
Advancing Explainability in
Multivariate Time Series

Classification through Generative
Models

Thesis submitted to the University of Nottingham for the degree of
Doctor of Philosophy, May 2024.

Han Meng

20245258

Supervised by

Isaac Triguero
Christian Wagner

Signature

Date / /

Abstract

As Artificial Intelligence (AI) techniques become increasingly integrated
in various domains, concerns about their interpretability have increased.
This has catalysed the development of eXplainable AI (XAI), which seeks
to make AI systems more understandable to humans. However, most XAI
research has focused on tabular data, images, or language models, with time
series models receiving limited attention despite their pervasiveness. This
thesis aims to advance XAI specifically within the context of Multivariate
Time Series Classification (MTSC) problems, providing varied explanation
types to meet diverse user needs.

Among the various types of explanations, feature importance stands out
as one of the most intuitive, where the most relevant features influencing
a model’s decisions are identified. Most of the existing feature impor-
tance explanation techniques generate samples to feed into the model with
the aim of probing the model’s mechanisms. However, the methods used
for generating samples often disrupt the inherent temporal dependencies
within time series data. This disruption leads to samples that are mis-
aligned with the distribution of the training data, resulting in misleading
explanations. This thesis introduces a model-agnostic framework that in-
corporates a generative model trained to estimate the training data distri-
bution, thereby generating within-distribution samples for accurate feature
importance evaluation. Furthermore, time series models typically incorpo-
rate a large number of input features, challenging the identification of the
most relevant ones. To address this di�culty, the framework integrates an
optimisation method to e�ciently identify the most important features.

In addition to the challenges in accurately identifying the most impor-
tant features, current research also highlights the lack of stability as a key
issue a↵ecting most feature importance explanation methods, such as the
well-known Local Interpretation Model-agnostic Explanation (LIME). This
means that the explanations they provide for the same instance are often
inconsistent. Although various methods have been developed to mitigate
this instability, the underlying processes driving the instability in the con-
text of MTSC remain somewhat obscure. This thesis explores this area and

i

highlights that a significant but often overlooked issue in current research
a↵ecting stability is also the out-of-distribution samples generated during
the explanation process. To address this, a novel framework is proposed
which employs a generative model and a local sampling technique to pro-
duce within-distribution neighbouring data for the instance to be explained.
Additionally, it integrates an adaptive weighting strategy to facilitate hy-
perparameter optimisation, thereby further enhancing the stability of the
explanations.

To advance XAI in the field of MTSC, relying solely on feature importance
may not su�ce, for example for the general public, who usually seek more
straightforward explanations to assist their decision-making processes. In
this context, counterfactual explanations are promising. However, cur-
rent counterfactual methods for MTSC usually fail to provide plausible
and meaningful explanations, often overlooking the distribution of train-
ing data during the generation of explanations. This thesis proposes two
novel approaches to improve the viability of counterfactual explanations for
MTSC. The first method estimates the distribution density of the training
samples using Gaussian Mixture Models (GMMs) and then trains the gen-
erative model to create counterfactual samples in the densest regions. The
second approach adopts a generative adversarial network paradigm, where
the generator is trained to create counterfactuals and the discriminator is
optimised to distinguish real and fake samples. This approach avoids mak-
ing specific assumptions about the data distribution, such as the GMMs
in the first approaches. Both approaches aim to create counterfactuals
using generative models, with the aim of aligning created counterfactuals
with the distribution of realistic time series. Experiments carried out with
real-world data sets highlight the strengths of each approach in di↵erent
real-world problems.

In summary, this thesis advances XAI in MTSC by addressing key chal-
lenges in feature importance and counterfactual explanations. Throughout
this thesis, a strong emphasis is placed on leveraging generative models
to produce within-distribution samples with the aim of avoiding the out-
of-distribution problem and enhancing explanation reliability. This thesis
underpins the promising role of advanced generative models in XAI, setting
the stage for their expanded contribution and development in future XAI
research.

ii

Acknowledgements

First of all, I extend my deepest gratitude to my supervisors, Dr. Isaac

Triguero and Dr. Christian Wagner, for their invaluable advice, unwaver-

ing support, and patience throughout my Ph.D. studies. Their extensive

knowledge and rich experience have not only guided me through my aca-

demic research but also provided immense encouragement in my daily life. I

would also like to extend my heartfelt thanks to my colleagues at the Com-

putational Optimisation and Learning (COL) and the Lab for Uncertainty

in Data and Decision Making (LUCID) groups. Their collaborative spirit,

insightful feedback, and stimulating discussions have been instrumental in

shaping my research and professional growth. Last but not least, I can-

not express enough thanks to my family and friends for their unwavering

support and endless love.

iii

Contents

Abstract i

Acknowledgements iii

List of Tables vii

List of Figures viii

Abbreviations 1

Chapter 1 Introduction 1

1.1 Multivariate Time Series Classification within the Context

of XAI . 4

1.2 Tailoring Explanations for Diverse Stakeholders 7

1.3 Gaps and Objectives . 10

1.4 Contributions . 13

1.5 Thesis Organisation . 16

Chapter 2 Literature Review 18

2.1 eXplainable Artificial Intelligence 19

2.2 Multivariate Time Series Classification 25

2.3 The Out-Of-Distribution problem in AI 27

2.4 Feature Importance Explanations 30

2.5 Counterfactual Explanations 46

Chapter 3 Feature Importance Explanation Framework

through Meaningful Perturbation and Opti-

misation 53

3.1 Introduction . 53

3.2 Problem definition . 55

iv

3.3 Pipeline of the proposed framework 56

3.4 Experimental Design . 66

3.5 Results and Discussion . 76

3.6 Summary . 87

Chapter 4 Stable LIME Framework using a Generative

Model and an Adaptive Weighting Method 90

4.1 Introduction . 90

4.2 Proposed method: SEGAL 92

4.3 Experimental Design . 100

4.4 Results and analysis . 107

4.5 Summary . 120

Chapter 5 Creating Plausible Counterfactuals using Gen-

erative Models 122

5.1 Introduction . 122

5.2 DensityGuide . 126

5.3 LatentGAN . 133

5.4 Experimental Design . 136

5.5 Results and analysis . 142

5.6 Using ChatGPT to provide real explanations 150

5.7 Summary . 152

Chapter 6 Conclusions and Future Works 154

6.1 Main contributions . 155

6.2 Limitations and Future Works 158

Appendices 161

Appendix A Glossary of Mathematical Notations 162

Bibliography 164

v

List of Tables

2.1 Related works on improving stability of LIME 45

3.1 A summary of the 30 data sets in the UEA TSC Archive . . 68

3.2 The accuracy of the classifier and random guessing on the

problems in UEA archive. The RNNs-based classifier per-

forms well on the 17 data sets shown in bold. 71

3.3 The SDF results of the adopted saliency explaining methods

(above) and the time required to obtain one explanation

(below). 81

4.1 Summary of data set characteristics and performance of the

adopted classifiers and generative model. The column, D ⇥

T , represents the total number of features when fitting in-

terpretable models. 100

4.2 Number of neighbours for the adopted methods. 104

4.3 Method variants for detailed analysis 106

4.4 Methods for creating samples for LIME 108

4.5 Average distance between created neighbours and target sam-

ples across the adopted data sets. 109

4.6 The e↵ectiveness of the proposed weighting method 112

4.7 Jaccard-based stability measure across explanation methods

and data sets . 114

4.8 Stability measures of SETKL and SEGKL across the adopted

data sets . 117

vi

5.1 Proximity evaluation of the explanations provided by the

adopted methods across the data sets. 144

5.2 Sparisity evaluation of the explanations provided by the adopted

methods across the data sets. 145

5.3 Plausibility evaluation of the explanations provided by the

adopted methods across the data sets. 147

5.4 Stability evaluation of the explanations provided by the adopted

methods across the data sets. 149

vii

List of Figures

1.1 A binary MTSC problem. The classifier is built to pre-

dict whether the machine will fail later based on the data

recorded in the past 48 hours. 5

1.2 (a) Feature Importance Explanation: Highlighting the most

important time series subsequences. (b) Counterfactual Ex-

planation: Demonstrating how an alternative past vibration

level, as indicated by the red line, would lead to a di↵erent

classifier prediction. 9

2.1 The category of the approaches to obtain the explanations

for machine learning models 21

2.2 An output, f (x) = “2”, is produced by a classifier for an

MTS. This MTS has 3 variables, and the length of these

sequences is 80. Therefore, the input is denoted by x 2

R3⇥80 and has 240 features. 27

2.3 A classic feature importance explanation, where each feature

is assigned with an importance score. 31

viii

2.4 (a) Time series perturbation inputs created by replacing fea-

tures with zeros and plausible values that inferred from the

training data set; (b) The perturbation inputs for an image

classification problem, where the centre region is replaced

by mean, blur, random noises and plausible values inferred

from the training data set. (This image is taken from (Chang

et al., 2019)). 36

2.5 The traditional neighbour generation process for an MTSC

problem. The input time series has 2 variables, each of which

has 6 time steps. The baseline is established as the average

value of the corresponding variable. The di↵erence in class

1 probability between f(x) and f(x0) quantifies the contri-

bution of three features marked as ‘0’ in z0 to the classifier’s

prediction that x belongs to class 1. 38

2.6 An optimisation-based feature importance explanation. Clas-

sic feature importance explanations (shown in Fig. 2.3) fo-

cus on assigning each feature an importance score, whereas

optimisation-based methods identify a group of the most im-

portant features rather than exactly estimating the impor-

tance score of each feature. 42

ix

2.7 A multivariate time series from the Handwriting data set

(Bagnall et al., 2018), where the acceleration of the hand in

the x, y, and z directions is recorded by a smartwatch while

a person is writing words. The trained classifier predicts

that the person is writing the character ‘E’. An explanation

provided by LIME for this prediction is shown in (a), where

the identified most important features are highlighted in red.

However, when the same explanation process is carried out

again, another explanation, di↵erent from (a), is obtained,

and shown in (b). 44

3.1 Explaining a classifier through a post-hoc approach. In the

first step, the classifier is trained on an MTSC training data

set. Then, the trained classifier is used to classify an in-

stance of the MTSC, of which the output is explained in

the third step. In the third step, the generative model is

optimised to learn the distribution of the training data set

(as indicated by arrow 1). Subsequently, the trained gener-

ative model generates meaningful perturbation samples for

the input that needs explanation (as indicated by arrow 2).

These samples are then utilized in the designed search meth-

ods (as indicated by arrow 3). Finally, the saliency map is

produced using the designated search-based saliency compu-

tation method (as indicated by arrow 4). 57

x

3.2 The structure of the proposed generative model. The train-

ing data are generated by masking features within some ran-

domly chosen time intervals. Then, the generative model

is trained to generate plausible alternative values for these

masked features. To enhance the quality of the MTS gener-

ated by the generator, a discriminator is added to distinguish

the fake MTS (generated by the generative model) and the

real MTS (sampled from the data set). 59

3.3 Proposed greedy-based segmentation and identification search

method. The input MTS are segmented into several seg-

ments. In the next step, the smallest supporting segments

are identified through a binary search method. In the next

segment step, the previously identified segments are further

segmented into smaller segments. Then, the adopted bi-

nary search model is implemented on these smaller segments.

This process continues until the length of the segments is

one. 65

3.4 Treating MNIST images as MTS. Each image is regarded an

MTS with 28 time steps, each of which has 28 features . . . 69

xi

3.5 The performance of the generative model in creating plausi-

ble values for certain features. In (a) and (b), the blue time

series are the original time series, and the red subsequences

are generated by the generative model. In (c), the first and

second columns are the original input and the input with

some features randomly selected and masked. The third col-

umn to the last column are perturbed inputs created by the

weighted average of neighbouring features (Crabbé and Van

Der Schaar, 2021), by random noise, by the average values

of corresponding dimensions and by the values created by

the generative model, respectively. 78

3.6 Model’s prediction accuracy on the test data sets, when

a certain number of features are perturbed using “zeros”,

“random noise”, and alternative values generated by the

generative model. Better performance in creating within-

distribution inputs yields higher model’s higher accuracy. . 79

3.7 Counterfactual explanations for instances taken from ERing

(a) and RocketSports (b) data set. The figures above are

original time series, where the most important features are

highlighted. The figures below are counterfactual inputs,

where the important features take alternative values. (c):

Counterfactual explanations for instances from the MNIST

data set. 83

3.8 Di↵erent explanations are provided for the two inputs in the

CharacterTrajectories data sets, where the most important

features are highlighted by red lines. 85

3.9 The saliency maps when the desired class is set to class “4”

(a) and class “11” (c). The identified important segments

are colored in red. 85

xii

3.10 The saliency maps provided by our framework but using dif-

ferent perturbation strategies, including using the generative

model, using zeros, and random noise. 86

3.11 The saliency maps for the given inputs (a) provided with our

proposed search strategy and (b) provided by applying bi-

nary search method directly over the original features space.

. 87

4.1 The workflow of the proposed method. Prior to generat-

ing explanations, the classifier and a generative model are

trained on the data set. The details of training the genera-

tive model are shown on the top right. The steps to explain

the classifier prediction for the given input time series (also

known as the target sample to be explained) are as follows:

(1) Generation of neighbours for the given input using the

trained generative model; (2) Making of predictions on the

generated neighbours using the trained classifier; (3) Weight-

ing of the created neighbours using the proposed adaptive

weighting method; (4) Fitting of an interpretable model on

the proxy data set to provide a final explanation. 93

4.2 The proposed weighting method assigns the highest weights

to the closest neighbor, and the weights decrease exponen-

tially as the neighbors are farther away. 98

4.3 The distance distributions, measured by cosine similarity,

between the target input and neighbours created by three

di↵erent methods. The target sample is taken from the

JapaneseVowels data set. 109

xiii

4.4 The influence of � in SEGKL (a) and ↵ in SEGAL (b) on the

stability of final explanations. If these two hyperparameters

are not chosen suitably, the final explanations will not be

stable (This sample comes from the Handwritting data set

and the classifier is Transformer-based.) 110

4.5 Explanations provided by SEGKL and SEGAL for an in-

stance from the Epilepsy data set ((a) and (b)) and for an

instance from the Handwriting data set ((c) and (d)). The

identified most important features are coloured in red. The

explanations provided by these two methods are very similar. 113

4.6 Explanations provided for selected instances from the MNIST

data set, for the transformer classifier. The first column dis-

plays the original input, while the remaining columns show

explanations provided by the corresponding methods that

are carried out multiple times. In the explanations, impor-

tant features are highlighted in red. 116

4.7 The output surfaces of the classifier on created samples. . . . 117

4.8 Due to the sampling process in the neighbour generation

process, the rough output surface results in very di↵erent

explanations (below). On the contrary, if the output surface

is smooth, the final explanations tend to be stable (above). . 118

4.9 Output surfaces of the classifiers with variant performance. 118

5.1 The workflow of the proposed method. 127

5.2 The architecture of the adopted generative model 133

5.3 Standard GAN framework and the LatentGAN framework

used in this work. 134

5.4 Investigated variants of the proposed method 139

xiv

5.5 Counterfactual explanations for the classifier trained on the

Microsoft Azure Predictive Maintenance data set. The orig-

inal time series, shown in blue, leads to a prediction of ma-

chine failure in the next 24 hours. On the contrary, for the

counterfactuals provided, coloured red, the classifier predicts

that the failure will not happen in the next 24 hours. 142

5.6 Counterfactual explanations provided by the adopted meth-

ods. The label predicted by the classifier for these counter-

factuals is label “0”. 143

5.7 Using ChatGPT to provide more comprehensive explana-

tions and suggested actions 151

xv

Chapter 1

Introduction

In recent years, the development of hardware and increased data availability

has significantly advanced modern Artificial Intelligence (AI) techniques,

such as deep learning (LeCun et al., 2015). These models have achieved

promising performance in various fields (Hamet and Tremblay, 2017; Tada-

paneni, 2019; Nti et al., 2022). Recently, a notable example in this field

is the Chat Generative Pre-trained Transformer (ChatGPT) developed by

OpenAI (OpenAI, 2023). ChatGPT has demonstrated remarkable capabil-

ities in a variety of tasks, such as language understanding, code debugging,

and story writing, among others. The innovations accompanying it high-

light the potential of AI to revolutionise everyday interactions and enhance

human productivity, marking the beginning of a new era in AI for humans.

As AI techniques become increasingly integrated into various fields, some

concerns about them have also risen. A notable concern is its interpretabil-

ity. Current modern AI techniques are usually based on deep neural net-

works, which are often considered black-boxes. These models process input

through a large number of parameters to produce final predictions. In this

circumstance, users do not often know whether the predictions made by

1

these models are reliable or unbiased. This lack of interpretability sig-

nificantly impedes their employment in some safety-critical areas such as

finance and medicine. In these areas, the ability to interpret and explain AI

decisions is not just desirable but necessary. This urgent need has spurred

the development of XAI, which seeks to bridge the gap between AI perfor-

mance and human understanding (Barredo Arrieta et al., 2020).

