
Types with Extra Structure:

Predicates, Equations, Composition

Brandon Hewer

A thesis presented for the degree of

Doctor of Philosophy

School of Computer Science

University of Nottingham

April 2024

Abstract

Intuitionistic type theory was first introduced by Martin-Lof [1984] as a
foundation for constructive mathematics and also serves as a dependently
typed programming language. Dependent types provide us with a frame-
work to reason about and guide the construction of programs by specifying
both their structure and properties in a manner that can be automatically
verified by a type-checker.

A ubiquitous pattern that arises in the formulation of dependent type
abstractions involves equipping an underlying type, which captures the
general form of a program, with extra structure that captures the program’s
properties. Two such type abstractions include subtypes in which a type
is equipped with a predicate over its values and quotient types in which a
type is equipped with equations over its values. While subtypes have found
much practical use in general purpose programming, quotient types have
not seen many applications outside of proof assistants. Two key obstacles
to the wider adoption of quotient types include an absence of practical
demonstrations of their applications to general purpose programming and
the significant burden of proof-obligations that arises from their use.

In this thesis, we introduce three new applications of type theoretic
concepts that involve equipping types with extra structure. Firstly, we in-
troduce a new practical application for higher-inductive types whereby they
are used to encode subtypes in a manner that grants fine-grained control
over the reduction behaviour of terms. Our second key contribution is the
extension of a liquid type system to include a class of quotient types for
which the necessary proof-obligations are decidable by an SMT-solver. This
work is accompanied by a practical demonstration in the form of Quotient
Haskell, which was developed as an extension to the liquid type system
of Liquid Haskell. Finally, we present a constructive theory of operads,
which were first introduced by Peter May to describe composable algebraic
structures in symmetric monoidal structures. Intuitively, an operad can be
understood as a finite family of types equipped with a well-behaved no-
tion of composition. We demonstrate how an internalisation of the theory
of operads in homotopy type theory gives rise to a generic framework for
capturing and reasoning about collections of operations.

1

Acknowledgements

I would first like to thank my supervisor, Graham Hutton, whose en-
couragement and enthusiasm over the past four years have made my PhD
journey both memorable and enjoyable. I am grateful not only for his
guidance in the development of this thesis but also for the great many pro-
fessional lessons I have learned from him. His insights on technical writing,
effective communication of ideas, and consideration for the practical im-
plications of my work are lessons I hope to carry with me throughout my
future career.

I would also like to thank my examiners, Martín Escardó and Ulrik
Buchholtz for a pleasant and engaging viva. I am grateful for all of their
useful suggestions and comments.

I was fortunate to be surrounded by wonderful staff and peers at the
University of Nottingham and would like to thank every member of the
FP Lab for the insightful discussions and talks over the past few years.
I am particularly grateful to my fellow PhD students, Filipo Sestini and
Joshua Chen, with whom I spent countless hours discussing and exploring
ideas in type theory. Special thanks also go to Nicolai Kraus and Thorsten
Altenkirch for their invaluable teaching and support in type theory for both
myself and many others in the FP Lab.

I am grateful to everyone in the programming languages and type theory
research communities whom I’ve had the pleasure of meeting and discussing
with at various events over the past few years. In particular, I want to thank
Ambrus Kaposi and Patrick Bahr for their valuable comments on areas of
work that are included in this thesis.

Finally, I would like to thank my family for all of their support, not
only over the duration of my PhD but through each major step in my life.
Thank you to my parents, Daegon and Jane, my sister, Chloe, and the
newest members of our family, my nephews, Ares and Asher.

2

Contents

1 Introduction 5

1.1 Chapter summaries . 7
1.2 Contributions . 7
1.3 Publications . 9
1.4 Background . 9
1.5 Path types . 10

2 Subtyping Without Reduction 11

2.1 Subtypes in type theory . 12
2.2 Example: even numbers . 13
2.3 Higher-inductive evenness 14
2.4 Higher-inductive recursive even numbers 17
2.5 Reflection . 20
2.6 Example: ordered finite sets 23
2.7 IF formalisation . 26
2.8 IR formalisation . 32
2.9 Generalising our technique 40
2.10 Strictification . 44
2.11 Related work . 46
2.12 Conclusion . 47

3 Quotient Haskell 49

3.1 Mobiles . 51
3.2 Boom hierarchy . 57
3.3 Rational numbers . 61
3.4 Quotient inductive types . 64
3.5 Core language . 66
3.6 Subtyping . 75
3.7 Equality . 79

3

3.8 Typing rules . 84
3.9 Implementation . 88
3.10 Related work . 95
3.11 Reflection . 99
3.12 Conclusion and further work 104

4 HoTT Operads 106

4.1 Basic idea . 107
4.2 Planar operads . 111
4.3 Symmetric operads . 115
4.4 Small FinSet . 121
4.5 Generalised operad universes 124
4.6 Category of operads . 132
4.7 Monad over an operad . 136
4.8 Free operad . 141
4.9 Related work . 152
4.10 Conclusion and further work 154

5 Conclusion 156

4

Chapter 1

Introduction

Two fundamental principles of programming are clarity and correctness.
That is, programmers will often strive to ensure their programs have a clear,
communicable purpose while accurately serving their intended function. To
assist with these principles, many programming languages come equipped
with type systems of varying complexity.

Types capture collections of terms that share a distinguished property.
In turn, a type system is a logical framework that determines precisely
how types are assigned to terms. For example, the type systems of many
prominent programming languages include a ‘type of integers’ that ranges
over arithmetic expressions built from integral variables and constants. In
the case of integers, the property that we often wish to capture is that upon
running our program every term that is typed as an integer is evaluated
to an integral constant. Type systems are present in many prominent
programming languages including the simply typed C, the object-oriented
Java, the functional language Haskell, and the dependently typed Agda.

A key property of many type systems is decidability of type-checking.
Put simply, it is desirable for a system of typing rules to be automatically
checked within a compiler or similar automated reasoning tool. Indeed, for
the general purpose programmer this is precisely how a type system can
be seen to address the issue of program correctness. With a sufficiently ex-
pressive type system and decidable type-checking, a wide range of program
properties can be verified by automated tools. A prominent example of
such a type system is Per Martin Löf’s intensional dependent type theory
[Martin-Löf, 1975], of which several dependently typed languages such as
Agda [Norell, 2007] are based upon.

5

For the purposes of both formalising constructive mathematics and cap-
turing a more expansive collection of program properties, type theorists
have developed increasingly expressive type systems. Examples include
the Calculus of Inductive Constructions implemented by Coq [Coquand and
Paulin, 1990; Bertot and Castéran, 2013] and the Quantitative Type Theory
implemented by Idris [Atkey, 2018; Brady, 2013]. Included amongst these
examples are type systems that implement ideas from Homotopy Type
Theory which itself builds upon ideas introduced in Voevodsky’s Univalent
Foundations of Mathematics [UniMath, 2021]. Homotopy Type Theory can
be informally understood as a version of intuitionistic type theory in which
the equality between two types is internally characterised by the type of
equivalences between them.

Unfortunately, the increased expressivity of type systems has frequently
come at a significant cost in both the performance of type-checking and the
complexity of use for practical programming. This is especially notable in
existing implementations of Homotopy Type Theory such as Cubical Agda
[Vezzosi et al., 2019]. In particular, the interval bounds checking of Cu-
bical Agda can notoriously result in unreasonable compile times without
employing specialized techniques. As a consequence of these drawbacks,
dependent types along with a variety of useful concepts in type theory are
rarely used for general purpose programming. Instead, features of type sys-
tems such as coinduction and quotient inductive types are instead primarily
used for the formalisation of mathematics within proof assistants.

This thesis contains three related bodies of work that focus on apply-
ing key ideas from homotopy type theory to practical programming. In
Chapter 2 we introduce a new practical application for higher-inductive
types, in which they are used to encode subtypes in a manner that grants
fine-grained control over the reduction behaviour of the subtyping condi-
tion. In Chapter 3 we show how a liquid type system can be extended
to include a class of quotient inductive types with implicit subtyping and
for which the necessary proof-obligations are decidable by an SMT-solver.
Finally, in Chapter 4 we present a constructive theory of operads internal
to homotopy type theory, that presents a generic framework for reasoning
about collections of operations.

6

1.1 Chapter summaries

This thesis is organised in three parts alongside a conclusion, with each
part comprising its own chapter. The contents of Chapters 2, 3 and 4 each
constitute a complete article and each includes a review of the relevant
literature. The publications corresponding to each chapter are listed in
Section 1.3. The chapters of this thesis are organised as follows:

Chapter 2 presents an encoding for subtypes and subtyping relations that
gives fine grained control over the reduction behaviour of functions defined
on them. The general form of this technique is presented in the meta-theory
of Cubical Agda by exploiting its support for higher-inductive types.

Chapter 3 presents a refinement type system with support for quotient
types for which the corresponding respectfulness theorems can be decided
by an SMT-solver. This type system is demonstrated in practice by Quo-
tient Haskell which is an extension of Liquid Haskell with support for quo-
tient types.

Chapter 4 presents a constructive theory of operads in the internal lan-
guage of homotopy type theory. This internal theory of operads gives rise
to a generic framework for reasoning about distinguised collections of op-
erations and their algebraic properties. These ideas are demonstrated and
formalised in the meta-theory of Cubical Agda.

Chapter 5 presents a high level conclusion and summary of the contri-
butions of this thesis. Moreover, individual conclusions are provided in
each of the chapters detailed above.

1.2 Contributions

A more detailed overview of the contributions of this thesis can be organised
by chapter. In particular, in Chapter 2 we make the following contributions:

• We introduce and formalise a general technique for translating a sub-
type with given operations into two representations that are isomor-
phic to the original subtype, but avoid the need to compute the proof

7

of the subtyping condition for the operations;

• We discuss the differences between the two representations, compare
their advantages and disadvantages, and provide practical examples
of each;

• We describe a generalisation of our method for
∑

-types in which the
second component is an arbitrary type, rather than just a proposition.

In Chapter 3 we make the following contributions:

• We present an approach to extending a liquid type system with quo-
tient inductive types whose corresponding respectfulness theorems
can be automatically checked by an SMT solver.

• We discuss the key ideas through examples such as mobiles, the Boom
hierarchy and rational numbers. These examples are demonstrated in
Quotient Haskell, which is an implementation of the presented ideas
that extends Liquid Haskell;

• We present a core language λQ for quotient types, by extending the
core language λL for liquid types with typing (Section 3.5) and sub-
typing (Section 3.6) rules for quotients;

• We show how the notion of equality in the underlying liquid type
system can be extended in λQ to make use of the equalities introduced
by quotients (Section 3.7);

• We outline how Quotient Haskell is implemented, with a particular fo-
cus on how the new quotient typing features are realised (Section 3.9).

Finally, in Chapter 4, we make the following contributions:

• Internalise the notion of both planar and non-planar operads in ho-
motopy type theory, and provide practical examples of each form;

• Demonstrate how the free operad can be constructed as a higher
inductive family, and provide examples of how this construction can
be used;

8

• Prove that every operad gives rise to a canonical monad, that con-
sequently presents an operadic style of constructing programs from a
small collection of composable terms.

1.3 Publications

As previously detailed in Section 1.1, the contents of this thesis is com-
prised of three bodies of work each of which corresponds to a publication:

Chapter 2: Brandon Hewer and Graham Hutton. 2022. Subtyping
Without Reduction. In Mathematics of Program Construction, Ekaterina
Komendantskaya (Ed.). Springer International Publishing, Cham, 34–61.

Chapter 3: Brandon Hewer and Graham Hutton. 2024. Quotient Haskell:
Lightweight Quotient Types for All. Proc. ACM Program. Lang. 8,
POPL, Article 27 (Jan 2024), 31 pages. https://doi.org/10.1145/3632869

Chapter 4: Brandon Hewer and Graham Hutton. 2024. HoTT Oper-
ads. Available online: http://www.cs.nott.ac.uk/~pszgmh/bib.html#

operads

I am the principle author of each publication.

1.4 Background

The key field of study to which this thesis contributes is type theory. More
specifically, this thesis builds upon and makes extensive use of ideas from
both homotopy type theory [Univalent goundations Program, 2013] and
refinement types [Rushby et al., 1998]. Chapter 3 assumes basic knowl-
edge of Haskell and its syntax. Moreover, category-theoretic constructions
[Eilenberg and MacLane, 1945] are used throughout Chapters 2 and 4. We
assume basic knowledge of intuitionistic dependent type theory through-
out this thesis, however, constructions specific to both category theory and
homotopy type theory are introduced when they are first required.

9

http://www.cs.nott.ac.uk/~pszgmh/bib.html#operads
http://www.cs.nott.ac.uk/~pszgmh/bib.html#operads

1.5 Path types

Of key importance in homotopy type theory is the notion of an internal
equality type, also known as a path type. The particular semantics of path
types varies in different models of HoTT. For example, in the CCHM model
of cubical type theory [Cohen et al., 2016], a path between terms of a type
A corresponds to a continuous function from the real interval [0, 1] to A.
In Chapters 2 and 4, key ideas and formalisations are presented in the
metatheory of Cubical Agda which is an implementation of HoTT based
upon the CCHM model. In this section we present a review of path types
and describe how they are represented in Cubical Agda.

In Cubical Agda, for any type A, we can construct the type x ≡ y of
paths between two terms x, y : A. A path of type x ≡ y can be constructed
as a function out of the non-fibrant interval type I that must map the
endpoints i0, i1 : I to x, y respectively. For example, the identity on x can
simply be constructed as λ i) x. Readers unfamiliar with HoTT can think
of the path type x ≡ y as behaving identically to the inductively defined
identity type without the K-rule. In particular, the usual eliminator for
path types is given by the J-rule, which states that for any term x : A and
family of types M : (y : A)) x ≡ y) Type, if we have a proof t :M x refl

then for all y : A and p : x ≡ y we can construct a term JM,t x y p :M y p.
Intuitively, the J-rule states that if the end-point y of the path p can vary,
then we can substitute p for reflection on x.

Cubical Agda also provides a primitive construction for heterogeneous
path types which are presented in the form PathP (λ i) T) a b for terms
a : A, b : B and T : Type. The first argument to PathP is a continuous
function out of the built-in interval type I for which the endpoints i0 i1 : I

must be mapped to a and b respectively and such that a : T [i 7→ i0],
b : T [i 7→ i1] are verifiable typing judgements.

10

Chapter 2

Subtyping Without Reduction

In a typed programming language, subtyping is a relationship between types
that describes when terms of one type can be considered as of terms of
another without changing the meaning of a program. In this way, subtyping
is often introduced as a language feature that improves code reusability in
a sound manner. Various modern programming languages support a form
of subtyping such as the nominal subtyping of object-oriented languages or
the structural subtyping of refinement type systems.

One approach to subtyping is to support a mechanism by which types
can be equipped with additional properties or predicates that their terms
must conform to. For example, the type of even numbers can be defined by
equipping the type of integers with the property that each number must be
divisible by two. This flavor of subtyping is present in both homotopy type
theory and refinement type systems such as Liquid Haskell. When adopting
this form of subtyping, a type checker must verify that terms satisfy any
predicate that is equipped to their asserted type. The performance cost of
this additional verification is highly variable and can require normalisation
or reduction of large programs.

In this chapter, we describe a technique in homotopy type theory for
encoding subtypes in a manner that avoids unnecessarily verifying the sub-
typing condition for a chosen collection of operations. In particular, this
technique can significantly improve the performance of type-checking by
providing fine-grained control over the reduction behaviour of terms.

11

2.1 Subtypes in type theory

Before we introduce our encoding, we begin by reviewing the type-theorteic
notion of a subtype. In type theory, a subtype of a type A is characterised
by a dependent sum over a family of propositions P : A) Prop. For
example, the even natural numbers can easily be seen as a subtype of
the naturals by defining a family isEven : N) Prop which maps every
even number to true, and every odd number to false. Another ubiquitous
example is that of the (totally-ordered) finite sets Fin : N) Type, which
can be defined as subtypes of the natural numbers by means of the family
<: N) N) Prop.

Operations defined over subtypes must respect the subtyping condition.
For example, addition restricts to an operation over even numbers because
the addition of two even numbers is even. As a more complex example, the
dependent sum over a family of finite types indexed by a finite type will
always be finite for some sensible notion of ‘finite’. In type theory, proving
that an operation respects a subtyping condition involves computing a term
of the respective proposition. For addition of even numbers, this means
that given terms of the propositions isEven (m) and isEven (n), we would
compute a term of isEven (m+ n).

In practice, computing subtyping proofs can be costly, and in a depen-
dently typed setting this has performance consequences not just at runtime,
but also during type checking. The impact of this problem can even be seen
in simple examples such as addition on finite sets. In particular, the ad-
dition operation + : Fin m) Fin n) Fin (m+ n) requires a proof that
if x < m and y < n then x + y < m + n, which typically proceeds by
induction, and therefore the use of + may result in reduction taking place
during type checking.

It is natural to see this issue as part of a much larger problem in type
theory: proofs whose content does not matter can drastically slow down
type-checking as a result of reduction behaviour. This problem is so preva-
lent that many dependently typed languages have special features for ad-
dressing it, such as Agda’s abstract definition mechanism. However, these
language-specific features usually come with their own problems, which we
discuss in Section 2.5.

In this chapter, we introduce a technique that differs from existing solu-
tions as it does not require special-purpose language extensions, and can be

12

used in any implementation of type-theory that supports quotient inductive
types. In addition, we retain important computational properties that are
absent in solutions such as Agda’s abstract definitions. More specifically,
this chapter makes the following contributions:

• We introduce and formalise a general technique for translating a sub-
type with given operations into two representations that are isomor-
phic to the original subtype, but avoid the need to compute the proof
of the subtyping condition for the operations;

• We discuss the differences between the two representations, compare
their advantages and disadvantages, and provide practical examples
of each;

• We describe a generalisation of our method for
∑

-types in which the
second component is an arbitrary type, rather than just a proposition.

All examples in this chapter have been formalised in a Cubical Agda [Vez-
zosi et al., 2019] library that is available online [Hewer, 2022].

2.2 Example: even numbers

In this section we introduce the basic type-theoretic encoding of even nat-
ural numbers, which is used as the motivating example for the application
of our technique. In (Cubical) Agda we can define a recursive family of
types that witness whether a given natural number is even as follows:

isEven : N) Type

isEven 0 = ⊤
isEven 1 = ⊥
isEven (suc (suc n)) = isEven n

Note that the definition uses Type rather than Prop, because in HoTT the
definition of a subtype merely requires the subtyping condition to be a
family of weak propositions, i.e. h-propositions, a family of types for which
any two inhabitants are propositionally equal. We can observe that isEven

is such a family because the resulting type is always either the singleton
type ⊤ or the empty type ⊥.

13

We can also define isEven in a different but equivalent way as an induc-
tive family, because a proof of evenness can be uniquely constructed from
a proof that 0 is even and a proof that if n is even then so is n + 2. We
can then introduce these proofs as constructors even-z and even-ss of an
inductive family:

data isEven : N) Type where

even-z : isEven 0

even-ss : isEven n) isEven (suc (suc n))

This translation from a family of propositions to an inductive family is
necessary for applying our technique. It is always possible for an arbitrary
family P : A) Type, by defining an inductive family IdP : A) Type with
a single constructor ηP : (a : A)) P a) IdP a. However, as illustrated
above, we can often inline the definition of a propositional family as the
constructors of an inductive family.

As with any type, we are also interested in the operations that can
be used to construct terms of a subtype. Concretely, such an operation
comprises a function that constructs a term of the underlying type, together
with a proof that this term is an element of the subtype. We will often refer
to the proof that an operation preserves a particular subtyping condition
as a closure property of that condition. For example, one such operation
on even numbers is addition, whose closure property we can construct in
Agda as follows:

isEven+ : isEven m) isEven n) isEven (m + n)

isEven+ even-z q = q
isEven+ (even-ss p) q = even-ss (isEven+ p q)

We can think of isEven+ as a non-canonical constructor of isEven. Such
constructors exhibit reduction behaviour by unfolding definitional equal-
ities. In practice, the use of these constructors may have a significant
impact on the performance of type-checking, due to an arbitrary number
of reduction steps taking place.

2.3 Higher-inductive evenness

In this section we introduce our first approach to solving the above problem,
which is based on the use of higher-inductive families. As an initial step, we

14

might consider defining a new inductive family isEven?, by simply adding
the proof that addition preserves evenness as a constructor:

data isEven? : N) Type where

even-z : isEven? 0

even-ss : isEven? n) isEven? (suc (suc n))

even-+ : isEven? m) isEven? n) isEven? (m + n)

However, isEven? and isEven are not isomorphic families, and hence cannot
be used interchangeably. This is evident by observing that isEven? is not a
family of propositions. For example, the type isEven? 0 is inhabited by the
(provably) distinct terms even-z and even-+ 0 0.

Fortunately, there is a simple way to modify isEven? to obtain the de-
sired isomorphism, by exploiting higher-inductive families [Univalent goun-
dations Program, 2013]. These generalise inductive families by introducing
the notion of path constructors, which internalise the idea of a (higher)
quotient in type theory. While a data constructor for an inductive type A
introduces a term of type A, a path constructor introduces a path of one
of the iterated path types on A, e.g. x ≡ y for terms x, y : A, or p ≡ q for
paths p, q : x ≡ y. In Cubical Agda, we can quotient our current definition
of isEven? to obtain a family of propositions as follows:

data isEven! : N) Type where

η : isEven? n) isEven! n
squash : (x y : isEven! n)) x ≡ y

That is, isEven! is given by propositionally truncating the family isEven?,
where the path constructor squash asserts that all elements of isEven! n

must be treated identically. As such, the eliminator for isEven! requires
that the type being eliminated into is a proposition, thus ensuring all terms
of isEven! n are mapped to provably equal terms. Formally, this means that
for any family of h-propositions B : isEven! n) Type we can lift a function
f : (x : isEven? n)) B (η x) on isEven? n to a function g : (x : isEven! n))

B x on isEven! n.
For example, we can use this eliminator to construct a function from

isEven! n to isEven n. In this case, we begin by defining B to be the con-
stant family choosing the proposition isEven n. The function g : isEven n)

isEven? n maps each constructor of isEven n to its namesake, and f :

15

isEven? n) isEven n behaves similarly while mapping η (even-+ p q) to
isEven+ (f p) (f q). Given that isEven n and isEven! n are provably
propositions, our construction of a function in both directions is enough
to establish an isomorphism.

Given two isomorphic types, it is natural to consider how they compare.
Recall that isEven! encodes the proof that addition preserves evenness as
a canonical constructor, which maps proofs p : isEven! m and q : isEven! n

that m and n are even to a proof η (even-+ p q) : isEven! (m+ n) that
their addition is even. Intuitively, we can understand this encoding as
hiding the definitional equalities introduced by the function isEven+, and
instead presenting them only as propositional equalities. Namely, while the
equations

isEven+ even-z q = q

isEven+ (even-ss p) q = even-ss (isEven+ p q)

hold definitionally, i.e. they are the defining equations for isEven+, the
equalities

η (even-+ even-z q) ≡ η q

η (even-+ (even-ss p) q) ≡ η (even-ss (even-+ p q))

only hold up to a path given in terms of the squash constructor. Conse-
quently, our definition of isEven! realises our original goal of encoding the
proof that addition preserves evenness in a way that exhibits no reduction
behaviour.

At this point one might be concerned that the more involved definition
of isEven! compared to isEven makes it more difficult to define functions on
even numbers. In practice, common patterns arise that simplify the use
of subtypes encoded by our technique, which we describe below using an
example.

Given that isEven! and isEven are isomorphic families, one can always be
replaced by the other by appropriately transporting along the isomorphism.
However, when transporting from isEven! to isEven, an irreducible term of
the form η (even-+ p q) may be mapped to a term that exhibits reduction
behaviour. Therefore, it can often be preferable to more directly use the
encoded family of propositions, rather than transport along the derived
isomorphism.

16

For example, consider the function div2 : isEven! n) N that divides an
even natural number by two. Because N is not an h-proposition, div2 can-
not be defined simply by applying the eliminator for isEven to a function
div2? : isEven? n) N. Instead, there are several possible constructions for
div2?, each of which makes intermediate use of the eliminator on isEven!.
We highlight a few of these approaches below, which reveal common pat-
terns for defining functions on the higher-inductive families arising from
our technique.

One possible approach is to first eliminate isEven! n into an interme-
diate type Bn : Type that is an h-proposition. Then we can compose
with a function fn : Bn) N for which the composition has the expected
behaviour. For example, for div2 n we can take Bn as the h-proposition∑

[k ∈ N] 2 ∗ k ≡ n, which when composed with the first projection is
sufficient to construct div2.

Another approach arises by considering how to directly re-obtain the
typical induction principle for evenness on our definition of isEven!. In
particular, this requires constructing functions ¬isEven1 : isEven! 1) ⊥
and even-pred : isEven! (suc (suc m))) isEven! m. Because both of these
functions eliminate into propositions, they can be constructed using the
eliminator for isEven!.

A third option is to observe that div2? is constant over terms of isEven?

and eliminates into an h-set. This ‘coherently constant’ function can hence
be lifted to construct div2 by applying an alternative eliminator on isEven!

[Kraus, 2015]. The details of each of these constructions for div2 can be
found in our Cubical Agda library.

2.4 Higher-inductive recursive even numbers

In this section we introduce our second approach to the problem identi-
fied in Section 2.2, based on the use of higher-induction recursion. Thus
far, we have shown how to encode that addition preserves evenness in a
manner that exhibits no reduction behaviour. This allows us to define ad-
dition on even numbers encoded by the sum type

∑
[n ∈ N] isEven! n.

In particular, the second component of this pair can be constructed by
applying the elimination rule for propositional truncation, and then using
the constructor even-+ p q.

17

While the proof that addition preserves evenness no longer exhibits re-
duction behaviour, addition itself may still be unfolded. Therefore, we
might consider whether there is an encoding of even numbers that encodes
addition as a single canonical constructor. Indeed, by adapting the iso-
morphism between inductive families and inductive recursive types [Han-
cock et al., 2013], we can extend our technique to achieve this aim. For
even natural numbers, this translates to defining a higher-inductive type
data Even : Type mutually with a recursive function toN : Even) N. In
Cubical Agda, the higher-inductive type Even can be defined by:

data Even where

zero : Even

2+_ : Even) Even

+E : Even) Even) Even

eq : (x y : Even)) toN x ≡ toN y) x ≡ y

The three data constructors zero, 2+_ and _+E_ correspond to zero, the
next even number, and the addition of two even numbers. As with isEven?,
while every even number can be defined using these constructors, they are
not defined in a unique way. For example, 0 can be encoded by both zero

and zero +E zero. To restore uniqueness and establish an isomorphism with∑
[n ∈ N] isEven! n, we again introduce an appropriate path constructor,

eq, to quotient our type.
Intuitively, the eq path constructor asserts that two even numbers with

the same numeric value must be treated identically. In order to define toN,
we can recognise that it should behave in a similar manner to the first
projection on the type

∑
[n ∈ N] isEven! n, i.e. by mapping every even

number to its underlying value as a natural number. With this in mind,
toN can be defined as follows:

toN zero = 0

toN (2+ x) = suc (suc (toN x))
toN (x +E y) = toN x + toN y
toN (eq x y p i) = p i

Readers unfamiliar with Cubical Agda may be surprised by the final equa-
tion: while eq appears to take three parameters, we are matching on four in
toN. However, this is really an overloading of the pattern matching syntax,

18

and combines the eliminator for the constructor eq with the eliminator for
the path eq x y p. In Cubical Agda, which is based on the CCHM model
of cubical type theory [Cohen et al., 2016], we can think of this path as a
continuous function from the interval [0, 1], internally represented by I, to
the type Even of even numbers. Therefore, for an element of the interval
i : I, the term eq x y p i has type Even, as expected.

So far, we have claimed that the introduction of the path construc-
tor eq is enough to establish an isomorphism between the types Even

and
∑

[n ∈ N] isEven n, but have not proved this. Indeed, the con-
struction is significantly more involved than between isEven! and isEven.
Crucially, however, we can construct an isomorphism between Even and∑

[n ∈ N] isEven n by constructing a bijection between them. In partic-
ular, this is equivalent to constructing an injection f : Even) N together
with a family of functions h : isEven n) Even, such that f only constructs
even numbers and the composition f ◦ h is the constant function returning
n.

We begin this construction by defining f to be the recursive function
toN, for which the proof of injectivity is simply the path constructor eq.
The proof that toN only constructs even numbers follows by induction on a
term of Even, and the case for the eq constructor is trivial because evenness
is an h-proposition. We can then construct the family h by induction
on terms of isEven n, mapping even-z to zero and even-ss p to 2+ (h p).
Finally, the proof that toN ◦ h is the constant function returning n follows
definitionally.

Readers familiar with HoTT might at this point wonder whether this
construction only works for subtypes of h-sets, such as the natural num-
bers N. In particular, we have only used the fact that eq is an injection,
but to generalise this construction for any subtype we would require that
it be an embedding. Surprisingly, a path constructor of this form, for an
inductive-recursive definition, is enough to establish that the recursive func-
tion is an embedding, even for higher-groupoid structures. Indeed, a similar
construction has been discussed for so-called ‘univalent inductive-recursive
universes’ [Shulman, 2014].

Formally, an inductive-recursive universe is an inductive type U : Type

of ‘codes’, defined mutually with a recursive function El : U) Type which
interprets each code as a type. Such a universe is univalent if it has a

19

path constructor un : (x y : U)) El x ≃ El y) x ≡ y. It can be shown that
un x y is always an equivalence, and hence El is an embedding. Our ap-
proach generalises this idea by considering recursive functions U) A for
any type A, rather than just Type. Therefore, to generalise un we must
replace the equivalence by a path; that is, we require a path constructor
eq : (x y : U)) El x ≡ El y) x ≡ y. In a univalent setting such as Cubical
Agda, if we take A to be Type, then the eq and un versions of the definition
are equivalent.

2.5 Reflection

Now that we have introduced the basic ideas of our technique, it is use-
ful to make some remarks about its monadic underpinnings, impact on
performance, and how the two representations differ in terms of their con-
struction.

Free monads. We begin by outlining how free monads naturally un-
derpin our technique, and play a central role in its formalisation and gen-
eralisation.

Our technique can be seen as first defining a domain-specific language
(DSL) on a chosen subtype. More concretely, this means constructing a free
monad on a dependent polynomial functor [Malatesta et al., 2012] which
characterises the operations of the language. For example, our encoding
of even numbers as an inductive-recursive type introduced a DSL with
addition as a constructor. We could have further extended this type with
any (strictly-positive) operation which constructs an even number, such as
multiplication, and the isomorphism with the standard encoding of even
numbers would remain constructible.

The above idea gives rise to the formalisation of our technique that is
described in Section 2.7. Notably, this involves taking particular quotients
of free monads which then allows us to construct a calculus on subtypes.
In practice this simplifies the process of working with our approach, partic-
ularly in the case when constructing maps between two encoded subtypes.

Higher induction. An essential requirement for a type theory in
which our technique can be used is the presence of either higher inductive
families or higher-induction recursion. In particular, in Section 2.3 we

20

demonstrated how the even natural numbers can be encoded by means of
a higher inductive family, while in Section 2.4 we instead made use of a
higher inductive-recursive definition. While Cubical Agda implements both
higher inductive families and higher induction-recursion, they do not have
a known semantics in the CCHM model [Cohen et al., 2016] on which it
is based. However, a semantics for both higher inductive types and higher
inductive families are known in other models of HoTT.

The semantics for a range of higher inductive types have been presented
in various models of homotopy type theory [Lumsdaine and Shulman, 2020]
including in the cubical setting [Coquand et al., 2018]. Moreover, Cavallo
and Harper [2018] consider a schema for higher inductive families in a model
of cubical type theory that they term computational higher type theory.
This schema notably includes that of propositionally truncated families,
which is precisely what is required for the encoding of subtypes presented in
Sections 2.3 and 2.7. At present, a semantics for higher induction-recursion
has not been given in any model of homotopy type theory.

Performance. The most significant impact of hiding reduction be-
haviour for operations on a subtype is the improvement in performance
during type-checking. In particular, operations encoded as constructors of
an inductive type will not be unfolded. Indeed, the performance cost of un-
necessarily unfolding terms during type-checking is so prevalent that Agda
provides two language features to address this problem. The key insight
behind these features, and indeed our technique, is that even within the con-
text of a total language the choice of when to reduce terms is an important
practical consideration that can mean the difference between type-checking
a proof in reasonable time and running out of memory before type-checking
concludes. We discuss the differences between our technique and existing
language features of Agda in Section 2.11.

Perhaps surprisingly, our encoding can also improve the performance
of normalising specific terms. This is possible as a consequence of retain-
ing additional information about how a term of a subtype is constructed.
For example, consider the following function that proves that any positive
power of two is even:

isEven-2^ : (n : N)) isEven (2 ^ suc n)

isEven-2^ zero = even-ss even-zero

isEven-2^ (suc n) =

21

let p = isEven-2^ n in isEven+ p (isEven+ p even-zero)

By replacing occurrences of isEven+ with the constructor even-+ and com-
posing with η : isEven? n) isEven! n, we can similarly construct a function
isEven!-2^ : (n : N)) isEven! (2 ^ suc n). Using these definitions we can
construct two different proofs that the natural number 65536 is even, and
crucially, these proofs are equal up to a heterogeneous path.

To compare performance, we normalised these proof terms in Cubical
Agda’s Emacs mode, as a working compiler for the language is not currently
available. Using a Macbook Pro with a 2.7GHz quad-core processor and
16GB of memory, we were unable to normalise the first term for any tested
amount of time (up to 30 minutes), while the second was normalised in
under 30 seconds.

It is natural to wonder whether any ‘useful’ computation on even num-
bers would first require that we translate back to the standard represen-
tation of evenness, given by the recursive family isEven. However, as de-
scribed in Section 2.3, the example of dividing any even number by two
reveals that this is not the case. Interestingly, this can lead to significant
performance benefits when normalising the result of dividing a large even
number by two. For example, we tested a number of ‘reasonable’ definitions
for div2’ : isEven n) N and div2 : isEven! n) N and found that we were
unable to reduce the time taken to normalise div2’ (isEven-2^ 15) to below
three minutes, whereas our implementation of div2 (isEven!-2^ 15) took less
than fifteen seconds. We refer readers interested in our implementation of
div2 to our Cubical Agda library.

A similar performance impact to utilising our technique can be found by
instead making use of a strict Prop universe [Gilbert, Gaëtan and Cockx,
Jesper and Sozeau, Matthieu and Tabareau, Nicolas, 2019]. In particular,
by defining the family of types isEven? introduced in Section 4 as a family
of Props, it is then possible to construct a proof of the evenness of 65536 by
instead defining isEven-2^ to construct a term of isEven? in a near identical
fashion. At first glance, this may appear to be a simpler approach. How-
ever, one of the key characteristics of our approach is the preservation of
computational content. In particular, this means that it interacts well with
other constructions in HoTT. For example, if we were to define evenness
as a family of strict Props, it would no longer be possible to show that the
forgetful map from evens to naturals is an embedding, which is precisely

22

the property we should expect from any subtype in HoTT.

Summary. We conclude by summarising our two approaches to en-
coding operations on a subtype. Both approaches give isomorphic repre-
sentations, but differ in manner in which they are constructed.

Inductive families (IF) approach:

1. Given a subtype, select some closure properties on its subtyping con-
dition;

2. Define the subtyping condition as an inductive family;

3. Extend the family with data constructors that encode the closure
properties;

4. Extend the family with a path constructor which asserts that all
subtyping proofs are equal.

Induction-recursion (IR) approach:

1. Given a subtype, select some operations on it;

2. Define the subtype as an inductive-recursive type;

3. Extend the inductive type with the operations, and extend the recur-
sive function with their interpretations;

4. Extend the inductive type with a path constructor that asserts the
function is injective, and trivially extend the function over the path
constructor.

2.6 Example: ordered finite sets

In this section we show how ordered finite sets can be represented using
the inductive families version of our technique. In type theory, ordered
finite sets are typically defined as an inductive family Fin : N) Type

with two constructors, zero : Fin (suc n) and suc : Fin n) Fin (suc n).
This example illustrates that in order to obtain an extensible encoding,
it is important to carefully choose the operations to be encoded by our

23

technique. Moreover, while there remains a degree of creativity required to
select operations on a subtype, we can identify desirable properties for our
encoding. In particular, for the example of ordered finite sets, our focus
will be on recovering the typical elimination principle by dependent pattern
matching in Cubical Agda [Cockx et al., 2014].

We can alternatively think of Fin n as a subtype of N, with the subtyp-
ing condition on a natural number k given by k < n. This definition as a
subtype is precisely the form our technique can be used with. Furthermore,
the representation of Fin as a family of subtypes has several desirable prop-
erties over its definition as an inductive family. For example, the function
toN :

∑
[k ∈ N] k < n) N is trivially defined as the first projection, and

the proof that this function is an embedding follows simply from the fact
that k < n is a proposition. Concretely, we can define the total order _<_

in Agda as the following inductive family:

data _<_ : N) N) Type where

z<s : 0 < suc n
s<s : m < n) suc m < suc n

Intuitively, we can observe that _<_ defines a family of propositions since
the only way to prove that a number m is less than a number suc n is by
applying the constructor s<s a total of m times to the constructor z<s.

We can now proceed by applying the next step of our technique. In
particular, we can identify closure properties on the inductive family _<_

and extend its definition with constructors encoding them. As a general
rule, we recommend prioritising closure properties that are both ubiquitous
and for which the typical elimination principle can be ‘easily’ extended
over. In order to highlight this idea, we shall give examples of such closure
properties on _<_.

