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Abstract

This thesis completes the classification of local stability thresholds (δ-invariant)

for smooth del Pezzo surfaces of degree 2 and explores the compactification of

K-moduli for Fano 3-folds. In the first part, we show that this invariant is irra-

tional if and only if there is a unique (-1)-curve passing through the point where

we are computing the local invariant. This work can be useful for future veri-

fication of K-stability in higher dimensions, this is because the computations of

δ-invariants of higher dimensional varieties are often reduced to the computa-

tions of δ-invariants of del Pezzo surfaces. The irrationality of the local stability

threshold also implies the existence of infinitely many local degenerations of the

variety, which can lead to interesting further studies. In the second part, we work

on the compactification of one-dimensional components of the moduli spaces of

Fano 3-folds by studying degenerate objects. The result on K-moduli gives some

of the few existing examples of compactifications of components of the K-moduli

space for Fano varieties. There are a total of 6 families with one-dimensional

moduli. In this thesis, we focus on 3 of those families, we explain the param-

eterization of each family, the proof of K-polystability of singular elements and

the compactification of the K-moduli component by explicitly describing each

K-polystable member of the family.
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Chapter 1

Introduction

1.1 Overview

K-stability stands at the forefront of current research in algebraic geometry, con-

necting algebraic and differential geometry. A fundamental problem in differential

geometry is to detect extremal canonical metrics. In particular, in complex geom-

etry, the natural objects of study are Kähler manifolds, whose optimal choice of

canonical metrics are the so-called constant scalar curvature Kähler (cscK) met-

rics, and a very important subcategory of these are the so-called Kähler-Einstein

(KE) metrics. Note that in this thesis we work over C. Algebraic manifolds with

constant curvature can be general type, Calabi-Yau, or Fano manifolds. The

former two are known to admit KE metrics by the celebrated results of Aubin

and Yau [Aub78; Yau78]. However, the existence of such metrics on Fano mani-

folds is obstructed. Examples of Fano manifolds without a KE metric have been

known for a long time, Matsushima gave the first example in [Mat57]. In the

latter half of the 20th century, an algebro-geometric approach was introduced to

determine whether a Fano manifold admit a KE metric. This is known as the

Yau-Tian-Donaldson conjecture, which indicates that the existence of KE metrics

is equivalent to an algebro-geometric condition called K-stability (see character-
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1.1. OVERVIEW

isation in Theorem 2.2.10), and it was recently proven for Fano varieties with at

most klt singularities by [CDS15; Tia15; LXZ22].

Theorem 1.1.1 (Yau-Tian-Donalson Conjecture [Don02; Tia97; Yau82]). Let X

be a Fano variety. Then, X admits a Kähler-Einstein metric if and only if X is

K-polystable (see characterisation in Theorem 2.2.12).

K-stability specifically refers to the stability of a variety with respect to test

configurations (see Definition 2.2.1) and their associated numerical invariants

(like the Donaldson-Futaki invariant). A test configuration is essentially a one-

parameter family whose fibres are degenerations of a variety, often leading to

simpler or more “degenerate” varieties. The Donaldson-Futaki invariant is a nu-

merical measure that assigns a real number to each test configuration, but it

is generally complicated to compute. Nowadays, an explicit verification of K-

stability has become more tangible thanks to valuative criteria, which have been

achieved via a groundbreaking introduction of birational geometric techniques to

study K-stability, see [FO18; BJ20]. Thus K-stability has been reformulated via

numerical invariants, the so-called β-invariant and stability threshold, δ. In this

thesis, these invariants have a substantial impact. In particular the latter will be

the focus of study of Chapter 3. The δ-invariant is defined via two numerical in-

variants for divisors, E, over a variety X. These are the log discrepancy, AX(E),

a numerical invariant arising from the Minimal Model Program that “measures”

singularities on X, and the expected vanishing order, S(−KX ; E), a volume av-

erage, see Definition 2.2.6. This stability threshold can be computed globally by

considering all the divisors over X or locally if we only consider those divisors

containing a specific closed subset of X in their centre.

Our interest in the δ-invariant is mainly in the study of its rationality. In their

work, Liu, Xu, and Zhuang demonstrated that for K-polystable Fano varieties,

the global stability threshold δ(X) is a rational number, under the condition that

δ(X) < 1+dim X
dim X

[LXZ22]. However, by choosing a closed point p ∈ X, we can

2



1.1. OVERVIEW

define the local stability threshold δp(X). This invariant is defined as δ(X), but

only considering the prime divisors over X, E, such that p is contained in the

centre of E (see Definition 2.2.8). The irrationality of δp(X) for a point p ∈ X

implies the existence of a log canonical place v of X such that the associated

graded ring grv R is not finitely generated, even though it was initially conjectured

to be. Moreover, as in [LXZ22, §6] one could prove the existence of infinitely many

local deformations of a del Pezzo surface of degree 2, X, in an open neighbourhood

of the points p ∈ X where δp(X) is irrational, and give the explicit description

of these deformations. Unfortunately, checking this rationality presents a more

complex challenge. Whether δp(X) is rational remains generally unpredictable.

Before the results in this thesis, the only documented example of an irrational

local delta invariant was associated with cubic surfaces, given in [AZ22, Lemma

A.6]. In this thesis, we prove the irrationality of the local stability threshold in

the following case:

Theorem 1.1.2 (= Theorem 3.0.1). [Etx24] Let X ⊂ P(1, 1, 1, 2) be a smooth

del Pezzo surface of degree 2 and let p0 ∈ X. Assume a unique (−1)-curve L is

passing through the point p0. Then δp0(X) = 6
71(11 + 8

√
3).

Notice that in a del Pezzo surface of degree 2, there are 56 (−1)-curves. So there

are infinitely many closed points in X satisfying this condition. Moreover, since

delta invariants of higher dimensional Fano varieties can be reduced to computing

delta invariants of del Pezzo surfaces (see Theorem 2.2.17), we expect this result

will be useful in the future.

One of the other major achievements of K-stability, beyond the Yau-Tian-Donaldson

Conjecture is the construction of moduli spaces for Fano varieties. Moduli spaces

are a central concept in algebraic geometry since they play an important role

in classification problems. They are spaces whose points represent equivalence

classes of algebraic objects. Moduli spaces allow geometers to study families of

objects as continuous entities rather than as isolated examples and it is convenient

3



1.1. OVERVIEW

if the moduli space itself is an algebraic variety.

Until the development of the theory of K-stability and the introduction of tech-

niques from birational geometry into it, there was no general theory to construct

moduli of Fano varieties, which has been a major open problem. Perhaps unsur-

prisingly from an analytic perspective, given that KE metrics are canonical, the

notion of K-polystability leads to a good moduli construction.

Recent advances in K-stability have shown that the compactification of the moduli

spaces of KE Fano manifolds obtained by degenerating KE metrics coincides

with a compact moduli space of K-polystable Q-Fano varieties, which is a proper

projective good moduli space [LWX21; XZ20]. However, their construction is

not explicitly defined, and there are only a few examples of detailed descriptions

of these K-moduli spaces. For instance, the compactification of the K-moduli

space of 2-dimensional Fanos called del Pezzo surfaces is already done by Odaka-

Spotti-Sun in [OSS16]. The next natural step is to consider the compactification

of the K-moduli of Fano 3-folds denoted by MKps
3 , this compactification is unique

by the uniqueness of K-polystable degenerations of Fano varieties. This is the

final step of the Calabi problem for Fano 3-folds, which consists of finding all

the K-polystable Fano 3-folds in each of 105 deformation families classified by

Iskovskikh, Mori, and Mukai in [Isk89; MM82].

Before tackling the compactification, it is necessary to know which deformation

families contain K-polystable members; this is solved in [Ara+23]. Then for

those families with such elements, we need to check the K-(poly)stability of the

smooth members. Although there has been huge progress in this respect, this

classification is still incomplete. Then the next step will be to compactify the

moduli components of each family. Out of the 78 families with K-polystable

members, 24 have 0-dimensional moduli. In this thesis, we focus on the one-

dimensional moduli components (6 families) and we prove the following theorem:

Theorem 1.1.3 (=Main Theorem 4.1.3). All one-dimensional components of
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MKps
3 are isomorphic to P1.

We recall that there are already other results on the compactification of different

components of MKps
3 [ADL23; CT23; DeV+24; LZ24; Pap22], and most of them

seem to use the geometric invariant theory (GIT) description of the families to

assist the construction of the compact K-moduli space. Moreover, in all known

cases, the K-moduli space either coincides with some GIT moduli space or is

closely related to it by blowing up certain subspaces in the GIT moduli. In our

project with Hamid Abban, Ivan Cheltsov, Elena Denisova, Dongchen Jiao, Anne-

Sophie Kaloghiros, Jesus Martinez-Garcia, and Theodoros Papazachariou, we also

used GIT as a guide but with a new hands-on approach. We first write down a

parametrisation of the objects and then examine their limits for K-polystability.

Hidden in that approach is the hope that the K-polystable limit has the same

description as the smooth objects; in other words, it lives in the same ambient

space with similar defining equations — that is to say it follows some GIT prin-

ciple. This is unfortunately not true in all the cases [Abb+23, §6]. However, in

this thesis, we focus on the families where it is true.

1.2 Organization and results

This thesis consists of two main parts, in addition to a preliminary chapter (§2)

where we review several tools employed throughout the thesis. In the first part

(§3), we complete the computations of local stability thresholds for smooth del

Pezzo surfaces of degree 2 started in [Ara+23, §2], by proving Theorem 1.1.2. The

second part (§4) focuses on the compactification of the one-dimensional compo-

nents of the K-moduli of Fano 3-folds.

More precisely, in Chapter 3 to prove Theorem 1.1.2, we first take Ea,b to be

the exceptional divisor of a certain weighted blowup at p0 with weights (a, b),

5



1.2. ORGANIZATION AND RESULTS

denoted by πa,b : Xa,b → X. Note that Ea,b has two quotient singularities coming

from the weights. We resolve these singularities in full generality and we obtain

an explicit chain of birational morphisms between Xa,b and a weak del Pezzo

surface of degree 1. This step is essential to finding an equivalence class for

π∗
a,b(−KX) as a sum of negative curves (curves with negative self-intersection) and

computing the Zariski Decomposition of the divisor π∗
a,b(−KX) − tEa,b (§3.2.2).

This decomposition splits the divisor into a negative (N) and a positive (P ) part.

Once that is done we compute AX(Ea,b)/S(−KX ; Ea,b) (see Definition 2.2.6) that

gives us an upper bound for δp0(X) (Theorem 3.3.1). Then, in Theorem 3.3.2 we

employ techniques from [AZ22] to establish lower bounds for δp0(X), requiring a

precise selection of a minimizer sequence of prime divisors Eam,bm over X. The

choice of am and bm ensures that this bound aligns exactly with the previously

found upper bound. In essence, we determine δp0(X).

On the other hand, in Chapter 4, we first introduce the 6 deformation families of

Fano 3-folds with 1-dimensional moduli. Two of them were already completely

studied in [Ara+23, Section 4.7] and [Pap22], so we just give a short review. In

the paper [Abb+23], we study the remaining 4 deformation families. However,

this thesis focuses on providing more details, explanations and proofs for 3 of

those 4 families.

Chapter 4 is divided into three sections with a similar structure, each dedicated

to one of the families. Our goal is to compactify the K-moduli, hence we want

to find all the singular K-polystable Fano 3-folds that admit a smoothing to the

family and prove Theorem 1.1.3. First, we write an explicit parametrization of the

(smooth) members of each family by the set of parameters A1\{p1, ..., pr}, then we

find the candidates for the K-polystable limits for each of those points including

the infinity point. We give a detailed geometric description of the singular limits,

X, by describing their automorphism groups, G = Aut(X), and the G-invariant

loci. This will simplify the computations to check the K-polystability of X. In

6



1.2. ORGANIZATION AND RESULTS

this process, we use the Abban-Zhuang method [AZ22], and other technical tools

such as Zariski Decomposition for 3-folds and surfaces. Once we have done this,

we construct a morphism from P1 to the one-dimensional component of MKps
3

corresponding to the family. With this we can prove Theorem 1.1.3.

7



Chapter 2

Preliminaries

2.1 Basic Notions

This section introduces definitions and some results we mention or use throughout

the thesis. We will mainly focus on quotient singularities, valuations, divisors and

Zariski decomposition.

2.1.1 Singularities and their blowups

Quotient singularities will be present in Chapter 3 and their resolution is a key

part of proving its main theorem. Let us start by giving the definitions.

Definition 2.1.1. Let r > 0 and a1, ..., an be integers and let x1, ..., xn be coor-

dinates on An. Let µr be the set of all r-th roots of the unity and suppose that

it acts on An via:

xi 7→ εaixi for all i,

where ε is a fixed primitive r-th root of unity. A singurality q ∈ X is a quotient

singularity of type 1
r
(a1, ..., an) if a neighbourhood of q is isomorphic to an analytic

neighbourhood of the origin in An/µr.

8



2.1. BASIC NOTIONS

Quotient singularities are quite common, in particular, we can find them after

weighted blowups. Here follows a local definition of weighted blowups. We refer

the reader to [ATW23, Definition 3.5] for a more general definition.

Definition 2.1.2. Let X be a quasiprojective variety and ξ ∈ X a nonsingular

point, and suppose that u1, ..., un are functions that are regular on a neighbour-

hood U of ξ on X and

(a) the equations u1 = ... = un = 0 have the single solution ξ in X;

(b) u1, ..., un form a local system of parameters on U .

Consider the product X ×P(a1, ..., an), where ai ∈ Z>0 for all 1 ≤ i ≤ n, and the

subvariety Y ⊂ X × P(a1, ..., an) consisting of points (x, [t1 : ... : tn]) with x ∈ U

and [t1 : ... : tn] ∈ P(a1, ..., an), such that

(ui(x))aj (tj)ai = (ti)aj (uj(x))ai for i, j = 1, ..., n.

The regular map σ : Y → U is called the weighted blowup of X with centre in ξ.

It is obtained as the restriction to Y of the projection onto the first component

X × P(a1, ..., an) → X.

Remarks 1. 1. Notice that when a1 = ... = an = 1 we will recover the

definition of an ordinary blowup of a smooth point.

2. The Y defined above has a quotient singularity lying in the exceptional

divisor of the weighted blowup, i.e. in σ∗(ξ). For each of ai ̸= 1 of type
1
ai

(a1, ..., âi, ..., an), the notation âi means that we are removing this coor-

dinate from the tuple, so it is of length n − 1 now.

Let us see a simple example of what happens with a weighted blowup at a smooth

point in a dimension 2 variety.

9



2.1. BASIC NOTIONS

Example 2.1.3. Let S be an algebraic variety of dimension 2, and let p ∈ S

be a smooth point. Let (u, v) be the local coordinates of S in a neighbourhood

of p. Let πa,b : Y → S be a weighted blowup at p with weights wt(u) = a

and wt(v) = b, such that gcd(a, b) = 1. Let E be the πa,b-exceptional divisor,

notice that E = P(a, b). Let Du and Dv be two divisors in S passing through

p, such that their equations in a neighbourhood of p can be written in local

coordinates as Du := {u = 0} and Dv := {v = 0}. After the weighted blowup

the intersections will change. Let D̃u and D̃v be the strict transforms of Du and

Dv, respectively. Then we have, π∗
a,b(Du) ∼ D̃u + aE and π∗

a,b(Dv) ∼ D̃v + bE.

Taking into account that D̃u · D̃v = π∗
a,b(Du) · π∗

a,b(Dv) − 1, it is straight forward

that E2 = − 1
ab

, D̃u · E = 1
b

and D̃v · E = 1
a
. Moreover, as mentioned before we

have two quotient singularities in E at the intersection points with Dv and Du,

denoted by q1 = 1
a
(1, b) and q2 = 1

b
(1, a), respectively.

In Chapter 3 we will see how to do the resolution of singularities of the example

2.1.3. Let me remind you of the definition of resolution of singularities:

Definition 2.1.4. Given an algebraic variety X, a resolution of singularities is a

proper birational morphism π : Y → X such that Y is smooth. In addition, if Y

does not have π-exceptional divisors, then π : Y → X is a small resolution.

There is also another classification of singularities using the discrepancy. How-

ever, before introducing this concept let us define log pairs.

Definition 2.1.5. A logarithmic pair (also called a log pair for short) is a pair

consisting (X, D) of a normal variety X and a boundary Q-divisor D. A boundary

divisor D = ∑
dkDk is a divisor that has all the coefficients between 0 and 1, i.e.,

0 ≤ dk ≤ 1, where the Dk are the distinct irreducible components. We call

KX + D the log canonical divisor of the log pair (X, D).

Definition 2.1.6. Let (X, D) be a log pair consisting of a normal variety X and

a boundary Q-divisor D = ∑
dkDk. Assume that KX + D is Q-Cartier. Let

10



2.1. BASIC NOTIONS

f : V → X be a birational morphism from a nonsingular variety V . Let E be a

prime divisor in V , i.e. a prime divisor over X, then we define the discrepancy of

the pair (X, D) at E as

a(E; X, D) = ordE(KV − f ∗(KX + D) + f−1
∗ (D)),

where ordE gives the the vanishing order along E and f−1
∗ (D) is the strict trans-

form of D. The log discrepancy of the pair (X, D) at E is defined to be

AX,D(E) = a(E; X, D) + 1,

so that

KV + DV = f ∗(KX + D) +
∑
E

AX,D(E)E,

where DV = ∑
E E + f−1

∗ (D).

There is a more general definition of log discrepancy in [LXZ22, Def. 2.5].

Once we have the definitions above, we can define the most important classes of

singularities.

Definition 2.1.7. Let (X, D) be a log pair where X is a normal variety of

dimension greater or equal to 2 and D = ∑
aiDi is a sum of distinct prime divisors

and ai are rational numbers such that 0 < ai ≤ 1. Assume that m(KX + D) is

Cartier for some m > 0. We say that (X, D) is

terminal

canonical

klt

plt

lc



if a(E, X, D)



> 0 for every exceptional E,

≥ 0 for every exceptional E,

> −1 for every E,

> −1 for every exceptional E,

≥ −1 for every E.

Here klt is short for ’Kawamata log terminal’, plt for ’purely log terminal’ and lc

11



2.1. BASIC NOTIONS

for ’log canonical’.

A lc centre is an irreducible subvariety V ⊂ X such that V is the image of π(E)

for some E (prime divisor) such that 1 − a(E) ≤ 0, where π : Y → X is the

log-resolution of (X, D) (see [Laz04, Theorem 4.1.3]).

A log canonical place is a valuation corresponding to E as above (see Definition

2.1.12). The non-lc centre Nlc(X, D) of a pair (X, D) is the set of closed points

x ∈ X such that (X, D) is not lc at x.

Definition 2.1.8. We say that X is log Fano if there exists a divisor D such that

−(KX + D) is ample and (X, D) is Kawamata log terminal.

2.1.2 Valuation and Divisors

Valuations are essential in the study of K-stability. Moreover, we will see in §2.2.6

that its characterisations involve valuative criteria. Sometimes these valuations

are also connected to divisors in our variety. In this section, we will introduce

some definitions and properties.

Definition 2.1.9. A discrete valuation on a field K is a group homomorphism

ν : K∗ → Z

such that ν(xy) = ν(x) + ν(y) for x, y, xy ∈ K∗ and which is onto and satisfies

ν(x + y) ≥ min(ν(x), ν(y)) when x, y, x + y ∈ K∗. The corresponding discrecte

valuation ring is R = {x ∈ K∗|ν(x) ≥ 0} ∪ {0}.

Definition 2.1.10. The centre of v on X, denoted by cX(v), is a scheme-theoretic

point ξ ∈ X such that v ≥ 0 on OX,ξ, and v > 0 on the maximal ideal mX,ξ.

Denote by CX(v) := cX(v).

Definition 2.1.11. Let Y and X be two normal varieties. Let ϕ : Y → X be

a proper birational morphism and let p ∈ Y be a point where Y is regular. Let

12
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{y1, ..., yr} ∈ OY,p be a local coordinate system at p, and take a = (a1, ..., ar) ∈

Rr
≥0 \ {0}. For f ∈ OY,p, we write f = ∑

b∈Zr
≥0

cby
b with cb ∈ ÔY,p either zero or

a unit. We define va as follows,

va(f) := min{⟨a, b⟩|cb ̸= 0}.

If a valuation can be written in this form, it is called a quasi-monomial valuation.

As mentioned before, we can use divisors over X to define valuations.

Definition 2.1.12. Let π : Y → X be a proper morphism where Y is normal.

A prime divisor E on Y is called a prime divisor over X. It induces a valuation

ordE : K(X)× → Z by taking the vanishing order along E. A valuation v ∈ ValX

is called divisorial if v = c · ordE for some prime divisor E over X and some

c ∈ R>0.

We also need to introduce some notation for divisors.

Definition 2.1.13. Let L be a big and nef divisor on X. Then, we define the

stable base locus of L as

BS(L) = {x ∈ X|s(x) = 0 for all sections s ∈ H0(X, mL) for all m ∈ N>0}.

Now, let me introduce you to some special divisors, that will appear later on.

Definition 2.1.14. Let (X, D) be a log pair and let F be a prime divisor over

X. When F is a divisor on X we write D = D1 + aF where F ⊈ Supp(D1);

otherwise let D1 = D.

(i) F is said to be primitive over X if there exists a projective birational mor-

phism π : Y → X such that Y is normal and −F is a π-ample Q-Cartier

divisor (see [Laz04, Definition 1.7.1]). We call π : Y → X the associated

prime blowup (it is uniquely determined by F ).

13
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(ii) F is said to be of plt type if it is primitive over X and the pair (Y, DY + F )

is plt in a neighbourhood of F , where π : Y → X is the associated prime

blowup and DY is the strict transform of D1 on Y . When (X, D) is klt and

F is exceptional over X, π is called a plt blowup over X.

Next, we introduce the different for divisors on a surface. This appears, for

instance, in the K-stability computations when we have some singular points.

Let S be a regular surface and C ⊂ S a regular curve. The classical adjunction

formula says that KC ∼ (KS+C)|C . However, if S is only normal, each singularity

of (S, C) leads to a correction term, called the different. Since the singularities

of C can be complicated, we compute everything on the normalization C → C.

Definition 2.1.15. Let S be a normal surface and C ⊂ S a reduced curve with

normalization C → C. Let F be a Q-divisor on S with no components in common

with C.

Let f : Y → S be a log resolution of (S, C) with exceptional curves Ei and

C̃, F̃ ⊂ Y the strict tranforms of C, F . Note that C̃ ≃ C. There is a unique

∆(S, Y, C + F ) := ∑
diEi such that

(∆(S, T, C + F ) · Ei) = −((KY + C̃ + F̃ ) · Ei) ∀i.

Define the different as

DiffC(F ) := (F̃ + ∆(S, T, C + F ))|
C̃

You can see in [Kol13, p. 2.35.1] that this is independent of the choice of f .

Next, we will introduce one of the tools we use the most: the Zariski Decompo-

sition for surfaces and 3-folds. This is key to computing the volume of divisors

and essential in both Chapters 3 and 4.

14
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Zariski decomposition

Before defining the Zariski decomposition, we need to introduce some concepts.

Let X be a projective variety and N1(X) the group of Cartier divisors modulo

numerical equivalence. We denote by Nef(X) the cone generated by nef divisors

in N1(X)R. Likewise, we denote by Eff(X) (resp., Mov(X)) the closure of the

cone of effective divisors (resp., movable divisors). Similarly, Let N1(X) be the

group of 1-cycles modulo numerical equivalence. We define the Mori cone NE(X)

to be the closure of the cone of effective 1-cycles in N1(X)R.

Definition 2.1.16. A small Q-factorial modification (SQM) of a normal projec-

tive variety X is a small (i.e. isomorphic in codimension one) birational map

X 99K Y to another normal Q-factorial projective variety Y .

Definition 2.1.17. A normal projective variety X is called a Mori Dream Space

(MDS) if the following conditions are satisfied:

(1) X is Q-factorial with Pic(X)Q ∼= N1(X)Q;

(2) Nef(X) is generated by finitely many semiample divisors (see [Laz04, Defi-

nition 2.1.15]);

(3) There are finitely many SQMs fi : X 99K Xi such that each Xi satisfies (1)

and (2), and Mov(X) is the union of f ∗
i (Nef(Xi)).

Let f : X 99K Y be a birational map between normal projective varieties. If

E1, ..., Ek are the prime divisors contracted by f , then E1, ..., Ek are linearly

independent in N1(X)R and each Ei spans an extremal ray of Eff(X). The

effective cone of a MDS also has a decomposition into rational polyhedral cones:

Proposition 2.1.18. [HK00, Prop. 1.11 (2)]. Let X be a MDS. There are

finitely many birational contractions gi : X 99K Yi, with Yi a MDS, such that

Eff(X) =
⋃
i

Ci, with Ci = g∗
i Nef(Yi) + R≥0{E1, ..., Ek},
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where E1, ..., Ek are the prime divisors contracted by gi.

The cones Ci are called Mori chambers of X. This proposition gives us a Zariski

decomposition for X: for each effective Q-Cartier divisor D on X, there exists a

birational contraction g : X 99K Y (factoring through an SQM and a birational

morphism X 99K X ′ → Y ) and Q-divisors P and N , such that P is nef on X ′, N

is an effective divisor contracted by g and by clearing up the denominator of N

and taking P = g∗g∗(D) and N = D − P , one gets a canonical inclusion

H0(X, O(mP )) ↪→ H0(X, O(mD))

which is surjective for every positive integer m and for a sufficiently large and

divisible m is an isomorphism.

Remarks 2. (a) If X is a MDS, all birational contractions X 99K Y with Q-

factorial Y , are the ones that appear in Proposition 2.1.18. In particular,

any such Y is a MDS.

(b) The SQMs in Definition 2.1.17 are the only SQMs on X. In particular, any

SQM of a MDS is itself a MDS.

This decomposition of divisors is essential to computing stability thresholds, par-

ticularly to compute the volume of divisors. For surfaces, the Zariski Decompo-

sition always exists and we have an explicit description of it:

Theorem 2.1.19. (Zariski decomposition). [Laz04, Theorem 2.3.19] Let X

be a smooth projective surface and let D be a pseudoeffective (i.e. (D ·H) ≥ 0 for

every nef divisor H on X) integral divisor on X. Then D can be written uniquely

as a sum:

D = P + N

of Q-divisors with the following properties:

16
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(i) P is nef;

(ii) N = ∑r
i=1 aiEi is effective, and if N ̸= 0 then the intersection matrix

determined by the components of N , i.e. the matrix where in the entry

(i, j) we have the intersection Ei · Ej, denoted by

(Ei · Ej)i,j∈{1,..,r}

is negative definite;

(iii) P is orthogonal to each of the components of N , i.e. (P · Ei) = 0 for every

1 ≤ i ≤ r.

P and N are respectively called the positive and the negative parts of D. This

definition could be also extended to dimension 3 in some cases where the Zariski

decomposition exists (recall that this is not always the case). But as we mentioned

before, it exists for MDSs which are the objects we work with in this thesis. We

give examples of how to apply this theory in the proof of Theorem 3.3.1 for

surfaces and in Chapter 4 for 3-folds.

Corollary 2.1.20. Let X be a smooth projective variety of dimension n = 2, 3

that admits a Zariski Decomposition and let D be a pseudoeffective integral divisor

on X. Then,

vol(D) = P n

where P is the positive part of D.

In particular, the volume of an integral divisor on a surface is always a rational

number.

2.1.3 Fano varieties

In this section, we will introduce the objects of study of this thesis.
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Definition 2.1.21. Let X be an algebraic variety. We say X is Fano if it is a

normal, projective variety whose anticanonical divisor, −KX , is ample.

These objects are strongly related to one of the three possible terminations of

the Minimal Model Program: Fano fibrations. Hence, they are of high interest

and have been deeply studied in algebraic geometry. If we focus on smooth

Fano varieties, P1 is the only example in dimension 1. In dimension 2, we have

10 deformation families called del Pezzo surfaces named after the mathematician

who encountered them while exploring the surfaces of degree n in Pn and classified

them in [Del87]. These del Pezzo surfaces are classified by the degree d. For a del

Pezzo surface X, the degree is defined by the self-intersection of the anticanonical

divisor, (−KX)2 = d.

Remark 2.1.22. All of them but P1 × P1 can be represented as the blowup of

P2 at r points in general position, for 0 < r < 9. In these cases, d = 9 − r.

In Chapter 3, we focus on studying the K-stability of degree 2 del Pezzo surfaces,

and we give more details about this specific surface in section 3.1.1.

On the other hand in dimension 3 we have 105 deformation families classified by

Inskovskikh, Mori and Mukai [Isk89; MM82]. And we work with some of these

families in Chapter 4.

2.2 K-stability

K-stability was first introduced from a differential geometric perspective by Yau

and Tian [Yau96; Tia97] and later reformulated by Donaldson [Don02]. The

original algebraic definition was given in terms of test configurations and their

Donaldson-Futaki invariant [Oda12]. Later, thanks to the use of birational geom-

etry techniques in the study of K-stability, new characterisations were introduced
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in [FO18; Fuj19a], these are more practical from a computational perspective

and easier to verify. In this section, we will introduce K-stability and K-moduli

by giving some definitions and outstanding results in the topic, however for a

detailed exploration of this topic, please consult [Xu20] or any specific references

given throughout the section.

2.2.1 Definitions of K-stability

First, recall that all definitions and results in this thesis are over the field C.

Before introducing Donaldson’s first algebraic definition, let us define test config-

urations. Stability is typically determined by a numerical criterion based on the

degenerations of the object we are studying and test configurations provide the

data that encode these degenerations [Don02].

Definition 2.2.1. Let X be an n-dimensional Q-Fano variety. Assume that

−rKX is Cartier for some fixed r ∈ N. A test configuration of (X, −rKX) is

composed of

• a variety X tc with a Gm-action,

• a Gm-equivariant ample line bundle Ltc → X tc,

• a flat Gm-equivariant map π : (X tc, Ltc) → A1, where Gm acts on A1 by

multiplication in the standard way (t, a) → ta,

such that for any t ̸= 0, (X tc
t , Ltc

t ) is isomorphic to (X, −rKX), where X tc
t =

π−1(t) and Ltc
t = Ltc|X tc

t
.

We say that (X tc, Ltc) is a Q-test configuration of (X, −rKX) for a fixed r ∈ Q>0 if

Ltc is a Q-Cartier divisor class on X tc such that for some integer s ≥ 1, (X tc, sLtc)

yields a test configuration of (X, −srKX).
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Remark 2.2.2. In the above case, these test configurations (X tc, Ltc) arise nat-

urally from the one-parameter subgroups of GL(H0(X, −srKX)) for some integer

s ≥ 1 (see the proof in [RT07, Proposition 3.7]). Moreover, since an arbitrary

Gm-equivariant vector bundle over A1 should be equivariantly trivial ([Don05,

Lemma 2]), any (very ample) test configuration can be obtained from a one-

parameter subgroup Gm → GL(H0(X, −srKX)) as indicated in [Oda13c, Propo-

sition 2.2]. Therefore, we can think of test configurations as a geometrization of

one-parameter subgroups.

Example 2.2.3 (Product test configuration). Take the pair (X = X × C, L =

p∗
1(−KX)) such that X has a Gm-action, where p1 is the projection to X, this is

a test configuration with the Gm-action given by t · (x, a) → (t(x), t · a).

For the pair (X, −KX), and a sufficiently divisible k ∈ N, by Riemann-Roch

theorem, the dimension of each vector space H0(X, OX(−kKX)) is given by a

Hilbert polynomial of degree n = dim X,

dk = dim H0(X, OX(−kKX)) = a0k
n + a1k

n−1 + O(kn−2)

for some a0, a1 ∈ Q. Now, since Gm acts on the central fibre (X tc
0 , Ltc

0 ) which is

the restriction of (X tc, Ltc) over {0}, Gm also acts on the space of holomorphic

sections H0(X tc
0 , kLtc

0 ). The total of the weights of this action is denoted by wk

and by the equivariant Riemann-Roch Theorem, we can rewrite it as

wk = b0k
n+1 + b1k

n + O(kn−1).

Combining the equations of dk and wk, we get

wk

kdk

= F0 + F1k
−1 + O(k−2).

Now we can define the Donaldson-Futaki invariant.
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Definition 2.2.4. [Don02] The (normalized) Donaldson-Futaki invariant of the

Q-test configuration (X tc, Ltc) is defined to be

DF(X tc, Ltc) = −F1

a0
= a1b0 − a0b1

a2
0

Using this invariant we give the original definition for K-stability of X.

Definition 2.2.5. A Fano variety X is K-stable (resp. K-semistable) if and only

if DF(X tc, Ltc) > 0 (resp. DF(X tc, Ltc) ≥ 0) for any non-trivial test configuration

(X tc, Ltc) of (X, −KX). Moreover, we say that X is K-polystable if DF(X tc, Ltc) ≥

0 for any non-trivial test configuration of (X tc, Ltc), and DF (X tc, Ltc) = 0 for

product test configurations of (X, −KX).

There are other expressions for the Donalson-Futaki invariant given in [Wan12;

Oda13a] for more explicit cases, however computing this invariant is still com-

plicated and detecting K-stability by using it is even harder. Nevertheless, we

obtain other characterisations for K-stability by using birational geometry tech-

niques and invariants. Let us start by defining the latter:

Definition 2.2.6. Let X be a n-dimensional Fano variety with klt singularities.

Let f : Y → X be a birational morphism and take E a prime divisor on Y . We

say that E is a prime divisor over X. If E is f -exceptional, we say that E is

an exceptional prime divisor over X. The subvariety f(E) is called the centre of

E over X and is denoted by CX(E). We define the expected vanishing order as

follows:

S(−KX ; E) = 1
(−KX)n

∫ τ

0
vol(f ∗(−KX) − tE) dt

where vol(f ∗(−KX) − tE) denotes the volume of the divisor f ∗(−KX) − tE (see

e.g. [Laz04, §2.2.C]) and

τ = τ(E) = sup {t ∈ Q| vol(f ∗(−KX) − tE) > 0}
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is called the pseudoeffective threshold of E with respect to −KX . By [Fuj19c,

Proposition 2.1], we have that

S(−KX ; E) ⩽ n

n + 1τ. (2.1)

Let β(E) = AX(E) − S(−KX ; E), where AX(E) = 1 + ordE(KY − f ∗(KX)) is

the log discrepancy of the divisor E (Note that this coincides with Definition

2.1.6).

Let π : Y → X be the log-resolution of X and E a π-exceptional divisor over

X, a log canonical center is an irreducible subvariety π(E) ⊂ X. A log canonical

place is a valuation corresponding to this E, i.e. the valuation ordE.

The stability threshold is another invariant that characterises K-stability.

Definition 2.2.7. Let X be a Fano variety with at most klt singularities and

−KX be its anticanonical divisor. The (adjoint) stability threshold (or δ-invariant)

of X is defined as

δ(X) = inf
E/X

AX(E)
S(−KX ; E) (2.2)

where the infimum runs over all divisors E over X.

We say that a divisor E over X computes δ(X) if it achieves the infimum in (2.2).

There is also a local version of the stability threshold, which we will study in

Chapter 3.

Definition 2.2.8. [AZ22] Let X be a Fano variety with at most klt singularities

and −KX be its anticanonical divisor. Let p be a closed point of X. We set

δp(X) = inf
E, p∈CX(E)

AX(E)
S(−KX ; E)

where the infimum runs over all divisors E over X whose center contains p.

22



2.2. K-STABILITY

Remark 2.2.9. Notice that δ(X) = infp∈X δp(X). If β(F ) ≤ 0 for a divisor F

whose centre contains p , then δp(X) ≤ 1.

Using these two invariants we just defined, we give the following characterisation

for K-stability.

Theorem 2.2.10. [LXZ22; Li17; FO18; Fuj19a; CP21; BJ20]. Let X be a Fano

variety, then the following statements are equivalent:

1. X is K-stable (resp. K-semistable).

2. β(E) > 0 (resp. β(E) ≥ 0) for every prime divisor E over X.

3. δ(X) > 1 (resp. δ(X) ≥ 1).

This theorem is useful to check the K-unstability of a variety X since you only

need to find a divisor E over X that gives you β(E) < 0. However, to prove

that X is K-stable using only this theorem can be a long process. However,

there is another result by Zhuang where using a reductive subgroup, G, of the

automorphism group of X we can characterise K-polystability without having to

check all the prime divisors over X.

Remark 2.2.11. Notice that K-stability implies K-polystability and the latter

implies K-semistability.

Theorem 2.2.12 ([Zhu21, Corollary 4.14]). Let X be a Fano variety with at most

klt singularities. Let G ⊂ Aut(X) be a reductive subgroup. Suppose that β(E) > 0

for every G-invariant prime divisor E over X. Then X is K-polystable.

Notice this theorem is especially useful when you have a large G. For example,

take Pn which is known to not be K-stable, take G to be its automorphism group

G = Aut(Pn) = PGL(n+1). Then, there are no G-invariant subsets of Pn and in

particular, there is no G-invariant divisor over Pn. Therefore, by Theorem 2.2.12

we know that Pn is K-polystable.
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Similar invariant notions can be defined in more generality for N × Nr-graded

linear series with bounded support on X. Details can be found in [AZ22, Section

3], but here, we recall the results that we use. These results are part of the

so-called Abban-Zhuang method, and its goal is to find a lower bound for the

δ-invariant to determine the K-stability.

Definition 2.2.13. Let V be a finite dimensional vector space. A filtration F

on V is given by a collection of subspaces FλV indexed by a totally ordered

abelian monoid Λ (in which case we also call the filtration a Λ-filtration) such

that Fλ0V = V , Fλ1V = 0 for some λ0, λ1 ∈ Λ and FλV ⊆ Fλ′
V whenever

λ ≥ λ′. For each λ ∈ Λ, we set Grλ
F V = FλV/ ∪µ>λ FµV . A basis s1, ..., sN

(where N = dim V ) of V is said to be compatible with F if every FλV is the

span of some si.

Example 2.2.14. Let L be a Q-Cartier Q-divisor on X, and let V ⊆ H0(X, L)

be a subspace. Let ν be a valuation on X. Then it induces an R-filtration Fν on

V by setting

Fλ
ν V := {s ∈ V |ν(s) ≥ λ}.

Definition 2.2.15. ([LM09, §4.3]). Let L1, ..., Lr be an ordered sequence of Q-

Cartier Q-divisors on X. An Nr-graded linear series W−→• on X associated to the

Li’s consists of finite dimensional subspaces

W−→a ⊂ H0(X, OX(a1L1 + ... + arLr))

for each −→a ∈ Nr such that W−→0 = C and W−→a1 · W−→a2 ⊆ W−→a1+−→a2 for all −→a1 , −→a2 ∈

Nr. The support Supp(W−→• ) ⊆ Rr of W−→• is defined as the closed complex cone

spanned by all −→a ∈ Nr such that W−→a ̸= 0. We say that W−→• has bounded support

if Supp(W−→• ) ∩ ({1} × Rr−1) is bounded.

We say that W−→• contain an ample series if the following conditions are satisfied:

(i) Supp(W−→• ) ⊆ Rr contains a non-empty interior,
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(ii) for any −→a ∈ int(Supp(W−→• )) ∩ Nr, Wk−→a ̸= 0 for k ≫ 0,

(iii) there exists some −→a0 ∈ int(Supp(W−→• )) ∩ Nr and a decomposition −→a0 ·
−→
L =∑r

i=1 a0iLi =A+E (where −→
L = (L1, ..., Lr) and −→a0 = (a01, ..., a0r)) with A an

ample Q-line bundle and E an effective Q-divisor such that H0(X, mA) ⊆

Wm−→a0 for all sufficiently divisible m.

Definition 2.2.16. Let L1, ..., Lr be Cartier divisors on X and let V−→• be an Nr-

graded linear series associated to the Li’s. Denote −→
L = (L1, ..., Lr). Let F be a

primitive divisor over X with associated prime blowup π : Y → X (see Definition

2.1.14) and let F be the induced filtration on V−→• (see Example 2.2.14). Assume

that F is either Cartier on Y or of plt type. In the latter case, we define F |F as

the Q-divisor class given by [AZ22, Lemma 2.7]. Then in both cases,

W−→a ,j = F jV−→a /F j+1V−→a

can be naturally identified with the image of F jV−→a under the composition

F jV−→a → H0(Y, π∗(−→a ·
−→
L ) − jF ) → H0(F, π∗(−→a ·

−→
L )|F − jF |F )

(this identification is clear when F is Cartier on Y ; if F is of plt type, we use

[AZ22, Lemma 2.7]). It follows that W−→• is an Nr+1-graded linear series on F

(associated to the divisors π∗L1|F , ..., π∗Lr|F and −F |F ), called the refinement of

V−→• by F .

Let us fix a klt pair (X, ∆), some Cartier divisors L1, ..., Lr on X and an Nr-graded

linear series V−→• associated to the Li’s such that V−→• contains an ample series and

has bounded support. Let F be a primitive divisor over X with associated prime

blowup π : Y → X. Assume that F is either Cartier on Y or plt type and let

W−→• be the refinement of V−→• by F .

Theorem 2.2.17. [AZ22, Theorem 3.2] Let F be a primitive divisor over X with
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associated prime blowup π : Y → X. Let Z ⊂ X be a subvariety, and Z0 be an

irreducible component of Z ∩ CX(F ). Let ∆Y be the strict transform of ∆ on Y

(but remove the component F as in Definition 2.1.14) and let ∆F = DiffF (∆Y )

be the different so that (KY + ∆Y + F )|F = KF + ∆F . Then, when Z ⊆ CX(F ),

we have

δZ(X, ∆; V−→• ) ≥ min
{

AX,∆(F )
S(V−→• ; F ) , inf

Z′
δZ′(F, ∆F ; W−→• )

}
.