The main objective of XAI is to provide explanations to humans to help

them understand the reasons behind the predictions. In the XAI liter-

ature, explainability refers to two distinct high-level concepts: post-hoc

explainability or interpretability, and transparency (also referred to as self-

explainability, e.g. in (Ding et al., 2022)). The former captures the ability

to explain a given output generated by an AI model, while the latter de-

scribes the property of an AI model as being interpretable by a human1,

i.e., including its components, mechanisms, and training process. Regard-

ing the former, post-hoc methods can generally be applied to a wide range

of algorithms since many post-hoc methods are model-agnostic (Kamath

and Liu, 2021). Moreover, post-hoc methods will not a↵ect the predic-

tive performance of a classifier, while some self-explainable classifiers sac-

rifice their performance for interpretability (Lipton, 2018). Although it

is contested whether self-explainable methods have to sacrifice their per-

formance for interpretability (Rudin, 2019), post-hoc analysis approaches

may relieve model builders of the burden of thinking about how to provide

explanations and allow them to focus only on predictive performance. In

addition, post-hoc analysis can provide di↵erent kinds of explanation, such

as sample-based counterfactual explanations (R. Fernández et al., 2022)

or feature importance-based explanations (Ribeiro et al., 2016; Lundberg

and Lee, 2017). However, post-hoc analyses also face the risk of generat-

1The notion of who this human is, is a crucial aspect of assessing a model’s trans-
parency, i.e. it may be transparent to its creating engineer, but not to an end user.

2

ing unreliable explanations, which means that the explanations provided

by post-hoc approaches may not faithfully reflect how the classifier works

(Rudin, 2019).

Explanations in the XAI domain are typically categorised according to

their scope and applicability, leading to two primary classifications: global

explanations and local explanations (Ding et al., 2022). Global explana-

tions aim to reveal the global behaviour of the classifier on the whole data

set, while local explanations focus on the behaviour on a specific instance.

Due to the heterogeneity of real-world data sets, a model might behave

di↵erently when making predictions on di↵erent sets of instances. Thus,

the development of local instance-wise explanations has drawn increasing

attention in recent years (Le et al., 2023).

XAI has been a growing field of research for many years. However, the

majority of XAI e↵orts have focused on tabular data, images, or language

models. Time series models, despite their importance, have not received

su�cient attention in XAI research (Barredo Arrieta et al., 2020; Ding

et al., 2022). This gap is critical considering the wide application of time

series data in various domains such as finance and healthcare. Therefore,

the main motivation of this thesis is to advance the development of XAI in

the context of time series models.

This chapter is organised as follows. Section 1.1 delves into MTSC, the

primary focus of this thesis, and discusses the challenges faced by XAI in

this context. Section 1.2 highlights the need for various explanations to

satisfy diverse user requirements. Section 1.3 identifies the gaps of current

explanation methods when applied in the context of MTSC and outlines the

objectives of this thesis. Section 1.4 summarises the main contributions of

this thesis. Finally, Section 1.5 provides the overall structure of the thesis.

3

1.1. MULTIVARIATE TIME SERIES CLASSIFICATION WITHIN
THE CONTEXT OF XAI

1.1 Multivariate Time Series Classification

within the Context of XAI

A time series is defined as a sequence of real values recorded in chrono-

logical order. These series can be univariate, involving data from a single

source, or multivariate, where data are gathered from multiple sources. For

example, Figure 1.1 illustrates multivariate time series data that represent

the operational status of a machine, as captured by four di↵erent sensors.

In recent years, with rapid technological evolution and the growing acces-

sibility of data, especially through advancements in the internet of things,

there has been a significant increase in the availability of such time series

data. This abundance of data has catalysed advances in time series related

models, such as forecasting and classification models.

Time series forecasting has become pervasive in research, focusing on the

prediction of future values by analysing past and present data (Masini

et al., 2023). This approach is crucial in various fields, from finance (Sezer

et al., 2020) to weather prediction (Karevan and Suykens, 2020), where

understanding future trends or conditions based on historical data is es-

sential. In contrast, time series classification diverges from forecasting by

concentrating on categorising a time series to discern patterns or events.

An example of a time series classification problem is shown in Figure 1.1.

This model is built to predict potential machine failures in the future based

on the input multivariate time series data. It has various types of appli-

cations, such as pattern recognition in financial markets (Doroudyan and

Niaki, 2021), health monitoring through wearable devices (Rosafalco et al.,

2020), and predictive maintenance in manufacturing industries (Serradilla

et al., 2022).

4

1.1. MULTIVARIATE TIME SERIES CLASSIFICATION WITHIN
THE CONTEXT OF XAI

Classifier This machine will (or will not) fail.

Figure 1.1: A binary MTSC problem. The classifier is built to predict
whether the machine will fail later based on the data recorded in the past
48 hours.

In this thesis, the focus will be on classification problems, with a twofold

rationale underlying this decision. First, the techniques developed for clas-

sification can be adapted to forecasting challenges by reinterpreting fore-

casting tasks as classification problems. For example, instead of forecast-

ing a specific value, results can be categorised into classes such as ‘high’,

‘medium’, or ‘low’, transforming the forecasting challenge into a classifica-

tion one. This categorisation also allows the application of interpretability

techniques originally designed for classification models to be used in forecast

contexts (Assaf et al., 2019). Secondly, the discrete output nature of clas-

sification models facilitates the setting of specific objectives for developing

explanation methods, which is crucial to improving model interpretability.

For example, in a scenario where the classifier predicts a possible machine

failure (as depicted in Figure 1.1), the explanation method might focus on

answering why the model predicts such an outcome and under which con-

ditions the model will not predict such a failure. This clear and targeted

question aids in guiding the design of e↵ective explanation methods. How-

ever, when dealing with forecasting models that predict specific values, such

as a model that forecasts the price of one stock to be 15 dollars, formulat-

ing an e↵ective explanation question is not so straightforward. Questions

like ‘Why did the model predict 15?’ do not typically yield actionable

insights because they focus on a very specific value rather than on un-

derstanding model behaviour under variable conditions. A more practical

5

1.1. MULTIVARIATE TIME SERIES CLASSIFICATION WITHIN
THE CONTEXT OF XAI

approach might reframe the problem in a classification term, asking ‘Under

what conditions does the model predict values below 14?’ This reframing

not only makes the question more specific, but also more actionable, as it

guides the development of explanation methods by examining how changes

in input a↵ect the threshold-based classification. Through this transfor-

mation, forecasting models are actually treated as classification problems,

which facilicates the design of explanation methods.

Moreover, the emphasis of this thesis is on multivariate time series because

they encapsulate more information than univariate series, o↵ering richer in-

sights for prediction. Modern deep learning models are adept at extracting

and leveraging this information for high-performance predictions. How-

ever, these models often lack interpretability. In addition, the explanation

methods designed for multivariate time series establish a general frame-

work that is also adapted for univariate time series. Therefore, this thesis

is dedicated to improving the interpretability of deep learning models for

MTSC.

In the XAI domain, time series models have not received as much attention

as they deserve. A key reason for this could be attributed to the inherent

characteristics of time series data. Typically, time series are represented

by a sequence of discrete values, the meanings of which are often not im-

mediately clear to humans. This contrasts with tabular data, where each

feature usually has a specific and well-defined physical meaning. Similarly,

in language models, each input word is easily understood, and in image

models, pixels often represent recognisable objects. However, in time series

data, the meaning of each value might be less apparent than that of images

or words.

The inherent obscurity of time series data presents significant challenges

6

1.2. TAILORING EXPLANATIONS FOR DIVERSE STAKEHOLDERS

in providing e↵ective explanations for MTSC. The main objective of XAI

is to provide explanations that are not only comprehensible to humans,

but also align with their individual requirements. The diverse knowledge

backgrounds and varying needs of users imply that di↵erent individuals

may favour di↵erent types of explanation. Given the subjective nature of

the term ‘explanation’, it becomes essential to clearly identify and under-

stand the preferences of the target audience prior to developing explanatory

methods. E↵ective explanations are those that resonate with and meet the

specific needs of the target audience. Consequently, a crucial step in ad-

vancing XAI within the MTSC domain involves pinpointing the needs and

preferences of the target audience, ensuring that the explanations provided

are comprehensible and e↵ective for diverse stakeholders.

1.2 Tailoring Explanations for Diverse Stake-

holders

In Spring 2023, the UK government published its policy paper titled “A pro-

innovation approach to AI regulation”. In it, they set out five cross-cutting

principles that will underpin the UK’s approach to AI regulation (Roberts

et al., 2023). One of these principles emphasises the need for appropriate

transparency and explainability, which involves making the workings of AI

systems understandable to their users. However, a critical question arises:

Which forms of explanations are most e↵ective and should be provided?

The challenge lies in the subjective nature of the explanations; di↵erent

stakeholders require di↵erent types of explanation. For example, a domain

expert might need technical explanations involving model architecture and

algorithmic decision-making processes. Nevertheless, for ordinary people,

7

1.2. TAILORING EXPLANATIONS FOR DIVERSE STAKEHOLDERS

simpler and more intuitive explanations are necessary, which translate com-

plex AI decisions into understandable language and practical implications.

Therefore, it is necessary to develop a variety of explanation methods tai-

lored to meet the diverse needs of various stakeholders. Given the need

for varied types of explanations, post-hoc explanation techniques become

particularly valuable. These techniques are capable of providing a range

of explanations to suit di↵erent audiences, in contrast to self-explainable

approaches, which are typically limited to a single type of explanation

predetermined during the model construction stage. Therefore, this the-

sis concentrates on developing post-hoc explanation methods that cater

to a spectrum of explanatory needs. Among various types of explana-

tions, including causal explanations, example-based explanations, feature

importance, and counterfactual explanations, the latter two emerge as the

predominant categories (Barredo Arrieta et al., 2020). Feature importance

explanations are exceptionally beneficial for AI experts, providing in-depth

insights into which features most significantly influence model outcomes.

In contrast, counterfactual explanations hold particular value for general

audiences by demonstrating how changes in inputs could lead to di↵erent

model predictions. Therefore, to meet the various requirements of di↵er-

ent audiences, this thesis focuses on feature importance and counterfactual

explanations, both of which are illustrated in Figure 1.2.

Feature Importance Explanations: Feature importance is among the

most common types of explanation, where the most important features are

identified for a certain input. In the context of MTSC, values in certain

time steps can be regarded as features, similar to pixels in images or fea-

tures in tabular data (Crabbé and Van Der Schaar, 2021; Ismail et al.,

2020). Therefore, in feature importance explanations the most important

time series subsequences are highlighted, shown in Figure 1.2a. These ex-

8

1.2. TAILORING EXPLANATIONS FOR DIVERSE STAKEHOLDERS

(a) (b)

Figure 1.2: (a) Feature Importance Explanation: Highlighting the most im-
portant time series subsequences. (b) Counterfactual Explanation: Demon-
strating how an alternative past vibration level, as indicated by the red line,
would lead to a di↵erent classifier prediction.

planations are particularly beneficial for stakeholders, who may use them

for feature selection to enhance model performance or to ensure the model’s

alignment with established scientific knowledge. For example, in the clini-

cal area, time series data form a crucial basis for developing early disease

detection models. However, clinical time series data are often complex

and derived from various sources. For model constructors, especially those

without a medical background, feature importance explanations can be in-

valuable in identifying and eliminating non-essential features, helping them

reduce model complexity and potentially improve performance. Beyond the

raw time series data shown in Figure 1.2a, some time series also incorporate

some static features, such as age and gender, which can significantly influ-

ence a model’s behaviour. Understanding the importance of these features

is also crucial as it enables users to gain a comprehensive view of the factors

driving the model predictions. For example, in clinical settings, recognis-

ing the significance of age and gender in conjunction with physiological

measurements can greatly enhance early disease detection models. By tai-

loring these models to specific demographic groups, both the accuracy and

relevance of the predictions can be improved.

Counterfactual Explanations: Counterfactual explanations represent

another well-known type of explanation (Ates et al., 2021a; Delaney et al.,

9

1.3. GAPS AND OBJECTIVES

2021a). Counterfactual explanations aim to answer how specific changes in

input variables could lead to a di↵erent desired outcome from a predictive

model. As shown in Figure 1.2b, should the past vibration level be repre-

sented by the red line instead of its original state, the classifier will produce

a prediction that di↵ers from that based on the original input. By illus-

trating ‘what-if’ scenarios, these explanations help users understand the

conditions under which the outcome would change, enabling them to make

informed decisions based on the insights of the model. This kind of expla-

nation is beneficial to people, particularly those who may not have in-depth

technical expertise, as it provides clear and actionable insights (Poyiadzi

et al., 2020). For example, in applications such as early disease detection,

imagine that an automated diagnostic system predicts the development of

a disease in the future. Along with this prediction, a counterfactual ex-

planation reveals that if blood sugar levels had been reduced to a certain

threshold during a specified period, the model would have predicted that

the disease would not occur. Armed with such insights, physicians can take

proactive measures to manage blood sugar levels, potentially preventing the

development of the disease.

1.3 Gaps and Objectives

MTSC has a wide range of real-world applications, and deep learning tech-

niques have significantly advanced high-performance solutions in this area.

However, a critical limitation is their lack of interpretability, which re-

stricts their deployment in safety-critical fields such as finance and health-

care. XAI has emerged as a crucial domain within AI, with the objective

of demystifying these models. However, applying current XAI methods to

MTSC presents challenges that this thesis aims to address.

10

1.3. GAPS AND OBJECTIVES

• Time series data are characterised by their temporal dependency,

meaning that each data point is in relation to its chronological prede-

cessors and successors. This aspect fundamentally di↵ers from tab-

ular data, where features are generally assumed to be independent.

Therefore, most of the current feature importance explanation meth-

ods, which often overlook these temporal dependency, are not appli-

cable for MTSC. These methods tend to generate unrealistic time

series that are not aligned with the data encountered by the classifier

during its training phase. Therefore, the predictions made on these

unrealistic time series are not reliable and cannot reflect what the

model has learnt in the training stage, resulting in unfaithful expla-

nations. This is known as the out-of-distribution problem in the XAI

domain (Hase et al., 2021; Kim et al., 2020), yet it is overlooked in

the context of MTSC explanations.

• Another significant challenge arises specifically with some proxy ex-

planation methods, such as LIME (Local Interpretable Model-agnostic

Explanations) (Ribeiro et al., 2016), a well-known proxy explanation

framework. Recent research has identified a critical issue regarding

the stability of the explanations provided by LIME. This instability

means that the explanations generated for the same instance by the

same settings can vary inconsistently, undermining the trust users

place in these explanations (Zhou et al., 2021; Visani et al., 2020).

Although some researchers suggest increasing the number of neigh-

bours or optimising hyperparameters within the explanation frame-

work to enhance stability, these strategies appear insu�cient in the

context of MTSC. The underlying reasons for this instability in the

context of MTSC remain unclear, which presents a significant hurdle

in applying this method in this field.

11

1.3. GAPS AND OBJECTIVES

• The final challenge addressed in this thesis targets the feasibility and

plausibility of counterfactual explanations provided in the context of

MTSC. Various counterfactual explanation methods have been pro-

posed, some specifically designed for MTSC (Delaney et al., 2021a;

Ates et al., 2021a). However, these methods primarily concentrate on

minimising alterations to the original input to achieve a desired clas-

sifier’s outcome. This type of approach often results in the generation

of unrealistic counterfactual explanations. These explanations, while

technically valid to change model’s outcomes, fail to o↵er meaningful

insights or actionable intelligence. This is because they do not ade-

quately consider the complex, real-world dynamics and dependencies

inherent in time series data. Consequently, such counterfactuals may

not be representative of feasible or realistic scenarios, limiting their

utility in practical applications.

The main objective of this thesis is to develop post-hoc techniques in the

context of MTSC to provide various kinds of explanation, including feature

importance and counterfactual explanations, with the aim of addressing

the diverse interpretability requirements of various stakeholders. The gaps

identified above serve as a road map for a targeted advancement of XAI

within the MTSC domain. In response to these gaps, the research questions

for this thesis are outlined as follows:

• RQ1 : Is it possible to generate within-distribution samples for the

MTSC problem to improve the performance of feature importance

explanation methods?

• RQ2 : What are the causes of the unstable explanations provided for

MTSC by LIME, and does generating within-distribution samples

help to stabilise the explanations?

