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i 

Vehicular smart grids (VSGs) are localised electrical grids that form 

spontaneously when heterogeneous nodes, including electric vehicles (EVs) and 

charging stations (CSs), are temporarily co-located and can communicate and 

exchange energy bi-directionally, e.g., vehicle-to-vehicle (V2V). VSGs are 

highly dynamic due primarily to EV mobility. Instability and lack of trust 

amongst nodes make energy management challenging and create opportunities 

for malicious actors to disrupt supply through energy denial-of-service (EDoS) 

attacks. We see VSGs as an extension of opportunistic networks (OppNets). 

This thesis proposes CognitiveCharge, a framework and template protocol for 

independent, mutually untrusted nodes to coordinate localised, opportunistic 

energy exchange that builds on data routing strategies in OppNets. Each device 

in our VSG model operates as an independent CognitiveCharge node using real-

time utility-driven decision-making and cross-layer predictive analytics using 

first and second-hand observations. We implement CognitiveCharge by 

significantly extending existing agent-based discrete event network simulation 

software. CognitiveCharge performance is explored across a range of multi-day 

urban and semi-urban VSG scenarios, which include real-world and pseudo-

realistic data and were developed specifically for this work. Our simulation-

based experiments show that CognitiveCharge increases the availability of 

energy for EVs to expend on mobility, even when under an active EDoS attack. 

CognitiveCharge nodes can identify and exploit energy exchange opportunities 

to increase local and regional availability of on-demand energy as well as 

mitigate the impact of EDoS attacks in terms of energy loss by accurately 

detecting and avoiding exchanges with malicious nodes. 
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CD Contact Duration 

CSS Cyber-Physical System 

CS Charging Station 

DoS Denial-of-Service 

DTN Delay -Tolerant Network 

EDoS Energy Denial-of-Service 

EV Electric Vehicle 

FIFO First-In-First-Out 

GPS Global Positioning System 

G2V Grid-to-Vehicle 

ICEV Internal Combustion Engine Vehicle 

ICT Inter-Contact Time 

IoE Internet of Energy 

IoT Internet of Things 

LIFO Last-In First-Out 

OppNet Opportunistic Network 

P2P Peer-to-Peer 
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UAV Unmanned Aerial Vehicle 
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The envisioned smart grid (SG) paradigm promises to revolutionise the 

existing electrical grid infrastructure and energy exchange marketplaces. As the 

world faces significant challenges from climate change whilst facing an ever-

increasing demand for energy, SG technologies seek to provide innovative 

solutions to address a wide range of concerns and harmonise supply and demand 

dynamics. From increased localisation of power generation and supply to 

greater penetration of green and renewable energy, the much-lauded SG 

paradigm is positioned to be one of the most important, large-scale, global 

developments of the 21st century. As such, the SG has garnered significant 

attention and remains the focus of many researchers, industrial interests, and 

governments around the world. Despite this, there remains considerable work 

to be done. 

The SG is facilitated through the deep integration of highly 

heterogeneous devices via data communications and localised energy exchange 

mechanisms. Through these, SG nodes collaboratively coordinate and manage 

energy flows amongst many nodes, such as IoT devices, EVs, and local RERs, 

and stakeholders, such as device owners and utility companies. The benefits of 

the SG are widely documented in the literature (e.g. efficiency, sustainability, 

stability, green energy), but there are also significant barriers in order to fully 

realise it. 

Chapter 1 

Introduction 

1.1 Background and Motivation 
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The traditional electrical grid is strictly hierarchical. Industrial, 

commercial, and domestic consumers acquire electrical power from upstream 

regional distributors, who, in turn, obtain electricity from conventional 

generation facilities. This rigid production-to-distribution-to-consumption 

supply chain means the stakeholders involved have fixed roles in the system. 

Power plants are responsible for generating the energy required by the grid. 

Large distribution networks handle the transmission of electrical power to 

regional distribution companies and are responsible for overall grid stability. 

Local energy distribution companies are accountable for supplying electricity 

to customers, providing metering and billing. Conversely, the smart grid 

paradigm embraces dynamic and flexible roles, supported via bidirectional 

flows of energy and information amongst highly heterogeneous devices, 

ranging from smart home appliances, and mobile devices to autonomous EVs 

and local renewable energy resources. 

The particular aspects of the SG that this work considers are well 

represented by the ‘internet of energy’ (IoE) term, which describes the deep 

integration of smart grid technologies with such devices and aims to facilitate 

efficient, real-time, adaptive coordination of energy supply and demand in 

localised SGs. Networked communications and intelligent technologies at the 

SG edge enable energy to be moved on demand to meet continually changing 

requirements within the SG system. For example, a residential consumer with 

solar panels may act as a temporary prosumer at times when they produce more 

energy locally than they consume. At these times, the prosumer can choose to 

sell any surplus energy back to the grid, allowing them to reduce their overall 

energy expenditure whilst the wider grid simultaneously benefits from increased 

stability and local energy availability. 

As to the ability of devices and appliances, such as smart thermostats 

and electric vehicles, to communicate with the electrical grid in real time, 

enabling better management of energy supply and demand. This integration 

allows for more efficient distribution of energy, increased use of renewable 

energy, and improved grid stability. The internet of energy is an important 

component of the smart grid paradigm and is a rapidly developing area of 

research and innovation [1]. 
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Figure 1 depicts a high-level overview of the traditional and SG 

paradigms. VSGs sit at the edge of the future SG and are formed primarily of 

EVs and infrastructure CSs, such as those at homes, car parks, and dedicated 

recharging stations. As illustrated in Figure 1, heterogeneous VSGs form 

spontaneously amongst temporarily collocated nodes via localised 

communications. Due to vehicular mobility, the VSG is highly dynamic. 

Increased availability of convenient charging infrastructure is important to 

consumer adoption of EVs [2], [3] and the VSG presents increased opportunities 

to acquire and offload energy amongst EVs and with the wider grid. The VSG 

paradigm also offers the potential for increased grid stability and adaptability to 

the challenging dynamics of local and regional energy flux [4], [5]. Specific 

technologies for V2V energy exchange are beyond the scope of this work, but 

there is a vast variety of close-range energy exchange proposals in the literature, 

including wired and wireless mechanisms [6]. Rather than being dependent on 

a particular technology, we only consider that nodes must be physically adjacent 

in order to exchange energy. 
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Figure 1 Electrical Grid Paradigms 

Complex-adaptive cyber-physical systems (CPSs) such as the future SG, 

have an increased attack surface than their traditional counterparts as widely 

networked control processes expose new and previously unexploitable 

vulnerabilities [7], [8], [9]. Compounding this, the existing electrical grid 

infrastructure is already facing significant stability and security challenges 

which both increase susceptibility and reduce resilience to attack [7], [10]. 

Meanwhile, ongoing energy theft from the electrical grid remains a substantial 

problem in both developed and developing nations, with global losses of 

approximately 25 billion dollars and rates of theft reaching as high as 50 per 

cent in some markets [11], [12]. 

In recent years, security researchers have observed rising numbers of 

sophisticated attacks against the energy sector conducted by a wide range of 

groups who are increasingly targeting more localised grid operations [8]. There 

are numerous well-documented cases where cyberattacks have targeted energy 

infrastructure. Several large-scale coordinated cyberattacks against energy 

distribution networks exploited networked control systems to disrupt power to 

almost a quarter of a million customers, impacting households, industry, and 
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emergency services [13], [14]. The high capacity and energy demands of EVs 

make them a valuable target for attackers and their integration into the SG has 

opened up new avenues for malicious actors. A range of novel attacks targeting 

EV charging systems has been demonstrated to have a severe impact on the 

stability of electrical power distribution [15]. 

Existing approaches to energy exchange in vehicular smart grids are 

reliant on a high degree of connectivity, with fully or semi-centralised 

completely trusted infrastructure is necessary to provide security assurances and 

coordination of distributed nodes. Furthermore, many existing approaches are 

reliant on coarse-grained estimations of energy usage combined with limited 

advanced knowledge for scheduling. We argue that centralised decision-making 

for V2V and V2G charging does not perform well in highly dynamic, 

distributed, grid-edge scenarios due to limited scalability, responsiveness, real-

time adaptability, and fairness. Research has shown that centralised 

optimisation and global optimum approaches are unsuited to environments with 

highly dynamic topologies, fluctuating geo-temporal energy availability, and 

frequent temporal disconnections – such as vehicular smart grid networks – due 

to such the assumption of a priori knowledge and algorithms which often 

unfairly disadvantage some nodes [16], [17]. Locally and centrally optimised 

algorithms can be outperformed by collaborative approaches in networks with 

complex dynamic spatiotemporal topologies [17]. 

It is the aim of this thesis to design and validate a framework for 

facilitating P2P energy exchange amongst nodes in untrusted heterogeneous 

smart vehicular grid environments and in the presence of an active energy 

depletion attack. Such a framework is a necessary prerequisite to realising fully 

opportunistic energy exchange which is adaptive to the manifold inherent real-

time socio-spatiotemporal dynamics. Meeting the challenges of providing 

security of energy and communications exchange in the presence of both 

malicious and non-malicious threats is recognised as being fundamental to the 

success of the future smart grid [18]. Furthermore, distributed, networked 

security solutions are identified as crucial to realising a responsive and self-

healing smart grid however fully implementing such systems raises major 

technological challenges [19], [20]. 
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This section has provided background and motivation for the research, 

introducing some aspects of P2P energy exchange and energy depletion attacks 

in VSGs. The remainder of this chapter is arranged as follows. Firstly we detail 

the vehicular smart grid environment central to this thesis; here we also specify 

the core scenario presumptions and delineates the scope of this work. Expanding 

on this, we describe the specifics of the energy depletion attack considered in 

this thesis. The precise research focus is then given, followed by the main 

contributions of this work. Finally, an overview of the structure of this thesis is 

provided. 

In this work we consider a heterogeneous vehicular smart grid (VSG) 

environment comprising a diverse range of electric vehicles (EVs) and electrical 

infrastructure charging stations (CSs). The set of participating nodes in the 

vehicular SG consists primarily of high energy capacity mobile EVs and static 

electrical grid infrastructure access points, for example, at homes and charging 

stations. There is inherently a large degree of real-time variable heterogeneity 

across the physical attributes of nodes in VSG scenarios. EVs, such as consumer 

cars, motorcycles, and commercial goods vehicles, vary according to 

computational capability, energy storage capacity, characteristics of available 

data communications and energy exchange interfaces, rates of energy 

consumption for service provision, and dynamic patterns of mobility. In 

addition to the intrinsic heterogeneity at the physical and topological layers, we 

also consider each node to be fully independent, having its own dynamic 

internal motivations which govern its energy resource related behaviour.  

Unlike in scenarios with externally operated nodes, e.g., cooperative 

managed fleet vehicles, in our heterogeneous vehicular smart grid scenario we 

presume that objectives of nodes are not shared and may even be in direct 

conflict. For example, consider a simplified model of an autonomous electric 

taxicab. To provide financially viable carriage services, it must set prices for 

journeys which are competitive with rivals whilst also being adequately offset 

against operating expenses. In order to accomplish this, the taxicab will 

1.2 Vehicular Smart Grid 
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continually adapt its behaviour, maximising revenue from service provision 

whilst simultaneously minimising the cost of energy acquisition in terms of both 

the raw energy price and the loss of revenue from downtime whilst charging. 

As a result of this, it is likely that the taxicab will seek to prioritise its acquisition 

of energy from low-cost suppliers during quieter operating periods, only using 

higher cost, slow supply sources when it deems necessary. Contrast the taxicab 

example with an emergency service vehicle model, whose primary purpose is 

to get to locations as fast as possible and with minimal downtime. Such a vehicle 

will almost exclusively favour nearby fast charging energy suppliers, 

disregarding any associated increased costs. Our VSG scenario assumes the 

inclusion of many kinds of vehicles and CSs, permitting the participation of any 

node seeking to acquire or offload energy. 

We broadly summarise asynchronous opportunistic energy exchange in 

the VSG as a three-phase, supplier-driven, sequential process. The work in this 

thesis is intended to complement existing approaches and easily integrate with 

active and future technologies. In order to remain broadly compatible, only 

essential presumptions regarding the scenario are made. As illustrated in Figure 

2, these steps are as follows: 

• Initialisation and Negotiation: A node with surplus energy to 

offload (𝑎) advertises itself as an energy supplier to collocated 

neighbours (𝑏 and 𝑐), who can then respond by sending requests 

for energy to the supplier. The supplier selects a suitable seeker 

from those interested – providing one exists. 

• P2P Energy Exchange: Once the supplier has selected a seeker 

(in this case, node 𝑏), energy is supplied in a P2P manner, 

typically in exchange for financial return. This can happen either 

directly (such as using wireless or wired energy exchange 

between the two nodes) or via auxiliary mechanisms. 

• Peer Exchange Acknowledgement: After the exchange, both 

the energy supplier (𝑎) and consumer (𝑏) validate the transaction 

by propagating records to the wider network (𝑐). This verifies 

the transaction and the newly increased balance of the supplier's 

available funds. 
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The initialisation phase may include some negotiation of terms between 

parties regarding the details of the exchange, for example, the precise amount 

of energy to transfer and the associated price of energy. This thesis does not 

propose a specific approach for negotiation, nor does the work in this thesis 

restrict negotiation in advance of, or during, the exchange of energy between 

peers. Similarly, the physical exchange of energy between hosts can be direct or 

utilise available auxiliary hardware as an intermediary. Various approaches to 

localised energy exchange amongst EVs and grid infrastructure are being 

actively explored and deployed. The work in this thesis is purposefully agnostic 

to the specifics of the P2P energy exchange and therefore supports 

heterogeneous exchange mechanisms. We presume only that collocated nodes 

can exchange energy and data locally in real-time via some compatible means. 

Finally, in line with existing trends for increasing privacy, we presume 

a privacy-aware scenario in which protocols only expose the minimally 

necessary amount of data to nodes via monitoring of exchange information and 

data propagation. Table 1 details the amount of information regarding an energy 

exchange event that we consider could visible to VSG nodes, based on their 

proximity. Participants directly involved in the energy exchange (viz. those 

sending or receiving energy) have full awareness of the physical identity of their 

peers, the location of the exchange, the precise amount of energy that was 

transferred, and the data and metadata communicated about exchanged, such as 

the price of the energy purchased. This information is necessary for both parties 

to exchange energy in a P2P manner within the VSG. 
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Figure 2 VSG Energy Exchange Process 

The collocated first-hand observers of the exchange in Table 1 have 

awareness of the nodes participating in the exchange, the role of each as sender 

or receiver, and the location. This information may not be readily published by 

the nodes participating in the exchange but can be inferred through other means. 

For instance, location can be physically observed and estimates of the amount 

of energy exchanged can be obtained through the time the nodes spent together. 

Confidantes – peers who receive explicitly propagated metadata concerning the 

transaction – are not sent information regarding the specific details of the 

exchange. Finally, for other nodes in the VSG we presume that without being 

informed of the exchange, these participants have no information explicitly 

shared or leaked to them. 

The level of privacy of a given energy exchange protocol for the VSG 

can be laxer than the maximally stringent presumptions highlighted in Table 1. 

In a real-world scenario it could be possible for nodes to obtain information by 

a range of means, including aggregating observations, eavesdropping, data 

analysis etc. Nevertheless, we presume that additional data is not available and 

therefore cannot be relied upon for informing immediate and future decision 

making. This model increases the flexibility of our proposed CognitiveCharge 

framework and considers a highly privacy-oriented VSG scenario which is a 

core consideration of the future SG. By assuming strict, core constraints, we 
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facilitate future works with more lax constraints to build more readily atop 

CognitiveCharge. 

Table 1 VSG Energy Exchange Information Visibility 

Information Participants Observers Confidantes Others 

Identity Yes Yes Yes No 

Location Yes Yes No No 

Energy Yes No No No 

Data Yes No No No 

 

Of concern for existing and future smart-grids is the potential for energy 

depletion attacks which, in addition to the immediate loss of power, can lead to 

financial loss and regional denial-of-service as communities become isolated 

from energy suppliers. In the vehicular smart grid, such an attack also represents 

a type of energy theft analogous to cheque fraud, wherein a malicious node takes 

advantage of the lack of global knowledge and regional network islanding to 

acquire energy at no cost. An energy denial-of-service (EDoS) attack considers 

nodes either maliciously, or through fault mechanisms, preventing nodes from 

accessing energy. Whilst this could be through blocking access, we consider the 

more devastating definition explored in the literature wherein a node continually 

acquires energy from a host until it is depleted (e.g. [21]). 

Due to the high degree of heterogeneity, EDoS attacks can have a severe 

impact on the VSG. The safe operating margins of the electrical grid narrow 

year on year owing to rising demand and consequently the sensitivity to attack 

rises. In addition to the immediate loss of power which causes localised EDoS 

for the node, the impact of the attack expands beyond the immediate loss of 

energy for the non-malicious host. This can escalate to result in significant 

energy and financial losses and result in regional DoS as communities become 

isolated from energy suppliers. 

We consider a malicious or hacked energy-seeking node that seeks to 

cause localised depletion of energy targeting an individual node, a geographic 

1.3 Energy Depletion Attack 
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region, or a community of nodes. Absent of a priori knowledge or the ability to 

access a trusted authority, energy seekers and suppliers are vulnerable to a 

malicious node using falsified information to illegitimately obtain access to 

energy resources. As shown in Figure 3, in the first step, the malicious node 

presents itself as being the node most in need of energy to the advertising 

supplier, posing as a legitimate consumer seeking energy so as to position itself 

as the most desirable recipient (ahead of its peers). The second step then sees 

the attacking node acquire as much energy as possible from the supplier. As 

payments cannot be verified immediately, the attacker can make a false payment 

for the energy received in order to deceive the supplier. Finally, the malicious 

node disseminates false information which contradicts the energy supplier and 

seeks to invalidate any records of the exchange. This is possible because the 

network topology, which is inherently dynamic and disconnection prone, 

prohibits nodes from readily reaching consensus. The attack can be further 

exacerbated through attackers coordinating to suppress the occurrence of the 

exchange. As a result of the energy depletion attack, nodes which were 

dependent upon the supplier for energy resources are unable to provide services 

due to lack of availability. 
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Figure 3 Energy Depletion Attack 

This thesis is concerned with adaptively balancing the competing trade-

offs between energy and security such that VSG nodes can continue to share 

energy in untrusted environments and whilst under active attack by malicious 

nodes. The overarching aim of this work revolves around exploring modelling 

energy analogous to data. More specifically, we aim to apply and build upon 

data routing decision-making principles from OppNets and DTNs to the VSG, 

as defined earlier in this chapter. Whilst recognising the differences, we seek to 

exploit the parallels between data and energy and aim to facilitate independent 

VSG nodes to make energy and security-aware decisions in untrusted VSGs to 

increase utility service provision. The precise focus of this thesis is as follows: 

In heterogenous VSGs, with fully lo  lised  ommuni  tion  nd 

de ision-m king, is it possi le to in re se the servi e provision utility of nodes 

 nd limit energy losses in the presen e of  n EDoS  tt  k  ondu ted  y 

m li ious nodes? 

In this work, we consider VSG scenarios comprising mobile, roaming 

EVs and static CSs. For EVs, service provision utility, therefore, refers to the 
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ability of nodes to meet the demands and expectations of their owners with 

respect to completing journeys. As highlighted earlier in this Chapter, this work 

focuses on the fully localised communication and decision-making that we have 

highlighted as being necessary to facilitate real-time energy exchange amongst 

mutually untrusted nodes in the VSG model central to this work. Under this 

model, nodes must independently make energy and security-aware decisions 

with respect to whether to exchange energy and with whom when presented 

with opportunities to do so. For example, consider two EVs that have no 

previous direct encounters. Upon meeting, they must each individually 

determine whether to do nothing, offer energy for exchange, or request a transfer 

of energy. The core research question can be rephrased and posited in the 

context of a given VSG scenario. For any given EV in the VSG, does it have 

sufficient battery capacity, or can it acquire sufficient energy from a peer to 

move to its next destination when needed, even when malicious nodes are 

actively conducting an EDoS attack? This encapsulates EVs (and CSs) also 

offloading energy when in surplus. 

In addressing the overarching research question, we also consider the 

following sub-questions for the heterogeneous VSG scenarios considered in this 

work (comprising EVs and CSs): 

• How does   fully lo  lised  ommuni  tion  nd de ision-m king-

  sed  ppro  h to energy ex h nge  ffe t the level of energy of 

EVs in heterogeneous VSG s en rios? 

• Wh t  re the energy losses in urred  y EVs under  n EDoS 

 tt  k  nd to wh t extent   n this these losses  e redu ed  y  n 

 tt  k dete tion  nd trust s heme? 

• How do independent  nd  oll  or tive trust m n gement 

s hemes imp  t the opportunities for energy ex h nge  nd 

 v il  ility of energy of EVs? 

In meeting these research questions and the overarching aims, we 

consider the following objectives: to develop a novel framework for peer energy 

exchange in the VSG; to devise a prototype protocol to facilitate this; to model 

a range of VSGs in suitable simulation software, including an EDoS attack 
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scenario; to implement our proposal in the simulation software; and to explore 

the performance of our proposed approach in the simulated VSG scenarios. 

This thesis proposes CognitiveCharge, a novel framework which 

enables independent nodes to make fully localised energy exchange decisions 

in real-time through careful weighing of the immediate and anticipated future 

energy and threat contexts. CognitiveCharge nodes make real-time decisions 

based upon immediate predictions of future conditions which increase their own 

utility and the utility of their self-identified spatiotemporal community. 

Individually, CognitiveCharge nodes continually monitor their own internal 

state as well as the behaviour of their neighbours through both direct 

interactions and passive observations. In addition to this, nodes participate in 

collaborative data exchange wherein they periodically disseminate aggregate 

information regarding themselves and their peers with immediate neighbours. 

Via a proposed suite of novel, predictive analytics, these metrics are combined 

to describe the perceived context for a given CognitiveCharge node for itself 

and its community. These analytics capture the complex interplay across 

multiple continuously changing dimensions, including network topology, 

energy resource behaviour, and trust and reputation dynamics. Combined 

together via real-time heuristic-driven decision-making, they allow for 

CognitiveCharge nodes to detect and react to unstable conditions, discovering 

and identifying suitably trusted opportunities for the localised exchange of 

energy. 

This thesis contributes to the field by providing a novel CognitiveCharge 

framework which enables VSG devices to perform fully-localised energy 

exchange in untrusted environments. The following key contributions together 

form CognitiveCharge: 

• A suite of novel, cross-layer, predictive energy and threat 

context-aware analytics for capturing and interpreting the VSG 

environment from the perspective of a VSG node. 

1.5 Contributions 
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• A novel framework for analytics exchange, peer data integration, 

and real-time energy-resource utility-driven decision-making in 

untrusted VSGs. 

• A proactive, collaborative peer testing mechanism for energy-

resource behaviour evaluation in untrusted VSGs for detection 

and mitigation of EDoS attack. 

