
Model reduction for driven PDEs:
Application to polymer constitutive

equations

Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy, March 2024.

Daniel Mellor

10168389

Supervised by

Richard Stuart Graham
Matteo Icardi

Signature:

Date: 31 / 3 / 2024



Abstract

In polymer dynamics, the direct derivation of equations for stress response

is often very difficult due to complex dynamics arising from interactions

between long-chain molecules. One useful approach is to map from an ex-

pensive molecular constitutive equation to a cheaper model using model re-

duction. There is an ever-growing need for computationally cheap polymer

models as many important applications such as modelling polydispersity

or computational fluid dynamics require a vast number of evaluations of

the model. Currently, many of these applications use the Rolie-Poly model

which has several known weaknesses. We develop a new data-driven way of

carrying out model reduction for constitutive equations. This reduction is

achieved by choosing a number of slow-moving variables as coarse-grained

variables. A mapping between these coarse-grained variables and the full

configuration is then created using a data-driven approach. With this map-

ping, we then evolve these coarse-grained variables, but not with directly

derived differential equations. Instead, we utilise the mapping to map back

to the full model and calculate derivatives using the original model. The

result of this is a model that can take large timesteps but retains greater ac-

curacy. Using this framework on the GLaMM model for polymer dynamics,

we derive a new model reduction with the accuracy of the GLaMM model

and the speed of the Rolie-Poly model, with the only minor limitation be-

ing the span of training data. This model is sufficiently fast to be adapted

for use in many of the aforementioned applications.
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Chapter 1

Introduction

1.1 Model reduction for polymer dynamics

This thesis is concerned with model reduction, particularly for the field

of polymer dynamics. A polymer is a substance comprised of very large

macromolecules, each consisting of a chain of repeating subunits. This

definition includes many plastics and resins which are ever-present in the

modern world. Such materials are manufactured in liquid form with flow

and temperature controlled to achieve the desired shape and rate of crys-

tallisation. Understanding the dynamical response is therefore essential to

produce polymer products. The difficulty arises since these liquids, com-

monly known as polymer melts, are non-Newtonian viscoelastic fluids that

can act as viscous liquids or elastic solids depending on the flow imposed

and the timescale of interest. This property is due to the size and shape of

these macromolecules, with polymers structured as a long chain of repeat-

ing subunits. The stress response in a polymer melt is controlled by the

shape that these molecules form under flow, and thus stress response is con-

trolled by the chains’ dynamics. These dynamics require specialised models

1



1.1. MODEL REDUCTION FOR POLYMER DYNAMICS

since the movement of an individual chain can be heavily constrained by

its neighbours, as these chains entangle with each other. Any model for the

dynamics of an entangled polymer melt must therefore account for these

various constraints imposed by entanglements, and furthermore, how these

constraints themselves are affected by the flow.

The accuracy of the model’s predictions is an important factor when cre-

ating these models, but another consideration is the numerical cost. In a

monodisperse entangled polymer melt, where all the chains are of the same

length, under a uniform flow, evaluation with one of these polymer mod-

els at a single point is sufficient to extract the dynamics of the polymer

melt. However, in polymer manufacture the polymers are often polydis-

perse, comprising of a distribution of various chain lengths and subject to

more complex non-uniform flows. To model polydispersity we often need to

solve multiple versions of the constitutive equations to account for different

chain lengths and the interactions between them. This makes the model

many times more expensive, even for simple flows. As for complex flows,

the response is no longer the same for the entire flow field and requires

computational fluid dynamics. Thus we discretise the flow field into many

points to solve the Navier-Stokes equation numerically, requiring the con-

stitutive equations to be solved at each of these locations. Both the effects

of polydispersity and complex flows individually make modelling more nu-

merically expensive, and when both are present the effect is compounded as

every chain length and cross interaction must be evaluated at every point

in the flow field. For this reason, both accuracy and low computational cost

are required for utilisation under realistic conditions where one or both of

these complications are often present.
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1.2. EXISTING POLYMER MODELS

1.2 Existing polymer models

One of the existing polymer models that has been shown to be close to

experimental data in a range of situations is the GLaMM model [14]. In

addition to its high accuracy, the GLaMM model has influenced a wide

range of models in the field of polymer dynamics. The main drawback of the

GLaMM model is its very high computational cost relative to other simpler

constitutive equations. This restricts its practical use to monodisperse

polymer melts in uniform flows which only covers a limited number of

experiments, and excludes realistic polymer processing. For this reason,

a simple model reduction of the GLaMM model known as the Rolie-Poly

model [21] is often favoured instead. Owing to its simpler form, the Rolie-

Poly model has a far lower computational cost, which has led to the Rolie-

Poly model being adopted by many polymer manufacturers. It has also

been used as the basis to create a polydisperse polymer model, the Rolie-

Double-Poly model [6]. However, there are many cases in which the simple

model reduction causes inaccurate predictions, which are also inherited by

successive models such as the Rolie-Double-Poly model. A more accurate

Rolie-Poly type model would be greatly beneficial but it is not clear how to

directly extend the model reduction approach used in the Rolie-Poly paper.

1.3 Thesis overview

Our aim in this thesis is to create a reduced model for polymer dynamics

with speed similar to the Rolie-Poly model, but greater accuracy, closer

to the GLaMM model. To achieve this, we first produce a framework for

data-driven model reduction that is applicable to a general PDE with an

external driving term. For our aim we use the GLaMM model, but the

3



1.3. THESIS OVERVIEW

approach is applicable to other PDEs. This framework uses precomputed

model data to map from selected slow-moving coarse-grained variables to

the more detailed configuration of the PDE model. The idea of such an

approach is that we evolve these few coarse-grained variables but do not do

so by explicitly deriving differential equations for the coarse-grained vari-

ables. Instead, we map back to the more detailed full configuration, use

the original PDE to calculate the derivative of this full configuration, and

use this to calculate the derivative of the coarse-grained variables at every

timestep. This significantly improves the accuracy of the evolution of the

coarse-grained variables as the full PDE model is utilised to calculate the

evolution. Since the time derivative of the full configuration is calculated

at every step, the cost per timestep can see little improvement, but the

major advancement comes from the fact that we are instead evolving the

slow-moving coarse-grained variables. This allows us to take much larger

timesteps, causing significant speed-up with the reduced number of evalu-

ations whilst retaining accuracy. In this thesis, we manually select which

quantities are used as our slow-moving coarse-grained variables, but it is

possible to automate this process with machine learning, which we discuss

in future work. By using this model reduction framework with the GLaMM

model we created our reduced model for polymer dynamics.

This thesis covers the creation of the general framework, application to the

GLaMM model and analysis of reduced model performance for uniaxial

extension flow and shear flow prediction. Firstly, we review the relevant

literature for previous polymer models and the current challenges in the

field of polymer dynamics in chapter 2. Then in chapter 3 we establish

the general framework, apply it to the GLaMM model, and analyse the

performance of this new reduced model against Rolie-Poly predictions for

uniaxial extension flows. In chapter 4 we use our model to predict shear

4



1.3. THESIS OVERVIEW

flows, the rotational element of which introduced a number of challenges.

To ensure that our reduced model remains accurate for shear flow predic-

tion, this chapter also introduces principal direction to the model along with

natural generalisations to the definition of the coarse-grained variables and

the mapping from these coarse-grained variables to the full configuration.

Lastly, chapter 5 provides a final summary of our work, and re-examines the

various graphical comparisons between our reduced model and the Rolie-

Poly model to determine if we have sufficiently met our aim. This final

chapter also covers a wide array of future avenues that are possible for

this work such as automated selection of the coarse-grained variables for

the general framework or applying our reduced model to more nuanced

polymer melt qualities like polydispersity or flow-induced crystallisation.

All the code produced as part of this thesis is available on GitHub [28].
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Chapter 2

Literature review

2.1 The Doi-Edwards tube model

A polymer is a material consisting of very large molecules each of which is

comprised of a vast number of the same repeating unit, connected end-to-

end to form long chains. The first hurdle to overcome in the modelling of

polymer dynamics was how to feasibly calculate interactions within a poly-

mer. Each chain will be entangled with many other chains, and thus to

predict how a single chain will move, we require knowledge of the interac-

tions from every surrounding chain, which would necessitate huge amounts

of calculation. A widely accepted solution is the Doi-Edwards Tube model,

created by Sam Edwards and Masao Doi in 1986 [8]. The tube model

proposes that rather than evaluating each of the surrounding chains indi-

vidually, we can use a mean-field approach to reduce the problem to that

of the primitive path of a single chain within a finite “constraining” tube.

The path is free to move within the tube, with the tube modelling the

topological uncrossability with other chains. This is shown in figure 2.1.

This reduces the many chain problem down to a single chain problem.

6



2.1. THE DOI-EDWARDS TUBE MODEL

Figure 2.1: A 2D slice showing how the tube model replaces the topological
effects of the individual entanglements with a constraining tube. Due to the
sparsity of the chains in 3D space, each other chain will only contribute one or
more points to this 2D slice of the tube, the points at which it intersects the
current plane.

In manufacture polymers are often in liquid form where the polymer chains

are free to move and interact with each other, often known as polymer

melts. The polymers then crystallise over time when not exposed to high

temperatures, becoming solid. This thesis will focus on the dynamics of

polymer melts, as understanding their dynamics is key to achieving the

desired final product. Due to the interaction between chains, these polymer

melts exhibit viscoelastic behaviour. Initially, the polymer chains will have

a random configuration known as the isotropic rest state where the chains

within the polymer are completely without alignment and unstressed. If

a flow is applied to a polymer in this state we will initially see an elastic

response as the entanglements will resist the movement due to the flow.

After some time, the chains will have had time to start relaxing and we

transition to a behaviour akin to a viscous liquid, as the chains are now

less restricted and free to “flow” past each other.

A flow will orient each polymer chain and its tube based on the direction

of the flow. As time progresses, the polymer chains will try to relax back

7



2.1. THE DOI-EDWARDS TUBE MODEL

towards the isotropic rest state. If we consider a polymer that has recently

undergone a flow, causing strain, the tube model assumes that the poly-

mer’s stress is due to chains trapped in oriented tube segments. Thus if a

portion of the polymer chain escapes the tube or a portion of the tube itself

is removed that portion will lose some stress. There are several different

methods by which an oriented polymer chain can relax. One such way is

reptation, illustrated in figure 2.2.

Figure 2.2: An illustration of relaxation by reptation after an imposed strain.

Reptation is diffusive motion of the entire chain, causing the polymer chain

to move down the tube in a manner similar to a snake. We can see this in

figure 2.2. Immediately after the imposed strain, the entirety of the chain

is within the tube, depicted in (a). Diffusive motion of the polymer chain

causes the segments of the tube that constrained the trailing end to be lost,

as depicted in (b). The emerging end continually explores new randomly

chosen tube segments, and since these are chosen with no constraint on

their direction, they carry no stress. As the chain moves back and forth

under diffusion, further segments are lost from both ends, as depicted in

(c). Another way in which polymer chains can relax is contour length

fluctuations (CLF), illustrated in figure 2.3.

The length of this primitive path within the tube is not fixed and this

8



2.1. THE DOI-EDWARDS TUBE MODEL

Figure 2.3: A figure to show how tube segments are lost to CLF.

contour length will fluctuate. This accelerates the rate at which the ends

of the polymer chain explore new chain segments. If a section at the end

of the tube temporarily contracts, the memory of the now empty tube

segment is lost and when the section re-extends it is free to explore new

tube segments. Relaxation still occurs during flow and the Weissenberg

number is a measure of how quickly the flow is orienting the chains relative

to the rate at which the chains are relaxing through the exploration of new

tube segments. The effects of CLF are more significant on shorter chains.

A quantity that we need to introduce to use models that rely on the tube

model is the dimensionless contour length, Z ∈ R+. To calculate this

we divide total molecular weight by the weight between entanglement seg-

ments to get Z = Mw

Me
. Due to uncertainties in the measurements of these

molecular weights, this value is then rounded so that Z ∈ N, and Z can

then be thought of as both the contour length and the number of entan-

glement segments. We also define the chain Rouse time, τR ∈ R+, which

is a material dependant quantity that controls the rate of relaxation of the

chain contour length, and the reptation time, τd ≈ 3ZτR ∈ R, controlling

the relaxation of the tube orientation due to reptation. Both the GLaMM

model and Rolie-Poly model which we shall cover in detail in this literature

review are based on the Doi-Edwards tube model.

9
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2.2 Early ODE constitutive equations based

on the tube model

The creation of the Doi-Edwards tube model was a significant step towards

a model that could predict polymer dynamics, but there was still a signif-

icant disparity between many experimental results and model predictions.

In particular, experimental results showed a far greater level of shear thin-

ning than the Doi-Edwards model would otherwise suggest. By analysing

the circumstances under which this divergence would occur, the theory of

convective constraint release (CCR) was established, an additional mecha-

nism by which a polymer chain can relax. This is illustrated in figure 2.4.

Figure 2.4: A figure to show how a constraint release event can occur.

As the name suggests, relaxation due to constraint release is not relaxation

10
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caused by movement of the chain, such as reptation or CLF, but rather

due to a change in the constraining tube itself. Whenever the end of one

of these surrounding chains passes through the edge of the constraining

tube, a constraint release event occurs, and the constraints imposed by that

segment of the tube are lost. These constraint release events can occur as

the surrounding chains relax via reptation, known as reptative or thermal

constraint release, or by convection as the surrounding polymer chains are

swept away by the polymer flow, known as convective constraint release.

The movement of these surrounding chains is affected by the rate of an

imposed flow, and thus the rate of CCR events grows in proportion to the

flow rate. This mechanism was used to explain the results that exhibited

a relaxation rate that was faster than expected under the Doi-Edwards

model.

Several models were then created to incorporate these effects of CCR. Many

of the early models for polymer dynamics were contour-variable models.

A contour-variable model keeps track these chain contours change over

time, with models based on how these chains interact at a molecular level.

The Doi-Edwards tube model is one such example. This formulation often

naturally leads to systems of PDEs where the chain is split into segments

and the response of each segment is dependent on the other segments. On

the other hand, non-contour-variable models do not model at the dynamics

of the chain at the molecular level, instead directly deriving an ODE for the

stress response. A number of early models derive their ODEs by taking an

average along the chain. Contour-variable models tend to be more accurate

but also more expensive than non-contour-variable models.

The Mead-Larson-Doi (MLD) model [25] inherits the structure of the Doi-

Edwards model, replacing the term of reptation with a combined relax-

ation term that encapsulates the effects of both reptation and CCR. This

11
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contour-variable PDE is then reduced to a non-contour-variable ODE via

overall chain considerations. Like the Doi-Edwards model before it, the

MLD model solves for the full chain distribution, with both the accuracy

and computational cost associated with modelling at the molecular level.

However, reptation and CCR act differently on a polymer chain at the

molecular level. Relaxation by reptation acts on the ends of the chains,

and thus the ends relax much faster than the centre under reptation as the

effects take a long time to diffuse along the chain. On the other hand, CCR

is often envisioned as allowing Rouse-like motion of the tube as a whole,

without a focus on a particular area of the chain. The MLD model does

not capture these mechanisms which are widely regarded as correct, this

fidelity is lost when the MLD model groups them together in a single term.

Many other early approaches postulated the ODE directly with non-contour-

variable models such as the model by Ianniruberto and Marrucci [17]. They

directly used the proposed physics of CCR to inspire their model but did

not directly derive the ODE from the molecular level. Thus this ODE

model was a lot easier to use with faster speeds than a full solution, but

it lacked the robustness that an equivalent ODE derived from molecular

principles would have. Many of these models had greater experimental

agreement than their predecessors and were crucial to furthering under-

standing in the field of polymer dynamics, but it was not until the creation

of the GLaMM model that a model would be able to accurately capture a

wide range of different rheological features.
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2.3 The GLaMM model

Building upon the Doi-Edwards tube model and the Likhtman-McLeish

theory [22], the GLaMM model is a contour-variable non-linear PDE for

the prediction of polymer dynamics created in 2003 [14]. Unlike most other

polymer models of the time, the GLaMM model was based on a stochastic

model for chain motion, derived from the Brownian motion of the polymer

chains themselves. Such an approach followed naturally when starting from

the molecular physics of polymers, and allowed for the implementation of

all the physics at the length scale of the tube length. This had a number

of advantages. One major advantage was that this direct derivation from

physics provided a natural way to include CCR, as interactions between

chains. This was what really set the GLaMM model apart from prior

models, the fact that it could directly model CCR as Rouse motion of

the tube. Another major advantage was that this model did not require

parameter fitting to capture nonlinear rheology, unlike previous models.

The only parameters that required fitting for the GLaMM model derivation

were the ones directly inherited from the Doi-Edwards tube model, which

were fitted with linear rheology. Thus, the accuracy of nonlinear rheology

predictions exhibited by the GLaMM model must be a predictive result

from the GLaMM model’s understanding of the underlying physics, rather

than a result of parameter fitting to similar experiments. One weakness

of the GLaMM model, which is typical for this level of modelling, is that

the GLaMM model derivation requires a closure approximation based on

pre-averaging assumptions. There are also certain advanced features which

the GLaMM model fails to capture, especially in strong stretch, but overall

the GLaMM model describes a significant portion of experimental data well

with a small number of parameters.
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As we use the GLaMM model PDE extensively in this thesis, we shall

describe the relevant parts of the model here. The dependent variable for

the GLaMM model is a 3 by 3 tensor field f(s, s′, t), and thus we must first

introduce this quantity in order to understand the GLaMM model. Let

us denote a single polymer chain by R(s), where s ∈ [0, Z] runs along the

chain length in units of entanglement segments. One such example of R(s)

is illustrated in figure 2.5.

Figure 2.5: A visualisation of a polymer chain, R(s), with gradient vectors.

Let us pick two points on this chain at s and s′, with gradient vectors

∂
∂t

R(s) and ∂
∂t

R(s′). Using the components of these gradient vectors we

can now define f(s, s′) as,

fαβ(s, s′) =
〈∂Rα(s)

∂s

∂Rβ(s′)

∂s′
〉

where R(s) = (Rx(s), Ry(s), Rz(s))

(2.1)

Where the angular brackets denote an ensemble average, calculated as the

average as the number of simulated chains tend to infinity. α and β come

from the components of the gradient vectors and αβ will now be referred to

as the Cartesian components of f(s, s′). R(s) is based upon the stochastic

process of a random walk and this means that we can use the ensemble
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average to find an average function for f(s, s′) as the number of R(s) we

simulate tends to infinity. Further details into the statistical mechanics

behind the creation of the GLaMM model are not necessary to understand

the methods in this work and thus are omitted. We now break down f(s, s′)

for further clarity,

f(s, s′) =


fxx(s, s

′) fxy(s, s
′) fxz(s, s

′)

fxy(s, s
′) fyy(s, s

′) fyz(s, s
′)

fxz(s, s
′) fyz(s, s

′) fzz(s, s
′)

 .

Using this, we can see that f(s, s′) is a symmetric 3x3 tensor field, con-

taining 6 distinct 2D functions of s and s′. As a polymer is subjected to

a variation in conditions, the average path of a polymer chain will change,

and thus so too will each of these 6 functions. The GLaMM model takes

f(s, s′) to be a time-dependent variable and presents a numerical solution

to the evolution of this tensor field over time, f(s, s′, t). To model the stain

rate we apply to the polymer melt, we introduce a velocity gradient tensor

κ. Some examples of simple flows that polymers are regularly subjected to

are shown in 2.6.

Figure 2.6: κ for shear at rate γ̇ and uniaxial extension at rate ε̇.
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When in the isotropic rest state, f takes the equilibrium value of f eq,

f = f eq =
∆(s− s′)

3
I (2.2)

Now, utilising these definitions, we can present the form of the GLaMM

model we use throughout this thesis. The formulation we choose to use

accounts for the effects of the reptation, CCR and retraction relaxation

mechanisms. This form of the GLaMM model PDE can be written as,

∂f

∂t
= κ · f + f · κT +

1

3π2Zτe

(
Z

Z∗(t)

)2(
∂

∂s
+

∂

∂s′

)2

f

+
3νa

2

[
∂

∂s

(
a√

Tr f(s, s, t)

∂

∂s
(f − feq)

)
+

∂

∂s′

(
a√

Tr f(s′, s′, t)

∂

∂s′
(f − feq)

)]
+

Rs

2π2τe

[
∂

∂s

(
f
∂

∂s
ln[Tr f(s, s, t)]

)
+

∂

∂s′

(
f
∂

∂s′
ln[Tr f(s′, s′, t)]

)]
. (2.3)

Where · indicates a dot product across the Cartesian dimensions of the two

operands, as is standard practice in rheology. In order, the right-hand side

of equation (2.3) contains two terms to represent the effects of convection,

and three terms with account for the relaxation due to reptation, CCR

and retraction respectively. We will now define each of the other variables

within equation (2.3) that have yet to be defined within this work. Firstly

the variable a is the tube diameter for the Doi-Edwards tube model and

Rs is a closure parameter taking the value of 2. ν is the CCR rate calcu-

lated as a product between the retraction rate, which is stretch-dependent

and determines the rate at which CCR events occur, and a constant Cν

which describes the size of the effect on chain relaxation per event. We

will use different values of Cν throughout this thesis to simulate flows with

and without the effects of CCR. τe = τR/Z
2 is the Rouse time of an en-

tanglement segment. The function Z∗(t) is known as the effective number

of entanglement segments, accounting for how chain stretch changes the
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contour length and thus affects the effective number of entanglement seg-

ments, the full formula can be found in the GLaMM paper [14]. Also note

for readability, f = f(s, s′, t) unless otherwise specified. When calculating

numerical solutions using the GLaMM model, the (s, s′) space is discretised

with an N by N grid, allowing this PDE model to be treated as a system

of coupled ODEs. This discretisation imposes that Z ∈ N so that each

entanglement segment, Z, contributes equally, and performs best when the

mesh density N ∈ N is an odd multiple of Z.

The reason knowledge of how f(s, s′, t) evolves is important is because this

molecular scale quantity can be used in various calculations to derive many

quantities important to the dynamics of the entire system. Total polymer

stress is one such example,

σαβ(t) =
12Ge

5Z

∫ Z

0

fαβ(s, s, t)ds (2.4)

Where Ge is a modulus constant that alters the resulting units. Although

the GLaMM model PDE has a long computation time, the accuracy of the

GLaMM model in predicting the behaviour of various polymer melts has

been shown experimentally.

A final remark to note for this thesis is that f is a fast-evolving quantity

and for an accurate numerical prediction, the time step we use must be

approximately a tenth of the fastest time scale within the model or shorter.

This requires δt ≤ (τeZ
2/N2)/10 = 1/90 in the GLaMM model for time

step convergence. Often it is not the absolute extension rate or shear rate

that is measured, but the rate of the flow relative to the Rouse time of the

material, ε̇τR or γ̇τR respectively. This quantity is the Weissenberg number.
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2.4 The Rolie-Poly model

The GLaMM model serves as a bridge between molecular simulations to an

expensive but workable model, providing a way to retain a good amount

of accuracy for polymer predictions without the cost of simulating each

molecule. Despite this, there are still many situations where the GLaMM

model is too expensive to be usable. For this reason, the derivation of the

Rolie-Poly model [21] soon followed. The Rolie-Poly model similarly serves

as a bridge, this time between the expensive contour-variable GLaMM

model PDE and the much cheaper non-contour-variable Rolie-Poly ODE. It

achieves this increase in computation speed by assuming all Fourier modes

except the largest one are negligible, sacrificing molecular fidelity for com-

putation speed. More details on Fourier modes and their relationship with

fast polymer dynamics models are expanded upon in appendix A. The ease

of use of the Rolie-Poly model led to widespread adoption in both poly-

mer research and manufacture, despite many known situations where the

Rolie-Poly model does not agree with experimental data as well as the

GLaMM model [21]. This divergence from real-world results is the factor

that inspired our aim. Not only would a model of similar speed but greater

accuracy benefit direct predictions that currently use the Rolie-Poly ODE,

but the also prediction of other features which use models based on the

Rolie-Poly model, thus inheriting its flaws.

Unlike the GLaMM model which predicts the evolution of polymer chains,

the Rolie-Poly model is an ODE for the stress tensor. We write the Rolie-

Pole model as,

dσ

dt
= κ·σ+σ ·κT− 1

τdf
(σ−I)−

2(1−
√

3/Trσ)

τR

(
σ+β

(
Trσ

3

)δ
(σ−I)

)
,

(2.5)
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where,

τdf (Z) = τd(Z)

(
1− 3.38√

Z
+

4.17

Z
− 1.55

Z3/2

)
.