See the definition of δZ(X, ∆; V−→• ) in [AZ22, Lemma 2.9]. Otherwise

δZ(X, ∆; V−→• ) ≥ inf
Z′

δZ′(F, ∆F ; W−→• ),

where the infimums run over all subvarieties Z ′ ⊆ Y such that π(Z ′) = Z0.

This Theorem allows us to simplify the problem of finding a lower bound for

the local stability threshold, using local stability thresholds of lower dimensional

varieties. In this thesis, I use theorems derived from this one for the specific cases

of 2 and 3-dimensional Fano varieties. In our cases we only consider the case

where Z = p where p is a closed point in our algebraic variety X, and therefore

the definition of δZ(X, ∆; V−→• ) coincides with the one given in Definition 2.2.8.

The following result is a direct consequence of Theorem 2.2.17, and it is a simpli-

fication of the 3-dimensional case in [Ara+23, Remark 1.113]) for surfaces. This

result gives a concrete recipe for what the flag of subvarieties of X is, which is a

Mori Dream space (Definition 2.1.17 and [HK00]), and we apply it in Theorem

3.3.2 to find a lower bound for the local stability threshold. We will also use the

version for 3-folds given in [Ara+23, Remark 1.113] to check the K-stability of

some varieties in Chapter 4.

Theorem 2.2.18. Let p be a point in a del Pezzo surface X, π : Y → X be a

plt blowup of the point p, and E be the π-exceptional divisor. Then (Y, E) has

purely log terminal singularities so that there exists an effective divisor ∆E defined

by KE + ∆E ∼Q (KY + E)|E. For every t ∈ [0, τ(−KX ; E)], where τ(−KX ; E)
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denotes the pseudo-effective threshold as in Definition 2.2.6, let us denote by P (t)

the positive part of the Zariski decomposition of the divisor π∗(−KX) − tE, and

let us denote by N(t) its negative part. Let W E
·,· be as in Theorem 2.2.17. Then

δp(X) ≥ min
{

AX(E)
S(−KX ; E) , min

x∈E

1 − ordx(∆E)
S(W E

·,· ; x)

}

where for every x ∈ E we have

S(W E
·,· ; x) = 2

(−KX)2

∫ τ(−KX ;E)

0
h(t) dt

where

h(t) = (P (t) · E) · ordx (N(t)|E) +
∫ ∞

0
volE (P (t)|E − vx) dv

= (P (t) · E) · (N(t) · E)x +
∫ P (t)·E

0
(P (t) · E − v) dv

= (P (t) · E) · (N(t) · E)x + (P (t) · E)2

2

2.2.2 K-moduli

As previously discussed, a key objective of contemporary algebraic geometry is

the construction of moduli spaces for varieties. In addition, we mentioned how

K-stability plays an important role in the case of Fano varieties. In this section,

we provide an introduction to this concept. First, let us introduce the definition

of degeneration of varieties.

Definition 2.2.19. A degeneration is taking a limit of a family of varieties. Given

a flat morphism π : X → C of a variety to a curve C with origin 0 (e.g., A1),

the fibres π−1(t) with t ∈ C form a family of varieties over C. Then the fibre

π−1(0) may be thought as the limit of π−1(t) as t → 0. One then says the family

degenerates to the special fibre π−1(0).

We will say that we have an isotrivial degeneration, when X is an isotrivial family,
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2.2. K-STABILITY

i.e. if there is an open dense subset U ⊂ C such that all fibres π−1(t) with t ∈ U

are smooth and isomorphic.

Now, let us focus on K-moduli. Let MKss
V,n be the moduli functor of K-semistable

Q-Fano varieties of dimension n and volume V , which sends S ∈ Sch to the

collection MKss
V,n(S) of flat proper morphism X → S, whose geometric fibers are

n-dimensional K-semistable Q-Fano varieties with volume V , satisfying Kollár’s

condition. Kollár’s condition is that the reflexive power w
[m]
X/S is flat over S and

commutes with arbitrary base change for each m ∈ Z (see [Kol08, Corollary 24].

It is known now that MKss
V,n is represented by an Artin stack of finite type and

admits a projective good moduli space MKss
V,n → MKps

V,n (as in [Alp13, Theorem

13.6]), whose closed points are in bijection with n-dimensional K-polystable Q-

Fano varieties of volume V .

To construct MKps
V,n it is necessary to prove some concrete statements about fami-

lies of Q-Fano varieties. For instance, to see that MKss
V,n is an Artin stack of finite

type and that it is a global quotient, these two properties are necessary:

1. Boundedness: MKss
V,n is bounded by [Jia20]. This means that there is a

positive integer N = N(n, V ) such that if X ∈ MKss
V,n, then −NKX is a very

ample Cartier divisor.

2. Zariski openness: If X → S is a family of Q-Fano varieties, then the

locus where the fibre is K-semistable is a Zariski open set [BL22; Don15;

LWX21; Oda13b].

On the other hand, to prove that MKss
V,n admits a projective good moduli space it

is essential to prove the following:

3. Good quotient: The stack MKss
V,n admits a good moduli space. This was

proven in [Alp+20] by proving that if X is a K-polystable Q-Fano variety
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X, then Aut(X) is reductive.

4. Separatedness: Any two K-semistable degenerations of a family of K-

semistable Q-Fano varieties over a punctured curve C◦ = C \ {0} lie in the

same S-equivalence class, i.e. they degenerate to a common K-semistable

Q-Fano variety via special test configurations, this was proved in [BX19;

LWX21; SSY16].

5. Properness: It was proven in [LWX21] that any family of K-semistable

Fano varieties over a punctured curve C◦ = C \ {0} can be filled in over

{0} to a family of K-semistable Q-Fano varieties over C.

6. Projecitivity: It was proven in [CP21; LXZ22; XZ20] that a sufficiently

divisible multiple of the Chow–Mumford (CM) line bundle yields an ample

line bundle on MKps
V,n .

Since we know that good projective compact K-moduli space for Fano varieties

exists, the goal is to compactify the different components MKps
V,n . As mentioned

in the introduction this is already done in dimension 2 by [OSS16]. In Chapter

4, we will compactify the one dimensional MKps
V,3 .
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Chapter 3

Local stability threshold of

degree 2 del Pezzo surfaces

This chapter is based on [Etx24]. Although it contains no results beyond [Etx24],

the results and explanations are expanded harmoniously with this thesis.

Here, we focus on the local computation of δ (see Definition 2.2.8). In particular,

we study the irrationality of δp(X), where X is a degree 2 del Pezzo surface and a

closed point p ∈ X. In the following, whenever we consider “points" on a variety

X we will mean closed points on X. If δp(X) is irrational for some p ∈ X, then

there exists a log canonical place v of X such that the associated graded ring (see

Definition 2.2.13 and Example 2.2.14)

grv R := ⊕m,λ Grλ
Fv

H0(X, −mKX)

is not finitely generated, which was conjectured initially to be finitely generated

for Fano varieties.

On this subject, Liu, Xu, and Zhuang established in [LXZ22] that the global δ(X)

is a rational number for K-polystable Fano varieties, assuming that δ(X) < (1 +
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dim X)/ dim X. However, the local stability threshold, δp(X), is more enigmatic.

Its rationality is a priory unpredictable. Until the results in this chapter, the only

known example where the local delta invariant is irrational was in cubic surfaces

(see [AZ22, Lemma A.6]).

When X is a del Pezzo surface of degree strictly greater than 3, it is known that

δp(X) is rational for every point p ∈ X (see [Ara+23, §2]). For degrees 2 and 3, we

know the specific points with irrational δp(X) by [Etx24; AZ22], and with these

results, the values for all δp(X) are known for every closed point p in a del Pezzo

surface of degree greater or equal to two. The fact that we know these specific

values is useful when applying the Abban-Zhuang method for higher dimensional

Fano varieties (Thoerem 2.2.17) and hence we can use them to bound other delta

invariants of Fano varieties that contain del Pezzo surfaces. Currently, the degree

1 case is the only one that remains open amongst the smooth del Pezzo surfaces.

In this chapter, we complete the classification of local stability thresholds for

smooth del Pezzo surfaces of degree 2 initiated in [Ara+23, §2]. In particular,

we show that this number δp(X) is irrational if and only if there is a unique

(−1)-curve passing through the point p ∈ X, getting the following theorem:

Theorem 3.0.1. [Etx24, Theorem 1.1] Let X ⊂ P(1, 1, 1, 2) be a smooth del Pezzo

surface of degree 2 and let p0 ∈ X. Assume that there is a unique (−1)-curve L

passing through the point p0. Then δp0(X) = 6
71(11 + 8

√
3) and it is computed by

taking the limit of a sequence of weighted blow ups at p0 with wt(u) = am and

wt(v) = bm such that am/bm → 2/
√

3 when m → ∞, where u and v are local

coordinates such that L = {u = 0}.

Sketch of the proof. To prove that the local stability threshold at p0 as

above is irrational, we follow these steps: First, we take Ea,b to be the excep-

tional divisor of a certain weighted blowup at p0 with weights (a, b), denoted by

πa,b : Xa,b → X. The choice of (a, b) becomes clear in §3.3. Using that excep-
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3.1. OBJECTS OF STUDY

tional divisor we compute an upper bound for δp0(X) = infE/X, p0∈CX(E)
AX(E)

S(−KX ;E) .

The difficulty here is to compute the expected vanishing order of the anticanoni-

cal divisor of X with respect to Ea,b, S(−KX ; Ea,b) (see Definition 2.2.6), which

requires a Zariski Decomposition and a careful choice of negative curves in the

weighted blowup of X. This is the main bulk of the work in section §3.2.2.

Then, we use techniques from [AZ22] to find lower bounds for δp0(X), which re-

quires a delicate choice of a minimizer sequence of prime divisors Eam,bm over X.

The choice of am, bm is made so that this bound is exactly the upper bound found

earlier by considering Ea,b. In other words, we compute δp0(X).

3.1 Objects of study

In this section, we introduce del Pezzo surfaces of degree 2 and some useful

properties they have. These results are used later in subsection §3.2.2, to find an

equivalence for π∗
a,b(−KX) in terms of negative curves in Xa,b.

3.1.1 Del Pezzo surfaces of degree 2

Let X a degree 2 del Pezzo surface, i.e. (−KX)2 = 2, it can be realised as the

surface in weighted projective space P(1, 1, 1, 2) with homogeneous coordinates x,

y, z, w, given by the equation

w2 + wG2(x, y, z) + G4(x, y, z) = 0, (3.1)

where G2(x, y, z) and G4(x, y, z) are weighted homogeneous polynomials of de-

grees 2 and 4, respectively (see [Kol96, 3.5 Theorem]). When working over C,

after a change of coordinates the equation can be simplified to

w2 + G4(x, y, z) = 0. (3.2)

32



3.1. OBJECTS OF STUDY

Notice that there exists ρ : X → P2 a double cover of P2 ramified over a quartic

curve R := {G4(x, y, z) = 0}, which is a canonical model of a curve of genus 3

[Dol12].

Points in X. Let us uncover some properties of the points in X. First, recall

that since X is a del Pezzo surface of degree 2, it can be represented as the

blowup of P2 at 7 points in general position σ : X → P2 (see [Li10, Prop. 1.1.2.]).

Looking at this description we can prove the following statement:

Proposition 3.1.1. Let X be a smooth del Pezzo surface of degree 2. Let p be a

point in X. Then, there are at most four (−1)-curves passing through p.

Proof. Let σ : X → P2 be the blowup of P2 at 7 points in general position denoted

by {p1, ..., p7} ⊂ P2. X is a del Pezzo surface of degree 2. First, note that the

(−1)-curves in X are the following:

• Let Ei be the exceptional divisor corresponding to the blowup of pi ∈ P2,

for i ∈ {1, 2, 3, 4, 5, 6, 7}.

• Let Li,j be the strict transform of the line in P2 containing pi and pj for

i, j ∈ {1, 2, 3, 4, 5, 6, 7} and i ̸= j (21 in total).

• Let Ci,j be the strict transform of the conic in P2 that contains 5 of the 7

blowed up points (excluding pi and pj for i, j ∈ {1, 2, 3, 4, 5, 6, 7} and i ̸= j,

21 in total).

• Let Qi be the strict transform of the cubic in P2 that contains all the

points pj for j ∈ {1, 2, 3, 4, 5, 6, 7} and has multiplicity 2 at pi for some

i ∈ {1, 2, 3, 4, 5, 6, 7}.

Take a close point p ∈ X. We distinguish 2 cases:

(1) σ(p) = pi for some i ∈ {1, 2, 3, 4, 5, 6, 7},
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(2) σ(p) ̸= pi for all i ∈ {1, 2, 3, 4, 5, 6, 7}.

In both cases, it is clear that there is at most one Qi passing through p. First

notice that two cubic curves intersect each other at 9 points (counting multi-

plicity). Take {k, j} ⊂ {1, 2, 3, 4, 5, 6, 7} distinct, since σ(Qj) has multiplicity

2 at pj, σ(Qk) has multiplicity 2 at pk, they only intersect at the pi points for

i ∈ {1, 2, 3, 4, 5, 6, 7}. Hence, in the case (2) there is at most one (−1)-cubic

passing through p. In case (1), let us assume p ∈ Qj ∩ Qk for k ̸= j then σ(Qj)

and σ(Qk) are tangent at pi. Let us assume without loss of generality that i = 1,

j = 2 and k = 3. With a change of coordinates, we can assume p1 = (1 : 0 : 0),

p2 = (0 : 1 : 0) and p3 = (0 : 0 : 1). Then we will have the following equations for

Q2 and Q3:

Q2:= {f(x, y, z) = ax2y + bx2z + cxyz + dz2x + ez2y = 0},

Q3 := {g(x, y, z) = ax2y + bx2z + αxyz + βy2x + γy2z = 0}.

We want to find {a, b, c, d, e, α, β, γ} ⊂ C such that f(pi) = g(pi) = 0 for every

i ∈ {4, ..., 7}. However, the only solution of this equation system is a = b = c =

d = e = α = β = γ = 0, hence we get a contadiction.

On the other hand, since the 7 points that we blow up to get X are in general

position (i.e. no 3 points in the same line, no 6 points in the same conic) we know

there are at most two (−1)-lines passing through the same point. There are two

possibilities for this to happen at p ∈ X:

(i) There exist distinct i, j ∈ {1, 2, 3, 4, 5, 6, 7} such that p ∈ Ei ∩ Li,j. This

falls in the case (1) mentioned above.

(ii) There exist distinct {i, j}, {k, l}⊂{1, 2, 3, 4, 5, 6, 7} such that p ∈ Lk,l ∩ Li,j.

This falls in the case (2) mentioned above.

Now, let us see that for both cases there are at most 2 conics with self-intersection
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−1 passing through p. Recall that the equation of a conic in P2 with coordinates

(x : y : z) is as follows:

ax2 + bxy + cy2 + dxz + eyz + fz2 = 0, (3.3)

such that (a : b : c : d : e : f) ∈ P5. Also, since we want this conic to be a

(−1)-curve, it has to contain 5 of the points we are blowing up. Let us see what

happens in each of the cases:

(i) Choose p1, p2, p3, p4, p5 ∈ P2, these are five of the points that we blow up

to get X. Assume without loss of generality that p ∈ E1 ∩ L1,2. Define C

containing p1, p3, p4, p5. Since we want σ∗(C) (the pullback of C) to contain

p, C has to be tangent to σ(L1,2) at p1 in P2. Also note, that C can not

contain p2 otherwise it will not be irreducible. These conditions completely

determine the equation (3.3) and define C. Notice that currently, C contains

four points that we blow up, but to get a (−1)-curve we need one more.

Then, choose a point p6 ∈ C in general position. With this, we have our

first (−1)-conic curve σ∗(C). Note, that any other irreducible conic in P2,

C ′, that is tangent to σ(L1,2) at p1 and such that σ∗(C ′) is a (-1)-curve in

X, have to contain three points out of {p3, p4, p5, p6}. And these conditions

will describe the same equation as C, hence C ′ = C.

Observe that if E1 is the unique (−1)-line containing p, we can define up to

2 conic (−1)-curves passing through p. In this case, we define C ′, to be the

conic, containing {p1, p2, p3, p4} that is tangent to C at p1. These conditions

determine the equation (3.3) and define C ′. Finally for σ∗(C ′) to be a (−1)-

curve, we choose p7 ∈ C ′ that is in general position to the previous ones.

Notice that we can not find more (−1)-curves passing through the same

point p ∈ X = Bl7P2, the blowup of P2 at {p1, p2, p3, p4, p5, p6, p7}. In this

case, we reach a maximum of three (−1)-curves passing through p.
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(ii) Choose p1, p2, p3, p4 ∈ P2 in general position, these are four of the points we

blow up to get X. We want to define conics that contain p ∈ L1,2 ∩ L3,4.

Define C to be the conic containing σ(p), p1, p2, p3 and p4 in P2, these

conditions completely determine the equation (3.3). Notice that C contains

four points that we blow up, to get a (−1)-curve, choose a point in general

position p5 ∈ C to be the 5th, then (σ∗(C))2 = −1. To define another

conic, choose a new point in general position p6 ∈ P2 and let C ′ be the

conic containing σ(p), p1, p2, p3 and p6 in P2, these five points completely

determine the equation (3.3). To make it a (−1)-curve, choose p7 ∈ C ′ to

be the 7th point in general position. Notice that we can not define more

conic curves with the desired properties. Then we define X = Bl7P2, the

blowup of P2 at {p1, p2, p3, p4, p5, p6, p7} and p ∈ L1,2 ∩ L3,4 is a point with

four (−1)-curves passing through it.

Observe that for any point p ∈ X \ ⋃7
i=1 Ei, we are able to define at most

two conic (−1)-curves with the same process.

Unitl now, we saw that we have up to 4 (-1)-curves passing through each point

p ∈ X counting lines and conics. We also proved that each point p ∈ X has at

most one (-1)-cubic passing through it. To finish our proof, we need to see that

it is not possible to define a (-1)-cubic passing for the point p as defined in (ii).

First, note that a cubic, Q, and a conic in P2 intersect in 6 points. Note that

for σ∗(Q) to be a (−1)-curve containing p, Q has to contain all {p1, ..., p7}, with

multiplicity 2 at pj for some j ∈ {1, ..., 7} and σ(p). On the other hand, both C

and C ′ contain 5 of the points we are blowing up, in addition to σ(p). Hence,

#(Q ∩ C) = 7 or #(Q ∩ C ′) = 7, which is a contradiction. Therefore, for any

closed point p ∈ X we have at most four (−1)-curves passing through p.

Notice that if a point p = (x, y, z, 0) ∈ X, i.e. if ρ(p) ∈ R, with a change of
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coordinate we can rewrite p = (1 : 0 : 0 : 0) ∈ X. Recall that ρ : X → P2 is a

double cover of P2 ramified over a quartic curve R := {G4(x, y, z) = 0}. Let TpX

be a hyperplane in P (1, 1, 1, 2) tangent to X at p. Furthermore, we can define a

tangent hyperplane section of X by considering TpX ∩X. We can see that in this

case the anticanonical divisor is numerically equivalent to the tangent hyperplane

section, −KX ∼ TpX ∩ X.

Proposition 3.1.2. Let X be a del Pezzo surface of degree 2. Take a point p ∈ X

such that ρ(p) ∈ R and let Cp = TpX ∩ X be the tangent hyperplane section of X

at p. Then, −KX ∼ Cp.

Proof. Since ρ(p) ∈ R, we can assume p = (1 : 0 : 0 : 0) ∈ X, with G4(1, 0, 0) = 0;

in other words, we assume that the coefficient of the monomial x4 on G4 is zero,

and since X is smooth G4(x, y, z) = x3(ay + bz) + F4(x, y, z) where (ay + bz) ̸= 0

and F4(x, y, z) does not have any monomial containing x3. Then, we change

coordinate taking z = ay + bz, and we get G′
4(x, y, z) = x3z + F ′

4(x, y, z) where

F ′
4(x, y, z) does not have any monomial containing x3. It follows from here that

the tangent space at the point is TpX = {z = 0}, that is P(1, 1, 2). Moreover, the

intersection with X gives TpX ∩ X = {w2 + G′
4(x, y, 0) = 0}, which is a quartic

in P(1, 1, 2), and it could be represented generally as follows:

w2 + ax2y2 + bxy3 + cy4 = 0.

However, with another change of coordinates, rewriting ax2 + bxy + cy2 = a(x +

αy)2 + βy2, and taking x = x + αy, we get

Cp = TpX ∩ X = {w2 + y2(ax2 + by2) = 0)} ⊆ P(1, 1, 2). (3.4)

Therefore, taking into account that Tp(X) is a plane, we have the following ad-
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junction formula,

−KX ∼ (−KP(1,1,1,2) − X)|X ∼ (5Tp(X) − 4Tp(X)) |X = Tp(X) ∩ X = Cp,

we know that (Cp)2 = (−KX)2 = 2.

Remark 3.1.3. From (3.4) we have the following possibilities for Cp:

(1) Cp is an irreducible curve that is smooth at p, i.e. the ordinary blowup of

X at p is a smooth del Pezzo surface of degree 1.

(2) Cp is an irreducible curve with a node at p;

(3) Cp is an irreducible curve with a cusp at p;

(4) Cp is a union of two (−1)-curves that meet transversely at p;

(5) Cp is a union of two (−1)-curves that are tangent at p.

Looking at the previous lemmas and remark, we can say that if p is a closed point

in X, it satisfies one of the following statements:

(1) If we do an ordinary blowup of p we get a smooth del Pezzo surface of

degree 1;

(2) ρ(p) ∈ R, and Cp is an irreducible nodal curve;

(3) ρ(p) ∈ R, and Cp is an irreducible cuspidal curve;

(4) ρ(p) ∈ R, and Cp is a union of two (−1)-curves that meet transversally;

(5) ρ(p) ∈ R, and Cp is a union of two (−1)-curves that are tangent at p;

(6) ρ(p) /∈ R, and p is contained in exactly one (−1)-curve;

(7) ρ(p) /∈ R, and p is contained in two (−1)-curves;

(8) ρ(p) /∈ R, and p is contained in three (−1)-curves;
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(9) the point p is a generalized Eckardt point, i.e. p is contained in four (−1)-

curves..

For each of the cases listed above, δp is computed in [Ara+23, Lemma 2.15] and

these are the values it takes:

δp(X) =



36/17 if (1)

2 if (2)

15/8 if (3)

2 if (4)

9/5 if (5)

48/23 if (7)

72/35 if (8)

2 if (9).

Note that the case where p is contained in a unique (−1)-curve is not completed.

In [Ara+23], the authors bound δp(X), so we know that 40
19 ≥ δp(X) ≥ 60

31 , but

the exact value is missing. Therefore, we focus on computing δp(X) for this case.

To do so, it is important to know a bit more about this point and what happens

when we blow it up. That is helpful to find a suitable linear equivalence for the

anticanonical divisor −KX .

Remark 3.1.4. Let p ∈ X be a point contained in a unique (−1)-curve, L. Let

σ : Y → X be the ordinary blowup of X at p, where Y is a weak del Pezzo

surface of degree 1, i.e. −KY is big and nef but not ample, and (−KY )2 = 1.

In such surfaces, we have a birational involution called the Bertini involution, ι.

As in the proof of Lemma 2.15 in [Ara+23], the linear system | − 2KY | gives a

morphism Y → P(1, 1, 2) with the following Stein factorization:
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Y ν //

σ

��

Ỹ

ω

��
X P(1, 1, 2)

where ν is a contraction of all (−2)-curves in the surface Y (in our case we have

a unique (−2)-curve, L̃, which is the strict transform of L), ω is a double cover

branched over the union of a sextic curve in P(1, 1, 2) and the singular points of

P(1, 1, 2). The double cover Ỹ → P(1, 1, 2) induces an involution τ ∈ Aut(Ỹ ),

and the latter induces the involution ν−1◦τ ◦ν = ι ∈ Aut(Y ) known as the Bertini

involution. For detailed equations of the Bertini involution, check [Moo43].

In the next section, we see what happens when we add weights to the blowup of

X at the point p.

3.2 Weighted blowup of X

In this section, we introduce some essential technical results for proving Theorem

3.0.1. Let πa,b : Xa,b → X be the (a, b)-weighted blowup of a del Pezzo surface

of degree 2 at a point p0 ∈ X. As in Theorem 3.0.1, we assume that there is a

unique (−1)-curve L passing through the point p0, and gcd(a, b) = 1. We choose

local coordinates (u, v) in a neighbourhood of p0 such that L = {u = 0}, which

enables us to write down the (local) weighted blowup as wt(u) = a and wt(v) = b.

Figure 3.1: (a, b)-weighted blowup.
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In the figure above, the subscripts represent the self-intersections, E is the excep-

tional divisor of the weighted blowup, and L̃ is the strict transform of L. Notice

that since a and b are greater than 0 and coprime, E has at most two singular

points, q and p, coming for the weights of the blowup.

Once we have this weighted blowup, we use the exceptional divisor of this bira-

tional map to give a better bound for δp0(X) by computing AX(E)/S(−KX ; E),

as defined in §2.2. Therefore, we need to compute the Zariski Decomposition of

the divisor π∗
a,b(−KX) − tE.

We start by writing π∗
a,b(−KX) − tE as a non-negative combination of negative

divisors (see [Laz04, Theorem 2.3.19]). However, currently, we do not have enough

negative curves in the picture.

Next step: We search for another known algebraic variety, Y , that is birational

to the weighted blowup Xa,b and X. Let σ : Y → X be the birational morphism

between Y and X. The idea is to find a linear equivalence to σ∗(−KX) in terms

of σ∗(L) in Y with other negative curves, and bring it back to Xa,b.

3.2.1 Notation

In order to simplify the explanations and computations of the resolution of singu-

larities in the weighted blowup Xa,b in §3.2.2, here we introduce some numerical

definitions.

As in Theorem 3.0.1, let p0 = (x0, y0, z0, w0) ∈ X be a closed point with a unique

(-1)-curve passing through it, L. Let Xa,b be the (a, b)-weighted blowup of X at p0.

Let E be the exceptional divisor of the weighted blowup. Due to technical reasons

affecting the proof of Theorem 1.1.2, we assume
√

3
2 a ≤ b ≤ a and gcd(a, b) = 1.

Therefore, we can rewrite a = b + γ0 where γ0 ∈ {1, ..., b − 1}. Similarly, we can
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rewrite b = γ0 · j0 + γ1 and γ0 = γ1 · j1 + γ2 where j0, j1 ∈ N, γ1 ∈ {0, 1, ..., γ0 − 1}

and γ2 ∈ {0, 1, ..., γ1 − 1}. Generalizing this, let γk = γk+1 · jk+1 + γk+2 where

jk+1 ∈ N and γk+2 ∈ {0, 1, ..., γk+1 − 1}. Let us denote son = ∑n
m=0 j2m+1 and

sen = ∑n
m=0 j2m where so−1 = se−1 = 0.

Since {γk} is a decreasing sequence of natural numbers, there exists a k0 ∈ N

where γk0 = 1. Furthermore, we can choose k0 such that for any other k′ ∈ N

where γk′ = 1, we know k′ ≥ k0.

3.2.2 The resolution of Xa,b followed by contractions to a

weak degree 1 del Pezzo

As mentioned in Example 2.1.3, an (a, b)-weighted blowup of a smooth surface

has at most two quotient singularities. If a ̸= 1, denote by q the 1
a
(1, c1)= 1

a
(1, b)

quotient singularity where c1 = −b + n1a and n1 =
⌈

b
a

⌉
= 1, i.e. c1 ≡ b mod a.

On the other hand, if b ̸= 1, let p be the 1
b
(1, d1)= 1

b
(1, a) singularity, where

d1 = −a + m1b with m1 =
⌈

a
b

⌉
= 2, , i.e. d1 ≡ a mod b.

Similarly, we define the following sequence of numbers:

• c2 = −a+n2c1, where n2 =
⌈

a
c1

⌉
and ck = −ck−2+nkck−1 where nk =

⌈
ck−2
ck−1

⌉
.

• d2 = −b + m2d1, where m2 =
⌈

b
d1

⌉
and dk = −dk−2 + mkdk−1 where

mk =
⌈

dk−2
dk−1

⌉
.

The resolution of these singularities is analogous to the Euclidean algorithm. The

resolution of the singularity p is achieved for some i0 ∈ N such that di0 = 1 and

similarly for q, the resolution is complete when we get cl0 = 1 for some l0 ∈ N.

Remark 3.2.1. Each dk can be represented as dk = µkb + λka, where µk, λk ∈ Z

and their values come from taking backwards dk = −dk−2+mkdk−1 by substituting

dk−2 and dk−1 with their definitions, and so on until we get to the expression with
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only a and b. Similarly, each ck can be represented as ck = βkb + αka, where βk,

αk ∈ Z. Moreover, notice that the property •k = − •k−2 +mk · •k−1 also holds for

the coefficients µk and λk. Likewise, •k = − •k−2 +nk · •k−1 holds for αk and βk.

From now on, we assume neither a nor b are equal to 1. If this is not the case, it

is enough to omit the resolution of the singularity that corresponds to the weight

which is equal to one. We present an algorithm to determine the resolution of

Xa,b, which consists of repeatedly blowing up the singularities.

Resolution of p. Let σ1 : X̂a,b → Xa,b be the blowup with suitable (natural)

weights of Xa,b at the quotient singular point p. Let E(1) be the exceptional

divisor and let L̂ and Ê be the strict transforms of L̃ and E respectively. Since p

is a 1
b
(1, d1) quotient singularity, we have that σ∗

1(L̃) ∼ L̂ + d1
b

E(1), and σ∗
1(E) ∼

Ê + 1
b
E(1). Taking into account that L̂ · Ê = 0, it is straightforward to check that

(E(1))2 = − b
d1

. Therefore, we get the following self-intersections:

(L̂)2 =
(

σ∗
1(L̃) − d1

b
E(1)

)2

= (σ∗
1(L̃))2 +

(
d1

b
E(1)

)2

= −a + b

b
− d1

b
= −(1 + m1),

(Ê)2 =
(

σ∗
1(E) − 1

b
E(1)

)2
= (σ∗

1(E))2 +
(1

b
E(1)

)2
= − 1

ab
− 1

bd1
= − m1

ad1
= − µ1

ad1
.

Note that in the second equality, we are using the fact that σ∗
1(L̃) · E(1) =

L̃ · σ(E(1)) = 0 since σ(E(1)) = p. A similar thing happens when we com-

pute (Ê)2. The next step depends on the value of d1. If d1 = 1, the resolution

of p is finished and we continue with the resolution of the singularity, q, on X̂a,b.

On the other hand, if d1 ̸= 1, X̂a,b has a singularity of type 1
d1

(1, d2) (as well as

q) in the intersection of E(1) with Ê. In the latter case, we iterate the process by

blowing the new quotient singularity up. Denote this new blowup with suitable

(natural) weights by σ2 : Ẋa,b → X̂a,b. Let E(2) be the exceptional divisor of σ2,

where (E(2))2 = −d1
d2

. Let Ė(1) and Ė be the strict transforms of E(1) and Ê,
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respectively. We get the following self-intersections:

(Ė(1))2 =
(

σ∗
2(E(1)) − d2

d1
E(2)

)2

= (σ∗
2(E(1)))2 +

(
d2

d1
E(2)

)2

= − b

d1
− d2

d1
= −m2,

(Ė)2 =
(

σ∗
2(Ê) − 1

d1
E(2)

)2
= (σ∗

2(Ê))2 +
( 1

d1
E(2)

)2
= − m1

ad1
− 1

d1d2

= −(m1m2 − 1)d1

ad1d2
= −m1m2 − 1

ad2
= − µ2

ad2
.

Notice that since we chose a and b such that gcd(a, b) = 1, by the Euclidean

algorithm there exists an i0 ∈ N such that di0 = 1. Therefore, the resolution of

p is achieved after i0 steps. Let us denote fp : X̌a,b → Xa,b the resolution of p

defined as fp = σ1 ◦ σ2 ◦ · · · ◦ σi0−1 ◦ σi0 . For each of these blowups of a quotient

singular point, let us denote by E(k) the exceptional divisor of σk. Let Ě(k), Ě,

and Ľ be the strict transforms of our divisors after the i0-th blowup. Then, we

have the following self-intersections in X̌a,b:

(Ě(k))2 = −mk+1 for k = 1, ..., i0 − 1, (E(i0))2 = −di0−1,

(Ľ)2 = −(1 + m1) = −3.

Lemma 3.2.2. In the above setting, (Ě)2 = −µi0
a

.

Proof. We previously saw that after the first blowup, (E)2 = − µ1
ad1

. By induction,

assume it is true for the k-th blowup, (E)2 = − µk

adk
. Let E be the strict transform

of E after the k-th blowup. Let us check that it holds for the (k + 1)-th blowup.

(E)2=
(

σ∗
k+1(E) − 1

dk

E(k+1)
)2

= − µk

adk

− 1
dkdk+1

= −µk(−dk−1 + mk+1dk) + a

adkdk+1

= −a − µkdk−1 + µkmk+1dk

adkdk+1
.

It is enough to show that a − µkdk−1 = −µk−1dk. Since a = µk−1dk−2 − µk−2dk−1,
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we get the following:

µkdk−1 − µk−1dk = (−µk−2 + mkµk−1)dk−1 − µk−1(−dk−2 + mkdk−1)

= µk−1dk−2 − µk−2dk−1 = a.

Therefore, we get (E)2 = − µk+1
adk+1

. In particular, (Ě)2 = −µi0
a

, since di0 = 1.

The values of i0, di0−1, and mk can be specified using the notation of subsection

3.2.1. We have two possibilities:

• If k0 = 2n0 + 1,

i0 = sen0 ,

(
Ě(sen+k)

)2
= −m(sen+k+1) =


− (j2n+1 + 2) if k = 0,

−2 Otherwise.

(Ě(i0))2 = −di0−1 = −(j2n0+1 + 2).

• If k0 = 2n0,

i0 = sen0 − 1,

(
Ě(sen+k)

)2
= −m(sen+k+1) =


− (j2n+1 + 2) if k = 0,

−2 Otherwise.

(Ě(i0))2 = −di0−1 = −2.

Resolution of q. Let τ1 :
··
Xa,b → X̌a,b be the blowup with suitable (natural)

weight of X̌a,b at the quotient singular point q. Let F (1) be the exceptional divisor

and
··
L,

··
E(k) and

··
E be the strict transforms of Ľ, Ě(k) and Ě respectively. Since

q is a 1
a
(1, c1) quotient singularity, (F (1))2 = − a

c1
. Also, since q is in Ě, its strict
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transforms is not isomorphic to the pullback: τ ∗
1 (Ě) ∼

··
E + 1

a
F (1). Therefore:

(
··
E)2 =

(
τ ∗

1 (Ě) − 1
a

F (1)
)2

= (τ ∗
1 (Ě))2 +

(1
a

F (1)
)2

= −µi0

a
− 1

ac1
= −n1µi0 + λi0

c1

= −α1µi0 − β1λi0

c1
.

After this blowup,
··
Xa,b is smooth if c1 = 1 and it is the resolution of Xa,b.

Otherwise, if c1 ̸= 1,
··
Xa,b has a singularity of type 1

c1
(1, c2) in the intersection

of F (1) and
··
E. Therefore, we proceed to iterate the process by blowing up the

new quotient singularity with a blowup with suitable (natural) weights denoted

by τ2 :
···
Xa,b →

··
Xa,b. Let F (2) be the exceptional divisor of the τ2 blowup, where

(F (2))2 = − c1
c2

. Let
···

F (1) and
···
E be the strict transforms of F (1) and

··
E, respectively.

We get the following self-intersections:

(
···
F

(1)
)2

=
(

τ ∗
2 (F (1)) − c2

c1
F (2)

)2
= (τ ∗

2 (F (1)))2 +
(

c2

c1
F (2)

)2
= − a

c1
− c1

c2
= −n2,( ···

E
)2

=
(

τ ∗
1 (Ě) − 1

a
F (1)

)2
= (τ ∗

1 (Ě))2 +
( 1

c1
F (1)

)2
= −µi0

c1
− 1

ac1

= −α1µi0 − β1λi0

c1
− 1

c1c2
= −α2µi0 − β2λi0

c2
.

Recall that there exist l0 ∈ N such that cl0 = 1. Therefore, we achieve the

resolution of q after l0 steps. Let us denote by fq : Xa,b → X̌a,b the resolution of q

defined as fq = τ1 ◦ τ2 ◦ · · · ◦ τl0−1 ◦ τl0 . For each of these blowups, τk, of a quotient

singular point, let us denote by F (k) its exceptional divisor. Let F
(k), E

(k), E,

and L be the strict transforms of our divisors after the (i0 + l0)-th blowup. Then,

we have the following self-intersections:

(F (k))2 = −nk+1 for k = 1, ..., l0 − 1, (F (l0))2 = −cl0−1.

Remark 3.2.3. Notice that the self-intersections of E
(k) and L are the same

ones as their images through fq, this happens because we are not blowing up any
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point in these divisors in the resolution of q.

Lemma 3.2.4. In Xa,b, we have that (E)2 = −1.

Proof. First we see that in the (i0 +k)-th blowup, (E)2 = −αkµi0 −βkλi0
ck

. And then

we see that αl0µi0 − βl0λi0 = 1.

We previously saw that after τ1, we got (E)2 = −α1µi0 −β1λi0
ck

. By induction on k,

assume it is also true for the i0 + k-th blowup. Then let us see that it also holds

for the k + 1-th.

(E)2 = −αkµi0 − βkλi0

ck

− 1
ckck+1

= −(αkµi0 − βkλi0)ck+1 + 1
ckck+1

= −(αkµi0 − βkλi0)(−ck−1 + nk+1ck) + 1
ckck+1

= −1 − (αkµi0 − βkλi0)ck−1 + (αkµi0 − βkλi0)nk+1ck

ckck+1
.

So it is enough to prove that 1 − (αkµi0 − βkλi0)ck−1 = (αk−1µi0 − βk−1λi0)ck.

(αkµi0 − βkλi0)ck−1 + (αk−1µi0 − βk−1λi0)ck = ((−αk−2 + nkαk−1)µi0

− (−βk−2 + mkβk−1)λi0)ck−1 + (αk−1µi0 − βk−1λi0)(−ck−2 + nkck−1)

= (αk−1µi0 − βk−1λi0)ck = 1.

Where for the first equation we use the equality 1 = (αk−1µi0 − βk−1λi0)ck−2 +

(αk−2µi0 − βk−2λi0)ck−1. Therefore, we get, (E)2 = −αkµi0 −βkλi0
ck

. And in partic-

ular, after the last blowup we get (E)2 = −(αl0µi0 − βl0λi0), since cl0 = 1.

Finally, we need to show that αl0µi0 − βl0λi0 = 1. By definition we know

that αl0a + βl0b = bµi0 + aλi0 = 1. So, we can rewrite a = n(µi0 − βl0), and

b = n(αl0 − λi0), where n = b
(αl0 −λi0 ) = a

(µi0 −βl0 ) . However, by the choice of µi0 ,

λi0 , βl0 and αl0 , we conclude n = 1. Then, since λi0 = αl0 − b, and µi0 = βl0 + a,

we finally get what we wanted,

(E)2 = −(αl0µi0 − βl0λi0) = −1.

47



3.2. WEIGHTED BLOWUP OF X

Notice that the values of l0, cl0−1 and nk can be specified using the notation in

§3.2.1. We have two possibilities:

• If k0 = 2n0 + 1,

l0 = son0 ,

(
F

(son+k)
)2

= −n(son+k+1) =


− (j2n+2 + 2) if k = 1,

−2 Otherwise.

(F (1))2 = −n2 = −(j0 + 2), (F (l0))2 = −cl0−1 = −2.

In the following picture, we can see all the divisors involved in the resolution

of the singularities p and q when k0 = 2n0 + 1. Notice that the subscripts

represent the self-intersections.
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• If k0 = 2n0,

l0 = son0−1 + 1,

(
F

(son+k)
)2

= −n(son+k+1) =


− (j2n+2 + 2) if k = 1,

−2 Otherwise.

(F (1))2 = −n2 = −(i + 2), (F (l0))2 = −cl0−1 = −(j2n0 + 2).

In the picture below, we see all the divisors involved in the resolution of the

singularities p and q when k0 = 2n0.

Notice that in both cases, we can contract (−1)-curves until we get a weak degree

one del Pezzo surface. Here you see the order of contractions:

• For k = 2n0 + 1:

(1) Contract E,

(2) Contract F (son0 ),..., F
(son0−1+2) (j2n0+1 − 1 contractions).

(3) Contract E
(sen0 ),..., E

(sen0−1+1) (j2n0 contractions).

(4) Contract F
(son0−1+1),..., F

(son0−1+2) (j2n0−1 contractions).
...
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(k0 + 1) Contract E
(j0+j2),..., E

(j0+1) (j2 contractions).

(k0 + 2) Contract F
(j1+1),..., F

(2) (j1 contractions).

(k0 + 3) Contract E
(j0),..., E

(1) (j0 contractions).

• For k = 2n0:

(1) Contract E,

(2) Contract E
(sen0 −1),..., E

(sen0−1+1) (j2n0+1 − 1 contractions).

(3) Contract F (son0−1+1),..., F
(son0−2+2) (j2n0−1 contractions).

(4) Contract E
(sen0−1),..., E

(sen0−2+1) (j2(n0−1) contractions).
...

(k0 + 1) Contract E
(j0+j2),..., E

(j0+1) (j2 contractions).

(k0 + 2) Contract F
(j1+1),..., F

(2) (j1 contractions).

(k0 + 3) Contract E
(j0),..., E

(1) (j0 contractions).