The following publications have been the result of this work: 

• M. Radenkovic and A. Walker, ‘CognitiveCharge: 

Disconnection Tolerant Adaptive Collaborative and Predictive 

Vehicular Charging’, in Pro eedings of the 4th ACM Mo iHo  

Workshop on Experien es with the Design  nd Implement tion 

of Sm rt O je ts, in SMARTOBJECTS ’18. New York, NY, 

USA: ACM, 2018, p. 2:1-2:9. 

• M. Radenkovic and A. D. Walker, ‘Contextual Dishonest 

Behaviour Detection for Cognitive Adaptive Charging in 

Dynamic Smart Micro-Grids’, in 15th IEEE/IFIP Wireless On-

dem nd Network systems  nd Servi es Conferen e, WONS 

2019, Wengen, Switzerl nd, J nu ry 22-24, 2019, T. Braun, L. 

Lilien, and Z. Zhao, Eds., IFIP, 2019, pp. 44–51. 

• M. Radenkovic, A. Walker, and L. Bai, ‘Towards Better 

Understanding the Challenges of Reliable and Trust-Aware 

Critical Communications in the Aftermath of Disaster’, in 

2018 14th Intern tion l Wireless Communi  tions Mo ile 

Computing Conferen e (IWCMC), Jun. 2018, pp. 648–653. 

The remainder of this thesis is structured as follows: 

Chapter 2 provides a comprehensive review of the literature related to 

this thesis' research focus. Chapter 2 begins by identifying and detailing a set of 

criteria important for approaches which seek to address combined self-

organised energy resource awareness, P2P energy exchange, and adaptive 

1.6 Thesis Structure 
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resource-related security for vehicular smart grid environments. This is 

followed by a survey of existing works, predominantly focusing on techniques 

for aspects of adaptive energy resource awareness, energy threat context 

awareness, and reputation-based security in opportunistic networks. 

Chapter 3 details how this is accomplished by detecting and reacting in 

real-time to dynamic in-network conditions across multiple layers, including 

mobility, resources, services, and security. An architectural overview of our 

CognitiveCharge solution is initially provided, which highlights the key 

challenges in the complex design space and the conflicting trade-offs 

fundamental to the problem domain. This is followed by detailed analytical and 

functional models of our CognitiveCharge framework, which provide a 

thorough explanation of the framework's components, including the algorithms 

underpinning our collaborative, adaptive, real-time, decision-making processes. 

Chapter 4 presents the experimental methodology employed in order to 

perform rigorous analysis and evaluation of our CognitiveCharge proposal. 

Chapter 4 begins with a description of the simulation environment and an 

explanation of our use of hybrid real-world and pseudorealistic data traces to 

represent each dimension of the problem scenario. Each vehicular smart grid 

scenario is described, and a comparative analysis of the scenarios is provided. 

Following this, we detail the modelling of the energy depletion attack in these 

scenarios. 

Chapter 5 concerns the rigorous evaluation of the implemented 

prototype of our CognitiveCharge framework utilising the experimental 

methodology detailed in Chapter 4. Chapter 5 begins by introducing the set of 

established and novel proposed performance measures used to thoroughly 

evaluate our CognitiveCharge proposal. Extensive evaluation of 

CognitiveCharge is then conducted in vehicular smart grid scenarios in which 

nodes are fully trusted, nodes are mutually untrusted, and when nodes are under 

active energy depletion attack by injected malicious actors. Under each of these 

conditions, measured performance characteristics for CognitiveCharge are 

compared against baseline conditions as well as benchmark and state-of-the-art 

works. 

Chapter 6 discusses in-depth the broader context of the proposal 

presented in this thesis, taking into consideration the criteria set outlined in 
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Chapter 2. This chapter considers the feasibility and challenges of real-world 

deployments of CognitiveCharge in domains with varying constraints and 

dynamics. This includes deployments across alternative topologies with degrees 

of centralisation and heterogeneity. Furthermore, Chapter 6 provides a 

discussion of additional applications for aspects of our proposed 

CognitiveCharge framework. 

Chapter 7 concludes the work presented in this thesis, summarising our 

CognitiveCharge proposal and highlighting the key findings of our analysis and 

evaluation in light of the research aims. The main contributions of the thesis are 

also outlined in Chapter 7. Finally, proposals for direct and indirect avenues of 

future research relating to this thesis are discussed. 
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This chapter provides a comprehensive survey of state-of-the-art 

techniques for aspects of adaptive, self-organised security and energy resource 

exchange in opportunistic networking (OppNet) and vehicular smart grid (VSG) 

environments. The structure of the rest of this chapter is as follows. We begin 

by defining and motivating the set of criteria which establishes the lens through 

which the relevant existing literature is reviewed. These are derived directly 

from the research questions posed in Chapter 1. This is followed by a detailed 

description and discussion of relevant state-of-the-art approaches, categorised 

by each criterion. We then look at approaches utilising fully localised social 

analytics to inform real-time decision-making. Works relating primarily to 

relevant aspects of energy follow this. Localised energy resource awareness 

techniques and works exploring peer-to-peer energy exchange are subsequently 

explored. Next, literature investigating security for challenged networks and 

direct behavioural analysis mechanisms for the detection of malicious 

behaviour and derivation of first-hand trust are detailed. This includes indirect 

reputation management techniques for second-hand trust. 

 

 

Chapter 2 

Related Work 

2.1 Introduction 
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A novel set of criteria is proposed which, together, comprehensively 

capture the fundamental facets of the problem scenario detailed in Chapter 1. 

The selected criteria scope the research focus and are applied in this chapter in 

reviewing state-of-the-art techniques for aspects of collaborative, adaptive, 

energy resource and security-aware approaches in heterogeneous vehicular 

smart grid environments. In addition to providing the lens through which 

existing work is reviewed, the following dimensions collectively delineate the 

solution space constraints and evaluation scope. A summary of each listed 

criterion is provided, with thorough detailing of the criteria set provided in the 

following subsections. 

1. Fully Localised: Functionally effective in fully distributed and 

decentralised environments, independently making real-time decisions 

informed by partial knowledge. 

2. Delay and Disconnection Tolerant: Capable of operating in challenged 

network environments with no assumption of end-to-end connectivity 

and in the presence of communication disruptions. 

3. Social Encounter Awareness: Awareness of the topological dynamics of 

the constantly changing local network environment. 

4. Energy Resource Awareness: Awareness of the state of local energy 

resources as well as the energy conditions of the broader network 

environment. 

5. Adaptive Peer-to-Peer Energy Exchange: Ability to make decisions 

independently and adaptively regarding the direct attaining and 

offloading of energy with peers in the dynamic local network 

environment. 

6. Contextual Threat Awareness: Ability to directly detect the 

misbehaviour of peers and assess the wider threat environment so as to 

adapt behaviour according to the risk of attack. 

2.2 Criteria 
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7. Adaptive Trust and Reputation Aware Decision Making: Autonomous 

decision making informed by the combination of both learned first-hand 

knowledge and collaboratively acquired second-hand peer information. 

Opportunistic networks are intrinsically heterogeneous, distributed, and 

decentralised. As such, they are devoid of centralised, persistent control for local 

coordination amongst nodes. Fully localised contextual awareness and real-time 

decision making are therefore necessary prerequisites for anticipating and 

adapting to the manifold dynamics inherent to these complex temporal 

networks. Spontaneous, self-organising communities formed of independently 

collaborating nodes are crucial to facilitate provision of services atop 

opportunistic networks, e.g. in order to provide a viable energy exchange 

marketplace. In such environments, the degree of participation of each node is 

determined independently according to its own motivations. The variable 

internal objective functions driving behaviour are perpetually measured against 

the fluctuating advantages and disadvantages of participation. Collaborative 

networks thus occur when the interests of nodes are in alignment. For example, 

viable energy exchange networks are formed when the desires of nodes seeking 

energy complement those with energy looking to offload. Several core 

components underpin the ability to achieve fully localised self-organisation in 

highly multifaceted dynamic network environments: 

• Fully Localised Contextual Awareness: Without centralised information 

dissemination, nodes must utilise localised environment sensing to 

inform future decision making. This can include measurements from 

direct observations of itself and others – such as from interactions with 

neighbours – in addition to any explicit data garnered via peer 

information exchange. 

• Fully Localised Coordination: Coordination for distributed and 

decentralised systems inherently relies upon local, collaborative self-

organisation. Varieties of clustering techniques facilitate fully localised 

coordination of cluster members. 

• Fully Localised Decision Making: Real-time decision making driven by 

local contextual awareness and localised coordination. Without 
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centralised means, each node must be capable acting independently and 

autonomously making decisions which in real-time allow for nodes to 

adapt to the complex temporal dynamics of the network. 

The mobility of vehicles in the vehicular smart grid paradigm naturally 

causes to disruptions network communications. DTN approaches are therefore 

fundamental to facilitating data communications and coordination of P2P 

energy exchange in VSG environments. Similarly, the mobile social nodes 

comprising OppNets, such as those intrinsic to VGSs, are tightly interwoven 

into human activity. Vehicles and IoT devices such as smartphones present clear 

examples of this. Not only do they increasingly carry and transmit sensitive 

information such as sensor-derived health data and usage but due to their nature 

they inherently follow human mobility patterns. The necessary criteria exposed 

here are twofold. Firstly, cross-layer social-awareness permits adaptive decision 

making which demonstrably improves performance in OppNets. Secondly, the 

privacy implications of large-scale service-oriented mobile social networks are 

significant and thus privacy-awareness is of concern. The socio-temporal graph 

concerns a given nodes regular and irregular contacts which are derived through 

multiple complementary encounter-based analytics such as contact duration and 

contact frequency. Together this allows us to describe complex spatiotemporal 

relationship dynamics. Combining various metrics to analyse node ties allows 

for identification and ranking of nodes in social clusters as well as those more 

transient ‘vagabonds’ [22]. 

As the behaviour of nodes in IoT networks is closely tied to human 

behaviour and these networks are inherently social, nodes should be fully aware 

of the distinct multi-natured, dynamic, ephemeral social graphs. For clarity we 

here highlight the difference between the social ego network and the social 

relationship network – both of which are important but represent distinct 

dimensions of the problem space. The social ego network describes nodes which 

come into direct contact with one another and their connectivity with respect to 

measures such as centrality and betweenness. The social relationship network 

is the nodes self-identified social ties such as friends and family. Whilst there 

may be crossover between the two, they are fundamentally distinct. A 

favourable node in the ego network may not necessarily be favourable in the 
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relationship network and vice versa. Vehicular social networks can be broadly 

described as being dynamic, temporal communities of vehicles which share 

behavioural commonality such that they have recurrent spatial encounters [23]. 

In the context of delay-tolerant networking, mobility has been described 

as a ‘double-edged sword’ [24]. On the one hand, the mobility of nodes 

amplifies the volatility of network routes and, consequently, the likelihood of 

network disruptions; on the other hand, the physical movement of devices can 

benefit isolated nodes and communities by increasing the potential for access to 

contacts with sought-after resources. A range of techniques for network analysis 

which can be conducted both centrally and by independent nodes without access 

to a global network overview have been explored [25]. 

Energy resource awareness concerns nodes having an understanding of 

their independent socio-spatio-temporal energy state as well as an awareness of 

the energy state of their wider ego-network and the broader network as a whole. 

Energy is a fluctuating resource which nodes need to be aware of. P2P energy 

exchange is core to this work. The exchange of energy fundamental criteria and 

so approaches which facilitate this are important. Nodes must be able to take 

advantage of exchange opportunities based on their own awareness of the local 

and wider energy conditions. 

Threat detection is fundamental to detecting and mitigating malice and 

malfunction. To exchange energy opportunistically in the dynamic VSG, nodes 

must be able to make real-time decisions based on the trust and reputation of 

their peers. This includes independent detection of malicious behaviour as well 

as trust and reputation exchange amongst peers. 

Large-scale networking environments with complex dynamic topologies 

benefit from exploiting social encounter-based analytics to inform aspects of 

decision-making. Localised, independent, real-time decision making calculated 

independently from the perspective of each node in order. Networks such as the 

VSG have predictable social dynamics and are non-random, exhibiting power 

2.3 Social Awareness 
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law intermittent connectivity [24], [26]. Works reviewed in this section focus 

on social clustering approaches and social-aware protocols. 

In opportunistic networks which exhibit social mobility properties, the 

efficiency of message routing can be improved by factoring social measures into 

decision making [26]. This is driven by independent analysis of encounter 

history and facilitated through collaborative, local peer information exchange 

via ‘summary vectors’ [27]. The ‘ego network’ concept describes a node's 

perspective of its local, socio-spatiotemporal neighbourhood [28]. A node’s ego 

network represents the complete set of past and present single-hop encounters 

– also termed the first-order zone [28]. Routing-related decision-making based 

on analytics over a node's ego network has been shown to achieve optimal and 

near-optimal performance in socially mobile environments [29]. 

Routing of data in opportunistic networks is largely dissimilar to routing 

in ad hoc networks due to the assumption of end-to-end connectivity in the latter 

case. Despite this, there are parallels between hop-by-hop forwarding 

mechanisms in opportunistic networks and on-demand route discovery 

mechanisms for ad hoc networking routing protocols. FRESH [30] is an 

efficient, omnidirectional blind search approach that improves route discovery 

by monitoring single-hop encounter history. Route discovery is accomplished 

via passive social analytics, specifically using the encountered neighbour with 

the lowest intercontact time for a given destination [30]. 

A number of routing protocols based upon ego network analysis have 

been proposed to enhance various performance characteristics of multi-hop 

routing protocols. These works primarily focus on improving aspects of 

message delivery, such increasing delivery success ratios, reducing delays, and 

minimising protocol overheads. PRoPHET [31], [32] is a probabilistic 

forwarding protocol that establishes adaptive, transitive delivery predictability 

based upon calculating the frequency of encounters between a PRoPHET node 

and each peer in its ego network. The MaxProp [33] protocol similarly utilises 

encounter frequency analytics but applies it in ranking the priority of 

undelivered messages for forwarding and dropping by estimating the likelihood 

of delivery. In delegation forwarding algorithms [29], [34] nodes are assigned 

utility measures which represent their routing quality for a message. Forwarding 

decisions are modelled as a form of optimal stopping problem [35], with routing 
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costs reduced by forwarding messages to nodes of strictly increasing quality – 

calculated through implicit social metrics [34]. By combining semantic social 

relationship information (i.e. explicit labels [36]) with social encounter 

centrality measures to identify the popularity of nodes amongst detected 

communities, the BUBBLE [36], [37] protocol identifies how increased context 

awareness can achieve significant improvements in forwarding efficiency. 

SimBetTS (2009) [38] demonstrates the efficacy of combining several 

lightweight utility measures of social networks for improving forwarding 

decisions in networks with attributes of social mobility. Similarity, betweenness, 

and tie-strength metrics are combined into a single utility which is compared 

against encountered neighbours in order to select for improving values. 

PRoPHET+ (2010) [39] extends the social-aware PRoPHET decision-making 

process to improve performance in constrained networks. This is accomplished 

by additionally considering dynamic weighted parameters for available 

bandwidth, buffer, power consumption, and popularity of nodes in the ego 

network. Many works build upon these core social clustering principles. 

In recent works, social network analysis techniques have been extended 

from the topological plane and combined with characteristics of other 

dimensions. This allows for better describe a node's contextuality of decision-

making. Recent research has explored utilising combined opportunistic 

vehicular and social communications for data processing, information 

processing and services and has shown that vehicles can collaborate over 

multiple dimensions and adapt to temporal dynamic networks. Café and CafRep 

[40] propose multi-layer adaptive congestion-aware protocols which combine 

social metrics with predictive analytics to direct network traffic away from 

congested areas of the network. Both protocols successfully reduce congestion 

whilst remaining considerate of resources and avoiding node overloading. 

CafRepCache [41] proposes a real-time heuristics and cross-layer analytics-

based adaptive caching and forwarding approach. CafRepCache builds upon 

Café and CafRep, adding support for latency-aware collaborative caching. Café, 

CafRep and CafRepCache are all evaluated over diverse, dynamic temporal 

network topologies which include multiple real-world vehicular traces. E3F 

[42] proposes a cross-layer energy and network congestion-aware framework 

for resource-constrained opportunistic emergency networks, which avoids 
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forwarding data to network regions which are not low on energy or likely to 

experience congestion. Using multi-dimensional real-time heuristics, E3F 

prioritises important nodes for protection against energy depletion and 

congestion while achieving high success ratios and improving node lifetime. 

Real-world utilisation of some approaches are insufficiently adaptive 

due to the requirement for advance preselection of initialisation constants in a 

given environment, e.g. [31], [32], [39], [43]. This necessitates advanced 

analysis of the network environment to determine suitable values and it follows 

that the resultant performance is dependent upon the accuracy of values chosen. 

Reliance upon fixed values in decision-making limits the ability of the protocol 

to adapt to network changes, and so variable, unstable network environments 

can experience reduced protocol performance. This is overcome in works which 

are fully adaptive to the dynamics of the network and can consequently offer 

increased reliability in the presence of unstable conditions. 

Surveys of social-aware routing, especially in DTNs (e.g. [44]) have 

highlighted a number of core open areas that are being actively addressed, 

including the metrics used to drive decision making (e.g. social ties), selfishness 

of nodes, adaptability and intelligence of protocols, and security and privacy. 

Whilst we do not address all of these, we build upon each area and apply these 

principles to a novel VSG scenario. 

Peer-to-peer energy exchange describes the direct transference of 

electrical energy between two independent hosts at the edge of the smart grid, 

realising the ‘plug and play’ paradigm of the emerging ‘internet of energy’. This 

section presents a focused review of state-of-the-art approaches for distributed 

peer-to-peer energy exchange amongst heterogeneous mobile devices and static 

grid infrastructure. This literature review focuses on relevant and compatible 

approaches which satisfy our defined criteria. 

As a result of varying system assumptions and research foci, several 

architectures for peer-to-peer energy exchange have emerged in the literature, 

primarily differing depending upon three key factors: 

2.4 Energy Awareness 
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1. Assumed constraints for distribution of control, i.e. centralised 

versus decentralised coordination and decision making. 

2. The degree of localisation of energy exchange, i.e. energy 

exchange facilitated only at dedicated sites (such as charging 

stations and car parks) versus energy exchange at any location. 

3. The level heterogeneity of participating nodes, e.g. bidirectional 

vehicle-to-vehicle, unidirectional grid-to-vehicle. 

The degree of distribution of energy exchange and the decentralisation 

of coordination represents two tangential dimensions across proposed systems 

for peer-to-peer energy exchange. Works can be classified by both the centrality 

of the coordination of the energy transfer and by their dependence on the 

electrical grid infrastructure for the physical exchange of energy. We include a 

range of works along these axes. 

Amongst the most stringent of energy exchange approaches are those 

which are dependent upon both centralised coordination whilst simultaneously 

restricting energy exchange occurs at specific locations (‘swapping stations’). 

The Danish EDISON project [45] was a joint academic and industry initiative 

to investigate vehicle-to-grid integration of a large electric vehicle fleet with the 

electrical grid for the benefit of both end users and the grid itself. The distributed 

EDISON electric vehicle virtual powerplant proposal allows the grid to 

accommodate the increased load of electric vehicles whilst taking advantage of 

local renewable energy resources to reduce CO2 emissions [45]. Energy and 

data flows in the EDISON electric vehicle virtual powerplant are vehicle-to-

grid with charging of vehicle batteries being reliant upon semi-centralised 

scheduling allowing for only soft real-time local control [45]. 

Several works have explored optimising the scheduling of charging of 

electric vehicles from the grid infrastructure, e.g. [46] [47] [48] [49]. These 

approaches seek to account for both the needs and desires of independent 

electric vehicles whilst also optimising for centrally determined criteria. Such 

scheduling approaches assume existence of a trusted, centralised, controlling 

authority for coordination combined with a high degree of persistent 

connectivity for charge scheduling. This is not something that is present in our 

defined VSG scenario. 
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Mobile vehicle-to-vehicle energy exchange platooning using high 

energy capacity nodes such as buses and lorries is proposed in [50]. The 

approach in [50] uses cellular and ad hoc networking approaches to allow 

energy seeking nodes and needs only limited advance coordination in terms of 

the time the energy seeker expects to be connected. Despite this, the peer 

selection process in [50] requires complete manual user determination as to the 

suitability of any available charge opportunities and effectiveness depends 

strongly on accuracy of the route prediction mechanism. 

A semi-distributed approach using energy swapping stations to facilitate 

vehicle-to-vehicle charging is proposed by [51] [52]. A vehicle-to-vehicle 

charging framework is proposed in [53] which uses a centralised location-based 

social network system to permit discovery of buyers and sellers so that electric 

vehicle owners can meet and conduct a financial exchange of energy. The social 

network system proposed by [53] requires users are fully active participants in 

the vehicle-to-vehicle energy trading process and have regular connectivity with 

the service in order be aware of seeker and supplier interests. Similarly, [51] 

proposes a single-period oligopoly game-based price control strategy which 

encourages electric vehicles with surplus to exchange energy to those with 

deficit by maximising discharging revenue and minimising charging cost. 

Existing state-of-the-art approaches which only support a subset of peer-

to-peer exchange (i.e. unidirectional grid-to-vehicle or vehicle-to-grid 

techniques) are insufficiently suited to fully opportunistic vehicle-to-vehicle 

energy exchange. Some avenues of research into peer-to-peer energy exchange 

are overly prescriptive and incompatible in addressing the core research 

question, e.g. those which require manual placement of CSs. Centrally 

optimising approaches are typically reliant on advance forecasting of energy 

pricing and demand for the coordination of charging. For instance, day-ahead 

energy pricing from and demand forecasting are widely used parameters in the 

formulation of daily charging schedules for electric vehicles, e.g. [54], [55]. 

Reliance on coarse-grained, advance knowledge to derive fixed, long-term 

plans results in inflexible solutions which cannot adequately respond to real-

time behaviour which deviates outside the predetermined expected range. For 

example, at electric vehicle battery swapping stations, the number of batteries 

available for exchange is limited. Therefore, if a station overestimates the day’s 
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energy demands it can lose profit, having overspent on energy acquisition from 

the grid. Conversely, underestimating the total energy demand can lead to 

customers receiving batteries with insufficient capacity to carry out tasks  – 

under some models leading to the receipt of compensatory discounts, e.g. [54]. 

To avoid the impact of prediction errors, the inclusion of error margins in model 

formulation are used by centrally optimising approaches to reduce the impact 

of inaccurate predictions. However, such techniques lead to suboptimal 

solutions when predictions are correct and can even exacerbate problems when 

the actual demand is unexpected. One strategy is for suppliers to acquire extra 

energy when charging to account for unpredicted increases in usage [55]. Whilst 

accommodating some flexibility in prediction accuracy, provision of extra 

energy is to the direct and indirect detriment of both energy suppliers and 

seekers. Over acquisition of energy results in an increase in associated costs in 

terms of charge time and overall quantity of energy required. These costs have 

a feedback effect which reduce overall access to energy as increased charge 

times lower throughput and higher prices are subsequently demanded for 

surplus to recoup losses. When demand is underestimated the swapping station 

will have an energy deficit and when overestimated the swapping station loses 

profit. 