We begin by observing that the typical elimination principle for the
inductive family _<_ can be constructed from proofs ¬m<0 : m < 0) ⊥
and <-smonic : suc m < suc n) m < n. Indeed, these proofs are precisely
what is required to establish that the relation _<_ is well-founded. As
such, it will be sufficient to define the action of these functions on any
additional closure properties we include in our definition of _<_. For
example, consider transitivity of the relation _<_, which can typically be
proven as follows:

24

trans< : m < n) n < o) m < o
trans< z<s (s<s q) = z<s

trans< (s<s p) (s<s q) = s<s (trans< p q)

We begin by encoding the proof of transitivity as a constructor trans< :

(n : N)) m < n) n < o) m < o. We then extend the function ¬m<0 by
defining ¬m<0 (trans< n p q) = ¬m<0 q, and in turn extend the function
<-monic:

<-smonic (trans< 0 p q) = absurd (¬m<0 p)

<-smonic (trans< (suc n) p q) = trans< (<-smonic p) (<-smonic q)

Crucially, this construction allows us to recover the typical elimination
principle for _<_. As a second example, we consider the property that
any natural number is less than its successor, which can typically be proven
as follows:

n<sn : (n : N)) n < suc n
n<sn zero = z<s

n<sn (suc n) = s<s (n<sn n)

We can encode this proof by a constructor n<sn : (n : N)) n < suc n.
Notably, our definition of ¬m<0 does not need to be extended since 0

never unifies with suc n, and we can extend <-smonic by simply mapping
a term n<sn (suc n) to n<sn n.

While we have shown that the elimination principle for _<_ can be
preserved after extension with constructors trans< and n<sn, the new in-
ductive family is of course not isomorphic to the original. However, by
applying the next step of our technique, we quotient our new inductive
family to obtain this isomorphism:

data _<_ : N) N) Type where

z<s : 0 < suc n
s<s : m < n) suc m < suc n
n<sn : n < suc n
trans< : m < n) n < o) m < o
trunc : (p q : m < n)) p ≡ q

We also now require that ¬m<0 and <-smonic be extended over the path
constructor, which is trivial as both functions eliminate into h-propositions.

25

It is important to highlight how the approach in this section differs from
recovering the same elimination principle by simply transporting along the
isomorphism between the alternative and original representations. In par-
ticular, by observing how the definition of <-smonic was extended over the
inductive constructors trans< and n<sn, we can see that it does not ‘ex-
pand’ proofs built from these constructors into proofs built only from z<s

and s<s. That is, in contrast to transporting along the induced isomor-
phism from the alternative definition of _<_ to the original definition,
we preserve the efficient encodings of transitivity and the proof that every
natural number is less than its successor.

The finite sets example can also be represented using our induction-
recursion technique, with the details being available in our Cubical Agda
library.

2.7 IF formalisation

As discussed in Section 2.5, our encoding of a subtyping condition arises
as a quotient of the free monad on a dependent polynomial functor. In
this section, we give a formalisation of this idea using indexed containers
[Altenkirch and Morris, 2009; Altenkirch et al., 2015], which can be seen as
an internalisation of dependent polynomial functors in type theory. In par-
ticular, we show how our technique arises as the free construction, over an
indexed container, of an algebraic structure we call a propositional monad.

Indexed containers

Indexed containers provide a generic means to capture and reason about
strictly positive type families, and as such we can use them to capture
collections of operations on a subtyping condition. Indexed containers can
be represented in Agda as terms of the following record type:

record Container (I O : Type) : Type1 where

field

Com : (o : O)) Type

Res : ∀ {o}) Com o) Type

next : ∀ {o}) (c : Com o)) Res o c) I

It is useful to think of such a container as a collection of trees, each with

26

a single vertex, whose input edges are labelled by terms of I, and whose
single output edge is labelled by a term of O. In this way, Com maps each
o : O to the type of trees whose output edge is labelled by o, Res maps a
tree c : Com o to the type of its input edges, and next maps an input edge
r : Res o c to its label from I.

Every C : Container I O gives rise to a dependent polynomial functor
J C K : (I) Type)) O) Type, by means of the following definition:

J C K X o =
∑

[c ∈ Com C o] (∀ r) X (next C c r))

This family is termed the extension of C, and we can similarly formulate
its dependent extension J C K2 A B : O) Type on all families A : I) Type,
B : ∀ i) A i) Type, defined as follows:

J C K2 A B o =
∑

[(c , f) ∈ J C K A o] (∀ r) B _ (f r))

Together with the notion of a container and its extension, our formalisation
also uses the notion of a container morphism, captured by a record type:

record _⇒_ (C D : Container I O) : Type where

field

Com1 : ∀ o) Com C o) Com D o
Res1 : ∀ {o} (c : Com C o)) Res D (Com1 o c)) Res C c
Coh : ∀ o c r) next C c (Res1 c r) ≡ next D (Com1 o c) r

Every morphism f : C ⇒ D can be extended to a morphism between the
extensions of C and D. In particular, for every B : I) Type, we define
⟨ f ⟩ B : ∀ o) J C K B o) JD K B o by mapping o : O and (c , g) : J C K B o

to:

Com1 f o c , λ r) subst B (Coh f o c r) (g (Res1 f c r)).

Propositional monads

We now introduce propositional monads, which will be used to formalise our
technique. Given any O : Type, a type family M : (O) Type)) O) Type

is a propositional monad if there is a term of the following record type:

record isPropMonad M : Type1 where

field

27

isPropM : ∀ A o) (x y : M A o)) x ≡ y
return : ∀ A o) A o) M A o
bind : ∀ A B o) M A o) (∀ o) A o) M B o)) M B o

This definition of isPropMonad presents the structure of a monad on fam-
ilies of propositions. That is, return is the unit map of the monad, bind

combines its multiplication map with its functorial action on morphisms,
and isPropM asserts that M is a family of propositions. The monadic laws
are not required in our definition, as they will always provably hold as a
consequence of M being a family of h-propositions. For any type families
A B : O) Type, we can construct both the functorial action of M on
morphisms, and its monad multiplication map

join : (B : O) Type)) ∀ o)M (M B) o)M B o

from bind and return in the usual way. Importantly, it is sufficient to con-
struct a term of type isPropMonad M to prove the necessary monadic (and
functorial) laws. Indeed, because M is a family of propositions, these laws
trivially hold.

Given propositional monads F G : (O) Type)) O) Type, a morphism
from F to G is simply a morphism between the underlying type families, i.e.
a family of functions αB : (o : O)) F B o) G B o for every B : O) Type.
If the family αB exists, it will always be unique and respect the monadic
structure. Both of these properties follow from appropriate application of
the term

isPropM G B : (o : O) (x y : G B o)) x ≡ y

which states that for all o : O, the term G B o is a proposition.

Free propositional monad

For every indexed container C : Container O O, we can define the free
propositional monad over C by truncating the free monad on C. In partic-
ular, this can be defined in Cubical Agda by the following higher inductive
family:

data FreePM C (P : O) Type) : O) Type where

η : (o : O)) P o) FreePM C P o

28

fix : (o : O)) J C K (FreePM C P) o) FreePM C P o
squash : (o : O) (x y : FreePM C P o)) x ≡ y

To show that FreePM C is a propositional monad, we begin by observing
that isPropM is trivially given by the path constructor squash, and similarly
return is given by the data constructor η. Given type families P Q : O)

Type, a term x : FreePM C P o, and a family of functions g : ∀ o) P o)

FreePM Q o, the construction of bind P Q o x g : FreePM C Q o follows by
induction on x:

bind P Q o (η o p) g = g o p
bind P Q o (fix o (c , f)) g = fix o (c , λ r) bind P Q o (f r) g)

Importantly, we can also extend bind over the path constructor squash,
because we are eliminating into a proposition.

We recall that this construction also gives us the functorial action of
FreePM C on O-indexed type families. That is, for all type families P Q :

O) Type, we can lift a family of functions f : ∀ o) P o) Q o to a
family of functions map f : ∀ o) FreePM C P o) FreePM C Q o between
their corresponding free propositional monads. Similarly, we can define the
monad multiplication map joinFPM : ∀ o) FreePM C (FreePM C P) o)

FreePM C P o.
The free propositional monad construction extends to a functor by lift-

ing any morphism α : C ⇒ D to a family of functions lift α P : ∀ {o})

FreePM C P o) FreePM D P o. In particular, we define lift inductively on
the constructors of FreePM C P o by simply mapping η o p to η o p and
fix o (c , f) to:

fix o (⟨ α ⟩ (FreePM C B) (c , lift α ◦ f))

It is easy to extend lift over the path constructor squash because the proof
that we are eliminating into a proposition is simply given by squash. The
functorial laws follow from the proof that FreePM D P o is a proposition.

To show that FreePM C is the free propositional monad on C, we first
require a unit of the free construction. In particular, this is a propositional
monad morphism between J C K and FreePM C, which can be defined as
follows:

unit : (B : O) Type)) ∀ o) J C K B o) FreePM C B o
unit B o (c , f) = fix o (s , λ r) η (next C c r) (f r))

29

Furthermore, for all containers C D : Container O O for which there is a
term δ : isPropMonad J D K witnessing that J D K is a propositional monad,
and for every morphism α : C ⇒ D and family B : O) Type, we can
construct a unique family of functions fold α B : ∀ {o}) FreePM C B o)

JD KB o. To define fold α B, we observe that the codomain is a proposition,
and hence we can give its inductive definition on only the data constructors
of FreePM C B o:

fold α B (η o p) = return δ B o p
fold α B (fix o (c , f)) =

join δ B o (⟨ α ⟩ (J D K B) (c , fold α B ◦ f))

Importantly, for every x : J C K B o, it is possible to construct a suitable
path fold α B o (unit B o x) ≡ ⟨ α ⟩ B o x witnessing the left adjunct
(fold) interacts with the unit map in the expected way; fold α B is the
unique such propositional monad morphism satisfying this condition, as its
type is an h-prop.

We recall that the key result of our technique is the construction of an
isomorphism between our alternative representation of a family of proposi-
tions P , i.e. FreePM C P , and P itself. Notably, as both P and FreePM C P

are families of propositions, it suffices to construct a family of functions in
both directions. The family from P to FreePM C P is trivially given by
the data constructor η. In the other direction, it is not in general, possible
to construct a family of functions from FreePM C P to P . Indeed, this is
only the case when P is closed under the operations characterised by C,
which means we can construct a C-algebra α : ∀ o) J C K P o) P o with
P as the carrier. Given such an algebra, we can inductively construct the
desired family, f : ∀ {o}) FreePM C P o) P o, by mapping η o p to p
and fix o (c , g) to α o (c , λ r) f (g r)).

Example

To demonstrate how free propositional monads formalise the inductive fam-
ilies version of our technique, we provide an example whose construction
follows the four step process in Section 2.5. In particular, we will consider
a subtype of lists where adjacent elements are related by a mere relation,
i.e. a family of h-propositions, which we denote _∼_ : A) A) Type. To
do this, we begin by defining the following family of propositions on lists:

30

data isRelated : List A) Type where

nil : isRelated []

sing : (x : A)) isRelated (x :: [])

ind : x ∼ y) isRelated (y :: xs)) isRelated (x :: y :: xs)

The constructors nil, sing and ind allow us to construct proofs of the sub-
typing condition for the empty list, singleton lists, and lists whose first
two elements are related and whose tail respects the subtyping condition.
Because _∼_ is a mere relation, isRelated is a family of h-props. Notably,
if _∼_ is a total order, then a term of type isRelated xs corresponds to a
proof that xs is sorted. However, for our purposes we will only require that
∼ be transitive. While this additional constraint will not be necessary
to construct our alternative encoding of isRelated, it will be required to
construct an isomorphism with the original definition.

The next step of our technique involves choosing closure properties on
the subtyping condition isRelated. We will consider two such properties,
namely that if _∼_ is transitive then isRelated is closed under filtering of
a list and (safe) removal of elements. That is, given functions

filter : (A) Bool)) List A) List A,
remove : (xs : List A)) Fin (length xs)) List A,

defined in the obvious way, we can construct the following two proof terms:

filterR : ∀ P xs) isRelated xs) isRelated (filter P xs)
removeR : ∀ xs i) isRelated xs) isRelated (remove xs i)

We now proceed by capturing these closure properties with an indexed
container C : Container (List A) (List A). To do this, we begin by defining
the commands, Com C : List A) Type, as the following inductive family:

data RelCom : List A) Type where

filterC : ∀ P? xs) RelCom (filter P? xs)
removeC : ∀ i xs) RelCom (remove i xs)

The next step is to define the inductive positions or ‘responses’, Res C :

∀ {xs}) RelCom xs) Type. Here, this is simply given by Res C xs c = ⊤
for all xs : List A and c : RelCom xs. Finally, we define next C : ∀ {xs})

(c : RelCom xs)) Res C xs c) List A by induction on the constructors of
RelCom:

31

next C (filterC P? as) t = as
next C (removeC i as) t = as

From our definition of the container C, the alternative encoding of the
inductive family isRelated is simply the free propositional monad given by
FreePM C isRelated : List A) Type, which we denote by isRelatedF. Impor-
tantly, we can prove that for any list xs : List A, the h-props isRelatedF xs

and isRelated xs are isomorphic. The construction of this family of iso-
morphisms follows from the proof that isRelated is indeed closed under the
two operations we have encoded. That is, we can construct a C-algebra
α : (xs : List A)) J C K isRelated xs) isRelated xs, by constructing proofs
that filtering and removal respect isRelated. Of course, this is only true
when the relation _∼_ is transitive.

As is the intended purpose of our alternative encoding of isRelated,
the family of propositions isRelatedF comes equipped with two canonical
constructors:

filterF : ∀ P?) isRelatedF xs) isRelatedF (filter P? xs),
removeF : ∀ i) isRelatedF xs) isRelatedF (remove xs i),

In particular, these constructors correspond to the proofs that isRelatedF is
closed under filtering and removal. For example, filterF can be constructed
as:

filterF P? xs = fix (filter P? xs) (filterC P? xs , λ t) xs)

Importantly, as long as the arguments P? and xs are in canonical form, then
the proof that filterF preserves the subtyping condition will correspondingly
be in canonical form. We can construct a similar term corresponding to
removeF, and in this way the inductive family isRelatedF efficiently encodes
closure of lists with related adjacent elements under filtering and element
removal.

2.8 IR formalisation

In this section, we will give a formalisation of our higher inductive-recursive
encoding of subtypes. We call this encoding the free subtype extension on a
container. This formalisation will again make use of indexed containers to

32

capture collections of operations. We could also have encoded operations
in terms of IR-codes [Dybjer and Setzer, 2003], but these two approaches
are equivalent [Hancock et al., 2013] and the use of indexed containers
simplifies many of our constructions. Once we have given a formalisation
of the higher-inductive recursive encoding of subtypes, we then proceed by
defining its eliminator and proving its equivalence to the higher-inductive
family encoding of subtypes. We conclude this section by applying our
formalisation to the practical example of ordered finite sets.

Fibers

In order to formalise our higher-inductive recursive encoding of subtypes
in terms of indexed containers, we recall the definition of the fiber over a
function. We can define the fiber over a function f : A) B as an inductive
family:

data Fiber f : B) Type where

fib : (a : A)) Fiber f (f a)

The inductive family Fiber f comes with eliminators unwrap f b : Fiber f b)

A and unwrap-β f b : (x : Fiber f b)) f (unwrap f b x) ≡ b, defined as
follows:

unwrap f .(f a) (fib a) = a
unwrap-β f .(f a) (fib a) = refl

There is a well-known equivalence between A-indexed type families and fi-
brations over A, i.e.

∑
[U ∈ Type] (U) A). In particular, this equivalence

maps an IR-definition, i.e. an inductive type U : Type defined mutually
with a recursive function E : U) A, to the fibers over E. The A-indexed
type family corresponding to the fibers over E is precisely what is required
when using indexed containers to formalise our higher-inductive recursive
encoding of subtypes.

Free subtype extension

As with the previous approach, to formalise our inductive recursive encod-
ing of subtypes we begin with an indexed container, C : Container O O,
which corresponds to the operations that will be encoded as canonical

33

constructors. We then proceed by mutually defining a higher-inductive
datatype data FreeSTExt C P : Type together with a recursive function
decode C P : FreeSTExt C P) O, for every family P : O) Type. In
particular, we define the type by

data FreeSTExt C P where

η : ∀ o) P o) FreeSTExt C P
fix : ∀ o) J C K (Fiber (decode C P)) o) FreeSTExt C P
eq : ∀ x y) decode C P x ≡ decode C P y) x ≡ y

and the recursive function as follows:

decode C P (η o p) = o
decode C P (fix o x) = o
decode C P (eq x y p i) = p i

Intuitively, the eq path constructor of FreeSTExt C P asserts that the
function decode C P is injective. In this manner, we can understand
FreeSTExt C P as being a subtype of O, and decode C P as corresponding
to the first projection or ‘underlying’ map on the typical representation
of a subtype as a dependent pair. The fix constructor of FreeSTExt C P

extends the definition of the subtype given by η and eq with the operations
characterised by the container C.

To construct functions out of the type FreeSTExt C P , we must prove
that our constructions respect the path constructor eq. Concretely, for
every eliminator f : (x : FreeSTExt C P)) B x this means that for all
x, y : FreeSTExt C P and p : decode C P x ≡ decode C P y we provide a
construction for the path

cong f (eq x y p) : PathP (λ i) B (p i)) (f x) (f y).

It may at first seem that the eq path constructor, which appears to sim-
ply assert that decode C P is injective, is insufficient to capture higher
subtypes. That is, injectivity of the underlying map is only enough when
a subtype is an h-set. However, as we will show, the introduction of the
eq path constructor is in fact sufficient to prove that decode C P is an
embedding.

34

Decode is an embedding

A function f : X) Y is called an embedding if for all x, y : X, the
action of f on the path space x ≡ y, i.e. cong f : x ≡ y) f x ≡ f y, is
an equivalence. This is known to be equivalent to f having propositional
fibers, i.e. Fiber f y is an h-prop for all y : Y . Importantly, this means that
decode C P is an embedding precisely when Fiber (decode C P) o is an
h-prop for all o : O. In particular, this will simplify defining functions out
of the free subtype extension into Fiber (decode C P) o, as it easy to show
that the path constructor eq is respected when eliminating into an h-prop.

In order to show that decode C P is an embedding, it is sufficient to
prove that the following two functions

cong (decode C P) : x ≡ y) decode C P x ≡ decode C P y,
eq x y : decode C P x ≡ decode C P y) x ≡ y,

establish an isomorphism between x ≡ y and decode C P x ≡ decode C P y.
That is, we require constructions for both the left and right inverse:

left : ∀ p) cong (decode C P) (eq x y p) ≡ p,

right : ∀ p) eq x y (cong (decode C P) p) ≡ p.

The family of paths left is simply given by the action of decode C P on the
path constructor eq. To construct the path right p for every path p : x ≡ y,
it is sufficient to construct a path eqRefl : eq x x refl ≡ refl by application
of the J-eliminator on p. In order to construct the path eqRefl, we shall
make use of one of the foundational concepts of cubical type theory, by
constructing it as the lid of the cube shown in Figure 2.1. In this figure,
the variables i, j, k : I are terms of the interval that correspond to the
dimensions of the cube, with i being the dimension from left to right, j
from front to back, and k from bottom to top.

In Cubical Agda, the side faces of the cube can be constructed as a
partial element of FreeSTExt C P . For any A : Type and interval formula
ψ : I, the type Partial ψ A corresponds to the type of cubes in A for which
for which the formula ψ takes on the value i1 : I, where i1 is the maximum
endpoint in the interval. Given the dimensions i, j, k of the cube, the
formula which has value i1 only for the side faces is i ∨ ~ i ∨ j ∨ ~ j.
In this formula we use the connectives ∨ : I) I) I and ~ : I) I, which
together with ∧ : I) I) I form a De Morgan algebra on the interval type

35

x x

x x

x x

x x

x

x

eq x x refl j

x

x

x

x

eq x x refl j

eq x x refl (~ i)

x

eq x x refl j

eq x x refl k

Figure 2.1: A cube whose lid is eqRefl

whose laws are given definitionally. To express the side faces of our cube
in Cubical Agda, we will construct the following term:

sides : (i j k : I)) Partial (i ∨ ~ i ∨ j ∨ ~ j) (FreeSTExt C P)

To do this, we will use a special form of pattern matching that allows us
to individually consider when each of the disjuncts in our formula are i1.
In particular, this will correspond to giving a construction for each side
face. For example, the right-most face will consider the case i = i1 and will
be given by a heterogeneous path over λ k) eq x x refl k ≡ x, between
eq x x refl : x ≡ x and refl : x ≡ x. Concretely, we can can construct the
side faces of our cube as follows:

sides i j k (i = i0) = eq x x refl j
sides i j k (i = i1) = eq x x refl (j ∨ k)
sides i j k (j = i0) = eq x x refl (~ i ∨ k)
sides i j k (j = i1) = x

Here (i = i0), (i = i1), (j = i0) and (j = i1) correspond to the four face
maps for the sides of the cube. To construct the lid, we also require a path
corresponding to the base. Concretely, this is a heterogeneous path over
ϕ = λ i) eq x x refl (~ i) ≡ x from eq x x refl to itself, constructed as
follows:

base : PathP ϕ (eq x x refl) (eq x x refl)

base i j = eq (eq x x refl (~ i)) x refl j

36

Finally, we can construct the path from eq x x refl to refl, using Cubical
Agda’s homogeneous composition function:

eqRefl i j = hcomp (sides i j) (base i j)

Crucially, as outlined earlier, this is enough to prove that decode C P is
an embedding. Furthermore, it follows that the fibers of decode C P are
propositions, and indeed the O-indexed family of types Fiber (decode C P)

can be seen as the subtyping condition for FreeSTExt C P .
As an alternative proof, we can instead directly show that the family

of types Fiber (decode C P) is a family of h-propositions, and make use of
the equivalence between a function having propositional fibers and being
an embedding. To do this, we first state the eta-law of the inductive family
Fiber,

unwrap-η : ∀ x) PathP (Ψ x) (fib (unwrap x)) x
unwrap-η (fib a) = refl

where Ψ x i = Fiber f (unwrap-β x i). The next step involves defining two
sides of a square, for all a : FreeSTExt C P and x : Fiber (decode C P) o:

sides a x : (i j : I)) Partial (i ∨ ~ i) (Ψ x j)
sides a x i j (i = i0) = fib (eq (unwrap x) a (unwrap-β x) j)
sides a x i j (i = i1) = unwrap-η x j

Finally, given any x, y : Fiber (decode C P) o, we can then construct a path
x≡ y by induction on x, where we consider the single case o = decode C P a

and x = fib a. We can then apply Cubical Agda’s heterogeneous composi-
tion comp over the path Ψ y, to compute the lid of the square with sides
given by sides a y and base given by fib (unwrap y).

The proof that the decode function has propositional fibers simpli-
fies defining functions between free subtype extensions. Typically, to de-
fine a function f : FreeSTExt C P) FreeSTExt D P by induction on
FreeSTExt C P , we need to show that f respects the path constructor
eq. However, it is often simpler to define a family of functions g : ∀ o)

Fiber (decode C P) o) Fiber (decode D P) o, and then construct f as
unwrap ◦ g ◦ fib. To construct g, we can first induct on the single case of
Fiber (decode C P) o, i.e. fib a for a : FreeSTExt C P , and then proceed
by induction on a. Importantly, any construction we give by induction on

37

a will respect the path constructor eq, as a consequence of eliminating into
a h-prop. An important example is defining the functorial action of the
free subtype extension on a container morphism h : C ⇒ D, which can be
found online in our Cubical Agda library.

Equivalence between IF and IR approaches

The proof that decode C P has propositional fibers is central to our con-
struction of an equivalence between our IF and IR encodings. In particu-
lar, it will facilitate the construction of a family of isomorphisms between
the O-indexed families FreePM C P and Fiber (decode C P), which cor-
respond to the subtyping condition. Finally, we will construct an equiva-
lence between the subtype encodings themselves, i.e. FreeSTExt C P and∑

[o ∈ O] FreePM C P o. Concretely, we begin by constructing a family of
functions IF)IR : ∀ {o}) FreePM C P o) Fiber (decode C P) o, defined
on the data constructors of FreePM C P o by:

IF)IR (η o p) = fib (η o p)

IF)IR (fix o (c , g)) = fib (fix o (c , λ r) IF)IR (g r)))

The action of IF)IR on the path constructor squash is given by the proof that
decode C P has propositional fibers. In the other direction, we construct a
family of functions IR)IF : ∀ {o}) Fiber (decode C P) o) FreePM C P o

by:

IR)IF (fib (η o p)) = η o p
IR)IF (fib (fix o (c , g))) = fix o (c , λ r) IR)IF (g r))

The proof that IF)IR and IR)IF witnesses a family of isomorphisms be-
tween FreePM C P and Fiber (decode C P) follows simply from these
families being h-props. By univalence and function extensionality this is
also enough to construct a path between propositions FreePM C P and
Fiber (decode C P). Moreover, we can also prove the following function is
an equivalence:

IR)
∑

IF : FreeSTExt C P)
∑

[o ∈ O] FreePM C P o
IR)

∑
IF x = decode C P x , IR)IF x

In particular, it is sufficient to prove this function has contractible fibers.
To this end, we will first show IR)IF has propositional fibers, and then

38

give a construction for f : ∀ y) Fiber IR)IF y. We begin by observing
that the function π1 ◦ IR)IF, i.e. the composition with the first projection,
is definitionally equal to decode C P , which we have already shown to
have propositional fibers. It is provable in HoTT that for any A B : Type

and C : B) Type, if C is a family of propositions then given a function
f : A)

∑
[b ∈ B] C b, if π1 ◦ f has propositional fibers then so does f ; the

details can be found in our Cubical Agda library. Given that FreePM C P

is a family of propositions, it then follows that IR)
∑

IF has propositional
fibers.

To complete the proof that the fibers of IR)IF are contractible, it suffices
to construct a term Fiber IR)IF (o, x) for each o : O and x : FreePM C P o.
We proceed by induction on x, and note that our construction will respect
the path constructor squash as a consequence of eliminating into a h-prop,
i.e. Fiber IR)IF (o, x). For the case where x = η o p, we construct the term
fib (η o p). If x = fix o (c , g), we first construct the following path:

p : (o , fix o (c , IR)IF ◦ IF)IR ◦ g)) ≡ (o , fix o (c , g))
p i = o , squash o (fix o (c , IR)IF ◦ IF)IR ◦ g)) (fix o (c , g))

Finally, we transport the term fib (fix o (c , IF)IR ◦ g)) along p, in the
family Fiber IR)IF, to construct a term of type Fiber IR)IF (o , fix o (c , g))

as required.

Example

We conclude this section by applying the formalisation of the IR encoding
of subtypes to the same example used in Section 2.7 to illustrate the IF
encoding of subtyping conditions. In particular, we will consider an encod-
ing for the subtype of lists for which any two adjacent elements are related
by a mere transitive relation _∼_ : A) A) Type. Furthermore, we will
make use of the same indexed container C : Container (List A) (List A) as
defined previously.

We can encode the given subtype on lists as the free subtype extension
on C applied to isRelated _∼_ as follows:

RelList = FreeSTExt C (isRelated _∼_) .

In this way, the subtyping condition is then encoded by the inductive family
Fiber (decode C (isRelated _∼_)). In a similar manner to the example for

39

the IF formalisation, and given

lengthR = length ◦ decode C (isRelated _∼_) ,

this encoding gives rise to the following canonical constructors:

filterR : (P? : A) Bool)) RelList) RelList

removeR : (xs : RelList) (i : Fin (lengthR xs))) RelList

For example, we can construct filterR as follows:

filterR P? xs =

let ys = decode C (isRelated _∼_) xs
in fix ys (filterC P? ys , λ t) fib xs)

2.9 Generalising our technique

Our technique can be generalised in a natural manner, by considering an
encoding for dependent sums whose second component is an arbitrary
type, rather than just a proposition. The advantage of such an encod-
ing for generalised dependent sums is the flexibility to control precisely
when selected operations on a type are normalised. We begin this section
with the motivating example of finite lists, and then provide a formal-
isation of the generalised approach for encoding arbitrary type families
A : O) Type together with a collection of operations represented by a
container C : Container O O.

As an alternative to the typical encoding of finite lists, we can instead
first consider vectors, i.e. families of finite lists indexed by their length:

data Vec (A : Type) : N) Type where

[] : Vec A 0

:: : A) Vec A n) Vec A (suc n)

Using vectors, we can encode finite lists of A as the sum over the family
Vec A : N) Type. That is, we define List A =

∑
[n ∈ N] Vec A n, which

can be shown to be equivalent to the typical presentation of lists. In par-
ticular, this representation requires that any operation that constructs a
list must also compute its length, and therefore its length can be retrieved

40

in constant time by projecting the first component. For example, con-
catenation of two lists is defined by addition of the first components, and
application of the operation _++_ : Vec A m) Vec A n) Vec A (m + n)

on the second components.
As an application of our generalised technique, we will consider encoding

finite lists in such a manner that it is possible to control when the operation
++ is normalised. We can first observe that the definition of List A

using vectors does not fit the required scheme to apply the techniques we
have described thus far, as for any n > 0 if A is not a proposition then
neither is Vec A n. However, the first step of the generalisation to our IF
approach follows in an identical fashion, i.e. by defining a new inductive
family AVec A : N) Type, with two constructors η : Vec A n) AVec A n

and _++_ : AVec A m) AVec A n) AVec A (m + n). In particular, we
intend for η to be an embedding from Vec A n into AVec A n, and for the
constructor _++_ to encode the operation _++_.

In order to establish an equivalence between AVec A n and Vec A n,
we can quotient AVec A n such that _++_ corresponds to concatenation of
the represented vectors. To do this, it is necessary to be able to refer to the
vectors being represented by terms of AVec A n in its own definition. This
corresponds to mutually defining the family AVec A together with a family
of functions vect : AVec A n) Vec A n that map a term of AVec A n to the
vector it represents. Concretely, we define the quotiented family AVec A as
follows:

data AVec A where

η : Vec A n) AVec A n

++ : AVec A m) AVec A n) AVec A (m + n)

eq : (xs : Vec A m) (ys : Vec A n))

η (vect xs ++ vect ys) ≡ xs ++ ys

We then define the function vect as:

vect (η as) = as
vect (xs ++ ys) = vect xs ++ vect ys
vect (eq xs ys i) = vect xs ++ vect ys

Importantly, the path constructor eq is sufficient to construct a path of the
type η (vect as) ≡ as for all n : N and as : AVec A n. Following from

41

the definitional equality vect (η as) = as, this is enough to establish that
the constructor η and the function vect witness a family of isomorphisms
between Vec A and AVec A. Consequently, it is sufficient to establish an
equivalence between the types

∑
[n ∈ N] Vec A n and

∑
[n ∈ N] AVec A n.

By encoding vectors using the type AVec A, we can precisely control
when concatenation is normalised. In particular, it is possible to define a
function normalise : AVec A n) AVec A n for this purpose, by composing
vect with η. Indeed, this is similar to the approach of normalisation-by-
evaluation, in which terms are evaluated and then reflected back into the
syntax. In the case of our generalised encoding this reflection map is η
and is an equivalence. More generally, we can use this approach to delay
normalisation until after applying functions that do not require terms to
be in a normalised form, e.g. the family of functions map : (A) B))

AVec A n) AVec B n.
As can be observed with our finite lists example, in contrast to our def-

inition of free propositional monads, the generalisation of our IF approach
requires that we have a C-algebra α : (o : O)) J C K A o) A o before defin-
ing our new representation of A. The generalised IF approach proceeds by
mutually defining a higher inductive family FreeRep C A α : O) Type and
a recursive function rec α : ∀ {o}) FreeRep C A α o) A o. First, we
define FreeRep C A α by:

data FreeRep C A α where

η : ∀ o) A o) FreeRep C A α o
fix : ∀ o) J C K (FreeRep C A α) o) FreeRep C A α o
eq : ∀ o c g) η o (α o (c , rec α ◦ g) ≡ fix o (c , g)

Then the function rec α is constructed as follows:

rec α (η o a) = a
rec α (fix o (c , g)) = α o (c , λ r) rec α (g r))
rec α (eq o c g i) = α o (c , λ r) rec α (g r))

We say that FreeRep C A α is a freely represented family for A over the
container C. Given any o : O and x : FreeRep C A α o, we can extend the
path constructor eq to a family of paths eq-η x : η o (rec α x) ≡ x using
the definition:

eq-η (η o a) = refl

42

eq-η (fix o (c , g)) = eq o c g
eq-η (eq o c g i) j = eq o c g (i ∧ j)

The functions rec α and η o establish an isomorphism between the types
FreeRep C A α o and A o. Hence the inductive family FreeRep C A α

gives an alternative representation of A, for which the operations encoded
by C can be expressed in a manner that their computation is delayed until
transporting along the isomorphism.

It is also possible to define an eliminator for FreeRep C A α into a family
of types B : O) Type. This eliminator requires a C-algebra β : (o : O))

J C K B o) B o which has B as its carrier, and a family of functions
f : (o : O)) A o) B o such that the following diagram commutes in the
slice category over O:

J C K (FreeRep C A α) J C K B

J C K A A B

[rec α] β

α

[f]

f

That is, under the image of [rec α], the family of functions f must be
an algebra homomorphism from α to β. Concretely, given a family of
paths p : (o : O)) f o ◦ α o ◦ [rec α] ≡ β o ◦ [f o] ◦ [rec α]

along with a term x : FreeRep C A α o, we can constructor an eliminator
elimRep α β f p x : B o as follows:

elimRep α β f p (η o a) = f o a
elimRep α β f p (fix o (c , g)) =

β o (c , λ r) elimRep α β f p (g r))
elimRep α β f p (eq o c g i) =

p o i (c , λ r) elimRep α β f p (g r))

An interesting application of this eliminator is to define the functorial ac-
tion of FreeRep C on morphisms between C-algebras. We remark that the
correct notion of morphism between FreeRep C A α and FreeRep C B β is
an algebra homomorphism between the algebras given by rec α and rec β.
Again, our library gives the details.

The generalised IF approach can also be translated into a generalisation
of the IR approach. In particular, for every type A and C-algebra α :

43

(o : O)) J C K A o) A o we can mutually define a higher inductive type
FreeRepIR C A α : Type,

data FreeRepIR C A α where

η : ∀ o) A o) FreeRepIR C A α

fix : ∀ o) J C K (Fiber (π1 ◦ rec α)) o) FreeRepIR C A α

eq : ∀ o c g) η o (α o (c , recπ2 α ◦ g)) ≡ fix o (c , g)

a function recπ2 α : ∀ {o}) Fiber (π1 ◦ rec α) o→ A o,

recπ2 α (fib x) = π2 (rec α x)

and a function rec α : FreeRepIR C A α)
∑

[o ∈ O] A o:

rec α (η o a) = o , a
rec α (fix o (c , g)) = o , α o (c , recπ2 α ◦ g)
rec α (eq o c g i) = o , α o (c , recπ2 α ◦ g)

In a similar manner to the generalisation of the IF approach, the eq path
constructor can be extended to a family of paths

eq-η x : uncurry η (rec α x)≡ x

In particular, this means that for all o : O, rec α and uncurry η witness an
isomorphism between FreeRepIR C A α and

∑
[o ∈ O] A o.

2.10 Strictification

In addition to providing fine-grained control of unfolding behaviour, the
encodings presented in this chapter can be used for coherence constructions
that present a strictification for a chosen collection of operations. That is,
our technique allows us to construct a model for which the interpretations
of a chosen algebra hold strictly from one in which they only hold weakly.
As an example, we will consider the strictification of the dependent sum
construction for a universe that is internally represented à la Tarski. In
particular, a Σ-closed Tarski universe is given by a type of codes U : Type

with interpretations J_K : U) Type, and a dependent sum type former

∑̂
: (A : U)) (J A K) U)) U,

44

together with a proof that its interpretation is equivalent to the Σ-type in
the ambient type theory:

J
∑̂

K : (A : U) (B : J A K) U)) J
∑̂

A B K ≃
∑

[a ∈ J A K] J B a K.

Notably, J
∑̂

K need not be a family of strict equivalences and this is indeed
the case for many common examples such as the universe of inductive
finite types whereby U = N and J_K = Fin. However, by application of the
higher inductive-recursive encoding presented in Section 2.8 we can define
the following higher inductive datatype:

data FreeU : Type where

Codef : U) FreeU∑
f : (A : FreeU)) (fst (ElContr A)) FreeU)) FreeU

eq : ∀ x y) decode x ≡ decode y) x ≡ y

We define FreeU mutually with two recursive functions decode : FreeU) U
and ElContr : (A : FreeU))

∑
[X ∈ Type] (X ≃ J decode A K). We define

the decode function as follows:

decode (Codef A) = A
decode (

∑
f A B)

=
∑̂

(decode A) λ a) decode (B (invEq (snd (ElContr A)) a))

decode (eq x y p i) = p i

In order to define the function ElContr we begin by observing that its
codomain is contractible, i.e.

∑
[X ∈ Type] (X ≃ J decode A K). As such,

any definition of ElContr that matches on the constructors of FreeU will
respect the eq path constructor. The first projection of ElContr X is given
by J A K when X = Codef A and

∑
[a ∈ fst (ElContr A)] fst (ElContr (B a))

when X =
∑

f A B. While we do not outline the second projections of
ElContr X here, they are given by routine constructions of equivalences.

