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Abstract

Learning dynamical systems from data is an important modelling problem

in which one approximates the underlying equations of motion governing

the evolution of some system. The conventional approach involves utilis-

ing a dynamical model, often derived from expert knowledge to accurately

replicate the real-world data. This system often involves the inference of in-

terpretable parameters so that model predictions align with observed data.

When a chosen model fails to adequately represent the entire unknown dy-

namic, the ability to extract meaningful information from a fitted model

can be challenging. This thesis investigates strategies addressing dynami-

cal model misspecification within the framework of Bayesian inference. We

delve into the limitations of standard Bayesian inference methods, specifi-

cally for parameter estimation, uncertainty quantification, and prediction

accuracy. In our pursuit of a robust inferential approach, we assess the ef-

fectiveness of various contemporary methods such as generalised variational

methods for dynamic modelling. Additionally, we introduce novel strategies

to address model discrepancy, employing both Gaussian Processes and Ap-

proximate Bayesian Computation methods. This research aims to advance

our understanding of Bayesian inference under model misspecification and

offers practical guidance on constructing robust inferential approaches for

more accurate and reliable results in continuous-time dynamic process.
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Chapter 1

Introduction & Motivation

Summary: In this opening chapter, we outline the challenges and mo-

tivations that serve as the foundation of this thesis. We emphasise the

importance of addressing misspecification in mechanistic models to ensure

accurate parameter estimation and meaningful interpretation. Addition-

ally, we introduce variational Bayesian approaches with the goal of estab-

lishing a robust inference framework in modelling.

1.1 Wrong models are the best we can do

1.1.1 Models are approximations of the truth.

The aphorism “All models are wrong, but some are useful” from the statis-

tician George E.P. Box highlights the idea that we should always keep in

mind the approximate nature of any model. In his book Empirical Model-

Building and Response Surfaces (Box and Draper [1987]), he wrote “Re-

member that all models are wrong; the practical question is how wrong do

they have to be to not be useful”. In other words, any modelling proce-

dure should recognise the inherent bias due to a truncated representation

of reality (Grünwald [2016]).

Whether you are working with a simple statistical model, such as a linear
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regression model with Gaussian errors, or a computer simulation that solves

complex mathematical equations, for example, a simulation of the Earth’s

climate, we are often faced with the problem that in some regimes, the

model is misspecified. Misspecification typically arises in situations where

modelling assumptions are inaccurate, stemming from limitations in our

understanding of the modeled process. This occurs when the model fails to

encompass all relevant factors, such as missing essential physics or omitting

significant variables. Such a situation is most often detected when a model

fails to replicate the data-generating process (dGp) in some statistical sense,

which will be explored in this thesis. The disparities between the model

and the true data-generating process referred to as the model discrepancy

introduce bias in inference and compromise the accuracy of predictions.

Engaging with a misspecified model can lead to suboptimal forecasts, an

erroneous comprehension of underlying processes, and, in practical terms,

may result in costly decision-making.

1.1.2 But models should be considered uncertain...

In the context of this thesis, we recognise the inherent approximation within

our chosen model class and endeavor to enhance our inferences. It is there-

fore crucial to emphasise the necessity of considering uncertainties, often

stemming from inaccuracies in the constitutive model parameters, along

with other sources like measurement errors, inherent noise, and natural

variability.

The aleatory uncertainty refers to the inherent uncertainty in a system that

often cannot be fully eliminated but can be reduced through better under-

standing or better data. This type of uncertainty arises due to inherently

random factors, such as measurement error or natural variation in a system

(Mirams et al. [2016]). For example, consider the process of measuring the

2



1.1. WRONG MODELS ARE THE BEST WE CAN DO

weight of an object using a scale. The scale may have inherent variabil-

ity in its readings due to imperfections in the measurement mechanism or

random fluctuations in the environment, leading to measurement error.

In contrast, epistemic uncertainty, also known as knowledge uncertainty

or model uncertainty, refers to the uncertainty that arises due to a lack of

knowledge or understanding about a system or process. There are a variety

of reasons why model misspecification can arise, ranging from a lack of un-

derstanding of the process, simplified assumptions and incomplete or biased

data. An example of epistemic uncertainty is in climate modelling. There

may be uncertainty about the future state of the climate due to incomplete

knowledge about the underlying physical mechanisms, such as the inter-

actions between the atmosphere, oceans, and land surface. We argue in

this thesis that a standard Bayesian treatment of a misspecified model can

lead to unreliable epistemic uncertainty estimates. This is why we position

this thesis within the realm of Uncertainty Quantification (UQ), a critical

field of science that describes the uncertainty in model parameters and the

consequent uncertainty in model outputs. The assessment and mitigation

of uncertainty’s impact in scientific and engineering applications are ben-

eficial for avoiding biased predictions, incorrect parameter estimates, and

poor model generalisation (Kennedy and O’Hagan [2001]).

1.1.3 ... to make them useful and meaningful.

A meaningful model should be simple enough to be easily understood

and interpreted, yet complex enough to capture the essential features of

the system being studied. In this thesis, we emphasise the importance

of adopting a discrepancy approach rather than fully discarding a model

that, despite being incorrect in some sense, still offers valuable insights

into reality through physically meaningful quantities. Specifically, we de-
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Models Mechanistic Statistical
Knowledge Theory-Driven Data-Driven
Explanatory Causal Descriptive
Objective Understanding Prediction
Realism Explicit process No underlying process

Assumptions Many/Complex Few/Simple
Parameters Meaningful Often Meaningless

Scaling outside the domain Possible Usually not

Table 1.1: Contrasting Mechanistic and Statistical Models: A Simplified
Perspective

lineate between two types of models commonly employed in scientific and

engineering disciplines, as depicted in Table 1.1.

Mechanistic models are based on a set of explicit physical or mathematical

equations that describe the underlying mechanisms of a system. They typ-

ically rely on detailed knowledge of the system’s structure and behaviour

and are designed to simulate system responses to changes in its inputs or

environment. Mechanistic models are often used in fields such as physics,

engineering, and chemistry to predict system behaviour under different

conditions. Mechanistic modelling offers the possibility of learning infor-

mation, making decisions, and generating predictions and novel hypotheses,

thereby enhancing our comprehension of complex world systems. They are

built from empirical data and expertise in the domain relying on complex

relationships modeled with a set of assumptions. Complex natural mech-

anistic models often take the form of an Ordinary Differential Equation

(ODE), a Stochastic Differential Equation (SDE), or a Partial Differential

Equation (PDE) to describe the dynamics of the state of a system. These

models rest on knowing the physical or biological processes that gave rise

to the data.

Statistical models, on the other hand, is based on analysing patterns in data

and making predictions. They do not typically rely on detailed knowledge

of the underlying mechanisms of the system, but rather use statistical algo-
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rithms and techniques to find relationships in the data (Schölkopf [2019]).

Mechanistic models, particularly those with non-linear dynamics, are often

difficult to analyse statistically, namely when system parameters need to

be estimated. While mechanistic models have hypothesised relationships

between the variables in the data set where the nature of the relationship is

specified in terms of the underlying processes that are thought to have given

rise to the data, statistical models have often hypothesised relationships

between the variables in the data set, where the relationship seeks only

to describe the data best. For misspecified mechanistic models, it is well

known that if we fail to account for the model discrepancy in our inference

(Lei et al. [2020]), our parameter estimates, instead of being physically

meaningful quantities, will have their meaning intimately tied to the model

used to estimate them (we end up estimating ‘pseudo-true’ values).

In reality, the rigidity of mechanistic models (Roberts [2021]) often leads

to misspecification, where no parameter setting can perfectly replicate the

data. On the contrary, statistical models and more largely machine learning

can offer innovative methods to understand the intricacies of real-world

dynamics.

1.2 Beyond Traditional Modelling with Vari-

ational Inference

1.2.1 Physics informed models

In this thesis, our main goal is to address the challenge of integrating the

strengths of mechanistic biological models with statistical models. The in-

tegration of these two approaches offers a unique opportunity to utilise the

mechanistic knowledge embedded in biological models alongside the capa-

bilities of data-driven models. Mechanistic models often suffer from compu-
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tational complexity and parameter uncertainty, while data-driven methods

can lack interpretability (Matei et al. [2020]) and may struggle with in-

corporating mechanistic insights. By reconciling these two approaches, we

want to develop hybrid models capable of providing accurate predictions

and interpretable insights into complex biological phenomena (Tulleken

[1993]). This integration also allows us to address scenarios where mech-

anistic models alone may be inadequate due to incomplete knowledge or

computational constraints ([Vapnik, 1998, Gherman et al., 2022]). The

thesis will use variational Bayesian approaches for misspecified mechanistic

models of real-world systems. The dominant computational approach for

numerically solving Bayesian inference problems is based on sampling meth-

ods such as Markov chain Monte Carlo. In contrast, variational methods

use optimization methods to approximate Bayesian posterior distributions

and provide a framework for estimating model parameters and handling

uncertainty by leveraging Bayesian principles. These approaches offer flex-

ibility and adaptability in dealing with complex modelling scenarios and

can help overcome limitations associated with model misspecification.

1.2.2 An introduction to variational Bayes

In the Bayesian modelling framework, we have a probabilistic model de-

scribing a data-generating process through a joint distribution of latent

variables and the data.

Let x1:n be observed data in a sample space X generated independently

and identically from a distribution g(x). The likelihood L(θ|x) is directly

related to the probability of observing data x under a particular parameter

θ, p(x | θ) := p(x1:n | θ) where θ ∈ Θ is a parameter vector with values in

Θ ⊆ Rd. When we say a model is misspecified, we mean g(x) /∈ {p(x | θ) :

θ ∈ Θ}.
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Let p(θ) be our prior distribution summarising all the a-priori knowledge

about the model parameters. Bayes’ theorem allows us to update our prior

beliefs to account for the evidence coming from the observed data, into a

posterior distribution with:

p(θ | x) = p(x | θ)p(θ)∫
p(x | θ)p(θ)dθ

,

∝ p(θ)
n∏

i=1

p(xi | θ). (1.1)

Here the notation ∝ means proportional up to the normalising constant

that is independent of the parameter θ, and p(x|θ) is the conditional prob-

ability density of x given θ called the likelihood. Each xi follows a normal

distribution, and their joint distribution is a product since the xis are in-

dependent.

Variational approximations represent a family of deterministic methods for

approximating the posterior distribution. The key idea behind the varia-

tional estimator is to cast the inference problem as an optimization task,

where the goal is to find the parameters that minimise the divergence be-

tween the true posterior and the variational approximation. This allows for

scalable and efficient inference, making variational estimators increasingly

popular in Bayesian statistics, especially in cases where the true posterior

is analytically intractable or computationally expensive to compute ([Blei

et al., 2016, Csiszar, 1975, Donsker and Varadhan, 1976, Wang and Blei,

2019, Jordan et al., 1999, Wainwright and Jordan, 2007]).

Variational approximations aim to find the distribution q(θ) ∈ Q that is

close to the posterior p(θ|x) according to a divergence measure D(q∥p) :

Q × P → R+, where p and q are generic density functions belonging to

the sets P and Q. The optimal approximate posterior q∗(θ) represents the

best approximation to the true posterior distribution among the possible
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set of candidates Q and solves the following optimization problem:

q∗(θ) = argmin
q∈Q

D(q(θ)∥p(θ | x)). (1.2)

Note that the divergence is not necessarily symmetric. Variational methods

are known for their computational efficiency compared to simulation-based

methods like Markov chain Monte Carlo (MCMC). However, they rely on

defining a family of approximating densities and finding the element that

minimises a divergence measure with the target distribution. One well-

known variational inference technique is variational Bayes (VB), which in-

volves minimising the Kullback-Leibler divergence (Kullback and Leibler

[1951]).

In the realm of probability theory, the Kullback-Leibler Divergence (KLD),

denoted as KLD(f∥g), emerges as a crucial measure quantifying the dis-

similarity between probability densities characterised by functions f(x) and

g(x). Originating from the work of Solomon Kullback and Richard Leibler,

this concept serves as a fundamental tool in information theory and statis-

tics.

Definition 1.1 (The Kullback-Leibler Divergence ). The KLD between

probability densities g(x) and f(x) is given by

KLD(f∥g) =
∫

f(x) log
f(x)

g(x)
dx.

The KLD essentially gauges the amount of information lost when one prob-

ability density g(x) is employed to estimate or approximate another f(x).

Notably, the KLD is characterised by its asymmetry, placing a large penalty

on deviations of g(x) from f(x) in regions where f(x) has higher density.

In contrast, regions where the density of g(x) is larger than f(x) are not

penalised as much.
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In variational Bayes, the objective is to find the optimal approximation

q∗(θ) within a specified set of distributions Q that minimises the KLD

between q(θ) and the true posterior p(θ|x) :

q∗(θ) = argmin
q∈Q

KLD (q(θ)∥p(θ | x)) , (1.3)

The KLD quantifies the discrepancy between the variational approxima-

tion q(θ) and the true posterior p(θ|x). Minimising the discrepancy using

the Kullback-Leibler Divergence guides the variational approximation to

closely match the Bayesian posterior distribution, forming a fundamental

method in approximate inference within Bayesian analysis. This paradigm

requires a suitable family of approximating densities Q (Ormerod and

Wand [2010]). Different assumptions about the space Q lead to various

variational paradigms (cf. Chapter 3 for more details).

1.3 Structure of this thesis

This thesis proposes to apply variational-based approaches to address the

challenges of estimating uncertainties in parameter inference, particularly

in complex mechanistic and statistical models. We study the statistical

robustness of these approaches when the models are misspecified due to

discrepancies between the model assumptions and the actual system being

modeled. A key contribution of this thesis is the introduction of a novel

class of posterior belief distributions to address model discrepancy in the

context of structural dynamical misspecification. The thesis also explores

various strategies from a wide spectrum of scientific fields to enhance in-

ference procedures and obtain more accurate and reliable estimates. The

findings underscore the potential of combining generalised robust losses

in Variational Inference (VI) with the model discrepancy in misspecified
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models, paving the way for robust inference in dynamical models. By

adopting a grey-box modelling strategy, this research provides a unified

and interpretable framework that effectively captures the mechanistic and

data-driven aspects of the underlying dynamics. This innovative approach

emphasises the importance of addressing model misspecification, especially

for dynamic models.

In Chapter 2, we present various types of misspecification and delve into

the impact of misspecification on standard statistical tasks, such as infer-

ence of θ, calibrated prediction, and decision tasks. We primarily focus on

Bayesian and generalised Bayes approaches, exploring a variety of methods

aimed at mitigating the effects of misspecification. Additionally, we clarify

the desirable properties of statistical methods when dealing with misspec-

ified models, as well as the limitations of what can be realistically achieved.

In Chapter 3, we adopt a variational approach within a variational au-

toencoder, which will appear as a natural choice to do inference with a

dynamical model. This sophisticated methodology is employed to con-

duct inference for dynamic models, offering an alternative to Markov Chain

Monte Carlo (MCMC) techniques. At a methodological level, this enables

the integration of recent advancements in variational inference, particularly

the use of automatic differentiation for differentiable ODEs to be applied

to the parameter estimation task in mechanistic models in well-specified

and misspecified scenarios.

In Chapter 4, we focus on inference using a non-standard inference ap-

proach and empirically explore how different approaches to dealing with

discrepancies work with several misspecified mechanistic models. Particu-

larly we compute generalised posteriors through a Generalised Variational
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Inference (GVI) procedure with a wise choice of robust losses including

UQ-derived losses. Taking a robust model-driven approach, we improve

the accuracy and reliability of statistical inference in the presence of mech-

anistic model misspecification. However, we also highlight the limitations

of certain Generalised Bayes methods when addressing these less-explored

forms of misspecification.

Chapter 5 proposes a novel approach for modelling discrepancies in the

context of ordinary differential equation (ODE) models. Our method in-

corporates Gaussian Process approximation through Random Fourier fea-

tures and seamlessly integrates differentiable programming to propagate

gradient information through ODE solvers. The method demonstrates the

flexibility of incorporating domain knowledge through hybrid models that

combine mechanistic ODEs and data-driven techniques, embracing both

the known and unknown aspects of the system dynamics.

Finally, in Chapter 6, we present the conclusions for every chapter, together

with various directions for future work.
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Chapter 2

Robust Inference with

Misspecified Models: Current

Approaches and Efficacy

Summary: This chapter serves as an introduction to the concept of ro-

bustness in statistics within the context of model misspecification, which

forms the overarching framework for the thesis. We explore methods for

robust inference when the parameterized statistical models are misspecified

relative to the data-generating process. In such cases, standard Bayesian

inference can often be restricted because it heavily depends on the chosen

prior and statistical model, which may be subject to varying degrees of

misspecification. Particularly, we focus on addressing misspecification in

mechanistic models to ensure accurate parameter estimation and meaning-

ful interpretation. The chapter investigates existing strategies for address-

ing this issue and considers whether these methods are sufficient.
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2.1 Robust Inference

In this thesis, robust inference denotes a statistical approach that is still

reliable and reasonably efficient under small (or large) deviations of the

data-generating process (dGp) from the assumed model. The goal is to en-

sure accurate results and valid statistical inference even in the presence of

misspecification, outliers, or other sources of variability. Robust statistics

(Arjovsky et al. [2017], Huber [2011]) seek methodologies that maintain re-

liability and reasonable efficiency, even when encountering minor deviations

from the true model. While robustness may lead to less efficient parameter

estimates, this trade-off is crucial in mechanistic physical models where the

parameters are intended to be meaningful since they are often associated

with real-world physical quantities or processes.

Various inference methods have been developed to tackle the challenges

posed by model misspecification, that is when the true dGp lies outside

the space of models that we intend to use for inference. A robust inferen-

tial procedure will ideally converge to the correct θ parameter (Bayesian

consistency) even if the model is misspecified.

2.2 Varying degrees of misspecification

Models can be wrong to varying degrees, and the level of corruption de-

pends on how much the model assumptions deviate from the actual dGp

(cf. Figure 2.1). An instance of a misspecified statistical model arises

when a dataset exhibiting a non-linear correlation between independent

and dependent variables is analysed using a linear regression model. In

such scenarios, the linear regression model fails to accurately represent the

genuine relationship between the variables, often resulting in biased esti-

mations of the regression coefficients ([Grünwald and van Ommen, 2014,
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Figure 2.1: Forms of model misspecification with varying degrees of mis-
alignment between the green dGp unknown and the black fitted model.

Walker, 2013]).

We present simple examples to introduce and motivate the need for ro-

bustness when the model is misspecified. In Example 1, we first consider

the misspecified linear model, where the true dGp has some more complex

form.

Example 1 (Bayesian Linear Regression).

In the standard linear regression model, the relationship between the pre-

dictor variable xi and the response variable yi is given by:

yi = θxi + ϵi (2.1)

where ϵ is i.i.d (independent and identically distributed) errors following

a normal distribution with mean 0 and variance σ2, and θ represents the

model parameter.

Suppose the dGp model is the nonlinear model where we leave the parameter

a as a free parameter we can modify to control the degree of nonlinearity.

The relationship between the predictor variable xi and the response variable

yi in this model is given by:

yi = θ
xi

1 + xi

a

+ ϵi (2.2)

Similarly to the linear regression model, ϵi is a random error term with a

normal distribution having mean 0 and variance σ2. The nonlinearity in
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Figure 2.2: Red points show n = 20 observations from the dGp process
Equation 2.2 with (θ = 0.5, ϵ ∼ N (0, 0.012), a = 20). The solid black line
represents the linear model (y = θx) with θ = 0.5.

this model arises from the denominator 1 + xi

a
. When a→∞, we retrieve

the linear regression model. For small values of a, the linear regression

model is highly misspecified.

Can we still infer θ using the model in Equation 2.1 with data coming from

Equation 2.2?

Figure 2.2 shows the corrupted model with sample data coming from the

non-linear model:

yi = 0.5× x

1 + x
20

+ εi, ε1, . . . , εn
i.i.d∼ N(0, 0.012).

We estimate the posterior distribution for θ and σ in model Equation 2.1

with the prior distributions θ ∼ N (0, 10) and log(σ) ∼ N (−3, 1) and us-

ing NUTS1 in R. It can be seen that the posterior distribution is wrong for

both the parameter of interest θ (underestimated) in Figure 2.3a and for the

noise (overestimated around the value 0.05 instead of 0.01) in Figure 2.3b.

Even a slight deviation from the linear trend depicted in Figure 2.2 can

significantly influence the standard Bayesian estimate.

1NUTS stands for the No-U-Turn Sampler variant of Hamiltonian Monte Carlo ([Hoff-
man and Gelman, 2011, Betancourt, 2017]) and is used for sampling from the posterior
distribution in Bayesian statistics.
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(a) Bayesian posterior distribution
for θ in red, with the true value
shown as the black vertical line.

(b) Bayesian posterior distribution
for σ in red, with the true value
shown as the black vertical line.

Figure 2.3: Example 1 - Corrupted Bayesian Linear Regression.

In the work on robust estimation theory by Huber [2011], a widely reused

example: the ϵ-contamination problem (Jewson et al. [2018]) is exploring

the impact of contaminated data. In practice, standard statistical ap-

proaches such as Maximum Likelihood Estimation (MLE) often perform

poorly in the presence of outliers. This phenomenon occurs because the

most informative observations often deviate from the model fitted to the

majority of the data.

Example 2 (ϵ-contamination).

For ϵ ∈ (0, 0.5), the ϵ-contamination model with normal distributions is

g(x) = (1− ϵ)N (x;µu, σ
2
u) + ϵN (x;µc, σ

2
c ) (2.3)

where (ϵ, µu, σ
2
u, µc, σ

2
c ) are fixed features of the dGp.

This mixture model g(x) consists of two components. The first term (1 −

ϵ)N (x;µu, σ
2
u) represents the majority of the data, assumed to follow a nor-

mal distribution with mean µu and variance σ
2
u. The second term ϵN (x;µc, σ

2
c )
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Figure 2.4: Posterior predictive distributions (smoothed from a sample) in
red obtained by fitting the baseline model to the ϵ contamination dataset
with n = 1000 and the dGp parameters: (ϵ = 0.01, µu = 0, σ2

u = 1, µc =
5, σ2

c = 5). The Gaussian density of the majority of the data, i.e. N (0, 1)
is shown in solid black line.

represents a smaller sub-population with mean µc and variance σ2
c . The pa-

rameter ϵ controls the proportion of this outlying sub-population.

Now assume a baseline model given by a standard normal distribution

N (x;µ, σ2)

with mean µ and variance σ2. Given n observations from Equation 2.3, we

aim to estimate θ = (µ, σ2) of the baseline model robustly, even when there

is contamination from the outlying sub-population defined by the mixture

component.

In Figure 2.4, the posterior predictive distributions are obtained by fitting

a normal model N (µ, σ2) to a simulated dataset with n = 1000 data points

from a normal distribution with ϵ-contamination:

0.99×N (0, 1) + 0.01×N (5, 52),

where the prior distributions are µ = N (0, 1) and σ ∼ G(0.001, 0.001).
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When minimising the KLD, we obtain a density that is centered at x =

(99× 0+1× 5)/100 = 0.05, i.e. corresponding to 99% of the data but with

a larger variance (bigger than 1) since the Bayesian posterior also captures

the outlying subgroup.

Example 2 is often referenced to demonstrate the robustness of emerging

statistical methods, showcasing a posterior estimate that remains resilient

even in the presence of contamination (Miller and Dunson [2019]). In this

thesis, the larger uncertainty for the posterior distribution of θ is not a

big concern since the parameter is still adequately inferred. However, this

phenomenon can aid us in detecting misspecification in the chosen model.

We choose to delve into more complex forms of model misspecification. Our

focus lies on dynamical models constructed based on biophysical mecha-

nistic principles, which are governed by systems of ordinary differential

equations (ODEs). Insufficient understanding and incomplete knowledge

of a complex dynamical system may result in employing a simplistic model

to analyse data derived from the true dGp. For instance, in modelling

the electrophysiology of cardiac cells, researchers fit complex mechanistic

ion channel models to experimental data. Recent studies have introduced

methodologies to incorporate model discrepancy, enhancing inference and

predictions ([Rudi et al., 2020, Lei et al., 2020]). Example 3 showcases

model discrepancy with three nested ion channel models, reflecting real-

world contexts in systems biology.

18



2.2. VARYING DEGREES OF MISSPECIFICATION

Figure 2.5: Markov model representation of the blue, green, and red models
used in the ion channel modelling. The green model includes the blue model
and the red model includes the blue and the green models. An example
of model discrepancy arises when fitting the blue model to synthetic data
generated by either the green or the red model.

Example 3 (Ion Channel Modelling).

The following Hodgkin-Huxley model can be employed to fit experimentally

recorded currents.

IKr = GKr ·O(Vm, t) · (VM − EK) (2.4)

with the conductance parameter GKr and the open probability O(Vm, t) given

by the system of equations

d[I]

dt
= k3[O]− k4[I] + k5[C]− k6[I] (2.5)

d[O]

dt
= k1[C] + k4[I]− (k2 + k3)[O] (2.6)

d[C1]

dt
= k2|O|+ k6[I]− [C1](k1 + k5 + k8) + k7[C2] (2.7)

d[C2]

dt
= k8[C1]− k7[C2].I (2.8)

The fact state occupancies are probabilities that sum to one tells us that

I = 1− (O + C1 + C2) (2.9)

which reduces the equation above to only three ODEs instead of four.
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The rates are voltage-dependent functions, each parameterized by two scalar

values of the form ki = A×exp(B×V ) except for the rate k6 that is obtained

using the principle of microscopic reversibility:

k6 = (k5 × k2 × k4)/(k1 × k3), (2.10)

which ensures that each reaction is also in equilibrium when the states are

in equilibrium.

Below, we depict three embedded models: red, green, and blue, as illustrated

in the Markov model (Figure 2.5).



dI

dt
dO

dt
dC1

dt
dC2

dt


=



k3O − k4I+k5C1 − k6I

k1C1 + k4I − (k2 + k3)O

k2O − k1C1 − k5C1 + k6I + k7C2 − k8C1

k8C1 − k7C2


(2.11)

The red model matches precisely the 15-parameter model mentioned earlier

in this section. The blue and green models are subsets of the red model, with

11 parameters for the green model and 9 for the blue model. The models

are nested, with the blue model contained within the green model within the

red model. The blue model is the simplest one and does not account for

some specific dynamics of the unknown dGp.

