts with the AAS to find out the current

state of the MALT, the configuration and the current require-

ments. The high-level layer then induces the change, updates

requirements, and executes functionality through the low-level

layer.

– Tool Utility: Provides a means for the high-level layer to inter-

act with runtime and with the low-level control layer.

• Low Level Production System Drivers & Control

– MALT API: Hardware abstraction for the MALT. It provides a

means to interact with physical MALT. The coordination layer

uses this to change configuration or to execute functionality. The

runtime layer also uses this to query the current values/settings

and state.

The process of self-configuration for MALT leak test execution depends on

matching requirements with variables. This chapter discusses this in detail

and how these variables can be configured through the endpoint hosted in

the cloud.

The possibility of using a Generic Algorithm for CNP resource selection is

also discussed with each resource, representing MALT, configurable through

294

9.4. EXPERIMENTS

changing requirements in terms of functionality-driven variables. Multiple

possibilities are discussed here, to achieve self-configuration, that can be

explored as future research to achieve a smarter leak test functionality.

Limitations and Future Research: The experiments focused primarily

on volume-based configuration. Further research incorporating additional

part characteristics (e.g., complex shapes, and material variations) would

enhance the strategy’s versatility. The adaptation strategy considers static

parameters, and integrating real-time monitoring of ambient conditions

would further improve its ability to maintain optimal settings in dynamic

conditions. Exploring other machine-learning techniques could lead to bet-

ter precision in the self-configuration process.

This research offers advancement in the field of leak testing. The self-

configuration system streamlines leak testing processes, reduces errors, and

minimises downtime in manufacturing industries by automating and opti-

mising configuration.

9.4.2 PRIME

Introduction

This experiment validated the self-configuration strategy’s ability to dy-

namically adapt the force testing settings for the PRIME test station.

Specifically, they address the following:

1. Product Variability: This experiment tests the data and concep-

tual models developed in this research (Objective 1). By adapting

force testing parameters to different hinge assemblies, the experi-

295

9.4. EXPERIMENTS

ment will assess the ability of the adaptation strategy to capture and

utilise configuration information. It will also examine how well the

system can dynamically identify and adjust to these hinge assem-

blies, validating the configuration abstraction of the system elements

(Objective 2).

2. Dynamic Production Requirements: The experiment addresses

the system architecture objective (Objective 4). By evaluating the

system’s ability to maintain optimal configuration in the face of chang-

ing assembly configurations, the experiment will assess the modular-

ity and adaptability of the architecture.

3. Reduction of Expert Dependency: This experiment is designed

to validate the implementation strategy (Objective 5). By minimis-

ing the need for specialised knowledge in force testing, the experiment

will test the system’s ability to seamlessly adapt the force test set-

tings based on the defined configuration rules (Objective 2). This

will demonstrate the practical application of the identified enabling

technologies (Objective 3).

Application of Level-Based Classification on PRIME test station:

Level-based classification can be applied to force testing equipment, such as

a PRIME test station, to identify areas that need improvement for achiev-

ing self-configuration. The identified features, as shown in Figure 9.29, can

be enhanced through stage-wise transitions to enable the test station to

achieve self-configuration.

296

9.4. EXPERIMENTS

Figure 9.29: Level Based Classification for Self-Configuration applied to
PRIME test station

Capturing Information on PRIME Test Station:

The dynamic self-configuration is established for the PRIME test case as

changes made to the system AAS, through the CAEX Engine, is updated

using a configurable module interfaced with the physical system. The AAS

for the PRIME test station contains submodels, such as the “settings”,

“results”, “calibration” and “skill” submodels. The configuration settings

(i.e. variables, relationships, and constraints for PRIME force-test configu-

ration) of the PRIME test station for “force test” functionality are updated

297

9.4. EXPERIMENTS

through the CAEX Engine based on requirements captured through the

state charts. Figure 9.30 shows captured PRIME test station information

from CAEX Engine.

Figure 9.30: Capturing PRIME test station information from the CAEX
Engine

Representing Information in AAS:

The updating process for the AAS through the approach is driven by the

respective submodels, that are updated in the PRIME test station through

the interfaced configurable module. These submodels follow strict struc-

tural requirements for the interface to understand and update them in the

relevant AAS. This means that in the case of the PRIME test station, the

whole AAS may not be provided for updating the configuration. Figure

9.31 illustrates the AAS of the PRIME test station.

Tool Utility for Coordinating Force Test Functionality:

The tool generates a variable list and captures customer, functionality, and

part requirements, which are related to the variables of the configuration

298

9.4. EXPERIMENTS

Figure 9.31: AAS for PRIME test station

in the production system that need to be changed. The values for vari-

ables are queried through ML pipelines hosted at an endpoint, which are

then assigned to the production system for functionality execution. Fi-

nally, the deployment of the variables involves connection to the system

and deployment of the changed configuration, followed by execution of the

functionality.

For PRIME test station, as per state chart, “Activation ” leads to “Part

Recognition”. The identification of the part is dependent on the fixture

on which the part is clamped for the PRIME case. There exists a camera

on the setup that takes an image of the data matrix on the fixture and

relates it to the part, therefore acting as an identifier for the part being

force-tested. The force test functionality requirement revolves around the

type of part being tested, more specifically its assembly components. Each

hinge assembly has a different force test requirement. Along with the part

variation, there is a requirement of maximum force and the fore differen-

tial. Here, the variation is the customer requirement, maximum force is

the functionality requirement and force differential can be considered as

299

9.4. EXPERIMENTS

both the customer and functionality requirement. These requirements are

linked to the variable list, that needs to be configured. These variables are

matched to the requirements for the part being tested. The variable values

are queried through ML pipeline hosted in Google Cloud Environment and

updated on the PRIME test station as a configuration setting.

Experimental Methodology

Test Plan: A comprehensive plan was designed. The details of the plan

are as follows:

Objectives: Demonstrate configuration setting adaptation based on fixture-

product association (identified visually). Quantify improvements in pre-

dicting configuration wrt time and accuracy compared to the manual base-

line.

Force testing can be considered a means of determining the failure, break-

age, or actuation of a product. Manufacturers use this to determine the

ease or difficulty with which a product or aspects of the product can be

pushed, bent or compressed. This ensures the accurate functionality of the

product as it is used. Traditionally, force testing is carried out to ensure

product safety and performance along with verifying the likelihood of func-

tionality as per intended design and usage. Force tests on a product, if not

carried out, may affect the safety and acceptance of the product.

Force testing can be carried out through specialised equipment providing

force measurements from a product. These measurements can be the max-

imum force the product can handle, the minimum force to actuate the

product or the force range that is to be maintained on the product for

operation.

300

9.4. EXPERIMENTS

A force test may be carried out in various modes like amplitude (i.e. to

measure effect under a single force application), and periodic or increas-

ing/decreasing modes to ascertain whether the product still maintains func-

tionality and the presence of weakness in the product through continuous

load application occurring during the lifecycle. In a traditional manufac-

turing case, the force magnitude is displayed on an HMI for the test carried

out on a product. To get a more detailed understanding of the effect of

force on the product during test, typically, force measurements can be plot-

ted in a graph against other dimensions with an acceptance band. Failing

to fall in the acceptance band means that the product does not pass the

test for functionality.

The force test may be of static or dynamic nature. The static test involves

loading the product or applying force until the product reaches the desired

deformation level and ascertaining the behaviour of the product. This kind

of test is carried out to predict how a product reacts under force over a long

time period. Dynamic tests are carried out with force applied over time

periods/intervals to determine the product behaviour over said intervals.

The load can be kept the same or vary over the time periods. These kinds

of tests are usually carried out to predict product reaction to short-term

forces.

The test products consist of hinge assemblies of different configurations.

These hinge assemblies are subjected to force test requirements. The ex-

periment aims to validate the adaptation strategy by determining force

configuration settings for hinge assemblies under KPIs.

Test Case: The fixture is used to determine the most suitable test con-

figuration setting by associating it with the product. The tests main focus

301

9.4. EXPERIMENTS

is ensuring the adaptation strategy correctly identifies fixtures relating to

the product and sets the corresponding force test parameters. It should

demonstrate that the system can maintain consistent pass/fail outcomes

under constraints and do so efficiently in comparison to manual configura-

tion settings. The test case can be briefly detailed as:

• Fixture Identification: The system determines the fixture relating

to the product for which the test is to be performed.

• Force Range Adaptation: The system identifies the suitable force

configurations for executing the test on the product under test, i.e.

candidate configuration.

• KPI Constraint:The system identifies the most suitable configura-

tion setting based on KPI constraint. Here, in this experiment, it

is taken as the accuracy of the configuration setting for giving the

correct force.

• Configuration Adaptation: The system adapts the new configu-

ration setting based on KPI constraint from the candidate configura-

tion.

Performance Metrics: The test performed measured the time taken to

identify the fixture and determined the optimal force test parameters. Ac-

curacy of force parameters against expert-derived settings and the pass/fail

outcomes based on force test results.

Baseline Establishment The PRIME test station is configured for a

range of product variations and force tests performed. The configuration

time for each test by an expert, exact force test parameters used, and

302

9.4. EXPERIMENTS

Pass/Fail outcome are recorded. The average configuration times and force

test configuration by the expert are stored.

Cloud-based machine learning (ML) model is trained on fixture images and

deployed for analysis on an end-point. The architecture of the pipeline is

shown in figure 9.32 and the deployment detail with training is detailed

in figure 9.33. As more and more classifications take place the model is

improved. The classified images are sent to the pipeline for training with

every iteration. The cloud-based deployment of for identification of fixtures

relating to parts is used as the basis for agent-based decision-making.

Images ingested from the gateway device obtained by the camera module

are stored in the storage housed by the cloud platform. This event of image

storage acts as an event trigger that executes a script sending the stored

image to the machine learning service endpoint. The endpoint houses the

model that is determined by using NASNET, trained for the task and on

the dataset in GCP. At this endpoint, the image is labelled as per the

classification obtained by the trained, tested, and validated model. The

Figure 9.32: Architecture of the Cloud Based Machine Learning Pipeline
for Configuration Setting Detection.

303

9.4. EXPERIMENTS

labelled image is written to the message topic (OPC UA). This message

topic hosts the force configuration settings for the labelled image and trig-

gers another event that moves the labelled image with the force setting to

the predicted cloud storage, offering separate storage services for the force

setting categories classification. The identified force settings are loaded

into the production system through the PLC behaviours.

Figure 9.33: ML Pipeline Deployment. (a) Precision vs Recall against
identified part labels, for fixture identification. Precision is a measurement
of positive label assignment (ratio between the True Positives and all the
Positives) and recall is the measure of the model correctly identifying True
Positives. (b) Maximum confidence at Threshold = 0.5. (c) Dataset size
(total and test images). (d) Confusion Matrix representing True and Pre-
dicted Labels.

Validation

• Performance Comparison: Analyse predicted force configuration

settings against the baseline.

304

9.4. EXPERIMENTS

• Expert Review: A domain expert reviews the accuracy and opti-

mality of the strategy-generated force settings.

Experimental Setup

Hardware:

• PRIME test station

• Fixtures with variations in hinge assemblies

• Camera for fixture identification

• Beckhoff Control System

Software:

• Agent system

• CAEX engine

• Image-based classification ML endpoint (cloud-based)

• Connection mechanisms for ML endpoint output to the test station

(e.g., PLC control)

Experiments and Results

Goals: The goals for the PRIME test station experimentation, kept the

same as the MALT case study, are summarised as follows:

305

9.4. EXPERIMENTS

1. Configuration Capture: Capture the configuration settings for

force test functionality in terms of variables, relationships, and con-

straints through the information model, and CAEX engine. The cap-

tured information should be compliant with the AAS standard.

2. Self-Configuration Capability: Using the features identified dur-

ing level-based classification, incorporate self-configuration capability

by improving features.

3. Optimisation and Adaptation: Using adaptation strategy and

ML endpoint deployment, achieve self-configuration.

4. Agent System: Implement an agent system, as an enabler, for co-

ordinating with data pipelines to achieve self-configuration goals.

5. Cloud-Based Data Pipeline: Host data pipeline components in

a cloud environment (e.g., Google Cloud Platform) for better data

processing and coordination.

Procedure: Once a product’s order has been launched into the system,

the component moves through the conveyor until the camera module is

reached. Immediately, it takes a picture of the fixture and compares it

with an ML cloud-based classifier to determine the force test configuration

settings. The setting is updated on the system and the functionality is

executed.

The experimental setup, as seen in figure 9.36, includes services employed

in a cloud environment, agent resources, and deployed physical resources.

The camera module is connected to the Cloud-Based Machine Learning

Pipeline. The functionality employed by cloud-based services is of visual

quality inspection for determining force test configuration for the force test

station.

306

9.4. EXPERIMENTS

Figure 9.34: Sequence diagram for the force-test use-case incorporating
image oriented configuration setting.

The sequence diagram as per figure9.34 shows the interaction between prod-

ucts, transportation assets, monitoring elements, and resources. It assumes

that the agents have been already launched.

Product Agents (PA) guides the sequence of the processes of creating

a product by requesting the skills (functionalities) from other agents to be

performed on the physical product instance. This request of skills could

vary depending on the product requirements and the skills required to cre-

ate the product (i.e. functionality requirements) . In the PRIME test case,

this is the “force test” functionality.

Transport Agents (TA) execute the skills requested by the PA to move

the product to the required resources and to inform the current position of

the product to PA. The TA also considers the buffers and potential bottle-

necks that might arise before executing its skills.

Resource Agents (RA) represent shop-floor resources (such as machin-

ing centers, robots, sensors, cameras, test stations). RAs can provide their

availability, task status info, and resource information as per request.

Monitoring Agents (MA) doesn’t have a physical entity associated with

it but utilizes the skills provided by RAs if required (e.g. image capturing

307

9.4. EXPERIMENTS

skills from a camera RA). The MA offers the cloud computing functionality

as skills if required for configuration setting prediction. For example, PA

requests MA to perform a skill of configuration setting prediction of the

product associated with it. MA if required, requests RA to perform its

skill (e.g. take a photo of the product). MA then uses a cloud platform for

decision-making and informs PA about the force configuration setting for

the product.

Agent programming is implemented with the JADE (Java Agent Devel-

opment Environment) platform like the previous use case (MALT). The

agents deployed in JADE use cloud-based classification input generated by

vision model trained on the dataset (for fixture identification), as input

leading to further actions. All the actors in the production environment

are controlled by means of agents.

ML endpoint triggered through PLC behaviours provides the force settings

after the image of the fixture is captured by the camera on the PRIME test

station.

Expression for Force Test Functionality Execution: The product

Agent looks for skills required for force testing based on the “operational”

expression. The “operational” expression lists down the skill required by

the product being tested along with the sequence of execution of those

skills. For the PRIME test case, the Operational expression is given as:

T = Cϕ AllSetFalse.Cpick PickObject.CdropDropObject.Cscan ScanPart.

Ctestside ToTestSide.CexecExecuteFunctionality.ReturnPart.T

(9.5)

308

9.4. EXPERIMENTS

The agents execute the skills in these manners through the PLC Call trig-

gers. If conditions are accompanying the trigger calls, then these are satis-

fied first through the respective “conditional” expressions. In the PRIME

case, these conditional expressions are stored locally at the PC connected to

the PRIME test station. A few example of these conditions are as follows;

Cpick := input TransferCylinder A = True (9.6)

Cdrop := input TransferCylinder B = True (9.7)

These condition present the states of the mechanical components that must

be satisfied for the functionality to execute in the illustrated sequence. As

this sequence is executed, the part is tested and returned to the shuttle on

the same fixture.

Executing Force Test Functionality: Figure 9.37 shows the execution

of the self-configuration strategy on the system and sequence diagram, as

per figure 9.35, the agent system interaction. It demonstrates the product’s

entry, transportation, self-configuration of the manufacturing system, test

execution through agent coordination, and product transportation after

testing. Additionally, a configuration change in the manufacturing system

before and after execution can be observed in the corresponding figure 9.38.

Results:

Validation of Adaptation Strategy on PRIME Test Station: This

approach provides a means to adapt PRIME to product, process, and KPI

309

9.4. EXPERIMENTS

Figure 9.35: Sequential diagram for functionality execution on the PRIME
test station.