It is worth noting the similarities in structure between the Rolie-Poly model

and the GLaMM model. In equation (2.5) the right-hand side consists of

two terms to model convection, a reptation term, and a term to model

the effects of both CCR and retraction, with the part that has a factor

of β accounting for CCR. This β is a constant that details the extent of

relaxation per CCR event, similar to the role of Cν in the GLaMM model,

with β = 10Cν . This relation was derived empirically as the form of model

reduction meant that a direct relation to the constant from the GLaMM

model was not possible. Another parameter that we have yet to define is δ

which determines how strongly the effects of CCR are suppressed by chain

stretching. A value of −0.5 is established [21] to match the physics of the

model and give results that are close to the GLaMM model. We also utilise

an improved reptation rate, τdf , devised by Likhtman and McLeish [22] to

account for the fact the contour length fluctuations increase the speed at

which the model relaxes by reptation.

Results from the Rolie-Poly model can be made dimensionless by multiply-

ing by a factor of 4G̃f/5 where G̃f is given by the formula,

G̃f (Z) = 1− 1.69√
Z

+
2

Z
− 1.24

Z3/2
.

These dimensionless values for stress can then be compared to results from

the GLaMM model. The fastest time scale within the Rolie-Poly model is

the Rouse time of the model, τR, which must be considered when choos-

ing an appropriate time step for numerical predictions. Note here that

we use the revised coefficients τdf and G̃f suggested by Likhtman-McLeish

theory [22] to give the Rolie-Poly model the best possible chance at pre-
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dicting polymer behaviour, allowing us to make fair comparisons when we

introduce our new model.

2.5 Other post-GLaMM models

A number of models have been created after the GLaMM model, with a

significant portion of them aiming to improve modelling in areas where the

GLaMM model is not as accurate such as under strong stretch. These stud-

ies identify some new physics that the GLaMM model does not currently

include and then create a model with this new consideration. Examples

include rate-dependent chain friction or tumbling. Broadly speaking there

are three main approaches to identify these new physics and implement

them into a new model.

Firstly there is the molecular dynamics driven approach. When simulating

the interactions between molecules directly, it is possible to see molecular

behaviours that are not yet considered by the GLaMM model. Direct vi-

sual evaluation of molecule movement can often give us greater insight into

physical features that are very hard to discern from data alone. Tumbling

is one such example that is identifiable in molecular dynamics simulations.

Tumbling is the process by which a chain is initially aligned in the flow,

some small Brownian motion occurs at the leading end of the chain, which

the flow can then pick up, amplifying the movement of this edge, causing

the chain to “tumble” out of alignment. The work by Sefiddashti et al. [31]

compares molecular dynamics simulations of a polymer melt to various

variations of the tube model. In this work, they identify the circumstances

under which features these models often neglect occur, measure the size

and describe the source of each divergence, and then suggest a modifica-
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tion to account for some of these features. Another identifiable signature

in molecular dynamics simulations is that of disentanglement under flow.

CCR theory suggests that the constraints on any particular chain are less-

ened as the surrounding chains are also becoming aligned with the flow and

that as the flow relaxes back to an isotropic rest state, these constraints

return at the same rate. On the other hand, disentanglement under flow

instead suggests that once these constraints are removed these disentangled

chains take longer to recover their constraints than CCR implies. The work

by Dolata et al. [9] adds certain entanglement dynamics, such as disentan-

glement under flow, to the Rolie-Poly model. They derive their models

from thermodynamic principles and then compare their performance to

prior models. Both these works are examples of how molecular dynamics

simulations can be used to identify features and then use them to inform

improved models that better describe polymer dynamics.

Secondly, there is the experiment-driven approach. This approach starts

by finding some experimental data that the GLaMM does not accurately

capture. Then measuring this difference under repeated experiments with

slightly different conditions, and creating physical interpretations to explain

the discrepancies. Rate-dependent chain friction is one example of a feature

that was created to explain discrepancies with experiments. Taghipour et

al. [37] analyse the agreement between the GLaMM model and experimen-

tal data, highlighting its strengths and limitations. They discuss possible

revisions to the GLaMM model and inclusion of features such as chain

tumbling before presenting an alternative approach that uses a steady-

state regime that also includes their suggested revisions. The resulting

model is able to reproduce steady-state viscosities accurately for a range of

experimental data. The subsequent work by Hannecart et al. [15] explores

the inability of previous tube-based models to predict scaling dependencies
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that would correspond to experimental data and the proposition that this

can be explained by a reduction in friction. As this feature is not easy to

implement into the tube model, an alternative approach that considers the

effects of friction reduction is proposed. They utilise experimental data

to build upon this concept and reach a good agreement with experimental

results after the inclusion of one further parameter.

Lastly, there is the non-equilibrium thermodynamics approach. Rather

than simulations or experiments, this approach uses the inviolable rules

of non-equilibrium thermodynamics as a basis to create new rheological

models. By reformulating these rules in the context of polymers, they can

guide model derivation or, conversely, suggest modifications that could be

made to existing models that would make them abide by these laws. By

ensuring that such laws are not broken, the physics of the problem can

be preserved, often providing insight into potential improvements during

the process of ensuring such laws are conserved. The work by Stepanou et

al. [36] presents a way in which parameter values may be modified and new

terms may be added to make an existing rheological constitutive equation

thermodynamically consistent. This includes a method to approximate the

effects of molecular tumbling whilst remaining thermodynamically admis-

sible. The final modified model shows good agreement for its simplicity,

making it viable in more expensive numerical calculations. The aforemen-

tioned work of Dolata et al. [9] also uses the requirement of thermodynamic

consistency as a tool to inform their derivation.

Using these works we can get an idea of the current landscape for research

around tube-based models, and the prevalent direction is to identify new

polymer physics and then implement it into a new or existing model. Whilst

there have been many successes in this field, we shall not take this route and

add emergent features to the GLaMM or Rolie-Poly model. Whilst there
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are some features the GLaMM model cannot capture, it remains a very

good predictor for polymer dynamics with its most significant limitation

being its computational cost. This fact is supported by widespread usage

of the Rolie-Poly model, a reduction of the GLaMM model with a focus

on speed over accuracy. Thus, this work shall instead investigate the lesser

explored avenue of reducing the GLaMM model for a model that combines

accuracy and speed. In addition, by creating a generalised framework for

such an approach, physics introduced at the same molecular scale as the

physics behind the GLaMM model can use the same pipeline to produce

updated reduced models.

2.6 Applications of a reduced model

There are a number of applications that would significantly benefit from a

more accurate model reduction of the GLaMM model, one of which is the

modelling of polydisperse polymers. The previous models detailed in this

literature review are all models for predicting the dynamics of monodis-

perse polymers. A monodisperse polymer material is composed of polymer

chains which all have one uniform length. Whilst this type of material is

much easier to model, monodisperse materials are rare even in laboratory

experiments. Almost all applications of polymers use polydisperse poly-

mer materials, which consist of a range of different chain lengths with fre-

quencies detailed in an accompanying molecular weight distribution. The

dynamical response of a polymer is heavily dependant on chain length, Z,

as this directly affects the rate at which its various methods of relaxation

occur, especially when two chains of different lengths interact. The most

relevant model to discuss in this thesis is the Rolie-Double-Poly model [6]

due to its connection to both the GLaMM and Rolie-Poly models that
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define our aim. By discretising the molecular weight distribution into n

distinct weights, this methodology uses the Rolie-Poly model to evaluate

the interaction between each possible pairing of chain lengths, from which

it can determine the dynamics. Other works such as the one by Mead et

al. [26] take their own approach to the creation of a low-cost polydisperse

constitutive model, and a number of them, Mead et al. included, similarly

use this approach where each interaction between every possible pairing is

evaluated. For the Rolie-Double-Poly model, there are many situations in

which the model predictions depart from the experimental results due to

the inherited inaccuracies from the Rolie-Poly model. Despite this, it re-

mains widely used as it is one of the few low-cost polymer models applicable

to polydisperse materials. The GLaMM model was deemed unsuitable for

this framework due to its long computation time. We aim to create a model

that is sufficiently cheap such that it can be used in the Rolie-Double-Poly

framework to allow for the creation of a new polydisperse model in future.

Another application is the prediction of shear banding effects in polymers.

One of the simplest ways to set up a shear flow in a liquid for examination

is to create a channel of fluid between two walls, one stationary and one

with some constant velocity parallel to the channel. This imposes a shear

flow on the liquid. If we were to fill the channel with a Newtonian liquid,

we would have a uniform shear flow across the width of the channel. For a

time it was also believed that polymers experienced a uniform shear flow,

but further research has shown that this is not necessarily the case. Instead

different shear “bands” can form, with a low-shear band near the station-

ary wall, and a high-shear band against the moving surface. The effect

is called shear banding and works such as Adams et al. [1] have modelled

this behaviour with existing polymer models. This paper performs linear

stability analysis on a form of the Rolie-Poly model and shows how pertur-
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bations trigger instabilities which in turn result in transient shear banding.

Whilst it would be theoretically possible to use the GLaMM model for flows

that exhibit shear banding, by its nature of having multiple bands, a flow

that experiences shear banding is no longer uniform. A non-uniform flow

then requires the creation of a flow field and the use of computational fluid

dynamics to solve, where multiple evaluations per timestep mean that the

Rolie-Poly model is often used in favour of the GLaMM model. Further-

more, the effects of polydispersity are known to have a significant effect on

shear banding, further limiting the number of viable polymer models. If our

model is suitable for use in polydispersity, it could be useful for numerical

computational fluid dynamics with shear banding. However, low computa-

tional cost is not the only requirement for a model to be suitable for linear

stability analysis, models that are cheap but sufficiently complex are not

viable for linear stability analysis. Whilst linear stability analysis is likely

to be difficult with our proposed framework, the improvement of numerical

predictions alone would be a step toward furthering the understanding of

shear banding.

A further application that would benefit from polymer modelling is 3D

printing. A common type of 3D printing is “fused-filament-fabrication”

(FFF) and works such as the one by McIlroy et al. [24] show evidence

to suggest that polymer rheology has a significant effect on the strength

of the finished product. FFF prints the desired object layer-by-layer and

the strength of an object fabricated with such a method is determined by

the entanglement between layers. During printing, each layer must be de-

posited relatively quickly as the strength of the weld between the previous

layer and the new one from the nozzle depends on the interdiffusion and

entanglement across the interface but the diffusion process slows down as

the previous printed layer cools. However, as a polymer is quickly extruded
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from a nozzle to be deposited on a surface for 3D printing, it is subjected

to high stresses which disentangle the incoming melt, also reducing diffu-

sion across the interface. McIlroy et al. model the various processes that

occur across such an interface to determine the effects polymer rheology

has on the final weld strength. As this modelling is highly dependant on

entanglements between polymers, a reduced model that is sufficient to meet

our aims would provide an improved prediction than estimations with the

Rolie-Poly model.

A similar challenge during polymer manufacturing is that of extrudate

swell. When a polymer melt is compressed through a die to shape the

material, it will be subjected to an increased flow rate. If the polymer is

subjected to this increase rate for a sufficient length of time, the polymer

chains will disentangle. When the polymer then exits the other side of

the die, the polymer will relax back to the isotropic rest state causing the

polymer to expand or “swell” as it regains entanglements. The work by

Robertson et al. [35] uses a modified Rolie-Poly model to predict extrudate

swell over a range of realistic processes. This includes the effects of poly-

dispersity. As this paper uses the Rolie-Poly model it could again benefit

from a model that meets our aim to provide increased accuracy at a similar

cost.

One final area that could benefit from our reduced model is that of flow-

induced crystallisation (FiC). Understanding the rate of crystallisation and

how it is affected by flow is essential to transition from a polymer melt to

a finished solid polymer product when crystallisation is involved. Read et

al. [34] created the polySTRAND model for computational modelling of

FiC effects from a molecular approach. The polySTRAND model is appli-

cable to a range of processing parameters and polydisperse polymers. For

a model to be suitable for the prediction of FiC, it is also required to be
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suitable for polydisperse materials as both FiC experimental data and the

industrial processes that would benefit from FiC prediction use polydisperse

polymers. An article by Graham [12] explores why FiC is simultaneously

of great importance to industry yet very difficult to simulate cheaply. This

difficulty comes from the fact that an accurate prediction of FiC requires

the combination of many effects at different length scales, necessitating

multiscale models combining different levels of coarse-graining. If our re-

duced model is sufficiently cheap to be used for polydisperse polymers, it

may also be able to be used as another link in the multiscale modelling

chain at a different length scale to the molecular approaches.

2.7 Our model reduction approach

Our aim of using a set of coarse-grained variables to predict a more com-

plex model is a form of model reduction. The term model reduction refers

to the creation of a simplified model for a dynamic system, losing predic-

tive accuracy for a simpler model that has a faster calculation time or is

suitable for use within some methodology that the original was not. The

largest difference is that whilst many papers on model reduction focus on

theoretical problems [4, 11], this work is for a real-world problem which

will allow us to take a physically motivated approach. We could choose

any set of quantities to be our coarse-grained variables but intuition about

the field of polymer dynamics tells us that a quantity important to the

overall dynamics of a polymer such as the stress is more likely to have

similar molecular behaviour for similar dynamic response. In other words,

these quantities are more likely to characterise f(s, s′) configurations well

and so may be a good place to begin. Due to this added guidance from

the model being grounded in physics, our approach does not use any of
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the more theoretical model reduction methods and so we shall not explore

them in detail here, but we do acknowledge the parallels in overall intent to

model reduction and so some of the ideas presented here may prove useful

in that field.

2.8 Existing data-driven approaches in rhe-

ology

Our methodology instead aims to perform this model reduction with a

data-driven approach. This is an emerging field within rheology brought

about by the continued growth of available computational power. Vari-

ous machine learning techniques such as Gaussian process regression and

neural networks are employed to learn model parameters and the models

themselves. Machine learning is often employed to determine parameters

that are otherwise hard to access. Examples in rheology include finding co-

efficients for newly derived models [30], the recovery of model parameters

from data [20] and improving existing parametrisations [10]. Other than

predicting clearly defined physical quantities, machine learning can also be

used to discern material composition from experimental data [19]. Machine

learning is also being used in the creation and development of constitutive

equations, with neural networks learning from synthetic data produced by

other models [40, 18], and some approaches using knowledge of rheology to

further inform their choice [7, 23]. One particular example, dissipative par-

ticle dynamics, uses machine learning to reduce the required number of sim-

ulations [41] and find new constitutive equations via coarse-graining [29].

Of particular relevance to this work are the recent publications by Howard

et al. [16] and Weeratunge et al. [38]. Howard et al. use machine learning
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to learn the particle stresses in suspension flows for situations where direct

measurement is not feasible. This work provides an example of machine

learning’s ability to extract macroscopic variables when learning from data

at the molecular level. Weeratunge et al. employ machine learning to de-

termine optimised model parameters for multiple coarse-grained polymer

simulations. This approach significantly accelerates the determination of

model parameters, allowing quick access to different levels of molecular

coarse-graining. In contrast, this work uses a data-driven approach to map

from the coarse-grained variables to the full model. This is unique as we use

both synthetic data and an underlying model to perform model reduction

on the GLaMM model rather than create an entirely new model. A model

that is created in line with our aim would have the advantage of retaining

the microscale mechanics of the GLaMM model as we directly call the full

model, whilst leveraging the slow-moving property of the coarse-grained

variables to take much larger timesteps. It would also be possible to utilise

machine learning for coarse-grained variable selection.

2.9 Aims of this thesis

Our aim in this thesis is to create a new model for polymer dynamics, one

that is of comparable speed to the Rolie-Poly model but with accuracy sim-

ilar to the GLaMM model by a new model reduction of the GLaMM model.

Our decision to pursue such an objective came after we identified a num-

ber of applications that would directly benefit from the creation of such a

model. One of the applications that a new model can hope to develop is the

prediction of polydisperse polymers. A model for polydispersity requires

an accurate but computationally cheap constitutive model, and so this be-

came the foundation for our aim. One such model, the Rolie-Double-Poly,
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is a model for polydispersity that utilises the formulation of the Rolie-Poly

model. The main reason that this model does not use the GLaMM model

is not that it would not be possible, but that the long computational time

would render a polydisperse GLaMM model too impractical for use. Cur-

rently, many of the limitations of the Rolie-Double-Poly can be traced back

to equivalent problems within the Rolie-Poly model. However, if another

suitable model reduction for the GLaMM model that was of similar speed

to the Rolie-Poly model existed, such as one that would satisfy our aim, it

would likely be able to use the same framework to adapt it into a polydis-

perse model. Polydispersity is not the only area that is currently limited

the use of the Rolie-Poly model, computational fluid dynamics would also

benefit from a more accurate model of similar speed. The applications

identified in section 2.6 are all areas that require polydispersity, computa-

tional fluid dynamics or both and would furthered by the development of

new cheap but accurate polymer models.

We have discussed the reasoning for our objective, but not yet the details

around our choice of approach. We have reviewed a number of examples

of models that modify the GLaMM model in section 2.5 but these works,

as with most others attempt to add to or replace the GLaMM model,

so that it can capture a certain feature. Very few works are looking to

provide new model reductions for the GLaMM model, and with the recent

application of data-driven methods to rheological problems, performing

data-driven model reduction on the GLaMM model appeared promising.

For these reasons, we chose to create our new model by model reduction of

the GLaMM model.
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Chapter 3

Reduced model with uniaxial

extension flows

The first step to achieving our aim is the creation of a framework for data-

driven model reduction. Discoveries in our prior work [27] led us to choose

such a formulation due to the problems encountered during that work’s

approach to model reduction. This prior work attempted to create a new

model reduction to the GLaMM model using its Rouse modes as coarse-

grained variables, and the initial stages of this research investigated the

possibility of furthering this approach. However, early in this research, a

counter example showed that such an approach would be unsuitable for

GLaMM model prediction to the degree of accuracy we are looking for.

More details can be found in appendix A. These results suggested that a

Rouse mode based model reduction would not be a meaningful improve-

ment on the Rolie-Poly model without the inclusion of additional Rouse

modes in the reduced model. Whilst such a generalisation is certainly

possible, we instead choose to create a more sophisticated model reduc-

tion framework that does not restrict itself to Rouse modes when choosing

31



3.1. OUR MODEL REDUCTION FRAMEWORK

coarse-grained variables.

Section 3.1 establishes this framework for the general case, and then the

following sections 3.2-3.4 apply this data-driven model reduction to the

GLaMM model and evaluate its accuracy in predicting a variety of uniaxial

extension flows. Section 3.5 discusses the various elements to consider when

choosing the coarse-grained variables for this framework and section 3.6 is

an overview of the performance of our reduced model for prediction of

polymer melts under uniaxial extension flows. We use uniaxial extension

flows in this chapter to prove the reduced model’s effectiveness for a simple

example before extending to more complex flow configurations.

3.1 Our model reduction framework

3.1.1 Establishing the general framework

We will now outline our method for deriving a reduced model from a small

set of slow-moving degrees of freedom. We will present the framework

briefly in generality in this section, discuss the overall approach, and then

section 3.2 provides a more detailed example by applying this framework to

the GLaMM model to create a reduced model for the prediction of polymer

melt dynamics.

Our approach addresses PDEs of the form

∂f

∂t
= G[κ(t), f(s, t)], (3.1)

where κ is an external driving term, s is a vector of spatial arguments,

f = f(s, t) is a tensor of the dependant variables we want to evolve, known
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as the model configuration tensor, t is time and G is a functional that

defines the PDE.

We now suppose that we have chosen some reduced variables Γ, which

depend on f(s) via the equations

Γ1 = h1[f(s)]

Γ2 = h2[f(s)]

.....

Γk = hk[f(s)]. (3.2)

With this formulation, each Γi is one of our coarse-grained variables. We

now assume that a given value of Γ specifies cleanly the overall configu-

ration f(s). In other words, though there may be many ways to arrive

at a specific Γ, these different histories do not produce appreciably differ-

ent configurations f(s). Whilst this assumption holds true, the mapping

in equation (3.2) is almost invertible. The choice of the coarse-grained

variables Γ and how well this obeys the above assumption is key to the

accuracy of the reduced model.

If Γ specifies f(s), then we can derive a reduced model as follows:

1. Determine f(s) from Γ.

2. Determine the dynamics of Γ from f(s) and the original PDE.

For step 1 we use a data-driven approach. We begin with a training set of

sample transient solutions to equation (3.1). We suppose these use a range

of choices of κ(t) so that the space of Γ is well covered. From this training

set, we can map any value of Γ to its corresponding f(s) by interpolation of

the training set. For step 2, substituting the interpolated f into equation
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(3.1) provides ∂f
∂t

. Combining ∂f
∂t

with the chain rule applied to equation

(3.2) gives dΓ
dt

. Thus we have the dynamics of Γ, which defines a reduced

model from which we can obtain the dynamics of f(s).

3.1.2 Analysis of the framework in generality

Many constitutive equations can be expressed in the form presented in

equation (3.1) from simple PDEs like the heat equation to complex me-

chanical or rheological models. The numerical solutions of some constitu-

tive PDEs require a high temporal resolution in order to capture the finer

details of the configuration of f(s). The major advantage of this method

is that if we choose a suitable Γ that evolves slowly, we can bypass this

requirement. With our approximation, we can reconstruct f(s) at any

point from Γ. When we then calculate the dynamics of Γ we use much

larger timesteps than would have been possible with direct calculation of

the PDE.

A good choice of Γ is one that upholds our framework’s assumption whilst

evolving slowly in time. In this work we have directly verified these qualities

for our choices through direct testing, but it may be possible to automate

this process by defining a metric that evaluates the accuracy of f(s) pre-

dictions for a given choice of Γ. This can be seen in as part of the future

work in chapter 5.2.

3.2 Application to the GLaMM model

In this section we explore the methodology in more detail, using the GLaMM

model of polymer dynamics as an example. Utilising the general framework
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we established in section 3.1.1, we now present how to apply it to a spe-

cific example, the GLaMM model for polymer dynamics [14]. The GLaMM

model has the general form,

∂f

∂t
= f(s, t) · κ(t) + κT (t) · f(s, t)−H[f(s, t)]. (3.3)

Written in this form, the first two terms are the standard upper-convected

Maxwell derivative, used in many areas of rheology to model response to

an imposed flow, and H is a collection of terms which describe the various

polymer relaxation processes. In this specific case of equation (3.1), f(s, t)

is a 3 by 3 tensor of functions dependant on s and t, where s is a vector of

two continuous variables (s, s′). The external driving term, κ(t), refers to a

flow imposed upon a polymer melt in the GLaMM model. Throughout this

section we shall only use flows with uniaxial extension in the x direction,

κxx = ε̇, κyy = κzz = −ε̇/2, καβ = 0 ∀ α 6= β. Contributions from CCR

are excluded for simplicity and because CCR has little effect in extension,

hence Cν = 0.

We can also specify the definition of the set of hi from equation (3.2). For

the GLaMM model, we allow hi to be any general functional of f(s, s′). We

present two such examples for choices of hi for the GLaMM model under

uniaxial extension flow here. We define

Γ1 =
σxx − σyy

Z
=

12

5Z2

∫ Z

0

fxx(s, s)− fyy(s, s) ds (3.4)

as the dimensionless first normal stress difference. For Γ2 we take a similar

integral on the off-diagonal as follows,

Γ2 =
12

5Z2

∫ Z

0

fxx(s, Z − s)− fyy(s, Z − s) ds. (3.5)
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Γ2 was created as a measure of deviation from affine deformation, to com-

plement the abilities of Γ1. Note the lack of time dependence in these

formulations, that is intentional as we will use these functionals to evalu-

ate many configurations of f(s, s′) during our model, including ones that

are not part of the current flow evolution f(s, s′, t). More details on its

conception and physical meaning can be found in section 3.5.1. Compu-

tationally, we evaluate f(s, s′) at N2 distinct points on a grid over s and

s′, as is standard for numerical evaluations of the GLaMM model, and so

these integrals are correspondingly approximated by sums with N terms.

Formalising the assumption established in 3.1.1, for this time-dependent

PDE system for f(s, s′, t), we introduce a mapping between f ∈ F and

a vector of coarse-grained variables Γ ∈ Rk along with its corresponding

inverse. We define g : Rk → F and hi : F→ R respectively as,

f(s, s′) = g(Γ1,Γ2, ... Γk) and Γi = hi(f(s, s′)) where i = 1, 2, ... k.