Overall, we contract i0+l0 = ∑k0
k=0 jk (−1)-curves in both cases. Let g : Xa,b → Y

be the composition of all the contractions. The picture at the end is:

Figure 3.2: On the weak del Pezzo surface of degree 1

Where
◦

F (1) = g(F (1)), and
◦
L = g(L). So we have the following diagram:
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Xa,b

fq

��
g

��

X̌a,b

fp

��
Xa,b

πa,b

��

Y

π1,1}}
X

Let us define π1,1 = πa,b ◦fp ◦fq ◦g−1. We prove below that Y is a weak del Pezzo

surface of degree 1, and π1,1 is the ordinary blowup at the point p0 ∈ X, where
◦

F (1) is the π1,1-exceptional divisor.

Proposition 3.2.5. The surface Y defined above is a weak del Pezzo surface of

degree 1.

Proof. As we saw before, with each blowup we do in the resolution of singularities

of Xa,b, we get an exceptional divisor. Moreover, these divisors are added with a

nonpositive coefficient to the equivalence class of the anticanonical divisor. For

instance, with the (a, b)-weighted blowup, we get

−KXa,b
∼ π∗(−KX) − (a + b − 1)E.

Observe that the coefficients of the strict transforms of the current divisors re-

main unchanged, and this pattern persists through subsequent ordinary blowups

as well. The same thing happens when we contract exceptional curves, the coef-

ficients of the remaining exceptional curves do not change in the process. There-

fore, to prove that (−KY )2 = 1. We need to find the coefficient e of
◦

F (1) in

−KY ∼ π∗
1,1(−KX) + e

◦
F (1).

We got F (1) with the first blowup of the singular point q ∼ 1
a
(1, c1), where

c1 = −b + a.

For simplicity, through this proof, we denote by σ : Y → Xa,b the blowup with
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suitable (natural) weights of Xa,b at q. This is possible since the coefficient of

F (1) is independent of the order of the blowup. Thus, we get the following where

E is the strict transform of E through σ:

−KY ∼ σ∗
(
−KXa,b

)
+ a−(c1+1)

a
F (1)

∼ σ∗
(
π∗

a,b(−KX) − (a + b − 1)E
)

+ a−(c1+1)
a

F (1)

∼ σ∗
(
π∗

a,b(−KX)
)

− (a + b − 1)Ē +
(
−a+b−1

a
+ a−(c1+1)

a

)
F (1).

Moreover, notice that e = −1.

So we have that, (−KY )2 =
(
π∗

1,1(−KX)
)2

+
( ◦

F (1)
)2

= 2 − 1 = 1. It is clear that

after contracting
◦

F (1) we are back in the original degree 2 del Pezzo surface we

started with. Therefore, we can say that π1,1 : Y → X is the ordinary blowup of

p0 ∈ X.

As mentioned in subsection §3.1.1, after an ordinary blowup of a point in a

degree 2 del Pezzo surface, we get a weak degree 1 del Pezzo surface, in our case

Y . Moreover, Y has a Bertini involution, ι. Notice that in our setting, we only

have a (-2)-curve in Y , that is
◦
L, (see Figure 3.2).

Lemma 3.2.6. Let
◦
D = ι(

◦
F (1)) in Y , with the set up described above. Then,

◦
F (1) +

◦
D +

◦
L ∼ −2KY .

Proof. Instead of directly working in the weak degree 1 del Pezzo surface, let us

contract the (-2)-curve and get a singular degree 1 del Pezzo surface. We have

the following Stein factorisation as mentioned in Remark 3.1.4, where ν is the

contraction of
◦
L to a singular double point.

Y
ν //

π1,1

��

Ỹ

ω

��
X P(1, 1, 2)
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Notice that since ι is an involution,
( ◦

D
)2

=
( ◦

F (1)
)2

= −1, and these self-

intersections do not change with ν. Let us denote D = ν
( ◦

D
)

and F (1) =

ν

( ◦
F (1)

)
. Since D + F (1) ∈ Picτ (Ỹ ), and the picard number ρτ

Ỹ
= ρP(1,1,2) = 1,

we know there exist m ∈ N such that −mK
Ỹ

∼ D + F (1). Now if we do the

self-intersection of this equivalence we get an equation. On the other hand, if we

multiply it by F (1), we get the following equation system:


m2 =

(
F (1)

)2
+ 2F (1) · D +

(
D
)2

= −1 + 2F (1) · D − 1,

m =
(
F (1)

)2
+ F (1) · D = −1 + F (1) · D.

Note, that the linear system | − 2KY | is represented by the web of sextic curves

with eight base points x1, ..., x8 in P2, which we blowup to obtain Y [Dol12,

§8.8.2]. Since F (1) is an exceptional curve in Y , ω(F (1)) intersects the branching

sextic curve in P(1, 1, 2) at least once and it also contains the singular point,

hence F (1) · D ≥ 2. Therefore, from the equation system we get that m = 2

and F (1) · D = 3. Notice that F (1) and D go through the singular point of Ỹ

with multiplicity 1. Therefore, when we blow up this point to recover
◦
L, the

intersections change as follows:

◦
F (1) ·

◦
D = 2,

◦
F (1) ·

◦
L =

◦
L ·

◦
D = 1.

Moreover, since −2K
Ỹ

∼ D+F (1), we know that −2KY ∼
◦
D+

◦
F (1)+u

◦
L, for some

u ∈ N. Furthermore, taking into account the intersections we just mentioned, we

can check that u = 1. Thus, we have the desired property.

Remark 3.2.7. Note that
◦
D,

◦
F (1) and

◦
L do not intersect at the same point, i.e.

◦
F (1) ∩

◦
D ∩

◦
L = ∅.

On the other hand, since π1,1 contracts
◦

F (1) to p0, we get that −2KX ∼ L + D,

where D = π1,1(
◦
D).

This is the image representing the curves involved after applying π1,1:
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Figure 3.3: Ordinary blowup of X at p0.

In this figure, we can also see how the intersections change. As a consequence,

we have the following proposition:

Proposition 3.2.8. Assume that 3a < 4b and set D̃ = (fp ◦ fq)(g∗(
◦
D)) on Xa,b.

Then, π∗
a,b(D) = D̃ + 2bE and (D̃)2 = 3 − 4b

a
< 0.

Proof. The idea of this proof is to take the equivalence π∗
1,1(D) ∼

◦
D + 2

◦
F (1) in

the weak degree 1 del Pezzo surface Y , and follow the inverse process of blow

ups and contractions to get an equivalence for π∗
a,b(D) in terms of D̃ and E. Let

ek and fk be the coefficient of E(k) and F (k) in the equivalence class of π∗
a,b(D),

respectively. Define e to be the final coefficient of E. Notice that if k = 2n0 + 1,

e = esen0
+ fson0

, otherwise e = esen0 −1 + fson0−1+1. These become clear when we

see that E is obtained as the exceptional divisor of the blowup of the intersection

point between E(sen0 ) and F (son0 ), or E(sen0 −1) and F (son0−1+1), respectively. In

addition, we know for the sequence of blowups that for n ≥ 0

esen+k = esen + k · fson+1 for k = 1, ..., j2n+2,

fson+k+1 = k · esen+1 + fson+1 for k = 1, ..., j2n+3.

Now let us rewrite b in terms of jk using notation as in section §3.2.1.

2b = 2γ0 · j0 + 2γ1 = γ0 · ej0 + f1 · γ1 = γ1(ej0 · j1 + f1) + γ2 · ej0

= γ1 · fj1+1 + γ2 · ej0 = γ2(j2 · fj1+1 + ej0) + γ3 · fj1+1 = γ2 · ese1 + γ3 · fj1+1

= ... = γ2n0−1fson0−1+1 + γ2n0esen0−1 = γ2n0esen0
+ γ2n0+1fson0−1+1
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Here we have two different cases.

• If k0 = 2n0 + 1, notice that, γ2n0 = j2n0+1 and γ2n0+1 = 1. Therefore,

2b = j2n0+1esen0
+ fson0−1+1 = fson0

+ esen0
= e.

• If k0 = 2n0, notice that γ2n0−1 = j2n0 and γ2n0 = 1. Then,

2b = j2n0fson0−1+1 + esen0−1 = esen0 −1 + fson0−1+1 = e.

In both cases, as desired, we obtain e = 2b. After all the contractions, we get

π∗
a,b(D) ∼ D̃ + 2b · E, and

(D̃)2 = (π∗
a,b(D) − 2bE)2 =

(
π∗

a,b(D)
)2

− 4b
(
π∗

a,b(D)
)

· E + 4b2E2

= 3 − 4b

a
< 0 ⇔ 3a < 4b.

Remark 3.2.9. Following a similar proof and taking into account that a = b+γ0,

it is easy to check that π∗
a,b(L) = L̃ + aE, where L̃ is the strict transform of L

after the weighted blowup.

Corollary 3.2.10. Let πa,b : Xa,b → X be a (a, b)-weighted blowup of the point

p0 ∈ X, as described in Theorem 3.0.1. Let L be the unique (−1)-curve passing

through the point p0 and D the curve described above. Then,

π∗
a,b(−KX) ∼ 1

2
(
L̃ + D̃ + (a + 2b)E

)
.

3.3 Proof of the Main Theorem

In the previous section, we prepared all the ingredients to prove the Main Theo-

rem. Now, we divide the proof into two arguments. First, we take Xa,b and we
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use it to compute an upper bound for δp0(X). Then, we use Theorem 2.2.18 to

find lower bounds for δp0(X).

Theorem 3.3.1. Let X ⊂ P(1, 1, 1, 2) be a smooth del Pezzo surface of degree 2

and let p0 = (x0, y0, z0, w0) be a closed point in X. Assume that there is a unique

(−1)-curve, L, passing through the point p0. Then, δp0(X) ≤ 6
71(11 + 8

√
3).

Proof. For each a, b > 0, let νa,b be the quasi-monomial valuation over p0 ∈ X

defined by νa,b(u) = a and νa,b(v) = b, where (u, v) are the local coordinates at

p0 such that L = {u = 0}. Let π : Y = Xa,b → X be the weighted blow up at

p0 with wt(u) = a and wt(v) = b. Let E be the exceptional divisor, and let L̃

and D̃ be the strict transforms of L and D, respectively, where D is the divisor

described at the end of the previous section. In order to identify the minimizer of
AX(νa,b)
SX(νa,b) = AX(E)

S(−KX ;E) , we choose coprime integers a, b > 0 such that
√

3
2 a < b < a.

By definition, π∗(L) = L̃ + mLE and π∗(D) = D̃ + mCE where in our case mL =

multp0 L = a and mD = multp0 D = 2b as we proved in Theorem 3.2.8. From

Example 2.1.3, we known that E2 = − 1
ab

, so we get: (L̃)2 = −a+b
b

, (D̃)2 = 3 − 4b
a

,

L̃ · E = 1
b
, D̃ · E = 2

a
, and D̃ · L̃ = 1.

As we saw in the previous section, the stable base locus (see Definition 2.1.13) of

π∗(−KX) − tE ∼ 1
2
(
L̃ + D̃

)
+
(

a + 2b

2 − t

)
E (3.5)

is contained in D̃∩ L̃ for all 0 ≤ t ≤ a+2b
2 . We want to compute the volume of this

divisor to get S(−KX ; E), and therefore we need the Zariski Decomposition (see

§2.1.2) of π∗(−KX) − tE for all 0 ≤ t ≤ a+2b
2 . To get the Zariski Decomposition,

we need to separate the positive and negative parts of our divisor. In order

to do this, we need to identify the divisors (in this case, curves) that intersect

negatively with π∗(−KX)− tE, these divisors will be in the negative part. Notice

that these divisors can only be those with negative self-intersection that appear

in the linear equivalence of π∗(−KX) − tE in (3.5). Hence, we need to intersect
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π∗(−KX) − tE, with the negative curves L̃, D̃ and E, and check when this

intersections are negative.

(π∗(−KX) − tE) · L̃ = 1
2

(
−a+b

b
+ 1

)
+
(

a+2b
2 − t

)
1
b

= b−t
b

≥ 0 ⇔ b ≥ t,

(π∗(−KX) − tE) · D̃ = 1
2

(
1 + 3 − 4b

a

)
+
(

a+2b
2 − t

)
2
a

= 3a−2t
a

≥ 0 ⇔ 3a
2 ≥ t,

(π∗(−KX) − tE) · E = 1
2

(
1
b

+ 2
a

)
+
(

a+2b
2 − t

) (
− 1

ab

)
= t

ab
≥ 0 ∀t.

For our assumptions on a and b, we know that b ≤ 3a
2 and hence, the first

negative value appears when we intersect the divisor with L̃. Therefore we know

that π∗(−KX) − tE is nef for t ∈ [0, b], but for t > b we need to find the smallest

λ such that π∗(−KX) − tE − λL̃ is nef. To do so, we repeat the intersections for

this new divisor.

(π∗(−KX) − tE − λL̃) · L̃ = λ(a+b)+b−t
b

≥ 0 ⇔ λ ≥ t−b
a+b

,

(π∗(−KX) − tE − λL̃) · D̃ = 3a−2t−aλ
a

≥ 0 ⇔ 3a − 2t ≥ λ,

(π∗(−KX) − tE − λL̃) · E = t−aλ
ab

≥ 0 ⇔ t ≥ aλ.

Now we take the smallest λ which is t−b
a+b

, and we repeated the intersections for

π∗(−KX) − tE − t−b
a+b

L̃.

(π∗(−KX) − tE − t−b
a+b

L̃) · L̃ = 0 ≥ 0 ∀t,

(π∗(−KX) − tE − t−b
a+b

L̃) · D̃ = 3a2+4ab−(3a+2b)t
a(a+b) ≥ 0 ⇔ a(3a+4b)

3a+2b
≥ t,

(π∗(−KX) − tE − t−b
a+b

L̃) · E = a+t
a(a+b) ≥ 0 ∀t.

Looking at these intersections, we know that π∗(−KX) − tE − t−b
a+b

L̃ is nef for

t ∈ [b, a(3a+4b)
3a+2b

], but for t > a(3a+4b)
3a+2b

we need to find the smallest λ and µ such that

π∗(−KX) − tE − λL̃ − µD̃ is nef. To do so, we repeat the intersections for this

new divisor.
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(π∗(−KX) − tE − λL̃ − µD̃) · L̃ = λ(a+b)+b−t−bµ
b

≥ 0 ⇔ λ ≥ bµ+t−b
a+b

,

(π∗(−KX) − tE − λL̃ − µD̃) · D̃ = 3a−2t−aλ+(4b−3a)µ
a

≥ 0 ⇔ µ ≥ −3a+2t+aλ
4b−3a

,

(π∗(−KX) − tE − λL̃ − µD̃) · E = t−aλ−2bµ
ab

≥ 0 ⇔ t ≥ aλ + 2bµ.

By solving these inequalities, we get that the smallest coefficients for the divisor

to be nef are λ = 3t(2b−a)−4b2

4b2−3a2 and µ = t(3a+2b)−a(3a+4b)
4b2−3a2 . Therefore, we have the

following Zariski decomposition:

N(π∗(−KX) − tE) =


0 0 ≤ t ≤ b,

t−b
a+b

L̃ b < t ≤ a(3a+4b)
3a+2b

,

3t(2b−a)−4b2

4b2−3a2 L̃ + t(3a+2b)−a(3a+4b)
4b2−3a2 D̃ a(3a+4b)

3a+2b
< t ≤ a+2b

2 ,

and

P (π∗(−KX) − tE) =

1
2

(
L̃ + D̃

)
+
(

a+2b−2t
2

)
E 0 ≤ t ≤ b,

a+3b−2t
2(a+b) L̃ + 1

2D̃ +
(

a+2b−2t
2

)
E b < t ≤ a(3a+4b)

3a+2b
,

3t(2b−a)(a+2b−2t)
2(4b2−3a2) L̃ + (3a+2b)(a+2b−2t)

2(4b2−3a2) D̃ +
(

a+2b−2t
2

)
E a(3a+4b)

3a+2b
< t ≤ a+2b

2 .

Then, by [BFJ09, Theorem B, Example 4.7] and [LM09, Corollary C], we know

that

volY |E(π∗(−KX) − tE) = Pσ(π∗(−KX) − tE) · E = −1
2 · d

dt
vol(π∗(−KX) − tE).

Thus, we get

volY |E(π∗(−KX) − tE) =



t
ab

0 ≤ t ≤ b,

a+t
a(a+b) b < t ≤ a(3a+4b)

3a+2b
,

6(a+2b−2t)
4b2−3a2

a(3a+4b)
3a+2b

< t ≤ a+2b
2 ,
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and

S(−KX ; E) = 2
(−KX)2

∫ ∞

0
t · volY |E(π∗(−KX) − tE)dt = 15a2 + 34ab + 8b2

12(3a + 2b) .

Since AX(E) = a + b, note that AX(νa,b)
SX(νa,b) only depends on the ratio µ = a

b
, thus by

continuity [BLX22, Proposition 2.4] we have:

AX(νa,b)
SX(νa,b)

= 12(3µ + 2)(1 + µ)
15µ2 + 34µ + 8

It achieves its minimum for 2√
3 ≥ µ ≥ 1 with the value λ0 = 6

71(11 + 8
√

3) at

µ0 := 2√
3 . In particular, we have δp0(X) ≤ λ0.

It remains to show δp0(X) ≥ λ0. For the next theorem, we use the same method

as in [AZ22, Lemma A.6].

Theorem 3.3.2. Let X ⊂ P(1, 1, 1, 2) be a smooth del Pezzo surface of degree 2

and let p0 = (x0, y0, z0, w0) be a closed point in X. Assume a unique (−1)-curve

L is passing through the point p0. Then δp0(X) ≥ 6
71(11 + 8

√
3).

Proof. Choose a sequence of coprime integers am, bm > 0 (m = 1, 2, ...) such that

µm := am

bm
→ µ0 (m → ∞), where 2

3 < µm < 2√
3 . Let πm : Ym = Yam,bm → X be

the corresponding weighted blow up and let Em be the exceptional divisor. Let

P
(m)
1 = L̃ ∩ Em, {P

(m)
2 , P

(m)
3 } = D̃ ∩ Em, where P

(m)
1 and P

(m)
2 are the singular

points p and q, respectively. Let W Em−→·,· be the refinement by Em of the complete

linear series associated to −KX .

Let ∆m = DiffEm(0) = (1 − 1
bm

)P (m)
1 + (1 − 1

am
)P (m)

2 , λm = AX(Em)
S(−KX ;Em) . Now using

the formula in Theorem 2.2.18 we know that:

δp(X) ≥ min
{

AX(Em)
S(−KX ; Em) , min

x∈Em

1 − ordx(∆Em)
S(W Em·,· ; x)

}
.
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We already computed the minimum of AX(Em)
S(−KX ;Em) in Theorem 3.3.1. Therefore,

to finish the proof, we need to compute the other minimum. Notice that in

Em we have two singularities, P
(m)
1 and P

(m)
2 , so we have four types of points

x ∈ Em. Here, we denote by P (t) the positive part of the Zariski decomposition

of Theorem 3.3.1 and by N(t) the negative part.

• If x = P
(m)
1 ,

1 − ordx(∆Em)
S(W Em·,· ; x) =

1 −
(
1 − 1

bm

)
S(W Em·,· ; P

(m)
1 )

= 12(2bm + 3am)2

45a2
m + 60ambm + 44b2

m

,

where

S(W Em
·,· ; P

(m)
1 ) =

∫ a+2b
2

0

(
(P (t) · Em) · (N(t) · Em)

P
(m)
1

+ (P (t) · Em)2

2

)
dt

= 45a2
m + 60ambm + 44b2

m

12bm(2bm + 3am)2 .

Now since µm → µ0 as m → ∞, let us take the limit

lim
m→∞

1
b · S(W Em·,· ; P

(m)
1 )

= 6
47
(
11 + 3

√
3
)

. (3.6)

• If x = P
(m)
2 ,

1 − ordx(∆Em)
S(W Em·,· ; x) =

1 −
(
1 − 1

am

)
S(W Em·,· ; P

(m)
2 )

= 3(2bm + 3am)2

18a2
m + 12ambm + 4b2

m

,

where

S(W Em
·,· ; P

(m)
2 ) = 2(9a2

m + 6ambm + 2b2
m)

3am(2bm + 3am)2 .

Now since µm → µ0 as m → ∞, let us take the limit

lim
m→∞

1
a · S(W Em·,· ; P

(m)
2 )

= 6
37
(
8 + 3

√
3
)

. (3.7)
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• If x = P
(m)
3 ,

1 − ordx(∆Em)
S(W Em·,· ; x) = 1

S(W Em·,· ; P
(m)
3 )

= 3am(2bm + 3am)2

18a2
m + 12ambm + 4b2

m

,

where

S(W Em
·,· ; P

(m)
3 ) = 2(9a2

m + 6ambm + 2b2
m)

3am(2bm + 3am)2 .

Now since µm → µ0 as m → ∞, let us take the limit

lim
m→∞

1
S(W Em·,· ; P

(m)
3 )

= 12
37
(
8 + 3

√
3
)

. (3.8)

• If x ̸= P
(m)
1 , P

(m)
2 , P

(m)
3 ,

1 − ordx(∆Em)
S(W Em·,· ; x) = 1

S(W Em·,· ; x) = 18a2
m + 12ambm

15am − 2bm

,

where

S(W Em
·,· ; x) = 15am − 2bm

18a2
m + 12ambm

.

Now since µm → µ as m → ∞, let us take the limit

lim
m→∞

1
S(W Em·,· ; x) = 12

37
(
8 + 3

√
3
)

. (3.9)

If we put it all together, we get that

δp(X) ≥ min
{

λ0,
6
47
(
11 + 3

√
3
)

,
6
37
(
8 + 3

√
3
)

,
12
37
(
8 + 3

√
3
)}

= λ0 = 6
71(11 + 8

√
3).

This concludes the proof of the Main Theorem 3.0.1.

61



Chapter 4

One-dimensional components in

the K-moduli of smooth Fano

3-folds

This chapter expands upon the paper “One-dimensional components in the K-

moduli of smooth Fano 3-folds” which is written in collaboration with Hamid Ab-

ban (my advisor), Ivan Cheltsov, Elena Denisova, Dongchen Jiao, Anne-Sophie

Kaloghiros, Jesus Martinez-Garcia, and Theodoros Papazachariou [Abb+23]. In

the paper, we study one-dimensional components of the K-moduli of Fano 3-

folds denoted by MKps
3 . We give a complete description of the six 1-dimensional

K-moduli components. As part of this thesis, we show more detailed computa-

tions and extended explanations of the description of the families for three of the

components, since they are the ones I worked on.
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4.1 Introduction

Until the development of the theory of K-stability, the subject lacked a unified the-

ory of compact moduli spaces for Fano varieties. Recent advances in K-stability

have shown that the compactification of the moduli space of Kähler-Einstein

Fano manifolds obtained by degenerating Kähler-Einstein metrics coincides with

a compact moduli space of K-polystable Q-Fano varieties; the resulting space,

after fixing the dimension n ∈ N and the volume V ∈ Q>0 is a projective variety

MKps
n,V parametrising n-dimensional K-polystable smoothable Fano varieties of an-

ticanonical volume V over C (see [Jia20; LWX21; CP21; BX19; Alp+20; BLX22;

Xu20; XZ20; XZ21; Blu+21; LXZ22]).

Much has already been uncovered about the geometry and characteristics of

smooth Fano 3-folds. Through the application of techniques from birational ge-

ometry, Iskovskikh, Mori, and Mukai achieved the classification of smooth Fano

3-folds into 105 deformation families [Isk89; MM82]. It is natural to test the

theory of K-moduli for these varieties.

We also know precisely the deformation families for which a general member

of the family is K-stable (see [Ara+23]). In particular, it is known that 78 of

those families have K-semistable general members. Of those 78 families with K-

(poly)stable elements, 24 have 0-dimensional moduli, meaning they have a unique

K-polystable member. This project focuses on the six families with 1-dimensional

moduli. In that, the following are the families where the moduli have dimension

one (the numbers given are the ones in Mori-Mukai notation [MM82]):

Family 1: Divisors of bidegree (1,2) in P2 × P2 (№2.24). For λ ∈ P1, let Xλ be

the 3-fold defined by {xu2 + yv2 + zw2 = λ(xvw + yuw + zuv)} ⊂ P2 ×P2, where

([x : y : z], [u : v : w]) are coordinates on P2 × P2. Then Xλ is smooth if and only

if λ3 ̸= 1 or λ ̸= ∞ and they parametrise the smooth members of this family.

By [Ara+23, Lemma 4.70] Xλ are K-polystable for all λ ∈ P1. In particular, if
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λ3 = 1, then Xλ
∼= X∞, and this 3-fold has 3 ordinary double points. Note that

the family contains strictly K-semistable smooth members (see [Ara+23, Section

4.7] for details).

Family 2: Blowups of P3 along quartic elliptic curves (№2.25). For λ ∈ P1,

consider the curve Cλ =
{
x2

0 +x2
1 +λ(x2

2 +x2
3) = 0, λ(x2

0 −x2
1)+x2

2 −x2
3 = 0

}
⊂ P3,

where [x0 : x1 : x2 : x3] are coordinates on P3, and let π : Xλ → P3 be the

blowup along Cλ. If λ ̸∈ {0, ±1, ±i, ∞}, then Cλ is a smooth elliptic curve,

and Xλ is a smooth K-stable Fano 3-fold [Ara+23, Corollary 4.32]. Moreover,

every smooth Fano 3-fold in this family is isomorphic to Xλ for some λ ∈ P1

[Dye77]. If λ ∈ {0, ±1, ±i, ∞}, then Cλ is a union of 4 lines, and Xλ
∼= X0 is

a toric K-polystable smoothable Fano 3-fold; X0 has four singular points, which

are ordinary double points (prove in [Pap22]).

Family 3: Blowups of P3 along rational quartic curves (№2.22). We study this

family in §4.2.

Family 4: Blowups of P3 along the disjoint union of a twisted cubic and a line

(№3.12). We study this family in §4.3.

Family 5: Blowups of P1 × P1 × P1 along a curve of degree (1,1,3) (№4.13). We

study this family in §4.4.

Family 6: Complete intersection of divisors of degree (1, 1, 0), (1, 0, 1) and

(0, 1, 1) in P2 × P2 × P2 (№3.13). By [Ara+23, Lemma 5.97] we know that every

smooth member of Family 6 is isomorphic to Xλ ⊂ (P2)3 given by

{
x0y0+x1y1+x2y2 = 0, y0z0+y1z1+y2z2 = 0, (1+λ)x0z1+(1−λ)x1z0−2x2z2 = 0

}
,

(4.1)

where λ ∈ P1, and ([x0 : x1 : x2], [y0 : y1 : y2], [z0 : z1 : z2]) are coordinates on

(P2)3. If λ ̸∈ {±1, ∞}, then Xλ is a smooth K-polystable Fano 3-fold [Ara+23,

Lemma 5.99]. For λ ∈ {±1, ∞}, Xλ is K-unstable and singular (X±1 has one

64



4.1. INTRODUCTION

ordinary double point p = ([0 : 1 : 0], [0 : 0 : 1], [1 : 0 : 0])) and X∞ is singular

along the curve defined as {([0 : 0 : 1], [y0 : y1 : 0], [0 : 0 : 1])|[y0 : y1] ∈ P1}).

However, let

X ′
∞ =



x2y3 − x3y2 = 0,

y2z3 − y3z2 = 0,

x2z3 − x3z2 = 0,

x1y1z3 + x1y3z1 + x3y1z1 + x3y2z3 = 0,

x1y1z2 + x1y2z1 + x2y1z1 + x2y3z2 = 0.

(4.2)

Then X ′
∞ has a unique singular point, which is an ordinary double point, and is

a K-polystable limit of elements of this family [Abb+23, §6].

This deformation family also contains some interesting members, which are worth

mentioning. It contains a unique strictly K-semistable smooth member, whose

automorphism group is isomorphic to Ga ⋊ S3 (see [Ara+23, Lemma 5.98]),

i.e. the unique non-trivial semi-direct product of the additive group Ga and the

symmetric group S3. Recall that the automorphism group of a K-semistable Fano

variety is reductive. The family contains a singular K-polystable toric Fano 3-

fold. Furthermore, we can parametrise the family such that Xλ degenerates to the

singular toric K-polystable Fano 3-fold {x0y1 = x1y0, y1z2 = y2z1, x0z2 = x2z0}

when λ → ±1. Recall that a toric variety is K-polystable if and only if the

barycenter of its polytope is 0 [Fuj16; WZ04]. Note that it has 3 ordinary double

points. Family 6 also contains a non-toric complete intersection in P2 × P2 × P2

with one ordinary double point which is K-unstable (see [Abb+23, Example 6.1]

for the description).

To explicitly describe the compact moduli space in each of these cases, we proceed

as follows: we give an explicit parametrisation of the (smooth) members of each

family, which is always A1 \{p1, .., pk} for some k ∈ N, as you can see in Family 1,

2 and 6. Then, we fill the missing points of the 1-dimensional parametrisation to
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get P1 with explicit K-polystable singular Fano 3-folds that deform to a smooth

member. And finally, we construct a morphism from P1 to MKps
N which is the

one-dimensional component of MKps
3 that contains all smooth K-polystable Fano

3-folds in Family №N in the Mori-Mukai classification. Note that these families

are classified by Picard rank and volume V , hence, in particular, they are one-

dimensional components of MKps
3,V . See in the next Corollary how we construct

this morphism for Family 2 and Corollary 4.1.2 for Family 6.

Corollary 4.1.1. The Fano 3-fold X∞ in Families 1 and 2 are the only singular

K-polystable limits of members of the deformation families №2.24, 2.25.

Proof. We only consider Family 2, since the proof is similar for the other family.

Denote by MKps
2.25 the one-dimensional component of the K-moduli space MKps

3

that contains all smooth K-polystable Fano 3-folds in Family 2 (equivalently,

all K-polystable elements of Mori-Mukai family №2.25). Above, we described

a parametrisation X =
{
Xλ; λ ∈ P1

}
that is a Q-Gorenstein family (i.e. let

π : X → P1, then KX −π∗(KP1) is Q-Cartier), and such that all smooth members

of Family 2 are fibres of the family Xλ for λ ∈ P \ {0, ±1, ±i, ∞}. Note that

Xλ
∼= X−λ for λ ∈ P1.

Moreover, it follows from the description of Family 2 above the fact that all

objects Xλ in the parametrisation are K-polystable. Thus we have a morphism

P1 → MKss
2.25, the moduli stack parametrising K-semistable objects in this family,

which descends to a morphism ϕ : P1 → MKps
2.25 given by λ 7→ [Xλ] such that

ϕ(0) = ϕ(±1) = ϕ(±i) = ϕ(∞), and ϕ(λ) = ϕ(−λ) for λ ∈ P1. Since MKps
2.25 is

proper and one-dimensional, we conclude that ϕ is surjective, which implies the

required assertion.

Corollary 4.1.2. Singular K-polystable limits of smooth Fano 3-folds in the

Mori-Mukai family №3.13 are the toric Fano 3-fold mentioned in Family 6 above

and the non-toric Fano 3-fold X ′
∞ defined in (4.2).
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Proof. Let MKps
3.13 be the one-dimensional component of MKps

3 that contains K-

polystable smooth Fano 3-folds in this deformation family. It follows from the

description in Family 6 that there exists a Q-Gorenstein family of Fano 3-folds

over P1 such that the fibre Xλ over λ ∈ P1 is the complete intersection in P2 ×

P2 × P2 given by (4.1). This family contains all smooth K-polystable 3-folds in

the family №3.13, which are fibres over the points in P1 \ {±1, ∞}. Note that

Xλ
∼= X−λ for every λ ∈ P1. As in Corollary 4.1.1, we argue that there is a

surjective morphism ϕ : P1 → MKps
3.13 such that ϕ(λ) = [Xλ] for λ ∈ P1 \ {±1, ∞},

and ϕ(±1) is the K-polystable toric Fano 3-fold described in Family 6.

For λ ̸= ∞, the K-polystable Fano 3-fold corresponding to ϕ(λ) is either smooth

or has ordinary double points, in particular, Xλ has unobstructed Q-Gorenstein

deformations. So, it follows from [KP21, Remark 2.4] that MKps
3.13 is smooth at

ϕ(λ) for λ ̸= ∞. It follows from [Abb+23, Main Theorem] that [X ′
∞] ∈ MKps

3.13 ,

where X ′
∞ is the 3-fold (4.2). But [X ′

∞] ̸= ϕ(λ) for λ ̸= ∞, since X ′
∞ ̸∼= Xλ

for λ ̸∈ {0, ∞}, and X ′
∞ is not isomorphic to the toric Fano 3-fold described in

Family 6. Thus, we conclude that ϕ(∞) = [X ′
∞], so that MKps

3.13 is smooth at ϕ(λ),

which gives MKps
3.13

∼= P1.

In sections §4.2, §4.3, §4.4, we study families 3, 4 and 5, respectively. For each

family, we prove that there is a unique K-polystable singular Fano 3-fold that

admits a smoothing to a member of the family and as a consequence, we prove

the following:

Main Theorem 4.1.3. All one-dimensional components of MKps
3 are isomorphic

to P1.
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4.2 Family 3

In this section, we study the Fano 3-folds described as blowups of P3 along rational

quartic curves. (№2.22 in Mori-Mukai notation)

4.2.1 Parametrisation of the family

From [Ara+23, §7.4.] we have the following parameterization of the Family 3:

Define Q := {x0x3 = x1x2} ⊂ P3 to be the smooth quadric surface, where

[x0 : x1 : x2 : x3] are coordinates on P3. Notice that Q ∼= P1 × P1 via the

isomorphism given by

(
[u : v], [x : y]

)
→
[
xu : xv : yu : yv

]
,

where ([u : v], [x : y]) are coordinates on P1 × P1. Let Cλ := {ux2(x + λy) =

vy2(y + λx)} be a curve in Q, for λ ∈ P1. Notice that Cλ is a smooth rational

quartic curve if and only if λ ̸∈ {±1, ∞}. Let π : Xλ → P3 be the blowup of

P3 along Cλ, then Xλ is a smoothable Fano 3-fold. Moreover, every (smooth)

member of family №2.22 is isomorphic to Xλ for some λ ∈ P1. The 3-fold Xλ is

K-polystable for λ ̸∈ {±1, ±3, ∞} by [CP22]. On the other hand, X±3 is strictly

K-semistable, with K-polystable limit X0 by [Ara+23, Lemma 7.5.].

Lemma 4.2.1. The K-polystable limit of X±3 is X0.

Proof. Note that since Xλ is the blowup of P3 along Cλ, it is enough to show that

C±3 degenerates to C0. We will do the proof for C3, the other one will be similar.

Recall that C3 is defined by equation {ux2(x + 3y) = vy2(y + 3x)}. With a

change of coordinates (x′ = x + y), we get {u(x′)3 = (u + v)(−2y3 + 3x′y2)}.

We change coordinates again taking v′ = v + u and y′ = 3
√

−2y, and we get
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{u(x′)3 = v′((y′)3 + 3
( 3√−2)2 x′(y′)2)}. Now we define the family

C := {{ux3 = v(y3 + txy2)}|t ∈ C}.

We define π : C → C in an obvious way. Notice that for every non-zero t ∈ C,

π−1(t) ∼= C3. On the other hand, for π−1(0) = {ux3 = vy3} = C0.

We also have a relation between X±1 and X∞.

Lemma 4.2.2. X±1 admits an isotrivial degeneration to X∞ (Definition 2.2.19).

Proof. As in the previous Lemma, it is enough to show that C±1 degenerates

isotrivially to C∞. We will do the proof for C1, the other one will be similar.

Recall that C1 is the union of a twisted cubic and a line defined by equation

{(x + y)(ux2 − vy2) = 0}. With a change of coordinates (x′ = x + y), we get

{x′(u((x′)2 + 2x′y + y2) − vy2) = 0}. Now we define the family

C := {{x(u(tx2 + 2xy + y2) − vy2) = 0}|t ∈ A1}.

We define π : C → A1 in an obvious way. Notice that for every non-zero t ∈ A1,

π−1(t) ∼= C1. On the other hand, for π−1(0) = {x(u(2xy + y2) − vy2) = 0}, we

rewrite it as, {xy(u2x − (v − u)y) = 0}. Then, we do a change of coordinate

(u′ = 2u and v′ = v − u) and we get that π−1(0) = C∞.

As a consequence of Lemma 4.2.2, if X∞ is K-polystable, then X±1 is strictly

K-semistable. Note that X∞ has two ordinary double points which pair with the

intersection points between the lines of C∞.
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4.2.2 The strategy to prove the K-polystability of X∞

The strategy to check the K-polystability of the singular members of the three

families 3,4 and 5 is the same and it works as follows:

Let X be a singular Fano 3-folds that admits a smoothing to one of the Families 3,

4 or 5 (see sections 4.3 and 4.4 for specific descriptions of the latter two families).

For these families, we will present generators of the group Aut(X), and we will

describe basic geometric facts about X. For instance, we will see that X has two

isolated ordinary double points and that Aut(X) swaps them. Set G = Aut(X).

Then, using Theorem 2.2.12, we prove that X is K-polystable by showing that

β(E) > 0 for every G-invariant prime divisor E over X.

Now, let φ : X̂ → X be a G-equivariant birational morphism with X̂ normal, and

let F be a G-invariant prime divisor in the 3-fold X̂, and Z = φ(F ) its centre

on X. Since G swaps singular points of X, we have the following possibilities: Z

is a smooth point of X, Z is a G-invariant irreducible curve, Z is a G-invariant

irreducible surface.

We replace X with a suitable G-equivariant small resolution to simplify the com-

putations. In principle, such a resolution may not exist, but in all cases considered

here, it does, leading to a G-equivariant commutative diagram

X̃

��

// X

��
X

where X̃ → X and X → X are small resolutions of singularities of X, and

X̃ 99K X is a composition of two Atiyah flops. Let Y be one of the 3-folds X̃ or

X, let η : Y → X be the corresponding small G-equivariant birational morphism,

and let ZY be the centre of the divisor F on the 3-fold Y . Then −KY ∼ η∗(−KX),

which implies that AX(F ) = AY (F ) and S(−KX ; F ) = S(−KY ; F ). Therefore,
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the β-invariant that we use to characterise K-stability will not change with a

small resolution.

Remark 4.2.3. Let S1, . . . , Sr be effective divisors on Y such that SY (Si) < 1 for

every i. If every G-invariant prime divisor in Y is linearly equivalent to
r∑

i=1
niSi for

some non-negative integers n1, . . . , nr, then β(S) > 0 for every G-invariant prime

divisor S in Y . Using the bound for S(−KX ; E) given in (2.1), we can weaken the

condition “every G-invariant prime divisor in Y is linearly equivalent to
r∑

i=1
niSi

for some non-negative integers n1, . . . , nr” as follows: for every G-invariant prime

divisor D ⊂ Y such that −KY ∼Q
4
3D + ∆ for some effective Q-divisor ∆ on

the 3-fold Y , there are non-negative integers n1, . . . , nr such that D ∼
r∑

i=1
niSi.

Recall that ∼ means numerically equivalent, and for a field k, ∼k is numerically

equivalent with coefficients in k. Furthermore, using [Fuj19b, Proposition 3.2], we

can weaken the latter condition slightly as follows: for every G-invariant prime

divisor D ⊂ Y such that −KY ∼Q λD + ∆ for some rational number λ > 4
3

and some effective Q-divisor ∆ on the 3-fold Y , there are non-negative integers

n1, . . . , nr such that D ∼
r∑

i=1
niSi.

Now, fix a point p ∈ ZY . If β(F ) ⩽ 0 for a divisor F whose centre contains

p, then δp(Y ) ⩽ 1 (see definitions 2.2.6 and 2.2.8). Quite often, we can use the

inductive argument of Abban and Zhuang [AZ22], and its formulation in certain

scenarios in [Ara+23], to show that δp(Y ) > 1. To do this in the cases we deal

with in Families 3, 4 and 5, take an admissible flag p ∈ C ⊂ S ⊂ Y , where C is a

smooth irreducible curve that contains p, and S is a smooth irreducible surface in

Y that contains C. To apply [AZ22; Ara+23], set τ = τ
(
S
)

the pseudoeffective

threshold defined in Definition 2.2.6. Next, for every u ∈ [0, τ ], it is required to

find the Zariski decomposition

−KY − uS ∼R P (u) + N(u),

where P (u) is the positive part of the decomposition, and N(u) is the negative
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part (see §2.1.2). A priori, the Zariski decomposition may not exist on Y for

every u ∈ [0, τ ], but in the cases dealt with here, it exists either for Y = X̃ or for

Y = X. Hence, we may assume that the required Zariski decomposition exists

on Y for every u ∈ [0, τ ]. For u ∈ [0, τ ], set d(u) = ordC(N(u)|S) and write

N(u)
∣∣∣
S

= N ′(u) + d(u)C,

where N ′(u) is an effective divisor on S such that C ̸⊂ Supp(N ′(u)). For u ∈ [0, τ ],

set

τ(u) = sup
{

v ∈ R⩾0

∣∣∣ the divisor P (u)
∣∣∣
S

− vC is pseudo-effective
}

.

Then, for every v ∈ [0, τ(u)], let P (u, v) be the positive part of the Zariski

decomposition of the R-divisor P (u)|S − vC, and let N(u, v) be its negative part.

Set

S
(
W S

•,•; C
)

= 3
(−KX)3

τ∫
0

d(u)
(
P (u, 0)

)2
du + 3

(−KX)3

τ∫
0

τ(u)∫
0

(
P (u, v)

)2
dvdu,

which is well defined since the support of N(u) does not contain S for every

u ∈ [0, τ ]. If C = ZY , it follows from Theorem 2.2.17 and[Ara+23] that

AX(F )
SX(F ) = AY (F )

SY (F ) ⩾ min
 1

SY (S) ,
1

S
(
W S

•,•; C
)
. (4.3)

Hence, if C = ZY , SY (S) < 1 and S(W S
•,•; C) < 1, then β(F ) > 0. Using this

approach, we can show that β(F ) > 0 if Z is a G-invariant irreducible curve.