Figure 9.36: PRIME experimental setup involving teststation, two robots
and a shuttle on rail.

requirements. As an advantage, this approach assists in achieving self-

configuration for force test functionality on the PRIME test station by

updating configuration specific to requirements. Figure 9.39 provides a

comparison of the configuration achieved through the deployed approach

and the configuration derived without it.

A hinge assembly was presented to the system as a test part, and then force

configuration settings were determined by the system and the expert. The

time taken by both to read the optimal test configuration under constraint

310

9.4. EXPERIMENTS

Figure 9.37: The force test functionality execution on PRIME. The robots
and the test station are allocated respective locations. The agent system
routes the part to the test station where depending on the fixture the part
is identified and the force test configured.

Figure 9.38: Configuration change in the PRIME test station (a) before
(b) after detecting the part.

was recorded. The adaptation strategy was able to configure and execute

the functionality in 0.2 sec in comparison to an expert that took 1500 sec

respectively.

Figure 9.39 demonstrates the application of self-configuration on a test part.

311

9.4. EXPERIMENTS

Figure 9.39: Validation of Adaptation Strategy for force test functionality
on PRIME. The time taken to determine a valid configuration is signif-
icantly less through the research approach in comparison to an Expert.
Also, the approach allows updating this configuration automatically, while
the expert has to enter the values manually.

The same configuration was figured out in a significantly longer duration

and fed back to the station externally so that part could be evaluated. This

was carried out in an academic setting on the PRIME assembly system,

providing a clear improvement and significant cost-saving.

Mapping to Research Questions: The implementation is mapped to

the research questions established of the research project as per figure 9.40.

Figure 9.40: Mapping project research questions to PRIME test station
Use-Case Implementation

312

9.4. EXPERIMENTS

Overall Findings

The result of the PRIME for test experiment validate the research by

achieving its objectives in the following manner:

1. Theoretical Foundations: The adaptation of the force test system

to the different hinge assembly and utilisation of data to determine

configuration settings demonstrates the usefulness of the developed

data and conceptual models.

2. Configuration Abstraction: The adaptation and force test func-

tionality execution under changing hinge assemblies validate the ab-

straction developed for the configuration and the self-configuration

logic.

3. Enabling Technologies: The reduction of expert dependency for

determining force test settings and the implementation of adaptation

strategy through the developed tools confirms the usefulness of en-

abling technologies for self-configuration in the PRIME test station.

4. System Architecture: PRIME test station module and adaptabil-

ity to suit the force test requirements show the ability of the system

to adapt for functionality execution based on the developed architec-

ture.

5. Implementation Strategy: The self-reconfiguration of PRIME force

test station for force testing and reduced expert reliance validates the

implementation strategy.

Level-Based Classification on MultiAgent andML Integrated PRIME

Test Station: Applying level-based classification on improved PRIME

313

9.4. EXPERIMENTS

test staion clearly demonstrates that features that contribute to self-configuration

have been enhanced and now lie at a higher level compared to the baseline

(see figure 9.41).

Figure 9.41: Level Based Classification for Self-Configuration applied to
Multi-Agent & ML integrated PRIME test station. The features have been
significantly enhanced making MALT capable of self-configuration.

Realisation of Adaptation Strategy on PRIME Test Station: The

implementation of an adaptation strategy for the PRIME test station is

discussed in this use case. The strategy incorporates a range of tools to

314

9.4. EXPERIMENTS

capture information, configure the system, and execute functionality. These

tools are classified into different levels within the Adaptation Strategy, each

serving a specific purpose. Their descriptions are as follows:

• High Level - Production System Coordination

– State Charts: State charts are utilized to initiate the self-

configuration process and facilitate information capture, con-

figuration changes, and functionality execution.

– State Machine: The state machine, operating within this level,

groups the state charts into stages to enable effective coordina-

tion with other layers and facilitate batch control behaviour.

• Mid Level - Production System Runtime

– Asset Administration Shell: The Asset Administration Shell

(AAS) plays a crucial role in capturing real-time information

about the test system. Serving as a digital representation of

the physical asset, the AAS represents the Configurable Object

(i.e. PRIME Station) through submodels that encompass state,

configuration, requirement, and functionality information. By

utilising the AAS, the high-level coordination layer can ensure

a single source of truth, enabling smooth configuration changes

and execution of force test functionality through the low-level

layer.

– CAEX Engine: The CAEX Engine provides an interface to

query information hosted in the AAS, enabling the coordination

layer to access the current state, configuration, and requirements

of the test system.

– Tool Utility: Provides a means for the high-level layer to inter-

act with runtime and with the low-level control layer.

315

9.4. EXPERIMENTS

• Low Level Production System Drivers & Control

– PLC Control: The PLC control serves as a hardware abstraction

layer that facilitates interaction with the physical test station.

Through the PLC control, the coordination and runtime layers

modifies configurations, execute functionality, and retrieve real-

time values and state information. These interactions at the

low level contribute to the overall self-configuration process for

force-test execution.

By configuring resources, which represent the test system, based on chang-

ing requirements related to functionality-driven variables, the self-configuration

process can be further improved.

By implementing this adaptation strategy, the PRIME test system benefits

from a hierarchical arrangement of tools across different levels of production

system coordination, runtime, and drivers/control. This approach ensures

effective information capture, configuration changes, and functionality ex-

ecution. Through the use of state charts, a state machine, the AAS, the

CAEX Engine, and the PLC control, the test station achieves enhanced

self-configuration capabilities.

Limitations and Future Research: The adaptation strategy identi-

fied fixtures using images captured, relating it to the product and adjusted

force test parameters accordingly. This demonstrates the ability to auto-

mate configuration based on the specific product variations being tested.

The experiments primarily focused on fixture-based configuration. Further

investigation of additional part features (e.g., shape, holes etc.) would

expand the prediction capabilities. The strategy can be expanded to in-

clude the possibility of real-time monitoring of equipment states for even

316

9.5. CONCLUSION

more robust configuration in dynamic environments. Exploring more image

processing and machine learning techniques could enhance fixture identifi-

cation accuracy.

This research signifies advancements in force testing within manufacturing.

By automating the configuration process based on fixture identification,

the self-configuration system aims to streamline force testing operations,

improve accuracy, and reduce reliance on specialised expertise.

9.5 Conclusion

In this chapter, the implementation of the adaptation strategy developed

in the previous chapter is discussed. This implementation is a critical step

in realising self-configuration capabilities in two industrial use cases. The

primary goal of this chapter is to validate the research conducted within

the scope of this PhD thesis, and the work aligns closely with the research

objectives established in Chapter 3. Respective sections in this chapter

relate to the contribution each use case makes to these objectives.

The validation process focuses on two specific industrial use cases: the

Multi-Application Leak Test (MALT) and the PRIME test station. MALT

is a leak test module developed by the SME (TQC Ltd.), designed to

test parts for leaks under pressure. Changes in part features, functional

conditions, or any constraints can necessitate adjustments to the test con-

figuration. The self-configuration application for MALT aims to assist in

adapting the test configurations to accommodate these changes. MALT

can be applied in various settings, whether as part of a larger production

system or as a stand-alone tool.

317

9.5. CONCLUSION

The PRIME test station, on the other hand, is used to apply force to

a part to assess its deformation characteristics. Similar to the MALT use

case, variations in part features, functionality conditions, or constraints can

lead to changing test configuration requirements. The PRIME test station

is just one component within the broader PRIME assembly system, and

the self-configuration application here aims to automatically determine the

force test configuration settings for each part.

The research conducted in this chapter represents a contribution towards

enhancing the adaptability and flexibility of industrial testing processes.

Self-configuration, as applied to these specific use cases, has the potential

to streamline testing operations, improve the ability to adapt to changing

conditions and product variations, and reduce the dependency on expert

knowledge for configuring these complex testing systems.

Currently, this research work that integrates self-configuration capability

into production systems is at the forefront of research. This realisation

is carried out in an industrial setting to test applications in manufactur-

ing, to the knowledge of the author, has not been done in either research

or industry. This enhances the value of this research towards the field of

self-configuring production systems. The application of this research in

the industrial was quite challenging, as each feature of self-configuration

needed to be developed and integrated into production systems. As both

use cases were industrial equipment, care had to be maintained on not af-

fecting functionality over the objective of achieving self-configuration. En-

hanced interoperability between manufacturing assets, granularity defined

for functionality, and smart controllers in production systems by manufac-

turers can make it easier for more systems to achieve self-configuration by

following the proposed adaptation strategy. Simplicity in adaptation can

be achieved as more systems are made capable of self-configuration and

318

9.5. CONCLUSION

tools become more standardised/adopted.

9.5.1 Potential Cost Saving by Adaptation Strategy:

To further validate the argument, a small study at the industrial partner

(TQC Ltd.) was carried out. The associated configuration cost for the

production systems that they deploy for their customers was found. These

costs form a significant percentage of total project costs. The time as-

sociated with the configuration operation also contributed to the project

time. By adopting a self-configuration strategy in their existing business

model, this time and costs can be saved for significant profit. A simple plot

demonstrating the value utilisation potential can be seen in figure 9.42 and

figure 9.43.

Figure 9.42: A practical example from TQC (Industrial Partner) on config-
uration costs incurred in respective projects. This presents a potential for
value utilisation by self-configuration strategy, reducing these costs during
deployments.

319

9.5. CONCLUSION

Figure 9.43: A plot demonstrating the value utilisation potential on indus-
trial partner data by adaptation strategy.

320

Chapter 10

Conclusion

321

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

Contents

10.1 Research Questions and Contributions 322

10.2 Summary of the Findings 328

10.3 Outputs, Implications, and Novel Findings 334

10.4 Limitations . 336

10.1 Research Questions and Contributions

The current trend in manufacturing research revolves around incorporat-

ing entire systems with intelligence while assuming the capabilities of con-

stituent manufacturing assets based on input and output needs. This study

contributes by focusing on self-configuring production systems, incorporat-

ing intelligent components. These intelligent components address limita-

tions of previous assumptions, enabling them to adjust to meet product,

customer, and system requirements.

In this research, the focus is on addressing the configuration change in pro-

duction systems associated with a change in system settings. This change

involves updating the physical parameters along with variations in cali-

bration and connection settings. Time constraint conditions, performance

criteria or other KPIs may motivate this configuration change in produc-

tion systems. The product can be operated on by the production system

with different configurations depending on these circumstances.

In Chapter 1 of this thesis, the Research Question (RQ) is framed as:

How to achieve self-configuration in production systems at the

machine level?

322

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

In Chapter 1, this RQ was further elaborated and divided in terms of the

specific research questions:

• Theoretical Foundations: What theoretical models are needed to

underpin the concept of self-configuration in production systems?

• Adaptation Strategy: How can a general adaptation strategy be

developed to integrate self-configuring COs into production systems?

• Technology, Tools, and Techniques: Which technologies, tools,

and techniques best facilitate self-configuration and leverage opera-

tional data for iterative improvement?

• Implementation: How can this approach be implemented in a real-

world scenario involving a product within the production system?

• Business Objectives: How can business objectives be translated

downstream to guide the self-configuration process at the production

system level?

Figure 10.1 provides details of research contribution towards research ques-

tions. These are;

Theoretical Foundations: To address the “Theoretical Foundations” of

self configuration in production systems, features of self-configuration were

identified. The concept of self-configuration in manufacturing is further

strengthened by presenting an idea of components in production systems

that can be adapted (i.e. configured) to meet requirements, referred to as

“Configurable Objects”.

323

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

Figure 10.1: Contributions of the research towards the research questionss

Adaptation Strategy: Development of the “Adaptation Strategy” for

self-configuration was achieved iteratively. Through the literature, features

of self-configuration were identified. These features were mapped to the

system through a classification model. This model can then be used to

transition to a complete, self-configuring production system by evaluating

the features for self-configuration readiness.

To frame an “Adaptation Strategy” a fundamental direction was to estab-

lish a case for granularity and modularity in production systems. In this

research to develop an approach for self-configuration, it was necessary to

define some separation of concern. It was essential to determine how to split

the elements of production systems so that these splits could be treated as

324

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

one entity to be configured.

A case for defining this separation of concern was presented. The granular-

ity is defined in the production system in terms of the functional decompo-

sition style. This research bases that modularity is linked with granularity,

each module is dependent on a careful assessment of the physical and cyber

components. This module is a structured representation of the configurable

object. These configurable objects execute functionality as per their config-

uration settings. The self-configuration adaptation loop, in the Adaptation

Strategy, processes the configuration change through Module Driven Con-

figuration.

In the Module Driven Configuration chapter, the concept of the module

is elaborated, with a focus on configuration driven by functionality sub-

jected to constraints in production systems. In this realisation of self-

configuration, a module consists of variables, and the associated function-

ality rules and variable rules. These configuration settings are updated on

the system through allocation and link. A model to capture the configura-

tion information is provided. The captured information is related to Asset

Administration Shells representing functionality operation as a submodel

in AAS. The modules can be combined to form a production system where

each module is responsible for the functionality, requiring variable config-

uration change and governed by rules. This kind of production system is

presented as a Module-Based System.

The proposed Adaptation Strategy, a three-level architecture, operates

through integration with CAEX Engine. The above-mentioned contri-

bution on Module Driven Configuration forms the Adaptation Strategy’s

Mid-Level (i.e. Production System Runtime) layer. The high-level (i.e.

Production System Coordination) layer deals with the coordination of the

325

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

state chart functionality in terms of state machine behaviours. This layer

uses the information stored in the Production System Runtime model for

coordination. The requirement captured in this layer can be used to adapt

functionality configuration settings, achieving self-configuration. The low-

level (i.e. Production System & Control) layer provides an interface to the

production system. It interacts with the runtime layer, accessing infor-

mation stored to update system configuration and executing functionality.

This layer can also provide an interface to the service observers and actors,

accommodating the need for monitoring and interaction with external ser-

vices (e.g. cloud pipelines).

Tools and Techniques: In this research, various tools have been

adopted and applied to address each layer of the Adaptation Strategy.

Realised tools and their descriptions are as follows:

• State Chart: Responsible for self-configuration process activation.

The coordination for the execution of functionality is carried out

through state-machine actions.

• State Machine: The state machine groups state charts into stages,

orienting the state actions into behaviour.

• Asset Administration Shell: Captures production system informa-

tion in real-time. Acts as a digital footprint of the asset and the

runtime to assist the configuration change by interacting with other

layers. State, configuration, requirement, and functionality informa-

tion is represented in submodels of the AAS.

• CAEX Engine: Assists in querying and updating information hosted

in AAS by providing an interface in the AAS structure.

326

10.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

• Tool Utility: A tool for interaction between layers of adaptation strat-

egy.

• Control: Hardware abstraction for the production systems. Provides

a means of interaction with the physical system.

Implementation: The developed adaptation strategy is applied to MALT

and PRIME test station use cases. This application demonstrates valida-

tion of the developed strategy to achieve self-configuration for testing func-

tionalities. Based on KPIs, constraints, and requirements, a configuration

setting is determined by the deployed self-configuration strategy in these

production systems for test functionalities.

Business Objectives: The industrial surveys were carried out to gather

knowledge/insight on self-configuration. Detail on the industrial surveys

is presented in Chapter 4. This was done to establish an understanding

towards the level of self-configuration (if any) capability present in the

current production system on the shop floor.

Configuration change was formulated and discussed by updating the vari-

ables through endpoints hosted in the cloud. The possibility of using a Ge-

netic Algorithm for CNP resource selection is also discussed, with each re-

source configurable through changing requirements in terms of functionality-

driven variables. This research provides integration with business objec-

tives through this approach.

An illustration of contributions related to chapters in the thesis can be seen

in table 10.1.