When the main structure of the model is wrong, a statistician would be left

with the obvious answer to change the model. A major difference in mecha-

nistic models is the need for interpretability of the meaningful parameter θ

even if some dynamics of the model have been missed. Mechanistic models

are often encoded with a system of differential equations stemming from

underlying physical or biological complex processes. Once a model f(x, θ)
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is correctly specified, the standard inference techniques can estimate the

parameter θ. However, mechanistic models are rarely fully accurate, and

mechanistic model misspecification is highly challenging as we do not ex-

pect anymore the baseline model to be corrupted but rather the overall

structure to be wrong, i.e. missing a differential equation or missing a con-

stitutive meaningful parameter. While statistical uncertainty is an inherent

part of parameter estimation in any modelling framework, misspecification

in mechanistic models goes beyond statistical noise and involves conceptual

errors in the model’s representation of the underlying system.

We purposely categorise different misspecification types in this thesis, out-

lining three forms to be illustrated through examples:

1. (Type I) involves using a slightly modified model based on the dGp,

with the right number of parameters. The ϵ-contamination and the

non-linear model examples fall under this category, and another ex-

ample is discussed in Chapter 3 (cf. Example 3.4.2).

2. (Type II) describes a scenario where crucial parameters are omitted

from the true model, resulting in an underrepresentation of the actual

dynamics (Example 3.4.1 and 3.4.3). In the ion channel modelling

example above, this type of misspecification implies that the obser-

vations are generated using the green model, while the blue model is

utilised for fitting.

3. (Type III) introduces a distinct dimension, where an entirely new set

of dynamics is absent from consideration (and parameters as well).

Within the context of ordinary differential equations (ODE), this

implies the failure to incorporate a new differential equation. This

form of misspecification is the most challenging. In Example 3, this

scenario would occur when the observations are generated using the

red model, while the blue model is employed for fitting.
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2.3 Bayes under Misspecification

2.3.1 Inferential Decisions

Bayesian methods depend strongly on both the prior and the statistical

model chosen (Equation 1.1). We let g(.) denote the probability density

function of the true distribution of the dGp and assume that the data are

random variables (x1, ..., xn) on a sample space X . The likelihood model

p(x | θ) where θ ∈ Θ is a d-dimensional parameter vector with values in

Θ ⊆ Rd is usually chosen carefully using our knowledge about the dGp.

In scenarios where the decision makers know the family of models from

which the data come, referred to as the M-closed view, i.e. where g = Pθ∗

for some θ∗, the Bayesian approach to learning is fully justified (Smith

and Bernardo [2008]) with the so-called logarithmic loss function or self-

information loss (equivalent to the negative log-likelihood).

Definition 2.1 (The logarithmic loss function). For the probability density

p(· | θ), the log-score (or negative log-likelihood) for a set of i.i.d observa-

tions x1, ..., xn is:

ℓ(θ, x) =
n∑

i=1

− log p(xi | θ). (2.12)

Therefore, we can rewrite the Bayesian posterior in Equation 1.1 with:

p(x | θ) = p(θ) exp {−ℓ(θ, x)}∫
θ
p(θ) exp{−ℓ(θ, x)}

dθ.

This thesis focuses on the M-open world where the model is misspecified.

Definition 2.2 (M-closed andM-open world (Smith and Bernardo [2008])).

The M-closed world assumption assumes there exists θ0 such that the ob-

served i.i.d. data x1, . . . , xn were generated from the model with parameter

θ0, i.e

x1:n ∼ p(· | θ0)
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The M-open world assumes that

x1:n ∼ g(·)

where it is possible that g ̸= p(· | θ),∀θ ∈ Θ.

2.3.2 Bayesian inconsistency under misspecification

We consider a parameter of interest denoted by θ, and let Πn := p(θ | x1:n)

be the Bayesian posterior of θ based the datapoints x1:n. Under Bayesian

updating, a posterior is consistent ([Diaconis and Freedman, 1986, Ghosal

et al., 2000]) if the posterior probability concentrates on the true model.

For any true parameter value θ0, as the sample size n tends to infinity, the

posterior distribution Πn converges in probability to a Dirac delta function

centered at θ0, i.e. d(Πn, δθ0)→ 0.

Bayesian consistency asserts that, with high probability, the Bayesian pos-

terior concentrates near the true parameter θ0 value as more data become

available. For example, the consistency of the Maximum Likelihood Es-

timator (MLE) is a fundamental property satisfied under mild regularity

assumptions (van der Vaart [1998]) including the identifiability of the pa-

rameter θ and the continuity and differentiability of the likelihood function.

For the Maximum Likelihood Estimator (MLE) or other Bayesian estima-

tors denoted as θ̂n based on observations, under suitable regularity condi-

tions, as the sample size n grows, the distribution of
√
n(θ̂n−θ0) approaches

a normal distribution with mean 0 and variance σ2.

Therefore, if the dGp is a well-specified model, with enough data, the

Bayesian estimator becomes increasingly accurate and converges to the

true value θ0 almost surely:

θ̂n = argmax
θ

n∑
i=1

log pθ(xi)
P−→ θ0 (2.13)
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as n→∞.

Bayesian inconsistency can arise when the model is misspecified, i.e. the as-

sumed statistical model does not accurately represent the underlying data-

generating process. Instead of converging to a true value (which does not

exist), we converge to the pseudo-true value denoted by θ∗:

θ∗ = argmin
θ∈Θ

KLD(g∥p(x | θ)) (2.14)

which is the parameter that minimised the KLD from the dGp to the wrong

model.

This phenomenon becomes notably pronounced when the dGp has heavier

tails than the assumed model. In the presence of outliers in the dataset, the

limitations of the posterior distribution become apparent as it demonstrates

sensitivity with only 1% of contaminated data (cf. Figure 2.4). Notice that

limp→0(− log p) =∞ so assigning a low probability to any observation will

incur a large penalty when using the log-likelihood as the loss function.

However, it is essential to note that this phenomenon is not solely confined

to outlier-related situations, as we will explore in this thesis. Standard

Bayes methods are often incapable of discerning small deviations from the

model (Jewson et al. [2018]). As the data sets grow, even small deficiencies

in the model can be disruptive. Sometimes the obtained posterior is sen-

sitive even to seemingly minor deviations between the model and the dGp

(Bissiri et al. [2016]).

2.3.3 Classical solutions for tackling Model Misspec-

ification in Bayesian statistics

In cases of model misspecification, the decision-maker may contemplate

either abandoning the current model in favor of a more comprehensive
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Figure 2.6: The data generating process g(x) (red dot) lies outside the
statistical model p(x | θ : θ ∈ Θ) in black, i.e. the model is misspecified.
Chapter 3 focuses on classical variational posterior methods to infer θ.
In Chapter 4, robust loss functions are employed to generate generalised
variational posteriors, aiming to bring the inference process closer to the
elusive true dGp, symbolised by the intersection between the green circle
and the blue area. Chapter 5 increases the class of model considered by
adding a discrepancy function to reduce the disparity between our models
and the unknown process, hoping to reach the dGp within the red area.

class of models or transitioning towards data-driven techniques. This the-

sis specifically addresses the challenge of inferring meaningful parameters

within mechanistic models, even when faced with model misspecification.

We will focus on methods that mitigate the impact of misspecification by

updates in the inference procedure within a Bayesian context. In Chapters

3 and 4, we will keep the model whereas in Chapter 5, we will augment the

model class with a discrepancy term as shown in details in Figure 2.6.
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In the following sections, we outline classical approaches for addressing

model misspecification in Bayesian statistics. This presentation serves as

a cohesive literature review, consistent with the mitigation strategies pre-

sented in the subsequent sections of the thesis. We emphasise that numer-

ous strategies to address model misspecification fall within the following

concepts:

1. Firstly, one approach consists of introducing a tolerance for misspec-

ification, acknowledging the inherent uncertainties in modelling, and

allowing for a certain degree of flexibility in capturing the underlying

data dynamics (cf. Section 2.3.3.1).

2. Secondly, the deliberate selection of relevant data emerges as a strat-

egy, allowing only the most pertinent information to be used for the

inference objective (cf. Section 2.3.3.2).

3. Lastly, more contemporary Bayesian statistical methods recognise the

inherent limitations of log-likelihood or KLD-based losses and intro-

duce new losses for more robust and flexible inference frameworks (cf.

Section 2.3.3.3).

2.3.3.1 Introduce a tolerance of misspecification

The standard approach to Bayesian inference assumes that the data dis-

tribution belongs to the chosen model class. In the presence of slight dis-

crepancies between the assumed model and the unknown dGp, we can still

expect robust estimates when the data from the dGp are selected for infer-

ence within a specified tolerance. The methods presented below will choose

to rely or not on the likelihood considering that only limited information

should be used in the inference procedure in the presence of misspecifica-

tion.
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Approximate Bayesian Computation (ABC) is the term given to a collection

of algorithms used for calibrating complex simulators ([Csilléry et al., 2010,

Marin et al., 2011], Lintusaari et al. [2017]). Suppose f(θ) is a simulator

that models some physical phenomena for which we have observations x ∈

Rn, and that it takes an unknown parameter value θ ∈ Rd as input and

returns output y ∈ Rn. The Bayesian approach aims to find the posterior

distribution p(θ | x) ∝ p(x | θ)p(θ), where p(θ) is the prior distribution

and p(x | θ) is the likelihood function defined by the simulator. ABC

algorithms enable the posterior to be approximated using realisations from

the simulator, i.e. they do not require explicit knowledge of p(x | θ). The

simplest ABC algorithm is the rejection algorithm:

1. Draw θ from the prior: θ ∼ p(θ)

2. Simulate a realisation from the (deterministic) simulator: y ∼ p(y |

θ) = f(θ)

3. Accept θ if and only if ρ(x, y) ≤ h

where ρ(, ) is a distance measure. The tolerance, h, controls the trade-off

between accuracy and computability. When h =∞ the algorithm returns

the prior distribution. Conversely, when ϵ = 0 the algorithm is exact and

gives draws from p(θ | x), but acceptances will be rare. In this ABC frame-

work (Beaumont et al. [2002] Wilkinson [2013] Sisson et al. [2018]), the

error tolerated depends on the distance measure and the choice of accep-

tance threshold. If the acceptance threshold is too low, the model may be

overly sensitive to small discrepancies between the simulated and observed

data and may be rejected even if it is a good approximation to the true

data-generating process. On the other hand, if the acceptance threshold

is set too high, the model may be overly permissive and may accept poor

fits. It means that ABC assumes an imperfect matching between the dGp

27



2.3. BAYES UNDER MISSPECIFICATION

and the observations. As an example, the standard likelihood-free ABC

rejection algorithm uses a given tolerance h to draw the posterior given

the observation x, leading to a sample (θ, y) from the joint distribution

proportional to :

I(∥y − x∥ < h)p(θ)p(y | θ)

where I is the indicator function with I(Z) = 1 if Z is true, and I(Z) = 0

otherwise. Thus, we discriminate model outputs that are too far from

the model observations. The key idea is to acknowledge the discrepancy

between the best possible model prediction and the data. We can extend

this method by considering a nonuniform acceptance function. Data that

match exactly the data process should probably have a bigger weight in the

approximation of the posterior. Likewise, we should know when samples

from the model Pθ are the furthest away from the observations. This is the

motivation behind using kernel functions. We replace the indicator function

I with the kernel function Kh(u) with u = ∥y−x∥ where h ≥ 0 corresponds

to the scale parameter of the kernel function, and with a kernel symmetric

function Kϵ(u) such that Kh(u) ≥ 0, ∀u,
∫
K(u)du = 1,

∫
uK(u)du = 0

and
∫
u2K(u)du < ∞. This leads to the rejection sampling algorithm

which gives samples from the joint distribution :

pABC(θ, y | x) ∝ p(θ)Kh(∥y − x∥)p(y | θ). (2.15)

If Kh(u) is the uniform kernel, this approach reduces to the rejection algo-

rithm. Accordingly, the Bayesian ABC posterior is:

pABC(θ | x) ∝
∫

pABC(θ, y | x)dy. (2.16)

Example 4. Suppose that the observed data, x is a single draw from a

univariate density function p(y | θ) with θ a scalar and its prior given by
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p(θ). We consider Kh(u) the uniform kernel on [−h, h] with ∥u∥ = |u|.

The ABC posterior becomes according to Equation 2.16:

pABC(θ | x) ∝ p(θ)

∫ +∞

−∞
Kh(|y − x|)p(y | θ)dy (2.17)

=
p(θ)

2h

∫ x+h

x−h

p(y | θ)dy (2.18)

ABC posteriors use a tolerance error as a deliberate strategy to enhance

the robustness when dealing with misspecification (Frazier et al. [2017]).

Wilkinson (Wilkinson [2013]) pointed out that ABC methods can be con-

sidered exact under the assumption of model error.

For deterministic models, we can define ϵ as the difference between the

data and the model run at its best input making it independent of θ, i.e

x = f(θ) + ϵ. From this standpoint, the smoothing kernel Kh serves as

the probability density function for this error, such that ϵ ∼ Kh, and h

represents a scale parameter to be estimated. This approach introduces

a level of flexibility to address potential discrepancies, aligning with the

principles of Safe Bayes methods (Grünwald and van Ommen [2014]) and

would be explored in depth in Chapter 5.

In this approach, a temperature (or annealing) parameter [Mandt et al.,

2014] is introduced to diminish the impact of the (misspecified) likelihood

in posterior estimation. The resulting posteriors are referred to as Gibbs

posteriors [Bissiri et al., 2016, Miller and Dunson, 2019, de Heide et al.,

2019]:

p(θ | x) ∝ p(x | θ)αp(θ)

where α is called the temperature parameter. When α is smaller than 1,

then the prior becomes prominent and the data will be less influential. In

contrast, when α > 1, the log-likelihood is given more prominence and is
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helpful to avoid prior misspecification. For appropriately chosen α, the

Bayes estimator can concentrate at fast rates even under misspecification

([Medina et al., 2022, Ronchetti, 1997]). An illustration, inspired by the ap-

proach articulated by Miller and Dunson [2019], is the coarsened posterior.

Instead of conditioning precisely on the data, this method conditions on a

neighborhood of the empirical distribution, defined by a random variable

R representing the tolerance error term expressed as:

p(θ | ρ(y, x) < R)

with ρ a statistical distance. With R ∼ exp(α), we obtain the Gibbs

posterior (cf. Chapter 4). The ABC and annealed offer the advantage of

incorporating the likelihood so that the model is expected to retain some

fidelity in capturing aspects of the true distribution.

An alternative but closely related approach including a tolerance rate in

the inference procedure is known as History Matching (HM) ([Craig et al.,

1997, Williamson et al., 2013, Andrianakis et al., 2015]). The HM approach

can identify and rule out regions of the parameter space for which we

do not have a good match between the observed data and the simulated

data. This approach seeks to find values of the model inputs that could

not possibly have produced the data. The parameter space is restrained

through an iterative procedure that discards θ based on an implausibility

measure that quantifies the mismatch between the model predictions and

the observed data known as the discrepancy. This measure commonly

includes a discrepancy term, capturing the residual differences between the

model’s predictions and the actual observations (Kennedy and O’Hagan

[2001], Craig et al. [1997]). If we take again the corrupted linear regression
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(Example 1), we consider the following implausibility measure:

I(θ) = max
i

|yi − θxi|√
τ 2 + σ2

(2.19)

with σ = 0.01 the observation error standard deviation and τ the model

discrepancy standard deviation to be chosen. As seen in Figure 2.7, we

discard values for the inferred parameter θ when the observed data do not

match the fitted model via the implausibility measure within a threshold

(defined at 3 here). This method requires to define the error term τ . Opting

for strictness (setting a low value for τ) could lead to complete disregard of

the actual value, as illustrated in Figure 2.7 (left plot). HM operates iter-

atively with different thresholds leading to non-implausible regions (below

the threshold), i.e. regions of the space not ruled out for θ. The philosophy

of history matching is not to find the best input value for the model but

to explore the space of non-implausible values for the model parameters.

This strategy may detect if the model is misspecified when the error term

is carefully chosen.

In conclusion, the proposed methods strive for robust estimates when faced

with slight discrepancies within a predefined tolerance. We will explore

their effectiveness in Chapter 4, particularly under higher degrees of mis-

specification than traditionally examined.

2.3.3.2 Selective Decision-Making Amid Limited Information

If the data generated by a model deviates from the observations of the

unknown data-generating process (dGp), it may indicate inaccuracies in

the likelihood or potential errors in the observed data itself. In practice, the

data can be affected by corruption, such as the presence of outliers, and may

also be partially uninformative, leading to a suboptimal posterior estimate.

Several authors ([Sisson et al., 2018, Priddle et al., 2019]) have proposed to
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Figure 2.7: History Matching for the Bayesian Linear Regression. Implau-
sible measure for different values of τ . The red dotted line indicates the
threshold beyond which values for θ are discarded. The true value θ = 0.5
is discarded for τ = 0.05 and is accepted for τ = 0.2.

use summary statistics denoted as s(x) moving from matching data ∥y−x∥

to summary statistics ∥s(y)− s(x)∥ to improve the quality of the inherent

inference despite the loss of information. The use of summary statistics has

proven to be a useful tool, especially for ABC posteriors ([Frazier et al.,

2017, Frazier, 2020]) where quantities such as moments or sample quantiles

are used in the simplest case highlighting the computational benefits in

using lower dimensional data.

Example 5. Suppose that the observed data, x are n independent draws

from a univariate N (θ, σ2) distribution with σ > 0 known. We use the

Gaussian Kernel Kh(u) =
1√
2πh2

exp(− 1
2h2u

2), for h ≥ 0. The most natural

summary statistics is the mean of the observed samples, i.e. s(x) =
∑n

i=1 xi.
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The ABC likelihood according to Equation 2.16 is :

pABC(s(x)|θ) =
∫ +∞

−∞
Kh(∥s(y)− s(x)∥)p(s(y) | θ)ds(y) (2.20)

=

∫ +∞

−∞

1√
2πh

exp(−(s(y)− s(x))2

2h2
)

√
n√

2πσ
exp(−n(s(y)− θ)2

2σ2
)ds(y)

(2.21)

∝ exp(− (θ − x)2)

2(σ2/n+ h2)
) (2.22)

The true likelihood for which the observations s(x) ∼ N (θ, σ2/n) is replaced

with a higher variance under the ABC approximation s(x) ∼ N (θ, σ2/n +

h2). If h → 0, then both likelihoods are equivalent. As h gets larger, we

take into account the potential model error by increasing the uncertainty.

If we consider the misspecified scenario (Example 2), a summary statistics

based on the mean is sensitive to the contamination with a direct associa-

tion to the size of the subgroup of outliers, i.e. n− ϵ× 100 of the subgroup

of outliers.

In this thesis, the misspecification discussed is not primarily associated

with the data acquired from the real world (unknown dGp). Rather, the

primary concern revolves around errors intrinsic to the model itself. This

explains why examples studied in the literature, particularly those involving

contamination, may not be sufficient in scenarios of higher misspecification

to ensure robust inference.

2.3.3.3 Beyond the logarithmic loss

As soon as the model assumptions are not honoured, we have serious dif-

ficulties to correctly infer the parameter θ given observations x1:n. The

link between the observed data and parameters is broken because of the

model inaccuracy. Unless we can correct the model, we should not expect

asymptotic convergences of the posterior for θ. One proposed solution is to
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move away from the standard log-likelihood loss, and instead minimise a

new loss function to learn the parameter θ (Jewson et al. [2018]). New loss

functions may be able to provide more robust M-estimators (cf. Section

2.4) and a range of statistical distances have been explored with this goal

in mind, such as Stein discrepancy (Matsubara et al. [2021]) or Maximum

Mean Discrepancy (MMD) (Chérief-Abdellatif and Alquier [2019]). Briol

et al. [2019] proved for example that MMD distance-based estimators are

robust to some forms of model misspecification, and some trade-off between

statistical efficiency and robustness can be achieved through the choice of

the kernel.

Knoblauch et al. [2019] challenge the traditional Bayesian inference paradigm

and generalise it in a way that can confront model misspecification. They

derive a generalisation of the Bayesian inference problem with a new paradigm

called Generalised Variational Inference (GVI) (cf. Chapter 4). Follow-

ing the terminology established by Knoblauch et al., a Bayesian inference

method seeks to solve the following optimization problem:

P (ℓn, D,Q) : q∗(θ) = argmin
q(θ)∈Q

Eq(θ)

[
n∑

i=1

ℓ(θ, xi)

]
+D(q(θ)||p(θ)), (2.23)

with :

1. a loss ℓn defining the target parameter for inference relative to the

sample distribution of the observations. We only consider additive

losses in the thesis, i.e ℓn(θ, x1:n) =
∑n

i=1 ℓ(θ, xi).

2. a statistical divergence D : Q×Q → R+ regularising the posterior

with respect to the prior distribution p(θ) of the parameter θ.

3. a tractable family of distributions for the posterior Q ⊆ P(Θ) with

Q = {q(θ) :
∫
q(θ)dθ = 1} and P(Θ) the space of Borel probability
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measures on Θ.

The previous equation recovers standard VI posteriors defined in Equa-

tion 1.3 using the KLD and the log-likelihood loss (Definition 2.1). Most

importantly, the generalised variational posterior is closely related to the

standard Bayesian posterior p(θ | x1:n) defined previously as:

p(θ | x1:n) =
p(x1:n | θ)p(θ)∫

Θ
p(x1:n | θ)p(θ)dθ

.

Theorem 2.1. If we define the loss ℓn(θ, x1:n) =
∑n

i=1− log p(xi|θ), the

divergence D = KLD, and the family of distributions Q = P(Θ), and if

Z =
∫
Θ
exp{−ℓn(θ, x1:n)}p(θ)dθ < ∞, then P (ln, D,Q) is the standard

Bayesian posterior.

Proof.

We can rewrite the objective of Equation 2.23 as:

q∗(θ) = argmin
q∈P(Θ)

{∫
Θ

[
log(exp(ln(θ, x1:n))) + log

q(θ)

p(θ)

]
q(θ)dθ

}

= argmin
q∈P(Θ)

{∫
Θ

log

(
q(θ)

p(θ) exp(−ln(θ, x1:n))

)
q(θ)dθ

}
.

As we are only interested in finding the minimiser q∗(θ) (and not the ob-

jective value), it also holds that for any constant Z > 0, the above is equal

to:

q∗(θ) = argmin
q∈P(Θ)

{∫
Θ

log

(
q(θ)

p(θ) exp(−ln(θ, x1:n))Z−1

)
q(θ)dθ − logZ

}

= argmin
q∈P(Θ)

(
KLD

(
q(θ)||p(θ) exp(−ℓn(θ, x1:n))Z

−1
))

.

Lastly, setting Z =
∫
θ
exp{−ln(θ, x1:n)}p(θ)dθ, and noting that the KLD

is minimised uniquely if its two arguments are the same, we conclude that

q∗(θ) = p(θ | x1:n).
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This framework can provide a more flexible and adaptive approach to

Bayesian inference, allowing for a more realistic representation of the un-

derlying data-generating process. This approach has yielded more reliable

and robust results ([Knoblauch, 2019, Knoblauch et al., 2018, Husain and

Knoblauch, 2022, Altamirano et al., 2023, Dellaporta et al., 2022]) ad-

dressing various challenges associated with model misspecification, such

as accommodating outliers, handling heavy-tailed or skewed distributions,

capturing complex dependencies whilst still incorporating prior informa-

tion and expert knowledge. Notice that the parameter θ is only affected

by the loss function in the GVI problem. Therefore, alternative loss func-

tions to the log score will change the target parameter for inference to gain

robustness against model misspecification (modularity rule in Knoblauch

et al. [2019]). Chapter 4 of this thesis is grounded in the GVI framework,

where we employ a curated selection of robust loss functions. As an exam-

ple, the α-Divergence (Definition 4.3.1) exhibits better robustness for the

ϵ-contamination problem as shown in the next Section in Figure 2.9.

2.4 Review on Robust Measures

2.4.1 Deterministic models

This section delves into commonly used robust measures in the literature

to understand and evaluate the robustness of inference frameworks when

dealing with model misspecification. Defining robustness proves challeng-

ing and is highly dependent on the specific context. Nevertheless, several

common robust measures provide essential concepts for assessing the sen-

sitivity of the inference to model error. These measures will be examined

within the context of this thesis, and we will address any limitations and

propose potential improved approaches for assessing robustness in the next
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chapters.

Specifically addressing outliers, as exemplified in Example 2, robust mea-

sures like the median or the Winsorized mean offer alternatives that are

less sensitive to extreme values. The Winsorized mean is a robust measure

of central tendency that reduces the impact of outliers by replacing the

smallest and largest values in a dataset with specified percentiles before

calculating the mean. This approach helps mitigate the influence of ex-

treme values on the overall average. These measures assess the ability of

an estimator to maintain accuracy and reliability when deviations from the

true model happen.

The finite sample breakdown point (Definition 2.3) is a global measure of

robustness corresponding to the minimum proportion of observations in

the sample that need to be perturbed to make the distance between the

estimates based on the original and contaminated samples arbitrarily large.

For example, it is the percentage of outliers in a data set causing a robust

estimator to break down and produce unreliable results (cf. Example 6).

The asymptotic breakdown point is usually given by the limit of the finite

sample breakdown point as the data size n goes to infinity.

Definition 2.3 (Breakdown Point). Denote the estimator as T and the

distribution of the data as P . Define b(ϵ) = supx |T (P ) − T (Pϵ)|, where

Pϵ = (1 − ϵ)P + ϵ. The breakdown point of an estimator is denoted as ϵ∗

and is defined as ϵ∗ = inf{ϵ : b(ϵ) =∞}.

Example 6 (Breakdown Point). 1. The value of the mean 1
n

∑n
1 xi can

be changed by an arbitrarily large amount, simply by changing one of

the data points. Therefore, the finite breakdown point is just 1
n
and

the asymptotic breakdown point is zero.

2. The median can tolerate extreme values either on the left or the right

side. The finite sample breakdown point is [(n - 1)/(2n)] and the
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2.4. REVIEW ON ROBUST MEASURES

asymptotic breakdown point is 1
2
.

Typically, a higher breakdown point implies that the estimation proce-

dure is more robust to outliers or errors because it can tolerate a larger

proportion of contaminated data before the accuracy of the estimates is

compromised. It is interesting to notice the close connection between the

definition of this measure and the contamination described in example 2

where we evaluate the sensitivity of the contamination on the final estimate

(or posterior distribution).