Remark 4.2.4. ([AZ22; Ara+23]) In fact, if C = ZY , SY (S) < 1 and S(W S
•,•; C) ⩽ 1,

then β(F ) > 0.

72



4.2. FAMILY 3

Now, we observe that C ̸⊂ Supp(N(u, v)), and set

FP

(
W S,C

•,•,•

)
= 6

(−KX)3

τ∫
0

τ(u)∫
0

(
P (u, v) · C

)
· ordP

(
N ′(u)

∣∣∣
C

+ N(u, v)
∣∣∣
C

)
dvdu

and

S
(
W S,C

•,•,•; P
)

= 3
(−KX)3

τ∫
0

τ(u)∫
0

(
P (u, v) · C

)2
dvdu + FP

(
W S,C

•,•,•

)
.

Then it follows from [AZ22; Ara+23] that

AY (F )
SY (F ) ⩾ δP

(
Y
)
⩾ min

 1
SY (S) ,

1
S
(
W S

•,•; C
) ,

1
S
(
W S,C

•,•,•; P
)
. (4.4)

Thus, if SY (S) < 1, S(W S
•,•; C) < 1 and S(W S,C

•,•,•; P ) < 1, then δP (Y ) > 1 and

β(F ) > 0.

Remark 4.2.5 ([AZ22; Ara+23]). In fact, if P = ZY , SX(S) < 1, S(W S
•,•; C) ⩽ 1

and S(W S,C
•,•,•; P ) ⩽ 1, then we also have β(F ) > 0.

Using this approach, we will show in the remaining of this section and Sections 4.3

and 4.4 that X (in the notation of Families 3, 4 and 5) is K-polystable.

4.2.3 Geometry of X∞

To simplify the notation, let X = X∞, where X∞ is described above. Let C∞ =

C + L1 + L2, where C = {x0 + x3 = 0, x0x3 = x1x2}, L1 = {x0 = 0, x1 = 0} and

L2 = {x2 = 0, x3 = 0}, and let γ : V → P3 be the blowup of the lines L1 and

L2. Let ϕ : X̃ → V be the blowup of the proper transform of the conic C, and

φ : W → P3 be the blowup of the conic C, and let σ : X → W be the blowup

of the proper transform of the lines L1 and L2. Then we have the following

G-equivariant commutative diagram:
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X̃ //

ϕ

��

X

π
��

Xoo

σ

��
V γ

// P3 Wφ
oo

where X̃ → X and X → X are G-equivariant small resolutions of X. Recall from

Section 4.2.2 that G = Aut(X), and either Y = X̃ or Y = X.

Note that Q = {x0x3 = x1x2} ⊂ P3, and let E, F1, F2 be the π-exceptional

surfaces such that π(E) = C, π(F1) = L1, π(F2) = L2. Let HC = {x0 + x3 = 0},

HC′ = {x0 − x3 = 0}, and denote by H a general plane in P3. Note that when

we intersect Q with HC′ we get another conic, denote it by C ′. Now we define

some of the curves that are relevant for future computations. Let l1 and l2 be

the tangent lines to C ′ at P1 = L1 ∩ C and P2 = L2 ∩ C, respectively, and

l = HC ∩ HC′ = {x0 = 0, x3 = 0} which also contains P1 and P2. Figure 4.1

shows most curves and surfaces mentioned before.

Figure 4.1: Model in P3 of X Family 3

Now, denote by Ẽ, F̃1, F̃2, Q̃, H̃C , H̃C′ , H̃ the proper transforms on X̃ of the

surfaces E, F1, F2, Q, HC , HC′ , H, respectively. Then Q̃ ∼ 2H̃ − Ẽ − F̃1 − F̃2

and H̃C ∼ H̃ − Ẽ. This gives

−K
X̃

∼ 4H̃ − Ẽ − F̃1 − F̃2 ∼ 2Q̃ + Ẽ + F̃1 + F̃2 ∼ Q̃ + 2H̃C + 2Ẽ.

Note that (−K
X̃

)3 = (−KX)3 = 30. The divisors H̃, Ẽ, F̃1, F̃2 generate the
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group Pic(X̃). We have H̃3 = 1, H̃ · F̃ 2
1 = H̃ · F̃ 2

2 = F̃1 · Ẽ2 = F̃2 · Ẽ2 = −1,

H̃ · Ẽ2 = F̃ 3
1 = F̃ 3

2 = −2, Ẽ3 = −4, and all remaining triple intersections are

zero.

Similarly, let E, F 1, F 2, Q, HC , HC′ , H be the proper transforms on X of the

surfaces E, F1, F2, Q, HC , HC′ , H, respectively. Then

−KX ∼ 4H − E − F 1 − F 2 ∼ 2Q + E + F 1 + F 2 ∼ Q + 2HC + 2E.

The divisors H, E, F 1, F 2 generate the group Pic(X) and their intersections can

be computed as follows: H
3 = 1, F

3
1 = F

3
2 = F

2
1 · H = F

2
2 · H = F

2
1 · E = F

2
2 · E =

−1, E
2 · H = −2, E

3 = −6, and all remaining triple intersections are zero.

Description of the automorphism group Let us take the following auto-

morphisms in P3:


τ : [x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0],

Γ :=
{

[x0 : x1 : x2 : x3] 7→
[
x0 : λx1 : x2

λ
: x3

]∣∣∣λ ∈ C∗
}

.

Note that Γ is the subgroup of Aut(P3). Then Γ is a C∗ action, the curve C∞

is ⟨τ, Γ⟩-invariant, and the ⟨τ, Γ⟩-action lifts to X. Hence, we can identify ⟨τ, Γ⟩

with a subgroup in G = Aut(X). Since τ is an involution is straightforward to

verify that G = ⟨τ, Γ⟩ ∼= C∗ ⋊ µ2.

Description of the G-invariant loci. Here we will study all G-invariant sub-

sets of X. First, notice that all the invariant subsets in X will come from some

G-invariant subset in P3. Let us start by studying the G-invariant points on P3:

set O = [1 : 0 : 0 : 1] and O′ = [1 : 0 : 0 : −1].

Lemma 4.2.6. The only G-fixed points in P3 are O and O′.
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Proof. Taking the C∗ action, Γ, on P3, we get that any Γ-invariant point must

have x1 = x2 = 0. And a point of the form [x0 : 0 : 0 : x3] to be τ invariant, we

get x0 = ±x3.

Notice that l previously defined, is G-invariant. And so are the following curves:

l′ = {x1 = 0, x2 = 0}, Cr = {x1x2 = rx0x3, x0 + x3 = 0}, C ′
r = {x1x2 =

rx0x3, x0 = x3} for r ∈ C∗. Then l′ is the line that passes through O and O′.

Note that Cr is an irreducible conic in the plane HC , and C ′
r is an irreducible

conic in the plane H ′
C , and C = C1, C ′ = C ′

1.

Lemma 4.2.7. The curves l, l′, Cr, C ′
r are the only G-invariant irreducible

curves in P3.

Proof. Let C be a G-invariant irreducible curve in P3. If C is pointwise fixed by

Γ, then C = l′. We may assume that C ≠ l′. Then Γ acts on C effectively, which

implies that C is rational. Then τ must fix a point p ∈ C, which is not fixed by

Γ, which implies that C = OrbΓ(p). On the other hand, the τ -fixed points are

[b : a : a : b] and [b : a : −a : −b] for [a : b] ∈ P1, which implies the required

assertion.

Thus, the planes HC and HC′ contain all G-invariant irreducible curves in P3

except l′. To complete the description of G-invariant curves in X, we have to

describe G-invariant irreducible curves in E, which is done in the following lemma:

Lemma 4.2.8. The only G-invariant irreducible curves in Ẽ are Ẽ ∩ Q̃ and

Ẽ ∩ H̃C, and the only G-invariant irreducible curves in E are s0 = E ∩ Q and

s = E ∩ HC.

Proof. Note that σ(E) ∼= F2 by [CS19, Lemma 2.6], and σ(s) is the (−2)-curve

in E. Let ς : P3 99K P4 be the G-equivariant map

[x0 : x1 : x2 : x3] 7→
[
x0(x0+x3) : x1(x0+x3) : x2(x0+x3) : x3(x0+x3) : x0x3−x1x2

]
,
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and let Y be the closure of its image in P4. Then Y is the quadric {tw − tx +

wx + yz = 0}, where [x : y : z : t : w] are coordinates on P4. Then ς induces

a G-equivariant birational map θ : P3 99K Y such that there exists the following

G-equivariant commutative diagram:

W
φ

{{
υ

##
P3 θ // Y

where υ is the contraction of σ(HC) to [0 : 0 : 0 : 0 : 1]. Set S2 = υ ◦ σ(E). Then

S2 =
{
t + x = 0, yz − tx = 0

}
⊂ Y,

and υ induces a G-equivariant birational morphism σ(E) → S2 that contracts

σ(s). Moreover, one can check that the only G-invariant irreducible curve in the

cone S2 is the conic {w = t + x = yz − tx = 0} = ν ◦ σ(s0). This implies the

required assertion.

Finally, to use Remark 4.2.3, we need to study the G-invariant G-irreducible

divisors on both X̃ and X.

Lemma 4.2.9. Let S be a G-invariant G-irreducible surface in X̃ such that

S ̸= F̃1 + F̃2. Then S ∼ aQ̃ + bH̃C + cẼ for some non-negative integers a, b, c.

Proof. We may assume that S ̸= Ẽ, S ̸= H̃C , S ̸= Q̃. Then π(S) is a G-

invariant surface of degree d ⩾ 1, and S ∼ dH̃ − mẼ − n(F̃1 + F̃2) for some

non-negative integers m and n. Let ℓ be a general ruling of Q̃ ∼= P1 × P1 such

that F̃1 · ℓ = F̃2 · ℓ = 1. Then Ẽ · ℓ = 1 and 0 ⩽ S · ℓ = d − m − 2n. Thus, we

have d ⩾ m − 2n. So, we can let a = n, b = d − 2n, c = d − m − n.

Using the same technique as above it is straightforward to prove the following:
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Lemma 4.2.10. Let S be a G-invariant G-irreducible surface in X such that

S ̸= F 1 + F 2. Then S ∼ aQ + bHC + cE for some non-negative integers a, b, c.

4.2.4 K-polystability of X

We are ready to prove that X is K-polystable using the approach described in

Section 4.2.2. Let F be a G-invariant prime divisor over X, and let Z, Z̃, Z be

its centres on X, X̃ and X, respectively. Then it follows from Lemma 4.2.6 that

1. either Z is a G-invariant irreducible surface,

2. or Z is a curve described in Lemmas 4.2.7 and 4.2.8,

3. or Z is a point, and π(Z) is the point O or O′.

We start with the case of a G-invariant irreducible surface. Using Remark 4.2.3

and Lemma 4.2.9, we obtain

Lemma 4.2.11. Let F be a G-invariant prime divisor on X. Then β(F ) > 0.

Proof. By Remark 4.2.3 and Lemma 4.2.9, it is enough to show that β(Q̃), β(H̃C),

β(Ẽ) are positive. We will do this using the notations introduced in Section 4.2.2.

We start with Q̃. Let Y = X̃ and S = Q̃. Then, −K
X̃

− uS ∼R (2 − u)S + Ẽ +

F̃1 + F̃2. This shows that τ = 2.

Recall that a divisor D is nef if the intersection D · C ≥ 0 is positive for all

irreducible curves C in D. Also notice that in order to get (−K
X̃

− uS) · l < 0, l

must to have negative self-intersection in at least in S, Ẽ, F̃1, F̃2, or H̃. Moreover,

since S ∼= Ẽ ∼= P1 × P1, they do not have negative curves. F̃i has a (−1)-curve

g̃i = Ẽ|
F̃i

. Finally in H̃, we have four (−1)-curves (ẽ1 + ẽ2) = Ẽ|
H̃

, f̃i = F̃i|H̃ .

Note that when we have 3 surfaces A, B and C, A|C · B|C = A · B · C since this
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number is up to equivalence class. So now we check the following intersections:

(−K
X̃

− uS)|
F̃i

· g̃i =
(
(2 − u)S|

F̃i
+ g̃i + F̃i|F̃i

)
· g̃i = 1 − u ≥ 0 ⇔1 ≥ u;

(−K
X̃

− uS)|
H̃

· f̃i =
(
(2 − u)S|

H̃
+ ẽ + f̃1 + f̃2

)
· f̃i = 1 − u ≥ 0 ⇔1 ≥ u;

(−K
X̃

− uS)|
H̃

· ẽi =
(
(2 − u)S|

H̃
+ ẽ1 + ẽ2 + f̃1 + f̃2

)
· ẽi = 1 − u ≥ 0 ⇔1 ≥ u.

Here we see that −K
X̃

− uS is nef for u ∈ [0, 1]. For u ≥ 1, the intersections with

Ẽ|
H̃

and F̃i|H̃ are negative, therefore we are adding some λ
(
Ẽ + F̃1 + F̃2

)
. In this

case it is easy to check that λ = (1 − u). Hence, we have

P (u) ∼R


(2 − u)S + Ẽ + F̃1 + F̃2 if 0 ⩽ u ⩽ 1,

(2 − u)
(
S + Ẽ + F̃1 + F̃2

)
if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u − 1)(Ẽ + F̃1 + F̃2).

Then

(
P (u)

)3
=


2u3 − 6u2 − 18u + 30 if 0 ⩽ u ⩽ 1,

8(2 − u)3 if 1 ⩽ u ⩽ 2.

Now, integrating (P (u))3, we get SY (S) = 43
60 , so that β(Q̃) = 17

60 > 0.

Now we deal with H̃C . Set Y = X̃ and S = H̃C . Then −K
X̃

− uS ∼R (2 − u)S +

2Ẽ + Q̃. This gives τ = 2, because 2Ẽ + Q̃ is not big. Moreover, following the

same procedure as for S = Q̃, we have

P (u) ∼R


(2 − u)S + 2Ẽ + Q̃ if 0 ⩽ u ⩽ 1,

(2 − u)S + (3 − u)Ẽ + Q̃ if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u − 1)Ẽ. We compute

(
P (u)

)3
=


u3 − 6u2 − 12u + 30 if 0 ⩽ u ⩽ 1,

(2 − u)(u2 − 10u + 22) if 1 ⩽ u ⩽ 2,
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which gives SY (S) = 11
12 , so that β(Q̃) = 1

12 > 0.

Finally, we set Y = X and S = E. Then −KX − uS ∼R (2 − u)S + 2HC + Q.

This shows that τ = 2, because 2HC + Q is not big. Moreover, we have

P (u) ∼R


(2 − u)S + 2HC + Q if 0 ⩽ u ⩽ 1,

(2 − u)
(
S + Q + 2HC

)
if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u − 1)Q + 2(u − 1)HC .

Then

(
P (u)

)3
=


6u3 − 6u2 − 24u + 30 if 0 ⩽ u ⩽ 1,

6(2 − u)3 if 1 ⩽ u ⩽ 2,

which gives SY (S) = 19
30 and β(Ẽ) = β(E) = 11

30 > 0.

We now show that β(F ) > 0 for F a G-invariant prime divisor with small centre

on X.

Lemma 4.2.12. Suppose that Z̃ is a G-invariant irreducible curve in H̃C. Then

β(F ) > 0.

Proof. The morphism γ ◦ ϕ induces a birational morphism H̃C → HC , which is

a blowup of the points HC ∩ L1 and HC ∩ L2. Set f̃1 = F̃1|H̃C
and f̃2 = F̃2|H̃C

.

Then f̃1 and f̃2 are exceptional curves of the morphism H̃C → HC . Let l̃ be the

third (−1)-curve in H̃C , set h = H̃|
H̃C

, and set C̃ = Ẽ|
H̃C

. Then γ ◦ ϕ(l̃) = l, so

that l̃ ∼ h − f̃1 − f̃2. By Lemmas 4.2.7 and 4.2.8, we have the following possible

cases:

• π(Z) = l and Z̃ = l̃,

• π(Z) = C1 = C and Z̃ = C̃ ∼ 2h − f̃1 − f̃2,

• π(Z) = Cr with r ̸= 1, Z̃ ̸⊂ Ẽ and Z̃ ∼ 2h − f̃1 − f̃2.
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Set Y = X̃, S = H̃C , C = Z̃. Then it follows from the proof of Lemma 4.2.11

that

P (u)
∣∣∣
S

∼R


(2 + u)h − u(f̃1 + f̃2) if 0 ⩽ u ⩽ 1,

(4 − u)h − f̃1 − f̃2 if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣∣
S
∼R


0 if 0 ⩽ u ⩽ 1,

(u − 1)C̃ if 1 ⩽ u ⩽ 2.

We know from the proof of Lemma 4.2.11 that SY (S) = 11
12 < 1. Let us compute

S(W S
•,•; C ).

Suppose that Z̃ = l̃, then

P (u)
∣∣∣
S

− vZ̃ ∼R


(2 + u − v)l̃ + 2(f̃1 + f̃2) if 0 ⩽ u ⩽ 1,

(4 − u − v)l̃ + (3 + u + v)
(
f̃1 + f̃2

)
if 1 ⩽ u ⩽ 2,

Hence, if 0 ⩽ u ⩽ 1, then τ(u) = 2 + u. If 1 ⩽ u ⩽ 2, then τ(u) = 4 − u.

We denote by P (u, v) and N(u, v) the positive and negative parts of the divisor

P (u)
∣∣∣
S

− vZ̃ on S, respectively. Moreover, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R


(2 + u − v)h − (u − v)(f̃1 + f̃2) if 0 ⩽ v ⩽ u,

(2 + u − v)h if u ⩽ v ⩽ 2 + u,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ u,

(v − u)(f̃1 + f̃2) if u ⩽ v ⩽ 2 + u.

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R


(4 − u − v)h − (1 − v)(f̃1 + f̃2) if 0 ⩽ v ⩽ 1,

(4 − u − v)h if 1 ⩽ v ⩽ 4 − u,

81



4.2. FAMILY 3

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2) if 1 ⩽ v ⩽ 4 − u.

This gives

S(W S
•,•; C ) = 1

10

1∫
0

u∫
0

4−u2+2uv−v2+4u−4vdvdu+ 1
10

1∫
0

2+u∫
u

(2+u−v)2dvdu+

+ 1
10

2∫
1

1∫
0

u2 + 2uv − v2 − 8u − 4v + 14dvdu + 1
10

2∫
1

4−u∫
1

(u + v − 4)2dvdu = 1.

Hence, it follows from Remark 4.2.4 that when Z̃ = l̃, β(F ) > 0.

We may assume that π(Z) = Cr. Then, Z̃ ∼ 2h − f̃1 − f̃2. If 0 ⩽ u ⩽ 1, then

τ(u) = 2+u
2 . Similarly, if 1 ⩽ u ⩽ 2, then τ(u) = 4−u

2 . Moreover, if 0 ⩽ u ⩽ 1,

then

P (u, v) ∼R


(2 + u − 2v)h − (u − v)(f̃1 + f̃2) if 0 ⩽ v ⩽ u,

(2 + u − 2v)h if u ⩽ v ⩽ 2+u
2 ,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ u,

(v − u)(f̃1 + f̃2) if u ⩽ v ⩽ 2+u
2 .

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R


(4 − u − 2v)h − (1 − v)(f̃1 + f̃2) if 0 ⩽ v ⩽ 1,

(4 − u − 2v)h if 1 ⩽ v ⩽ 4+u
2 ,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2) if 1 ⩽ v ⩽ 2+u
2 .
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Therefore, if Z̃ = C̃, then S(W S
•,•; C ) can be computed as follows:

1
10

2∫
1

(u − 1)(u2 − 8u + 14)du + 1
10

1∫
0

u∫
0

(4 − u2 + 2v2 + 4u − 8v)dvdu+

+ 1
10

1∫
0

2+u
2∫

u

(2 + u − 2v)2dvdu + 1
10

2∫
1

1∫
0

(u2 + 4uv + 2v2 − 8u − 12v + 14)dvdu+

+ 1
10

2∫
1

4−u
2∫

1

(u + 2v − 4)2dvdu = 53
80 < 1.

Similarly, if Z̃ ̸= C̃, then S(W S
•,•; C ) = 39

80 < 1. Then β(F ) > 0 by (4.3).

Using computations made in the proof of Lemma 4.2.12, we obtain the following

result:

Lemma 4.2.13. Suppose that π(Z) contains O. Then β(F ) > 0.

Proof. Let us use the notation introduced in the proof of Lemma 4.2.12. First,

we let Y = X̃. Let P be the preimage on Y of the point O. Then P is the unique

G-fixed point in H̃C .

As in the proof of Lemma 4.2.12, we choose S = H̃C , and we choose C to be the

curve in the pencil |h − f̃1| that contains P . Since SY (S) = 11
12 (see the proof

of Lemma 4.2.11), it follows from (4.4) that β(F ) > 0 if S(W S
•,•; C ) < 1 and

S(W S,C
•,•,•; P ) < 1.

Let us compute S(W S
•,•; C ) and S(W S,C

•,•,•; P ). If 0 ⩽ u ⩽ 1, then τ(u) = 2. If

1 ⩽ u ⩽ 2, then τ(u) = 3 − u. Moreover, if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R


(2 + u − v)h − (u − v)f̃1 − uf̃2 if 0 ⩽ v ⩽ u,

(2 + u − v)h − uf̃2 if u ⩽ v ⩽ 2,
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and

N(u, v)∼R


0 if 0 ⩽ v ⩽ u,

(v − u)f̃1 if u ⩽ v ⩽ 2,

which gives

(
P (u, v)

)2
=


4 − u2 + 4u − 4v if 0 ⩽ v ⩽ u,

(2 − v)(2 + 2u − v) if u ⩽ v ⩽ 2,

and

P (u, v) · C =


2 if 0 ⩽ v ⩽ u,

2 + u − v if u ⩽ v ⩽ 2.

Similarly, if 1 ⩽ u ⩽ 2, then

P (u, v) ∼R


(4 − u − v)h − (1 − v)f̃1 − f̃2 if 0 ⩽ v ⩽ 1,

(4 − u − v)h − f̃2 if 1 ⩽ v ⩽ 3 − u,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 1,

(v − 1)f̃1 if 1 ⩽ 3 − u ⩽ 3 − u,

which implies that

(
P (u, v)

)2
=


u2 + 2uv − 8u − 6v + 14 if 0 ⩽ v ⩽ 1,

(3 − u − v)(5 − u − v) if 1 ⩽ v ⩽ 3 − u,

and

P (u, v) · C =


3 − u if 0 ⩽ v ⩽ 1,

4 − u − v if 1 ⩽ v ⩽ 3 − u.

Observe that C is not contained in the support of the divisor N(u) for every

u ∈ [0, 2], and P is not contained in the support of the divisor N(u, v) for u ∈ [0, 2]
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and v ∈ [0, τ(u)]. Now, by integrating we get S(W S
•,•; C ) = S(W S,C

•,•,•; P ) = 47
60 < 1,

so β(F ) > 0 by (4.4).

Recall that HC′ is the plane in P3 that contains O′ and C ′
r for every r ∈ C∗.

Lemma 4.2.14. Suppose that π(Z) = C ′
r for some r ∈ C∗. Then β(F ) > 0.

Proof. As above, we use the notation introduced in section 4.2.2. Let Y = X̃,

and let S be the proper transform on Y of the plane HC′ . Then −K
X̃

− uS ∼R

Q̃ + (2 − u)S. This gives τ = 2. If u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then

N(u) = (u − 1)Q̃. Thus, we have

P (u) ∼R


Q̃ + (2 − u)S if u ∈ [0, 1],

(2 − u)(Q̃ + S) if u ∈ [1, 2].

Integrating, we get SY (S) = 17
30 .

Set C̃ ′ = Q̃|S. Then C̃ ′ is a smooth irreducible G-invariant curve, and

N(u)∼R


0 if u ∈ [0, 1],

(u − 1)C̃ ′ if u ∈ [1, 2].

To describe P (u)|S explicitly, we have to say a few words about the surface S.

Set P1 = HC′ ∩ L1 and P2 = HC′ ∩ L2. Recall that l is the line containing P1 and

P2. Let P be the pencil on HC′ generated by 2l and C ′, let l1 and l2 be the lines

in HC′ that are tangent to C ′ at the points P1 and P2, respectively. Then

• the base locus of the pencil P consists of the points P1 and P2,

• the pencil P contains l1 + l2 and the conic C ′
r for every r ∈ C∗,

• the conics 2l and l1 + l2 are the only singular curves in P .
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The morphism γ ◦ ϕ induces a birational morphism ξ : S → HC′ that resolves the

base locus of the pencil P . The morphism ξ is a composition of 4 blowups such

that we have the following G-equivariant commutative diagram:

S
ξ

{{ ""
HC′ // P1

where HC′ 99K P1 is the rational map given by P , and S → P1 is a surjective

morphism. The birational morphism ξ is a composition of the blowup of the

points P1 and P2 with the subsequent blowup of two points in the exceptional

curves contained in the proper transforms of l1 and l2. Note that S is a weak del

Pezzo surface of degree five.

We have Ẽ|S = g̃1 + g̃2, where g̃1 and g̃2 are two irreducible ξ-exceptional (−1)-

curves such that ξ(g̃1) = P1 and ξ(g̃2) = P2. Let f̃1 and f̃2 be the remaining

ξ-exceptional curves that are mapped to the points P1 and P2, respectively, and

let l̃, l̃1, l̃2, C̃ ′
r be the proper transforms on S of the curves l, l1, l2, C ′

r, respectively.

Then C̃ ′ = C̃ ′
1 and 2l̃+ f̃1+ f̃2 ∼ l̃1+ l̃2 ∼ C̃ ′ ∼ C̃ ′

r for every r ∈ C∗, and the curves

f̃1, f̃2, g̃1, g̃2, l̃, l̃1, l̃2 generate the Mori cone NE(S) by [CT88, Proposition 8.5].

Note that F̃1|S = f̃1 + g̃1 and F̃2|S = f̃2 + g̃2. Using this, we get

P (u)
∣∣∣
S

∼R


4−u

2 C̃ ′ + 2−u
2

(
f̃1 + f̃2

)
+ (2 − u)

(
g̃1 + g̃2

)
if 0 ⩽ u ⩽ 1,

6−3u
2 C̃ ′ + 2−u

2

(
f̃1 + f̃2

)
+ (2 − u)

(
g̃1 + g̃2

)
if 1 ⩽ u ⩽ 2.

(4.5)

Set C = Z̃. Let us compute S(W S
•,•; C ). Recall that C ∼ C̃ ′. Then (4.5) gives

τ(u) =


4−u

2 if 0 ⩽ u ⩽ 1,

6−3u
2 if 1 ⩽ u ⩽ 2.
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Moreover, if 0 ⩽ u ⩽ 1, then (4.5) gives

P (u, v) ∼R


4−u−2v

2 C + (2 − u)
(
f̃1 + f̃2

)
+ 2−u

2

(
g̃1 + g̃2

)
if 0 ⩽ v ⩽ 1,

4−u−2v
2

(
C + f̃1 + f̃2 + g̃1 + g̃2

)
if 1 ⩽ v ⩽ 4−u

2 ,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 1,

(v − 1)(f̃1 + f̃2 + 2g̃1 + 2g̃2) if 1 ⩽ v ⩽ 4−u
2 .

Similarly, if 1 ⩽ u ⩽ 2, then (4.5) gives

P (u, v) ∼R


6−3u−2v

2 C + 2−u
2

(
f̃1 + f̃2

)
+ (2 − u)

(
g̃1 + g̃2

)
if 0 ⩽ v ⩽ 2 − u,

6−3u−2v
2

(
C + f̃1 + f̃2 + 2g̃1 + 2g̃2

)
if 2 − u ⩽ v ⩽ 6−3u

2 ,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 2 − u,

(v + u − 2)
(
f̃1 + f̃2 + 2g̃1 + 2g̃2

)
if 2 − u ⩽ v ⩽ 6−3u

2 .

Therefore, if C = C̃ ′, then we compute S(W S
•,•; C ) as follows:

1
10

2∫
1

(5u2−20u+20)(u−1)du+ 1
10

1∫
0

1∫
0

(2−u)(6−u−4v)dvdu+ 1
10

1∫
0

4−u
2∫

1

(4−u−2v)2dvdu+

+ 1
10

2∫
1

2−u∫
0

(2 − u)(10 − 5u − 4v)dvdu + 1
10

2∫
1

6−3u
2∫

2−u

(6 − 3u − 2v)2dvdu = 43
60 ,

If Z̃ ̸= C̃ ′, similar computations give S(W S
•,•; C ) = 27

40 , since Z̃ ̸⊂ Supp(N(u)) for

u ∈ [0, 2]. Hence, it follows from (4.3) that β(F ) > 0, because SY (S) = 17
30 <

1.

The proof of Lemma 4.2.14 implies the following result:

Lemma 4.2.15. Suppose that π(Z) = O′. Then β(F ) > 0.
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Proof. Let us use all assumptions and notations introduced in the proof of Lemma 4.2.14

with one exception: now we let C = l̃1. Set P = l̃1 ∩ l̃2. Then P = Z̃ and

γ ◦ ϕ(P ) = O′.

Since C̃ ′ ∼ l̃1 + l̃2 and l̃1 + f̃1 + 2g̃1 ∼ l̃2 + f̃2 + 2g̃2, it follows from (4.5) that

P (u)
∣∣∣
S
−vC ∼R


(3 − u − v)C + l̃2 + (2 − u)f̃1 + (4 − 2u)g̃1 if 0 ⩽ u ⩽ 1,

(4 − 2u − v)C + (2 − u)l̃2 + (2 − u)f̃1 + (4 − 2u)g̃1 if 1 ⩽ u ⩽ 2.

If u ∈ [0, 1], then τ(u) = 3 − u. If u ∈ [1, 2], then τ(u) = 4 − 2u. If u ∈ [0, 1],

then

P (u, v) ∼R



(3 − u − v)C + l̃2 + (2 − u)f̃1 + (4 − 2u)g̃1 if 0 ⩽ v ⩽ 1,

(3 − u − v)
(
C + f̃1 + 2g̃1

)
+ l̃2 if 1 ⩽ v ⩽ 2 − u,

(3 − u − v)
(
C + l̃2 + f̃1 + 2g̃1

)
if 2 − u ⩽ v ⩽ 3 − u,

and

N(u, v)∼R



0 if 0 ⩽ v ⩽ 1,

(v − 1)
(
f̃1 + 2g̃1

)
if 1 ⩽ v ⩽ 2 − u,

(v − 1)
(
f̃1 + 2g̃1

)
+ (v + u − 2)l̃2 if 2 − u ⩽ v ⩽ 3 − u,

which gives

(
P (u, v)

)2
=



u2 + 2uv − v2 − 8u − 4v + 12 if 0 ⩽ v ⩽ 1,

u2 + 2uv + v2 − 8u − 8v + 14 if 1 ⩽ v ⩽ 2 − u,

2(3 − u − v)2 if 2 − u ⩽ v ⩽ 3 − u,
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and

P (u, v) · C =



2 − u + v if 0 ⩽ v ⩽ 1,

4 − u − v if 1 ⩽ v ⩽ 2 − u,

6 − 2u − 2v if 2 − u ⩽ v ⩽ 3 − u.

Similarly, if u ∈ [1, 2], then

P (u, v) ∼R



(4 − 2u − v)C + (2 − u)l̃2

+(2 − u)f̃1 + (4 − 2u)g̃1 if 0 ⩽ v ⩽ 2 − u,

(4 − 2u − v)
(
C + l̃2 + f̃1 + 2g̃1

)
if 2 − u ⩽ v ⩽ 4 − 2u,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 2 − u,

(v + u − 2)
(
l̃2 + f̃1 + 2g̃1

)
if 2 − u ⩽ v ⩽ 4 − 2u,

which implies that

(
P (u, v)

)2
=


5u2 + 2uv − v2 − 20u − 4v + 20 if 0 ⩽ v ⩽ 2 − u,

2(4 − 2u − v)2 if 2 − u ⩽ v ⩽ 4 − 2u,

and

P (u, v) · C =


2 − u + v if 0 ⩽ v ⩽ 2 − u,

8 − 4u − 2v if 2 − u ⩽ v ⩽ 4 − 2u.

Observe that d(u) = 0 for u ∈ [0, 2], since C ̸⊂ Supp(N(u)). Therefore, integrat-

ing, we get S(W S
•,•; C ) = 1. Similarly, we compute

FP

(
W S,C

•,•,•

)
= 1

5

1∫
0

3−u∫
2−u

(v + u − 2)
(
P (u, v) · C

)
dvdu+

+ 1
5

2∫
1

4−2u∫
2−u

(v + u − 2)
(
P (u, v) · C

)
dvdu = 1

12
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and S(W S,C
•,•,•; P ) = 1. Thus, it follows from Remark 4.2.5 that β(F ) > 0, since

SY (S) < 1.

Finally, we prove the following result:

Lemma 4.2.16. Suppose that Z be a G-invariant irreducible curve in E. Then

β(F ) > 0.

Proof. We have σ(E) ∼= F2, see the proof of Lemma 4.2.8. Set s0 = Q ∩ E

and s = HC ∩ E. Then σ(s) is the unique (−2)-curve in σ(E), and σ(s0) is a

section of the projection σ(E) → C disjoint from σ(s). The morphism σ induces

a birational map ξ : E → σ(E) that blows up two points in σ(s0).

Set f 1 = F 1 ∩ E and f 2 = F 2 ∩ E. Observe that f 1 and f 2 are the ξ-exceptional

curves. Let g1 and g2 be the proper transforms on E of the fibres of the projection

σ(E) → C that pass through ξ(f 1) and ξ(f 2), respectively. The curves f 1, f 2,

g1, g2 are (−1)-curves, and the curves s, f 1, f 2, g1, g2 generates the Mori cone

NE(E). Note that s0 is a (0)-curve.

The curves s and s0 are the only G-invariant irreducible curves in E by Lemma 4.2.8.

Moreover, if Z = s, then β(F ) > 0 by Lemma 4.2.12. Thus, we may assume that

Z = s0.

Look at Figure 4.2 to have a rough idea of what X looks like.

Figure 4.2: X model Family 3
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Let Y = X, S = E and C = s0. Then it follows from the proof of Lemma 4.2.11

that

P (u)
∣∣∣
S

− vC ∼R



(1 + u − v)C + (2 − u)(f 1 + f 2)

+(2 − 2u)(g1 + g2) if 0 ⩽ u ⩽ 1,

(4 − 2u − v)C + (2 − u)(f 1 + f 2) if 1 ⩽ u ⩽ 2.

Moreover, if u ∈ [0, 1], then τ(u) = 1 + u and N(u)|S = 0. Furthermore, if

u ∈ [1, 2], then τ(u) = 4 − 2u and N(u)|S = (u − 1)C + 2(u − 1)s. If u ∈ [0, 1],

then

P (u, v)∼R



(1 + u − v)C + (2 − u)(f 1 + f 2)

+(2 − 2u)(g1 + g2) if 0 ⩽ v ⩽ 1,

(1 + u − v)C + (3 − u − v)(f 1 + f 2)

+(2 − 2u)(g1 + g2) if 1 ⩽ v ⩽ 1 + u,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ u,

(v − 1)(f 1 + f 2) if u ⩽ v ⩽ 1 + u.

Similarly, if u ∈ [1, 2], then

P (u, v)∼R


(4 − 2u − v)C + (2 − u)(f 1 + f 2) if 0 ⩽ v ⩽ 2 − u,

(4 − 2u − v)
(
C + f 1 + f 2

)
if 2 − u ⩽ v ⩽ 4 − 2u,

and

N(u, v)∼R


0 if 0 ⩽ v ⩽ 2 − u,

(v + u − 2)(f 1 + f 2) if 2 − u ⩽ v ⩽ 4 − 2u.
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Now, we compute S(W S
•,•; C ) as follows:

1
10

2∫
1

(u − 1)(6u2 − 24u + 24)du + 1
10

1∫
0

1∫
0

(8 − 6u2 + 4uv + 4u − 8v)dvdu+

+ 1
10

1∫
0

u+1∫
1

2(5−3u−v)(u+1−v)dvdu+ 1
10

2∫
1

2−u∫
0

(6u2+4uv−24u−8v+24)dvdu+

+ 1
10

2∫
1

4−2u∫
2−u

2(4 − 2u − v)2dvdu = 43
60 .

But SY (S) = 19
30 , see the proof of Lemma 4.2.11. Then (4.3) gives β(F ) > 0.

By Lemmas 4.2.6, 4.2.7, 4.2.11, 4.2.12, 4.2.13, 4.2.14, 4.2.15, 4.2.16, we have

β(F ) > 0 in all possible cases except maybe when π(Z) = l′. But in this case,

we have O ∈ π(Z), so β(F ) > 0 by Lemma 4.2.13. Thus, we conclude that X is

K-polystable by Theorem 2.2.12.

4.2.5 K-moduli component

It is a direct consequence of the following Corollary that the one-dimensional

component of MKps
3 formed by the K-polystable elements of Family 3 is isomorphic

to P1.

Corollary 4.2.17. The Fano 3-fold X∞ in Family 3 is the only singular K-

polystable limit of members of the deformation family 2.22.

Proof. Denote by MKps
2.22 the one-dimensional component of the K-moduli space

MKps
3 that contains all smooth K-polystable Fano 3-folds in Family 3 (equiv-

alently, all K-polystable elements of Mori-Mukai family №2.22). Above, we

described a parametrisation
{
Xλ; λ ∈ P1

}
that is a Q-Gorenstein family, and

such that all smooth members of Family 3 are fibres of the family Xλ for λ ∈

P1 \ {±3, ±1, ∞}. Note that Xλ
∼= X−λ for λ ∈ P1.
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Moreover, it follows from the description of the Family 3 and the section 4.2.4

that all objects Xλ in the parametrisation except for the 3-folds X±3 and X±1 are

K-polystable. As mentioned already, the 3-folds X±3 and X±1 are K-semistable,

and their K-polystable limits are X0 and X∞, respectively. Thus we have a

morphism P1 → MKss
2.22, the moduli stack parametrising K-semistable objects in

this family, which descends to a morphism ϕ : P1 → MKps
2.22 given by λ 7→ [Xλ] such

than ϕ(0) = ϕ(±3), ϕ(∞) = ϕ(±1), and ϕ(λ) = ϕ(−λ) for λ ∈ P1. Since MKps
2.22 is

proper and one-dimensional, we conclude that ϕ is surjective, which implies the

required assertion.

4.3 Family 4

Blowups of P3 along the disjoint union of a twisted cubic and a line. (№3.12 in

Mori-Mukai notation)

4.3.1 Parametrisation of the family

In the notation of Family 3, we identify P1×P1 and Cλ with subvarieties of P1×P2

via the embedding

(
[u : v], [x : y]

)
7→
(
[u : v], [x2 : xy : y2]

)
.

Let π : Xλ → P1 ×P2 be the blowup along the curve Cλ, then Xλ is a smoothable

Fano 3-fold. Further, every (smooth) member of family №3.12 is isomorphic to

Xλ for some λ ∈ P1 \ {±1, ∞}. Moreover, if λ ̸∈ {±3, ±1, ∞}, then Xλ is K-

polystable [Den22]. The smooth Fano 3-fold X±3 is strictly K-semistable, with

K-polystable limit X0, this proof is identical to the one in Lemma 4.2.1. Since

the (singular) 3-fold X±1 admits an isotrivial degeneration to X∞ (proved as in

Lemma 4.2.2), if X∞ is K-polystable, X±1 is strictly K-semistable.
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4.3.2 Geometry of X∞

In this subsection, we construct a different model of X∞ from P3 which is useful

when studying its K-stability, let us denote it X.

Consider the following lines in P3: L = {x0 = 0, x3 = 0}, L1 = {x1 = x0, x2 = 0},

L2 = {x1 = 0, x2 = 0}, L3 = {x2 = x3, x1 = 0}, where x0, x1, x2, x3 are

coordinates on P3. Then L is disjoint from L1, L2, L3, the lines L1 and L3 are

Figure 4.3: Model in P3 of X Family 4

disjoint, L2 ∩ L1 = [0 : 0 : 0 : 1] and L2 ∩ L3 = [1 : 0 : 0 : 0]. Let π : X → P3 be

the blowup of the curve L + L1 + L2 + L3, and it has two singular points, which

are ordinary double points that appear with the blowup of the points L2 ∩L1 and

L2 ∩ L3.

Lemma 4.3.1. The 3-fold X is isomorphic to the 3-fold X∞ described in the

parametrisation §4.3.1.

Proof. Let χ : P3 99K P1 × P2 be the dominant rational map given by

[x0 : x1 : x2 : x3] 7→
(
[x0 : x3], [x1(x0 − x1) : x1x2 : x2(x3 − x2)]

)
.

Then χ is undefined along L ∪ L1 ∪ L2 ∪ L3, π resolves the indeterminacy of χ,

and there exists a birational morphism η : X → P1 × P2 that fits in the following

commutative diagram:

94



4.3. FAMILY 4

X
π

||

η

&&
P3 χ // P1 × P2.

(4.6)

To describe η, set H12 = {x2 = 0} and H23 = {x1 = 0}, and denote

Q =
{
x0x2 + x1x3 − x0x3 = 0

}
.

Then H12 is the plane containing the lines L1 and L2, H23 is the plane containing

L2 and L3, and Q is the unique smooth quadric in P3 that contains L, L1, and

L3. Further, χ(H12) is the curve P1 × {[1 : 0 : 0]}, χ(H23) = P1 × {[0 : 0 : 1]},

and χ(Q) is the curve parametrised as ([u : v], [u2 : uv : v2]), where [u : v] ∈ P1.