(3.6)

In this case, F is a vector space of functions of two variables, s and s′, that

return 3 by 3 matrix objects. The functionals hi, such as the examples

in equations (3.4) and (3.5), are applied directly to f . It follows that

the forward mapping from f to Γ is computable explicitly and is therefore

without error. However, our assumption is that there also exists a backward

mapping, g, from Γ to f . The calculation of f from Γ is not explicitly known

and is susceptible to errors if the mapping is poorly defined as a result of

an unsuitable choice of Γ. The size of these errors directly depends on the

suitability of the current Γ choice to uphold our assumption, and a detailed

breakdown of this prediction error can be found in chapter 3.5.

As proposed in section 3.1.1, mapping from Γ to f(s, s′) uses a data-driven

approach and is performed by interpolation on a pre-established training
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set, with this training set chosen to give good coverage of the range of

possible Γ values. For this section, the training data is comprised of uniaxial

extension flows. We use transient solutions of the GLaMM model with a

range of constant rates ε̇τR = {0, 0.1, 0.2, 0.3, . . . , 3}, and a single stepped

rate solution where the flow initially has non-zero rate, ε̇τR = 2.1, which is

instantaneously switched to ε̇τR = 0 at t = 2320. All these solutions use

Z = 25 and τe = 1 so that the time is in units of τe. For calculation of

these solutions we choose to discretise the (s, s′) space with a 752 point grid

so that N = 75, and with this choice, a timestep of δt = 1/90 is required

for convergence. We exclude data with very high strain as solutions from

the GLaMM model are known to be unrealistic past a certain threshold.

This training data shall be referred to as our two-functional training set,

denoted by fTrain and ΓTrain
i .

We have established the form of the GLaMM model PDE in equation (3.3),

chosen two functionals in equations (3.4) and (3.5), and created our two-

functional training set. With this, we have all the necessary components

to apply the methodology from 3.1.1 to the GLaMM model. Denoting

variables that are calculated from our reduced model as fPred and ΓPred
i ,

the evolution of ΓPred
i is determined using the steps outlined below:

1. Determine f(s, s′, t) from Γ(t) using fPred = g(ΓPred
i ), via an interpo-

lator on the two-dimensional Γ space.

2. Determine the dynamics of Γ(t) from f(s, s′, t) using the GLaMM

model PDE, d
dt

ΓPred
i = dhi

dt
(fPred, ∂

∂t
fPred) and then the Euler method

in succession.

To clarify the distinction between fTrain and fPred further, fPred(s, s′, t) is our

reduced model’s prediction of the flow evolution and at any point we can
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apply the functionals hi to find the corresponding ΓPred
i (t). Our training

data is a collection of vectors ΓTrain denoting points at which we have

recorded the configuration fTrain(s, s′). These training variables lack time

dependence as this training data is not part of the current flow evolution.

For the first step, many methods are viable to interpolate these data, we

choose to use an interpolator that we shall refer to as the quadrant interpo-

lator. This interpolator interpolates from the nearest point in each of the

four quadrants. This method is described in appendix B.1. For the second

step, we can obtain ∂
∂t

fPred by applying the original PDE to this fPred from

interpolation and then use the chain rule on equations (3.4) and (3.5) to

determine dhi
dt

(fPred, ∂
∂t

fPred). With this choice of functional, we can write

d
dt

ΓPred
i in terms of ∂

∂t
fPred alone as follows,

dΓ1

dt
(t) =

12Ge

5Z2

∫ Z

0

∂fxx
∂t

(s, s, t)− ∂fyy
∂t

(s, s, t) ds, (3.7)

dΓ2

dt
(t) =

12Ge

5Z2

∫ Z

0

∂fxx
∂t

(s, Z − s, t)− ∂fyy
∂t

(s, Z − s, t) ds. (3.8)

To complete the second step, we increment each ΓPred
i forward in time

with these d
dt

ΓPred
i via the forward differencing Euler method. Following

these steps, we are able to predict the evolution of the tube-diameter scale

quantity f(s, s′, t) whilst evaluating that evolution on the whole-molecule

scale with the Euler method on Γ. Provided we choose these Γi variables

so that they evolve slowly as mentioned in our initial aims, this implies

that Γ is not as sensitive to changes on the tube-diameter scale and thus

we can utilise a much larger timestep.

If we wish to simulate a single flow from rest, then our initial condition for

prediction with our reduced model is fPred(s, s′, 0) = f eq(s, s′) where f eq is

defined in equation (2.2). However, we can also delay the introduction of
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our reduced model, calculating any number of timesteps with the GLaMM

model and then introducing our model at delayed start time T with initial

condition fPred(s, s′, T ) = fTest(s, s′, T ), where fTest(s, s′, T ) is the value of

f from the GLaMM model after time T has elapsed. Some later models in

chapter 4 will introduce our reduced model after a single timestep delay to

avoid singularities in some derivatives when f = f eq.

Throughout this thesis we compare results from our reduced model with

results from the GLaMM model under uniaxial extension flows and shear

flows. We detail the common parameter values used in our GLaMM model

calculations here. A previous figure, figure 2.6, shows how these two flows

can be represented in the GLaMM model as a matrix κ. Similarly to that

image, ε̇ will denote the rate for a uniaxial extension flow, whilst shear

flows will use γ̇. Some earlier calculations shall exclude the effects of CCR

with Cν = 0 whilst plots that include CCR shall use Cν = 0.1. We use

Z = 25, N = 75 for the GLaMM calculation unless otherwise specified.

Additionally, we work in units of space and time such that a = 1 and

τe = 1. This choice of variables leads to a Rouse time for our simulated

polymer melt of τR = Z2τe = 625.

3.3 Prediction with one functional

Our methodology in section 3.2 defines two functionals, so we shall first

show that a reduced model with one functional is insufficient to predict the

GLaMM model. To do so, this section will use our reduced model with

the first normal stress difference from equation (3.4) as the only functional

so that Γ = Γ1. A training set consisting of one transient solution of

the GLaMM model is sufficient to span Γ space when only one functional
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is used. Thus our one-functional training set is comprised of data from a

single transient solution with ε̇τR = 3. If Γ1 alone can correctly capture the

behaviour of f(s, s′, t), we would see that the profiles of f(s, s′, t) with the

same Γ1 value from different transient solutions are approximately equal,

regardless of flow history. We test this by comparing a snapshot of a

transient solution directly from the GLaMM model, fTest, to a prediction,

fPred, which uses our reduced model with the one-functional training data,

in figure 3.1.

Figure 3.1: A plot showing the profiles for the xx, yy and xy components of
fTest and fPred with ε̇τR = 2.5 and Cν = 0 at time = 1260, with k = 1 and Γ1

from equation (3.4).

Figure 3.1 shows that knowledge of the value of the first normal stress

difference is not sufficient to capture the width of fxx(s, s
′), even between

two flows of similar rates. With only this Γ1, the reduced model is unable

to differentiate between the thin peak from the training data and the wider

peak that it is asked to predict. It is not possible to definitively state

that one functional is insufficient for any choice of Γ1 without exhaustively

testing all options, but some traits led us to believe that two functionals

would be a more suitable route. Specifically, we tested multiple Γ1 choices

but in all cases, values of Γ1 had multiple significantly different valid f
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configurations for each choice we tested. The f configurations appear to

have multiple distinct features, suggesting that characterisation would need

multiple distinct functionals. Another factor supporting the requirement

of k > 1 is that the stress tensor, σ, has two independent components

under uniaxial extension, suggesting that at least two degrees of freedom

in Γ space are required to fully capture this behaviour. These factors

lend credence to the idea that two functionals would significantly improve

prediction accuracy, and as our model is already defined in such a way that

naturally extends to any number of functionals; this is the route we proceed

with.

3.4 Prediction with two functionals

Figure 3.1 shows two f configurations that have the same first normal stress

difference but the width of the peak is clearly different in the two cases.

In this section we introduce a second functional to capture this difference

in width and show that it gives a highly accurate reduced model. For this,

we return to using the two functionals from equations (3.4) and (3.5) with

quadrant interpolation on our two-functional training set from section 3.2.

We discuss why this choice of Γ2 is effective at capturing width in sec-

tion 3.5.1. We begin by predicting the same f configuration from figure 3.1

with two functionals in figure 3.2, temporarily excluding the transient solu-

tion for ε̇τR = 2.5 from the two-functional training set to prevent triviality.
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Figure 3.2: A plot showing the profiles for the xx, yy and xy components of
fTest and fPred with ε̇τR = 2.5 and Cν = 0 at time = 1260, with k = 2 and Γ1,
Γ2 defined in equations (3.4) and (3.5) respectively. For this figure, the transient
solution for ε̇τR = 2.5 was not included in the training set.

Figure 3.2 shows that the inclusion of a second functional significantly im-

proves the accuracy of fPred
xx for this snapshot, implying an improvement

in our reduced model’s ability to distinguish between f configurations with

different widths. With confirmation that we can predict one fxx(s, s
′) con-

figuration well, we now use our reduced model to calculate the evolution of

fPred. Using our two functionals with our respective two-functional training

set, we calculate the evolution of Γ1 and Γ2 for ε̇τR = 2.5 in figure 3.3, once

again, the ε̇τR = 2.5 solution is excluded from the training set.

Figure 3.3 shows that our reduced model accurately predicts the evolution

of both functionals at this flow rate, even at a timestep 900 times larger

than the GLaMM model. Despite the high level of accuracy, before we can

evaluate our assumption’s accuracy we must first verify that the deviation

between ΓTest
i and ΓPred

i is due to our choice of functionals and that it is

not subject to other sources of error.
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Figure 3.3: A plot comparing the evolution of ΓTest
i and ΓPred

i for ε̇τR = 2.5,
Cν = 0. Γ1 and Γ2 are defined in equations (3.4) and (3.5). The two-functional
training set is used, but the transient solution for ε̇τR = 2.5 was not included.

3.4.1 Convergence errors

The disparity between ΓTest
i and ΓPred

i in figure 3.3 may be due to errors

in our prediction due to our choice of functionals, but there is also the

possibility that these errors arise from our interpolation method or larger

timestep size. When the training set is insufficiently dense, the interpolator

may return inaccurate values for ΓPred
i as the prediction must use training

points that are far away from the current location in Γ space. This can be

alleviated most easily by increasing the number of GLaMM model solutions

in the training set. However, the degree to which this error is affected by

training point sparsity can be reduced with suitable interpolation methods,

where an interpolator that is able to reduce this error to an acceptable level

with fewer solutions in the training set is deemed to have higher suitability.

The time step error is the result of numerical inaccuracies incurred through

use of the Euler method in our formulation, causing an accumulation of

errors over time. Time step error can be reduced by shortening the time

step used in this calculation. Again, the time step required to reduce this
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error to an acceptable level will depend on the functionals used. In theory

we could add as much training data or shorten the time step as much as

we like to reduce two other errors, but these will come at a computational

cost, so we instead opt to find a balance between speed and accuracy.

We can also analyse the contribution to error from the interpolation method

and time step size by predicting the GLaMM model with our new reduced

model under different conditions and comparing the accuracy of the results.

One such comparison can be seen in figure 3.4.

Figure 3.4: A plot comparing ΓTest
i to ΓPred

i under various conditions. ε̇τR = 2.5,
Cν = 0. Γ1 and Γ2 are defined in equations (3.4) and (3.5).

Many details about the sources of error can be extracted from figure 3.4.

Analysing two predictions with differing timesteps shows that whilst δt =

2.5 is a slight improvement, estimation using δt = 10 remains very accurate.

With regards to interpolation error, the line that represents a prediction

using a training set with a lower local density of training points around the

test set has no significant difference in error. Further testing on different

rates confirmed that δt = 10 was a suitable compromise between accuracy

and speed, and that the two-functional training set was sufficiently dense

so that the error due to the method of interpolation was negligible.
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3.4.2 Constant rate extension

With the other sources of error accounted for, we can now test the ve-

racity of our assumption without interference. We compare the accuracy

between our new reduced model and another common model reduction of

the GLaMM model, the Rolie-Poly model, at various rates, none of which

are present in our two-functional training set.

Figure 3.5: A figure to show the accuracy of first normal stress predictions
using our reduced model under various different constant extension rates. The
Rolie-Poly model predictions of the same rates are included for comparison.

In figure 3.5, both our reduced model and the Rolie-Poly model aim to

capture the GLaMM model, and it is clear that our reduced model is sig-

nificantly better. The reduced model also retains a large increase in com-

putation speed compared to the GLaMM model, which can be attributed

to two major factors:

1. The GLaMM model requires a time step every 1/90 units of t/τR to

converge, whilst both the Rolie-Poly model and our reduced model

retain negligible time step errors with a time step of 10 units of t/τR.

2. Utilising symmetries, if f(s, s′, t) is discretised to a grid of (N + 1)2

45



3.4. PREDICTION WITH TWO FUNCTIONALS

points, the GLaMM method requires a minimum of (N2−mod(N, 2))/4

evaluations per time step, whilst our reduced method only requires

N−1 evaluations per timestep with the current choice of functionals.

For this data, we use a mesh density of N = 75 and thus, for each timestep,

the GLaMM model evaluated the PDE over 10000 times as often as our

reduced model. Performing GLaMM evaluations constitutes around 85%

of the computation time for the reduced model and so it has a significant

speed advantage over the GLaMM model. In summary, our reduced model

is much faster than the GLaMM model for the computation of constant

uniaxial extension flows whilst retaining accuracy.

3.4.3 Variable rate extension

Constant rate uniaxial extension flows are qualitatively similar to evalua-

tions in our training set, so to test the robustness of our reduced model, we

now predict a flow that is qualitatively different to the training data. The

test data we chose to predict is a uniaxial extension flow of constant rate

ε̇τR = 2.9 until t = 900, at which time we instantaneously change the flow

rate to ε̇τR = 0. The training set and this test curve can be seen in figure

3.6.

This is why we included a single piecewise rate into the training set, re-

sulting in our two-functional training set described in section 3.2. Without

these extra data, inaccuracies would occur during the final stages of relax-

ation for some flow conditions. In its absence, we successfully predicted

multiple non-constant rates for the majority of their evolution. However,

the method predicted unrealistic behaviour when f was close to its equi-

librium value feq. After investigation, it was found that flows which had

an instantaneous change to a lower rate would relax through a region of Γ
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Figure 3.6: A plot showing the trajectories of the test and training data through
Γ space.

space that was not covered by our training set of constant rate flows. In

turn, this sparsity meant that our quadrant interpolator was unable to find

a point in each of the four quadrants, suggesting that these predictions are

less reliable. Thus we opted to add a single non-constant rate solution to

the training set. This additional solution was subjected to an extension rate

of ε̇τR = 2.1 until t = 2320, at which point the flow was instantaneously

stopped. The evolution of this single relaxation is able to sufficiently fill

this empty region of Γ space in the training data so that relaxations to

equilibrium are now captured with our new model for reduced rates. With

this new rate, the reduced model is then used to generate figure 3.7.

Figure 3.7 shows that we are able to recreate the values of Γi for this test

curve to a high degree of accuracy. Here we note that because the non-

constant rate in the training set does not come into effect until very late

times, we predict test data that exhibits qualitatively distinct behaviour

to the solutions in our training set. The training set does include a single

GLaMM solution of non-constant rate but this is only used by the interpo-
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Figure 3.7: A plot comparing ΓTest
i and ΓPred

i on a logarithmic scale for a flow
of rate ε̇τR = 2.9 for 0 ≤ t < 900 and ε̇τR = 0 for 900 ≤ t, with Cν = 0.

lator for the final stages of relaxation back to the isotropic rest state, the

sharp changes in gradient from the instantaneous changes in rate are all

interpolated from constant rate extension GLaMM solutions alone. More

specifically, when the flow is removed at t = 900 we are using training

data that is under constant rate uniaxial extension flow to predict the test

data that is under no flow and is purely relaxation. These are two fun-

damentally different flow histories and this indicates that we can predict

various other flow histories, even in the absence of similar flow histories in

the training set. With this result, we now compare GLaMM solutions to

our reduced model and Rolie-Poly model results for flows that have instan-

taneous changes in rate in figures 3.8 and 3.9.

Figure 3.8 shows that our reduced model is able to correctly predict the

stress evolution when the true solution contains qualitatively different be-

haviour to the solutions in the training set for a multitude of different

flows. Furthermore, comparing figures 3.8 and 3.9 shows that these predic-

tions are consistently more accurate than the Rolie-Poly model. There are

minor disagreements in the final stages of relaxation for solutions where
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Figure 3.8: A comparison between normal stress predictions from our reduced
model and the GLaMM model for uniaxial extension flows with instantaneous
changes between different constant rates.

Figure 3.9: A companion plot to figure 3.8 that displays Rolie-Poly predictions
on the same scale. Note that the markers for the GLaMM model have been
joined with a grey dotted line for readability, this is not a separate model.

extensional flow is only present for a relatively short period of time. For

a solution where the flow is present for a longer period of time such as

t = 1300, both Γ1 and Γ2 grow whilst the flow is present, and they then de-

crease at different rates when the flow is removed. This disparity between

the two functionals enables the interpolator to correctly predict relaxation.

In solutions where the duration of the flow is insufficient for substantial
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evolution of Γ values, both Γ1 and Γ2 are small during relaxation with no

significant disparity between them, and the interpolator struggles to pre-

dict correct f(s, s′) configurations. As the disagreement occurs only when

both Γ1 and Γ2 are small, this suggests that this issue can easily be fixed

with a linearised model.

3.5 Discussion of coarse-grained variable

selection

This section details the methodology for the selection of functionals Γi. It

details two different approaches. The first is an approach that uses physical

intuition about polymer dynamics that is specific to the GLaMM model

example. This can be applied to other models, but would require a similar

level of intuition and results analysis in that model’s field to replicate.

Secondly, a general computational method that can automatically evaluate

and select the best functional predictors, which is more readily applicable

to a wide range of models. We also discuss some further comments about

our current choice at the end of this section.

3.5.1 Motivation for our choice

A key difference with our approach compared to other data-driven ap-

proaches is that we utilise the underlying GLaMM model, which brings

with it physical interpretations that are not possible from a purely data-

driven approach. Given that we have infinitely many choices for each Γi

we can use this insight to inform our choices. One such idea is the use

of physically motivated functional choices. For example, when analysing a
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polymer’s dynamics some properties, such as the first normal stress differ-

ence, will be more useful than others and most of these quantities can be

derived from the molecular scale dynamics contained within f(s, s′, t). We

propose that the more useful a specific functional of f(s, s′) is in describing

dynamics, the more representative it is of the overall molecular dynam-

ics and it follows that these choices will likely be more informative when

categorising f(s, s′) configurations. Thus, if we want to predict using our

reduced methodology with as few functionals as possible we should priori-

tise these. It is for this reason that we chose the commonly used quantity of

the first normal stress difference as one of our options when we first began

predicting with one functional. After testing several different choices, we

found that the first normal stress difference was the best predictor from our

selection. Whilst this does not rigorously prove that this is the best choice

out of any possible single functional, our results suggested that prediction

with two functionals would significantly improve prediction at a low com-

putational cost. Thus we moved to utilising the reduced model with two

functionals.

When predicting with two functionals, the proposed association between

physical usefulness and choice suitability still applies, but it is also worth

noting how the pair of functionals complement each other. Two functionals

that provide similar information about the configuration of f(s, s′) with not

provide a significant improvement over prediction with one functional. For

example, if we are to use the first normal stress difference as one functional

for the pair with Γ1 from equation (3.4), we can see that this formula

only considers elements with s′ = s, along what we refer to as the leading

diagonal of f(s, s′). Figure 3.2 supports this, as the shape of the arc along

the plane s = s′ is predicted with a relatively small error, but Γ1 fails

to capture any information about the width of this fxx profile along the
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counter diagonal s′ = Z − s. A functional to complement this Γ1 should

consider this fact, and this led to the creation of Γ2 in equation (3.5).

The physical implications of the size of the counter diagonal s′ = Z− s are

initially less clear than the relation between the leading diagonal s = s′ and

stress response, but by analysing GLaMM model solutions, we can deduce

that this trait indicates the amount of time the polymer has had to relax. A

thin peak where fxx(s, Z− s) is small for most s suggests that the polymer

melt is in the initial stages of reacting to a recent change in flow conditions,

whilst a wider peak demonstrates that the various relaxation mechanisms

are influencing the shape of the polymer chain, resulting in a straighter

overall chain configuration with a higher correlation between the gradient

vectors of distant chain elements. f(s, s′) measures this correlation, so as

the chain straightens, the values of f(s, s′) outside of this leading diagonal

s = s′ also become significant, when such values where negligible before

the relaxation methods had taken effect. Relaxation increases the size of

elements away from the main diagonal s′ = s, which increases the value of

integrals across the s′ = Z − s diagonal, such as the integral in equation

(3.5) that we chose as Γ2. In summary under an affine deformation, the

correlation fxx − fyy remains at zero away from the main diagonal s =

s′. However, relaxation under flow causes this correlation to propagate

outwards from the main diagonal. Thus this choice of Γ2 is a measure of

deviation from affine deformation. During a start-up flow this Γ2 starts

small and grows as the flow progresses, but at a different rate to the first

normal stress difference, correcting the inability of the one-functional model

to distinguish between two flows of the same σxx − σyy value that are at

different stages of relaxation.

To be an ideal predictor, these two functionals should be able to uniquely

identify the different states of f(s, s′), but in practice, the value of two
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functionals is unlikely to be able to capture every realistic configuration

of f(s, s′). Thus a good choice should assign similar f(s, s′) configurations

to similar Γ values, and conversely, ensure that distinct f(s, s′) profiles are

assigned different values of Γ. Multiple ways to confirm a “good” choice

exist, from visual graphical analysis that the current choice is predicting

sensible evolution behaviour when compared to the GLaMM model, to

numerical calculation of an error metric. We produced graphs for and

visually assessed a variety of different options to find a suitable a functional

pair including stretch ratio, λ, individual elements of the stress tensor, γα,β,

Fourier modes of f(s, s′) and even integrals over the entire f(s, s′) surface.

Graphical observations from testing these pairings established the pairing

of Γ1 and Γ2 from equations (3.4) and (3.5) as performing the best out

of our selection. In section 3.5.2 we suggest an error metric to directly

quantify this discrepancy.

3.5.2 Quantifying model error

We now propose how to evaluate the suitability of a given functional set

f for a general model. As established previously, we wish to retain an

advantage in computational speed over the original PDE model, so we

restrict ourselves to sets of Γi variables where each of these variables evolve

slowly in time to allow for large time steps to be used during the evaluation

of our new model. We can confirm this behaviour by assessing if dΓi
dt

is

suitably smooth and does not change rapidly when we predict a test curve

using our new model with a large time step. Now that we have only slow-

moving Γi variables, we require a way to determine which is a better choice

given two sets of hi. A good choice for Γi must capture the behaviour of

f well, minimising the error in the assumption. In order to quantify the
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ability of a Γi to meet this criterion, we introduce metrics to measure the

error in predictions of f . For the GLaMM model example, one metric to

score the different variable choices could be the root mean square error of

f ,

θ =

√√√√Nδt∑
n=1

∑
α

∑
β

∫ s=Z

s=0

∫ s′=Z

s′=0

(fPred
αβ (s, s′, tn)− fαβ(s, s′, tn))2

4Z2
dsds′,

(3.9)

where tn is the time after n timesteps, and Nδt is the total number of

timesteps used for this reduced model prediction. This method to deter-

mine relative performance to the choice of functionals hi based on metrics

allows us to automate the process of choosing the best subset of function-

als hi from a wider selection by comparing the predictions from our model

with results from the GLaMM model. In the GLaMM model case, we have

computed the metric score for a limited collection of functional pairs, in-

cluding stretch ratio λ, and verified that the first normal stress difference

and its counterpart, the deviation from affine deformation, from equations

(3.4) and (3.5) were the most suitable selection in this case. Since linear

combinations of existing functionals are still valid choices for functionals

themselves, we also explored the possibility of creating linear combinations

of the highest scoring functionals from our initial small selection to fur-

ther improve the fit. However, optimising the coefficients of these linear

combinations to maximise the metric score reaffirmed that the best option

in this situation remained the normal stress difference functional pair that

we defined in equations (3.4) and (3.5). It would be possible to perform a

more extensive search to potentially further minimise a chosen error metric,

however our current results show very good agreement with the GLaMM

model under uniaxial extension, and as such the potential improvements

to model error are not necessary for the GLaMM model prediction at this
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stage. Thus we postpone further development on an optimisation scheme

that could perform a more extensive search for a general model and desig-

nate it as future analysis in chapter 5.2.