As shown in Section 2.8, we can construct an equivalence between the
original type of codes U and the inductive-recursive type FreeU. Moreover,
we can construct a new Σ-closed Tarski universe with codes given by FreeU,
interpretations given by fst ◦ ElContr : FreeU) Type and dependent sums
given by

∑
f . The key result is that the interpretation of dependent sums in

our newly constructed universe is now definitionally equal to the dependent
sum in the ambient type theory. While we do not give the full proof here,

45

it is possible to prove that not only is U equivalent to FreeU but also that
our new ‘stricter’ universe is equal up to path to the original universe.

2.11 Related work

In this section we compare with two existing approaches in Agda to proofs
whose content does not matter, irrelevancy annotations and abstract defi-
nitions, and with the use of the Prop universe in Coq and Agda.

In Agda, a term can be annotated as irrelevant in cases where its content
will not be used in any proof-relevant constructions, and doing so prevents
unfolding of the annotated term. The key distinction between our technique
and irrelevancy annotations is the preservation of computational content.
In particular, annotating proofs of the subtyping condition as irrelevant
is problematic in a similar manner to that of using a strict universe of
propositions, namely that we cannot then use the content of a proof in
any proof-relevant context. For example, this means that we would be
unable to use a proof that a natural number is even in order to construct
the function div2 : isEven! n) N that divides an even number by two, as
discussed in Section 2.3.

Agda’s abstract definition mechanism can be used to hide the imple-
mentation details of a subtype, and expose operations as irreducible terms.
Abstract definitions are similar to our technique when defining a sub-
type X : Type within an abstract block, together with the first projection
El : X → O and a term witnessing that the function El is an embedding. In
particular, this is enough to construct paths corresponding to equational
properties of operations on X outside of the block. However, abstract defi-
nitions still require explicit proofs of closure under the subtyping condition
for operations within the abstract block. In contrast, our encoding only
requires a proof that the encoded operations are coherent with respect to
the subtyping condition in cases where we need to construct and transport
along an isomorphism between our alternative representation of a subtype
and its original definition. In this manner, encoding operations using our
technique is similar to postulating them, with the important distinction
that computational properties are preserved.

A third approach, provided in both Agda and Coq, is to use a universe
of computationally irrelevant propositions, typically named Prop. Agda

46

has a predicative hierarchy of Prop universes wherein pattern matching
is restricted to only the absurd pattern on elimination into proof-relevant
types, thereby preventing computational content from leaking. Meanwhile,
Coq has a single impredicative Prop universe that also allows for matching
on inductively defined propositions with a single constructor when elimi-
nating into proof-relevant types. This is known as the singleton-elimination
principle, and by application to the identity type in Coq it is possible to
show the uniqueness of identity proofs, and is therefore inconsistent with
univalence. As a closer analogue to Agda’s Prop universe, Coq has an im-
predicative universe of definitionally proof-irrelevant propositions termed
SProp that is consistent with univalence [Gilbert, Gaëtan and Cockx, Jes-
per and Sozeau, Matthieu and Tabareau, Nicolas, 2019]. The primary
drawback to using a definitionally proof-irrelevant Prop universe to pre-
vent unnecessary reduction behaviour of terms is the inability to use proof
content in any proof-relevant context. In contrast, our approach provides
the advantage of preserving proof content, while preventing unnecessary
reduction behaviour.

Opaque definitions [Gratzer et al., 2022] are a recent development in
type theory that provide fine-grained control over unfolding behaviour and
have been implemented in Agda as of version 2.6.5. In contrast to the
techniques outlined in this chapter, opaque definitions are a language-level
feature and require built-in support to use. A key benefit to this approach
is that significant overhead can be automatically managed by tooling. Con-
sequently, opaque definitions are both modular and particularly easy to use.
However, opaque definitions do not share precisely the same use cases as
that of the technique described in this chapter. For example, our encoding
of subtypes can be used to construct algorithms that are more performant
at runtime as discussed in Section 2.5.

2.12 Conclusion

In this chapter we presented a new technique that allows for operations on a
subtype to be represented in a manner that exhibits no reduction behaviour.
Our approach does not require special-purpose language extensions, can be
used in any implementation of type theory that supports quotient inductive
types, and retains important computational properties.

47

Interesting topics for further work include generalising our approach by
introducing equational properties between operations as path constructors
of the encoded subtype, generalising the equivalence between inductive-
recursive types and inductive families to their higher counterparts by ap-
plying the transformation used in our technique, and developing a wider
range of combinators for working with subtypes.

Furthermore, from the point of view of extensibility, it would be benefi-
cial to identify a sufficient condition on a collection of operations such that
the typical elimination principle for an encoded subtype can be recovered
simply by dependent pattern matching in the sense of Cockx et al. [2014].

48

Chapter 3

Quotient Haskell

In the previous chapter, we explored a specialised encoding for subtypes in
homotopy type theory. This particular flavor of subtype involved equipping
an underlying type with a proposition determining whether each term was
an element of the subtype. A similar notion of subtype is introduced in the
literature of refinement types, whereby a type is equipped with a decidable
predicate. Indeed, refinement types can be formalised in homotopy type
theory as subtypes whose subtyping condition is built from a decidable
expression language.

Refinement types [Freeman and Pfenning, 1991] are a class of subtypes
for which the subtyping predicate, or refinement, is SMT-decidable. Re-
stricting ourselves to this class of subtypes has an important practical ben-
efit: a type-checker that utilises an SMT-solver can automate many of
the proof obligations that arise from refinements. Indeed, this is a central
feature of Liquid Haskell [Vazou, 2016], an extension of Haskell with refine-
ment types. A simple example of a refinement type is the even integers,
expressed in Liquid Haskell by {n:Int | n % 2 == 0}. For any concrete
integer, and for each of the common arithmetic operations, Liquid Haskell
can check the evenness condition without requiring that we manually con-
struct a proof. Importantly, the equality operator used in the definition
of even numbers does not correspond to that of Haskell’s Eq typeclass. In
particular, when == appears in a subtyping predicate it corresponds to the
notion of equality in the refinement logic of Liquid Haskell.

Subtypes also have a well-known dual construction, quotient types, which
are given by a type together with a collection of equations. When con-
sidered in the framework of homotopy type theory, quotient types can

49

be understood as set-truncated higher-inductive types, as introduced in
Chapter 2. That is, quotient types are higher-inductive types whose proof
content may only be used in the construction of propositions. While few
languages currently support their use, there are many practical examples
of quotient types, including algebraic structures such as monoids, and data
structures such as bags. Intuitively, a subtype requires that we prove its
predicate is respected on construction, while a quotient type requires that
we prove that its equations are respected on elimination. In this man-
ner, both subtypes and quotient types introduce proof-obligations, which
in turn may require tedious manual proof construction in the absence of
sufficient automated proof search.

In contrast to subtypes, automated proof for quotient types is much
less explored. Indeed, the only languages with quotient types at present
seem to be proof assistants. However, quotient types share an important
practical utility with subtypes: they allow us to assert static properties
that we hope can be validated by a type-checker. For example, the type
of bags (multisets) can be expressed by quotienting the type of lists with a
quotient swap :: x:a -> y:a -> xs:[a] -> x:y:xs == y:x:xs. In partic-
ular, this quotient requires that for every function f :: Bag a -> b that
takes a bag as an argument, we must have f (x:y:xs) == f (y:x:xs), i.e.
the behaviour of f must be invariant under permutation of the elements.
In the absence of automated proof tools, this means supplying a manually
constructed proof of this equality. In practice, this can quickly become bur-
densome and is a significant barrier to the use of quotient types in general
programming.

In this chapter, we introduce Quotient Haskell, an extension of Liquid
Haskell that extends the notion of refinement types to support a class of
quotient types whose equational laws are SMT-decidable. In particular, our
system supports quotient inductive types [Altenkirch and Kaposi, 2016], a
class of quotient types that simultaneously define an inductive data type
alongside equational laws on its elements. The soundness of our class of
quotient inductive types requires that we consider only the total fragment
of Haskell. Therefore, we will assume throughout this chapter that Liquid
Haskell’s totality flag is enabled. This flag turns on totality, strict posi-
tivity and termination checking. As of version 0.9.10.1, Liquid Haskell’s
termination checker does not permit corecursive definitions and it is there-

50

fore not possible to soundly reason about coinductive types. Consequently,
both the core language and implementation that we present in this chapter
will only consider quotients of inductive types.

Related work is discussed in Section 3.10, and we reflect on the design,
practical use and limitations of the system in Section 2.5. We assume a
basic knowledge of Haskell, but to make this chapter more accessible we do
not require expertise with type theory, quotient types or Liquid Haskell.
While Haskell serves as the implementation vehicle in this chapter, the
ideas introduced by the core language are applicable to any programming
language with a liquid type system. The Quotient Haskell system itself is
freely available online as supplementary material [Hewer, 2023].

3.1 Mobiles

To describe the class of quotient types that we introduce in this chapter
and are implemented by Quotient Haskell, we present three increasingly
involved examples. The provided examples outline the necessary concepts
required to use Quotient Haskell. In this section, we explore the first of
these examples, mobiles, which are commutative trees in which subtrees
with the same parent can freely be swapped. For the purposes of this
example, we will consider binary trees, defined in Haskell as follows, but
the same idea also applies to rose trees and multiway trees:

data Tree a = Leaf | Bin a (Tree a) (Tree a)

In usual parlance, Leaf and Bin are the data constructors of the Tree type.
A quotient type extends the typical notion of an algebraic datatype with a
new kind of constructor, that we shall refer to as an equality constructor. In
the type-theory literature, equality constructors can also be referred to as
path constructors. However, while a data constructor introduces new terms
of a data type, an equality constructor introduces new equalities between
terms of a type. For example, in order to define mobiles we will require
an equality constructor that quotients Tree to assert the commutativity
condition. That is, we require an equality constructor of the following
form:

swap :: x:a -> l:Tree a -> r:Tree a -> Bin x l r == Bin x r l

In the above definition of swap we have made use of the dependent syntax

51

of Liquid Haskell. In particular, a type of the form x:a -> P whereby P is a
proposition can be understood as universal quantification over the elements
of a and can be read as ‘for all x of type a, P holds’. While the syntax used
for equality in the above definition is shared by Haskell’s Eq typeclass, it
instead refers to a type-level proposition and this syntax is inherited from
Liquid Haskell.

Note that the target of the swap constructor introduces an equality
between trees. In particular, swap asserts that two trees with swapped
children must be treated identically. Concretely, we can define the datatype
of binary mobiles in Quotient Haskell as follows:

data Mobile a

= Tree a

|/ swap :: x:a -> l:Mobile a -> r:Mobile a

-> Bin x l r == Bin x r l

As with any refinement in Liquid Haskell, this definition must be given
within a {−@ @−} block. However, for brevity we omit these additional
annotations throughout this chapter. As shown in the above example,
a quotient type in Quotient Haskell is defined with a similar syntax to
that of ADTs, with some notable differences. Firstly, an underlying type
must directly follow after the equality symbol. For example, in the above
definition of mobiles, the underlying type is Tree a. The underlying type
can be a Liquid Haskell refinement type or even another quotiented type.
After providing the underlying type, the equality constructors must follow,
each preceded by the / character. Any equality constructor defined in a
Liquid Haskell block, such as swap, is introduced as a term with the same
name within the namespace in which it is defined. Consequently, equality
constructors can be used in Liquid Haskell proofs. For example, swap can
be understood as a Liquid Haskell proof function of the following type:

x:a -> l:Mobile a -> r:Mobile a -> { Bin x l r == Bin x r l }

Importantly, the left-hand term of the equality target of an equality con-
structor must be in canonical form, i.e. the left-hand term must be a valid
match term. This is important in circumstances of induction-recursion,
whereby a function on an inductive type appears in any of its equality con-
structors. A formal account of this rule and an explanation for its existence
is given in Section 3.9. The right-hand term of the equality may vary freely,
as long as it has the correct type.

52

Note that quotient types in Quotient Haskell introduce a new type
constructor into the Liquid Haskell namespace. That is, a quotient type
definition can be read as defining a new type rather than simply giving a
refinement for an existing type. This is in contrast to the usual approach
of datatype refinement in Liquid Haskell, whereby type constructors refer
directly to their underlying GHC counterparts. We adopt this alternative
approach for the practical purpose of avoiding having to create a newtype
for every quotient type defined on an underlying type. To explain the
issue, let us consider how the usual Liquid Haskell approach to data type
refinement could be adopted for our Mobile example. In particular, this
approach would involve redefining Tree in a Liquid Haskell block, and then
appending the swap constructor. In keeping with the terminology used in
Liquid Haskell, we say that the type Tree has been refined to the type of
mobiles. Consequently, any function defined on the type Tree must be a
function on mobiles, i.e. must respect the swap constructor. As such, to
define multiple quotient types on the same underlying Tree type, such as
sets or bags, we would need require a distinct type definition for each.

Crucially, every binary tree is a binary mobile. As described in more
detail in Section 3.5, this imposes an ordering relation on types subject to
quotienting. A key practical concept of quotient types is that, unlike sub-
types, there are no proof obligations imposed by quotienting on term con-
struction. Rather, an equality constructor introduces proof obligations on
term elimination. Intuitively, subtyping imposes conditions when building
a term and quotienting imposes conditions when using a term. For exam-
ple, for the swap equality constructor this means that for any function of the
form f :: Mobile a -> b, we require that f (Bin x l r) = f (Bin x r l).
A function that does not respect this law is not a valid function on mo-
biles, and we should expect this to be verified by our type checker. Indeed,
this is precisely the verification that Quotient Haskell can be used for. For
example, the following function on trees cannot be refined to a function on
mobiles:

isLeft :: Tree Bool -> Bool

isLeft Leaf = False

isLeft (Bin p Leaf z) = p

isLeft (Bin p (Bin q x y) z) = q

Evidently, the function isLeft distinguishes between the left and right

53

subtrees when they do not contain the same logical value. In contrast,
an example of a function on trees that can be refined to a function on
mobiles is the following summation function:

sum :: Tree Int -> Int

sum Leaf = 0

sum (Bin n l r) = n + sum l + sum r

Because addition is commutative, we should expect that the sum function
can be refined over binary mobiles. That is, we should expect

sum :: Mobile Int -> Int

to be a valid typing judgement. The necessary proof obligation imposed
by the swap equality constructor is then given by

sum (Bin n l r) == sum (Bin n r l)

for all n :: Int, l :: Mobile Int and r :: Mobile Int. After unfold-
ing the definition of sum on both sides of the equality, we can observe
that the necessary proof follows from commutativity of addition. Indeed,
a constraint of this form can be solved by Liquid Haskell with no further
intervention.

A second example of a function on mobiles trees is that of the map

function. We recall that the typical definition for the map function on
binary trees is given as follows:

map :: (a -> b) -> Tree a -> Tree b

map f Leaf = Leaf

map f (Bin x l r) = Bin (f x) (map f l) (map f r)

We expect the type of map to refine to (a -> b) -> Mobile a -> Mobile b.
In this example, after unfolding definitions and eliding quantification, the
necessary condition that must hold is:

Bin (f x) (map f l) (map f r) == Bin (f x) (map f r) (map f l)

This equality is witnessed by the term swap (f x) (map f l) (map f r),
and our implementation of Quotient Haskell is capable of automatically
applying this single proof step.

By making use of Liquid Haskell’s refinement types, we can define the
general fold on mobiles. Recall that the general fold on binary trees is
given as follows:

54

fold :: (a -> b -> b -> b) -> b -> Tree a -> b

fold f z Leaf = z

fold f z (Bin x l r) = f x (fold f z l) (fold f z r)

We cannot naively refine fold by replacing Tree with Mobile, as in general
we do not have:

fold f z (Bin x l r) == fold f z (Bin x r l)

After unfolding definitions on both sides of the equality we can observe that
this condition only holds when the function f is symmetric in its second
and third arguments. More specifically, this means that we have a family
of equalities of the following form:

x:a -> l:b -> r:b -> f x l r = f x r l

In Liquid Haskell, we can define the type of such functions as follows:

type Fun a b

= (f : a -> b -> b -> b

, x:a -> l:b -> r:b -> { f x l r == f x r l }

)

Unfortunately, this approach to defining a subtype of the function space
is not particularly ergonomic, and requires explicitly carrying proof wit-
nesses. However, Liquid Haskell necessarily does not permit higher-order
propositions to inhabit the type of propositions Prop and as such, this is a
work-around. With this definition of Fun, we can define a general fold on
mobiles by

fold :: Fun a b -> b -> Mobile a -> b

fold (f, p) z Leaf = Leaf

fold (f, p) z (Bin x l r)

= f x (fold (f, p) z l) (fold (f, p) z r)

The witness that the swap constructor is respected by our new fold func-
tion follows from the second component of the pair. However, the version
of Quotient Haskell introduced by this chapter cannot implicitly make use
of the explicit proof term. As such, this definition will not type-check with-
out additional intervention. In particular, we must explicitly construct the
necessary witness that the above fold function respects the swap equal-
ity constructor. To achieve this in Quotient Haskell, we first define the
following unrefined proof:

55

foldSwap :: Fun a b -> b -> a -> Tree a -> Tree a -> Proof

foldSwap (f, p) z x l r

= p x (fold (f, p) z l) (fold (f, p) z r)

This is precisely the proof that fold respects the swap equality constructor.
Notably, the arguments of swap are expanded as arguments to foldSwap.
Any explicit proof that an equality constructor is respected must follow this
form in Quotient Haskell. The next step then is to introduce the following
refinement inside of a Liquid Haskell block:

respects<fold, swap> foldSwap

:: f:Fun a b -> z:b -> x:a -> l:Mobile a -> r:Mobile a

-> { fold f z (Bin x l r) == fold f z (Bin x r l) }

The function foldSwap will be checked in the same manner as any other Liq-
uid Haskell proof. In addition, by adding the prefix respects<fold, swap>,
Quotient Haskell will check whether foldSwap is a valid witness that fold

respects the swap constructor. A valid witness of a quotient being respected
is simply a function whose type precisely matches the relevant respectabil-
ity theorem. As our definition of foldSwap is both of the correct type and
a valid proof, it can be used as an explicit witness that fold respects the
swap equality constructor.

Notably, there are circumstances under which the constraints generated
for an equality constructor cannot be automatically verified by Quotient
Haskell. This particular limitation is inherited from Liquid Haskell which
only implements a limited form of inductive reasoning by means of its
proof by logical evaluation algorithm. Indeed, this use case is one of the
primary reasons that Liquid Haskell offers a mechanism for writing manual
proofs. As such, Quotient Haskell expands upon this framework to support
writing manual proofs for respectfulness theorems that cannot at present
be automatically verified. For many practical cases, such as the examples
provided through this chapter, this limitation does not arise.

As an example of using our general fold function for mobiles, we can
consider using it to redefine our previous sum function. To do this, we
first define a function add3 :: Int -> Int -> Int -> Int that adds three
integers, which can then be reflected to define the following proof witness:

add3Comm :: x:Int -> y:Int -> z:Int

-> { add3 x y z == add3 x z y }

add3Comm x y z = trivial *** QED

56

In Liquid Haskell, the triviality of the above proof follows from the triv-
iality of the commutativity of addition. Finally, we can simply define
sum = fold (add3, add3Comm) 0.

3.2 Boom hierarchy

In this section, we explore the family of datatypes comprising trees, lists,
bags and sets, which are collectively known as the Boom hierarchy [Meertens,
1986]. These examples will demonstrate how the ordering relation on quo-
tient types can be used to practical effect.

We begin this section with a notion of a tree data structure that varies
from that used in our mobiles example, in which data is only found in the
leaves:

data Tree a = Empty | Leaf a | Join (Tree a) (Tree a)

This notion of tree forms the basis for defining all the other types in the
Boom hierarchy. We begin this exploration with a less familiar definition
of the list datatype by means of quotienting:

data List a

= Tree a

|/ idl :: x:List a -> Join Empty x == x

|/ idr :: x:List a -> Join x Empty == x

|/ assoc :: x:List a -> y:List a -> z:List a

-> Join (Join x y) z == Join x (Join y z)

This definition captures the idea that lists can be obtained from trees by
requiring that the Join constructor is associative, and has Empty as the
identity element. Intuitively, this definition of a list can be seen as a direct
translation of the algebraic definition of a monoid structure on a given type.
Indeed, this is precisely why lists are the free monoid on the parameter type.

The above formulation of lists might seem rather complex when com-
pared to the standard version: data List a = Nil | Cons a (List a). The
benefit of the above quotiented formulation is that concatenation is given
simply by the constructor Join, and thus has asymptotic runtime com-
plexity of O(1). For example, when we are primarily building lists by their
monoid interface, such as when using the Writer monad, this can be a more
performant representation. Furthermore, using the monoid laws on [a] we
can give a well-typed unfolding toList :: List a -> [a] of tree-based lists

57

into standard lists, and this has runtime complexity of O(n). As such, it
can sometimes be more performant to use this tree representation of lists
when constructing them through repeated concatenation, and subsequently
apply toList when required.

Examples of functions on trees that can be refined to the quotiented
type List include:

sum :: Tree Int -> Int

map :: (a -> b) -> Tree a -> Tree b

filter :: (a -> Bool) -> Tree a -> Tree b

In contrast, an example of a function on the Tree datatype that cannot be
refined to a function on lists is the following inductive subtraction function:

subtr :: Tree Int -> Int

subtr Empty = 0

subtr (Leaf n) = n

subtr (Join x y) = subtr x - subtr y

In particular, subtr does not respect the associativity condition introduced
by the assoc equality constructor, because integer subtraction is not asso-
ciative.

The next datatype in the Boom hierarchy is multisets, also known as
bags, which can be used to count the number of occurrences of elements
from a collection. Bags can intuitively be thought of as lists for which the
order of the elements cannot be used, which means that the Join construc-
tor must be commutative. Consequently, while List characterises the free
monoid construction on the parameter type, our definition for Bag will char-
acterise the free commutative monoid construction. In Quotient Haskell,
we can define the Bag datatype as a quotient of List as follows:

data Bag a

= List a

|/ comm :: xs:Bag a -> ys:Bag a -> Join xs ys == Join ys xs

The definition of Bag is an example of further quotienting an already defined
quotient type. Indeed, this is precisely how the datatypes of the Boom
hierarchy can be understood to form a hierarchy. In Quotient Haskell, this
hierarchy is made explicit by a subtyping relation derived from the evident
ordering of quotient types, i.e. Tree a <: List a <: Bag a. Intuitively,
a <: b can be read as ‘every element of a is an element of b’. Furthermore,
by contravariance we also have

58

(Bag a -> b) <: (List a -> b) <: (Tree a -> b)

Importantly, this means that in Quotient Haskell it is only necessary to
refine a function to the greatest quotient type possible in a given hierarchy.
For example, if we were to refine the sum function on Tree to a function on
Bag a, then it would also be possible to apply sum to an element of type
List a.

Alongside sum, map and filter, another useful function on trees that
can be refined to a function on bags counts the number of elements that
satisfy a given property:

countIf :: (a -> Bool) -> Tree a -> Int

countIf p Empty = 0

countIf p (Leaf a) = if p a then 1 else 0

countIf p (Join x y) = countIf p x + countIf p y

In order to verify that countIf can be refined to a function on bags, it is
necessary to check that it respects both the comm equality constructor and
all of the equality constructors given in the definition of List. In particular,
these laws follow from the fact that integers form a commutative monoid
under addition, and can be automatically verified by Quotient Haskell.

An example of a function on trees that can be refined to a function on
lists but not on bags, is the following simple function that converts a tree
into a list:

toList :: Tree a -> [a]

toList Empty = []

toList (Leaf a) = [a]

toList (Join x y) = toList x ++ toList y

In this example, we eliminate trees into the non-commutative monoid of the
Haskell list type equipped with concatenation. Indeed, because the toList

function constructs lists using their monoidal interface, the laws introduced
by the equality constructors of List are evidently satisfied. However, con-
catenation is not commutative and hence toList cannot be refined to a
function on bags. Of course, we should not expect to be able to convert an
arbitrary bag into a list, as this would require a unique identification of an
ordering on its elements.

The final type in the Boom hierarchy is sets, unordered collections that
can only contain each element once. Sets can also be understood as bags

59

for which any repeated occurrences of elements are forgotten. In Quotient
Haskell, we can define the type of sets as follows:

data Set a

= Bag a

|/ idem :: xs:Set a -> Join xs xs == xs

In this definition, the idem equality constructor asserts that we cannot
distinguish between a set and that same set unioned with itself. Alongside
the comm equality constructor introduced in the definition of bags, this
guarantees that repeated occurrences of an element cannot be used to alter
the behaviour of a function on sets. Note that the term Join xs xs is not
a valid match term in Haskell because of the duplicated variable xs, and
therefore does not satisfy the necessary requirement for appearing on the
left-hand side of an equality constructor. However, this is indeed valid
syntax in Quotient Haskell, and is equivalent to the following formulation:

idem :: xs:Set a -> ys:Set a -> {xs == ys} -> Join xs ys == xs

However, the original and more concise formulation of idem is generally
preferable in practice, as it does not introduce the extra precondition
{xs == ys} to the type-checker.

A simple example of a function on trees that can be refined to a function
on sets determines if a given value is contained in a tree, and can be defined
as follows:

contains :: Eq a => a -> Tree a -> Bool

contains x Empty = False

contains x (Leaf y) = x == y

contains x (Join t u) = contains x t || contains x u

All of the necessary properties that are required to verify that contains

refines to a function on sets follows from the fact that Bool forms an idem-
potent commutative monoid under logical disjunction. For example, in
order to show that the comm equality constructor is satisfied we would re-
quire that contains x (Join xs xs) == contains x xs, which unfolds to:

contains x xs || contains x xs == contains x xs

This property is then trivially true because disjunction is idempotent. We
have already seen an example of a function on trees that can be refined to
a function on bags but not on sets, namely countIf, because the number
of occurrences of an element matters for this function.

60

3.3 Rational numbers

In this section we show how the rational numbers, a classic example of a
quotient type, can be captured in Quotient Haskell. The approach is quite
different from their typical representation in a language such as Haskell,
where a well-behaved interface is presented on an abstract type with a hid-
den data representation. In contrast, by defining the rationals as a quotient
type, their implementation details can be exposed without compromising
correctness. As discussed in this chapter, this increased flexibility comes
at the cost of extra proof obligations arising from quotient respectfulness
theorems. However, in Quotient Haskell such proof obligations are auto-
matically resolved by the type checker when operating within the SMT-
decidable logic of Liquid Haskell.

A well-known constructive definition of the rational numbers involves
quotienting pairs of integers representing the numerator and denominator,
with the proviso that the second element is non-zero to preclude division
by zero. We can define the type of non-zero integers in Liquid Haskell by
type NonZero = { n : Int | n /= 0 }. Using this type definition, we can
then proceed to define the rational numbers with the following quotient
type:

data Rational

= (Int, NonZero)

|/ eqR :: w:Int -> x:Int -> y:NonZero -> z:NonZero

-> {w * z == x * y} -> (w , y) == (x , z)

Note that the underlying type of Rational uses a refinement predicate,
n /= 0, to ensure that the second element of a pair of integers is non-zero.
More generally, Quotient Haskell allows any rank 1 liquid type to be used
as the underlying type in the definition of a quotient type. The above
definition uses the ‘cross multiplication’ approach to decide if two rationals
are equal, but this is not the only possible approach. For example, we
could use a greatest common divisor function gcd :: Int -> Int -> Int

to define the following equality constructor:

eqGCD :: x:Int -> y:NonZero ->

(x, y) == (x `div` gcd x y, y `div` gcd x y)

While the equality constructor eqR quantifies over four variables, eqGCD only
requires quantification over two variables. However, this alternative pre-

61

sentation of rational numbers requires that the definition of gcd be unfolded
when the type checker validates many proof obligations that arise for com-
mon applications of rational numbers. Moreover, eqGCD requires additional
work to validate its well-formedness. In particular, it must provably be the
case that if y /= 0 then y `div` gcd x y /= 0. In practice, this approach
is often less performant than simply quotienting by eqR, and can often re-
sult in constraints being generated that require an unreasonable amount
of time to be validated by an SMT solver. Indeed, as highlighted by the
example of rational numbers, performance can be an important considera-
tion in choosing a particular quotient representation. As such, we proceed
with our original presentation of the rationals.

As a first example of defining functions on rational numbers, we consider
a simple function that decides if a pair of integers represents a negative
rational:

isNegative :: (Int, Int) -> Bool

isNegative (m, n) = (m < 0 && n >= 1) || (m > 0 && n <= -1)

We can observe that isNegative is a valid function on rational numbers, and
should therefore expect that we can refine its type to Rational -> Bool.
A simple but important observation in Liquid Haskell is that subtyping
constraints can always be added to function inputs. The dual observation
in Quotient Haskell is that outputs of functions can always be quotiented.
Both observations follow from the subtyping rules of the type system. In
this particular case, isNegative can trivially be refined to a function of type
(Int, NonZero) -> Bool, and the type checker of Quotient Haskell need
only consider whether it respects the eqR equality constructor. Concretely,
the type checker will automatically verify that given variables w:Int, x:Int,
y:NonZero and z:NonZero along with a precondition w * z == x * y the
following unfolded condition holds:

((w < 0 && y >= 1) || (w > 0 && y <= -1))

== ((x < 0 && z >= 1) || (x > 0 && z <= -1))

Included in the large collection of functions that can be defined on the ra-
tional numbers are the standard arithmetic operations. Notably, for oper-
ations that rationals are closed under, such as addition and multiplication,
it is not necessary to simplify the pair of integers to satisfy the eqR equal-
ity constructor. As demonstrated in previous examples, Quotient Haskell

62

can make use of equality constructors such as eqR when eliminating into
a quotient type. However, this is not the case if we were to instead at-
tempt to extract the numerator and denominator from a rational number.
For example, the following projection cannot be refined to a function on
rationals:

numerator :: (Int, Int) -> Int

numerator (m, _) = m

In particular, it is not the case that if w * z == x * y then w == x, and
attempting to refine numerator to the type Rational -> Int will yield a
type error in Quotient Haskell. Instead, we consider refining the type of
the following function, which reduces a rational number to its simplest
form:

reduce :: (Int, Int) -> (Int, Int)

reduce (m, n)

| m == 0 = (0, 1)

| m < 0 = (-m `div` d, -n `div` d)

| otherwise = (m `div` d, n `div` d)

where d = gcd m n

At first glance, it is natural to ask why the reduce function negates both
elements of the pair when the first element is negative. In particular, it is
not immediately evident why -1 / 2 should be considered anymore reduced
than 1 / -2. Indeed, if we were to change the condition m < 0 to n < 0 the
definition of reduce would remain equally valid. However, we cannot omit
this line altogether, and it is required in order to refine the type of reduce
to Rational -> (Int, Int).

The above behaviour is not a bug in Quotient Haskell’s type checker,
but is essential to the correctness of the reduce function. In particular, the
respectfulness theorem resulting from the eqR equality constructor ensures
that we cannot distinguish between rational numbers such as -1 / 2 and
1 / -2, and hence we must choose a uniform way to reduce such terms.
That is, we must choose a uniform way to handle the sign of the rational
number. The approach used in the above definition of reduce is to always
move the sign to the denominator, however it is equally valid to instead
always move the sign to the numerator. There are other possible ways to
define a reduce function that uniformly handles the sign of a rational num-
ber, such as by constructing a triple (Bool, Nat, Nat) in which a Boolean

63

is used to represent the sign.
In addition to the uniform handling of sign, it is crucial that the gcd

function used in the definition of reduce has the property that if the prop-
erty w * z == x * y holds then the following two propositions hold:

abs w `div` gcd w y == abs x `div` gcd x z

abs y `div` gcd w y == abs z `div` gcd x z

This is evidently the case for any correct implementation of greatest com-
mon divisor. However, Liquid Haskell does not currently reflect the stan-
dard library function gcd in its type system. In practice, this means that
gcd needs to be redefined. Many of the standard approaches to such a
definition, such as Euclid’s algorithm or recursively applying the modu-
lus function, verifiably exhibit the necessary property when proof by log-
ical evaluation (PLE) is enabled in Liquid Haskell. In Quotient Haskell,
PLE is enabled by default. Importantly, the described property of the
gcd function, along with the η-rule for the product type, are precisely the
equations used by Quotient Haskell to verify that reduce can indeed be
refined to reduce :: Rational -> (Int, Int). Moreover, we can choose to
further refine the type to reduce :: Rational -> (Int, NonZero), whereby
the second component result can verifiably be shown to always be non-zero.
Using this definition of reduce, we can compose with the projections fst

and snd and to obtain the functions numerator :: Rational -> Int and
denominator :: Rational -> NonZero, respectively.

3.4 Quotient inductive types

As described in earlier sections of this chapter, Quotient Haskell implements
a class of quotient types known as quotient inductive types. Moreover,
Quotient Haskell adopts the unique approach of allowing a user to define
a quotient inductive type by simply extending a previously defined base
type with equality constructors. A key benefit to this approach is that
in conjunction with the implicit subtyping rules for quotient types, this
permits functions that are defined on a quotient type to be reused on any
type further down in the quotient hierarchy. For example, any function on
sets as defined through the Boom hierarchy can also be applied to bags, lists
and trees. In this section, we provide a general overview of how Quotient
Haskell supports quotient inductive types.

64

In order to describe the key idea behind Quotient Haskell’s support
for quotient inductive types, we will consider the example of mobiles that
were first presented in Section 3.1. We recall that mobiles are defined by
extending the following type of binary trees

data Tree a = Leaf | Bin a (Tree a) (Tree a)

in the following manner

data Mobile a

= Tree a

|/ swap :: x:a -> l:Mobile a -> r:Mobile a

-> Bin x l r == Bin x r l

However, this definition of Mobile raises a key issue, namely that the swap

equality is seemingly ill-typed as a consequence of applying Bin to mobiles
rather than trees. Indeed, without any change to the typing rules for data
constructors, this would not be a valid definition.

Unfortunately, in order to correctly define the type of mobiles it is
not sufficient to simply quantify the swap equality constructor over trees
rather than mobiles. In particular, if we were to adopt this approach there
would be no way to inductively apply swap within the structure of a mo-
bile. Moreover, without adapting the typing rules for data constructors, we
would be unable to apply the Bin data constructor to build a mobile from
two submobiles. These issues arise as a consequence of Mobile necessarily
being a quotient inductive type, whereby its equality constructor should be
mutually defined alongside its data constructors.

Quotient Haskell adds support for quotient inductive types by introduc-
ing new typing rules for data constructors that allow them to be applied
to quotient types. In particular, when the underlying type of a quotient
type A is of the form T τ1 ... τn where T is a type constructor, new typing
rules for the data constructors of T are introduced such that they may be
applied to elements of A. More specifically, we:

1. Find each strictly positive occurrence of T in each of its respective
data constructors;

2. Check whether each occurrence of T is applied to type arguments
γ1 ... γn such that for all i, τi unifies with γi with substitution σi;

65

3. If there is a unifying substitution, we replace the type application
of T with the quotient type A and apply the unifying substitutions
σ1, ... σn to each type argument of A.

To understand this approach, we will consider how it applies to the example
of mobiles. We begin by confirming that the underlying type of Mobile a is
given by the application of a type constructor Tree to an argument a, and
as such the preliminary condition is satisfied. Consequently, we proceed
with the first step whereby we find each strictly positive occurrence of
Tree in the data constructors Leaf and Bin. The Leaf constructor has
only one such occurrence, namely its output type. Meanwhile, the Bin

constructor has three such occurrences that include the types for both its
left and right subtrees as well as its output type. In the second step, we
filter out any occurrences of Tree that are not applied to a type argument
that unifies with a, of which there are none. Finally, we apply the trivial
unifying substitution to a and replace each suitable application of Tree

with Mobile a to produce the following two additional typing rules:

⊢ Leaf : forall a. Mobile a,

⊢ Bin : forall a. a -> Mobile a -> Mobile a -> Mobile a.

In order to support multiple typing rules for a single data constructor,
it is necessary that we are able to manage and resolve ambiguity in the
type system. For example, we should be able to apply Bin 0 to either
a mobile or a tree, but given a term t : Mobile a we should only be
able to apply Bin 0 t to a second mobile. Quotient Haskell achieves this
by internally maintaining all possible types for a data constructor and
simply adapting the application rule for data constructors to resolve their
type when possible. Moreover, in cases of ambiguity such as typing an
expression \n -> Bin (n + 1), Quotient Haskell will use the default type
of the data constructor, i.e. \n -> Bin (n + 1) will be inferred to have
type forall a. Num a => Tree a -> Tree a -> Tree a.

3.5 Core language

In this section we present a core language λQ, which is a variant of the
lambda calculus with patterns [Klop et al., 2008], and a Hindley-Milner

66

type system extended with liquid and quotient types. We introduce λQ to
give a precise account of how Quotient Haskell extends the type system of
Liquid Haskell. In particular, λQ is formulated as a conservative extension
to a generic underlying liquid type system. In this way, Quotient Haskell
can be understood as an implementation of λQ for which the underlying
refinement type system is Liquid Haskell, while λQ can be understood as
an extension of λL, which was introduced to capture liquid types [Rondon
et al., 2008].

The crucial features that λQ introduces to an existing liquid type system
are quotients and their typing rules. Moreover, constructors and pattern
matching by means of λ-case functions are included as the mechanism by
which quotients can be used. Extending a Hindley-Milner type system
with constructors and pattern matching is straightforward, so we do not
discuss the details here. Furthermore, we only introduce the syntax and
typing rules of λQ that are either novel, or important for understanding key
ideas. The full collection of typing rules for λQ are presented in Section 3.8
alongside the subtyping and equality rules.