12

1.4. CONTRIBUTIONS

• RQ3 : How can we ensure that counterfactual explanations in MTSC

align with the training data distribution, thus enhancing their feasi-

bility and plausibility?

Informed by the motivations and research questions previously outlined,

the central aim of this thesis is articulated as: to advance the development

of XAI within the MTSC context through generative models with the aim

of meeting the varied requirements of di↵erent stakeholders by providing

feature importance and counterfactual explanations. To achieve this over-

arching goal, three primary research objectives have been established.

• Objective 1 : to construct a comprehensive framework that e↵ectively

incorporates the temporal dependencies inherent in time series data,

with the aim of creating within-distribution samples for accurate fea-

ture importance evaluation in MTSC scenarios.

• Objective 2 : to investigate the causes of the instability of the expla-

nations provided by LIME in the context of MTSC. Based on this

analysis, the objective is to design and implement solutions that en-

sure the stability and consistency of these explanations.

• Objective 3 : to create a robust framework for MTSC that is capa-

ble of generating plausible and practical counterfactual explanations.

The focus here is to enhance the usefulness and applicability of these

explanations in real-world decision-making scenarios.

1.4 Contributions

The contributions of this thesis are to advance the development of XAI in

the context of MTSC, providing various types of explanation to meet the

13

1.4. CONTRIBUTIONS

needs of di↵erent stakeholders. The types of targeted explanation are fea-

ture importance and counterfactual explanations. The primary approach

of this thesis focuses on examining the potential shortcomings of state-of-

the-art explanation methods when applied within the MTSC and adapting

them to be more suitable for this specific domain. The key contributions

of this thesis include:

• A Model-agnostic Post-hoc Framework for Feature Impor-

tance Explanations: A novel model-agnostic post-hoc framework is

established to explain MTSC through feature importance. There are

two innovations within the proposed framework. First, a generative

model is designed and used to generate perturbation samples within

the training data distribution, which are used to accurately evaluate

the importance of features. Second, a novel heuristic optimisation

method is designed for the MTSC problem to search for the most

important features more e�ciently.

• Uncovering the Causes of Unstable Explanations in LIME:

This thesis is the first work to distinctly highlight that the OOD issue

is a primary factor contributing to the instability of the explanations

provided by LIME. The impact of OOD on the stability of the expla-

nation has not been investigated in the existing literature. This thesis

provides a comprehensive analysis, revealing how the OOD problem

can significantly a↵ect the stability of LIME’s explanations.

• Stable LIME Explanation Framework: A stable LIME frame-

work, SEGAL (Stable Explanations using a Generative Model and

an Adaptive Weighting Method for LIME), is developed. The pro-

posed SEGAL framework has two innovations. First, a generative

model is employed to generate meaningful neighbours. Second, an

14

1.4. CONTRIBUTIONS

adaptive weighting method is designed in which the hyperparameters

are easier to tune than those of the classic approaches.

• Plausible Counterfactual Explanations: An innovative counter-

factual explanation method is developed, with a primary emphasis

on enhancing the plausibility of explanations to ensure their rele-

vance and applicability. To achieve this, we have devised two dis-

tinct approaches. The first approach uses a Gaussian mixture model

to approximate the density distribution of the data, enabling the

generation of counterfactuals within the regions of highest density.

This ensures that the counterfactuals are not only plausible but also

closely aligned with the most probable scenarios in the data distri-

bution. The second approach employs a Generative Adversarial Net-

work (GAN) framework, focusing on producing counterfactuals that

are indistinguishable by the classifier. This method leverages the

power of GAN to create realistic and plausible counterfactuals.

The above contributions are part of or included in the following list of

works completed during the PhD studies:

• Han Meng, Christian Wagner, Isaac Triguero. Feature Importance

Identification for Time Series Classifiers. 2022 IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Prague, Czech

Republic, 2022, pp. 3293-3298, DOI: 10.1109/SMC53654.2022.9945205.

The content of this paper is covered in Chapter 3.

• Han Meng, Christian Wagner, Isaac Triguero. Explaining Time Se-

ries Classifiers through Meaningful Perturbation and Optimisation.

Information Sciences, 2023. DOI:10.1016/j.ins.2023.119334.

The content of this paper is covered in Chapter 3.

15

1.5. THESIS ORGANISATION

• Han Meng, Christian Wagner, Isaac Triguero. An Initial Step To-

wards Stable Explanations for Multivariate Time Series Classifiers

with LIME. 2023 IEEE International Conference on Fuzzy Systems

(FUZZ), Incheon, Korea, Republic of, 2023, pp. 1-6, DOI: 10.1109/

FUZZ52849.2023.10309814.

The content of this paper is covered in Chapter 4.

• Han Meng, Christian Wagner, Isaac Triguero. SEGAL Time Series

Classification - Stable Explanations using a Generative Model and

an Adaptive Weighting Method for LIME. Neural Networks. 2024,

DOI:10.1016/j.neunet.2024.106345.

The content of this paper is covered in Chapter 4.

• Han Meng, Christian Wagner, Isaac Triguero. A plausible counter-

factual explanation method for multivariate time series classifiers. (in

preparation).

The content of this paper is covered in Chapter 5.

1.5 Thesis Organisation

This thesis is organised as follows:

• Chapter 2 delves into the existing prominent post-hoc explanation

methods within the realm of XAI. It highlights the limitations and

shortcomings of these methods when applied to MTSC, along with a

discussion of the specific challenges encountered in explaining MTSC

models. This sets the stage for subsequent chapters by establishing

the current state of the field.

• Chapter 3 details the proposed post-hoc model-agnostic framework

16

1.5. THESIS ORGANISATION

for feature importance explanations in MTSC. This chapter details

the architecture of the generative model and the innovative greedy-

based heuristic search method. In addition, this chapter discusses the

strengths and limitations of the proposed framework.

• In Chapter 4 the proposed SEGAL framework is presented, which

covers the neighbour generation approaches utilising the specially

designed generative model and introduces an adaptive weighting ap-

proach to ease the challenges associated with hyperparameter tuning.

Moreover, a significant focus is placed on elucidating how the OOD

problem contributes to unstable explanations, o↵ering deep insights

into this problem.

• Chapter 5 introduces novel counterfactual explanation methods de-

signed for MTSC. It describes the methodologies used to enhance

the meaningfulness of counterfactual explanations, including max-

imising the data density and generating indistinguishable counterfac-

tuals. The practical utility of these counterfactual explanations in

real-world scenarios is presented.

• Chapter 6 summarises the key contributions of this thesis, reflecting

on its impact in the field of XAI for MTSC. It also identifies current

limitations and outlines potential avenues for future research.

17

Chapter 2

Literature Review

Technological advancements have significantly advanced modern artificial

intelligence, notably deep learning, which excels at identifying complex pat-

terns in data for various tasks. However, its deployment in safety-critical

areas is impeded by a lack of interpretability. In these areas such as fi-

nance and healthcare, where MTSC has a wide range of applications, deep

learning-based models o↵er promising solutions, but their interpretability

remains a challenge. Although many explanation methods have been de-

veloped in the XAI domain, applying them to MTSC problems presents

several challenges that need to be addressed.

This chapter lays the foundation for understanding the subsequent content

of this thesis. Specifically, Section 2.1 introduces the background of XAI,

covering its significance within the AI community, foundational concepts,

various categories of explanation methods, and the types of explanations

provided. Section 2.2 defines the MTSC problem that this thesis focuses

on. Section 2.4 discusses the state-of-the-art feature importance explana-

tion methods and their limitations in the context of MTSC. Section 2.5

covers the desirable properties of counterfactual explanations, the current

18

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

counterfactual explanation methods proposed in the literature for MTSC,

and their limitations.

2.1 eXplainable Artificial Intelligence

XAI seeks to demystify the models’ behaviour, making them transparent

and comprehensible to humans (Barredo Arrieta et al., 2020)1. This field

has gained momentum as AI applications have become more widespread

and complex. In the early days of AI, systems were relatively simple with

logic that could be easily understood. However, the emergence of deep

learning has ushered in an era of more intricate models, amplifying the

need for clarity about how these models operate, especially in critical areas

such as healthcare and finance. Understanding the rationale behind these

complex models is crucial for users, as they need explanations to gain trust

and avoid potential risks (Barredo Arrieta et al., 2020). In recent years,

XAI has emerged as a vibrant area of research, drawing considerable at-

tention in the academic community.

As the field of XAI has evolved, numerous concepts have been introduced

that may initially seem daunting to newcomers, such as interpretability, ex-

plainability, transparency, understandability, etc. Currently in the tge XAI

domain, the meaning of these terms still varies across di↵erent literature,

although some agreement is appearing.

• Interpretability refers to the extent to which a human can understand

the rationale behind an AI system’s decisions. For example, in an AI

1Model behaviour refers to how a model processes input data to produce outputs or
decisions. In this thesis, we specifically focus on the model’s responses to samples that
fall within the same distribution as the training data, which reveals the knowledge that
the model has learnt during the training phase.

19

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

medical diagnosis, interpretability might be demonstrated through a

model that highlights the symptoms or test results that influenced

its diagnosis of a disease the most. This helps clinicians understand

why the AI made a particular decision, potentially helping them in

trust building and decision-making processes.

• Explainability extends beyond interpretability by not only reveal-

ing the influences behind decisions but also describing the mechanics

of the model in terms that are relatable to human understanding

(Guidotti et al., 2018). Continuing with the medical example, an ex-

plainable AI model would not only highlight influential factors, but

would also provide a simplified description or visualisation of how

these factors interact to lead to a specific diagnosis. This could in-

clude showing how di↵erent symptom weights contribute to the final

output, thereby making the AI’s process more accessible to healthcare

professionals without deep technical expertise.

• Transparency, on the other hand, refers to the inherent openness of a

model in revealing its workings directly (Lipton, 2018). A transpar-

ent model in the AI domain could be a decision tree in which each

decision node and pathway are clearly visible and understandable to

the user. For example, a financial lending AI that uses a decision tree

can show exactly how it assesses creditworthiness based on criteria

such as credit score, income, and debt levels, and each decision point

transparently contributes to the final decision to approve or deny a

loan.

In this thesis, our focus will be on interpretability and explainability. Our

objective is to develop techniques that elucidate the inner workings of mod-

els in a manner that is readily accessible to users, enabling them to under-

20

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

XAI method

By Nature

Transparent
Model

Post-hoc
Explainability

Model-
agnostic

Model-
specific

By Scope

Local
Explanation

Global
Explanation

Typical methods

Logistic/Linear models
Decision Trees
K-Nearest Neighbours
…

LIME
SHAP
Perturbation-based
…

DeepLIFT
IntegratedGradient
GradCAM
…

Figure 2.1: The category of the approaches to obtain the explanations for
machine learning models

stand the mechanisms underpinning model decisions with ease.

The foundational concepts introduced above pave the way for the advance-

ment of XAI development. Currently in the literature, the methods devel-

oped to obtain explanations can be categorised based on various certeria,

which can be shown in Fig. 2.1. First, explanations for models can be

obtained through either post-hoc techniques or self-explainable models.

• Post-hoc techniques : Implemented after a model has been trained

and made its predictions; these methods retrospectively analyse and

elucidate the decision-making process.

• Self-explainable models : Incorporating explanatory capabilities dur-

ing the model construction phase, these models are inherently trans-

parent, designed with the purpose of being understandable from the

outset. This intrinsic transparency allows self-explainable models

to provide a global perspective on their decision-making processes.

They enable a comprehensive understanding of the model’s opera-

tional logic over a wide array of inputs, thereby o↵ering a holistic

view of its behaviour and principles.

Furthermore, post hoc interpretability can be obtained through either model-

21

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

agnostic or model-specific approaches.

• Model-agnostic methods : These are versatile techniques that can be

applied to various models, regardless of their underlying architecture.

They o↵er flexibility in explaining di↵erent models without the need

to understand their internal mechanics.

• Model-specific methods : Tailored to specific model architectures, these

methods leverage the inherent characteristics of a model to provide

explanations. For instance, some gradient-based explanation tech-

niques are applied exclusively to models with accessible gradients

(Simonyan et al., 2014).

Explanation techniques can also be categorised based on the scope of their

explanations, specifically whether they aim to provide local or global ex-

planations.

• Local explanation methods: These methods focus on individual pre-

dictions made by a model, providing insights into why a model made

a specific decision for a specific instance.

• Global explanations: These explanations aim to provide an overview

of what a model has learnt overall, rather than focusing on individual

predictions.

As noted above, a central tenet of XAI is the comprehensibility of the ex-

planations it provides. The e↵ectiveness of these explanations is largely

dependent on their ability to be understood by humans. However, the di-

versity in AI stakeholders’ backgrounds and needs leads to varied perceived

utility in respect to the same explanations. In other words, various types

22

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

of explanations generated by these methods cater to di↵erent interpreta-

tion needs and preferences (Barredo Arrieta et al., 2020). This variability

underscores the importance of tailoring explanations to suit the specific

understanding and context of the audience, ensuring that the insights of-

fered by AI systems are accessible and meaningful to all users, regardless of

their expertise or familiarity with the underlying technology. Currently in

the literature, the explanation types provided are broadly categories into

several types (Barredo Arrieta et al., 2020):

• Feature Importance: This type emphasises the features that signifi-

cantly influence the predictions of a model. One prominent method

used to quantify this influence is SHAP (SHapley Additive exPla-

nations), which is based on Shapley values from cooperative game

theory. It provides a robust way to allocate ”payouts” (i.e., the pre-

diction output of the model) to individual “players” (i.e., features)

based on their contribution to the cooperative game (i.e., the predic-

tive model). On the other hand, LIME (Local Interpretable Model-

agnostic Explanations) o↵ers a di↵erent approach. LIME aims to

explain the predictions of any classifier or regression model by ap-

proximating it locally with an interpretable model, such as a linear

model or a decision tree. By perturbing the input data and observing

the changes in predictions, LIME generates explanations that detail

how individual features a↵ect the prediction at a specific instance

(Ribeiro et al., 2016).

• Counterfactual Explanations : These explanations illustrate how al-

terations in input values could lead to di↵erent predictions, o↵ering

insights into the model’s response to changes in input. A notable

counterfactual explanation was introduced by (Wachter et al., 2017),

who suggested to search for the minimal changes required to the orig-

23

2.1. EXPLAINABLE ARTIFICIAL INTELLIGENCE

inal input to achieve the desired output.

• Example-Based Explanations : By using specific data points as bench-

marks, these explanations clarify the model’s behaviour through un-

derstandable examples. Example-based explanations can be derived

by identifying relevant instances within the existing data set (van der

Waa et al., 2021), or by employing methods designed to generate such

explanations (Kim et al., 2016).

• Causal Explanations : Aimed at elucidating the cause-and-e↵ect rela-

tionships within the data that the model uses to make decisions, these

explanations strive to provide a deeper understanding of the model’s

logic. Key contributions in this area include the work by Pearl (Neu-

berg, 2003), which lays the theoretical foundations for causal reason-

ing in AI, and the more recent advancements by Peters et al. (Peters

et al., 2017), who explore the use of causal methods to interpret com-

plex machine learning models.

Among these explanations, feature importance and counterfactual expla-

nations have received significant attention because of their straightforward-

ness and e�cacy, satisfying the needs of a broad spectrum of users. Feature

importance explanations are particularly advantageous for AI specialists

and domain experts, o↵ering granular insights into the features that play

a pivotal role in influencing the model’s predictions, which can help me to

feature selections, simply the models, and improve models’ performance.

For example, in clinical settings, time series data serves as a foundational

resource for data scientists to develop models for early disease detection.

However, real-world clinical time series data is intricate, and it contains

series from diverse sources. For data scientists, who usually lack medical

background, feature importance explanations could assist them in filtering

24

2.2. MULTIVARIATE TIME SERIES CLASSIFICATION

out non-essential features, reducing the model’s complexity, and enhancing

the model’s performance.

On the other hand, counterfactual explanations play a critical role in de-

mystifying AI for users of AI products in a broad sense. By presenting

hypothetical scenarios where slight modifications to input values result in

di↵erent outcomes, these explanations provide intuitive and relatable in-

sights into the models’ operations. For example, in the same early dis-

ease detection application, physicians desire insights beyond only model

predictions. They aim to seek treatment to prevent disease progression.

Instance-based explanations can o↵er specific indicators. For instance, the

elevated blood sugar in the last 24 hours leads to the disease (factual expla-

nation). If the blood sugar reduce to a certain level in the past 24 hours, the

model predicts that the disease will not develop (counterfactual explana-

tion). Armed with such explanations, physicians can consider proactively

managing blood sugar levels to prevent disease development.

In this thesis, we aim to develop post-hoc techniques that provide feature

importance and counterfactual explanations. Having explored the critical

principles of XAI, we now direct our focus to MTSC, the central research

area of this thesis. The following section presents a comprehensive review

of MTSC, setting the stage for the detailed discussions and analyses that

follow.