In terms of energy awareness and integration of energy-related 

behaviour into real-time decision making, a large number of recent works (e.g., 

[56], [57], [58], [59], [60], [61]) seek to minimise energy consumption of the 

underlying DTN network protocols and associated computation cost. Whilst 

there is room for future works to investigate this in greater detail, we consider 

the energy consumption of the underlying communications protocol and any 

related computation to be out of scope of this thesis. This thesis focuses on 

actively roaming EVs where the energy consumption through physical 

movement is substantially higher than the energy consumption through 

computation associated with data communications and algorithmic decision 

making. EVs in the VSG scenarios central to this work can acquire and offload 

substantial amounts of energy. The majority of works looking at energy 

consumption in this area are focused on low-energy wireless devices which 

might rely on low-voltage, intermittent power supply (e.g. solar) and have 

limited battery storage capacity. The aim is therefore typically to sustain some 
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level of service provision whilst minimising energy expenditure. Whilst these 

works are certainly energy aware, the underlying techniques do not directly 

apply to this work in terms of energy exchange and energy resource saving as 

we consider energy expenditure by nodes to be unavoidable and fundamental to 

a node performing it’s primary function. For example, we consider an EVs core 

use to be in driving and transporting people and goods. Unlike works which 

look at aspects of optimisation and scheduling of charging (such as [62], [63], 

[64], [65]), we consider that the vehicles must be able to expend energy at any 

and all times, provided that there is sufficient battery to do so. We embrace 

principles from works which monitor and process consumption of energy but, 

in this work, we do not consider integration of decision-making processes which 

can result in a lack of full, complete and always immediate access to all 

available energy. Nevertheless, there is certainly scope in future work to bring 

these areas together to further refine and improve energy usage. 

Automated energy transfer from a dedicated supplier node to energy 

seeking nodes has been considered by works such as [66], [67], which have 

explored usage of roaming auxiliary devices to supply energy to stationary 

nodes in need of charging. Although on a smaller scale and focusing on 

‘topping-up’ batteries attached to wireless sensor nodes, the idea presents as an 

automated version of the EV emergency chargers currently offered by roadside 

assistance and automotive services companies such as the RAC [68]. Both the 

research and the commercial offerings in this respect focus on a strict 

hierarchical supplier-seeker relationship. Fundamental to this work is the 

flattened, dynamic relationship where nodes are universally considered 

‘prosumers’ and can act as energy supplier or seeker depending on their own 

context and can change roles or even present as different roles to different peers. 

Collaborative techniques in opportunistic networks are vulnerable to a 

range of attacks (including denial of service) if data received from peers is 

blindly trusted [69]. An adaptive and flexible k-anonymity approach for 

opportunistic networks is proposed in [70], which uses collaborative cross-layer 

2.5 Threat Awareness 
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heuristics to allow for nodes to identify and choose suitable anonymisation 

overlay nodes for use without degradation of network performance. Extending 

[70], OCOT-AA [71] adds a peer testing mechanism which allows for pre-

emptive analysis of obfuscation behaviour. OCOT-AA [71] efficiently and 

rapidly detects misbehaving nodes when a trusted peer is available for 

collaborative peer behavioural analysis. Misbehaviour is identified via a 

collaborative peer testing scheme. CogPriv [72] builds upon [71] to provide a 

real-time, fully-localised privacy framework for personal clouds which uses 

collaborative smart probing and multi-service isolation via a virtualisation layer 

for adaptive, on-demand privacy in heterogeneous networks. 

Black hole attacks are a similar form of DoS attack in mobile networks 

such as mobile ad hoc networks (MANETs) and delay-tolerant networks 

(DTNs). Many approaches to black hole detection and reputation management 

have been explored in the context of wireless networks using a wide range of 

approaches. For instance, machine learning [73], fuzzy logic detection [74], 

game theory [74], the TEAR mechanism for hotspot avoidance [75]. Many 

works extend the existing protocols to capture information about node 

behaviour and to identify mis-behaviour, e.g. [76]. Whilst there is a wealth of 

research exploring approaches to mitigation to black hole attacks in these 

environments [77], [78], [79], the fundamental differences between energy and 

data limit the efficacy of many approaches as being applied to EDoS attacks in 

VSGs. 

Blockchain strategies provide a mechanism for threat avoidance through 

dissemination of certified records. By checking these records, it is possible to 

determine whether a node is falsifying local information. ‘Off-chain’ 

transactions present a promising approach wherein a transaction between two 

nodes does not need to be logged to the blockchain or can be deferred until later, 

reducing reliance on centralised and time-bound communications. In [80], 

authors explore centralised, decentralised, and hybrid architectures for smart 

contracts based upon blockchain systems. Many approaches to off-chain 

transactions rely on trusted third parties, e.g. for escrow. An alternative 

approach makes use of secure payment channels and cryptographic algorithms 

(such as the Hashed Time Lock Contracts employed in the Lightning Network 

[81]) to allow for revocable P2P off-chain payments. Despite providing secure 
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off-chain transactions, an initial commitment transaction must still be broadcast 

to the blockchain before off-chain trading can begin [81]. Whilst cryptographic 

approaches, where possible, offer strong security guarantees, they do not 

account for malicious behaviour of authorised nodes which later present a threat 

(e.g. a negative behaviour change due to being hacked). There is an assumption 

in typical blockchain technologies that the actor authorising participation in the 

exchange is the owner or authorised operator of the node, which may not be the 

case if the device under the influence of a malicious entity. We therefore make 

use of trust schemes and reputation techniques which are known effective 

countermeasures in such environments. 

Emerging distributed ledger technologies such as the blockchain have 

been explored by recent works for enhancing both security and end-user privacy 

in untrusted, distributed, and decentralised internet-of-things systems for a 

diverse range of environments, including smart energy, and healthcare, amongst 

many others. Viability of the blockchain has been considered by many recent 

industry and research projects for financial energy trading in smart microgrids. 

Blockchains are expected to see wide deployment in the internet-of-things due 

to their inherent support for transaction immutability and provision of 

cryptographic assurances in decentralised environments [82]. Blockchain 

deployments are categorised as either public, private, or consortium with 

various algorithms employed for distributed consensus, the most common being 

variants of proof-of-work, proof-of-stake, or proof-of-activity. Privacy of 

blockchain transactions uses emerging techniques such as address 

anonymisation, transaction privacy, and smart contracts [82]. 

Despite the advantages of blockchains there remain open challenges in 

meeting the performance, scalability, and data consistency requirements needed 

for future deployments [80]. Eventual consistency in distributed systems 

guarantees that once updates to a data entry have ceased, all retrievals of the 

recorded entry will eventually yield an identical response. Providing stringent 

consistency guarantees is beyond the scope of our work. We assume existence 

of a distributed ledger or blockchain deployment for recording financial 

transactions of energy. Our approach compliments existing blockchain 

approaches. The specifics of the deployment (e.g. architecture, consensus 

algorithms, etc.) do not impact our proposal architecture or effectiveness as we 
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assume the most stringent and restrictive case for each (e.g. our techniques do 

not require that transactions on the blockchain are readable and therefore 

emerging privacy techniques can be seamlessly integrated with our approach. 

The Brooklyn Microgrid is an ongoing, private blockchain-backed 

energy marketplace comprising residences and local solar renewable energy 

resources ran by the LO3 Energy company in New York, USA [83]. Buying and 

selling of energy is automated based upon user specified criteria and in 

emergency situations the Brooklyn Microgrid can operate whilst fully 

disconnected from the wider grid [83]. Though demonstrating the viability of 

blockchain energy marketplaces in microgrids, the Brooklyn Microgrid is 

completely static and energy flows are coarse-grained; all energy trading is time 

synchronised and not real-time [83]. 

Specifically targeting renewable energy, the NRG-X-Change [84] 

protocol proposes a scalable, blockchain-backed marketplace which 

incentivises energy exchange between local prosumers and the grid. Locally 

generated energy supplied to the grid earns prosumers NRGCoin [85], a virtual 

cryptocurrency analogous to Bitcoin. Smart metering agents over time 

determine strategies for buying and selling of energy as well as for non-

immediate conversion of NRGCoin to more widely accepted currencies such as 

fiat money (e.g. pounds sterling, US dollars) [84] [85]. Feasibility of the both 

NRGCoin and the NRG-X-Change platform was demonstrated in a static 

environment in [86]. Despite insufficiently real-time. Responsiveness of such 

an approach with increasingly dynamic scenarios and unpredictable events. 

PETra [87] is a privacy focused approach to energy transactions for 

prosumers within smart microgrids which share a common energy link with the 

wider grid. Participating microgrid nodes anonymously negotiate energy trades 

in advance via a semi-distributed bidding service with each microgrid having a 

controller to predict usage and dictate pricing [87]. PETra’s security architecture 

assumes that smart meters can generally be trusted and therefore requires tamper 

resistant hardware be deployed to prevent theft or malicious behaviour [87]. 

Similarly, PETra is reliant upon trusted, semi-centralised operators and requires 

trade decisions be made in advance without necessitating proof of real-time 

local energy availability [87]. 
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PriWatt [88] proposes a reliable, privacy oriented proof-of-work-based 

blockchain-backed energy trading platform which permits anonymous price 

negotiation and replication of transactions to avert failure and attack. The 

PriWatt architecture is a hybrid of hierarchical, centralisation and peer-to-peer 

networks [88]. Although PriWatt is not reliant on central pricing controls, it 

requires availability of distributed system operators for mediating transactions 

and additional communication with an ‘auction board’ for advertising of 

anonymous supply and demand requests [88]. Security of PriWatt energy 

transactions depends upon the ability of both buyer and seller to communicate 

in real-time with multiple common entities [88]. 

A smart contract-based permissioned blockchain for secure charging and 

reputation based delegated Byzantine fault tolerance consensus algorithm are 

proposed by [89] in which centralised aggregators manage local energy 

resources and coordinate the charging of collocated electric vehicles from the 

grid. Three adversarial groups are presented in [89], namely malicious energy 

providers, malicious, energy consumers, and malicious trusted third parties. Use 

of permissioned blockchain means only pre-authorised nodes are trusted to 

process transactions, limiting flexibility. 

PETCON [90] is a semi-centralised, privacy preserving P2P energy 

trading system which uses a consortium blockchain approach wherein local, 

preselected aggregator nodes act as energy brokers and peer coordinators, 

controlling the logging of transactions to the blockchain via proof-of-work 

consensus. Authors highlight the importance of incentive schemes for balancing 

the supply and demand amongst heterogeneous collocated electric vehicles and 

additionally propose an auction mechanism for energy price negotiation [90]. 

The PETCON proposal requires that nodes in advance commit to a certain 

amount of charge-time and establish a fixed price in advance of any possible 

transaction. Furthermore, nodes who wish to participate in energy exchange 

must use an available local aggregator to handle coordination. Vehicle-to-

vehicle energy exchange in the PETCON system is therefore not fully 

opportunistic and is insufficiently adaptive to real-time dynamic conditions. 

Other protocols such as EBR [69] resort to a mechanisms for digitally signing 

data. 
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Security, in particular, is an open challenge in the area of DTNs and 

OppNets [91], [92]. In this work, as highlighted, we consider behavioural 

analysis as the core mechanism for threat detection suitable for the defined VSG 

scenario. In the scope of the VSG, as highlighted, we further consider reputation 

and peer trust dissemination as crucial for spreading awareness of malicious 

behaviour and mitigating the impact of attacks. There are range of strategies for 

threat-awareness information dissemination via trust and reputation 

management schemes, amongst others with a focus on data routing and 

forwarding (e.g. [75], [75], [93], [94], [95], [96], [97], [98], [99], [100], [101], 

[102]). Broadly, the architecture of these are similar in necessitating some initial 

trust value derivation, providing a strategy for reputation dissemination, and 

then adjusting the trust value using reputation ratings received from peers via a 

local trust update mechanism. In the context of OppNets, real-time decisions are 

made alongside routing related decisions as to whether a peer is trusted enough 

to participate in an exchange of data. 

In depth consideration of trust and reputation management strategies is 

beyond the scope of this work. Whilst we apply fundamental principles to 

manage trust and reputation in this work, there is nevertheless room for future 

work to pick up on this in greater depth to further improve accuracy and 

resilience of the proposed work to attack. We focus on a single tier threat 

detection and reputation mechanism to meet the core aim of this work. However, 

for a practical implementation in the real-world it would be essential to broaden 

the scope of this work to consider a broader range of attacks, as well as attacks 

against the detection mechanism themselves (such as ballot stuffing) and the 

necessary layered defences to thwart these. 

  



35 

This chapter details our novel CognitiveCharge proposal. 

CognitiveCharge enables predictive energy availability and threat context 

awareness to provide real-time identification and exploitation of suitably 

reliable opportunities for P2P energy exchanges. CognitiveCharge nodes 

monitor local and regional information from first-hand observations and 

second-hand collaborative information propagation to capture the dynamically 

changing socio-spatio-temporal energy and security contexts. Via a novel suite 

of multi-dimensional, complementary, real-time, predictive analytics, 

CognitiveCharge nodes can make adaptive, heuristic-driven decisions for on-

demand energy acquisition and supply offloading in disconnection-prone, 

distributed, and decentralised VSGs. By adaptively balancing dynamic energy 

and contextual security sensitivity, CognitiveCharge nodes make real-time 

decisions in highly dynamic untrusted networks. 

This section has briefly introduced our CognitiveCharge proposal. The 

remainder of this chapter is structured as follows. Firstly we detail the 

architecture of our CognitiveCharge proposal. Following this, we provide the 

formal multi-dimensional spatiotemporal graph definition which we use in this 

work to model both the global network and nodes’ independent ego networks. 

A minimal network example is then given to clarify aspects of the model and 

highlight the perspective differences. 

Chapter 3 

CognitiveCharge 

3.1 Introduction 
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Building on established works (including [40], [41], [103], [104]), 

CognitiveCharge combines data from multiple layers. These layers are 

monitored first-hand in addition to integrating second-hand propagated 

information. As in similar works in this area, we distinguish between core 

metrics – for instance, monitored data such as energy consumption through 

usage and social tie strength – and analytics – the predictive ‘wrappers’ which 

build upon the metrics and capture the state of the network to inform future 

decision making. Using energy level as an example, in this work the raw energy 

level over time would be considered a metric. Applying a prediction over the 

set of recent energy levels, such as to anticipate when a battery might deplete, 

would be considered an analytic. Analytics are therefore composed of metrics. 

In other works, analytics and metrics be also termed ‘statistics’ or ‘properties’. 

To help illustrate this, Figure 4 shows the hierarchy of metrics and analytics in 

an example of a decision-making engine. This is essentially a scaled-back and 

simplified version of CognitiveCharge. In OppNets, this form of decision-

making would drive data routing decisions when nodes encounter one another. 

Here, we look at a hypothetical Simple Offload Decision Engine (SODE) which 

might be used to make a decision about forwarding or receiving energy. We can 

imagine that each node in a hypothetical VSG scenario is equipped with SODE 

and wants to know, when it encounters another node, whether it has surplus 

energy that it can acquire or offload or whether it should hold on to its remaining 

energy for the time being. The battery level metric tracks the battery level over 

time and the depletion analytic wraps around this to monitor the rate at which 

the level is increasing or decreasing. Similarly, the inter-contact time metric 

measures the time between encounters, with the encounter analytic predicting 

the next time the node will have an opportunity to offload or acquire energy. 

The SODE component of each node therefore balances the immediate and 

forthcoming needs of the node, considering the anticipated opportunities for 

exchange. This is a contrived example, purely to illustrate and clarify key 

concepts for this work in a field where terminology is very overloaded. For 

CognitiveCharge, and similar works in the literature which model decision 

3.2 Architecture 
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making in this way (e.g. [41]), analytics are composed of multiple metrics and 

seek to capture a facet of the network and multiple analytics inform the decision-

making processes. This, for CognitiveCharge, means continually monitoring 

data across layers, both first and second hand, so that meaningful analytics, 

which provide higher-level context, can anticipate key events to be fed into the 

decision engine for real-time decision making. 

 

Figure 4 Example Decision Engine Highlighting Metrics and Analytics 

The distinct layers which comprise the high-level architectural overview 

of our conceptual model are shown in Figure 5, which highlights: the physical, 

data networking, and peer-to-peer energy exchange layers; the social encounter 

dynamics layer; the energy resource need and availability layer; the trust and 

reputation-based security layer, and the supply and demand energy marketplace 

layer. Each of these layers is represented as a dynamic temporal graph which is 

continually evolving as a result of internal and external influences across 

multiple dimensions. By combining locally calculated predictive analytics from 

metrics monitored for each dimension with exchanged peer information, each 

independent CognitiveCharge node can make informed decisions based on the 

current state and predicted future state of each layer. CognitiveCharge 

adaptively manages trade-offs between these dimensions through multiple 

predictive real-time analytics. 
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Figure 5 Architectural VSG Layers 

At the physical layer is the dynamic network topology wherein 

independent nodes spontaneously form local networks through temporal 

encounters resulting primarily from node mobility. Mobile nodes independently 

roam the environment, per their primary behaviour (e.g. as taxis, buses, or 

consumer vehicles), interact locally with one another as well as with static nodes 

(e.g. traditional charging infrastructure at dedicated refuelling stations and 

charge-points installed at homes). Dual connections can be made between 

collocated nodes at the physical networking layer, representing the information 

communication and energy flow channels, respectively. The temporal networks 

formed from these connections can correspond one-to-one if the range of each 

is identical, otherwise, the range of energy connectivity is assumed to be less 

than that for data. V2V and V2G connections in these environments are short-

lived and frequently changing. There is no assumption of end-to-end path 

connectivity and exchanges of both information and energy are required to be 

both real-time and localised. 

The social, temporal graph layer concerns a given node's regular and 

irregular contacts which are derived through multiple complementary 

encounter-based analytics such as the contact duration and contact frequency. 

Together, these social analytics allows us to describe complex spatiotemporal 

relationship dynamics between nodes and node groups. Combining various 
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metrics to analyse node ties allows for the identification and ranking of nodes 

in social clusters as well as those more transient ‘vagabonds’ [22]. 

Atop these layers is the fluctuating geo-temporal availability of energy. 

In vehicular smart grids, energy is transient. Predominantly, energy moves 

fluidly as it is expended and exchanged amongst mobile vehicles and the grid. 

Availability can also be more sharply disturbed by unplanned events such as 

grid outages resulting from attack or malfunction. Even the existing electric 

vehicle infrastructure (i.e. vehicles only acquiring energy from static grid CSs) 

has geo-temporally dynamic energy availability as charge-points can be broken, 

undergoing servicing, or experiencing blackout. 

The trust and reputation-aware security later captures the perceived risk 

of attack from peer nodes via detected and predicted malicious behaviour. 

Amongst socio-spatiotemporal network communities, trust and reputation may 

be incongruent as perspectives of collated reputation values differ between 

independent CognitiveCharge nodes. Node with strong mutual trust may not 

have the same opinion of a common peer, either because they have received 

incompatible second-hand opinions or have had different first-hand experiences 

with the peer; for example, due to malicious behaviour only targeting specific 

nodes. Therefore, for each node, its perception of its peers’ reputation changes 

spatiotemporally as attacker behaviour may be nonuniform, e.g., targeting 

groups of nodes or geographic regions. Finally, at the uppermost layer there is 

real-time supply and demand of energy and provision of energy consuming 

services, such as mobility and exchange. 

As detailed in previous sections, the VSG scenario central to this work 

is highly dynamic and multi-dimensional. In this section, we present our model 

formulation of the VSG. This model is used consistently throughout this work 

however it is essential to note that there are critical distinctions between the 

global system overview and the perspectives of independent nodes within the 

system. The former represents a complete but external birds-eye view of the 

multi-dimensional spatiotemporal graph. This global model is extremely useful 

3.3 Model Formulation 
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for analysis. We first give the general, global graph model. Subsequently, we 

provide further model assumptions specific to the VSG scenario central to this 

thesis. An example VSG network scenario is provided later in this chapter to 

illustrate further how the global and ego network graph models presented here 

relate to one another. 

To formally model the complex dynamics fundamental to our 

spatiotemporal cross-layer scenario, we build upon established temporal graph 

models as presented in [105], [106]. We extend these models to suitably capture 

the high dimensionality of the problem space and VSG context. Therefore, we 

model the network as a multi-dimensional, time-dependent digraph with 

multiply weighted edges 𝐺 where 𝑉 is the set of vertices, 𝐸 is the set of edges, 

𝐷 is the set of all dimensions, 𝐶 is the set system (family of sets) of valid weights 

(capacities), and finally, 𝑇 is the complete set of possible times which appear as 

interval bounds in edge tuples. Our graph model is shown in Equation 1. 

𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑚} 

𝐸 = 𝑒1, 𝑒2, … , 𝑒𝑛 

𝐷 = {𝑑1, 𝑑2, … , 𝑑𝑜} 

𝑊 = {𝑊1, 𝑊2, … , 𝑊𝑝} 

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑞} 

𝐺 = (𝑉, 𝐸, 𝐷, 𝑊, 𝑇) 

Equation 1 Graph Model 

Each edge of the graph is represented as a 7-tuple 𝑒 =

(𝑢, 𝑣, 𝑑, 𝑤, 𝑐, 𝑡𝑖 , 𝑡𝑗), which indicates a directed connection from node 𝑢 to node 

𝑣 in dimension 𝑑 with weight 𝑤 of possible capacity 𝑐 at between time intervals 

𝑡𝑖 (the start time) and 𝑡𝑗 (the end time) [𝑡𝑖, 𝑡𝑗]. The duration of the connection 

can be obtained simply as 𝑡𝑗 − 𝑡𝑖. As such, the set of possible edges 𝐸 for a VSG 

scenario is a strict subset of the Cartesian product of the set of possible values 

for each tuple element 𝐸 ⊆ 𝑉 × 𝑉 × 𝐷 × ⋃𝑊 × ⋃𝑊 × 𝑇 × 𝑇. This set may be 

further reduced to omit invalid edges, such as by ensuring that there are no 

conflicting or invalid weight and capacity combinations in a given dimension 
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(𝑑𝑖 ∧ 𝑤, 𝑐 ∈ 𝑊𝑖 ∧ 𝑤 ≤ 𝑐 for each edge), that time intervals are possible (𝑡𝑖 <

𝑡𝑗), and there are no loops (𝑢 ≠ 𝑣). 

In this multi-dimensional graph model, each edge includes the capacity 

value representing the maximum possible link connection between any two 

nodes and the weight representing the actual usage. The capacity value is 

determined by the physical constraints of the network as well as any subsequent 

constraints that the nodes themselves may apply. As such, every temporal 

connection in the graph has a weight 𝑤 which is bound by a link capacity 𝑤 ∈

𝐶 ⊆ 𝑊. 