Therefore, we see that η contracts the proper transforms of the surfaces H12,

H23, Q to the curves χ(H12), χ(H23), χ(Q), respectively. Moreover, we have

that C∞ = χ(H12) ∪ χ(H23) ∪ χ(Q). Note that these curves are contained in the

preimage of the smooth conic {xz = y2} via the projection P1 × P2 → P2, where

[x : y : z] are coordinates on P2. Observe also that

χ(Q) =
{
uy = vx, vy = uz

}
⊂ P1 × P2.

Finally, note that χ(H12) and χ(H23) are the fibres of the projection P1 ×P2 → P2

over the points [1 : 0 : 0] and [0 : 0 : 1], respectively. Hence, X ∼= X∞.

Description of the automorphism group Let us take the following auto-

morphisms in P3:


τ : [x0 : x1 : x2 : x3] 7→ [x3 : x2 : x1 : x0],

Γ := { [x0 : x1 : x2 : x3] 7→ [λx0 : λx1 : x2 : x3]| λ ∈ C∗} .

Set G = ⟨τ, Γ⟩. Then Γ ∼= C∗ and G ∼= C∗ ⋊ µ2. Since L + L1 + L2 + L3 is

G-invariant, the action of the group G lifts to X. Hence, we can identify G with
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a subgroup in Aut(X). One can check that Aut(X) = G. Moreover, (4.6) is

G-equivariant.

Description of the G-invariant loci Consider the smooth quadric surface

R = {x0x2 = x1x3}.

Lemma 4.3.2. There are no G-fixed point or G-invariant plane in P3. If S is a

G-invariant irreducible quadric surface in P3, then S = R or

S = {ax0x3 + bx1x2 + c(x0x2 + x1x3) = 0}

for some [a : b : c] ∈ P2 such that ab ̸= c2.

Proof. Taking the C∗ action, Γ, on P3, we get that any Γ-invariant point must

have x0 = x1 = 0. And a point of the form [0 : 0 : x2 : x3] to be τ invariant, we

get x2 = x3 = 0, and this point is not in P3.

Now, let S =
{∑

0≤i≤j≤3 aijxixj = 0
}

be a irreducible quadric surface in P3. If S

is Γ-invariant we have 3 posiblities:

(1) S = {a22x
2
2 + a23x2x3 + a33x

2
3 = 0}, but this is not τ -invariant.

(2) S = {a00x
2
0 + a01x0x1 + a11x

2
1 = 0}, it is not τ -invariant.

(3) S = {a02x0x2 + a03x0x3 + a12x1x2 + a13x1x3 = 0}.

In (3), if a03 = a12 = 0, S is τ -invariant if a02 = ±a13. Otherwise, it is τ -invariant

if a02 = a13. For S to be irreducible, notice that a03a12 ̸= a2
02 and we get to the

conclusion.

For a ∈ C ∪ {∞}, set la = {x0 = ax1, x3 = ax2} ⊂ P3; then la is a G-invariant

line lying on R. Note that l0 = L and l∞ = L2.
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Lemma 4.3.3. If C ⊂ P3 is a G-invariant irreducible curve, then C = la for

some a ∈ C ∪ {∞}.

Proof. See the proof of Lemma 4.2.7.

Denote by γ : V → P3 the blowup of the lines L, L1, L3, and by ϕ : X̃ → V the

blowup of the proper transform of the line L2.

Let φ : W → P3 be the blowup of the lines L and L2, and σ : X → W the

blowup of the proper transform of the disjoint lines L1 and L3. Then we have a

G-equivariant commutative diagram:

X̃ //

ϕ

��

X

π
��

Xoo

σ

��
V γ

// P3 Wφ
oo

(4.7)

where X̃ → X and X → X are G-equivariant small resolutions of the 3-fold X.

Let EL, E1, E2, E3 be the π-exceptional divisors that are mapped to L, L1, L2,

L3, respectively, let HL be a general plane in P3 that contains L, let H2 be a

general plane in P3 that contains L2, let H be a general plane in P3.

Let EL, E1, E2, E3, Q, R, H12, H23, HL, H2, H be the proper transforms on X

of the surfaces EL, E1, E2, E3, Q, R, H12, H23, HL, H2, H, respectively.

Remark 4.3.4. Note that Q ∼= P1 × P1 via the isomorphism given by

(
[u : v], [x : y]

)
→
[
ux : 1

2u(x + y) : 1
2v(x − y) : vx

]

where ([u : v], [x : y]) are the coordinates on P1 × P1. To get σ(Q) we blow up of

the points {([0 : 1], [1 : 1]), ([1 : 0], [1 : −1])} = Q ∩ L2. Hence, Q is a del Pezzo

surface of degree 6.

Then H, EL, E1, E2, E3 generate Pic(X), and their intersections can be described
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as follows: H
3 = 1, E

3
L = E

3
2 = −2, E

3
1 = E

3
3 = −1, E

2
L · H = E

2
1 · H = E

2
2 · H =

E
2
3 · H = E2 · E

2
3 = E2 · E

2
1 = −1, and other triple intersections are zero. Note

that −KX ∼ 4H − EL − E1 − E2 − E3 and

Q ∼ 2H − EL − E1 − E3, H12 ∼ H − E1 − E2, HL ∼ H − EL,

R ∼ 2H − EL − E2, H23 ∼ H − E2 − E3, H2 ∼ H − EL.

Note also that EL, E2, E1+E3, Q, R, H12+H23 are G-invariant and G-irreducible.

Lemma 4.3.5. Let S be a G-invariant prime divisor in X. If S ̸= EL, then

S ∼ a1E2 + a2Q + a3HL + a4H2 + a5(H12 + H23)

for some non-negative integers a1, a2, a3, a4, a5.

Proof. We may assume that S ̸= EL, S ̸= E2 and S ̸= Q. Then π(S) is a G-

invariant surface in P3 of degree d ⩾ 1, so that S ∼ dH −mEL −r(E1 +E3)−sE2

for some non-negative integers m, r, s.

Let ℓ be a general ruling of the quadric Q ∼= P1 ×P1 that intersects L, L1, L3, let

ℓ be its proper transform on X. Then ℓ ̸⊂ S, which gives 0 ⩽ S · ℓ = d − m − 2r.

Similarly, let ℓ12 be a general line in the plane H12 that passes through the point

H12 ∩ L, and let ℓ12 be its proper transform on X. Then ℓ12 ̸⊂ S, which gives

0 ⩽ S · ℓ12 = d − m − r − s. Thus, if m ⩾ r, we can let a1 = d − m − r − s,

a2 = r, a3 = m − r, a4 = d − m − r, a5 = 0. If m < r, we can let a1 = d − 2m − s,

a2 = m, a3 = 0, a4 = d − 2r, a5 = r − m.

Lemma 4.3.6. Let S be a G-invariant prime divisor in X such that −KX ∼Q

λS + ∆ for some positive rational number λ > 4
3 and some effective Q-divisor ∆

on the 3-fold X. Then S = E2, S = EL or S = Q.

Proof. Suppose that S ̸= E2 and S ̸= EL. Let us show that S = Q. Since
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S ̸= E1 + E3, we see that π(S) is a G-invariant irreducible surface of degree

d ⩾ 2, because P3 does not contain G-invariant planes by Lemma 4.3.2. Then

S ∼ dH − mEL − r(E1 + E3) − sE2 for some non-negative integers m, r, s. Then

4 ⩾ λd > 4
3d, so that d = 2 and

∆ ∼Q (4 − 2λ)H + (mλ − 1)EL + (sλ − 1)E2 + (rλ − 1)(E1 + E3).

Let ℓ be a general line in P3 that intersects the lines L1 and L2, and let ℓ be its

proper transform on the 3-fold X. Then ℓ ̸⊂ Supp(∆), so that 0 ⩽ ∆·ℓ = 2−2λ+

rλ, which implies that r ̸= 0. Similarly, intersecting ∆ with the proper transform

of a general line in P3 that intersects L and L2, we see that (m, s) ̸= (0, 0).

Since r ̸= 0, the quadric π(S) contains L1 and L3. Hence, using Lemma 4.3.2, we

get

π(S) =
{
ax0x3 + bx1x2 − a(x0x2 + x1x3) = 0

}
for some [a : b] ∈ P1 such that [a : b] ̸= [0 : 1] and [a : b] ̸= [1 : 1]. This gives

L2 ̸∈ π(S), so that s = 0. Then m ̸= 0, so that L ⊂ π(S). Then [a : b] = [1 : 0]

and S = Q.

4.3.3 K-polystability of X

Here we prove that X is K-polystable. Let F be a G-invariant prime divisor over

X, let Z and Z be its centres on X and Y = X, respectively. Then it follows

from Lemmas 4.3.2 and 4.3.3 that one of the following four cases holds:

1. Z is a G-invariant irreducible surface,

2. Z is a G-invariant irreducible curve in the surface EL,

3. Z is a G-invariant irreducible curve in the surface E2,
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4. π(Z) = la for some a ∈ C∗.

By Theorem 2.2.12, to prove that X is K-polystable, it is enough to show that

β(F ) > 0. We use the assumptions and notations introduced in Section 4.2.2, we

first consider the case when Z is a surface.

Lemma 4.3.7. Let S be a G-invariant prime divisor in X. Then β(S) > 0.

Proof. By Remark 4.2.3 and Lemma 4.3.6, it is enough to show that β(E2),

β(EL), β(Q) are positive. Observe that β(EL) > 0 follows from the proof of

[Den22, Lemma 4.2]. Nevertheless, let us compute β(EL). We let S = EL. Then

−KY −uS ∼R 4H−(1+u)S−E1−E2−E3 ∼R

(3
2 − u

)
S+1

2
(
Q+H12+H23

)
+2HL,

Thus, it follows from (4.6) that τ = 3
2 . Recall that a divisor D is nef if the

intersection D · C ≥ 0 is positive for all irreducible curves C in D. Also notice

that in order to get (−K
X̃

− uS) · l < 0, l must to have negative self-intersection

in at least in S, Q, H12, H23, or HL. Moreover, since S ∼= P1 × P1, it does not

have negative curves. As we mentioned in Remark 4.3.4, Q is a del Pezzo surface

of degree 6, and it has 6 (−1)-curves, f i = Q ∩ Ei for i ∈ {1, 3} which are strict

transform of ([u : v], [1 : ±1]) fibres, let g1 = H23 ∩ Q and g3 = H12 ∩ Q be the

strict transform of the rulings ([0 : 1], [x : y]) and ([1 : 0], [x : y]), respectively;

and e1 and e3 are the strict transforms of the φ-exceptional divisors in σ(Q), i.e.

{e1, e3} = E2 ∩ Q. Looking at their intersections we have: gi · ei = f i · ei = 1

for i ∈ {1, 3} and the rest are 0. In H12, there is 3 (−1)-curves, e3 = E3 ∩ H12,

e12 = EL ∩ H12 and the strict transform of the line passing trough φ ◦ σ(e3)

and φ ◦ σ(e12), notice this is g3. In H23, there is 3 (−1)-curves, e1 = E1 ∩ H23,

e23 = EL ∩ H23 and the strict transform of the line passing trough φ ◦ σ(e1) and

φ ◦ σ(e23), notice this is g1. HL is a del Pezzo surface of degree 6, and we have 6

(−1)-curves, define hi = HL ∩ Ei, and the strict transform of the lines li,j which

connect the points φ ◦ σ(hi) and φ ◦ σ(hj) i, j ∈ {1, 2, 3} such that i < j, note
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that l1,3 = Q ∩ HL, l1,2 = H12 ∩ HL and l2,3 = H23 ∩ HL. All the intersections

but the following ones are non-negative for every u ∈ [0, τ ],

(−KX − uS)|Q · gi = 1 − u ≥ 0 ⇔ 1 ≥ u;

(−KX − uS)|HL
· li,j = 1 − u ≥ 0 ⇔ 1 ≥ u ∀i, j ∈ {1, 2, 3} : i < j

Here we see that −KX − uS is nef for u ∈ [0, 1]. For u ≥ 1, the intersections

above are negative, therefore we are adding some λQ + λ1H12 + λ3H23. To get

the values of this coefficients we take −KX − uS − (λQ + λ1H12 + λ3H23), and

we do the intersections again.

(−KX − uS − (λQ + λ1H12 + λ3H23))|Q · gi = 1 − u + λi ≥ 0 ⇔ λi ≥ u − 1;

(−KX − uS − (λQ + λ1H12 + λ3H23))|HL
· l1,3 = 1 − u + λ ≥ 0 ⇔ λ ≥ u − 1.

Therefore, notice we are looking for the smallest coefficients such that our divisor

is nef, so we get that λ = λi = u − 1, for i ∈ {1, 3}. Moreover,

P (u) ∼R


(

3
2 − u

)
S + 1

2

(
Q + H12 + H23

)
+ 2HL if 0 ⩽ u ⩽ 1,(

3
2 − u

) (
S + Q + H12 + H23

)
+ 2HL if 1 ⩽ u ⩽ 3

2 ,

and

N(u) =


0 if 0 ⩽ u ⩽ 1,

(u − 1)
(
Q + H12 + H23

)
if 1 ⩽ u ⩽ 3

2 .

Now, by integrating (P (u))3 we get β(EL) = 1 − SY (EL) = 1 − 37
56 = 19

56 .

Next, we deal with Q. Set S = Q. Since Q ∼ 2H − E1 − EL − E3, we have

−KY − uS ∼R

(3
2 − u

)
S + 1

2
(
EL + E1 + E2

)
+ 1

2H2,

so that τ = 3
2 . By using a similar procedure as before we get that if 0 ⩽ u ⩽ 1,

then N(u) = 0. Similarly, if 1 ⩽ u ⩽ 3
2 , then N(u) = (u − 1)(EL + E1 + E2).

101



4.3. FAMILY 4

Then

P (u) ∼R


(

3
2 − u

)
S + 1

2

(
EL + E1 + E2

)
+ 1

2H2 if 0 ⩽ u ⩽ 1,(
3
2 − u

) (
S + EL + E1 + E2

)
+ 1

2H2 if 1 ⩽ u ⩽ 3
2 .

Now, by integrating we get β(Q) = 1 − SY (Q) = 1 − 129
224 > 0.

Finally, we proceed to study E2. Let S = E2. Then τ = 2, since

−KY − uS ∼R (2 − u)S + 3
2
(
H12 + H23

)
+ 1

2
(
E1 + E3

)
.

Moreover, if u ∈ [0, 1], then N(u) = 0. If u ∈ [1, 2], then N(u) = (u − 1)(H12 +

H23), so

P (u) ∼R


(2 − u)S + 3

2

(
H12 + H23

)
+ 1

2

(
E1 + E3

)
if 0 ⩽ u ⩽ 1,

(2 − u)S + 5−u
2

(
H12 + H23

)
+ 1

2

(
E1 + E3

)
if 1 ⩽ u ⩽ 2.

Integrating, leads to SY (E2) = 51
56 , so that βX(E2) > 0.

Now let us assume the centre of F is small on X and show that β(F ) > 0.

Lemma 4.3.8 ([Den22, Lemma 4.2]). Suppose that Z is a curve in EL. Then

β(F ) > 0.

Proof. Note that EL
∼= P1 × P1. Let s be a section of the natural projection

EL → L such that s2 = 0, and let l be a fibre of this projection. Then EL|EL
∼

−s + l and H|EL
∼ l.

Set CQ = Q ∩ EL and CR = R ∩ EL. Then CQ and CR are smooth irreducible G-

invariant curves. Furthermore, these are the only G-invariant irreducible curves

in the surface EL. Hence, we have two options either Z = CQ or Z = CR. Also,

note that CQ ∼ CR ∼ s + l.
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Take S = EL, C = Z. Then SY (S) = 37
56 < 1, see the proof of Lemma 4.3.7.

Let us compute S(W S
•,•; C ). We recall from the proof of Lemma 4.3.7 that τ = 3

2

and it also follows that

P (u)
∣∣∣
S

− vC ∼R


(1 + u − v)s + (3 − u − v)l if 0 ⩽ u ⩽ 1,

(2 − v)s + (6 − 4u − v)l if 1 ⩽ u ⩽ 3
2 ,

and

N(u)
∣∣∣
S

=


0 if 0 ⩽ u ⩽ 1,

(u − 1)
(
CQ + l12 + l23

)
if 1 ⩽ u ⩽ 3

2 ,

where l12 = H12 ∩ EL and l23 = H23 ∩ EL are fibres of the natural projection

EL → L over the points L ∩ H12 and L ∩ H13, respectively.

We have P (u, v) ∼R P (u)|S − vC and N(u, v) = 0 for v ∈ [0, τ(u)], where

τ(u) =


1 + u if 0 ⩽ u ⩽ 1,

6 − 4u if 1 ⩽ u ⩽ 3
2 .

Thus, if C = CQ, then

S(W S
•,•; C ) = 3

28

3
2∫

1

(u − 1)(24 − 16u)dvdu+

+ 3
28

1∫
0

1+u∫
0

2(3−u−v)(1+u−v)dvdu+ 3
28

3
2∫

1

6−4u∫
0

2(2−v)(6−4u−v)dvdu = 159
224 .

Similarly, if C = CR, then S(W S
•,•; C ) = 151

224 . So, it follows from (4.3) that

β(F ) > 0.

Now, we study the G-invariant irreducible curves on E2.

Lemma 4.3.9. Suppose that π(Z) = L∞ = L2; then β(F ) > 0.
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Proof. Observe that Z ⊂ E2. It is clear that Z is a smooth G-irreducible curve,

and by Lemma 4.3.7 SX(E2) = 51
56 .

As in Lemma 4.3.2, let S = {x0x2 + x1x3 = 0}, and let S be its proper trans-

form on X. Set CS = S|E2
and CR = R|E2

. Using the map θ defined by

[x0 : x1 : x2 : x3] 7→ ([x0 : x1], [x1 : x2]), we can G-equivariantly identify

σ(E2) = P1 × P1 with coordinates ([x0 : x3], [x1 : x2]) such that the involution τ

acts as ([x0 : x3], [x1 : x2]) 7→ ([x3 : x0], [x2 : x1]), and Γ ∼= C∗ acts as

(
[x0 : x3], [x1 : x2]

)
7→
(
[λx0 : x3], [λx1 : x2]

)
,

where λ ∈ C∗. Therefore, σ(CS) = {x0x2+x1x3 = 0} and σ(CR) = {x0x2−x1x3 =

0} are the only G-invariant irreducible curves in the surface σ(E2). Hence, CS

and CR are the only G-invariant irreducible curves in E2, so that C = CS or

C = CR.

The morphism σ in (4.7) induces a G-equivariant birational morphism θ : S → σ(E2)

that blows up the points ([0 : 1], [1 : 0]) and ([1 : 0], [0 : 1]), which are not con-

tained in the curves σ(CS) and σ(CR). In particular, we see that E2 is a del

Pezzo surface of degree 6.

Set e1 = E1|E2
and e3 = E3|E2

. Then e1 and e3 are the θ-exceptional curves

such that θ(e1) = ([0 : 1], [1 : 0]) and θ(e3) = ([1 : 0], [0 : 1]). Let s1 = H12|E2

and s3 = H23|E2
be the proper transforms on E2 of the curves {x2 = 0} and

{x1 = 0}, and h1 = H1|E2
and h3 = H3|E2

be the proper transforms of the

curves {x0 = 0} and {x3 = 0}, respectively, where Hi is the strict transform

of a general hyperplane containing Li. Then θ(s1) and θ(s3) are the sections

of the natural projection θ(E2) → L2 that pass through the points θ(e1) and

θ(e3), respectively, and θ(h1) and θ(h3) are the fibres of this projection that

pass through the points θ(e1) and θ(e3), respectively (check Figure 4.4). Then

CS ∼ CR ∼ s1 + h1 + 2e1 ∼ s3 + h3 + 2e3.
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Figure 4.4: Model for X Family 4

Recall that e1, e3, s1, s3, h1, h3 are all the (−1)-curves in E2, and they generate

the Mori cone NE(E2). Note that H|E2
∼ h1 + e1 and E2|E2

∼ −s1 + h1. So,

using the description of P (u) and N(u) obtained in the proof of Lemma 4.3.7, we

get

P (u)
∣∣∣
E2

∼R


3e1 − e3 + (3 − u)h1 + (u + 1)s1 if 0 ⩽ u ⩽ 1,

(4 − u)e1 + (u − 2)e3 + (3 − u)h1 + (3 − u)s1 if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣∣
E2

∼R


0 if 0 ⩽ u ⩽ 1,

(u − 1)(s1 + s3) if 1 ⩽ u ⩽ 2.

In particular, we see that C ̸⊂ Supp(N(u)|E2
) for every u ∈ [0, 2].

Now, intersecting P (u)|E2
− vC with e1, e3, s1, s3, h1, h3, we find P (u, v) and

N(u, v) for u ∈ [0, 2] and v ∈ [0, τ(u)]. If u ∈ [0, 1], then τ(u) = 1,

P (u, v) ∼R


(3 − 2v)e1 − e3 + (3 − u − v)h1 + (u − v + 1)s1 if 0 ⩽ v ⩽ u,

(3 − 2v)e1 − e3 + (3 − 2v)h1 + (u − v + 1)s1 if u ⩽ v ⩽ 1,
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and

N(u, v)∼R


0 if 0 ⩽ v ⩽ u,

(v − u)
(
h1 + h3

)
if u ⩽ v ⩽ 1.

If u ∈ [1, 2], then τ(u) = 1
2 , N(u, v) = 0 and P (u, v) ∼R P (u)|E2

−vC . This gives

(
P (u, v)

)2
∼R



4 − 2u2 + 2v2 + 4u − 8v if u ∈ [0, 1], v ∈ [0, u],

4(1 − v)(1 + u − v) if u ∈ [0, 1], v ∈ [u, 1],

2(1 − 2v)(5 − 2u − 2v) if u ∈ [1, 2], v ∈ [0, 0.5].

Now, by integrating we get S(W E2
•,• ; C ) = 9

28 , so that β(F ) > 0 by (4.3).

Now we want to study the other G-invariant curves. Hence, for a ∈ C∗, define

Πa = {x0 − ax1 = x3 − ax2} ⊂ P3. Note that la ⊂ Πa, the plane Πa does

not contain L, L1, L2, L3. Let P1 = Πa ∩ L1, P2 = Πa ∩ L2, P3 = Πa ∩ L3,

P4 = Πa ∩ L. Let Πa be the preimage on X of the plane Πa. Then φ ◦ σ in (4.7)

induces a birational morphism Πa → Πa that is a blowup of P1, P2, P3, P4.

Lemma 4.3.10. If a ̸∈ {1, 2}, no three of P1, P2, P3, and P4 are collinear, and

none of them lies on la.

When a = 1, no three of P1, P2, P3, and P4 are collinear, P1 and P3 lie on

l1, but P2 and P4 do not. When a = 2, then P1, P3 and P4 lie on the line

Π2 ∩ {x0 − x1 + x2 = 0}, but P2 does not, and none of P1, P2, P3 or P4 lies on l2.

Proof. Note that P1 = [1 : 1 : 0 : (1 − a)], P2 = [1 : 0 : 0 : 1], P3 = [(1 − a) :

0 : 1 : 1] and P4 = [0 : 1 : 1 : 0]. Then, we define ℓa
ij to be the lines in

Πa containing the points Pi and Pj as follows, ℓa
12 := Πa ∩ {x2 = 0}, ℓa

13 :=

Πa ∩{x0 +x3 = (2−a)(x1 +x2)}, ℓa
14 := Πa ∩{x0 +x2 = x1}, ℓa

23 := Πa ∩{x1 = 0},

ℓa
24 := Πa ∩ {x0 = x3} and ℓa

12 := Πa ∩ {x1 + x3 = x2}. If a ̸= 1, 2, the points Pi

and Pj are the only ones contained in ℓa
ij for i, j ∈ {1, 2, 3, 4} and i < j, and none

of the points lies in la = {x0 = ax1, x3 = ax2}.
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When a = 1, we still have that Pk, Pt /∈ ℓ1
ij for {k, t} ≠ {i, j}. Moreover, ℓ1

13 = l1.

For a = 2, P1, P3 and P4 are collinear it is straightforward to see that P4 ∈ ℓ2
13,

but P2 /∈ ℓ2
13, and none of the points lies in l2 = {x0 = 2x1, x3 = 2x2}.

Thus, if a ̸= 2, Πa is del Pezzo surface of degree 5, while if a = 2, Πa is a weak

del Pezzo surface of degree 5. In both cases, we let Y = X and S = Πa. Then,

since Πa ∼ H,

−KY − uS ∼R

(3
2 − u

)
S + 1

2
(
Q + H12 + H23

)
+ 1

2HL.

Therefore, τ = 3
2 . Moreover, by checking the intersections with all the negative

curves in these surfaces we see that if 0 ⩽ u ⩽ 1, then N(u) = 0. Furthermore,

if 1 ⩽ u ⩽ 3
2 , then N(u) = (u − 1)(Q + H12 + H23). Thus, we have

P (u) ∼R


(

3
2 − u

)
S + 1

2

(
Q + H12 + H23

)
+ 1

2HL if 0 ⩽ u ⩽ 1,(
3
2 − u

) (
S + Q + H12 + H23

)
+ 1

2HL if 1 ⩽ u ⩽ 3
2 ,

By integrating we obtain SY (S) = 227
448 .

Now, let e1, e2, e3, e4 be exceptional curves of the blowup S → Πa that are

mapped to the points P1, P2, P3, P4, respectively. Then, E1|S = e1, E2|S = e2,

E3|S = e3, EL|S = e4. Set h = H|S. Then

P (u)
∣∣∣
S

∼R


(4 − u)h − e1 − e2 − e3 − e4 if 0 ⩽ u ⩽ 1,

(8 − 5u)h − (3 − 2u)
(
e1 + e2 + e3

)
− (2 − u)e4 if 1 ⩽ u ⩽ 3

2 .

Note that la ̸⊂ H12 ∪ H23 for every a ∈ C∗. Moreover, the only one contained in

Q is l2.

Lemma 4.3.11. Suppose that π(Z) = la for a ∈ C \ {0, 1, 2}. Then β(F ) > 0.

Proof. Let C = Z. Note that C ∼ h. As in the proof of [Den22, Lemma 4.1], we
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get

τ(u) =



2 − u if 0 ⩽ u ⩽ 1,

5−3u
2 if 1 ⩽ u ⩽ 7

5 ,

6 − 4u if 7
5 ⩽ u ⩽ 3

2 .

Furthermore, if 0 ⩽ u ⩽ 1, then P (u, v) ∼R (4 − u − v)h − e1 − e2 − e3 − e4 for

v ∈ [0, 2 − u]. Similarly, if 1 ⩽ u ⩽ 3
2 and 0 ⩽ v ⩽ 3 − 2u, then

P (u, v) ∼R (8 − 5u − v)h − (3 − 2u)
(
e1 + e2 + e3

)
− (u − 2)e4.

Finally, if 1 ⩽ u ⩽ 3
2 and 3 − 2u ⩽ v ⩽ τ(u), then

P (u, v) ∼R (17 − 11u − 4v)h − (6 − 4u − v)
(
e1 + e2 + e3

)
− (11 − 7u − 3v)e4.

This gives S(W S
•,•; C ) = 753

1120 , so that β(F ) > 0 by (4.3), since SY (S) = 227
448 .

Lemma 4.3.12. Suppose that π(Z) = l1. Then β(F ) > 0.

Proof. Let C = Z. Then C ∼ h − e1 − e3. Moreover, if 0 ⩽ u ⩽ 1, then

τ(u) = 3 − u. Similarly, if 1 ⩽ u ⩽ 3
2 , then τ(u) = 6 − 4u. Furthermore, if

0 ⩽ u ⩽ 1, then

P (u, v) ∼R



(4 − u − v)h + (v − 1)
(
e1 + e3

)
− e2 − e4 if 0 ⩽ v ⩽ 1,

(4 − u − v)h − e2 − e4 if 1 ⩽ v ⩽ 2 − u,

(3 − 2u − 2v)
(
2h − e2 − e4

)
if 2 − u ⩽ v ⩽ 3 − u.

Similarly, if 1 ⩽ u ⩽ 3
2 and 0 ⩽ v ⩽ 3 − 2u, then

P (u, v) ∼R (8 − 5u − v)h − (3 − 2u − v)
(
e1 + e3

)
− (3 − 2u)e2 − (u − 2)e4.
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Finally, if 1 ⩽ u ⩽ 3
2 and 3 − 2u ⩽ v ⩽ 6 − 4u, then

P (u, v) ∼R (11 − 7u − 2v)h − (6 − 4u − v)e2 − (5 − 3u − v)e4.

Therefore, we have

S
(
W S

•,•; C
)

= 3
28

1∫
0

1∫
0

u2 + 2uv − v2 − 8u − 4v + 12dvdu+

+ 3
28

2−u∫
1

2−u∫
1

u2 + 2uv + v2 − 8u − 8v + 14dvdu + 3
28

3−u∫
2−u

3−u∫
2−u

2(3 − u − v)2dvdu+

+ 3
28

3
2∫

1

3−2u∫
0

12u2 + 2uv − v2 − 40u − 4v + 33dvdu+

+ 3
28

3
2∫

1

6−4u∫
3−2u

2(6 − 4u − v)(5 − 3u − v)dvdu = 31
32 .

Thus, it follows from (4.3) that β(F ) > 0, because SY (S) = 227
448 .

Lemma 4.3.13. Suppose that π(Z) = l2. Then β(F ) > 0.

Proof. Let ℓij be the proper transforms of the lines ℓ2
ij in Π2 for i, j ∈ {1, 2, 3, 4}

such that i < j. Notice that ℓ23 = ℓ14 = ℓ34, since P1, P3 and P4 are collinear.

On S, we have ℓ12 ∼ h − e1 − e2, ℓ23 ∼ h − e2 − e3. ℓ24 ∼ h − e2 − e4, ℓ13 ∼

h − e1 − e3 − e4. Note that e1, e2, e3, e4, ℓ12, ℓ23, ℓ24 are all (−1)-curves in S, and

ℓ13 is the unique (−2)-curve in the surface S. By [CT88, Proposition 8.5], these

curves generate the Mori cone NE(S).

109



4.3. FAMILY 4

Now, let C = Z. Then C ∼ h and we can rewrite P (u)
∣∣∣
S

− vh as follows:

P (u)
∣∣∣
S

− vh ∼R



(7
3 − u − v)h + 1

3(ℓ12 + ℓ23 + ℓ24) + 2
3ℓ13 if 0 ⩽ u ⩽ 1,

(10−6u
3 − v)h + 4−3u

3

(
ℓ12 + ℓ13 + ℓ23

)
+

+(u − 1)(e1 + e3) + 4
3ℓ24 + 1

3e2 if 1 ⩽ u ⩽ 3
2 ,

(6 − 4u − v)h + (4−3u)
2

(
e1 + e2 + e3

)
+

+ (2−u)
2

(
ℓ13 + ℓ24

)
if 4

3 ⩽ u ⩽ 3
2 .

From here, we get that,

τ(u) =



7−3u
3 if 0 ⩽ u ⩽ 1,

10−6u
3 if 1 ⩽ u ⩽ 4

3 ,

6 − 4u if 4
3 ⩽ u ⩽ 3

2 .

Moreover, intersecting the divisors under consideration with the curves e1, e2, e3,

e4, ℓ12, ℓ23, ℓ24, ℓ13, we see that if 0 ⩽ u ⩽ 1, then

P (u, v) ∼R



(4 − u − v)h − e1 − e2 − e3 − e4 if 0 ⩽ v ⩽ 1 − u,

3−u−v
2

(
3h − e1 − e3 − e4

)
− e2 if 1 − u ⩽ v ⩽ 2 − u,

7−3u−3v
2

(
3h − e1 − 2e2 − e3 − e4

)
if 2 − u ⩽ v ⩽ 7−3u

3 ,

and

N(u, v)∼R



0 if 0 ⩽ v ⩽ 1 − u,

v+u−1
2 ℓ13 if 1 − u ⩽ v ⩽ 2 − u,

v+u−1
2 ℓ13 + (u + v − 2)

(
ℓ12 + ℓ23 + ℓ24

)
if 2 − u ⩽ v ⩽ 7−3u

3 .
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Similarly, if 1 ⩽ u ⩽ 4
3 , then P (u, v) is R-rationally equivalent to



16−10u−3v
2 h − 6−4u−v

2

(
e1 + e3

)
− (3 − 2u)e2 − 4−2u−v

2 e4 if 0 ⩽ v ⩽ 3 − 2u,

22−14u−5v
2 h − 6−4u−v

2

(
e1 + 2e2 + e3

)
− 10−6u−3v

2 e4 if 3 − 2u ⩽ v ⩽ 2 − u,

10−6u−3v
2

(
h − e1 + 2e2 − e3 + e4

)
if 2 − u ⩽ v ⩽ 10−6u

3 ,

and

N(u, v)∼R



v
2ℓ13 if 0 ⩽ v ⩽ 3 − 2u,

v
2ℓ13 + (v + 2u − 3)ℓ24 if 3 − 2u ⩽ v ⩽ 2 − u,

v
2ℓ13 + (v + 2u − 3)ℓ24+

+(u + v − 2)
(
ℓ12 + ℓ23

)
if 2 − u ⩽ v ⩽ 10−6u

3 .

Likewise, if 4
3 ⩽ u ⩽ 3

2 and 0 ⩽ v ⩽ 3 − 2u, then

P (u, v) ∼R
16 − 10u − 3v

2 h − 6 − 4u − v

2
(
e1 + e3

)
− (3 − 2u)e2 − 4 − 2u − v

2 e4

and N(u, v)∼R
v
2ℓ13. Finally, if 4

3 ⩽ u ⩽ 3
2 and 3 − 2u ⩽ v ⩽ 6 − 4u, then

P (u, v) ∼R
22 − 14u − 5v

2 h − 6 − 4u − v

2
(
e1 + 2e2 + e3

)
− 10 − 6u − 3v

2 e4

and N(u, v)∼R
v
2ℓ13 + (v + 2u − 3)ℓ24.

If 1 ⩽ u ⩽ 3
2 , then C ⊂ Supp(N(u)) and ordC (N(u)|S) = (u − 1). Thus, we have
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S
(
W S

•,•; C
)

= 3
28

3
2∫

1

(12u2 − 40u + 33)(u − 1)du+

+ 3
28

1∫
0

1−u∫
0

u2 + 2uv + v2 − 8u − 8v + 12dvdu+

+ 3
28

1∫
0

2−u∫
1−u

3u2 + 6uv + 3v2 − 18u − 18v + 25
2 dvdu+

+ 3
28

1∫
0

7−3u
3∫

2−u

(7 − 3u − 3v)2

2 dvdu+

+ 3
28

4
3∫

1

3−2u∫
0

24u2 + 20uv + 3v2 − 80u − 32v + 66
2 dvdu+

+ 3
28

4
3∫

1

2−u∫
3−2u

(14 − 8u − 5v)(6 − 4u − v)
2 dvdu+

+ 3
28

4
3∫

1

10−6u
3∫

2−u

(10 − 6u − 3v)2

2 dvdu+

+ 3
28

3
2∫

4
3

3−2u∫
0

24u2 + 20uv + 3v2 − 80u − 32v + 66
2 dvdu+

+ 3
28

3
2∫

4
3

6−4u∫
3−2u

(14 − 8u − 5v)(6 − 4u − v)
2 dvdu.

This gives S(W S
•,•; C ) = 2885

4032 < 1. Then β(F ) > 0 by (4.3), since SY (S) =
227
448 < 1.

This finishes the proof that X is K-polystable.

4.3.4 K-moduli component

It is a direct consequence of the following Corollary that the one-dimensional

component of MKps
3 formed by the K-polystable elements of Family 4 is isomorphic

to P1.
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Corollary 4.3.14. The Fano 3-fold X∞ in Family 4 is the only singular K-

polystable limit of members of the deformation family 3.12.

Proof. Denote by MKps
3.12 the one-dimensional component of the K-moduli space

MKps
3 that contains all smooth K-polystable Fano 3-folds in Family 4 (equiv-

alently, all K-polystable elements of Mori-Mukai family №3.12). In §4.3.1 we

descrived a parametrisation
{
Xλ|λ ∈ P1

}
that is a Q-Gorenstein family, and

such that all smooth members of Family 4 are fibres of the family Xλ for λ ∈

P1 \ {±3, ±1, ∞}. Note that Xλ
∼= X−λ for λ ∈ P1.

Moreover, it follows from the description of the Family and §4.3.3, where we prove

the K-polystability of X∞, that all objects Xλ in the parametrisation except

for the 3-folds X±3 and X±1 are K-polystable. As mentioned already, the 3-

folds X±3 and X±1 are K-semistable, and their K-polystable limits are X0 and

X∞, respectively. Thus we have a morphism P1 → MKss
3.12, the moduli stack

parametrising K-semistable objects in this family, which descends to a morphism

ϕ : P1 → MKps
3.12 given by λ 7→ [Xλ] such than ϕ(0) = ϕ(±3), ϕ(∞) = ϕ(±1), and

ϕ(λ) = ϕ(−λ) for λ ∈ P1. Since MKps
3.12 is proper and one-dimensional, we conclude

that ϕ is surjective, which implies the required assertion.

4.4 Family 5

The members of this family are the blowups of V = P1 × P1 × P1 along a curve

of degree (1, 1, 3). (№4.13 in Mori-Mukai notation).

4.4.1 Parametrisation of the family

Let [x0 : x1] × [y0 : y1] × [z0 : z1] be the coordinates in V . We have three natural

projections pi : V → P1, i = 1, 2, 3 which define three natural divisor classes of
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V , namely Hi = p∗
i (p) where p ∈ P1 and i = 1, 2, 3. A member X of Family 5 is

defined as the blow-up π̌ : X → V along a curve C of tri-degree (1, 1, 3) in V , i.e.

C · H1 = C · H2 = 1 and C · H3 = 3. Note that X is smooth if and only if C is

smooth.

Theorem 4.4.1. Let C be a smooth curve of tri-degree (1, 1, 3) curve on V .

Then, C can be expressed in one of the following forms:

C = Cλ :=


x0y1 − x1y0 = 0

x3
0z0 − x3

1z1 + λ(x0x
2
1z0 − x1x

2
0z1) = 0

λ ∈ C\{±1} (4.8)

or

C :=


x0y1 − x1y0 = 0

x3
0z0 − x3

1z1 + x0x
2
1z0 = 0.

(4.9)

Proof. Take C = {G(x, y, z) = F (x, y, z) = 0} where x = [x0 : x1] and similarly

for y and z. Since C · H1 = 1, we can assume that fixing a ∈ P1 we get that

G(a, y, z) = s0(a)y0 + s1(a)y1 + t0(a)z0 + t1(a)z1. Likewise, since C · H2 =

1, we have a similar picture when we fix a ∈ P1 for G(x, a, z). In particular,

when we combine both conditions and make a change of coordinates we get that

G(x, y, z) = x0y1 − x1y0. From this first equation, G(x, y) = 0, we get that [x0 :

x1] = [y0 : y1], so we may assume that F (x, y, z) = F (x, z) = h0(x)z0 − h1(x)z1.

Note that {F = 0} is a (1, 3) curve in P1 ×P1. In particular, it is left to prove that

any (1, 3)-curve in P1 ×P1 can be expressed as {x3
0z0 −x3

1z1 +λ(x0x
2
1z0 −x1x

2
0z1) =

0} or {x3
0z0 − x3

1z1 + x0x
2
1z0 = 0}.

Let W := H0(P1 × P1, O(1, 3)) be the vector space of polynomials that define

degree (1, 3)-curves in P1 × P1 with coordinates ([x1 : x2], [z1 : z2]). Hence, we

have,
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W :=


a0z0x

3
0 + a1z0x

2
0x1 + a2z0x0x

2
1 + a3z0x

3
1+

b0z1x
3
0 + b1z1x

2
0x1 + b2z1x0x

2
1 + b3z1x

3
1

∣∣∣∣∣∣∣∣∣ ai, bi ∈ C

 .

Let us define W V := ⟨a0, ..., a3, b0, ..., b3⟩ the vector space generated by the coef-

ficients of W . Now define

J := {νz0x
3
0 + λz0x0x

2
1 + λz1x

2
0x1 + νz1x

3
1|λ, ν ∈ C}

a subspace of W . We want to show that any smooth element F ∈ W can be

written as an element in J unless {F = 0} is isomorphic to {x3
0z0−x3

1z1+x0x
2
1z0 =

0}. We will distinguish the elements of W depending on their discriminant;

if Discz(Discx(F )) = 0 we get specific equations for F ; otherwise, we will use

geometric invariant theory (GIT) to transform F into an element of J . Consider

SL generated as follows,

〈
1 c

0 1


∣∣∣∣∣∣∣∣ c ∈ C

 ,

 0 1

−1 0


〉

.

Note that G = SL × SL acts in P1 × P1 and also acts naturally on W and W V .

Take F ∈ W , then the discriminant of F in the variables [x0 : x1], denoted by

Discx(F ), is a degree 4 polynomial in variables [z0 : z1] (see equation in Appendix

A.2). Hence, counting with multiplicities, we have 4 points in P1 that are the

solutions of Discx(F ) = 0. Moreover, if we take the projection from P1 × P1 to

the P1 with coordinates [z0 : z1], F gives us a 3 : 1 cover of P1 that branches on

the points where Discx(F ) = 0. In addition, Discx(F ) is a quartic elliptic curve

giving a 2 : 1 cover of P1 with 4 branched points.