2.2 Multivariate Time Series Classification

A time series is a sequence of real values recorded in temporal order. A

time series can be univariate, where the values are collected from only one

source, or multivariate, where the real values are collected from multiple

25

2.2. MULTIVARIATE TIME SERIES CLASSIFICATION

sources. An example of an Multivariate Time Series (MTS) can be seen in

Fig. 2.2. The time series is indicated by x 2 RD⇥T , where D is the number

of variables (or the number of sources from which the data are collected;

for univariate time series, D = 1) and T is the total number of time steps.

When talking about time series models, researchers often first consider fore-

casting, which involves predicting future values based on historical data,

such as the price of stock tomorrow (Sezer et al., 2020). However, time se-

ries classification, which might be less well-known than forecasting, involves

categorising time series data into specific classes. For example, Fig. 2.2

shows an MTSC problem that classifies a time series with three sequences

into class “2”. Similar to time series forecasting, MTSC is widely applied

in various real-world scenarios. Examples include diagnostic systems that

interpret EEG data2 to assess brain conditions, and automated trading sys-

tems that classify future stock price movements based on historical trad-

ing data. This thesis concentrates on MTSC, but the methods proposed

here are also applicable to forecasting by transforming original forecasting

problems into classification tasks. For example, in (Assaf et al., 2019), the

forecast target is grouped into six classes, and then a classifier is trained

on this classification data set. In this thesis, the classifiers to be explained

are denoted by f (c|x), which predicts the probability of a given input time

series x belonging to a class c. The label assigned to x, which is denoted

as f (x), is one corresponding to the highest probability.

Machine learning has played a crucial role in the development of MTSC. For

example, decision trees (Douzal-Chouakria and Amblard, 2012), k-nearest

neighbours (Lee et al., 2012), and support vector machines (Kampouraki

et al., 2008) stand out as promising and have shown great success. These

2EEG, or Electroencephalography, captures the brain’s electrical activity in a tem-
poral sequence, making it inherently a type of time series data.

26

2.3. THE OUT-OF-DISTRIBUTION PROBLEM IN AI

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

Classifier
Input Output

Class “2”

Figure 2.2: An output, f (x) = “2”, is produced by a classifier for an
MTS. This MTS has 3 variables, and the length of these sequences is 80.
Therefore, the input is denoted by x 2 R3⇥80 and has 240 features.

methods are simple and easy to understand. However, the success of these

approaches often hinges on e↵ective data preprocessing or the use of so-

phisticated distance metrics tailored to time series data (Geler et al., 2020).

Recently, deep learning, which is particularly e↵ective in capturing com-

plex patterns within the data, has been proven to be e↵ective in MTSC

and has been widely adopted (Ismail Fawaz et al., 2019). However, these

approaches are often black boxes, lacking the explanations necessary to un-

derstand their results. This lack of transparency limits their applications

in critical sectors where model users require reliable explanations to build

trust and facilitate decision-making processes (Barredo Arrieta et al., 2020).

Therefore, this thesis focuses on explaining deep learning based models.

2.3 The Out-Of-Distribution problem in AI

The OOD problem in AI occurs when a model encounters data that do

not align with the distribution of its training data. For example, this issue

arises when an image of a human is fed into a classifier trained to di↵er-

entiate between cat and dog images. Predictions made in such scenarios

are often unreliable and not meaningful because the model lacks the nec-

essary context to correctly interpret the human image, which it has never

been trained to recognise. Thus, human images are considered OOD for

27

2.3. THE OUT-OF-DISTRIBUTION PROBLEM IN AI

this cat-dog classifier. This type of OOD problem can be easily recognised.

However, the OOD issue can be more di�cult to identify in some scenarios.

For example, if a model is trained on data obtained from Asian individ-

uals, samples collected from African individuals may be considered OOD.

In some scenarios, the di↵erence between the data collected from Asian

individuals and that from African individuals is di�cult to judge for hu-

mans. A mathematical definition of the OOD problem can be formulated

as follows:

sup
x2X

|ptrain(x)� ptest(x)| > ✏ (2.1)

ptrain(x) represent the probability distribution of the data set on which the

model is trained, and ptest(x) denote the probability distribution of the

dataset on which the model is tested or to which the model is exposed

during the explanation process. A probability distribution of a data set

describes the way in which data points within that data set are spread

or distributed across di↵erent possible values. This distribution captures

the likelihood of each possible value or range of values occurring within

the data set. When these distributions di↵er significantly, as quantified

by a threshold ✏, the model faces an OOD problem. This discrepancy can

lead to poor performance as the model encounters data points that are

not represented in the training distribution, making accurate and reliable

predictions challenging.

In the XAI domain, the OOD problem often arises because many expla-

nation processes, especially post-hoc explanation methods, involve altering

the input data, such as perturbing certain features (Hase et al., 2021; Qiu

et al., 2021). These perturbations might disrupt the inherent dependencies

within the input data, resulting in samples that are OOD. For example,

existing research often perturbs time series data by replacing certain val-

ues with zeros. However, in practical scenarios, some values, such as blood

28

2.3. THE OUT-OF-DISTRIBUTION PROBLEM IN AI

pressure, cannot be zero. This perturbation creates OOD input data as it

does not reflect any physiological condition and therefore deviates signifi-

cantly from any training distribution to which the model may have been

exposed. The explanations provided by the OOD samples can be mislead-

ing because they may not accurately reflect the decision-making process of

the model that is obtained in the training stage. When making predictions

on OOD samples, the model may rely on partial and incomplete informa-

tion, leading to conclusions that are not grounded in the same reality as

the training data. This can cause significant discrepancies between the

learnt behaviour of the model in the training stage, potentially leading to

incorrect interpretations and decisions based on these explanations.

Currently, the literature presents several approaches to address the OOD

problem in the XAI domain. The first approach involves retraining the

model with perturbed samples that are used in the explanation process

(Hase et al., 2021; Qiu et al., 2021). These samples are added to the train-

ing data and the model is subsequently re-trained on this enriched dataset.

This strategy ensures that the samples used in the explanation process are

aligned with the training data. However, this solution faces significant lim-

itations. First, retraining large models can be computationally prohibitive

and sometimes impractical. Second, including such samples might compro-

mise the overall performance of the model by introducing noise or irrelevant

features. The second approach involves using a generative model to learn

the data distribution and subsequently generate within-distribution sam-

ples for the explanation process (Lang et al., 2023a). Although this method

has been successfully applied in image models (Chang et al., 2019) and lan-

guage processing models (Kim et al., 2020), it has not yet been adapted

for time series data. A primary limitation is the lack of e↵ective generative

models specifically designed for time series data, which presents unique

29

2.4. FEATURE IMPORTANCE EXPLANATIONS

challenges in accurately capturing temporal dependencies and dynamics.

2.4 Feature Importance Explanations

Feature importance explanation methods are one of the most intuitive

approaches to explain complex black-box classifiers (Ismail et al., 2020).

These methods involve creating an importance heatmap, assigning scores

to each feature based on its influence on the classifier’s output. Within

this thesis, a value at a certain time step is regarded as one feature. For

example, xi,t is the feature that represents the value of the i-th variable

at time t. Therefore, the MTS shown in Fig. 2.2 has 240 features. An

example of a classic feature importance explanation for an MTSC is shown

in Fig. 2.3. Currently, methods that provide classic features importance

explanations for black-box classifiers can be roughly classified into three

groups: gradient-based methods, perturbation-based methods, and proxy

explanation methods.

2.4.1 Gradient-based Methods

Gradient-based methods operate on the premise that a significant change

in output will be triggered by the small variation of an important feature.

The importance of a feature is assessed by the gradient of the probability of

a specific class in the output with respect to that feature. The ‘gradient’ in

this context refers to the rate of change of the class prediction probability

with respect to the change in the input feature. A larger gradient indicates

that slight variations in the feature significantly impact the model’s output,

suggesting the feature’s higher importance.

30

2.4. FEATURE IMPORTANCE EXPLANATIONS

80

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70

0

1

Figure 2.3: A classic feature importance explanation, where each feature is
assigned with an importance score.

Popular gradient-based methods include Simple Gradient (SG) (Simonyan

et al., 2014), Integrated Gradient (IG) (Sundararajan et al., 2017), Smooth-

Grad (Smilkov et al., 2017), Grad-CAM (Gradient-weighted Class Activa-

tion Mapping) (Selvaraju et al., 2017a), Layer-wise Relevance Propagation

(LRP) (Bach et al., 2015), etc. These methods can provide explanations

very quickly, but their explanations might be misleading (Adebayo et al.,

2018). SG calculates the partial derivatives of the output with respect to

each input feature, providing a gradient vector that indicates the impor-

tance of each feature, which can be expressed as:

SG(xi) =
@f(c|x)
@xi

(2.2)

where SG(xi) denotes the feature importance of the ith feature, f(c|x) is

the probability of class c given input vector x, and @
@xi

represents its partial

derivative with respect to feature xi. This method is both straightforward

and e�cient for deep learning models, as gradients can be easily obtained

by backpropagation. However, it may fail in some scenarios, such as model

saturation (Shrikumar et al., 2017). To elucidate this problem, let us con-

sider a simplified model represented by the function y = max(0, 1�x1�x2).

This function is served as an illustrative example to demonstrate the phe-

nomenon known as ‘model saturation’. For this simplified model, as long as

x1 + x2 > 1, the output of this model remains constant (at zero), resulting

in a zero gradient with respect to these inputs.

31

2.4. FEATURE IMPORTANCE EXPLANATIONS

IG is a method designed to overcome this limitation faced by SG by con-

sidering the path integral of the gradients along a straight path from a

baseline input to the actual input. The mechanism of IG can be formu-

lated as follows:

IG(xi) = (xi � xbaseline
i)⇥

Z 1

↵=0

@f(c|x↵)

@xi
d↵ (2.3)

Here, IG(xi) denotes the importance of feature xi; xbaseline
i is the baseline

value for feature xi, typically set to a specific value in the literature; f(c|x↵)

represents the model’s prediction probability for class c given the input

vector x↵. This input vector x↵ = xbaseline
i + ↵ ⇥ (xi � xbaseline

i) linearly

interpolates between the baseline input and the actual input. The integral
R 1

↵=0 d↵ calculates the accumulation of gradients along the path from the

baseline to the actual input, e↵ectively capturing the contribution of the

feature throughout the whole path. Therefore, the IG needs a baseline to

generate explanations. The authors of the work (Sundararajan et al., 2017)

set the baseline to ‘zeros’ input, which might risk feeding classifiers with

inputs that classifiers did not observe during the training stage, resulting

in unreliable predictions. Furthermore, di↵erent baselines will result in

di↵erent explanations, but no guidance has been developed to choose a

suitable baseline (Sturmfels et al., 2020).

Another limitation of the SG method is its sensitivity to local variations

and noise in the input, which can result in explanations that are di�cult

to interpret because of the high variance in the gradient information. To

address this issue, SmoothGrad (Smilkov et al., 2017) was proposed as a

technique that improves the clarity and reliability of gradient-based ex-

planations. SmoothGrad works by averaging the gradients of the model’s

output with respect to the input over multiple instances of the input with

32

2.4. FEATURE IMPORTANCE EXPLANATIONS

added noise. Specifically, it generates a set of noisy versions of the input

by adding small random perturbations, and then computes the gradient for

each noisy input. The final explanation is the average of these gradients,

which tends to smooth out the noise and highlight more consistent patterns

in the input’s influence on the output.

LRP (Bach et al., 2015) operates by backpropagating the prediction output

through the layers of the network, distributing the prediction back to the

input features in a manner that reflects their contribution to the final de-

cision. This is achieved through a set of rules that guide the redistribution

of relevance scores from the output layer back to the input layer, e↵ectively

decomposing the prediction into contributions attributable to each input

feature. Mathematically, LRP can be formulated as redistributing the out-

put f(x) back to the input features xi by iteratively applying the LRP

rules across layers, quantifying the relevance Ri of each input feature as:

Ri =
X

j

aiwijP
i aiwij

Rj (2.4)

where ai represents the activation of neuron i, wij is the weight connecting

neuron i to neuron j, and Rj is the relevance of neuron j in the subsequent

layer. The formula ensures that the relevance propagated back to the input

layer accurately reflects the contributions of individual features to the out-

put. It provides a detailed, layer-by-layer breakdown of how input features

contribute to the network’s output, o↵ering deep insights into the model’s

decision-making process. However, the propagation of relevance scores can

become opaque or di�cult to follow, particularly in very deep or complex

models, which may reduce the clarity of the explanations. Moreover, the

method assumes that all layers contribute equally to the model’s decision-

making, which might not always hold true, potentially oversimplifying the

33

2.4. FEATURE IMPORTANCE EXPLANATIONS

contributions of more complex interactions within the network.

Grad-CAM technique (Selvaraju et al., 2017a), specifically tailored for con-

volutional neural networks (CNNs), leverages the gradients of a target out-

put (e.g., the score of a specific class in classification tasks) relative to the

activations of the final convolutional layer. This process generates a coarse

heatmap that identifies the input regions most influential for the predic-

tion of the model. A significant advantage of Grad-CAM is its ability to

accurately highlight and visualise the regions within the input that CNN

considers crucial to making its decisions. However, Grad-CAM’s specificity

to convolutional network architectures limits its applicability to models

of other types, restricting its utility in non-CNN contexts. Additionally,

Grad-CAM provides explanations based on the assumption that the final

convolutional layer e↵ectively captures the essential spatial information for

the task at hand. This assumption may not always be valid across di↵erent

CNN architectures or for layers other than the last convolutional one, po-

tentially impacting the relevance and accuracy of the generated heatmaps.

2.4.2 Perturbation-based Methods

Gradient-based methods are specifically designed for models where gradi-

ents can be easily computed, such as deep learning models. This character-

istic renders them model-specific, as their applicability is contingent upon

the availability of gradient information. In contrast, perturbation-based

methods o↵er a wider scope of application. They perturb input features

and subsequently measure the resultant changes in the classifier’s output.

They operate under the assumption that perturbations of certain important

features will lead to significant changes in the output.

34

2.4. FEATURE IMPORTANCE EXPLANATIONS

When using perturbation-based methods, one of the key points is how to

perturb features. Currently, in the context of MTSC, the features are

perturbed by replacing them with zeros (Assaf et al., 2019; Bento et al.,

2021a) or with the weighted average of their neighbouring features (Crabbé

and Van Der Schaar, 2021). However, these perturbation operations might

generate inputs that the classifier never observes in the training stage, as

shown in Fig. 2.4a. The predictions made on these inputs are unreliable

and cannot reflect what the model has learnt from training data sets, which

is known as the OOD problem.

In the context of time series, the OOD problem may not be as obvious to

humans as it is in image problems, as shown in Fig. 2.4b. For example,

from Fig. 2.4b, the human might easily judge that the perturbed inputs

created using traditional methods, including mean, blur, and random noise

replacement, are not aligned with the distribution of the original data set.

In other words, the classifier did not observe such images during the training

stage. Therefore, the behaviour of a classifier on these OOD inputs might

not faithfully reflect what it has learnt from the training data set, and thus

the provided explanations might be meaningless.

Recently, e↵orts have been made to develop meaningful perturbation meth-

ods aimed at mitigating the OOD problem in traditional perturbation-

based methods. This is achieved by replacing the features to be perturbed

with plausible alternative values that are inferred from the distribution of

the training data set, as shown in Fig. 2.4. With plausible alternative val-

ues for certain features, their importance is evaluated through the following

marginalisation form (Kim et al., 2020; Chang et al., 2019):

f(c|x\r) =

Z
f(c|x⇤

r,x\r)p(x
⇤
r|x\r)dx

⇤
r

= Ex⇤
r⇠p(x⇤

r |x\r)[f(c|x
⇤
r,x\r)]

(2.5)

35

2.4. FEATURE IMPORTANCE EXPLANATIONS

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

Original Zeros Plausible Values

(a)
Original Mean Blur Random Noises Plausible Values

(b)

Figure 2.4: (a) Time series perturbation inputs created by replacing fea-
tures with zeros and plausible values that inferred from the training data
set; (b) The perturbation inputs for an image classification problem, where
the centre region is replaced by mean, blur, random noises and plausi-
ble values inferred from the training data set. (This image is taken from
(Chang et al., 2019)).

where r denotes a subset of the input features, xr denotes a partition of the

input x = xr [x\r, and f(c|x\r) denotes the classifier’s output when fea-

tures xr are perturbed by replacing them with plausible alternative values.

The f(c|x\r) can also be interpreted as the output of the classifier when xr

are unknown (or removed from the input) (Chang et al., 2019), since the

contributions of xr are marginalised (Kim et al., 2020; Chang et al., 2019).