M-estimation (Magnusson [1975]) is a broad class of statistical methods

used for estimating the parameters of a statistical model. M-estimators

seek to find the values of parameters that minimise or maximise an objec-

tive function, often derived from a likelihood function or another criterion

related to the sample data. We can consider some robust M-estimators to

mitigate the impact of outliers in the inference. Prominent examples of

M-estimators can be the Huber (Definition 2.4) and Tukey (Definition 2.5)

losses described below.

Definition 2.4 (Huber loss).

ℓδ(x) =


1
2
x2, if |x| < δ

δ|x| − 1
2
δ2, otherwise

Definition 2.5 (Tukey loss).

ℓδ(x) =


δ2

6
(1− (1− x

δ
)2)3, if |x| < δ

δ2

6
, otherwise

The log-likelihood loss discussed before transforms into a least square func-

tion when the model is Gaussian. In Figure 2.8, the Huber and Tukey losses

can replace the traditional least squares cost function to de-emphasise out-

liers since the residuals are much smaller. In both estimators, the tunable
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Figure 2.8: Comparison of Huber, least square, and Tukey loss functions.

constant, denoted as δ allows for the adjustment of the threshold that de-

fines what qualifies as an outlier in the estimation procedure.

Lastly, the influence function is used to quantify the sensitivity of the es-

timator denoted as T to small changes in the distribution around a single

data point x (Definition 2.6). ϵ represents the infinitesimal perturbation

applied to the distribution in the definition.

Definition 2.6 (Influence function). The influence function (IF) of a func-

tional T at a distribution P is given by:

IF (x;T, P ) = lim
ϵ→0

T ((1− ϵ)P + ϵδx)− T (P )

ϵ

δx denotes a discrete distribution that assigns probability 1 to the point x.

The influence function provides insights into the robustness of the esti-

mator at different data points and helps assess its behaviour under small

perturbations of the distribution.
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2.4.2 Statistical models

In the previous section, we presented robustness measures for estimators,

primarily within a frequentist framework. They are not the only existing

measures but the best-known and widely used measures, especially the

influence function and the breakdown point.

In the context of Bayesian statistics, we establish the measure of influence

by considering distances between posteriors. One can evaluate the influ-

ence of the kth observation on the posterior distribution by removing it

from the observation set and estimating the posterior distribution using

the remaining observations ([Peng and Dey, 1995, Kurtek and Bharath,

2014]).

Let xk denote the kth observation, and x(−k) represent the set of obser-

vations obtained by excluding the kth one. Given the baseline posterior

p0 = p(θ | x1:n), let us remove one data point xk and obtain the poste-

rior pk = p(θ | x(−k)). The influence function proposed by Kurtek and

Bharath [2015] uses the geodesic distance under the Fisher–Rao metric (SI

Amari et al. [1987]). The influence with the respective likelihood f0(x|θ)

and fk(x(−k)|θ) with x corresponding to the entire dataset x1:n is defined

by:

IF (k) = dFR(p0, pk) =

[∫
Θ

1

f0(xk|x(−k), θ)
p0dθ

]−1/2
∫
Θ

[fk(x|θ)
f0(x|θ)

]1/2
p0dθ.

(2.24)

Given a sample from the baseline posterior density, θ1, ..., θN , Kurtek and

Bharath [2015] propose the following Monte Carlo estimate of IF (k):

Î(k) = cos−1
[ b
N

N∑
i=1

ai

]
(2.25)
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Figure 2.9: The influence, as described in Kurtek and Bharath [2015], of
removing one out of 1000 observations from the ϵ-contaminated distribution
when fitting N (µ, σ2) under the KLD divergence and the Alpha-Divergence
with two values for α is depicted. For α = 0.75, the influence is bounded
by the black horizontal line.

with

ai =
[fk(x|θi)
f0(x|θi)

]1/2
b =

[ 1
N

N∑
i=1

1

f0(xk|x(−k), θi)

]−1/2

Generating only one posterior sample is sufficient to assess the influence

measure for all observations, making this approach computationally tractable.

Figure 2.9 demonstrates a rise in influence for observations in the tails

with the Kullback Leibler divergence, contrasting with a decrease in in-

fluence for outlying observations under the α-robust divergence for the ϵ-

contamination problem. In this setup, we compute the Fisher-Rao distance

between two Gaussian posteriors and the Monte Carlo estimate is there-

fore straightforward. The α divergence shows concave influence functions,

particularly with lower values of α.

The robustness of various methods has been extensively studied when con-

sidering contaminated data, as described above. In this thesis, we will

meticulously select mechanistic models and subject them to various per-
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turbations. Our objective is to assess whether small structural misspeci-

fications in the model have significant consequences for the robustness of

different inference methods. The thesis will ideally help us understand the

sensitivity of outcomes to changes in model assumptions, providing valu-

able insights into solutions to make safer inferences.

2.5 Considerations

If the model is a good approximation of the dGp, the standard Bayesian

inference strategy is often successful, with an optimal posterior when the

true unknown distribution belongs to the class of the fitted model. How-

ever, standard Bayesian methods are often incapable of discerning small

deviations from the model. As the data set grows, even small deficien-

cies in the model can be disruptive, and therefore Bayesian posteriors may

become highly sensitive to seemingly minor deviations from assumptions

made about the model. Our objective is to ensure the reliability and ac-

curacy of inferential methods even in the presence of misspecification. To

achieve this goal, we elaborate on various approaches documented in the

literature to tackle issues associated with model misspecification.

Both Approximate Bayesian Computation and History Matching can pro-

vide useful information in the presence of misspecified models, particularly

by evaluating which parameters should be excluded in the inference process.

They can rely on summary statistics based on the researcher’s knowledge or

threshold of some user-specified loss. However, these methods may lead to

a loss of information, resulting in an incomplete representation of the data

and discarding valuable insights. Other methods discussed in this chapter

opt to make slight modifications to the log score function, also known as

the annealed posterior, to mitigate the impact of the likelihood on the final

posterior estimate. Alternatively, some approaches entirely shift to new
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loss functions for more robust inference. The GVI framework establishes

a framework for incorporating any new loss functions into the optimiza-

tion variational procedure. These new losses may demonstrate robustness

properties, as elaborated in Chapter 4.

When examining classical robust measures, which assess the effects of de-

viations from underlying statistical assumptions, we discover that model

misspecification is primarily explored through the perspective of contami-

nating a distribution or when the model contains minor errors. They often

assume correct model specification (Type 1), but what about their effec-

tiveness when the model is structurally wrong (Type 2 and Type 3)? If a

linear regression model is used to analyse data with a nonlinear relationship

(Example 1), robust measures studied above will not detect the structural

misspecification. In cases where a dynamic is missed, examining the in-

fluence of a single data point or a small subset may not be particularly

informative.
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Chapter 3

Auto-Encoding Variational

Bayes for physics-informed

models

Summary: This chapter describes an automatic variational inference method

for inference in dynamical systems. We use the particular variational auto-

encoders architecture to perform inference for ordinary differential equation

models. The methodology leverages differentiable ODE solvers, showcas-

ing the potential to enhance inference within physics-informed models. We

delve into its application and implications in situations where model spec-

ifications may deviate from the actual underlying processes.

This chapter is organised as follows. In Section 3.1, we offer a techni-

cal introduction to variational inference, and in Section 3.3, we provide

an overview of automatic differentiation. In Section 3.2, we present the

variational autoencoder framework within the context of generative mod-

els based on ordinary differential equation models. We utilise PyTorch

automatic differentiation to facilitate the backpropagation of mechanistic

models without the conventional reliance on neural networks, presenting

our results for well-specified and misspecified models.
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3.1. VARIATIONAL INFERENCE

3.1 Variational Inference

3.1.1 Variational Bayes

Let x denote the data and p(x | θ) the likelihood function for a postulated

model, with θ ∈ Θ the vector of model parameters to be estimated. Let

p(θ) be the prior. Bayesian inference encodes all the available information

about the model parameter θ in its posterior distribution with density

given by Equation 1.1. Bayesian inference typically requires computing

expectations with respect to the posterior distribution. Determining these

expectations can pose challenges, due to the intractability of the posterior

density p(θ | x) as the normalising constant p(x) is often unknown. In these

situations, Bayesian inference is often performed using sampling methods

such as Markov Chain Monte Carlo (MCMC) which generates samples from

the posterior p(θ | x). Variational Bayes (VB) solves the Bayesian inference

problem by solving an optimization problem in contrast with Markov Chain

Monte Carlo (MCMC) where we approximate the posterior by sampling

from it. VB seeks to approximate the posterior distribution by selecting

an optimal distribution q(θ) from some tractable family of distributions Q,

such as the family of Gaussian distributions (cf. Section 3.1.2). The best

VB approximation q∗(θ) ∈ Q is found by minimising the Kullback-Leibler

divergence (KLD) from q(θ) to p(θ | x) ([Ormerod and Wand, 2010, Blei

et al., 2016]) :

q∗(θ) = argmin
q∈Q

{
KLD(q(θ)∥p(θ | x) :=

∫
q(θ) log

q(θ)

p(θ | x)
dθ

}
. (3.1)

Any posterior expectations can then be performed by replacing the in-

tractable posterior p(θ | x) with the tractable VB approximation q∗(θ).

We note that minimising the Kullback-Leibler Divergence (KLD) in Equa-
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tion 3.1 is equivalent to maximising the lower-bound defined below.

KLD(q(θ)||p(θ | x)) =
∫
θ

q(θ) log
q(θ)

p(θ | x)
dθ (3.2)

=

∫
θ

q(θ) log
q(θ)p(x)

p(x, θ)
dθ (Conditional probability (CP))

(3.3)

= log p(x) +

∫
θ

q(θ) log
q(θ)

p(x, θ)
dθ (integretation over θ)

(3.4)

= log p(x)− LB(q). (definition of the ELBO) (3.5)

where

LB(q) =
∫
Θ

q(θ) log
p(θ, x)

q(θ)
dθ

is called the Evidence Lower Bound (ELBO).

From the above, we can see that finding the distribution q(θ) that max-

imises the ELBO is equivalent to finding the distribution q(θ) that min-

imises the KLD to the posterior. The difference between the ELBO and

the KLD is precisely the evidence log p(x) (marginal likelihood) in Equa-

tion 3.5, which is the quantity that the ELBO bounds.

log p(x) ≥ LB(q) = Eq(θ)[log p(x, θ)]− Eq(θ)[log q(θ)]. (3.6)

Intuitively, the first term Eq(θ)[log p(x, θ)] in Equation 3.6 encourages vari-

ational distributions to assign high mass on configurations of the latent

variables that effectively explain the given observations. The second term

−Eq(θ)[log q(θ)] := H(q(θ)) is the entropy of the variational distribution

that encourages variational distributions to be diverse and spread their

mass across multiple configurations. This term regularises the problem

and avoids data overfitting.
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3.1.2 Mean Field Variational Inference

If we allow Q, the set of approximations considered in the optimization to

be unconstrained, the solution to Equation 3.1 is q∗(θ) = p(θ | x). This

solution is useless as it is itself intractable. Depending on the constraint

imposed on the class Q, VB algorithms can be categorised into two classes:

Mean Field VB (MFVB) and Fixed Form VB (FFVB).

Mean Field Variational Inference (MFVI) has its origins in the mean-field

theory of physics (Opper and Saad [2001]) and considers an approximating

family Q that includes all factorizable densities :

Q =
{
q(θ) : q(θ) =

d∏
i=1

qi(θi)
}
.

When we assert that the variational family has this factorized form, we

can derive a coordinate ascent algorithm and obtain a fully factorized vari-

ational distribution that maximises the ELBO via simple iterative updates.

For more details on the mean-field approximation and the so-called naive

mean-field algorithm and its geometrical interpretation, we refer the reader

to Bishop [2006] and Wainwright and Jordan [2007].

FFVB assumes a fixed parametric form for the variational approximation

density q, i.e. q = qϕ belongs to some class of distributions Q indexed by

a vector ϕ called the variational parameter. For example, we choose qϕ

to be a Gaussian distribution with mean µ and covariance matrix Σ. The

variational parameter set is ϕ = (µ,Σ). FFVB finds the best qϕ in the class

Q by optimizing the lower bound :

LB(ϕ) = Eqϕ

[
log
(p(θ)p(x | θ)

qϕ(θ)

)]
= Eqϕ [hϕ(θ)], (3.7)

47



3.1. VARIATIONAL INFERENCE

with

hϕ(θ) := log
(p(θ)p(x | θ)

qϕ(θ)

)
.

The ELBO LB(ϕ) is now a function of the variational parameters ϕ, which

we can optimize using gradient-based optimization methods.

3.1.3 Stochastic Variational Inference

The coordinate ascent algorithm used in MFVI is inefficient for large data

sets because it requires evaluating the likelihood for the entire dataset for

each update. An alternative approach to coordinate ascent is gradient-

based optimization, where the ELBO gradients are updated at each it-

eration. This perspective motivates the foundation for the scalability of

variational inference through the utilisation of Stochastic Variational In-

ference (SVI) ([Hoffman et al., 2013, Hoffman and Blei, 2014]) and Black

Box Variational Inference (BBVI) (Ranganath et al. [2013]). In SVI, we

build a noisy estimate of the gradient ∇ϕLB(ϕ) by sampling (Angelino

et al. [2016]) a batch of the data and then use stochastic gradient descent

([Zhang et al., 2019, Robbins and Monro, 1951]) so that in every iteration,

one randomly selects mini-batches to obtain a stochastic estimate of the

ELBO.

A convenient form of the ELBO gradient can be obtained as follows:

∇ϕLB(ϕ) = ∇ϕEqϕ(θ)

[
log
[p(x, θ)
qϕ(θ)

]]
, (3.8)

=

∫
Θ

∇ϕ

(
log
[p(x, θ)
qϕ(θ)

]
qϕ(θ)

)
dθ, (Leibniz’s rule) (3.9)

=

∫
Θ

log
[p(x, θ)
qϕ(θ)

]
∇ϕ(qϕ(θ)) + qϕ(θ)∇ϕ(log

[p(x, θ)
qϕ(θ)

]
)dθ. (3.10)
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The second term can be simplified since p(x, θ) is independent of ϕ.

Eqϕ(θ)

[
∇ϕ log

[p(x, θ)
qϕ(θ)

]]
= −Eqϕ(θ)

[
∇ϕ log qϕ(θ)

]

Note the log-derivative trick (LDT):

qϕ(θ)∇ϕ(log qϕ(θ)) = ∇ϕ(qϕ(θ)),

so that the ELBO gradient becomes:

∇ϕLB(ϕ) = Eqϕ(θ)

[
hϕ(θ)×∇ϕ log qϕ(θ)

]
− Eqϕ(θ)

[
∇ϕ log qϕ(θ)

]]
(3.11)

= Eqϕ(θ)

[
hϕ(θ)×∇ϕ log qϕ(θ)

]
−∇ϕ

∫
qϕ(θ)dθ. (3.12)

= Eqϕ(θ)

[
hϕ(θ)×∇ϕ log qϕ(θ)

]
. (3.13)

The second term in Equation 3.12 is obtained with the log-derivative trick

again and is equal to zero since the density function integrates to 1. The

gradient∇ϕLB(ϕ)) has then a particular form often referred to as the score-

function gradient. It follows from the above that, if we generate θi ∼ qϕ(θ),

̂∇ϕLB(ϕ)) = hϕ(θi)×∇ϕ log qϕ(θi) is an unbiased estimator of the gradient

∇ϕLB(ϕ). If we use ̂∇ϕLB(ϕ)) instead of ∇ϕLB(ϕ), we have a stochastic

optimization algorithm (Kingma and Ba [2014]) following the basic steps

given in the Algorithm below.

Algorithm 1 (Basic stochastic gradient descent FFVB algorithm).

• Initialize ϕ(0) and stop the following iteration if the stopping criterion

is met.

• For t = 0, 1, . . .

- Generate θs ∼ qϕ(t)(θ), s = 1, . . . , S

- Compute the unbiased estimate of the ELBO gradient denoted :
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̂∇ϕLB(ϕ(t)) :=
1

S

S∑
s=1

∇ϕ log qϕ(θs)× hϕ(θs)|ϕ=ϕ(t) .

- Update ϕ(t+1) = ϕ(t) + αt ◦ ̂∇ϕLB(ϕ(t))

The algorithmic parameter S is referred to as the number of Monte Carlo

samples and ◦ denotes the Hadamard product (element-wise multiplica-

tion). The sequence of learning rates {αt} should satisfy the theoretical

requirements αt > 0,
∑

t α
2
t <∞ to converge to a local optimum (Robbins

and Monro [1951]). When the variance of the gradient of the ELBO is

large, the learning rate αt should be small, otherwise the update ϕ(t+1) will

jump all over the place. Denote gt := ̂∇ϕLB(ϕt) be the gradient vector at

step t, and vt := (gt)
2.

The commonly used adaptive learning rate methods such as ADAM (Kingma

and Ba [2014]) used within this thesis (https://pytorch.org/docs/stable/

generated/torch.optim.Adam.html) and AdaGrad (Duchi et al. [2011])

work by scaling the coordinates of gt by their corresponding variances.

These variances are estimated by moving average following :

Algorithm 2 (Adaptive learning methods).

• Initialize ϕ(0), g0, v0 and set ḡ = g0, v̄ = v0. Let β1, β2 ∈ (0, 1) be

adaptive learning weights.

• For t = 0, 1, . . ., update :

ḡ = β1ḡ + (1− β1)gt

v̄ = β2v̄ + (1− β2)vt

ϕ(t+1) = ϕ(t) + γt
ḡ√
v̄
,

with γt a scalar step size.

Stochastic gradient methods have been adapted to various settings, such

as variational autoencoders ([Doersch, 2016, Rezende and Mohamed, 2015,
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Kingma and Welling, 2013]) described in this Chapter. While the use of

stochastic gradients substantially reduces the per-iteration cost in Algo-

rithm 1, it introduces additional variance into the sampling process at each

step, necessitating a larger total number of iterations. In practice, score

function gradients often have high variance and thus are frequently used in

conjunction with variance reduction techniques (Miller et al. [2017]) such

as the reparameterization trick (Kingma and Ba [2014]).

3.1.4 Reparameterization trick

The reparameterization trick is a way to rewrite the expectation so that

the distribution with respect to which we take the gradient is independent

of the parameter θ. Suppose that for θ ∼ qϕ(·), there exists a deterministic

function g(ϕ, ϵ) such that θ = g(ϕ, ϵ) ∼ qϕ(·) where ϵ ∼ pϵ(·). We emphasise

that pϵ(·) must not depend on ϕ. For example, if qϕ(θ) = N (θ;µ, σ2), then

θ = µ+ σϵ with ϵ ∼ N (0, 1).

We can write the ELBO LB(ϕ) as an expectation with respect to pϵ(·)

LB(ϕ) = Eϵ∼pϵ

[
hϕ(g(ϕ, ϵ))

]
, (3.14)

where Eϵ∼pϵ(·) denotes expectation with respect to pϵ(·).

If we differentiate under the integral sign,

∇ϕLB(ϕ) = Eϵ∼pϵ

[
∇ϕ(g(ϕ, ϵ))

⊤∇θhϕ(θ)
]
+ Eϵ∼pϵ

[
∇ϕhϕ(θ)

]
, (3.15)

where the θ within hϕ(θ) is understood as θ = g(ϕ, ϵ) with ϕ fixed so that

Eϵ∼pϵ

[
∇ϕhϕ(θ)

]
= 0. Finally, the gradient in the Equation 3.15 can be

estimated unbiasedly using i.i.d samples ϵS ∼ pϵ(·), s = 1, . . . , S as :

̂∇ϕLB(ϕ) =
1

S

S∑
s=1

∇ϕg(ϕ, ϵs)
⊤∇θhϕ(g(ϕ, ϵs)) (3.16)

For each parameterization, the accuracy of the estimator in Equation 3.16
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depends on the number of Monte Carlo samples S. With the reparam-

eterization trick, a small S is often enough to estimate the lower bound

gradient. The most popular variational Bayes approach utilised through-

out the thesis is Gaussian variational Bayes, where the approximation qϕ(θ)

is a Gaussian distribution with a mean µ and covariance matrix Σ.

3.2 Physics-informed Variational Auto En-

coder

3.2.1 Autoencoding Variational Bayes

Variational autoencoders (VAEs) ([Kingma and Welling, 2013]) are a type

of probabilistic model designed to learn latent, low-dimensional represen-

tations of data. As the name suggests, VAEs belong to the family of au-

toencoders [Tschannen et al., 2018, Vincent et al., 2008]. An autoencoder

is a model that takes a vector x, compresses it through an encoder function

hϕ(x) (ϕ a given parameter) into a lower-dimensional vector z, and then

decompress z through a decoder function fθ(z) (θ is a given parameter)

back into x with the following basic architecture :

Figure 3.1: Standard autoencoder architecture. Retrieved from https:

//mbernste.github.io/posts/vae/ on September 3, 2023.

Autoencoders aim to minimise the reconstruction error between the input

and the output of the decoder, and the learned latent representation can be

used for tasks such as data compression, data visualisation, and anomaly
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detection (Krissaane et al. [2019]). Standard autoencoders do not have

any probabilistic assumptions and do not model any probability distribu-

tion over the input data by contrast with Variational Auto Encoder (VAE)

([Pu et al., 2016, Burda et al., 2015]) that learns a probabilistic distribution

over the latent space. The VAE framework provides a method for jointly

learning deep latent-variable models and corresponding inference models

using stochastic gradient descent. We will introduce an encoder, detailed

in Section 3.2.2, and a decoder, explained in Section 3.2.3, both connected

through a loss function. This loss function is minimised to infer latent pa-

rameters of the underlying process. In the preceding section (Section 3.1),

we introduced the approximate posterior qϕ(θ | x). In the context of the

Variational Autoencoder, this approximate posterior corresponds to the

encoder. The objective is to optimize the variational parameters ϕ such

that:

qϕ(θ) = qϕ(θ | x) ≈ p(θ | x). (3.17)

The optimization objective of the variational autoencoder, like in other

variational methods is the evidence lower bound, abbreviated as LB.

LB(ϕ) = Eqϕ

[
log
(p(θ)p(x | θ)

qϕ(θ)

)]
. (3.18)

The likelihood model p(x | θ) forms the decoding component, with addi-

tional details outlined in Section 3.2.3.

3.2.2 Variational encoder approximation

Assumption 1. The variational approximation is qϕ(θ) = N (θ | µ,Σ),

with µ = (µ1, . . . , µk)
⊤ and Σ = diag(exp(2λ1), . . . , exp(2λk))), λi = log(σi), σi =

Σ
1
2
ii, where N (· | µ,Σ) denotes the Gaussian density with mean vector µ and

(diagonal) covariance matrix Σ.
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Assumption 1 implies an independence structure known as MFVB ex-

plained in 3.1.2. These assumptions are very useful for making the op-

timization tractable but would be highly restrictive when the parameters

are not independent in Chapter 5.

Under this assumption, the variational distribution takes the form :

qϕ(θ) =
k∏

i=1

N (θi | µi, exp(2λi)), (3.19)

with the variational parameters µ = (µ1, µ2, . . . , µk)
⊤ and λ = (λ1, . . . , λk)

⊤,

and the vector of all variational parameters is ϕ = (µ⊤, exp(2λ)⊤)⊤. The

gradient of LB(ϕ) is then partitioned as :

∇ϕLB(ϕ) = (∇µLB(ϕ)⊤,∇λLB(ϕ)⊤)⊤.

Following the reparametrization trick, we assume in this thesis that θ ∼

q(θ;ϕ) when q(θ;ϕ) ∼ N (µϕ, σ
2
ϕ) with λ = log(σϕ). Then g(ϵ, θ) = µ +

exp(λ) ◦ ϵ with ϵ ∼ N (0, I) where I is the k × k identity matrix. The

gradient of the ELBO under reparametrization is given in Equation 3.15

and its estimate in Equation 3.16.

3.2.3 ODE-Informed Decoder

In this architecture, θ ∈ R is the parameter of the first-order ODE:

dx

dt
= fθ(x, t), (3.20)

where x : T → Rd is the state function of a continuous, real-valued time

variable t ∈ R. The variational autoencoder architecture [Roeder et al.,

2019] is employed, with the decoder being the dynamic model.

The state evolution will be governed by a first-order derivative with a known
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and fixed initial value x(t0) ∈ Rd. Given the differential f : Rd → Rd, the

system follows an ordinary differential equation (ODE) model with state

solutions :

x(T ) = x(t0) +

∫ T

t0

fθ(x, t)dt, (3.21)

with θ ∈ R.

The state solutions are in practice computed by solving this initial value

problem with efficient numerical solvers, such as Runge-Kutta (Schober

et al. [2014]). Recently, Chen’s seminal paper from 2018 (Chen et al. [2018])

introduces a comprehensive framework for the differentiation of ODEs us-

ing continuous neural networks. By combining well-known sensitivity and

adjoint methods (cf. Section 3.3) with modern automatic differentiation

packages, the neural ODE framework (Chen et al. [2018]) enables gradient

descent through ODE solvers (Massaroli et al. [2020]).

3.2.4 Variational Auto-encoding dynamical systems

In the section 3.2.2, the generative process is given through the Gaussian

encoder using the reparametrization trick with λϕ = log(σϕ):

ϵ ∼ N (0, I)

(µϕ, λϕ)← ϕ

θ ← µϕ + exp(λϕ) ◦ ϵ

, where the mean-field approximation Q consists of distributions whose

variables are all mutually independent:

qϕ(θ) =
∏
i

N (θi | µϕi
, exp(2λϕi

)). (3.22)

The decoding process consists of solving the ODE system in Equation 3.20
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with the generative process fθ(x, t) with θ the output of the encoder and the

state vector x(t) over time. Solving the dynamical system with the param-

eter θ results in the vector x assumed normal with mean the observations

y and a variance noise σ2 (assumed known) :

x = ODESolve(fθ, x(t0))

As seen in Section 2.3.3.3 and at the beginning of this chapter, we aim to

find the variational Bayesian posterior distribution q(θ) = N (µϕ, exp(2λϕ))

for the latent parameter θ by maximising the ELBO LB(ϕ) ;

LB(ϕ) = Eq(ϕ)[log p(y | x, σ2)] + KLD(qϕ(θ)||p(θ)), (3.23)

with ϕ the variational parameter to optimize. The first term is the re-

construction loss denoted as Lrecon. The second term denoted as LKL

can be easily computed when both distributions are Gaussians. The prior

distribution p(θ) for the parameter θ is considered Gaussian, aka p(θ) =

N (µprior, σ
2
prior).