3.5.3 Comments on the current choice

Our current choice of functionals is unable to accurately capture very low

flow rates, as can be seen in figure 3.10.

Figure 3.10: Low rate Γi prediction with ε̇τR = 0.25, Cν = 0 and Γi defined in
equations (3.4) and (3.5).

After some investigation we discovered that this error in low rates arises

when both of our variables Γ1 and Γ2 are very small. Higher rates that

spend very little time in this region, and lower rates with a delayed start

time do not encounter this problem. We then determined that when close

to the isotropic rest state, the prediction of dΓi
dt

is very sensitive to the

correct prediction of the f profile. This magnifies small initial errors where

the training set is less populated and leads to irrecoverable errors in the

prediction of the evolution of the test case. However, this is not a ma-

jor concern, as this low variable region is captured well by the Rolie-Poly
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model, alleviating the need for extremely precise f profiles during this pe-

riod. We could use the Rolie-Poly model until we leave this region, at which

point our reduced model would take over. The details of improvements in

low rate extension are deferred to future work in chapter 5.2. Since this

problem is easily rectifiable we continue to use the same choice for our two

functionals.

3.6 Overview of the model in uniaxial ex-

tension

In this chapter, we have shown how to derive and implement a reduced

model that is able to accurately predict the evolution of a variety of constant

and variable rate uniaxial extension flows. Specifically, the major successes

of our model are as follows. Firstly, our reduced model predictions are

substantially more accurate than the Rolie-Poly model, which is the leading

model reduction of the GLaMM model in use today. Secondly, our reduced

model is orders of magnitude faster than the GLaMM model. Thirdly, our

reduced model remains accurate when the qualitative features it is asked

to predict are absent in its training set. This ability to predict features

the model has not explicitly been trained on is unusual for a data-driven

model reduction approach and is because our methodology incorporates the

underlying PDE into its methodology. Thus, it is not restricted to making

estimations solely based on the data in the training set but can use the

mechanics of the underlying model to make predictions about qualitatively

different features. This property sets our model apart from other data-

driven approaches and these advantages will persist even when the general

model from section 3.1 is used with a different PDE.
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We have a few remaining remarks about the small additions that were made

to the general model in order to better suit the application to predicting

polymer dynamics under uniaxial extension flow. Firstly, in section 3.4.3

we detailed our reasoning for the inclusion of a single transient solution

with non-constant extension rate in our two-functional training set to im-

prove the prediction accuracy of the late-stage relaxation to equilibrium.

Initially this may appear to undermine our claim that our model is capable

of predicting qualitatively different behaviour, but this non-constant rate is

only used by our interpolator for prediction of these late-stage relaxations.

The exclusion of this rate does not decrease the prediction accuracy dur-

ing the change in rate and a training set of constant rates is sufficient for

variable rate flows where the accuracy of late-stage relaxations is not a

concern. Secondly, as mentioned in section 3.5.3 our current choice of Γi

in equations (3.4) and (3.5) struggle to distinguish between certain f(s, s′)

configurations where both Γ1 and Γ2 are very small. This can occur at

early times with very low uniaxial extension rates. We can easily rectify

this by using the Rolie-Poly model during this initial small window and

transitioning to the reduced model afterwards. Further information on the

model change at low rates can be found in chapter 5.2. With these suc-

cesses in predicting uniaxial extension flows, we now further develop our

model for the prediction of shear flows in chapter 4.
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Chapter 4

Reduced model with shear

flows

In the previous research chapter, chapter 3, we defined our new reduced

model for the GLaMM model and applied it to uniaxial extension flows.

This reduced model uses slow-moving degrees of freedom to predict the full

solution and reduce the GLaMM model PDE. These degrees of freedom are

defined in terms of functionals, hi, of the PDE solution, f(s, s′, t), so that

Γi = hi(f). With suitable functional choices, we recover a prediction for

the full solution, fPred, from knowledge of Γi values by way of interpolation

from a set of training data. By using Γ1 = 12Ge
5Z2

∫ Z
0
fxx(s, s) − fyy(s, s) ds

and Γ2 = 12Ge
5Z2

∫ Z
0
fxx(s, Z−s)−fyy(s, Z−s) ds, with a four point quadrant

interpolator, we produced accurate predictions for uniaxial extension flows

of various rates.

In this chapter, we adapt our new model to predict polymer shear flows. We

discuss the extra considerations when a polymer model includes rotational

elements in section 4.1. With these alterations to the model, we predict

the evolution of shear flows in section 4.2, using the same functionals, in-
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terpolator and training data as were used to predict uniaxial extension

flows. With evidence to suggest that two functionals would be insufficient

to capture all the features of shear flows, we introduce a basic choice for a

third functional, h3, in section 4.3 to capture this extra degree of freedom.

The introduction of another functional affects the training data and the

method of interpolation, this is explored in section 4.4. With the intro-

duction of a revised training set and interpolator for three functionals, we

now predict shear flows in section 4.5. These shear flow predictions using

three functionals are an improvement to prediction using two, despite the

initial choice for the third functional causing the prediction to incur sig-

nificant numerical errors. Section 4.6 explores the source of this noise and

establishes a revised third functional with this new information. During

the investigation into the noise, we saw the potential for an improvement

to our interpolator which could further reduce the noise, the details and ef-

fects of which are presented in section 4.7. With our model now predicting

one specific shear flow to a suitable degree of accuracy, we evaluate the per-

formance of our model for various other constant and non-constant shear

flows in section 4.8. The final section, section 4.11, provides an overview

of the major results in this chapter.

4.1 Adapting the model to flows with rota-

tion

4.1.1 Principal direction

The primary difference that shear flows have compared to uniaxial exten-

sion flows is the concept of the rotation of the chain. In this section we
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define the principal direction of a polymer melt and explain why such an

introduction is necessary. This principal direction is the quantity we use

to track the average rotation of polymer chains within the melt. When

approximating solutions of the GLaMM model PDE, the unknown is the

tensor of functions f(s, s′, t). We formulate our definition for the princi-

pal direction in terms of components of the stress tensor, where the stress

tensor is calculated as σ(t) = 12Ge
5Z

∫ Z
0

f(s, s, t)ds. The principal direction

is defined as the direction of the largest principal stress. These principal

stresses are the values of the normal stresses, σ11, σ22 and σ33, when the

coordinates are rotated so that shear stresses, σij for i 6= j are zero. In

practice, principal stress is found by diagonalising the stress tensor by using

its eigenvectors. The resulting eigenvalues are then the principal stresses,

and the eigenvector corresponding to the largest eigenvalue is the principal

direction. 
σxx σxy σxz

σxy σyy σyz

σxz σyz σzz

→

σ11 0 0

0 σ22 0

0 0 σ33


In equilibrium, the polymer melt is in its isotropic rest state with σ ∝ I.

In this state, all eigenvalues are equal, and any direction is an eigenvector.

Thus all vectors can be considered as the principal direction for the isotropic

rest state. A uniaxial extension flow will have a constant principal direction,

corresponding to the direction of the flow. Shear flows do not have a

constant principal direction, the chains will have a principal direction that

rotates. Shear flows in the xy-plane will always have principal directions

of the form (a, b, 0) but the values of a and b will change over time.

Knowledge of this principal direction will enable data from a flow in one

principal direction to predict similar flows in any other principal direction

without additional training data. For example, let us compare a uniaxial
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extension in the x-direction with one in the y-direction. For an isotropic

region of the material, these two extensional flows will elicit fundamentally

the same response, and by rotating one set of results by 90◦ they become

identical. Our current model would not be able to predict the result of

a uniaxial extension flow in the y-direction with the training set we have

used until now, as the principal directions of the test flow to be predicted

differs from that of the training data from uniaxial extension flows in the

x-direction. However, if we know the current principal direction of the

test flow, and the training data has a uniform, known principal direction,

then we can predict this flow if we add steps to the model to perform the

relevant rotation transformations. Shear flow has a non-constant principal

direction, but provided we know the principal direction at the current time,

training data with a uniform principal direction could predict this as well.

In order to track this principal direction, we introduce a new tensorial func-

tional S(t) to denote the normalised end-to-end vector, sometimes denoted

as 〈uu〉 in other literature, such that,

S(t) = 〈uu〉 =

∫ Z
0

f(s, s, t)ds

Tr (
∫ Z

0
f(s, s, t)ds)

=
σ(t)

Tr (σ(t))
, (4.1)

dS(t)

dt
=

1

Tr (
∫ Z

0
f(s, s, t)ds)

∫ Z

0

∂f(s, s, t)

∂t
ds

−
Tr (
∫ Z

0
∂f(s,s,t)

∂t
ds)

(Tr (
∫ Z

0
f(s, s, t)ds))2

∫ Z

0

f(s, s, t)ds. (4.2)

Calculating the principal direction using S will return the same result as σ,

since S ∝ σ, but using S simplifies some later calculations since Tr (S) = 1.

With equation (4.1), we are now in a position to modify our previous

algorithm so that it considers the rotation of the flow when predicting
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f(s, s′, t).

4.1.2 Defining the laboratory and principal frames of

reference

In this section, we detail changes to the algorithm in order to predict flows

with various rotations using a training set with one uniform principal direc-

tion. Firstly, for us to be able to predict an f(s, s′, t) for a general rotation,

our training set must have a known, uniform principal direction. We create

our training set so that all training data has principal direction (1, 0, 0).

For the sake of clarity, let us define two different frames of reference for

this new methodology. The laboratory frame shall refer to test data or

predicted data that incorporates rotation. The principal frame on the

other hand shall refer to any data that has had its rotation ”removed”

by a transformation so that its principal direction is (1, 0, 0). All of our

training data will be in the principal frame. To return to the example in

section 4.1.1, two uniaxial extension flows in different directions will be

different when viewed in the laboratory frame, but equivalent if both are

transitioned into the principal frame. The normalised end-to-end vector S

from equation (4.1) will later be used to define the transformation between

this laboratory frame and the principal frame. We denote these different

frames of reference with subscripts, fPrin and fLab. Most variables such as

Γi and S for this methodology are only defined in one of the two reference

frames with only f defined in both frames. Our functionals will always be

defined in the principal frame, Γi = hi(fPrin), because to predict solutions

with any principal direction from a singular training set, the result from

our functionals must be rotationally invariant. In contrast, S will always

be defined in the laboratory frame, as we will use S to track rotation.

62



4.1. ADAPTING THE MODEL TO FLOWS WITH ROTATION

The formulae for the functionals hi require a subtle change to generalise

them to be applicable to variables in the principal frame. Here we alter

equations 3.4 and 3.5 in order to apply them to the principal frame.

Γ1 =
12Ge

5

∫ Z

0

(fPrin(s, s))11 − (fPrin(s, s))22 ds, (4.3)

Γ2 =
12Ge

5

∫ Z

0

(fPrin(s, Z − s))11 − (fPrin(s, Z − s))22 ds. (4.4)

As these equations 4.3 and 4.4 act upon fPrin in the principal frame, they

are rotationally invariant. Uniaxial extension flows in any direction of

the same rate will show the same evolution for Γ1 and Γ2. However, for

general flows, Γ1 will no longer represent the first normal stress difference.

It is still possible to recover the value of the first normal stress difference

from equation (3.4) using fLab. With the functionals and training set now

in the principal frame but the GLaMM model PDE only defined in the

laboratory frame, a transformation between these two frames of reference

must be defined.

To transition between fLab and fPrin we introduce the transformation tensor

V in the laboratory frame. If D is defined as a diagonal matrix with the

eigenvalues of S in descending magnitude along its diagonal, then V is a

tensor of eigenvectors such that S ·V = V ·D. An explicit formula for this

tensor of ordered eigenvectors, V, for the 2D case can be seen in equation

(C.4). To transition f between the two frames of reference, we transform f

by rotation using fLab = V · fPrin ·VT . When adding data to the training

set we can use the inverse transformation fPrin = VT · fLab · V to ensure

that all training data has principal direction (1, 0, 0).
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4.1.3 Changes to the method

Now let us assume that we know the values of the variables1 from the

functionals ΓPred
i , and the tensor SPred at time t = T . Knowledge of SPred

means we can also calculate VPred at the current time. We now define an

algorithm that uses this knowledge to determine ΓPred
i and SPred at time t =

T + δt. When under shear, the direction of the principal frame depends on

time and thus derivatives of the transformation must be accounted for when

transforming ∂f
∂t

back into the principal frame. Full details and formulae

for this are in appendix C.

1. Calculate fPred
Prin from ΓPred

i .

(a) Interpolate fPred
Prin from fTrain

Prin at ΓPred
i at t = T .

[Principal frame]

2. Transform fPred
Prin to fPred

Lab using eigenvectors.

(a) Find the matrix of eigenvectors, VPred, of the current rotation,

SPred, at t = T .

[Laboratory frame]

(b) Calculate fPred
Lab by rotating this fPred

Prin into the laboratory frame

using VPred at t = T .

[Principal frame → Laboratory frame]

3. Calculate ∂
∂t

fPred
Lab using the GLaMM model.

(a) Use the GLaMM model (2.3) to calculate ∂
∂t

fPred
Lab from fPred

Lab at

t = T .

[Laboratory frame]

1Superscript ”Pred”, ”Test” and ”Train” attached to variables refer to if they are
derived from new model predictions, test data from the GLaMM model or training set
data respectively.
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4. Transform ∂
∂t

fPred
Lab back to ∂

∂t
fPred

Prin using eigenvectors and the required

derivatives.

(a) Calculate d
dt

SPred from fPred
Lab and ∂

∂t
fPred

Lab at t = T , using equation

(4.2).

[Laboratory frame]

(b) Calculate d
dt

VPred from SPred and d
dt

SPred at t = T , using equa-

tion (C.5).

[Laboratory frame]

(c) Calculate ∂
∂t

fPred
Prin from fPred

Lab , ∂
∂t

fPred
Lab , VPred and d

dt
VPred at t = T ,

using equation (C.3).

[Laboratory frame → Principal frame]

5. Calculate dΓi
dt

Pred
from fPred

Prin and ∂
∂t

fPred
Prin .

(a) Calculate each d
dt

ΓPred
i from fPred

Prin and ∂
∂t

fPred
Prin at t = T , using

equations (C.1) and (C.2).

[Principal frame]

6. Take a timestep in both ΓPred
i and SPred.

(a) Utilise the forward Euler method to find the values of each ΓPred
i

and SPred at t = T + δt.

[Principal and laboratory frames]

At first glance, this method may seem more complex than the formulation

without rotation in section 3.1, however, there are only two major changes.

The first major variation in the method with rotation is that, unlike before,

the GLaMM model calculation and the training set interpolation must be

performed in different frames of reference. This necessitates two additional

intermediate steps 2 and 4 to calculate and apply the transformations re-

quired to transition between these frames of reference. The other necessary
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4.1. ADAPTING THE MODEL TO FLOWS WITH ROTATION

adjustment is related to this; we now track the evolution of a rotation vari-

able, S, alongside our other variables Γ1 and Γ2. The value of S is required

to transform between fLab and fPrin. We require the ability to switch be-

tween frames of reference freely at each timestep, and so we will require

knowledge of its evolution throughout time alongside each Γi. Fortunately,

as S is also a functional of f and so it can be treated similarly to the

other functionals during evaluation and evolution, the largest distinction

being that S = hS(fLab) must be calculated in the laboratory frame and

Γi = hi(fPrin) must instead be handled in the principal frame.

We now provide an overview detailing each step. Firstly, this formula-

tion mandates that certain steps must be performed in the principal frame

and laboratory frames respectively, but the principal frame and laboratory

frames are equivalent for uniaxial extension flow in the x-direction and so

this generalised method simplifies to the formulation in section 3.1.1 in this

case. Step 1 is the same 2D interpolation as before, only with the extra

requirement that any further data we wish to add to the training set must

be rotated into the principal frame first. Step 2 calculates the correct trans-

formation matrix using eigenvectors, and then transforms the interpolation

predictions from the principal frame to the laboratory frame. With a pre-

diction of f in the laboratory frame, we now apply the GLaMM model from

equation (2.3) in step 3. Since all functionals are now defined only in the

principal frame, we must transform this laboratory frame prediction of ∂f
∂t

back to the principal frame before we can calculate dΓi
dt

. Step 4 calculates

the required transformation derivative, dV
dt

, and then performs this trans-

formation back to the principal frame. Step 5 evaluates the derivatives of

the functionals using equations (C.1) and (C.2). Step 6 predicts the val-

ues at the next timestep using the forward differencing Euler method on

each functional, Γi, but the methodology with rotation also predicts S at
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4.2. SHEAR PREDICTION WITH TWO FUNCTIONALS

the next timestep as we need to know the correct transformation between

frames of reference at every timestep. Euler timestepping was chosen for its

computation speed, but any forward timestepping method could be used.

There was no need to calculate the derivative dS
dt

during step 5, as it was

previously calculated during the transformation back to the principal frame

in step 4a. By performing repeated iterations of this process, we are now

able to predict the evolution of flows in any principal direction, rather than

being restricted to the principal direction which matches our training data.

4.2 Shear prediction with two functionals

Now that we have established a method that can predict flows or varying

rotation in section 4.1.3, we use the training set from chapter 3 to predict

shear flows. This training set consists of uniaxial extension flows in the

x-direction with extension rates ε̇τR = 0.1 to ε̇τR = 3, with one additional

relaxation flow where the flow is removed, ε̇τR = 0, partway through a

uniaxial extension of rate ε̇τR = 2.1. This relaxation flow was introduced in

section 3.4. Uniaxial extensions in the x-direction have a constant principal

direction of (1, 0, 0), so this training set is already in the principal frame

and no alterations need to be made.

During the prediction of uniaxial flows in chapter 3 we ignore the effects

of convective constraint release (CCR) on the GLaMM model. This is

acceptable as CCR is negligible in uniaxial extension flows, but this is

not the case for shear flows. We begin prediction without CCR as our

current training set of uniaxial extension data may produce more accurate

predictions without CCR. We will then move on to more realistic shear

flows with Cν 6= 0. We further discussed the details of the relaxation
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4.2. SHEAR PREDICTION WITH TWO FUNCTIONALS

methods including CCR during the GLaMM model introduction in section

2.3. In general whenever we calculate shear flows with the GLaMM model

from equation (2.3), we denote the shear rate as γ̇, and set κxy = γ̇, καβ =

0 ∀ αβ 6= xy with Cν = 0.1 unless otherwise specified.

We will first use the two functionals defined in equations (4.3) and (4.4)

to predict a shear flow with rate γ̇τR = 2 and without CCR, Cν = 0.

Results can be seen in figures 4.1 and 4.2. Different colour lines refer to the

different frames of reference in which the calculation is performed. Blue

and orange lines are from calculations in the principal frame, whilst green

and red are calculations in the laboratory frame. Note that we delay the

introduction of our reduced model for a single timestep, using delayed start

time T = 10, as described in section 3.2. This means that we calculate

with the full GLaMM model until t = T , using the initial condition of

fPred(s, s′, 10) = fTest(s, s′, 10) for our reduced model. This is to avoid the

calculation of dV
dt

at feq as this is undefined, as further discussed in appendix

C. Syy is not shown in figure 4.2 as this can be calculated from Sxx.

Figure 4.1: Reduced model predictions of Γi and dΓi
dt in the principal reference

frame at γ̇τR = 2 and Cν = 0.

68



4.2. SHEAR PREDICTION WITH TWO FUNCTIONALS

Figure 4.2: Reduced model predictions of S and dS
dt in the laboratory reference

frame at γ̇τR = 2 and Cν = 0.

As can be seen in the figures 4.1 and 4.2, even without the effects of CCR

small errors in the prediction of dΓ1

dt
and dS

dt
cause ΓPred

1 and SPred to drift

away from ΓTest
1 and STest due to the accumulation of timestepping errors

over time ΓPred
2 and d

dt
ΓPred

2 incur significant errors, which would suggest

that this pair of functionals is not suitable for shear flow prediction. The

accuracy of ΓPred
1 , ΓPred

2 and SPred depend on each other, as errors in one

of these variables will be inherited by the others on the next timestep.

In order to isolate which elements are causing errors, let us fix S to its

true value, SPred = STest throughout the evolution, and only predict Γ1

and Γ2. We choose to set S because a small change in the transformation

matrix between frames of reference could lead to drastically different fPred.

Predicting the same flow with SPred fixed produces figure 4.3.

Despite noticeable inaccuracies in the prediction of Γ2, figure 4.3 suggests

that the accuracy of both quantities increases significantly when the true

rotation, STest, is known. In particular, we now have an accurate evolu-

tion for ΓPred
1 . This supports our hypothesis that the majority of errors in

figure 4.1 arise from an erroneous prediction of the rotation tensor to transi-
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Figure 4.3: Reduced model predictions of Γi and dΓi
dt in the principal reference

frame at γ̇τR = 2 and Cν = 0. SPred is fixed at the true value.

tion between reference frames. Even then, ΓPred
2 still has significant errors.

These errors prevent the reduced model with this functional choice from

being applicable to shear prediction, but also suggest the way to proceed

without changing the model further.

4.3 Introduction of a third functional

4.3.1 Motivation for a third functional

Figure 4.3 shows significant difficulty in the prediction of shear flow with

the current two functionals. Since any errors in principal direction are

removed for figure 4.3, this confirms that the problem stems from the in-

adequacy of the current functionals to predict ∂f
∂t

, and thus dS
dt

. This error

in the evolution of principal direction does further compound these errors,

but if a choice of functionals is not suitable to uphold our assumption, it

will cause errors in the evolution of all quantities in the reduced model.

Thus we use figure 4.3 to identify a better choice to reduce both errors.
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The error in ΓPred
2 whilst all other quantities are predicted accurately or

fixed to the true values could imply one of two things. Either the current

Γ2 choice is not providing much information about the characteristics of f

for shear flows, this is supported by the accuracy of ΓPred
1 regardless of the

error in ΓPred
2 , or that the possible configurations of f are more nuanced

in shear flows and any two functionals would not be sufficient to capture

the new characteristics. If Γ2 does not provide enough information about

shear flows, a different choice of h2 might be appropriate, but if we find that

any choice of two functionals would be insufficient to capture all features

of f under shear flow, a different approach is required. Another angle to

verify if two functionals are insufficient to capture shear flows is to confirm

the existence of two physically attainable f(s, s′) profiles with significantly

different configurations, but which take the same Γ1 and Γ2 values, inval-

idating the assumption that we can categorise all feasible f(s, s′) profiles

with that specific choice. With further exploration of possible choices for

two functionals, we couldn’t find a suitable Γ2 that allows us to predict

both uniaxial extensions and shear flows well with the same choice.

Whilst it may be possible for a pair of functionals to be able to satisfy our

assumption, our analysis of two-functional shear flow prediction suggests

that the existence of such a pair is unlikely and so we choose instead to

extend the number of functionals to three as this is within the scope of

our reduced model without changes to the methodology. This would al-

low us the freedom to categorise another feature of f(s, s′) configurations,

improving prediction accuracy whilst not significantly affecting computa-

tional complexity. Since this choice of two functionals can predict uniaxial

extension flows well but not shear flows, any new Γ3 we introduce would

need to be able to predict f(s, s′) configurations from shear flows well, and

thus naturally we will need to introduce shear training data into the train-
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ing set. Further details on this inclusion can be found in section 4.4.1, but

first we establish what our choice for this third functional is. We want to

introduce a third functional that distinguishes shear from extension data

and provides some measure of the extent of shear. Let us consider the form

of f(s, s′) configurations in the principal frame for polymer dynamics in 2D.

For fPrin we have 3 distinct components, (fPrin)11, (fPrin)22 and (fPrin)12 due

to symmetry in (fPrin)αβ = (fPrin)βα. (fPrin(s, s′))12 is zero for all s and s′

for any extensional flows. (fPrin)12 is also a quantity that our choices for

Γ1 and Γ2 never consider in their calculations for this reason and thus are

unable to capture. In shear however, the average of (fPrin)12 along s=s’ is

zero by definition, but (fPrin)12 is not zero for all values of s and s′. For this

reason, our initial choice for a third functional functional in the following

section is based on the variance of (fPrin)12.

4.3.2 Basic choice for a third functional

We choose to use the variation about the principal direction as the third

functional. This is chosen as an initial choice as this will be zero throughout

any uniaxial extension flows, and variation about the principal direction is

a suitable quantity to track how effective shear is at the current time. Let

VA(t) be a vector denoting the principal direction of a polymer chain.

VA(t) is the first column of V from equation (C.4). Then define VB(s)(s, t)

as the local principal direction. This is calculated in much the same way as

the global principal direction, but at a specific s = s1, so that VB(s1)(s1, t)

is the unit eigenvector corresponding to the largest eigenvalue of f(s1,s1,t)
Tr (σ(t))

.