The di↵erence between f(c|x\r) and f(c|x) measures the importance of xr.

The p(xr|x\r) in (2.5) describes the distribution of plausible values of xr

conditioned by x\r, which guarantees that the perturbed inputs are aligned

with the training data sets. However, the exact distribution p(xr|x\r) is

di�cult to achieve. Current promising approaches use generative models

to approximate the distribution of the training data set (Kim et al., 2020;

Chang et al., 2019) and then the trained generative model is used to gener-

ate within-distribution perturbed inputs for the specific instance on which

the model’s behaviour is going to be explained. Meaningful perturbation-

36

2.4. FEATURE IMPORTANCE EXPLANATIONS

based methods have been used to explain image models (Chang et al., 2019)

and language processing models (Kim et al., 2020), but in the context of

MTSC, their performance has not been explored.

2.4.3 Proxy Explanation Methods

Unlike gradient-based and perturbation methods, which directly assess the

importance of features by probing the model to be explained, proxy models

adopt an indirect approach. They work by approximating the behaviour

of the original model with a simpler, more interpretable model that can

provide insights into the decision-making process. This approach has dis-

tinct advantages. For example, proxy models can o↵er interpretability for

a wide range of models, including those where gradients are not available

or where perturbation is computationally expensive or infeasible. Because

proxy models simplify the behaviour of the original model, they can make

the interpretation process more accessible to nonexperts, facilitating a bet-

ter understanding of model decisions without the need for deep technical

knowledge of the underlying AI technology.

Among proxy explanation methods, Local Interpretable Model-agnostic

Explanations (LIME) stands out (Ribeiro et al., 2016) and is going to be

described in detail. LIME initiates the explanation process by generating

a proxy data set composed of the neighbours of the target input that needs

to be explained. Then, an interpretable model is fitted to approximate the

behaviours of the black-box model on this proxy data set. Subsequently,

the explanation yielded by this interpretable model serves as a tool for un-

derstanding the behaviour of the black-box model on the particular target

input. The specific implementations of LIME are as follows:

37

2.4. FEATURE IMPORTANCE EXPLANATIONS

t0 t1 t2 t3 t4 t5

t0 t1 t2 t3 t4 t5

channel-1

channel-2

channel-1

channel-2

baselines

baselines

Original representation

Interpretable representation

Original representation

1. sample independently

2. recover

Figure 2.5: The traditional neighbour generation process for an MTSC
problem. The input time series has 2 variables, each of which has 6 time
steps. The baseline is established as the average value of the corresponding
variable. The di↵erence in class 1 probability between f(x) and f(x0)
quantifies the contribution of three features marked as ‘0’ in z0 to the
classifier’s prediction that x belongs to class 1.

(1) Creating neighbours: This involves two steps as shown in Fig. 2.5:

• Sampling interpretable neighbours in the interpretable feature

space, where each feature is denoted by 0 or 1,

• Recovering the sampled interpretable neighbours into the orig-

inal feature space, where each feature is represented by a real

value.

The interpretable neighbour, denoted z0 2 {0, 1}d⇥T , maintains the

same size as the original time series x 2 Rd⇥T , but with binary fea-

tures. In the existing literature, the features of z0 are sampled in-

dependently from a Bernoulli distribution with a probability of 0.5,

which means that each feature has an equal probability of being ‘1’

or ‘0’. The next step is to recover the obtained z0 in the original

feature space, denoted as x0 2 Rd⇥T . Features with a value of ‘1’ in

z0 retain their original values, whereas those with a value of ‘0’ are

replaced with some baseline values, demonstrating that their contri-

38

2.4. FEATURE IMPORTANCE EXPLANATIONS

butions to the model output are removed. In the context of time

series, the baseline is typically established as the average value of the

corresponding variable, as shown in Fig. 2.5.

(2) Assigning weights to neighbours: Within LIME, each neighbour is as-

signed a weight corresponding to its distance from the target. Neigh-

bours closer to the target are assigned higher weights, demonstrating

their greater importance in providing local explanations. Currently,

in the literature, the weight for a neighbour, x0, is determined by an

exponential kernel:

⇡x(z
0) = exp(�D(x0,xt)/�2) (2.6)

where D measures the distance between this neighbour and the tar-

get, xt. For sequence data, such as time series, distance measurement

can be achieved by cosine similarity (Dong et al., 2006) or dynamic

time warping (Berndt and Cli↵ord, 1994). � is an user-defined hy-

perparameter. Currently, in some widely used packages, the default

setting of � is 0.75 ⇤
p
N , where N represents the total number of

features (Ribeiro et al., 2016).

(3) Creating a proxy data set: In the previous two steps, x0, z0 and ⇡x(z0)

are obtained. In this step, the predictions of the model on the created

neighbours are evaluated, where y represents the probability that x0

belongs to the target class that we are interested in. In LIME, a

certain number of neighbours are generally created independently and

compose a weighted proxy data set, denoted D(z0, y, ⇡x(z0)).

(4) Fitting an interpretable model on D(z0, y, ⇡x(z0)): The final step in

LIME involves fitting a simple model to the proxy data set. The input

of the interpretable model is z0, while the output is y. ⇡x(z0) denotes

39

2.4. FEATURE IMPORTANCE EXPLANATIONS

the corresponding sample weight. If a linear model is adopted to

approximate the original complex model, its coe�cients can represent

the importance of the corresponding features.

The work of (Lundberg and Lee, 2017) shows that the LIME framework can

be adapted to compute SHAP values using the kernelSHAP method. Ex-

tending this approach, (Bento et al., 2021b) has adapted KernelSHAP for

time series data, introducing an approach named TimeSHAP. KernelSHAP

is grounded in game theory, which provides a robust theoretical framework

to attribute the output of a model to its input features. To compute SHAP

values, it is necessary to simulate the absence of certain characteristics

by substituting them with baseline values. In the approach described by

(Bento et al., 2021b), these baseline values are set as the mean values of

the features being replaced. Therefore, this hard replacement inevitably

disrupts the temporal dependency between features, resulting in the OOD

problem.

2.4.4 Challenges of Feature Importance Explanations

in MTSC

Although many feature importance explanation methods have been de-

veloped, their application within the context of MTSC presents distinct

challenges that require careful consideration.

Challenges in identifying the most important features: Classic fea-

ture importance explanations aim to assign an importance score to each

feature. However, determining accurate importance scores is challenging

40

2.4. FEATURE IMPORTANCE EXPLANATIONS

and is considered a NP-hard problem.

Binary Input : x1, x2, x3

Binary Classifier : F(x1, x2, x3) = x1 ^ x2 ^ x3

Current Input : F(0, 0, 1) = 0

(2.7)

For example, (2.7) shows a classifier of which the three input features are bi-

nary. The classifier produces “1” when all input features are “1”, otherwise

it produces “0”. Here, a classification task, F(0, 0, 1) = 0, is explained us-

ing perturbation-based methods. If x1 and x2 are perturbed independently,

which means that only one feature is perturbed each time, the classifier will

maintain its prediction, since the classifier is saturated to produce “0” as

long as one of the input features is “0”. In this circumstance, both the

importance of x1 and x2 is evaluated as zero. However, if x1 and x2 are

perturbed together by replacing them with “1”, the classifier will change

its prediction. This means that x1 and x2 indeed contribute to the cur-

rent prediction, but their contributions can only be evaluated together.

This suggests that to obtain the importance score of one feature, we not

only need to evaluate its independent contribution by perturbing this fea-

ture alone, but we also need to evaluate its cooperative contributions with

other features by perturbing feature sets containing this feature. Therefore,

achieving accurate feature importance is an NP-hard problem.

Optimisation-based feature importance explanation methods seek to over-

come the challenges faced in obtaining accurate feature importance. In-

stead of assigning a score to each feature, these methods focus on identify-

ing a critical group of features. This approach is guided by the question:

what is the smallest set of features of the current input that would maxi-

mally change the classifier’s output? These methods focus on identifying a

group of features rather than assigning an importance score to each feature

41

2.4. FEATURE IMPORTANCE EXPLANATIONS

80

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70

Figure 2.6: An optimisation-based feature importance explanation. Classic
feature importance explanations (shown in Fig. 2.3) focus on assigning each
feature an importance score, whereas optimisation-based methods identify
a group of the most important features rather than exactly estimating the
importance score of each feature.

(Fong and Vedaldi, 2017; Chang et al., 2019). An example of this kind of

explanation is shown in Fig. 2.6. Compared to traditional feature impor-

tance explanation methods, optimisation-based approaches o↵er distinct

advantages. For instance, they help humans concentrate on key features,

facilitating a deeper exploration of the reasons behind a particular output.

In contrast, traditional feature importance explanations often leave users

without clear guidance on the number of features they should consider to

fully understand an output.

Although they have advantages, optimisation-based feature importance ex-

planation methods face several challenges. The first comes from the di�-

culty in identifying the smallest feature set, which can only be achieved by

exhaustive search. Current solutions mitigate this challenge through two

types of approach: optimising an auxiliary neural network selector (Crabbé

and Van Der Schaar, 2021; Chang et al., 2019) and using heuristic search

methods (Ribeiro et al., 2018; Du and Xu, 2021; Vafa et al., 2021). The

former approaches adopt gradient descent optimisation methods to train an

auxiliary neural network to identify feature sets that can maximally change

the classifier’s output. A sparsity penalty is added to the loss function to

obtain a small set. However, these approaches need the gradients of the

classifiers, so they are not model-agnostic and cannot be applied to classi-

42

2.4. FEATURE IMPORTANCE EXPLANATIONS

fiers whose gradients are not accessible. The approaches in the other group

are model-agnostic and can be applied to any classifier. Typical heuristic

search methods adopted in importance computation include Beam Search

(Ribeiro et al., 2018), Greedy method (Vafa et al., 2021) and Genetic Al-

gorithm (Du and Xu, 2021). Currently, these methods are adopted to

explain language models (Vafa et al., 2021; Du and Xu, 2021), while in the

context of MTSC, these methods have not been explored. The reason for

this might be that MTS are usually high-dimensional, where these search

methods face challenges in obtaining satisfying solutions.

Another challenge that optimisation-based feature importance methods

face is the OOD problem. The basis of optimisation-based methods is to

judge whether a group of features can maximally change the classifier’s out-

put. Currently, this is achieved by perturbing these features and evaluating

the changes in the output. Therefore, optimisation-based feature impor-

tance methods also need to address the OOD problem. However, current

methods do not consider the OOD problem (Crabbé and Van Der Schaar,

2021; Vafa et al., 2021; Ribeiro et al., 2018).

Stability of explanations: For feature importance explanation, it is cru-

cial that the explanations provided are stable. Stability in this context

means that the explanations for a given instance, as generated by the same

method, should be consistent3. If the explanations provided by the same

method di↵er when the method is performed multiple times, as shown in

Fig. 2.7, they are less useful, as model users are unsure on which explana-

tion to rely on (Zhou et al., 2021; Slack et al., 2021). Moreover, unstable

explanations compromise their validity; a single feature should consistently

yield the same importance score when evaluated under identical conditions

3The term ‘stability’ can carry di↵erent connotations across various works. For ex-
ample, in some work (Situ et al., 2021; Slack et al., 2021), it is mentioned that the
explanations for similar instances should also be similar.

43

2.4. FEATURE IMPORTANCE EXPLANATIONS

(a) (b)

Figure 2.7: A multivariate time series from the Handwriting data set (Bag-
nall et al., 2018), where the acceleration of the hand in the x, y, and z di-
rections is recorded by a smartwatch while a person is writing words. The
trained classifier predicts that the person is writing the character ‘E’. An
explanation provided by LIME for this prediction is shown in (a), where
the identified most important features are highlighted in red. However,
when the same explanation process is carried out again, another explana-
tion, di↵erent from (a), is obtained, and shown in (b).

by the same method.

Currently, various studies have highlighted the stability issue of LIME and

some solutions have been proposed (Zhou et al., 2021; Slack et al., 2021;

Visani et al., 2020). These focus on di↵erent steps of LIME, which are

summarised in Table 2.1. Within LIME, increasing the number of neigh-

bours will generally improve the stability of the explanations. With more

neighbours, the decision boundary of the complex model can be captured

more accurately and the randomness of the output surface captured by the

neighbours decreases. However, more neighbours will make the explana-

tion process very time consuming. To address this challenge, Slime (Zhou

et al., 2021) adopts a hypothesis testing framework to determine whether

the current number of neighbours is su�cient to obtain stable explanations.

If the test fails, additional neighbours are created and added to the proxy

data set until the test is passed. However, Slime adopts a completely ran-

dom sampling method in sampling interpretable neighbours, which is not

very e�cient. In BayesLIME (Slack et al., 2021), the authors introduce

44

2.4. FEATURE IMPORTANCE EXPLANATIONS

Table 2.1: Related works on improving stability of LIME

Method

Neighbours Generation
Weighting
method

Sample
interpretable
neighbours

Recover
into real

neighbours

LIME (Ribeiro et al., 2016) iid ⇠Bern (0.5) Traditional**
(2.6) with
fixed �***

Slime* (Zhou et al., 2021) iid ⇠Bern (0.5) Traditional**
(2.6) with
fixed �***

BayesLIME (Slack et al., 2021) Fosused sampling Traditional**
(2.6) with
fixed �***

OptiLIME (Visani et al., 2020) iid ⇠Bern (0.5) Traditional**
(2.6) with
optimised �

*Increase neighbours based on a hypothesis testing framework
**Traditional: replace features with baseline values.
***� is set to 0.75 ⇤

p
N (N is the total number of features).

a Bayesian framework to estimate the uncertainty of feature importance

provided by LIME and to determine the number of neighbours needed for

stable explanations. Based on the proposed framework, they propose a

focused sampling strategy to sample interpretable neighbours, which has

been shown to be more e�cient. OptiLIME (Visani et al., 2020) emphasises

the significant influence of � in (2.6) on the stability of the explanations.

It proposes adopting optimisation methods to find the optimal �.

However, it is important to note that all of these methods utilise tradi-

tional methods to create neighbours, for example, replacing features whose

contributions are going to be removed, with specific baselines, which have

the risk of resulting in OOD inputs. The OOD problem might be one of

the key reasons for unstable explanations. Investigating and resolving the

influence of the OOD problem on the stability of the LIME framework is

necessary.

45

2.5. COUNTERFACTUAL EXPLANATIONS

2.5 Counterfactual Explanations

While feature importance metrics can highlight the inputs that significantly

influence a model’s decisions, these kinds of explanation may not always

e↵ectively convey the model’s behaviour in a manner that is easily under-

stood by the layperson. For such individuals, the primary concern often

revolves around understanding how specific changes to input could alter the

model’s output to achieve a desired result so as to do some decision-making

tasks. In this context, counterfactual explanations emerge as a powerful

tool. Counterfactual explanations aim to answer the following question.

How can altering the input change the classifier’s prediction to a di↵erent

(or desired) outcome? By providing this kind of information, counterfac-

tual explanations o↵er users a more understandable explanation and help

them think of possible actions to achieve desired outcomes. In this section,

the properties that a good counterfactual explanation should process are

first described. Then, the approaches developed to provide counterfactual

explanations are analysed.

2.5.1 Properties of counterfactual explanations

Research in counterfactual explanations aims to derive explanations adher-

ing to certain desirable properties, such as proximity, sparsity, and plau-

sibility. These properties aim to provide users with more intuitive, easily

comprehensible, and relevant insights on the decision-making process of

complex models.

Proximity : The counterfactual x0 should be similar to the original input x,

i.e., given a distance measurement, the distance between x0 and x should

be as small as possible. Proximity is often referred to as similarity.

46

2.5. COUNTERFACTUAL EXPLANATIONS

Sparsity : Sparsity refers to the principle of making the smallest number

of changes necessary to the features of the input to alter the outcome

of the classifier. A more sparse counterfactual will have fewer di↵erences

compared to the original input. This is helpful in providing comprehensible

explanations, because it lets users focus on the most important changes.

Plausibility : The plausibility of a counterfactual explanation measures how

likely it is to have come from the same data distribution as the training

set. This aspect is vital because it ensures that the counterfactuals are re-

alistic and practically possible. If a counterfactual is implausible, it might

suggest a scenario that is very unlikely or even impossible in real life. Such

explanations can be misleading and not very useful in practical situations.

Plausibility is also often referred to as feasibility or reliability. To assess

plausibility, various methods have been proposed. For example, Laugel

et al. suggest evaluating the plausibility of a counterfactual by using a

concept known as the ✏-chain distance (Laugel et al., 2019). Another ap-

proach, suggested by Hammer et al., argues that a plausible counterfactual

should be located in a densely populated area of the data space (Artelt and

Hammer, 2020).