Let S(W V ) be the symmetric algebra of W V , the quotient of the tensor algebra

T (W V ) = ⊕
d≥0(W V )⊗d by the two-sided ideal generated by tensors of the form

v ⊗ w − w ⊗ v for v, w ∈ W V . The symmetric algebra is a graded commutative
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algebra, and its graded components SdW V are the images of (W V )⊗d in the

quotient. By classical results in invariant theory [Dol12, Chapter 1], original

theory in [Ell95; Hil93; Sch68], there exist s ∈ S2W V and t ∈ S6W V such that the

subspace of G-invariant elements of the symmetric algebra of W V is generated by

s and t, (S(W V ))G = C[s, t]. Using computational tools we can get their specific

equations (see Appendix A.1):

s := 3a0b3 − a1b2 + a2b1 − 3, a3b0

t := a3
0b

3
3 − a2

0a1b2b
2
3 − 2a2

0a2b1b
2
3 + a2

0a2b
2
2b3 − 3a2

0a3b0b
2
3 + 3a2

0a3b1b2b3 − a2
0a3b

3
2

+a0a
2
1b1b

2
3 + 3a0a1a2b0b

2
3 − a0a1a2b1b2b3 − a0a1a3b0b2b3 − 2a0a1a3b

2
1b3

+a0a1a3b1b
2
2 − 2a0a

2
2b0b2b3 + a0a

2
2b

2
1b3 + a0a2a3b0b1b3 + 2a0a2a3b0b

2
2

−a0a2a3b
2
1b2 + 3a0a

2
3b

2
0b3 − 3a0a

2
3b0b1b2 + a0a

2
3b

3
1 − a3

1b0b
2
3 + a2

1a2b0b2b3

+2a2
1a3b0b1b3 − a2

1a3b0b
2
2 − a1a

2
2b0b1b3 − 3a1a2a3b

2
0b3 + a1a2a3b0b1b2

+2a1a
2
3b

2
0b2 − a1a

2
3b0b

2
1 + a3

2b
2
0b3 − a2

2a3b
2
0b2 + a2a

2
3b

2
0b1 − a3

3b
3
0.

Using Hilbert-Munford criteria and classical results of invariant theory [Dol12,

Chapter 1] we can define a map from the GIT semistable elements of the projec-

tivisation of W V to the GIT-quotient that is isomorphic to P1 with coordinates

[s3, t]:
(P∗(W V ))ss ϕ→ P∗(W V )ss//G ∼= P1

[a0 : ... : a3 : b0 : ... : b3] 7→ [s3 : t]

Note we have the same map for W . We can check that Discz(Discx(F )) = 256 ·

t · (s3 − 27t)3 (explicit code in Appendix A.2).

Lemma 4.4.2. Assume F ∈ W is smooth, but Discz(Discx(F )) = 0 (i.e. at

least 2 of the branch points of the cover to P1 merge). Then, up to a twist by

GL2(C) × GL2(C), F is either

(i) z0x
3
0 + z1x0x

2
1 + z1x

3
1 (if only 1 point has multiplicity 2).

(ii) z0x
3
0 + z1x

3
1 (if there are 2 points with multiplicity 2).
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Proof. As we mentioned previously, the projection ([x0 : x1], [z0 : z1]) 7→ [z0 : z1]

gives a triple cover C → P1, with 4 ramification points (counting multiplicity).

Here we assumed that at least one of these points has multiplicity 2. Up to a

change of coordinates, we can assume that two of the ramification points are

[1 : 0] and [0 : 1]. In particular, we can assume that the point [z0 : z1] = [0 : 1]

has multiplicity 2, then after a change of coordinate on [x0, x1] we can assume

F |z0=0 = −x3
1 and F |z1=0 = x2

0(ax0 + bx1). From here we have 2 possibilities if

[z0 : z1] = [1 : 0] has multiplicity 1, we recover (i) after a change of coordinates,

and if it has multiplicity 2 we get (ii).

Remark 4.4.3. Note that for (i) s(F ) = 3 and t(F ) = 1, therefore [F ] ∈ P∗(W ss)

and ϕ(F ) = [27 : 1]. For (ii), note that F ∈ J by taking [ν : λ] = [1 : 0].

Remark 4.4.4. Take F[ν:λ] ∈ J , then s(F[ν:λ]) = 3ν2 + λ2 and t(F[ν:λ]) = ν2(ν2 −

λ2)2. Notice that either s(F[ν:λ]) ̸= 0 or t(F[ν:λ]) ̸= 0 if (ν, λ) ̸= (0, 0). Hence,

[F[ν,λ]] ∈ P∗(W ss) and ϕ(F[ν,λ]) = [(3ν2+λ2)3 : ν2(ν2−λ2)2]. Furthermore, F[ν:λ] is

singular if and only if [ν : λ] = [0 : 1] or [1, ±1] and in this cases ϕ(F[ν:λ]) = [1 : 0].

Also notice that, ϕ−1([27 : 1])|J = {F[1:0], F[1:±3]}.

Lemma 4.4.5. Assume F ∈ W is smooth and Discz(Discx(F )) ̸= 0. Then, F is

GIT-stable with respect to G acting on W .

Proof. Let us assume F is not GIT-stable. Then there exists a 1-parameter

subgroup on G

σ =
〈tr1 0

0 t−r1

 ,

tr2 0

0 t−r2


〉

,

acting on W , and therefore in W V , such that r1, r2 ≥ 0, (r1, r2) ̸= (0, 0) and

µ(F, σ) = max{wt(ai), wt(bi)|i ∈ {0, 1, 2, 3}} ≤ 0 (see [New78, Theorem 29] for

characterisation of GIT-stable). The weights on W V are the following:

117



4.4. FAMILY 5

wt(a0) = r1 + 3r2, wt(b0) = −r1 + 3r2,

wt(a1) = r1 + r2, wt(b1) = −r1 + r2,

wt(a2) = r1 − r2, wt(b2) = −r1 − r2,

wt(a3) = r1 − 3r2, wt(b3) = −r1 − 3r2.

Since we assumed µ(F, σ) ≤ 0 we know that a0 = a1 = 0. If 3r2 > r1, then b0 = 0,

but then F is reducible and we get a contradiction. If 3r2 ≤ r1, in particular

r1 > r2, hence a2 = 0 and F |z1=0 = a3x
3
1. In this case, Discz(Discx(F )) = 0 wich

is against our assumption. Therefore, F is GIT-stable.

Now take any smooth F ∈ W . If Discz(Discx(F )) = 0, then by Lemma 4.4.2,

we know that either F = z0x
3
0 + z1x0x

2
1 + z1y

3
1 or F = F[1:0]. In the former

case, take C = {G(x, y) = F (x, z) = 0} we recover (4.9), similarly, the latter

case gives us C0 from (4.8). Hence, let us assume that Discz(Discx(F )) ̸= 0.

This is true if and only if 256t(s3 − 27t)3 ̸= 0, which is equivalent of saying that

p = ϕ(F ) = [s3 : t] ̸= [1 : 0], [27 : 1]. We also know by Lemma 4.4.5 that F

is GIT-stable. On the other hand, by Remark 4.4.4 there exist [ν : λ] /∈ {[1 :

0], [1 : ±3], [0 : 1], [1, ±1]} such that ϕ(F[ν:λ]) = p. Again by Remark 4.4.4, this

means that F[ν:λ] is smooth with Discz(Discx(F[ν:λ])) ̸= 0 and by Lemma 4.4.5 it

is GIT-stable. Hence, we proved that F[ν:λ] ∈ G · [F ] ⊂ (P∗W )ss and we recover

Cλ/ν = {G(x, y) = F[1:λ/ν](x, z) = 0} from (4.8).

Let Xλ be the blow-up of V along Cλ in (4.8). By [Ara+23, Theorem 5.115,

Corollary 5.111] we know that Xλ is K-polystable, and the blow-up of V along

(4.9) is strictly K-semistable. Moreover, the latter admits a degeneation to X0.

Lemma 4.4.6. Let X the blow-up of V along (4.9). Then it admits an isotrivial

degeneration to X∞.
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Proof. It is enough to show that C described in (4.9) degenerates isotrivially to

C0. We define the family

C := {{x0y1 − x1y0 = x3
0z0 − x3

1z1 + tx0x
2
1z0 = 0}|t ∈ A1}.

We define π : C → A1 in an obvious way. Notice that for every non-zero t ∈ A1,

π−1(t) ∼= C. On the other hand, for π−1(0) = {x0y1 − x1y0 = x3
0z0 − x3

1z1 = 0},

so we clearly have π−1(0) = C0.

Furthermore, every smooth family member is isomorphic to one of these 3-folds.

If we allow, λ = ±1, ∞ in (4.8), we get singular members of the family. Moreover,

we see that X±1 ∼= X∞.

Lemma 4.4.7. Let X±1, X∞ be described as above. Then, X±1 ∼= X∞.

Proof. Consider the following linear action on sections of Hi on V :

[x0 : x1] 7→ [x0 + x1 : −i(x0 − x1)]

[y0 : y1] 7→ [y0 + y1 : i(y1 − y0)]

[z0 : z1] 7→ [−i(z0 − z1) : z0 + z1]

One can check that

(x0y1 − x1y0) 7→ 2i(x0y1 − x1y0)

(x3
0z0 − x3

1z1) + (x0x
2
1z0 − x1x

2
0z1) 7→ 8i(x0x

2
1z0 − x1x

2
0z1)

So we get X1 ∼= X∞. Similarly we have X−1 ∼= X∞.

Notice that C∞ is the union of 3 lines, l3,1 = {x0 = y0 = 0}, l3,2 = {x1 = y1 = 0}

and ∆ = {x0y1 − x1y0 = x0z1 − x1z0 = 0}. Moreover, ∆ and l3,i intersect in a

point pi for i ∈ {1, 2}. Therefore, when we blow up V along C∞ to obtain the
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threefold X∞, we get two ordinary double points coming from the blowup of p1

and p2. In the next section, we study the geometry of this member of the family.

4.4.2 Geometry of X∞

We aim to prove that X∞ is K-polystable. We will first define some surfaces and

curves on V we will use in the following proofs:



H1,i := {xi−1 = 0}

H2,i := {yi−1 = 0} for i ∈ {1, 2}

H3,0 := {z0 = 0}



R1 := {x0y1 − x1y0 = 0}

R2 := {x0z1 − x1z0 = 0}

R3 := {y0z1 − y1z0 = 0}



l1 := H3,0 ∩ H2,1 = {z0 = y0 = 0}

l2 := H3,0 ∩ H1,1 = {z0 = x0 = 0}

∆ := R1 ∩ R2 ∩ R3 = {x0y1 − x1y0 = x0z1 − x1z0 = 0}

∆′ := {x0y1 − x1y0 = x0z1 + x1z0 = 0}

l3,1 = R1 ∩ H1,1 = R1 ∩ H2,1 = {x0 = y0 = 0},

l3,2 = R1 ∩ H1,2 = R1 ∩ H2,2 = {x1 = y1 = 0},

s := H3,0 ∩ R1 = {z0 = x0y1 − x1y0 = 0}.

Let H1, H2, H3 be general fibres of the fibrations pr1◦π, pr2◦π, pr3◦π, respectively,

where pr1, pr2, pr3, are projections of (P1)3 to the first, second, third factor,

respectively. Notice that Hj,i ∈ |Hj| for i ∈ {0, 1, 2} and j ∈ {1, 2, 3}. Also

notice that R1 ∼ H1 + H2, similarly we can find linear equivalences for R2 and

R3 in terms of Hj. In the image below you can visualize some of these curves and

surfaces.
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Figure 4.5: Model in P1 × P1 × P1 Family 5

Notice that X∞ is the blow up of V along C∞ = l3,1 ∪ l3,2 ∪ ∆. Let us take the

following automorphisms in V :

ι1 : [x0 : x1] × [y0 : y1] × [z0 : z1] 7→ [x1 : x0] × [y1 : y0] × [z1 : z0],

ι2 : [x0 : x1] × [y0 : y1] × [z0 : z1] 7→ [y0 : y1] × [x0 : x1] × [z0 : z1],

τs : [x0 : x1] × [y0 : y1] × [z0 : z1] 7→ [sx0 : x1] × [sy0 : y1] × [sz0 : z1],

where s ∈ C∗. Now we consider the group G generated by ι1, ι2, τs. Notice that

C∞ is invariant under G. Therefore, the action of G on V can be lifted to X and

we have G ∼= (C∗ ⋊ µ2) ⋊ µ2 ⊂ Aut(X).

Description of the G-invariant loci. For the G-invariant structure on V , we

have the following lemma:

Lemma 4.4.8. There is no point of V fixed by G. The only G-invariant irre-

ducible curves in V are ∆ and ∆′.

Proof. Notice that there are only 8 points on V fixed by τs: {pi ×pj ×pk, i, j, k ∈

{1, 2}}, where p1 = [1 : 0], p2 = [0 : 1]. Moreover, none of these points is fixed

by ι1, hence V does not contain any G-invariant points.

On the other hand, let C be a G-invariant irreducible curve on V . Notice that

C cannot be pointwise fixed by τs, hence C is rational. Then ι1 must fix a point
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p ∈ C, which is not fixed by τs. Since there are only 8 ι1-fixed points [1 : ±1]× [1 :

±1]× [1 : ±1], C must be the closure of the C∗-orbit of one of those points. There

are only 4 possible curves if we take the orbits: {x0y1 ± x1y0 = x0z1 ± x1z0 = 0}.

Since C is also ι2-fixed, we only have two possible invariant curves: ∆ and ∆′.

Notice that, R1, R2 and R3 are also G-invariant and G-irreducible and ∆ is their

intersection. Let φ : W → V be the blowup of the curve ∆, let σ : X̃ → W

be the blowup of the strict transforms of the curves l3,1 and l3,2, let γ : U → V

be the blowup of l3,1 and l3,2, and let ϕ : X̃ → U be the blowup of the proper

transform of ∆. Then we have a G-equivariant commutative diagram

X̃ //

ϕ

��

X∞

π

��

Xoo

σ

��
U γ

// V Wφ
oo

(4.10)

where X̃ → X∞ and X → X∞ are G-equivariant small resolutions of the 3-fold X.

Recall from Section 4.2.2 that either Y = X̃ or Y = X.

Let H i,j, H3, Rk be the strict transforms of Hi,j, H3, Rk on X, for i, j = 1, 2 and

k = 1, 2, 3. Let Fi be the exceptional divisor on X over l3,i for i = 1, 2, and E

be the exceptional divisor on X over ∆. Then, denote by F 1, F 2, E their strict

transforms on X.

Let l3,1, l3,2, s, ∆, ∆′ be the corresponding sections of l3,1, l3,2, s, ∆, ∆′ on R1. De-

note by l3 the strict transformon R1 of a general curve l3 ∈ |l3,1| = |l3,2| in R1 ⊂ V .

Let f3,1 and f3,2 be in the class of a σ-fibre in F 1 and F 2 such that f3,i = E ∩ F i,

respectively. Denote by f 1 and f 2, the proper transform on E of the fibres of this

projection that pass through the points σ(l3,1) and σ(l3,2), respectively.
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Figure 4.6: Model for X Family 5

Lemma 4.4.9. The effective cone of X, Eff(X), is generated by H i,j (for i, j ∈

{1, 2}), H3, Ri (for i ∈ {1, 2, 3}), F 1, F 2 and E.

Proof. Suppose π(S) ⊂ P1 × P1 × P1 is the surface of degree (d1, d2, d3) in P1 ×

P1 × P1. Then, we have

S ∼ d1π
∗(H1) + d2π

∗(H2) + d3π
∗(H3) − mE − m1F 1 − m2F 2,

where m is the multiplicity of π(S) in ∆, mi is the multiplicity of π(S) in l3,i for

i ∈ {1, 2}. Suppose that S ̸= E, S ̸= F i for i ∈ {1, 2}, S ̸= H i,j, S ̸= H3, S ̸= Ri

for i ∈ {1, 2, 3}. Now, we intersect S with f3,1, f3,2, f 2 +f3,2, l3, s, si = H3 ·Ri for

i ∈ {2, 3} and ti,j = H3 · (H i − F j) for i, j ∈ {1, 2}. It is straighforward to check

that E
3 = −4, F

3
k = 1, H1H2H3 = 1, H

2
i Hj = H iHjF k = H iHjE = H iF

2
k = 0

and F
2
kE = F

2
kH3 = E

2
H i = −1.



S · f3,1 = m1 ≥ 0, S · si = di − m ≥ 0 for i ∈ {2, 3}

S · f3,2 = m2 ≥ 0, S · l3 = d3 − m ≥ 0,

S · (f3,2 + f 2) = m ≥ 0, S · ti,j = di − mj ≥ 0 for i, j ∈ {1, 2}.

S · s = d1 + d2 − m − m1 − m2 ≥ 0,
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Now we want to find the integer positive solutions for:

d1π
∗(H1) + d2π

∗(H2) + d3π
∗(H3) − mE − m1F 1 − m2F 2 =

∑
i,j=1,2

hi,jH ij + h3H3 +
3∑

i=1
riRi +

2∑
i=1

fiF i + eE

Comparing the coefficients we get the system:



e = r1 + r2 + r3 − m, h3 = d3 − r2 − r3

f1 = −r1 − r2 − r3 − h1,2 + d1 − h2,2 + d2 − m1,

f2 = r1 + h1,2 + h2,2 − m2, h1,1 = d1 − r1 − r2 − h1,2.

The non-negative solution to this system can be given by



e = 0, f1 = 0, r2 = m, r1 = 0,

h3 = d3 − m, r3 = 0, h2,2 = d2 − m1,

h1,1 = 0, h1,2 = d1 − m, h2,1 = m1,

f2 = d1 + d2 − m1 − m2 − m.

Thus, the cone of effective divisors over Z is generated by H ij for i, j ∈ {1, 2},

H3, Ri for i ∈ {1, 2, 3}, F 1, F 2 and E.

Then, we can rewrite −KX as the sum of effective divisors,

−KX ∼ 2R1 + E + F 1 + F 2 + 2H3 ∼ R1 + R2 + R3 + 2E.

Note that the divisors E, F 1 +F 2, R1, R2 +R3 are G-invariant and G-irreducible,

but the pencils |H1|, |H2|, |H3| do not contain G-invariant members.
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4.4.3 K-polystability of X∞

We now prove that X = X∞ is K-polystable. Suppose that X is not K-polystable.

By Theorem 2.2.12, there exists a G-invariant prime divisor F over X such that

β(F ) = AX

(
F
)

− SX

(
F
)
⩽ 0. (4.11)

Let Z and Z be its centres on X and X, respectively. We first consider the case

when Z is a divisor.

Lemma 4.4.10. Let S be a G-invariant prime divisor in X. Then β(S) > 0.

Proof. If β(S) ⩽ 0, then the divisor −KS − S is big by (2.1). On the other hand,

arguing as in the proof of [Ara+23, Lemma 5.113], we see that −KX − S is big

only if S = R1 or S = E. Thus, to complete the proof, it is enough to show that

β(R1) > 0 and β(E) > 0.

Set S = R1. Then τ = 2. Arguing as in the proof of [Ara+23, Lemma 5.114], we

see that N(u) = 0 for u ∈ [0, 1], and N(u) = (u − 1)(E + F 1 + F 1) for u ∈ [1, 2].

Then

P (u) ∼R


(2 − u)R1 + E + F 1 + F 2 + 2H3 if 0 ⩽ u ⩽ 1,

(2 − u)
(
H1 + H2

)
+ 2H3 if 1 ⩽ u ⩽ 2.

A direct computation then shows that

SX(R1) = 1
(−KX)3

∫ τ

0
vol(−KX − uR1)du

= 1
26

(∫ 1

0
(−2u3 − 6u2 − 6u + 26)du +

∫ 2

1
(12u2 − 48u + 48)du

)

= 49
52 < 1

Now, we compute β(E). First notice that we have −KX − uE ∼ (2 − u)E + R1 +

R2 + R3, where R1 + R2 + R3 is not big. Therefore, the divisor −KX − uE is nef
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for 0 ≤ u ≤ 1 and pseudoeffective for 0 ≤ u ≤ 2. We have the following positive

and negative parts:

P (−KX − uE) =


−KX − uE if 0 ≤ u ≤ 1,

−KX − uE − (u − 1)(R1 + R2 + R3) if 1 ≤ u ≤ 2,

and

N(−KX − uE) =


0 if 0 ≤ u ≤ 1,

(u − 1)(R1 + R2 + R3) if 1 ≤ u ≤ 2.

Now we compute

SX(E) = 1
(−KX)3

∫ τ

0
vol(−KX − uE)du

= 1
26

(∫ 1

0
(4u3 − 6u2 − 18u + 26)du +

∫ 2

1
(−6u3 + 36u2 − 72u + 48)du

)

= 35
52 < 1.

Hence, β(E) > 0 and we get the desired contradiction.

We now consider the case when Z and Z are small. By Lemma 4.4.8, we only

need to consider curves, and either π(Z) = ∆ and Z ⊂ E, or π(Z) = ∆′ and

Z ⊂ R1.

Lemma 4.4.11. The curve Z is not contained in the surface R1.

Proof. The proof is very similar to the proof of [Ara+23, Lemma 5.114]. Suppose

that Z ⊂ R1. Let ∆ = E∩R1, and let ∆′ be the proper transform on the 3-fold X

of the curve ∆′. Then it follows from Lemma 4.4.8 that either Z = ∆ or Z = ∆′.

Recall from the proof of Lemma 4.4.10 that SX(R1) = 49
52 . Thus, it follows from
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(4.3) that S(W R1
•,• ; Z) ⩾ 1. Let us compute it.

Notice that l3 and s the rulings of R1 ∼= P1 × P1 such that pr1 ◦ π and pr2 ◦ π

contract l3, and pr3 ◦π contracts s. Moreover, ∆ ∼R1
l3 + s. Then it follows from

the proof of Lemma 4.4.10 that

P (u)
∣∣∣
R1

− vZ ∼R


(1 + u − v)l3 + (1 + u − v)s 0 ⩽ u ⩽ 1,

(4 − 2u − v)l3 + (2 − v)s 1 ⩽ u ⩽ 2,

and

N(u)
∣∣∣
R1

=


0 0 ⩽ u ⩽ 1,

(u − 1)
(
∆ + l3,1 + l3,2

)
1 ⩽ u ⩽ 2,

where l3,1 = F 1|R1
and l3,2 = F 2|R1

as defined in the previous subsection. Thus,

if 0 ⩽ u ⩽ 1, then τ(u) = 1 + u. Similarly, if 1 ⩽ u ⩽ 2, then τ(u) = 4 − 2u.

We have P (u, v) ∼R P (u)
∣∣∣
R1

− vZ for every v ∈ [0, τ(u)]. Hence, if Z = ∆, then

S(W R1
•,• ; Z) can be computed as follows:

3
26

2∫
1

(16 − 8u)(u − 1)du + 3
26

1∫
0

1+u∫
0

2(1 + u − v)2dvdu

+ 3
26

2∫
1

4−2u∫
0

2(4 − 2u − v)(2 − v)dvdu = 35
52 < 1.

Similarly, if Z = ∆′, then S(W E
•,•; Z) = 27

52 < 1. This is a contradiction.

Thus, we see that π(Z) = ∆, Z ⊂ E and Z ̸= E ∩R1. Observe that σ
(
E
) ∼= P1 ×

P1. Recall f3,1 = F 1 ∩E and f3,2 = F 2 ∩E. Then σ in (4.10) induces a birational

morphism E → σ(E) that contracts f3,1 and f3,2 to two distinct points on the

curve σ(∆), which is a section the natural projection σ(E) → ∆. Denote by f 1

and f 2 the proper transforms on E of the fibres of this projection that pass

through the points σ(f3,1) and σ(f3,2), respectively. Note that E is a weak del

Pezzo surface, the curves f3,1, f3,2, f 1, f 2 are all (−1)-curves in E, and ∆ is the
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only (−2)-curve in E. By [CT88, Proposition 8.3], the curves ∆, f3,1, f3,2, f 1, f 2

generate the Mori cone NE(E).

Now, let us focus on E. Then it follows from the proof of Lemma 4.4.10 that

P (u)
∣∣∣
E

− vZ ∼R



(1 + u − v)∆ + (2 − v)
(
f 3,1 + f 3,2

)
+

+(2 − u)
(
f 1 + f 2

)
if 0 ⩽ u ⩽ 1,

(4 − 2u − v)
(
∆ + f 3,1 + f 3,2

)
+

+(2 − u)
(
f 1 + f 2

)
if 1 ⩽ u ⩽ 2,

and

N(u)
∣∣∣
E

=


0 if 0 ⩽ u ⩽ 1,

(u − 1)
(
∆ + ∆2 + ∆3

)
if 1 ⩽ u ⩽ 2,

where ∆2 = E ∩ R2 and ∆3 = E ∩ R3. Thus, if 0 ⩽ u ⩽ 1, then τ(u) = 1 + u.

Similarly, if 1 ⩽ u ⩽ 2, then τ(u) = 4 − 2u.

Now in order to do the Zariski decomposition of P (u)
∣∣∣
E

− vZ on E we need

to intersect it with the generators of NE(E). Recall that we have the following

intersections between the generators in E: ∆ · f3,i = 1, f i · f3,i = 1 for i ∈ {1, 2}

and the rest are 0. Moreover, if 0 ⩽ u ⩽ 1, then

(P (u)
∣∣∣
E

− vZ) · ∆ = 2 − 2u ≥ 0 ∀v;

(P (u)
∣∣∣
E

− vZ) · f3,i = 1 ≥ 0 ∀v; i ∈ {1, 2}

(P (u)
∣∣∣
E

− vZ) · f i = u − v ≥ 0 ⇔ u ≥ v.

Hence, P (u)
∣∣∣
E

−vZ is nef for 0 ≤ v ≤ u. For u ≤ v ≤ 1+u the intersection with f i

is negative, therefore we are adding some λ1f 1 +λ2f 2. Now, we want the smallest

λi such that (1 + u − v)∆ + (2 − v)
(
f 3,1 + f 3,2

)
+ (2 − u − λ1)f 1 + (2 − u − λ2)f 2

is nef.
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(P (u)
∣∣∣
E

− vZ − λ1f 1 + λ2f 2) · ∆ = 2 − 2u ≥ 0 ∀v;

(P (u)
∣∣∣
E

− vZ − λ1f 1 + λ2f 2) · f3,i = 1 − λi ≥ 0 ⇔ 1 ≥ λi i ∈ {1, 2}

(P (u)
∣∣∣
E

− vZ − λ1f 1 + λ2f 2) · f i = u − v − λi ≥ 0 ⇔ u − v ≤ λi.

So the smallest λi = u − v ≤ 1. Therefore, we get the following Zariski decom-

position:

P (u, v) ∼R



(1 + u − v)∆ + (2 − v)
(
f3,1 + f3,2

)
+

+(2 − u)
(
f 1 + f 2

)
if 0 ⩽ v ⩽ u,

(1 + u − v)∆ + (2 − v)
(
f3,1 + f3,2 + f 1 + f 2

)
if u ⩽ v ⩽ 1 + u,

and

N(u, v) =


0 if 0 ⩽ v ⩽ u,

(v − u)
(
f 1 + f 2

)
if u ⩽ v ⩽ 1 + u,

so that

(
P (u, v)

)2
=


7 − 3u2 + 2uv + v2 + 6u − 10v if 0 ⩽ v ⩽ u,

(1 + u − v)(7 − u − 3v) if u ⩽ v ⩽ 1 + u.

Similarly, if 1 ⩽ u ⩽ 2, we get this other Zariski decomposition,

P (u, v) ∼R



(4 − 2u − v)
(
∆ + f3,1 + f3,2

)
+

+(2 − u)
(
f 1 + f 2

)
if 0 ⩽ v ⩽ 2 − u,

(4 − 2u − v)
(
∆ + f3,1 + f3,2 + f 1 + f 2

)
if 2 − u ⩽ v ⩽ 4 − 2u,

and

N(u, v) =


0 if 0 ⩽ v ⩽ 2 − u,

(v + u − 2)
(
f 1 + f 2

)
if 2 − u ⩽ v ⩽ 4 − 2u,
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so that

(
P (u, v)

)2
=


10u2 + 8uv + v2 − 40u − 16v + 40 if 0 ⩽ v ⩽ 2 − u,

3(4 − 2u − v)2 if 2 − u ⩽ v ⩽ 4 − 2u.

Note that Z ̸⊂ Supp(N(u)) for u ∈ [0, 2]. Thus, integrating, we get S(W E
•,•; Z) =

87
104 . On the other hand, we already know from the proof of Lemma 4.4.10 that

SY (E) = 35
52 < 1. Then β(F ) > 0 by (4.3), which contradicts (4.11). This shows

that X is K-polystable.

4.4.4 K-moduli component

It is a direct consequence of the following Corollary that the one-dimensional

component of MKps
3 formed by the K-polystable elements of Family 5 is isomorphic

to P1.

Corollary 4.4.12. The Fano 3-fold X∞ in Family 5 is the only singular K-

polystable limit of members of the deformation family 4.13.

Proof. Denote by MKps
4.13 the one-dimensional component of the K-moduli space

MKps
3 that contains all smooth K-polystable Fano 3-folds in Family 5 (equiv-

alently, all K-polystable elements of Mori-Mukai family №4.13). In §4.4.1 we

descrived a parametrisation
{
Xλ; λ ∈ P1

}
that is a Q-Gorenstein family, and

such that all smooth members of Family 4 are fibres of the family Xλ for λ ∈

P1 \ {±1, ∞}. Note that Xλ
∼= X−λ for λ ∈ P1.

Moreover, it follows from the description of the Family and §4.4.3, where we prove

the K-polystability of X∞, that all objects Xλ in the parametrisation except for

the 3-folds X±1 are K-polystable. As mentioned already, the 3-folds X±1 are

K-semistable, and their K-polystable limit is X∞. Thus we have a morphism

P1 → MKss
4.13, the moduli stack parametrising K-semistable objects in this family,
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which descends to a morphism ϕ : P1 → MKps
4.13 given by λ 7→ [Xλ] such than

ϕ(∞) = ϕ(±1), and ϕ(λ) = ϕ(−λ) for λ ∈ P1. Since MKps
4.13 is proper and

one-dimensional, we conclude that ϕ is surjective, which implies the required

assertion.
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Appendix A

Computations of Parametrisation

of Family 5
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This command in MAGMA reduces the possible monomials: 
 
K<w>:= FiniteField(227); 
G := MatrixGroup<8,K | 
      [1,0,0,0,0,0,0,0, 
 3*w,1,0,0,0,0,0,0, 
    3*w^2,2*w,1,0,0,0,0,0, 
    w^3,w^2,w,1,0,0,0,0, 
    0,0,0,0,1,0,0,0, 
   0,0,0,0,3*w,1,0,0, 
    0,0,0,0,3*w^2,2*w,1,0, 
    0,0,0,0,w^3,w^2,w,1], 
   [0,0,0,1,0,0,0,0, 
   0,0,-1,0,0,0,0,0, 
    0,1,0,0,0,0,0,0, 
    -1,0,0,0,0,0,0,0, 
    0,0,0,0,0,0,0,1, 
   0,0,0,0,0,0,-1,0, 
    0,0,0,0,0,1,0,0, 
    0,0,0,0,-1,0,0,0], 
[1,0,0,0,0,0,0,0, 
   0,1,0,0,0,0,0,0, 
    0,0,1,0,0,0,0,0, 
    0,0,0,1,0,0,0,0, 
    w,0,0,0,1,0,0,0, 
    0,w,0,0,0,1,0,0, 
    0,0,w,0,0,0,1,0, 
    0,0,0,w,0,0,0,1]>; 
InvariantsOfDegree(G, 2); 
 
Output: 
[ 
    x1*x8 + 151*x2*x7 + 76*x3*x6 + 226*x4*x5 
] 
Since this is only a degree 2 polinomial, we can optain it directly using magma and check we get the 
same result. 
K<w>:= FiniteField(227); 
G := MatrixGroup<8,K | 
      [1,0,0,0,0,0,0,0, 
 3*w,1,0,0,0,0,0,0, 
    3*w^2,2*w,1,0,0,0,0,0, 
    w^3,w^2,w,1,0,0,0,0, 
    0,0,0,0,1,0,0,0, 
   0,0,0,0,3*w,1,0,0, 
    0,0,0,0,3*w^2,2*w,1,0, 
    0,0,0,0,w^3,w^2,w,1], 
   [0,0,0,1,0,0,0,0, 
   0,0,-1,0,0,0,0,0, 
    0,1,0,0,0,0,0,0, 
    -1,0,0,0,0,0,0,0, 
    0,0,0,0,0,0,0,1, 
   0,0,0,0,0,0,-1,0, 
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    0,0,0,0,0,1,0,0, 
    0,0,0,0,-1,0,0,0], 
[1,0,0,0,0,0,0,0, 
   0,1,0,0,0,0,0,0, 
    0,0,1,0,0,0,0,0, 
    0,0,0,1,0,0,0,0, 
    w,0,0,0,1,0,0,0, 
    0,w,0,0,0,1,0,0, 
    0,0,w,0,0,0,1,0, 
    0,0,0,w,0,0,0,1], 
[0,0,0,0,1,0,0,0, 
    0,0,0,0,0,1,0,0, 
    0,0,0,0,0,0,1,0, 
    0,0,0,0,0,0,0,1, 
-1,0,0,0,0,0,0,0, 
   0,-1,0,0,0,0,0,0, 
    0,0,-1,0,0,0,0,0, 
    0,0,0,-1,0,0,0,0]>; 
InvariantsOfDegree(G, 6); 
 
Output: 
[ 
    x1^3*x8^3 + 226*x1^2*x2*x7*x8^2 + 76*x1^2*x3*x7^2*x8 + 224*x1^2*x4*x5*x8^2 + 
        x1^2*x4*x6*x7*x8 + 151*x1^2*x4*x7^3 + 76*x1*x2^2*x6*x8^2 + 
        202*x1*x2^2*x7^2*x8 + x1*x2*x3*x5*x8^2 + 201*x1*x2*x3*x6*x7*x8 + 
        x1*x2*x4*x5*x7*x8 + 75*x1*x2*x4*x6^2*x8 + 76*x1*x2*x4*x6*x7^2 + 
        75*x1*x3^2*x5*x7*x8 + 51*x1*x3^2*x6^2*x8 + 226*x1*x3*x4*x5*x6*x8 + 
        152*x1*x3*x4*x5*x7^2 + 151*x1*x3*x4*x6^2*x7 + 3*x1*x4^2*x5^2*x8 + 
        226*x1*x4^2*x5*x6*x7 + 76*x1*x4^2*x6^3 + 151*x2^3*x5*x8^2 + 28*x2^3*x7^3 
        + 76*x2^2*x3*x5*x7*x8 + 143*x2^2*x3*x6*x7^2 + 152*x2^2*x4*x5*x6*x8 + 
        176*x2^2*x4*x5*x7^2 + 151*x2*x3^2*x5*x6*x8 + 84*x2*x3^2*x6^2*x7 + 
        226*x2*x3*x4*x5^2*x8 + 26*x2*x3*x4*x5*x6*x7 + 151*x2*x4^2*x5*x6^2 + 
        76*x3^3*x5^2*x8 + 199*x3^3*x6^3 + 151*x3^2*x4*x5^2*x7 + 
        25*x3^2*x4*x5*x6^2 + x3*x4^2*x5^2*x6 + 226*x4^3*x5^3, 
    x1^2*x3*x6*x8^2 + 151*x1^2*x3*x7^2*x8 + 226*x1^2*x4*x6*x7*x8 + 
        76*x1^2*x4*x7^3 + 151*x1*x2^2*x6*x8^2 + 101*x1*x2^2*x7^2*x8 + 
        226*x1*x2*x3*x5*x8^2 + 101*x1*x2*x3*x6*x7*x8 + x1*x2*x4*x5*x7*x8 + 
        152*x1*x2*x4*x6^2*x8 + 151*x1*x2*x4*x6*x7^2 + 152*x1*x3^2*x5*x7*x8 + 
        25*x1*x3^2*x6^2*x8 + 226*x1*x3*x4*x5*x6*x8 + 75*x1*x3*x4*x5*x7^2 + 
        76*x1*x3*x4*x6^2*x7 + x1*x4^2*x5*x6*x7 + 151*x1*x4^2*x6^3 + 
        76*x2^3*x5*x8^2 + 14*x2^3*x7^3 + 151*x2^2*x3*x5*x7*x8 + 
        185*x2^2*x3*x6*x7^2 + 75*x2^2*x4*x5*x6*x8 + 202*x2^2*x4*x5*x7^2 + 
        76*x2*x3^2*x5*x6*x8 + 42*x2*x3^2*x6^2*x7 + x2*x3*x4*x5^2*x8 + 
        126*x2*x3*x4*x5*x6*x7 + 226*x2*x4^2*x5^2*x7 + 76*x2*x4^2*x5*x6^2 + 
        151*x3^3*x5^2*x8 + 213*x3^3*x6^3 + 76*x3^2*x4*x5^2*x7 + 
        126*x3^2*x4*x5*x6^2 
] 
Changing to Finite field 257 we get: 
 
x1^3*x8^3 + 256*x1^2*x2*x7*x8^2 + 86*x1^2*x3*x7^2*x8 + 254*x1^2*x4*x5*x8^2 + 
        x1^2*x4*x6*x7*x8 + 171*x1^2*x4*x7^3 + 86*x1*x2^2*x6*x8^2 + 
        143*x1*x2^2*x7^2*x8 + x1*x2*x3*x5*x8^2 + 142*x1*x2*x3*x6*x7*x8 + 
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        x1*x2*x4*x5*x7*x8 + 85*x1*x2*x4*x6^2*x8 + 86*x1*x2*x4*x6*x7^2 + 
        85*x1*x3^2*x5*x7*x8 + 229*x1*x3^2*x6^2*x8 + 256*x1*x3*x4*x5*x6*x8 + 
        172*x1*x3*x4*x5*x7^2 + 171*x1*x3*x4*x6^2*x7 + 3*x1*x4^2*x5^2*x8 + 
        256*x1*x4^2*x5*x6*x7 + 86*x1*x4^2*x6^3 + 171*x2^3*x5*x8^2 + 
        184*x2^3*x7^3 + 86*x2^2*x3*x5*x7*x8 + 219*x2^2*x3*x6*x7^2 + 
        172*x2^2*x4*x5*x6*x8 + 28*x2^2*x4*x5*x7^2 + 171*x2*x3^2*x5*x6*x8 + 
        38*x2*x3^2*x6^2*x7 + 256*x2*x3*x4*x5^2*x8 + 115*x2*x3*x4*x5*x6*x7 + 
        171*x2*x4^2*x5*x6^2 + 86*x3^3*x5^2*x8 + 73*x3^3*x6^3 + 
        171*x3^2*x4*x5^2*x7 + 114*x3^2*x4*x5*x6^2 + x3*x4^2*x5^2*x6 + 
        256*x4^3*x5^3, 
    x1^2*x3*x6*x8^2 + 171*x1^2*x3*x7^2*x8 + 256*x1^2*x4*x6*x7*x8 + 
        86*x1^2*x4*x7^3 + 171*x1*x2^2*x6*x8^2 + 200*x1*x2^2*x7^2*x8 + 
        256*x1*x2*x3*x5*x8^2 + 200*x1*x2*x3*x6*x7*x8 + x1*x2*x4*x5*x7*x8 + 
        172*x1*x2*x4*x6^2*x8 + 171*x1*x2*x4*x6*x7^2 + 172*x1*x3^2*x5*x7*x8 + 
        114*x1*x3^2*x6^2*x8 + 256*x1*x3*x4*x5*x6*x8 + 85*x1*x3*x4*x5*x7^2 + 
        86*x1*x3*x4*x6^2*x7 + x1*x4^2*x5*x6*x7 + 171*x1*x4^2*x6^3 + 
        86*x2^3*x5*x8^2 + 92*x2^3*x7^3 + 171*x2^2*x3*x5*x7*x8 + 
        238*x2^2*x3*x6*x7^2 + 85*x2^2*x4*x5*x6*x8 + 143*x2^2*x4*x5*x7^2 + 
        86*x2*x3^2*x5*x6*x8 + 19*x2*x3^2*x6^2*x7 + x2*x3*x4*x5^2*x8 + 
        57*x2*x3*x4*x5*x6*x7 + 256*x2*x4^2*x5^2*x7 + 86*x2*x4^2*x5*x6^2 + 
        171*x3^3*x5^2*x8 + 165*x3^3*x6^3 + 86*x3^2*x4*x5^2*x7 + 
        57*x3^2*x4*x5*x6^2 
 
We check that for both cases we have the same monomials, so we replace the numbers for 
coefficients and we continue our computations in magma by also changing the notation to the one we 
are using in this thesis. 
 