A type environment Γ for λQ is a sequence of type bindings x : τ , guard
predicates ϕ, and typed quotients Q :: τ . The notation Q :: τ should be
read as ‘Q is a well-formed quotient on the underlying type τ ’. Quotients
that appear in a type environment alter the notion of equality between
terms of the underlying type, and this context-sensitive notion of equal-
ity is described in Section 3.7. Notably, as with the core language λL, a
complete account of the typing rules for λQ requires that we also allow
guard predicates to inhabit an environment. Intuitively, guard predicates
are propositions in the refinement logic that correspond to assumptions
that hold true within the branches of conditionals. That is, guard predi-
cates appear in a type environment to represent the known truth values of
conditionals while checking the branches of an if-expression.

In addition to guard predicates, λQ inherits the notion of a qualifier
set from λL. A qualifier set consists of all well-formed Boolean expressions
that can be constructed from the environment variables. In an environment
with a qualifier set Q, a well-formed refinement predicate is a conjunction
over any subset of Q. We write Γ ⊢Q x : τ to mean that x has a liquid type
τ in the environment Γ with qualifier set Q, and Γ |= τ to mean that the
type τ is well-formed in Γ. Moreover, for refinement predicates we write

67

Γ ⊢Q ϕ to mean that ϕ is well-formed in Γ with qualifier set Q and Γ |= ϕ

to mean that the refinement predicate ϕ is well-formed and provable in Γ.
Finally, we write Γ ⊢Q Q :: σ to mean that the quotient Q is defined on an
underlying type σ in context Γ with qualifier set Q. The details of liquid
typing can be found in the original work on λL [Rondon et al., 2008].

A quotient in λQ is represented by a sequence of quantified variables
followed by a triple of a refinement predicate ϕ, a pattern p, and a term e.
This quantified triple is written as

forall v1 :: τ1 in · · · forall vk :: τk in ϕ⇒ p == e

and we can think of this as an equality constructor in which vi are variables,
ϕ is the quotient precondition, p is the left-hand side of the target equality,
and q is the right-hand side. This is characterised by the two following
introduction rules:

Γ |= σ Γ, v : τ ⊢Q Q :: σ

Γ ⊢Q forall v : τ in Q :: σ

Γ ⊢Q ϕ Γ ⊢Q p : σ Γ ⊢Q e : σ

Γ ⊢Q ϕ⇒ p == e :: σ

Note that the first of these typing rules implicitly makes use of the weak-
ening rule in the type system of λQ. In particular, the judgement Γ, v :

τ ⊢Q Q :: σ assumes that Γ, v : τ |= σ, which requires weakening of the
premise Γ |= σ. The necessity of the weakening rule is a consequence of the
underlying type not being allowed to depend on the terms over which the
quotient varies. That is, λQ does not permit quotient inductive families.
Furthermore, λQ adds the following three weakening rules:

Γ ⊢Q t : τ Γ ⊢Q Q :: σ

Γ, t : τ ⊢Q Q :: σ

Γ ⊢Q ϕ Γ ⊢Q Q :: σ

Γ, ϕ ⊢Q Q :: σ

Γ ⊢Q Q1 :: σ1 Γ ⊢Q Q2 :: σ2

Γ, Q1 :: σ1 ⊢Q Q2 :: σ2

Intuitively, these rules simply assert that every well-typed quotient in a
context Γ remains well-typed in any extension of Γ.

68

Refinements in a refinement type system may depend on terms and
hence come equipped with a notion of substitution in types. In λQ, the
substitution operation is extended over quotient types by first defining
substitution in quotients. In particular, for every substitution σ, i.e. a finite
map from variables to terms v1 7→ e1; · · · ; vk 7→ ek, we define substitution
for quotients as follows:

(forall v : τ in Q)[σ] := (forall w : τ in Q[v 7→ w][σ]) w not free in σ

(ϕ⇒ p == e)[σ] := ϕ[σ] ⇒ p[σ] == e[σ]

That is, we construct Q[σ] in a standard way by avoiding the capture of
bound variables and by applying σ to both the precondition and equality
terms that constitute Q. This definition of substitution for quotients can
in turn be used to define substitution in quotient types by simply applying
a given substitution to both the underlying type and the quotient.

For every type τ and every quotient Q :: τ , we can form a new type
that represents the quotient of τ by Q and is denoted τ / Q. This type
formation or well-formedness rule is given as follows:

Γ |= τ Γ ⊢Q Q :: τ

Γ |= τ / Q

An important property of quotient types is that every term that inhabits
an underlying type τ must also inhabit τ / Q. This simple property is
captured by the following introduction rule:

Γ ⊢Q x : τ Γ ⊢Q Q :: τ

Γ ⊢Q x : τ / Q

Note that the above rule introduces an implicit type conversion from τ to
τ / Q, and hence this can lead to ambiguity in the meaning of expressions
in the refinement logic. For example, the proposition that two terms x, y : τ

are equal can be expressed as x == y, however this may not be logically
equivalent to the same expression where x and y are instead considered
to be elements of τ / Q. In particular, it is possible that the quotient Q
may equate previously distinct elements. As such, we will write x ≡σ y

for a given type σ to denote an equality proposition in the refinement logic
between the two terms x, y when considered as elements of σ, or simply

69

x ≡ y if the quotient is clear from the context. This extended notion of
equality is discussed in more detail in Section 3.7.

We note that together with the introduction rules for quotients, the
introduction rule for quotient types allows us to apply a sequence of quo-
tients. That is, any valid quotient Q on an underlying type τ is also a valid
quotient on the type τ / P for any quotient P . It is essential that any se-
quence of quotients of a type must be both idempotent and invariant under
reordering, i.e. multiple quotients of an underlying type must be considered
together as a set. We can give a formal characterisation of these two rules,
which we term the ‘idempotent’ and ‘permutation’ rule, as follows:

Γ ⊢Q x : τ / P / P

Γ ⊢Q x : τ / P

Γ ⊢Q x : τ / Pσ(1) / · · · / Pσ(n) σ is a permutation n ≃ n

Γ ⊢Q x : τ / P1 / · · · / Pn

Alternatively, we could have used sets directly in the syntactic construction
rule for quotient types in λQ. This alternative approach would allow us to
replace the two rules above with a single typing rule corresponding to the
union of sets. However, this would in turn complicate the λ-case formation
rule for quotient types that we introduce later in this section. Consequently,
we continue with the above approach in our presentation of the typing rules
of λQ. We note that while a naive implementation approach of this rule
such as exhaustively checking every permutation of n quotients is n!, in
practice the number of quotients used is typically very small.

Another essential property of quotient types is a generalisation of the
λ-formation rule. In particular, we expect that any function defined on
a quotient type that does not match on its input is always well-typed.
Concretely, this generalised λ-formation rule can be expressed as follows:

Γ, x : τ / Q ⊢Q e : σ Γ ⊢Q Q :: τ

Γ ⊢Q λx.e : (v : τ / Q) → σ

In order to give the typing rule for functions that match on their inputs,
we will first require a formal notion as to what it means for a particular
‘case’ of a matching function to respect a quotient. To do this, we will

70

define a context-sensitive binary relation Γ |= •⇝ • whose first element is
a finite sequence of pairs of patterns and terms and whose second element
is a quotient. We write elements of this relation in the form

λ {p1 → e1; · · · ; pk → ek}⇝ Q,

or simply λ {p → e} ⇝ Q. This relation will characterise precisely when
a particular λ-case term respects a given quotient. In order to define this
relation, we first introduce a number of auxiliary definitions.

First of all, we make use of unification or matching of patterns. This
is a well-known concept for lambda calculus with patterns, and we do not
reintroduce this idea here. We write x ∼σ y to denote that the terms x and
y can be unified, with the most general unifier given by the substitution σ.
The property that σ is the most general unifier is crucial to the correctness
of the core language and is necessary for the proof of Proposition 3, which
requires uniqueness of the most general unifier. With this in mind, we
continue with an inductive definition of the context-sensitive relation Γ |=
λ { p → e } ⇝ Q. We begin with the more involved base case, given by
the following rule:

Γ ⊢Q ρ : τ Γ ⊢Q p1, . . . , pk : τ Γ ⊢Q e1, . . . , ek : υ

Γ ⊢Q ρ ∼σ pk ∀ i j σ′. pi ∼σ′ pj ⇒ i = j

Γ, ϕ[σ] |= ek[σ] ≡υ λ {p1 → e1; . . . ; pk → ek} t[σ]

Γ |= λ { p→ e }⇝ (ϕ⇒ ρ == t)

Importantly, this rule makes use of the extended notion of equality in λQ

described earlier in this section. The condition ∀i j σ′. pi ∼σ′ pj ⇒ i = j

asserts that each pattern must be distinct up to unification. By imposing
this condition we ensure there is no overlap between different branches of
a λ-case, and as such there can be at most one pi that unifies with the left-
hand side of the quotient’s equality target. Intuitively, the above rule can
be understood as first identifying a pattern pi from a sequence p that unifies
with the left-hand side of the equality target of a quotient. After applying
the unifying substitution, this rule checks in the refinement logic whether
the precondition of the quotient implies the corresponding expression ei

from a sequence e is equal to the right-hand side of the equality target
applied to the lambda-case function. If the outlined condition is met, then

71

the relation holds between the given sequences p, e and the considered
quotient.

We next consider the inductive case, which simply extends the envi-
ronment with a quantified variable and is characterised by the following
rule:

Γ, v : τ |= λ { p→ e }⇝ Q

Γ |= λ { p→ e }⇝ (forall v : τ in Q)

The above definitions allow us to proceed with a formal characterisation
of the λ-case formation rule for quotient types. In particular, this rule is
given as follows:

Γ |= (x : τ / Q) → σ Γ |= λ { p→ e }⇝ Q

p1, . . . , pk is a complete case analysis of τ

Γ ⊢Q λ { p1 → e1; . . .; pk → ek } : (x : τ / Q) → σ

Note that we impose that any sequence of patterns used to construct a λ-
case term must form a complete case analysis of the underlying type. The
formal description of this idea is well understood for a type theory with
algebraic data types, and we do not reintroduce it here. In the absence
of this condition, the partiality of λ-case functions can be used to contra-
dict the necessary correctness result for quotients. The λ-case formation
rule is the crucial component of the typing rules for λQ and ensures that
the equality constructors of quotient types are respected by functions that
match on their input. Importantly, when only the total functions of λQ are
considered it must always be the case that there exists a pattern pi that
unifies with the left-hand target of a quotient Q.

To conclude our introduction of the typing system of λQ, we formulate
and prove a correctness result for quotients. Notably, soundness of quo-
tient type checking follows directly from the soundness of the underlying
refinement type system and the assumption that a liquid type judgement
Γ ⊢Q e : τ implies Γ ⊢ e : τ . In particular, the proof of soundness for
quotient type checking follows in the same manner as described for λL by
Rondon et al. [2008]. The correctness result for quotient type checking
states that from the typing rules for λQ, we can conclude that function
congruence correctly extends over quotients. Indeed, this is the essential

72

and defining property of quotient types. In order to state this correct-
ness result, we begin by defining precisely what it means for an arbitrary
function on a quotient type to respect the relevant quotient.

Definition. Given an environment Γ and a function Γ ⊢Q f : (x : τ) →
σ, we write Γ |= f ∗ Q to denote that f respects the quotient Q in the
environment Γ, which is inductively defined by:

Γ, v : τ |= f ∗Q

Γ |= f ∗ (forall v : τ in Q)

Γ ⊢Q p : τ Γ ⊢Q e : τ Γ, ϕ |= f p ≡σ f e

Γ |= f ∗ (ϕ⇒ p == e)

The above definition directly corresponds to the functorial action of a func-
tion on an equality that is constructed by means of a quotient. An impor-
tant property of the proposition Γ |= f ∗ Q is invariance with respect to
context extension by a binding, which is captured as follows.

Proposition 1. Given Γ |= f ∗ Q and Γ ⊢Q e : τ then we can conclude
Γ, e : τ |= f ∗ Q. This can be understood as a weakening rule for the
property that every function must respect the quotients of its inputs. The
proof follows by induction on the quotient Q:

• For Q = forall v : γ in P , by the inductive hypothesis we can weaken
Γ, v : γ |= f ∗ P to obtain Γ, v : γ, e : τ |= f ∗ P as required;

• For Q = ϕ ⇒ p == h, we apply the standard weakening rule for
typing judgements to both Γ ⊢Q p : τ and Γ ⊢Q h : τ to extend their
context with e : τ , and similarly apply the weakening rule for equality
judgements in λQ to Γ, ϕ |= f p ≡σ f h.

An important property of the typing system of λQ and a key component
in the proof of our correctness theorem is preservation of equality under
quotient rewriting. That is, when a quotient ϕ ⇒ p == e appears in a
context Γ then given any expression in Γ the two expressions that can be
constructed by substituting a free variable for either p or e should be con-
sidered equal by the type system of λQ. We formally express this property
in the following proposition.

73

Proposition 2. Given a typing judgement Γ, v : τ / (ϕ⇒ p == h) ⊢Q e :

σ, we can conclude Γ; (ϕ ⇒ p == h) :: τ |= e[v 7→ p] ≡σ e[v 7→ h]. The
proof follows by induction on the expression e, for which the interesting
cases proceeds as follows:

• For e = x, if x = v then x must have type τ / (ϕ⇒ p == h) and we
can conclude p ≡ h from the equality checking rules of λQ;

• For e = λ {p1 → e1; . . . ; pk → ek}, for each pi where v appears freely,
applying either [v 7→ p] or [v 7→ h] to e does not change ei and the
equality trivially holds, otherwise we continue our induction on ei in
the appropriately extended context to obtain ei[v 7→ p] ≡σ ei[v 7→ h]

and finally we aggregate the resulting equalities in the obvious manner
to obtain an equality between lambda-case functions.

In advance of stating our correctness result for quotients in λQ, we first
provide a proof of a contextual version. In particular, in Proposition 3 we
assume that we are working within a context Γ whereby all functions in
Γ that are defined on quotient types respect the relevant quotient. From
this assumption, we can prove that any other well-typed function on quo-
tient types that can be constructed from this context will also respect its
quotients.

Proposition 3. Given an environment Γ such that all functions in Γ

respect the relevant quotient, i.e. every g : (x : α / P) → β ∈ Γ satisfies
Γ |= g ∗ P , it follows that every constructible function Γ ⊢Q f : (x :

τ / Q) → τ ′ has the property Γ |= f ∗ Q. The proof follows by induction
on Q and f :

• For Q = forall v : γ in R, we first apply weakening (Proposition 1) to
our initial assumption to conclude that every g : (x : α / P) → β ∈ Γ

has the property Γ, v : γ |= g∗P , then we continue our induction with
this new assumption alongside the extended environment Γ, v : γ and
the weakened term Γ, v : γ ⊢Q f : (x : τ / R) → τ ′;

• For Q = ϕ⇒ p == h, we consider each case for f :

74

• For f = x and f = c, the result follows from the initial assump-
tion;

• For f = λx.e, after unfolding definitions it suffices to show that
Γ, ϕ |= e[x 7→ p] ≡τ ′ e[x 7→ h] which follows directly from Propo-
sition 2;

• For f = λ {p1 → e1; . . . ; pk → ek}, by the condition that a
well-typed λ-case must perform a complete case analysis, there
must exist precisely one pi such that pi ∼σ p and it consequently
suffices to show that Γ, ϕ |= ei[σ] == λ {p1 → e1; . . . ; pk →
ek} h[σ] and since σ is the most general unifier, this follows from
the typing rule for λ-case functions.

Finally, we can now conclude our introduction of the core language λQ

with the key correctness result for quotient types, which is captured by the
following theorem.

Theorem 1 (Correctness of quotienting). Every closed function in λQ of
the form f : (x : τ / Q) → σ respects the relevant quotient Q, i.e. ∅ |= f∗Q.
That is, function congruence correctly extends over quotients. The proof
is given simply by specialising Γ to the empty context in Proposition 3.

3.6 Subtyping

Quotient types in the core language λQ come equipped with an ordering
relation that we use to extend our type system with subtyping rules. In
practice, these subtyping rules provide us with a framework for deciding
when it is sound to substitute one quotiented type for another. As such,
the subtyping rules for quotient types improve the reusability of code by
allowing functions on quotient types to be applied to more ‘weakly’ quo-
tiented types subject to the ordering relation. For example, a valid function
on the propositional truncation of a type, i.e. the quotient which relates all
terms, must also respect any other quotient on the same underlying type.
In this section, we introduce the subtyping rules for quotient types in λQ.

The first of the λQ subtyping rules is for quotient generalisation, and
asserts that any quotient type is a supertype of its underlying type. For

75

example, the type of lists can be understood as a subtype of bags, or bags
as a subtype of sets. This rule is formally expressed as follows:

Γ ⊢Q Q :: τ

Γ ⊢Q τ <: τ / Q

We write τ <: σ above to denote that τ is a subtype of σ. When considered
alongside the λQ typing rule for subtypes, this rule is equivalent to the
introduction form for quotient types.

To introduce the next subtyping rule for quotient types, we first present
an ordering relation on quotients such that P <: Q means that P is a
subquotient of Q, defined using four rules. The first rule specifies when the
precondition and equality of a quotient are subsumed by another. For this
rule, we make use of a join-semilattice on patterns, whereby p ⊆σ q iff the
pattern p is subsumed by q with substitution σ. Consequently, when p ⊆σ q

we have a definitional equality q[σ] = p. For example, given a constructor
S : τ → τ and variables v : τ , the term S (S v) is subsumed by S v with
substitution [v 7→ S v]. We write Γ |= p ⊆σ q to denote that p is subsumed
by q in context Γ, and introduce the following subquotient rule:

Γ ⊢Q p, q, e, f : τ Γ |= p ⊆σ q Γ, ϕ |= ψ[σ] Γ, ϕ |= e ≡τ f [σ]

Γ |= (ϕ⇒ p == e) <: (ψ ⇒ q == f)

In this definition, ≡τ is an extended notion of equality between terms of
type τ that can make use of substitutions presented by quotients, which
we will define in Section 3.7. Intuitively, the above rule states that if one
quotient is implied by another in the refinement logic, then the former is
a subquotient of the latter. For example, given a constructor S : τ → τ

and variables u, v : τ , we can conclude (true ⇒ S (S (S v)) == S v) <:

(true ⇒ S (S u) == u) using the substitution [u 7→ S v].
When two quotients quantify over a variable of the same type, the

ordering relation is defined by the following rule, which simply extends the
context by the quantified variables and checks whether the remaining body
of one quotient is a subquotient of the other:

Γ, v : τ, u : τ ⊢Q P <: Q

Γ ⊢Q (forall v : τ in P) <: (forall u : τ in Q)

76

In contrast, when two quotients are quantified over types that are not
definitionally equal, it is possible that one is a subquotient of the other, by
means of the following permutation rule:

Γ, v1 : τ1, . . . , vn : τn ⊢Q P <: Q Γ |= ∀ i. τi ̸= τσ(i)

σ is a permutation on n

Γ ⊢Q (forall v1 : τ1 in . . . forall vn : τn in P) <:

(forall vσ(1) : τσ(1) in . . . forall vσ(n) : τσ(n) in Q)

In this rule, Γ |= ∀ i. τi ̸= τσ(i) means that when τ is reordered under
the permutation σ, the type in position i is not definitionally equal to the
old type in the same position. This condition ensures that the rule does
not overlap with the prior rule for quotients that quantify over the same
type. That is, by imposing this constraint, we can translate these rules
to well-founded induction on two quotients. Understood in this manner,
an implementation of the above rule involves constructing two sequences
of types τ1, . . . , τn and ρ1, . . . , ρn, whereby we continue until there are no
more quantifiers or we find τn+1 = ρn+1, and finally we check if ρ is a
permutation of τ .

The final case we consider is when a subquotient quantifies over a vari-
able and the superceding quotient does not. In particular, we introduce
the following ordering rule for quotients:

Γ |= τ Γ, v : τ ⊢Q P <: (ϕ⇒ p == e) v not free in ϕ, p or e

Γ ⊢Q (forall v : τ in P) <: (ϕ⇒ p == e)

In particular, this rule holds because every quotient in λQ specifies a propo-
sition. That is, we should consider forall v : τ in P to be analogous to
∀ (v : τ). P , rather than the dependent function type Π (v : τ) P . If we
were instead to consider a calculus for higher quotients, this subquotient
rule would not be correct. It is important that the quantified variable is not
free in each term of the superceding quotient, otherwise context extension
may change its meaning.

From the definition of our ordering relation on quotients, we can extend
our subtyping rules for quotient types in the language λQ with the following
rule:

77

Γ ⊢Q P <: Q

Γ ⊢Q τ / P <: τ / Q

That is, a subquotienting relationship can be lifted directly to a subtyping
relationship. Combining this rule with the subtyping rule for functions
yields the following important typing derivation:

Γ ⊢Q f : (τ / Q) → τ ′ Γ ⊢Q P <: Q

Γ ⊢Q f : (τ / P) → τ ′

That is, if we know that P is a subquotient of Q and that a function
f respects Q, then it must also respect P . We can similarly derive a
typing rule that allows us to apply any function on a quotient type to a
term of the underlying type. For practical purposes, such as in Quotient
Haskell, this means that only the most restrictive quotient is needed in the
type definition of a function, which can subsequently be applied to terms
inhabiting any subquotients.

Finally, the subquotient relationship can be shown to satisfy a correct-
ness theorem that states that if a function respects a quotient Q it must
also respect any subquotient of Q. In order to prove this correctness rule
for the subquotienting relationship, we make use of Proposition 4, which is
presented in Section 3.7. In particular, an equality x ≡ y is invariant with
respect to substitution. We can then proceed with our correctness theorem
for the subtyping rules of λQ.

Theorem 2 (Correctness of subquotienting). Given a function Γ ⊢Q f :

(x : τ) → τ ′ and quotients Γ |= P,Q :: τ such that Γ ⊢Q P <: Q, then
if Γ |= f ∗ Q it follows that Γ |= f ∗ P . The proof is by induction on the
subquotienting relation, for which the interesting case proceeds as follows:

• For ϕ ⇒ p == e <: ψ ⇒ q == r, unfolding the definitions for the
judgement Γ |= f ∗Q and the subquotient P <: Q yields the following
four assumptions:

(1) Γ, ψ |= f q ≡τ ′ f r (2) p ⊆σ q

(3) Γ, ϕ |= e ≡τ r (4) Γ, ϕ |= ψ[σ]

78

As stated in Proposition 4, a key property of equality is invariance
with respect to term substitution, and consequently by function con-
gruence and assumption (1) we can conclude Γ, ψ[σ] |= f q[σ] ≡τ ′

f r[σ]. From assumption (2) it follows that p := q[σ], and by func-
tion congruence and transitivity of equality we can conclude Γ, ψ[σ] |=
f p ≡τ ′ f r[σ]. We proceed by applying function congruence and sym-
metry of equality to (3) to show that Γ, ψ[σ] |= f r[σ] ≡τ f e. Finally,
by transitivity of equality and by generalising the guard predicate
through (4), we can conclude Γ, ϕ |= f p ≡τ ′ f e, as required.

3.7 Equality

Quotients that appear in a typing context introduce a substitution rule that
can be used for deciding the equality of terms during type-checking. This
rule changes the notion of equality between terms, and we write x ==τ y to
represent an equality between terms of type τ in the underlying refinement
type system, and x ≡τ y to represent the extended notion of equality in
λQ that can make use of substitutions presented by quotients. The precise
definition of equality in the underlying refinement type system can vary,
but it remains crucial that it is an equivalence relation. Furthermore,
we assume several additional rules hold in the underlying refinement type
system:

• (Function congruence) For every closed function ∅ |= f : (x : τ) → τ ′,
if we have an equality Γ |= x ==τ y then we must also have an
equality Γ |= f x ==τ ′ f y;

• (Equality substitution) For every term Γ ⊢Q e : τ , every equality
Γ |= x ==τ ′ y and every variable v, it must hold that Γ |= e[v 7→
x] ==τ e[v 7→ y];

• (Substitution invariance) For every equality Γ |= x ==τ y and sub-
stitution σ, the equality must also hold under the substitution, i.e.
Γ |= x[σ] ==τ y[σ].

Crucially, while x ==τ y is a proposition in the refinement logic, x ≡τ y

is a judgement in the type system. Consequently, in λQ the definition of

79

Γ |= ϕ differs from the underlying liquid type system. In particular, any
equality x ==τ y that appears in the logical proposition ϕ is lifted to the
extended notion of equality x ≡τ y. For example, we check the judgement
Γ |= x == y ⇒ ψ by checking whether either Γ ̸|= x ≡ y or Γ |= ψ.
Intuitively, our extended notion of equality can make use of quotients that
appear in a context in order to transform the original equality by means of
substitutions. This decidable process results in building a new equality in
the refinement logic which can then be checked by an SMT-solver.

Importantly, our extended notion of equality is strictly weaker than that
of the underlying liquid type system, and this property is expressed by the
following rule:

Γ ⊢Q x, y : τ Γ |= x ==τ y τ is not a quotient type

Γ |= x ≡τ y

That is, two terms are considered equal in the language λQ if they are equal
in the underlying refinement type system. Consequently, for any term that
inhabits a type that has not been quotiented, the notion of equality in λQ
and the underlying refinement logic is identical. However, for terms that
inhabit a quotient type, it is necessary to extend our notion of equality to
make use of the equalities introduced by quotients. To do this, we begin
by giving a formal account of when a context is extended by a quotient in
the process of equality checking.

In contrast to types and guard predicates, we make use of a more in-
volved form of context extension for quotients that ensures a given context
contains only the most general form of a quotient. As discussed later in
this section, this is necessary to ensure termination of equality checking
in our type system. As such, given a context Γ and quotient Q :: τ , we
write Γ, Q for regular context extension and Γ;Q for the more involved
notion. In order to define Γ;Q, we will consider three separate cases con-
cerning whether Γ already contains a quotient P :: τ that is related to Q
by a subquotient relationship. A complete account of the ordering rules for
quotients is given in Section 3.6, and we write Q <: P to mean that Q is a
subquotient of P . We begin by considering the case when there does not
exist a quotient P :: τ in Γ such that Q is related to P by means of the
subquotient relationship. In this case, we simply apply the usual notion of
context extension and as such we have Γ;Q = Γ, Q. The two remaining

80

cases consider when there exists a quotient P :: τ in Γ such that either
Q <: P or P <: Q. In the case when Q <: P , then Γ is left unchanged and
we define Γ;Q = Γ. In turn, for P <: Q we replace P in Γ with Q. Using
this notion of extending a context by a quotient, we can state the following
equality rule for quotient types:

Γ ⊢Q x, y : τ / (ϕ⇒ p == e) Γ; (ϕ⇒ p == e) :: τ |= x ≡τ y

Γ, ϕ |= x ≡τ/(ϕ⇒p==e) y

This rule states that two terms inhabiting a quotiented type are to be
considered equal when they are equal as inhabitants of their underlying
type in a context extended by their quotient. Note that the rule formulated
above only considers quotients that do not contain bindings, and indeed,
this is the only form of a quotient that may be used to extend a context.
For the case of quotients that contain bindings, the following equality rule
applies:

Γ ⊢Q x, y : τ / (forall v : σ in Q) Γ, v : σ ⊢Q x ≡τ/Q y

Γ ⊢Q x ≡τ/(forall v:σ in Q) y

That is, for quotients with bindings we simply consider equality in the
context extended by the bindings. The final equality rule we introduce to
the typing system of λQ corresponds to checking the equality of terms in a
context containing a compatible quotient. This rule allows us to rewrite an
equality using a quotient in a given context, and is formulated as follows:

Γ ⊢Q x, y, p, e : τ Γ |= ϕ[σ] Γ |= y ≡τ e[σ] x ⊆σ p

Γ; (ϕ⇒ p == e) :: τ |= x ≡τ y

We write x ⊆σ p here to denote that a term x is subsumed by the pattern p
with substitution σ. With this in mind, the above rule states that any two
terms x, y : τ are considered equal in a context Γ if there is a compatible
quotient ϕ⇒ p == e :: τ in Γ such that p subsumes x with substitution σ,
and such that y can be show to be equal in the underlying refinement type
system to the term obtained by applying σ to e. Furthermore, we have an
additional symmetric rule whereby we check if p instead subsumes y and
x ≡τ e[σ], which is otherwise identical to the above rule.

81

In order to establish that our extended notion of equality is an equiva-
lence on terms, we require an additional axiomatic rule for transitivity of
equality as defined on quotient types:

Γ ⊢Q x, y, z : τ / Q Γ |= x ≡τ/Q y Γ |= y ≡τ/Q z

Γ |= x ≡τ/Q z

Crucially, if the equality of the underlying refinement type system is an
equivalence relation then so is our extended notion of equality in λQ. Re-
flexivity of equality follows evidently from the rule that every equality in
the underlying refinement type system infers equality under our extended
notion of equality. Transitivity is given by the axiomatic rule postulated
above, while symmetry follows from the fact that the third equality rule
can be symmetrised. Later in this chapter, we make use of the fact that our
extended notion of equality is indeed an equivalence relation in correctness
proofs for both quotients and a subquotienting relation.

A practical implementation for type-checking that applies the equality
rules for λQ requires that we handle cases for which there is more than
one compatible quotient. Importantly, the manner in which we extend
a context by a quotient ensures that a context will only ever contain a
single instance of a quotient. In addition, when a quotient is applied dur-
ing equality checking it is removed from the context. When considered
together, these properties ensure that every equality checking path will
terminate for terms that inhabit a quotient type. As such, given that a
context Γ can only contain a finite number of quotients of the form Q :: τ ,
then if Γ has n such quotients there can be at most n! different paths to
consider for equality checking. This pathological case occurs when every
permutation of quotients Q1 :: τ, . . . , Qn :: τ ∈ Γ corresponds to a sequence
of rewrites. For example, if the left-hand side of the equality produced by
each Qk were simply a variable, then each quotient would evidently unify
with any term of type τ , and consequently every permutation would in-
deed specify a valid sequence of rewrites. In practice, however, the number
of quotients that appear in a context for a type is typically small, and
as such exhaustively checking each valid permutation does not present an
issue even in the pathological case.

As an example of how the extended equality rule of λQ is applied in
practice, recall that in Section 3.2 we defined a type List by quotienting

82

an underlying type Tree. To check that the map function on trees refines to
a function on lists, we must show it respects the quotients of List. One such
quotient is the left-identity law idl :: x:List a -> Join Empty x == x,
and to show that map respects idl we must show

map f (Join Empty x) == map f x

After normalising the term on the left, the stated equality simplifies to

Join Empty (map f x) == map f x

Importantly, when considering the refinement of map to a function on lists,
this is an equality between terms of the quotient type List. Consequently,
when checking whether this equality holds we first extend our context
by the quotients of List, and then check if the pattern appearing on
the left of the equality target of any of these quotients subsumes either
Join Empty (map f x) or map f x. We can observe that the left identity
law has precisely this form, as Join Empty x subsumes map f x with substi-
tution x 7→ map f x. Finally, we check whether map f x == x[x 7→ map f x],
or simply map f x == map f x, which holds definitionally. This same se-
quence of steps can similarly be used to show that map respects each of the
quotients of List and as such map is refinable to a function on lists.

We conclude our discussion on the extended notion of equality used in
the type system of λQ by discussing and giving a formal account of three
essential properties of equality substitution, substitution invariance and
function congruence. The first of these properties we consider is substitu-
tion invariance which is critical for the correctness of the subquotienting
relation defined in Section 3.6. Concretely, we state this property as follows:

Proposition 4. Given a context Γ and a substitution σ, then for every
equality Γ |= x ≡τ y we have Γ |= x[σ] ≡τ y[σ]. In the case when τ is not a
quotient type, the proof follows from the substitution invariance property of
the underlying equality. Otherwise, the proof follows by inversion whereby
we consider each of the extended equality rules.

In addition to being invariant under substitution, equality in λQ must also
be respected by the substitution operator. Intuitively, this means that if
two terms are equal then substituting them for a variable in any expression
should produce two equal terms, and is stated as follows:

83

Proposition 5. For every equality Γ |= x ≡τ y, term Γ ⊢Q e : σ and any
choice of variable u, we can construct an equality Γ |= e[u 7→ x] ≡ e[u 7→ y].
The proof follows by induction on e and is evident for each case after
suitably unfolding the definition of substitution.

The final property of equality we consider is function congruence, which
we describe in two parts. Firstly, in Proposition 6 we consider open terms
whereby we assume that we are working in a context which respects the
congruence law for functions. We then specialise to the empty context in
Proposition 7 to state the true congruence property for closed functions.

Proposition 6. Given a context Γ with function congruence, i.e. for
every function f : (x : τ) → τ ′ ∈ Γ and every equality Γ |= x ≡τ y we can
construct an equality Γ |= f x ≡τ ′ f y, then every constructible function
in Γ must also obey the function congruence rule. In order to prove this
we must show that for every function Γ ⊢Q f : (x : τ) → τ ′ and every
equality Γ |= x ≡τ y, we can conclude Γ |= f x ≡τ ′ f y. The proof follows
by induction on f and we consider only the interesting cases whereby f

is either a λ function or a λ-case function. In both cases, after unfolding
definitions we can observe that the proof follows evidently from Proposition
5.

Proposition 7. For every closed function ∅ ⊢Q f : (x : τ) → τ ′ and every
equality ∅ ⊢Q x ≡τ y, we can show that there is an equality ∅ ⊢Q f x ≡τ ′

f y. The proof follows immediately by simply instantiating the context in
Proposition 6 to the empty context.

3.8 Typing rules

In this section, we present the full collection of novel typing, subtyping and
equality rules for our core language λQ. In particular, we present the typing
rules in Figure 3.1, the subtyping rules in Figure 3.2, and the equality rules
in Figure 3.3.

84

Γ ⊢Q Q :: σ (Quotient typing and weakening)

Γ |= σ Γ, v : τ ⊢Q Q :: σ

Γ ⊢Q forall v : τ in Q :: σ

Γ ⊢Q ϕ Γ ⊢Q p : σ Γ ⊢Q e : σ

Γ ⊢Q ϕ⇒ p == e :: σ

Γ ⊢Q t : τ Γ ⊢Q Q :: σ

Γ, t : τ ⊢Q Q :: σ

Γ ⊢Q ϕ Γ ⊢Q Q :: σ

Γ, ϕ ⊢Q Q :: σ

Γ ⊢Q Q1 :: σ1 Γ ⊢Q Q2 :: σ2

Γ, Q1 :: σ1 ⊢Q Q2 :: σ2

Γ |= τ / Q (Well-formedness)

Γ |= τ Γ ⊢Q Q :: τ

Γ |= τ / Q

Γ ⊢Q e : τ / P (Quotient set rules)

Γ ⊢Q x : τ / P / P

Γ ⊢Q x : τ / P

Γ ⊢Q x : τ / Pσ(1) / · · · / Pσ(n) σ is a permutation n ≃ n

Γ ⊢Q x : τ / P1 / · · · / Pn

Γ |= λ { p→ e }⇝ Q (Respectfulness relation)

Γ ⊢Q ρ : τ Γ ⊢Q p1, . . . , pk : τ
Γ ⊢Q e1, . . . , ek : υ Γ ⊢Q ρ ∼σ pk ∀ i j σ′. pi ∼σ′ pj ⇒ i = j

Γ, ϕ[σ] |= ek[σ] ≡υ λ {p1 → e1; . . . ; pk → ek} t[σ]
Γ |= λ { p→ e }⇝ (ϕ⇒ ρ == t)

Γ, v : τ |= λ { p→ e }⇝ Q

Γ |= λ { p→ e }⇝ (forall v : τ in Q)

Γ ⊢Q e : τ (Typing rules)

Γ ⊢Q x : τ Γ ⊢Q Q :: τ

Γ ⊢Q x : τ / Q

Γ, x : τ / Q ⊢Q e : σ Γ ⊢Q Q :: τ

Γ ⊢Q λx.e : (v : τ / Q) → σ

Γ |= (x : τ / Q) → σ
Γ |= λ { p→ e }⇝ Q p1, . . . , pk is a complete case analysis of τ

Γ ⊢Q λ { p1 → e1; . . . ; pk → ek } : (x : τ / Q) → σ

Figure 3.1: Typing rules for λQ

85

Γ ⊢Q P <: Q (Subquotienting rules)

Γ ⊢Q Q :: τ

Γ ⊢Q τ <: τ / Q

Γ ⊢Q p, q, e, f : τ Γ |= p ⊆σ q Γ, ϕ |= ψ[σ] Γ, ϕ |= e ≡τ f [σ]

Γ |= (ϕ⇒ p == e) <: (ψ ⇒ q == f)

Γ, v : τ, u : τ ⊢Q P <: Q

Γ ⊢Q (forall v : τ in P) <: (forall u : τ in Q)

Γ, v1 : τ1, . . . , vn : τn ⊢Q P <: Q
Γ |= ∀ i. τi ̸= τσ(i) σ is a permutation on n

Γ ⊢Q (forall v1 : τ1 in . . . forall vn : τn in P) <:
(forall vσ(1) : τσ(1) in . . . forall vσ(n) : τσ(n) in Q)

Γ |= τ Γ, v : τ ⊢Q P <: (ϕ⇒ p == e) v not free in ϕ, p or e
Γ ⊢Q (forall v : τ in P) <: (ϕ⇒ p == e)

Γ ⊢Q τ <: σ (Subtyping rules)

Γ ⊢Q P <: Q

Γ ⊢Q τ / P <: τ / Q

Figure 3.2: Subquotienting and subtyping rules for λQ

86

Γ |= x ≡τ y (Equality introduction)

Γ ⊢Q x, y : τ Γ |= x ==τ y τ is not a quotient type
Γ |= x ≡τ y

Γ ⊢Q x, y : τ / (ϕ⇒ p == e) Γ; (ϕ⇒ p == e) :: τ |= x ≡τ y

Γ, ϕ |= x ≡τ/(ϕ⇒p==e) y

Γ ⊢Q x, y : τ / (forall v : σ in Q) Γ, v : σ ⊢Q x ≡τ/Q y

Γ ⊢Q x ≡τ/(forall v:σ in Q) y

Γ;Q |= x ≡τ y (Quotient equalities)

Γ ⊢Q x, y, p, e : τ Γ |= ϕ[σ] Γ |= y ≡τ e[σ] x ⊆σ p

Γ; (ϕ⇒ p == e) :: τ |= x ≡τ y

Figure 3.3: Equality rules in λQ

87

3.9 Implementation

In order to demonstrate the utility of the quotient types of the core lan-
guage λQ in a practical setting, we have developed Quotient Haskell. In
particular, Quotient Haskell is an extension to Liquid Haskell that adds
quotient types through the mechanism of datatype refinement, and checks
whether functions defined on quotient types respect the necessary equations
by generating constraints for an SMT solver. More specifically, our imple-
mentation of Quotient Haskell makes notable changes to Liquid Haskell
parsing, syntax trees, equality constraint generation for quotient types,
and type-checking and constraint generation for case expressions.