The complete framework is depicted in Figure 3.2. The input real data

are compared to the output realizations obtained by solving the ODE with

the chosen parameter θ. Neural networks are not used in either the en-

coder or the decoder. For neural networks, the encoder processes the input

data through multiple layers to produce a distribution in the latent space,

typically parameterized by the mean and variance (or log-variance) of a

Gaussian distribution.

We use the deep learning library PyTorch where the encoder and differen-

tial function parameters are jointly optimized using the Adam optimizer

in Algorithm 1. We employ the ODE solver from the Python package

torchdiffeq (Chen et al. [2018]) to integrate an ODE and perform back-
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Figure 3.2: Variational Auto-encoding dynamical systems. (A): The com-
putational flow diagram for the encoding process, sampling from the vari-
ational posterior, and simulating the dynamical system is presented. Note
that the sampling and ODE solver operations are differentiable. The latent
parameter of the ODE system is θ and the control parameters are given
in u. (B): Graphical model for the trajectory variable y. Dashed lines
represent dependencies in q, and solid lines in p. We observe data points
y which depend on some latent parameters θ obtained via the variational
parameters (µϕ, σϕ).

propagation for gradient computation.

3.3 Automatic Differentiation

The success of Deep Learning owes much to Automatic Differentiation (AD)

Automatic Differentiation (AD) (Griewank and Walther [2008]), a crucial

tool enabling the efficient calculation of the gradient of useful functions

with computational mathematics and computer science. Widely adopted in

frameworks such as TensorFlow (Abadi et al. [2015]) and PyTorch (Paszke

et al.), the key idea behind AD is to decompose all numerical computations

into a finite set of elementary operations for which derivatives are known

and combine the derivatives of the constituent operations through the chain

rule to obtain the derivative of the overall composition.

Consider the target function f : Rn → Rm, with n independent (input)

variables xi and m independent (output) variables yj. The corresponding

m × n Jacobian matrix J has (i, j)th component composed of the partial
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Algorithm 1 Variational Auto-encoding dynamical systems

1: Input : dynamic model fθ(x, t), dataset y1:n, initial state x(t0), data
noise σ2, prior p(θ) ∼ N (µprior, σ

2
prior), Initialize variational parameters

ϕ , sampling size M, learning rate α
2: repeat
3: µϕ, λϕ ← Encoder (ϕ)
4: Generate noise ϵi ∼ N (0, I), i = 1, ..,m
5: for l← 1 to M do
6: θ ← µϕ + exp(λϕ)⊙ ϵ(l) {Reparametrization trick}
7: end for
8: Define the augmented ODE {Forward/Reverse mode}
9: Decoder x← ODESolve (fθ, x(t0))

10: Lrecon ← log p(x | y, σ2) = −n log(σ
√
2π)−

∑n
i

(yi−xi)
2

2σ2

11: LKL ← (log(
σϕ

σprior
) +

σ2
ϕ+(µϕ−µprior)

2

2σ2
prior

− 1
2
)

12: LB ← Lrecon − LKL {Loss function}
13: ϕ← ϕ+ α∇ϕLB {Gradient descent}
14: until convergence of ϕ
15: return ϕ

derivative of the jth output with respect to the ith input.

Jij =
∂yj
∂xi

The ELBO LB(ϕ) in the VAE has only one-dimensional output so the

Jacobian matrix is simply the gradient vector ∇LB(ϕ).

When f is a composite function: f(x) = h ◦ g(x) = h(g(x)), with x ∈ Rn,

g : Rn → Rk and h : Rk → Rm. The chain rule with the elementary matrix

multiplication gives :

Jij =
∂yi
∂xj

=
∂hi

∂g1

∂g1
∂xj

+
∂hi

∂g2

∂g2
∂xj

+ . . .+
∂hi

∂gk

∂gk
∂xj

.

More generally, if the objective function f is the composite of R functions,

f = fR ◦fR−1 ◦ . . .◦f 1, the Jacobian matrix satisfies J = JR ·JR−1 · . . . ·J1.

We further illustrate the mechanisms of AD, by considering the Lrecon, in

line 11 of the Algorithm 1 where the log-likelihood function for an observed
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data point y is :

f(y) := log p(y | µ, σ2) = −1

2

(y − µ

σ

)2
− log(σ)− 1

2
log(2π). (3.24)

AD can operate in forward or reverse mode also known as adjoint mode

explained below. In particular, PyTorch supports reverse-mode (Speelpen-

ning [1980]) AD for scalar functions where Variables store extra metadata

for the computation of the gradients.

3.3.1 Forward Mode

AD in forward mode uses intermediate variable vi with the input variable

x that denotes the directed partial derivative of v with respect to that one

root variable :

v̇i =
∂vi
∂x

(3.25)

Taking back the log-likelihood in Equation 3.24, we can split into elemen-

tary operations given in Figure 3.3 yielding the composite structure:

(y, µ, σ)← (y − µ, σ)← (
(y − µ

σ

)
, log σ)← . . .← log p(y | µ, σ2)

The partial derivatives of composite expressions with respect to the pa-

rameter µ are obtained with the chain rule where we set only one of the

variables µ̇ = 1 and the rest to zero :

∂f(y)

∂µ
=

∂f(y)

∂v10

∂v10
∂v9

. . .
∂v1
∂µ

Consider v5, which is connected to v4 and v3 via the graph 3.3:

∂v5
∂µ

=
∂v5
∂v4
× ∂v4

∂µ
=

1

σ
× (−1)
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Figure 3.3: Expression graph for the log-normal density for Equation 3.24.
At the top of the graph, we have the output f(y) with each node being an
intermediate variable and the inputs y, µ, σ.

At each forward step, we compute one column of the Jacobian matrix that

constitutes the partial derivatives of all the outputs with respect to one

input. We can hence compute a full Jacobian matrix in n forward steps.

We know how the gradients of the ELBO composed of both the log-likelihood

and the KLD can be obtained through the procedure above. However, in

Algorithm 1, the ODE solver used involves steps that are automatically

saved for AD with respect to ϕ.

3.3.2 Reverse Mode

AD in the reverse mode propagates derivatives backward from a given

output. We add to each intermediate variable vi an adjoint:

v̄i =
∂yj
∂vi

,
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which represents the sensitivity of a considered output yj, with respect

to changes in vi. After executing a forward evaluation, as was done for

forward mode, the reverse pass calculates the adjoints. We start with the

final output, setting its adjoint with respect to itself to 1, and compute

successive adjoints until we reach the initial variables of interest. One row

of the Jacobian matrix is obtained at each reverse step, corresponding to

the adjoints of all the inputs with respect to one output. For the ELBO

objective function, with only one-dimensional output, this row corresponds

exactly to the gradient.

In terms of complexity, the forward mode is on the order of O(n), where

n is the dimension of the input vector while the reverse mode is on the

order of O(m) with m is the dimension of the output vector. Since most

loss functions in Machine Learning including the ELBO are scalar, the

reverse mode is more favorable, which explains the popularity of back-

propagation AD. However, the reverse mode implies going through the

expression graph twice: one forward trace to get the value of the function

and the intermediate variables; and one reverse trace to get the gradient.

This means performance overhead because the expression graph and the

values of the intermediate variables need to be stored in memory, especially

with the use of an ODE solver through differentiation.

3.3.3 Differentiation through ODE solvers

Considering the dynamics in Equation 3.20 with the parametric function

fθ(x, t) and x ∈ Rd, we define the sensitivity of the state vector x with

respect to model parameter θ at time t by :

s(t; θ) =
dx(t)

dθ
. (3.26)

The forward method will extend the ODE system in Equation 3.20 with the
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Jacobian df
dx

of the derivative function f with respect to the current state

xt, and the gradient of the derivative function df
dθ

with respect to the param-

eter θ. The forward-sensitivity approach works by deriving a differential

equation for s(t; θ):



ds

dt
(t, θ) =

d

dt

dx

dθ

=
d

dθ

dx

dt
by Clairaut’s theorem

=
d

dθ
f(x; θ)

=
∑
i

∂f

∂xi

dxi

dθ
+

∂f

∂θ
by the chain rule

=
∑
i

∂f

∂xi

si +
∂f

∂θ
.

(3.27)

By solving this enlarged system, for each parameter, an additional full set

of sensitivity states is added. Given d state equations and m parameters,

the total size of the ODE system is O(d+ d ·m).

The adjoint ODE solver method differs from the forward ODE solvers since

it integrates forward in time a system of d equations to compute the ODE

solution and then integrates backwards in time another system of d equa-

tions to get the sensitivities bringing the size to O(d + d + m). For any

scalar loss function L that depends on the output of the ODE solver (which

is the case for the ELBO),

L(xT ) = L
(∫ T

t0

fθ(x, t)dt
)
, (3.28)

where fθ(x, t) describes the dynamics in Equation 3.20.

Pontryagin [1962] shows that its derivative takes the form of another initial

value problem :

dL

dθ
= −

∫ T

t0

( ∂L

∂x(t)

)T ∂fθ(x, t)
∂θ

dt. (3.29)

The quantity a(t) = − ∂L
∂x(t)

is the adjoint state of the ODE. The adjoint
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method ([Chen et al., 2018, Cun, 1988]) provides :

da(t)

dt
= −aT (t)∂fθ(x, t)

∂x
. (3.30)

We then combine Equation 3.30 with the ODE in Equation 3.20 and solve

backward-in-time the adjoint equation within reverse-mode automatic dif-

ferentiation.

Example 7 (Pendulum system). The differential equation that represents

the motion of a simple pendulum where g is the magnitude of the gravita-

tional field, ℓ is the length of the cord, and x is the angle from the vertical

to the pendulum is :

d2xt

d2t
+

g

ℓ
sin(xt) = 0 (3.31)

Consider the pendulum system :

d2xt

dt2
= −θ sin(xt) := fθ(x(t))

with x(0) = 1 and ẋ(0) = 0. We can rewrite the previous equation as a

two-dimensional model with θ as the parameter of interest.

dx1

dt
= x2

dx2

dt
= −θ sin(x1), (3.32)

where x1 and x2 both are states functions of the time t and

fθ(xt) =

 x2

−θ sin(x1)

 .

The sensitivity is given by:

 s1

s2

 =

 dx1

dθ

dx2

dθ

 .
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where we obtain the ODE gradients via :

∂f

∂θ
=

 0

− sin(x1)

 ,

∂f

∂x1

=

 0

−θ cos(x1)

 ,

∂f

∂x2

=

 1

0

 .

Putting this together, we have the four-dimensional ODE given by :

d

dt



x1

x2

s1

s2


=



x2

−θ sin(x1)

s2

−a cos(x1)s1 − sin(x1)


with initial conditions x1(0) = 1, x2(0) = 0, s1(0) = 0, s2(0) = 0.

In the ELBO term LB(ϕ) given in Equation 3.7, the forward evaluation of

the gradient of the expectation term ∇θ log p(y | θ), requires solving the aug-

mented ODE system with the sensitivity terms. If xi(ti; θ) is the decoding

data with the parameter θ, we have

log p(y|θ) = − 1

2σ2

∑
(yi − xi(ti; θ))

2 + constant,

which has derivative

d log p(y|θ)
dθ

=
1

σ2

∑
i

(yi − xi(ti; θ))
dxi(ti; θ)

dθ
.

But we want the derivative of log p(y | θ = µϕ + exp(λϕ)ϵ) with respect to
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ϕ = (ϕ0, ϕ1) = (µϕ, log(σ
2
ϕ)).

∇ϕ log p(y | θ) = ∇θ log p(y | θ)

 1

exp(ϕ1/2)e
2

 . (3.33)

So we find that

∇ϕ

(
1

S

∑
s=1

p(y | µϕ + exp(λϕ)es)

)
=

1

S

S∑
s=1

d log p(y | θs)
dθs

 1

exp(ϕ1/2)es
2

 ,

where θs = µ+ τes = ϕ0 + exp(ϕ1/2)es.

3.4 Mechanistic misspecified models

3.4.1 Example 1: Free fall with air resistance

For the true model, consider an object in free fall near the surface of the

earth. This is a two-dimensional system described by a displacement ve-

locity state vector (x, y). Assuming the object has constant acceleration θ

and is subject to Stokes’drag with coefficient δ, the differential equations

determining the true system with respect to time are :

dy

dt
= −θ − δy

dx

dt
= y (True dGp). (3.34)

For our misspecified model, we will omit the air resistance and assume a

constant acceleration θ. This is equivalent to the model:

d2x

d2t
= −θ (Misspecified model), (3.35)

where θ is the parameter of interest.

Figure 3.4 shows how the discrepancy increased with both times and in-

creasing parameter δ. This example represented the Type 2 misspecifica-

tion described in Chapter 2.
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Figure 3.4: State trajectories for Equation 3.34 and 3.38 with an initial
condition of x0 = (0.1, 0.5), parameter θ = 10, and data noise σ2 = 0.01
(left plot) and σ2 = 0.1 (right plot), are depicted with varying values for δ.

3.4.2 Example 2a: Simple gravity pendulum with small

angle approximation

The differential equation that represents the motion of a simple pendulum

where g is the magnitude of the gravitational field, ℓ is the length of the

cord, and x is the angle from the vertical to the pendulum is :

d2x

d2t
+

g

ℓ
sin(x) = 0 (True dGp). (3.36)

We choose a misspecified model with a small angle approximation, i.e

sin(x) ≈ x if x << 1 :

d2x

d2t
= −θx (Misspecified model) (3.37)

where θ is the parameter of interest. This aligns with Type 1 misspeci-

fication, where the number of parameters is valid, but the model is not

capturing some underlying dynamics.
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3.4.3 Example 2b: Simple harmonic motion with air

resistance

Consider a harmonic oscillator, which is characterised by an equilibrium po-

sition and a restoring force proportional to the displacement with friction.

The system state will be a pair (x, y) representing position and momentum.

The change in the system with respect to time is given by the following

differential equations :

dy

dt
= −θx− δy

dx

dt
= y (True dGp) (3.38)

The misspecified model will omit the air resistance and assume a constant

acceleration θ :

dx

dt
= y

dy

dt
= −θx (Misspecified model) (3.39)

If δ = 0, we recover the true dGp and the model is similar to the previous

example 3.4.2 without a sinusoidal term. This last example represents the

Type 2 misspecification and we can observe different state trajectories in

Figure 3.4 where the amplitude differs with the value of δ.

3.5 Methodology

KL Variational Objective: The variational Bayesian posterior distribu-

tion q(θ) = N (µϕ, exp(2λϕ)) for the one-dimensional latent parameter θ is

obtained by maximising the ELBO LB(ϕ) ;

LB(ϕ) = Eq(ϕ)[log p(y | x, σ2)] + KLD(qϕ(θ)||p(θ)) (3.40)

with ϕ the variational parameter to optimize, σ2 the known data noise and

p(θ) the prior on θ.
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PyTorch: We implemented our framework (Figure 3.2) using the PyTorch

differentiable ODE solvers available in torchdiffeq (Chen et al. [2018]).

More precisely, all ordinary differential equations (ODEs) given by the

misspecified model from the previous section are resolved using the solver

dopri5 implemented within this particular package.

Dataset: We generate data from the true dGp:

d2x

dt2
= fθ(x, t), t ∈ [0, T ],

with the ODE parameter θ ∈ R. Observations are modeled with errors by:

yi = xi + ϵi, ϵi ∼iid N (0, σ2).

The model fθ(x, t) is defined with the true dGp, as defined in the previ-

ous section, for each example with different data sizes, denoted as n =

{20, 50, 100, 150, 200}. The initial condition is set as x0 = [0.1, 0.5], and

the discrete time values are defined as t0 = 0, · · · , tn = 10. For the free-fall

model (Example 3.4.1), σ2 = 0.1. In both the pendulum and harmonic

motion (Example 3.4.3 and 3.4.2), σ2 = 0.01. The dopri5 solver is used.

The true parameter is θ = 10 in all the examples.

For Type 2 misspecification, the true dGp is defined with a level of error

denoted as δ so that:

d2x

dt2
= fθ(x, t) + δm(x)

where fθ(x, t) represents the model fitted to the data within the Varia-

tional Auto Encoding framework, as explained in Section 3.2.4 and m(x)

is the misspecified dynamic independent of θ. For Example 3.4.1 and Ex-

ample 3.4.3, m(x) = −dx
dt
.
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When δ = 0, the model fitted to the data is well-specified corresponding

to the results in Section 3.7.2.1. We generate data with different values

of δ, specifically δ = {0.05, 0.1, 0.2}, and fit them against the ODE model

without m(x).

Settings: The variational inference is executed over 100 epochs with a

learning rate of 0.4, utilising the Adam optimizer. A sample size of M = 15

is employed for the Monte Carlo estimator (refer to Algorithm 1). The prior

distribution for θ is consistently set as a Gaussian distribution with a mean

of µprior = 0 and a variance of σprior = 1.

MCMC: We compare our results with random-walk Metropolis–Hastings

(Hastings [1970]). Given the likelihood function p(x | θ), we construct a

Markov chain of the model parameters θ[0], θ[1], . . . proposing a value of θ,

θ∗, for the t-th realisation from a suitable proposal density, q(θ∗, θ[t−1]).

Accepting this proposal with probability

min

{
1,

p(θ∗ | x)q(θ[t−1] | θ∗)
p(θ[t−1] | x)q(θ∗ | θt−1)

}

yields a transition kernel that guarantees the Markov chain will converge

to a stationary distribution that coincides with p(θ | x).

Robustness measure: Root mean square error (RMSE) of trajectories is

used to evaluate the inference performance.

RMSE =

√√√√ n∑
i

(yi − ŷi)2

n
,

where yi represents the noisy data from the dGp, n denotes the data size,

and ŷi is the predicted trajectory obtained by solving the ODE system of
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the misspecified model with the variational posterior mean µϕ:

dx

dt
= fµϕ

(x, t).

3.6 Computational challenges

Automatic differentiation can lead to high computational demands, partic-

ularly in the context of solving ODE systems. The memory usage becomes

significant in forward mode, especially when the ODE solver involves a

large number of steps.

The most memory-intensive operation is the single backward call in the

VAE with torchdiffeq (Chen et al. [2018]). This is because backpropa-

gation through odeint involves extensive computation. When the adjoint

method is employed, the ODE solver operates as a black box, computing

gradients without backpropagating through the solver’s operations, as op-

posed to the default odeint. By not storing intermediate quantities of

the forward pass, we can train our models with smaller memory cost, as

illustrated in Table 3.1. The adjoint sensitivity method proves effective in

reducing memory requirements to O(1). This posed challenging computa-

tional issues, where the use of an adaptive solver was needed for most of the

ODE examples considered in this thesis. For more complex ODE models,

the memory usage proved to be excessively high on the virtual machine

(Supermicro 620U hardware, including 32 Intel Xeon (Ice Lake class) CPU

cores, 128GB of memory, and an Nvidia RTX A6000 GPU-based compu-

tations) making it impractical to scale. Tackling the challenge in dynamic

models continues to be crucial, with ongoing research aimed at achieving

faster model training and inference with ODEs. This exploration includes

work within PyTorch ([Lienen and Günnemann, 2022, Poli and Massaroli]),

as well as consideration of alternative frameworks such as Julia (Blondel

70



3.6. COMPUTATIONAL CHALLENGES

Table 3.1: Execution Times in seconds (unless stated otherwise) of ODE
Solvers for Default and Adjoint Methods on the Pendulum Model (Exam-
ple 3.4.3). The bold items correspond to the ODE solver employed in this
chapter.

Differentiable ODE Solvers within torchdiffeq
ODE solvers Default odeint odeint.adjoint
Euler 15.5 88 ms
midpoint 26 158 ms
rk4 61 273 ms
explicit_adams 36 216 ms
implicit_adams 76 394 ms
dopri8 21 801 ms
dopri5 31 1
bosh3 108 5
adaptive_heun NA 88

et al. [2021]) and Jax ([Bradbury et al., 2018, Abeyasinghe et al., 2018])

that may offer improved capabilities.

Moreover, excluding the ODE solver part, the remaining VAE architec-

ture uses automatic differentiation with reverse mode, leading to memory

complexity that scales linearly with the number of algorithm iterations.

Table 3.2 shows the computational time for the overall Variational Au-

toencoder Optimization with different data sizes and varying degrees of

misspecification for the pendulum example (Example 3.4.3). When δ = 0,

the model is correctly specified, resulting in significantly reduced execution

times. The execution times experience a substantial increase with larger

data sizes and higher levels of misspecification errors.

Switching to forward-mode autodiff would be advantageous, especially con-

sidering the small number of parameters in the studied examples, as it

exhibits time complexity that scales linearly with the number of variables.

However, PyTorch currently lacks a straightforward framework for forward-

mode autodiff (except a beta version where implementing forward-mode

autodiff was not feasible for our specific situation), and due to time con-
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Table 3.2: Variational Autoencoder optimization time in seconds for Ex-
ample 3.4.3 with varying data size n and error level δ.

HHH
HHHδ

n
20 50 100 150 200

0 30 207 630 1316 2272
0.05 61 291 793 1530 2587
0.1 95 372 957 1737 2898
0.2 127 457 1093 1955 3213

Figure 3.5: Negative Log-likelihood loss for the model in Equation 3.41 (up
to proportionality) for a given parameter θ. The parameter that generates
the data is θ = 10 represented by the vertical red line.

straints, transitioning to alternative frameworks such as CVODES (Serban

and Hindmarsh [2008]) has not been possible.

3.7 Results

In this section, we discuss the results from our framework to learn dy-

namical parameters using noisy experimental measurements obtained from

ODEs in well-specified and misspecified situations.

3.7.1 Simple Study case

Consider the simple pendulum system described in Model 2a:

dx

dt
= y

dy

dt
= −θ sin(x) (True dGp) (3.41)
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with θ ∈ R and the state functions (x, y). The initial conditions will be

set up to x(0) = 1 and y(0) = 0. We simulate a trajectory of n noisy

observations y when θ = 10 with a known noise σ2 = 0.01. The negative

log-likelihood loss of this data against the ODE system displays multiple

modes or peaks in Figure 3.5. This multimodality introduces complexity

to optimization procedures, raising challenges for standard optimization

routines that must navigate multiple minima. Therefore, if we maximise

the ELBO LB(ϕ) with respect to the parameter ϕ = (µϕ, log σ
2
ϕ), we obtain

the closest approximate distribution q(θ) for θ to the true posterior p(x|θ) in

terms of KLD in Figure 3.6. We obtain a clear minimum value for µϕ = 10

but a wide range of possibility for log σ2
ϕ. This could be detrimental to

uncertainty quantification because maximising the ELBO can occur across

a broad range of variances. Modifying the scale unveils additional local

variations. By narrowing our focus to the range µϕ ∈ [5, 8], we observe a

local maximum at µϕ = 6.5 corresponding to the optimum in that region

as seen previously in Figure 3.5. The optimizer could potentially become

trapped. When using MCMC with a random walk sampler, we may find the

perfect posterior distribution or end up local optimum visible in Figure 3.7.

The trace plots exhibit favorable characteristics for both chains, suggesting

the possibility of obtaining a satisfactory approximation to the posterior

distribution. However, it is crucial to acknowledge that our inference pro-

cess often converges towards the mode closest to the initial chain conditions.

While this tendency might be discernible in one-dimensional problems, the

challenge intensifies in higher-dimensional scenarios, where potential dis-

crepancies between the true posterior distribution and the mode captured

by the chains may go unnoticed.
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Figure 3.6: Contour plot of the negative ELBO LB(ϕ) over possible values
for ϕ = (µϕ, log σ

2
ϕ). with data x simulated from the pendulum system

Equation 3.41) with θ = 10. The darkest color on the scale denotes the
maximum value for the Evidence Lower Bound (ELBO). In the right plot,
the maximum value for the x-axis grid is below the true value of 10, enabling
us to observe a local minimum of 6.5.

3.7.2 Posterior inference

3.7.2.1 Well-specified models

For a one-dimensional parameter, the VAE presented in Section 3.2.4 pro-

duces a posterior mean estimate µϕ, and a posterior variance estimate σ2
ϕ

so that we obtain the closest approximate distribution q(θ) ∼ N (θ;µ, σ2)

for the parameter θ to the true posterior p(x|θ) in terms of KLD (cf. Equa-

tion 3.1). When the model is accurately specified, the data are fitted against

the same model that generated them. Consequently, one should expect to

recover a posterior distribution that closely approximates the true value

θ used to simulate the data. When considering the free-fall (without air

resistance) described in Equation 3.34 with δ = 0, we can observe in Fig-

ure 3.8a an accurate estimation of the value θ across various data sizes.

A similar result with larger variance is obtained with the simple harmonic

motion (Equation 3.4.3) with δ = 0, in Figure 3.8b. Surprisingly, the

variational posterior variance does not notably decrease with the dataset
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Figure 3.7: Correct and incorrect convergence of MCMC chain to global
minimum. In the first column, we present two distinct MCMC trajecto-
ries obtained after removing the burn-in period (e.g., initial 500 iterations)
generated using the random-walk Metropolis-Hastings algorithm. The sec-
ond column shows the log-likelihood values after 500 iterations. The third
column displays the density and histogram of the posterior distribution for
θ. In the upper plots, we observe that the chain successfully finds the true
posterior distribution (θ = 10). However, in the lower plots, we notice that
the chain gets stuck in a local minimum.
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(a)

(b)

Figure 3.8: Well-specified models - Variational posterior distribution given
by q(θ) = N (µϕ, σ

2
ϕ)) without misspecification for (a) Model 3.4.1 and (b)

Model 3.4.3. The horizontal line represents the ground truth.

size (Table A.1). By deliberately omitting the initial condition from the

dataset, the variational posterior for these two examples is shown in Fig-

ure A.3. Finding the posterior distribution for the pendulum example

becomes challenging in this scenario. Figures A.1b illustrate the challenge

of inferring θ in the presence of periodic dynamics.

3.7.2.2 Misspecified models

We utilise the data generated from the dGp in the previous section, but

the generative ODE model within the VAE is now incorrect. The varia-

tional posterior obtained for the three misspecified models, as detailed in

Section 3.4, is presented. As a reminder, we classify them:

1. (Type I) involves using a slightly modified model based on the dGp,

with the correct number of parameters (Example 3.4.2).

2. (Type II) describes a scenario where crucial parameters are omitted

from the true model (Examples 3.4.1 and 3.4.3).
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Figure 3.9: Variational posterior distribution for the misspecified small
angle approximation model (Equation 3.4.2). The horizontal line represents
the ground truth.