l*a0^3*b3^3 + (-l)*a0^2*a1*b2*b3^2 + a*a0^2*a2*b2^2*b3 +k*a0^2*a3*b0*b3^2 + 
        l*a0^2*a3*b1*b2*b3 + (-a)*a0^2*a3*b2^3 + a*a0*a1^2*b1*b3^2 + 
        b*a0*a1^2*b2^2*b3 + l*a0*a1*a2*b0*b3^2 + c*a0*a1*a2*b1*b2*b3 + 
        l*a0*a1*a3*b0*b2*b3 + d*a0*a1*a3*b1^2*b3 + a*a0*a1*a3*b1*b2^2 + 
        d*a0*a2^2*b0*b2*b3 + e*a0*a2^2*b1^2*b3 + (-l)*a0*a2*a3*b0*b1*b3 + 
        (-d)*a0*a2*a3*b0*b2^2 + (-a)*a0*a2*a3*b1^2*b2 + (-k)*a0*a3^2*b0^2*b3 + 
        (-l)*a0*a3^2*b0*b1*b2 + a*a0*a3^2*b1^3 + (-a)*a1^3*b0*b3^2 + 
        f*a1^3*b2^3 + a*a1^2*a2*b0*b2*b3 + j*a1^2*a2*b1*b2^2 + 
        (-d)*a1^2*a3*b0*b1*b3 + (-e)*a1^2*a3*b0*b2^2 + (-a)*a1*a2^2*b0*b1*b3 + 
        (-j)*a1*a2^2*b1^2*b2 + (-l)*a1*a2*a3*b0^2*b3 + (-c)*a1*a2*a3*b0*b1*b2 + 
        (-a)*a1*a3^2*b0*b1^2 + a*a2^3*b0^2*b3 + (-f)*a2^3*b1^3 + 
        (-a)*a2^2*a3*b0^2*b2 + (-b)*a2^2*a3*b0*b1^2 + l* a2*a3^2*b0^2*b1 + 
        (-l)*a3^3*b0^3,  
   l* a0^2*a2*b1*b3^2 + (-a)*a0^2*a2*b2^2*b3 + (-l)*a0^2*a3*b1*b2*b3 + 
        a*a0^2*a3*b2^3 + (-a)*a0*a1^2*b1*b3^2 + g*a0*a1^2*b2^2*b3 + 
        (-l)*a0*a1*a2*b0*b3^2 + g*a0*a1*a2*b1*b2*b3 + l*a0*a1*a3*b0*b2*b3 + 
        (-d)*a0*a1*a3*b1^2*b3 + (-a)*a0*a1*a3*b1*b2^2 + (-d)*a0*a2^2*b0*b2*b3 + 
        (-b)*a0*a2^2*b1^2*b3 + (-l)*a0*a2*a3*b0*b1*b3 + d*a0*a2*a3*b0*b2^2 + 
        a*a0*a2*a3*b1^2*b2 + l*a0*a3^2*b0*b1*b2 + (-a)*a0*a3^2*b1^3 + 
        a*a1^3*b0*b3^2 + h*a1^3*b2^3 + (-a)*a1^2*a2*b0*b2*b3 + 
        i*a1^2*a2*b1*b2^2 + d*a1^2*a3*b0*b1*b3 + b*a1^2*a3*b0*b2^2 + 
        a*a1*a2^2*b0*b1*b3 + (-i)*a1*a2^2*b1^2*b2 + l*a1*a2*a3*b0^2*b3 + 
        (-g)*a1*a2*a3*b0*b1*b2 + (-l)*a1*a3^2*b0^2*b2 + a*a1*a3^2*b0*b1^2 + 
        (-a)*a2^3*b0^2*b3 + (-h)*a2^3*b1^3 + a*a2^2*a3*b0^2*b2 + 
        (-g)*a2^2*a3*b0*b1^2 
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(2)(2)

(3)(3)

(4)(4)

(5)(5)

(1)(1)

 # First we start by checking how does G act in WV

collect expand subs x0 = y0 c y1, x1 = y1 , a0 z0 x03 a1 z0 x02 x1 a2 z0 x0 x12 a3 z0
x13 b0 z1 x03 b1 z1 x02 x1 b2 z1 x0 x12 b3 z1 x13 , z0, z1, y0, y1

a0 z0 b0 z1  y03 3 a0 c a1  z0 3 b0 c b1  z1  y1 y02 3 a0 c2 2 a1 c

a2  z0 3 b0 c2 2 b1 c b2  z1  y12 y0 a0 c3 a1 c2 a2 c a3  z0

b0 c3 b1 c2 b2 c b3  z1  y13

 collect expand subs x0 = y1, x1 = y0 , a0 z0 x03 a1 z0 x02 x1 a2 z0 x0 x12 a3 z0 x13

b0 z1 x03 b1 z1 x02 x1 b2 z1 x0 x12 b3 z1 x13 , z0, z1, y0, y1
a3 z0 b3 z1  y03 a2 z0 b2 z1  y1 y02 a1 z0 b1 z1  y12 y0 a0 z0

b0 z1  y13

 collect expand subs z0 = y0 c y1, z1 = y1 , a0 z0 x03 a1 z0 x02 x1 a2 z0 x0 x12 a3 z0
x13 b0 z1 x03 b1 z1 x02 x1 b2 z1 x0 x12 b3 z1 x13 , x0, x1, y0, y1

a0 y0 a0 c b0  y1  x03 a1 y0 a1 c b1  y1  x1 x02 a2 y0 a2 c

b2  y1  x12 x0 a3 y0 a3 c b3  y1  x13

  collect expand subs z0 = y1, z1 = y0 , a0 z0 x03 a1 z0 x02 x1 a2 z0 x0 x12 a3 z0 x13

b0 z1 x03 b1 z1 x02 x1 b2 z1 x0 x12 b3 z1 x13 , z0, z1, y0, y1
b0 x03 b1 x02 x1 b2 x0 x12 b3 x13  y0 a0 x03 a1 x02 x1 a2 x0 x12 a3 x13  y1

#Now I want to find the G invariant s
  collect expand subs a0 = a0, a1 = 3 a0 c a1 , a2 = 3 a0 c2 2 a1 c a2 , a3 = a0 c3

a1 c2 a2 c a3 , b0 = b0, b1 = 3 b0 c b1 , b2 = 3 b0 c2 2 b1 c b2 , b3 = b0 c3

b1 c2 b2 c b3 , a0 d00 b0 d01 b1 d02 b2 d03 b3 a1 d10 b0 d11 b1
d12 b2 d13 b3 a2 d20 b0 d21 b1 d22 b2 d23 b3 a3 d30 b0 d31 b1
d32 b2 d33 b3 , a0, a1, a2, a3, b0, b1, b2, b3

c6 d33 3 c5 d23 3 c5 d32 3 c4 d13 9 c4 d22 3 c4 d31 c3 d03 9 c3 d12 9 c3 d21

c3 d30 3 c2 d02 9 c2 d11 3 c2 d20 3 c d01 3 c d10 d00  b0 c5 d33

3 c4 d23 2 c4 d32 3 c3 d13 6 c3 d22 c3 d31 c2 d03 6 c2 d12 3 c2 d21

2 c d02 3 c d11 d01  b1 c4 d33 3 c3 d23 c3 d32 3 c2 d13 3 c2 d22

c d03 3 c d12 d02  b2 c3 d33 3 c2 d23 3 c d13 d03  b3  a0 c5 d33

2 c4 d23 3 c4 d32 c3 d13 6 c3 d22 3 c3 d31 3 c2 d12 6 c2 d21 c2 d30

3 c d11 2 c d20 d10  b0 c4 d33 2 c3 d23 2 c3 d32 c2 d13 4 c2 d22

c2 d31 2 c d12 2 c d21 d11  b1 c3 d33 2 c2 d23 c2 d32 c d13 2 c d22

d12  b2 c2 d33 2 c d23 d13  b3  a1 c4 d33 c3 d23 3 c3 d32 3 c2 d22

3 c2 d31 3 c d21 c d30 d20  b0 c3 d33 c2 d23 2 c2 d32 2 c d22 c d31

d21  b1 c2 d33 c d23 c d32 d22  b2 c d33 d23  b3  a2 c3 d33

3 c2 d32 3 c d31 d30  b0 c2 d33 2 c d32 d31  b1 c d33 d32  b2

A.1.2 Invariant polynomials using Maple
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(6)(6)

(8)(8)

(5)(5)

(7)(7)

d33 b3  a3

solve c6 d33 3 c5 d23 3 c5 d32 3 c4 d13 9 c4 d22 3 c4 d31 c3 d03 9 c3 d12
9 c3 d21 c3 d30 3 c2 d02 9 c2 d11 3 c2 d20 3 c d01 3 c d10 d00  = d00,

c5 d33 3 c4 d23 2 c4 d32 3 c3 d13 6 c3 d22 c3 d31 c2 d03 6 c2 d12 3 c2 d21
2 c d02 3 c d11 d01 = d01, c4 d33 3 c3 d23 c3 d32 3 c2 d13 3 c2 d22 c d03
3 c d12 d02   = d02, c3 d33 3 c2 d23 3 c d13 d03 = d03, c5 d33 2 c4 d23
3 c4 d32 c3 d13 6 c3 d22 3 c3 d31 3 c2 d12 6 c2 d21 c2 d30 3 c d11 2 c d20
d10 = d10, c4 d33 2 c3 d23 2 c3 d32 c2 d13 4 c2 d22 c2 d31 2 c d12 2 c d21
d11 = d11, c3 d33 2 c2 d23 c2 d32 c d13 2 c d22 d12 = d12, c2 d33 2 c d23
d13  = d13, c4 d33 c3 d23 3 c3 d32 3 c2 d22 3 c2 d31 3 c d21 c d30 d20

= d20, c3 d33 c2 d23 2 c2 d32 2 c d22 c d31 d21 = d21, c2 d33 c d23 c d32
d22 = d22,  c d23 d23  = d23, c3 d33 3 c2 d32 3 c d31 d30  = d30, c2 d33
2 c d32 d31 = d31, c d33 d32 = d32, d33 = d33 , d00, d01, d02, d03, d10, d11, d12,

d13, d20, d21, d22, d23, d30, d31, d32, d33

d00 = d00, d01 = d10, d02 =
3 d11

2
, d03 = 3 d21, d10 = d10, d11 = d11, d12 = d21, d13 = 0,

d20 =
3 d11

2
, d21 = d21, d22 = 0, d23 = 0, d30 = 3 d21, d31 = 0, d32 = 0, d33 = 0

subs d00 = d00, d01 = d10, d02 =
3 d11

2
, d03 = 3 d21, d10 = d10, d11 = d11, d12 = d21, d13

= 0, d20 =
3 d11

2
, d21 = d21, d22 = 0, d23 = 0, d30 = 3 d21, d31 = 0, d32 = 0, d33 = 0 , a0

d00 b0 d01 b1 d02 b2 d03 b3 a1 d10 b0 d11 b1 d12 b2 d13 b3 a2

d20 b0 d21 b1 d22 b2 d23 b3 a3 d30 b0 d31 b1 d32 b2 d33 b3

a0 d00 b0 b1 d10
3 b2 d11

2
3 b3 d21 a1 d10 b0 d11 b1 b2 d21 a2 

3 b0 d11
2

d21 b1 3 a3 b0 d21

#After one of the condition we reduced the equation to this.

  collect expand subs a0 = a3, a1 = a2, a2 = a1, a3 = a0, b0 = b3, b1 = b2, b2 = b1, b3 = b0 ,

a0 d00 b0 b1 d10
3 b2 d11

2
3 b3 d21 a1 d10 b0 d11 b1 b2 d21 a2 

3 b0 d11
2

d21 b1 3 a3 b0 d21 , a0, a1, a2, a3, b0, b1, b2, b3

3 a0 b3 d21 a1 
3 b3 d11

2
b2 d21 d21 b1 b2 d11 b3 d10  a2 a3 d00 b3
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(8)(8)

(12)(12)

(11)(11)

(10)(10)

(9)(9)

(5)(5)

b2 d10
3 d11 b1

2
3 b0 d21

 solve 3 d21 = 3 d21,
3  d11

2
= 0, d21 = d21, d21 = d21, d11 = 0, d10 = 0, d00 = 0, d10 = 0, 

3
2

d11 = 0, 3 d21 = 3 d21 , d00, d10, d11, d21

d00 = 0, d10 = 0, d11 = 0, d21 = d21

s subs d00 = 0, d10 = 0, d11 = 0, d21 = 1 , a0 d00 b0 b1 d10
3 b2 d11

2
3 b3 d21

a1 d10 b0 d11 b1 b2 d21 a2 
3 b0 d11

2
d21 b1 3 a3 b0 d21

s 3 a0 b3 a1 b2 a2 b1 3 a3 b0
#With this we already now the equation of S, but just in case we will double check that it is invariant with 

the last action icontent
 collect expand subs a0 = a0, a1 = a1, a2 = a2, a3 = a3, b0 = a0 c b0 , b1 = a1 c b1 , b2

= a2 c b2 , b3 = a3 c b3 , s , a0, a1, a2, a3, b0, b1, b2, b3
3 a0 b3 a1 b2 a2 b1 3 a3 b0

###################################################################################\
#######

#Notice that magma returns two polynomials of degree 6, let us start by studying the first one. Let us 
check if it is invariant under the actions

  collect expand subs a0 = a3, a1 = a2, a2 = a1, a3 = a0, b0 = b3, b1 = b2, b2 = b1, b3 = b0 ,
a a02 a2 b22 b3 a a02 a3 b23 a a0 a12 b1 b32 a a0 a1 a3 b1 b22 a a0 a2 a3 b12 b2

a a0 a32 b13 a a13 b0 b32 a a12 a2 b0 b2 b3 a a1 a22 b0 b1 b3 a a1 a32 b0 b12

a a23 b02 b3 a a22 a3 b02 b2 l a03 b33 l a02 a1 b2 b32 k a02 a3 b0 b32

l a02 a3 b1 b2 b3 b a0 a12 b22 b3 l a0 a1 a2 b0 b32 c a0 a1 a2 b1 b2 b3
l a0 a1 a3 b0 b2 b3 d a0 a1 a3 b12 b3 d a0 a22 b0 b2 b3 e a0 a22 b12 b3
l a0 a2 a3 b0 b1 b3 d a0 a2 a3 b0 b22 k a0 a32 b02 b3 l a0 a32 b0 b1 b2 f a13 b23

j a12 a2 b1 b22 d a12 a3 b0 b1 b3 e a12 a3 b0 b22 j a1 a22 b12 b2 l a1 a2 a3 b02 b3
c a1 a2 a3 b0 b1 b2 f a23 b13 b a22 a3 b0 b12 l a2 a32 b02 b1 l a33 b03 , a0, a1,

a2, a3, b0, b1, b2, b3
l a03 b33 b2 b32 l a1 a b22 b3 a2 a b23 b32 k b0 b2 b3 l b1  a3  a02

a b32 b1 b b3 b22  a12 b32 l b0 b1 b2 b3 c  a2 a b22 b1 b2 b3 l b0

b3 d b12  a3  a1 b2 b3 d b0 b12 b3 e  a22 b3 l b1 b22 d  b0

a b12 b2  a3 a2 a b13 b3 k b02 b1 b2 l b0  a32  a0 a b32 b0 b23 f  a13

a b3 b2 b0 b22 j b1  a2 b3 d b1 b22 e  b0 a3  a12 a b1 b3 b0

b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1 a b3 b02

b13 f  a23 a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03

 collect expand a a02 a2 b22 b3 a a02 a3 b23 a a0 a12 b1 b32 a a0 a1 a3 b1 b22
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(13)(13)

(8)(8)

(5)(5)

(14)(14)

a a0 a2 a3 b12 b2 a a0 a32 b13 a a13 b0 b32 a a12 a2 b0 b2 b3 a a1 a22 b0 b1 b3
a a1 a32 b0 b12 a a23 b02 b3 a a22 a3 b02 b2 l a03 b33 l a02 a1 b2 b32

k a02 a3 b0 b32 l a02 a3 b1 b2 b3 b a0 a12 b22 b3 l a0 a1 a2 b0 b32

c a0 a1 a2 b1 b2 b3 l a0 a1 a3 b0 b2 b3 d a0 a1 a3 b12 b3 d a0 a22 b0 b2 b3
e a0 a22 b12 b3 l a0 a2 a3 b0 b1 b3 d a0 a2 a3 b0 b22 k a0 a32 b02 b3
l a0 a32 b0 b1 b2 f a13 b23 j a12 a2 b1 b22 d a12 a3 b0 b1 b3 e a12 a3 b0 b22

j a1 a22 b12 b2 l a1 a2 a3 b02 b3 c a1 a2 a3 b0 b1 b2 f a23 b13 b a22 a3 b0 b12

l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0, b1, b2, b3
l a03 b33 b2 b32 l a1 a b22 b3 a2 a b23 b32 k b0 b2 b3 l b1  a3  a02

a b32 b1 b b3 b22  a12 b32 l b0 b1 b2 b3 c  a2 a b22 b1 b2 b3 l b0

b3 d b12  a3  a1 b2 b3 d b0 b12 b3 e  a22 b3 l b1 b22 d  b0

a b12 b2  a3 a2 a b13 b3 k b02 b1 b2 l b0  a32  a0 a b32 b0 b23 f  a13

a b3 b2 b0 b22 j b1  a2 b3 d b1 b22 e  b0 a3  a12 a b1 b3 b0

b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1 a b3 b02

b13 f  a23 a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03

#Notifce that this action does not change anything
   collect expand subs a0 = b0, a1 = b1, a2 = b2, a3 = b3, b0 = a0, b1 = a1, b2 = a2, b3 = a3 ,

l a03 b33 b2 b32 l a1 a b22 b3 a2 a b23 b32 k b0 b2 b3 l b1  a3  a02

a b32 b1 b b3 b22  a12 b32 l b0 b1 b2 b3 c  a2 a b22 b1 b2 b3 l b0
b3 d b12  a3  a1 b2 b3 d b0 b12 b3 e  a22 b3 l b1 b22 d  b0
a b12 b2  a3 a2 a b13 b3 k b02 b1 b2 l b0  a32  a0 a b32 b0 b23 f  a13

a b3 b2 b0 b22 j b1  a2 b3 d b1 b22 e  b0 a3  a12 a b1 b3 b0
b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1 a b3 b02 b13 f  a23

a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0, b1, b2,
b3

l a03 b33 b2 b32 l a1 a b22 b3 a2 a b23 b32 k b0 b2 b3 l b1  a3  a02

a b32 b1 b b3 b22  a12 b32 l b0 b1 b2 b3 c  a2 a b22 b1 b2 b3 l b0

b3 d b12  a3  a1 b2 b3 d b0 b12 b3 e  a22 b3 l b1 b22 d  b0

a b12 b2  a3 a2 a b13 b3 k b02 b1 b2 l b0  a32  a0 a b32 b0 b23 f  a13

a b3 b2 b0 b22 j b1  a2 b3 d b1 b22 e  b0 a3  a12 a b1 b3 b0

b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1 a b3 b02

b13 f  a23 a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03

#No changes again, lets see if it changes with the |C*  actions
  collect expand subs a0 = a0, a1 = a1, a2 = a2, a3 = a3, b0 = a0 lambda b0 , b1 = a1 lambda

b1 , b2 = a2 lambda b2 , b3 = a3 lambda b3 , l a03 b33 b2 b32 l a1
a b22 b3 a2 a b23 b32 k b0 b2 b3 l b1  a3  a02 a b32 b1 b b3 b22  a12
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(8)(8)

(16)(16)

(5)(5)

(15)(15)

b32 l b0 b1 b2 b3 c  a2 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1 b2 b3 d b0
b12 b3 e  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 a b13 b3 k b02

b1 b2 l b0  a32  a0 a b32 b0 b23 f  a13 a b3 b2 b0 b22 j b1  a2 b3 d b1
b22 e  b0 a3  a12 a b1 b3 b0 b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2
a a32 b0 b12  a1 a b3 b02 b13 f  a23 a b2 b02 b b12 b0  a3 a22

l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0, b1, b2, b3

k 
2

3 l 
2

 b3 a32 k 3 l  b32 a3 b33 l  a03 b2 b32 l a1 2 a 
2

d 
2

 b3 a23 2 a 
2

d 
2

 b2 a3 2 a d  b3 b2  a22 2 a 

d  b22 a3 a b22 b3  a2 k 
2

3 l 
2

 b0 a33 a b23 b32 k b0

b2 b3 l b1  a3  a02 b 
2

c 
2

e 
2

 b3 a22 2 a 
2

2 b 
2

2 e 
2

 b2 a3 a 2 b c  b3 b2  a2 2 a 
2

d 
2

 b1 a32 2 a 

d  b3 b1 a b e  b22  a3 a b32 b1 b b3 b22  a12 2 a 
2

2 b 
2

2 e 
2

 b1 a3 a c 2 e  b3 b1  a22 b32 l b0 b1 b2 b3 c  a2

2 a d  b12 a32 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1 2 a 

d  b3 b0 a23 2 a d  b2 b0 a b e  b12  a3 b2 b3 d b0

b12 b3 e  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 k 3 l  b02 a33

a b13 b3 k b02 b1 b2 l b0  a32  a0 3 f 
2

j 
2

 b2 a22 3 f 

j  b22 a2 2 a 
2

d 
2

 b0 a32 2 a d  b3 b0 a3 a b32 b0 b23 f

 a13 3 f 
2

j 
2

 b1 a23 b 
2

c 
2

e 
2

 b0 a3 a22 a c 

2 e  b2 b0 a3 a b3 b2 b0 b22 j b1  a2 2 a d  b1 b0 a32 b3 d b1

b22 e  b0 a3  a12 3 f j  b12 a23 a 2 b c  b1 b0 a3

a b1 b3 b0 b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1

a b3 b02 b13 f  a23 a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03

   solve 2 a 
2

d 
2

= 0, 2 a d = 0, b 
2

c 
2

e 
2

= 0, 2 a 
2

2 b 
2

2 e 
2

= 0, a 2 b c = 0, 2 a 
2

d 
2

= 0, 2 a d = 0, a b 
e = 0, a c 2 e = 0, a b e = 0, 3 f 

2
j 

2
= 0, 3 f 

j = 0, k 3 l = 0 , a, b, c, d, e, f, g, h, i, j, k, l
a = c 2 e, b = c e, c = c, d = 2 c 4 e, e = e, f = f, g = g, h = h, i = i, j = 3 f, k = 3 l, l

= l

 collect expand subs a = c 2 e, b = c e, c = c, d = 2 c 4 e, e = e, f = f, g = g, h = h, i = i, j =
3 f, k = 3 l, l = l , l a03 b33 b2 b32 l a1 a b22 b3 a2 a b23 b32 k b0

b2 b3 l b1  a3  a02 a b32 b1 b b3 b22  a12 b32 l b0 b1 b2 b3 c  a2
a b22 b1 b2 b3 l b0 b3 d b12  a3  a1 b2 b3 d b0 b12 b3 e  a22 b3 l b1

b22 d  b0 a b12 b2  a3 a2 a b13 b3 k b02 b1 b2 l b0  a32  a0 a b32 b0
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(8)(8)

(5)(5)

(18)(18)

(17)(17)

b23 f  a13 a b3 b2 b0 b22 j b1  a2 b3 d b1 b22 e  b0 a3  a12 a b1 b3 b0
b2 j b12  a22 b3 l b02 b1 b2 c b0  a3 a2 a a32 b0 b12  a1 a b3 b02 b13 f  a23

a b2 b02 b b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0, b1, b2,
b3

l a03 b33 b2 b32 l a1 c 2 e  b3 b22 a2 3 b32 l b0 b2 b3 l b1 c

2 e  b23  a3  a02 c 2 e  b32 b1 c e  b3 b22  a12 b32 l b0

b1 b2 b3 c  a2 b22 c 2 e  b1 b2 b3 l b0 2 c 4 e  b3 b12  a3  a1

2 c 4 e  b3 b2 b0 b12 b3 e  a22 b3 l b1 2 c 4 e  b22  b0 c

2 e  b2 b12  a3 a2 b13 c 2 e 3 b3 l b02 b1 b2 l b0  a32  a0 c

2 e  b32 b0 b23 f  a13 c 2 e  b3 b2 b0 3 b1 b22 f  a2 2 c 4 e  b3 b1

b22 e  b0 a3  a12 c 2 e  b3 b1 b0 3 b12 b2 f  a22 b3 l b02

b1 b2 c b0  a3 a2 c 2 e  b12 b0 a32  a1 c 2 e  b3 b02 b13 f  a23

c 2 e  b2 b02 c e  b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03

#After this action we already simplify the equation, let us check the other \C*  action now.
   collect expand subs a0 = a0, a1 = 3 a0 lambda a1 , a2 = 3 a0 lambda2 2 a1 lambda

a2 , a3 = a0 lambda3 a1 lambda2 a2 lambda a3 , b0 = b0, b1 = 3 b0 lambda b1 ,
b2 = 3 b0 lambda2 2 b1 lambda b2 , b3 = b0 lambda3 b1 lambda2 b2 lambda b3 ,
l a03 b33 b2 b32 l a1 c 2 e  b3 b22 a2 3 b32 l b0 b2 b3 l b1 c

2 e  b23  a3  a02 c 2 e  b32 b1 c e  b3 b22  a12 b32 l b0
b1 b2 b3 c  a2 b22 c 2 e  b1 b2 b3 l b0 2 c 4 e  b3 b12  a3  a1 2 c
4 e  b3 b2 b0 b12 b3 e  a22 b3 l b1 2 c 4 e  b22  b0 c
2 e  b2 b12  a3 a2 b13 c 2 e 3 b3 l b02 b1 b2 l b0  a32  a0 c
2 e  b32 b0 b23 f  a13 c 2 e  b3 b2 b0 3 b1 b22 f  a2 2 c 4 e  b3 b1
b22 e  b0 a3  a12 c 2 e  b3 b1 b0 3 b12 b2 f  a22 b3 l b02

b1 b2 c b0  a3 a2 c 2 e  b12 b0 a32  a1 c 2 e  b3 b02 b13 f  a23 c
2 e  b2 b02 c e  b12 b0  a3 a22 l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0,

b1, b2, b3

4 c 
6

e 
6

27 f 
6

3 l 
6

 b13 12 c 
5

3 e 
5

81 f 
5

9 l 
5

 b2

6 c 
4

21 e 
4

7 l 
4

 b3  b12 15 c 
4

3 e 
4

81 f 
4

8 l 
4

 b22

3 c 
3

24 e 
3

11 l 
3

 b3 b2 9 c 
2

18 e 
2

3 l 
2

 b32  b1 7 c 
3

5 e 
3

27 f 
3

2 l 
3

 b23 6 c 
2

3 e 
2

3 l 
2

 b3 b22 b33 l  a03

12 c 
6

3 e 
6

81 f 
6

9 l 
6

 b12 24 c 
5

6 e 
5

162 f 
5

18 l 
5

 b2 12 c 
4

42 e 
4

14 l 
4

 b3  b1 15 c 
4

3 e 
4

81 f 
4

8 l 
4

 b22 3 c 
3

24 e 
3

11 l 
3

 b3 b2 9 c 
2

18 e 
2

3 l 
2

 b32

 b0 2 c 
4

2 e 
4

27 f 
4

2 l 
4

 b2 6 c 
3

12 e 
3

2 l 
3

 b3  b12
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(8)(8)

(5)(5)

(18)(18)

7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b22 5 c 
2

16 e 
2

5 l 
2

 b3 b2 6 c 

12 e 2 l  b32  b1 5 c 
2

4 e 
2

27 f 
2

l 
2

 b23 4 c 2 e 

2 l  b3 b22 b32 b2 l  a1 12 c 
5

3 e 
5

81 f 
5

9 l 
5

 b12 30 c 
4

6 e 
4

162 f 
4

16 l 
4

 b2 3 c 
3

24 e 
3

11 l 
3

 b3  b1 21 c 
3

15 e 
3

81 f 
3

6 l 
3

 b22 12 c 
2

6 e 
2

6 l 
2

 b3 b2  b0 2 c 
4

2 e 
4

27 f 
4

2 l 
4

 b13 7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b2 4 c 
2

2 e 
2

2 l 
2

 b3  b12 5 c 
2

4 e 
2

27 f 
2

l 
2

 b22 7 c 8 e 

l  b3 b2  b1 c 2 e  b3 b22  a2 6 c 
4

21 e 
4

7 l 
4

 b12

3 c 
3

24 e 
3

11 l 
3

 b2 18 c 
2

36 e 
2

6 l 
2

 b3  b1 6 c 
2

3 e 
2

3 l 
2

 b22 3 b32 l  b0 6 c 
3

12 e 
3

2 l 
3

 b13 9 c 
2

18 e 
2

3 l 
2

 b2 6 c 12 e 2 l  b3  b12 3 c 6 e l  b22

b3 b2 l  b1 c 2 e  b23  a3  a02 12 c 
6

3 e 
6

81 f 
6

9 l 
6

 b1

12 c 
5

3 e 
5

81 f 
5

9 l 
5

 b2 6 c 
4

21 e 
4

7 l 
4

 b3  b02

4 c 
4

4 e 
4

54 f 
4

4 l 
4

 b2 12 c 
3

24 e 
3

4 l 
3

 b3  b1

7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b22 5 c 
2

16 e 
2

5 l 
2

 b3 b2 6 c 

12 e 2 l  b32  b0 c 
2

e 
2

9 f 
2

 b22 c 2 e  b32  b1 c 

e 9 f  b23 c e  b3 b22  a12 24 c 
5

6 e 
5

162 f 
5

18 l 
5

 b1 30 c 
4

6 e 
4

162 f 
4

16 l 
4

 b2 3 c 
3

24 e 
3

11 l 
3

 b3  b02 4 c 
4

4 e 
4

54 f 
4

4 l 
4

 b12 13 c 
2

20 e 
2

l 
2

 b3 b1 10 c 
2

8 e 
2

54 f 
2

2 l 
2

 b22 c 4 e 3 l  b3 b2

b32 l  b0 2 c 
2

2 e 
2

18 f 
2

 b2 b12 2 c 2 e 18 f  b22

b3 c b2  b1  a2 12 c 
4

42 e 
4

14 l 
4

 b1 3 c 
3

24 e 
3

11 l 
3

 b2 18 c 
2

36 e 
2

6 l 
2

 b3  b02 12 c 
3

24 e 
3

4 l 
3

 b12

13 c 
2

20 e 
2

l 
2

 b2 b1 7 c 8 e l  b22 b3 b2 l  b0 2 c

4 e  b3 b12 b22 c 2 e  b1  a3  a1 15 c 
4

3 e 
4

81 f 
4

8 l 
4

 b1

21 c 
3

15 e 
3

81 f 
3

6 l 
3

 b2 6 c 
2

3 e 
2

3 l 
2

 b3  b02

7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b12 10 c 
2

8 e 
2

54 f 
2

2 l 
2

 b2

7 c 8 e l  b3  b1 2 c 4 e  b3 b2  b0 c 
2

e 
2

9 f 
2

 b13

c e 9 f  b2 b3 e  b12  a22 3 c 
3

24 e 
3

11 l 
3

 b1
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(8)(8)

(5)(5)

(18)(18)

(19)(19)

12 c 
2

6 e 
2

6 l 
2

 b2  b02 5 c 
2

16 e 
2

5 l 
2

 b12 c 4 e 

3 l  b2 b3 l  b1 2 c 4 e  b22  b0 c 2 e  b2 b12  a3 a2 9 c 
2

18 e 
2

3 l 
2

 b1 3 b3 l  b02 6 c 12 e 2 l  b12 b2 b1 l  b0

b13 c 2 e  a32  a0 4 c 
6

e 
6

27 f 
6

3 l 
6

 b03 2 c 
4

2 e 
4

27 f 
4

2 l 
4

 b2 6 c 
3

12 e 
3

2 l 
3

 b3  b02 c 
2

e 
2

9 f 
2

 b22 c 2 e  b32  b0 b23 f  a13 12 c 
5

3 e 
5

81 f 
5

9 l 
5

 b03 2 c 
4

2 e 
4

27 f 
4

2 l 
4

 b1 7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b2 9 c 
2

18 e 
2

3 l 
2

 b3  b02 2 c 
2

2 e 
2

18 f 
2

 b2 b1

c e 9 f  b22 c 2 e  b3 b2  b0 3 b1 b22 f  a2 6 c 
4

21 e 
4

7 l 
4

 b03 6 c 
3

12 e 
3

2 l 
3

 b1 4 c 
2

2 e 
2

2 l 
2

 b2

6 c 12 e 2 l  b3  b02 2 c 4 e  b3 b1 b22 e  b0  a3  a12

15 c 
4

3 e 
4

81 f 
4

8 l 
4

 b03 7 c 
3

2 e 
3

54 f 
3

3 l 
3

 b1

5 c 
2

4 e 
2

27 f 
2

l 
2

 b2 3 c 6 e l  b3  b02 c 
2

e 
2

9 f 
2

 b12 2 c 2 e 18 f  b2 c 2 e  b3  b1  b0 3 b12 b2 f  a22

3 c 
3

24 e 
3

11 l 
3

 b03 5 c 
2

16 e 
2

5 l 
2

 b1 7 c 

8 e l  b2 b3 l  b02 b1 b2 c b0  a3 a2 9 c 
2

18 e 
2

3 l 
2

 b03

6 c 12 e 2 l  b1 b02 c 2 e  b12 b0  a32  a1 7 c 
3

5 e 
3

27 f 
3

2 l 
3

 b03 5 c 
2

4 e 
2

27 f 
2

l 
2

 b1 c 2 e  b3  b02

c e 9 f  b12 b0 b13 f  a23 6 c 
2

3 e 
2

3 l 
2

 b03 4 c 

2 e 2 l  b1 c 2 e  b2  b02 c e  b12 b0  a3 a22 l a2 a32 b02 b1

l a33 b03

    solve 4 c 
6

e 
6

27 f 
6

3 l
6

= 0, 6 c 
4

21 e 
4

7 l 
4

= 0, 15 c 
4

3 e 
4

81 f 
4

8 l
4

= 0, 3 c 
3

24 e 
3

11 l  
3

= 0, 9 c 
2

18 e 
2

3 l
2

= 0, 7 c 
3

5 e 
3

27 f 
3

2 l
3

= 0, 6 c 
2

3 e 
2

3 l 
2

 = 0 , c, e, f, g,
h, i, l

c =
63 f

2
, e =

45 f
2

, f = f, g = g, h = h, i = i, l =
81 f

2

 collect expand subs c =
63 f

2
, e =

45 f
2

, f = f, g = g, h = h, i = i, l =
81 f

2
, 2 l a03 b33

b2 b32 l a1 c 2 e  b3 b22 a2 3 b32 l b0 b2 b3 l b1 c 2 e  b23  a3  a02

c 2 e  b32 b1 c e  b3 b22  a12 b32 l b0 b1 b2 b3 c  a2 b22 c
2 e  b1 b2 b3 l b0 2 c 4 e  b3 b12  a3  a1 2 c 4 e  b3 b2 b0
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(8)(8)

(20)(20)

(21)(21)

(5)(5)

(18)(18)

b12 b3 e  a22 b3 l b1 2 c 4 e  b22  b0 c 2 e  b2 b12  a3 a2 b13 c
2 e 3 b3 l b02 b1 b2 l b0  a32  a0 c 2 e  b32 b0 b23 f  a13 c
2 e  b3 b2 b0 3 b1 b22 f  a2 2 c 4 e  b3 b1 b22 e  b0 a3  a12 c
2 e  b3 b1 b0 3 b12 b2 f  a22 b3 l b02 b1 b2 c b0  a3 a2 c 2 e  b12 b0 a32

 a1 c 2 e  b3 b02 b13 f  a23 c 2 e  b2 b02 c e  b12 b0  a3 a22

l a2 a32 b02 b1 l a33 b03 , a0, a1, a2, a3, b0, b1, b2, b3  
81 f a03 b33 81 b2 b32 f a1 27 f b3 b22 a2 243 b32 f b0 81 b2 b3 f b1

27 b23 f  a3  a02 27 f b32 b1 18 f b3 b22  a12 81 b32 f b0

63 b2 b3 f b1  a2 81 b2 b3 f b0 54 f b3 b12 27 b1 b22 f  a3  a1

54 b2 b3 f b0 45 f b3 b12  a22 81 b3 f b1 54 f b22  b0 27 b12 b2 f  a3 a2

243 b3 f b02 81 b1 b2 f b0 27 b13 f  a32  a0 27 b32 f b0 2 b23 f  a13

27 b2 b3 f b0 6 b1 b22 f  a2 54 b3 f b1 45 f b22  b0 a3  a12 27 f b3 b1 b0

6 b12 b2 f  a22 81 b3 f b02 63 b1 b2 f b0  a3 a2 27 f b12 b0 a32  a1

27 b3 f b02 2 b13 f  a23 27 f b2 b02 18 f b12 b0  a3 a22 81 f a2 a32 b02 b1

81 f a33 b03

#Let us define then t1

t1 collect expand subs f =
1
81

, 81 f a03 b33 81 b2 b32 f a1 27 f b3 b22 a2

243 b32 f b0 81 b2 b3 f b1 27 b23 f  a3  a02 27 f b32 b1 18 f b3 b22  a12

81 b32 f b0 63 b2 b3 f b1  a2 81 b2 b3 f b0 54 f b3 b12 27 b1 b22 f  a3  a1
54 b2 b3 f b0 45 f b3 b12  a22 81 b3 f b1 54 f b22  b0 27 b12 b2 f  a3 a2

243 b3 f b02 81 b1 b2 f b0 27 b13 f  a32  a0 27 b32 f b0 2 b23 f  a13

27 b2 b3 f b0 6 b1 b22 f  a2 54 b3 f b1 45 f b22  b0 a3  a12 27 f b3 b1 b0
6 b12 b2 f  a22 81 b3 f b02 63 b1 b2 f b0  a3 a2 27 f b12 b0 a32  a1 27 b3 f b02

2 b13 f  a23 27 f b2 b02 18 f b12 b0  a3 a22 81 f a2 a32 b02 b1 81 f a33 b03 ,
a0, a1, a2, a3, b0, b1, b2, b3

t1 a03 b33 3 b0 b32 1
3

 b23 b1 b2 b3  a3 a1 b2 b32 a2 b22 b3
3

 a02

1
3

 b1 b32 2
9

 b22 b3  a12 b0 b32 7
9

 b1 b2 b3  a2 b0 b2 b3

2
3

 b12 b3
1
3

 b1 b22  a3  a1
2
3

 b0 b2 b3
5
9

 b12 b3  a22 b1 b3

2 b22

3
 b0

b12 b2
3

 a3 a2 3 b02 b3
1
3

 b13 b0 b1 b2  a32  a0

b0 b32

3
2 b23

81
 a13 1

3
 b0 b2 b3

2
27

 b1 b22  a2
2 b1 b3

3
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(8)(8)

(23)(23)

(21)(21)

(5)(5)

(18)(18)

(22)(22)

5 b22

9
 b0 a3  a12 1

3
 b0 b1 b3

2
27

 b12 b2  a22 b02 b3

7
9

 b0 b1 b2  a3 a2
b12 b0 a32

3
 a1

b02 b3
3

2 b13

81
 a23 1

3
 b02 b2

2
9

 b0 b12  a3 a22 a2 a32 b02 b1 a33 b03

#Now we will do exactly the same procedure for the other invariant
 
collect expand subs a0 = a3, a1 = a2, a2 = a1, a3 = a0, b0 = b3, b1 = b2, b2 = b1, b3 = b0 ,

a a02 a2 b22 b3 a a02 a3 b23 a a0 a12 b1 b32 a a0 a1 a3 b1 b22 a a0 a2 a3 b12 b2
a a0 a32 b13 a a13 b0 b32 a a12 a2 b0 b2 b3 a a1 a22 b0 b1 b3 a a1 a32 b0 b12

a a23 b02 b3 a a22 a3 b02 b2 l a02 a2 b1 b32 l a02 a3 b1 b2 b3 g a0 a12 b22 b3
l a0 a1 a2 b0 b32 g a0 a1 a2 b1 b2 b3 l a0 a1 a3 b0 b2 b3 d a0 a1 a3 b12 b3
b a0 a22 b12 b3 d a0 a22 b0 b2 b3 l a0 a2 a3 b0 b1 b3 d a0 a2 a3 b0 b22

l a0 a32 b0 b1 b2 h a13 b23 i a12 a2 b1 b22 b a12 a3 b0 b22 d a12 a3 b0 b1 b3
i a1 a22 b12 b2 l a1 a2 a3 b02 b3 g a1 a2 a3 b0 b1 b2 l a1 a32 b02 b2 h a23 b13

g a22 a3 b0 b12 , a0, a1, a2, a3, b0, b1, b2, b3
a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 a b32 b1 b22 b3 g  a12

b32 l b0 b1 b2 b3 g  a2 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1

b b12 b3 b2 b3 d b0  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 a b13

b1 b2 l b0  a32  a0 a b32 b0 b23 h  a13 a b3 b2 b0 b1 b22 i  a2 b b22

b3 d b1  b0 a3  a12 a b1 b3 b0 b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2

a b12 b0 b2 l b02  a32  a1 a b3 b02 b13 h  a23 a b2 b02

b12 g b0  a3 a22

collect expand a a02 a2 b22 b3 a a02 a3 b23 a a0 a12 b1 b32 a a0 a1 a3 b1 b22

a a0 a2 a3 b12 b2 a a0 a32 b13 a a13 b0 b32 a a12 a2 b0 b2 b3 a a1 a22 b0 b1 b3
a a1 a32 b0 b12 a a23 b02 b3 a a22 a3 b02 b2 l a02 a2 b1 b32 l a02 a3 b1 b2 b3
g a0 a12 b22 b3 l a0 a1 a2 b0 b32 g a0 a1 a2 b1 b2 b3 l a0 a1 a3 b0 b2 b3
d a0 a1 a3 b12 b3 b a0 a22 b12 b3 d a0 a22 b0 b2 b3 l a0 a2 a3 b0 b1 b3
d a0 a2 a3 b0 b22 l a0 a32 b0 b1 b2 h a13 b23 i a12 a2 b1 b22 b a12 a3 b0 b22

d a12 a3 b0 b1 b3 i a1 a22 b12 b2 l a1 a2 a3 b02 b3 g a1 a2 a3 b0 b1 b2
l a1 a32 b02 b2 h a23 b13 g a22 a3 b0 b12 , a0, a1, a2, a3, b0, b1, b2, b3

a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 a b32 b1 b22 b3 g  a12

b32 l b0 b1 b2 b3 g  a2 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1

b b12 b3 b2 b3 d b0  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 a b13

b1 b2 l b0  a32  a0 a b32 b0 b23 h  a13 a b3 b2 b0 b1 b22 i  a2 b b22

b3 d b1  b0 a3  a12 a b1 b3 b0 b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2

153



(8)(8)

(25)(25)

(23)(23)

(24)(24)

(21)(21)

(5)(5)