Diversity : The diversity property of counterfactual explanations plays a

crucial role in enhancing their e↵ectiveness and applicability. Diversity en-

sures that a range of distinct, yet plausible scenarios are presented, each

illustrating a di↵erent path by which the outcome of a model could be al-

tered. This variety is vital because it acknowledges the multifaceted nature

of real-world situations, where multiple factors can lead to the same result.

By providing a spectrum of various counterfactuals, these explanations en-

able users to understand not just one possible change, but several potential

variations and their respective impacts on the outcome. This in turn fa-

cilitates a more comprehensive understanding of the model’s behaviour,

47

2.5. COUNTERFACTUAL EXPLANATIONS

fostering greater trust and transparency. Additionally, the diverse nature

of these counterfactuals is particularly important in complex decision envi-

ronments, such as healthcare or finance, where understanding the range of

influencing factors can significantly aid decision-making processes, ensuring

more robust, informed, and equitable outcomes.

Stability : Stability stands as a critical property in the realm of counter-

factual explanations. Despite its importance, it should be noted that only

a limited number of studies have focused on this aspect. Stability refers

to the ability to consistently generate the same explanations for a given

instance using identical methods and parameter settings, ensuring that

the explanations are reliable and free from the influence of some random-

ness components. For example, some counterfactual explanation methods

generate explanations from a randomly sampled input. This randomness

results in variations in the final results. Inconsistent results from the same

methodology could not only lead to confusion but also undermine the cred-

ibility of the explanations. In practical terms, this means that when a user

applies a counterfactual method to understand a model’s decision, they ex-

pect to receive a consistent explanation each time, provided that the input

and conditions remain unchanged. This consistency is particularly vital in

safe critical applications, such as healthcare or finance, where varying ex-

planations could lead to significantly di↵erent interpretations and actions.

Diversity and stability seem to be in conflict, but they address di↵erent

properties of counterfactual explanations. Diversity in this context refers

to the range of potential actions or changes suggested by the explanations

for a specific instance. It focusses on uncovering a variety of plausible

counterfactuals that could alter the model’s outcome, thereby providing a

comprehensive understanding of the di↵erent factors influencing the deci-

sion. However, stability emphasises the reliability of these potential ac-

48

2.5. COUNTERFACTUAL EXPLANATIONS

tions. It ensures that the set of suggested changes, or the counterfactuals,

remains consistent and una↵ected by randomness components existing in

the explaining process when the same instance is evaluated under the same

conditions with the same method. In simpler terms, diversity seeks to

generate a range of di↵erent explanations, for example, o↵ering 10 distinct

counterfactuals for a given scenario. On the contrary, stability ensures that

these 10 explanations remain consistent and reliable; when the explanation

process is repeated under the same conditions, it consistently yields the

same set of 10 counterfactuals.

2.5.2 Approaches to provide counterfactual explana-

tions in MTSC

Currently, some counterfactual explanation methods have been proposed.

Among these methods, the WACH method, introduced by Wachter et al.

(Wachter et al., 2017), is the most famous one. Although not originally

designed to address MTSC problems, it has been applied in this context

(Delaney et al., 2021b). WACH generates counterfactual explanations by

optimising the following objective.

argmin
x0

L = (f(c|x0)� c0)2 + �d(x,x0) (2.8)

where the c0 is the desired outcome of the classifier, often defined as the pre-

dicted probability of a specific class; d(x,x0) measures the distance between

the counterfactual x0 and the original input x, serving as a measure of sim-

ilarity between these two time series; � serves as a crucial hyperparameter

that balances the objective of aligning the model’s output closely with the

desired outcome and maintaining a high degree of similarity between the

49

2.5. COUNTERFACTUAL EXPLANATIONS

counterfactual and the original input.

In the literature, some counterfactual explanation methods tailored for

MTSC have been developed (Delaney et al., 2021b; Ates et al., 2021b;

Höllig et al., 2022; Bahri et al., 2022). Among these, the Naive Guide (De-

laney et al., 2021b) uses a two-step process. In the first step, it employs

feature importance techniques, such as Class Activation Mapping (CAM)

(Selvaraju et al., 2017b) or Shapley Values (Castro et al., 2009), to iden-

tify the most distinctive segments of the input time series that significantly

influence the classifier’s decision. Subsequently, these identified segments

are replaced with alternative candidates from the data set with the goal of

generating a counterfactual instance that alters the original classification

outcome. The studies (Ates et al., 2021b; Höllig et al., 2022) propose to

adopt search algorithms for counterfactual generation. These algorithms

focus on searching for the optimal segment from a candidate data set that

can be used to replace specific parts of the input time series. The search

process is driven by multiple objectives, such as altering the outcome of

the classifier to the desired one, maximising the similarity between the

counterfactual and the original input, and enhancing the plausibility of

the obtained counterfactuals. The latter objective aims to obtain realis-

tic counterfactual explanations. In the study (Bahri et al., 2022), a novel

shapelet-based counterfactual generation method is introduced. This ap-

proach tries to identify and replace the most distinctive shapelet in the

original time series with a corresponding shapelet associated with the de-

sired label. This method takes advantage of the inherent characteristics of

shapelets, key subsequences that significantly influence the classifier’s deci-

sion, to e↵ectively steer the model’s prediction towards a specific outcome.

However, a common limitation of these approaches is that they directly re-

place the segment using candidates from the data set. Such direct replace-

50

2.5. COUNTERFACTUAL EXPLANATIONS

ment might potentially disrupt the temporal and feature dependencies that

are intrinsic in time series data, which might result in unrealistic counter-

factuals that may not fully align with the distribution of the real data set

on which the classifier is trained. In this scenario, the altered prediction

of the model is not attributed to meaningful changes, but rather to issues

stemming from the OOD problem. This raises concerns about the realism

and practical applicability of the counterfactuals obtained. Addressing this

challenge requires careful consideration of the distributions of the original

time series data, ensuring that generated counterfactuals are not only ef-

fective in changing the classifier decision but also align with the real-world

contexts.

In the MTSC realm, some methods have been developed to o↵er counter-

factual explanations that consider the distribution of training data. For

example, Meng et al. (Meng et al., 2023) design a method based on greedy

segmentation and identification to pinpoint critical segments of the input

time series and then employ a generative model that is trained to approx-

imate the data distribution to create plausible alternative segments. This

approach is designed to minimise the likelihood of producing unrealistic

counterfactuals. However, the e�ciency of this framework is highly de-

pendent on the capacity of the generative model. If the generative model

adopted is not su�ciently accurate to approximate the data distribution,

it may still lead to the generation of unrealistic counterfactuals.

In addition to the methods mentioned above for counterfactual explana-

tions, the Generative Adversarial Network (GAN) framework (Arjovsky

et al., 2017) has been adapted to address MTSC problems (Lang et al.,

2023a). The fundamental concept of GAN involves two key components:

a discriminator and a generator. These components work collaboratively

to produce counterfactuals that are consistent with the data distribution

51

2.5. COUNTERFACTUAL EXPLANATIONS

of the original data set. The generator creates potential counterfactuals,

while the discriminator evaluates their authenticity, ensuring that the gen-

erated counterfactuals are indistinguishable from real data instances. How-

ever, applying the GAN framework to counterfactual generation presents

challenges. For example, GANs are known for their training di�culties,

primarily due to the adversarial setup where the generator and discrimi-

nator compete. This competition can lead to instability, particularly when

dealing with the increased complexity of time series data.

52

Chapter 3

Feature Importance

Explanation Framework

through Meaningful

Perturbation and Optimisation

3.1 Introduction

To promote the development of XAI in the context of MTSC, a founda-

tional step is to consider the types of explanations to be provided. For a

specific audience, including data scientists and model developers, pinpoint-

ing the sequences (or subsequences) within the time series that significantly

impact the model’s predictions is of paramount importance. Such insights

are crucial for enhancing the model’s performance through approaches like

feature selection and model simplification. In this context, feature impor-

tance explanations become particularly relevant. These explanations shed

light on which parts of the input time series are most influential to the

53

3.1. INTRODUCTION

model’s predictions, guiding users to fine-tune their models.

The previous chapter highlighted several challenges encountered by cur-

rent start-of-the-art feature importance explanation methods. One of the

challenges involves addressing the OOD issues inherent in traditional per-

turbation methods (Hase et al., 2021). Traditional perturbation methods

are usually implemented by replacing the features under evaluation with

zeros or adding random noise. The resulting changes in the classifier’s out-

put indicate the importance of these features. However, such perturbation

approaches might create unrealistic inputs that the classifier has never en-

countered during the training stage. Consequently, the predictions made

on these inputs may not be reliable and do not accurately reflect the im-

portance of the perturbed features. This issue is well recognised in image

(Chang et al., 2019) and language models (Kim et al., 2020). Due to the

significant temporal dependency inherent in time series data, such tradi-

tional perturbation operations can easily disrupt the temporal dependency

of time series data and result in unrealistic inputs. However, this problem

has not received su�cient attention in MTSC.

Another challenge encountered by feature importance explanation methods

relates to the joint contributions of features. As discussed in Section 2.4.4,

assessing the importance of certain features can only be done in conjunc-

tion with others, making the precise evaluation of feature importance an

NP-hard problem. To address this, optimisation-based approaches attempt

to answer: What is the smallest set of features in the current input that,

if altered, would significantly change the classifier’s output (or alter the

current predicted label)? These methods do not concentrate on precisely

evaluating the importance score of each feature. Instead, they aim to iden-

tify the minimal set of features whose modification in current values can

alter the classifier’s output. Therefore, currently in the literature, some op-

54

3.2. PROBLEM DEFINITION

timisation search methods (Ribeiro et al., 2018; Vafa et al., 2021; Du and

Xu, 2021) have been adopted to find such an important group of features.

However, these optimisation approaches have not yet been developed in the

MTSC context.

In this chapter, we propose a comprehensive feature importance explana-

tion framework. Specifically, this framework employs generative models to

address the OOD issues inherent in traditional perturbation methods. It

also integrates an optimisation approach specifically designed for MTSC,

with the aim of identifying the most important features.

The rest of this chapter is organised as follows. The problem we are going

to address is formulated in Section 3.2. An overview of our proposed frame-

work is provided in Section 3.3. After that, the framework, including the

design of the generative model (Section 3.3.1) and the design of the search

method (Section 3.3.2), which comprise this framework, are described in

detail. Following these, the experimental design is provided in Section 3.4

and the corresponding results and analysis are provided in Section 3.5.

3.2 Problem definition

Let f (c|x) be a MTSC that produces the probability of x belonging to

class c. f (x) produces the label assigned to x, which is the one with the

highest probability. Assume that we have a particular input x⇤ for which

the classifier predicts its label should be c1. Our main goal is to explain,

using a feature importance explanation, why the classifier predicts that x⇤

belongs to class c1 rather than another class. In the final explanation, the

key features of x⇤ that are necessary for the classifier to produce this output

are identified. If these features had not taken their current values, but

55

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

other plausible values instead, the classifier would have produced a di↵erent

output. In other words, these features support the classifier in making the

current prediction. Therefore, these key features are also called ‘supporting

features’ and denoted by x⇤
s. The set x

⇤, which includes all input features,

is definitely a set of supporting features. However, a smaller set would

provide more insight into explaining the output. Therefore, to provide

better explanations, the proposed framework tries to find the smallest set

of supporting features to help users understand why f (x⇤) = c1.

3.3 Pipeline of the proposed framework

Fig. 3.1 shows the pipeline of the proposed framework. Algorithm 1 pro-

vides the corresponding pseudo-code for this framework. Since this frame-

work takes a post-hoc approach, a classifier p is first trained on the data

set. Then an output is produced for a given instance, x. To explain this

output, a generative model G is trained to learn the distribution of the data

set on which the classifier is trained and then used to generate perturbed

inputs for the input to be explained. Since the training data set is fixed, the

generative model only needs to be trained once and can be used to explain

any input coming from the same data set. The structure of the generative

model and the training strategy are described in Section 3.3.1. After that,

a greedy-based segmentation and identification search method is designed

to identify the smallest supporting feature set of this input. This method

consists of segments and identification steps. A detailed description of these

two steps is provided in Section 3.3.2. One thing that has to be noted is the

connection between the proposed generative model and the search method.

In this framework, the generative model is primarily used to create realistic

inputs for evaluating the importance of specific features, while the greedy

56

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

Time

Va
r 1

Va
r 2

Va
r 3

Time

Va
r 1

Va
r 2

Va
r 3

Time

Va
r 1

Va
r 2

Va
r 3

Training Dataset

Classifier

Step-1: Classifier Training

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series
Trained
Classifier

Input Output
Class “2”

Generative
 Model

 Search-based Saliency
 Computation

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

Saliency Map

Step-2: Classification

distribution
learning

meaningful
perturbation

explanation

input to explain

Step-3: Post-hoc explanation

①

②

③ ④

Figure 3.1: Explaining a classifier through a post-hoc approach. In the
first step, the classifier is trained on an MTSC training data set. Then,
the trained classifier is used to classify an instance of the MTSC, of which
the output is explained in the third step. In the third step, the generative
model is optimised to learn the distribution of the training data set (as
indicated by arrow 1). Subsequently, the trained generative model gener-
ates meaningful perturbation samples for the input that needs explanation
(as indicated by arrow 2). These samples are then utilized in the designed
search methods (as indicated by arrow 3). Finally, the saliency map is
produced using the designated search-based saliency computation method
(as indicated by arrow 4).

segmentation strategy is used to identify the most important feature set

for a given output. During the greedy search process, the generative model

is used to generate realistic inputs. Finally, an explanation is generated for

this output through a saliency map, where a set of supporting feature sets

is highlighted.

57

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

Algorithm 1 The pseudo-code for the proposed framework

1: Inputs:
2: x Input Time Series;
3: G Training the generative model;
4: Segments Segmentation(x);
5: while True do
6: W0 Initializing saliency maps with Segments;
7: Wbest Searching for the best saliency map using (x, G,W0, p);
8: Identified Segments Wbest;
9: if the length of Identified Segments = 1 then
10: break;
11: end if
12: Segments Segmentation(Identified Segments);
13: end while

return Wbest

3.3.1 Designing the generative model

The basis of this framework is to determine whether a group of features is

supporting, which is achieved by (2.5). If f(x⇤
\r) 6= f(x⇤), x⇤

r are supporting

features. Here, a generative model for MTS is designed to estimate the

necessary distribution, p(x⇤
r|x⇤

\r). The structure of the proposed generative

model is shown in Fig. 3.2. In the remainder of this section, the method for

generating training data for this generative model is described first. Then,

a detailed description of the structure of the generative model is provided.

Finally, the objectives to be optimised and the training strategy are given.

Training data generation. To train the generative model to estimate

the distribution p(x⇤
r|x⇤

\r), the first step is to obtain its inputs, x⇤
\r, and

outputs, x⇤
r. We sample MTS data from the data set and for each MTS, a

binary mask is created to mask out certain features through element-wise

multiplication, x⇤�M , creating an input for the generative model. Then,

the complementary components x⇤� (1�M) are the target that the gen-

erative model tries to generate. The purpose of these training procedures

is to enable the model to predict plausible values for x⇤
r (represented by

58

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

0
0

0 Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

0
0

0

Discriminator
Dψ

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

Time

Va
r 1

Va
r 2

Va
r 3

Mask

0
0

1
1

0
1

M

Random Making Window

Transformer Encoder

Real Time Series

Fake Time Series

1. Training data generation 2. Generating “fake” time series

3. Discriminating fake and real time series

Transform
er Layer

Transform
er Layer

...FC FC FC

Figure 3.2: The structure of the proposed generative model. The training
data are generated by masking features within some randomly chosen time
intervals. Then, the generative model is trained to generate plausible alter-
native values for these masked features. To enhance the quality of the MTS
generated by the generator, a discriminator is added to distinguish the fake
MTS (generated by the generative model) and the real MTS (sampled from
the data set).

x⇤ � (1�M)) when conditioned on x⇤
\r (represented by x⇤ �M).

Generative model architecture. The objective of the generative model

is to create plausible values for x⇤
r conditioned by x⇤

\r. This is very simi-

lar to time series imputation problems, where the missing components of

a time series need to be filled in. However, in the missing value imputa-

tion problem, they do not have the actual ground-truth values. Therefore,

imputation models attempt to learn the temporal dependence of the time

series using the observed values. The missing parts are then filled in on

the basis of the learnt temporal dependence. In our scenario, the time

series we have are complete. We have the ground truth for each feature,

so the model can be trained to predict the target features. Our goal is to

generate alternative plausible values for certain features that can maintain

the perturbed time series within the original distribution. Nevertheless,

although time series missing imputation models have a di↵erent goal, they

can be applied in this situation. Before the development of the genera-

tive model presented here, the performance of various advanced time series

59

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

missing value imputation methods (Cao et al., 2018) with the proposed

Transformer-based generative model (Vaswani et al., 2017) is compared.