To simplify notation for operations over graphs and their constituents, 

we adopt and adapt some common functional mechanisms to denote operations 

over sets conveniently. For example, to extract snapshots of the multi-

dimensional time-dependent graph 𝐺 by filtering the edges based on some 

desired criteria and accessing specific elements of tuples. As shown in Equation 

2, the function 𝜋𝑛(𝑥) accesses the 𝑛th projection of a given tuple 𝑥. For 

instance, 𝜋2(𝑎, 𝑏) would return 𝑏. To simplify the notation in the context of this 

model, we also utilise the tuple variables defined above when projecting named 

elements onto the 7-tuple edges, i.e. 𝜋𝑑(𝑒) ≡ 𝜋3(𝑒). 

𝜋𝑖: 𝑋1 × ⋯ × 𝑋𝑖 × ⋯ × 𝑋𝑛 ⟶ 𝑋𝑖

(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛) ⟼ 𝑥𝑖
 

Equation 2 Projection Function 

As shown in Equation 3, a generic, higher-order function for filtering an 

arbitrary set 𝑋 into a subset 𝑋′ ⊆ 𝑋 based on some predicate 𝑝: 𝑋 → 𝔹 can be 

defined such that ∀𝑥∈𝑌(𝑝(𝑥) ∧ 𝑥 ∈ 𝑋) where 𝑋′𝑋
 denotes the set of all functions 

from 𝑋 to set 𝑋′. The power set is denoted as usual in the domains and 

codomains of these functions as 𝒫(𝑋). To illustrate this, the edges 𝐸′ of the one-

dimensional temporal subgraph of graph 𝐺 in dimension 𝑑𝑖 that occur strictly 

within the time interval [𝑡𝑖, 𝑡𝑗] can then be obtained from the set of all edges 𝐸 

as 𝐸′ = filter (𝑒 ↦ 𝜋3(𝑒) = 𝑑 ∧ 𝑡𝑖 ≤ 𝜋6(𝑒) ≤ 𝜋7(𝑒) ≤ 𝑡𝑗) 𝐸. We can similarly 

define the well known higher-order map and reduce functions. The map function 

(Equation 4) applies some operation to each element of a set 𝑋 to return a new 
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set 𝑌 with the same cardinality. These functions are composable such that 

𝑔(𝑓(𝑥)) ≡ (𝑔 ∘ 𝑓)(𝑥). 

filter: 𝔹𝑋 ⟶ 𝒫(𝑋)𝒫(𝑋)

𝑝 ⟼ (𝑋 ↦ {𝑥 | 𝑝(𝑥) ∧ 𝑥 ∈ 𝑋})
 

Equation 3 Filter Function 

map: 𝑌𝑋 ⟶ 𝒫(𝑋)𝒫(𝑋)

𝑓 ⟼ (𝑋 ↦ {𝑓(𝑥) | 𝑥 ∈ 𝑋})
 

Equation 4 Map Function 

For any single-dimensional graph snapshot, a square adjacency matrix 

representation 𝑨 can be obtained from a set of edges 𝐸 via the function 𝜇(𝑒) 

(for 𝑒 ∈ 𝐸). For a matrix 𝑨 (or equivalent set representation), the element at the 

𝑖th row and 𝑗th column can be accessed via the function 𝛼𝑖,𝑗: 𝑋𝑚×𝑛 → 𝑋, where 

𝑋𝑚×𝑛 denotes the set of all 𝑚 by 𝑛 matrices comprising elements of 𝑋, for 

which we use the shorthand 𝑨𝒊,𝒋. The ‘index of’ function 𝜄: 𝑉 → 𝑁+ maps a node 

𝑢 ∈ 𝑉 to a unique natural number satisfying ∃! 𝑢 ∈ 𝑉, 𝑖 ∈ [1. . |𝑉|](𝜄(𝑢) = 𝑖). 

In the adjacency matrix representation of a network, 𝐴𝑖,𝑗 is set to weight 𝑤 if 

there exists a direct connection from node 𝑢𝑖 to node 𝑢𝑗 , otherwise zero (or some 

other suitable value if zero would conflict with a valid graph weight, e.g. 𝜙 ∉

𝑊. For a simple adjacency matrix where ∀𝑖 ∈ [1. . 𝑚], 𝑗 ∈ [1. . 𝑛](𝑨𝑖,𝑗 ∈ 0,1), 

it is well known that the number of walks of length (hops) 𝑝 between two nodes 

𝑖 and 𝑗 can be derived by raising the adjacency matrix to the power 𝑝, i.e. 𝐴𝑖,𝑗
𝑛 . 

The global network model facilitates understanding of the cross-layer 

spatiotemporal events as they actually occur. Whilst useful for understanding 

the network, the VSG scenarios central to this work do not permit for global 

knowledge-based decision making as there is no central authority with 

persistent connectivity to all nodes. Partial knowledge combined with a mutual 

lack of trust necessitates localised decision making. The local ego network 

perspective considers the view of the network from the perspective of a single 

node. Unlike the global graph model, which presents the true state of the system, 

the ego network is localised and context-dependent for each node. As it is not 

possible for nodes in the highly dynamic and disconnection-prone VSG to have 
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a global network overview, two separate nodes will most likely have different 

and possibly conflicting ego networks. This is particularly true in the untrusted 

VSG contexts of this work where mutual trust must also be obtained. 

The ego network perspective [38] is extremely important because it 

represents the view of an individual node of its immediate neighbours. This is a 

crucial perspective to consider when considering how independent 

CognitiveCharge nodes analyse their environment and make real-time decisions 

based on partial knowledge derived from first and second-hand information. 

Complementing the global graph model, the ego network model allows us to 

understand the local dynamics and interactions between nodes before, during, 

and after network events. 

The ego network perspective of the network represents the view of an 

individual node of its immediate neighbours. It is important to note that in this 

context we consider the neighbourhood of a node in a socio-spatio-temporal 

sense and so a node is a neighbour of another providing there has been a single-

hop encounter between them at some point. We can find the neighbourhood of 

a node from the global set of edges for a given node 𝑢 as 

𝐸′ = filter(𝑒 ↦ 𝜋1(𝑒) = 𝑢 ∨ 𝜋2(𝑒) = 𝑢)𝐸. 

To more clearly illustrate our multi-dimensional socio-spatio-temporal 

graph model, a minimal example network 𝐺 is provided. Recall that we define 

each edge is a 7-tuple 𝑒 = (𝑢, 𝑣, 𝑑, 𝑤, 𝑐, 𝑡𝑖 , 𝑡𝑗). Figure 6 and Equation 5 show a 

representation of the time interval snapshots of 𝐺 for the two dimensions 𝑑0 and 

𝑑1. From the perspective of the overall network, the edges of 𝐺 are given by 𝐸, 

the nodes 𝑉 = {𝑢1, 𝑢2, 𝑢3}, dimensions 𝐷 = {𝑑1, 𝑑2}, valid weights 𝑊 =

{ℕ, ℕ}, and time intervals 𝑇 = {1, 2, 3}. 

3.4 Network Example 
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Figure 6 Network Example 

𝐸 = {(𝑢1, 𝑢2, 𝑑2, 1,3,1,2), (𝑢2, 𝑢1, 𝑑1, 3,3,1,2),
(𝑢2, 𝑢3, 𝑑2, 2,5,2,3), (𝑢3, 𝑢2, 𝑑1, 4,4,3,4),

(𝑢1, 𝑢2, 𝑑1, 2,5,3,4), }

𝐺 = (𝑉, 𝐸, 𝐷, 𝑊, 𝑇)

 

Equation 5 Network Example 

Using the defined model, we are able to convey and extract a significant 

amount of multi-dimensional, spatiotemporal information about the network as 

represented by graph 𝐺. The set of edges 𝐸′ ⊆ 𝐸 representing the subgraph of 

𝐺 at time interval [1,2] can be extracted using the method shown previously as 

𝐸′ = filter (𝑒 ↦ 1 ≥ π5(𝑒) ≤ 2 ∧ 1 ≥ π6(𝑒) ≤ 2) 𝐸. We can calculate a total 

deficit in network utilisation across dimension 𝑑2 by filtering where weight is 

less than capacity and summing the difference between the two for each edge. 

∑ map (𝑒 ↦ 𝜋4(𝑒) − 𝜋3(𝑒)) filter (𝑒 ↦ 𝜋4(𝑒) < 𝜋5(𝑒)) ∘ (𝑒 ↦ 𝜋3(𝑑2)) 𝐸 

Furthermore, we can explore the ego network perspective of each node. 

To illustrate this, consider the case of obtaining a matrix containing information 

regarding the incoming usage of links in dimension 𝑑1 from the perspective of 

node 𝑢2. 

𝑨 = 𝜇 ∘ filter(𝜋3(𝑒) = 𝑢2 ∧ 𝜋3(𝑒) = 𝑑1)𝐸

𝑨 = [
0 2 0
0 0 0
0 4 0

]
 

For our VSG scenarios, we consider a set of dimensions corresponding 

precisely to the architectural layers detailed previously. Thus, the complete set 

of dimensions can be given as 𝐷 = {𝑑𝐷 , 𝑑𝐸 , 𝑑𝑆, 𝑑𝐴, 𝑑𝑇 , 𝑑𝑀} for the highlighted 

real-time dynamic layers of physical data networking (𝑑𝐷), physical energy 
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3.5 Model Context 
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exchange connectivity (𝑑𝐸), social dynamics (𝑑𝑆), energy resource availability 

(𝑑𝐴), trust and security (𝑑𝑇), and the energy trading marketplace (𝑑𝑀). 

All edge weights in this work are normalised to values in the closed unit 

interval [0, 1] to help reduce the complexity of any cross-layer edge 

calculations. To explore our proposal with the strictest VSG configuration, in 

this work we consider physical data networking and energy exchange 

connectivity to be both bidirectional and unicast. It is important to note that this 

does not preclude multicast data or energy exchange from working with our 

proposed CognitiveCharge approach. Rather, this restriction represents a 

stringent core of the VSG definition in line with existing real-world 

mechanisms. By making this assumption with our CognitiveCharge model, we 

maximise the utility and relevance of our results to more flexible VSG 

scenarios. 

At the cost of increased memory overheads and computational 

processing for analysis of graphs, to capture all cross-dimensional connectivity 

and node interactions in our VSG scenarios in practice we can assume a 

realisation of this model with consistent connectivity sampling at a suitably low 

fidelity that is below the duration of the smallest connection. This assumption 

is necessary for the highly dynamic real-time network model fundamental to 

this work, as we are particularly interested in localised events which coarse-

grained connectivity snapshots could miss. Consequently, the overall 

representation of graph 𝐺 is expected to be highly disconnected and formed of 

many socio-spatio-temporal subgraphs. 

Our proposed clustering protocol for CognitiveCharge nodes provides 

lightweight coordination mechanisms for contextual information dissemination 

and local energy exchange. These mechanisms are intended to operate atop, and 

be integrated with, any functionally compatible set of protocols. We therefore 

do not specify a precise format for messages, nor do we stipulate the underlying 

communication protocols. This section further highlights the scope of our 

3.6 Self-Organised Coordination 
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cluster-based coordination mechanisms as well as presenting some key areas for 

consideration. 

We presume that communication amongst CognitiveCharge nodes is 

private and our approach does not require that nodes have the ability to 

eavesdrop on messages that are not directly addressed to them, even if acting as 

an intermediary hop. In order to be maximally compatible with existing privacy-

focused approaches, we presume that CognitiveCharge nodes can only ascertain 

information which is explicitly addressed to them or passively observed. 

Similarly, CognitiveCharge nodes do not rely on overheard communications 

metadata in order to be compatible with techniques which use peer forwarding 

for privacy and anonymity, e.g. [70], [71]. Specification of mechanisms to 

achieve message content privacy is beyond the scope of this thesis however 

there are existing approaches which could be used to support this. In particular, 

cryptographic techniques for distributed and decentralised networks. 

In energy interest availability clusters, the cluster head continually 

adapts the price at which it is prepared to sell energy based upon a wide range 

of criteria including both its willingness to sell and the current local demand. 

The price of energy is therefore implicitly informed, in part, by peer behaviour 

such as the fluctuating demand for energy. An extension to this mechanism 

could consider explicit pricing feedback amongst buyers and sellers and our 

outlined availability clustering approach could be integrated with mechanisms 

for energy pricing negotiation mechanisms. Such strategies are beyond the 

scope of this work however several proposals exist which can be incorporated 

into our CognitiveCharge proposal, for example, multi-party bidding and 

auctioning approaches. 

Figure 7 illustrates our three-tiered coordination clustering mechanism 

using an example network comprised of five nodes, as shown from the 

perspective of the energy supplying node 𝑛2. The three, overlapping clusters of 

real-time energy exchange, energy availability interest, and ego network 

community highlighted in Figure 3 are represented by the sets 𝑋 = {𝑛3}, 𝑌 =

{𝑛1, 𝑛3}, and 𝑍 = {𝑛1, 𝑛3, 𝑛4}, respectively, with the relationship 𝑋 ⊆ 𝑌 ⊆ 𝑍 

holding in all cases. Figure 7 further shows how the levels of our hierarchical 

cluster-based coordination mechanisms correspond to the time and location 
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criticality of the decision-making being made by CognitiveCharge nodes, with 

V2X energy exchange being the most highly time sensitive. 

 

Figure 7 Tiered Self-Organised Clustering 

We propose a lightweight, interest-based, socio-spatio-temporal 

clustering mechanism through which CognitiveCharge nodes can 

collaboratively coordinate real-time, opportunistic exchange of energy. Energy 

interest-based clustering connects a single energy supplier (a node with a 

surplus of energy that it is willing to offload) with nodes in its dynamic, 

immediate, single-hop neighbourhood which wish to acquire energy. At the 

head of each energy interest-based cluster is the energy supplier which initiated 

clustering. The presented mechanism is entirely proactive – nodes must opt-in 

as a cluster member in order participate. An illustration of this is provided in 

Figure 8 which shows a local, temporal single-hop network, in particular, the 

ego network of the supplying node. 
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Figure 8 Supplier-Driven Energy Interest Clustering 

Our proposed clustering protocol for CognitiveCharge nodes provide 

lightweight coordination mechanisms for contextual information dissemination 

and local energy exchange. These mechanisms are intended to operate atop, and 

be integrated with, any functionally compatible set of protocols. We therefore 

do not specify a precise format for messages, nor do we stipulate the underlying 

communication protocols. This section further highlights the scope of our 

cluster-based coordination mechanisms as well as presenting some key areas for 

consideration. 

From the perspective of the cluster head, members of the energy interest 

cluster are considered part of a dynamic priority queue. Nodes in the queue are 

continually ranked by the supplier using our proposed CognitiveCharge Utility 

heuristic calculation in order to evaluate their suitability as candidates for 

energy exchange. Membership of an energy-interest cluster does not guarantee 

the opportunity for a seeker to acquire energy, nor does it guarantee an 

opportunity for a supplier to offload energy. Our supplier-driven approach 

dictates that the energy supplier decides which, if any, of the energy seeking 

nodes in the cluster it wishes to distribute amongst. 

Cluster formation is initiated by an energy supplier via the broadcast of 

an ADVERT message to all nodes in direct communication range (effectively 

single-hop multicast to immediately connected nodes). Throughout the lifetime 

of the energy interest cluster, ADVERT messages are additionally sent from the 

cluster head to newly detected nodes which enter into single-hop 

communication range of the supplier. The advertisement messages signal to 
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recipients that the source node has energy to offload, in addition to any details 

attached to the message pertaining to the supplier, such as the amount energy 

available for acquisition and the number of nodes actively queuing for energy. 

Nodes with an interest in acquiring energy from the supplier indicate 

their desire to join the cluster by replying to an ADVERT message with a 

CONNECT message. To reduce protocol overheads and limit coordination 

complexity, in our approach we do not necessitate that the cluster head send 

explicit acknowledgement messages in response to requests to join the cluster. 

A join message sent to a supplier may contain additional data pertaining to the 

energy seeking node. As previously mentioned, joining an energy interest 

cluster does not guarantee that a node will receive energy, nor does it commit 

the energy seeker to acquire energy. The real-time exchange of energy between 

a supplier and a seeker is handled using the exchange protocol. 

During the lifetime of the energy interest-based cluster, the supplier 

intermittently broadcasts UPDATE messages to cluster members in order to 

notify them of changes to the supplier’s energy availability. These messages 

contain information regarding the ongoing availability of energy (e.g. the 

amount of energy left to supply). Due to the time criticality of energy exchange 

and the cross-layer geo-temporal dynamics of vehicular smart grids, it is 

important that the cluster head notify members promptly to changes so as to 

inform their own decision making (e.g. whether to leave the cluster). To allow 

for real-time responses to the evolving conditions, rather than sending UPDATE 

messages at regular time intervals they are sent reactively by the cluster head in 

response to change. The broadcast UPDATE messages may therefore 

additionally contain details pertaining to the priority supply queue, such as the 

length of the queue, duration of wait time, and position of nodes, etc. 

Members can leave the cluster voluntarily (e.g. because they no longer 

need to acquire energy) by sending a DISCONNECT request. Similar to 

CONNECT messages, cluster members which choose to exit the cluster whilst 

it is active only need to send a DISCONNECT message if they remain in 

communication range of the cluster head. Moving out of range of energy 

exchange is interpreted by the cluster head as an implicit intention to leave the 

cluster. A cluster head can also evict a member from the cluster at any time using 

an EVICT message. 
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Peer-to-peer energy exchange is controlled via the supplying node, who, 

acting as cluster head, selects a cluster member – a self-reported energy seeking 

peer – for exchange using the CognitiveCharge decision making process. 

Exchange of energy between the cluster head supplier and a selected cluster 

member is initiated by the sending of SUPPLY message. Once energy exchange 

has begun, either the supplier or energy seeker may send a STOP message to 

indicate cessation of energy flow. As with data exchange and cluster 

membership, energy exchange may also be terminated via detection of a 

dropped connection. 

An example of the complete process is illustrated in Figure 9, which 

shows a high-level overview of the energy exchange process when more than 

one seeker and supplier are in the same area and competing with one another 

for access to acquire (purchase) and offload (sell) energy. In Phase 1, Supplier1 

is connected to Seeker1and broadcasts a single-hop advertisement message. This 

initialises an energy cluster comprising the two nodes. Needing energy, Seeker1 

requests to acquire energy from Supplier1. This request is accepted, and 

Supplier1 begins transferring energy to Seeker1. In Phase 2, both Seeker2 and 

Supplier2 have come into the energy exchange range of Supplier1 and one 

another. This extends the energy cluster to all four nodes. Both suppliers 

broadcast a single-hop advertisement message to the seekers in the cluster. 

Seeker2 requests energy from Supplier1, and this request is accepted. Supplier1 

ceases transferring energy to Seeker1 and instead begins supplying energy to 

Seeker2. In the final phase of the scenario, Seeker2 ends the receipt of energy 

from Supplier1. Note that this example omits the negotiation and transfer steps 

for simplicity. 
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Figure 9 Energy Exchange Protocol Example 

Our predictive CognitiveCharge analytics are able to accurately 

anticipate future conditions by combining real-time contextual predictions with 

sensitive. Using these analytics, CognitiveCharge nodes are capable of decision 

making which avoids over – and under – reaction during periods of energy 

availability and threat environment instability. These analytics build on existing 

works for monitoring depletion, congestion, social dynamics, etc. in OppNets, 

in particular [38], [40], [42], [103]. A high-level overview of a single, 

generalised CognitiveCharge analytic is illustrated in Figure 10, which shows 

how each of our analytics combine multiple component metrics. Figure 10 

further highlights how the metrics underpinning our CognitiveCharge analytics 

are captured asynchronously from multiple input signals. These inputs are 

observed from multiple external and internal dimensions as well as from second 

hand propagated information. Utilising established techniques for performant, 

real-time signal forecasting, raw data from first and second-hand observations 

are continually integrated into values which combine the anticipated value of a 

signal with an estimation of the signals level of volatility. This allows the raw 

estimated metric to be adjusted based upon the current degree of confidence in 
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the prediction, given the recent context of the CognitiveCharge node. Each of 

the metrics (signals) underpinning our CognitiveCharge analytic can be 

considered as being updated at a regular interval. 

 

Figure 10 CognitiveCharge Analytic 

Several utility methods are provided here which are used in calculating 

the individual analytics. For an input value 𝑥𝑡 (0 ≤ 𝑥𝑡 ≤ 1) of a signal sequence 

𝑋, the estimated next value 𝑥𝑡+1 is calculated as 𝑠𝑡 via the exponentially 

weighted moving average (EWMA) (Equation 7) using the smoothing 

coefficient 𝛼, per Equation 6. Whilst calculation of the EWMA provides an 

efficient method for forecasting, taken alone it does not capture the volatility of 

values in 𝑋. For instance, a stable, constant signal could be indiscernible from 

an unstable but periodic signal, reducing the reliability of forecast values. 

Therefore, to complement the value predicted via the EWMA, we also consider 

the degree of confidence in the estimation. The volatility of recently recorded 

values is measured as 𝜎𝑡 by the exponentially weighted moving standard 

deviation (EWMSTD) (Equation 8). Combining the EWMA with the EWMSTD 

for a given signal allows us to avoid overreacting to contextual volatility whilst 

increasing caution in decision making during periods of instability. A general 

formulation for the combined value estimation and volatility prediction for a 

metric is given as 𝑣𝑡 in Equation 10 using the bounding function 𝛽 in Equation 

9. Finally, the method to rescale the bounded, volatility adjusted value to a new 

range whilst preserving the ratio is provided in Equation 11. This is used to 

ensure that each utility analytic is considered equally unless overridden by 

operator policy. 
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𝛼 =
2

|𝑋| + 1
 

Equation 6 Smoothing Factor 

𝑠𝑡 = {
𝑥0, 𝑡 = 0

𝛼𝑥𝑡 + (1 − 𝛼)𝑠𝑡−1, 𝑡 ≥ 1
 

Equation 7 Exponentially Weighted Moving Average 

𝜎𝑡 = {
0, 𝑡 = 0

√(1 − 𝛼)(𝜎𝑡−1 + 𝛼(𝑥𝑡 − 𝑠𝑡−1)2), 𝑡 ≥ 1
 

Equation 8 Exponentially Weighted Moving Standard Deviation 

𝛽(𝑥) = {
0, 𝑥 < 0
1, 𝑥 > 1
𝑥, otherwise 

 

Equation 9 Bounding Function 

𝜈𝑡 = 𝛽(𝑠𝑡 ± 𝜎𝑡)  

Equation 10 Volatility Estimate 

𝜌(𝑣) =
(𝑣 − 𝑟min) ⋅ (𝑟max

′ − 𝑟min
′ )

(𝑟max − 𝑟min) + 𝑟min
′  

Equation 11 Value Range Rescaling 

The variable component metrics underpinning our CognitiveCharge 

analytics are continuously updated, triggered by events and interval expiration. 