(18)(18)

a b12 b0 b2 l b02  a32  a1 a b3 b02 b13 h  a23 a b2 b02

b12 g b0  a3 a22

#This is still ok, it does not change anything,
 collect expand subs a0 = b0, a1 = b1, a2 = b2, a3 = b3, b0 = a0, b1 = a1, b2 = a2, b3 = a3 ,

a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 a b32 b1 b22 b3 g  a12

b32 l b0 b1 b2 b3 g  a2 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1 b b12 b3
b2 b3 d b0  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 a b13 b1 b2 l b0  a32

 a0 a b32 b0 b23 h  a13 a b3 b2 b0 b1 b22 i  a2 b b22 b3 d b1  b0 a3  a12

a b1 b3 b0 b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2 a b12 b0
b2 l b02  a32  a1 a b3 b02 b13 h  a23 a b2 b02 b12 g b0  a3 a22 , a0, a1,

a2, a3, b0, b1, b2, b3
a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 a b32 b1 b22 b3 g  a12

b32 l b0 b1 b2 b3 g  a2 a b22 b1 b2 b3 l b0 b3 d b12  a3  a1

b b12 b3 b2 b3 d b0  a22 b3 l b1 b22 d  b0 a b12 b2  a3 a2 a b13

b1 b2 l b0  a32  a0 a b32 b0 b23 h  a13 a b3 b2 b0 b1 b22 i  a2 b b22

b3 d b1  b0 a3  a12 a b1 b3 b0 b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2

a b12 b0 b2 l b02  a32  a1 a b3 b02 b13 h  a23 a b2 b02

b12 g b0  a3 a22

#This does not change anything either.
 collect expand subs a0 = a0, a1 = a1, a2 = a2, a3 = a3, b0 = a0 lambda b0 , b1 = a1 lambda

b1 , b2 = a2 lambda b2 , b3 = a3 lambda b3 , a b22 b3 b32 l b1  a2 a b23

b2 b3 l b1  a3  a02 a b32 b1 b22 b3 g  a12 b32 l b0 b1 b2 b3 g  a2
a b22 b1 b2 b3 l b0 b3 d b12  a3  a1 b b12 b3 b2 b3 d b0  a22 b3 l b1

b22 d  b0 a b12 b2  a3 a2 a b13 b1 b2 l b0  a32  a0 a b32 b0 b23 h  a13

a b3 b2 b0 b1 b22 i  a2 b b22 b3 d b1  b0 a3  a12 a b1 b3 b0
b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2 a b12 b0 b2 l b02  a32  a1

a b3 b02 b13 h  a23 a b2 b02 b12 g b0  a3 a22 , a0, a1, a2, a3, b0, b1, b2, b3

2 a 
2

d 
2

 b3 a23 2 a 
2

d 
2

 b2 a3 2 a d  b3 b2  a22 2 a 

d  b22 a3 a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 b 
2

2 g 
2

 b3 a22 2 a 
2

2 b 
2

2 g 
2

 b2 a3 a 3 g  b3 b2  a2

2 a 
2

d 
2

 b1 a32 2 a d  b3 b1 a b g  b22  a3

a b32 b1 b22 b3 g  a12 2 a 
2

2 b 
2

2 g 
2

 b1 a3 a 2 b 

g  b3 b1  a22 b32 l b0 b1 b2 b3 g  a2 2 a d  b12 a32 a b22 b1

b2 b3 l b0 b3 d b12  a3  a1 2 a d  b3 b0 a23 2 a d  b2 b0

a b g  b12  a3 b b12 b3 b2 b3 d b0  a22 b3 l b1 b22 d  b0

154



(8)(8)

(25)(25)

(23)(23)

(21)(21)

(27)(27)

(5)(5)

(18)(18)

(26)(26)

a b12 b2  a3 a2 a b13 b1 b2 l b0  a32  a0 3 h 
2

i 
2

 b2 a22 3 h 

i  b22 a2 2 a 
2

d 
2

 b0 a32 2 a d  b3 b0 a3 a b32 b0 b23 h  a13

3 h 
2

i 
2

 b1 a23 b 
2

2 g 
2

 b0 a3 a22 a 2 b 

g  b2 b0 a3 a b3 b2 b0 b1 b22 i  a2 2 a d  b1 b0 a32 b b22

b3 d b1  b0 a3  a12 3 h i  b12 a23 a 3 g  b1 b0 a3 a b1 b3 b0

b12 b2 i  a22 b3 l b02 b1 b2 g b0  a3 a2 a b12 b0 b2 l b02  a32  a1

a b3 b02 b13 h  a23 a b2 b02 b12 g b0  a3 a22

 solve 2 a 
2

d 
2

= 0, 2 a d = 0, 2 a 
2

2 b 
2

2 g 
2

= 0, a 3 g 
= 0, b 

2
2 g 

2
= 0, a b g = 0, 3 h 

2
i 

2
= 0, 3 h i = 0,

a 2 b g = 0 , a, b, c, d, e, f, g, h, i, j, k, l
a = 3 g, b = 2 g, c = c, d = 6 g, e = e, f = f, g = g, h = h, i = 3 h, j = j, k = k, l = l

 collect expand subs a = 3 g, b = 2 g, c = c, d = 6 g, e = e, f = f, g = g, h = h, i = 3 h, j = j, k = k, l
= l , a b22 b3 b32 l b1  a2 a b23 b2 b3 l b1  a3  a02 a b32 b1

b22 b3 g  a12 b32 l b0 b1 b2 b3 g  a2 a b22 b1 b2 b3 l b0
b3 d b12  a3  a1 b b12 b3 b2 b3 d b0  a22 b3 l b1 b22 d  b0
a b12 b2  a3 a2 a b13 b1 b2 l b0  a32  a0 a b32 b0 b23 h  a13

a b3 b2 b0 b1 b22 i  a2 b b22 b3 d b1  b0 a3  a12 a b1 b3 b0 b12 b2 i  a22

b3 l b02 b1 b2 g b0  a3 a2 a b12 b0 b2 l b02  a32  a1 a b3 b02 b13 h  a23

a b2 b02 b12 g b0  a3 a22 , a0, a1, a2, a3, b0, b1, b2, b3
b32 l b1 3 b22 b3 g  a2 b2 b3 l b1 3 b23 g  a3  a02 3 b32 g b1

b22 b3 g  a12 b32 l b0 b1 b2 b3 g  a2 b2 b3 l b0 6 b3 g b12

3 b22 g b1  a3  a1 6 b2 b3 g b0 2 b3 g b12  a22 b3 l b1 6 b22 g  b0

3 g b12 b2  a3 a2 b1 b2 l b0 3 b13 g  a32  a0 3 b32 g b0 b23 h  a13

3 b2 b3 g b0 3 b1 b22 h  a2 6 b3 g b1 2 b22 g  b0 a3  a12 3 b3 g b1 b0

3 b12 b2 h  a22 b3 l b02 b1 b2 g b0  a3 a2 b2 l b02 3 b12 g b0  a32  a1

3 b3 g b02 b13 h  a23 3 b2 g b02 b12 g b0  a3 a22

 collect expand subs a0 = a0, a1 = 3 a0 lambda a1 , a2 = 3 a0 lambda2 2 a1 lambda a2 ,
a3 = a0 lambda3 a1 lambda2 a2 lambda a3 , b0 = b0, b1 = 3 b0 lambda b1 , b2
= 3 b0 lambda2 2 b1 lambda b2 , b3 = b0 lambda3 b1 lambda2 b2 lambda b3 ,

b32 l b1 3 b22 b3 g  a2 b2 b3 l b1 3 b23 g  a3  a02 3 b32 g b1
b22 b3 g  a12 b32 l b0 b1 b2 b3 g  a2 b2 b3 l b0 6 b3 g b12

3 b22 g b1  a3  a1 6 b2 b3 g b0 2 b3 g b12  a22 b3 l b1 6 b22 g  b0
3 g b12 b2  a3 a2 b1 b2 l b0 3 b13 g  a32  a0 3 b32 g b0 b23 h  a13

3 b2 b3 g b0 3 b1 b22 h  a2 6 b3 g b1 2 b22 g  b0 a3  a12 3 b3 g b1 b0
3 b12 b2 h  a22 b3 l b02 b1 b2 g b0  a3 a2 b2 l b02 3 b12 g b0  a32  a1
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(8)(8)

(25)(25)

(23)(23)

(21)(21)

(5)(5)

(18)(18)

(28)(28)

3 b3 g b02 b13 h  a23 3 b2 g b02 b12 g b0  a3 a22 , a0, a1, a2, a3, b0, b1, b2, b3

6 g 
6

27 h 
6

l 
6

 b13 18 g 
5

81 h 
5

3 l 
5

 b2 36 g 
4

4 l 
4

 b3  b12 9 g 
4

81 h 
4

2 l 
4

 b22 45 g 
3

5 l 
3

 b3 b2

27 g 
2

3 l 
2

 b32  b1 3 g 
3

27 h 
3

 b23  a03 18 g 
6

81 h 
6

3 l 
6

 b12 36 g 
5

162 h 
5

6 l 
5

 b2 72 g 
4

8 l 
4

 b3  b1 9 g 
4

81 h 
4

2 l 
4

 b22 45 g 
3

5 l 
3

 b3 b2 27 g 
2

3 l 
2

 b32  b0

6 g 
4

27 h 
4

l 
4

 b2 18 g 
3

2 l 
3

 b3  b12 3 g 
3

54 h 
3

l 
3

 b22 27 g 
2

3 l 
2

 b3 b2 18 g 2 l  b32  b1 3 g 
2

27 h 
2

 b23  a1 18 g 
5

81 h 
5

3 l 
5

 b12 18 g 
4

162 h 
4

4 l 
4

 b2 45 g 
3

5 l 
3

 b3  b1 9 g 
3

81 h 
3

 b22  b0 6 g 
4

27 h 
4

l 
4

 b13 3 g 
3

54 h 
3

l 
3

 b2 b12 3 g 
2

27 h 
2

 b22

9 g l  b3 b2 b32 l  b1 3 b22 b3 g  a2 36 g 
4

4 l 
4

 b12

45 g 
3

5 l 
3

 b2 54 g 
2

6 l 
2

 b3  b1  b0 18 g 
3

2 l 
3

 b13

27 g 
2

3 l 
2

 b2 18 g 2 l  b3  b12 9 g l  b22 b3 b2 l  b1

3 b23 g  a3  a02 18 g 
6

81 h 
6

3 l 
6

 b1 18 g 
5

81 h 
5

3 l 
5

 b2 36 g 
4

4 l 
4

 b3  b02 12 g 
4

54 h 
4

2 l 
4

 b2

36 g 
3

4 l 
3

 b3  b1 3 g 
3

54 h 
3

l 
3

 b22 27 g 
2

3 l 
2

 b3 b2

18 g 2 l  b32  b0 g 
2

9 h 
2

 b22 3 b32 g  b1 g 9 h  b23

b22 b3 g  a12 36 g 
5

162 h 
5

6 l 
5

 b1 18 g 
4

162 h 
4

4 l 
4

 b2 45 g 
3

5 l 
3

 b3  b02 12 g 
4

54 h 
4

2 l 
4

 b12

27 g 
2

3 l 
2

 b3 b1 6 g 
2

54 h 
2

 b22 9 g l  b3 b2 b32 l  b0

2 g 
2

18 h 
2

 b2 b12 2 g 18 h  b22 b2 b3 g  b1  a2

72 g 
4

8 l 
4

 b1 45 g 
3

5 l 
3

 b2 54 g 
2

6 l 
2

 b3  b02

36 g 
3

4 l 
3

 b12 27 g 
2

3 l 
2

 b2 b1 9 g l  b22 b3 b2 l  b0

6 b3 g b12 3 b22 g b1  a3  a1 9 g 
4

81 h 
4

2 l 
4

 b1 9 g 
3

81 h 
3

 b2  b02 3 g 
3

54 h 
3

l 
3

 b12 6 g 
2

54 h 
2

 b2

9 g l  b3  b1 6 b2 b3 g  b0 g 
2

9 h 
2

 b13 g 9 h  b2

2 b3 g  b12  a22 45 g 
3

5 l 
3

 b1 b02 27 g 
2

3 l 
2

 b12

9 g l  b2 b3 l  b1 6 b22 g  b0 3 g b12 b2  a3 a2 27 g 
2

3 l 
2

 b1 b02 18 g 2 l  b12 b2 b1 l  b0 3 b13 g  a32  a0 6 g 
6
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(8)(8)

(25)(25)

(23)(23)

(30)(30)

(21)(21)

(29)(29)

(5)(5)

(18)(18)

(28)(28)

27 h 
6

l 
6

 b03 6 g 
4

27 h 
4

l 
4

 b2 18 g 
3

2 l 
3

 b3  b02

g 
2

9 h 
2

 b22 3 b32 g  b0 b23 h  a13 18 g 
5

81 h 
5

3 l 
5

 b03 6 g 
4

27 h 
4

l 
4

 b1 3 g 
3

54 h 
3

l 
3

 b2

27 g 
2

3 l 
2

 b3  b02 2 g 
2

18 h 
2

 b2 b1 g 9 h  b22

3 b2 b3 g  b0 3 b1 b22 h  a2 36 g 
4

4 l 
4

 b03 18 g 
3

2 l 
3

 b1

18 g 2 l  b3  b02 6 b3 g b1 2 b22 g  b0  a3  a12 9 g 
4

81 h 
4

2 l 
4

 b03 3 g 
3

54 h 
3

l 
3

 b1 3 g 
2

27 h 
2

 b2 9 g 

l  b3  b02 g 
2

9 h 
2

 b12 2 g 18 h  b2 3 b3 g  b1  b0

3 b12 b2 h  a22 45 g 
3

5 l 
3

 b03 27 g 
2

3 l 
2

 b1 9 g l  b2

b3 l  b02 b1 b2 g b0  a3 a2 27 g 
2

3 l 
2

 b03 18 g 2 l  b1

b2 l  b02 3 b12 g b0  a32  a1 3 g 
3

27 h 
3

 b03 3 g 
2

27 h 
2

 b1 3 b3 g  b02 g 9 h  b12 b0 b13 h  a23 3 b2 g b02

b12 g b0  a3 a22

  solve 6 g 
6

27 h 
6

l 
6

= 0, 36 g 
4

4 l 
4

= 0, 9 g 
4

81 h 
4

2 l 
4

, 
45 g 

3
5 l 

3
= 0, 27 g 

2
3 l 

2
, g 9 h = 0 , c, e, f, g, h, j, k, l

c = c, e = e, f = f, g = 9 h, h = h, j = j, k = k, l = 81 h

  collect expand subs c = c, e = e, f = f, g = 9 h, h = h, j = j, k = k, l = 81 h , b32 l b1
3 b22 b3 g  a2 b2 b3 l b1 3 b23 g  a3  a02 3 b32 g b1 b22 b3 g  a12

b32 l b0 b1 b2 b3 g  a2 b2 b3 l b0 6 b3 g b12 3 b22 g b1  a3  a1 6 b2 b3 g b0
2 b3 g b12  a22 b3 l b1 6 b22 g  b0 3 g b12 b2  a3 a2 b1 b2 l b0
3 b13 g  a32  a0 3 b32 g b0 b23 h  a13 3 b2 b3 g b0 3 b1 b22 h  a2

6 b3 g b1 2 b22 g  b0 a3  a12 3 b3 g b1 b0 3 b12 b2 h  a22 b3 l b02

b1 b2 g b0  a3 a2 b2 l b02 3 b12 g b0  a32  a1 3 b3 g b02 b13 h  a23

3 b2 g b02 b12 g b0  a3 a22 , a0, a1, a2, a3, b0, b1, b2, b3
81 b32 h b1 27 b22 b3 h  a2 81 b2 b3 h b1 27 b23 h  a3  a02 27 b32 h b1

9 b22 b3 h  a12 81 b32 h b0 9 b2 b3 h b1  a2 81 b2 b3 h b0 54 b3 h b12

27 b1 b22 h  a3  a1 54 b2 b3 h b0 18 b3 h b12  a22 81 b3 h b1

54 b22 h  b0 27 b12 b2 h  a3 a2 81 b1 b2 h b0 27 b13 h  a32  a0

27 b32 h b0 b23 h  a13 27 b2 b3 h b0 3 b1 b22 h  a2 54 b3 h b1

18 b22 h  b0 a3  a12 27 b3 h b1 b0 3 b12 b2 h  a22 81 b3 h b02

9 b1 b2 h b0  a3 a2 81 b2 h b02 27 b12 h b0  a32  a1 27 b3 h b02 b13 h  a23

27 b2 h b02 9 b12 h b0  a3 a22

#Let us define t2
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(8)(8)

(25)(25)

(23)(23)

(32)(32)

(21)(21)

(5)(5)

(18)(18)

(33)(33)

(28)(28)

(31)(31)

t2    collect expand subs h =
1
81

, 81 b32 h b1 27 b22 b3 h  a2 81 b2 b3 h b1

27 b23 h  a3  a02 27 b32 h b1 9 b22 b3 h  a12 81 b32 h b0 9 b2 b3 h b1  a2
81 b2 b3 h b0 54 b3 h b12 27 b1 b22 h  a3  a1 54 b2 b3 h b0 18 b3 h b12  a22

81 b3 h b1 54 b22 h  b0 27 b12 b2 h  a3 a2 81 b1 b2 h b0 27 b13 h  a32  a0
27 b32 h b0 b23 h  a13 27 b2 b3 h b0 3 b1 b22 h  a2 54 b3 h b1

18 b22 h  b0 a3  a12 27 b3 h b1 b0 3 b12 b2 h  a22 81 b3 h b02

9 b1 b2 h b0  a3 a2 81 b2 h b02 27 b12 h b0  a32  a1 27 b3 h b02 b13 h  a23

27 b2 h b02 9 b12 h b0  a3 a22 , a0, a1, a2, a3, b0, b1, b2, b3

t2 b1 b32 1
3

 b22 b3  a2 b1 b2 b3
1
3

 b23  a3  a02 1
3

 b1 b32

1
9

 b22 b3  a12 b0 b32 1
9

 b1 b2 b3  a2 b0 b2 b3
2
3

 b12 b3

1
3

 b1 b22  a3  a1
2
3

 b0 b2 b3
2
9

 b12 b3  a22 b1 b3
2 b22

3
 b0

b12 b2
3

 a3 a2 b0 b1 b2
1
3

 b13  a32  a0
b0 b32

3
b23

81
 a13

1
27

 b1 b22 1
3

 b0 b2 b3  a2
2 b1 b3

3
2 b22

9
 b0 a3  a12

1
27

 b12 b2
1
3

 b0 b1 b3  a22 b02 b3
1
9

 b0 b1 b2  a3 a2 b02 b2

1
3

 b0 b12  a32  a1
b02 b3

3
b13

81
 a23 1

3
 b02 b2

1
9

 b0 b12  a3 a22

#Now recall that s and t have to be algebraically independent, so let us define t as a convination of t1 and 
t2

t   collect expand 1 t1 2 t2 , a0, a1, a2, a3, b0, b1, b2, b3
t a03 b33 a1 b2 b32 2 b1 b32 b22 b3  a2 3 b0 b32 3 b1 b2 b3

b23  a3  a02 a12 b1 b32 3 b0 b32 b1 b2 b3  a2 b0 b2 b3 2 b12 b3

b1 b22  a3  a1 2 b0 b2 b3 b12 b3  a22 b1 b3 2 b22  b0 b12 b2  a3 a2

3 b02 b3 3 b0 b1 b2 b13  a32  a0 a13 b0 b32 b3 a2 b0 b2 2 b1 b3

b22  b0 a3  a12 b3 b1 b0 a22 3 b02 b3 b0 b1 b2  a3 a2 2 b02 b2

b0 b12  a32  a1 a23 b02 b3 a3 a22 b02 b2 a2 a32 b02 b1 a33 b03

#Notice that we can write t2 in terms of s and t

collect simplify
27 t s3

81
, a0, a1, a2, a3, b0, b1, b2, b3 ;

b1 b32 1
3

 b22 b3  a2 b1 b2 b3
1
3

 b23  a3  a02 1
3

 b1 b32
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(8)(8)

(25)(25)

(23)(23)

(21)(21)

(5)(5)

(18)(18)

(33)(33)

(28)(28)

1
9

 b22 b3  a12 b0 b32 1
9

 b1 b2 b3  a2 b0 b2 b3
2
3

 b12 b3

1
3

 b1 b22  a3  a1
2
3

 b0 b2 b3
2
9

 b12 b3  a22 b1 b3
2 b22

3
 b0

b12 b2
3

 a3 a2 b0 b1 b2
1
3

 b13  a32  a0
b0 b32

3
b23

81
 a13

1
27

 b1 b22 1
3

 b0 b2 b3  a2
2 b1 b3

3
2 b22

9
 b0 a3  a12

1
27

 b12 b2
1
3

 b0 b1 b3  a22 b02 b3
1
9

 b0 b1 b2  a3 a2 b02 b2

1
3

 b0 b12  a32  a1
b02 b3

3
b13

81
 a23 1

3
 b02 b2

1
9

 b0 b12  a3 a22

# Basically we proved that t2 =
1
81

27 t s3
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(1)(1)

#We start with the discriminat Disc x (F), We previously computed the Res(F,F') using a matrix 
calculator

collect expand simplify
1

a x b y
4 * a^2 * f^3 * x^5 a * c^2 * f^2 * x^5 27 * a^3 * h^2 * x

^5 4 * a * c^3 * h * x^5 18 * a^2 * c * f * h * x^5 4 * b^2 * g^3 * y^5 b * d^2 * g^2 * y^5
27 * b^3 * j^2 * y^5 4 * b * d^3 * j * y^5 18 * b^2 * d * g * j * y^5 8 * a * b * g^3 * x * y^4
a * d^2 * g^2 * x * y^4 2 * b * c * d * g^2 * x * y^4 12 * b^2 * f * g^2 * x * y^4 2 * b * d^2

* f * g * x * y^4 4 * b * d^3 * h * x * y^4 18 * b^2 * d * g * h * x * y^4 81 * a * b^2 * j^2 * x * y
^4 4 * a * d^3 * j * x * y^4 12 * b * c * d^2 * j * x * y^4 18 * b^2 * d * f * j * x * y^4 18 * b
^2 * c * g * j * x * y^4 36 * a * b * d * g * j * x * y^4 54 * b^3 * h * j * x * y^4 b * d^2 * f^2 * x
^2 * y^3 4 * a^2 * g^3 * x^2 * y^3 b * c^2 * g^2 * x^2 * y^3 2 * a * c * d * g^2 * x^2 * y^3

24 * a * b * f * g^2 * x^2 * y^3 12 * b^2 * f^2 * g * x^2 * y^3 2 * a * d^2 * f * g * x^2 * y^3
4 * b * c * d * f * g * x^2 * y^3 27 * b^3 * h^2 * x^2 * y^3 4 * a * d^3 * h * x^2 * y^3 12

* b * c * d^2 * h * x^2 * y^3 18 * b^2 * d * f * h * x^2 * y^3 18 * b^2 * c * g * h * x^2 * y^3
36 * a * b * d * g * h * x^2 * y^3 81 * a^2 * b * j^2 * x^2 * y^3 12 * a * c * d^2 * j * x^2 * y

^3 12 * b * c^2 * d * j * x^2 * y^3 18 * b^2 * c * f * j * x^2 * y^3 36 * a * b * d * f * j * x^2 * y
^3 36 * a * b * c * g * j * x^2 * y^3 18 * a^2 * d * g * j * x^2 * y^3 162 * a * b^2 * h * j * x^2
* y^3 4 * b^2 * f^3 * x^3 * y^2 a * d^2 * f^2 * x^3 * y^2 2 * b * c * d * f^2 * x^3 * y^2 a
* c^2 * g^2 * x^3 * y^2 12 * a^2 * f * g^2 * x^3 * y^2 24 * a * b * f^2 * g * x^3 * y^2 2 * b
* c^2 * f * g * x^3 * y^2 4 * a * c * d * f * g * x^3 * y^2 81 * a * b^2 * h^2 * x^3 * y^2 12 * a
* c * d^2 * h * x^3 * y^2 12 * b * c^2 * d * h * x^3 * y^2 18 * b^2 * c * f * h * x^3 * y^2 36
* a * b * d * f * h * x^3 * y^2 36 * a * b * c * g * h * x^3 * y^2 18 * a^2 * d * g * h * x^3 * y^2

27 * a^3 * j^2 * x^3 * y^2 4 * b * c^3 * j * x^3 * y^2 12 * a * c^2 * d * j * x^3 * y^2 36
* a * b * c * f * j * x^3 * y^2 18 * a^2 * d * f * j * x^3 * y^2 18 * a^2 * c * g * j * x^3 * y^2 162
* a^2 * b * h * j * x^3 * y^2 8 * a * b * f^3 * x^4 * y b * c^2 * f^2 * x^4 * y 2 * a * c * d * f^2
* x^4 * y 12 * a^2 * f^2 * g * x^4 * y 2 * a * c^2 * f * g * x^4 * y 81 * a^2 * b * h^2 * x^4 * y

4 * b * c^3 * h * x^4 * y 12 * a * c^2 * d * h * x^4 * y 36 * a * b * c * f * h * x^4 * y 18 * a^2
* d * f * h * x^4 * y 18 * a^2 * c * g * h * x^4 * y 4 * a * c^3 * j * x^4 * y 18 * a^2 * c * f * j * x
^4 * y 54 * a^3 * h * j * x^4 * y , x, y

27 a2 h2 18 a c f h 4 a f 3 4 c3 h c2 f 2  x4 54 a2 h j 54 a h2 b 18 a c f j

18 a c g h 18 a d f h 12 a f 2 g 18 b c f h 4 b f 3 4 c3 j 12 c2 d h 2 c2 g f

2 c d f 2  y x3 27 a2 j2 108 a b h j 18 a c g j 18 d f a j 18 d a g h 12 a f g2

27 b2 h2 18 b c f j 18 b c g h 18 d f b h 12 b f 2 g 12 c2 d j c2 g2 12 c d2 h

4 c d f g d2 f 2  y2 x2 54 a b j2 18 d a g j 4 a g3 54 b2 h j 18 b c g j

18 b d f j 18 b d g h 12 b f g2 12 c d2 j 2 c d g2 4 d3 h 2 d2 f g  y3 x

27 b2 j2 18 b d g j 4 b g3 4 d3 j d2 g2  y4

#now we change the coefficients to the ones we use
collect expand 27 * a0^2 * a3^2  18 * a0 * a1 * a2 * a3  4 * a0 * a2^3  4 * a1^3 * a3  a1^2

* a2^2 * x^4  4 * a1^3 * b3  54 * 2 * b1 * a3 / 9  b2 * a2 / 27 * a1^2  54 * b1 * a2
^2 / 27  a0 * b3 / 3  b0 * a3 / 3 * a2  a0 * b2 * a3 / 3 * a1  18 * a0 * b1 * a2 * a3  4 * b0
* a2^3  12 * a0 * a2^2 * b2  54 * a0 * a3 * a0 * b3  b0 * a3 * y * x^3  27 * 4 * b1
* b3 / 9  b2^2 / 27 * a1^2  27 * 4 * b1^2 * a3 / 9  4 * b1 * a2 * b2 / 27  2 * b0 * a2
* b3 / 3  2 * b2 * a0 * b3  b0 * a3 / 3 * a1  b1^2 * a2^2  27 * 2 * a0 * b3 / 3  2
* b0 * a3 / 3 * a2  2 * a0 * b2 * a3 / 3 * b1  12 * a0 * a2 * b2^2  12 * b0 * a2^2 * b2  27
* b0^2 * a3^2  27 * a0^2 * b3^2  108 * a0 * b0 * a3 * b3 * y^2 * x^2  54 * 1 / 3 * b0

A.2 Discriminant of F
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(2)(2)

* b2 * b3  2 / 9 * b1^2 * b3  1 / 27 * b1 * b2^2 * a1  4 * b1^3 * a3  2 * b1^2 * a2 * b2  54
* b0 * a2 * b3 / 3  b2 * a0 * b3  b0 * a3 / 3 * b1  54 * a0 * b0 * b3^2  4 * a0 * b2^3  54
* b0^2 * a3 * b3  12 * b0 * a2 * b2^2 * y^3 * x  27 * b0^2 * b3^2  18 * b0 * b1 * b2 * b3 

 4 * b0 * b2^3  4 * b1^3 * b3  b1^2 * b2^2 * y^4 , x, y
27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22  x4 54 a02 a3 b3

18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0

4 a13 b3 2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23  y x3

27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22 108 a0 b0 a3 b3

18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2

18 a1 a3 b0 b2 12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32

 y2 x2 54 a0 b0 b32 18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3

2 a1 b1 b22 18 a2 b0 b1 b3 12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3

18 a3 b0 b1 b2 4 b13 a3  y3 x 27 b02 b32 18 b0 b1 b2 b3 4 b0 b23 4 b13 b3

b12 b22  y4

#Now we will compute the Disc z Disc x (F)
with LinearAlgebra :
#We first compute the Res(Disc x(F), (Disc x(F))')
resz Matrix 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 0, 0, 4

27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22  , 0, 0, 0 , 54 a02 a3 b3
18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3
2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23 , 27 a02 a32

18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 0, 3 54 a02 a3 b3 18 a0 a1 a2 b3
18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3 2 a12 b2 a2
12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23 , 4 27 a02 a32 18 a0 a1 a2 a3
4 a0 a23 4 a13 a3 a12 a22 , 0, 0 , 27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3
12 a0 a2 b22 108 a0 b0 a3 b3 18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3
4 a1 a2 b1 b2 18 a1 a3 b0 b2 12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3
27 b02 a32 , 54 a02 a3 b3 18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2
18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3 2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22

18 a1 a2 a3 b0 4 b0 a23 , 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3
a12 a22 , 2 27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22

108 a0 b0 a3 b3 18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2
18 a1 a3 b0 b2 12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32  , 3
54 a02 a3 b3 18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3

54 a0 a32 b0 4 a13 b3 2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0
4 b0 a23 , 4 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 0 ,

54 a0 b0 b32 18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3 ,
27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22 108 a0 b0 a3 b3
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(3)(3)

18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2 18 a1 a3 b0 b2
12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32  , 54 a02 a3 b3
18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3
2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23     , 54 a0 b0 b32

18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22 18 a2 b0 b1 b3
12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3 , 2 27 a02 b32

18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22 108 a0 b0 a3 b3 18 b1 a0 b2 a3
12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2 18 a1 a3 b0 b2 12 a1 a3 b12

12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32 , 3 54 a02 a3 b3 18 a0 a1 a2 b3
18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3 2 a12 b2 a2
12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23 , 4 27 a02 a32 18 a0 a1 a2 a3
4 a0 a23 4 a13 a3 a12 a22 , 27 b02 b32 18 b0 b1 b2 b3 4 b0 b23 4 b13 b3
b12 b22 , 54 a0 b0 b32 18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3
2 a1 b1 b22 18 a2 b0 b1 b3 12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2
4 b13 a3 , 27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22

108 a0 b0 a3 b3 18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2
18 a1 a3 b0 b2 12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32 , 0,
54 a0 b0 b32 18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3  , 2
27 a02 b32 18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22 108 a0 b0 a3 b3

18 b1 a0 b2 a3 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2 18 a1 a3 b0 b2
12 a1 a3 b12 12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32 , 3 54 a02 a3 b3
18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 b1 a2 a3 54 a0 a32 b0 4 a13 b3
2 a12 b2 a2 12 a12 a3 b1 2 a1 b1 a22 18 a1 a2 a3 b0 4 b0 a23 , 0, 27 b02 b32

18 b0 b1 b2 b3 4 b0 b23 4 b13 b3 b12 b22 , 54 a0 b0 b32 18 b1 a0 b2 b3
4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22 18 a2 b0 b1 b3 12 b0 a2 b22

2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3 , 0 , 0, 54 a0 b0 b32

18 b1 a0 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22 18 a2 b0 b1 b3
12 b0 a2 b22 2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3 , 2 27 a02 b32

18 a0 a1 b2 b3 18 b1 a2 a0 b3 12 a0 a2 b22 108 a0 b0 a3 b3 18 b1 a0 b2 a3
12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2 18 a1 a3 b0 b2 12 a1 a3 b12

12 b0 a22 b2 b12 a22 18 b1 a2 b0 a3 27 b02 a32 , 0, 0, 27 b02 b32

18 b0 b1 b2 b3 4 b0 b23 4 b13 b3 b12 b22 , 0 , 0, 0, 54 a0 b0 b32 18 b1 a0 b2 b3
4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22 18 a2 b0 b1 b3 12 b0 a2 b22

2 b12 a2 b2 54 b02 a3 b3 18 a3 b0 b1 b2 4 b13 a3
resz 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 0, 0, 108 a02 a32

72 a0 a1 a2 a3 16 a0 a23 16 a13 a3 4 a12 a22, 0, 0, 0 , 

54 a02 a3 b3 18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 a2 a3 b1

54 a0 a32 b0 4 a13 b3 2 a12 a2 b2 12 a12 a3 b1 2 a1 a22 b1 18 a1 a2 a3 b0
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4 a23 b0, 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 0, 

162 a02 a3 b3 54 a0 a1 a2 b3 54 a0 a1 a3 b2 36 a0 a22 b2 54 a0 a2 a3 b1

162 a0 a32 b0 12 a13 b3 6 a12 a2 b2 36 a12 a3 b1 6 a1 a22 b1 54 a1 a2 a3 b0

12 a23 b0, 108 a02 a32 72 a0 a1 a2 a3 16 a0 a23 16 a13 a3 4 a12 a22 , 0, 0 , 

27 a02 b32 18 a0 a1 b2 b3 18 a0 a2 b1 b3 12 a0 a2 b22 108 a0 a3 b0 b3

18 a0 a3 b1 b2 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2

18 a1 a3 b0 b2 12 a1 a3 b12 12 a22 b0 b2 a22 b12 18 a2 a3 b0 b1 27 a32 b02, 

54 a02 a3 b3 18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 a2 a3 b1

54 a0 a32 b0 4 a13 b3 2 a12 a2 b2 12 a12 a3 b1 2 a1 a22 b1 18 a1 a2 a3 b0

4 a23 b0, 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 , 54 a02 b32

36 a0 a1 b2 b3 36 a0 a2 b1 b3 24 a0 a2 b22 216 a0 a3 b0 b3 36 a0 a3 b1 b2

24 a12 b1 b3 2 a12 b22 36 a1 a2 b0 b3 8 a1 a2 b1 b2 36 a1 a3 b0 b2

24 a1 a3 b12 24 a22 b0 b2 2 a22 b12 36 a2 a3 b0 b1 54 a32 b02, 162 a02 a3 b3

54 a0 a1 a2 b3 54 a0 a1 a3 b2 36 a0 a22 b2 54 a0 a2 a3 b1 162 a0 a32 b0

12 a13 b3 6 a12 a2 b2 36 a12 a3 b1 6 a1 a22 b1 54 a1 a2 a3 b0 12 a23 b0, 

108 a02 a32 72 a0 a1 a2 a3 16 a0 a23 16 a13 a3 4 a12 a22, 0 , 

54 a0 b0 b32 18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3 18 a3 b0 b1 b2 4 a3 b13, 

27 a02 b32 18 a0 a1 b2 b3 18 a0 a2 b1 b3 12 a0 a2 b22 108 a0 a3 b0 b3

18 a0 a3 b1 b2 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2

18 a1 a3 b0 b2 12 a1 a3 b12 12 a22 b0 b2 a22 b12 18 a2 a3 b0 b1 27 a32 b02, 

54 a02 a3 b3 18 a0 a1 a2 b3 18 a0 a1 a3 b2 12 a0 a22 b2 18 a0 a2 a3 b1

54 a0 a32 b0 4 a13 b3 2 a12 a2 b2 12 a12 a3 b1 2 a1 a22 b1 18 a1 a2 a3 b0

4 a23 b0, 54 a0 b0 b32 18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3

2 a1 b1 b22 18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3

18 a3 b0 b1 b2 4 a3 b13, 54 a02 b32 36 a0 a1 b2 b3 36 a0 a2 b1 b3 24 a0 a2 b22

216 a0 a3 b0 b3 36 a0 a3 b1 b2 24 a12 b1 b3 2 a12 b22 36 a1 a2 b0 b3

8 a1 a2 b1 b2 36 a1 a3 b0 b2 24 a1 a3 b12 24 a22 b0 b2 2 a22 b12

36 a2 a3 b0 b1 54 a32 b02, 162 a02 a3 b3 54 a0 a1 a2 b3 54 a0 a1 a3 b2

36 a0 a22 b2 54 a0 a2 a3 b1 162 a0 a32 b0 12 a13 b3 6 a12 a2 b2 36 a12 a3 b1

6 a1 a22 b1 54 a1 a2 a3 b0 12 a23 b0, 108 a02 a32 72 a0 a1 a2 a3 16 a0 a23

16 a13 a3 4 a12 a22 , 
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(3)(3)

27 b02 b32 18 b0 b1 b2 b3 4 b0 b23 4 b13 b3 b12 b22 , 54 a0 b0 b32

18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3 18 a3 b0 b1 b2 4 a3 b13, 

27 a02 b32 18 a0 a1 b2 b3 18 a0 a2 b1 b3 12 a0 a2 b22 108 a0 a3 b0 b3

18 a0 a3 b1 b2 12 a12 b1 b3 a12 b22 18 a1 a2 b0 b3 4 a1 a2 b1 b2

18 a1 a3 b0 b2 12 a1 a3 b12 12 a22 b0 b2 a22 b12 18 a2 a3 b0 b1 27 a32 b02, 

0, 54 a0 b0 b32 18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3 18 a3 b0 b1 b2 4 a3 b13, 

54 a02 b32 36 a0 a1 b2 b3 36 a0 a2 b1 b3 24 a0 a2 b22 216 a0 a3 b0 b3

36 a0 a3 b1 b2 24 a12 b1 b3 2 a12 b22 36 a1 a2 b0 b3 8 a1 a2 b1 b2

36 a1 a3 b0 b2 24 a1 a3 b12 24 a22 b0 b2 2 a22 b12 36 a2 a3 b0 b1

54 a32 b02, 162 a02 a3 b3 54 a0 a1 a2 b3 54 a0 a1 a3 b2 36 a0 a22 b2

54 a0 a2 a3 b1 162 a0 a32 b0 12 a13 b3 6 a12 a2 b2 36 a12 a3 b1 6 a1 a22 b1

54 a1 a2 a3 b0 12 a23 b0 , 

0, 27 b02 b32 18 b0 b1 b2 b3 4 b0 b23 4 b13 b3 b12 b22 , 54 a0 b0 b32

18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3 18 a3 b0 b1 b2 4 a3 b13, 

0, 0, 54 a0 b0 b32 18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3

2 a1 b1 b22 18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3

18 a3 b0 b1 b2 4 a3 b13, 54 a02 b32 36 a0 a1 b2 b3 36 a0 a2 b1 b3 24 a0 a2 b22

216 a0 a3 b0 b3 36 a0 a3 b1 b2 24 a12 b1 b3 2 a12 b22 36 a1 a2 b0 b3

8 a1 a2 b1 b2 36 a1 a3 b0 b2 24 a1 a3 b12 24 a22 b0 b2 2 a22 b12

36 a2 a3 b0 b1 54 a32 b02 , 

0, 0, 27 b02 b32 18 b0 b1 b2 b3 4 b0 b23 4 b13 b3 b12 b22 , 0, 0, 0, 

54 a0 b0 b32 18 a0 b1 b2 b3 4 a0 b23 18 a1 b0 b2 b3 12 a1 b12 b3 2 a1 b1 b22

18 a2 b0 b1 b3 12 a2 b0 b22 2 a2 b12 b2 54 a3 b02 b3 18 a3 b0 b1 b2 4 a3 b13

 
t a03 b33 b32 b2 a1 2 b32 b1 b3 b22  a2 3 b32 b0 3 b3 b2 b1 b23  a3  a02

a12 b32 b1 3 b32 b0 b3 b2 b1  a2 b3 b2 b0 2 b12 b3 b22 b1  a3  a1
2 b3 b2 b0 b12 b3  a22 b3 b1 2 b22  b0 b2 b12  a3 a2 3 b3 b02 3 b2 b1 b0

b13  a32  a0 a13 b32 b0 b2 b3 b0 a2 2 b3 b1 b22  b0 a3  a12 a22 b3 b1 b0
3 b3 b02 b2 b1 b0  a3 a2 2 b2 b02 b12 b0  a32  a1 a23 b3 b02 a3 a22 b2 b02

a2 a32 b02 b1 a33 b03;
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(5)(5)

(6)(6)

(3)(3)

(4)(4)t a03 b33 b32 b2 a1 2 b32 b1 b3 b22  a2 3 b32 b0 3 b3 b2 b1

b23  a3  a02 a12 b32 b1 3 b32 b0 b3 b2 b1  a2 b3 b0 b2 2 b3 b12

b1 b22  a3  a1 2 b3 b0 b2 b3 b12  a22 b3 b1 2 b22  b0 b12 b2  a3 a2

3 b3 b02 3 b1 b2 b0 b13  a32  a0 a13 b32 b0 b3 b0 b2 a2 2 b3 b1

b22  b0 a3  a12 a22 b3 b1 b0 3 b3 b02 b1 b2 b0  a3 a2 2 b2 b02

b12 b0  a32  a1 a23 b3 b02 a3 a22 b2 b02 a2 a32 b02 b1 a33 b03

s 3 a0 b3 a1 b2 a2 b1 3 a3 b0
s 3 b3 a0 a1 b2 a2 b1 3 a3 b0

#Now we proof that Disc z(Disc x (F))=256 t (s3 27 t 3

collect simplify 1 27 a02 a32 18 a0 a1 a2 a3 4 a0 a23 4 a13 a3 a12 a22 256 t s3

27 t
3

 Determinant resz , a0, a1, a2, a3, b0, b1, b2, b3 ;
1
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