The performance of the imputation methods and the proposed method can

be obtained from the supplementary material of our published work (Meng

et al., 2023). The results indicate that the designed generative model out-

performs existing imputation methods, justifying its adoption for the work

in this framework.

The architecture of the designed generative model is shown in Fig. 3.2.

Specifically, the original time series is first embedded by a fully connected

layer and then fed into a Transformer encoder, which is composed of several

Transformer layers. The initial fully connected layer is used to transform

the input time series data into a higher-dimensional space to better cap-

ture complex patterns and dependencies. This is a common practice in

deep learning for time series as it allows the model to start the transfor-

mation process with a richer representation of the input data. The choice

of a Transformer encoder is motivated by its proven capability in handling

sequential data, particularly due to its self-attention mechanism, which ef-

fectively captures temporal relationships across di↵erent time steps. The

encoder’s output then passes through another fully connected layer, which

is coupled with a hyperbolic tangent (tanh) activation function. This de-

sign restricts the predicted values within the range [-1, 1], which is aligned

with the data preprocessing method used in this study (described in Section

3.4).

Optimisation Objective. The generative model aims to produce the

masked components. Therefore, one of the loss functions is a reconstruction

loss:

Lrec = ||(1�M)� (x�G(M � x))||2 (3.1)

60

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

where G denotes the whole generative model. This loss measures the di↵er-

ence between the target features of the original inputs and those generated

by the generative model. Additionally, to improve the quality of the MTS

generated by the model, we adopt the adversarial training strategy. Specif-

ically, we take the Wassersten Generative Adversarial Networks (WGANs)

(Gulrajani et al., 2017) diagram to train the generative model. WGANs

are a modification of classic GANs (Goodfellow et al., 2014) whose discrim-

inator has no activation function in its final layer. WGANs are better at

learning stability and avoiding model collapse than classic GANs (Arjovsky

et al., 2017). In this paper, we use the gradient penalty proposed in (Gul-

rajani et al., 2017) to implement the Lipschitz constraint of the WGANs.

The adversarial loss is

Ladv = E
x⇠Pr

[D(x)]� E
x̃⇠Pg

[D(x̃)] + � E
x0⇠Px0

[(krx0D[x0]k2 � 1)2] (3.2)

where D is the discriminator; Pr is the training data set distribution; Pg

is the fake data set distribution from which the MTS are generated by

x̃ = M � x + (1 �M) � (G(M � x)), being the combination of the

generated masked features and the non-masked parts of the real data; Px0

is the distribution sampled uniformly along straight lines between pairs of

points sampled from Pr and Pg (Gulrajani et al., 2017); � is a parameter

that controls the strength of the gradient penalty.

Training Strategy. Following the GAN training diagram (Goodfellow

et al., 2014), the discriminator D and the generator G are optimised itera-

tively through stochastic gradient descent. The discriminator is optimised

by minimising the adversarial loss Ladv in (3.2) and the generator is opti-

61

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

mised by minimising the overall generative loss which is expressed by:

Lrec = E
x⇠Pr

[Lrec + �disD(x̃)] (3.3)

where �dis is a hyperparameter controlling the strength of the penalty of

the adversarial loss.

3.3.2 Searching for the most important features for

MTSC

The previous steps have designed a generative model to estimate the dis-

tribution necessary to judge whether a set of features is supporting for the

given classification. The next step of the proposed framework is to find

the smallest set of supporting features. However, the smallest supporting

feature set can only be obtained by exhaustive search, which is impossible

when the feature space is huge. Therefore, we propose to use heuristic

search-based methods to find approximate solutions in a reasonable time.

This section first introduces the objective (or fitness) function that guides

the search. Then, we design a method to address the di�culties faced by

classic search methods when searching in a huge feature space.

Fitness function. Before introducing the fitness function, we will describe

how to evaluate whether an explanation is ideal or not and then formulate

these evaluation metrics as a fitness function. A lower value of the fitness

function means that a better explanation is achieved.

First, the features identified in an ideal explanation should be supporting,

which means that if these features were replaced by other plausible values,

the classifier would produce a di↵erent output. This criteria is formulated

62

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

as follows:

Sup(W) =

8
>><

>>:

0 if f(c|x) = f(c|x\r)

1 if f(c|x) 6= f(c|x\r)

where xi,j 2 x\r, if Wi,j = 1

(3.4)

where the feature importance map is represented by a binary mask W 2

RD⇥T ; Wd,t = 1 means the feature xd,t is identified; Sup(W) = 1 means

the identified features are supporting features. To calculate f(c|x\r) using

(2.5), it is necessary to sample instances from the distribution p(xr|x\r).

The work (Gal and Ghahramani, 2016) has shown that keeping the dropout

layer active during the inference stage and running the forward process mul-

tiple times is equivalent to sampling samples from the learnt distribution.

Therefore, (2.5) can be reformulated as:

f(c|x\r) =

Z
f(c|x⇤

r,x\r)p(x
⇤
r|x\r)dx

⇤
r

=

Z
f(c|g✓,✏̂(x\r),x\r)d✏

= E✏̂⇠p(✏)f(c|G✓,✏̂(x\r),x\r)

(3.5)

where G represents the generative model; p(✏) is a product of Bernoulli

distribution with probabilities of 1�p, and p represents the dropout rate in

the training stage; the ✓ represent the weights of the final fitted generative

model.

Second, sparsity is also a desirable property of an ideal explanation, which

means that the size of the identified supporting feature set should be small.

This helps in providing clear explanations. This objective is expressed by:

Spar(W) = kW k1 (3.6)

63

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

where k·k1 denotes the L1-norm of the binary mask W . A lower value of

Spar(W) means that fewer features are identified.

Finally, similar to (Crabbé and Van Der Schaar, 2021), we assume that in

the context of MTS, features within continuous time steps provide more

insights to humans to understand the behaviour of a classifier than those

scattered over discrete time steps. This is similar to the pixels in images,

where the pixels within a continuous region make more sense for humans

than those scattered everywhere. Therefore, in an ideal explanation, we

hope the identified features can be continuous in time, which can be realised

by minimising the following objective:

Conti(W) =
1

DT

DX

d=0

T�1X

t=0

|Wd,t �Wd,t+1| (3.7)

The final fitness function for the task at hand is the combination of the

above three objectives:

Fitness(W) = �e(1� Sup(W)) + �sSpar(W) + �cConti(W) (3.8)

where �e,�s, and �c are three parameters that control the priority of these

objectives in the process of searching for an ideal explanation. Finding

supporting features has the highest priority, therefore, the fitness value of

a saliency map, of which the identified features are supporting features,

should always be smaller than that of which the identified features are not

supporting features. This priority is achieved by setting �e > �sSpar(W)+

�cConti(W) for any W . Similarly, the sparsity requirement has the second

priority, which is maintained by setting �sSpar(W) > �cConti(W) for any

solution. Because Spar(W) ⇢ [0, DT] and Conti(W) ⇢ [0, 1], in this

thesis, to maintain the defined priority, the following settings are chosen:

64

3.3. PIPELINE OF THE PROPOSED FRAMEWORK

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

seg-1 seg-2 seg-3 seg-4

seg-5 seg-6 seg-7 seg-8

seg-9 seg-10 seg-11 seg-12

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

seg-1 seg-2 seg-3 seg-4

seg-5 seg-6 seg-7 seg-8

seg-9 seg-10 seg-11 seg-12

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

seg-2seg-1 seg-3 seg-4 seg-5 seg-6

seg-7 seg-8

seg-9 seg-10

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

seg-2seg-1 seg-3 seg-4 seg-5 seg-6

seg-7 seg-8

seg-10

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

1 2 3 4 5 6 7 8

9 10

1314

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1
Time

0 10 20 30 40 50 60 70 80

Input Multivariate Time Series

…

1112

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

1 2 3 4 5 6 7 8

9 10

1314

1112

Final Saliency Map

Segment

Identification

Identified segments

Segments

Figure 3.3: Proposed greedy-based segmentation and identification search
method. The input MTS are segmented into several segments. In the
next step, the smallest supporting segments are identified through a bi-
nary search method. In the next segment step, the previously identified
segments are further segmented into smaller segments. Then, the adopted
binary search model is implemented on these smaller segments. This pro-
cess continues until the length of the segments is one.

�e = 10DT , �s = 1.0, and �c = 0.1.

Greedy-based segmentation and identification search method. Af-

ter defining the fitness function, the challenge we are facing now is how to

obtain an ideal explanation in a reasonable time. MTS are often high-

dimensional, on which classic search methods face di�culties in obtaining

ideal solutions. Here, we mitigate this di�culty by the proposed greedy-

based segmentation and identification search method, of which an overview

is shown in Fig. 3.3. The overall search operation is made up of a number

of sequential substeps. Each substep contains two operations: segmen-

tation and identification. At first, the original input MTS is segmented

into a number of non-overlap segments. Each segment contains features

within a certain time interval and is considered as a ‘super-feature’ during

65

3.4. EXPERIMENTAL DESIGN

the next identification step. In the identification steps, a binary heuris-

tic search method is used to search for the smallest group of supporting

segments over the feature space composed of these ‘super-features’. Then

in the next segment step, the identified supporting ‘super-features’ in the

previous identification step are further segmented into smaller segments, on

which the binary search method is carried out again. The two operations

are carried out iteratively until the ‘super-features’ cannot be segmented

further (the length of the identified segments is one).

In the identification steps, we are dealing with a optimisation problem,

where many classic heuristic methods can be adopted, such as Genetic

Algorithms (GA) (Mitchell, 1998) and Binary Particle Swarm Optimisation

methods (BPSO) (Miranda, 2018). Both of these classic methods have

their advantages and limitations. In this work, we implement both GA

and BPSO in the identification steps. We will show in the experiment

that these two methods achieve very similar performance. One thing that

should be noted here is that although we take GA and BPSO, users can use

any search method in the identification steps. We believe that a suitable

search method will help to achieve better results. In addition, although we

focus on the MTSC context, the proposed greedy-based segmentation and

identification search strategy is more broadly applicable to any domain,

such as images.

3.4 Experimental Design

In this section, details of the experimental design are provided. First, we

describe the adopted MTSC data sets and the classifier that we are going to

explain. Then, the experimental parameters, including the hyperparame-

66

3.4. EXPERIMENTAL DESIGN

ters of the generative model and the settings of the adopted search methods,

are provided. Finally, the benchmarking explaining methods that are going

to be compared with are presented, and the quantitative evaluation metric

is described.

3.4.1 Data sets

To validate the performance of the proposed framework, the UEA MTSC

archive is adopted, which is a well-known benchmarking archive containing

30 MTSC data sets collected from a wide range of applications (Bagnall

et al., 2018). In addition, the handwriting image data set, MNIST (Lecun

et al., 1998), is also used in our experiments. Although it was not originally

collected as an MTS, we can treat it as an MTS, as some work has done

(Ismail et al., 2020). The MNIST is taken here for visualisation purposes,

which helps to obtain some useful qualitative evaluations. The details of

the preprocessing methods used are described as follows.

UEA TSC Archive: Detailed information on these data sets can be ob-

tained from work (Bagnall et al., 2018), and a summary of these 30 data

sets is given in Table 3.1. As shown in the table, some datasets contain

only two labels, while others have more than two labels. Therefore, the

classifier to be optimised can be either a binary classifier or a multi-class

classifier, depending on the number of labels. However, it is important to

note that all these datasets are balanced, which means that within each

dataset, every label has the same number of samples. As can be seen in

the table, the time series in some data sets have too many features or time

steps, e.g. DuckDuckGeese, EigenWorms, MotorImagery, and PEMS-SF.

Providing explanations for these problems is very time-consuming. In this

paper, we only consider 26 medium-sized data sets. The data sets, includ-

67

3.4. EXPERIMENTAL DESIGN

Table 3.1: A summary of the 30 data sets in the UEA TSC Archive

data set Training Cases Test Cases D T Classes

0 ArticularyWordRecognition 275 300 9 144 25
1 AtrialFibrillation 15 15 2 640 3
2 BasicMotions 40 40 6 100 4
3 CharacterTrajectories 1422 1436 3 182 20
4 Cricket 108 72 6 1197 12
5 DuckDuckGeese⇤ 50 50 1345 270 5
6 EigenWorms⇤ 128 131 6 17984 5
7 Epilepsy 137 138 3 206 4
8 EthanolConcentration 261 263 3 1751 4
9 ERing 30 270 4 65 6
10 FaceDetection 5890 3524 144 62 2
11 FingerMovements 316 100 28 50 2
12 HandMovementDirection 160 74 10 400 4
13 Handwriting 150 850 3 152 26
14 Heartbeat 204 205 61 405 2
15 InsectWingbeat 30000 25000 200 22 10
16 JapaneseVowels 270 370 12 29 9
17 Libras 180 180 2 45 15
18 LSST 2459 2466 6 36 14
19 MotorImagery⇤ 278 100 64 3000 2
20 NATOPS 180 180 24 51 6
21 PenDigits 7494 3498 2 8 10
22 PEMS-SF⇤ 267 173 963 144 7
23 PhonemeSpectra 3315 3353 11 217 39
24 RacketSports 151 152 6 30 4
25 SelfRegulationSCP1 268 293 6 896 2
26 SelfRegulationSCP2 200 180 7 1152 2
27 SpokenArabicDigits 6599 2199 13 93 10
28 StandWalkJump 12 15 4 2500 3
29 UWaveGestureLibrary 120 320 3 315 8

⇤ these 4 data sets are not considered in this thesis. Providing explanations
for these problems would be very time-consuming.

68

3.4. EXPERIMENTAL DESIGN

Ti
m
e

Feature

Figure 3.4: Treating MNIST images as MTS. Each image is regarded an
MTS with 28 time steps, each of which has 28 features

ing CharacterTrajectories (30%), InsectWingbeat (57%), JapaneseVowels

(45%), and SpokenArabicDigits (57%), have missing values, of which the

percentage of missing features is given in brackets. The missing values in

these data sets are first filled with zeros. Given that the classifier performs

better than random guessing on these data sets and the main aim of this

work is to explain the classifier, filling missing values with zeros is accept-

able. Second, the features of every dimension are normalised using the

Min–Max normalisation method and then rescaled to [-1, 1]. The rescaling

operation aims to keep the range of the MTS consistent with that gener-

ated by the generative model, of which the activation function in the final

layer is Tanh.

Treating MNIST as an MTS: The original 28 × 28 images are treated

as an MTS with 28 time steps, each of which has 28 features. Here, the

y-axis is treated as the time steps and the x-axis as the features, which is

shown in Fig. 3.4. Similarly, the images are normalised using the Min–Max

normalisation method and then rescaled to [-1, 1].

3.4.2 Classifier

The novelty of this framework is the model-agnostic framework that ex-

plains any classifier through a post-hoc approach. Designing a high-performance

MTSC is not our goal. Therefore, a simple classifier based on RNNs is im-

69

3.4. EXPERIMENTAL DESIGN

plemented for our experiments, where Long Short Term Memory (LSTM)

cells (Hochreiter and Schmidhuber, 1997) are used to encode the entire

MTS and the hidden state at the final step are fed into a fully-connected

layer followed by a soft-max layer to produce the probability of each class.

The class with the highest probability is considered the predicted class. In

our experiments, the dimension of the hidden states of this classifier is set

to 128.

The accuracy of the classifier on MNIST is 98%, while the accuracy of

the classifier varies among the data sets in the UEA archive. As shown

in Table 3.2, the classifier performs excellently in some problems, such as

JapaneseVowels, SpokenArabicDigits, and PenDigits. However, on other

problems, such as AtrialFibrillation, EthanolConcentration and Finger-

Movements, its performance is not better than random guesses, where we

assume that the classifier’s outputs are not dependent on the inputs. In

this circumstance, explaining their outputs does not make sense. Therefore,

we only take data sets on which the classifier’s performance is significantly

better than random guesses in our experiments, which are shown in bold in

Table 3.2. On thing that has to be denoted is that the data set in the UEA

are all balanced, which means that each labels has the same number of

samples which facilicate to judge whether the model performs better than

random gauessing.

Among them, 17 data sets shown in bold meet this requirement. The

samples in the test data sets are used in our explanation experiments. To

save experiment time, for the problems InsectWingbeat, PhonemeSpectra,

and SpokenArabicDigits, we randomly sample 1000 inputs from the test

data sets to do experiments, while for other data sets, all the samples in

the test data set are used in our experiments.