Type I

When the model is slightly misspecified, as in the case of the pendulum

example 3.4.2 where the model is missing the sinusoidal function. The

variational approach accurately estimates the parameter, as depicted in

Figure 3.9, irrespective of the data size. The high variational variance ob-

tained across all data sizes leads to significant uncertainty, encompassing

the true dynamics but exhibiting high variability.

Type II

An inaccurate estimate of θ is obtained in the free-fall model shown in

Figure 3.10a, 3.10c, 3.10e where the bias increases with the level of mis-

specification denoted by δ. The average variance is small (σ2
ϕ = 0.003),

contributing to highly misleading conclusions in the inference process. We

can use the approximate posterior distribution to predict the dynamical

trajectory by replacing θ with µ̂ϕ in the misspecified model :

d2x

d2t
= −µ̂ϕ (Misspecified model), (3.42)

and compare them to the ground truth, i.e. the noisy data points. The

trajectory obtained for the misspecified model is displayed alongside the
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δ = 0 δ = 0.05 δ = 0.1 δ = 0.2

Free fall 5.9 23.1 46.1 80.92
Simple harmonic motion 0.01 0.02 0.03 0.05

Table 3.3: Root Mean Square Error between original trajectories and re-
constructed ones from the variational parameter µϕ for the misspecified
models of Type II.

noisy data in Figure 3.10b, 3.10d, 3.10f. Despite the biased estimate, for

δ = 0.05, the obtained trajectory is relatively accurate, showing a small

RMSE in Figure 3.10b. As the model becomes more inaccurate with in-

creasing δ, the predicted trajectories deviate further from the ground truth,

revealing an interesting proportionality between the model error and the

RMSE in Table 3.3. The simple harmonic motion exhibits analogous find-

ings, with the posterior consistently underestimating the true value for θ

(Table A.2). Despite this, the RMSE between the trajectory derived from

the variational estimate and the true trajectory remains small in Table 3.3.

This result can be explained by the periodic nature of the model, where a

minor deviation in the dynamical process does not sufficiently impact the

log score to update the parameter θ in the optimization process.

3.8 Discussion

We have introduced a flexible variational Bayesian framework for the in-

terpretable modelling of a continuous-time latent dynamical process. Our

decision to employ this framework stems from leveraging recent advance-

ments in variational inference to facilitate Bayesian parameter inference,

primarily to address the practical challenges posed by Markov Chain Monte

Carlo (MCMC) algorithms when applied to Ordinary Differential Equation

(ODE) models. By adopting a variational autoencoder approach, we in-

tegrate mechanistic models into the generative process, specifically within
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(a) µ̂ϕ = 8.76 (b) RMSE = 23.1

(c) µ̂ϕ = 7.73 (d) RMSE = 46.1

(e) µ̂ϕ = 6.20 (f) RMSE = 80.9

Figure 3.10: Left Panel: Variational Posterior Obtained with VAE Across
Varying Error Levels δ (Top to Bottom). Right Panel: Trajectories Ob-
tained with VAE against the observations.
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the decoder component. We have simplified the conventional classical VAE

framework by excluding data usage in the encoder process, and instead, we

utilise a simple prior that can encapsulate domain expertise.

The effectiveness of the approach is demonstrated through data simulated

from several nonlinear dynamical systems that describe physical phenom-

ena. We have successfully recovered a meaningful latent parameter and

accurately inferred the dynamic model, yielding a close approximation to

the true system. While we only consider one-dimensional latent parameter

inference here, it is worth noting that the VAE method can be extended to

any parameter dimension. This will be further explored in Chapter 5.

Our work innovatively delved into investigating the performance of the

Variational Inference model in the context of dynamical model misspeci-

fication, where an incorrect model is used to represent the true unknown

dGp. In these scenarios, the variational Bayes posterior consistently con-

verges with relatively high certainty to a point mass at θ∗. This convergence

leads to a misleading parameter estimate in what we categorised as a mis-

specification of Type II, where some crucial parameters are omitted. On

the other hand, when smaller errors in the model specification are present,

the VAE framework is correctly estimating the parameter of interest. This

approach can be generalised to various dynamical models to enhance inter-

pretability in data-driven modelling systems but lacks scalability.

Indeed, the ODE solver employed in this work, as detailed in Section 3.6,

has posed a considerable bottleneck in terms of computational cost. Some

approaches investigate restricting the flexibility of the base ODE and pro-

vide simplified ODE that is often easier to integrate (Laisk et al. [2021]).

Other approaches avoid the need for explicit ODE solving and approximate

free-form dynamics such as gradient matching ([Gorbach et al., 2017, Mac-

donald and Husmeier, 2015, Niu et al., 2016, Ramsay et al., 2005, Brunton

et al., 2015, Sengupta et al., 2014]). Gradient matching involves an initial
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smoothing phase where time series data is interpolated. Then the ODE

parameters are optimized to minimise some metric measuring the differ-

ence between the slopes of the tangents to the interpolants, and the time

derivatives from the ODEs. However, these methods face challenges in

easily distinguishing simultaneous estimates of structural parameters and

initial conditions, leading to reduced accuracy and increased sensitivity to

noise.

3.9 Conclusion

In the Bayesian context of inferring a posterior distribution, Variational

Inference has been widely employed, offering a general method to approxi-

mate intractable posterior distributions through an optimization approach.

Recent works have incorporated dynamical models utilising variational in-

ference ([Duncker et al., 2019, Tran et al., 2017]), particularly within the

framework of variational autoencoder models ([Zhao et al., 2019, Garsdal

et al., 2022, Shin and Choi, 2023]). Opting for a generative model is advan-

tageous, as it facilitates the capture of latent structures in the data through

an encoder-decoder framework.

Dynamical systems governed by Ordinary Differential Equations are preva-

lent in various scientific and engineering domains. Therefore, many scien-

tific applications aim to construct a learning system capable of integrating

mechanistic ODE models with data-driven methods (Linial et al. [2020],

Yıldız et al. [2019]). These methods are called grey-box or hybrid ap-

proaches ([Tulleken, 1993, Kristensen et al., 2004, Astudillo and Frazier,

2021]) and combine the predictive capabilities of black-box models ([Ryder

et al., 2018, Massaroli et al., 2020]) with the physical interpretability inher-

ent in physics-based models. A category of black-box models encapsulates

unknown dynamics using neural networks and depends on differentiable nu-
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merical integrators, which leverage the adjoint method for memory-efficient

training (Kidger et al. [2020]).

Assuming well-specified models, numerous researchers have undertaken in-

vestigations into the properties of Variational Bayes posteriors across var-

ious specific Bayesian models including linear models ([You et al., 2014,

Ormerod and Wand, 2012]), exponential families (Wang and Titterington

[2012]) or generalised linear mixed models ([Wang and Titterington, 2005]).

The consistency and asymptotic normality of the Variational Bayes poste-

riors have been established in such contexts ([Wang and Blei, 2017, Pati

et al., 2017, Zhang and Gao, 2017]). This was evidenced in the inference

obtained within our framework, demonstrating efficiency in both bias and

uncertainty quantification. However, when considering misspecified mod-

els, the performance of inference becomes suboptimal. In Chapter 4, our

objective is to address this challenge by introducing recent approaches to

tackle model misspecification.
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Chapter 4

Robust losses in Generalised

Variational Inference for

dynamical model

misspecification

Summary: This chapter focuses on likelihood-based robust losses in the

context of model misspecification. These methods were designed to in-

clude model discrepancy and to make inference more robust. We propose

to use a set of robust loss functions proposed in the General Bayes and

Generalised Variational Inference litterature for learning latent parameters

in misspecified models. We integrate two new losses derived from Approxi-

mate Bayesian Computation and History Matching in the Generalised Var-

tional Inference framework. The challenges encountered in the preceding

chapter motivate the use of General Bayesian updates and our objective

is to gain a comprehensive understanding of the effectiveness of these ap-

proaches when applied to a variety of misspecified dynamical models.
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4.1 Bayes’ rule in the M-open world

If the likelihood model, denoted as p(x | θ) turns out to be inaccurately

specified, the usual workflow in Bayesian statistics (Gelman et al. [2020])

would include residual analysis, in-depth exploration of descriptive statis-

tics, and consultation with domain experts to yield a revised likelihood

model that better describes the data. In essence, the conventional perspec-

tive suggests that issues stemming from model misspecification ultimately

reflect deficiencies in the modelling process itself.

As we emphasised in Chapter 3, traditional Bayesian updating can be inter-

preted as a method that minimises the Kullback-Leibler Divergence (KLD)

between the model and the data-generating process; i.e. select the model

parameters that generate simulations closest to the data in terms of KLD

(Walker [2013]). Within the GVI paradigm (Section 2.3.3.3), we have seen

in Chapter 2 that minimising the KLD divergence is equivalent to an opti-

mization problem using the logarithmic loss function (Definition 2.1).

As outlined in Chapter 2 and 3, assuming that our parametric model fam-

ily accurately describes the true data-generating process (dGp) is often

inappropriate and can result in misleading estimates that exhibit high bias

and unwanted uncertainty, which may be either too large or too small.

In the robustness literature, this is often demonstrated with minor data

contamination, such as outliers, causing the estimated parameters to de-

viate towards incorrect values. This is exemplified in the widely discussed

ϵ contamination problem (see Example 2), where the underestimation of

the correct parameter occurs due to contamination. This is because the

likelihood model is presumed to be a reasonably accurate representation of

the data, and as a result, the most informative observations are those that

deviate from the model fitted to the remainder of the data.

In the specific context of inference, our objective is not necessarily to
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achieve a complete and exhaustive representation of the true dGp. In-

stead, we aim to establish reasonable beliefs regarding the inferred param-

eters, with the ability to quantify uncertainty (UQ). The key concept of

robustness described in Chapter 2 serves as the foundation for the robust

loss functions outlined in this chapter within a Generalised Variational

Inference (GVI) framework. These loss functions should strive to exhibit

reduced sensitivity to departures from model assumptions, ideally resulting

in improved accuracy when the model is not correctly specified. We can in-

tuitively replace the non-robust logarithmic loss, and incorporate new loss

functions into the Variational Autoencoder (VAE) discussed in Chapter 3

following the strategy outlined in Section 2.3.3.3.

4.2 Generalising Bayesian Inference

In Generalised Bayes Inference (GBI) (Bissiri et al. [2016], Walker [2013]),

we acknowledge that the model may be misspecified or incomplete. The

traditional Bayesian framework relies on a model for the dGp where the

likelihood function links data and quantities of interest. This approach

recognises that models are simplified representations of reality and that

there may be additional complexities or nuances that are not fully captured

by the chosen model structure (Matsubara et al. [2021], Matsubara et al.

[2022], Jewson et al. [2018]). The general Bayesian update produces a

posterior distribution over some quantity of interest without relying on a

full model for the observations. Here the quantity of interest is defined via a

loss function, instead of a likelihood. Bissiri et al. [2016] presented a general

framework for updating targeted belief distributions of this kind. Instead

of restricting themselves to parameters that index a family of distribution

functions, we consider general parameters whose true value minimises an

expected loss for some loss function ℓn : Θ×X n → [0,+∞). The resulting
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posterior distribution is precisely the Gibbs posterior, where the loss for

multiple observations is defined additively, i.e., ℓn(θ, x1:n) =
∑n

i=1 ℓ(θ, xi).

Definition 4.1 (General Bayes posterior (Bissiri et al. [2016])).

The General Bayes posterior given prior belief p(θ) on Θ and the observa-

tions x1:n is given by :

pGB(θ | x1:n) ∝ p(θ) exp(−wℓn(θ, x1:n)) (4.1)

where w > 0 is a calibration weight (or loss scale).

We assume throughout the thesis that this posterior distribution is proper,

i.e., the loss and prior are provided such that the right-hand side in Def-

inition 4.1 is integrable. The Gibbs posterior pGB(θ | x1:n) coincides with

the Bayesian posterior (Equation 1.1) when w = 1 and the loss function is

the negative log-likelihood.

This posterior also relates to the Generalised Variational Inference ap-

proach (Knoblauch et al. [2019]) where the posterior can be rewritten as

the solution to the optimization problem :

P (ℓn,KLD,Q) = arg min
q(θ)∈Q

Eθ∼q(θ)[
n∑

i=1

wℓ(θ, xi)] + KLD(q(θ)∥p(θ)) (4.2)

where Q = {q(θ) :
∫
q(θ)dθ = 1}. The proof is equivalent to the one given

in Section 2.3.3.3.

In this chapter, we propose to use the GVI framework with a set of losses

ℓn and with D = KLD, the Kullback Leibler divergence. This new form of

posterior will eventually address various degrees of model misspecification,

especially in dynamical models since the classical Bayesian posterior does

not guarantee to be optimal in the M-open world (see Chapters 2 and 3).
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4.3 Divergence-derived robust loss functions

The log-score and Kullback-Leibler divergence are fundamental compo-

nents of Bayesian inference. However, Bayesian methods also encompass

a wide range of other divergences, several of which can be conveniently

linked to loss functions. We introduce the well-known families of diver-

gences and their corresponding loss function interpretations below since

they have demonstrated their benefits in the context of robust inference

(Jewson et al. [2018]). This list is non-exhaustive but merely contains ones

we have considered and experimented with misspecified dynamical models.

Consider (x1, ..., xn) observed data generated independently and identically

with a true density
∏n

i=1 g(xi) on a sample space X . The general infer-

ence problem involves estimating the parameter θ ∈ Θ using the likelihood

model p(x | θ). When the model is misspecified, g(x) /∈ {p(x | θ) : θ ∈ Θ}.

4.3.1 Statistical Divergences

When considering inference in the M-open world, we can choose to measure

the discrepancy between two distributions (Walker [2013]); i.e statistical

divergences.

Definition 4.2 (Statistical Divergences (Eguchi [1985])).

A statistical divergence D(g∥f) is a measure of discrepancy between two

probability densities f and g with the following two properties:

1. D(g∥f) ≥ 0, ∀f, g

2. D(g∥f) = 0 if and only if g = f

Divergences are often asymmetrical and do not necessarily satisfy the triangle-

inequality. We now introduce several well-known families of divergences for

use in inference for the misspecified models considered in this thesis, as they
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are widely recognised for effectively handling model misspecification (Peng

and Dey [1995], Cichocki and Amari [2010]).

Definition 4.3 (The α-divergence (αD)(Chernoff [1952])).

The α-divergence is defined as :

D
(α)
A (g(x)∥f(x)) = 1

α(1− α)

{
1−

∫
g(x)αf(x)1−αdx

}
, (4.3)

where α ∈ R\{0, 1}.

Definition 4.4 (The Rényi α-divergence (Rényi [1961])).

The Rényi α-divergence is defined as

D
(α)
AR(g(x)∥f(x)) =

1

α− 1
log

{∫
g(x)αf(x)1−αdx

}
, (4.4)

where α ∈ R\{0, 1}.

Note that Rényi-αD is an invertible function of the α-Divergence since

D
(α)
AR(g(x)∥f(x)) =

1

α− 1
log(1− α(1− α)D

(α)
A (g(x)∥f(x))

Definition 4.5 (The β-divergence (βD) (Basu et al. [1998])).

The βD is defined as :

D
(β)
B (g(x)∥f(x)) =

∫
g(x)

g(x)β−1 − f(x)β−1

β − 1
− g(x)β − f(x)β

β
dx, (4.5)

where β ∈ R\{0, 1}.

Definition 4.6 (The γ-divergence (γD) (Fujisawa and Eguchi [2008])).

The γD is defined as :

D
(γ)
G (g(x)∥f(x)) = 1

γ(γ − 1)
log

(
∫
g(x)γdx)(

∫
f(x)γdx)γ−1

(
∫
g(x)f(x)γ−1dx)γ

, (4.6)
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where γ ∈ R\{0, 1}.

Note that the αD can be shown to be generated from the βD by applying

the transformation :

c0

∫
g(x)c1f(x)c2dx→ log

[( ∫
g(x)c1f(x)c2dx

)c0]

to all three terms of βD.

Remark 1 (Link with KLD).

In the limit α = β = γ → 1, the αD, the Rényi αD, the βD and the γD

recover a generalised Kullback–Leibler divergence form.

Proof. We demonstrate this for the βD divergence.

lim
β→1

D
(β)
B (g(x)∥f(x)) = lim

β→1

∫
g(x)

g(x)β−1 − f(x)β−1

β − 1
− g(x)β − f(x)β

β
dx,

=

∫
g(x) log(

g(x)

f(x)
)− g(x) + f(x)dx,

= KLD(g(x)∥f(x)) +
∫

f(x)− g(x)dx,

where we used the identity: limβ→0
pβ−qβ

β
= log(p

q
).

Remark 2 (Link with loss functions).

In the previous chapters, we have seen that minimising the log-score in

expectation over data is equivalent to minimising the KLD to the dGp.

In practice, some of the divergences above can be interpreted in terms of

loss functions (Smith and Bernardo [2008], Dawid et al. [2014]). Denote a

loss function ℓ(θ, x), if the variational Bayesian posterior q∗(θ) optimization

takes the form:

q∗(θ) = arg min
q∈P(Θ)

D(q(θ)∥p(θ | x))

= arg min
q∈P(Θ)

D

(
q(θ)∥p(θ) exp {−l(θ, x)}Q−1

)
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withQ =
∫
θ
p(θ) exp{−ℓ(θ, x)}dθ, the inference problem conveniently trans-

lates into the minimisation of the loss function.

4.3.2 Robust loss functions

When dealing with model misspecification, our primary concern is to derive

robust inferences that account for the inaccuracies in the model. We derive

two additive likelihood-based robust losses from the β and γ divergences

which are well-suited for integration into the variational framework. These

robust likelihood-based losses are typically less statistically efficient under

correct specification, but very useful under mild misspecification (Basu

et al. [1998], Fujisawa and Eguchi [2008]). For instance, they assign less

weight than the KLD divergence to tail observations, thereby reducing the

influence of outliers and resulting in more precise estimates (Jewson et al.

[2018]).

Denote

Ip,a(θ) =

∫
p(y | θ)ady.

The β loss function, denoted as ℓβ, aims to minimise the β divergence and

assess the fit of likelihood parameter θ on the sample x1:n.

ℓβ(θ, x1:n) =
n∑

i=1

Lβ
p (θ, xi) =

n∑
i=1

− 1

β − 1
p(xi | θ)β−1 +

Ip,β(θ)

β
, (4.7)

where β ∈ R\{0, 1}.

The γ loss, represented as ℓγ and focused on minimising the γ divergence,

can be expressed as follows:

ℓγ(θ, x1:n) =
n∑

i=1

Lγ
p(θ, xi) =

n∑
i=1

− 1

γ − 1
p(xi | θ)γ−1.

γ

Ip,γ(θ)
γ−1
γ

, (4.8)

where γ ∈ R\{0, 1}.

90



4.4. UNCERTAINTY QUANTIFICATION-DERIVED LOSSES

The proofs are presented in Appendix A.2. In this thesis, following the

same framework as in Chapter 3 (Algorithm 1), we will use the analytic

form for both of these losses.

As a consequence, the variational posterior distribution q∗(θ), which opti-

mally fits the model to the data, is given by:

q∗(θ) = arg min
q(θ)∈Q

Eθ∼q(θ)[
n∑

i=1

wℓ(θ, xi)] + KLD(q(θ)∥p(θ)), (4.9)

where Q is a tractable family of distributions, p(θ) is the prior distribution

on the parameter θ and w ∈ [0, 1] some scaling parameter. By incorporating

the divergence-derived robust losses above, the updated expression for the

ELBO in Equation 3.40 is:

LB(ϕ) = Eq(ϕ)[−wℓ(θ, x)] + KLD(qϕ(θ)||p(θ)). (4.10)

Here, LB(ϕ) represents the lower bound on the evidence with respect to

the variational parameter ϕ, and the term wℓ(θ, x) encapsulates a weighted

loss function. The loss function ℓ can take on different forms, such as ℓγ or

ℓβ, providing flexibility in modelling and addressing specific characteristics

of the data.

4.4 Uncertainty quantification-derived losses

The Generalised Variational Inference (GVI) objective provides an alter-

native perspective on Bayesian inference, framing it as a more adaptable

regularised optimization process with the primary goal of minimising a

specific loss function over the data. In our efforts to tackle model mis-

specification, we detail the loss functions derived from ABC and History

Matching, both of which were described in more detail in Chapter 2.

91



4.4. UNCERTAINTY QUANTIFICATION-DERIVED LOSSES

4.4.1 Approximate Bayesian Computation

In the context of GVI, where we embrace a broader perspective on inference,

ABC operates under the assumption of an imperfect alignment between

model-generated data and observed data. The ABC posterior presented in

Section 2.3.3.1 takes into account a specified tolerance parameter denoted

as h and is articulated as follows:

pABC(θ | x) ∝ p(θ)

∫
Kh(x, y)p(y | θ)dy, (4.11)

with the prior p(θ), the observations x, the synthetic data y (coming from

a model or simulator) and the chosen kernel Kh(y, x) adhering to the prop-

erties outlined in Chapter 2. We combine ABC with a variational auto-

encoder architecture (Moreno et al. [2016], Schmon et al. [2020], Frazier

[2020]) following the Chapter 3 framework.

We define the likelihood of p(x | θ) as the ABC likelihood

pABC(x | θ) =
∫

Kh(x, y)p(y | θ)dy ≈
1

S

S∑
s=1

Kh(x, y
(s)),

where pABC(x | θ)→ p(x | θ) as h→ 0.

Proposition 1. The ABC posterior presented in Equation 4.11 within the

framework of Generalised Variational Inference is expressed as:

P (ℓABC ,KLD,Q) : q∗(θ) = arg min
q(θ)∈Q

Eq(θ)[ℓABC(θ, x)] +KLD(q(θ)∥p(θ)),

(4.12)

with :

ℓABC(θ, x) = − log(pABC(x | θ)). (4.13)

Similarly to what has been done in Chapter 3, a natural variational lower
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bound for ABC takes the form of :

LBABC(q) =

∫
q(θ) log

∫
Kh(x, y)p(y | θ)dydθ −KLD(q(θ)∥p(θ)), (4.14)

with Kh(x, y) and h the tolerance rate.

We reinterpret the kernel Kh as the measurement error model for the true

data. Incorporating the ABC loss into our GVI framework involves defining

a tolerance rate, representing the level of error we are willing to tolerate.

In contrast to the standard interpretation in ABC, this suggests that larger

bandwidths h could potentially enhance the robustness of inferences.

4.4.2 History Matching

The History matching (HM) approach described in Chapter 2 addresses

model misspecification by iteratively selecting input parameters that lead

to acceptable matches with observed data (Andrianakis et al. [2015]). We

define a loss function incorporating an implausible measure within HM in

the generalised variational inference framework.

We define the history-matching loss to be :

ℓHM(θ, x) = − log 1(I(θ,x)<c) (4.15)

=


0, I(θ, x) < c

∞, otherwise

, (4.16)

where I(θ, x) is the implausibility measure, x is a data point and θ is the

parameter of interest.

For example, we can choose :

I(θ, x) = E[X]− x

(Var[X])
1
2

, (4.17)
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where the expectation and variance are obtained with the likelihood, i.e.

X ∼ p(x|θ).

Denote the not ruled out yet (NROY) set by

N = {θ ∈ Θ : I(θ, x1:n) < c},

where, e.g., I(θ, x1:n) = maxi I(θ, xi) so that θ is plausible for x1:n if and

only if θ plausible for all xi. Suppose we use the history matching loss,

with the Kullback-Leibler divergence and we do not restrict the space of

possible posteriors, i.e., set PΘ(x) (no family of approximating densities

Q). Then if we define the posterior by :

qHM(θ) =
p(θ)1(θ∈N )∫
N p(θ)dθ

,

with p(θ) the prior distribution of θ. We have the following proposition.

Proposition 2. qHM is the solution to the GVI problem using KLD as

the divergence, with no restrictions on the space of distributions PΘ(x) and

with the loss function ℓHM(θ, x).

Proof. The Generalised variational inference method seeks to solve the fol-

lowing optimization problem:

argmin
q(θ)∈Pθ

Eq(θ)[
n∑

i=1

ℓHM(θ, xi)] + KLD(q(θ)||p(θ)). (4.18)

If θ /∈ N , ℓHM(θ, xi) =∞ for some xi (ℓHM(θ, xi) = 0 otherwise). Then we

must have the posterior qHM(θ) = 0 for θ /∈ N leading to the optimization:

argmin
supp(q)⊆N

KLD(q(θ)||p(θ)). (4.19)

Let Q = supp(q) denote the support of q. We need to minimise :
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KLD(q(θ)∥p(θ)) =
∫
Q
q(θ) log

q(θ)

p(θ)
dθ,

subject to
∫
q(θ)dθ = 1.

We can do this via the calculus of variations. Introduce a Lagrange multi-

plier λ and define the objective to maximise to be

L = −
∫

q(θ) log
q(θ)

p(θ)
dθ − λ(

∫
q(θ)dθ − 1).

Denote L =
∫
L(θ, q)dθ, we solve the Euler-Lagrange equation:

0 =
∂L

∂q

= −1− log q(θ) + log p(θ)− λ

and so q(θ) = p(θ) exp−λ−1. Since 1 =
∫
Q q(θ)dθ = exp−λ−1

∫
Q p(θ)dθ, we

substitute to obtain the posterior

q(θ) =
p(θ)∫

Q p(θ)dθ
, θ ∈ Q.

All that remains is to show we must take Q = N (we have already shown

Q ⊆ N ).

KLD(q(θ)∥p(θ)) =
∫
Q

p(θ)

|Q|p
log

1

|Q|p
dθ = − log |Q|p,

where |Q|p =
∫
Q p(θ)dθ. We want to maximise |Q|p and so take Q = N ,

which proves the proposition.

It is worth noting that when the prior is uniformly distributed, then the HM

posterior will be uniform. Conversely, in the case of a non-uniform prior,

the posterior distribution is essentially the prior truncated to the NROY set

and rescaled. The unique trait of the HM loss comes from the two distinct

values for the History Matching loss, i.e. 0 and ∞. Practically speaking,
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the inefficacy of the history matching loss becomes evident as it tends to

entirely discard parameters that fall beyond the implausible threshold from

the truth. Essentially, it can be viewed as a more restrictive version of the

ABC, resulting in a highly constrained posterior.