The equation for VB(s) can be written as,

VB(s)(s, t) =

(
a(s, t)√

a2(s, t) + b2(s, t)
,

b(s, t)√
a2(s, t) + b2(s, t)

)
, (4.5)
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where,

a(s, t) =

{
λL(s, t)− Lyy(s, t) for Lyy(s, t) < Lxx(s, t)

Lxy(s, t) for Lxx(s, t) < Lyy(s, t)
,

b(s, t) =

{
Lxy(s, t) for Lyy(s, t) < Lxx(s, t)

λL(s, t)− Lxx(s, t) for Lxx(s, t) < Lyy(s, t)
,

λL(s, t) =
Lxx(s, t) + Lyy(s, t) +

√
(Lxx(s, t)− Lyy(s, t))2 + 4L2

xy(s, t)

2
,

Lαβ(s, t) =
fαβ(s, s, t)

Tr (σ(t))
.

Note that in equation (4.5) we write VB(s) as a function dependant on s

and t, but as each term is only dependant on the elements of f(s, s, t),

knowledge of f is sufficient to calculate VB(s) and this equation can be

formulated as VB(s)(f(s, s, t)).

Figure 4.4: A visualisation of a polymer chain, R(s), showing the difference
between principal direction, VA(t), and local principal direction, VB(s)(s, t).

The variation in principal direction can then be defined as variance in

the angle between the unit vectors VA(t) and VB(s)(s, t) in the laboratory

frame this is defined as,

[
θPD(s, t)

]
Lab

= cos−1
([

VA(t)
]

Lab
·
[
VB(s)(s, t)

]
Lab

)
.
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If the local and average principal direction are the same for all s then the

variance in the angle will be zero. This is true under uniaxial extension

flows, but not shear flows. When in the principal frame,
[
VA(t)

]
Prin

= x̂

by definition, and since θPD is unaffected by a global rotation,
[
θPD

]
Lab

=[
θPD

]
Prin

. Due to this from now on we drop the notation for frame of

reference and simply write θPD. And so the variance of cos(θPD(s, t)) over

s is,

V ar
(

cos(θPD(s, t))
)

= V ar
(
x̂ ·
[
VB(s)(s, t)

]
Prin

)
=

∫ Z

0

(
x̂ ·
[
VB(s)(s, t)

]
Prin

)2

ds −
(∫ Z

0

x̂ ·
[
VB(s)(s, t)

]
Prin

ds

)2

.

Using this to inform our choice, we define the third functional as,

Γ3 = h3(fPrin(s, s, t)) =

∫ Z

0

1−
(
x̂ ·
[
VB(s)(s, t)

]
Prin

)2

ds

=

∫ Z

0

sin2(θPD(s, t)) ds, (4.6)

with respective derivative,

dΓ3

dt
=

∫ Z

0

−2
(
x̂ ·
[
VB(s)(s, t)

]
Prin

)(
x̂ · ∂

∂t

[
VB(s)(s, t)

]
Prin

)
ds, (4.7)

where,

∂

∂t
VB(s)(s, t) =

a′(s, t)b(s, t)− b′(s, t)a(s, t)

(a2(s, t) + b2(s, t))
3
2

(b(s, t), −a(s, t)), (4.8)
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a′(s, t) =

{
λ′L(s, t)− L′yy(s, t) for Lyy(s, t) < Lxx(s, t)

L′xy(s, t) for Lxx(s, t) < Lyy(s, t)
,

b′(s, t) =

{
L′xy(s, t) for Lyy(s, t) < Lxx(s, t)

λ′L(s, t)− L′xx(s, t) for Lxx(s, t) < Lyy(s, t)
,

λ′L(s, t) =
1

2

(
L′xx + L′yy +

L′xxLxx + L′yyLyy + 4L′xyLxy − L′xxLyy − L′yyLxx√
L2
xx + L2

yy + 4L2
xy − 2LxxLyy

)
,

L′αβ(s, t) =
1

Tr (σ(t))

∂fαβ(s, s, t)

∂t
− Tr (σ′(t))

(Tr (σ(t)))2
fαβ(s, s, t).

For the sake of its use as part of this new functional h3(fPrin(s, s, t)), note

that VB(s)(s, t) can be written entirely in terms of Lαβ(s, t) and L′αβ(s, t)

which in turn only depend on fαβ(s, s, t) and ∂
∂t
fαβ(s, s, t). VB(s)(s, t) can

be written as a function of f(s, s, t) so that VB(s)(f(s, s, t)) and correspond-

ingly
[
VB(s)(s, t)

]
Prin

can be written as VB(s)(fPrin(s, s, t)). This feature

makes VB(s) suitable for use as part of a functional. Formulas for a, b, λL

and Lαβ for equation (4.8) were previously defined in equation (4.5). The

derivation of equation (4.8) is very similar to that of dV
dt

in appendix C,

and thus is omitted. In equation (4.6) the only dependence on s and t is

in the form of (fPrin(s, s))αβ and it can be rearranged to only depend on

combinations of (fPrin(s, s))11−(fPrin(s, s))22 and (fPrin(s, s))12. This aligns

with our motivation in section 4.3.1.

With the addition of a third functional to consider, the method established

in section 4.1.3 remains largely the same, with one more Γi variable to

track the evolution of using the Euler method. The main implication of

changing to three functionals is that the functional phase space used during

interpolation has one additional dimension, requiring more sophisticated

interpolators.
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4.4 Generalisation of the interpolator

The introduction of a third functional means that our phase space is now

three-dimensional. The quadrant interpolator from appendix B.1.1 that we

have used thus far for uniaxial extension is not suitable for interpolation

in 3D and so revisions need to be made. In this section, we first discuss

the effect a third functional has on the training set in section 4.4.1 and

how to revise interpolators so they are applicable to this three-dimensional

phase space in section 4.4.2, with two specific examples in appendices B.2.1

and B.2.2. The major complications to the creation of an interpolator in

three-dimensional phase space and our proposed solutions are detailed in

sections 4.4.3 and 4.4.4.

4.4.1 Production of a training set

Let us first review the production of a training set given two functionals

under the rotation-based model in section 4.1.3 before we discuss alterations

that need to be made for a three-functional case. We first run the GLaMM

model at a selection of flow rates for chosen flow geometries, this will return

the evolution of fTrain
Lab for each rate. From this, we use fPrin = VT ·fLab ·V to

produce the corresponding fTrain
Prin data, which always has principal direction

in the x̂ direction by definition. We then calculate each ΓTrain
i = hi(f

Train
Prin )

and record fTrain
Prin , ΓTrain

1 and ΓTrain
2 for each flow at each timestep. A data

point in this training set then consists of a known (fTrain
Prin (s, s′))αβ, defined

for all α, β, s and s′, along with its coordinates in functional phase space

(ΓTrain
1 ,ΓTrain

2 ). These points are non-uniformly distributed throughout Γi

phase space. For our results in sections 3 and 4.2 the training set we used

consisted entirely of uniaxial extension data. Uniaxial extensional flows in
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the x-direction and their corresponding relaxations have fLab ≡ fPrin and

so this training set did not need alteration when we adopted the rotation

revisions in section 4.1.3.

With three functionals, we have one more ΓTrain
i to calculate and record.

The creation of the training set is largely the same, the only major difference

being that with three functionals, the functional phase space is now three-

dimensional rather than two. The uniaxial extension data was sufficient

to span the physically realisable region when the phase space was two-

dimensional, but this is not the case for a three-dimensional phase space.

Using the definition in equation (4.6), h3(fPrin) = 0 for uniaxial extension

flows by design and so we require training data from other flow geometries

if we hope to span this 3D phase space. Thus we calculate the evolution of

xy shear flows of a selection of rates from γ̇τR = 0.001 to γ̇τR = 10 with the

GLaMM model, rotate them into the principal reference frame, and include

these in the training set. To evaluate the predictions under this new Γ3

from equation (4.6), training data from these uniaxial extension flows and

shear flows will be sufficient.

4.4.2 Interpolator generalisation for 3D

The interpolator also operates in fundamentally the same way as 2D. The

aim of the interpolator in our model is to produce a fPred
Prin prediction at a

known (ΓPred
1 ,ΓPred

2 ,ΓPred
3 ) location. If the choice of functionals is suitable

to uphold our previous assumptions, all fPrin configurations that arrive at

the same location (Γ1,Γ2,Γ3) in phase space through evolutions, where

ΓTrain
i = hi(fPrin), will have similar fPrin configurations regardless of flow

history. Thus an fTrain
Prin associated with the point (ΓTrain

1 ,ΓTrain
2 ,ΓTrain

3 ) will

be a good approximation to any fPrin configuration with the same functional
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values, and so our training data can be used for predictions. The better

our assigned functionals are at uniquely characterising each potential f

configuration, the more accurate this approximation is. An interpolator

should calculate some weighted average based on the value of fTrain
Prin at

positions close to (ΓPred
1 ,ΓPred

2 ,ΓPred
3 ) in the phase space. With a suitable

choice of functionals, the closer a training point is in this phase space,

the more relevant its corresponding fTrain
Prin is to prediction, and the heavier

weighting it should be given.

The four-point quadrant interpolator that we have used for interpolation in

two-dimensional phase space is no longer applicable in three-dimensional

phase space applications, and so a different interpolator must be used. A

natural choice is to generalise the quadrant interpolator which takes four

points, one point from each quadrant, to an octant interpolator which inter-

polates using eight points from the eight octants in 3D space. Alternatively,

we could choose some radius r around our prediction point in phase space

and interpolate using all training points that exist within this radius. We

refer to these interpolators as the octant interpolator and radial interpo-

lator respectively and further details on their formulae can be found in

appendices B.2.1 and B.2.2.

4.4.3 Absolute and relative interpolation scaling

We make one further change to these interpolators to improve their perfor-

mance when predicting shear flows. Thus far we have used absolute scaling

in each of our interpolators. We normalise the size of results from each of

our functionals by taking the maximum value that each ΓTrain
i individually

attains within our training set and scaling all distances by this value. This
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scaling is written as,

Mi = max(ΓTrain
i ) ∈ Ω, (4.9)

and is used in the quadrant, octant and radial interpolators in equations

B.1, B.4 and B.5 respectively. When scaled in this way, each dimension of

the functional phase space is bounded so that Ω ⊂ [0, 1]3.

Issues can occur when the maximums that ΓTest
i attains during evolution

with the GLaMM model significantly differ from the maximums of ΓTrain
i .

For example, let us consider a shear flow with our current choice of func-

tionals and training set from sections 4.3.2 and 4.4.1. max(ΓTest
3 ) may or

may not be similar to max(ΓTrain
3 ) depending on the chosen shear rate, but

max(ΓTest
1 ) � max(ΓTrain

1 ) and max(ΓTest
2 ) � max(ΓTrain

2 ) are always true

because our training set includes uniaxial extension flows which have val-

ues of Γ1 and Γ2 that are far larger than anything that can be attained by

shear flows. In this situation, interpolator performance may be improved

if the scaling was tweaked so that the interpolator prioritises similar values

for ΓTrain
1 and ΓTrain

2 and allows ΓTrain
3 to vary more. The current absolute

scaling in equation (4.9) weights interpolator distance in each direction

equivalently, and so we introduce a relative scaling,

MR
i (ΓPred

i ) = max(ΓPred
i , 10−10Mi).

This relative scaling in equation (4.4.3) allows the interpolator to adapt the

priority of each direction of phase space based on the current prediction

location, it is not fixed at a set value based on the training set. For ex-

ample, in a situation where ΓPred
3 is twice the value of the ΓPred

1 and ΓPred
2 ,

interpolation distance will be halved in the Γ3 direction for the purposes of

point selection and weighting. This will help the interpolator make more

sensible choices when predicting polymer flows that remain within a small
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region of Ω in functional phase space during their evolution.

4.4.4 Interpolation bias

Due to the non-uniform distribution of our training data throughout phase

space, these interpolators can suffer from bias. Depending on the choice of

points the weighted average location in functional phase space may differ

from the location (ΓPred
1 ,ΓPred

2 ,ΓPred
3 ) at which the interpolation was per-

formed. The effects of interpolation bias are more pronounced in regions

of lower density within the training data. With two functionals the effects

of interpolation bias are small since we defined a sufficiently dense training

data set that spanned all realistic combinations of Γ1 and Γ2, but sparse

regions are more common in three-dimensional phase space when using an

additional functional.

Figure 4.5: A visualisation of how the 2D quadrant interpolator might suffer
from bias. The location to be predicted is the blue cross, the red crosses represent
the training points chosen by the quadrant interpolator, and the blue star shows
their average location. The octant interpolator can have similar issues in 3D.
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As figure 4.5 shows, when choosing a number of closest points, the weighted

average location of (ΓTrain
i )q can differ from ΓPred

i . The resulting fPred
Prin from

this interpolation would have hi(f
Pred
Prin ) 6= ΓPred

i . This bias effect is more

pronounced with distant points, thus why sparse regions are at higher risk.

These same features are present in the octant interpolator when we extend

the functional phase space to three-dimensional. The radial interpolator is

slightly more robust to bias in sparse regions of the training data due to

the increased number of points considered, but as it does not restrict the

number of points in each octant, is it more vulnerable to bias in regions of

training data with non-uniform density.

If interpolation bias becomes a problem for a particular training data set,

the simplest solution is to add more training data in the problematic re-

gions. An increase in the amount of training data does increase the com-

putation time of the interpolator, but thinning the number of points in

the densest regions of the training data gives control over the compromise

between interpolation bias and speed. If removing interpolation bias by

adding more training data is not feasible, another option is to redefine or

transform your functionals, hi. The functionals define the location of each

training data point in functional phase space, and a functional where the

size of the change in the value of Γi is proportional to the size of significant

change will result in a more uniform density for the training set and fewer

sparse regions overall. A further option to prevent interpolation bias would

be to create a new interpolation scheme that is more robust to bias.

We have also explored a method to remove interpolation bias by transform-

ing the resultant fPrin from interpolation, dubbing this transformed f∗Prin as

fPred
Prin . By using the correct transformations we ensured that hi(f

∗) = ΓPred
i ,

thereby removing interpolation bias. Unfortunately, we found that these

transformations had a detrimental impact on ∂
∂t

fPred
Prin and that the evolution
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predictions with the model from section 4.1.3 worsened overall due to the

impact on dΓi
dt

.

4.4.5 Guidance on composition of a suitable training

set

The prediction accuracy of our model is heavily dependent on the creation

of a suitable training set. The suitability of a certain selection of flow

rates as a training set is intrinsically linked to the functionals we choose, a

different set of functionals would change how the training data spans the

functional phase space Γ. For this reason, it is important that we out-

line the properties to be considered for a training set to be suitable for

use with our reduced model and how to create a training set that meets

these requirements. In general, the aim when building a training set for

our reduced model is to ensure that training data points sufficiently span

the functional phase space so that our interpolations are accurate without

requiring a large amount of data. With the octant interpolator choice,

one of the most important factors is to ensure that each point you wish

to interpolate is surrounded by at least one point in each octant. If the

interpolator is not able to use a point from each octant, this leads to ex-

trapolation of the data, significantly reducing accuracy. In addition, the

octant interpolator performs better if the data are sufficiently dense that

the interpolation bias is low. A sparse training set can also introduce noise

into our predictions with certain interpolators, as will be seen throughout

this chapter. The “Radial octant average” interpolator we introduce later

in section 4.7 also has these same requirements, but is far more resilient to

sparsity induced noise, due to its construction.

To meet these requirements without requiring a vast amount of GLaMM
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model simulations, there are certain techniques we can employ. As the

underlying GLaMM model has physical implications and limitations, for a

suitable choice of functionals, it tends to be the case that not every location

in Γ space is reachable, as some combinations of functionals may not have

an associated f(s, s′) configuration that is physically realistic. Instead,

training flow trajectories tend to span a specific region of Γ space. An

example of this for the 2D case can be seen in figure 3.6. For the creation

of a new training set, we first simulate a small number of flows to get an

idea of the span of the set, making sure to include the trajectories for the

highest and lowest rates of interest.

Once we have identified the span of the trajectories we add new trajecto-

ries with two goals in mind. The first objective is to try to get a number

of points on the edges of this span, including any trajectories that would

introduce training points on this edge. Having points on the edge of the

span ensures that the interpolator will not need to extrapolate when close

to that edge. The second objective is to ensure there are no sparse regions

within the span of the training data, adding simulated trajectories as nec-

essary. Provided your choice of functionals is suitable, a denser training set

will improve interpolation accuracy but will incur a slight computational

cost. The overall aim is to ensure that your interpolator has a sufficient

number of nearby points in as large a region as possible, minimising the

locations where it will need to extrapolate or could suffer from bias. An

interpolator that does not suffer from extrapolation or bias will be far more

robust when predicting various flows.

The calculation of a large number of GLaMM model evaluations to create

the training set can take a significant amount of time, and if you were to

create an entire training set to evaluate a single polymer flow with our

reduced model, it would not be productive. The advantages become ap-
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parent because the training set is a one-time cost, once a training set is

created it can be saved and, the reduced model can be used any number

of times on any flow that is within the span of the training set, includ-

ing qualitatively different ones such as variable rate flows. Over a number

of repeated runs, the vastly increased speed of our reduced model easily

outweighs this initial cost. The interpolation does slightly increase in cost

with a larger number of points in the training set. If the computation cost

of the training set becomes a problem, the density of the training set could

be reduced to improve efficiency. After simulation, the training points in

Γ phase space will lie on a non-uniform grid, varying density in different

regions. A possible way to reduce density would be to impose a uniform

grid of points, only including the single closest training point to each point

on the grid, thereby making the sparsity of the training set much closer to

uniform. However, in our calculations, the evaluation of the training set

with the interpolator was always a small amount of total cost, less than

8%, and so it was less necessary to take steps to reduce the density.

We also tested if the inclusion of uniaxial extension data in the training set

was necessary when predicting shear flows. We found that some shear flow

trajectories that were completely surrounded by training data trajectories

were still able to be predicted, but that many others suffered greatly. One of

the major reasons for this is that the uniaxial extension training data is on

the edge of the span of training data, and the removal of these points leads

to far more extrapolations during prediction. In addition, our reduced

model was far less robust without uniaxial extension data. For variable

rates such as cessation of shear, Γ3 drops to zero quickly, and thus the

uniaxial extension data with Γ3 = 0 makes interpolation of such flows

possible. The loss of robustness on exclusion and low interpolation cost

led us to make the decision that our reduced model is best with a single
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training set that includes both extension and shear data.

Our results later in this chapter show that our choices for the training

set in section 4.4.1 are reasonable and can predict a wide range of flows

accurately. Some of our early results suffer from noise, which is a sign

that the training data may be too sparse for the octant interpolator, but

we conclude that this is due to the sensitivity of the octant interpolator,

rectifying this with a new interpolator in section 4.7.

4.5 Initial results with three functionals

Now that we have a revised method from section 4.1.3, three functionals

defined in equations (4.3), (4.4) and (4.6), training data of both uniaxial

extension and shear flows from section 4.4.1 and two interpolators for 3D

functional phase space in equations (B.4) and (B.5), we are in a position to

predict shear flow using three functionals. For this section, we show how

our model performs in predicting a shear flow of rate γ̇τR = 9 with CCR

on Cν = 0.1. All other GLaMM model parameters are defined in section

2.3.

As we have highlighted interpolation bias as a more significant problem with

the increased sparsity of a training set in 3D, we first evaluate interpolator

bias for both interpolators with the relative scaling introduced in equation

(4.4.3). To do this we run the GLaMM model for our chosen shear flow and

replace the predicted functional values with the values from the GLaMM

model ΓPred
i = ΓTest

i at every single timestep. This means that we forgo our

reduced model’s step of calculating the evolution with the Euler method

using d
dt

ΓPred
i and removes any possible accumulation of errors from this

calculation. We note that whenever we require ΓTest
i or ΓTrain

i we calculate
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them directly using our functionals so that hi(f
Test
Prin) = ΓTest

i and hi(f
Train
Prin ) =

ΓTrain
i . This is not the same relationship for predicted variables however,

we receive ΓPred
i from the previous timestep and we use the interpolator

to recover a prediction so that g(ΓPred
i ) = fPred

Prin . Any interpolation bias or

other interpolator errors will prevent equality, explicitly hi(f
Pred
Prin ) = ΓPred

i +

εi. Thus if we compare the interpolator input, ΓPred
i , to the functional phase

space location of the interpolator output, hi(f
Pred
Prin ), we can isolate these

interpolation errors. For this chosen shear rate, the interpolation error for

the octant and radial interpolator can be seen in the figures 4.6 and 4.7

respectively.

Figure 4.6: A plot to show the interpolation error in Γi and the consequent
errors in derivatives under the new reduced method with the octant interpolator
and relative scaling. The dashed line indicates when the octant interpolator uses
less than 8 points. Test data is a shear flow of rate γ̇τR = 9. Training data is a
mix of uniaxial extension flows and shear flows.

Figures 4.6 and 4.7 show that both of these interpolation methods are

capable of producing a fPred
Prin with functional values close to the interpolation

location, ΓPred
i . We can reduce the density of the training data and retain an

acceptable level of interpolator bias. Through testing, the closest rates we

require to be in the training set for a reasonable degree of accuracy is γ̇τR =
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Figure 4.7: A plot to show the interpolation error in Γi and the consequent
errors in derivatives under the new reduced method with the radial interpolator
and relative scaling. Test data is a shear flow of rate γ̇τR = 9. Training data is
a mix of uniaxial extension flows and shear flows.

9±0.5. The d
dt

ΓPred
i derivatives in figures 4.6 and 4.7 are calculated using our

new method from section 4.1.3, but we do not iterate these results forward.

The true ΓTest
i is provided at each timestep in order to analyse errors in

interpolation without the accumulation of errors over time. We can see

that both interpolation methods give good predictions for dΓ1

dt
and dΓ2

dt
but

struggle to correctly capture dΓ3

dt
. This suggests that whilst the basic choice

of h3 from equation (4.6) would appear to be a suitable choice, its derivative

is very sensitive to the errors in fPred
Prin caused by these interpolation methods.

This is one of the main reasons that prompts a later revision to the choice

of h3 in equation (4.10).

Before we alter the choices of any functionals, let us first see how our

new model with three functionals performs at predicting the evolution of

a shear flow with rate γ̇τR = 9. From this point forward, we choose to use

the octant interpolator. Results for the radial interpolator are similar, but

overall the octant interpolator produces better results.
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Our investigation into predicting uniaxial extension flows in chapter 3 shows

that interpolation loses accuracy when all of f is close to isotropic. Further-

more, the calculation of dV
dt

is problematic when f is isotropic. However,

the problem only arises at very low strain which is most common at the

start of a flow from a fully relaxed fluid. Herein, we bypass this by be-

ginning a short period into the flow and using the true GLaMM data as

an initial condition. For all following calculations we choose this period to

be 200
τe

. This approach is suitable for our predictions, but a more complete

solution to this issue could be provided by switching the model when the

deformation is small. Multiple different models would work well for this

region, suitable choices include the Rolie-Poly model, a linearised form of

the GLaMM model, or even the full GLaMM model. We discuss these

possibilities in more detail in section 5.2. Thus we employ this approach to

produce figures 4.8, 4.9 and 4.10. These figures show the predicted evolu-

tion of the Γi, S tensor and some common stress combinations respectively.

Accuracy in ΓPred
i and SPred prove model consistency, whilst the final graph

shows how our model performs in predicting physical stress quantities, with

comparisons to the full GLaMM model, and a current model reduction, the

Rolie-Poly model.

Throughout this chapter, the colour of the lines will help identify the cur-

rent frame of reference for the calculation. Blue and orange lines represent

calculations in the principal frame that use fTest
Prin and fPred

Prin respectively,

whilst green, red and purple are reserved for laboratory frame calculations

and signify the use of fTest
Lab , fPred

Lab or the Rolie-Poly model respectively.
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Figure 4.8: Γi predictions from the new reduced model compared to the full
GLaMM model solutions, for a shear flow of rate γ̇τR = 9.

Figure 4.9: S tensor predictions from the new reduced model compared to the
full GLaMM model solutions, for a shear flow of rate γ̇τR = 9.