This prevents nodes having to store large amounts of time series data and 

amortises the computational cost of calculating analytics over time, improving 

overall efficiency, and increasing the responsiveness of real-time decision 

making. The equations outlined are therefore incrementally updated and 

recalculated upon reading a new value 𝑥𝑡 for a given input. As such, for 

implementation purposes, they are reformulated as iteratively updated 

functions. 

The following subsections detail our proposed CognitiveCharge 

analytics. Each local analytic is explained in turn – first motivating the analytic, 

then describing the component metrics and providing formulations. After 
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describing each analytic, we then detail our CognitiveCharge ego network 

analytics which extend the scope of the proposed local analytics to a node’s 

socio-spatiotemporal community. 

The heterogeneous nodes which form the VSG grid consume energy at 

uneven rates in order to provide services ranging from mobility (e.g. electric 

taxicab vehicles physically transporting people) to energy distribution (e.g. CSs 

selling energy on demand to neighbouring nodes). Energy consumption is 

nonuniform as expenditure of energy on services provided by nodes fluctuates 

due to the internal and external factors which influence energy availability and 

service demand. For example, electrical grid disruptions caused by fault or 

malicious behaviour can result in a significant reduction of local energy 

availability in conjunction with spikes in local service demand. Higher rates of 

energy expenditure from internal battery storage to provide services 

consequently increase dependency on local energy exchange opportunities in 

order to sustain service provision. 

Our predictive Depletion Rate (DR) analytic accurately captures the 

complex dynamic relationship between multiple competing energy consuming 

services whilst additionally considering operator service provision policy 

(discussed later in this chapter). Rates of change in energy consumption per 

provided service are combined with predicted future capacity weighted by the 

dynamic service priority. This allows for nodes to predict the future energy 

availability requirements of themselves and others to a high degree of precision. 

By monitoring the outflow of energy per variably prioritised service, our 

Depletion Rate analytic allows CognitiveCharge nodes to balance adapting the 

dynamic priority of providing services with the necessity to acquire energy, 

given available opportunities for acquisition. Weighting of each energy 

providing service is defined by a set of externally defined functions assigned by 

the operator of the node. 

CognitiveCharge nodes continually monitor the energy consumption 

levels of every energy-powered service they provide. For each provided service 

𝑠 ∈ 𝑆, the predicted level of energy consumption for each service can be 

3.7.2 Depletion Rate 
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represented as a sequence of values 𝐿𝑠. The DR for a single service is given in 

Equation 12, which shows how the EWMA and EMSTD use the first order 

difference in service level energy consumption. To combine the DR for all 

services, the DR is given as the weighted sum of the DR for each service, where 

each service weight is a value in [0,1]. A higher DR value indicates a worse rate 

of depletion (i.e. a greater degree of consumption and instability) and therefore 

a greater need to conserve or acquire energy. 

𝐿′ = map  (𝑙 ↦
𝑙

𝑐
) 𝐿𝑠 

𝐿′′ = ( 𝑙𝑖 − 𝑙𝑖+1 ∣∣ 𝑙 ∈ 𝐿′ ) 

DR𝑠 = 𝜈(𝐿′′) 

DR =
∑ DR𝑠𝑠∈𝑆 ⋅ 𝑤𝑠

∑ 𝑤𝑠𝑠∈𝑆
 

Equation 12 Service Depletion Rate 

The congestion rate (CR) of a CognitiveCharge node refers to the rate at 

which the queue for energy from that node is increasing. This builds on the CR 

as applied in networking [107]. As with DR, CR captures this information over 

time in order to anticipate and avoid cases of high congestion. This is 

advantageous not only from a time standpoint but from a service delivery 

perspective as well. Time spent unnecessarily waiting for an opportunity to 

acquire energy from a host is time that could be utilised to provide core services. 

For an EV, this would be mobility in order to conduct some activity. As an 

example, consider a taxicab awaiting the opportunity to charge is unable to 

transport customers between. The CR analytic allows for nodes to implicitly 

ascertain better opportunities for energy acquisition which reduce the impact of 

the charge event on service delivery. 

A given node is limited in the number of peers it can simultaneously 

exchange energy with (e.g. a CS has only a limited number of outlets). However 

nodes can ‘queue’ for energy from both static and mobile nodes whilst others 

engage in transfer. By identifying nodes with high congestion rates, a node in 

3.7.3 Congestion Rate 
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need of energy can better identify underutilized nodes with surplus from which 

it can charge both from immediately and at future opportunities. As with DR, 

CR is a service specific measure as policies can determine that different nodes 

are treated differently. For instance, parallel priority queues depending on a 

node’s affiliation. Under such cases, the CR for one service may be very high 

compared to another service for the same host node. The emphasis of CR is on 

capturing the immediate and anticipated length of the queue (𝑄) for energy. This 

is easily monitored as our CognitiveCharge clustering mechanism necessitates 

joining of implicit supplier-driven queues when nodes seek access to energy. 

𝑄′ = map  (𝑞 ↦
𝑞

max 𝑄
)  𝑄 

𝑄′′ = ( 𝑞𝑖 − 𝑞𝑖+1 ∣∣ 𝑞 ∈ 𝑄′ ) 

CR𝑠 = 𝑣(𝑄′′) 

CR =
∑ RET𝑠𝑠∈𝑆 ⋅ 𝑤𝑠

∑ 𝑤𝑠𝑠∈𝑆
 

Equation 13 Congestion Rate 

The retentiveness of a SG node refers to its ability to maintain charge 

beyond that which it requires for itself. This builds upon the data-context 

retentiveness analytic in [107]. Retentiveness (RET) is distinct from DR 

because RET focuses on the withholding of surplus energy whereas DR captures 

the actual expenditure of energy by services such as mobility. In other words, 

retentiveness measures how well a node can hold on to the extra energy it has. 

This concept is important because even if a node depletes its charge rapidly, it 

may still have a high level of retentiveness if it only needs to use a fraction of 

its charge for movement. Therefore, RET a crucial role in determining the 

efficiency and effectiveness of a VSG node's energy usage. As with CR and DR, 

retentiveness is dependent on the service context. Retentiveness is calculated 

based on the excess capacity at the time of each energy acquisition and the 

relative expenditure. In Equation 14, 𝐶 is therefore the proportion of on-board 

energy available to expend by the node at the outset of each charge event. 

3.7.4 Retentiveness 
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RET = 𝑣(𝐶 ) 

Equation 14 Retentiveness 

Our proposed receptiveness (REC) analytic describes the predicted 

delay for a CognitiveCharge node until its next opportunity for energy 

acquisition from a suitable and willing supplier, e.g. charging from a dedicated 

supply station or available electric vehicle offering its surplus energy. The 

concept of receptiveness for CognitiveCharge nodes builds upon adaptive 

techniques which consider data storage space in forwarding decision making. 

Our predictive receptiveness analytic extends previous works to support capture 

the context and socio-spatio-temporal availability of energy exchange 

opportunities. This is accomplished by considering the delays between recent 

charge events (𝐷) and using this to anticipate future charge opportunities 

(Equation 15), This complements our DR, CR and RET analytics. 

REC = 𝑣(𝑇) 

Equation 15 Receptiveness 

Whilst not a fundamental analytic, incentive mechanisms such as 

dynamic pricing energy models can be integrated into CognitiveCharge node 

decision making. Incentives effectively enforce the CognitiveCharge utility-

driven decision making. The price of a given neighbour’s energy is dynamic and 

related to implicit dynamically changing parameters which can be monitored 

and predicted in real time, as is the case for receptiveness. Dynamic pricing may 

be considered as a suitable real-world incentive for maintaining energy levels 

beyond need as well as permitting nodes to enforce a different preference 

regarding with whom, when, and how they choose to share energy. For example, 

a node may be well suited to providing energy but can negotiate through price 

to prefer providing energy to node it is friendly with, even if that node is in a 

less urgent energy state. Additional criteria for pricing based on cost of 

3.7.5 Receptiveness 

3.7.6 Incentives 
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acquisition from diverse CSs can be considered. In [108] we considered a 

pricing formula which links directly to demand. 

Our lightweight CognitiveCharge proactive peer testing and trust 

mechanisms builds on existing works, adapted for the VSG context [70], [71]. 

They are designed to collaboratively evaluate, and disseminate information 

regarding, the energy behaviour of independent nodes in a VSG scenario. The 

testing is designed to ensure that nodes are behaving as expected, exchanging 

energy appropriately, and following established protocols for security and trust. 

By proactively testing the behaviour of nodes, CognitiveCharge can better 

identify misbehaviour. The risk associated with energy exchange in VSGs is 

context dependent and in some situations peer testing can be avoided; for 

example, in situations where there is a high degree of regional trust.The 

mechanism works by attaching test data to UPDATE messages to hide the intent 

and avoid test recognition. This technique seeks to prevent attackers from 

temporarily avoiding nodes that participate in collaborative peer testing and 

then resuming the attack once they have relocated. Figure 11 illustrates the peer 

testing mechanism. Node 𝑎 first advertises itself as a supplier with small a 

surplus and receives a request for energy from node 𝑐. Node 𝑎 sends an 

UPDATE message to node 𝑏 with information about the request from node 𝑐. 

Node 𝑎 supplies node 𝑐 with the agreed upon amount and they subsequently 

disconnect. Node 𝑏 then advertises itself as a supplier and receives a request 

from node 𝑐. Node 𝑏 communicates via an UPDATE message to node 𝑎 the 

details of the request. Where this is a discrepancy in the original and new 

amounts of energy asked for, nodes 𝑎 and 𝑏 are able to detect the misbehavciour 

of 𝑐 and and mark it as distrusted. 

3.7.7 Trust and Peer Testing 
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Figure 11 Peer Testing Mechanism 

CognitiveCharge nodes prioritise neighbours with established feedback 

versus nodes with only a limited number of extremely high or low ratings. The 

value calculated for each node is weighted by the lower bound of the Wilson 

score confidence interval [109] [110], given as L95%(𝑛). Weighting the overall 

utility of each node by L95%(𝑛) prevents nodes with few ratings from skewing 

the selection of an available seeker or supplier against nodes with a slightly 

lower overall trust rating but a significantly higher number of reviews. For 

example, given 2 nodes, 𝑛1 and 𝑛2, with identical overall CognitiveCharge 

utility but the node 𝑛1 having 1 positive review of 1 total and 𝑛2 having 9 

positive reviews of 10 total, node 𝑛2 will be selected over 𝑛1. This increases the 

resilience of the reputation system to the submission of false reputations by 

malicious nodes which measures such as the average or sum would be more 

vulnerable to. Trust and reputation values are considered reliable by default 

directly informed by binary ratings from peer testing. 

In addition to the fully adaptive CognitiveCharge analytics defined in 

the previous section, it is also important to consider manually specified operator 

policies for energy service provision and security which can further alter 

behaviour. These were factored into our analytics as service weighting and 

influence adaptive decision making via weighting of our CognitiveCharge 

utility heuristic under certain contexts. It is important to note that these can be 

dynamic functions rather than explicit values. The following figure show an 

overview of the real-time CognitiveCharge decision making process, 
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highlighting how externally defined operator policies are factored into the utility 

heuristic calculation. In this section we show how two generalised policy 

examples (for security and energy provision) are factored into the 

CognitiveCharge decision making process however any set of context 

dependent weighting functions can be specified by an operator. 

 

Figure 12 Service Policy Integration into CognitiveCharge Decision Making 

CognitiveCharge nodes can have different levels of service priority 

depending on their operators’ preferences. A CS connected to grid infrastructure 

will likely seek to consistently maximise the amount of energy it offloads; 

conversely, a consumer electric vehicle will seek to balance energy offloading 

with consumption of energy to provide mobility. CognitiveCharge nodes are 

capable of supporting external operator preferences via weighting policies, 

which further improve prediction accuracy and inform real-time decision 

making. Dynamic service provision priority weighting policies specified by the 

operator of a node give precedence to behaviours under varying conditions. The 

simplest example for a set of services is to assign equal, uniform priority 

weighting. For example, the weighting function 𝜔(𝑠) = 1 gives service 𝑠 

consistent, identical priority at any time. A more complex example for consumer 

electric vehicles would be to constantly prioritise mobility but take advantage 

of energy offloading opportunities to offset energy costs. This could be 

accomplished by assigning the energy offloading service a sigmoidal priority 

weighting function which reduces precedence of energy offloading behaviour 

when energy resources are actively, or predicted to become, constrained. E.g. 

𝜔(𝑠) = (1 + 𝑒−10(𝜀−0.5))
−1

. As with externally defined operator energy 

service weighting, CognitiveCharge also support operator policies for security 

thresholds. This allows for operators to specify adjustments to the level of trust 
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required for autonomous participation in energy exchange. One such example 

is for preapproving certain peers. 

Per [108], and building on previous works [40], CognitiveCharge 

additionally calculates and monitors ego network-based formulations of our 

proposed depletion rate (DR), congestion rate (CR), service demand (SER), 

receptiveness (REC), incentives (INC), and peer trust and reputation (TR) 

predictive analytics. These are prefixed with EN for clarity, i.e. EN-DR, EN-

CR, EN-INC, EN-TR. Together these analytics describe the predictive 

multidimensional energy resource and security context heuristics of a node’s 

ego network. Ego network analytics refer to the resource heuristics of the node’s 

ego network. Ego network (EN) is defined here as a network consisting of a 

single node 𝑛 together with the nodes that node 𝑛 has encountered and gives 

each node their own perspective of the network. The exchange of ego-network 

analytics are done on aggregate via UPDATE messages which are reactively 

disseminated upon connection with peers. 

CognitiveCharge allows nodes to aggregate resource observations 

disseminated by encountered nodes in order to form an ego network perspective 

of the network. Ego network information can be aggregated in many different 

ways and we have explored a number of models for weighting the contacts 

within a nodes ego-network in order to improve the accuracy of prediction of 

our EN analytics. Figure 13 shows how nodes exchange ego-network 

information via UPDATE messages and these are integrated into the separately 

monitored EN analytics. Through EN analytics, two nodes are able to share their 

perspective on the state of the network and further inform decision making. 

3.9 Ego Network 
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Figure 13 Ego Network Analytics Exchange 

Our fully localised, real-time, heuristic-driven, cross-layer 

CognitiveCharge decision making process allows for nodes to adapt their 

service provision behaviour immediately in response to detected and predicted 

dynamic local and ego-network conditions. Our combined energy and security 

aware CognitiveCharge utility function extends previous works (e.g. [38], [42], 

[104], [107], [108]) with support for our refined and extended predictive 

analytics together, with additional support for operator service provision 

priority weighting policies. Conceptual state transitions, illustrated in Figure 14, 

are driven by our CognitiveCharge decision making process. The design of our 

analytics is such that there is no need for explicit thresholds and a value above 

0.5 indicates a need to conserve energy and avoid exchange whereas a value 

below suggests that a node has energy available to exchange. 

 

Figure 14 Decision Making State Machine 

The decision as to whether or not to supply or charge from a given node 

at a certain point in time is based on the previously defined analytics. Where 𝑈 

is the set of utilities (calculated analytics) for each of the given criteria, we 
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define the CognitiveCharge utility function for a given node 𝑛 at time 𝑡 as CC-

UTIL (Equation 16). For a node actively seeking energy, over the set of potential 

connections which have a contact duration suitable for charging the highest (or 

lowest) will be selected for energy transfer. Higher and lower values capture the 

extreme of the need to acquire energy or the level of surplus. 

CC-UTIL(𝑛) = ∑ 𝑢(𝑛)

𝑢∈𝑈

 

EN-CC-UTIL = ∑ 𝑢

𝑢∈𝑈′

 

CC-UTIL(𝑛) = CC-UTIL(𝑛) + EN-CC-UTIL 

Equation 16 CognitiveCharge Utility Function 

This chapter has described our CognitiveCharge proposal, which 

enables predictive energy availability discovery and threat context awareness to 

provide real-time identification and exploitation of suitably reliable 

opportunities for P2P energy exchanges. The architecture of CognitiveCharge 

combines data from multiple layers, including physical, data networking, and 

peer-to-peer energy exchange layers; social encounter dynamics layer; energy 

resource need and availability layer; trust and reputation-based security layer, 

and the supply and demand energy marketplace layer. The model of the VSG 

scenario is highly dynamic and multi-dimensional, and the ego network 

perspective considers the view of the network from the perspective of a single 

node. The chapter concluded by detailing CognitiveCharge analytics and 

decision-making. 

 

  

3.11 Summary 
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In this work, we conduct simulation-based exploration of the 

performance of our proposed CognitiveCharge framework and protocol. 

Simulation-based experimentation is very widely used in computer network 

research [111]. Network simulators are frequently employed in the exploration 

and development of novel architectures and protocols as a time and cost 

effective alternative to prototypes and real-world deployments [112], [113]. 

Whilst technically practically possible in many cases, real-world deployment-

based implementation and evaluation of computer networks requires extensive 

resources. As real-world networks continue to increase in scale in terms of the 

number of devices participating, so too must the scenarios we use to explore 

performance of new work. For this work, like many others, we find it infeasible 

to practically deploy a prototype with many real-world EVs spanning a suitably 

large geographic area and with the capability to exchange energy V2V. Test-

beds such as MODiToNeS [114], whilst suitable for prototyping DTNs and 

OppNets, currently lack support for energy transfer and though reduced scale 

models could be developed, running many identical simulations with precise 

controls is impractical in the real-world. The VSG scenario central to this work 

is especially cost and time prohibitive to deploy to due to limitations in current, 

consumer hardware and firmware. Although a next step would be to be to look 

at small scale deployment of CognitiveCharge, in this work we focus on the 

Chapter 4 

Methodology 

4.1 Overview 
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initial feasibility and understanding of the performance characteristics of our 

proposal. 

In designing and conducting the simulation scenarios we make use of a 

diverse array of heterogeneous VSG scenarios which have been selected to 

provide environments in which to explore in-depth the performance of our 

proposed system. Each of these scenarios is comprised of a range of consumer 

EVs in addition to static infrastructure CSs. The VSG scenarios fundamental to 

this research are complex, being both highly dynamic and multi-dimensional. 

The experimental scenarios used in our research seek to capture and represent 

these challenges appropriately. To conduct a comprehensive evaluation of the 

performance of our CognitiveCharge proposal, we must first implement support 

for the VSG, and subsequently a full implementation of CognitiveCharge, 

within a suitable simulator. The subsequent section of this chapter presents the 

mechanism for accomplishing this in greater detail. 

For a thorough evaluation of cross-layer approaches to adaptive energy 

and security behaviours in VSG environments, it is necessary to suitably model 

each layer so that there is coherence within and across the simulated VSG layers. 

To augment the realism in our VSG scenarios and strike a balance across the 

diversity of our experiments, we make extensive use of complementary real-

world data sets and pseudo-realistic algorithmic models to represent the 

fundamental facets of our experiments across data communications, energy 

exchange capabilities, mobility, energy resource-related activity, and malicious 

behaviour. For the performance evaluation of CognitiveCharge in this work, we 

utilise 3 distinct, multi-layer scenarios which capture the complexity of the 

highly dynamic and multi-faceted VSG. These scenarios were carefully selected 

to ensure that the evaluation covers a wide range of potential real-world urban 

and semi-urban use cases for VSG deployments in line with market penetration 

of EVs. By using these multi-layer scenarios, we can provide a comprehensive 

evaluation of CognitiveCharge and its ability to handle the demands of VSG in 

a real-world setting. The VSG scenarios used in our experiments are as follows: 

San Francisco, USA; North Somerset, UK; and a Manhattan Grid Model. A 

summary overview of the data sets and algorithms presented in this chapter and 

used for modelling aspects of our VSG scenarios is provided in the table below, 
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which highlights where combinations of real-world data and complementary 

pseudo-realistic models are utilised for each layer. 

Corresponding to the internal simulation scenario model, the remainder 

of this chapter builds up the simulation scenarios layer-by-layer. Firstly, the 

extended software simulation environment utilised for conducting experiments 

is detailed. Then, the specific physical characteristics of the VSG nodes that 

make up the experimental scenarios (the EVs and grid infrastructure CSs) are 

provided. The dynamic topologies of the scenarios, as driven by the mobility of 

EVs and which determine the network and energy connectivity, are 

subsequently detailed. Next is a comparative connectivity analysis of the VSG 

across a range of criteria. The mechanism for how fluctuating energy 

availability is modelled within each of our experiments and an analysis of the 

VSG scenarios is then presented. Formalising the behaviour outlined in Chapter 

1 for the purposes of our VSG scenarios, the way malicious behaviour is 

incorporated into our experiments is then detailed. Finally, a summary of the 

VSG scenarios presented in this chapter is presented with concluding remarks. 

In alignment with the aims and objectives of this work, a network 

simulator is selected as the base simulator for this work due to the desire to 

apply opportunistic networking principles to energy exchange. In considering a 

network simulator suitable to model the VSG scenarios central to this work, we 

primarily considered established OppNet and DTN simulators in order to take 

advantage of existing software support within the simulator for data routing in 

these environments. Inline with our overarching aim, this would also facilitate 

integration and comparison with OppNet routing protocols as a comparison and 

benchmark. Whilst prior to this work no current simulator included support for 

VSGs, we consider a network simulator with support for DTNs and OppNets 

appropriate due to the additional needs of supporting network communications 

protocols and model wireless communications. Several network simulators are 

very established within the field, and so whilst these features could have been 

extended into, we found that it initially seemed appropriate to extend existing 

4.2 Simulator 



67 

work and iteratively implement and integrate the necessary components to both 

model VSG scenarios and CognitiveCharge. 

Many works have compared the performance and usability of different 

network simulators across different criteria (e.g., [111], [112], [113]). Whilst 

such works often highlight a wide disparity between the run-time computational 

cost and memory usage of network simulators [111], overwhelmingly, most are 

implemented as discrete event simulators [113]. A large number of network 

simulators, some previously very popular in research, are not actively 

maintained. For example, GloMoSim [115] (developed in C), ns-2 [116] 

(C++/Tcl), JiST / SWANS [87] (Java), and Adyton [117] (C++) are either 

inactive or have been superseded by more modern discrete event simulators 

such as ns-3 [118] and the ONE simulator [119]. Discrete event simulations are 

suitable generally favoured by the community as there is clear alignment 

between the event-driven nature of these systems and routing-related decision-

making. We identified the ONE simulator as most suitable for this work due it’s 

use as in OppNet research. The flexible and extensibile architecture of the Java 

source code lends itself well to the significant extensions required to fully 

implement and evaluate CognitiveCharge in multiple VSG scenarios. There is 

also a range of supporting literature and examples of significant extension by 

others (e.g., [120]). The architecture of the of the ONE simulator has also been 

used as a blueprint in the design of more recent simulation software packages 

[121]. 