The first step of the Liquid Haskell pipeline that is modified by our
implementation is the parser. In particular, the parser is extended to sup-
port the syntax illustrated by the examples in Sections 3.1, 3.2 and 3.3.
As expressed in these examples and the core language presented in Section
3.5, in Quotient Haskell we require that the left-hand side of an equality
appearing in the codomain of an equality constructor is a pattern. In prac-
tice, this requirement ensures that when type-checking a case expression for
which an element of a quotiented type is the scrutinee, proof requirements
corresponding to equality constructors can be either unfolded or erased.
The syntax for equality patterns in Quotient Haskell is formally specified
by the following grammar:

lpat ::= var variables
| literal literals
| qcon lpat1 ... lpatk constructors (k ≥ 0)
| (lpat) parenthesised pattern
| (lpat1, ..., lpatk) tuples (k ≥ 1)

In the above formulation of the lpat syntax, we write var, literal, qvar, qcon
to denote the Haskell non-terminals for variables, literals, qualified variables
and qualified constructors, respectively. The lpat rule can be understood
as a more restricted version of the Haskell grammar rule for patterns that
can appear on the left-hand side of a function. In particular, some patterns
do not make sense for equality constructors, such as wildcards, irrefutable
patterns and as-patterns.

We now turn to the syntax for equality constructors. For this definition,
we make use of the Haskell non-terminals expr and cxt, which correspond

88

to Haskell expressions and typeclass contexts. In addition, we use the Liq-
uid Haskell non-terminal rbind, which corresponds to dependent bindings
of a variable, which can appear to the left of an arrow. We also use bpred,
which corresponds to bare predicates in Liquid Haskell, which are propo-
sitions surrounded by braces such as {x == y}. The syntax for an equality
constructor is then given by the following rule, where j, k ≥ 0:

eqcons ::= var :: [(cxt) =>] rbind1 -> · · · -> rbindj

-> pred1 · · · -> predk -> lpat == expr

Notably, the eqcons rule allows for quantified variables to be constrained by
typeclasses. A typeclass context that appears in an equality constructor can
be used to further constrain when respectability theorems are generated.
In particular, after matching a case alternative with the left-hand side of
an equality, Quotient Haskell will only generate the resulting respectability
theorem if there exists the necessary instances for each of the matched
variables.

To define the syntax for quotient types, we use the Liquid Haskell non-
terminal stype, which corresponds to refinement types excluding bindings
and bare predicates, and the Haskell non-terminal simpletype, which cor-
responds to the name of a type followed by type variables. The syntax for
quotient type definitions is then given by the following rule, where k ≥ 1:

quotty ::= data simpletype = stype |/ eqcons1 |/ · · · |/ eqconsk

In addition to the above syntax for quotient constructors, Quotient Haskell
has syntax for providing explicit proofs that equality constructors are re-
spected, where k ≥ 0:

quotproof ::= respects <qvar,qvar> var :: rtype1 -> · · · -> rtypek

-> { expr == expr}

Quotient type definitions and explicit proofs of respectability, as specified
by quotty and quotproof respectively, are only valid within a Liquid Haskell
block.

89

To support the above extensions, the syntax trees within Liquid Haskell
are modified to include both quotient constructors and explicit quotient re-
spectability proofs. In Liquid Haskell, a datatype refinement must typically
have the same name as the datatype being refined. However, for quotient
types the name must instead be unique with respect to any other type
constructors in scope. As such, we extend the type-checking environment
with the names of any quotient type constructors. Moreover, the names of
quotient constructors must be unique with respect to any term identifiers
in scope. After parsing and construction of the type-checking environment,
each of the required checks associated with quotients are performed during
the existing refinement checking phase. In the remainder of this section we
describe the core steps involved in quotient type checking.

Quotient Wellformedness. The wellformedness check for each quotient en-
sures that the domain of each equality constructor is well-formed, and that
both sides of the target equality are terms of the underlying type. We also
check that both the name of a quotient type and its quotient constructors
are unique in the scope. The name of a quotient type must be unique with
respect to type constructors, while quotient constructors must be unique
with respect to term identifiers.

Equality Lifting. As described in Section 3.7, to make use of the equalities
introduced by quotients within arbitrary refinements, it is necessary to
extend the notion of equality between terms that inhabit a quotient type.
To do this, Quotient Haskell includes a transformation step that traverses
every refinement type in the type-checking environment. We proceed with
a description of this transformation as it applies to each refinement type.
Firstly, we consider the underlying refinement predicates which contain
an equality between terms of a quotient type. For each such equality,
we generate a set of expressions by rewriting the equality with suitable
quotients, as described in Section 3.7, and adding the preconditions of
each used quotient by means of a conjunction. Finally, the new equality
is constructed as a disjunction over this set of expressions. For example,
consider the following quotient type that represents a list of integers for
which any integer ≤ 0 acts as a unit:

data Positives

= [Int]

|/ unit :: xs:[Int] -> x:{ x:Int | x <= 0 } -> x :: xs == xs

90

Intuitively, we can understand this type as ensuring that we can only con-
sider the strictly positive integers within a list. In addition, we consider a
function f of the following form:

f :: xs:Positives -> x:{ x:Int | (x + 1) :: xs == xs } -> ...

The precise codomain and definition of f are not important here. Instead,
we focus on the argument x, which has a refinement type whose predicate
is given by an equality between terms of a quotient type. In particular,
x must be an integer such that when x+1 is prepended to a term of type
Positives it does not change the list. This equation evidently does not hold
for the underlying type of lists of integers. However, as we are considering
an equality between terms of a quotient type, we must also consider the
equality constructors, in this case unit. The equality lifting transforma-
tion is precisely the approach by which Quotient Haskell includes equality
constructors in its logic.

Equality lifting involves considering a restricted set of the possible se-
quences of rewrites by means of suitable equality constructors. In particu-
lar, an equality constructor can be used to rewrite an equation of the form
x == y precisely when the left-hand side of the equality constructor’s target
equality unifies with either x or y. This rewrite occurs by first applying the
unifying substitution to both equalities, then composing them, and finally
building a conjunction over the preconditions of the equality constructor
and the composite equality. At present, Quotient Haskell makes use of a
naive rewriting algorithm that only permits each quotient to be used once
during an equality checking pass through a term. Each pass makes use of
a different permutation of the available quotients to allow for a different
order in which rewrites may be applied.

As an example of how equality rewriting works in Quotient Haskell, we
will consider rewriting the equation (x + 1) :: xs == xs by means of the
unit equality constructor. This rewrite is possible because (x + 1) :: xs

unifies with the left-hand side x :: xs of the target equality of unit, with
substitution x := x + 1. We then proceed to apply this substitution to
the equality target of unit to obtain the equation (x + 1) :: xs == xs.
Finally, we compose the two equations and build an implication from the
precondition of unit to the composite equality and obtain the proposi-
tion x + 1 <= 0 && xs == xs. Notably, this logical proposition is simply
equivalent to x + 1 <= 0 and will be simplified by Liquid Haskell. This

91

proposition is combined by disjunction with all other valid sequences of
rewrites. For example, after equality lifting is applied, the type of the
function f becomes

f :: xs:Positives

-> x:{ x:Int | (x + 1) :: xs == xs || x + 1 <= 0 }

-> ...

Note that rewriting using a quotient may change the number of free vari-
ables in a refinement predicate. This will occur when there are variables
bound in a quotient that do not appear on the left hand side of the target
equality. Importantly, these free variables are only used in the construction
of logical constraints to be handled either by an external SMT solver or
proof by logical evaluation.

Quotient Respectability. Our implementation of Quotient Haskell covers
two possible cases when considering quotient respectability: refined func-
tions that take a term of a quotient type as input and do not match on that
input, and case expressions that match on a single variable. We are inter-
ested only in cases where we have been provided with a type declaration
that asserts that the input being considered must inhabit a quotient type.
For functions that do not match on their quotiented input, we require no
additional checks beyond those imposed by Liquid Haskell. As such, we
only need consider matching functions and case expressions.

In the GHC API that is used by Liquid Haskell, both matching functions
and case expressions are represented by single argument case expressions
that match at most one level deep. In particular, we intuitively think of
this representation as taking the form

let x = e in case e of { p_1 -> e_1; ...; p_k -> e_k }

where each pi is either a variable or a constructor applied to a finite num-
ber of variables. In the proceeding transformation phase, Liquid Haskell
transforms such case expressions into a sequence of conditional expressions,
which make use of both distinguished testing predicates and selection func-
tions for constructors to remove the let-binding and the free variables in-
troduced by each case pattern. However, in the checking phase, the prior
representation of case expressions are maintained and this representation
is more suitable for checking quotient respectability.

92

A particularly useful consequence of working with case expressions that
only permit matching on a single layer is the simplification of the unification
check between the patterns of the case expression and the left-hand side
of a quotient’s equality target. In particular, we need only check whether
either pattern is a mere variable, or the leading constructors match. The
construction of the unifying substitution is similarly straightforward in this
setting. With this in mind, we proceed to check quotient respectability of
single argument case expressions as follows:

• We first check if the type of the scrutinee of the case expression is in
the typing environment, and if this is a quotient type we proceed to
check respectability, otherwise we are done;

• For each match p → e of the case expression we filter the relevant
quotients by whether the left-hand side of their target equality unifies
with p;

• For each quotient that passes the filter we apply the unifying substi-
tution to both the right-hand side of the quotient’s target equality
and the expression e;

• We extract the refinements from the quotient’s domain, from which
we construct a logical implication that states that if the conjunction
of these refinements hold then e is equal to the original case expression
applied to the right-hand side of the quotient’s target equality;

• If e is known to inhabit a quotient type, then for each quotient such
that e unifies with the left-hand side of its equality target we apply
the equality lifting transformation;

• We include the constructed constraint in the .smt2 output generated
by Liquid Haskell.

Note that the constraint generated by the above procedure will be a propo-
sition quantified over the free variables that appear in the disjunction of
the generated logical expressions. It is important that we normalise the

93

terms that appear in the generated constraints, and as such the proof-by-
logical-evaluation feature of Liquid Haskell is always enabled in Quotient
Haskell.

To demonstrate the above procedure, we consider the example of the
map function as refined on the quotient type List given in Section 3.2. In
particular, only the definition

map f (Join x y) = Join (map f x) (map f y)

is relevant here, as the remaining definitions for map do not match with
any of the quotients of List. When checking whether map is well-typed
when refined to List, the first step of the above procedure is to check re-
spectability, because List is a quotient type. In the next step, we filter the
quotients of List to obtain only those that match with Join x y, which
in this case happens to be every quotient for List. After the third step
of the procedure, we obtain equations corresponding to the quotients idl,
idr and assoc. For example, after proof-by-logical-evaluation the equation
generated for idl is Join (map f x) Empty == map f x. As the quotients
of List do not contain any refinements in the domain, we continue with
the quotient substitution step. In the proceeding steps, we first confirm
that the result type of map is a quotient type, which in this case is again
List. We then apply all possible rewrites, as constructed from the quo-
tients of List, to each of the generated equations. For example, we can
rewrite Join (map f x) Empty == map f x using the idl quotient to obtain
a new equation map f x == map f x. Finally, we generate constraints by
taking the disjunction of equations built for each quotient. Continuing with
our example of idl, we would generate a respectability constraint of the
following form:

f:(a -> b) -> x:Mobile a ->

Join (map f x) Empty == map f x || map f x == map f x || ...

This constraint will pass the SMT checking phase because the expression
map f x == map f x holds definitionally. Consequently, the map function is
shown to respect the idl function, and similar constraints are generated
and shown to hold for both idr and assoc.

Quotient Subtyping. In practice, when types are checked rather than being
inferred, subtyping rules need only be considered when type-checking func-
tion application. Because quotient types cannot yet be inferred in Quotient

94

Haskell, this translates to a simple extension of the function application
case of Liquid Haskell’s constraint generation algorithm. In particular, our
extension is relevant in the case when the function being applied takes a
quotient type as input, and the argument it is applied to is of a differ-
ent quotient type. We proceed by checking whether for every quotient of
the argument’s type, there is a quotient of the function’s input type that
supercedes it with respect to the ordering relation on quotients given in
Section 3.6. If this is the case, then we retype the argument to the input
type of the function and continue with constraint generation. Otherwise,
constraint generation fails and we report a type-checking error.

To reduce the performance cost of automatically deciding quotient sub-
typing, it is possible to cache the computed results of the subtyping relation
for quotient types. In particular, quotient types in Quotient Haskell can
be uniquely identified by their name, and caching can hence be achieved
using a map from pairs of names to the results of the subtyping relation.
Consequently, the performance cost of automatically inferring subtyping
between quotient types is primarily determined by a one-time check of the
subquotienting rules described in Section 3.6. In practice, this means that
automatically inferring subtyping for quotient types does not usually have
a significant impact on the runtime of the type checker, while improving
ease of use.

Performance of Type Checking. The implementation of Quotient Haskell
includes simple optimisations such as caching of the subtyping relation for
quotient types, and erasure of trivial respectability theorems. In practice,
we have found that the additional typing features of Quotient Haskell do not
usually have a significant impact on time performance. For most practical
examples, including those presented in this chapter, time performance is
dominated by the external SMT solver.

3.10 Related work

Refinement and quotient types, along with their implementations, have
been extensively studied in the literature. This prior work underpins the
development of Quotient Haskell, which can be understood as extending a
refinement type system with quotient types.

Refinement Types are types equipped with a subtyping predicate from

95

an SMT-decidable logic [Bengtson et al., 2011; Rushby et al., 1998]. As
such, refinement types utilise a restricted form of dependency in which
bound variables can appear in the body of a predicate. Implementations of
refinement type systems have been developed for many popular languages,
including ML [Freeman and Pfenning, 1991], OCaml [Kawaguchi et al.,
2010], and Haskell [Vazou et al., 2013]. Our core language λQ is introduced
as a conservative extension to a generic underlying refinement type sys-
tem, and supports the typing extensions of our practical implementation
Quotient Haskell. The key idea is to translate the equational laws required
by functions defined on quotient types into predicates in the underlying
refinement logic. With this translation, we can utilise any suitable solver
for the refinement logic to assist in the proof of quotient laws. Moreover,
in order to make use of the equations described by quotients, we presented
an extension of equality from a mere proposition in the refinement logic to
a statement in the type system.

Liquid Haskell is an implementation of a bounded liquid type system
[Rondon et al., 2008; Vazou et al., 2015] for Haskell, which adds termina-
tion checking to ensure correctness of refinement typing in a lazy setting
[Vazou et al., 2014]. As introduced in this chapter, Quotient Haskell is
an extension of the Liquid Haskell type system with quotient typing rules
from the core language λQ. By developing Quotient Haskell as an exten-
sion to Liquid Haskell, quotients and subtypes can be utilised together and
the elimination laws for quotients can make use of existing automation and
rewriting developed for Liquid Haskell [Grannan et al., 2022; Vazou et al.,
2017].

Quotient Types are types that are equipped with a distinguished notion
of equality that may differ from the trivial, definitional equality for that
type [Li, 2015; Hofmann, 1995]. Developing a well-behaved theory of quo-
tient types for dependently typed languages has been an ongoing subject
in the literature [Abbott et al., 2004; Nogin, 2002]. A key difficulty that
arises when introducing quotient types to intensional type theories is the
preservation of canonicity. In particular, when quotients are added to a
type system by means of axiomatic rules, it may be possible to construct
closed terms that do not compute to a canonical form by means of the elim-
ination rule for the equality type. This axiomatic approach to quotients is
precisely the approach adopted by the type system of λQ. However, this

96

issue does not arise in λQ, because equality does not constitute a type with
its own elimination form but rather a judgement in the type system.

Quotient types can be further generalised to quotient inductive families,
quotient inductive-recursive types, or quotient inductive-inductive types
[Altenkirch et al., 2018; Kaposi et al., 2019; Altenkirch and Kaposi, 2016].
Of particular note is quotient inductive families, whereby an inductive fam-
ily can be thought of as a generalised algebraic datatype (GADT) that can
additionally be indexed by a type, for example lists indexed by their length.
A possible extension to λQ is the addition of typing rules for generalised
algebraic quotient types, which in turn would describe how to extend Quo-
tient Haskell with quotients for GADTs.

Implementations of Quotient Types include the higher-inductive types
of Cubical Agda [Vezzosi et al., 2019], the HoTT library of Lean [van
Doorn et al., 2017] and the axiomatic quotients in the Lean standard li-
brary [De Moura et al., 2015], a quotient types library for Coq [Cohen,
2013], various implementations in Isabelle [Slotosch, 1997; Paulson, 2006;
Kaliszyk and Urban, 2011], quotient types by means of equivalence rela-
tions in NuPRL [Constable et al., 1986], and laws in Miranda [Thompson,
1986]. Existing implementations have largely focused on the use of quotient
types in proof assistants. However, several practical use cases for quotient
types have been highlighted in the literature that may translate to general-
purpose functional programming, such as the Boom hierarchy [Meertens,
1986] and domain-specific languages with equational laws [Altenkirch and
Kaposi, 2016]. A crucial drawback of existing implementations for quotient
types are the manual proof obligations required by every function that is
defined on a quotient type. In practice, these proof obligations can become
unnecessarily burdensome, especially in cases where the proofs can be de-
rived in a systematic manner. Quotient Haskell, and the core language λQ,
were developed to address this drawback by making use of the well-known
theory of refinement type systems to introduce quotients whose elimination
laws can be handled by a suitable solver for the underlying refinement logic.

Automation for Quotient Types has been explored in the Isabelle quo-
tient package, with a focus on transferring terms and properties from an
underlying type to a corresponding quotient type [Kaliszyk and Urban,
2011; Huffman and Kunčar, 2013]. In particular, implicit coercion from
an underlying type to a quotient type is termed ‘lifting’, while automati-

97

cally translating properties from one to the other is referred to as ‘transfer’.
As a consequence of quotient types being implemented as an internalised
package, the automation of lifting and transfer is achieved in Isabelle by
non-trivial proof automation tactics. In contrast, Quotient Haskell adds
support for quotient inductive types by extending the Liquid Haskell type-
checker. Consequently, in Quotient Haskell the lifting property simply
arises from the introduction rule for quotient types, and the transferal of
proofs follows from the definition of the conservative extension of equality
in Section 3.7. As such, while the automation for quotient types in Isabelle
addresses the problems of lifting and transfer, Quotient Haskell instead ad-
dresses the problem of automating the proofs of respectability theorems for
quotient types.

NuPRL is a proof development system that provides support for both
quotient types and proof automation [Constable et al., 1986; Nogin, 2002].
In NuPRL, quotient types are constructed by defining a new equality for
a type using an equivalence relation, and this construction is provided
as an operation on types. However, this approach is known to have a
key drawback, namely that quotients of inductive types with a non-finite
number of inductive positions often require the axiom of choice to construct
their elimination map. In contrast, the quotient inductive types of Quotient
Haskell do not have this issue. For example, such types can be used to prove
properties of the Cauchy real numbers [Univalent goundations Program,
2013] and the weak delay monad [Chapman et al., 2019] without the need
for the axiom of choice. Moreover, in contrast to Quotient Haskell, the
quotient operation in NuPRL requires that a user constructs an explicit
equivalence relation with proof witnesses for the necessary laws.

In summary, Quotient Haskell introduces a novel approach for sup-
porting quotient types by extending a liquid type system with support
for quotient inductive types whose generated respectfulness theorems are
SMT-decidable. This approach is distinctly different from the setoid quo-
tient types in languages such as Isabelle and NuPRL, and from the higher
inductive types of Cubical Agda. Notably, this extension enables interop-
erability between quotient types and subtypes by generating constraints
within a shared refinement logic. Moreover, in contrast to a higher induc-
tive type in Cubical Agda, a quotient type in Quotient Haskell is defined
by extending an existing type with inductive equalities, as detailed in Sec-

98

tion 3.4. A practical consequence of this approach is the ability to define
hierarchies of quotient types with implicit coercions that correspond to
their canonical surjections. This feature follows from the subtyping rules
of Quotient Haskell, as detailed in Section 3. For instance, every tree can
be trivially coerced into a mobile without the need for explicit construction
in Quotient Haskell.

3.11 Reflection

Existing systems that support quotient types have primarily focused on
the goal of formalising mathematical theories. Quotient Haskell adds a new
point to the design space, focusing on the use of quotient inductive types in
a general purpose programming language. This is achieved by integrating
quotient types into Haskell in a manner that reduces proof obligations
arising from their use, thereby allowing users to focus on programming
rather than proof. In this section, we reflect on the design, practical use
and limitations of the Quotient Haskell system.

Usability of quotient types in a general purpose language was the guid-
ing principle in the design choices of Quotient Haskell. There are three key
design choices that were made. First of all, and most importantly, the sys-
tem is built on top of a refinement type system, in this case Liquid Haskell.
This approach allows us to take advantage of existing work and infrastruc-
ture on proof automation for refinement types, such as the generation of
subtyping constraints and their translation into an SMT-decidable form.
Moreover, extending Liquid Haskell with support for quotient types allows
for interoperability with subtypes, which provides a more expressive type
system while retaining the benefits of proof automation. In practice, many
programming use cases involve both quotient types and subtypes, so being
able to use them in combination is important.

Secondly, the system supports a particular class of quotient types known
as quotient inductive types. This approach allows users to define equational
laws alongside an underlying data type without requiring the explicit con-
struction of an equivalence relation. In particular, quotient inductive types
can be understood as extending the notion of equality in a manner that im-
plicitly preserves its underlying properties, such as the equivalence relation
and function congruence laws. As we have seen in the practical exam-

99

ple sections, using quotient inductive types provides a simple and natural
approach to defining types with equational laws.

And finally, the system introduces syntax and typing rules for quotient
types that allow the reuse of existing data definitions without the need to
redefine the constructors. For example, the type of mobiles is defined in
Section 3.1 by quotienting an existing type for trees, with the same con-
structor names Leaf and Bin used for both the original and quotiented
type. Crucially, this means that any function on mobiles can also be used
on trees, without the need to explicitly convert between the two types. In
contrast, existing systems that implement quotient inductive types, such
as Cubical Agda, require unique data constructors for each type. Con-
sequently, functions on a quotient type cannot be reused on a type that
only holds the underlying data without explicit conversion. For example,
in the case of mobiles, this would mean introducing new constructors for
the mobile type, and using conversion functions when applying a function
on mobiles to trees.

Applications were the central motivation for the development of Quotient
Haskell. In addition to the applications presented in Sections 3.1, 3.2 and
3.3 we have explored a range of further examples, including modular arith-
metic, coordinate systems, efficient data structures, and domain specific
languages with equational laws. We briefly describe two of these examples
below, and plan to focus on additional applications of quotient types as
part of our further work.

Polar coordinates are typically represented by a pair of numbers cor-
responding to a magnitude and an angle. For example, in Haskell we
might choose to define type Polar = (Double, Int), where the angle is
given to one degree of accuracy. However, this definition allows mul-
tiple representations of the same point in the space. In particular, the
point represented by (r, a) can also be represented by (-r, -a), and by
any pair constructed by adding or subtracting a multiple of 360 degrees.
This problem can be avoided by bounding the two polar components us-
ing subtyping, by defining type Magnitude = {r : Double | r >= 0} and
type Angle = {a : Int | a >= 0 && a < 360}. However, this representa-
tion brings its own problem, namely that operations on angles may need
to normalise their results. To avoid this issue, we can represent polar co-
ordinates as a quotient type, which can be achieved in Quotient Haskell as

100

follows:

data Polar

= (Magnitude, Int)

|/ turn :: r:Magnitude -> a:Int -> (r, a) == (r, a `mod` 360)

In this definition, the turn equality constructor captures the property that
the full rotation of a point around the origin does not change that point. To
illustrate the utility of representing polar coordinates as a quotient type,
consider the following rotation operation:

rotate :: Int -> Polar -> Polar

rotate x (r, a) = (r, a + x)

This definition is well-typed in Quotient Haskell, because the turn equal-
ity constructor is respected as a consequence of eliminating into the Polar

type. In contrast, the definition would be ill-typed if polar coordinates
were instead represented by the type (Magnitude, Angle) of bounded mag-
nitudes and angles. Making the definition type correct would require that
the rotate function normalises the resulting angle, which impacts on both
simplicity and efficiency.

Another application of quotient types, and in particular quotient induc-
tive types, is the representation of domain-specific languages with equa-
tional laws. To demonstrate this, we consider how Quotient Haskell can
be used to add η-expansion to the (untyped) lambda calculus. In particu-
lar, we use a de Bruijn representation where variables are natural numbers
given by type Nat = {n : Int | n >= 0}, and define terms of the lambda
calculus as follows:

data Expr = Var Nat | Lam Nat Expr | App Expr Expr

To state the η-expansion law, we require a predicate isNotFree :: Nat ->

Expr -> Bool, which asserts that a given variable is not free in a given
term. This predicate can easily be defined by induction on the terms of
Expr. Using these two definitions, we can then define the following quotient
type in which η-expansion is explicitly given by an equality constructor:

data LambdaExpr

= Expr

|/ eta :: f:LambdaExpr -> v:Int -> {isNotFree v f}

-> Lam v (App f v) == f

101

A key operation for the lambda calculus is β-reduction, which for the un-
derlying type Expr can take the form of a function reduce :: Expr -> Expr.
A correct definition of reduce should have the property

reduce (Lam v e) == Lam v (reduce e)

Indeed, this property typically forms the defining equation for reduce in the
Lam case. As such, if we assume a correct definition, the type of reduce can
be refined to LambdaExpr -> LambdaExpr in Quotient Haskell. Notably, this
refinement is only possible by eliminating into LambdaExpr and not Expr.
To construct a well-typed function from LambdaExpr to Expr would require
η-expansion to be explicitly applied.

Limitations are an important practical consideration for users of Quotient
Haskell. Below we consider a number of limitations and their practical
consequences.

First of all, without function extensionality, i.e. the principle that two
functions are equal if they are equal for all arguments, it is not possible to
prove some equalities that might otherwise be expected to hold. In practice,
this issue can arise when the type checker attempts to resolve an equality
that involve higher-order functions. For example, in Liquid Haskell the
equation map (1+) xs == map (+1) xs cannot be shown without function
extensionality. Naively extending Liquid Haskell by adding function ex-
tensionality as an axiom is known to be inconsistent, however, solutions to
this problem have been explored Vazou and Greenberg [2022]. At present,
Quotient Haskell does not support reasoning with function extensionality
when checking respectability theorems for quotient types. As we have seen,
the lack of this feature does not preclude interesting and useful examples
of quotient types, but we plan to consider in future work how function
extensionality can be added to Quotient Haskell without compromising
consistency.

Secondly, quotients of Generalised Algebraic Data Types (GADTs) are
not currently supported in Quotient Haskell. GADTs allow inductive types
to be indexed by other types, which enhances the expressivity of the type
system by allowing data constructors to make use of additional type infor-
mation. For example, a GADT of kind Expr :: Type -> Type that repre-
sents a simple form of well-typed expressions can be defined as follows:

data Expr a where

102

Val :: a -> Expr a

Add :: Expr Int -> Expr Int -> Expr Int

Eq :: Expr Int -> Expr Int -> Expr Bool

If :: Expr Bool -> Expr a -> Expr a -> Expr a

In particular, the type of each constructor ensures that it can only be
applied to arguments of suitable types, ensuring that expressions are always
well-formed. Support for quotients of GADTs would allow equations to be
introduced between expressions indexed by the same type. In the case of
Expr, this would allow equations such as the following to be added:

ifTrue :: t:Expr a -> f:Expr a -> If (Val True) t f == t

commute :: m:Expr Int -> n:Expr Int -> Add m n == Add n m

Such equations would then need to be respected by functions defined on
expressions, such as a well-typed evaluation function eval :: Expr a -> a.
Adding support for GADTs to Quotient Haskell would enhance the space
of examples that can be considered.

Thirdly, while the underlying logic of both Liquid Haskell and Quo-
tient Haskell is SMT-decidable, the type checker may still be unable to
automatically prove some statements. This can occur for two key reasons:
generated constraints may not be solvable in reasonable time, and theo-
rems that require inductive reasoning cannot always be solved. The first
of these problems can require users to make design choices to minimise
the complexity of generated constraints. In Quotient Haskell, this can
mean designing equality constructors with fewer quantified variables and
preconditions. Further work on automatically optimising and minimising
generated SMT constraints can assist in reducing the design burden for
users. Meanwhile, the second problem can be observed in Liquid Haskell
by considering associativity of list concatenation, which cannot be auto-
matically proved. This issue is similarly present in Quotient Haskell, and
while proof by logical evaluation (PLE) can assist in some cases, there is
not yet a precise classification of which inductive proofs can be automated.
In practice, this means that generated respectability theorems that require
inductive reasoning to prove will often require manual proofs. Quotient
Haskell provides such a manual proof mechanism for respectability theo-
rems, as demonstrated in Section 3.1.

And finally, at present Quotient Haskell has a limited error reporting
system. In the case that a respectability theorem cannot be proven by the

103

type checker and is not manually provided, a user is given a simple error
message describing which equality constructor was not respected, followed
by a generic Liquid Haskell error detailing the constraints. Improvements
to the error reporting system of Quotient Haskell are a subject for future
development work.

3.12 Conclusion and further work

In this chapter, we presented a core language that supports practical pro-
gramming with quotient types. This is achieved by extending an established
core language that supports liquid types with a class of quotients whose
proof obligations can be automatically discharged by the type checker. In
particular, this class has the property that the equational laws that func-
tions on quotients must satisfy can be translated into a collection of con-
straints that can be decided by an SMT solver. Furthermore, we showed
how the equations constructed by quotients can be exploited by the type
system, which is an essential aspect of having proper support for quotient
types. More specifically, we extended the notion of equality in the refine-
ment logic of the underlying liquid type system by adding substitution rules
corresponding to each quotient.

The above ideas are realised in practice by Quotient Haskell, a proof-
of-concept extension of Liquid Haskell with quotient types. We presented a
range of examples demonstrating the use of quotients for practical program-
ming, including mobiles (commutative binary trees), the Boom hierarchy
(lists, trees, bags and sets), and the rational numbers.

There are many interesting topics for further work. First of all, at
present Quotient Haskell requires explicit typing declarations when using
quotient types, and cannot infer them from untyped expressions. As such,
a possible improvement is to extend the constraint generation phase to
include the possibility of typing judgements that include quotients, and
consequently to allow quotient types to be automatically inferred. Sec-
ondly, we could generalise the range of types that can be quotiented by
including additional features of (Liquid) Haskell, such as GADTs and re-
finement polymorphism. Moreover, we could also generalise the subquo-
tient relationship given in Section 3.6 to relate a wider range of quotients,
and hence improve the reusability of functions defined on quotient types.

104

Thirdly, we could build upon previously explored ideas for reasoning about
coinduction in Liquid Haskell [Mastorou et al., 2022] in order to introduce
reason about quotients of coinductive structures such as streams. And fi-
nally, it is important to consider possible improvements to the practical
aspects of the system, such as error messages and IDE support.

105

Chapter 4

HoTT Operads

Formal theories of datatypes such as polynomial functors and strictly pos-
itive types have been extensively studied by type theorists. For example,
containers were developed as an internal theory of datatypes with the form
a generalised polynomial [Abbott, 2003]. As first introduced in the pre-
vious chapter, the theory of containers captures both the strictly positive
types [Abbott et al., 2005] and ordinary polynomial functors. Similarly,
combinatorial species have been used to capture finitely-labelled structures
[Yorgey, 2014]. While containers represent datatypes by their ‘shapes’ and
‘positions’, combinatorial species describe the construction of a structure
from a finite set of labels. One of the most prominent applications of both
containers and species is generic programming in a dependent type theory.
In this way, both theories give rise to an internalised calculus of datatypes.

With the existence of several internal theories of datatypes it appears
natural to consider a similar calculus of operations over datatypes. However,
perhaps surprisingly, this particular approach is much less explored in the
type theory literature. Meanwhile, category theory provides a well-known
tool for describing such algebraic structures. In particular, the notion of an
operad [May, 2006] is a generalisation of the standard concept of a category
to a ‘multicategory’ (with one object), in which the source of a morphism is
given by a finite sequence of objects. The theory of operads can be viewed
as an extension to the theory of combinatorial species, in which an operad
is simply a species together with a well-behaved notion of composition.

106

In this chapter we present an internalised calculus of composable oper-
ations by realising the categorical notion of an operad in a suitable inten-
sional type theory. More concretely, in this chapter we:

• Internalise the notion of both planar (section 4.2) and symmetric
(section 4.3) operads in homotopy type theory, and provide practical
examples of each form;

• Introduce a generalised notion of operad whose operations are indexed
over a univalent category [Ahrens et al., 2015];

• Prove that our notion of a generalised operad induces a canonical
monad (section 4.7), which provides an operadic style of constructing
programs from a small collection of composable terms;

• Demonstrate how the free operad can be constructed as both a higher
inductive family and a higher inductive-recursive type (section 4.8).

While our formalisation work is presented in the meta-theory of Cubical
Agda, the constructions and proofs outlined in this chapter are applica-
ble to any implementation of homotopy type theory with higher inductive
families. Our results are formalised in a Cubical Agda library that is freely
available online [Hewer, 2020]. We refer to our library for proofs consisting
of substantial technical detail that are not required for understanding the
key ideas of this chapter.

4.1 Basic idea

To present a type-theoretic calculus of operations, we first require a notion
of both an operation and a collection of operations. In this section, we con-
sider a simple motivating example to introduce these notions, and describe
what it means for a collection of operations to be operadic.

Informally, we can think of an operation as a map from elements of a
structured collection to an element of the same collection. Two examples of
such operations are addition of natural numbers and disjoint union of finite
sets. In particular, these are both examples of a binary operation, where the
domain is given by the binary product on the underlying collection. More
generally, we will consider any domain that can be expressed as a strictly
positive endofunctor on the underlying collection, e.g. finite and countable

107

products. That is, we can understand an operation on a type A to simply
be given by a strictly positive endofunctor F : Type) Type, together with
an F -algebra f : F A) A. For example, consider the following simple
expression language in Agda:

data Expr : Type where

val : N) Expr

add : Expr) Expr) Expr

The constructors val and add can be understood as operations on Expr —
val is an algebra on the constant functor choosing N, and add is a (curried)
algebra on the binary diagonal functor.

While the above definition of an operation is sufficient to discuss proper-
ties of operations in isolation, such as associativity or preservation of limits,
it is not sufficient to describe how operations interact, and more specifically
compose. For example, consider the collection of operations which are con-
structed as finite compositions of the two constructors val and add, together
with the identity function id : Expr) Expr. Importantly, the inclusion of
the identity function will allow us to introduce variables in constructed op-
erations. An example of a term that can be constructed in this manner is
λ x y z) add (add x (val 1)) (add y z) of type Expr) Expr) Expr) Expr.
Operations constructed in this way will evidently always be finitary, i.e.
their domain will be a finite product of expressions, and they will always
use each of their arguments precisely once.

In order to represent the desired collection of operations on the type
Expr, we first observe that the type

∑
[n ∈ N] ((Fin n) Expr)) Expr),

where Fin : N) Type is the family of totally-ordered finite sets, corresponds
to all planar finitary operations on Expr. However, our goal is to capture
only those operations which are constructible as compositions of val, add

and id. In order to do this, we might search for a subtype of all finitary
operations which precisely corresponds to such a collection. Alternatively,
it is perhaps easier and more natural to give an abstract representation
of this collection, together with an interpretation as concrete operations.
Indeed, we can do this by first defining the following inductive family:

data IExpr : N) Type where

id↑ : IExpr 1

val↑ : N) IExpr 0

108

add↑ : IExpr m) IExpr n) IExpr (m + n)

For every n : N, we can think of the type IExpr n as representing the n-ary
operations that are constructible as finite compositions of id, val and add. In
particular, the constructors id↑ and val↑ correspond directly to the opera-
tions id and val, while add↑ describes how the outputs of anm-ary and n-ary
operation can be plugged into the inputs of add to construct an (m+n)-ary
operation. In order to interpret terms of IExpr n as concrete n-ary functions,
we will make use of the projections π1 : (Fin (m + n)) Expr)) Fin m)

Expr and π2 : (Fin (m + n)) Expr)) Fin n) Expr, which project the
first m and last n elements from an (m + n)-fold product respectively. We
can then interpret terms of our abstract representation IExpr n as concrete
operations as follows:

J_K : IExpr n) (Fin n) Expr)) Expr

J id↑ K es = es zero

J val↑ n K es = val n
J add↑ e1 e2 K es = add (J e1 K (π1 es)) (J e2 K (π2 es))

Notably, the interpretation function J_K is provably injective, i.e. we can
construct a family of paths (x y : IExpr n)) J x K ≡ J y K) x ≡ y. The
proof of injectivity follows by induction on x and y, and in each case where
the outer constructor of x and y differ the proof follows from absurdity.
For example, when x = id↑ and y = val↑ n our injectivity assumption is
J id↑ K ≡ J val↑ n K or more simply (λ es) es zero) ≡ (λ es) val↑ n),
which is evidently false. As such, it is only necessary to consider the three
inductive cases whereby the constructors considered are the same. The
proof is trivial in the case where both x and y are id↑ and the remaining
cases follow from injectivity of the constructors val↑ and add↑.