Figure 4.8 suggests that there are significant errors in the prediction of Γi,

particularly Γ3. Despite this, these functionals, hi, are able to capture the

tensor for principal direction, S, well, as evident from figure 4.9. Further-

more, figure 4.10 indicates an improvement in the predictions of the shear

stress and first normal stress difference compared to the two-functional

method from section 4.2, but numerical noise is present in these predic-

tions with three functionals. This noise can be explained by looking at the
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Figure 4.10: Stress predictions from the new reduced model compared to the
full GLaMM model solutions and the Rolie-Poly model solutions, for a shear
flow of rate γ̇τR = 9. The timestep used in the new reduced model is 900 times
larger than the GLaMM model with a start time of t = 200.

graph of Γ3. The inaccuracy in Γ3 causes noise in each d
dt

ΓPred
i , which in

turn causes numerical noise to be present in the stress quantities. Once

ΓPred
3 incurs errors sufficient to cause its value outside of the region that

is well defined in our training set, both of our current 3D interpolators

encounter significant difficulty in producing a fPred
Prin at a location that is be-

yond the scope of the training set. These interpolation errors manifest as

numerical noise in the values of d
dt

ΓPred
i . We can prove this by replacing the

reduced model’s predictions, ΓPred
3 , with the corresponding value directly

from the GLaMM test data, ΓTest
3 , and performing the new reduced model

method for all other components. Doing so produces figure 4.11.

Figure 4.11 shows the reduction in error in ΓPred
i and d

dt
ΓPred
i when Γ3 is

fixed, and if we produce predictions for stress under these conditions, we get

a similar reduction in noise. And so removing the accumulation of errors

in Γ3 fixes all errors except the noise in dΓ3

dt
. This noise remains present for

the same reason it is present in figure 4.6, dΓ3

dt
is very sensitive to errors in

fPred
Prin from the octant interpolator.

90



4.6. ESTABLISHING AN IMPROVED THIRD FUNCTIONAL

Figure 4.11: Γi predictions from the new reduced model compared to the full
GLaMM model solutions, for a shear flow of rate γ̇τR = 9. ΓPred

3 is replaced by
ΓTest

3 .

Even with this level of noise, our new reduced model is better at predicting

shear stress and the first normal stress difference than the ad-hoc model

reduction of the Rolie-Poly model, with a timestep that is 900 times larger

than the full GLaMM model but does suffer from numerical noise. It is also

an improvement on the shear flow predictions that used two functionals in

section 4.2. The remaining errors all appear to stem from our choice of h3

in equation (4.6) and its interaction with the interpolator, which suggests

that a different choice could improve prediction accuracy.

4.6 Establishing an improved third functional

4.6.1 Issues with the initial three-functional choice

We have shown our reduced model can predict shear flows well using three

functionals, despite the prediction being subject to numerical noise. Small

errors in the fPred
Prin from the interpolator significantly influence d

dt
ΓPred

3 pre-
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dictions, this in turn causes ΓPred
3 to evolve wrongly, inducing numerical

noise in the predictions of d
dt

ΓPred
1 and d

dt
ΓPred

2 , and subsequently in ele-

ments of our stress predictions, σPred. To find the source of this noise, we

turn our attention to the derivatives of each functional dΓi
dt

. Our method

categorises each fTrain
Prin in our training set by calculating the value of the

three Γi functionals, and so, two training fTrain
Prin configurations that result

in similar Γi will be similar configurations. Thus, the distance between two

training points in Γi phase space is proportional to the similarity between

their respective fTrain
Prin configurations by design. However, under our current

formulation dΓi
dt

does not always conform to the same proportionality. This

can cause issues, especially when the interpolator chooses a training point

that is at a different point in shear evolution where the difference in dΓi
dt

is

far larger than the phase space distance would suggest.

One area where this issue is prevalent is at early times, where significant

non-monotonicity in Γi causes many points that are at different points in

shear evolution to have similar Γi values. This increases the likelihood that

the interpolator will use fTrain
Prin configurations from different phases of re-

laxation which may have significantly different dΓi
dt

values to what the true

configuration has. Another area where this issue can cause significant prob-

lems is steady state. In steady state, it is less likely that all eight octants of

phase space will contain a training configuration that is close to the predic-

tion location, leading to the use of distant configurations from other stages

in their respective relaxations. Whilst the overall effect on fTrain
Prin and ΓPred

i

is tempered by our distance weighting within the interpolator this is not

necessarily the case for d
dt

ΓPred
i . When calculating the average fPred

Prin using

the interpolator, it is possible to inherit some feature from this ‘distant’

configuration that even when scaled down in accordance to our interpo-

lator’s distance weighting formula has a significant effect on the resulting
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d
dt

ΓPred
i despite this same feature being insignificant in the calculation of

ΓPred
i at this reduced size. These effects can be seen in figures 4.8 and 4.10

where the noise is more significant at the early times and in steady state.

4.6.2 Interpolation visualisation

As an example, consider this interpolation snapshot, figure 4.12.

Figure 4.12: Point choice for the octant interpolator under relative scaling in
functional phase space. The fTest

Prin to be predicted is from a shear flow of rate
γ̇τR = 9 in its steady state. This test data is depicted in blue and the point
choice from the grey training set is shown in orange. Note that the interpolator
only found relevant points in seven octants on this occasion.

This snapshot in figure 4.12 shows an interpolation performed during the

calculation of the ΓPred
i and d

dt
ΓPred
i predictions for figure 4.6. Since ΓPred

i is

relatively accurate in figure 4.6, this suggests that the points used for inter-

polation are sufficiently close in functional phase space that interpolation

bias during functional estimation is not an issue, but this is not necessarily

the case for their derivatives.

For example, let us use the definition of the octant interpolator from sec-

tion B.2.1 to predict the test data at the location ΓTest = (ΓTest
1 ,ΓTest

2 ,ΓTest
3 )
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in functional phase space. Let us assume that all eight points are suf-

ficiently close that interpolation bias is small, so that h3(fPred
Prin ) ≈ ΓTest

3 ,

but note that this does not imply that to d
dt
h3(fPred

Prin ) ≈ d
dt

ΓTest
3 . This is

because the locations, (Γ1,Γ2,Γ3), of two associated points in functional

phase space and their hi(fPrin) values are directly linked by definition. A

distance D between two points in functional phase space is equivalent to

a difference of
√∑3

i=1(hi((fPrin)1)− hi((fPrin)2))2 = D in functional val-

ues, but no such restriction a relation between distance and difference

in d
dt
hi(fPrin) exists. This can cause issues when Wq(Γ

Test) = 1/D but√∑3
i=1( d

dt
hi(fTest

Prin)− d
dt
hi((fTrain

Prin )q))2 � D as the weighting is not suffi-

cient to suppress the size of the contribution to the interpolated fPred
Prin .

This brings us back to the error in d
dt

ΓPred
3 for steady state, depicted across

two figures, figure 4.6 and figure 4.12. If only two close points are consid-

ered, d
dt

ΓPred
3 ≈ 0. However, with octant interpolation, the two points to

the left of figure 4.12 have a weighting that is approximately forty times

smaller than the closest interpolation points, but the size of d
dt
h3((fTrain

Prin )q)

at these points is two magnitudes of order larger, and thus their contribu-

tion to d
dt
h3(fPred

Prin ) eclipses all other points.

Possible ways to alleviate these issues include improving the choice of h3 or

creating a more sophisticated interpolator, both of which will be explored

in this thesis. Whilst a monotonic h3 is not required for this method, a

functional that is closer to monotonic would reduce the number of times

that similar Γ3 values can have significant differences in dΓ3

dt
, and thus

reduce the noise at early times. In addition, a choice of h3 with a derivative

that is less sensitive to small fluctuations in fPred
Prin would reduce the effect

of rogue features from distant configurations. Improving the interpolator

could also weight these distant points more suitably or further limit their

inclusion. We shall use both of these approaches in combination to reduce
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noise, beginning with a revision to h3.

4.6.3 Functional product combination

To successfully improve h3 we should aim to increase the monotonicity of

Γ3 during a shear flow evolution, whilst maintaining the current accuracy

with which we capture the stress tensor σ. Since the prediction in figure

4.10 would be considered very accurate if the noise was absent, we continue

to use the idea of variation in principal direction as a suitable functional

for shear flows but modify the formula to be more monotonic. One way to

alter this functional without changing the property it represents is to take a

product between the current functionals. This way, the monotonicity of h3

can be improved, and the variation in principal direction can be extracted

by a combination of the new functionals so that no information is lost.

Multiplying Γ3 by Γ1 or Γ2 may not be sufficient to achieve an acceptable

level of monotonicity and so we also explore product combinations of higher

powers. The general formula for this revised Γ3 is,

Γ3 = h3(fPrin) = hαNSD(fPrin)hβOD(fPrin)hV ar(fPrin), (4.10)

dΓ3

dt
= α

dhNSD(fPrin)

dt
hα−1
NSD(fPrin)hβOD(fPrin)hV ar(fPrin) +

β
dhOD(fPrin)

dt
hαNSD(fPrin)hβ−1

OD (fPrin)hV ar(fPrin) +

dhV ar(fPrin)

dt
hαNSD(fPrin)hβOD(fPrin), (4.11)

where hNSD, hOD and hV ar are functionals that are defined as,

hNSD(fPrin) =
12Ge

5

∫ Z

0

(fPrin(s, s, t))11 − (fPrin(s, s, t))22 ds,
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hOD(fPrin) =
12Ge

5

∫ Z

0

(fPrin(s, Z − s, t))11 − (fPrin(s, Z − s, t))22 ds,

hV ar(fPrin) =

∫ Z

0

1− (x̂ ·VB(s)(fPrin(s, s, t)))2 ds,

dhNSD(fPrin)

dt
=

12Ge

5

∫ Z

0

(
∂

∂t
fPrin(s, s, t)

)
11

−
(
∂

∂t
fPrin(s, s, t)

)
22

ds,

dhOD(fPrin)

dt
=

12Ge

5

∫ Z

0

(
∂

∂t
fPrin(s, Z−s, t)

)
11

−
(
∂

∂t
fPrin(s, Z−s, t)

)
22

ds,

dhV ar(fPrin)

dt
=

∫ Z

0

−2(x̂ ·VB(s)(fPrin(s, s)))

(
x̂ ·

∂VB(s)(fPrin(s, s))

∂t

)
ds,

The formula for V and dV
dt

remain the same as defined in equations (C.4)

and (C.5). Our cursory investigation found that a choice of α = 1 and β = 3

was sufficient to suppress the non-monotonic behaviour and that further

increasing the powers had no significant effect on the results. A more in-

depth exploration could find that a different choice of α and β results in

a better final prediction, but given that α = 1, β = 3 achieved our desired

effect, and that the other values we evaluated had similar accuracy, we

left this as a task for future work. We show the improvements when this

combination is used in figures 4.13, 4.14 and 4.15.

Figures 4.13-4.15 show that the revised choice for h3 shows significant im-

provements in the predictions of the evolutions of ΓPred
1 , ΓPred

2 and stress

tensor components. With this combination, the model is now able to pre-

dict the components of the stress tensor in figure 4.15 to a sufficient level of

accuracy, but the noise is not yet at an acceptable level. The noise is most

prevalent in the functional derivatives in figure 4.13, where this problem

is most pronounced when the steady state is reached. Thus, this area is

where we focus our efforts when we explore other avenues to reduce this

noise.
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Figure 4.13: Γi predictions from the new reduced model compared to the full
GLaMM model solutions, for a shear flow of rate γ̇τR = 9. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3.

Figure 4.14: S tensor predictions from the new reduced model compared to the
full GLaMM model solutions, for a shear flow of rate γ̇τR = 9. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3.
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Figure 4.15: Stress predictions from the new reduced model compared to the
full GLaMM model solutions and the Rolie-Poly model solutions, for a shear
flow of rate γ̇τR = 9. The timestep used in the new reduced model is 900 times
larger than the GLaMM model with a start time of t = 200. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3.

4.6.4 Remaining noise after revised Γ3

We now have a model that is fundamentally sufficiently accurate, but the

noise is not at an acceptable level. We suspect that the source of the noise

is the derivatives of the functionals Γi. We isolate this by using our model

to calculate the flow evolution, whilst replacing the predicted d
dt

ΓPred
i with

the true d
dt

ΓTest
i at every timestep for each functional in turn. Predicting

with fixed dΓ1

dt
or dΓ2

dt
shows some improvement in the prediction of Γ3, but

no significant noise reduction. However, fixing dΓ3

dt
results in the plot shown

in figure 4.16.

Figure 4.16 shows a drastic noise reduction in the prediction of dΓ1

dt
and dΓ2

dt

when data for dΓ3

dt
is directly provided to the model rather than calculated

during the model evolution. The fact that such a significant improvement

can be seen when only dΓ3

dt
is corrected implies that the sole cause of this

noise issue is dΓ3

dt
, not timestep size nor interpolation of Γ1 and Γ2. This
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Figure 4.16: Γi predictions from the new reduced model compared to the full
GLaMM model solutions, for a shear flow of rate γ̇τR = 9. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3. dΓ3

dt is fixed to the result
from GLaMM result data.

result also indicates that the choice of Γ3 adequately characterises f(s, s′),

because given the correct dΓ3

dt
, all three functionals evolve correctly. Thus

we can conclude that the current Γ3 from equation (4.10) is a suitable

choice for our model, but its derivative dΓ3

dt
is sensitive to the changes in

the predicted fPred
Prin configuration. Since a small change in location in Γ

phase space has a relatively large effect on dΓ3

dt
it is difficult for the current

interpolator to return a fPred
Prin that is accurate enough for the prediction of

dΓ3

dt
. These errors in dΓ3

dt
then propagate forward, which can errors in all

three functionals during the next timestep. This is not a sufficient reason

to change Γ3 at this stage, provided that we address this sensitivity.
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4.7 Adapting the interpolator for sparse data

4.7.1 Further noise reduction

One way that we could keep the same Γ3 choice but improve the accuracy

of dΓ3

dt
is to change the interpolation method we use to calculate fPred

Prin .

To do this we must first deduce how the octant interpolator causes noisy

predictions. We can see an example of the octant interpolator’s choice

during steady state in figure 4.12. A potential source for dΓ3

dt
errors with

the octant interpolator is the discrete nature by which it chooses to include

a point or not. Let us consider the usage of our interpolator to predict two

fPred
Prin profiles at similar but slightly different locations Γi in our phase space,

such as is often the case with two subsequent timesteps. If the training

data is sufficiently dense, there is a chance that our octant interpolator

will choose a different set of eight points. If even one of these points is

different, our interpolator considers the contribution from that entire region

to have changed, potentially resulting in quite distinct fPred
Prin between the

two locations. Whilst the effects on most of the functional quantities are

minimal, the observed sensitivity of dΓ3

dt
can cause this value to differ, and

in the case of subsequent timesteps, this manifests as rapid jumps in dΓ3

dt
.

To confirm our hypothesis that all the noise in both dΓ1

dt
and dΓ2

dt
is induced

by the noise in dΓ3

dt
, let us analyse the noise during the steady state in figure

4.8, where all three functional derivatives suffer from noise. In this state,

every component of ∂
∂t

f(s, s′, t) is zero and thus each dΓi
dt

should also be

zero. An error in dΓ3

dt
causes Γ3 to be incorrect during the next timestep.

As the model attempts to correct these errors so that dΓ3

dt
= 0 it will create

small errors in dΓ1

dt
and dΓ2

dt
due to the nature of the interpolator. This cycle

repeats, and this self-correcting feedback will cause noise present in dΓ3

dt
to
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propagate into dΓ1

dt
and dΓ2

dt
and vice versa.

Both the rapid jumps in dΓ3

dt
and the noise from the self-correcting feed-

back can be significantly reduced with an interpolator that employs a more

continuous approach to interpolation. The current octant interpolator only

uses eight points, one from each octant, and this can be quite sensitive with

this sparser 3 functional training data as changing a single point that is

used in the interpolation changes the contribution from that entire octant.

This leads to the introduction of our “Radial octant average” interpolator

which uses the advantages of both the radial and octant interpolators we

have previously established. This interpolator evaluates the contribution

from every point within a given radius r to reduce the dependence on any

one point and exclude distant points that can dominate other contribu-

tions to the derivatives, but then creates one effective profile (f̄Train
Prin )q for

each octant q to remove the interpolation bias that the radial interpolator

often suffered from. Further details on the relevant formulas for this new

interpolator can be found in appendix B.2.3. Calculations using this new

interpolator should be much smoother, as rather than sharply switching the

single point that represents an entire octant between successive timesteps,

we average over multiple points to evaluate the contribution of an octant.

4.7.2 Shear prediction with the new interpolator

Using our new interpolator to repeat the predictions in figures 4.13-4.15,

we evaluate the improvements when the new interpolator is used. The new

prediction is plotted in figures 4.17-4.19.
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Figure 4.17: Γi predictions from the new reduced model with Runge-Kutta
timestepping compared to the full GLaMM model solutions, for a shear flow of
rate γ̇τR = 9. h3 is the revised choice from equation (4.10) with α = 1 and
β = 3. The new radial octant average interpolator is used with r = 1.

Figure 4.18: S tensor predictions from the new reduced model with Runge-
Kutta timestepping compared to the full GLaMM model solutions, for a shear
flow of rate γ̇τR = 9. h3 is the revised choice from equation (4.10) with α = 1
and β = 3. The new radial octant average interpolator is used with r = 1.

There is a clear improvement with the new interpolator, with a significant

reduction in the noise of stress predictions in figure 4.19. This prediction

used an interpolation radius of r = 1 and the Runge-Kutta method for

timestep evolution. Whilst there is still some small discrepancy between
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Figure 4.19: Stress predictions from the new reduced model with Runge-Kutta
timestepping compared to the full GLaMM model solutions and the Rolie-Poly
model solutions, for a shear flow of rate γ̇τR = 9. h3 is the revised choice
from equation (4.10) with α = 1 and β = 3. The new radial octant average
interpolator is used with r = 1.

the predictions and true values, and d
dt

ΓPred
3 has some noise, overall the

functionals Γi are predicted sufficiently well that the stress is accurate.

Further smoothing was considered, but an initial investigation showed no

significant improvements and the model is now at an acceptable level of

accuracy. This is our complete model, combining our results under exten-

sional flows with considerations for rotation, a suitable third functional with

corresponding extra dimension in the phase space, and the radial octant

interpolator. With this, we now test our model under a range of different

constant and non-constant shear rates.

4.8 Final model evaluation

With our final model established, we now evaluate its performance in pre-

dicting a range of constant and stepped shear rates alongside the Rolie-Poly

model in figures 4.20 and 4.21.
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Figure 4.20: Stress predictions from the new reduced model with Runge-Kutta
timestepping compared to the full GLaMM model solutions and the Rolie-Poly
model solutions, for shear flows of various constant rates. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3. The new radial octant
average interpolator is used with r = 1.

Figure 4.21: Stress predictions from the new reduced model with Runge-Kutta
timestepping compared to the full GLaMM model solutions and the Rolie-Poly
model solutions, for shear flows of various non-constant rates. h3 is the revised
choice from equation (4.10) with α = 1 and β = 3. The new radial octant
average interpolator is used with r = 1.

From figures 4.20 and 4.21 it is clear that our new reduced model performs

well in a wide range of cases, outperforming the Rolie-Poly model by a sig-

nificant margin in the majority of cases. The additional information from
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our three-functional approach gives us a more accurate picture of the poly-

mer dynamics than the single-mode Rolie-Poly model, whilst maintaining

a significant advantage in speed over the GLaMM model due to our use

of a larger timestep. Furthermore, our new reduced model calculates func-

tional evolution directly with the GLaMM model, making it possible to

predict data that this qualitatively different to training data such as the

time-dependent shear in figure 4.21. This is significant because a purely

data-driven approach would not be able to predict any flow that is of a

different type from the ones it has been trained upon. One area where our

reduced model does not perform as well as the Rolie-Poly model is shear

of a low rate where the relative difference in functionals from one timestep

to the next is much smaller, and our current choice of functionals is not

able to sufficiently distinguish between these f(s, s′) configurations. This

is similar to the issues we highlighted in section 4.5 for small deformations.

Our reduced model also struggles with a rate that drops to zero such as the

one in figure 4.21 which is again a result of interpolation proving difficult

at low strain.

4.9 Computational cost of the final model

Now that we have evaluated the accuracy of our final model, we now assess

its computation speed when compared to the GLaMM model. Firstly we

acknowledge that if you were to start from scratch, generating our training

set and running our reduced model to predict a single flow, this would

take significantly longer than evaluating the flow with the GLaMM model

directly, as this would require you to simulate all 49 flows in our training

set with the GLaMM model, compared to directly evaluating a single flow.

However this is not the intended use for our reduced model, it is designed
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in such a way that a new training set does not need to be generated each

time. Once the training set has been generated a single time, it is saved

and then can be used any number of times for different flows, with the high

one-time cost of training set creation offset by the significant time saved

by our reduced model over repeated calculations.

As has been shown multiple times throughout this thesis, such as in sec-

tion 3.4.3, our reduced model is able to predict data that is qualitatively

different to data in the training set. This indicates that our reduced model

has an understanding of the underlying physics and means that the train-

ing set does not require more data to be added for each new feature. Our

new model is also embeddable within finite element calculations for com-

putational fluid dynamics, something that is not feasible for the GLaMM

model due to its prohibitively high computation cost. This is also a perfect

example of where the advantages of a single precomputed training set are

unmistakable. The same training set we have already generated can be

used in any number of finite element calculations, with each one evaluating

our reduced model hundreds of times, at each point on the finite element

mesh. An increased calculation speed also means that our reduced model is

suitable for potential use with polydisperse polymers. A possible approach

to bidisperse polymers is detailed in section 5.2.4.

To evaluate this speed improvement, we use both our reduced model and

the GLaMM model to predict a single constant flow with shear rate of

γ̇τR = 9, running both models on the same architecture with the same level

of optimisation during compilation. Under these conditions, the GLaMM

model took 35m7s on average whilst our reduced model completed calcu-

lation in an average time of 2m2s, with repeated runs having variations of

less than a second. Profiling the runtime of other flows displayed a similar

level of reduction in calculation time. Of particular note is the fact that
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if we break down the runtime of our reduced model further, the section

of our code which calculates the ∂f
∂t

derivative using the GLaMM model

accounted for 83%− 85% of our overall runtime, depending on the flow to

be predicted. This indicates that all the additional calculations required

for our reduced model such as training set interpolation do not significantly

increase runtime. Our calculations in section 3.4.2 demonstrate that the

GLaMM model requires more than 10000 times as many evaluations as

our reduced model, implying a significant increase in speed if we were to

further optimise our reduced model’s code. Our model is currently written

as a MATLAB function that interfaces with the existing GLaMM model,

written in Fortran. Writing both models in the same programming lan-

guage would likely improve our reduced model’s calculation time and is a

potential avenue to explore in future.

4.10 Comparison to experimental results

We also compare our reduced model results with experimental data [2].

To do this we evaluate the maximum shear stress σmaxxy and maximum

shear strain γmax with our reduced model at various shear rates. Since

these maximums are highly sensitive to noise, we fit a polynomial around

the maximum to correctly identify the maximum for our reduced model.

We compare these results to both experimental data and GLaMM model

predictions in figure 4.22.

In figure 4.22 we can see that there is a bit of a disparity between the results

from our reduced model and the GLaMM model, especially at lower rates.

The errors in the lower rates are a consequence of the maxima being very

weak at these rates, making them much less likely to remain intact in
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Figure 4.22: Maximum strain and maximum stress predictions comparing our
reduced model and the GLaMM model with experimental data. The experi-
mental data comes from a paper by Anwar and Graham [2], and these plots
correspond to plots 8b) and 8e) from that paper.

our reduced model that predicts the GLaMM model. They also do not

match the experimental results better than the GLaMM model, but this is

to be expected as the aim of our reduced model, is not strictly to predict

experimental data, it is to provide a better prediction of the GLaMM model

than the Rolie-Poly model, which it achieves. However, as the construction

of our reduced model framework permits the application to a wide range

of PDEs, if an improvement is made to the GLaMM model that improves

its agreement with experiments, or a new model is created that takes a

similar form, the same steps outlined in this thesis can be applied to this

new model, to produce a new reduced model that incorporates this new

advancement.
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4.11 Overview of the model in shear

In this chapter, we have made many enhancements to our reduced model

from the extension flow chapter which generalised its use to be applicable

to shear flows. We first introduce principal direction in order for our model

to predict shear flows where polymer chains rotate as the flow progresses.