Experiments in this thesis are conducted using the Opportunistic 

Networking Environment (ONE) simulator [119], with significant extensions 

developed through this work. The ONE simulator provides a comprehensive 

software suite for simulation-based evaluation of DTN and OppNet routing 

protocols and has been widely utilised in networking research. By default, the 

ONE simulator provides suitable tooling for in-depth exploration of routing 

protocols across various performance metrics in large-scale networking 

scenarios with variably configured devices. Using the ONE simulator it is 

possible to conduct large-scale, low-cost, reproducible experiments which 

would be infeasible using real-world deployments. However, complete support 

for the simulation of complex VSG environments is not currently provided by 

any single simulation environment. So as to adequately model the complexity 
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of our VSG scenario, we significantly extend the core architecture of the ONE 

simulator with support for the additional layers necessary to realistically model 

heterogeneous EVs and CSs across the dimensions of the VSG. 

Within the ONE simulator, nodes (effectively agents) are pre-configured 

with some initial parameters. For instance, a communication range and series of 

locations to move to within the simulation area. As nodes come into 

communication range, this presents the opportunity for nodes to exchange 

messages. An implemented decision-making process, typically a research 

routing protocol, then determines whether to create or send messages at any 

given time. Although events can be captured and played back to avoid 

simulating mobility, it is the core encounter events, usually driven at least 

initially by simulated connectivity and mobility (although there are real-world 

event traces in a format suitable for the ONE simulator), which are fundamental 

to the simulations and provide the opportunities for emergent simulated 

behaviour. In this work, complementary real-world data sets are combined with 

pseudo-realistic algorithms within the simulator in order to adequately capture 

the complex dynamics across and between layers of the VSG. In the ONE 

simulator, mobility is either given by events such as coordinates or driven 

algorithmically, such as a random waypoint mobility model. We implement 

support for overlaying additional, complementary data sets and behavioural 

algorithms so as to accurately represent the multiple attributes within and of 

each layer of the VSG scenarios. We do not abstract away components from our 

proposal in Chapter 3. Instead, we implement the full model, where support 

does not yet exist. 

Figure 15 shows the original software architecture of the ONE simulator, 

highlighting how the movement models and event generators feed into the 

simulation engine. As data routing for DTNs and OppNets is the core focus of 

the ONE simulator, Figure 15 highlights how the configuration is used to derive 

connectivity during the running simulated scenarios. In a simulated scenario 

where mobility is defined (as opposed to the option to operate directly on 

connectivity events), nodes moving into communication range provide 

opportunities for communication which data routing protocols can exploit to 

transfer messages. We retain this core architecture in our extended simulation 

environment but inject support for energy connectivity and the associated 
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internal decision making and data collection to facilitate this in implementing 

support for energy exchange decision making and, by extension, 

CognitiveCharge. 

 

Figure 15 Architecture of the ONE Simulator [119] 

The ONE simulator aims, where practical, to follow the typical 

networking stack. Applications operate strictly atop routing protocols. A 

provided example in the source code is the ping application, which is 

configurable to send ping messages to a range of nodes, which can be similarly 

configured to respond with pong replies. The routing of data messages through 

the network of nodes is handled by routing protocols, with messages passed 

over network interfaces which have physical properties such as communication 

range and link capacity. Figure 16 shows an example of a data message being 

sent from the application layer in Node A to Node B in the ONE simulator. The 

application is sending this message based on a simulation event. For instance, 

an automatic response to receipt of a message or a pre-scheduled time-bound 

message sending event. The message flow is highlighted alongside the object 

components that are required to be accessed in order to accomplish this. 

Conceptually, the message data (marked by solid arrows) flows mostly through 

the expected network layers (application, routing, interface, connection). 

However, components need supplemental information to be exchanged 

programmatically and access to shared objects to accomplish this (highlighted 

by the dashed lines). 
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Figure 16 Message Sending in the ONE Simulator 

A key challenge for extensibility in the ONE simulator lies in the way in 

which the simulation software maps partially, but not fully, to comparable real-

world networking layers. This is notably distinct from simulators such as ns-3, 

where the simulation design far more closely follows the real-world 

implementation and system network stack. This blurring of network model 

design and simulation detail is part of what makes the ONE simulator a good 

platform for the rapid development and prototyping of new network protocols 

and suitably extensible for this thesis. Nevertheless, this raises conceptual 

challenges in handling states correctly, which can be complex and span 

components that might typically be considered out-of-scope. As an example, the 

underlying connectivity is optimised via a shared connectivity grid that is 

owned by an interface type. This allows for efficiently determining whether any 

pair of nodes are in communication range but blurs the line between simulation 

and model. Similarly, the ‘host’ or ‘node’ is considered to be the central hub to 

which all modules are attached. Some methods will directly call or 

programmatically address a host, whereas we would not have such reach in real 

models. 

In order to add support for energy transfer in addition to data 

communications, we extend the ONE simulator with energy exchange 

functionality parallel to that of the networking components highlighted in 

Figure 16. A new CognitiveCharge decision-making component handles all 

coordination and decision-making between the two sides. Figure 17 shows a 
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top-down view of the extended process of coordinating the exchange of energy 

from Node A to Node B, including message passing and energy flow between 

internal simulation software components (solid arrows) and object component 

access (dashed arrows). In Figure 17, the newly added components are shown 

in yellow, the modified components in orange, and the new CognitiveCharge 

decision-making engine is highlighted in green. 

 

Figure 17 Message and Energy Transfer in the ONE Simulator 

The new CognitiveCharge component is substantial and is fully 

responsible for host behaviour, together with the energy and data routing 

protocol components. This is a significant extension to the original mechanisms 

governing node behaviour in the default implementation of the ONE simulator. 

For instance, if a node representing an EV battery is depleted, the behaviour of 

the node should be that it cannot move. Similarly, if it is depleting and does not 

foresee a suitable opportunity for acquiring energy V2V, then it should relocate 

to acquire energy G2V from a CS. Such functionality was not considered in the 

core design of the ONE simulator, and so lots of objects and components needed 

to be linked via new behavioural controllers which were added to facilitate this. 

Metrics, such as battery level and contact durations, operate within their 

respective components, with analytics bridging between components to perform 
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calculations atop these. The decision-making engine serves as the central hub 

and controller for all processes in the remodelled simulator and sits alongside 

the core host object, driving host behaviour from events within the simulation. 

In practical terms, the extensions made to the ONE simulator follow the existing 

design-patterns where possible, although Chapter 6 highlights limitations of this 

approach. 

 

Figure 18 Physical Layers of the ONE Simulation Models 

Figure 18 highlights how the physical simulation layers relating to the 

devices (EVs and CSs) are configured to drive the emergent simulated 

behaviour. Entirely new components are shown in green, modified components 

in blue, and original components in grey. By configuring the way each node 

should interact with each layer, the extensions to the ONE simulator, and the 

numerous additional programmatic alternations and new classes, allow us to 

model the full VSG as defined from the outset in Chapter 1. 

The remainder of this chapter is arranged such that each layer of the 

internal simulation models of the VSG scenarios used in our experiments is 

detailed hierarchically in turn, from the physical layer at the lowest level, 

through to the energy exchange marketplace at the topmost level. Each of these 

layers represents a fundamental dimension of the VSG and is detailed in this 

chapter in the context of our simulation methodology. 
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For real-time, fully localised data communications amongst future VSG 

devices, we consider all nodes as having mutually compatible networking 

technologies. Parameters selected for modelling data communications are 

chosen from the established literature [122], [123], [124] so as to realistically 

represent the 802.11p Wireless Access in Vehicular Environments (WAVE) 

standard whilst also suitably accounting for the constraints of non-line of sight 

communication between mobile nodes in built-up areas. As such, in our 

experimental scenarios, vehicular smart grid nodes communicate via Wi-Fi 

interfaces with a maximum range of 100 metres. 

There are currently several competing standards for EV charging with 

varying degrees of interoperability amongst connectors. Likewise, there is a 

broad range of variably supported levels of charging speeds which differ across 

makes and models of EVs. Despite this, substantial efforts are being made 

worldwide by both industry and governments to establish common standards 

for EV charging. For example, the Combined Charging System (CCS) provides 

a set of open specifications which are seeing widespread adoption and have 

become a requirement of the European Union EV network [125], [126]. 

Of commercially available consumer EVs in the UK, over 93 per cent 

of models are already compatible (to some degree) with the CCS specification 

[127]. In line with the trend towards interoperable charging standards, in our 

experiments, we consider all participating EVs and infrastructure CSs as being 

universally compatible for exchanging energy. Furthermore, all EVs in our 

experiments seek to acquire and offload energy at their fastest supported 

charging speed. 

As described in Chapter 3, we consider bidirectional V2V and V2G 

energy connectivity to be a subset of the network connectivity and require a 

direct P2P connection between nodes. Therefore, a given node cannot exchange 

energy with any other node if there is no direct, single-hop data connectivity 

between them to communicate information about the exchange. As we consider 

all EVs in our experiments to be communicating with one another via limited-

range Wi-Fi interfaces, this means that EVs can only exchange energy with a 

4.3 Simulated VSG Devices 
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subset of the nodes that they are immediately connected to and are therefore 

also geographically nearby. 

EVs acquire electricity from the grid and store it in onboard batteries. 

This stored electrical energy is then consumed in order to provide services for 

end users. The primary service for which EVs expend electricity is physical 

mobility - the transportation of people and goods between geographic locations. 

For the VSG scenarios used in our experiments, the EVs can be categorised 

across several core characteristics; namely, the maximum available on-board 

energy storage, the rate of consumption in provision of services, and the rate at 

which energy can be acquired from peer suppliers in order to recharge batteries. 

In each of the VSG scenarios presented in this chapter, these fundamental 

characteristics of the EVs are modelled from real-world data. Figure 19 shows 

a scatter plot of the energy consumption, charge rate, and battery capacity of 

consumer EVs in the UK, categorised by the type of each vehicle [127]. Figure 

20 highlights just the battery capacity of the EV categories. 
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Figure 19 Categorised Electric Vehicle Data 

 

Figure 20 Electric Vehicle Battery Capacities 

Values suitable for representing EVs in our experiments are derived 

from real-world data through taking the arithmetic mean of each of the relevant 

characteristics, further weighted by the number of vehicles for each category 

[127]. We exclude commercial vehicles and high-end/sports cars from the data 

for being unrepresentative of the majority consumer EVs. The resulting 

parameters generalise the EVs considered as VSG nodes in our experiments. An 

overview of the energy-specific configuration parameters for EVs used across 

our VSG scenarios is shown in the following table. 
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Table 2 Representative Electric Vehicle Data 

Criteria Value 

Battery Capacity 200 MJ 

Range 306 km 

Consumption Rate 654 N 

Charge Rate 50 kW 

 

Conventionally, electric vehicles are marketed with energy capacity and 

consumption in terms of kilowatt-hours (typically denoted as kW⋅h or kWh) is 

a non-standard unit equivalent to 3.6 MJ. For consistency in this work, we use 

standardised metric SI (Système International) units. As an example, data from 

The Society of Motor Manufacturers and Traders (SMMT) shows that the top-

selling EV in the UK in 2022 was the Tesla Model 3 [128]. The Tesla Model 3 

is reported to have a 57.5 kWh hour battery, 250 miles of range, and a maximum 

energy exchange rate of 170kW [129]. Extrapolating and converting this data to 

SI units for our experiments gives a battery capacity of 207 MJ, a consumption 

rate of 514.5 N, and an energy exchange rate of 170 kW. Note that whilst this 

approach is suitable for the experiments in this work, there are important 

considerations of this model for future work. Further limitations of this 

approach are discussed in Chapter 6. 

In early 2023, there were over 38,000 publicly available commercial 

CSs deployed across the UK, excluding private ones such those at homes and 

businesses [130]. A limited number of EV CS operators in the UK only support 

specific vehicle manufacturers through the use of proprietary connections and 

private owners networks. Overwhelmingly however, CSs are operating 

analogously to traditional petroleum refuelling stations and supporting all 

popular CS connectors and available to all customers via pre and post-paid 

options. In line with the current state of the charging infrastructure and with 

consideration of proposed and upcoming government regulations, in the VSG 

scenarios presented in this section all EV can make use of any CS which they 

encounter, providing that it is not already occupied by another user. 

We assume that public CSs with two or more identical connectors at the 

same rate can charge the same number of cars concurrently at that transfer rate. 

Whilst many public CSs have multiple different connectors to support the 
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various charging standards, the small subset of those which also support 

concurrent charging typically only do so at a reduced charging rate, with EVs 

sharing the available resources. CSs with multiple connectors on a single CS 

which all support the advertised charge rate, are sometimes referred to as truly 

simultaneous. EVs in our experiments seek to acquire energy from CSs at the 

fastest feasible charge rate. Accordingly, all infrastructure CSs dispense energy 

at the same rate. As stated in this chapter. The exact geographic deployment of 

static CSs in each VSG scenario various as a consequence of the way each is 

modelled and is explained in more detail in the following section. 

The core dataset for San Francisco contains mobility traces of 500 

taxicabs in San Francisco, USA over a consecutive 30-day period. We consider 

the selected subset of 100 EVs in the real-world traces for San Francisco to be 

operating as Hackney carriages. In the UK, taxis are broadly licensed as either 

Hackney carriages or private hire vehicles. Hackney carriages operate 

independently and provide on-demand journeys to customers who can hail them 

curb side. This is exemplified by London's famous black cabs' which can pick 

up customers immediately when requested and take them to a requested 

destination. Conversely, private hire vehicles are required to be booked in 

advance of a journey and therefore make use of centralised scheduling systems 

to assign taxis to customers – for example the models used by Uber 

Technologies Incorporated and Lyft Incorporated which can provide booking 

via smartphone applications. Hackney carriages represent a suitable model for 

real-world consumer EV journeys as exact journey data is not established in 

advance. Unlike for centrally scheduled taxis, this prohibits precise, centrally 

coordinated planning of long-term recharging strategies and necessitates real-

time adaptation to fluctuating energy availability and service demand. 

The raw data for San Francisco contains a number of erroneous GPS 

coordinates. The presence of errors can be trivially confirmed as there are some 

coordinates recorded for taxicabs far into the Pacific Ocean, and some node 

speeds calculated from coordinate pairs exceed the feasible mobility of road-

4.4 Simulated Mobility 
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going vehicles. To keep a consistent strategy for erroneous coordinate removal, 

we use the speed and location of nodes for coordinate filtering. We set a 

threshold for legitimate values as those where the mobility of nodes does not 

exceed 77 mph (34.4 ms−1), which is the maximum legal road speed in 

California plus a 10% margin of error to account for recording, map projection, 

and processing accuracy. Using this approach, we find a total error rate of 

0.06%. These points are then omitted from the data by iterative removal with a 

total of 13 steps necessary San Francisco mobility data. 

A choropleth map is shown in Figure 21, which highlights the 

percentage of logged coordinates in the dataset in San Francisco and each of the 

four neighbouring counties of Alameda, Contra Costa, Marin, San Mateo, and 

Santa Clara. The activity in San Francisco constitutes over 92% of the activity 

of taxicabs in the data that lies in the wider San Francisco region. Within the 

117 districts of San Francisco itself, the Northeastern region sees the most taxi 

activity. The districts with activity levels above 5% are South of Market (11%), 

Potrero Hill (8%), Financial District (6%), and Downtown Union Square (5%). 

This can be seen in Figure 22 for the 121.5 km2 are of area of San Francisco.  
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Figure 21 Percentage of GPS Points Recorded in San Francisco and 

Neighbouring Counties 

 

Figure 22 Percentage of GPS Points Recorded in San Francisco Districts 

The ONE simulator performs poorly with very larges traces which 

require a high degree of accuracy and contain many nodes moving over 

extended periods of time. The combined data contains over 11,219,955 entries. 

There are 536 vehicles in the trace with a total trace duration of 84,330 seconds, 

resulting in a mobility trace containing 45,200,880 entries. Due to the extremely 

large simulation area, the memory usage of such simulations is very high 

because of the way the ONE simulator manages mobility and peer connection 

discovery. To overcome this, we extend the connectivity events supported by 

the simulator, encoding only meaningful trace data as events for the VSG 
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scenario. As illustrated in Figure 23, each event comprises a tuple which 

contains additional spatiotemporal data. The data is processed once to obtain 

this data and then fed into the simulator. This is possible for real-world mobility 

traces as the movement of nodes does not change between simulation runs. A 

complete mobility trace is extracted from the processed data with points 

imputed at regular intervals. From this, an extended connectivity trace, as 

described, is calculated. For the limitations outlined, we take a 5 day subset of 

the data for 100 taxicabs where nodes are most active in the active region 

highlighted in Figure 22. 

Because the mobility of nodes in the San Francisco scenario does not 

inherently support V2V or G2V energy exchange, we consider there to be an 

opportunity for exchange when vehicles are stationary for over 2 hours. This 

value was selected as it allows enough time for nodes to potentially charge from 

0% to 100%. For energy exchange in the San Francisco VSG scenario, we are 

agnostic to the underlying technology but consider that nodes in 100 metre 

range can drive to one another in order to exchange energy. In simulations, we 

assume the centre of an energy exchange cluster in the San Francisco scenario 

to be the midpoint of all participating nodes. The amount of energy required to 

be consumed in order to travel to this point is then subtracted from nodes 

participating in exchange so as to account for the physical movement to reach 

energy exchange range. CSs are positioned where nodes are stationary for 

periods over 6 hours to account for end of shift EV charging. 

 

Figure 23 Extended Connection Event for Real-World Mobility Traces 

North Somerset is a rural and largely agricultural district in the South 

West region of England with a population of approximately 216,000 and 

classified ‘Urban with Significant Rural’ by the Department for Environment 
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Food and Rural Affairs [131], [132]. Figure 24 shows the distribution of the 

population amongst settlements in the region, annotated with the number of 

settlements forming the population. Major towns are considered as having over 

10,000 inhabitants, minor towns have between 1,000 and 10,000, and villages 

have under 1,000. The simulated road network for North Somerset has a total 

1,329 km of drivable roads is extracted from publicly available data [133] and 

is shown in Figure 26. 

 

Figure 24 Settlements in North Somerset 

 

Figure 25 Categorised Vehicle Journeys 

The dynamic topology of the VSG scenario for North Somerset uses a 

hybrid mobility model for VSG nodes, combining real-world data with pseudo-

realistic algorithmic modelling. Movement of EVs within the North Somerset 

VSG scenario is determined according to a geo-social mobility model [134] 
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which seeks to realistically capture the behaviour of drivers travelling with some 

regularity between commonly visited real-world destinations [133]. The geo-

social mobility model sits in between purely synthetic mobility models, such as 

Brownian motion, and real-world mobility traces. This is accomplished by 

combining real-world locations of interest and social behaviour data together 

with a weighted, stochastic, destination selection and node activity algorithm. 

CSs selected for inclusion in the scenario are distributed geographically 

according to the population of each settlement, where suitable CSs exist in the 

real-world. The ratio of EVs to dedicated CSs included in the North Somerset 

VSG scenario (1:200) is extrapolated from recent government data as the South 

West of England has 35 public CSs per 100,000 people and the national EV 

ownership rate is 7% [135], [136]. The North Somerset VSG scenario therefore 

comprises 200 EVs and 1 publicly accessible, dedicated CS. Additional CSs are 

available at the 50 included points of interest where these currently exist real-

world. The major POIs are selected from real-world places, nominated 

geographically in proportion to the population density and categories shown in 

Figure 25 and Figure 24. 

 

Figure 26 North Somerset VSG Map Highlighting POIs 

Each EV in the VSG scenario has an individualised schedule of activities 

per day (e.g. a commute to a place of work), which will only be interrupted 

when a node has no alternative but to charge from a publicly accessible charging 
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station. Figure 25 shows vehicle journeys made in the UK categorised by the 

journey type [137] which is used to provide journey information to the mobility 

model. The mechanism for determining when to disrupt a schedule is when the 

combined distance to the destination and from the destination to the charge point 

is infeasible, given the remaining battery capacity. The geo-social mobility 

model considers certain POIs compulsory and others more flexible. For 

instance, a commute to drop a child off at their school would be a persistent POI 

as the school would not change for the node. Conversely, a leisure trip would 

not be persistent as the same person may visit many different places for leisure 

(e.g. restaurants, gymnasiums, and cinemas). 

The Manhattan grid model (MGM) is a pseudo-random VSG scenario. 

The purpose of including the Manhattan grid model in our experiments is to 

explore the effectiveness of CognitiveCharge in a scenario where EVs do not 

exhibit social behaviours. The Manhattan model VSG scenario in this work 

comprises 500 EVs and 50 publicly accessible CSs, based on the approximate 

ratio of EVs to CSs in Europe [138]. As shown in Figure 27, EVs move along 

roads in a square 25000 km2 grid formed of square 500 m cells. The edges of 

each block represent roads along which EVs can travel. The combined length 

of roads in the scenario is consistent with the pseudorandom scenarios 

previously defined at 1,010 km. The velocity of EVs is between 10 and 15 ms-1 

(approximately 20 to 30 mph) and the duration of the simulation is 5 days. 
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Figure 27 Manhattan Scenario Loaded in the Simulator 

In our experiments, we employ the most widely used definition of the 

Manhattan grid mobility model (MGMM) wherein nodes can move along roads 

in a defined 2D grid area [139]. At each junction (road intersection), the 

probability of a given node making a left turn is 0.25, carrying on straight ahead 

is 0.50, and turning right is 0.25. These weights are scaled when reduced options 

are available, such as if a node can only go left or forward. U-turns are not 

considered possible in this model. In some versions of the MGMM, edge 

conditions are handled with nodes will wrapping around the simulation plane 

and re-entering the opposite side of the simulation area. To avoid this unrealistic 

behaviour, in this work, edges are considered as boundaries and nodes will 

continue moving with the reduced options. With probability 0.1, at each 

intersection, a node has the possibility of waiting for between 1,000 and 10,000 

seconds before moving on to the next point. The wait time at all intersections is 

between 0 and 100 seconds. 

We extend the MGMM for EVs such that nodes will visit a CS when the 

battery level reaches below 20% in order to avoid becoming stranded. As with 

the other VSG scenarios in this work, we presume that EVs have knowledge of 

the road map and locations of the static, infrastructure CSs. As such, nodes can 

determine with sufficient accuracy the energy cost of travelling to a CS versus 

the next junction. EVs in this scenario have a total battery capacity of 360 MJ. 

The CSs in our Manhattan grid VSG scenario are distributed randomly with the 

caveat that there is a minimum 2 km straight line distance between any two CSs. 
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This prevents unrealistic over clustering of CSs in any region of the grid. EVs 

in the scenario start in fully random positions on roads. 

In all considered VSG scenarios, energy resource behaviour is governed 

by how a given node interprets and reacts its environment as well as by the 

primary behaviour of each node – mobility. For San Francisco VSG scenarios, 

movement of EVs is strictly governed by the real-world GPS coordinates and 

associated timestamps in the traces. For the North Somerset VSG scenarios EVs 

will move according to their core activity but seek to charge from an 

infrastructure CS when necessary. 