327

10.2. SUMMARY OF THE FINDINGS

Table 10.1: Contributions to the Research Related to Chapters in the The-
sis

Contributions Chapters

Module and Configurable Object Concept Chapter 4 & 6
Level-Based Classification Chapter 5
Case of Granularity and Modularity Chapter 8
Module Driven Configuration Chapter 6
Standard Configuration Model Chapter 7
Adaptation Strategy Architecture Chapter 8
State Charts for Self-Configuration Chapter 8
Expressions, Agent Systems & ML Endpoints for
Self-Configuration

Chapter 8

Tool Utility Chapter 8 & 9
MALT Leak Test Use Case Implementation Chapter 9
PRIME test case Implementation Chapter 9
Industrial Insight Surveys Chapter 4
KPI Integration and Resource Selection for Self-
Configuration

Chapter 8

10.2 Summary of the Findings

This thesis presents the extensive research efforts and their practical ap-

plication in the industrial domain in regard to self-configuring production

systems. In this section of the thesis, the theoretical contributions along

with practical implementation are listed, providing a comprehensive per-

spective on the research carried out. This section demonstrates the action-

able insight and solutions applicable to industrial practices. The research

carried out in this thesis can be summarised by the following details:

• The Need for Self-Configuration in SMEs: A Survey & Busi-

ness Model: A survey to capture industrial insight on self-configuration

was carried out. A potential business model taking advantage of the

introduction of self-configuration capability in existing systems was

presented. Thesis Chapter: 4

• Level-Based Classification for Self-configuration in Produc-

328

10.2. SUMMARY OF THE FINDINGS

tion Systems: A level-based classification system was developed,

as seen in figure 10.2 to classify the self-configuration capability in

the existing production systems in terms of its features. These fea-

tures are categorised into System Readiness and System Execution.

A stage-wise transition is presented using which the mapped features

in the system can go from system readiness to system execution cat-

egory, achieving self-configuration. Technical enablers are also eval-

uated. Thesis Chapter: 5

• Module Driven Configuration: A general framework for Self-

Configuration: Representation of a production system in terms of

its modules was carried out, as seen in figure 10.3. Modules are struc-

tured representations of Configurable objects (COs). These modules

consist of variables driven by functionality, subject to constraints

(functionality and variable rules). These COs execute functional-

ity as per the configuration settings. Module Driven Configuration

processes the change in configuration settings. These settings are up-

dated on the production system through Allocation and Links, which

form part of the Module. A way of capturing information in a mod-

ule is presented. A module is an embodiment of the separation of

concern in production systems. Each module encapsulates a func-

tionality, linking all physical and cyber components into one. The

approach in this contribution can be applied to a variety of applica-

tions in manufacturing. Thesis Chapter: 6

• Adaptation Strategy for Self-Configuration in Production

Systems: An Adaptation Strategy, as seen in figure 10.4, was devel-

oped that presented a layer-based approach to achieve self-configuration.

The interaction between layers utilised runtime to capture production

system information in real time (i.e. in the form of AAS). The top-

329

10.2. SUMMARY OF THE FINDINGS

Figure 10.2: Level Based Classification for Self-Configuration and Mapping
to Production System.

level coordination layer used the information captured in the runtime

to coordinate the execution of functionality through state machine

behaviour. The middle-level production system runtime layer cap-

tures information about production systems in terms of configurable

objects. The low-level layer updates the configuration and executes

functionality in the production system. The low-level layer provides

330

10.2. SUMMARY OF THE FINDINGS

Figure 10.3: An illustration of a Module-based system having two modules
hosting functionalities M1 and M2.

an interface to the system by interacting with the runtime and coor-

dination layers. Thesis Chapter: 8

Figure 10.4: The developed Adaptation Strategy with supporting tools at
a Glance.

• Deploying State Charts to State Machines for Production

Systems to achieve Real-Time Control: This contribution in-

volves self-configuration process activation, information capture, con-

figuration change and functionality execution control for coordina-

tion. The state chart actions are grouped into state machine stages.

These stages are operated in a batch control behaviour. In this con-

331

10.2. SUMMARY OF THE FINDINGS

tribution, a means of event-driven coordination of real-time control

in production systems is provided. Thesis Chapter: 8

• AGeneralisedWorkflow For Self-applications Based On Cloud-

computing For Production Systems: Each functionality in the

production system presents a requirement of variables that need to be

configured. A generalised framework for providing machine learning

capability for predicting the values of these variables in a config-

urable object is presented. In this research, a generalised workflow

is provided for applying machine learning to production system self-

applications. The mentioned workflows provide a basis for possible

integration with machine learning services. These ML services can

be hosted on the cloud, making it possible for low-powered industrial

devices to use ML-assisted decision-making capability. This is carried

out for a self-configuration use case, but it can be expanded to other

“self-*” applications. Thesis Chapter: 8

• Application of Multi-Agent Systems for Testing Applica-

tions: An approach to control functionalities through agent systems

was developed. The concepts of “Operational Expression” and “Con-

ditional Expression” are introduced. These expressions provided a ba-

sis for configuration updates to meet the functionality requirements.

The operational expressions deal with “what” to do to execute func-

tionality, and the conditional expression elaborates on the “how” to

execute functionality. The integration of the expressions allows agents

to execute event-driven behaviours (e.g. PLCs) and work with the

State Machine for the self-configuration process. Thesis Chapter:

8

• Cloud Based Decision-Making for Multi-Agent Production

Systems: An cloud-based integration of ML pipelines for decision-

332

10.2. SUMMARY OF THE FINDINGS

making in a multi-agent production system environment. A method

was developed where the images taken of the product can be used

to query the configuration settings. These configuration settings can

then be updated before executing the functionality of the production

system. Initially done for quality control applications, this contribu-

tion can be expanded to load configuration to meet other KPI (e.g.

time, and cost) requirements. Thesis Chapter: 8

• Service Based Approach to Asset Administration Shell for

Controlling Testing Processes in Manufacturing: An inte-

grated approach was developed that used services to control the func-

tionalities of the production system by deploying Asset Administra-

tion Shells. The AAS approach was used to incorporate intelligence,

and context awareness in the production systems. The contribution

was applied to an industrial test case but can be expanded to be ap-

plied to other cases. This contribution provided validation of using

agents (as services) with AAS towards configuring the system to meet

requirements on functionalities. Thesis Chapter: 7 & 8

In the industrial use-case validation of the research, the following contri-

butions are observed:

• Simulated Environment: A simulated environment was developed

that can work with agent systems and AAS. This simulated environ-

ment works with ML services hosted in the cloud for decision-making.

Such an environment assisted in simulating multiple scenarios like

resource allocation, time, and cost along with business priority ob-

jectives. Using the developed simulation environment, the impact of

decisions can be illustrated for CNP and GA algorithms. Thesis

Chapter: 9

333

10.3. OUTPUTS, IMPLICATIONS, AND NOVEL FINDINGS

• MALT Leak Test System: Leak test application was studied with

a focus on self-configuration. The product volume and test pressure

were taken as input, and all other configuration settings were deter-

mined through the developed Adaptation Strategy. It is measured

that such an approach saves time and effort in setting up configura-

tion settings to meet product and leak test requirements. A potential

configuration was achieved in a relatively short time period and then

can be tweaked or agreed upon by the experts. With the increasing

demand for customisation, such an approach that configures systems

itself is beneficial in saving time and cost. Thesis Chapter: 9

• PRIME Test Station: In the PRIME case, force testing of the

product was linked with the image recognition of the fixture. The

image captured was related to product identification and determin-

ing a configuration for the force test. This approach can be used to

integrate ML services on the cloud to find out the best optimum con-

figuration settings through image recognition of the fixture in place.

This makes the approach applicable to a variety of industrial appli-

cations. Thesis Chapter: 9

10.3 Outputs, Implications, and Novel Find-

ings

This research into self-configuring production systems has yielded several

key outputs with significant implications for the field of manufacturing:

Adaptation Strategy for Self-Configuration: A core output is a

multi-layered strategy facilitating self-configuration in production systems.

334

10.3. OUTPUTS, IMPLICATIONS, AND NOVEL FINDINGS

The strategy incorporates a high-level coordination layer, runtime informa-

tion captured in AAS, and a low-level control layer with hardware abstrac-

tion. This framework provides a structured approach to making manufac-

turing systems more adaptable.

Module-Driven Configuration: The research introduced the concept

of module-driven configuration as a means of organising production sys-

tems. This modular approach groups system components by functionality

while maintaining flexibility and granularity. It enables easier reconfigura-

tion based on evolving requirements.

Tools for System Assessment and Configuration: To assist in adapt-

ing this framework within industry settings, practical tools were developed.

These include a classification tool to assess production systems’ readiness

for self-configuration and a CAEX Engine for interfacing with and updating

Asset Administration Shells of individual components or systems.

Interoperability in Production System: This work underscores the

critical importance of interoperability in production systems. The research

demonstrated how Asset Administration Shells (AAS) can enable standard-

ised information exchange between components from different manufactur-

ers.

Security Considerations: The adoption of AAS raises valid concerns

about intellectual property protection. The research highlights the need to

balance information accessibility with security protocols such as selective

submodel sharing or rights-based access control. This will be a target for

future work.

335

10.4. LIMITATIONS

Integration of Machine Learning: This research introduces a work-

flow for deploying machine learning endpoints in self-configuration applica-

tions. This workflow allows for automated configuration updates, reducing

manual intervention, especially for edge devices.

Novel Findings This research presents several novel insights for the field

of self-configuration:

1. The Link Between Real-Time Control and Self-Configuration:

The ability to dynamically update process variables and execute func-

tionality through hardware abstraction is essential. Robust hardware

abstraction, including context awareness capabilities, emerged as a

key factor in enabling true self-configuration behaviour.

2. The Importance of Functional Decomposition: For effective

module-driven configuration, production assets need to be function-

ally decomposed. Representing these functions using AAS submodels

is critical for successful integration.

3. Insights from Industry Surveys: Surveys conducted in this re-

search confirmed an existing infrastructure in many manufacturing

environments, along with the need for self-configuring systems. Yet,

the lack of knowledge, training, and expertise hinders their ability to

achieve self-configuration.

10.4 Limitations

In this research, it is observed that there exist certain limitations and chal-

lenges that must be addressed, as shown in figure 10.5, to understand and

336

10.4. LIMITATIONS

leverage the potential of research fully. These limitations can arise from

the complexity of the functionality and the system, standardisation in the

systems and lack of practical implementation cases in domains. These lim-

itations establish the scope of future work and the potential impact such

research will generate. The limitations of this work are as follows:

Figure 10.5: Limitations of the research. More detail on this is expanded
on in this section.

1. Methodological Limitations: The self-configuration adaptation

strategy relies on capturing state information. The module function-

ality is the transition from one state to another in the self-configuring

process.

State Information

337

10.4. LIMITATIONS

Affected Contribution: Deploying State Charts to State

Machines for Production Systems to achieve Real-Time Con-

trol & Adaptation Strategy for Self-Configuration in Pro-

duction Systems.

Limitation: The information on states must be captured along

with complete detail on the module, representing function-

ality. The developed approach has a requirement of contex-

tual awareness.

Proposed Solution: Amonitoring mechanism must be present

that infers meaning from state transitions.

Modularisation

Affected Contribution: Module Driven Configuration: A

general framework for Self-Configuration & Adaptation Strat-

egy for Self-Configuration in Production Systems.

Limitation: The developed approach promotes operations in

the form of functional modules. These modules require

interfaces to each other and between layers of adaptation

strategy. Depending on the module, the information ex-

change between interfaces can be quite varying and infre-

quent.

Proposed Solution: A careful design of communication strat-

egy and interface consideration is required to operate a dis-

tributed production system setting.

2. Generalisability: The approach is applied as use-cases to leak test

system configuration and vision system guided force test configura-

tion. The approach has been envisioned to apply to generalised man-

ufacturing systems, but this does cause some potential issues.

338

10.4. LIMITATIONS

Decomposability

Affected Contribution: Module Driven Configuration: A

general framework for Self-Configuration

Limitation: A problem in this approach is that for achieving

self-configuration, the configurable object needs to be de-

composed to granular levels. The granularity can be broken

down to the very basic physical entity of the system. This

becomes a problem, as the approach warrants that variables

that represent configuration be given a definition. In this

approach, it is proposed that every CO is a module that

brings functionality having requirements of variables that

need to be configured. For this solution to be generalised,

the functionalities should be encapsulated in well-formed

modules. There also must be interfaces between modules

so that variables may interact under constraints (e.g. func-

tionality rules). To have such kind of module structure, it

is necessary to have complete knowledge of the production

operation that the system needs to perform (i.e. giving vari-

ables) and the CO in the system that needs to work together

to execute the production system operation. One main lim-

itation to this is the lack of information for encapsulating

the variables to a functionality module and the presence of

the interfaces that ensure communication and connection.

This also requires distributed control through state tran-

sitions by accessing functionality modules. A centralised

control mechanism that follows a sequence program can not

be self-configured using this approach.

Proposed Solution: Functionalities encapsulated in well-formed

339

10.4. LIMITATIONS

modules, all variables of the functionality defined and inter-

face present.

3. External Factors: This approach relies on information represented

for functionality in the form of modules. There can be factors that in-

fluence information capture to represent the functionality completely.

Information Limitation

Affected Contribution: Adaptation Strategy for Self-Configuration

in Production Systems

Limitation: There can be cases where the manufacturer of

the system/product limits the information capture. This

hinders the self-configuration approach as the variable in-

formation becomes restricted and state actions cannot map

the requirements to variables.

In the case of the Adaptation Strategy, the approach re-

quires an interface between functionality modules to the

respective production system. This will require that each

functionality in terms of variables can have its configura-

tion updated on the system in real-time. So there is a need

for having real-time control of the functionality modules on

the production system.

Proposed Solution: RTC comes in the form of a production

system-specific API or PLC program. The feature of RTC

is dependent on the manufacturer supplying the production

system.

4. Composition: This research involves the use of modules as building

blocks for the production systems. The execution of the functionality

of the production system will involve multimodule interactions based

340

10.4. LIMITATIONS

on rules. The introduction of new modules is also a possible limitation

factor.

Module Rules

Affected Contribution: Module Driven Configuration: A

general framework for Self-Configuration

Limitation: The modules consist of variables based on the

functionality (i.e. of the module). To execute system func-

tionality, the interaction between variables may be permit-

ted subject to constraint rules (e.g. functionality rules).

The composition requirement, in this case, is that the rule

must be enabled, and an interface must exist between the

variables. It can be said that in a production system com-

posed of modules, the interaction is enabled between two

or more variables present in different modules through rule

constraint and the value taken by the variable is related to

the constraint binding the variable.

Proposed Solution: Rules and constraints for all modules

must be defined at the design stage.

Introducing Modules

Affected Contribution: Module Driven Configuration: A

general framework for Self-Configuration

Limitation: A limitation can be in the introduction of new

modules, bringing additional functionalities, to the produc-

tion system. The composition can execute the behaviour of

the production system under underlying constraints. Each

new functionality will be represented with a module, intro-

ducing a set of variables under constraint. This composition

341

10.4. LIMITATIONS

of the production system relies on the variable and function-

ality rules.

Proposed Solution: Variable rules that confront the variable

logic in respective modules and functionality rules represent-

ing rule logic and constraint on variables must be defined

for the production system aggregate to operate.

5. Production System Decomposition: This approach assumes care-

ful consideration of the modularity, defining the granularity level in

the production system to meet all the functional requirements. This is

necessary as this approach defines a module that performs a function-

ality and is a complete-structured representation of the Configurable

Object.

Module Definition

Affected Contribution: Adaptation Strategy for Self-Configuration

in Production Systems

Limitation: If consideration is not given to careful module

definition, then unbounded structural decomposition aspects

may result in a decreased performance, as there may be a

physical obstruction or information being processed at dif-

ferent granular levels. This will result in inconsistency in

the behaviour of the production system.

Proposed Solution: Careful module definition is necessary

at design stage.

6. Module Boundary and Actuation Scope: This approach con-

sists of modules, each responsible for certain functionality, connected

through simple interfaces forming a production system.

Module Boundary

342

10.4. LIMITATIONS

Affected Contribution: Module Driven Configuration: A

general framework for Self-Configuration

Limitation: In current production systems, it is observed that

the automation solutions’ integral design generally max-

imises the production system’s performance but lacks mod-

ularisation, enlarging the scope of action of the automation

solution and misaligning it with physical components. This

causes configuration settings to affect a large section of the

production system, along with any failure. This may be

coupled with other limitations of the presence of unstruc-

tured granularity, causing interaction between components

at distinct abstraction levels, and creating inconsistencies in

the behaviour of the system.

Proposed Solution:To define a module, it is necessary to

consider the overall boundary of the production system, the

manufacturing asset (that form the system) boundaries, and

the respective mechatronic interfaces.

7. Control Strategy and Path: This approach provides a means of

self-configuration at the functionality level. This means that there

exists a distributed control in this approach to self-configuration.