4.5 M-open robustness

4.5.1 Intuitions

The loss functions listed in Table 4.1 represent key strategies used to achieve

robust inference in statistics and machine learning, though they are not

an exhaustive compilation. For the annealed loss function in GBI wℓ,

it is clear to see that w < 1 encourages larger variances for the posterior

(Agostinelli and Greco [2013]). Alquier et al. ([Alquier et al., 2016, Alquier

and Ridgway, 2017]) demonstrate that these posteriors excel in capturing

the true underlying distribution, particularly in situations where the true

posterior distribution is complex or high-dimensional. The βD and γD di-

vergences have demonstrated their robustness with outliers (Cichocki and

Amari [2010], Greco et al. [2008]). The derived β and γ losses are more

robust than the log score whenever β > 1 (or γ > 1). These particu-

lar losses are convenient since they recover the negative log-likelihood as

β → 1 (or γ → 1). The ABC and HM losses are easier to interpret since

they explicitly consider discrepancies between simulated and observed data.

The tolerance rate essentially measures the permissible level of error, en-

abling the posterior to retain information within this threshold and discard

everything beyond it, either through a smoothing kernel for the ABC loss

ℓABC(θ, x) or a stricter rule such as the implausible measure for the History

Matching loss ℓHM(θ, x).
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Methods ℓ(θ, x) D Π
Standard Bayes − log(p(xi|θ)) KLD P(θ)

VI − log(p(xi|θ)) KLD Q
Divergence-based Bayes ℓβ and ℓγ KLD Q

History Matching ℓHM(θ, x) KLD Q
ABC ℓhABC(θ, x) KLD Q

Table 4.1: Generalised Bayesian settings considered (Equation 2.23) in
Chapter 4.

4.5.2 Robustification Strategy

The Generalised Bayesian setting, denoted as P(ℓ,KLD,Π), provides a

convenient framework for straightforwardly comparing the robustness per-

formance of various losses. Within this framework, the robustness of the

inference strategy hinges solely on the choice of the loss function, as the

divergence and the distribution family remain constant. We leverage the

variational autoencoder discussed in Chapter 3 across diverse loss functions.

This implementation entails modifying line 12 in Algorithm 1, replacing

Lrecon with the losses specified in Section 4.1. For each loss function, a

non-exhaustive list of hyperparameters is selected, and the simulations are

conducted multiple times for each generalised Bayesian setting. The hyper-

parameters for the ℓw, ℓγ, ℓβ and ℓhABC losses are respectively w, γ, β and

h. In Section 4.7, we present a detailed examination of the performance of

the proposed loss functions. This will be achieved by comparing the con-

sistency and uncertainty obtained for each Generalised Bayesian posterior.

Moreover, we aim to draw a parallel with the most common scenario used

to demonstrate the success of robust strategies, which is examining the im-

pact of contaminated data. Contamination typically occurs when a small

portion of the data is distributed according to another unknown distribu-

tion within the dGp. In Section 4.7.4, we randomly include outliers in

the observations without introducing another distribution within the dGp.
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While the model is not misspecified, a small portion of the data is contam-

inated, which, in our view, presents a more intriguing setting for studying

contaminated data in dynamic modelling.

4.6 Misspecified ODE-based models

The goal is to showcase the effectiveness of the proposed loss functions

through the exploration of misspecified ODE-based models. We utilise two

models from Chapter 3, described in detail in Section 3.5, including the

free fall model (Example 3.4.1) and the simple harmonic motion model

(Example 3.4.3). As a reminder, the true dGp is defined for both models

with a level of error denoted as δ:

d2x

dt2
= fθ(x, t) + δm(x)

where fθ(x, t) represents the ODE model fitted to the data within the Vari-

ational Auto Encoding framework, as explained in Section 3.2.4 and m(x)

is the unknown misspecified dynamic independent of θ. For both models,

we generate data with m(x) = −dx
dt

and δ = {0.0, 0.05, 0.1, 0.2}. If δ = 0,

the model exactly corresponds to the true dGp. When δ ̸= 0, the ODE

model fitted against the data lacks the representation of the unknown dy-

namics m(x). As the parameter δ increases, it signifies a higher level of

error, indicating a greater degree of misspecification.

We will evaluate the performance of each GVI robust strategy by assess-

ing θtrue − θ∗GV I , where θtrue represents the parameter used to generate

the observations, and θ∗GV I is the estimator obtained using a robust loss

ℓ for an error level δ. A lower value of this difference indicates a more

robust inference performance. Since we investigated various levels of errors
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denoted as δ, we can assess the robustness of each Bayesian setting by ex-

amining the effect of misspecification on the estimates for each error. We

observe a connection with the global robustness (Sivaganesan [2000]) con-

cept, which refers to the property of a method to maintain its performance

or effectiveness even when subjected to variations or uncertainties. We can

empirically evaluate whether each loss exhibits sensitivity to perturbations

of the dynamical model.

4.7 Benchmark Results

In this section, all the comparison plot displays the standard deviation for

the variational mean obtained, with the simulations repeated at least 5

times.

4.7.1 Ineffectiveness of Gibbs posteriors

As observed in Figure 4.1 and Figure 4.2, the log loss and the annealed

loss achieve a close approximation to the true posterior when the model

is correctly specified, as seen in Chapter 3. This alignment indicates the

effectiveness of these loss functions in capturing the underlying data distri-

bution when the model is accurately specified. As the level of misspecifica-

tion δ grows, the Gibbs posterior (just as the logarithmic loss) exhibits a

rapid decline in consistency, yielding inconsistent posterior estimates with

relatively small variances. To exemplify using the Table 4.2, in the case

where the model misspecification error is δ = 0.1, the variational Gibbs

posterior, labeled as qGB
w=0.95(θ) the wrong parameter (µ̄ = 4.12) from the

truth (θ = 10) with a high level of confidence (σ̄ = 1.64). Similar find-

ings persist across all chosen hyperparameters for the annealing process

highlighting its sensitivity to model misspecification. The variational vari-

ance obtained with the Gibbs posterior is stable (approximately σ = 0.002)
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with increasing levels of misspecification, highlighting the lack of robust-

ness for this loss function. Furthermore, there is no discernible advantage

in altering the value of w for the annealed posterior. No improvement is

observed in the estimates for both the mean and variance, and there is no

apparent reduction in sensitivity, even when down-weighting the likelihood

significantly (w = 0.2).

4.7.2 Classical robust losses

In contrast, the γ and β losses produce slightly improved UQ around the

estimates, as demonstrated in Figure 4.1 and Figure 4.2. Although exhibit-

ing increasing bias similar to the logarithmic loss function, the ℓ(γ) and ℓ(β)

losses provide improved uncertainty quantification when the model is mis-

specified. We observe this trend across all sets of hyperparameters γ and β

used for both losses. These losses outperform the log loss across all levels of

misspecification, as indicated by δ, and consistently yield higher variance as

shown in Table 4.2. Similarly, for the β loss, we notice slightly more biased

estimators with no discernible improvements even with a higher value for

the hyperparameter β in Figure 4.1. We faced convergence challenges with

the ℓβ loss, which was diverging towards infinity. This divergence is often

caused by using a learning rate that is too high. The model’s parameter

updates become overly aggressive, leading to an uncontrollable increase in

the loss function. We decided to lower the learning rate to 0.2 specifically

for the ℓ(β) loss. The increase in data size from 20 (Table 4.2) to 50 data

points (Table 4.3) has contributed to a slight reduction in bias across all

losses, with the robust losses, β, and γ, further emphasising their robust

performances. The improved consistency observed with the γ loss in Fig-

ure 4.1 across different levels of errors may be attributed to its robustness

properties. The γ loss is designed to down-weight outliers more aggres-
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sively compared to other loss functions, thereby reducing their influence

on the parameter estimates. This enhanced robustness helps to mitigate

the impact of errors, resulting in more consistent estimators across varying

error levels.

δ = 0 δ = 0.05 δ = 0.1 δ = 0.2
µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2

Log Loss w = 1 10.02 0.002 7.11 4.28 6.48 4.38 5.29 4.7

ℓ(w)

w = 0.95 10.04 0.01 6.2 1.43 4.12 1.64 5.25 4.25
w = 0.5 10.05 2.72 7.92 2.24 5.96 1.59 5.56 0.04
w = 0.2 10.06 2.71 6.33 2.6 5.64 2.5 5.25 4.56

ℓ(γ)
γ = 1.01 9.9 21.3 7.15 9.88 7.08 10.65 6.89 12.68
γ = 1.05 10.33 24.06 9.15 0.01 8.79 0.05 8.74 4.58
γ = 1.1 8.49 0.31 9.99 0.25 8.69 0.02 6.08 11.57

ℓ(β)
β = 1.01 8.73 0.21 8.3 3.67 8.18 63.32 6.86 5.39
β = 1.05 6.77 1.94 7.6 0.64 6.81 3.33 6.38 72.75
β = 1.11 8.03 5.11 8.75 8.08 7.62 174.19 7.16 0.21

Table 4.2: Variational posteriors mean and variance averages obtained for
the misspecified free fall model for a set of hyperparameters w, γ, β across
three levels of misspecification δ = {0.05, 0.1, 0.2} and with the correct
model (δ = 0). The simulations are run a minimum of 5 times for each
scenario against n = 20 observations.

δ = 0 δ = 0.05 δ = 0.1 δ = 0.2
µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2

Log Loss w = 1 10.01 0.002 6.69 1.84 6.17 1.84 5.14 3.66

ℓ(w)

w = 0.95 10.51 0.01 5.2 0.21 5.24 2.23 4.79 2.5
w = 0.5 9.41 3.14 6.88 3.98 5.95 3.13 5.64 0.18
w = 0.2 10.15 2.72 6.1 0.03 6.19 3.7 6.77 4.13

ℓ(γ)
γ = 1.01 10.56 61.3 12.35 20.19 9.89 0.03 10.27 0.12
γ = 1.05 7.87 6.5 10.53 0.25 8.67 37.61 11.64 4.18
γ = 1.1 10.13 2.2 8.44 0.06 9.31 5.92 8.53 0.02

ℓ(β)
β = 1.01 10.34 0.15 8.92 2.65 13.52 273.97 10.58 0.54
β = 1.05 8.32 19.28 9.1 2.07 9.13 0.13 8.59 40.28
β = 1.11 11.13 23.11 9.72 4.1 8.14 0.95 9.01 35.21

Table 4.3: Variational posteriors mean and variance averages obtained for
the misspecified free fall model for a set of hyperparameters w, γ, β across
three levels of misspecification δ = {0.05, 0.1, 0.2} and with the correct
model (δ = 0). The simulations are run a minimum of 5 times for each
scenario against n = 50 observations.
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Figure 4.1: Comparing standard VI against GVI with the ℓw ℓβ and ℓγ losses
for the free fall model with 20 and 50 data points. The y-axis quantifies the
difference between the posterior belief and the truth (θ∗−θtruth). Dots and
whiskers represent posterior means and their respective standard deviations
for each posterior with different values for the hyperparameters w, β, and
γ across multiple levels of misspecification δ, including the correct model.
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Figure 4.2: Comparing standard VI against GVI with the ℓw ℓβ and ℓγ losses
for the pendulum model with 20 and 50 data points. The y-axis quantifies
the difference between the posterior belief and the truth (θ∗− θtruth). Dots
and whiskers represent posterior means and their respective standard de-
viations for each posterior with different values for the hyperparameters w,
β, and γ across multiple levels of misspecification δ, including the correct
model.
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4.7.3 Approximate Bayesian Computation derived loss

With the observations x1:n and a tolerance rate h ∈ R+, we take a simple

uniform kernel for the ABC loss (Equation 1) and we follow the steps:

• Generate θ from the prior p(θ) (Variational Encoder)

• Generate y ∼ p(y | θ) from the likelihood (Variational Decoder).

• Use the ABC loss in the variational optimization so that :

ℓhABC(θ, x) = − log(I(|y − x| ≤ h)p(y|θ))

where I is the indicator function, σ2 is the known data noise and h

the tolerance rate.

The ABC loss function ℓhABC(θ, x) facilitates a meticulous selection of the

parameter θ, ensuring that the predictions obtained with the ODE solver

closely match the true observations within a tolerance h. We can arbitrarily

choose a smaller value for h to impose high restrictions on the posterior esti-

mate for θ. We choose a minimum value of 5 for h, as below that threshold,

the number of data points is reduced to less than 10% of the total initial

data size. In Figure 4.3, the resulting posteriors provide a more accurate

estimate compared to the ℓβ, and ℓγ losses when the model is correctly

specified for n = 50. When the model is slightly misspecified (δ = 0.05),

the estimate remains fairly consistent across different values of the hyperpa-

rameter h. When higher structural error is included (δ > 0.05), we observe

comparable bias to classical robust losses, but with reduced variance. This

is related to the form of the chosen loss function, which preserves the log-

arithmic loss within a tolerance h, resulting in overly confident estimates.
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Figure 4.3: Comparing the ABC loss ℓhABC(θ, x) against the ℓ
β and ℓγ robust

losses for the free fall model with 20 and 50 data points. The y-axis quan-
tifies the difference between the posterior belief and the truth (θ∗− θtruth).
Dots and whiskers represent posterior means and their respective standard
deviations for each posterior with different values for the hyperparameters
h, β, and γ across multiple levels of misspecification δ, including the correct
model.
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4.7.4 Dynamical Model Contamination

As explored in Chapter 2, robust inference aims to produce accurate esti-

mators in the presence of data contamination. We compare the best robust

losses against the logarithm loss for the Free Fall model where we contam-

inate the dataset with ϵ% outliers. In theory, the robust losses examined

here are more resilient to these types of misspecification.

This perspective differs from the classical ϵ-contamination problem dis-

cussed in Chapter 2, where another unknown distribution generates a

small portion of the data. However, when dealing with spatial dynam-

ics, the nature of corruption in dynamical models is often more nuanced.

In such cases, the deviations from the expected trajectories are not nec-

essarily caused by a distinct, contaminated subset of data. Instead, these

deviations arise due to various factors such as measurement errors, mod-

elling inaccuracies, or environmental influences. Therefore, the classical

ϵ-contamination perspective may not be the most suitable for understand-

ing and mitigating corruption in dynamical models, where deviations from

expected trajectories are typically more complex and subtle.

We consider data simulated via the correctly specified dynamical model

Example 3.4.1) and corrupt ϵ% of the data where we replace the observa-

tion xi by (xi + sin(ti) × 30) at time ti. This enables us to perturb the

corrupted observations slightly within a small range of the true observa-

tions. Figure 4.4 demonstrates that the log-loss is not very sensitive to a

small outlier contamination of 3%, but it tends to overestimate the param-

eters when the corruption proportion of data is higher. Conversely, the β

and γ robust losses exhibit higher variance in both scenarios, with reduced

bias observed when 15% of the data are contaminated. The ABC loss is

particularly useful in contamination scenarios, as it can generate consistent

estimators across any level of contamination. This is because the level of
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Figure 4.4: Comparing standard VI against GVI with the ℓhABC(θ, x), ℓ
β

and ℓγ losses for the free fall model with n = 100 data points with 3%
outliers and 15% outliers.

tolerance, carefully chosen as h ≤ 30 (which corresponds to the contami-

nation error considered here), allows the ABC loss to discard values that

are too far from the observations. The ABC loss offers superior robustness

compared to other losses, as demonstrated in Figure 4.4.

4.8 Limitations

Many problems in statistics and optimization require robustness. This idea

is common in parameter estimation and learning tasks, where a robust loss

(say, absolute error) may be preferred over a non-robust loss (say, squared

error) due to its reduced sensitivity to large errors as explained in Sec-

tion 2.4 in Chapter 2. In Bayesian statistics, the standard likelihood-based

formulation, relying on negative log-likelihood loss, can yield misleading
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estimates with structural model misspecification as observed in Chapter 3.

In this chapter, we have chosen well-established losses from recent litera-

ture that claim to be robust against model misspecification ([Knoblauch

et al., 2018, Medina et al., 2022]). We observed slightly better robust-

ness against misspecification in both bias and uncertainty quantification

with the β and γ losses. However, the results are not as convincing com-

pared to the promising benefits reported in the literature (Cichocki and

Amari [2010], Jewson et al. [2018]). We note some improvement with in-

creasing hyperparameters, especially with the γ loss, which raises questions

about the impact of hyperparameter tuning on the performance of these

robust losses. Investigating the optimal choice of hyperparameters and

understanding their influence on the robustness and performance of the

Bayesian setting could be a valuable avenue for future research (Jewson

et al. [2023]). This exploration may provide insights into achieving a bal-

ance between downweighting the likelihood and obtaining more accurate

and robust posterior estimates. Despite yielding interesting results, the

classical robust losses demonstrated poor performance when confronted

with the relatively simple ODE models selected in this study challenging

the universal effectiveness of these robust losses. To our knowledge, this

study represents one of the initial applications of Generalised Variational

Inference for investigating misspecified dynamical examples. The various

concerns related to the efficiency and robustness of Bayesian inference in

the context of model misspecification have prompted useful alternatives

relying on ABC ([Frazier, 2020, Schmon et al., 2020]) ). We opted to in-

corporate an ABC loss and showcase that this methodology can produce

robust estimates. Specifically, when the model poorly describes y for a

certain value of θ, incorporating a tolerance rate can fortify the inference

process. We establish a natural connection between ABC and generalised

Bayesian approaches, reinterpreting it as a flexible robustification strategy.
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These findings also underscore the challenges of selecting specific loss func-

tions in cases where misspecification involves structural errors rather than

outliers.

4.9 Further work

The Generalised Bayesian Inference is considered due to its distinct loss

function-based formulation compared to the likelihood-based approach.

Another likelihood-free approach involves comparing empirical distribu-

tions without explicitly estimating the underlying probability density func-

tions. For example, the Maximum Mean Discrepancy (MMD) distance

(Gretton et al. [2006]) on the space of probability measures has found nu-

merous applications in machine learning and nonparametric testing. This

distance is based on the notion of embedding probabilities in a reproduc-

ing kernel Hilbert space and can be used for inference (Briol et al. [2019]).

Alternatively, one can consider the Stein Discrepancy (Stein [1972]); for

instance, Barp et al. [2019] introduces a Stein score estimator, utilising the

Hyvärinen scoring rule (Hyvarinen [2005]), which has exhibited robustness

when exposed to corrupted data. These techniques refrain from employing

a predefined model structure and instead rely solely on samples from the

dGp. Although they can achieve better proximity to the true distribu-

tion, they do not offer a mechanism for integrating mechanistic modelling

with interpretable parameters. Chapter 5 presents a novel methodology

for misspecified mechanistic models which involves adopting a variational

approach with an augmented Gaussian process model.
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Chapter 5

Using Gaussian Processes to

mitigate mechanistic model

misspecification.

Summary: Many scientific disciplines use models formulated as ordinary

differential equations, derived from fundamental principles and mechanistic

insights. Typically, an ODE model takes the form of dx
dt

= fθ(x, t) where

x represents time-varying variables, and θ denotes static parameters of the

ODE model f . Inaccurately representing the dynamics with the model

poses significant challenges for both inference and uncertainty quantifica-

tion for θ. This study introduces a novel approach that integrates Gaussian

processes into the ODE model, inferred via a variational inference frame-

work. We underscore the importance of incorporating model discrepancy

to capture mechanistic dynamics and emphasise the effectiveness of our

proposed method for robust inference and prediction. The study aims to

contribute to a better understanding of how model discrepancy should be

appropriately modeled in the context of mechanistic misspecified models.
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5.1 Introduction

Dynamic processes are frequently modeled using ordinary differential equa-

tion models (ODEs). However, inferring the parameters of the ODE system

becomes challenging when the model fails to capture all relevant mecha-

nisms, leading to what is known as model misspecification. The extensive

exploration conducted in Chapters 3 and 4 illustrated that even minor

perturbations in the model can lead to misleading estimations and, conse-

quently unreliable predictions when relying on a classical Bayesian design

([Grünwald and van Ommen, 2014, Broderick et al., 2023]). Model dis-

crepancy, which refers to the difference between the model and the true

data-generating process, introduces bias in inference and compromises the

accuracy of predictions. This suboptimal performance becomes significant

when higher uncertainty in mechanistic models is considered, leading to-

ward a non-robust framework.

Our main findings from the previous chapters, where we learn parameters

from observations of a misspecified mechanistic system, are summarised as

follows:

• if model discrepancy is ignored, both predictions and inferences about

parameters are biased, and this bias persists with increasing numbers

of observations (Bayesian inconsistency);

• if model discrepancy is considered using a generalised Bayesian pos-

terior, uncertainty quantification is improved but inferences about

parameters will still typically be biased;

• to achieve better inference, a more careful modelling approach that

explicitly considers model discrepancy is needed.

Model discrepancy was formally introduced as a source of uncertainty in

simulator predictions by Kennedy and O’Hagan [2001], who referred to
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it as model inadequacy. They addressed the challenge of incorporating

uncertainty in simulator predictions when learning about uncertain input

parameters from observations of the real physical system, a process known

as calibration ([Goldstein and Rougier, 2009, Higdon et al., 2004]). Their

work demonstrated how we can incorporate model discrepancy into cali-

bration and subsequent predictions of the physical system. This modelling

framework often referred to as the “Kennedy-and-O’Hagan approach” has

been widely adopted in fields such as health sciences (Oakley and Young-

man [2017]), experimental physics ([Wilkinson et al., 2011] ) or climate

modelling (Murphy et al. [2007]).

The typical form for model discrepancy can be described using the ter-

minology and notation introduced by Kennedy and O’Hagan [2001]. Let

z1:n denote n observations of the physical system, with the i-th observa-

tion zi associated with control inputs xi. Each observation zi is modeled

as zi = ζ(xi) + ϵi, where ζ(xi) is the true value of the physical system at

control variable value xi, and ϵi represents independent observation errors.

Model discrepancy is introduced with ζ(x) = η(x, θ) + ρ(x), where θ is

the true unknown parameter. We can employ a Bayesian approach, where

prior distributions are assigned to θ and the model discrepancy function

ρ(·), and these are updated to posterior distributions conditioned on the

observations. The model discrepancy is typically inferred with a Gaussian

Process (GP) model learned jointly with the model parameters θ where

we map the model outputs y and inputs x to the observational data z:

GP : {y, x} → z. GP regression is chosen for modelling model discrepancy

due to its flexibility, nonparametric nature, and Bayesian formulation, al-

lowing the estimation of uncertainty [Kennedy and O’Hagan, 2001, Conti

et al., 2009, Pope et al., 2021, Gahungu et al., 2022]). Especially in the

case of complex dynamical systems where misspecification is suspected,

employing a flexible framework such as GP can handle noisy and incom-
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plete data and account for uncertainty in the model predictions ([Lei et al.,

2020, Zhou et al., 2022, Coveney et al., 2022]).

We posit the introduction of a novel framework in which a discrepancy

model is seamlessly incorporated alongside the mechanistic differential equa-

tion model. When we incorporate additional uncertainty in the model

structure and learn about what is still unknown from the model, the un-

derlying mechanistic model becomes :

dx

dt
= fθ(x, t) + ρ(·) (5.1)

In this context, ρ(·) is considered the discrepancy between the reality and

the model governed by ordinary differential equations at the best θ, and it

remains independent of the model parameters θ. We assume that fθ(x, t)

is the known expert model for the dynamical process with θ meaningful

physical parameters.

Chapter Contributions In this work, we propose a novel approach

for uncertainty quantification in misspecified dynamical systems :

• We present an innovative approach to differentiate the GP through

the ODE solver, departing from the classical trajectory outputs de-

rived approach.

• We demonstrate the efficient integration of mechanistic knowledge

and Gaussian Processes (GP) into a Variational Autoencoder (VAE)

framework.

• We illustrate the benefits derived from integrating model discrepancy

in both inference and prediction when the mechanistic model is mis-

specified.
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5.2 Quantifying Uncertainty in Differential

Equation Models

In this study, we expand upon the Kennedy and O’Hagan approach to

estimate the parameter θ ∈ Rd in mechanistic systems governed by ordinary

differential equations denoted as fθ(x, t). We introduce two discrepancy

functions ρ1(x, t, z) and ρ2(z, t, x) involving two current time-dependent

states x and z so that the general discrepancy takes the form:

dw

dt
=

dx
dt

dz
dt

 =

fθ(x, t) + ρ1(x, t, z)

ρ2(z, t, x)

 . (5.2)

The typical approach involves adding a discrepancy term ρ(·) directly to

the observations. We seek to enhance the methodology by integrating the

discrepancy term ρ1(x, t, z) within the ordinary differential equation solver

itself. By directly accounting for discrepancies within the ODE solver, we

expect to achieve more accurate and reliable parameter estimation and

predictions in mechanistic systems.

The second discrepancy function ρ2(z, t, x) becomes particularly relevant

when it is suspected that an equation is omitted from the ODE system (Mis-

specification of Type 3). In Chapter 2, the ion channel modelling example 3

illustrates this situation, where the blue model does not include the state

d[C2]
dt

present in the red model that generates the data. To model the discrep-

ancy, we utilise a Gaussian process, denoted as ρ(x) ∼ GP(m(x), k(x, x′)),

where m(x) signifies the mean function, and k(x, x′) is the covariance func-

tion or kernel. The VAE architecture, as discussed in Chapter 3, offers

a suitable framework for incorporating the differential equation in Equa-

tion 5.2. To overcome the need for gradient differentiation during backprop-

agation through the ODE solver (further details in Chapter 3, Section 3.3),
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we propose employing Random Fourier Features (RFF) as an approxima-

tion method for Gaussian Processes (GPs) (Hensman et al. [2018]).

5.3 Background

As proposed by Rahimi and Recht [2007], we use random Fourier features

(RFFs) to approximate the kernel function of a GP. This method leverages

Bochner’s theorem (Rudin [2011]), expressing stationary kernels k(x, y) :=

k(x− y) as the Fourier transform of a positive measure p.

k(x− y) =

∫
expiwT (x−y) dp(w) = Ew[ζw(x)ζw(y)

∗], (5.3)

where ζw(x) = expiwT x, and the superscript ∗ denote the complex conju-

gate. Importantly, recall that the complex conjugate of expix is exp−ix.

ζw(x)ζw(y)
∗ is an unbiased estimate of the kernel k(x, y) when w is drawn

from the distribution p. Since the probability distribution p(w) and the

kernel k are real, the integral converges when the complex exponential is

replaced with cosines:

k(x, y) = Ew[Φm(x)Φm(y)] =
∞∑

m=1

Φm(x)Φm(y), (5.4)

with the basis vector Φm(x) =
√
2 cos(wT

mx + bm), wm is drawn from p(w)

and bm is drawn uniformly from the uniform distribution U [0, 2π]. This

expression allows us to interpret the covariance function as an expectation

that can be estimated using Monte Carlo. It follows that, with D samples,

we can estimate the covariance function as:

k(x, y) ≈ 1

D

D∑
m=1

Φm(x)Φm(y) =
1

D

D∑
m=1

cos(wT
m(x− y)). (5.5)
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Proof. Ew,b[2 cos(w
Tx+ b) cos(wTy + b)]

= Ew,b

[
cos(wT (x− y)) + cos(wT (x+ y) + 2b)

]
= Ew

[
cos(wT (x− y))

]
+ EwEb

[
cos(wT (x+ y) + 2b)]

]
= k(x, y) + 0.