In addition to J_K being an injective function, its codomain is an h-set
and it therefore constitutes an embedding. In particular, this means that
there is an equivalence between the path spaces J x K ≡ J y K and x ≡ y for
any x, y : IExpr n. That is, two abstract operations of type IExpr n are equal
if and only if they have equal interpretations. In this way, the family of
abstract operations IExpr n can be understood as a subtype of the concrete
finitary operations on Expr. More specifically, the inductive family IExpr

represents precisely the finite compositions of id, val and add.
It is natural to identify a reasonable condition for which a countable

109

family such as IExpr : N) Type can be considered an abstract collection of
finitary operations without appealing to a specific interpretation function
such as J_K. Importantly, this condition should capture the compositional
structure of the operations described by a family such as IExpr. The min-
imal such condition we will require is for the family in question to be
equipped with an identity operation and closed under an n-ary composi-
tion map that respects identity and associativity laws. In order to give a
definition of an n-ary composition, we first require a family of functions
sum n : (Fin n) N)) N for calculating the sum of n natural numbers,
which can be given inductively as follows:

sum 0 ns = 0

sum 1 ns = ns zero

sum (suc (suc n)) ns = ns zero + sum (suc n) (λ i) ns (suc i))

For every n : N and n-ary product of natural numbers ns : Fin n)

N, we can now construct a family of functions comp n ns : IExpr n)

((i : Fin n)) IExpr (ns i))) IExpr (sum n ns):

comp 1 ns id↑ es = es zero

comp 0 ns (val↑ k) es = val↑ k
comp .(m + n) ns (add↑ e1 e2) es =

let es1 = comp m (π1 ns) e1 (Π1 es)
es2 = comp m (π2 ns) e2 (Π2 es)

in subst IExpr (π1+π2 ns) (add↑ es1 es2)

In the definition of comp, we make use of auxiliary dependent projection
functions,

Π1 : ((i : Fin (m + n))) IExpr (ns i))) (i : Fin m)) IExpr (π1 ns i) ,

Π2 : ((i : Fin (m + n))) IExpr (ns i))) (i : Fin n)) IExpr (π2 ns i) ,

together with the path

π1+π2 ns : sum m (π1 ns) + sum n (π2 ns) ≡ sum (m + n) ns.

The constructions for Π1, Π2 and π1+π2 can be found in our Cubical Agda
formalisation.

110

Intuitively, our composition map plugs the outputs of n operations into
the inputs of an n-ary operation. Importantly, we can show that our defi-
nition of comp preserves associativity and identity laws, where the identity
operaton is given by id↑. The left and right unit laws assert that given any
n-ary operation, either plugging its output into the input of the identity
operation represented, or plugging the identity’s output into each of its n
inputs, leaves the operation unchanged. Associativity asserts that com-
posing a finitely branching tree of operations ‘bottom-up’ is the same as
composing ‘top-down’. We provide a formal characterisation of these laws
in Section 4.

We can also observe that a similar compositional structure to that de-
scribed by comp exists for the family of all concrete finitary operations
(Fin n) Expr)) Expr, where the composition map is simply given by
n-ary function composition and the unit operation is given by the term
λ es) es zero : (Fin 1) Expr)) Expr. The interpretation function J_K can
then be understood as a homomorphism between such structures, respect-
ing both the composition map and the identity operation. This common
compositional structure on collections of operations, is precisely the struc-
ture described by planar operads.

4.2 Planar operads

A collection of finitary operations with a distinguished unit, closed under
an n-ary composition map that respects unitality and associativity, is also
known as a planar operad. Indeed, the compositional structure detailed for
the family IExpr : N) Type in the previous section precisely describes a
planar operad. In particular, planar in this context simply means that our
operadic composition map comes equipped with a choice of a total order on
the input operations. Consequently, the composition map of a planar op-
erad does not necessarily respect reordering of the input operations. In this
section we provide a formalisation of planar operads in Cubical Agda, to-
gether with an example of such an operad and several important properties
of our definition.

We begin by recalling that we can understand a countable family of
types K : N) Type as a family of finitary operations indexed by their
number of inputs. In order to avoid higher coherences, we will consider

111

only families of h-sets, i.e. K : N) hSet where hSet is the universe of
h-sets. In Cubical Agda, hSet is not a built-in universe but is instead
expressed as a dependent sum

∑
[A ∈ Type] isSet A, where isSet A is

the proposition that A is indeed an h-set. However, given a family of sets
K : N) hSet, we will simply write K n : Type for the first projection, and
will make it clear when we use the proof that this type is an h-set.

Given any family of h-sets K : N) hSet, we can define the planar
operads on K as a record type record PlanarOperad K : Type, i.e. a finitely
iterated sigma type with named projections. In particular, a planar operad
O : PlanarOperadK comes equipped with a distinguished identity operation
id O : K 1 and a family of composition maps

comp O n ns : K n) ((i : Fin n)) K (ns i))) K (sum n ns) ,

for every n : N and ns : Fin n) N. The composition map of an operad tells
us how to plug the outputs of n operations, each with its own number of
inputs ns, into the inputs of an operation with n inputs. Furthermore, we
require paths witnessing that this composition map respects the identity
and associativity laws. In particular, the left identity law is witnessed by
a path

idl O n k : comp O 1 (λ i) n) (id O) (λ i) k) ≡ k,

for every n : N and k : K n. The path idl O n k witnesses that the operation
plugging the output of k into the identity is equal to k. Right identity is
then witnessed by a heterogeneous path

idr O n k : PathP (λ i) K (sum-idr n i))

(comp O n (λ i) 1) k (λ i) id O))

k,

where sum-idr n : sum n (λ i) 1) ≡ n is the path witnessing that the
sum of n ones is n. We can understand idr O n k as witnessing that the
operation plugging the output of the identity into each of the n inputs of
k is equal to k. Finally, for every collection of natural numbers

n : N, ns : Fin n) N, nss : (i : Fin n)) Fin (ns i)) N,

112

and every collection of operations

k : K n,

ks : (i : Fin n)) K (ns i) ,

kss : (i : Fin n) (j : Fin (ns i))) K (nss i j) ,

the associativity law of comp O is witnessed by a heterogeneous path

assoc O n ns nss k ks kss :

PathP (λ i) sum-assoc n ns nss i)

(comp O n (λ i) sum (ns i) (nss i))

k (λ i) comp O (ns i) (nss i) (ks i) (kss i)))

(comp O (sum n ns) (uncurry nss ◦ sumΣ)

(comp O n ns k ks) (uncurry kss ◦ sumΣ))

where the function

sumΣ ns : Fin (sum n ns)) Σ[i ∈ Fin n] Fin (ns i)

is an equivalence witnessing that the totally ordered finite sets are closed
under dependent sums, uncurry is the usual dependent uncurrying function,
and the path

sum-assoc n ns nss :

sum n (λ i) sum (ns i) (nss i))

≡ sum (sum n ns) (uncurry nss ◦ sumΣ)

witnesses the associativity of finite sums of natural numbers. The associa-
tivity condition asserts that the two approaches to building a composition
tree from a collection of operations k, ks and kss, i.e. top down or bottom
up, are equal under the composition map comp O.

We have already seen one example of a planar operad, namely the family
of h-sets IExpr : N) hSet equipped with the n-ary composition map comp

described in the previous section. As a second example, we will consider
lists with ‘holes’ which we call partial lists and define as follows:

data PartialList (A : Type) : N) Type where

113

[] : PartialList A 0

:: : A) PartialList A n) PartialList A n
poke : PartialList A n) PartialList A (suc n)

Intuitively, the family PartialList A corresponds to partial lists indexed by
their number of holes. The idea of ‘poking holes’ in a data structure is
similar to that of previous work on zippers [Huet, 1997] and derivatives of
containers [Abbott et al., 2003; McBride, 2001, 2008]. The constructors
[] and _::_ can be understood in the usual way, while poke allows us to
introduce a hole at the start of a given list. Partial lists come equipped
with a concatenation operation _++_ : PartialList A m) PartialList A n)

PartialList A (m+ n) defined as follows:

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)
poke xs ++ ys = poke (xs ++ ys)

Given any h-set A : Type, the countable family of h-sets PartialList A comes
equipped with a planar operadic structure O : PlanarOperad (PartialList A),
with n-ary composition map:

comp O 0 ns xs xss = xs
comp O (suc n) ns (x :: xs) xss = x :: comp O (suc n) ns xs xss
comp O 1 ns (poke xs) xss

= subst (PartialList A) (+-zero (ns zero)) (xss zero ++ xs)
comp O (suc (suc n)) ns (poke xs) xss

= xss zero ++ comp O (suc n) (ns ◦ suc) xs (xss ◦ suc)

The identity operation for the compositional structure on partial lists is
then simply defined as id O = poke []. We refer readers interested in the
corresponding proofs of identity and associativity laws to our Cubical Agda
formalisation but we do not provide them here.

We might consider whether the operations characterised by the operadic
structure on PartialList A corresponds to a collection of concrete n-ary op-
erations. Indeed, there is an interpretation map fill : PartialList A n)

(Fin n) List A)) List A which fills the n holes of a partial list with
the provided n lists. In a similar fashion to the interpretation function
J_K : IExpr n) (Fin n) Expr)) Expr described in the previous section, the
function fill can be shown to be a homomorphism between planar operads

114

and respects both the compositional structure and identity operation. We
discuss how the notion of an operad homomorphism can be internalised in
HoTT in Section 8.

4.3 Symmetric operads

In the previous section, we introduced planar operads in HoTT, as a
generalisation of the usual notion of operads whose operations also come
equipped with actions of symmetric groups that are compatible with the
operad composition map. In this section, we will discuss how our existing
notion of a planar operad can be specialised to the symmetric case. Naively,
this means extending our definition of a planar operad O : PlanarOperad K

with a field

permute O n : Fin n ≃ Fin n) K n ≃ K n,

for every n : N, where A ≃ B is the type of isomorphisms between the
h-sets A and B. An isomorphism σ : A ≃ B has projections fun σ : A) B,
inv σ : B) A, linv : (a : A)) inv σ (fun σ a) ≡ a and rinv : (b : B))

fun σ (inv σ b) ≡ b. Moreover, permute O n must be a group homomor-
phism between the automorphism groups Fin n ≃ Fin n and K n ≃ K n,
but we omit the evident fields to witness preservation of identity, com-
position and symmetry. Furthermore, for all ns : Fin n) N, k : K n,
ks : (i : Fin n)) K (ns i) and σ : Fin n ≃ Fin n, we require an additional
field

symm O n ns k ks σ : PathP (λ i) K (sum-permute n ns σ i))

(comp O n ns (fun (permute O n σ) k) ks)

(comp O n ns k (ks ◦ fun σ))

witnessing that permute O n is compatible with the operad composition
map.

This naive presentation of symmetric operads can be internalised in
standard Martin-Löf type theory, but requires an explicit construction of
the permutation homomorphism and the proof of compatibility with the
operad composition map. However, this ad-hoc definition of planar operads
can be unwieldy in practice. This problem arises because a countable fam-

115

ily of h-sets K : N) Type does not, in general, come equipped with actions
of symmetric groups. Intuitively, this means that the composition map of a
planar operad can freely make use of the order in which operations are pro-
vided. This is an expected consequence of indexing operations by the nat-
ural numbers which are in equivalence with the type of finite sets equipped
with a total order, i.e. the type

∑
[A ∈ Type]

∑
[n ∈ N] A ≃ Fin n.

This can readily be seen by recognising that for any n : N, the type∑
[A ∈ Type] A ≃ Fin n is a singleton and consequently contractible.
As an alternative approach, we can instead exploit additional principles

present in HoTT in order to consider operadic structures on collections
of operations indexed over the groupoid of finite sets and bijections, i.e.
finite sets that do not, in general, come equipped with a total-ordering
on their elements. A common presentation of this groupoid in HoTT,
known as Bishop-finite sets, internalises finiteness as a predicate on types,
isFinite : Type) Type, as follows:

isFinite A =
∑

[n ∈ N] ∥ A ≃ Fin n ∥

where ∥ X ∥ is the propositional truncation of a type X. For any type
A, there is a well-known equivalence between the type isFinite A and the
h-proposition ∥

∑
[n ∈ N] A ≃ Fin n ∥, which follows from the pigeon-

hole principle. Intuitively, this equivalence witnesses that every finite set
has a unique cardinality, and therefore this notion of finiteness is an h-
proposition.

The universe of Bishop-finite sets can be internalised à la Tarski as a
large type of codes FinSet =

∑
[A ∈ Type] isFinite A together with an

interpretation map El : FinSet) Type which is simply given as the first
projection map. Importantly, this interpretation map is an embedding
which follows from the proof that the finiteness of a type is an h-proposition.
That is, for any finite sets A B : FinSet the functorial action of El on paths
is an equivalence between the path space of codes A ≡ B and the path
space of the underlying types El A ≡ El B. A Tarski universe with this
property is also known as a univalent universe. We recall that the property
that a given type A is an h-set, i.e. (x y : A) (p q : x ≡ y)) p ≡ q, is itself
an h-proposition. Therefore, given a finite set (A , n , p) : FinSet, it follows
by application of the elimination principle for propositional truncation to
p, and from the underlying isomorphism between A and Fin n, that since

116

Fin n is an h-set so is A. That is, for every finite set A : FinSet the
underlying type El A is an h-set. Therefore, given any two finite sets
A B : FinSet, by application of univalence the type of paths between them
A ≡ B is equivalent to the type of isomorphisms El A ≃ El B between their
underlying types. We will express the forward direction of this equivalence
as follows:

un : (A B : FinSet)) El A ≃ El B) A ≡ B

The universe FinSet is closed under various common type formers includ-
ing both dependent sums and products. In particular, for every finite set
A : FinSet and family of finite sets B : El A) FinSet, we have both∑̂

A B : FinSet and
∏̂

A B : FinSet together with definitional equalities
El (

∑̂
A B) =

∑
[a ∈ El A] El (B a) and El (

∏̂
A B) = (a : El A))

El (B a). The finiteness proofs for both isFinite (
∑

[a ∈ El A] El (B a))

and isFinite ((a : El A)) El (B a)) can be found in our Cubical Agda for-
malisation and in Voevodsky’s unimath Coq library. The universe of Bishop-
finite sets is also closed under isomorphism, i.e. for any two finite sets
A B : FinSet we can construct A ≡̂ B : FinSet with a definitional equality
El (A ≡̂ B) = El A ≃ El B and a proof of isFinite (El A ≃ El B). We again
refer interested readers to our Cubical Agda formalisation.

From this notion of Bishop-finite sets internalised in HoTT, we can de-
fine a collection of finitary operations as a FinSet-indexed family of h-set.
Indeed, such families are also known as combinatorial species or equiva-
lently finitary containers. Every such family K : FinSet) Type comes
equipped with a canonical right action of symmetric groups of the form
El A ≃ El A, or equivalently A ≡ A, for A : FinSet. Importantly, not
only are El A ≃ El A and A ≡ A equivalent as sets, but their canoni-
cal group structures are preserved by this equivalence. That is, they are
also equivalent as groups. In particular, for every symmetric group ele-
ment σ : A ≡ A this action is given by the automorphism witnessed by
subst K σ : K A) K A and subst K (sym σ) : K A) K A. We note that
as K is a family of h-sets, the group of paths K A ≡ K A is equivalent
to the group of automorphisms K A ≃ K A. It follows from the laws of
substitution over paths, that this construction from A ≡ A to K A ≡ K A

is provably a group homomorphism. Concretely, for any X : Type and
Y : X) Type, together with terms x y z : X, b : Y x, and paths p : x ≡ y

and q : y ≡ z, we make use of the following standard coherence laws for

117

substitution over paths:

subst Y refl b ≡ b (identity)

subst Y q (subst Y p b) ≡ subst Y (p · q) b (composition)

The proof of the symmetry law follows from both the identity and compo-
sition laws along with the symmetry law on paths, i.e. p · sym p ≡ refl.

Thus far, we have seen how FinSet-indexed families come equipped with
a canonical notion of right action of symmetric groups, in contrast to that
of N-indexed families. However, we have yet to describe what it means for
a family of types indexed over FinSet to have an operadic structure. To do
this, we begin by considering the definition of planar operads and replacing
the finite summation function sum with the dependent sum type former of
finite sets

∑̂
. The intuitive connection is that sum is the dependent sum

type former for the Tarski universe with codes given by N and interpretation
map Fin : N) Type, i.e. the universe of totally-ordered finite sets. For
example, given a collection of finitary operations K : FinSet) Type, a finite
set A : FinSet, and family of finite sets B : El A) FinSet, the composition
map of an operad O : Operad K is given by a field

comp O A B : K A) ((a : El A)) K (B a))) K (
∑̂

A B)

Moreover, given the singleton finite set ⊤ : FinSet and a family of finite sets
C : (a : El A)) El (B a)) FinSet, the right identity and associativity laws
are now given as heterogeneous paths over the following canonical paths:

∑̂
-idr A :

∑̂
A (λ a) ⊤) ≡ A

∑̂
-assoc A B C :∑̂

A (λ a)
∑̂

(B a) (Ca)) ≡
∑̂

(
∑̂

A B) (λ (a , b)) C a b)

We can construct these paths by appropriately applying un to the corre-
sponding isomorphisms between types. That is, for all A : Type, B : A)

Type and C : (a : A)) B a) Type, we construct
∑̂

-idr and
∑̂

-assoc by

118

respectively applying un to the following canonical isomorphisms:

∑
-idr : A × ⊤ ≃ El A

∑
-assoc :∑

[a ∈ A]
∑

[b ∈ B a] C a b ≃
∑

[(a , b) ∈
∑

[a ∈ A] B a] C a b

Furthermore, given any operation k : K A it is also now necessary to
witness the left identity as a heterogeneous path as follows:

idl O A k : PathP (λ i) K (
∑̂

-idl A i))

(comp O A (λ a) ⊤) k (λ a) id O)) k,

where
∑̂

-idl A :
∑̂

⊤ (λ t) A) ≡ A is constructed by application of
un (

∑̂
⊤ (λ t) A)) A to the canonical isomorphism between ⊤ × El A

and El A.
To complete our definition of a symmetric operad, we might consider

the addition of a field witnessing that our previously described right actions
of symmetric groups on the collection of operations K is compatible with
the composition map. That is, we might introduce an analogue to the
symm field for FinSet-indexed families. In particular, for every finite set
A : FinSet, family of finite sets B : El A) FinSet, operation k : K A, family
of operations ks : (a : El A)) K (El (B a)) and symmetric group element
σ : A ≡ A, we could introduce the following path as a field:

symm O A B k ks σ :

PathP (λ i) K (
∑̂

(σ i) (λ a) B (transp (λ j) El (σ (i ∨ j))) i a))))

(comp O A (B ◦ subst El σ) k (ks ◦ subst El σ))

(comp O A B (subst K σ k) ks)

However, it turns out that this formulation of symm, where the right ac-
tion of a symmetric group is defined by path substitution, can already be

119

constructed as follows:

symm O A B k ks σ i

= comp O (σ i) (λ a) B (transp (λ j) El (σ (i ∨ j))) i a))

(transp (λ j) K (σ (i ∧ j))) (∼ i) k)

(λ a) ks (transp (λ j) El (σ (i ∨ j))) i a))

That is, by switching from N to FinSet indexed families, and changing
finite summation sum to the dependent sum type former

∑̂
, our notion

of an operad restricts to the classical definition which includes compata-
bility with the right actions of symmetric groups. Importantly, we can
similarly translate our notion of a planar operad morphism to use FinSet

and
∑̂

, and we do not require a field witnessing preservation of the ac-
tions of symmetric groups. In particular, for any two families K L :

FinSet) Type, family of maps (A : FinSet)) K A) L A, operation
k : K A, and symmetric group element σ : A ≡ A, a proof witnessing that
f A (subst K σ k) ≡ subst L σ (f A k) follows directly from the property
that substitution commutes with morphisms in slice categories.

We now recall our example of the planar operadic structure on the
type family IExpr : N) Type, and introduce the following, near identical,
example of a FinSet indexed family:

data SymExpr : FinSet) Type1 where

id↑ : SymExpr ⊤
val↑ : N) SymExpr ⊥
add↑ : SymExpr A) SymExpr B) SymExpr (A ⊎ B)

In this example, the type former _⊎_ : FinSet) FinSet) FinSet cor-
responds to coproducts in the universe of finite sets, i.e. El (A ⊎ B) =

El A ⊎ El B, and ⊥ is the empty type (the finite set with cardinality 0).
The proof that finite sets are indeed closed under finite coproducts can
again be found both in our Cubical Agda formalisation and in Voevodsky’s
unimath library. Notably, SymExpr is a family of large types which is a
consequence of indexing on the large type FinSet and the constructor add↑

being parametrised over a large type. Toward the end of this section, we
will discuss an alternative encoding of finite sets when defining families of
h-sets, that will allow us to instead define SymExpr as a family of small
types.

120

In order to define the operad composition map for the family SymExpr,
for all types A B : Type and families C : A ⊎ B) Type, we will make use
of the following canonical isomorphism:

⊎-distr A B C :

(
∑

[a ∈ A] C (inl a)) ⊎
∑

[b ∈ B] C (inr b) ≃∑
[x ∈ A ⊎ B] C x

where ⊎-distr A B C is constructed in the evident way. Moreover, for every
families A : ⊤) Type and B : ⊥) Type, we will make use of the following
additional two canonical isomorphisms:

∑
-idl A : A tt ≃

∑
[x ∈ ⊤] A x∑

-⊥ B : ⊥ ≃
∑

[x ∈ ⊥] B x

We can then construct the composition map for a symmetric operad O :

Operad SymExpr as follows:

comp O .⊤ B id↑ es
= subst SymExpr

(un (El (B tt)) (
∑

[x ∈ ⊤] B x) (
∑

-idl B))

(es tt)

comp O .⊥ B (val↑ n) es =

= subst SymExpr (un ⊥ (
∑

[x ∈ ⊥] B x) (
∑

-⊥ B)) (val↑ n)

comp O .(A1 ⊎ A2) B (add↑ e1 e2) es =

let es1 = comp O A1 (B ◦ inl) e1 (es ◦ inl)

es2 = comp O A2 (B ◦ inr) e2 (es ◦ inr)
in subst SymExpr (un _ _ (⊎-distr A1 A2 B)) (add↑ es1 es2)

While we do not provide the proofs here that this construction respects the
necessary identity and associativity laws, the details can be found in our
Cubical Agda formalisation.

4.4 Small FinSet

As previously highlighted, in contrast to the typical inductive presentation
of N, we have presented the universe of finite sets, i.e. FinSet, as a large
type. Consequently, many of the FinSet-indexed families we will construct,

121

such as SymExpr, will themselves necessarily be families of large types.
Moreover, it is also necessary to address this size issue in the definition of a
symmetric operad, that will instead need to be defined over large families of
types of the form FinSet) Type1. However, as we will demonstrate in this
section, this size issue arises as a consequence of the choice of representation
of FinSet. In particular, we will introduce two small equivalent encodings
of FinSet, the first as a higher-inductive type and the second using higher-
induction recursion.

Intuitively, we can observe that the underlying type of points or con-
nected components of FinSet is equivalent to the natural numbers. That is,
we can construct an equivalence between the set-truncation of FinSet and
the type N, whose explicit construction can be found in our Cubical Agda
formalisation. Another way to understand this connection between FinSet

and N, is to construct the universe of finite sets by starting with N and
‘adding’ in the necessary paths corresponding to the permutations of finite
sets. Indeed, this is the key insight behind the two small encodings of finite
sets presented in this chapter. The first of these encodings is a standard
construction that defines the finite sets as a groupoid quotient [Sojakova,
2016] of the natural numbers by the transitive relation mapping m n : N
to the h-set of permutations Fin m ≃ Fin n. Concretely, we can define this
as a higher-inductive type in Cubical Agda as follows:

data FinSet : Type where

size : N) FinSet

eq : Fin n ≃ Fin n) size n ≡ size n
eqr : (p q : Fin n ≃ Fin n))

PathP (λ i) size n ≡ eq q i) (eq p) (eq (p · q))
trunc : isGroupoid FinSet

In this definition of FinSet, the data constructor size characterises the points
of the groupoid universe of finite sets. We then include a path constructor
eq that introduces a path between size n and itself for every permutation
of type Fin n ≃ Fin n. However, this structure alone is not sufficient as it
does not, for example, satisfy the necessary groupoid law eq (id n) ≡ refl

or more generally eq (p · q) ≡ eq p · eq q, where id n : Fin n ≃ Fin n is
the identity permutation. In order to obtain the desired groupoid structure
on FinSet, with respect to permutations, we could have considered directly
adding a constructor of the form eq (p · q) ≡ eq p · eq q. However, in con-

122

trast to heterogeneous paths, path composition is not typically a primitive
notion in implementations of cubical type theory such as Cubical Agda.
Consequently, it can be more practical to work with the provided path
constructor eqr from which eq (p · q) ≡ eq p · eq q can be derived from the
contractibility of path composition. Finally, we include a groupoid trun-
cation path constructor to remove any higher structure introduced by the
eqr constructor.

To complete our alternative encoding of the universe of finite sets, we
also require a FinSet-indexed family of types corresponding to the underly-
ing finite types. We can define this family by eliminating into the groupoid
of h-sets and mapping each point size n to Fin n. The full details of this
construction can be found in our Cubical Agda formalisation together with
closure properties such as finite products and coproducts along with de-
pendent sums. Unfortunately, in practice it can be challenging to define
eliminators on this definition of finite sets, as a consequence of the added
path constructors. In a type theory with higher-induction recursion, we can
encode finite sets by applying the technique first introduced in Section 2.8.
Concretely, we mutually define a higher-inductive type FinSet : Type to-
gether with an interpretation function El : FinSet) Type, where FinSet is
given as follows:

data FinSet : Type where

size : N) FinSet

un : (A B : FinSet)) El A ≃ El B) A ≡ B

The function El is then mutually defined as follows:

El (size n) = Fin n
El (un A B p i) = ua (El A) (El B) p i

where for any types X and Y , the function ua X Y : X ≃ Y) X ≡ Y is the
inverse of the canonical map from paths to equivalences pathToEquiv X Y :

X ≡ Y) X ≃ Y , as follows from univalence.
It can be shown that this small higher-inductive recursive representation

of FinSet is indeed equivalent to our original encoding as a large type.
The construction of this equivalence relies on the observation that for any
finite sets A B : FinSet, the function un A B : El A ≃ El B) A ≡ B

is provably inverse to the composition of the functorial action of El on

123

paths with the canonical map from paths to equivalences, i.e. the function
pathToEquiv (El A) (El B) ◦ cong El. Consequently, it can be shown that
the function El is in an embedding, i.e. the functorial action of El on
paths establishes an equivalence between the path spaces El A ≡ El B and
A ≡ B. Equivalently, the function El has propositional fibers, which we
recall means that for any X : Type the type

∑
[A ∈ FinSet] El A ≡ X

is an h-proposition. The full details of this proof can be found in our
Cubical Agda formalisation. The proof that El has propositional fibers
can subsequently be used to construct a family of isomorphisms between
the fibers of El and the propositional family isFinite : Type) Type, and
we again refer to our formalisation for the details. By contractibility of
singletons, the dependent sum taken over the fibers of El is equivalent to
FinSet, and therefore we can establish that the higher-inductive recursive
encoding FinSet is indeed equivalent to our original large encoding of finite
set.

In this chapter, we proceed by using the higher-inductive recursive def-
inition of FinSet of finite sets, which is considerably easier to work with in
practice. However, when working in a type theory with higher-inductive
types but without higher-induction recursion, the issue of size can instead
be address by the first alternative encoding discussed in this section.

4.5 Generalised operad universes

Thus far, we have seen how symmetric and planar operads can be defined
in HoTT by varying the universe (à la Tarski) with which we index collec-
tions of operations. For the planar case we considered operations indexed
by the universe of totally-ordered finite sets (N,Fin) and for the symmetric
case, we considered the more general grouopid of finite sets and bijections
(FinSet,El). To describe how an operadic composition map acts on indices,
we required both of these universes be both closed under dependent sums
and have a corresponding unit element. That is, for the planar case we
required the finite summation map sum together with the unit 1, while for
the symmetric case we instead used closure of finite sets under dependent
sums

∑̂
together with the singleton finite set ⊤. Indeed, as both the sym-

metric and planar operad definitions are otherwise uniform, this suggests
a generalisation for collections of operations indexed by any universe with

124

sufficient closure properties. In this section, we will introduce an internal
notion of such universes in HoTT which will allow us to work with a gen-
eralised notion of operads. This generalised formulation of operads will
enable us to give an account of many of the important constructions in the
theory of operads without requiring separate details for the symmetric and
planar variations.

We begin by recalling that a Tarski type universe comprises a type of
codes U : Type and an interpretation family E : U) Type. For example,
the groupoid of finite sets and bijections can be presented as a universe with
U = FinSet and E = El. In Agda, we can present the type of such universes
as a record type U : Universe with a field (projection) for the type of codes
Code U : Type and for every code A : Code U , a field J U ∋ A K : Type

corresponding to the underlying type. As a first step to capturing only those
universes closed under dependent sums, we can introduce the requirement
that a universe U must come equipped with the following type former:

∑̂
: (A : Code U)) (J U ∋ A K) Code U)) Code U

such that for every A : Code U and family B : J U ∋ A K) Code U there is
an equivalence

J
∑̂

K A B : J U ∋ (
∑̂

A B) K ≃
∑

[a ∈ J U ∋ A K] J U ∋ B a K.

In addition to closure under dependent sums, we require a field ⊤̂ : Code U
corresponding to the code for the unit type, together with an equivalence
J U ∋ ⊤̂ K ≃ ⊤. However, these properties are not sufficient to show that U
is closed under dependent sums and a unit (terminal) object. For example,
for every A : Code U , B : J U ∋ A K) Code U and C : (a : J U ∋ A K))

J U ∋ B a K) Code U , these fields are insufficient to construct a proof of
associativity:

∑̂
-assoc A B C :∑̂

A (λ a)
∑̂

(B a) (C a)) ≡
∑̂

(
∑̂

A B) (uncurry C ◦ J
∑̂

K A B).

In order to address this, we will require that for any two codes A B : Code U
we can lift equivalences between their underlying types to paths between

125

them by means of the following additional field

Inject A B : J U ∋ A K ≃ J U ∋ B K) A ≡ B

Indeed, a map of this form is typically introduced in HoTT to define the no-
tion of being Rezk-complete and consequently univalent categories [Ahrens
et al., 2015]. However, being Rezk-complete would require that Inject can
be used to prove that the canonical map from the path space A ≡ B to
the the type of equivalences J U ∋ A K ≃ J U ∋ B K is itself an equivalence,
which is too strong for our purposes. For example, this would not allow us
to capture the universe of totally ordered finite sets (N,Fin) that is in turn
used to index the operations of planar operads.

While being Rezk-complete is too strong of a property for our purposes,
it remains necessary that we can reason about the paths constructed by
means of Inject. As such, we will instead consider a weaker but similar
property that is suitable to the application of an operadic theory in HoTT.
In particular, we recall that the notion of a generalised operad universe will
be used to index a family of h-sets corresponding to the operations of an
operad. That is, given a universe U : Universe, a U -operad has operations
given by a family of h-sets K : Code U) Type. Importantly, the type of
h-sets is itself an h-groupoid and consequently the higher path structure of
codes beyond that of the 1-groupoid structure, i.e. paths between paths,
is trivially respected by K. Consequently, we need only care about the
1-groupoid structure on the equivalences between the underlying types of
codes in the universe U .

Hence, it is sufficient to include a coherence condition witnessing that
Inject preserves this 1-groupoid structure. For all codes A B C : Code U
and equivalences e1 : J U ∋ A K ≃ J U ∋ B K and e2 : J U ∋ B K ≃ J U ∋ C K,
we can achieve this by adding the field:

InjectComp A B C e1 e2 :

Inject A C (e1 · e2) ≡ Inject A B e1 · Inject B C e2

Intuitively, the family of paths InjectComp asserts that Inject must preserve
composition of equivalences, i.e. by mapping composition of equivalences to
the composition of paths. Moreover, this condition is sufficient to witness
that up to a path Inject maps identity equivalences to reflection paths.

126

Concretely, this means that for every code A : Code we can construct the
following path:

InjectRefl A : Inject A A (id≃ J U ∋ A K) ≡ refl,

where id≃ J U ∋ A K : J U ∋ A K ≃ J U ∋ A K is the identity equivalence
on J U ∋ A K.

To construct the path InjectRefl, we first apply InjectComp A A A

to the identity equivalence (twice) on J U ∋ A K and precompose with
the functorial action of Inject A A on paths applied to the path wit-
nessing that the identity equivalence composed with itself is the identity
equivalence. With this composition, we have constructed a path between
Inject A A (id≃ J U ∋ A K) and the same path composed with itself. It fol-
lows from the groupoid structure of paths that for any type A, term x : A,
and path p : x ≡ x, if there is a path of type p · p ≡ p then we can con-
struct a path of type p ≡ refl. Consequently, by applying this rule we can
construct a path between Inject A A (id≃ J U ∋ A K) and refl. Furthermore,
for any types X Y : Type if we let pathToEquiv X Y : X ≡ Y) X ≃ Y

be the canonical map from paths to equivalences then by applying the J-
elimination rule to the composition of the path witnessing that pathToEquiv

maps reflection to the identity equivalence and the path InjectRefl A, we
can construct the following family of paths:

InjectSec A B :

(p : A ≡ B)) Inject A B (pathToEquiv (cong J U ∋_K p)) ≡ p

In particular, InjectSec witnesses that Inject has all sections given by the
composition of the functorial action of the interpretation map J U ∋_K
on paths and the canonical map from paths to equivalences. Intuitively,
this condition asserts that the path spaces of the representing codes of a
universe reflect the path spaces of the underlying types and no more.

Notably, the family of paths InjectComp only witness sufficient coheren-
cies to ensure that 1-groupoid structure is preserved by Inject. That is,
we do not include additional coherencies to witness preservation of higher
paths beyond the 1-groupoid structure. This would suggest we should also
require that the type of codes Code U be an h-groupoid and that for every
code A : Code U its interpretation J U ∋ A K be an h-set. Indeed, if our

127

intention was to reason covariantly about such universes then these would
be necessary conditions. However, for our particular application to oper-
ads the codes of a universe are only used to index the groupoid of h-sets
and their interpretations are only used to index the h-sets themselves. It
is a standard result in HoTT that for any type X : Type, concrete h-level
n and n-type Y that there is an equivalence between the types X) Y

and ∥ X ∥n). Consequently, our notion of an operad that omits the re-
quirement that Code U is an h-groupoid and that J U ∋ A K is an h-set is
equivalent to the definition where these witnesses are present.

To conclude our description of generalised operad universes, we first
recall that the definition of an operadic structure on a collection of opera-
tions includes heterogeneous paths that witness that the composition map
respects left and right identity laws along with an associativity law. In
particular, for generalised operad universes these paths will necessarily be
heterogeneous over Inject applied to the following canonical equivalences:

∑̂
Idl≃ U A : J U ∋

∑̂
⊤̂ (λ t) A) K ≃ J U ∋ A K (left identity)∑̂

Idr≃ U A : J U ∋
∑̂

A (λ a) ⊤̂) K ≃ J U ∋ A K (right identity)∑̂
Assoc≃ U A B C : (associativity)

J U ∋
∑̂

A (λ a)
∑̂

(B a) (C a)) K ≃

J U ∋
∑̂

(
∑̂

A B) (uncurry C ◦ fun (J
∑̂

K A B))

for all A : Code U , B : J U ∋ A K) Code U and C : (a : J U ∋ A K))

J U ∋ B a K) Code U . In particular, these are precisely the equivalences
that are constructed from the underlying canonical equivalences on the de-
pendent sum construction in the meta-theory appropriately composed with
equivalences constructed from application of J

∑̂
K. In order to construct

U -operadic structures, we require that each of the above equivalences are
represented by the paths they are sent to by Inject. Concretely, this means
that we require paths between the above equivalences and the application
of the map that sends each X Y : Code U and e : J U ∋ A K ≃ J U ∋ A K
to pathToEquiv (cong J U ∋_K (Inject X Y e)) to the same equivalences.
Equivalently, given the inverse map to pathToEquiv following from univa-
lence, i.e. ua : X ≃ Y) X ≡ Y , we can capture the required conditions

128

with the following fields:

J
∑̂

IdlK U A :

ua (
∑̂

Idl≃ U A) ≡ cong J U ∋_K (Inject _ _ (
∑̂

Idl≃ U A))

J
∑̂

IdrK U A :

ua (
∑̂

Idr≃ U A) ≡ cong J U ∋_K (Inject _ _ (
∑̂

Idr≃ U A))

J
∑̂

AssocK U A B C :

ua (
∑̂

Assoc≃ U A B C) ≡

cong J U ∋_K (Inject _ _ (
∑̂

Assoc≃ U A B C))

While we do not fill in all of the details here, both the universe of totally-
ordered finite sets and the groupoid of finite sets and bijections satisfy all
of the outlined criteria. Another evident example of a universe for which
all of the above terms can be constructed, given careful consideration of
size issues, is the universe Type itself, with the trivial implementation.
Similarly, for any homotopy-level n ≥ −1 (i.e. propositions or higher), the
universe of n-types also satisfies these criteria.