In our experiments, we consider that the VSG infrastructure CSs behave 

consistently for all EVs in the VSG. Whilst it would be possible for CSs 

supplying energy to selectively accept or reject requests to charge from EVs 

based on arbitrary operator policies, e.g. vehicles of a certain manufacturer 

getting priority over others, in this work we consider their behaviour to be 

uniform. The CSs themselves will not display bias towards any EV. Likewise, 

the price of energy at each CS is uniform across the CS network and remains 

consistent throughout the duration of each of the scenarios. Our experiments 

therefore focus specifically on the behaviour of the decision-making of the 

roaming EVs. Variations on the approach concerning the behaviour of 

independent VSG nodes are discussed in Chapter 6. 

In our VSG scenarios, we consider an active EDoS attack conducted by 

malicious nodes. Unlike with a typical energy theft attack, in an EDoS attack 

malicious nodes do not seek to only supply their own batteries. In order to 

maximise impact on the network, malicious nodes will continue to acquire 

energy beyond when their own batteries are full. Unlike a passive attack, in an 

active EDoS attack, malicious nodes will seek to promote themselves as being 

4.5 Simulated Device Behaviour 

4.5.1 Energy Resource Behaviour 

4.5.2 Depletion Attack 
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the best nodes to supply energy to. In these VSG scenarios, the attacking nodes 

use the false promise of payment as the means to promote favourably to 

suppliers. Therefore, whilst the EDoS attack is the primary focus of the 

malicious nodes, a side effect is the theft of energy as a result of the false 

promise to pay for energy acquired via V2V exchange. Compared to individual 

nodes engaging in energy theft, an EDoS attack is more devastating as, barring 

physical limitations, there is no upper limit on the amount of energy that can be 

lost.  

In the experiments detailed in Chapter 5, malicious EDoS attackers were 

strategically placed at frequently visited POIs where infrastructure CSs were 

absent. For the North Somerset scenario these are the subset of the POIs defined. 

In the San Francisco we select POIs in the same way that locations of CSs were 

selected. Being geo-socially central within the network, these locations hold 

high significance. Attackers stationed here have a high degree of access to nodes 

in the network. As previously outlined, these POIs encompass a variety of sites, 

including shopping and recreational areas. From a networking perspective, 

these malicious nodes are effectively conducting an active black hole attack 

against the wider network except targeting the denial of access to energy instead 

of data. 

This chapter detailed the experimental methodology we use in order to 

conduct extensive evaluation of our CognitiveCharge proposal. We utilise three 

diverse, multi-layer VSG scenarios which model the complex dynamics of the 

VSG: San Francisco, North Somerset, and a Manhattan grid model. Each 

scenario is multi-layered and combines pseudorealistic and pseudorandom data 

to suitably represent the complexity of VSGs. We extend significantly the ONE 

simulator, an agent-based discrete-event network simulator, for experiments in 

this work and implement in the extended simulator our CognitiveCharge 

framework and protocol. Initial configuration and scenario set-up is provided, 

with behaviour within the simulator derived from this. Further consideration of 

details of our experimental methodology are given in Chapter 6. 

4.6 Conclusion 
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This chapter presents evaluation of our CognitiveCharge proposal. 

Using the experimental methodology and VSG scenarios detailed in Chapter 4, 

we conduct a multi-criteria performance assessment across a range of measures 

to explore CognitiveCharge under a broad range of real-world, pseudo-realistic, 

and pseudo-random conditions. We first present the results considering only the 

exchange of energy in each VSG scenario. Secondly, we consider just the results 

pertaining to security. The final set of experiments bring together both the 

energy and security aspects.  

Within the broader set of experiments outlined above, in this chapter, we 

group the results by the type of VSG scenario used to reflect the differences 

between them more clearly. The first group comprises the pseudo-realistic North 

Somerset VSG scenario wherein EVs will adapt their mobility according to the 

energy and threat contexts, as described in Chapter 4. The second group consists 

of the real-world San Francisco VSG scenario. This scenario is considered 

separately because EVs do not change their mobility based on the presence of 

any energy and security-aware decision-making processes; the mobility models 

in this VSG scenario are fixed. Finally, we consider the pseudo-random 

Manhattan grid VSG scenario as a separate group. Although EVs in the 

Manhattan grid will adapt their behaviour depending on the energy and threat 

Chapter 5 

Evaluation 

5.1 Overview 
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contexts, this scenario comprises only public infrastructure CSs and EVs and 

vehicles move pseudo-randomly in an artificial environment. 

In this section we compare CognitiveCharge against a range of decision-

making approaches: grid-to-vehicle (G2V), rule-based decision making, and 

semi-centralised approaches. As a useful benchmark we first compare against a 

strict, unidirectional G2V energy exchange approach. This is most 

representative of EV charging in the real world. When using G2V decision 

making, CSs follow a strict first-in first-out charging policy. Under this policy, 

any EVs queuing for energy will be served according to the time they arrived. 

Breaks in connection with the CS, either via range-based disconnection or 

leaving the supply queue through the energy exchange protocol, will restart the 

connection when the connection resumes. Publicly accessible CSs order nodes 

by active connection time; this is analogous to the way most charge-points 

currently operate in the real-world today. 

Lightweight, rule-based decision making involves application of rules 

to immediate circumstances without protracted data to provide context and 

inform real-time activity. We consider 3 rule-based approaches to V2V energy 

exchange as useful for comparison against our CognitiveCharge proposal. For 

threshold approaches to V2V energy exchange, we use thresholds set to 50%, 

70%, and 90%. A threshold value of 100% is equivalent to a scenario where 

EVs will only acquire energy from CSs. We refer to these threshold approaches 

as T50, T70, and T90, respectively. For each of these methods, if the value 

remaining when the specified threshold is subtracted from the current energy 

level is positive, then an EV considers itself as having surplus and will advertise 

as being able to supply energy. As an example, an EV using the T50 decision 

making engine will seek to acquire energy if its own battery level is below 50%. 

When it has capacity above 50%, it will advertise itself as having a surplus of 

the current percentage subtracted by 50%. A high-level overview of the decision 

making for when a node is determining is own role based on threshold decision 

making is provided in Figure 28. We consider two peer selection mechanisms 

5.2 Energy Exchange 
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for threshold-based decision making. Namely, first-in first-out (FIFO) and last-

in first-out (LIFO). These policies determine the order in which hosts will 

receive energy from the supplying node. 

 

Figure 28 Threshold-Based Decision Making for V2V Energy Exchange 

As explored in Chapter 2, the majority of approaches to P2P energy 

exchange in the literature are reliant on centralised or semi-centralised decision 

making. Therefore, we further CognitiveCharge compare against a cluster-based 

EV charging approach wherein a semi-centralised scheduler manages localised 

V2V energy exchange. Analogous to existing works, this approach uses a 

combination of pairwise ranking of EVs together with a dynamic threshold 

based on the energy levels of nodes in the cluster. EVs are paired such that nodes 

with above average energy in the cluster are paired for exchange with EVs that 

have below average energy. Pairs are arranged highest level to lowest level. 

Such an approach would not be possible under the stipulations we give for fully 

distributed and decentralised opportunistic VSGs (as detailed in Chapter 1), 

without lessening limitations on privacy. Under the supplier-driven and privacy-

oriented behaviour of CognitiveCharge, information about a node’s energy state 

is only selectively exchanged and nodes that wish to offload energy only need 

to indicate a surplus amount to potential peers. Nevertheless, the broader 

approach of centralised and semi-centralised decision provides a useful and 

informative comparison. We refer to this strategy as HL in the remainder of this 

Chapter. 
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Figure 29 Data Connectivity Analytics for North Somerset 

Figure 29 shows the contact duration (CD) and inter-contact time (ICT) 

connectivity analytics for the North Somerset VSG scenario under G2V 

charging. These are included pairwise for V2V connectivity and V2G 

connectivity for the EVs and CSs in the scenario. This is shown for both the 

data and energy connectivity layers. It is clear from these analytics that there is 

a significant amount time that nodes spend at, and in the vicinity of, CSs. As 

data communications have longer range than energy connectivity, we see the 

expected reduction in CD and ICT where nodes pass-by one another but do not 

spend significant time in the same vicinity. This is clarified in Figure 30 which 

shows how nodes will connect on the data and energy layer when in close range 

but only on the data layer when in longer communications range. These data 

layer connections are important for data dissemination; for CognitiveCharge 

this includes the exchange of UPDATE messages which contain ego network 

data and, when conducting peer testing, information about the recently tested 

exchange. The CD across the energy layer is typically longer because nodes are 

visiting specific POIs rather than just being in the same broad geographic 

region. Likewise, the ICT across the energy layer is longer as nodes are not 

frequently close enough for an energy layer connection. It is important to note 

that connectivity at the energy does not imply that two nodes are actively 

exchanging energy, only that it would be possible for them to do so should their 

respective decision-making processes lead to an energy exchange event. From 

the presented CD and ICT analytics, it is already possible to infer some 

behaviour. We know that EVs spend an average of 119 minutes at CSs but that 
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the time to charge for each EV is approximately 67 minutes. This queueing 

highlights the necessity for our CognitiveCharge analytics (particularly here 

CR) and the need for improved access to CSs. 

 

Figure 30 Range of Connectivity 

An important consideration for the threshold approaches is that a 

practical implementation beyond the scope of these experiments is non-trivial. 

Such methods would be infeasible and would necessitate building upon a 

framework such as CognitiveCharge. In these experiments they operate atop our 

defined energy exchange possible. They are feasible in the simulated VSG 

scenarios because there remains a degree of homogeneity which does not exist 

in the real-world, outside of closely managed fleets. In reality, such approaches 

would necessitate significant additional information which would need to be 

supported by a framework such as CognitiveCharge. To be practically 

implemented, our CognitiveCharge Utility function (CC-UTIL) would need to 

be extended to support the threshold decision making mechanism. 
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Figure 31 Mean EV Energy Levels in the North Somerset VSG Scenario 

Figure 31 shows the mean energy level of EVs over time in the North 

Somerset VSG scenario for various peer-to-peer energy exchange strategies. 

From the average energy levels alone, the activity of EVs each day can be 

inferred. There is a clear cyclical pattern of energy usage each day with a general 

decrease during the day followed by an increase in the evening and overnight 

as vehicles are able to charge. The decrease in EV energy levels during the day 

corresponds directly with the consumption of energy through mobility which 

EVs expend as they carry out their behaviour. As EVs increasingly need to 

charge during the day, per the pseudo-realistic geo-social energy-aware mobility 

model utilised in the North Somerset VSG scenario, they consequently 

increasingly prioritise visiting a CS. We then observe the EVs acquiring energy 

from the CS before resuming the activity determined by the mobility model. 

Note that whilst the percentage differences in some cases seem numerically low, 

it is important to consider that just 1% of EV battery in these scenarios is capable 

of delivering approximately 2 km of range. Combined with the fact that there 

are large numbers of nodes in these scenarios, and it is clear how a 1% increase 
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in mean energy levels could equate to an additional 400 km worth of additional 

mobility across the VSG. 

The threshold strategies with LIFO queues perform similarly, with T50-

LIFO, T70-LIFO, and T90-LIFO yielding an approximate increase of 1-2% 

across each day. The FIFO strategies show much greater variance compared to 

the corresponding LIFO approaches. T50-FIFO performs 4% better than the 

baseline G2V scenario, but T70-FIFO performs comparably to the scenario in 

which nodes may only acquire energy directly from the grid. Under both FIFO 

and LIFO threshold rule-based V2V energy exchange mechanisms, a threshold 

of 50 performs well as nodes continually seek to equalise the energy within their 

clusters. As can be expected, with the additional context available to the external 

decision-making engine, Figure 31 shows that even a simple semi-centralised 

approach performs well and shows a consistent increase in the average amount 

of energy EVs have available. On several occasions, HL increases the average 

energy slightly beyond CognitiveCharge, despite the lack of transferred 

knowledge. We can expect this to be the result of more rapid movement of 

energy amongst EVs. The semi-centralised scheduler is able to assign and adjust 

pairs of nodes so that there is a continual evening of energy within each cluster. 

However, whilst CognitiveCharge is unable to increase the average battery level 

beyond the HL strategy, it is clear that the energy levels of EVs remain more 

stable over the course of the simulations. As a result of our CognitiveCharge 

socio-spatio-temporal analytics and real-time utility-drive decision making, 

EVs have a much greater awareness of their own energy needs as well as the 

energy state of their ego networks. This allows for nodes to avoid blocking 

access to temporary EV suppliers and CSs to the nodes with the most critical 

need for energy, as better alternative opportunities for future access to energy 

can be identified. Although not possible in this work given our stringent 

definition of the VSG as necessitating localised, distributed, and decentralised 

decision making, we can see from the results how a fully centralised strategy 

which combines the protracted knowledge and network awareness of 

mechanisms such as CognitiveCharge with global scheduling could readily 

outperform all of the approaches deemed viable in our defined VSG. 
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Figure 32 Distribution of EV Energy Levels in the North Somerset VSG 

Whilst changes to the global average are helpful indicators to the general 

state of the EVs, they alone do not necessarily reflect an improvement for all 

nodes and at face value can be misleading. It is possible that whilst the average 

has increased, some nodes are significantly better or worse off at the expense of 

others. For additional insights into the effects of each decision-making engine 

on the overall energy levels of EVs in the North Somerset scenario, it is 

necessary to consider the EVs at either end of the energy spectrum. Figure 32 

presents boxplots of the distribution of EV energy levels across the duration of 

the simulated VSG scenario. The amount of energy available to EVs in the 

scenario is limited by the amount of energy in the network at any particular time. 

The rate at which energy can enter the network is limited by the EVs acquiring 

energy infrastructure CSs. For instance, in a small network with 2 EVs and 1 

CS, the maximum rate at which new energy can enter the network is limited by 

the time that either of the EVs spend acquiring energy from the CS. In each of 

the VSG scenarios, the CSs are in near constant use so the upper limit of energy 

is similar for each. For this reasoning, it is only possible for V2V energy 

exchange strategies nodes to have limited impact on the overall or upper end of 

EV energy levels. Where these strategies have greater effect is on the 

distribution of energy within the VSG scenario. 

We can see from Figure 32 that the similar behaviour for FIFO and LIFO 

threshold strategies are echoed generally for the distribution. LIFO strategies 

perform similarly and clearly increase energy levels for the nodes at the lower 

end of the scale when compared to the baseline G2V energy exchange approach. 
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The FIFO approaches are more unpredictable, particularly for the nodes with 

the lowest energy levels. Altogether, this suggests that as simple strategies for 

V2V energy exchange can form the basis for limited knowledge approaches, 

with the caveats previously outlined. FIFO based approaches are more 

dependent on selection of a suitable threshold value, but accurate threshold 

selection can yield better results than LIFO approaches. We can observe that 

rule-based approaches generally yield similar, lower average energy levels 

across the scenario than the baseline G2V case. For the more successful 

methods, this is the result of the energy being distributed appropriately to lift 

the energy levels of the most vulnerable nodes. For HL, we can see that the 

increase in average energy levels compared to G2V is to the benefit of all nodes 

in the scenario. This is evidenced by the increase in the upper and lower 

quartiles as well as the mean. It is important to note that under the G2V, HL, 

and T50 energy exchange approaches, no nodes end up fully depleted of energy. 

The results shown for the North Somerset VSG scenario across the threshold 

decision making, semi-centralised approach, and CognitiveCharge, are 

representative of our findings in all three VSG scenarios. 

As an indicator of the success to which our proposed CognitiveCharge 

analytics are capturing the intended VSG context and features of the VSG, we 

can explore correlations between relevant in-network features and the values of 

the analytics. Here these have been monitored independently of our 

CognitiveCharge decision-making mechanism as this would unintentionally 

influence them. For DR, we observe an extremely high correlation of 0.98 

between the DR and a node’s self-identified need to acquire energy under the 

G2V scenario. For threshold-based approaches, this drops to 0.52 as the urgency 

of the need for energy is mitigated somewhat by the decision-making engine. 

The drop in the correlations between analytics and scenario features across the 

baseline and threshold approaches is expected behaviour. This is because the 

unintelligent opportunistic nature of the rules governing energy exchange do not 

account for the nodes actual need and can affect nodes counter to their need, 

e.g. a node with surplus receiving even more. In the case of DR for example, 

this means that the accuracy of such metrics is less effective at capturing the 

need of nodes at middling energy levels. For the baseline scenario where EVs 

exchange with CS only, we see similarly high correlations for congestion rate 



96 

(CR) versus immediate queue length (0.86), retentiveness (RET) versus surplus 

(0.73), and REC versus charge interval delay (0.81). The usefulness of these 

correlations in isolation is limited, however they serve to indicate that our 

proposed analytics are capturing the intended information and informing 

decision making as designed. The collective effect of our CognitiveCharge 

decision making is demonstrated through the overall energy level increase. 

 

Figure 33 Impact of Incentives on Wait Time and Criticality Levels in San 

Francisco (Left) and Nottingham (Right)  

An optional, although practically necessary, analytic integral to 

CognitiveCharge, motivates behaviour through incentives (INC). A relatively 

simple dynamic energy pricing incentive scheme can reduce both the wait time 

at CSs and reduce the number of nodes in need of energy. The experiments 

which derived the results in Figure 33 were conducted using traces of San 

Francisco (USA), and Nottingham (UK) [108]. The Nottingham Scenario was 

modelled very similarly to the North Somerset scenario. These figures have 

been reproduced here to illustrate how incentive schemes can play an important 

part in CognitiveCharge decision making. Nevertheless, as noted in Chapter 3, 

the economics of energy pricing and incentive schemes are beyond the scope of 



97 

this work. The experiments presented in this Chapter consider CognitiveCharge 

nodes to be non-greedy and cooperative and so our CognitiveCharge utility 

function (CC-UTIL) alone determines behaviour. This means that all EVs in the 

VSG scenarios will all adhere to the internal decision making as to when to 

acquire or offload energy. Nevertheless, the pricing incentive mechanism for 

CognitiveCharge is necessary to enforce and regulate this behaviour in real-

world deployments where independent nodes might act greedily or selfishly. A 

pricing strategy in such circumstances helps balances need and motivates the 

selling of energy when there is regional deficit but local surplus. 

This section explores the performance of the CognitiveCharge peer-

testing and threat detection mechanism for threat detection. In particular, the 

accuracy of attacker detection in each of the scenarios presented (Table 3) in the 

presence of increasing numbers of malicious nodes. We measure the detection 

accuracy of CognitiveCharge as the correct identification of a malicious EDoS 

attacker node, once tested, by peers who either directly tested the peer or have 

received an ego network exchange that includes the trust rating of the peer. 

In the North Somerset VSG scenario, under active EDoS attack we find 

that CognitiveCharge has a consistent 100% accuracy in detecting malicious 

nodes. This is not a surprising result, as the confidence in the outcome of each 

test can be very high due to both the attacking and non-malicious nodes being 

stationary in the same vicinity for extended periods of time. There is no delay 

between tests and there are multiple peers available for testing due to the nature 

of the deployment of POIs. Whilst the variety of the nodes visiting each POI is 

low due to the geo-social mobility model, this has an advantage in quicker 

consensus reaching regarding identification of malicious nodes. Nodes with 

lower ties to these nodes are therefore more likely to receive a stronger 

consensus about the attacker. However, consensus is only useful for the nodes 

that will actually encounter the malicious attacker and a downside of this is that 

broader dissemination is limited. The results are identical for the Manhattan grid 

5.3 Depletion Attack 
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scenario as despite the reduced inherent social behaviour, the high node density 

yields the same effect. 

Table 3 CognitiveCharge Attacker Detection Accuracy 

 5% 10% 15% 20% 

North Somerset 100% 100% 100% 100% 

San Fracisco 68% 65% 57% 43% 

Manhattan 100% 100% 100% 100% 

 

In contrast to the North Somerset and Manhattan VSG scenarios, the 

detection accuracy for nodes in the San Francisco is far lower at 43-68%. This 

is largely due to the lack of peers available for immediate testing and the lower 

tie-strength. The local exchange clusters are far more sparsely connected and 

consequently there are also fewer events in the San Francisco scenario to 

conduct peer testing. Whilst being ostensibly an urban scenario, the energy 

connectivity is lower than the North Somerset scenario, which limits the broader 

applicability of this result. Nevertheless, we would intuitively expect results to 

lie somewhere closer to the North Somerset scenario in urban environments. 

This is particularly true given the more realistic energy seeking behaviour 

around CSs and POIs. It is clear, however, that the peer testing strategy loses 

accuracy when there is increased delays between data exchanges and an area for 

future work will be in further exploring and augmenting this approach in more 

sparse networks. It is worth noting that the limitations of the San Franciso 

scenario employed extend here as we observe that in the time period, where not 

immediately detected, the attackers are not later detected due to a lack of 

connectivity. There is insufficient ego-network data exchange in the limited 

time frame to disseminate information about attackers to future visitors. This is 

a well-known challenge of sparse networks and has unfortunate effects. Mainly, 

the lack of information dissemination beyond each nodes’ ego network reduces 

the utility of the proposed strategy on more transient nodes with weaker socio-

spatial ties. An broader concern is that attackers could more easily change their 

behaviour to opportunistically target specific nodes. Multi-hop reputation 

dissemination strategies have been widely explored in the literature and are an 

important consideration for future work in larger scale VSG scenarios where 
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there would be many more overlapping geo-social networks. Whilst beyond the 

scope of this work, such an approach could complement CognitiveCharge and 

reduce attack impact whilst simultaneously increasing detection accuracy 

through greater information exchange. Nevertheless, such approaches come 

with their own challenges and are not a certain panacea. 

The previous sections of this chapter have looked at the performance of 

a range of energy exchange protocols and the threat detection and mitigation 

component of CognitiveCharge separately. This final section builds upon these 

and looks at the complete picture of CognitiveCharge in VSG scenarios under 

active attack by malicious nodes. 

As already noted, CognitiveCharge deployed in the North Somerset and 

Manhattan Scenarios has a 100% detection rate and rapid detection time due to 

the denser scenarios. In these VSG scenarios, the impact from attack is less than 

1% in all cases and can attributed to the initial peer tests conducted in order to 

detect the attackers. The energy lost through these mechanisms is recovered 

quickly and there is no discernible impact beyond this. Conversely, the sparser 

San Francsico VSG scenario is more interesting and instructive to explore here. 

Figure 34 shows the energy lost to malicious attackers in the San Francisco VSG 

scenario when nodes are using our CognitiveCharge decision making 

framework and, for comparison, when nodes are using the semi-centralised HL 

strategy. 

5.4 Combined 
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Figure 34 Energy Lost by EVs to Attack in the San Francisco VSG Scenario 

From the outset it is clear that even an uncoordinated EDoS attack 

conducted by malicious nodes is a viable mechanism for disrupting energy flow 

in VSGs. As can be seen in Figure 34, the impact of increasing numbers of 

attacking nodes leads to significant loss of energy and the knock-on effects over 

time are exacerbated by continual energy loss. Whilst comparison against HL is 

a helpful indicator of the impact of EDoS attack in untrusted V2V energy 

exchange scenarios, it is nevertheless a somewhat contrived example. We 

include it here as worst-case scenario where an undetected attacker is involved 

in a significant number of exchanges due to the falsified messages positing it as 

being most in need. Nevertheless, the advantage of any degree of centralisation 

is the ability to coordinate and exchange information more rapidly so in reality 

only an unrealistically naïve version of HL would be impacted to this extent. 