We specifically select the radial basis function (RBF) covariance defined

as:

kRBF (x, y) = exp
(
− ∥x− y∥2

2λ

)
,

parameterised by a length scale parameter λ > 0 the length-scale. In the

rest of this chapter, we choose λ = 1 and p(w) = N (0, I). This choice

provides an initial perspective for the experiments, though we acknowledge

the importance of exploring alternative kernels in future research. The

RBF kernel can thus be estimated using the Monte Carlo approximation

provided in Equation 5.5. To achieve a comprehensive representation of

the spectrum, the RFF methodology typically requires a large number of

spectral sample points. Figure 5.1 illustrates the RBF covariance matrix

approximation using RFF. As D increases, meaning the Monte Carlo ap-

proximation employs more samples to estimate the basis function Φ(·), we

achieve a better approximation for the covariance matrix.

5.4 Methodology

5.4.1 Augmented Dynamical Model

In the upcoming section, we delve into the task outlined in Section 5.2 with

a more specific form for the dynamic model, which will be later illustrated

in the results section. We consider the dynamics of a system governed

by the ordinary differential equation fθ(·), with an additional Gaussian
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Figure 5.1: Random Fourier Features kernel approximation for the RBP
kernel with an increasing number of Monte Carlo samples given by D. We
conclude that increasing D beyond 200 offers no clear benefit based on
initial experiments, though this is not definitive.
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Process (GP) term denoted as ρ(·) independent of θ:

d2x

dt2
= fθ(x, t) + ρ(x).

We choose to model the discrepancy as a zero-mean Gaussian Process (GP)

with an RBF kernel with length scale λ = 1, which will be approximated

using Random Fourier Features (RFFs):

ρ(x) ∼ GP(0, kRBF (x, x
′))

The discrepancy model is intentionally made independent of θ and en-

compasses all the unknown aspects of the dynamic system, related to the

mechanistic model f .

Furthermore, we choose to include the derivative states dx
dt

within the dis-

crepancy function, in addition to the states x. We believe that this inclusion

enables a more comprehensive representation of system dynamics. By con-

sidering both states and their derivatives, the model can better capture

temporal changes and system behaviour over time. The model discrepancy

is therefore characterised by a linear dependence on unknown parameters

α1:m with:

ρ(z) =
D∑

m=1

αmΦm(z), z =

(
x,

dx

dt

)
. (5.6)

Following the previous section, substituting Φm in the Monte Carlo approx-

imation enables the representation of ρ(·) without explicitly calculating the

true Gaussian process as :

ρ(z) =
D∑

m=1

αm cos(aTmz + bm). (5.7)

aTm ∈ RD×2 is drawn from N (0, I) and bm ∈ RD is drawn uniformly from

the uniform distribution U [0, 2π]. D represents the number of samples in
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the Monte Carlo estimator.

Example 8. Denote the true unknown dynamical model given by :

d2x

d2t
+ δ

dx

dt
+ θ sin(x) = 0, (5.8)

where δ is a constant parameter in R.

Suppose that the model used to describe the data is characterised by the

(simpler) incorrect dynamics:

d2x

d2t
+ θ sin(x) = 0, (5.9)

We define z(t) =

x(t)dx

dt

 =

z1
z2

 so that the true system is

dz

dt
=


dx

dt
d2x

d2t

 =


dz1
dt
dz2
dt

 =

 z2

−θsin(z1) + ρ(z)

 . (5.10)

Here ρ(z) = −δz2 = −δ dx
dt

represents the unknown discrepancy that we

want to infer using GP.

5.4.2 Discrepancy Modelling with RFF-VAE

In this work, we combine the variational autoencoder approach with Fourier

features; we refer to our method in Algorithm 2 as Random Fourier Features

Variational autoencoder (RFF-VAE). Discrepancy Modelling with RFF-

VAE involves a variational Bayesian posterior distribution q(θ, α1:D | x)

for the latent parameter θ within the dynamical model fθ(x, t), where α1:D

are the parameters needed for the RFF approximation. We choose a mean

field family Q for the variational posterior, i.e. we use q of the form :
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q(θ, α) = N

( µθ

µα1:D

 ,

σ2
θ 0

0 diag(σ2
α1:D

))

), (5.11)

where µϕ = (µθ, µα1:D
) are the variational posterior mean and σ2

ϕ = (σ2
θ ,

σ2
α1:D

) the variational posterior variance.

Variational Bayes involves maximising the Evidence Lower Bound (ELBO)

LB(ϕ), which is:

LB(ϕ) = Eq(ϕ)[log p(y | x, σ2)]−KLD(qϕ||p(θ, α)), (5.12)

where ϕ = (µϕ, σ
2
ϕ) are variational parameters and p(θ, α) a multivariate

Gaussian prior distribution.

The first term in the ELBO is obtained by solving the augmented dynamical

system fθ(x, t) + ρ(z) with the reparametrization trick:

ϵ ∼ N (0, I)

θ ← µθ + σθ ◦ ϵ

α1:D ← µα1:D
+ σα1:D

◦ ϵ

x← ODESolve

(
fθ + ρ(z), x(t0)

) (5.13)

where ρ(z) is given in Equation 5.7.

Solving the dynamical system with the parameter results in the vector x

assumed normal with mean the observations y and a variance noise σ2

(assumed known).

The second term requires the computation of the KLD between two mul-

tivariate diagonal Gaussian distributions. The analytic expression is given

in the Appendix (Proposition 3). In our optimization process, we employ

torch.distributions.kl.kl_divergence from Pytorch for this compu-

tation.
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Algorithm 2 Discrepancy Modelling with RFF-VAE

1: Input : model fθ(x, t), dataset y1:n, prior p(θ, q), sampling size J,
learning rate λ, size of RFF approximation D, vector bm ∼ U [0, 2π],
vector a1:2m ∼ N (0, 1)

2: Initialize : Variational parameter ϕ randomly.
3: repeat
4: Encoder

Draw samples from θj, αj
1:D ∼ N (µϕ, σ

2
ϕI) for j = 1, · · · , J

5: Decoder
- Compute Basis vectors Φ(z) = cos(a1:2m z + bm) with z = (x, dx

dt
)⊤

- Forward simulate xj ∼ fθj(x, t) + Φ(z)Tαj for j = 1, · · · , J
6: Compute ELBO

L̂B(ϕ) = 1
J

∑J
j=1 log p(y | xj)−KLD(qϕ(θ, q)∥p(θ, q))

7: Update parameter ϕ = ϕ+ λ∇ϕL̂B(ϕ), t = t+ 1
8: until change of ϕ is small enough.
9: return qϕ(θ)

5.4.3 Implementation

The RFF-VAE framework given in Algorithm 2 is implemented in Py-

Torch where the encoder and differential function parameters are jointly

optimized with the Adam optimizer (learning rate λ = 0.4). The sampling

size for the Monte Carlo of the gradient ELBO is J = 15. The backprop-

agation through the Ordinary Differential Equation (ODE) solver, which

incorporates both the dynamical system and the model discrepancy, is done

with torchdiffeq (Chen et al. [2018]) for gradient computation. The ODE

solver used is the adaptative dopri5. To use variational Fourier Features,

we must select the vector components [a, b] drawn from a Gaussian dis-

tribution N (0, 1) and a uniform distribution U [0, 2π], respectively. The

size of the RFF expansion approximation, denoted as D, will be varied

in our approach, spanning from 10 to 200. While the RFF expansion

requires more parameters for inference, the computational complexity of

the reverse approach is primarily influenced by the number of steps in

the ODE solver leading to similar computational time than in Chapter 3.

We compare Variational Bayes with Hamiltonian Monte Carlo (HMC), a
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Markov chain Monte Carlo (MCMC) method that uses the derivatives of

the density function being sampled to facilitate efficient transitions across

the posterior distribution (for further insights, Betancourt [2017]). We use

the No-U-Turn sampler (NUTS) for HMC in Stan (Carpenter et al. [2017]).

5.5 Experiments

To demonstrate the effectiveness of the RFF-VAE, we evaluate our ap-

proach with several dynamical ODE models with noisy data coming from a

true data-generating process. The mechanistic model is intentionally mis-

specified with various perturbations, evaluating parameter inference (bias

and uncertainty quantification) and predictive performances. In all the

presented results, we repeat the variational optimization several times to

obtain an average estimate of the variational posterior.

You can find the comprehensive introduction to the dynamical models em-

ployed in the following section in Chapter 3, particularly in Section 3.4,

along with the variational framework architecture. Table 5.2 presents the

various models alongside the respective data-generating processes utilised

to generate data for fitting. It is worth noting that the results from Chap-

ter 3 were obtained using data generated from dGp A, B, and C, fitted

respectively against models A1, B1, and C1.
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E
X
P
E
R
IM

E
N
T
S

Dynamical
Model

Data Generating
Process

Misspecifed
Model

Misspecifed Model +
RFF-VAE

Well specified model
Well specified Model +

RFF-VAE

A
dGp A

d2x
dt2

= −θ − δ dx
dt

Model A1
d2x
dt2

= −θ
Model A2

d2x
dt2

= −θ + ρ(z)
Model A3

d2x
dt2

= −θ − δ dx
dt

Model A4
d2x
dt2

= −θ − δ dx
dt

+ ρ(z)

B
dGp B

d2x
dt2

= −θ sin(x)−δ dx
dt

Model B1
d2x
dt2

= −θ sin(x)
Model B2

d2x
dt2

= −θ sin(x)+ρ(z)
Model B3

d2x
dt2

= −θ sin(x)−δ dx
dt

Model B4
d2x
dt2

= −θ sin(x)−δ dx
dt
+ρ(z)

C
dGp C

d2x
dt2

= −θ sin(x)−δ dx
dt

Model C1
d2x
dt2

= −θx
Model C2

d2x
dt2

= −θx+ ρ(z)
Model C3

d2x
dt2

= −θx− δ dx
dt

Model C4
d2x
dt2

= −θx− δ dx
dt

+ ρ(z)

Table 5.2: Glossaries of Dynamical Models Fitted to Data from dGp, with or without Discrepancy Model.
The simulated data are obtained with the dGp A, B, and C with various values for δ. The ODE models fitted against each dataset
may be appropriately specified or misspecified. In both situations, we consider the augmented model with Random Fourier Features
fitted using RFF-VAE.
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5.5.1 Learning dynamics with RFF-VAE

5.5.1.1 Free Fall Model

The ODE system generating the data (dGp A) for the Free Fall with air

resistance model is given by :

d2x

dt2
= −θ − δ

dx

dt
, (dGp A), (5.14)

and this model is employed for simulating data. The simulated data, gen-

erated as y(t) = x(t) + N (0, σ2), incorporates noise with a variance of

σ2 = 0.1. The parameters θ = 10, with various values of δ within the time

interval [0, 10] are employed to fit the misspecified model denoted as

fθ(x, t) = −θ.

In this case, the discrepancy is ρ(z) = −δ dx
dt
, where z =

(
x, dx

dt

)
.

Table A.3 gives the variational posterior estimates (µϕ;σ
2
ϕ) across varying

data size n, misspecification error δ, and RFF size D for model A2 fitted

against dGp A. When δ = 0, indicating the absence of model misspeci-

fication, the model accurately infers θ across varying RFF sizes D. Our

approach tends to increase uncertainty, leading to larger variances in the

variational posterior for σ2
ϕ. This suggests that the Gaussian process is not

incorrectly updating the parameters, but rather adding uncertainty due to

the increased complexity of the model. Nevertheless, it’s important to note

that the GP parameters are not equal to 0 in this situation. For example,

when D = 10 with no misspecification δ = 0, the variational posterior
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obtained with RFF-VAE in Equation 5.11 for a dataset of size n = 20 are:

µθ = 10.026

µα = [−3.79,−0.42,−2.17,−3.40, 2.89, 3.71,−2.0119, 3.2983, 2.2707]

σ2
θ = 0.003

σα = [0.01, 0.01, 0.02, 0.02, 0.044, 0.008, 0.01, 0.03, 0.003, 0.003]

This observation suggests an identifiable problem that we will discuss in

Section 5.5.2. Our findings show no significant robustness for inference

against misspecification since we consistently underestimated the value of

θ, with the true parameter being 10, regardless of the misspecification level,

data size, or RFF size. In Table A.3, the inference of θ is less biased without

the RFF approximation (D = 0) across all error levels. In other words,

when we account for misspecification with the RFF-augmented model, this

leads to higher bias estimates for θ.

In Figure 5.2, the predictive trajectories, obtained with the variational pos-

terior mean [µθ, µα] using RFF-VAE, are plotted alongside the trajectories

obtained without the random Fourier expansion (D = 0), denoted as a

VAE. These trajectories are compared against the simulated data using

the Root Mean Square Error (RMSE). Our approach, RFF-VAE, exhibits

superior RMSE performance when δ exceeds 0.1. This serves as evidence for

the efficacy of the RFF approximation in accurately aligning with the true

trajectory from the unknown dGp, with a misspecified dynamical model.

Despite producing the wrong estimate for θ, our approach correctly infers

the misspecified dynamic trajectory.
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Figure 5.2: Misspecified Free Fall model - Left Panel: Variational Posterior
Obtained with RFF-VAE (Model A2) with data coming from dGp A (n =
20) across varying error levels δ (top to bottom). Right Panel: Trajectories
obtained with the variational posterior mean given on the left withD = 100
compared with the trajectories obtained with the VAE (D = 0). The
observations are represented by black dot points.
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5.5.1.2 Pendulum Model

We use the classical pendulum model with air resistance (dGp B) as the

ODE model for generating the data given by :

d2x

dt2
= −θ sin(x)− δ

dx

dt
, (dGp B) (5.15)

The simulated data are generated from this model with noise variance

σ2 = 0.01. The parameters are set as follows: θ = 10, and δ takes values of

0, 0.05, 0.1, and 0.2, all within the time interval [0, 10]. We fit this data to

two misspecified models, referred to as Model B2 and C2 in Table 5.2. The

discrepancy is as ρ(z) = −δ dx
dt
, where z =

(
x, dx

dt

)
. However, model C2 has

an additional error due to the absence of the sinusoidal driving force. The

resulting variational posterior estimates (µϕ;σ
2
ϕ) for model B2 and C2 are

given respectively in Table A.4 and Table A.5. Model B2 exhibits inference

robustness against misspecification with a correct estimate for θ even when

δ = 0.2 with high certainty (as observed already in Chapter 3). When em-

ploying the RFF-VAE approach, we notice a slight underestimation of θ,

accompanied by larger variational variances. Overall, integrating discrep-

ancy does not enhance nor impede the correct inference of θ in Table A.4.

This is not the case when using the misspecified model C2, where a large

RFF size D for the approximation results in highly biased estimates and

excessively large variances in Table A.4. This last model combines both

types of misspecification (Type I and II) and fails to robustly learn θ.

5.5.2 Identifiability

In situations where the true data-generating process significantly deviates

from the class of models denoted as Q, traditional mechanistic modelling

faces substantial challenges, particularly concerning structural identifiabil-
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ity ([Chis et al., 2011, Roberts, 2021, Curchoe, 2020]. Structural identi-

fiability refers to the ability to find a unique and accurate value for each

parameter in a model that can reproduce the observed data. When the

model is misspecified or inadequately captures the complexities of the dGp,

seeking structural identifiability can be counterproductive, as it may not

yield meaningful parameter values. We use the same observed data from

Equation 5.14 (dGp A), and fit them using the model A2 (Table 5.2) with

RFF-VAE which is:

d2x

dt2
= −θ +

D∑
m=1

αmΦm(z), z =

(
x,

dx

dt

)
.

The true discrepancy is −θ−δ dx
dt

with θ = 10 and δ = {0, 0.1, 0.2} whereas:

E[ρ(z)] = E[
D∑

m=1

αmΦm(z)] =
D∑

m=1

E[αm cos(a⊤mz + bm)]

=
D∑

m=1

µαm cos

(
a⊤m

 x

dx

dt

+ bm

)
,

with µαm the variational mean obtained for each latent parameter αm via

RFF-VAE, am and bm the Random features components.

The dynamical model is misspecified with an unknown discrepancy pro-

portional to the derivative state dx
dt
. As shown in Figure 5.2, our approach

provides biased estimates for θ, but the resulting trajectories fit the true

observations well.

Considering two-dimensional parameters (x, dx
dt
), representing trajectory

states and their derivatives, we can assess the GP discrepancy E[ρ(z)] and

the unknown truth −δ dx
dt
. Figure 5.3 illustrates the correct right-hand side

of the dGp and the right-hand side of model A2 across various errors using

heatmaps, including their difference in the last column. The first column,

−θ − δ dx
dt
, corresponds to dGp A used to generate the observations with
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different values for δ. Since δ is close to zero, this primarily takes the value

of −θ = −10. In the second column, we have the discrepancy with the

estimates obtained with RFF-VAE, given by −θ̂ + E[ρ(z)]. The last col-

umn assesses the difference between the other two columns, with the black

line representing the true x and dx
dt

used to fit the model. Essentially, the

integral along that line tends to produce the correct answer on average,

although it oscillates above and below the correct value of the right-hand

side as the trajectory progresses. This behaviour may be attributed to the

GP being trained on data with some level of noise, or due to the relative

sparsity of training samples along that trajectory.

5.5.3 Enhancing RFF-VAE with Derivative State In-

formation

Discrepancy model

We introduce a new discrepancy form by incorporating the derivative state

component δ dx
dt

so that the dynamical model with discrepancy becomes:

d2x

dt2
= fθ(x, t)− δ

dx

dt
+ ρ(z), (5.16)

where z =
(
x, dx

dt

)
.

We aim to jointly learn θ, δ, and the α1:D parameters in Equation 5.7 using

a variational bivariate Gaussian distribution q(θ, δ, α1:D | x), following the

methodology outlined in Section 5.4.1. This corresponds to Models A4, B4

and C4 in Table 5.2. If we remove the discrepancy term ρ(·), we only need

to estimate the two (considered) independent dimensional parameters, θ

and δ, for Models A3, B3, and C3 as listed in Table 5.2. For this purpose,

we adopt the same variational autoencoder framework as outlined in Chap-

ter 3. Since the dGp is known in these experiments, we know that Model
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Figure 5.3: RFF learning effectiveness with data generated from dGp A
(n=100) against the misspecified dynamical model A2 across several errors
δ. The true unknown dynamics, −θ−δ dx

dt
, is represented in the heatmap on

the left panel. the middle column displays the inferred RFF discrepancy,
−θ − ρ(x, dx

dt
), with D = 100, and the last column shows the difference

between them. The black line represents the model variables x and dx
dt

used
in the training dataset.

130



5.5. EXPERIMENTS

A3 and B3 are correctly specified in this context.

Data

The data utilised remains consistent with the previous section, generated

from the appropriate dynamics fθ(x, t) outlined in Equation 5.14 (denoted

as dGp A) and Equation 5.15 (referred to as dGp B or C), with the true

parameter θ = 10 and various values assigned to δ.

Results

This approach is evaluated both with and without the inclusion of the dis-

crepancy model ρ(z). When ρ(z) is not used in the model, the model is no

longer misspecified. Figure 5.5 displays the contour plot of the variational

bivariate distribution q(θ, δ | x).

The blue contour plots in Figure 5.5 depict the variational posteriors with-

out accounting for the discrepancy. Across models A3, B3, and C3, the

parameter δ is largely overestimated, while θ tends to be slightly under-

estimated. This is attributed to the constraint introduced by selecting a

variational family with independent parameters. In the simplest scenario

where the data are generated with δ = 0, it indicates that the VAE fails to

accurately infer δ, assigning a high value around 2.5. When compared with

HMC with model A3, Figure 5.4 (left plot) reveals an underestimation of

both θ and δ, leading to suboptimal performance in inferring the parameter

of interest θ with a value of 7.1. However, when δ = 0.2, we correctly infer

both parameters with HMC, unlike the VAE framework.

When incorporating discrepancy with the RFF-VAE approach (Model A4,

B4, and C4), we observe higher uncertainty for both parameters θ and δ,

enabling a wider range of estimates for θ that can encompass the correct

value (θ = 10). Conversely, the parameter δ is consistently overestimated

across all scenarios, with GP approximation. This suggests that the deriva-
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Figure 5.4: Variational posterior bivariate distribution q(θ, δ | x) with HMC
for Model A3 and data coming from the dGp A (n = 100). In the generated
data, two values of δ are considered. On the left, the true value θ = 10 and
δ = 0 is not accurately recovered. Conversely, on the right, both values are
correctly inferred.

tive state plays a significant role in capturing dynamics within the gener-

ative model. We emphasise that the estimated variational variance with

RFF-VAE is constantly notably higher than with HMC as shown in Figure

5.4. In dynamic models where we suspect some missing dynamics relying

on the derivative state dx
dt
, this boosting approach can be advantageous by

providing better uncertainty quantification.
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δ = 0 δ = 0.2

d
G
p
A

d
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p
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d
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Figure 5.5: The variational posterior distribution of θ and δ is obtained
using n = 100 observations from dGp A, B, and C (from top to bottom)
fitted with models A3, B3, and C3 (depicted as blue contour plots) and
fitted with discrepancy models A4, B4, and C4 (depicted as black contour
plots) with D = 200 Random Fourier Features. The true values for θ and
δ are indicated by the red lines.
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5.6 Considerations

We have evaluated the inference and predictive trajectories across different

dynamical models using our RFF-ODE framework. The findings indicate

enhanced robustness to structural misspecification for predictions along

with improved uncertainty quantification. However, we acknowledge sev-

eral limitations:

1. Within the VAE framework, we adopt a mean-field family of inde-

pendent parameters Q for the approximate distribution. This im-

plies that all latent parameters, including those from the dynamic

and in the RFF discrepancy, are assumed to be independent. As a

result, this method inherently introduces a discrepancy between the

true data-generating process and the approximation distribution. By

contrast with HMC, the level of discrepancy δ is therefore consis-

tently overestimated with RFF-VAE. Instead of approximating sepa-

rate variables for each data point, we could consider Amortized Varia-

tional Inference (Ganguly et al. [2022]) where we assume that the local

variational parameters can be predicted by a parameterised function

of the data. Thus, once this function is estimated, the latent variables

can be obtained by passing new data points through the function.

2. The computational time challenges outlined in Chapter 3 hinder the

scalability of the inference method, as elaborated in the conclusion

of this thesis. Specifically, we encountered limitations in applying

our method to a particular misspecified scenario within cardiac phys-

iology applications described in Example 3. Due to the excessive

memory cost associated with the number of ODE steps required in

backpropagation, an alternative approach is necessary.

3. A further limitation of our approach is that we have only considered
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the radial basis function (RBF) kernel with fixed length-scale param-

eter equal to 1 for the Variational Fourier Features approximation.

We intentionally chose the simplest kernel without conducting prelim-

inary steps to identify the most effective one. While the RBF kernel

is not an ideal choice, we would estimate the hyperparameters and

explore alternative covariance functions, such as the Matérn kernel

in future research. Nevertheless, the RBF kernel is suitable in this

case, as ODEs generally have smooth right-hand sides, and the RBF

kernel produces highly smooth, analytic functions with derivatives

of all orders. It is not typical to have a discrepancy related to the

first derivative. Usually, discrepancies are added to the output space,

such as y(t) = f(t) + δ(t) + ϵ, as done in previous work. However, by

considering a discrepancy in the first derivative, the aim is to correct

the underlying equations and gain insights into the true dynamics.

5.7 Conclusion

When confronted with a presumed misspecified dynamical model, a com-

mon strategy is to shift towards data-driven models within machine learn-

ing. Several methods have been devised for dynamical systems governed

by differential equations, aiming to construct predictive algorithms that

effectively combine data and mechanistic prior knowledge. These tech-

niques prove particularly valuable in scenarios involving imperfect data

(Yang et al. [2020]) or inaccurately modeled biological mechanisms (En-

gelhardt et al. [2017]). These approaches acknowledge the limitations and

uncertainties in the model structure, allowing for corrections to be made

to better align with the true Data Generating Process. We introduced a

novel grey-box framework for robust inference in misspecified dynamical

systems combining differential programming techniques for Bayesian in-
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ference with mechanistic knowledge associated with Gaussian process ap-

proximations. Our approach departs from previous studies by integrating

Random Fourier features directly into the ODE solver within a variational

autoencoder framework. When the mechanistic dynamical model is in-

correctly specified, the discrepancy model learns the correct true observed

trajectory, even though this may result in biased estimators for the mean-

ingful parameters of the dynamical model. This can render the approach

particularly useful for predictions in future research. Additionally, the dis-

crepancy variational approach yields estimates with increased uncertainty,

thereby enhancing uncertainty quantification when we suspect the dynam-

ical model to be misspecified.
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Chapter 6

Discussion

In this concluding section of the thesis, we will assess the contributions

made and discuss some of the key remaining challenges.

6.1 Contributions of this thesis

If decision-makers are considering competing models, when should we ex-

pect them to drop their current model? What forms of misspecification are

most likely to persist? Which inference procedure are more robust?

This thesis addresses these questions using various Bayesian variational

methods within the context of model misspecification depicted in Fig-

ure 2.6. The thesis explores various methods and offers guidance on choos-

ing the most suitable approach. Specifically, the thesis focuses on mechanis-

tic models rooted in Ordinary Differential Equations (ODEs), which, to our

knowledge, present a departure from typical examples previously examined

in Variational Inference (VI) for handling model misspecification. Within

this thesis, we advocate for grey-box modelling, a form of physics-based

modelling, that bridges the gap between non-informative black-box models

lacking theoretical knowledge and interpretability and white-box models

relying solely on detailed but potentially misspecified physical principles.
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• In Chapter 2, a comprehensive exploration is undertaken to elucidate

the current limitations that standard Bayesian methods encounter

when confronted with the challenges posed by model misspecifica-

tion. This chapter also serves as a unifying platform, drawing to-

gether a wide spectrum of disciplines spanning Bayesian Statistics

and Machine Learning, coalescing them into a coherent and intercon-

nected framework. We emphasise how robustness in inference is often

viewed through the prism of contamination rather than structural er-

ror, which is the focal point of interest in this thesis.