From this characterisation of universes closed under both dependent
sums and a unit type, our internalisation of operads can be generalised
by parametrising over these universes. That is, for every such universe U :

Universe and for every collection of operations K : Code U) Type, where K
is a family of h-sets, we can internalise the notion of a generalised operadic
structure on K as a term of a parametrised record type Operad U K : Type.
Given such an operadic structure O : Operad U K, its fields are almost
identical to those detailed in Sections 4 and 5, with finite summation or
dependent sum over finite sets replaced by

∑̂
. For example, for every

A : Code U and B : J U ∋ A K) Code U the composition map for the
operad O is given by the following field:

comp O A B : K A) ((a : J U ∋ A K)) K (B a))) K (
∑̂

A B)

Similarly, the unit operation is given by a field id O : K ⊤̂. The families
of heterogeneous paths witnessing the left and right unit laws along with

129

the associativity law can be defined by appropriately applying Inject to the
respective laws on dependent sums. For example, for every A : Code U and
k : K A the corresponding left unit law for O is witnessed by the following
field:

idl O A k :

PathP (λ i) K (Inject (
∑̂

⊤̂ (λ u) A)) A (
∑

Idl J U ∋ A K) i))

(comp O ⊤̂ (λ u) A) (id O) (λ u) k)) k

To conclude our discussion on generalised operads, we describe the groupoid
structure on U -operads, for any appropriate universe U : Universe, which
arises from the path space on the type of U -operads. In HoTT, given
any type A and family of h-propositions P : A) Type, the sum type∑

[a ∈ A] P a can be considered a subtype of A as witnessed by the first
projection π1 :

∑
[a ∈ A] P a) A being an embedding. Concretely,

this means that the functorial action of the first projection map on paths,
i.e. cong π1 : x ≡ y) π1 x ≡ π1 y, is an equivalence. That is, the
path spaces of a subtype are entirely characterised by the path spaces of
its underlying type. Given a universe U : Universe and a collection of
operations K : U) Type, where K is a family of h-sets and is equipped
with an operad structure O : Operad U K, it follows that the types of
each of the paths idl O n k, idr O n k and assoc O n ns nss k ks kss are
h-propositions. Consequently, an operad can be understood as a subtype
of a record type with only an identity id and composition map comp. That
is, the operad laws are not important in characterising the path spaces
between operads, and we make use of this fact to simplify the following
definition of these path spaces.

Given any two collections of operations K L : U) Type, where both
K and L are families of h-sets and come equipped with operad structures
OK : Operad U K and OL : Operad U L, and given any family of paths
K≡L : (A : Code U)) K A ≡ L A, the heterogeneous path space between
OK and OL is equivalent to the following record type:

record PathO K≡L OK OL: Type where

field

id≡ : PathP (λ i) K≡L ⊤̂ i) (id OK) (id OL)

comp≡ : (A : Code U) (B : J U ∋ A K) Code U))

130

PathP (λ i) (k : K≡L A i)
(ks : (a : J U ∋ A K)) K≡L (B a) i)
K≡L (

∑̂
A B) i)

(comp OK A B) (comp OL A B)

Importantly, it follows from K and L being families of h-sets that the type
PathO K≡L OK OL is an h-proposition. That is, the path space between two
operads is an h-proposition. Notably, we do not require that this definition
explicitly encode paths between the proofs of unitality and associativity
of composition in the operads OK and OL. In particular, it is a standard
result that the type of these paths is contractible as a consequence of the
unitality and associativity proofs being h-propositions.

The heterogeneous path space between two operads presents a groupoid
structure on the (large) type

∑
[K ∈ (Code U) hSet)] Operad U K of all

U -operads. In particular, the hom-sets of this groupoid are characterised
by the path spaces of this type, i.e. for any two terms

(
K , OK

) (
L , OL

)
:
∑

[K ∈ (Code U) hSet)] Operad K,

their hom-set is given by the path space (K , OK) ≡ (L , OL), or equiva-
lently by the h-set

∑
[p ∈ ((A : Code U)) K A ≡ L A)] PathO p OK OK .

The full groupoid structure of this construction follows from the group
structure on path spaces.

We conclude this section with a brief discussion on the utility of the
generalised operad construction that we have introduced. In particular, by
developing a generalised formulation of operads, we can introduce further
key ideas in the theory of operads by parametrising over the notion of a
generalised operad universe where possible. This will allow us to consider
and define concepts such as operad morphisms as well as algebras and mon-
ads over an operad, each of which are uniform over the universe, without
specialising for both the planar and symmetric cases. Indeed, as we will
discuss in a later section of this chapter, even the free operad construction
can be parametrised over the universe of codes. This highlights one of the
key benefits to studying operads in HoTT, namely that the functoriality of
type families with respect to paths allows us to present a generalised notion
of an operad which in turn allows us to give uniform definitions for many
typical constructions in the theory of operads. For example, the associa-

131

tive, commutative and endomorphism operads can all be defined uniformly
over generalised operad universes, such that specialising to the universe of
totally ordered finite sets or Bishop-finite sets gives the expected variations
as planar and symmetric operads respectively. Indeed, these examples are
found in our accompanying Cubical Agda library.

In the following sections of this chapter, we develop our theory of oper-
ads in HoTT uniformly over the indexing universe. Notably, this demon-
strates that many of the standard operadic constructions such as the en-
domorphism operad (Section 4.6), the monad over an operad (Section 4.7)
and the free operad (Section 4.8) do not require that we constrain our-
selves to collections of finitary operations. Indeed, finiteness is only nec-
essary for operads whose operation data is constructed by induction over
the natural numbers. For example, the operations of a symmetric op-
erad K : FinSet) hSet can equivalently be given by a countable family
f : N) hSet together with permutations σf : Fin n ≃ Fin n) f n ≃ f n

and a family of paths witnessing that σf preserves groupoid structure
cf : (p q : Fin n ≃ Fin n)) σf (p · q) ≡ σf p · σf q. In particular, the
family of h-sets f corresponds to the data of the operations defined by a
symmetric operad and can induct on its natural input to build operations.

4.6 Category of operads

In order to study and work with operads in HoTT, we require notions for
both structure-preserving interactions between them and concrete inter-
pretations of the abstract collection of composable operations that operads
represent. In particular, this corresponds to operad homomorphisms and
operad algebras respectively. A concrete example of both an operad ho-
momorphism and algebra is that of the fill function described in Section 4,
which can be understood as a morphism from the PartialList operad to the
endomorphism operad on lists. In this section, we will begin by presenting
the categorical structure of operads within HoTT. We will then introduce
the notion of an endomorphism operad on a given type, whereby morphisms
in the category of operads into the endomorphism operad constitute the
notion of an operad algebra.

In addition to the core groupoid structure described in the previous
section, the (large) type

∑
[K ∈ (Code U) hSet)] Operad U K comes

132

equipped with a more general category structure wherein a morphism be-
tween operads is any family of maps between their operations that preserves
both compositional structure and the identity operation. In particular,
given two families of h-sets K L : Code U) Type we define the correspond-
ing family of hom-sets between U -operads by:

record _⇒_ (OK : Operad U K) (OL : Operad U L) : Type where

field

⟨_⟩ : (A : Code U)) K A) L A
id-resp : ⟨_⟩ ⊤̂ (id OK) ≡ id OL

comp-resp :

(A : Code U) (B : J U ∋ A K) Code U)

(k : K A) (ks : (a : J U ∋ A K)) K (B a)))

⟨_⟩ (
∑̂

A B) (comp OK A B k ks) ≡
comp OL A B (⟨_⟩ A k) (λ a) ⟨_⟩ (B a) (ks a))

In a similar fashion to that of the path space between two operads, this
type can be seen as a subtype of the type of slice morphisms between K

and L, i.e. the type (A : Code U)) K A) L A. That is, the types of
the fields id-resp and comp-resp are h-propositions and consequently the
path space between any two morphisms of operads is equivalent to the
path space of the action of these morphisms on the underlying operations.
Intuitively, two operad morphisms are equal (up to a path) if they act
identically on operations. Concretely, this means that given two morphisms
f g : OK ⇒ OL, the function cong ⟨_⟩ : f ≡ g) ⟨ f ⟩ ≡ ⟨ g ⟩ is an
equivalence.

Given a third family of h-sets J : Code U) Type with an operadic struc-
ture OJ : Operad U J , then for any two operad morphisms f : OJ ⇒ OK

and g : OK ⇒ OL we can construct their composition g • f : OJ ⇒ OK as
follows:

⟨ g • f ⟩ A k = ⟨ g ⟩ A (⟨ f ⟩ A k)
id-resp (g • f) = cong (⟨ g ⟩ ⊤̂) (id-resp f) · id-resp g
comp-resp (g • f) A B k ks

= cong (⟨ g ⟩ (
∑̂

A B))

(comp-resp f A B k ks) ·
comp-resp g A B (⟨ f ⟩ A k) (λ a) ⟨ f ⟩ (B a) (ks a))

The identity operation idop O : O ⇒ O on an operad O : Operad U K

133

is then given by defining ⟨ O ⟩ n k = k, with both the path id-resp and
the family of paths comp-resp holding definitionally. In order to prove that
the composition of operad morphisms is associative and unital, we recall
that the path space of operad morphisms is equivalent to the path space of
their underlying operations. Consequently, the associativity and identity
laws trivially follow from the associativity and unitality of composition of
morphisms of slices, i.e. indexed function composition.

An example of a planar operad morphism can be seen by considering
how partial lists of natural numbers can be interpreted as finite operations
on Expr. Concretely, we start by constructing a family of functions build :

(n : N)) PartialList N n) IExpr n as follows:

build 0 [] = val↑ 0

build n (k :: ks) = add↑ (val↑ k) (build n ks)
build 1 (poke []) = id↑

build (suc n) (poke (k :: ks)) = add↑ id↑ (add↑ (val↑ k) (build n ks))
build (suc (suc n)) (poke (poke ks))

= add↑ id↑ (add↑ id↑ (build n ks))

We can understand the function build as interpreting partial lists of natural
numbers as a finite sum expression, where holes correspond to variables.
Indeed, the build operad morphism highlights a useful intuition for under-
standing the partial list operad; as an abstract characterisation of linear
expressions with a finite number of variables or ‘holes’ that are context
independent. By recalling that poke [] and id↑ are the identity operations
for the PartialList and IExpr operads respectively, we can observe that build

definitionally respects the identity operation, and the proof that it also re-
spects the composition map is provided in our Cubical Agda formalisation.

We have already been introduced to two further examples of planar
operad morphisms in Section 4, namely the functions J_K : IExpr n)

(Fin n) Expr)) Expr and fill : PartialList A n) (Fin n) List A)) List A.
Both of these operation maps can be shown to be operad morphisms into a
particular instance of an endomorphism operad which is an operad whose
operations are ‘n-ary like’ functions on a given h-set and whose composi-
tion map is given by function composition. Concretely, given any universe
U : Universe and any h-set X : Type we begin by defining a collection
of operations EndoOps : Code U) Type that maps each A : Code U to
(J U ∋ A K) X)) X. Notably, when specialising to the universe of

134

totally-ordered finite sets, i.e. planar operads, this precisely corresponds to
the family of n-ary functions on X. Given that X must be a h-set, it follows
that the collection of operations EndoOps is a collection of h-sets. We de-
note the endomorphism U -operad on X by Endo U X : Operad U EndoOps

and its unit operation id (Endo U X) : (J U ∋ ⊤̂ K) X)) X is given as
follows:

id (Endo U X) f = f (inv (J⊤̂K U) tt)

Intuitively, the unit operation extracts the only element from a unitary
collection f : J U ∋ ⊤̂ K) X. For every A : Code U , B : J U ∋ A K) Code U
together with an output operation f : (J U ∋ A K) X)) X and input
operations fs : (a : J U ∋ A K)) (J U ∋ B a K) X)) X, we define the
composition map of the endomorphism operad on X as follows:

comp (Endo U X) A B f fs : (J U ∋
∑̂

A B K) X)) X
comp (Endo U X) A B f fs xs

= f (λ a) fs a (λ b) xs (inv (J
∑̂

K U A B) (a , b))))

In order to construct proofs of the identity and associativity laws for the
composition map of the endomorphism operad, we first give an account of
how the univalence map from equivalences to paths, i.e. ua : X ≃ Y)

X ≡ Y , acts when appearing twice to the left of the function arrow. Con-
cretely, for any types X1 X2 Y Z : Type together with an equivalence
e : X1 ≃ X2 and a function f : (X1) Y)) Z the action of ua e : X1 ≡ X2

on f is witnessed by a heterogeneous path:

ua)) f e : PathP (λ i) (ua e i) Y)) Z) f (λ ys) f (ys ◦ fun e))
ua)) f e i ys = f (ys ◦ ua-gluePt e i)

where ua-gluePt e i : A) ua e i is a path from the identity function to fun e

and is a standard result that can be found in the Cubical Agda standard
library. While we do not give the explicit constructions here, the proofs
that the composition map of the endomorphism operad respects the identity
and associativity laws proceeds by application of ua)) to the equivalences∑̂

Idl≃ A,
∑̂

Idr≃ A and
∑̂

Assoc≃ A B C followed by substitution along
the paths J

∑̂
IdlK, J

∑̂
IdrK and J

∑̂
AssocK respectively. The full details can

be found in our Cubical Agda formalisation.

135

4.7 Monad over an operad

To construct and compute with operadic collections of operations, it is
often useful to dependently build operations from data. Indeed, this is
precisely the behaviour of the canonical monad that arises over any operad.
In particular, an element of the monad over an operad is an operation
together with data stored at each of its inputs. Concretely, for any universe
U : Universe and collection of operations K : Code U) Type, where K is
a family of h-sets, the monad over any U -operad can be internalised in
Cubical Agda by first introducing the following record type:

record OpM (O : Operad U K) (X : Type) : Type where

constructor _▷_▷_

field

Index : Code U
Op : K Index

Data : J U ∋ Index K) X

Intuitively, Op corresponds to an abstract operation whose type of inputs
is represented by the field Index. The Data field corresponds to the data
elements that are stored at each input of this operation.

When the type of codes for the universe U is an h-groupoid, then for
any operad O : Operad U K the family of types OpM O : Type) Type

can be shown to be equipped with a (strict) 2-monadic structure on the
2-category of h-groupoids where 1-morphisms are simply functions and 2-
morphisms are paths between such functions. In particular, this monadic
structure is simply referred to as the monad over the operad O. The unit
map for this monad corresponds to storing an element at the output of the
input operation, and can be defined in Cubical Agda as follows:

return : X) OpM O X
return x = ⊤̂ U ▷ unit O ▷ λ t) x

The composition map for the monad over an operad intuitively describes
how given an output operation with the data stored at its leaves being input
operations with their own further attached data, we can use the operadic
composition map to compose the output operation with the input oper-
ations and retain the data attached to the inputs. In order to formalise
this monadic structure, we begin by introducing an dependent variation

136

of the usual monadic bind. In particular, we will index the kleisli mor-
phism of the monadic bind function over each of the inputs provided to
the output operation. Concretely, given a term ox : OpM O X, a function
f : J U ∋ Index ox K) X) OpM O Y , and the following family of inputs

In : J U ∋ Index ox K) OpM O Y
In i = f i (Data ox i)

we can construct our indexed monadic bind function as follows:

compM ox f : OpM O Y
Index (compM ox f) =

∑̂
U (Index ox) (Index ◦ In)

Op (compM ox f)
= comp O (Index ox) (Index ◦ In) (Op ox) (Op ◦ In)

Data (compM ox f) k
= let (i , j) = fun (J

∑̂
K U (Index ox) (Index ◦ In)) k

in Data (In i) j

From this definition of compM, we can then define the usual monad multi-
plication map as follows:

join : OpM (OpM O X)) OpM O X
join o = compM o (λ i x) x)

Although it is similarly possible to define the functorial map _<$>_ :

(X) Y)) OpM O X) OpM O Y by mapping each f : X) Y and
o : OpM O X to compM o (λ i) return ◦ f), the resulting term is more
involved than the one obtained by individually defining _<$>_ in the
obvious way. For example, by defining _<$>_ in terms of compM the
index of f <$> o is given by

∑̂
U (Index o) (λ i) ⊤̂ U) while using the

more direct definition the index is instead simply Index o. By using the
more direct definition of the functorial map, the usual 2-functorial laws
hold definitionally, as required. Moreover, the proofs that return and join

are strict 2-natural transformations similarly hold by definition.
To describe the 2-monadic structure of OpM O, we also require proofs of

the usual coherence laws. We begin by giving an equivalent characterisation
of the path space on OpM O X for any X : Type, which we will use to con-
struct the necessary witnesses of the coherence laws. In particular, for every
x y : OpM O X, the path space between x and y is trivially equivalent to the

137

type of triples consisting of a path p : Index x ≡ Index y between the indices,
together with a heterogeneous path PathP (λ i) K (p i)) (Op x) (Op y)

between operations and a heterogeneous path PathP (λ i) J U ∋ p i K)

X) (Data x) (Data y) between the data.
By making use of the Rezk-complete structure of the universe U , we

can define an equivalent and more practical characterisation of the path
space over OpM O X. In particular, it is often the case that the path
between indices, i.e. p, is necessarily constructed by applying Inject to lift
an equivalence between types to a path between their corresponding codes.
As such, we can alternatively represent the path space between two terms
x, y : OpM O X by the type of triples consisting of an equivalence between
indices

e : J U ∋ Index x K ≃ J U ∋ Index y K

a heterogeneous path between operations of type

PathP (λ i) K (Inject (Index x) (Index y) e i)) (Op x) (Op y)

and a family of paths between the data of type

(i : J U ∋ Index x K)) Data x i ≡ Data y (fun e i)

Importantly, the proof that this is equivalent to our original character-
isation of the path space over OpM O X relies on a known characteri-
sation of the heterogeneous path space over a function type whose do-
main ranges over a path constructed by application of univalence. Con-
cretely, given any types X Y : Type, functions f : X) Z, g : Y) Z

and equivalence e : X ≃ Y there is an equivalence between the hetero-
geneous path space PathP (λ i) ua e i) X) f g and families of paths
(x : X)) f x ≡ g (fun e x). The details of this equivalence can be found
in the Cubical Agda standard library.

We proceed by giving a general overview for the constructions of the
paths witnessing the necessary 2-monadic laws.

138

Identity. For all x : OpM O X, it is necessary to prove that the following
two identity laws hold:

join-return1 x : join (return x) ≡ x,

join-return2 x : join (return <$> x) ≡ x

We begin by constructing the following equivalences between indices:

∑̂
Idl≃ U (Index x) :

∑̂
U (⊤̂ U) (λ i) Index x) ≃ Index x∑̂

Idr≃ U (Index x) :
∑̂

U (Index U) (λ i) ⊤̂ U) ≃ Index x

The corresponding heterogeneous paths between operations are given by
idl O (Index x) (Op x) and idr O (Index x) (Op x). Finally, the family of
paths required between data for each of join-return1 and join-return2 holds
by definition, i.e. is a family of refl paths.

Associativity. For all x : OpM O (OpM O (OpM O X)), it is necessary
to prove that the following associativity condition holds:

join-assoc : join (join y) ≡ join (join <$> y)

As before, we first construct the following equivalence between indices:

∑̂
Assoc U (Index y) (Index ◦ Data y) (λ a) Index ◦ Data (Data y a))

The corresponding path between operations is then given as follows:

assoc O (Op y) (Op ◦ Data y) (λ a) Op ◦ Data (Data y a))

Finally, the family of paths between data once again holds definitionally.
For any operad O : Operad U K, the algebras over the strict 2-monad

OpM O or simply the algebras over O describe how the abstract collection
of operations represented by O can be interpreted as concrete operations
on a carrier type. Concretely, an operad algebra over O is given by a car-
rier h-set A : Type together with an operad morphism α : O ⇒ Endo U A.
Examples of operad algebras include both the function J_K : IExpr n)

(Fin n) Expr)) Expr with carrier Expr and the function fill : PartialListA n)

(Fin n) List A)) List A with carrier List A. Moreover, this notion of an

139

operad algebra gives rise to the following function:

runAlg : (O ⇒ Endo U A)) OpM O A) A
runAlg α o = ⟨ α ⟩ (Index x) (Op x) (Data x)

To conclude our discussion on the monads over an operad, we provide a
concrete example of using the monad over the partial list operad in order to
select . We begin by letting N̂ : Universe be the generalised operad universe
of totally ordered finite sets, i.e. Code N̂ = N and J N̂ ∋ n K = Fin n, and we
let PList A : Operad N̂ (PartialList A) be the partial list operad on an h-set
A. We then observe that we can monadic liftings of the _::_ and poke

constructors. In particular, for every h-groupoid X : Type we construct the
monadic lifting of _::_ as follows:

consM : A) OpM (PartialList A) X) OpM (PartialList A) X
consM a o = Index o ▷ (a :: Op o) ▷ Data o

We similarly define the monadic lifting of poke as follows:

pokeM : X) OpM (PartialList A) X) OpM (PartialList A) X
pokeM x o

= suc (Index o)

▷ poke (Op o)

▷ λ { zero) x ; (suc i)) Data o i }

We can combine these two functions to construct a function that allows us
to extract a selection of elements from a list that pass a particular predicate,
and moreover preserve the original list with holes in place of the selected
elements. Concretely, we can define this function as follows:

select : (A) Bool)) List A) OpM (PartialList A) A
select p [] = 0 ▷ [] ▷ λ ()

select p (a :: as)
= if p a then pokeM a (select p as)

else consM a (select p as)

Intuitively, select highlights elements of a list that satisfy a given predicate,
and will allow us to modify them while leaving the rest of the list intact.
Indeed, if we let fill⇒ : PList A⇒ Endo U (List A) be the operad morphism
with ⟨ fill⇒ ⟩ = fill, then for every predicate p : A) Bool and list xs : List A

140

we can construct a path of type runAlg fill⇒ ([_] <$> select p xs) ≡ xs,
where [_] : A) List A is the function constructing the singleton list. That
is, reinserting the highlighted elements back into the list without modifying
them will reconstruct the original list.

4.8 Free operad

Thus far, we have seen how a generalised form of operads can be formalised
in HoTT, and how this encompasses the usual notions of planar and sym-
metric operads. Using this framework, we now introduce and formalise one
of the key constructions in the theory of operads, namely the free operad
on a given collection of operations. In particular, this is precisely the left
adjoint construction to the forgetful functor from operads to their under-
lying operations. Intuitively, the operations of free operads correspond to
trees whose nodes are labelled by elements of a collection of operations
depending on their arity, where the composition map is given by grafting
of trees. Free operads provide an approach to constructing operation trees
independently from the choice of how to compose the underlying opera-
tions. In this section, we will give an account of the free construction for
generalised operads in HoTT, together with some important properties and
examples.

We begin with an introduction to the notion of a free planar operad on
a countable family of h-sets K : N) Type and then show how the relevant
constructions can be generalised. The operations of the free planar operad
on K are characterised by planar, finitely-branching trees in which nodes
with n-input vertices are labelled by an element of K n. Furthermore, we
require a distinguished unit tree with both a single input and output vertex
that acts as both a left and right unit for tree composition. For example,
one possible valid tree that corresponds to an operation of the free planar
operad on K can be depicted as follows:

�� �� �� �� ��
id

""

id

||

id

""

id

��

id

||
k0 : K 2

**

k1 : K 3

��

k2 : K 0

vv
k : K 3

141

In this diagram, we use id to denote the distinguished unit tree. The de-
picted operation has precisely 5 inputs and represents an operation built
by composing the outputs of the operations k0, k1 and k2 into the three
inputs of the operation k. As previously described, we also require that the
distinguished unit tree acts as both a left and right unit for tree composi-
tion. Intuitively, this means that we can collapse internal uses of the unit
tree so, for example

...
��

x : K 1

��

...

%%

...

��

...

}}
id

%%

y : K 3

yy
z : K 2

reduces to
...

��

...

��

...

��

...

��
x

��

y

��
z

For readers familiar with the notion of rose trees, this structure may seem
familiar. To recall, rose trees are the planar finitely-branching trees and
are typically labelled with elements of a parametrised type. We can define
rose trees in Cubical Agda as follows:

data RoseTree (A : Type) : Type where

leaf : RoseTree A
node : (n : N)) A) (Fin n) RoseTree A)) RoseTree A

We can easily define a function count : RoseTree A) N that counts the
total number of leaves of any given rose tree. The fibers of this count

function, i.e. the countable family of types mapping n : N to the type∑
[t ∈ RoseTree A] count t ≡ n of rose trees with n leaves, comes equipped

with an operad structure given by tree composition with unit leaf. In the
specific case where the parametrised type A is the unit type, the induced
operad is also known as the planar tree operad. The full details of this
construction can be found in our Cubical Agda formalisation and is near
identical to the following construction of the free planar operad. The key
difference between rose trees and the free planar operad, is how nodes are
labelled. In particular, for the free planar operad we are given a countable
family of h-sets K : N) Type and a node with n-inputs is labelled by an
element of K n. Concretely, we can define the operations of the free planar
operad as follows:

142

data FreePLOps (K : N) Type) : N) Type where

unit : FreePLOps K 1

comp : (n : N) (ns : Fin n) N)) K n)

((∀ i) FreePLOps K (ns i))) FreePLOps K (Σ n ns)

This definition might at first appear rather different from that of rose trees,
however this arises as a consequence of choosing to index our inductive
definition over the number of leaves rather than defining a seperate count
function whose fibers are equivalent to FreePLOps K. This is similar to
choosing to use the usual inductive definition of length-indexed vectors in
contrast to equivalently defining them as the fibers over the length function
on lists, and in practice is easier to compute with. Given that K is a family
of h-sets, it follows that FreePLOps is also a family of h-sets. We do not
give the explicit proof of this here, but it can be evidently observed from
the inductive definition of FreePLOps and the full details can be found in
our Cubical Agda formalisation.

As we should expect, our inductive construction for the operations of
the free planar operad comes equipped with a planar operadic structure
with the identity operation given by unit : FreePLOps K 1. While we do
not give an account of the full operadic structure on FreePLOps here, it
follows as a specific case of the more general free operad construction. In
particular, given a universe U : Universe, a first attempt at defining the
operations of the free U -operad is the following translation of FreePLOps

to the generalised case:

data FreeOps (K : Code U) Type) : Code U) Type where

leaf : FreeOps K (⊤̂ U)

node : (A : Code U) (B : J U ∋ A K) Code U))

K A) ((∀ a) FreeOps K (B i))) FreeOps K (
∑̂

U A B)

However, this definition of FreeOps is not a sufficient characterisation of the
free operad as it is not, in general, a family of h-sets. This is not immedi-
ately evident as although the node constructor parametrises over a type of
codes Code U that may not be an h-set, i.e. FinSet, the possible codes are
then restricted as a consequence of being used to index the node construc-
tor. Indeed, it is possible to show that the assumption that FreeOps K A

is an h-set for every family of h-sets K : Code U) Type and every code
A : Code U leads to a contradiction. We begin by defining a family of types

143

Partition : Code U) Type as follows:

Partition X =
∑

[A ∈ Code U]∑
[B ∈ (J U ∋ A K) Code U)]

(X ≡
∑̂

U A B)

We then proceed by constructing a family of types FOps : (Code U)

Type)) Code U) Type that is evidently equivalent to the family FreeOps

as follows:

FOps K X
= (X ≡ ⊤̂ U) ⊎

(
∑

[(A , B , p) ∈ Partition X]

K A × ((a : J U ∋ A K)) FreeOps K (B a)))

While we do not provide the construction of the family of equivalences
between FreeOps K A and FOps K A for all K : Code U) Type and
A : Code U here, it is a routine construction and can be found in our
Cubical Agda formalisation. As equivalences preserve h-levels, it is there-
fore sufficient to show that for any choice of universe U , family of h-sets
K : Code U) Type and code A : Code U , the assumption that FOps K A

is an h-set leads to a contradiction. In order to do this, we consider the
case where U is the universe of Bishop-finite sets, i.e. Code U = FinSet and
J U ∋ A K = J A K, K is the constant family to the unit type ⊤, and A is
the finite set size 0 : FinSet. We then proceed by recalling that retractions
preserve h-levels and therefore it is sufficient to choose any type X : Type

such that we have a term ¬isSetX : isSet X) ⊥ together with functions
f : X) FOps (λ a) ⊤) (size 0) and g : FOps (λ a) ⊤) (size 0)) X

such that we can construct a family of paths p : (x : X)) g (f x) ≡ x.
In particular, we choose X to be FinSet which can be shown to not be
an h-set. For example, the path space size 2 ≡ size 2 is equivalent to
Fin 2 ≃ Fin 2 which is not an h-proposition. In order to define the func-
tion f , we first note that for every A : FinSet we can construct a path∑̂

0 A : size 0 ≡
∑̂

A (λ a) size 0) by applying the un path constructor to
the canonical equivalence between Fin 0 and J A K × Fin 0. The function
f is then defined as follows:

f A = inr (A , (λ a) size 0) ,
∑̂

0 A
, tt , (λ a) node (size 0) (λ ()) tt (λ ())))

144

In the other direction, we define g by induction on each of the left and
right cases, whereby for the left case we have a proof of size 0 ≡ size 1

and by the functorial action of J_K on paths this gives an equivalence
Fin 0 ≃ Fin 1 and thus leads to contradiction, leaving only the right case for
consideration. For the right case, we simply project out the first component
of the partition, i.e. the first finite set. Following from this construction,
the family of paths p that witnesses that g is a retraction of f follows
definitionally, and we can therefore conclude that neither FOps or more
importantly FreeOps are families of h-sets.

As a consequence of FreeOps not being a family of h-sets, in order to
internalise the underlying operations of the free operad it is necessary to
add a set-truncation path constructor

set : (A : Code U)) isSet (FreeOps K A)

to our inductive definition. Notably, this is not the same as defining a new
family of types which maps each K : Code U) Type and A : Code U to
∥ FreeOps K A ∥0, i.e. the set or 0-truncation of FreeOps K A. Moreover,
in the case where the type of codes for the considered universe is an h-set,
such as for the universe of totally-ordered finite sets, then the versions of
the FreeOps with and without the set path constructor are equivalent.

As a consequence of presenting the operations of the free operad on
K as a higher-inductive family FreeOps K, the definition of the operad
composition map requires explicit substitutions along paths on codes in
order to construct operations with the expected labelling given to their
inputs. In practice, this can lead to “transport hell” whereby operations
of the free operad that are constructed by applying the composition map
are built from nested substitutions that consequently cannot be unfolded
in further computations. That is, the application of an inductively-defined
function to a term that is constructed by substitution along a path cannot
always be unfolded along the definitional equalities of that function. In
the presence of (small) induction-recursion, it is possible to address this
issue by presenting an alternative encoding of the operations of the free
operad that separates the shape of a labelled tree from the indexing of its
leaves. This alternative presentation allows us to avoid “transport hell”
when defining functions inductively on the shape of a tree corresponding
to an operation of the free operad.

145

Our alternative encoding of the operations of the free operad makes use
of a known equivalence between inductive families and small induction-
recursion. However, this equivalence has not been extended to higher-
inductive families and correspondingly higher small induction-recursion.
In order to highlight this issue, we first consider a naive translation of only
the data constructors of the higher inductive family FreeOps K, for every
K : Code U) Type, to a small inductive-recursive definition. Concretely,
we mutually define an inductive type FreeOpsIR K : Type together with a
recursive function CodeOps K : FreeOpsIR K) Code U as follows:

data FreeOpsIR K : Type where

leaf : FreeOpsIR K
node : (A : Code U)) K A)

(J U ∋ A K) FreeOpsIR K)) FreeOpsIR K

CodeOps K leaf = ⊤̂ U
CodeOps K (node A k ts) =

∑̂
U A (CodeOps ◦ ts)

In particular, there is an equivalence between the fibers of CodeOps K and
the inductive family FreeOps K without its set path constructor. How-
ever, as the type of codes Code U is not necessarily an h-set, the fibers of
CodeOps K cannot, in general, be shown to be h-sets and are therefore not
equivalent to the higher-inductive family FreeOps K.

In the absence of the axiom of choice, it is not sufficient to simply
consider the set truncated fibers over CodeOps K, i.e. the family mapping
each code A : Code U to the following 0-truncated type:

∥
∑

[t ∈ FreeOpsIR K] CodeOps K t ≡ A ∥0

Instead, it is necessary to add an appropriate higher path constructor to
the definition of FreeOpsIR K together with the action of CodeOps K on
this constructor, to ensure that the fibers of CodeOps K are h-sets. To
do this, we begin by noting that for any types X, Y : Type and function
f : X) Y the proposition that the fibers of f are all h-sets is equivalent
to the proposition that the fibers of the functorial action of f on paths are
all h-propositions. Moreover, this is equivalent to the proposition that the
functorial action of f is an embedding, i.e. for all terms x1 x2 : X and paths
p q : x1 ≡ x2, the function cong (cong f) : p ≡ q) cong f p ≡ cong f q

146

is an equivalence. Indeed, this embedding is precisely what we will aim to
establish by adding an appropriate path constructor to FreeOpsIR K.

In order to establish that the functorial action of CodeOps K is an
embedding, it is sufficient to present an isomorphism between the types
p ≡ q and cong (CodeOps K) p ≡ cong (CodeOps K) q, for all p q : t ≡ u,
and t u : FreeOpsIR K, where the function cong (cong (CodeOps K)) :

p ≡ q) cong (CodeOps K) p ≡ cong (CodeOps K) q is the ‘forward’
map of this isomorphism. Concretely, this means constructing a function
from cong (CodeOps K) p ≡ cong (CodeOps K) q to p ≡ q that is both
a section and retraction of the function cong (cong (CodeOps K)). From
our current definition of FreeOpsIR it is not possible to construct such a
function. However, as this function should construct a higher path within
the type FreeOpsIR K, we can first attempt to simply include it as the
following path constructor of FreeOpsIR K:

set : (t u : FreeOpsIR K) (p q : t ≡ u))

cong (CodeOps K) p ≡ cong (CodeOps K) q) p ≡ q

In Cubical Agda, the above path constructor will not be accepted on ac-
count of not being considered strictly positive. Fortunately, the solution to
this problem is as simple as flipping squares of the form

cong (CodeOps K) p ≡ cong (CodeOps K) q

along their diagonal and instead representing them with the following type
of heterogeneous paths:

PathP (λ i) CodeOps K (p i) ≡ CodeOps K (q i)) refl refl

With this alternative ‘flipped’ representation, we can then extend the def-
inition of CodeOps K over the path constructor set as follows:

CodeOps K (set t u p q r i j) = r j i

The next step to ensuring that the fibers of CodeOps K are all h-sets
is to ensure that set t u p q is indeed both a section and retraction of
cong (cong (CodeOps K)). However, this happens to already be provable
with no further adjustments to our definition. That is, the set path con-
structor is sufficient to establish that the fibers of CodeOps K are all h-sets.

147

The proof of this is a generalisation of a proof used in the construction of
univalent inductive-recursive types, whereby a path constructor asserting
injectivity of the mutually defined function is sufficient to show that it has
propositional fibers. The full details of this proof, together with a proof
that the fibers of CodeOps K are equivalent to the higher inductive family
FreeOps, can be found in our Cubical Agda formalisation.

Notably, we can always eliminate terms of FreeOpsIR K into any h-set
whereby the path constructor set is necessarily respected. Importantly,
this includes eliminating into the fibers of the function CodeOps K which
is necessary to define the composition map for the free operad. Indeed, the
fibers over CodeOps K are precisely the operations of the free operad. As
such, we define the following family of types in order to simplify definitions
in this section:

FreeOperad K A = fiber (CodeOps K) A

In order to construct the composition map over FreeOperad K, we first
introduce the following two required families of paths:∑̂

Idl1 U
: (B : J U ∋ ⊤̂ K) Code U))

B (inv (J⊤̂K U) tt) ≡
∑̂

U (⊤̂ U) B

∑̂
Assoc1 U
: (A : Code U) (B : J U ∋ A K) Code U)

(C : J U ∋
∑̂

U A B K) Code U))∑̂
U A (λ a)

∑̂
U (B a) (λ b) C (inv (

∑̂
U A B K) (a , b))))

≡
∑̂

U (
∑̂

U A B) C

While we do not give the full constructions for these paths here, they
follow from the paths

∑̂
Idl and

∑̂
Assoc respectively. Given an abstract

operation t : FreeOpsIR K and a collection of abstract operations ts :

J U ∋ CodeOps K t K) FreeOpsIR K, we can define a non-indexed version
of the operad composition map as follows:

graft t ts : FreeOperad K (
∑̂

U (CodeOps K t) (CodeOps K ◦ ts))
graft leaf ts

= ts (inv (J⊤̂K U) tt) ,

148

∑̂
Idl1 U (CodeOps K ◦ ts) (inv (J⊤̂K U) tt)

graft (node A k ts) tss
= let us : (a : J U ∋ A K))

fiber (CodeOps K) (
∑̂

U (CodeOps K (ts a)) _)

us = graft (ts a)

λ b) tss (inv (J
∑̂

K U A (CodeOps K ◦ ts)) (a , b))
in node A k (fst ◦ us) ,

(λ i)
∑̂

U A λ a) snd (us a) i) ·∑̂
Assoc1 U (CodeOps K ◦ ts) (CodeOps K ◦ tss)

We note that the action of the graft function on the set path constructor
follows from the proof that the fibers of CodeOps K are h-sets.