Figure 34 shows that CognitiveCharge nodes are able to detect malicious 

attack and that once detected, the impacts of the attack are reduced. Whilst Table 

3 showed that detection rates were lower in the San Fracisco scenario, the 

impact of the attack is still reduced significantly for nodes using 

CognitiveCharge. It is clear from Figure 34 that even where malicious nodes are 

undetected, CognitiveCharge nodes can better manage the available energy 

resources and avoid offloading energy. As the impact of the attack and loss of 

in-network energy reduces local battery levels, CognitiveCharge nodes that 

previously had surplus shift their behaviour to conserve energy. At lower levels 

of malicious nodes (5% and 10%), this inherent behaviour adaptation 

fundamental to CognitiveCharge facilitates recovery of energy and restoration 

to previous energy levels in under 120 hours. The findings presented here and 
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discussed in this Chapter demonstrate both the benefits of our collaborative peer 

testing mechanism but also the innate resilience of CognitiveCharge in 

untrusted VSG scenarios and in the presence of malicious nodes conducted 

EDoS attack. Not only can CognitiveCharge effectively detect threats, but it also 

mitigates the impacts of attacks through adaptive energy-resource management, 

even with large numbers of malicious nodes and when attackers remain 

undetected. 
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This chapter considers the wider context of CognitiveCharge. In this 

work, we focused on VSGs comprising EVs and infrastructure CSs. However, 

the concept of P2P energy exchange is more broadly applicable beyond this 

scenario and has been explored to varying degrees in the literature. This chapter 

looks at alternative application areas, such as unmanned aerial vehicles (UAVs) 

and unmanned underwater vehicles (UUVs). There are also a number of 

considerations to be made relating to the experimental methodology, it’s 

limitations, the wider applicability of results, and the broader context of this 

work. This Chapter also considers these in more detail; providing discussion of 

limitations of current simulation software and further motivating the need for 

accurate and performant next generation simulation network environment 

tooling. 

As detailed in previous chapters, this work presumes a core VSG 

scenario such that our proposed CognitiveCharge framework has the broadest 

applicability. By focusing on a stringently defined VSG use case, 

CognitiveCharge is highly extensible and adaptable to other areas where there 

is either overlap or there are less restrictive VSG requirements. Figure 35 shows 

Chapter 6 

Discussion 

6.1 Overview 

6.2 Assumptions 
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the range of effectiveness of CognitiveCharge. This diagram seeks to highlight 

where CognitiveCharge can have benefit to similar SG environments given 

varying security demands and energy policies. For instance, in a scenario with 

maximal security requirements, untrusted nodes would simply be avoided 

altogether. Likewise, in a scenario wherein nodes will only conserve energy and 

cannot be inventivised to participate in P2P energy exchange, CognitiveCharge 

will have no benefit. Nevertheless, these situations could still benefit from 

CognitiveCharge where operator policy provides favoured, trusted peers. 

 

Figure 35 Range of Effectiveness of CognitiveCharge 

In this research, we operated under the presumption that Electric 

Vehicles (EVs) are uniquely associated with specific individuals, meaning that 

each EV can be linked directly to a particular owner or user, and their usage 

patterns, preferences, and behaviours could be traced back to that individual. 

This foundational assumption influenced the parameters and outcomes of our 

experiments. Vehicles remain at a particular POI whilst the owner or user is at 

the location. Whilst this is a reasonable assumption for EVs, and closely aligned 

to the real-world, increasing numbers of autonomous passenger vehicles may 

change this in the future. It is safe to assume that as the taxicabs that made up 

the original nodes were petroleum powered, they will not fully realistically 

represent EVs' energy-seeking behaviour. For instance, petroleum-powered 

vehicles are able to refuel at dedicated stations within just a few minutes which 

is not possible for EVs today. 

The VSG scenario outlined in Chapter 1 assumes a maximally privacy-

oriented scenario with minimal information visibility. Increased information 

dissemination, such as the details of energy exchanges, is to the benefit of more 
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informed decision-making as there is a richer array of data to draw from when 

making decisions. In a scenario with additional data availability, we would 

expect the performance of CognitiveCharge to improve as the accuracy of the 

underlying analytics increases with greater information. Nevertheless, beyond 

the individual safety risk inherent to greater data sharing, there is an increased 

opportunity for malicious nodes to disseminate false information and disrupt the 

network. Currently, CognitiveCharge considers a single-hop ego network, and 

data is integrated only from nodes with which CognitiveCharge nodes come into 

direct contact. This increases CognitiveCharge nodes’ robustness to false 

information; however, it is a limit on the scope of CognitiveCharge nodes’ 

socio-spatio-temporal knowledge radius. Until a node visits a region directly 

and comes into contact with a node, its knowledge is restricted to its own area. 

Whilst this is expected for social-aware approaches, an extension to 

CognitiveCharge would be to explore multi-hop information dissemination as a 

strategy for wider and faster regional energy and threat awareness. 

The VSG scenarios considered in our experimental analysis of 

CognitiveCharge focus on independent roaming EVs however our 

CognitiveCharge framework has broader applicability and deployment potential 

in a diverse range of scenarios. Managed EV fleets (and managed fleets in 

general) present an interesting area as CognitiveCharge can be combined with 

centralised and semi-centralised decision making to provide complementary 

means of managing energy. 

Drones (UAVs) have seen rapidly increased adoption in recent years 

across a vast array of domains. UAVs present an interesting application area for 

CognitiveCharge due to the unique challenges drones face. At one end of the 

spectrum are small UAVs, such as the currently popular quadcopters, which are 

designed to be very lightweight and carry a small payload such as a digital 

camera or light parcel. At the other end of the spectrum are larger, more capable 

UAVs which are more commonly used in healthcare, industrial, and military 

domains. Regardless of size, use cases for UAVs most commonly fall under 

6.3 Applications 
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payload delivery or surveillance. Payload delivery ranges from rapid medication 

delivery to crop spreading whilst surveillance applications include areas such as 

traffic flow monitoring and stock inventory control [140].  

The battery consumption rate of UAVs is strongly affected by the weight 

of the payload, which subsequently affects the usable flight time [141]. Much 

research has investigated the challenges of energy resource management for 

UAVs. In some respects, UAVs are similar to larger commercial EVs (such as 

lorries), where the payload represents a primary service and has the strongest 

impact on energy consumption. This is common for delivery services and is 

halting the industry drive towards EV adoption for large cargo transit (e.g. 

lorries) as the size of battery technologies eats into payload space. Unmanned 

underwater vehicles (UUVs) face similar but distinct challenges. Whilst EVs 

and UAVs support a wide variety of existing long range communications, UUVs 

are more limited by the environment [142]. CognitiveCharge has the potential 

to apply well to both UAV and UUV scenarios. 

In our experiments, we have modelled the characteristics of EVs using 

uniform values and represented their functions as linear. For instance, the rate 

at which EVs in our VSG scenario discharge energy through consumption for 

physical movement is uniform. Similarly, due to software limitations, the 

mobility of EVs is modelled on a 2D plane. These, and related necessary 

simplifications, have proven necessary for the experimental analysis of our 

proposed CognitiveCharge framework but are not the most precise 

representation of EVs in VSG scenarios. There are many additional factors that 

need to be taken into consideration for a more accurate representation of the 

VSG. These non-linearities are dependent upon a large number of factors, such 

as environmental conditions like temperature. For example, EV batteries are 

affected by real-world energy storage technologies that charge and discharge 

energy in a non-linear manner. It has been observed that many current battery 

technologies do not perform well in cold conditions [143]. Therefore, to 

accurately represent the behaviour of EVs in VSG scenarios, it is important to 

6.4 Simulations 
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take into account this, and other factors which influence the performance of EVs 

in the real world. Similarly, the state of battery degradation and load dynamics 

are further examples of factors which may affect achieved performance. Our 

simulation approach takes reasonable steps to agnostically model and suitably 

represent EV characteristics on a macro scale and over a period of days without 

consideration to the specific micro conditions which would increase 

experimental complexity at the expense of scale. Nevertheless, this limits the 

experimental results to macro trends in our VSG scenarios as a lack of fidelity 

in simulations is well known to reduce accuracy [144]. 

 

Figure 36 Scope and Wider Applicability 

A particular challenge and limitation of this work lies in the scope of the 

VSG simulations conducted and broader applicability of results. Whilst the 

methodology employed is appropriate and made use of available data and 

suitable modelling to capture the cross-dimensional VSG dynamics as best 

possible for the context, the data is not fully complementary and necessitated 

being disjointly layered to derive suitable VSG scenarios. Figure 36 is a simple 

graphic which seeks to illustrate this. In an ideal case, where the built-up 

simulation layers are wholly complementary, the applicability of results extends 

much further than the core scenario. This is shown in the left image. 

Unfortunately, a lack of available cross-layer data for conducting experiments 

in our VSG contexts means that this work lies closer to the right image, with 

limitations in the wider applicability necessitating further development of novel 

scenarios to explore CognitiveCharge beyond this work. 

Network simulations are extremely computationally intensive and 

current network simulation software is overwhelmingly restricted to single-core 

execution [145]. Performance improvement techniques widely employed in 

other disciplines for simulations include multi-threading and parallel processing 

Broad Narrow
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paradigms using modern CPU and GPU architectures to drastically reduce real-

world simulation time. Such techniques are extremely challenging to implement 

for network simulation software. Despite efforts over the years (e.g. [146]), only 

very recently have practical steps been realised in addressing these challenges 

[145]. The extremely time-consuming nature of conducting the experiments in 

this work has limited the ability to evaluate longer-term behaviours. A crucial 

avenue for future research in this area is to investigate the performance of 

CognitiveCharge and related protocols in large scale VSG scenarios where they 

can run for months of simulated time with many thousands of nodes. To capture 

the performance and offset limitations of various modelling strategies, we 

included several hybrid VSG simulation scenarios, which consisted of a variety 

of real-world, pseudo-realistic, and pseudorandom data. This allowed us to 

represent a diverse range of VSG scenarios. However, there are numerous 

opportunities available for further enhancing the realism of VSG simulations. 

One important area for future research is to develop new simulation software or 

improve existing ones to accurately depict the complexities and intricacies of 

VSG environments. By doing so, we can achieve a more comprehensive and 

realistic representation of VSG scenarios, leading to more accurate and 

insightful results. This is of particular benefit to emerging application domains, 

especially those where increased accuracy is more critical. This would be 

complemented by increasing availability of real-world, cross-layer datasets. For 

example, in the case of UAV payload delivery swarms, which have very short 

battery life and are highly affected by variables such as weather, temperature, 

altitude, and aerodynamics, the need for detailed and realistic environment 

modelling becomes even more vital. By incorporating such modelling, we can 

better understand and explore the real-world performance of these swarms 

across criteria such as communications and energy usage, ultimately leading to 

more informed decisions and improvements in their operations. Recent research 

has identified this as a particular need and simulation software is being actively 

developed which can capture the necessary fidelity [147], [148]. 

Through this work, the need for more advanced and comprehensive 

simulation tools became increasingly apparent. Whilst macro-scale trends and 

behaviours can be suitably modelled and explored, the lack of fidelity makes 

delving deeper into experimental results less meaningful. Simulation software 
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plays a pivotal role in the development, testing, and optimisation of smart 

energy systems. In the coming years, we can anticipate the development of new, 

and the evolution of existing, simulation software that facilitates greater 

understanding of complex energy ecosystems. This includes not only the 

traditional elements of generation, distribution, and consumption but also the 

integration of renewable energy sources, energy storage solutions, and demand-

side management. Enhanced simulation capabilities will enable researchers, 

engineers, and policymakers to model the intricate interplay of these elements 

with greater accuracy, allowing for more effective planning and decision-

making. As SG paradigms such as VSGs become more prevalent, these tools 

will be indispensable in simulating and optimising their dynamic operations, 

ensuring grid resilience and adaptability. A vital area for future work is in 

realising performant simulation software with tooling to provide for realistic, 

large-scale modelling of VSGs. This necessitates in-depth modelling of the full 

scenario including communications, energy, network, mobility. 
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This chapter is divided into three sections. This chapter begins by briefly 

summarising the work presented in this thesis. The research questions posed at 

the outset of this research are then revisited and the key findings of this thesis 

are highlighted alongside the contributions. Finally, concluding remarks and 

specific avenues for future work are given. 

Chapter 1 introduced the work proving background on the smart grid 

(SG) and the vehicular smart grid (VSG) paradigms. Important assumptions of 

the VSG for this work were defined to set the scope of this thesis, and the energy 

denial-of-service attack (EDoS) threat model considered was detailed. The 

research questions central to this work were given, including the key sub-

questions for investigation. 

Chapter 2 offered a comprehensive review of literature related to the 

research focus of the thesis. The chapter began by identifying and detailing a set 

of criteria vital for approaches aiming to address self-organised energy resource 

awareness, P2P energy exchange, and adaptive resource-related security in 

vehicular smart grid environments. This was followed by a survey of existing 

works, with a primary focus on techniques for adaptive energy resource 

Chapter 7 

Conclusion 

7.1 Overview 

7.2 Thesis Summary 
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awareness, energy threat context awareness, and reputation-based security in 

opportunistic networks. 

Chapter 3 introduced our CognitiveCharge proposal, detailing how it 

detected and responded in real-time to dynamic in-network conditions spanning 

mobility, resources, services, and security. An architectural overview was 

provided that highlighted the key challenges and conflicting trade-offs in this 

intricate design space. The analytical and functional models of our 

CognitiveCharge framework were also given. Each of the components of 

CognitiveCharge were described and algorithms provided for the core 

components: the cross-layer predictive analytics, collaborative peer testing 

mechanism, and real-time utility-driven decision-making processes. 

Chapter 4 presented the experimental methodology used for a rigorous 

analysis and evaluation of the CognitiveCharge proposal. This began with a 

description of the simulation environments and an explanation of the hybrid 

real-world and pseudorealistic data traces representing each dimension of the 

problem scenario. The VSG scenarios used in this work were described, and a 

comparative analysis of these scenarios was provided. Subsequently, the 

modelling of the energy depletion attack in these scenarios was detailed. 

Chapter 5 contained an evaluation of the implemented prototype of the 

CognitiveCharge framework using the experimental methodology detailed in 

Chapter 4. This chapter used a variety of real-world, pseudo-realistic, and 

pseudo-random VSG scenarios to understand the performance of the 

CognitiveCharge proposal under different conditions. Extensive evaluations 

occurred in vehicular smart grid scenarios with fully trusted nodes, mutually 

untrusted nodes, and nodes under active energy depletion attacks by injected 

malicious entities. Under each condition, performance characteristics for 

CognitiveCharge were compared with baseline conditions and benchmarked 

against other approaches. 

Chapter 6 examined the wider context of our CognitiveCharge 

framework, discussing the broader picture of the proposal presented in this 

thesis. By taking into consideration the criteria set outlined in Chapter 2, 

Chapter 6 looked at the feasibility and challenges of real-world deployments of 

CognitiveCharge in domains with varying constraints and dynamics. This 

included deployments across alternative topologies with different degrees of 
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centralisation and heterogeneity. In particular, Chapter 6 was an opportunity to 

explore alternative application domains for our proposed CognitiveCharge 

framework as well as scenarios where the criteria set given in Chapter 2 applied 

less stringently. Chapter 6 also looked at specific aspects of this work in greater 

depth and gave consideration to avenues for future research. 

In Chapter 1, the overall research question of this thesis was introduced 

and motivated. This was subsequently broken down into three key sub-questions 

for investigation in this work. The overall research question was as given as 

follows: 

With fully lo  lised  ommuni  tion  nd de ision-m king, is it possi le 

to in re se the utility of nodes  nd limit energy losses in the presen e of  n 

energy depletion  tt  k  ondu ted  y m li ious nodes in heterogeneous 

VSGs? 

The sub-questions are also repeated here, numbered for easier reference. 

These will be subsequently referred to as RQ1, RQ2, and RQ3. Each of the 

given research questions has been addressed in specific areas of this work which 

are outlined below. 

1. How does fully lo  lised  ommuni  tion  nd de ision-m king 

 ffe t the utility of nodes in heterogeneous VSGs? 

2. Wh t  re the energy losses in urred  y  n EDoS  tt  k  nd to 

wh t extent   n this  e dete ted  nd redu ed? 

3. Wh t  re the  sso i ted tr de-offs  etween peer trust  nd energy 

 v il  ility? 

This thesis has been carefully structured to demonstrate how each of 

these research questions have been considered and addressed. Regarding the 

overall research question, the key criteria were first identified in Chapter 2 and 

used to conduct a literature review of relevant works. Chapter 3 proposed our 

novel CognitiveCharge framework which meets these criteria and comprises a 

7.3 Research Questions 
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suite of novel predictive analytics and collaborative peer-testing scheme 

combined by a real-time utility driven decision making. In Chapter 5 we 

explored the performance advantages and disadvantages of CognitiveCharge in 

untrusted VSGs and compared CognitiveCharge against a range of similar 

localised decision-making approaches. The overall research question and the 

context of the research was considered more broadly in Chapter 6. 

RQ1 focuses specifically on exploring and understanding the feasibility 

and impacts of localised decision making on EVs in VSG environments. In the 

first phase of our experiments, we investigated the performance of localised 

decision making on criteria relating to the energy-resource dynamics and 

behaviour of EVs in a range of VSG scenarios without presence of malicious 

nodes. These directly link with our energy-resource aware CognitiveCharge 

analytics and the relevant criteria identified in Chapter 2. 

RQ2 looks specifically at the EDoS attack central to this work. 

Robustness to attack is a core design consideration of our CognitiveCharge 

framework detailed in Chapter 3, and we further consider a peer testing and 

reputation exchange mechanism which seeks to directly detect and mitigate the 

impact of EDoS attacks on EVs in the VSG. In Chapter 5, the performance of 

these approaches is explored across measures, including responsiveness and 

accuracy. 

RQ3 brings together RQ1 and RQ2 to consider the trade-offs between 

adaptive, localised energy management and security. Our CognitiveCharge 

framework is designed to adaptively balance these trade-offs so that 

CognitiveCharge nodes can continue to exchange energy, even in the presence 

of EDoS attack. Chapter 5 explores the trade-off between energy and security 

in multiple VSG scenarios. 

This thesis has made modest but important contributions to the field of 

computer networks and smart energy. In the context of VSGs, this work has 

proposed a novel framework extended and explored novel adaptation and 

application of established approaches to the VSG context. Through simulation-

7.4 Findings and Contributions 
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based experimental analysis, we found that the proposals made in the work have 

benefit to the energy-resource utility of nodes in VSGs. We further find that our 

CognitiveCharge proposal is a viable framework for detecting and mitigating 

EDoS attacks in VSGs. As discussed in Chapter 6, consideration has been given 

to the broader policy and industry implications of CognitiveCharge. This 

included a deep examination of the potential avenues for extension that may 

arise in various domains. Limitations of CognitiveCharge and this thesis in 

general have been identified throughout and attention has been given to 

directions for future work to overcome these and offer advancements to 

CognitiveCharge. The key contributions of this work are as follows: 

• A suite of novel, cross-layer, predictive energy and threat 

context-aware analytics for capturing and interpreting the VSG 

environment from the perspective of a VSG node. 

• A novel framework for analytics exchange, peer data integration, 

and real-time energy-resource utility-driven decision-making in 

untrusted VSGs. 

• A proactive, collaborative peer testing mechanism for energy-

resource behaviour evaluation in untrusted VSGs for detection 

and mitigation of EDoS attack. 

The core contributions outlined have benefit beyond the VSG context 

and can be explored in other domains. The additional contributions of this work 

lie in the exploration of CognitiveCharge, and the related strategies investigated 

in the context of VSG scenarios comprising EVs and CSs. Further contributions 

arise from the reusable software generated and data collected for this work. The 

experimentation and analysis conducted offer valuable insights into the 

management of energy resources in untrusted opportunistic VSGs, both with 

and without malicious EDoS attackers. 
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Areas for future work and the relevance of this work to other research is 

discussed broadly in Chapter 6. Here we highlight several specific avenues for 

research to follow on from this thesis. 

There is a significant, pressing need for extension to existing, or entirely 

new, simulation software which is capable of modelling the complexities of 

VSG environments and has sufficient performance to conduct these experiments 

at scale. This will be increasingly important in coming years as rapidly 

increasing adoption of EVs, and related technologies such as UAVs, become 

increasingly widespread, get deployed in new contexts, and the challenges 

identified in the literature, such as grid stability and risk of attack, become 

increasingly prevalent. 

Unmanned vehicles (autonomous EVs, UAVs, UUVs) present 

interesting future domains for exploring CognitiveCharge and related works. 

Autonomous EVs are slowly seeing test-based deployments in various locations 

around the world. UAVs have seen rapid adoption worldwide and increasing 

usage across a vast array of domains. These environments are often highly 

challenging and resource constrained, necessitate real-time decision making. 

Exploring fully-localised security and energy aware approaches in these 

environments would benefit the networks themselves as well as feeding back 

direct improvements to CognitiveCharge and other approaches for the benefit 

of other application domains. 

Beyond the SG environment, there are several interesting opportunities 

for future work to explore feeding the concepts presented in this work into 

closely related areas where networking principles can be apply both directly and 

indirectly. This work applied opportunistic networking (OppNet) theories to 

VSGs and the P2P routing of energy amongst mutually untrusted nodes. In a 

previous work, we explored this concept but with physical resources in the 

aftermath of disaster; for instance, so that individuals and groups can share and 

acquire distributed resources such as medication and equipment [149]. Energy 

is a special case of resource as whilst it can be acquired and exchanged, it can 

also be generated. In this work we particularly focused on independent EVs 

7.5 Future Work 
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collaboratively maintaining service provision in the presence of an active EDoS 

attack. In past works we have considered the protracted management of 

resources in disaster scenarios [149]. A key area for future work would be to 

consider in more depth the transitional and interim periods between disaster 

stages. Research with this level of fidelity is largely underexplored in the 

context of energy exchange amongst EVs. 

The attack central to this work is an EDoS attack conducted by actively 

attacking malicious nodes. An area of further investigation is to explore the 

performance of CognitiveCharge, and related approaches, under similar attacks 

and in more challenging scenarios. For EDoS attacks in particular, it is 

important to consider in more depth the impacts of combinations of passive and 

attacks and cases where nodes seek to mask their behaviour to avoid being 

detected, the effectiveness of strategies to reduce the impacts of such attacks, 

and finally to explore robustness of approaches in the cases where attackers look 

to directly exploit threat detection and collaborative trust strategies. 
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