Control Behaviour

Affected Contribution: Adaptation Strategy for Self-Configuration

in Production Systems, Level-Based Classification for Self-

configuration in Production Systems.

Limitation: One limitation is that the less hierarchical the

control strategy is, the more critical the production sys-

tem’s boundary definition and action scope becomes. The

emergent control behaviour, as all these functional modules

343

10.4. LIMITATIONS

work together, becomes increasingly important. This emer-

gent control behaviour because of the distributed nature

becomes less controllable. The nature of information ex-

change through interfaces will vary in nature, size and time

criticality. This will warrant the establishment of multiple

communication channels and interfaces for different func-

tional modules.

Proposed Solution: The control strategy and the logic that

needs to be followed for the production system will define

the number and operation of the control interfaces.

8. Supporting Technologies: Tools have been developed and used for

the Adaptation Strategy. These supporting technologies have been

developed for the application and objective of self-configuration. The

tools developed facilitate the functional decomposition of the pro-

duction system components. The tools support the optimisation ob-

jectives while combining local and network control while supporting

cloud abstractions.

Technology Suitability

Affected Contribution: A Generalised Workflow For Self-

applications Based On Cloud-computing For Production Sys-

tems, Application of Multi-Agent Systems for Testing Ap-

plications, Cloud Based Decision-Making for Multi-Agent

Production Systems & Service Based Approach to Asset

Administration Shell for Controlling Testing Processes in

Manufacturing

Limitation: A limitation in this approach is to use the tech-

nologies by understanding and deciding on the suitability in

regard to the application. The factor of distributed control

344

10.4. LIMITATIONS

is taken as the main motivator behind these technologies.

In current industrial settings, most of the control technolo-

gies are positioned between networked and distributed sys-

tems. They rely on local system controls along with network

servers to carry out operations. However, the central under-

lying control is still hierarchical, with optimisation usually

focused on infrastructure rather than optimising the func-

tionality as per objective.

Technology Latency

Affected Contribution: A Generalised Workflow For Self-

applications Based On Cloud-computing For Production Sys-

tems, Application of Multi-Agent Systems for Testing Ap-

plications, Cloud Based Decision-Making for Multi-Agent

Production Systems & Service Based Approach to Asset

Administration Shell for Controlling Testing Processes in

Manufacturing

Limitation: A limitation observed in this approach is related

to the actuating time frames of the functionality modules

and the need to information, capture, optimise and update

in these. Although mainstream automation solutions pro-

vide reasonable mechanisms for real-time control, there still

exist some issues of proper control execution. The tools

that support self-applications, need to be designed to value

time-based contracts between the control constructs and the

interfaces of the production system.

Proposed Solution: To overcome such limitations so that this ap-

proach may be applied to other self-applications, tools must be

developed that address separately the cyber and physical com-

345

10.4. LIMITATIONS

ponent representations for time-based controls. The rationale

can be to:

• This will promote more intelligent automation setups with-

out changing the local control of the system.

• Host the cyber representation in a computationally powerful

environment for carrying out tasks of optimisation.

• Still maintain a simplistic RTC with an additional capability

of connecting to other industrial middleware.

This is necessary as complex simulation will be required with

functionality-based control. Simulations can assist in observing

the emergent behaviours and test coverage of the change in the

system.

346

Bibliography

Abbasi, M. and Houshmand, M. (2011). Production planning and per-

formance optimization of reconfigurable manufacturing systems using

genetic algorithm. The International Journal of Advanced Manufac-

turing Technology, 54:373–392.

Aceto, L., Larsen, K. G., and Ingólfsdóttir, A. (2005). An introduction

to milners ccs. Course Notes for Semantics and Verification. Con-

stantly under revision. The most recent version is available at the URL

http://www. cs. auc. dk/ luca/SV/Intro21ccs. pdf, BRICS, Depart-

ment of Computer Science, Aalborg, Denmark.

Aggour, K. S., Gupta, V. K., Ruscitto, D., Ajdelsztajn, L., Bian, X., Bros-

nan, K. H., Kumar, N. C., Dheeradhada, V., Hanlon, T., Iyer, N., et al.

(2019). Artificial intelligence/machine learning in manufacturing and

inspection: A ge perspective. MRS Bulletin, 44(7):545–558.

Aguilar, J., Garces-Jimenez, A., R-moreno, M., and Garćıa, R. (2021).

A systematic literature review on the use of artificial intelligence in

energy self-management in smart buildings. Renewable and Sustainable

Energy Reviews, 151:111530.

Ahuja, S. P. and Myers, J. R. (2006). A survey on wireless grid computing.

The Journal of Supercomputing, 37(1):3–21.

347

Aldanondo, M., Veron, M., and Fargier, H. (1999). Configuration in man-

ufacturing industry requirements, problems and definitions. In IEEE

SMC’99 Conference Proceedings. 1999 IEEE International Conference

on Systems, Man, and Cybernetics (Cat. No.99CH37028), volume 6,

pages 1009–1014 vol.6.

Altintaş, Y. (1994). Direct adaptive control of end milling process. Inter-

national Journal of Machine Tools and Manufacture, 34(4):461–472.

Ammar, M., Haleem, A., Javaid, M., Bahl, S., and Verma, A. S. (2022).

Implementing industry 4.0 technologies in self-healing materials and

digitally managing the quality of manufacturing. Materials Today:

Proceedings, 52:2285–2294.

Anderson, P. (1994). Towards a high-level machine configuration system.

In Proceedings of the 8th Conference on Systems Administration, LISA

1994, pages 19–26.

Andronie, M., Lăzăroiu, G., Iatagan, M., Uă, C., tefănescu, R., and Co-

coatu, M. (2021). Artificial intelligence-based decision-making al-

gorithms, internet of things sensing networks, and deep learning-

assisted smart process management in cyber-physical production sys-

tems. Electronics, 10(20):2497.

Anthony, R., Rettberg, A., Chen, D., Jahnich, I., de Boer, G., and Ekelin,

C. (2007). Towards a dynamically reconfigurable automotive control

system architecture. In Embedded System Design: Topics, Techniques

and Trends, pages 71–84. Springer.

Antsaklis, P. J., Passino, K. M., and Wang, S. J. (1989). Towards intelligent

autonomous control systems: Architecture and fundamental issues.

Journal of Intelligent and Robotic Systems.

348

Antzoulatos, N. (2017). Towards self-adaptable intelligent assembly sys-

tems. PhD thesis, University of Nottingham.

Antzoulatos, N., Castro, E., de Silva, L., Rocha, A. D., Ratchev, S., and

Barata, J. (2017). A multi-agent framework for capability-based re-

configuration of industrial assembly systems. International Journal of

Production Research, 55(10):2950–2960.

Appavoo, J., Hui, K., Soules, C. A., Wisniewski, R. W., Da Silva, D. M.,

Krieger, O., Auslander, M. A., Edelsohn, D. J., Gamsa, B., Ganger,

G. R., McKenney, P., Ostrowski, M., Rosenburg, B., Stumm, M., and

Xenidis, J. (2003). Enabling autonomic behavior in systems software

with hot swapping. IBM Systems Journal.

Arden, N. S., Fisher, A. C., Tyner, K., Lawrence, X. Y., Lee, S. L., and

Kopcha, M. (2021). Industry 4.0 for pharmaceutical manufacturing:

Preparing for the smart factories of the future. International Journal

of Pharmaceutics, 602:120554.

Bachula, K. and Zajac, J. (2013). The study of distributed manufacturing

control system self-configuration. Solid State Phenomena, 196:148–

155.

Baetge, J. (1974). Betriebswirtschaftliche systemtheorie: Regelungstheo-

retische planungs-überwachungsmodelle für produktion. Lagerung und

Absatz, Opladen, 24.

Banerjee, D., Sen, S., and Chatterjee, A. (2016). Self learning

analog/mixed-signal/RF systems: Dynamic adaptation to workload

and environmental uncertainties. In 2015 IEEE/ACM International

Conference on Computer-Aided Design, ICCAD 2015, pages 59–64.

Institute of Electrical and Electronics Engineers Inc.

349

Bannat, A., Bautze, T., Beetz, M., Blume, J., Diepold, K., Ertelt, C.,

Geiger, F., Gmeiner, T., Gyger, T., Knoll, A., Lau, C., Lenz, C., Ost-

gathe, M., Reinhart, G., Roesel, W., Ruehr, T., Schuboe, A., Shea, K.,

Stork genannt Wersborg, I., Stork, S., Tekouo, W., Wallhoff, F., Wies-

beck, M., and Zaeh, M. F. (2011). Artificial cognition in production

systems. IEEE Transactions on Automation Science and Engineering,

8(1):148–174.

Bärring, M. (2019). Increasing the Value of Data in Production Systems.

Bauer, D., Schumacher, S., Gust, A., Seidelmann, J., and Bauernhansl, T.

(2019). Characterization of autonomous production by a stage model.

Procedia CIRP, 81:192–197.

Beden, S., Cao, Q., and Beckmann, A. (2021). Semantic asset administra-

tion shells in industry 4.0: A survey. In 2021 4th IEEE International

Conference on Industrial Cyber-Physical Systems (ICPS), pages 31–38.

IEEE.

Ben Ida, I., Balti, M., Chabaane, S., and Jemai, A. (2020). Self-adaptative

early warning scoring system for smart hospital. In The Impact of

Digital Technologies on Public Health in Developed and Developing

Countries: 18th International Conference, ICOST 2020, Hammamet,

Tunisia, June 24–26, 2020, Proceedings 18, pages 16–27. Springer.

Berardinelli, L., Drath, R., Maetzler, E., and Wimmer, M. (2016). On the

evolution of caex: A language engineering perspective. In 2016 IEEE

21st International Conference on Emerging Technologies and Factory

Automation (ETFA), pages 1–8. IEEE.

Berns, A. and Ghosh, S. (2009). Dissecting self-* properties. In SASO

2009 - 3rd IEEE International Conference on Self-Adaptive and Self-

Organizing Systems.

350

Best, A., Narang, S., Pasqualin, L., Barber, D., and Manocha, D. (2018).

Autonovi-sim: Autonomous vehicle simulation platform with weather,

sensing, and traffic control. In Proceedings of the IEEE conference on

computer vision and pattern recognition workshops, pages 1048–1056.

Binotto, A. P. D., Wehrmeister, M. A., Kuijper, A., and Pereira, C. E.

(2013). Sm@rtConfig: A context-aware runtime and tuning system

using an aspect-oriented approach for data intensive engineering ap-

plications. Control Engineering Practice.

Black, J. T. (2000). Production systems flexiblein manufacturing systems-

MANUFACTURING SYSTEMS, pages 423–431. Springer US, Boston,

MA.

Blum, M. and Schuh, G. (2017). Towards a data-oriented optimization

of manufacturing processes. In Proceedings of the 19th International

Conference on Enterprise Information Systems, volume 8, page 257.

Bond, A. H. and Gasser, L. (2014). Readings in distributed artificial intel-

ligence. Morgan Kaufmann.

Borangiu, T., Morariu, O., Răileanu, S., Trentesaux, D., Leitão, P., and

Barata, J. (2020). Digital transformation of manufacturing. industry of

the future with cyber-physical production systems. Romanian Journal

of Information Science and Technology, 23(1):3–37.

Bordel, B., Alcarria, R., Mart́ın, D., Robles, T., and de Rivera, D. S. (2017).

Self-configuration in humanized cyber-physical systems. Journal of

Ambient Intelligence and Humanized Computing, 8:485–496.

Bordel, B., Alcarria, R., Sanchez de Rivera, D., Mart́ın, D., and Robles, T.

(2018). Fast self-configuration in service-oriented smart environments

351

for real-time applications. Journal of Ambient Intelligence and Smart

Environments, 10(2):143–167.

Botygin, I. A. and Tartakovsky, V. A. (2014). The development and simu-

lation research of load balancing algorithm in network infrastructures.

In Proceedings of 2014 International Conference on Mechanical Engi-

neering, Automation and Control Systems, MEACS 2014.

Braun, A.-T., Colangelo, E., and Steckel, T. (2018). Farming in the era of

industrie 4.0. Procedia Cirp, 72:979–984.

Brennan, R. W., Fletcher, M., and Norrie, D. H. (2002). An agent-based

approach to reconfiguration of real-time distributed control systems.

IEEE Transactions on Robotics and Automation.

Burrell, J., Brooke, T., and Beckwith, R. (2004). Vineyard computing:

Sensor networks in agricultural production. IEEE Pervasive comput-

ing, 3(1):38–45.

Campos Sabioni, R., Daaboul, J., and Le Duigou, J. (2022). Concurrent op-

timisation of modular product and reconfigurable manufacturing sys-

tem configuration: a customer-oriented offer for mass customisation.

International journal of production research, 60(7):2275–2291.

Cannon, R. H. (2003). Dynamics of physical systems. Courier Corporation.

Casalicchio, E. and Gualandi, G. (2021). Asimov: A self-protecting con-

trol application for the smart factory. Future Generation Computer

Systems, 115:213–235.

Cavalieri, S., Mulé, S., and Salafia, M. G. (2019). Opc ua-based asset

administration shell. In IECON 2019-45th Annual Conference of the

IEEE Industrial Electronics Society, volume 1, pages 2982–2989. IEEE.

352

Cavalieri, S. and Salafia, M. G. (2020). Asset administration shell for plc

representation based on iec 61131–3. IEEE Access, 8:142606–142621.

Cavalieri, S. and Salafia, M. G. (2021). Predictive maintenance model

based on asset administration shell. In ICEIS (2), pages 681–688.

Cengiz, K., Sharma, R., Kottursamy, K., Singh, K. K., Topac, T., and

Ozyurt, B. (2021). Recent emerging technologies for intelligent learn-

ing and analytics in big data. Multimedia technologies in the internet

of things environment, pages 69–81.

Cerpa, A. and Estrin, D. (2004). Ascent: Adaptive self-configuring sen-

sor networks topologies. IEEE transactions on mobile computing,

3(3):272–285.

Chatzigiannakis, I., Hasemann, H., Karnstedt, M., Kleine, O., Kröller, A.,

Leggieri, M., Pfisterer, D., Römer, K., and Truong, C. (2012). True

self-configuration for the IoT. In Proceedings of 2012 International

Conference on the Internet of Things, IOT 2012, pages 9–15.

Chen, H., Xu, J., Zhang, B., and Fuhlbrigge, T. (2017). Improved pa-

rameter optimization method for complex assembly process in robotic

manufacturing. Industrial Robot: An International Journal, 44(1):21–

27.

Cheng, S. W., Huang, A. C., Garlan, D., Schmerl, B., and Steenkiste, P.

(2004a). An architecture for coordinating multiple self-management

systems. In Proceedings - Fourth Working IEEE/IFIP Conference on

Software Architecture (WICSA 2004).

Cheng, S.-W., Huang, A.-C., Garlan, D., Schmerl, B., and Steenkiste, P.

(2004b). An architecture for coordinating multiple self-management

353

systems. In Proceedings. Fourth Working IEEE/IFIP Conference on

Software Architecture (WICSA 2004), pages 243–252. IEEE.

Chiriac, N., Hölttä-Otto, K., Lysy, D., and Suk Suh, E. (2011). Level of

modularity and different levels of system granularity.

Chirn, J.-L. and McFarlane, D. C. (2000). A holonic component-based ap-

proach to reconfigurable manufacturing control architecture. In Pro-

ceedings 11th International Workshop on Database and Expert Systems

Applications, pages 219–223. IEEE.

Cohen, J., Dasgupta, A., Ghosh, S., and Tixeuil, S. (2008). An exercise in

selfish stabilization. ACM Transactions on Autonomous and Adaptive

Systems.

Coito, T., Martins, M. S., Firme, B., Figueiredo, J., Vieira, S. M., and

Sousa, J. M. (2022). Assessing the impact of automation in pharma-

ceutical quality control labs using a digital twin. Journal of Manufac-

turing Systems, 62:270–285.

Collados, K., Gorricho, J.-L., Serrat, J., Zheng, H., and Xu, K. (2015).

An intelligent two-agent self-configuration approach for radio resource

management. In 2015 IFIP/IEEE International Symposium on Inte-

grated Network Management (IM), pages 706–712. IEEE.