• In Chapter 3, we have harnessed the power of automatic differen-

tiation variational inference by innovatively blending a VAE archi-

tecture and differentiable gradient in dynamical ODE systems from

simulated data. We discussed the challenges associated with employ-

ing traditional adjoint and sensitivity methods in conjunction with

automatic differentiation for fitting ODE-based models. This chapter

represents one step towards improving the efficiency and effectiveness

of inference processes within mechanistic modelling by integrating

physic-informed models.

• In Chapter 4, our primary focus has been the computation of gen-

eralised posteriors using a state-of-the-art generalised variational in-

ference approach, with a careful selection of robust loss functions.

This chapter is a comprehensive effort to robustify Bayesian statis-

tical inference methods and make them more resilient against model

misspecification.

• Chapter 5 presents an innovative model augmentation approach that

addresses discrepancies in misspecified models through the applica-

tion of Variational Inference with Random Fourier Features. Our

approach is novel as it integrates the discrepancy model within the
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ODE model, enabling backpropagation through the Gaussian Process

approximation to obtain posterior distributions.

6.2 Open problems

Computational Challenges for ODEs backpropagation

Throughout this research project, we encountered several computational

challenges while employing automatic differentiation for variational infer-

ence. In particular, utilising backpropagation through a mechanistic dy-

namical model is a recent practice. The foundational work by Ricky Chen

et al. [2018] primarily emphasises the replacement of dynamics with neu-

ral networks. We faced challenges with the slower performance of this

method in PyTorch, encountering memory-intensive issues, when deal-

ing with ODE-based models. This challenge became particularly pro-

nounced as we endeavored to tackle complex real-world models involv-

ing non-linearity and stiffness ODE models in cardiac physiology. Explor-

ing forward-mode Automatic Differentiation in PyTorch (currently in beta

at pytorch.org/tutorials/intermediate/forward_ad_usage.html) in-

stead of relying on reverse-mode backpropagation, though not pursued due

to time constraints, could be a more efficient approach for accelerating and

scaling the methods.

Robust Inference in the Presence of Structural Model Misspeci-

fication

Achieving robustness for misspecified mechanistic models involves ensuring

that a modelling approach remains resilient and effective, even when the

assumed mechanistic model does not align with the true underlying dynam-

ics of the system. Robustness in this context implies that the modelling

framework can still provide meaningful and reliable results in real-world

situations, even though achieving robustness may come at a cost. Exist-
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ing robustness measures commonly used in the literature seem inadequate

for determining whether inference remains sufficiently efficient under struc-

tural misspecification. We believe there is significant potential for research

in mechanistic models in this regard.

GVI for Dynamical Models: Assessing its Real Benefits

Generalising Bayesian inference introduces challenges in choosing from var-

ious alternatives. Unlike model selection, which revolves around choosing a

statistical model for the data, the generalised framework lacks a theoretical

recipe for selecting a specific loss function. In complex data scenarios, de-

termining feasible specifications for ℓ, θ, and Π becomes challenging due to

uncertainties in quantifying distortion or corruption in the data, making it

difficult to choose between non-likelihood-based and likelihood-based loss

functions. Do we take a risk by switching to a more generalised framework?

While the choices made in this thesis have been subjective, they serve as

benchmarks rather than definitive answers, highlighting concerns about the

reliability of the generalised Bayesian inference framework. Notably, they

have shown varying degrees of effectiveness, ranging from limited utility to

virtually non-existent performance when dealing with structural errors in

the considered ODE models. We chose to rely on the recent generalised

variational inference paradigm introduced in recent literature, by the core

paper by Knoblauch et al. [2019]. To the best of our knowledge, no pa-

pers have yet utilised this paradigm for ODE-based models, making it an

ambitious first step.
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B.-E. Chérief-Abdellatif and P. Alquier. Finite sample properties of para-

metric MMD estimation: robustness to misspecification and dependence.

arXiv, Dec. 2019.

H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis

Based on the sum of Observations. aoms, 23(4):493–507, Dec. 1952.

O.-T. Chis, J. R. Banga, and E. Balsa-Canto. Structural identifiability of

systems biology models: a critical comparison of methods. PLoS One, 6

(11):e27755, Nov. 2011.

A. Cichocki and S.-I. Amari. Families of alpha- beta- and gamma- diver-

gences: Flexible and robust measures of similarities. Entropy, 12(6):

1532–1568, June 2010.

S. Conti, J. P. Gosling, and J. E. Oakley. Gaussian process emulation of

dynamic computer codes. Biometrika, 96(3):663–676, Sept. 2009.

S. Coveney, C. H. Roney, C. Corrado, R. D. Wilkinson, J. E. Oakley,

S. A. Niederer, and R. H. Clayton. Calibrating cardiac electrophysiology

models using latent Gaussian processes on atrial manifolds. Sci. Rep.,

12(1):16572, Oct. 2022.

P. S. Craig, M. Goldstein, A. H. Seheult, and J. A. Smith. Pressure Match-

ing for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear

144



BIBLIOGRAPHY

Strategies for Large Computer Experiments. In Case Studies in Bayesian

Statistics, pages 37–93. Springer New York, 1997.
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A. Rényi. On measures of entropy and information. In Proceedings of the

Fourth Berkeley Symposium on Mathematical Statistics and Probability,

Volume 1: Contributions to the Theory of Statistics, volume 4.1, pages

547–562. University of California Press, Jan. 1961.

D. J. Rezende and S. Mohamed. Variational inference with normalizing

flows. May 2015.

H. Robbins and S. Monro. A Stochastic Approximation Method. Ann.

Math. Stat., 22(3):400–407, Sept. 1951.

D. A. Roberts. Why is AI hard and Physics simple? Mar. 2021.

G. Roeder, P. Grant, A. Phillips, N. Dalchau, and T. Meeds. Efficient

Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical

Systems. June 2019.

E. Ronchetti. Robust inference by influence functions. J. Stat. Plan. In-

ference, 57(1):59–72, Jan. 1997.

J. Rudi, J. Bessac, and A. Lenzi. Parameter Estimation with Dense and

Convolutional Neural Networks Applied to the FitzHugh-Nagumo ODE.

Dec. 2020.

154



BIBLIOGRAPHY

W. Rudin. Fourier Analysis on Groups — Wiley. Sept. 2011.

T. Ryder, A. Golightly, A. Stephen McGough, and D. Prangle. Black-box

Variational Inference for Stochastic Differential Equations. Feb. 2018.

S. M. Schmon, P. W. Cannon, and J. Knoblauch. Generalized Posteriors

in Approximate Bayesian Computation. Nov. 2020.

M. Schober, D. K. Duvenaud, and P. Hennig. Probabilistic ODE solvers

with Runge-Kutta means. In Z. Ghahramani, M. Welling, C. Cortes,

N. D. Lawrence, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 27, pages 739–747. Curran Associates,

Inc., 2014.

B. Schölkopf. Causality for machine learning. Nov. 2019.

B. Sengupta, K. J. Friston, and W. D. Penny. Efficient gradient computa-

tion for dynamical models. Neuroimage, 98:521–527, Sept. 2014.

R. Serban and A. C. Hindmarsh. CVODES: The Sensitivity-Enabled ODE

solver in SUNDIALS. ASME 2005 International Design Engineering

Technical Conferences and Computers and Information in Engineering

Conference, pages 257–269, June 2008.

H. Shin and M. Choi. Physics-informed variational inference for uncertainty

quantification of stochastic differential equations. J. Comput. Phys., 487:

112183, Aug. 2023.

SI Amari, O. E. Barndorff-Nielsen, R. E. Kass, S. L. Lauritzen, and C. R.

Rao. Differential geometry in statistical inference. Lect. Notes Monogr.

Ser., 10:i–240, 1987.

S. A. Sisson, Y. Fan, and M. A. Beaumont. Overview of Approximate

Bayesian Computation. Feb. 2018.

155



BIBLIOGRAPHY

S. Sivaganesan. Global and Local Robustness Approaches: Uses and Lim-

itations. In D. R. Insua and F. Ruggeri, editors, Robust Bayesian Anal-

ysis, pages 89–108. Springer New York, New York, NY, 2000.

A. F. M. Smith and J. M. Bernardo. Bayesian Theory. Wiley & Sons,

Limited, John, 2008.

B. Speelpenning. Compiling fast partial derivatives of functions given by

algorithms. Technical report, Jan. 1980.

C. Stein. A bound for the error in the normal approximation to the distri-

bution of a sum of dependent random variables. 1972.

D. Tran, R. Ranganath, and D. M. Blei. Hierarchical Implicit Models and

Likelihood-Free Variational Inference. Feb. 2017.

M. Tschannen, O. Bachem, and M. Lucic. Recent Advances in

Autoencoder-Based Representation Learning. Dec. 2018.

H. J. A. F. Tulleken. Grey-box modelling and identification using physical

knowledge and bayesian techniques. Automatica, 29(2):285–308, Mar.

1993.

A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press,

Oct. 1998.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and

Composing Robust Features with Denoising Autoencoders. In Proceed-

ings of the 25th International Conference on Machine Learning, ICML

’08, pages 1096–1103, New York, NY, USA, 2008. ACM.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families,

and variational inference. FNT in Machine Learning, 1(1–2):1–305, 2007.

156



BIBLIOGRAPHY

S. G. Walker. Bayesian inference with misspecified models. J. Stat. Plan.

Inference, 143(10):1621–1633, Oct. 2013.

B. Wang and D. Titterington. Convergence and asymptotic normality of

variational Bayesian approximations for exponential family models with

missing values. July 2012.

B. Wang and D. M. Titterington. Inadequacy of interval estimates corre-

sponding to variational Bayesian approximations. In R. G. Cowell and

Z. Ghahramani, editors, Proceedings of the Tenth International Work-

shop on Artificial Intelligence and Statistics, volume R5 of Proceedings

of Machine Learning Research, pages 373–380. PMLR, 2005.

Y. Wang and D. M. Blei. Frequentist Consistency of Variational Bayes.

May 2017.

Y. Wang and D. M. Blei. Variational Bayes under Model Misspecification.

May 2019.

R. D. Wilkinson. Approximate Bayesian computation (ABC) gives exact

results under the assumption of model error. Stat. Appl. Genet. Mol.

Biol., 12(2):129–141, May 2013.

R. D. Wilkinson, M. Vrettas, D. Cornford, and J. E. Oakley. Quantifying

simulator discrepancy in Discrete-Time dynamical simulators. J. Agric.

Biol. Environ. Stat., 16(4):554–570, 2011.

D. Williamson, M. Goldstein, L. Allison, A. Blaker, P. Challenor, L. Jack-

son, and K. Yamazaki. History matching for exploring and reducing

climate model parameter space using observations and a large perturbed

physics ensemble. Clim. Dyn., 41(7):1703–1729, Oct. 2013.

Y. Yang, M. Aziz Bhouri, and P. Perdikaris. Bayesian differential program-

157



BIBLIOGRAPHY

ming for robust systems identification under uncertainty. Proc. Math.

Phys. Eng. Sci., 476(2243):20200290, Nov. 2020.

Ç. Yıldız, M. Heinonen, and H. Lähdesmäki. ODE2VAE: Deep generative
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Appendix A

Supplementary materials

A.1 Chapter 3

A.1.1 Well specified scenarios

n=20 n=50 n=100 n=150 n=200

µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2

Free Fall 10.007 0.003 10.007 0.001 9.99 0.002 10.079 0.003 10.015 0.002

Simple harmonic motion 9.954 0.003 9.996 0.004 9.993 0.003 9.923 0.003 10.029 0.005

Table A.1: Well-specified models. The Variational posterior distributions
for the free fall and simple harmonic motion models are depicted respec-
tively in Figure 3.8a and 3.8b.

A.1.2 Misspecified scenarios

δ = 0.05 δ = 0.1 δ = 0.2

µ̄ σ̄2 µ̄ σ̄2 µ̄ σ̄2

Free Fall 8.760 0.002 7.734 0.002 6.203 0.003

Simple harmonic motion 8.075 3.7 8.067 0.065 6.487 0.006

Table A.2: Misspecified scenarios. Variational posterior for the free fall
and the simple harmonic motion models for n = 100.
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(a)

(b)

Figure A.1: Variational posterior distribution for each model (a)
Model 3.4.1, (b) Model 3.4.3. We remove the initial condition y0 from
the dataset. The horizontal line represents the ground truth.

A.2 Chapter 4

A.2.1 Robust losses

The generalised variational posterior obtained with some divergence D is

given by :

q∗(θ) = argmin
q∈Q
D(q(θ)∥p(θ|x)). (A.1)

For the two divergences D = {D(β), D(γ)}, the posterior can be rewritten

with the optimization problem :

P (ℓn, D,Q) : q∗(θ) = arg min
q(θ)∈Q

Eq(θ)[ℓ
D(θ, x)] +KLD(q(θ)||p(θ)), (A.2)

where ℓD corresponds to the divergence D.

We denote ℓβ and ℓγ the loss functions corresponding to the β and γ diver-

gences respectively.
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A.2.1.1 β-loss

The β loss function, denoted as ℓβ, aims to minimise the β divergence and

links the parameter θ to the observations x1:n by:

ℓβ(θ, x1:n) =
n∑

i=1

Lβ
p (θ, xi) =

n∑
i=1

− 1

β − 1
p(xi|θ)β−1 +

Ip,β(θ)

β
, (A.3)

where β ∈ R\{0, 1} with

Ip,a(θ) =

∫
p(y|θ)ady.

When we consider the framework in Chapter 3 described in the Algorithm 1,

the observations x1:n and the ODE state solutions y1:n obtained with the

parameter θ leads to the β loss function :

ℓβ(θ, x1:n) = −

(
n∑

i=1

1

β

1
√
2πσ2

β
exp(− β

2σ2
(yi − xi)

2)− (2πσ2)−
β
2

(1 + β)
3
2

)
. (A.4)

Proof. With β̃ = β − 1, we have

ℓβ(θ, x1:n) =
n∑

i=1

− 1

β̃
p(xi|θ)β̃ +

Ip,β̃+1(θ)

β̃ + 1
, (A.5)

=
n∑

i=1

− 1

β̃
(2πσ2)−

1
2
×β̃ exp

(
− β̃

2σ2
(yi − xi)

2

)
+

1

β̃ + 1
Ip,β̃+1(θ).

(A.6)

The second part can be simplified into a constant when changing the noise

from σ2 to σ2

β̃+1
(assuming β̃ > −1).
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Ip,a(θ) =

∫
(2πσ2)−

1
2
×a exp

(
− 1

2 σ2
√
a
2

(yi − xi)
2

)
dx, (A.7)

= (2πσ2)−
1
2
×a

√
2π(

σ√
a
)2
∫

1√
2π( σ√

a
)2

exp

(
− 1

2( σ√
a
)2
(yi − xi)

2

)
dx,

(A.8)

=
(
√
2πσ2)1−a

√
a

. (A.9)

Therefore, we have:

1

β̃ + 1
Ip,β̃+1(θ) =

1

β̃ + 1

(
√
2πσ2)−β̃√
β̃ + 1

=
(2πσ2)−

β̃
2

(β̃ + 1)
3
2

. (A.10)

A.2.1.2 γ loss

The γ loss, represented as ℓγ and focused on minimizing the γ divergence,

can be expressed as follows:

ℓγ(θ, x1:n) =
n∑

i=1

− 1

γ − 1
p(xi|θ)γ−1 × γ

Ip,γ(θ)
γ−1
γ

, (A.11)

where γ ∈ R\{0, 1}.

Similarly to the section above, we have the final expression for the loss

given by :

ℓγ(θ, x1:n) = −
n∑

i=1

1

γ

1√
2πσ2

γ exp(− γ

2σ2
(yi − xi)

2)× γ + 1[
(
√
2πσ2)−γ
√
γ+1

] γ
γ+1

.

(A.12)

Proof. Again with γ̃ = γ − 1.

ℓγ(θ, x1:n) = −
1

γ̃

1
√
2πσ2

γ̃
exp(− γ̃

2σ2
(yi − xi)

2)× γ̃ + 1

Ip,γ̃+1(θ)
γ̃

γ̃+1

(A.13)
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It follows from the previous section that

Ip,γ̃+1(θ)
γ̃

γ̃+1 =

[
(
√
2πσ2)−γ̃

√
γ̃ + 1

] γ̃
γ̃+1

. (A.14)

A.3 Chapter 5
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dGp A δ 0.0 0.05 0.1 0.2

D = 0

n=20 10.009;0.001 8.737;0.002 7.718;0.002 6.199;0.002

n=50 10.006;0.003 8.763;0.001 7.749;0.002 6.221;0.002

n=100 10.028;0.004 8.756;0.001 7.746;0.002 6.247;0.002

n=150 10.015;0.002 8.768;0.002 7.762;0.002 6.22;0.003

n=200 10.010;0.001 8.766;0.002 7.767;0.002 6.253;0.002

D = 5

n=20 9.55;0.003 8.044;0.002 6.322;0.002 4.282;0.002

n=50 9.527;0.002 8.061;0.003 6.193;0.002 4.686;0.002

n=100 9.541;0.002 8.086;0.003 6.592;0.004 4.663;0.003

n=150 9.543;0.001 8.112;0.004 6.582;0.004 4.654;0.002

n=200 9.581;0.0005 8.02;0.001 6.03;0.002 4.049;0.002

D = 10

n=20 10.026;0.003 8.155;0.004 6.492;0.002 4.172;0.003

n=50 10.038;0.004 8.116;0.005 6.469;0.002 3.762;0.002

n=100 9.908;0.005 8.16;0.002 6.45;0.002 3.812;0.002

n=150 10.173;0.002 8.127;0.001 6.268;0.002 4.424;0.002

n=200 9.811;0.003 8.337;0.005 6.593;0.002 4.559;0.003

D = 15
n=20 10.691;0.003 8.715;0.004 7.344;0.013 3.853;0.003

n=50 9.881;0.01 NA NA NA

D = 20

n=20 10.255;0.013 8.688;0.002 6.697;0.003 4.233;0.005

n=50 10.066;0.006 8.137;0.008 8.778;0.005 3.838;0.006

n=100 10.293;0.006 8.77;0.003 7.565;0.01 3.999;0.005

n=150 10.112;0.001 8.707;0.005 6.129;0.005 4.641;0.005

n=200 9.231;0.006 8.836;0.003 7.788;0.002 3.913;0.003

D = 50

n=20 10.27;0.016 8.91;0.002 7.897;0.071 4.425;0.04

n=50 9.496;0.036 NA NA NA

n=100 9.917;0.002 NA NA NA

n=150 9.988;0.018 NA NA NA

D = 100

n=20 10.026;0.006 8.169;0.022 8.18;0.009 6.82;0.005

n=50 10.523;0.015 NA NA NA

n=100 9.445;0.017 NA NA NA

n=150 10.361;0.107 NA NA NA

D = 200 n=20 9.461;0.007 8.664;0.096 7.937;0.025 9.327;0.01

Table A.3: Variational Posterior Analysis for Model A1 using observations
from the dGp A with RFF-VAE denoted µϕ;σ

2
ϕ across varying data size n,

misspecification error δ, and RFF sizeD. NA denotes that the computation
has not been performed.
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dGp B δ 0.0 0.05 0.1 0.2

D = 0

n=20 9.985;0.001 9.974;0.0 9.993;0.0 10.065;0.0

n=50 9.973;0.001 9.976;0.002 9.994;0.002 10.001;0.002

n=100 9.995;0.001 9.969;0.004 9.966;0.002 9.962;0.003

n=150 9.967;0.002 9.991;0.001 9.966;0.003 9.977;0.002

n=200 9.966;0.003 9.923,0.003 9.961;0.005 9.976;0.001

D = 5

n=20 8.887;0.0 11.486;1.79 9.009;0.0 8.84;0.015

n=50 9.417;0.001 9.443;0.002 9.749;0.002 9.76;0.002

n=100 9.482.0.002 9.527;0.002 9.722;0.003 9.883;0.007

n=150 9.626;0.001 9.695;0.001 9.819;0.003 9.915;0.006

n=200 9.138;0.001 9.614;0.002 10.053;0.005 9.606;0.003

D = 10

n=20 8.722;0.002 9.196;0 9.032;0 9.629;0.001

n=50 9.29;0.003 9.106;0.016 7.921;0.043 9.18;0.033

n=100 8.188;0.045 8.903;0.094 8.658;0.04 9.251;0.022

n=150 9.314;0.006 8.933;0.01 8.803;0.003 9.119;0.084

n=200 9.299;0.012 9.351;0.01 9.454;0.002 9.194;0.017

D = 15
n=20 8.832;0.002 8.719;0 8.818;0.001 9.011;0.001

n=50 9.369;0 9.405;0.001 9.415;0 9.267;0.002

D = 20

n=20 9.252;0.001 13.631;0.053 9.574;0.011 17.28;0

n=50 9.915;0.079 8.077;0.078 9.762;1.091 9.18;0.033

n=100 8.693;0.011 8.586;0.046 9.53;0.078 8.762;0.082

n=150 9.546;0.06 9.324;0.065 9.335;0.067 9.502;0.057

n=200 8.8;0.022 9.765;2.113 9.22;0.061 9.745;0.069

D = 50

n=20 11.747;0.153 11.101;0.06 12.444;0.135 11.0;0.757

n=50 8.796;4.133 10.18;3.573 8.849;2.274 11.542;0.66

n=100 10.776;0.059 9.766;0.05 9.615;0.083 11.269;5.348

n=150 10.682;0.691 7.783;5.525 10.435;0.047 9.846;0.066

n=200 10.039;0.053 10.668;0.398 9.611;0.081 7.069;0.069

D = 100

n=20 9.463;0.04 10.54;0.026 10.279;0.083 9.078;0.285

n=50 10.095;0.088 10.466;0.047 12.873;0.044 9.453;4.123

n=100 9.372;0.1 9.765;4.868 10.018;5.538 8.114;0.078

n=150 9.917;0.069 8.626;0.065 9.359;1.704 9.53;5.529

n=200 8.723;1.396 9.548;5.503 9.809;1.689 9.455;0.083

D = 200
n=20 12.139;0.017 9.087;0.02 11.167;0.182 7.76;0.025

n=50 8.412;0.033 16.694;0 19.669;0.543 9.528;0.09

Table A.4: Variational Posterior Analysis for Model B1 using observations
from the dGp B with RFF-VAE denoted µϕ;σ

2
ϕ across varying data size n,

misspecification error δ, and RFF size D.
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dGp C δ 0.0 0.05 0.1 0.2

D = 0

n=20 9.226;0.014 9.22;1.579 9.207;1.97 9.985;0.014

n=50 9.24;0.014 9.231;1.547 9.943;1.579 9.955;1.579

n=100 8.418;0.016 9.885;2.162 9.89;2.176 9.9;0.019

n=150 9.85;2.763 9.87;0.024 8.65;0.024 8.656;2.763

n=200 8.88;0.001 9.768;0.046 9.715;0.046 9.713;0.046

D = 5

n=20 8.654;0.246 9.133;0.031 8.542;0.128 9.032;0.351

n=50 9.557;1.583 9.427;0.119 9.05;1.53 9.953;1.592

n=100 9.617;2.247 9.567;0.02 8;746;0.712 9.871;0.024

n=150 9.556;2.763 8.398;0.024 8.584;0.03 8.463;0.367

n=200 8.464;0.501 9.582;5.524 7.469;1.834 7.311;5.327

D = 10

n=20 8.974;0.045 8.407;9.961 8.689;2.211 9.24;1.313

n=50 9.233;1.003 9.199.1.9 8.439;1.851 8.405;2.607

n=100 8.842;1.033 8.733;3.454 8.056;0.076 9.393;1.896

n=150 8.933;0.735 7.366;2974 9.575;1.382 10.16;3.416

n=200 7.787;0.773 9.876;5.474 9.201;0.145 6.971;5.568

D = 15
n=20 9.217;0.049 8.267;1.044 10.344;0.717 9.059;0.037

n=50 8.277;0.203 9.834;0.042 14.446;6.942 9.692;0.125

D = 20

n=20 10.233;0.493 9.749;1.891 8.087;0.064 8.577;6.396

n=50 9.983;5.669 9.218;22.052 10.767;0.1 12.456;189.447

n=100 9.543;2.44 10.836;2.382 9.512;0.117 8.324;1.327

n=150 9.042;15.207 9.084;0.307 9.661;0.314 8.627;3.071

n=200 7.204;0.339 9.573;0.086 11.427;111.699 7.206;5.278

D = 50

n=20 4.595;1.183 3.772;11.949 4.151;0.218 8.047;9.327

n=50 13.398;65.254 14.05;7.727 11.964;4.694 15.476;19.854

n=100 8.137;197.636 9.582;0.35 9.985;0.481 10.107;31.697

n=150 15.223;0.014 10.553;35.989 14.648;5.53 9.998;1.73

n=200 9.563;7.224 11.38;2.812 10.154;20.094 10.307;17.182

D = 100

n=20 3.68;0.146 4.364;0209 7.434;5.462 5.092;2.909

n=50 9.303;64.413 10.293;62.655 7.782;127.826 7.515;25.178

n=100 9.809;4.437 11.983;4372.309 8.161;2.046 12.332;1.165

n=150 9.211;0.115 3.887;10.58 13.005;0.254 10.609;13.022

n=200 14.826;50.994 12.33;0.046 10.281;0.642 7.089;2.328

D = 200
n=20 0.277;0.385 3.845;0.001 6.777;665.109 0.871;0.131

n=50 8.92;0.001 4.155;3.027 13.884;0.006 6.286;0.15

Table A.5: Variational Posterior Analysis for Model C1 using observations
from the dGp C with RFF-VAE denoted µϕ;σ

2
ϕ across varying data size n,

misspecification error δ, and RFF size D.

167



Appendix B

Additional details

Theorem B.1 (GVI modularity).

For Bayesian inference with P (ℓn, D,Π), making it robust to model mis-

specification amounts to changing ℓn. Conversely, adapting uncertainty

quantification amounts to changing D.

Proposition 3. The Kullback–Leibler divergence between two multivariate

Gaussian distributions N (µp, Σp) and N (µq, Σq), both k dimensional is :

DKL(p||q) =
1

2

[
log
|Σq|
|Σp|
− k + (µp − µq)

TΣ−1
q (µp − µq) + tr

{
Σ−1

q Σp

}]
.

When q is N (0, I), we get,

DKL(p||q) =
1

2

[
µp

Tµp + tr {Σp} − k − log |Σp|
]
.
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