With this, we then ensure that our training data has one uniform princi-

pal direction across all entries whenever we add data, and by tracking the

evolution of principal direction during our predictions, this one data set

can be used to predict flows of any principal direction. Subsequently, we

quickly see that two functionals are insufficient to capture shear flows, and

thus introduce a third functional. As we are able to capture uniaxial exten-

sion with two functionals, the new functional we introduce is the variation

about principal direction, a quantity that is important to the dynamics of

a polymer under shear, but has no relevance to a polymer under uniaxial

extension flow. We also detail the natural generalisations that need to be

made to the training set and interpolation methods when adding an extra

dimension to the functional phase space. Results from predictions with

three functionals are far more accurate, but the non-monotonicity and sen-

sitivity of the variation about principal direction from equation (4.6) leads

to significant numerical noise in predictions using this initial choice. To

combat this noise, we change our choice for our third functional to a linear

product combination to improve monotonicity and revise our interpolator

for a smoother transition between timesteps as the radial octant average

interpolator is able to slowly introduce and remove individual points much

more effectively. All these advancements leave us with our final reduced

model that is able to predict a wide range of both shear and uniaxial ex-

tension flows far more accurately than the Rolie-Poly model, at a much

faster speed than the GLaMM model due to the larger timestep, all whilst
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retaining the ability to predict flows with non-constant rates which are

qualitatively different to the flows form the training set, a feature which is

lost in purely data-driven approaches.
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Chapter 5

Conclusions

5.1 Summary and discussion of results

The aim of this thesis was to produce a model with the speed of the Rolie-

Poly model, but that achieves a similar level of accuracy as the GLaMM

model. The GLaMM model has been shown to be close to experimental

data, but there are a number of applications where it is not feasible to use

the GLaMM model due to its computational cost and these areas would

benefit greatly from a new, cheaper model. In this thesis we looked at shear

and uniaxial extension flows as these are the major components required to

perform computational fluid dynamics on a polymer. Some other areas that

would benefit from a new model include polydispersity and flow-induced

crystallisation [34]. For example, some research papers in polydispersity use

the Rolie-Double-Poly which is based on, and thus inherits inaccuracies

from, the Rolie-Poly model. Thus if the same process could be applied

to the new reduced model from this thesis there would be a significant

improvement in accuracy from the improved underlying model.
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In order to create this model we first developed a model reduction frame-

work for a specific class of PDEs. We developed a methodology for poly-

mer dynamics, but one that is sufficiently general to be extendable to other

PDEs with a time-dependent external driving term, such as the flow. The

key assumption of this framework is there exists a collection of reduced

variables Γ that can be calculated from the current model configuration

f where any given value of Γ specifies cleanly the overall configuration f .

This is our coarse-graining assumption. Provided we are able to find a

choice of Γ that is both slow-moving and obeys this assumption well for

the chosen PDE, we can calculate the evolution of Γ more efficiently than

evaluating f directly whilst being able to recover f from Γ at any time.

Our model reduction method, like any direct data-driven method, uses a

set of training data. However, unlike a direct data-driven method which

generates a model solely on that data, our method uses the full configu-

ration’s PDE for the evolution of the dynamics, while the training set’s

role lies in the recovery of the full model configuration from the reduced

variables. By determining the model’s evolution directly from the PDE in

this way, we have a level of physical intuition that would not be present

if we relied on the training data alone. As a result of this, our method

has the ability to predict behaviours outside of those upon which it has

explicitly been trained, for example the prediction of variable rate flows

from constant rate flows when applied to rheological PDEs.

With the general framework established, we applied this method to the

GLaMM model for polymer dynamics in order to achieve our aim. The

Rolie-Poly model is also a model reduction approach and reduces calcula-

tion complexity by only considering a single Rouse mode of the GLaMM

model solution f(s, s′, t). This does achieve its stated goal of a signifi-

cant speed improvement over the GLaMM model, but this drastic over-
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simplification results in a large amount of information about the model

configuration f(s, s′) being lost, restricting its ability to accurately predict

polymer dynamics to a few of the simplest polymer flows. In contrast, our

framework allows any choice of functionals to create a set of coarse-grained

variables Γ, giving much greater flexibility. When we created a new model

for uniaxial extension, we also established the specifics of the training set

and a suitable interpolator to predict a configuration f(s, s′) at a given lo-

cation in Γ phase space. The application to shear proceeded in much the

same way, with the addition of a rotating frame of reference. This allowed

our non-directional training data that has one uniform principal direction

to predict flows that have any principal direction, including shear flows

with non-constant principal direction. The code used for all of our reduced

model predictions can be found on GitHub [28].

The results throughout this thesis show that our reduced model is signifi-

cantly closer to the GLaMM model than the Rolie-Poly model and that our

coarse-graining assumption can reproduce the stress to the required level

of accuracy across a wide range of both uniaxial extension and shear flows.

For constant rate flows, our reduced model produced accurate predictions

for a wide range of uniaxial extension and shear flows, providing a signifi-

cant improvement over the Rolie-Poly model for all flows that cause chain

stretch. When we progressed to the prediction of time-dependent flows with

non-constant rates, we observed a drastic improvement over the Rolie-Poly

model for both uniaxial extension and shear flows. This ability to predict

variable rate flows from a training set of constant rate flows is significant as

it demonstrates that models with this framework are able to predict quali-

tatively different behaviour than that which they have been trained upon.

This is something that is very difficult for a “black-box” model produced

from a direct-data-driven approach and is made possible by our method’s
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utilisation of the GLaMM model PDE, which causes our model to retain

a link to chain interactions on the molecular level. There are only two

regions where our reduced model diverged from the GLaMM model predic-

tions. In constant rate shear, our reduced model’s accuracy only suffered

at the lowest rates where chain stretch was minimal. This disparity was

slightly more pronounced in shear flow prediction, with constant rate shear

flows of Rouse Weissenberg number lower than 3 performing worse than

the Rolie-Poly model. In variable rate flows, the prediction of dynamics

during the final stages of relaxation back to the isotropic rest state, after

the flow was removed, was difficult to capture correctly. The commonality

that links these regions of inaccuracy is that the total stress is very low in

both these regions. Problems that are confined to areas of very low total

stress are not of particular concern as the Rolie-Poly model is sufficiently

accurate when total stress is low, and if accuracy in this region is required,

a system for transitioning between the Rolie-Poly model and our new re-

duced model is possible. Further exploration of this transition is left for

future work.

In addition to our reduced model being accurate enough to satisfy this

accuracy requirement, the computational cost of our reduced model is

also a significant improvement over the GLaMM model. Despite our re-

duced model requiring the evaluation of the GLaMM model PDE at every

timestep, much like the GLaMM model itself, our reduced model was able

to maintain comparable accuracy with a timestep of 900 times the size of

the GLaMM model timestep. Furthermore, the GLaMM model requires the

PDE to be evaluated many times at each timestep, at each point on a mesh

grid that spans s and s′. 1406 evaluations are required for a mesh size of

N = 75. However with our framework, many functional choices, including

those used in this thesis, do not require nearly as many PDE evaluations
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as they only depend on a subset of the f(s, s′) configuration. Overall, ac-

counting for the extra cost incurred due to interpolation, our approach is

still over 10000 times cheaper than the GLaMM model in computational

cost.

With these results, we can confidently state that our new reduced model

satisfies our aim of producing a new model for polymer dynamics that

exists between the existing GLaMM and Rolie-Poly models, with speed

comparable to the Rolie-Poly model, but accuracy far closer to the GLaMM

model. Our results have shown that this improvement is the case across a

range of uniaxial extension and shear flows, even for time-dependent flows

that are qualitatively different to anything that is present in the training

set. Due to the generality of the formulation, our framework is ready to

test on a wide range of driven PDEs. The creation of other such models for

other PDEs can follow the same approach we did in this thesis, the only

change being that a new choice of reduced variables Γ will be required that

uphold our coarse-graining assumption for this new PDE.

This brings us to the question of what makes a certain choice of functionals

for Γ good. If we refer back to our coarse-graining assumption, it states that

a suitable choice must produce a set of reduced variables Γ that univocally

define f(s), such that for a specific Γ, the f(s) configurations must be similar

regardless of flow history. In addition, for a functional to be effective in

this form of model reduction, the resulting Γ must be considerably slower

moving than the configuration f(s) itself. Whilst this feature is not required

by our coarse-graining assumption directly, if a reduced variable changes

rapidly over time, it would not be possible to use a noticeably increased

timestep compared to the direct computation of the PDE, and thus would

not provide an appreciable improvement in computation speed. When we

chose a set of functionals that possessed these two traits in this thesis, we
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used the physical understanding of which quantities are important to define

a polymer’s behaviour at the macromolecular scale to produce suitable

options, arriving at our final selection through a mixture of visual analysis

of the resulting graphs and some trial and error. Whilst we cannot be sure

that the functional choice we presented here is the best choice outside of the

limited options we explored, it is a sufficiently effective choice to meet our

challenging aim. Whilst for some other PDEs it may be possible to follow

a similarly physically motivated route to arrive at an acceptable choice, a

more general approach would be to use machine learning. Machine learning

would allow us to evaluate a wider range of options at once, whilst also more

rigorously determining the best choice available and further exploration is

left as future work.

5.2 Future work

This thesis opens up several avenues for future research, some of which

we have already begun to discuss. Areas we have identified for possible

future investigation broadly fall into one of three types. One route would

be to explore minor improvements to our reduced model for the GLaMM

application such as noise reduction and functional optimisation. A second

option would be to explore further uses of this reduced model for polymer

dynamics such as polydisperse materials, flow-induced crystallisation and

complex flows. Alternately, if the application of our reduced framework

to models other than the GLaMM model is of interest, future work could

provide improvements to our general model reduction framework such as

using machine learning to automate functional choice. Each of these ideas

and their significance shall be explained in this section.
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5.2.1 Potential improvements to our reduced model

Firstly we shall address some of the potential minor improvements that

could be made if they are necessary for future applications. One minor

issue with our reduced model was noisy predictions. We reduced this noise

to a level we could accept through the approaches in sections 4.6 and 4.7.

However, certain applications may require a lower level of noise and for

these cases, there is the potential for further smoothing. If a greater reduc-

tion to the noise is necessary, many approaches to average over multiple

timesteps are available, each providing a different level of smoothing. One

such method we considered was to average Γ3 over multiple timesteps for

the inverse transform only. This would reduce the overall noise as we have

shown that the noise originates in Γ3 and propagates to the other vari-

ables, without significantly affecting computation time. Another difficulty

our reduced model encounters is a decrease in accuracy at low chain stretch.

This occurs in both low-rate flows of constant rate and variable rate flows

where the polymer is subjected to some type of flow, which is removed at a

later time and the fluid is allowed to relax back towards the isotropic rest

state. It is less important for our reduced model to capture these low-rate

flows, as the Rolie-Poly model is already suitable for prediction of low chain

stretch. In situations where a particular flow has periods of both high chain

stretch and low chain stretch and both are required to a high degree of ac-

curacy, we have proposed a cross-over between our reduced model and the

Rolie-Poly model. To do so, we would first establish some criterion on the

stress tensor, which would determine which model was more suitable at the

current time. To transition between the two models we would also require

a forward and backward mapping between the models. A mapping from

our reduced model to the Rolie-Poly model is simple as we already have

access to the stress tensor if Γ is known. For the other mapping, direct
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calculation of Γ from σ is not possible, but we expect a simple empirical

mapping will be sufficiently accurate at low σ. With these mappings es-

tablished, the resulting reduced model will be able to predict both low and

high chain stretch dynamics well. Another aspect we have not yet explored

is the prediction of polymer melts with a different chain length, Z. From

our current results, we are optimistic that this should be possible immedi-

ately without any changes to our reduced model, though time constraints

have not yet allowed us to confirm this. There are two routes we could take

to achieve this. The natural way to achieve this for a number of discrete

Z values would be to repeat the model reduction process multiple times,

each time using GLaMM training data for a different value of Z. This

way we would have a separate training set for each discrete value of Z,

but very few changes would need to be made to the computation. Alter-

nately, we could use the fact the GLaMM model’s results are self-similar

at high Weissenberg number to produce one training set that is usable for

all Z. This would require more work, and the accuracy may suffer at lower

Weissenberg number, but could lead to a more elegant solution for highly

deformed chains where our reduced model already performs well. Accurate

prediction of polymer chains of different lengths is important, and this is a

requirement for the modelling of polydisperse polymers.

5.2.2 Possible future uses for our reduced model

Our model may be able to provide significant improvements to the pre-

diction of polydisperse polymers. In this thesis, all predictions have been

calculated for a monodisperse polymer melt, a material where all polymer

chains are assumed to have the same length. In contrast, polydisperse ma-

terials are made up of a range of molecular weights with a molecular weight
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distribution detailing the relative quantities. Monodisperse polymers are

very rarely used for industrial production, virtually all industrial polymers

are polydisperse. A way to calculate the dynamics for a polydisperse poly-

mer is to discretise the molecular weight distribution into n distinct weights

and calculate the interactions between each pair of polymer weights. This

is the approach used in the Rolie-Double-Poly model [6], which details a

framework for coupling together constitutive equations and handling con-

straint release. The Rolie-Double-Poly model uses the Rolie-Poly model

as the base constitutive equations in this framework, and thus, the Rolie-

Double-Poly model inherits the inaccuracies from the Rolie-Poly model.

The GLaMM model was a possible choice for the base constitutive equa-

tions in this framework, but the framework requires the calculation of each

pair of distinct weights individually, causing the calculation time to have

scaling of n2. With the computation time using the GLaMM model already

substantial and the value of n often fairly large, this makes the GLaMM

model a far less viable option for use in this framework. For this reason,

the Rolie-Double-Poly paper chose to use the Rolie-Poly model over the

GLaMM model despite its inaccuracies [6]. Our new reduced model would

be suitable for application to this framework as the cost is comparable to the

Rolie-Poly model, whilst inheriting many more features from the GLaMM

model, significantly improving accuracy for high chain stretch. We explore

a possible approach to applying our reduced model to bidisperse melts in

section 5.2.4.

Another important application of models of polymer dynamics is flow-

induced crystallisation (FiC) [34]. This crystallisation is intrinsically linked

to a polymer’s flow dynamics because flow enhances crystal nucleation. It

is also essential for polymer processing as controlling the rate of crystal

nucleation is required to produce the correct shape and properties of the
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final product. Since virtually all processing and FiC experiments in the

scientific literature [12] use polydisperse materials, modelling flow-induced

crystallisation for these applications also requires the method to be appro-

priate for polydisperse polymers. For a polydisperse material, the longest

chains deform the most and thus these chains contribute most strongly

to nucleation [13]. The Rolie-Double-Poly model does not agree with the

GLaMM model for highly deformed chains, and so accurately modelling

flow-induced crystallisation requires an improved polydisperse model. Cur-

rently, the Rolie-Double-Poly is the most accurate polydisperse model, but

we could utilise this framework with our reduced model as an improvement

for the constitutive equations as described above, increasing applicability

to highly deformed chains.

In this thesis, we have demonstrated the ability of our reduced model to

predict uniaxial extension flows and shear flows in isolation, and so another

natural direction for future work to proceed is the prediction of flows with

both uniaxial extension and shear. Our predictions of variable rate flows

have proven the ability of our reduced model to predict flows that are qual-

itatively different to those in the training set and so it should be possible

to predict flows that have both uniaxial extension and shear components.

Prediction of other complex flow types could also be explored [5]. Shear

and uniaxial extension flows commonly appear in polymer processing, for

example in a simple channel, shear often occurs at the edges of the chan-

nel as the polymer flow interacts with the walls, and uniaxial extension

would occur if the channel were to narrow, increasing the speed of the

flow. However, an industrial polymer process will rarely ever have one of

these flow types in isolation, requiring a model that can predict both to

model these flows. Complex flows usually use computational fluid dynam-

ics which require the dynamics to be evaluated at all mesh points within
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the flow field [39, 32]. The number of evaluations required means that the

GLaMM model is not viable for such a computation, but the Rolie-Poly

model is routinely used, which is of similar cost to our model. Combining

a model that can predict flows with shear and uniaxial extension with the

effects of polydispersity and crystallisation is required for the full picture.

5.2.3 Our framework with other driven PDEs and

machine learning

A significant portion of this thesis has focused on the analysis of one specific

reduced model for polymer dynamics when our model reduction framework

is applied to the GLaMM model, but this framework could have many uses

outside of polymer dynamics. Our framework is applicable to general ex-

ternally driven PDEs. Other examples that such a framework could be

applied to include constitutive equations for other materials, driven non-

linear diffusion and the nonlinear wave equation with an external driving

term. The methodology of the framework should be directly applicable to

these other PDEs, but there are a few possible challenges when choosing

suitable functionals. For the GLaMM model, we chose a subset of function-

als that were physically motivated based on their usefulness in describing

polymer dynamics. The idea was that if these functionals could describe

macroscale dynamics well, then two scenarios that have the same values for

these functionals, and thus similar macroscale dynamics, are more likely to

have similar molecular dynamics as well. Whilst this approach might be

applicable to find good characterising functionals for some other PDEs, it

will not be applicable to every case, and which physically motivated func-

tionals are the correct ones to use may be very unclear for certain PDEs.

A possible approach to make the choice of functionals more rigorous than
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intuition alone is using machine learning to determine functionals.

Machine learning for functional choice could be performed to varying dif-

ferent degrees. If the PDE has sufficient physical interpretations that cer-

tain functionals of the PDE’s dependent variable are established as useful

quantities for the overall dynamics of the system, the user could propose

a subset of potential functional choices, and the parameters for the best

combination of these functionals are then learned by optimising an error

metric. Alternatively, we could create a machine learning technique that

searches for the functionals directly, inferring from the provided data and

error metric. This second approach would require us to repose this as

a machine learning problem, but the wider scope would allow us to find

the ideal choice that an optimisation which was limited to parametrisation

would have missed. Searching directly for the functional is also useful for

other new PDEs where there is not a set of physical quantities as clear

candidates. Both of these approaches would require an error metric, as a

criterion to guide machine learning to good functional choices. The nat-

ural first option is to use the root mean square error between fPred
Lab and

fTest
Lab , summed over s and s′, as the error metric. Whilst this is a suitable

option, certain regions of f are more important for an accurate prediction

of polymer dynamics, and thus an error metric which weights these more

strongly may make more suitable choices. We have previously seen the

importance of accurate functional derivatives for our reduced model and

using root mean square error in dΓi
dt

as a metric would ensure this feature

is correct. A good metric that weights this region appropriately without

neglecting overall accuracy could be some weighted sum between these two

aforementioned metrics. Machine learning will give better answers more

easily than intuition, so in addition to being a useful alternative when in-

tuition is not an option, it can also be employed to improve upon reduced

122



5.2. FUTURE WORK

models that choose functionals using intuition such as our reduced model.

Whilst our physically motivated choice is sufficient to provide many accu-

rate predictions for our GLaMM model reduction in this thesis, it has not

been rigorously proven to be the best choice. Better functionals for our

reduced model would provide further improvements to our model that was

already sufficiently accurate to meet our aim.

5.2.4 Possible approach on how to use our model with

bidisperse melts

In this subsection, we shall outline possible steps for the application of

our model to polydisperse blends. Specifically, this section will look at

bidisperse melts, melts that are a mixture of two distinct polymers with

different lengths, Z.

As this thesis has focused on results for a monodisperse melt consisting

solely of polymers with 25 entanglement segments, Z = 25, the first step

to applying this to bidisperse melts would be to investigate how our model

performs when predicting polymers with different values of Z. The quanti-

ties ε̇τR and γ̇τR, where τR = Z2τe, are often utilised over ε̇ and γ̇ because

a polymer’s response to a flow is highly dependant on the number of en-

tanglement segments and the rouse time of a segment. This self-similarity

between polymer flows with the same ε̇τR or γ̇τR value is stronger at higher

rates, which shows promise that our model may be able to predict poly-

mers with different values of Z as it stands. If this is true, we can use our

existing training set to predict flows with different values of Z. If not, we

will simply create two training sets, one for each of the values of Z in the

bidisperse melt.
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The other change that we need to make for our reduced model to be applica-

ble to a bidisperse melt is to reformulate the underlying GLaMM model so

that it considers interactions between the two different lengths of polymers.

We do this in a similar way to the formulation of the Rolie-Double-Poly

model [6], denoting the quantities related to the shorter and longer of the

two distinct chain lengths with subscripts “S” and “L”, respectively. For

a blend that contains a volume fraction φS of the shorter chains and φL of

the longer chains, we have that,

σ(t) =
12Ge

5Z

∫ Z

0

f(s, s, t) ds

=
12Ge

5Z

(
φS

∫ Z

0

fS(s, s, t) ds+ φL

∫ Z

0

fL(s, s, t) ds

)
, (5.1)

and,

f(s, s′, t) = φSfS(s, s′, t) + φLfL(s, s′, t). (5.2)

These equations mirror equations for the formulation of the Rolie-Double-

Poly model with βth = 0 and finite extensibility, fE(λ), assumed to be

1. We set the thermal constraint release parameter to 0 as this thermal

contribution to CCR is already included in the ν term for the GLaMM

model. The GLaMM model also assumes infinite extensibility, and choosing

the finite extensibility function, fE(λ), to be 1 for all λ removes all effects

of finite extensibility.

In equation (5.2), we have split f(s, s′, t) into two distinct parts, the contri-

bution from the short chains and the contribution from the long chains. As

the dynamics of f(s, s′, t) do not just depend on the length of the polymer

chain itself, but also the length of the polymers it is entangled with, we

further split the contributions, so that,

fS = φSfSS + φLfSL, fL = φSfLS + φLfLL. (5.3)
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In this interpretation, each tensor field fIJ accounts for the effects of en-

tanglements of type J on the average configuration for chains of type I.

This leads to four equations, one for each fIJ , which are coupled using the

same physics as the Rolie-Double-Poly model. Unlike the Rolie-Double-

Poly model however, where the coupling is entirely controlled by the stretch

ratio, λ, coupling within this new form of the GLaMM model appears in

three distinct terms. The three terms that control the coupling for the

GLaMM model are the CCR rate, ν, the effective number of entangle-

ments under stretch, Z∗, and a new parameter we introduce, Θ, which is

proportional to the stretch ratio.