Council, N. R. and others (1998). Visionary manufacturing challenges for

2020. National Academies Press.

da Silveira, F., Neto, I. R., Machado, F. M., da Silva, M. P., and Amaral,

F. G. (2019). Analysis of industry 4.0 technologies applied to the health

sector: systematic literature review. Occupational and environmental

safety and health, pages 701–709.

354

Dafflon, B., Moalla, N., and Ouzrout, Y. (2021). The challenges, ap-

proaches, and used techniques of cps for manufacturing in industry

4.0: a literature review. The International Journal of Advanced Man-

ufacturing Technology, 113:2395–2412.

De la Prieta, F. and Corchado, J. M. (2016). Cloud Computing and Mul-

tiagent Systems, a Promising Relationship.

De Souza, L. M. S., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S.,

and Savio, D. (2008). SOCRADES: A Web service based shop floor

integration infrastructure. In Lecture Notes in Computer Science (in-

cluding subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics).

Del Giudice, M., Scuotto, V., Papa, A., Tarba, S. Y., Bresciani, S., and

Warkentin, M. (2021). A self-tuning model for smart manufacturing

smes: Effects on digital innovation. Journal of Product Innovation

Management, 38(1):68–89.

Deuter, A. and Imort, S. (2021). Product lifecycle management with the

asset administration shell. Computers, 10(7):84.

Dey, A. (2016). Machine Learning Algorithms: A Review. Interna-

tional Journal of Computer Science and Information Technologies,

7(3):1174–1179.

Dittrich, M. A. and Fohlmeister, S. (2020). Cooperative multi-agent system

for production control using reinforcement learning. CIRP Annals,

69(1):389–392.

Drath, R. (2012). Let’s talk automationml what is the effort of automa-

tionml programming? In Proceedings of 2012 IEEE 17th International

355

Conference on Emerging Technologies & Factory Automation (ETFA

2012), pages 1–8. IEEE.

Drath, R. (2021). Automationml: A practical guide. Walter de Gruyter

GmbH & Co KG.

DAniello, G., De Falco, M., and Mastrandrea, N. (2021). Designing a

multi-agent system architecture for managing distributed operations

within cloud manufacturing. Evolutionary Intelligence, 14:2051–2058.

Ebrahimi, M., Baboli, A., and Rother, E. (2018). A roadmap for evolution

of existing production system toward the factory of the future: A case

study in automotive industry. In 2018 IEEE International Conference

on Technology Management, Operations and Decisions (ICTMOD),

pages 274–281. IEEE.

EIMaraghy, W. and Urbanic, R. (2004). Assessment of manufacturing

operational complexity. CIRP annals, 53(1):401–406.

Elements, C. (2018). IEC 61131-3: a standard programming resource.

page 2.

ElMaraghy, H., Azab, A., Schuh, G., and Pulz, C. (2009). Managing varia-

tions in products, processes and manufacturing systems. CIRP annals,

58(1):441–446.

ElMaraghy, H., Monostori, L., Schuh, G., and ElMaraghy, W. (2021). Evo-

lution and future of manufacturing systems. CIRP Annals, 70(2):635–

658.

Elsken, T., Metzen, J. H., Hutter, F., et al. (2019). Neural architecture

search: A survey. J. Mach. Learn. Res., 20(55):1–21.

356

Estrada-Jimenez, L. A., Pulikottil, T., Hien, N. N., Torayev, A., Rehman,

H. U., Mo, F., Hojjati, S. N., and Barata, J. (2021). Integration of

cutting-edge interoperability approaches in cyber-physical production

systems and industry 4.0. In Design, Applications, and Maintenance

of Cyber-Physical Systems, pages 144–172. IGI Global.

Feng, L. (2009). Robustness evaluation of flexible manufacturing sys-

tem considering the static & dynamic manufacturing environment.

In 2009 International Conference on Information Management, In-

novation Management and Industrial Engineering, volume 4, pages

392–395. IEEE.

Fernández-Sáez, A. M., Caivano, D., Genero, M., and Chaudron, M. R.

(2015). On the use of uml documentation in software maintenance:

Results from a survey in industry. In 2015 ACM/IEEE 18th Interna-

tional Conference on Model Driven Engineering Languages and Sys-

tems (MODELS), pages 292–301. IEEE.

Ferreira, P. and Lohse, N. (2012). Configuration model for evolvable assem-

bly systems. CIRP Conference on Assembly Technologies and Systems

(CATS) 2012, (May):75–79.

Fragapane, G., Ivanov, D., Peron, M., Sgarbossa, F., and Strandhagen,

J. O. (2022). Increasing flexibility and productivity in industry 4.0

production networks with autonomous mobile robots and smart in-

tralogistics. Annals of operations research, 308(1):125–143.

Fritze, A., Mönks, U., and Lohweg, V. (2016). A concept for self-

configuration of adaptive sensor and information fusion systems. In

2016 IEEE 21st International Conference on Emerging Technologies

and Factory Automation (ETFA), pages 1–4. IEEE.

357

Gao, Q., Xu, H., and Li, A. (2022). The analysis of commodity demand

predication in supply chain network based on particle swarm optimiza-

tion algorithm. Journal of Computational and Applied Mathematics,

400:113760.

Garcia, M. A. R., Rojas, R., Gualtieri, L., Rauch, E., and Matt, D. (2019).

A human-in-the-loop cyber-physical system for collaborative assembly

in smart manufacturing. Procedia CIRP, 81:600–605.

Ghadimi, P., Toosi, F. G., and Heavey, C. (2018). A multi-agent systems

approach for sustainable supplier selection and order allocation in a

partnership supply chain. European Journal of Operational Research,

269(1):286–301.

Gheibi, O., Weyns, D., and Quin, F. (2021). Applying machine learning in

self-adaptive systems: A systematic literature review. ACM Transac-

tions on Autonomous and Adaptive Systems (TAAS), 15(3):1–37.

Givehchi, O., Landsdorf, K., Simoens, P., and Colombo, A. W. (2017).

Interoperability for industrial cyber-physical systems: An approach

for legacy systems. IEEE Transactions on Industrial Informatics,

13(6):3370–3378.

Graessler, I., Hentze, J., and Poehler, A. (2019). Self-organizing production

systems: Implications for product design. Procedia CIRP, 79:546–550.

Günther, O., Ivantysynova, L., Rode, J., and Ziekow, H. (2009). It infras-

tructures in manufacturing: insights from seven case studies. AMCIS

2009 Proceedings, page 664.

Guo, L., Wang, B., and Wang, W. (2009). Research of energy-efficiency

algorithm based on on-demand load balancing for wireless sensor net-

works.

358

Guo, Z., Zhang, Y., Liu, S., Wang, X. V., and Wang, L. (2023). Exploring

self-organization and self-adaption for smart manufacturing complex

networks. Frontiers of Engineering Management, 10(2):206–222.

Guo, Z., Zhang, Y., Zhao, X., and Song, X. (2020). Cps-based self-adaptive

collaborative control for smart production-logistics systems. IEEE

transactions on cybernetics, 51(1):188–198.

Har, L. L., Rashid, U. K., Te Chuan, L., Sen, S. C., and Xia, L. Y. (2022).

Revolution of retail industry: from perspective of retail 1.0 to 4.0.

Procedia Computer Science, 200:1615–1625.

Hawkins, W., Brandl, D., and Boyes, W. (2010). Applying ISA-88 in dis-

crete and continuous manufacturing, volume 2. Momentum Press.

Hayes, T., Rustagi, N., Saia, J., and Trehan, A. (2008). The forgiving tree:

A self-healing distributed data structure. In Proceedings of the Annual

ACM Symposium on Principles of Distributed Computing.

Hees, A. F. (2017). System zur Produktionsplanung für rekonfigurierbare

Produktionssysteme, volume 331. Herbert Utz Verlag.

Hofmeyr, S. A. and Forrest, S. (2000). Architecture for an artificial immune

system. Evolutionary computation.

Hülsmann, M. and Windt, K. (2007). Understanding autonomous coopera-

tion and control in logistics: the impact of autonomy on management,

information, communication and material flow. Springer Science &

Business Media.

Iarovyi, S., Lastra, J. L. M., Haber, R., and del Toro, R. (2015). From

artificial cognitive systems and open architectures to cognitive man-

ufacturing systems. In 2015 IEEE 13th International Conference on

Industrial Informatics (INDIN), pages 1225–1232.

359

Jann, J., Browning, L. M., and Burugula, R. S. (2003). Dynamic recon-

figurations: Basic building blocks for autonomic computing on IBM

pSeries servers.

Järvenpää, E., Siltala, N., Hylli, O., Nylund, H., and Lanz, M. (2023).

Semantic rules for capability matchmaking in the context of manu-

facturing system design and reconfiguration. International Journal of

Computer Integrated Manufacturing, 36(1):128–154.

Jia, F., Tzintzun, J., and Ahmad, R. (2020). An improved robot path

planning algorithm for a novel self-adapting intelligent machine tend-

ing robotic system. In Industrial and Robotic Systems: LASIRS 2019,

pages 53–64. Springer.

Jones, G. M. and Romig, S. M. (1991). Cloning customized hosts (or cus-

tomizing cloned hosts). In Proceedings of the Fifth Large Installation

Systems Administration Conference (LISA V)(USENIX Association:

Berkeley, CA), page 233.

Joseph, S. and Ignatious Monterio, J. (2019). Self configuring wireless

sensor network for precision irrigation. In Government College of En-

gineering Kannur, International Conference on Systems, Energy &

Environment (ICSEE).

Junker, U. (2006). Configuration. In Foundations of Artificial Intelligence,

volume 2, pages 837–873. Elsevier.

Kannisto, P., Hästbacka, D., and Kuikka, S. (2017). System architecture

for mastering machine parameter optimisation. Computers in Industry,

85:39–47.

Kao, H. A., Jin, W., Siegel, D., and Lee, J. (2015). A cyber physical inter-

360

face for automation systems-Methodology and examples. Machines,

3(2):93–106.

Karabegović, I., Karabegović, E., Mahmić, M., and Husak, E. (2020). Im-

plementation of industry 4.0 and industrial robots in the manufactur-

ing processes. In New Technologies, Development and Application II

5, pages 3–14. Springer.

Kephart, J. O. and Chess, D. M. (2003). The vision of autonomic comput-

ing. Computer.

Khalgui, M. and Mosbahi, O. (2010). Intelligent distributed control sys-

tems. Information and Software Technology, 52(12):1259–1271.

Khan, S., Phillips, P., Jennions, I., and Hockley, C. (2014). No fault found

events in maintenance engineering part 1: Current trends, implications

and organizational practices. Reliability Engineering & System Safety,

123:183–195.

Koronios, A., Nastasie, D., Chanana, V., and Haider, A. (2006). Inte-

gration through standards an overview of international standards for

engineering asset management. 2nd World Congress on Engineering

Asset Management and the Fourth International Conference on Con-

dition Monitoring (WCEAM 2007), Harrogate, United Kingdom.

Kostal, P., Mudrikova, A., and Michal, D. (2019). Possibilities of intelligent

flexible manufacturing systems. In IOP Conference Series: Materials

Science and Engineering, volume 659, page 012035. IOP Publishing.

Kramer, J. and Magee, J. (1985). Dynamic Configuration for Distributed

Systems. IEEE Transactions on Software Engineering.

Kruger, G. H., Shih, A. J., Hattingh, D. G., and Van Niekerk, T. I. (2011).

Intelligent machine agent architecture for adaptive control optimiza-

361

tion of manufacturing processes. Advanced Engineering Informatics,

25(4):783–796.

Kuan, A. L., Rauschecker, U., Meier, M., Muckenhirn, R., Yip, A., Ja-

gadeesan, A., and Corney, J. (2011). Cloud-based manufacturing-as-

a-service environment for customized products. eChallenges e-2011

Conference Proceedings, pages 1–8.

Kubler, S., Derigent, W., Rondeau, ., Thomas, A., and Främling, K. (2013).

Embedded Data on Intelligent Products - Impact on Real-Time Ap-

plications. Communications in Computer and Information Science,

183:25–34.

Lal, S. and Onwubolu, G. (2007). Three tiered web-based manufacturing

systempart 1: System development. Robotics and Computer-Integrated

Manufacturing, 23(1):138–151.

Lee, C. K., Lin, B., Ng, K., Lv, Y., and Tai, W. (2019). Smart robotic

mobile fulfillment system with dynamic conflict-free strategies consid-

ering cyber-physical integration. Advanced Engineering Informatics,

42:100998.

Lee, S. K., Kuo, H. C., Balkir, N. H., and Ozsoyoglu, G. (1997). Database

server architecture for agile manufacturing. In Proceedings - IEEE

International Conference on Robotics and Automation.

Leitão, P., Mař́ık, V., and Vrba, P. (2013). Past, present, and future of

industrial agent applications. IEEE Transactions on Industrial Infor-

matics.

Leitão, P. and Restivo, F. (2003). Towards autonomy, self-organisation

and learning in holonic manufacturing. In Lecture Notes in Artificial

362

Intelligence (Subseries of Lecture Notes in Computer Science), volume

2691, pages 544–553. Springer Verlag.

Leitão, P., Ribeiro, L., and Strasser, T. (2016). Smart Agents in Industrial.

Proceedings of the IEEE, 104(5):1–16.

Lettner, D., Petruzelka, M., Rabiser, R., Angerer, F., Prähofer, H., and

Grünbacher, P. (2013). Custom-developed vs. model-based configura-

tion tools: Experiences from an industrial automation ecosystem. In

Proceedings of the 17th International Software Product Line Confer-

ence co-located workshops, pages 52–58.

Li, C., Chen, Y., and Shang, Y. (2022). A review of industrial big data

for decision making in intelligent manufacturing. Engineering Science

and Technology, an International Journal, 29:101021.

Li, P. and Jiang, P. (2021). Enhanced agents in shared factory: enabling

high-efficiency self-organization and sustainability of the shared man-

ufacturing resources. Journal of Cleaner Production, 292:126020.

Li, S., Wang, H., Hu, S. J., Lin, Y.-T., and Abell, J. A. (2011). Automatic

generation of assembly system configuration with equipment selection

for automotive battery manufacturing. Journal of Manufacturing Sys-

tems, 30(4):188–195.

Liang, Q., Zhao, S., Zhang, J., Deng, H., Damm, W., Hess, D., Schweda,

M., Sztipanovits, J., Bengler, K., Biebl, B., et al. (2024). Cyber-

physical systems. ACM Transactions on, 8(1).

Liao, L. and Pavel, R. (2012). Machine tool feed axis health monitoring

using plug-and-prognose technology. In Technical Program for MFPT

2012, The Prognostics and Health Management Solutions Conference

- PHM: Driving Efficient Operations and Maintenance.

363

Lieberoth-Leden, C., Fischer, J., Vogel-Heuser, B., and Fottner, J. (2019).

Implementation, self-configuration and coordination of logistical func-

tions for autonomous logistics modules in flexible automated material

flow systems. International Journal of Mechanical Engineering and

Robotics Research, 8(4):498–505.

Liu, K., Liu, H., Li, T., Liu, Y., and Wang, Y. (2019). Intelligentiza-

tion of machine tools: comprehensive thermal error compensation of

machine-workpiece system. The International Journal of Advanced

Manufacturing Technology, 102:3865–3877.

Löcklin, A., Vietz, H., White, D., Ruppert, T., Jazdi, N., and Weyrich, M.

(2021). Data administration shell for data-science-driven development.

Procedia CIRP, 100:115–120.

Löppenberg, M. and Schwung, A. (2023). Self optimisation and automatic

code generation by evolutionary algorithms in plc based controlling

processes. In 2023 IEEE 21st International Conference on Industrial

Informatics (INDIN), pages 1–6. IEEE.

Lupton, D. (2013). The digitally engaged patient: Self-monitoring and

self-care in the digital health era. Social Theory & Health, 11:256–270.

Marrella, A., Mecella, M., and Sardina, S. (2017). Intelligent process adap-

tation in the SmartPM system. ACM Transactions on Intelligent Sys-

tems and Technology, 8(2).

May, M. C., Overbeck, L., Wurster, M., Kuhnle, A., and Lanza, G. (2021).

Foresighted digital twin for situational agent selection in production

control. Procedia CIRP, 99:27–32.

Mcfarlane, D. and Giannikas, V. (2013). Product intelligence in industrial

control : Theory and practice. (November 2017).