The indexed composition map for the free operad follows from the def-
inition of graft by reinserting the indexing of the input operations. In par-
ticular, for every code A : Code U , family of codes B : J U ∋ A K) Code U ,
indexed operation t : fiber (CodeOps K) A, and family of indexed opera-
tions ts : (a : J U ∋ A K)) fiber (CodeOps K) (B a), we can construct the
operad composition map fcomp A B t ts : fiber (CodeOps K) (

∑̂
U A B)

as follows:

fcomp A B t ts =
let

q :
∑̂

U (CodeOps K (fst t)) (CodeOps K ◦ fst ◦ ts) ≡
∑̂

U A B
q i =

∑̂
U (snd ts i) (λ a) snd (ts a) i)

(u , p) = graft (fst t) (fst ◦ ts)
in u , p · q

The unit operation for the free operad is simply given by a pair of the
term leaf : FreeOpsIR together with the reflection path witnessing that
CodeOps K leaf ≡ ⊤̂ U . We omit the constructions for the paths witnessing
the identity and associativity operad laws for the composition map fcomp

as they involve significant technical detail that is not necessary for under-
standing the general construction. However, these proofs can be found in
our Cubical Agda formalisation.

We have thus far described the operadic structure on the fibers over
the function CodeOps K for every U -species K : Code U) Type, however,
we have yet to show that this is indeed the free operad on K. Indeed

149

to do this, we will first highlight the categories on which we will define
the adjunction corresponding to the free construction. In particular, the
objects of our underlying category are U -species which themselves can be
understood as functors from the h-groupoid structure of Code U to the
category of h-sets and functions. Concretely, the functorial action of a U -
species K : Code U) Type is given by path substitution in K, i.e. a path
p : A ≡ B is lifted to subst K p : K A) K B. It is a standard result
of path substitution in HoTT that this indeed satisfies the functorial laws.
As might be expected, morphisms in the category of U -species are given by
natural transformations. That is, for any two U -species K L : Code U)

Type their corresponding hom is given by (A : Code)) K A) L A where
naturality follows from substitution commuting with morphisms in slice
categories. Finally, the target category for the free construction of a U -
operad is precisely the category of U -operads detailed in Section 8.

There is an evident forgetful functor from the category of U -operads
to the category of U -species which simply forgets the operadic structure
and acts similarly on operad morphisms by means of the projection ⟨_⟩ :
(OK ⇒ OL)) (A : Code)) K A) L A. The free operad on a U -species
K : Code U) Type is, up to a path, the operad that is constructed by the
left-adjoint to this forgetful functor. As we will show, the left-adjoint is the
functor mapping each K : Code U) Type to the collection of operations
fiber (CodeOps K) : Code U) Type equipped with its previously described
operadic structure. The functoriality of this construction follows from our
proof that it satisfies the universal property of being a left adjoint in the
usual way. The first step to showing that this is indeed left adjoint to the
forgetful functor from U -operads to U -species, is to define the following
unit natural transformation:

η : (A : Code U)) K A) fiber (CodeOps K) A
η A k = node A k (λ a) leaf) ,

∑̂
Idr U A

Moreover, we require that for every operad L : Code U) Type, O :

Operad U L, and every morphism of U -species f : (A : Code U)) K A)

L A, that we can construct an operad morphism from the operadic struc-
ture of FreeOpsIR to O. In particular, we begin by defining a non-indexed
variation of the interpretation function interpret1 O f : (t : FreeOpsIR K))

L (CodeOps K t) as follows:

150

interpret1 O f leaf = id O
interpret1 O f (node A k ts)

= comp O A (CodeOps K ◦ ts) (f A k) (interpret O f ◦ ts)

From this definition, we can define the standard indexed interpretation map
interpret : (A : Code U)) fiber (CodeOps K) A) L A as follows:

interpret O f A (t , p) = subst L p (interpret1 O f t)

As can be observed, interpret maps the identity (leaf , refl) to the term
subst L refl (id O) which is provably equal to id O and thus it respects op-
erad identity. Meanwhile, the proof that the interpretation map interpret

respects operad composition proceeds by induction on t and involves sig-
nificant technical detail. As this is not necessary to describe the general
structure of the free operad, we refer interested readers to our Cubical Agda
formalisation for the details.

Moreover, our formalisation necessarily includes a construction for the
universal property of the free operad, namely a proof that for all f : (A :

Code U)) K A) L A the type

∑
[g ∈ (A : Code U)) FreeOperad K A) L A]

((A : Code U) (k : K A)) g A (η A k) ≡ f A k)

is contractible. In particular, the base point is given by a pair of the
function interpret O f together with a witness of the proposition that for
all A : Code U and k : K A, interpret O f A (η A k) = f A k. After
unfolding the left-hand side, we can observe that it suffices to construct a
path of the following type:

subst L (
∑̂

Idr U A) (comp O A (λ a) ⊤̂ U) (f A k) (λ a) leaf)) ≡ f A k

In Cubical Agda, it is a standard result that this is provably equivalent to
the following heterogeneous path type:

PathP (λ i)
∑̂

Idr U A i)

(comp O A (λ a) ⊤̂ U) (f A k) (λ a) leaf))

(f A k)

Notably, this is precisely the type of the right identity law, i.e. idr O, for

151

the operad O applied to f A k. As such, the path idr O A (f A k) is
a witness of the required uniqueness property for our construction of the
interpretation map.

4.9 Related work

There have been several generic representations of datatypes developed in
the type theory literature. The idea of separating structure from data first
arose in the work on shapely types [Jay and Cockett, 1994]. More recently,
the theory of containers was developed to capture the idea of the strictly
positive types [Abbott, 2003]. The more general presentation of indexed
containers was later developed to capture inductive families [Altenkirch and
Morris, 2009]. Containers are closed under finite products and exponentials
[Altenkirch et al., 2010], and have a sensible notion of derivative [Abbott
et al., 2003]. The theory of containers also captures the shapely types. In
particular, shapely type constructors are precisely given by the extensions
of discretely-finite containers.

Kock [2012] introduces a generalisation of containers that captures poly-
nomial functors over groupoids. More specifically, while the standard no-
tion of a container is defined over a universe of sets, Kock introduces a
similar construction that instead makes use of a universe of groupoids.
Interestingly, groupoid containers can also be used to describe the underly-
ing collection of operations of generalised operads as introduced in Section
2.9. In particular, we represent a collection of operations as families of of
h-sets, i.e. Code U) Type, however they can equivalently be presented
as groupoid containers of the form

∑
[A ∈ hSet] (A) Code U). Indeed,

groupoid containers as introduced by Kock were developed for precisely the
same reason as our notion of generalised operad universes, i.e. to exploit
the higher structure of types to capture symmetries.

A key aspect of our theory of operads in HoTT is the notion of a fi-
nite set, and the corresponding choice of a suitable definition of finiteness.
Such a choice only manifests in constructive mathematics, where various
classically equivalent notions of finiteness are distinct. In this chapter, we
adopted a notion of finiteness used in previous work on internalising the
theory of combinatorial species in HoTT [Yorgey, 2014], namely Bishop-
finiteness. However, there has also been work on internalising ‘enumerated’

152

types and Kuratowski-finite types in the framework of HoTT [Spiwack and
Coquand, 2010; Frumin et al., 2018]. In particular, a Kuratowski-finite
type is a type A for which there merely exists a finite list that contains ev-
ery element of A. Moreover, a Kuratowski-finite set is a type that is both
an h-set and Kuratowski-finite. It can be shown that the Bishop-finite sets
are precisely the Kuratowski-finite types that have decidable equality.

Adopting a different notion of finiteness impacts both which collection
of operations are definable as a species, and which proofs about operads can
be internalised. In this chapter, this distinction does not materialise as a
consequence of developing our theory of operads uniformly over the notion
of generalised operad universes as introduced in Section 4.5. However,

The theory of combinatorial species were first introduced to unify ex-
isting approaches for analysing generating functions of discrete structures
[Joyal, 1981]. Intuitively, the idea of a species arose from the idea of build-
ing mathematical structures from a finite collection of labels. Yorgey [2014]
formalises combinatorial species in HoTT to capture specific classes of data
types, analogous to shapely types and the theory of containers. Our for-
malisation of symmetric operads in Section 4.3 can be seen as an extension
of this formalisation work, whereby we equip a combinatorial species with a
compositional structure that respects unitality and associativity conditions.

Flores et al. [2023] have recently developed a formalisation of coloured
operads [Yau, 2018] in the proof assistant Coq with the goal of reasoning
about the denotational semantics of programming languages. Coloured
operads are a particular presentation of a multicategory [Lambek, 1969],
and can be seen as a generalisation of the notion of operad introduced
in this chapter. In particular, our definition of an operad only presents
the structure of a single object multicategory. Indeed, this observation is
also made by Flores et al., who compare their formalisation to an earlier
version of the work presented in this chapter. In keeping with the standard
presentation of operadic theory, Flores et al. index operations with natural
numbers. However, our notion of an operad can be understood to generalise
in a different direction whereby we permit operations to be indexed over
any universe that satisfies the criteria outlined in Section 4.5.

The theory of operads first originated in the field of algebraic topol-
ogy [May, 2006; Boardman and Vogt, 2006] for describing operations on
iterated loop-spaces. Cyclic operads [Getzler and Kapranov, 1995] enrich

153

the standard notion of an operad by equipping it with an action that allows
interchanging any of the inputs of an operation with its output. That is,
a cyclic operad can be viewed as a symmetric operad that does not distin-
guish between its inputs and outputs. This enrichment of operads was first
introduced in order to study structures in cyclic homology and examples in-
clude the associative and commutative operads [Kimura et al., 1995]. This
additional cyclic structure cannot be captured merely by selecting a suffi-
cient operad universe as described in Section 4.5, as this does not capture
symmetries that would permit interchanging inputs and outputs.

To capture cyclic operads within the framework presented in this chap-
ter, we can use a standard approach from classical operad theory. Specifi-
cally, this involves equipping a symmetric operad with a ‘well-behaved’ in-
volution on the derivative of its underlying species [Curien and Obradovic,
2016]. Intuitively, the derivative of a species introduces a distinguished
point corresponding to the position of the output in an operation. In par-
ticular, given a combinatorial species K : FinSet) hSet, we construct its
derivative as follows ∂ K A = K (A ⊎ ⊤) and we define the family of
exchange isomorphisms ex : (A : FinSet)) ∂ (∂ K A)) ∂ (∂ K A) by sub-
stitution over the equivalence that swaps the two distinct points. A cyclic
operad can then be defined as a symmetric operad that is equipped with a
family of involutions cycle : (A : FinSet)) ∂ K A) ∂ K A together with
a collection of three laws witnessing that cycle respects both exchange and
operad composition. We omit the additional laws for cyclic operads since
they are detailed in Curien and Obradovic [2016] and are not the focus of
this chapter.

4.10 Conclusion and further work

In this chapter we have demonstrated how operads can be internalised in
HoTT, and how this gives rise to a generic calculus of operations. Notably,
we show how discretely finite containers, which represent inductive data
types whose constructors have a finite arity, give rise to a natural operadic
interpretation. Intuitively this provides an operation-centric approach to
inductive types, in contrast to the traditional data-centric approach. Our
results open up a new line of work on investigating the properties and
applications of operads from a type-theoretic perspective.

154

A natural extension of our work is generalising our formalisation of an
operad to capture coloured operads [Yau, 2018]. The relationship between
operads and coloured operads is analagous to that of containers and indexed
containers. In particular, a coloured operad can intuitively be understood
as an operad whose operations are equipped with a simple type system.
Indeed, just as our notion of an operad can be understood as equipping a
particular class of containers with a compositional structure, a formalisa-
tion of coloured operads should do the same for indexed containers.

As is typical for algebraic structures, operads have a natural dual in
‘cooperads’ [Ching, 2012]. Cooperads are defined by the evident dualisation
of operads, i.e. by reversing the direction of the composition and unit maps.
Intuitively, a cooperad over a collection of operations describes a means by
which an operation can be partitioned into ‘smaller’ operations. In this
way, cooperads are to operads as coinductive types are to inductive types.
A formalisation of the theory of cooperads would seem to follow by a trivial
dualisation of the definitions given in this paper. However, an important
asymmetry arises when considering an appropriate implementation of the
cofree cooperad. From the definition of the free operad, we can infer that
the cofree cooperad should be isomorphic to a type GU of graphs, in which
each node has a label, a distinguished output edge, and a collection of input
edges indexed by a code in U . Equivalently, GU is the type of coinductive
(infinite), U -branching, labelled trees. We postulate that, in contrast to its
inductive counterpart, counitality and coassociativity can be proven for the
‘de-composition’ operation of GU -graphs without the need for quotients.

155

Chapter 5

Conclusion

In this thesis, we have developed and explored three key ideas that are
based upon equipping types with extra structure: predicates, equations,
and composition. Each of chapters 2, 3 and 4 already incorporates their
own conclusion and future work section. This final chapter presents a high-
level reflection upon each idea, summarises our key contributions, and con-
siders connections that suggest interesting areas for further work.

Chapter 2 introduced and formalised two equivalent encodings for sub-
types that support fine-grained control over the unfolding of a chosen col-
lection of operations. In particular, the first of these encodings involved
defining the subtyping condition as a higher inductive family while the sec-
ond defined the entire subtype as a higher inductive-recursive type. This
fine-grained control over the unfolding of operations on subtypes can signif-
icantly improve the performance of type checking within any proof assistant
that supports either higher inductive families or higher induction-recursion.

In contrast to existing solutions for controlling unfolding behaviour such
as Agda’s abstract definitions, the techniques outlined in this chapter can
also be used to improve runtime performance. Importantly, this is achieved
without discarding computational content and we can construct an internal
equivalence between a subtype its encodings. Indeed, our approach can be
seen as a particular instance of using higher inductive types to efficiently
encode data with a more performant eliminator. In Section 2.9 we consid-
ered how this more general pattern could be formalised by generalising our
alternative encodings of subtypes to arbitrary dependent sums.

Notably, the techniques outlined in this chapter are not specific to ho-

156

motopy type theory. That is, we do not require support for types with
higher structure and only make use of a limited form of higher induction.
In particular, we need only be able to introduce equalities between terms
and not between the equalities themselves. Consequently, these techniques
are applicable in any type system that supports either quotient inductive
families or quotient induction-recursion. We will consider an example of
how our technique can be applied to practical programming in our sum-
mary of Chapter 3.

Chapter 3 introduced Quotient Haskell: a type system that extends Liq-
uid Haskell with support for a class of quotient inductive types whose
respectfulness theorems can be automatically verified by an SMT solver.
Moreover, this chapter presented an idealised core language that added sup-
port for quotient inductive types to the liquid type system λL introduced
by Rondon et al. [2008]. We also considered several practical examples
of quotient inductive types in Quotient Haskell such as rational numbers,
polar coordinates and the Boom hierarchy.

In addition to supporting the automated verification of respectfulness
theorems, Quotient Haskell adds subtyping rules to Liquid Haskell that
capture quotient type hierarchies. For example, binary trees can be consid-
ered a subtype of binary mobiles. The addition of these decidable subtyping
rules permits the reuse of functions along a quotient hierarchy. Further-
more, Quotient Haskell incorporates a rewriting system through which the
equalities introduced by equality constructors are automatically reified into
the refinement logic. In conjunction with the automated verification of re-
spectfulness theorems, the rewriting system of Quotient Haskell eliminates
the manual proof burden of quotient inductive types for many practical use
cases. These features were designed in order to facilitate a more lightweight
form of quotient types without comprimising on correctness.

Several possible extensions of Quotient Haskell were suggested in the
conclusion of chapter 3 including quotient polymorphism and the infer-
ence of quotient types. Included amongst these ideas for further work was
adding support for quotient induction-recursive types. Notably, support for
quotient inductive-recursive types would allow for the techniques described
in chapter 2 to be utilised in Quotient Haskell. For example, in order to
encode subtypes of lists that permit filtering we first define the following

157

type of templates for lists:

data ListT a <p :: [a] -> Bool>

= Normal { xs : [a] | p xs }

| Filter (a -> Bool) (ListT a <p>)

In the above Liquid Haskell definition we parametrise the type ListT a

over predicates on lists p :: [a] -> Bool. The predicate p corresponds
to the choice of subtyping condition. The Normal constructor consists of
an unfolded list, while Filter corresponds to filtering a list. By encoding
Filter as a constructor, we perform optimisations such as fusion before
computing along the structure of the represented list.

The type of list templates ListT a <p> is evidently not equivalent to
the type of lists for which the predicate p holds. In particular, it is certainly
possible to write functions on ListT a <p> that are not lawful functions
on lists. For example, we can easily construct a function that counts the
number of times Filter is applied. If Quotient Haskell were extended to
support quotient inductive-recursive types we would expect to be able to
mutually define the following inductive type

data List a <p :: a -> Bool>

= ListT a

|/ eq :: xs:List a <p> -> ys:List a <p>

-> { toList xs == toList ys } -> xs == ys

alongside the following recursive function:

toList :: forall a <p :: a -> Bool>. List a <p> -> [a]

toList (Normal xs) = xs

toList (Filter p xs) = filter p (toList xs)

The above construction is a direct translation of the technique introduced
in section 2.4 to Quotient Haskell. Importantly, the toList function and
Normal data constructor witness an isomorphism between List a <p> and
the type of lists for which p holds.

Chapter 4 presented a constructive theory of operads internal to homo-
topy type theory. Moreover, we demonstrated how a theory of operads
internal to HoTT presents a framework for reasoning about generic classes
of operations. We recall that the classical notion of an operad typically

158

indexes its operations over the category of ordered finite sets and that dif-
ferent ‘classes’ of operads such as symmetric operads are defined by means
of adding equational laws. In contrast, in section 4.5 we presented a no-
tion of operad in HoTT in which operations were indexed over any choice
of h-groupoid. This generalised notion of an operad allows for additional
equational laws to be captured by the higher structure of the indexing type
rather than explicit proofs. For example, families of types indexed over
FinSet can capture the property of symmetry under permutations.

In section 4.7 we formalised the construction of the canonical strict
2-monad over an operad. Moreover, we introduced the key notion of an
algebra over an operad and provide an example of using such an algebra in
practice by means of constructing selections over partial lists.

Finally, in section 4.8 we introduced two constructions in HoTT for the
free operad, as a higher inductive family and a higher inductive-recursive
type. We also proved the necessity of set-truncating the family of operations
represented by our free operad construction. Intuitively, we can understand
the free operad as providing us with a framework for writing a domain
specific language over a collection of operations for which we can decide how
to interpret. Indeed, this is analagous to how the free monad construction
is typically used for data in functional programming.

159

Bibliography

Michael Abbott. 2003. Categories of containers. Ph.D. Dissertation. Uni-
versity of Leicester.

Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2005. Containers:
constructing strictly positive types. Theoretical Computer Science 342,
1 (2005), 3–27.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride.
2003. Derivatives of containers. In Typed Lambda Calculi and Applica-
tions, Martin Hofmann (Ed.). Springer Berlin Heidelberg, Berlin, Hei-
delberg, 16–30.

Michael Abbott, Thorsten Altenkirch, Neil Ghani, and Conor McBride.
2004. Constructing polymorphic programs with quotient types. In Math-
ematics of Program Construction: 7th International Conference, MPC
2004, Stirling, Scotland, UK, July 12-14, 2004. Proceedings 7. Springer,
Berlin, Heidelberg, 2–15.

Benedikt Ahrens, Kryzsztof Kapulkin, and Michael Shulman. 2015. Uni-
valent categories and the Rezk completion. Mathematical Structures in
Computer Science 25, 5 (Jan. 2015), 1010–1039. https://doi.org/

10.1017/s0960129514000486

Thorsten Altenkirch, Paolo Capriotti, Gabe Dijkstra, Nicolai Kraus, and
Fredrik Nordvall Forsberg. 2018. Quotient inductive-inductive types. In
International Conference on Foundations of Software Science and Com-
putation Structures. Springer International Publishing, Cham, 293–310.

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Pe-
ter Morris. 2015. Indexed containers. Journal of Functional Programming
25 (2015), e5.

160

https://doi.org/10.1017/s0960129514000486
https://doi.org/10.1017/s0960129514000486

Thorsten Altenkirch and Ambrus Kaposi. 2016. Type theory in type theory
using quotient inductive types. ACM SIGPLAN Notices 51, 1 (2016),
18–29.

Thorsten Altenkirch, Paul Levy, and Sam Staton. 2010. Higher-order con-
tainers. In Programs, Proofs, Processes, Fernando Ferreira, Benedikt
Löwe, Elvira Mayordomo, and Luís Mendes Gomes (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 11–20.

Thorsten Altenkirch and Peter Morris. 2009. Indexed containers. In 2009
24th Annual IEEE Symposium on Logic In Computer Science. IEEE,
United States, 277–285.

Robert Atkey. 2018. Syntax and semantics of quantitative type theory.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science (Oxford, United Kingdom) (LICS ’18). Association
for Computing Machinery, New York, NY, USA, 56–65. https://doi.

org/10.1145/3209108.3209189

Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D Gor-
don, and Sergio Maffeis. 2011. Refinement types for secure implemen-
tations. ACM Transactions on Programming Languages and Systems
(TOPLAS) 33, 2 (2011), 1–45.

Yves Bertot and Pierre Castéran. 2013. Interactive theorem proving and
program development: Coq’Art: the calculus of inductive constructions.

John Michael Boardman and Rainer M Vogt. 2006. Homotopy invariant
algebraic structures on topological spaces. Vol. 347. Springer, Berlin,
Heidelberg.

Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. Journal of Func-
tional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/

S095679681300018X

Evan Cavallo and Robert Harper. 2018. Computational Higher Type The-
ory IV: Inductive Types. arXiv:1801.01568 [cs.LO] https://arxiv.

org/abs/1801.01568

161

https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://arxiv.org/abs/1801.01568
https://arxiv.org/abs/1801.01568

James Chapman, Tarmo Uustalu, and Niccolò Veltri. 2019. Quotienting the
delay monad by weak bisimilarity. Mathematical Structures in Computer
Science 29, 1 (2019), 67–92.

Michael Ching. 2012. A note on the composition product of symmetric
sequences. Journal of Homotopy and Related Structures 7 (2012), 237–
254.

Jesper Cockx, Dominique Devriese, and Frank Piessens. 2014. Pattern
matching without K. SIGPLAN Not. 49, 9 (aug 2014), 257–268. https:

//doi.org/10.1145/2692915.2628139

Cyril Cohen. 2013. Pragmatic quotient types in Coq. In Interactive Theo-
rem Proving: 4th International Conference, ITP 2013, Rennes, France,
July 22-26, 2013. Proceedings 4. Springer, Berlin, Heidelberg, 213–228.

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. 2016.
Cubical type theory: a constructive interpretation of the univalence ax-
iom. arXiv:1611.02108 [cs.LO]

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P.
Panangaden, J. T. Sasaki, and S. F. Smith. 1986. Implementing math-
ematics with the Nuprl proof development system. Prentice-Hall, Inc.,
USA.

Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. On Higher
Inductive Types in Cubical Type Theory. arXiv:1802.01170 [cs.LO]
https://arxiv.org/abs/1802.01170

Thierry Coquand and Christine Paulin. 1990. Inductively defined types. In
COLOG-88, Per Martin-Löf and Grigori Mints (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 50–66.

Pierre-Louis Curien and Jovana Obradovic. 2016. On the various definitions
of cyclic operads. (Jan. 2016). https://hal.science/hal-01254649

working paper or preprint.

Leonardo De Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and
Jakob von Raumer. 2015. The Lean theorem prover (system description).
In Automated Deduction-CADE-25: 25th International Conference on

162

https://doi.org/10.1145/2692915.2628139
https://doi.org/10.1145/2692915.2628139
https://arxiv.org/abs/1802.01170
https://hal.science/hal-01254649

Automated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings
25. Springer, Berlin, Heidelberg, 378–388.

Peter Dybjer and Anton Setzer. 2003. Induction-recursion and initial alge-
bras. Annals of Pure and Applied Logic 124, 1-3 (2003).

Samuel Eilenberg and Saunders MacLane. 1945. General theory of natural
equivalences. Trans. Amer. Math. Soc. 58 (1945), 231–294.

Zachary Flores, Angelo Taranto, Eric Bond, and Yakir Forman. 2023. A
formalization of operads in Coq. arXiv:2303.08894 [math.CT]

Tim Freeman and Frank Pfenning. 1991. Refinement types for ML. In Pro-
ceedings of the ACM SIGPLAN 1991 conference on Programming lan-
guage design and implementation. Association for Computing Machinery,
New York, NY, United States, 268–277.

Dan Frumin, Herman Geuvers, Léon Gondelman, and Niels van der Weide.
2018. Finite sets in homotopy type theory. In Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs.
Association for Computing Machinery, New York, NY, United States,
201–214.

E. Getzler and M.M. Kapranov. 1995. Cyclic Operads and Cyclic Homology.
International Press, Cambridge, 167–201.

Gilbert, Gaëtan and Cockx, Jesper and Sozeau, Matthieu and Tabareau,
Nicolas. 2019. Definitional proof-irrelevance without K. Proc. ACM
Program. Lang. 3, POPL, Article 3 (jan 2019), 28 pages. https://doi.

org/10.1145/3290316

Zachary Grannan, Niki Vazou, Eva Darulova, and Alexander J Summers.
2022. REST: integrating term rewriting with program verification (Ex-
tended Version). (2022). arXiv preprint arXiv:2202.05872.

Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand,
and Lars Birkedal. 2022. Controlling unfolding in type theory.
arXiv:2210.05420 [cs.LO]

Peter Hancock, Conor McBride, Neil Ghani, Lorenzo Malatesta, and
Thorsten Altenkirch. 2013. Small induction recursion. In Typed Lambda

163

https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316

Calculi and Applications, Masahito Hasegawa (Ed.). Springer Berlin Hei-
delberg, Berlin, Heidelberg, 156–172.

Brandon Hewer. 2020. HoTT Operads. https://github.com/

brandonhewer/Operads-HoTT.

Brandon Hewer. 2022. Subtyping Cubical Agda library. Available online
from https://tinyurl.com/f8pezwxd.

Brandon Hewer. 2023. Quotient Haskell. https://github.com/

brandonhewer/QuotientHaskell/tree/develop.

Brandon Hewer and Graham Hutton. 2022. Subtyping without reduction.
In Mathematics of Program Construction, Ekaterina Komendantskaya
(Ed.). Springer International Publishing, Cham, 34–61.

Brandon Hewer and Graham Hutton. 2024. Quotient Haskell: lightweight
quotient types for all. Proc. ACM Program. Lang. 8, POPL, Article 27
(jan 2024), 31 pages. https://doi.org/10.1145/3632869

Martin Hofmann. 1995. A simple model for quotient types. In International
Conference on Typed Lambda Calculi and Applications. Springer, Berlin,
Heidelberg, 216–234.

Gérard Huet. 1997. The zipper. Journal of functional programming 7, 5
(1997), 549–554.

Brian Huffman and Ondřej Kunčar. 2013. Lifting and transfer: a modular
design for quotients in Isabelle/HOL. In Certified Programs and Proofs:
Third International Conference, CPP 2013, Melbourne, VIC, Australia,
December 11-13, 2013, Proceedings 3. Springer, Berlin, Heidelberg, 131–
146.

C. Barry Jay and J. R. B. Cockett. 1994. Shapely types and shape polymor-
phism. In Programming Languages and Systems — ESOP ’94, Donald
Sannella (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 302–316.

André Joyal. 1981. Une théorie combinatoire des séries formelles. Ad-
vances in Mathematics 42, 1 (1981), 1–82. https://doi.org/10.1016/

0001-8708(81)90052-9

164

https://github.com/brandonhewer/Operads-HoTT
https://github.com/brandonhewer/Operads-HoTT
https://tinyurl.com/f8pezwxd
https://github.com/brandonhewer/QuotientHaskell/tree/develop
https://github.com/brandonhewer/QuotientHaskell/tree/develop
https://doi.org/10.1145/3632869
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1016/0001-8708(81)90052-9

Cezary Kaliszyk and Christian Urban. 2011. Quotients revisited for Is-
abelle/HOL. In Proceedings of the 2011 ACM Symposium on Applied
Computing. Association for Computing Machinery, New York, NY,
United States, 1639–1644.

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019. Con-
structing quotient inductive-inductive types. Proceedings of the ACM on
Programming Languages 3, POPL (2019), 1–24.

Ming Kawaguchi, Patrick M Rondon, and Ranjit Jhala. 2010. Dsolve:
safety verification via liquid types. In International Conference on Com-
puter Aided Verification. Springer, Berlin, Heidelberg, 123–126.

Takashi Kimura, Jim Stasheff, and Alexander A. Voronov. 1995. On op-
erad structures of moduli spaces and string theory. Communications in
Mathematical Physics 171, 1 (1995), 1–25. https://doi.org/10.1007/

BF02103769

Jan Willem Klop, Vincent van Oostrom, and Roel de Vrijer. 2008. Lambda
calculus with patterns. Theoretical Computer Science 398, 1-3 (2008),
16–31.

Joachim Kock. 2012. Data types with symmetries and polynomial functors
over groupoids. Electronic Notes in Theoretical Computer Science 286
(2012), 351–365. https://doi.org/10.1016/j.entcs.2013.01.001

Proceedings of the 28th Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXVIII).

Nicolai Kraus. 2015. Truncation levels in homotopy type theory. Ph.D.
Dissertation. University of Nottingham.

Joachim Lambek. 1969. Deductive systems and categories II. Standard con-
structions and closed categories. In Category Theory, Homology Theory
and their Applications I, Peter J. Hilton (Ed.). Springer Berlin Heidel-
berg, Berlin, Heidelberg, 76–122.

Nuo Li. 2015. Quotient types in type theory. Ph.D. Dissertation. University
of Nottingham.

165

https://doi.org/10.1007/BF02103769
https://doi.org/10.1007/BF02103769
https://doi.org/10.1016/j.entcs.2013.01.001

Peter LeFanu Lumsdaine and Michael Shulman. 2020. Semantics of higher
inductive types. In Mathematical Proceedings of the Cambridge Philo-
sophical Society, Vol. 169. Cambridge University Press, 159–208.

Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock, and
Conor McBride. 2012. Small induction recursion, indexed containers and
dependent polynomials are equivalent. (2012).

Per Martin-Löf. 1975. An intuitionistic theory of types: predicative part. In
Studies in Logic and the Foundations of Mathematics. Vol. 80. Elsevier,
Amsterdam, 73–118.

Per Martin-Lof. 1984. Intuitionistic type theory. Vol. 6. Bibliopolis Naples.

Lykourgos Mastorou, Nikolaos Papaspyrou, and Niki Vazou. 2022. Coin-
duction inductively: mechanizing coinductive proofs in Liquid Haskell.
In Proceedings of the 15th ACM SIGPLAN International Haskell Sym-
posium (Ljubljana, Slovenia) (Haskell 2022). Association for Computing
Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/

3546189.3549922

J Peter May. 2006. The geometry of iterated loop spaces. Vol. 271. Springer,
Berlin, Heidelberg.

Conor McBride. 2001. The derivative of a regular type is its type of one-hole
contexts. Unpublished manuscript (2001), 74–88.

Conor McBride. 2008. Clowns to the left of me, jokers to the right
(pearl) dissecting data structures. In Proceedings of the 35th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages.
287–295.

Lambert Meertens. 1986. Algorithmics: towards programming as a mathe-
matical activity. In Proceedings of the CWI symposium on Mathematics
and Computer Science, Vol. 1. North-Holland Publishing Company, Am-
sterdam, 289–334.

Aleksey Nogin. 2002. Quotient types: a modular approach. In International
Conference on Theorem Proving in Higher Order Logics. Springer, Berlin,
Heidelberg, 263–280.

166

https://doi.org/10.1145/3546189.3549922
https://doi.org/10.1145/3546189.3549922

Ulf Norell. 2007. Towards a practical programming language based on
dependent type theory.

Lawrence C Paulson. 2006. Defining functions on equivalence classes. ACM
Transactions on Computational Logic (TOCL) 7, 4 (2006), 658–675.

Patrick M Rondon, Ming Kawaguci, and Ranjit Jhala. 2008. Liquid types.
In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation. Association for Computing Ma-
chinery, New York, NY, United States, 159–169.

John Rushby, Sam Owre, and Natarajan Shankar. 1998. Subtypes for spec-
ifications: predicate subtyping in PVS. IEEE Transactions on Software
Engineering 24, 9 (1998), 709–720.

Mike Shulman. 2014. Higher inductive-recursive univalence and type-
directed definitions. https://homotopytypetheory.org/2014/06/08/

hiru-tdd/

Oscar Slotosch. 1997. Higher order quotients and their implementation in
Isabelle HOL. In Theorem Proving in Higher Order Logics: 10th Interna-
tional Conference, TPHOLs’ 97 Murray Hill, NJ, USA, August 19–22,
1997 Proceedings 10. Springer, Berlin, Heidelberg, 291–306.

Kristina Sojakova. 2016. Higher Inductive Types as Homotopy-Initial Al-
gebras. Ph.D. Dissertation. Carnegie Mellon University.

Arnaud Spiwack and Thierry Coquand. 2010. Construc-
tively finite? , 217-230 pages. https://inria.hal.

science/inria-00503917 Link to the full book here:
http://www.unirioja.es/servicios/sp/catalogo/monografias/vr77.shtml.

Simon Thompson. 1986. Laws in miranda. In Proceedings of the 1986 ACM
conference on LISP and functional programming. Association for Com-
puting Machinery, New York, NY, United States, 1–12.

UniMath. 2021. UniMath library. https://tinyurl.com/2j29fwp2.

The Univalent goundations Program. 2013. Homotopy type theory: univa-
lent foundations of mathematics. https://homotopytypetheory.org/

book, Institute for Advanced Study.

167

https://homotopytypetheory.org/2014/06/08/hiru-tdd/
https://homotopytypetheory.org/2014/06/08/hiru-tdd/
https://inria.hal.science/inria-00503917
https://inria.hal.science/inria-00503917
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Floris van Doorn, Jakob von Raumer, and Ulrik Buchholtz. 2017. Homo-
topy type theory in Lean. In Interactive Theorem Proving: 8th Interna-
tional Conference, ITP 2017, Brasília, Brazil, September 26–29, 2017,
Proceedings 8. Springer, Berlin, Heidelberg, 479–495.

Niki Vazou. 2016. Liquid Haskell: Haskell as a theorem prover. Ph.D.
Dissertation. University of California San Diego.

Niki Vazou, Alexander Bakst, and Ranjit Jhala. 2015. Bounded refinement
types. In Proceedings of the 20th ACM SIGPLAN International Confer-
ence on Functional Programming. Association for Computing Machinery,
New York, NY, United States, 48–61.

Niki Vazou and Michael Greenberg. 2022. How to safely use extensionality
in Liquid Haskell. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Haskell Symposium. Association for Computing Machinery, New
York, NY, United States, 13–26.

Niki Vazou, Patrick M Rondon, and Ranjit Jhala. 2013. Abstract refine-
ment types. In European Symposium on Programming. Springer, Berlin,
Heidelberg, 209–228.

Niki Vazou, Eric L Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
Peyton-Jones. 2014. Refinement types for Haskell. In Proceedings of the
19th ACM SIGPLAN international conference on Functional program-
ming. Association for Computing Machinery, New York, NY, United
States, 269–282.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G Scott,
Ryan R Newton, Philip Wadler, and Ranjit Jhala. 2017. Refinement
reflection: complete verification with SMT. Proceedings of the ACM on
Programming Languages 2, POPL (2017), 1–31.

Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. 2019. Cubical Agda:
a dependently typed programming language with univalence and higher
inductive types. Proceedings of the ACM on Programming Languages 3,
ICFP (2019), 1–29.

Donald Yau. 2018. Operads of wiring diagrams. Springer International
Publishing. https://doi.org/10.1007/978-3-319-95001-3

168

https://doi.org/10.1007/978-3-319-95001-3

Brent Abraham Yorgey. 2014. Combinatorial species and labelled structures.
Ph.D. Dissertation. University of Pennsylvania.

169

	Introduction
	Chapter summaries
	Contributions
	Publications
	Background
	Path types

	Subtyping Without Reduction
	Subtypes in type theory
	Example: even numbers
	Higher-inductive evenness
	Higher-inductive recursive even numbers
	Reflection
	Example: ordered finite sets
	IF formalisation
	IR formalisation
	Generalising our technique
	Strictification
	Related work
	Conclusion

	Quotient Haskell
	Mobiles
	Boom hierarchy
	Rational numbers
	Quotient inductive types
	Core language
	Subtyping
	Equality
	Typing rules
	Implementation
	Related work
	Reflection
	Conclusion and further work

	HoTT Operads
	Basic idea
	Planar operads
	Symmetric operads
	Small FinSet
	Generalised operad universes
	Category of operads
	Monad over an operad
	Free operad
	Related work
	Conclusion and further work

	Conclusion