We now define the evolution of each of these four components under the

same form of the GLaMM model we have used in equation (2.3), by ap-

plying equations (5.2) and (5.3) to the relevant equations for the GLaMM

model [14],

∂fSS
∂t

= κ · fSS + fSS · κT +
1

3ZSπ2τe

(
ZS
Z∗S(t)

)2(
∂

∂s
+

∂

∂s′

)2

fSS

+
3aνS(t)

2

[
∂

∂s

(
a

ΘS(s, t)

∂

∂s
(fSS − f eq)

)
+
∂

∂s′

(
a

ΘS(s′, t)

∂

∂s′
(fSS − f eq)

)]
(5.4)

+
Rs

2π2τe

[
∂

∂s

(
fSS

∂

∂s
ln[Θ2

S(s, t)]

)
+

∂

∂s′

(
fSS

∂

∂s′
ln[Θ2

S(s′, t)]

)]
,

∂fSL
∂t

= κ · fSL + fSL · κT +
1

3ZSπ2τe

(
ZS
Z∗S(t)

)2(
∂

∂s
+

∂

∂s′

)2

fSL

+
3aνL(t)

2

[
∂

∂s

(
a

ΘS(s, t)

∂

∂s
(fSL − f eq)

)
+
∂

∂s′

(
a

ΘS(s′, t)

∂

∂s′
(fSL − f eq)

)]
(5.5)

+
Rs

2π2τe

[
∂

∂s

(
fSL

∂

∂s
ln[Θ2

S(s, t)]

)
+

∂

∂s′

(
fSL

∂

∂s′
ln[Θ2

S(s′, t)]

)]
,
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∂fLS
∂t

= κ · fLS + fLS · κT +
1

3ZLπ2τe

(
ZL
Z∗L(t)

)2(
∂

∂s
+

∂

∂s′

)2

fLS

+
3aνS(t)

2

[
∂

∂s

(
a

ΘL(s, t)

∂

∂s
(fLS − f eq)

)
+
∂

∂s′

(
a

ΘL(s′, t)

∂

∂s′
(fLS − f eq)

)]
(5.6)

+
Rs

2π2τe

[
∂

∂s

(
fLS

∂

∂s
ln[Θ2

L(s, t)]

)
+

∂

∂s′

(
fLS

∂

∂s′
ln[Θ2

L(s′, t)]

)]
,

∂fLL
∂t

= κ · fLL + fLL · κT +
1

3ZLπ2τe

(
ZL
Z∗L(t)

)2(
∂

∂s
+

∂

∂s′

)2

fLL

+
3aνL(t)

2

[
∂

∂s

(
a

ΘL(s, t)

∂

∂s
(fLL − f eq)

)
+
∂

∂s′

(
a

ΘL(s′, t)

∂

∂s′
(fLL − f eq)

)]
(5.7)

+
Rs

2π2τe

[
∂

∂s

(
fLL

∂

∂s
ln[Θ2

L(s, t)]

)
+

∂

∂s′

(
fLL

∂

∂s′
ln[Θ2

L(s′, t)]

)]
,

where,

ΘS(s, t) =
√

Tr fS(s, s, t), ΘL(s, t) =
√

Tr fL(s, s, t), (5.8)

Z∗S(t) =
1

a

∫ Z

0

ΘS(s, t) ds, Z∗L(t) =
1

a

∫ Z

0

ΘL(s, t) ds, (5.9)

νS(t) = cν

(
ΛS(t) +

4

ZSZ∗S(t)π2τe

)
, νL(t) = cν

(
ΛL(t) +

4

ZLZ∗L(t)π2τe

)
,

(5.10)

and,

ΛS(t) = − 1

Z∗S(t)

∂

∂t

∫ Z

0

√
Tr fS(s, s, t)

a

∣∣∣∣
Retraction

ds

= − 1

2aZ∗S(t)

∫ Z

0

1

ΘS(s, t)

(
Tr

[
φS
∂fSS
∂t

+ φL
∂fSL
∂t

])∣∣∣∣
Retraction

ds

= − Rs

2aZ∗S(t)π2τe

∂

∂t

∫ Z

0

1

ΘS(s, t)

∂

∂s

(
Tr [φSfSS(s, s′, t)

+φLfSL(s, s′, t)]
∂

∂s
ln[Θ2

S(s, t)]

)∣∣∣∣
s′=s

ds, (5.11)
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ΛL(t) = − 1

Z∗L(t)

∂

∂t

∫ Z

0

√
Tr fL(s, s, t)

a

∣∣∣∣
Retraction

ds

= − 1

2aZ∗L(t)

∫ Z

0

1

ΘL(s, t)

(
Tr

[
φS
∂fLS
∂t

+ φL
∂fLL
∂t

])∣∣∣∣
Retraction

ds

= − Rs

2aZ∗L(t)π2τe

∂

∂t

∫ Z

0

1

ΘL(s, t)

∂

∂s

(
Tr [φSfLS(s, s′, t)

+φLfLL(s, s′, t)]
∂

∂s
ln[Θ2

L(s, t)]

)∣∣∣∣
s′=s

ds. (5.12)

In this formulation, we have terms to represent the effects of convection,

reptation, CCR and retraction, and the similarities between this formu-

lation in equations (5.5)-(5.8) in this thesis and equations (16)-(19) in

the Rolie-Double-Poly paper [6] are evident when you set βth = 0 and

fE(λ) = 1. In this formulation of the GLaMM model for bidisperse melts,

the type of chain to use for each of the coupled terms ν, Z∗ and Θ is not

immediately obvious and an explanation requires the physics of the differ-

ent methods by which a polymer chain can relax. Both the reptation and

retraction terms each only has one variable which is coupled to the other

fIJ equations, Z∗ and Θ respectively. Both of these relaxation methods de-

pend on the movement of the polymer chain within its constraining tube,

and thus the coupled variables within the reptation and retraction terms

will use chains of type I. However, CCR occurs when the polymer chains

that form the surrounding tube itself rearrange, lessening the constraints

on the polymer chain within the tube. fIJ considers the effects of entangle-

ments of type J on the average configuration of the type I chains, and so

this CCR rate, ν, will depend on chains of type J . In addition, the effects

of CCR on a polymer chain are diminished by how stretched the chain is,

represented by a
Θ

in this form of the GLaMM model, and so this coupling

will use chains of type I. Taking the “short-long” chain interaction, fSL

as an example, reptation and retraction are calculated using the shorter

chains of length ZS, as the rates of reptation and retraction depend on the
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length of the polymer chain, whilst the rate of convective constraint release

depends upon the length of the chains that the constraining tube is com-

prised of, and the effect is then reduced in proportion to how stretched the

shorter chains are. In this example of “short-long” chain interaction, the

entangling chains are considered to be of the longer type, and so the CCR

rate is calculated with this longer length ZL. As a result, the coupling for

∂
∂t

fSL in equation (5.6) is controlled by Z∗S, ΘS and νL.

Using these equations we can now apply our reduced model methodology

to bidisperse melts. Each of the four components will have its own set of

functionals ΓIJ , from which we can predict each of the four components,

fIJ , from the training data, using equations (5.5)-(5.8) to calculate ∂
∂t

fIJ ,

and equations (4.3), (4.4) and (4.10) to calculate the set of d
dt

ΓIJ for each

component. How to predict fIJ from the training data depends on whether

our existing training set can reliably predict the evolution of polymer chains

with a range of different Z values. If it can, this training set can be used

for all four components. If not, two new training sets will need to be

created, one for Z = ZS and one for Z = ZL. The first index, I, of each

fIJ component indicates the polymer chain length of that component and

thus determines which training set to use. And so, for this case where two

training sets are required, fSS and fSL will be predicted with the training

set where Z = ZS, whilst fLS and fLL will be predicted with the second

training set where Z = ZL.
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Appendix A

Fourier Investigation

Prior to this research, we had explored the possibility of a “Rolie-Poly

Deluxe” model [27] that would build upon the existing Rolie-Poly model

with the same aim as this research; to produce an intermediate model that

would fit between the existing GLaMM and Rolie-Poly models.

The GLaMM model can be split into contributions from N2 distinct Fourier

modes, and the Rolie-Poly model is a model reduction that predicts the

largest mode only and ignores the rest. The more Fourier modes used in a

numerical calculation the greater the accuracy but the slower the compu-

tation speed, leading to the disparity between the GLaMM and Rolie-Poly

models. Our prior work was to try to establish a formula that predicts

the size of the other modes from the size of the largest mode. This way,

no other modes would need to be directly calculated, but predicting these

modes would provide a significant accuracy improvement over neglecting

them entirely.

In such an approach, we first take a 2 dimensional Fourier decomposition of

the GLaMM model in s and s′. We then define the Fourier modes, Cpq(t),
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using the following formula, equation (A.1).

Cpq(t) =

∫ Z

0

∫ Z

0

[f(s, s′, t)− feq(s, s
′, t)]sin

(
πps

Z

)
sin

(
πqs′

Z

)
dsds′. (A.1)

Under this formulation, C11 is a 3 by 3 tensor containing the p = q = 1

mode for each Cartesian coordinate pair. As with regular Fourier decom-

position, we can produce an estimate of the function f(s, s′, t)− feq(s, s
′, t)

from a few Fourier modes. We show a prediction of a typical f(s, s′) profile

at a snapshot in time under uniaxial extension flow using Fourier modes in

figure A.1.

Figure A.1: Comparison between a true profile (left) and a prediction con-
structed from a few of its Fourier modes (right).

In figure A.1, we intentionally choose an insufficient number of terms to

make it clear how the estimate approaches the true value as terms are

added. The Rolie-Poly model was created around this idea, using the

largest mode, C11, alone to predict polymer response, whilst assuming all

other Cpq modes are zero. This neglection of the higher Fourier modes

directly contributes to the significant loss of accuracy the Rolie-Poly model

suffers under many polymer experiments, as shown in figure A.2.

Figure A.2 shows a clear discrepancy between the viscosity predictions, η,
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Figure A.2: Transient start-up shear predictions of the GLaMM model (sym-
bols) and Rolie-Poly equation (lines) for Z = 20, from the Rolie-Poly paper [21].

for the two models. One natural extension when faced with this problem

is successively to add more modes until an acceptable degree of accuracy is

reached. However when this was attempted in practice, a very large number

of modes was required for a suitable prediction, making the creation of a

fast model that evaluates multiple modes unfeasible. Our proposed solution

was to find a solution to Cpq ≈M(p, q)C11 for some function M(p, q) that

was consistent across different flow rates for uniaxial extension. Such an

M(p, q) could predict the amplitudes of the other Cpq mode whilst only re-

quiring direct calculation of C11, improving prediction accuracy with more

modes whilst retaining the speed of the Rolie-Poly model.

To find Mp, q we investigated the relative size of each Fourier mode. Our

prior work was in agreement with other research [3] that the Fourier modes

on the diagonal, Cpq for (p = q), had the biggest influence on prediction

accuracy, with C11 having the largest influence of all. However, a new

discovery of note in our prior work was that an accurate prediction ne-

cessitated the consideration of all modes within a diagonal stripe such as

|p− q| ≤ 4. Our prior work attempted to create a M(p, q) with a focus on

greater accuracy when the difference between p and q was small, but no
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suitable M(p, q) was found.

Further investigation at the beginning of this research in this area led to

the counter-example in figure A.3.

Figure A.3: A plot showing the relation between the trace of the amplitudes
for the diagonal Cii modes and the C11 mode for uniaxial extension at different
rates.

Figure A.3 shows that the relation is not consistent between different uni-

axial extension rates, and thus a suitable M(p, q) does not exist. A relation

of the form M∗(p, q,C11, ...,Cii) for some chosen integer i > 1 may have

led to a definition that is consistent across different rates, but this would

require the calculation of more than one Fourier mode. Whilst this may

be possible, the quantity of Fourier modes that were often required for an

accurate prediction implied that a Fourier decomposition of f(s, s′, t) may

not be the most efficient basis to reduce the GLaMM model. Thus, we de-

cided not to restrict ourselves to only Fourier modes, opting for the more

general structure presented in section 3.1.
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Appendix B

Interpolation

B.1 2D Interpolation

In order to utilise our new method we need to able to produce fPred from

knowledge of ΓPred
i using the training data. This leads us to consider the

different options for interpolation in Γi space.

B.1.1 Quadrant interpolator

Firstly we introduce the method of our quadrant interpolator for k = 2.

For a chosen ΓPred
1 ,ΓPred

2 we then choose the closest points in Γ space from

the training set trajectories in each quadrant as shown in figure B.2.
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Figure B.1: A plot showing the trajectories of some training data
though Γi space. From left to right the flow rates displayed are ε̇τR =
[1, 1.1, 1.3, 1.5, 1.7, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3].

Figure B.2: A Illustration showing the method by which the interpolation points
are chosen in quadrant interpolation.
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We then extract the full fTrain(s, s′) profile from the training data at each of

these four points, and then perform a weighted sum of these profiles based

on the relative distances to the current test point. Specifically, we use the

following formula for each s and s′:

fPred(s, s′) = C
4∑
q=1

W (ΓPred,ΓTrain
q ) fTrain

q (s, s′), (B.1)

where,

C =
1∑4

k=1 W (ΓPred,ΓTrain
k )

, (B.2)

fPred denotes the interpolation result at a location in Γ phase space with

location ΓPred, fTrain
q are the profiles used in interpolation from each quad-

rant with respective locations ΓTrain
q andW (X,Y) is a normalised weighting

function based on the distance in phase space between the location of pre-

diction and the profiles used in the interpolation. Explicitly, the weightings

W (X,Y) are defined as,

W (X,Y) =

(√√√√ 2∑
i=1

(
Xi − Yi

max(ΓTrain
i )

)2
)−1

. (B.3)

By restricting ourselves to an equal representation of each quadrant we

ensure that fPred is a true average of the surrounding data. Without this

restriction we could, for example, select all 4 points from the same training

trajectory below the test point (x, y), resulting in a prediction that rep-

resents a lower value of Γ2 than the input ΓPred
2 . And thus by using this

method, we are able to achieve a relatively fast interpolator that represents

the data by choosing a single point from each quadrant.
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B.1.2 Gaussian process interpolator

Another option is an interpolator based upon the Gaussian process method

[33]. The main difference arises in that if we are to create a Gaussian field

with inputs of Γ1 and Γ2 then our output is not a single value, but the

four-dimensional tensor fαβij. This brings into question which elements

of fαβij should be considered when optimising the hyperparameters, and

this would require further investigation if we wished to apply this method

of interpolation. A further difficulty stems from the fact that a Gaussian

process type interpolator would consider every point in the data set when

estimating, leading to increased calculation times and the possibility of mis-

representing certain quadrants as mentioned in section B.1.1. For example,

a test point with a large value of ΓPred
2 may have a far greater number of

training data points below it than above it in Γi space. To combat these

issues, data thinning may need to be employed on areas of Γi space with

a high density of training points, and care must be taken when selecting a

covariance function so that the predictions accurately represent the data.

B.2 3D Interpolation

With the introduction of a third functional, Γ3, in section 4.3 we require

a new interpolator as the dimensions of our Γ phase space have changed.

This appendix details or initial octant and radial interpolators in sections

B.2.1 and B.2.2 respectively. Our revised radial octant average interpolator

which uses elements from both of these two interpolators after both initial

interpolators had been proven insufficient is detailed in section B.2.3.
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B.2.1 Octant interpolator

The four-point quadrant interpolator from equation (B.1) that we have used

throughout two-functional interpolation is not suitable for three function-

als, but a natural progression to 3D space is to extend this to eight points,

the closest point in each octant. Let us define Ω as the domain that contains

a vector of coordinates (ΓTrain
1 ,ΓTrain

2 ,ΓTrain
3 ) for each point in our training

set. If we want to produce a fPred
Prin prediction at ΓPred = (ΓPred

1 ,ΓPred
2 ,ΓPred

3 ),

we use this location to split the region into eight octants. Begin by sep-

arating the training data set Ω into points with ΓTrain
1 ≥ ΓPred

1 and those

without. Repeat this process on both resulting regions for ΓTrain
2 ≥ ΓPred

2

and again on all four regions with ΓTrain
3 ≥ ΓPred

3 . Denote these regions

as Ωq(Γ
Pred) for q = 1, 2, 3...8. The formula to interpolate fPred

Prin using the

closest training data point to ΓPred in each octant is,

fPred
Prin (ΓPred) =

8∑
q=1

{
Wq × (fTrain

Prin )q for Ωq(Γ
Pred) 6= ∅

0 for Ωq(Γ
Pred) = ∅

, (B.4)

where,

Wq =
Rq

RNorm

=
Rq∑8
k=1 Rk

,

Rq =

{(∑3
i=1

(
ΓPred
i −(ΓTrain

i )q
Mi

)2)− 1
2

for Ωq(Γ
Pred) 6= ∅

0 for Ωq(Γ
Pred) = ∅

,

(ΓTrain
i )q denotes the closest training data point in the qth octant with as-

sociated value (fTrain
Prin )q and Mi is a set of scaling parameters explicitly

defined in section 4.4.3. Since it is more difficult to produce a set of train-

ing data that spans the entire 3D functional phase space, empty octants,

Ωq(Γ
Pred) 6= ∅, occur more frequently than empty quadrants did during

2D interpolation. This can cause interpolation bias, which is discussed in

section 4.4.4.
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B.2.2 Radial interpolator

Another interpolator we designed for 3D is the radial interpolator. This

interpolator takes a weighted average over all points within some distance r

up to some maximum number of points, n. We define Ω as a set containing

every training point’s location vector as we did in section B.2.1, then we

define Ωn(ΓPred), a subset which contains the locations of the n closest

points. From this we further define Ωr(Γ
Pred) as,

Ωr(Γ
Pred) = {x ∈ R3 | r >

√√√√ 3∑
i=1

(
ΓPred
i − xi
Mi

)2

,x ∈ Ωn(ΓPred)},

where suitable Mi scalings are discussed in section 4.4.3. The formula to

interpolate fPred
Prin using points within some radius r of ΓPred is,

fPred
Prin (ΓPred) =

n∑
p=1

{
Wp × (fTrain

Prin )p for (ΓTrain)p ∈ Ωr(Γ
Pred)

0 for (ΓTrain)p /∈ Ωr(Γ
Pred)

, (B.5)

where,

Wp =
Rp

RNorm

=
Rp∑n
k=1 Rk

,

Rp =

{(∑3
i=1

(
ΓPred
i −(ΓTrain

i )p
Mi

)2)− 1
2

for (ΓTrain)p ∈ Ωr(Γ
Pred)

0 for (ΓTrain)p /∈ Ωr(Γ
Pred)

,

and the (ΓTrain
i )p denotes the location of each point within the set Ωn(ΓPred)

with associated value (fTrain
Prin )p. In practice, this interpolator can produce

more accurate results than the octant interpolator when the destiny of

training data points in the region Ωr(Γ
Pred) is approximately uniform. If

the density is sufficiently non-uniform, this interpolator also suffers from

interpolation bias.
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B.2.3 Radial octant average interpolator

Our initial attempts at predicting shear flows with three functionals were

plagued by substantial noise. Investigations into our interpolation method

lead us to believe that our octant interpolator was insufficient due to the

discrete manner by which it includes or excludes points. Since the full

contribution from each octant was entirely dependant on a single point,

the reselection of a different point as the prediction evolved could suddenly

change the interpolation results from one timestep to the next. This led us

to create the radial octant average interpolator.

To interpolate with our radial octant average interpolator, we first choose

an octant and find all points within a chosen distance, r, and then repeat

this process for each octant. Utilising the notation from section B.2.1 with

Ω being the domain of all training points, and Ωq(Γ
Pred) for q = 1, 2, 3...8

as the subsets of that domain split into eight separate octants about the

prediction location, ΓPred, we can further define Ωrq(Γ
Pred) as,

Ωrq(Γ
Pred) = {x ∈ R3 | r >

√√√√ 3∑
i=1

(
ΓPred
i − xi
Mi

)2

,x ∈ Ωq(Γ
Pred)},

And then for each subset Ωrq(Γ
Pred) of the training data we can compute

the weighted averages (f̄Train
Prin )q and R̄q.

(f̄Train
Prin )q =

|Ωrq(ΓPred)|∑
p=1

Wp × (fTrain
Prin )p for (ΓTrain)p ∈ Ωrq(Γ

Pred) ,

R̄q =

|Ωrq(ΓPred)|∑
p=1

Wp ×Rp for (ΓTrain)p ∈ Ωrq(Γ
Pred) ,
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where,

Wp =
Rp

RNorm

=
Rp∑|Ωrq(ΓPred)|

k=1 Rk

,

Rp =
( 3∑
i=1

(ΓPred
i − (ΓTrain

i )p
Mi

)2)− 1
2

for (ΓTrain)p ∈ Ωrq(Γ
Pred) .

These weighted averages create an effective single point in each octant with

profile (f̄Train
Prin )q. We can now use the octant interpolator on these averaged

profiles.

fPred
Prin (ΓPred) =

8∑
q=1

{
W q × (f̄Train

Prin )q for Ωrq(Γ
Pred) 6= ∅

0 for Ωrq(Γ
Pred) = ∅

, (B.6)

where,

W q =
R̄q

R̄Norm

=
R̄q∑8
k=1 R̄k

.

Since the profiles we use in this version of the octant interpolator are created

by averaging many points in each octant, the contribution from a given

octant will not drastically change from moment to moment as we evolve

ΓPred. This does happen with our previous octant interpolator which only

uses a single point from each octant. As we evolve ΓPred which octant

certain training profiles are in will change, and thus the result from the

individual point interpolator can change significantly with the removal of

one point and the addition of another. For this reason, the radial octant

average interpolator is far smoother than the octant interpolator during

the evolution of ΓPred resulting in less noise.
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Appendix C

Evaluation of derivatives

After using the GLaMM model, the next step in our original method was

to find derivatives for each functional. We can find dS
dt

immediately using

equation (4.2) and so that becomes step 5. The other functionals however,

require us to calculate the derivatives of Γ1(fPrin) and Γ2(fPrin), but we

do not yet have knowledge of ∂
∂t

fPrin, and thus we must rotate ∂f
∂t

into the

principal frame of reference. For the choices of Γ1 and Γ2 we have used in

section 4.1.2,

dΓ1

dt
(t) =

12Ge

5Z

∫ Z

0

(
∂

∂t
fPrin(s, s, t)

)
11

−
(
∂

∂t
fPrin(s, s, t)

)
22

ds, (C.1)

and similarly,

dΓ2

dt
(t) =

12Ge

5Z

∫ Z

0

(
∂

∂t
fPrin(s, Z − s, t)

)
11

−
(
∂

∂t
fPrin(s, Z − s, t)

)
22

ds.

(C.2)

To find ∂
∂t

fPrin we begin by using the transformation f = V·fPrin·VT , noting

that VT = V−1 as V(t) is a tensor composed of orthonormal eigenvectors
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due to the symmetry of S(t). Then, by using the chain rule,

∂

∂t
fPrin = VT · f · dV

dt
+

(
VT · f · dV

dt

)T
+ VT · ∂f

∂t
·V (C.3)

In order to evaluate these derivatives, we now require a formula for dV
dt

. To

present this analytically, we use an example for when σxy 6= 0 in 2D. If we

use the notation that Sik denotes each element of S, we have,

S =

Sxx Sxy

Sxy Syy


with eigenvalues,

λ1 =
Sxx + Syy +

√
S2
xx + S2

yy + 4S2
xy − 2SxxSyy

2

λ2 =
Sxx + Syy −

√
S2
xx + S2

yy + 4S2
xy − 2SxxSyy

2

By noting that S is a symmetric matrix and thus has orthogonal eigenvec-

tors, we write the eigenvectors as,

v1 =

λ1 − Syy

Sxy

 , v2 =

 −Sxy

λ1 − Syy


or v1 =

 Sxy

λ1 − Sxx

 , v2 =

−λ1 + Sxx

Sxy


Normalising these eigenvectors to ensure a orthonormal matrix for V,

V =
1√

(λ1 − Syy)2 + S2
xy

λ1 − Syy −Sxy

Sxy λ1 − Syy


or

1√
(λ1 − Sxx)2 + S2

xy

 Sxy −λ1 + Sxx

λ1 − Sxx Sxy
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Thus by using S ′ik to denote the elements of dS
dt

,

dV

dt
=

1√
(λ1 − Syy)2 + S2

xy

λ′1 − S ′yy −S ′xy

S ′xy λ′1 − S ′yy


−

(λ′1 − S ′yy)(λ1 − Syy) + S ′xySxy

((λ1 − Syy)2 + S2
xy)

3
2

λ1 − Syy −Sxy

Sxy λ1 − Syy


or

1√
(λ1 − Sxx)2 + S2

xy

 S ′xy −λ′1 + S ′xx

λ′1 − S ′xx S ′xy


−

(λ′1 − S ′xx)(λ1 − Sxx) + S ′xySxy

((λ1 − Sxx)2 + S2
xy)

3
2

 Sxy −λ1 + Sxx

λ1 − Sxx Sxy


Where,

λ′1 =
dλ1

dt
=

1

2

(
S ′xx+S ′yy+

S ′xxSxx + S ′yySyy + 4S ′xySxy − S ′xxSyy − S ′yySxx√
S2
xx + S2

yy + 4S2
xy − 2SxxSyy

)

By rearranging, V and dV
dt

can be written as,

V =
1√

a2 + b2

a −b
b a

 (C.4)

dV

dt
=

a′b− b′a
(a2 + b2)

3
2

 b a

−a b

 (C.5)

a =

{
λ1 − Syy for Syy < Sxx

Sxy for Sxx < Syy

b =

{
Sxy for Syy < Sxx

λ1 − Sxx for Sxx < Syy

Where each of Sik, λ1, a and b only depend on time, t, with no dependance

on s or s′. Note that we present two options for V resulting in two formulas

for dV
dt

. Both of these formulas are equivalent for non-zero shear stress,

σxy 6= 0, but under purely extensional flow only one formula shall provide
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the correct results. This choice is dependant on the principal direction. The

first choice shall fail due to a singularity in V if Sxy = 0 and Sxx ≤ Syy,

whilst the second will not work if Sxy = 0 and Syy ≤ Sxx. In the case where

Sxx − Syy = 0 and Sxy = 0 we have degenerate eigenvalues, and neither

formula will work.

The trace of S has a fixed value in polymer dynamics and so the only

possible f that yields a degenerate result is the equilibrium case in 2D,

which has no principal direction. For this case when f = feq we can choose

V = I as no transformation is required between the frames of reference,

but we do not know the value of dV
dt

. This can be alleviated by delaying

the start time of the prediction slightly, so that the true value of f is given

for the first time step, and the prediction is not asked to calculate dV
dt

using

the equilibrium configuration.

Using these formulas, we can now outline how we evaluate the derivatives

of Γi in the methodology detailed in section 4.1.3. We first calculate the

rate of change of the eigenvalues, dV
dt

, as step 6, since we require this to

transform ∂f
∂t

into ∂
∂t

fPrin, which becomes step 7. We then proceed as we did

in the method without orientation to evaluate derivatives and the evolution

of each Γi in the fPrin frame of reference in step 8.
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