364

McFarlane, D., Giannikas, V., Wong, A. C., and Harrison, M. (2013). Prod-

uct intelligence in industrial control: Theory and practice. Annual

Reviews in Control, 37(1):69–88.

Merz, M., Frank, T., and Vogel-Heuser, B. (2012). Dynamic redeployment

of control software in distributed industrial automation systems during

runtime. In IEEE International Conference on Automation Science

and Engineering.

Messig, M. and Goscinski, A. (2005). Self healing and self configuration in

a wsrf grid environment. In International Conference on Algorithms

and Architectures for Parallel Processing, pages 149–158. Springer.

Monostori, L., Kádár, B., Bauernhansl, T., Kondoh, S., Kumara, S., Rein-

hart, G., Sauer, O., Schuh, G., Sihn, W., and Ueda, K. (2016). Cyber-

physical systems in manufacturing. Cirp Annals, 65(2):621–641.

Morgan, J., Halton, M., Qiao, Y., and Breslin, J. G. (2021). Industry 4.0

smart reconfigurable manufacturing machines. Journal of Manufac-

turing Systems, 59:481–506.

Mount, D. J. (2015). Trends in leak testing: advancing the state-of-the-art.

Quality, 54(2):S8–S8.

Mourtzis, D., Vlachou, E., and Milas, N. (2016). Industrial Big Data as a

Result of IoT Adoption in Manufacturing. Procedia CIRP, 55:290–295.

Nayyar, A. and Puri, V. (2016). Smart farming: Iot based smart sen-

sors agriculture stick for live temperature and moisture monitoring

using arduino, cloud computing & solar technology. In Proc. of The

International Conference on Communication and Computing Systems

(ICCCS-2016), pages 9781315364094–121.

365

Neogi, N., Mohanta, D. K., and Dutta, P. K. (2014). Review of vision-

based steel surface inspection systems. EURASIP Journal on Image

and Video Processing, 2014(1):1–19.

Neuhausen, J. (2001). Methodik zur Gestaltung modularer Produktionssys-

teme für Unternehmen der Serienproduktion. PhD thesis, Bibliothek

der RWTH Aachen.

Nie, Q., Tang, D., Zhu, H., and Sun, H. (2022). A multi-agent and inter-

net of things framework of digital twin for optimized manufacturing

control. International Journal of Computer Integrated Manufacturing,

35(10-11):1205–1226.

Olsen, S., Wang, J., Ramirez-Serrano, A., and Brennan, R. W. (2005).

Contingencies-based reconfiguration of distributed factory automa-

tion. In Robotics and Computer-Integrated Manufacturing.

Opara-Martins, J., Sahandi, R., and Tian, F. (2016). Critical analysis

of vendor lock-in and its impact on cloud computing migration: a

business perspective. Journal of Cloud Computing, 5:1–18.

Orehounig, K., Evins, R., and Dorer, V. (2015). Integration of decentral-

ized energy systems in neighbourhoods using the energy hub approach.

Applied Energy, 154:277–289.

Padayachee, J. and Bright, G. (2012). Modular machine tools: Design

and barriers to industrial implementation. Journal of Manufacturing

Systems, 31(2):92–102.

Park, K. T., Lee, S. H., and Noh, S. D. (2021). Information fusion and

systematic logic library-generation methods for self-configuration of

autonomous digital twin. Journal of Intelligent Manufacturing, pages

1–31.

366

Perez-Leguizamo, C. (2016). Autonomous decentralized database system

self configuration technology for high response. IEICE Transactions

on Communications, 99(4):794–802.

Pernkopf, F. and O’Leary, P. (2002). Visual inspection of machined metal-

lic high-precision surfaces. EURASIP Journal on Advances in Signal

Processing, 2002(7):1–12.

Pethig, F., Niggemann, O., and Walter, A. (2017). Towards industrie 4.0

compliant configuration of condition monitoring services. In 2017 ieee

15th international conference on industrial informatics (indin), pages

271–276. IEEE.

Pierreval, H. and Tautou, L. (1997). Using evolutionary algorithms and

simulation for the optimization of manufacturing systems. IIE trans-

actions, 29(3):181–189.

Priego, R., Armentia, A., Orive, D., Estévez, E., and Marcos, M. (2014).

A model-based approach for achieving available automation systems.

IFAC Proceedings Volumes (IFAC-PapersOnline), 19:3438–3443.

Puliafito, A., Celesti, A., Villari, M., and Fazio, M. (2015). Towards the

integration between IoT and cloud computing: An approach for the

secure self-configuration of embedded devices. International Journal

of Distributed Sensor Networks, 2015.

Pushkov, R., Ljubimov, A., and Evstafieva, S. (2021). Approach to build a

universal communication protocol for equipment of different manufac-

turers. In Advances in Automation II: Proceedings of the International

Russian Automation Conference, RusAutoConf2020, September 6-12,

2020, Sochi, Russia, pages 832–841. Springer.

Qin, Z. and Lu, Y. (2021). Self-organizing manufacturing network: A

367

paradigm towards smart manufacturing in mass personalization. Jour-

nal of Manufacturing Systems, 60:35–47.

Radetzky, M., Rosebrock, C., and Bracke, S. (2019). Approach to adapt

manufacturing process parameters systematically based on machine

learning algorithms. IFAC-PapersOnLine, 52(13):1773–1778.

Raptis, T. P., Passarella, A., and Conti, M. (2019). Data management

in industry 4.0: State of the art and open challenges. IEEE Access,

7:97052–97093.

Rehman, H. U., Chaplin, J. C., Zarzycki, L., Jones, M., and Ratchev, S.

(2021a). Application of multi agent systems for leak testing. In 2021

9th International conference on systems and control (ICSC), pages

560–565. IEEE.

Rehman, H. U., Chaplin, J. C., Zarzycki, L., Mo, F., Jones, M., and

Ratchev, S. (2022). Service based approach to asset administra-

tion shell for controlling testing processes in manufacturing. IFAC-

PapersOnLine, 55(10):1852–1857.

Rehman, H. U., Chaplin, J. C., Zarzycki, L., and Ratchev, S. (2021b).

A framework for self-configuration in manufacturing production sys-

tems. In Doctoral Conference on Computing, Electrical and Industrial

Systems, pages 71–79. Springer.

Rehman, H. U., Mo, F., Chaplin, J. C., Zarzycki, L., Jones, M., and

Ratchev, S. (2024). A modular artificial intelligence and asset adminis-

tration shell approach to streamline testing processes in manufacturing

services. Journal of Manufacturing Systems, 72:424–436.

Rehman, H. U., Pulikottil, T., Estrada-Jimenez, L. A., Mo, F., Chap-

lin, J. C., Barata, J., and Ratchev, S. (2021c). Cloud based decision

368

making for multi-agent production systems. In EPIA Conference on

Artificial Intelligence, pages 673–686. Springer.

Reinhardt, I. C., Oliveira, J. C., and Ring, D. T. (2020). Current perspec-

tives on the development of industry 4.0 in the pharmaceutical sector.

Journal of Industrial Information Integration, 18:100131.

Renna, P. (2011). Multi-agent based scheduling in manufacturing cells in a

dynamic environment. International Journal of Production Research,

49(5):1285–1301.

Ribeiro, L., Barata, J., and Mendes, P. (2008). MAS and SOA: Comple-

mentary automation paradigms. In IFIP International Federation for

Information Processing.

Ribeiro, L. and Björkman, M. (2017). Transitioning from standard automa-

tion solutions to cyber-physical production systems: an assessment of

critical conceptual and technical challenges. IEEE systems journal,

12(4):3816–3827.

Rodič, B. (2021). Self-organizing manufacturing systems in industry 4.0:

Aspect of simulation modelling. In Handbook of Research on Au-

topoiesis and Self-Sustaining Processes for Organizational Success,

pages 346–363. IGI Global.

Rodrigues, N., Leitão, P., and Oliveira, E. (2015). Adaptive services recon-

figuration in manufacturing environments using a multi-agent system

approach. In Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics), volume 9433, pages 280–284. Springer Verlag.

Rožanec, J. M., Lu, J., Rupnik, J., Škrjanc, M., Mladenić, D., Fortuna,

B., Zheng, X., and Kiritsis, D. (2022). Actionable cognitive twins for

369

decision making in manufacturing. International Journal of Production

Research, 60(2):452–478.

Sakly, H. (2020). Self-organization and autonomous network survey. Inter-

national Journal of Network Security & Its Applications (IJNSA) Vol,

12.

Sakurada, L., Leitao, P., and De la Prieta, F. (2021). Towards the digi-

tization using asset administration shells. In IECON 2021–47th An-

nual Conference of the IEEE Industrial Electronics Society, pages 1–6.

IEEE.

Salehie, M. and Tahvildari, L. (2005). Autonomic computing: emerging

trends and open problems. ACM SIGSOFT Software Engineering

Notes, 30(4):1–7.

Sanchez, M., Exposito, E., and Aguilar, J. (2020). Implementing self-*

autonomic properties in self-coordinated manufacturing processes for

the industry 4.0 context. Computers in industry, 121:103247.

Scanzio, S., Cena, G., Zunino, C., and Valenzano, A. (2022). Machine learn-

ing to support self-configuration of industrial systems interconnected

over wi-fi. In 2022 IEEE 27th International Conference on Emerging

Technologies and Factory Automation (ETFA), pages 1–8. IEEE.

Scheifele, S., Friedrich, J., Lechler, A., and Verl, A. (2014). Flexible, Self-

configuring Control System for a Modular Production System. Proce-

dia Technology, 15:398–405.

Schleipen, M. (2010). Automated production monitoring and control sys-

tem engineering by combining a standardized data format (caex) with

standardized communication (opc ua). In Factory Automation. Inte-

chOpen.

370

Schleipen, M., Drath, R., and Sauer, O. (2008). The system-independent

data exchange format caex for supporting an automatic configuration

of a production monitoring and control system. In 2008 IEEE Interna-

tional Symposium on Industrial Electronics, pages 1786–1791. IEEE.

Sharp, M., Ak, R., and Hedberg Jr, T. (2018). A survey of the advanc-

ing use and development of machine learning in smart manufacturing.

Journal of manufacturing systems, 48:170–179.

Shaw, M. J., Subramaniam, C., Tan, G. W., and Welge, M. E. (2001).

Knowledge management and data mining for marketing. Decision Sup-

port Systems.

Shen, H., Zhang, H., Xu, Y., Chen, H., Zhu, Y., Zhang, Z., and Li, W.

(2022). Multi-objective capacity configuration optimization of an in-

tegrated energy system considering economy and environment with

harvest heat. Energy Conversion and Management, 269:116116.

Shi, W. and Dustdar, S. (2016). The Promise of Edge Computing. Com-

puter.

Sibalija, T. (2018). Application of simulated annealing in process optimiza-

tion: a review. Simulated Annealing: Introduction, Applications and

Theory, pages 1–14.

Sibalija, T. V. (2019). Particle swarm optimisation in designing parame-

ters of manufacturing processes: A review (2008–2018). Applied Soft

Computing, 84:105743.

Silva, M. A. L., de Souza, S. R., Souza, M. J. F., and Bazzan, A. L. C.

(2019). A reinforcement learning-based multi-agent framework applied

for solving routing and scheduling problems. Expert Systems with Ap-

plications, 131:148–171.

371

Sittón, I. and Rodŕıguez, S. (2017). Pattern extraction for the design of

predictive models in industry 4.0. In Advances in Intelligent Systems

and Computing.

Somers, R. J., Douthwaite, J. A., Wagg, D. J., Walkinshaw, N., and Hi-

erons, R. M. (2023). Digital-twin-based testing for cyber–physical

systems: A systematic literature review. Information and Software

Technology, 156:107145.

Steiner, J. G. and Geer, D. E. (1988). Network services in the athena

environment. Project Athena, Massachusetts Institute of Technology,

Cambridge, MA, 2139.

Sterritt, R. and Bustard, D. (2003). Towards an autonomic computing

environment. In Proceedings - International Workshop on Database

and Expert Systems Applications, DEXA.

Strasser, S., Tripathi, S., and Kerschbaumer, R. (2018). An approach for

adaptive parameter setting in manufacturing processes. In DATA,

pages 24–32.

Strasser, T. and Froschauer, R. (2012). Autonomous application recov-

ery in distributed intelligent automation and control systems. IEEE

Transactions on Systems, Man and Cybernetics Part C: Applications

and Reviews.

Streit, A., Rosch, S., and Vogel-Heuser, B. (2014). Redeployment of control

software during runtime for modular automation systems taking real-

time and distributed I/O into consideration. In 19th IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation,

ETFA 2014.

Surucu, O., Gadsden, S. A., and Yawney, J. (2023). Condition monitoring

372

using machine learning: A review of theory, applications, and recent

advances. Expert Systems with Applications, 221:119738.

Tamizi, M. G., Yaghoubi, M., and Najjaran, H. (2023). A review of recent

trend in motion planning of industrial robots. International Journal

of Intelligent Robotics and Applications, pages 1–22.

Tang, H., Li, D., Wang, S., and Dong, Z. (2017). Casoa: an architecture

for agent-based manufacturing system in the context of industry 4.0.

Ieee Access, 6:12746–12754.

Tang, T., Hu, T., Chen, M., Lin, R., and Chen, G. (2020). A deep convo-

lutional neural network approach with information fusion for bearing

fault diagnosis under different working conditions. Proceedings of the

Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, page 0954406220902181.

Tantik, E. and Anderl, R. (2017). Potentials of the asset administration

shell of industrie 4.0 for service-oriented business models. Procedia

CIRP, 64:363–368.

Taylor, E. et al. (2021). Autonomous vehicle decision-making algorithms

and data-driven mobilities in networked transport systems. Contem-

porary Readings in Law and Social Justice, 13(1):9–19.

Tirkolaee, E. B., Mahmoodkhani, J., Bourani, M. R., and Tavakkoli-

Moghaddam, R. (2019). A self-learning particle swarm optimization for

robust multi-echelon capacitated location–allocation–inventory prob-

lem. Journal of Advanced Manufacturing Systems, 18(04):677–694.

Tobon-Mejia, D. A., Medjaher, K., and Zerhouni, N. (2012). CNC ma-

chine tools wear diagnostic and prognostic by using dynamic Bayesian

networks. Mechanical Systems and Signal Processing.

373

Tran, N.-H., Park, H.-S., Nguyen, Q.-V., and Hoang, T.-D. (2019). Devel-

opment of a smart cyber-physical manufacturing system in the indus-

try 4.0 context. Applied Sciences, 9(16):3325.

Trendafilova, I. and Van Brussel, H. (2001). Non-linear dynamics tools for

the motion analysis and condition monitoring of robot joints. Mechan-

ical Systems and Signal Processing.

Tuck, C. and Hague, R. (2006). The pivotal role of rapid manufacturing

in the production of cost-effective customised products. International

Journal of Mass Customisation.

UK, G. O. V. (2020). National Data Strategy. pages 1–73.

Vaisi, B. (2022). A review of optimization models and applications in

robotic manufacturing systems: Industry 4.0 and beyond. Decision

analytics journal, 2:100031.

Valilai, O. F. and Houshmand, M. (2013). A collaborative and integrated

platform to support distributed manufacturing system using a service-

oriented approach based on cloud computing paradigm. Robotics and

Computer-Integrated Manufacturing.

Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., and Peeters,

P. (1998). Reference architecture for holonic manufacturing systems:

Prosa. Computers in industry, 37(3):255–274.

Vishnu, V., Varghese, K. G., and Gurumoorthy, B. (2023). A data-driven

digital twin framework for key performance indicators in cnc machining

processes. International Journal of Computer Integrated Manufactur-

ing, 36(12):1823–1841.

Wan, J., Chen, M., Xia, F., Di, L., and Zhou, K. (2013). From machine-to-

374

machine communications towards cyber-physical systems. Computer

Science and Information Systems, 10(3):1105–1128.

Wang, J., Ma, Y., Zhang, L., Gao, R. X., and Wu, D. (2018). Deep

learning for smart manufacturing: Methods and applications. Journal

of Manufacturing Systems, 48:144–156.

Wang, J., Xu, C., Zhang, J., and Zhong, R. (2022). Big data analytics for

intelligent manufacturing systems: A review. Journal of Manufactur-

ing Systems, 62:738–752.

Wang, L., Du, Z., Dong, W., Shen, Y., and Zhao, G. (2019). Hierarchical

human machine interaction learning for a lower extremity augmenta-

tion device. International Journal of Social Robotics, 11(1):123–139.

Wang, P., Gong, Y., Xie, H., Liu, Y., and Nee, A. Y. (2017). Applying

cbr to machine tool product configuration design oriented to customer

requirements. Chinese Journal of Mechanical Engineering, 30:60–76.

Wang, W. and Liu, F. (2012). The research of cloud manufacturing re-

source discovery mechanism. In ICCSE 2012 - Proceedings of 2012 7th

International Conference on Computer Science and Education, pages

188–191.

Wenger, M., Zoitl, A., and Müller, T. (2018). Connecting plcs with their

asset administration shell for automatic device configuration. In 2018

IEEE 16th International Conference on Industrial Informatics (IN-

DIN), pages 74–79. IEEE.

Weyer, S., Schmitt, M., Ohmer, M., and Gorecky, D. (2015). Towards in-

dustry 4.0-standardization as the crucial challenge for highly modular,

multi-vendor production systems. Ifac-Papersonline, 48(3):579–584.

375

Wooldridge, M. (2009). An introduction to multiagent systems. John wiley

& sons.

Wu, D., Rosen, D. W., and Schaefer, D. (2014). Cloud-based design and

manufacturing: status and promise. In Cloud-based design and manu-

facturing (CBDM), pages 1–24. Springer.

Wu, D., Zhang, Y., Ourak, M., Niu, K., Dankelman, J., and Vander

Poorten, E. B. (2021). Hysteresis modeling of robotic catheters based

on long short-term memory network for improved environment recon-

struction. IEEE Robotics and Automation Letters, pages 1–1.

Xia, K., Fan, H., Huang, J., Wang, H., Ren, J., Jian, Q., and Wei, D.

(2021). An intelligent self-service vending system for smart retail.

Sensors, 21(10):3560.

Xia, W. and Wu, Z. (2005). An effective hybrid optimization approach for

multi-objective flexible job-shop scheduling problems. Computers &

industrial engineering, 48(2):409–425.

Xie, X. (2008). A review of recent advances in surface defect detection using

texture analysis techniques. ELCVIA: electronic letters on computer

vision and image analysis, pages 1–22.

Xu, W., Shao, L., Yao, B., Zhou, Z., and Pham, D. T. (2016). Perception

data-driven optimization of manufacturing equipment service schedul-

ing in sustainable manufacturing. Journal of Manufacturing Systems,

41:86–101.

Yan, J. and Vyatkin, V. (2013). Extension of reconfigurability provisions

in IEC 61499. In IEEE International Conference on Emerging Tech-

nologies and Factory Automation, ETFA.

376

Yan, K.-Q., Wang, S.-C., Chang, C.-P., and Lin, J. (2007). A hybrid load

balancing policy underlying grid computing environment. Computer

Standards & Interfaces, 29(2):161–173.

Yang, L., Zou, H., Shang, C., Ye, X., and Rani, P. (2023). Adoption of

information and digital technologies for sustainable smart manufactur-

ing systems for industry 4.0 in small, medium, and micro enterprises

(smmes). Technological Forecasting and Social Change, 188:122308.

Yelles-Chaouche, A. R., Gurevsky, E., Brahimi, N., and Dolgui, A. (2021).

Reconfigurable manufacturing systems from an optimisation perspec-

tive: a focused review of literature. International Journal of Produc-

tion Research, 59(21):6400–6418.

Yeung, W. L. (2018). Efficiency of task allocation based on contract net

protocol with audience restriction in a manufacturing control appli-

cation. International Journal of Computer Integrated Manufacturing,

31(10):1005–1017.

Zaidi, A. A. and Kupzog, F. (2008). Microgrid automation-a self-

configuring approach. In 2008 IEEE International Multitopic Con-

ference, pages 565–570. IEEE.

Zhang, D., Yu, Z., and Chin, C.-Y. (2005). Context-aware infrastructure for

personalized healthcare. Studies in health technology and informatics,

117:154–163.

Zhang, H., Li, Z., Shu, W., and Chou, J. (2019). Ant colony optimization

algorithm based on mobile sink data collection in industrial wireless

sensor networks. EURASIP Journal on Wireless Communications and

Networking, 2019(1):1–10.

377

Zhang, L., Guo, H., Tao, F., Luo, Y. L., and Si, N. (2010). Flexible man-

agement of resource service composition in cloud manufacturing. In

IEEM2010 - IEEE International Conference on Industrial Engineering

and Engineering Management.

Zheng, X., Lu, J., and Kiritsis, D. (2022). The emergence of cognitive dig-

ital twin: vision, challenges and opportunities. International Journal

of Production Research, 60(24):7610–7632.

Zhong, R. Y., Xu, X., Klotz, E., and Newman, S. T. (2017). Intelligent

Manufacturing in the Context of Industry 4.0: A Review. Engineering,

3(5):616–630.

Zhou, T., Tang, D., Zhu, H., and Zhang, Z. (2021). Multi-agent reinforce-

ment learning for online scheduling in smart factories. Robotics and

Computer-Integrated Manufacturing, 72:102202.

Zhou, Y., Li, W., Wang, X., Qiu, Y., and Shen, W. (2022). Adaptive

gradient descent enabled ant colony optimization for routing problems.

Swarm and Evolutionary Computation, 70:101046.

Zoitl, A. (2009). Real-time Execution for IEC 61499. Instrumentation,

Systems, and Automation Society Research Triangle Park, NC.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. (2017). Automl for large

scale image classification and object detection. Google AI Blog, 2:2017.

378

Appendices

379

Appendix A

Survey Questionnaires

A.1 Survey Questions

A.1.1 Industrial Challenges in Adopting Intelligent

Production System

• Q 1.1: Which of the following characteristics are required to make a

production system intelligent in your opinion?

• Q 1.2: What criteria of intelligent production systems have you seen

at your manufacturing facility?

• Q 1.3: What criteria of production system intelligence do you think

would give the best opportunities for productivity increase without

being too complex or expensive to implement?

• Q 1.4: Where should intelligence be located on a production system?

• Q 1.5: In your opinion, is your current manufacturing infrastructure

capable of supporting such intelligent production systems?

380

• Q 1.6: Please scale the challenges in your manufacturing setup for

adopting intelligent production systems.

• Q 1.7: If you were to adopt intelligent production systems, please

provide an estimated time frame for overcoming the challenges in

your manufacturing environment.

A.1.2 Data in Manufacturing

• Q 2.1: In your perspective, which of the following options is the most

relevant ‘useful’ activity in manufacturing?

• Q 2.2: Which of the following is the single most important method

you use to categorise data as ‘useful’?

• Q 2.3: Which type of data has the greatest impact at different stages

of the product life-cycle?

• Q 2.4: In your experience, how often is productivity on the shop floor

impacted by decisions based on data gathered during operation?

• Q 2.5: Multiple processing levels are required for turning raw data

into actionable insight. Please rate these levels by how challenging

they are?

• Q 2.6: How much time and effort is spent on each of these data

analytics stages in your manufacturing environment?

• Q 2.7(i): Does your company use descriptive data analysis tech-

niques?

• Q 2.7(i)a: Please select any known descriptive data analysis technique

that is used at your organisation.

381

• Q 2.7(ii): Does your company use diagnostic data analysis tech-

niques?

• Q 2.7(ii)a: Please select any known diagnostic data analysis technique

that is used at your organisation.

• Q 2.7(iii): Does your company use predictive data analysis tech-

niques?

• Q 2.7(iii)a: Please select any known predictive data analysis tech-

nique that is used at your organisation.

• Q 2.7(iv): Does your company use prescriptive data analysis tech-

niques?

• Q 2.7(iv)a: Please select any known prescriptive data analysis tech-

nique that is used at your organisation.

• Q 2.8: What are the industrial network/automation protocols em-

ployed in your organisation?

A.1.3 Self-Configuring Production Systems in Man-

ufacturing

• Q 3.1: How do you typically enter the settings in a machine before

its operation?

• Q 3.2: How do you determine the settings of a machine before its

operation?

• Q 3.3: Do you think that machines that automatically adjust their

settings, in response to a change, can be beneficial to your production

environment for time and cost savings?

382

• Q 3.4: What kind of addition to your existing technological infras-

tructure will make it capable of realising machines that automatically

adjust their settings?

• Q 3.5: Where in your setup do you see the most beneficial application

of machines that can automatically self-adapt their settings?

• Q 3.6: In which domain do you think self-adapting machines can be

beneficial?

• Q 3.7: What do you think is the best strategy for the adoption of

such machines in your setup?

• Q 3.8: Do you think a tool that assists in evaluating the self-adapting

capability of your machine (i.e., adjusting their settings themselves)

would be helpful?

• Q 3.9: In your opinion, what are the challenges in using machines

that automatically adjust their settings on your shop floor?

• Q 4.0: How do you think machines that adjust their settings can

address common manufacturing issues?

• Q 4.1: In your opinion, how do you perceive the significance of ma-

chines, that adjust their settings, in solving operational challenges?

383

A.2 Detailed Survey Questionnaire

384

385

386

387

388

389

390

391

392

393

394

395

396

397

Survey 1: Industrial Challenges in Adopting Intelligent Production Systems

Characteristics required to make a production system “Intelligent”

Response to Current Criteria of intelligence in the production system

Response to Desired Criteria of intelligence in production system for productivity increase

A.3 Survey Response

398

Location of intelligence on the production system

Manufacturing Infrastructure for supporting intelligent production systems

Challenges in the adoption of intelligent production systems

399

Timeframe for overcoming the challenges in the manufacturing environment

400

Survey 2: Data in Manufacturing

Most relevant ‘useful’ activity in manufacturing

Most important method to categorise ‘useful’ data

Impact of data at different stages of product life-cycle

401

Impact of data on shop-floor decisions

Challenges in each processing level for converting data into insight.

Time and effort spent on each data analytics stage in manufacturing environment

402

Use of descriptive data analysis techniques

Descriptive data analysis techniques used at the organisations

Use of diagnostic data analysis techniques

403

Descriptive data analysis techniques used at the organisations

Use of predictive analysis techniques

404

Predictive data analysis techniques used at the organisations

Use of prescriptive analysis techniques

Prescriptive data analysis techniques used at the organisations

405

Industrial network/automation protocols employed in the organisation

406

Survey 3: Self-Configuring Production Systems in Manufacturing

Entering settings in a machine before Operation

Determining settings in a machine before Operation

The benefit of systems that automatically adjust their settings in a machine

407

Change in infrastructure required for self-configuring production systems

The most beneficial application of self-configuring in production systems

Best strategy for adoption of self-configuring production system

408

Tool for evaluating self-adapting capability

Most beneficial domain of self-adapting machines

Significance of self-configuring machines in solving operational challenges

409

Challenges in using machines that automatically adjust their settings

Self-configuring machines addressing manufacturing problems

410

Appendix B

Code Walkthrough

411

This section details a short tutorial on the implementation of self-configuration approach. The

following steps can be undertaken to set up the environment. The code is hosted in GitHub

repositories in respective folders.

Github Repo: https://github.com/Hamood564/CodeWalkthrough.git

Agent Deployment
Folders: Line Simulation, Test Simulation & Lib.

Download these folders. The Line Simulation and Test Simulation are separate NetBeans projects

compatible with NetBeans IDE 8.2 and JAVA JDK 8. Lib folder contains additional supporting libraries

for these projects.

Line Simulation project contains the digital twin model for the functionality execution and the product

routing. Test Simulation project contains the agent system for functionality execution. The operation

of agent system is detailed in Chapter 8 and Chapter 9 respectively. The inner working of the agent

system (architecture, behaviors and protocol) can be understood from the book Developing Multi-

Agent Systems with JADE.

A brief description of the packages in each project are as follows:

1. Console Agent: Contains the console frame and the console agent code that interacts with the

frame in the simulation tool. Frame to agent system communication is also present in this

package.

2. Simulation: This package contains the two layouts developed for the simulation. The resources

can be allocated to resource locations and depending on negotiation criteria product be routed

to these resources.

B.1 Code Walkthrough

412

3. Transport: This package contains transport agent, the transport rules for the product and the

relevant hardware interface abstraction. This package also contains the rules for the interface

and the classes to map the state of product across the layouts.

4. Transport Libs: This package contains the hardware simulation and layout rules.

5. Utilities: Contains the constants and directory facilitator interaction mechanism that can be

used by the Line Simulation project.

6. Coalition Leader Agent: This package contains information on coalition agent. Not

implemented in the current strategy.

7. Product Agent: This package contains the classes to implement product agent, its behaviours

and relevant communication with the simulation & physical environment.

8. Resource Agent: This package contains the classes to implement resource agent, its

behaviours and relevant communication with the simulation & physical environment.

9. Mqtt: This package contains the implementation of mqtt protocol for publish and subscribe.

These classes are used to communicate with the physical hardware controller.

10. WebSockets: This package contains the implementation of websockts between agents and

hardware.

11. Util: Contains the constants and directory facilitator interaction mechanism that can be used

by the Test Simulation project.

State Chart and State Machine Functionality Representation
Folder: State Chart to State Machine

The folder contains two projects “TQC_Malt” and “guiTQCApp”. These projects are compatible with

Eclipse IDE and JAVA JDK 11. The description of these projects is as follows:

1. TQC_Malt: This project contains the state chart implementation derived from Yakindu state

chart modelling environment described in self-configuration approach strategy. The bin folder

contains the compiled class files. The src-gen/malt folder contains the implementation of

Yakindu state machine. The src folder contains MaltState package that has maltStateMain

where the state chart can be executed. In guiTQCApp contains a State Machine package with

some example classes on how the state chart can be encapsulated in state machine behaviors.

2. guiTQCApp : Contains a basic implementation of tool utility realization through JAVA FX

framework. The behaviors can be defined in the State Machine package and leveraged through

the app.

More on Yakindu State Chart and its implementation for self-configuration is detailed in relevant thesis

chapter.

413

Tool Utility for Functionality
The tool utility is developed and can be accessed through guiTQCApp project. The TQCMainScene.fxml

contains the user interface definition for the app. The TQCMainSceneController class contains the

controller classes for the app functions. These functions can be tied to state machines from previous

section. The tool utility operates as a coordinator for the functionality execution. An example is present

in the code.

The information capture can be integrated into the guiTQCApp through relevant classes. The

information capture is carried out through CAEX engine implementation.

As the information captured is integrated the app can be used to reflect that in real-time, along with

coordinating functionality as per state machine behaviors.

The detail on each screen responds to the states in the state machine developed through yakindu

environment.

414

The coordination of functionality execution is detailed in the respective PhD Thesis Chapters.

Information Capture through CAEX Engine and AAS
Folders: CAEX_Malt, CAEX_test, CAEX_testingwithoutinterface and CAEX3

The information capture is carried out through CAEX engine and provides computability to the AAS

standard. The detail on mapping between CAEX engine and AAS is present in the respective thesis

chapter.

Each folder is a separate JAVA project, with generated classes that can be used to interface with CAEX

files. The CAEX files are generated through AAS Explorer, can be referenced through AML editor. The

following steps can be followed:

1. Information on modules in a production system can be mapped to the AAS submodels. Then

whole AAS of the system can be exported to AML (CAEX) file.

2. The AML editor can be used to access the CAEX file for the system.

3. The folders contain code that can interact with the CAEX files through generated classes. The

information can be extracted and updated.

4. The classes can be integrated within state machine behaviors for functionality coordination.

Tool utility detailed before can be used together with these state machine behaviors.

A basic implementation example is present in each code project.

Agent System Execution
Folders: Line Simulation, Test Simulation & Lib.

The Agent simulation can be started by run the Line Simulation Project with following configuration:

415

Once the simulation is started the location of resources can be defined through the console screen:

The functionality execution behavior can be triggered through Resource Agent package in Test

Simulation. The functionality is executed through Execute Skill class. The Response from location is

handled in Responder Location class.

416

Integrating business objectives (KPIs) and negotiating functionality execution is carried out through

Contract Net Protocol (CNP) in ResponderLocCN class.

ML Pipelines
 Folders: pass_fail_endpoint, collab_notebooks, endpointStrategy-main and cloud_functions.

These folders contain the machine learning code for the thesis project. These code implementations

rely (depending on application) on JAVA, Python and Google Cloud Platform. The main folders are as

follows:

1. Pass_Fail_Endpoint: This folder contains the pretrained models for leak test and force test

prediction. Should be in GCP Storage bucket of same name.

2. Collab_Notebooks: This folder contains code for machine learning applied to datasets. The

pretrained models are generated through these.

3. Cloud_Functions: This folder contains the trigger scripts responsible that query values from

pretrained models as they receive a http request. Should be configured in GCP Cloud

Functions.

4. Endpoint_Strategy: Contains modular ML endpoint implementation through Google’s Vertex

AI. The detail is presented in the code and more insight available through Google official

documentation.

GCP is used to deploy the ML models in cloud storage as well as the trigger functions. The http calls

can be integrated in the state machine behaviours and in agent systems to query predictions on

settings. GCP official documentation to be followed for deployment. Detail on each implementation is

present in respective folders.

Real Time Control
Folders: Self-ConfigurationMALT.zip and Testing1.rar

The archived files are the implementation of real time control (RTC) for physical industrial systems. The

two industrial systems are Multi-Application Leak Tester (MALT), a bespoke leak tester, developed at

TQC and PRIME test station respectively. The RTC is implemented as per following detail:

1. MALT: The testingMALT is the main class for the MALT self-configuration RTC. The KPIs can be

provided and the configuration be changed through a single call function. Currently it is set to

varying volumes. The configuration settings are determined through machine learning model

hosted in cloud environment (GCP). This RTC can be integrated with the tool utility for

functionality coordination under constraints.

417

2. PRIME: The PRIME test station code is a Beckhoff Twincat 3 project that can be loaded into

Twincat 3 environment. The variables responsible for settings and functionality execution can

be accessed through TestingGVL by OPCUA. The main execution happens through Main FB in

the POUs. The configuration settings are determined through machine learning model hosted

in cloud environment (GCP) actuated through trigger scripts on storage buckets. This RTC can

be integrated with the tool utility for functionality coordination under constraints.

NOTE: For any assistance contact the author of the Thesis at hamood564@outlook.com.

418

Appendix C

State Chart

C.1 Understanding States and Actions in State

Charts

Statecharts have vertices and (directed) edges because they are depicted as

directed graphs. An object’s states are represented by its vertices. Edges

are state transitions or changes in the state. A rectangle with rounded

corners is used to symbolise states, and they can have names and actions.

There are three different types of state actions:

• When the state is triggered, the entry action is carried out.

• After the entry-action is complete, the do-action is carried out.

• When the status is deactivated, the exit action is carried out.

Pseudo-states are a subset of states. They exist solely for modelling pur-

poses and are not actual states of the item. The state chart must not

remain or perform actions in these pseudostates. The start-state, which is

419

a pseudostate with only outbound transitions, is the principal entry trig-

gered when the statechart begins event handling. Instead, the final state

is a true state with just incoming transitions.

Figure C.1: A basic state representation using statecharts.

C.1.1 Transitions in a State Chart

Events

Normally, changing a state is prompted by events. An event is the outcome

of an arbitrary action by the system or its surroundings. There is no

particular definition for events. The most essential event kinds are given

in the UML specification:

• The surrounding environment causes the signal event to occur.

• The state chart itself initiates the time-event.

A completion-transition, which is a transition without an event, can occur

in any state. If no such transition exists in the state (all transitions are

triggered by events), the object remains in this state until an appropriate

event can be handled by an outgoing transition. The present active state

is the only one that can handle all events. If the state is unable to handle

420

the event, it is discarded. The completion of the state’s exit-action is

understood as the trigger for the end-transition.

Guards and Actions

A guard and an action can be added to a transition in addition to the event.

The first is labelled [guard], while the second is labelled /action. Guards are

employed to ensure that the transition occurs only if the guard’s evaluation

is true. As a result, transitions using the same event and various guards

are feasible. Depending on the guard, different actions or goal states can

be achieved.

It must be ensured that the model is deterministic when modelling. As a

result, adding outgoing transitions to the state that can trigger both on an

event is not permitted.

Time-triggered transitions

The transition marks the time event with the keyword after (x). This is

a time-triggered transition. “x” represents the amount of time that the

source state must be active before the transition may occur (if the optional

guard evaluation is true). When a state is triggered, the clock begins to

tick.

Segmented transitions

Segmented transitions are another feature of state charts. They are used

to concatenate numerous transitions, for example, to execute an action

with each sub transition. The modelling of branching is another valuable

421

Figure C.2: An collaborative illustration on state charts for a production
system. (a) Guards and actions during the transition,(b) time-triggered
transition, (c) segmented transition, (d) regions ,(e) concurrent transitions,
(f) complex transitions, (g) state transition, (h) history states.

application of segmented transitions. All sub transitions are concatenated

with the junction point pseudostate, which is depicted in the figure as a

little black circle.

The fact that segmented transitions are always atomic is an important

characteristic. As a result, the transition triggers either fully or not at

all. That is, before a state change happens, the segmented transition must

determine if an authorised path to the next actual state exists. However,

there is another important distinction to make: only the first part of the

transition can contain an event as a trigger. Otherwise, guards and actions

422

can be found in any part.

C.1.2 Hierarchical states

Complex systems frequently call for the abstraction of a real-world scenario

and the later specification of concrete behaviour. Hierarchical states, com-

monly referred to as or-states, can be utilised in statecharts to break down

complicated states into substates that more fully describe the behaviour.

One substate is automatically triggered as the object achieves this com-

posite or-state, and only one substate is active at any one moment (which

explains the name or-state).

Start- and final-states

Knowing which substate to activate when the parent state is active and

when the or-state is complete, respectively, is crucial within an or-state.

These data are simulated using the start- and end-states that are previously

known. It is not always necessary for these pseudostates to exist. Why will

be explained in the paragraph that follows.

Entering and leaving the hierarchical state

There are two ways that a complicated state can be activated:

• At the or-state’s border an incoming transition comes to a halt. In

this situation, the start-state presence is required.

• An inbound transition terminates at a substate and crosses the or-

state’s boundary. Since the aim of the transition informs the hier-

423

archical state of the first active substate, the start-state is thus not

necessary.

An analogy for leaving a hierarchical state is:

• An incoming (end-)transition can deactivate the state. If there is

no trigger for this transition, the completion of the composite state

serves as the signal for the end-transition. A final-state is necessary

in this situation.

• A transition from one state to another outside of the or-state, with

the source being a substate, might deactivate the state. A final-state

is not necessary in this situation.

State transitions

Transitions inside hierarchies raise two issues for which a semantics is re-

quired. What occurs with incoming event-triggered transitions from the

or-state at first? When the or-state is in effect, the object is semantically

in precisely one substate. Therefore, it is essential that each substate be

able to manage this occurrence as well. Every event-triggered outgoing

transition of the hierarchical state is inherited by all substates in order to

implement this semantics. To put it another way, every substate manages

any egress-triggered transitions of its parent states that are on the route

from the state to the hierarchy-root tree’s node.

What happens if a substate ”overrides” an outgoing transition with the

same event, as a result of this semantics? In this instance, many transitions

may activate. Because t1 is an outgoing transition of the state s1 and s1 is a

transitively accessible substate of s2, a mechanism to prioritise transitions

424

is required. t2 manages the same event as t1 and is an outgoing transition of

s2. In this instance, inner transition t1 is given priority over outer transition

t2. This rule guarantees that the hierarchical tree’s lowest transition will

always trigger.

History states

Many systems need to know how a complicated state was configured be-

fore it was disabled. With this knowledge, reactivating the complicated

state may be done while maintaining the same configuration. History-

pseudostates in hierarchical states are used to model this data. In the

figure, history is denoted by the letters H or H* and is classed as follows:

• The shallow history H stores the last active substate.

• The deep history H* stores all active substates on the path from the

node to the leaf in the hierarchy tree.

C.1.3 Concurrent states

Concurrency modelling is possible with statecharts. At least two concur-

rently active substates are required for a concurrent state. The and-state

is divided into these regions. These regions are divided by a dashed line in

the figure. Concurrency entails fresh conceptual ramifications, which are

now discussed.

425

Regions

The semantics mentioned above also applies here since regions are specified

by hierarchical states. As soon as the and-state is triggered, practically all

areas are active. They are a particular kind of processes that are active in

the concurrent state.

It is not feasible for some regions to be ”deactivated” and not others. All

regions always handle incoming events, hence many transitions may be

able to fire at once. specifically up to changes in region count. Like in or-

states, all regions inherit event-triggered outgoing transitions (and thereby

all substates). Here too, the transition firing priority rule is in effect.

Entering and leaving the concurrent state

All regions must be active to enter a concurrent state, and vice versa. Two

scenarios can be given, similar to hierarchical states.

• The and-state marks the conclusion of the entering transition. Each

area in this scenario has to have a start-state.

• The incoming transition comes to an end in a single region’s substate.

The and-state is thereby implicitly triggered at this substate. The

start-states of all other areas are enabled. Thus, n-1 start-states are

required.

Complex transitions

Above, the implicit and explicit examples of activating a concurrent state

were discussed. Whereas later n-1 start-states are required, the initial all

426

n regions require start-states. However, what happens if n-m regions are

enabled.

Complex transitions were included to the model to represent this behaviour.

The control flow was divided. Maximum one transition from an incoming

transition is divided into each area with a target substate. It is possible to

give an analogous example for exiting the and-state. These two semantics

can appear in a complex transition:

• Divide a single transition at least twice. All areas that are blocked by

incoming transitions are automatically enabled at their start states..

• Synchronising the departure of certain regions from the and-state

upon activation of particular substates. All regions that are prohib-

ited from outbound transitions are immediately disabled.

427

Appendix D

CAEX Standard

D.1 Utilising the CAEX Standard

The CAEX (Computer Aided Engineering Exchange) standard has been

used for modelling information about production systems in manufactur-

ing (Drath (2012)), allowing illustration of semantics in terms of defined

roles and then collecting them in groups known as role class libraries. In-

terfaces between production system objects can be specified in interface

class libraries. System Unit Classes can contain information about sys-

tem objects collected in system unit libraries. Finally, instance hierarchy

can contain information about internal elements that reference instances

of system unit objects and derive their semantics from role class objects.

Along with this, internal elements reference interface objects providing a

mechanism to interlink internal element objects and a means to reference

externally stored information.

The model for representing production system-related information utilises

the CAEX standard for modelling the system topology and its elements

428

Figure D.1: CAEX architecture for capturing information on the module
and operational semantics (Drath (2021)).

(Drath (2021)) (see figure D.1).

1. Role Classes: Role (R) classes, which are collected in form of role

class libraries, describe the abstract functionality of the system unit

object without describing the fundamental implementation, therefore

acting as a representation of semantics. Role Classes are dependent

on the need for capturing data and the respective data interchange

required. Role classes follow a unique name identification within the

role class library hierarchy, making it easy to be referenced within a

hierarchy path. These role classes may possess attributes and inter-

faces, and assist in the interpretation and processing of information.

2. Interface classes: Interface classes implement abstract relation-

ships between elements and to other information not contained within

CAEX based model. An interface class will have a unique identifi-

cation along with attributes. These attributes can take up values in

429

each occurrence of an instance (I) of the interface class.

3. System Unit Classes (SUC): System unit classes are represen-

tative reusable system components or templates. These reflect a li-

brary of components or a set of templates representing aspects of

the production system that be instantiated as an instance. Each of

the system unit class objects (S) may contain sub-objects known as

internal elements (IE), along with the respective attributes and in-

terfaces. These system unit class objects may also be derived from

other system unit classes through reference path attributes.

4. Instance hierarchy(IH): Instance hierarchy consists of an inte-

grated hierarchy of internal elements that themselves consist of in-

stances of system unit class objects. Internal elements (IE) are rep-

resentations of objects in a production system that can be physical

or digital elements. Internal elements contain instances of interfaces

derived from the interface class library and possibly refer to one or

more than one role class library. The attribute and referenced role

class define the semantics of the internal element.

Within the CAEX standard, modules, which contain critical functionality

information, can be effectively represented. To capture the operational

semantics embedded within a module, following approach is followed:

1. Instantiating a System Unit Class Template: A system unit

class template is created that contains essential information about

the functionality of configurable objects. This template acts as a

blueprint for defining the module’s functionality.

2. Creating an Instance in the Instance Hierarchy: Within the

instance hierarchy, an instance of the module is created. This instance

430

holds detailed information about the functionality and can include

specific values instantiated for that instance.

3. Instantiating Operations as Internal Elements: The individ-

ual operations within a module are instantiated as internal elements

within the instance hierarchy. These internal elements represent the

specific operations that the module can perform.

4. Defining the Functionality as a Role Class: The functionality

information can be based on semantics based on the role class defini-

tion for functionality. The functionality information can be defined

for a process as per the following description;

• Identifier: This distinguishes the functionality from other func-

tionality capabilities. It carries a unique identification.

• Kind: This represents an instance of the functionality with spe-

cific input and output variables. It can also be a representation

of a template present within the system unit class.

• Semantic ID: This presents a link to semantic reference. This

is necessary to automatically identify and understand the mean-

ing of the functionality if it is linked to a Concept Description.

• Qualifiable: It presents the constraints the functionality may

be subjected to.

• Data Specification: They reference from a template that can

be used to define attributes for a functionality. They refer to

prescribed standard data model semantics.

The functionality is actuated through the Event interface represented

by identifier, kind, semantic ID, qualifiable and data specification.

431

The best representation of functionality information can be understood by

figure D.2.

Figure D.2: Representation of functionality operation as a Submodel in
Asset Administration Shell deployed through CAEX engine. Context is a
combination of identifier, kind, semantic ID, qualifiable, and data speci-
fication for a production operation. Event defines the change happening
as a result of the operation, Submodel Collection contains information and
functions about the operations relevant for that production system, Ca-
pability is the ability or extent of the operation, and Operation contains
information about the input, output and in-out condition for the opera-
tion. Value and Value Type are used to assign value as per a unit to the
property.

432

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Acronym
	Glossary
	Introduction
	Introduction
	Problem Statement
	Research Domain
	Aims and Objectives
	Thesis Structure
	Publications

	Literature Review
	Introduction
	Concept of Configuration in Production Systems
	Self-Configuration in Production Systems
	Machine Learning Applications
	Optimisation Algorithms for Parameter Determination
	Interoperability and Data Integration
	Applications of Self-Configuration
	Research Gap

	Methodology
	Introduction
	Requirements of the Approach
	Detailed Methodology
	Validation Methods
	Overview of the Approach
	Thesis Structure
	Conclusion

	Industrial Practice Survey For Adoption Of Self-Configuring Production Systems
	Introduction
	Survey Description
	Analysis And Result
	Threats to Validity
	Reflection on Impact
	Conclusion

	A Level-Based Classification of Technical Enablers in Production Systems
	Introduction
	A Level-Based Classification for Self-Configuration
	Evaluating Enablers of Self-Configuration with the Level-Based Classification
	Conclusion

	Module Driven Configuration
	Introduction
	Overview of Framework
	Module Driven Configuration System Model
	Conclusion

	Standard Configuration Model for Production Systems in Manufacturing
	Introduction
	Concept of Configuration in Production Systems
	Configuration Model
	Impact on Configuration
	Towards Capturing Configuration for Production Systems

	Self-configuring Production System: An Adaptation Strategy
	Introduction
	Overview of the Adaptation Strategy
	Capturing Configuration Module Information
	Deployment of Engine for Capturing Information
	State Chart to State Machine for Functionality Representation
	Machine Learning for Self-Configuration
	Multi-Agent System Integration
	Real Time Control
	Simulation
	Conclusion

	Industrial Use-Case: Validating the Adaptation Strategy for Self-Configuring Production Systems
	Introduction
	Methodology
	Implementation
	Experiments
	Conclusion

	Conclusion
	Research Questions and Contributions
	Summary of the Findings
	Outputs, Implications, and Novel Findings
	Limitations

	Bibliography
	Appendices
	Survey Questionnaires
	Survey Questions
	Detailed Survey Questionnaire
	Survey Response

	Code Walkthrough
	Code Walkthrough

	State Chart
	Understanding States and Actions in State Charts

	CAEX Standard
	Utilising the CAEX Standard