70

3.4. EXPERIMENTAL DESIGN

Table 3.2: The accuracy of the classifier and random guessing on the prob-
lems in UEA archive. The RNNs-based classifier performs well on the 17
data sets shown in bold.

Data set
Accuracy

Data set
Accuracy

RNNs Guess RNNs Guess

0 ArticularyWordRecognition 0.89 0.04 15 InsectWingbeat 0.29 0.10
1 AtrialFibrillation 0.33 0.33 16 JapaneseVowels 0.94 0.11
2 BasicMotions 0.73 0.25 17 Libras 0.71 0.07
3 CharacterTrajectories 0.67 0.05 18 LSST 0.62 0.07
4 Cricket 0.79 0.08 20 NATOPS 0.86 0.17
7 Epilepsy 0.54 0.25 21 PenDigits 0.99 0.10
8 EthanolConcentration 0.27 0.25 23 PhonemeSpectra 0.14 0.03
9 ERing 0.79 0.17 24 RacketSports 0.76 0.25
10 FaceDetection 0.59 0.50 25 SelfRegulationSCP1 0.53 0.50
11 FingerMovements 0.52 0.50 26 SelfRegulationSCP2 0.69 0.50
12 HandMovementDirection 0.34 0.25 27 SpokenArabicDigits 0.98 0.10
13 Handwriting 0.03 0.04 28 StandWalkJump 0.47 0.33
14 Heartbeat 0.70 0.50 29 UWaveGestureLibrary 0.54 0.13

3.4.3 Generative model

As outlined in our proposed framework, a generative model is utilized to

learn the data distribution. Therefore, prior to generating explanations,

the model is trained using training samples from each data set, and the

hyperparameters of the generative model are tuned carefully. Specifically,

the training data sets are used to train the model, and the test data set

is used to evaluate the model’s performance under various hyperparameter

settings. The final tuned hyperparameters for the generative model are as

follows:

• Number of fully connected layers (before the Transformer encoder):

2

• Dimension of hidden features in the fully connected layers: 128

• Number of Transformer layers: 2

• Dimension of the Transformer layers: 64

• Number of fully connected layers (after the Transformer encoder): 1

71

3.4. EXPERIMENTAL DESIGN

• Dropout rate for the fully connected layers and the Transformer lay-

ers: 0.2

3.4.4 Parameter Settings for the search algorithms

This section gives the parameter settings adopted for our experiments. In

our experiments, the BPSO and GA methods are adopted for the identifica-

tion steps in our proposed framework. The BPSO method is implemented

using the package provided by (Miranda, 2018) and the GA method is

implemented using the package provided by Ryan Solgi1. In our experi-

ments, the parameters for these two search methods were tuned using the

test data set. For each sample in the test dataset, we conducted multi-

ple runs of the search algorithms with varying parameter settings. Our

objective was to find the smallest supporting features. We evaluated the

performance of each parameter setting based on the outcomes, selecting

the best-performing set of hyperparameters as the final configuration. We

chose to use only the test data set to tune the hyperparameters of our

search algorithms. This decision is driven by the nature of the search

methods, which, unlike traditional machine learning models, do not face

overfitting issues. As long as the search results are satisfactory, the pa-

rameters are considered suitable. In addition, the final performance of the

proposed method is evaluated only on the test dataset; thus, the test data

set is su�cient to determine the optimal parameters for these search algo-

rithms. The satisfying settings are shown below. For the BPSO method,

the adopted parameters are:

• Population size: 100 (the number of particles in the swarm)

• Inertia weight (w): 1 (the influence of a particle’s previous velocity

1https://github.com/rmsolgi/geneticalgorithm

72

3.4. EXPERIMENTAL DESIGN

on its current velocity)

• Cognitive coe�cient (c1): 5 (the influence of a particle’s personal

best position on its velocity update)

• Social coe�cient (c2): 5 (the influence of the swarm’s global best

position on the velocity update of a particle)

For the GA method, the adopted parameters are:

• Population size: 100 (the number of candidate in the population)

• Mutation rate: 0.2 (the probability of altering one or more genes in

an individual’s chromosome)

• Crossover rate: 0.5 (the probability of exchanging genetic material

between two parent individuals during reproduction)

• Parents portion: 0.5 (the proportion of individuals in the population

that are selected as parents for performing crossover and mutation

operations to generate o↵spring)

Both the BPSO and GA methods used in our framework are strategically

designed to ensure diverse starting points and e↵ective exploration of the

solution space. The process is organised as follows.

• Random Initialisation: Initially, the solutions for both methods are

generated at random. This approach allows algorithms to explore

various areas of the solution landscape, which is crucial to identify

more robust global solutions.

• Setting Initial Solutions to All-Ones: The initial solutions for sub-

sequent optimisation substeps are set to an “all-ones” state. This

73

3.4. EXPERIMENTAL DESIGN

technique is used because initial searches typically yield su�ciently

small support features. By configuring solutions to all-ones, the al-

gorithms are compelled to eliminate unhelpful or non-supportive fea-

tures, thereby facilitating the discovery of more e↵ective outcomes.

• Convergence Criteria: Both the BPSO and GA methods terminate

when there is no improvement in the fitness function for 20 consecu-

tive iterations. This threshold of 20 is strategically set to balance

computational complexity with available computational resources,

ensuring optimal usage without unnecessary computation.

3.4.5 Benchmarking methods

The explanation methods to be compared with are Gradient-based meth-

ods, LIME and LIME-G. These methods are widely adopted to explain

classifiers and are taken as benchmarking methods in many works (Ismail

et al., 2020; Crabbé and Van Der Schaar, 2021).

• Gradient-based Methods : The first gradient-based method we con-

sider is SG, where importance scores are obtained by directly cal-

culating the gradient of the probability of the predicted class w.r.t.

the input features (Simonyan et al., 2014). In addition, we also con-

sider the IG method, which numerically integrates gradients along a

path between current input and a user-defined baseline (Sundarara-

jan et al., 2017). Following the setting of (Sundararajan et al., 2017),

we set the baseline in our experiments to zero input.

• LIME : LIME (Ribeiro et al., 2016) provides importance scores by

learning a transparent proxy model in the local region near the in-

put. It first perturbs the input data and creates a series of artificial

74

3.4. EXPERIMENTAL DESIGN

data. We realise it by randomly selecting the features of the input

MTS and replacing them with zeros. Then, the classifier produces

outputs for these artificial data. After that, a linear regression model

is fitted, of which the input features are binary vectors indicating

the ‘presence’ (by 1) or ‘absence’ (by 0) of the corresponding original

features and the outputs are the probability score of the predicted

classes. Finally, the absolute values of the weights of the fitted linear

model are regarded as the importance scores of the corresponding

features.

• LIME-G : The first step of LIME is to create a series of artificial data

by perturbing the original input. This is achieved through zero re-

placement, which might create unrealistic inputs. Similar to (Agarwal

and Nguyen, 2020), we also implement LIME-G, where G indicates

that the artificial data set is created with the help of the designed

generative model. Specifically, to create one perturbed input, we ran-

domly select a number of original features to be perturbed and then

generate possible alternative values for them using the generative

model. Then, the original features are replaced by these alternative

values to create a perturbed input. The other steps to obtain a fea-

ture importance map are the same as in the LIME method.

3.4.6 Quantitative Evaluation Metric

A good explanation should compactly identify supporting features for the

outputs, which means that the classifier could produce a di↵erent output by

replacing a minimal number of features with their alternative values. Here,

we use the quantitative metric adopted in (Fong and Vedaldi, 2017; Chang

et al., 2019) to evaluate the performance of a feature importance explana-

75

3.5. RESULTS AND DISCUSSION

tion. Specifically, for a given explanation, we calculate the minimal number

of features that are necessary to be replaced to change the classifier’s out-

put. The final explanations of the proposed method are binary. Therefore,

this metric can be calculated directly by counting how many features are

identified. However, the benchmarking explanation methods assign each

feature an importance score. To make these explanations comparable to

our method, we successively select features in order of their importance

scores and then replace them with plausible values generated by the gen-

erative model until the classifier produces a di↵erent result. Whether the

classifier produces a di↵erent result is estimated using (2.5), where xr rep-

resents the features to be replaced. Finally, the selected features result in

feature importance explanations in binary form. In this paper, we call this

metric the Smallest Deletion Features (SDF). A smaller SDF means better

explanation performance.

3.5 Results and Discussion

In this section, the performance of the proposed framework is systematically

evaluated. First, the performance of the generative model in mitigating the

OOD problem is evaluated quantitatively and qualitatively in Section 3.5.1,

which is the basis for providing meaningful explanations. In Section 3.5.2,

the performance of the adopted methods is quantitatively evaluated. How-

ever, with only feature importance explanations, users might not yet be

able to understand the working mechanism of the classifier. Fortunately,

our framework can provide counterfactual explanations, which will be de-

scribed in Section 3.5.3. There are some stochastic processes in the pro-

posed framework, but the explanations provided of a given classification

should remain stable when we repeat the explaining process. Therefore,

76

3.5. RESULTS AND DISCUSSION

in Section 3.5.4, a stability analysis of the proposed framework is carried

out. Finally, in Section 3.5.5, ablation studies are carried out to analyse

the contributions of the generative model and the proposed search strategy

separately.

3.5.1 The performance of the generative model

The performance of the generative model is qualitatively evaluated, which

is shown in Fig. 3.5. In Fig. 3.5a and Fig. 3.5b, the blue time series are

the original time series, and the red subsequences are generated by the

designed generative model. The results show that the generated values are

close to the target. In Fig. 3.5c, we also compare the performance of the

generative model in generating meaningful perturbation samples with that

of traditional perturbation methods in the MNIST data set. To achieve this

goal, some features of a sample are randomly selected and then perturbed

by traditional methods and the designed generative model. For MNIST

samples, the within-distribution inputs should look similar to digits written

on the white background. It can be easily judged that the inputs created

by the traditional methods do not meet this requirement. For example,

noise is scattered over the background that should be white, or the original

sharp features become blurry or even missing. In contrast, the generative

model creates suitable values to replace the selected features, creating much

more realistic samples, which suggests that it performs better in creating

within-distribution perturbed inputs than traditional methods.

In addition to the qualitative evaluation above, we can also quantitatively

evaluate the performance of the generative model in generating within-

distribution perturbed samples. Inspired by (Hase et al., 2021), we cast

this problem as a measurement of the robustness of the model to pertur-

77

3.5. RESULTS AND DISCUSSION

Va
lu
e

Va
lu
e

Va
lu
e

Time

(a) Cricket

Va
lu
e

Va
lu
e

Va
lu
e

Time

(b) HandMovementDirection

(c) MNIST

Figure 3.5: The performance of the generative model in creating plausible
values for certain features. In (a) and (b), the blue time series are the orig-
inal time series, and the red subsequences are generated by the generative
model. In (c), the first and second columns are the original input and the
input with some features randomly selected and masked. The third column
to the last column are perturbed inputs created by the weighted average
of neighbouring features (Crabbé and Van Der Schaar, 2021), by random
noise, by the average values of corresponding dimensions and by the values
created by the generative model, respectively.

bation, which is carried out as follows. For each input in the test data set,

a certain percentage of features are randomly selected and then perturbed

using zeros and random noise, as is common practice in the literature, and

using the alternative values created by the generative model. The percent-

ages of features to be perturbed here are {20%, 50%}. Then, the accuracy

of the classifier on these perturbed inputs is measured, where the perturbed

inputs are assumed to have the same labels as the original inputs. In this

scenario, the performance of all classifiers is expected to deteriorate in line

with increases in the percentage of perturbed features. However, we also

expect that features replaced with random or arbitrary (e.g. zeros) replace-

ment (which will tend to be OOD) will result in overall worse performance

compared to features replaced with plausibale alternative values generated

by the proposed generative model. The experiment is repeated 50 times

for each percentage of features to perturb, and the predicted accuracy is

78

3.5. RESULTS AND DISCUSSION

(a) 20% values are masked out

(b) 50% values are masked out

Figure 3.6: Model’s prediction accuracy on the test data sets, when a cer-
tain number of features are perturbed using “zeros”, “random noise”, and
alternative values generated by the generative model. Better performance
in creating within-distribution inputs yields higher model’s higher accu-
racy.

79

3.5. RESULTS AND DISCUSSION

shown through boxplots in Fig. 3.6. Overall, the accuracy of the classifiers

is higher on the perturbed inputs created by the generative model than

on those perturbed using traditional approaches, which suggests that the

classifiers are more robust to the perturbed inputs created by the designed

generative model. This means that when some features are masked, the

generative model could generate suitable alternative values on which the

classifier could make correct predictions, such as the inputs created by the

generative model in Fig. 3.5c. If these masked features are filled with zeros

or noise, creating input that the classifier did not observe during the train-

ing stage, like those shown in Fig. 3.5c, the classifier’s behaviour might be

unpredictable and have a higher probability of making wrong predictions.

However, the generative model does not always have a higher accuracy than

traditional perturbation methods. For the InsectWingbeat data set, per-

turbation by zeros results in a higher accuracy than the generative model.

The reason might be that there are many missing values in this data set

(about 57%), and in our experiments they are filled with zeros. In this cir-

cumstance, perturbing with zeros might be a better choice. However, for

other data sets, the generative model consistently performs better in gen-

erating within-distribution perturbed samples than traditional methods.

3.5.2 Quantitative Evaluation of Explanations

In this section, the SDF scores are calculated to quantitatively evaluate the

performance of the explanation methods adopted. The results are shown

in Table 3.3. The results show that our method achieves the smallest SDF

scores, suggesting that fewer features are identified in the explanations

provided. This helps to provide clear explanations.

Our framework is compatible with any binary search method, so we sep-

80

3.5. RESULTS AND DISCUSSION

Table 3.3: The SDF results of the adopted saliency explaining methods
(above) and the time required to obtain one explanation (below).

Data set IG SG LIME LIME-G
Proposed Framework

with BPSO with GA

ArticularyWordRecognition
349.00(25.75) 401.50(20.17) 645.00(38.77) 591.65(40.38) 83.50(7.23) 89.00(7.50)
0.02s(0.00) 0.01s(0.00) 5.30s(0.43) 9.31s(0.87) 27.59s(1.43) 34.02s(1.85)

BasicMotions
86.00(6.00) 465.00(26.92) 125.00(8.32) 130.70(10.04) 73.50(4.86) 60.00(3.22)
0.02s(0.00) 0.01s(0.00) 6.07s(0.56) 10.45s(0.87) 13.45s(0.90) 14.08s(0.83)

CharacterTrajectories
112.00(9.81) 84.50(7.63) 108.50(7.82) 93.27(6.53) 32.50(2.55) 28.00(2.75)
0.02s(0.00) 0.01s(0.00) 3.73s(0.20) 6.51s(0.58) 23.46s(1.58) 24.21s(2.28)

Cricket
8.49(0.54) 22.23(2.18) 25.62(2.02) 29.30(2.29) 12.12(1.06) 8.15(0.59)
0.08s(0.01) 0.05s(0.01) 29.26s(2.55) 29.90s(2.50) 142.43s(9.82) 141.92s(11.15)

Epilepsy
8.00(0.48) 63.50(3.36) 7.50(0.41) 6.42(0.36) 4.00(0.32) 5.50(0.45)
0.02s(0.00) 0.01s(0.00) 4.39s(0.29) 6.89s(0.53) 26.41s(1.89) 29.80s(2.94)

ERing
26.50(2.64) 56.50(4.49) 16.00(1.45) 14.86(1.18) 13.00(0.83) 12.00(0.67)
0.02s(0.00) 0.01s(0.00) 5.63s(0.36) 10.92s(1.09) 17.04s(1.16) 7.29s(0.72)

HandMovementDirection
70.50(4.45) 86.50(5.49) 372.00(36.72) 364.44(29.79) 72.00(6.93) 34.00(2.89)
0.03s(0.00) 0.02s(0.00) 8.56s(0.68) 13.16s(1.25) 102.22s(9.21) 101.71s(6.97)

InsectWingbeat
19.50(1.93) 65.50(4.29) 23.50(2.11) 44.00(2.56) 15.50(1.18) 14.02(0.77)
0.02s(0.00) 0.01s(0.00) 8.23s(0.67) 14.85s(0.98) 33.10s(9.79) 31.08s(1.59)

JapaneseVowels
84.00(6.08) 164.50(14.09) 101.50(6.32) 88.67(8.09) 38.50(1.99) 31.00(2.73)
0.02s(0.00) 0.00s(0.00) 7.89s(0.43) 10.67s(0.96) 43.57s(3.06) 12.30s(0.93)

Libras
7.50(0.54) 18.00(1.02) 8.50(0.76) 7.74(0.65) 6.00(0.46) 7.00(0.36)
0.03s(0.00) 0.00s(0.00) 4.93s(0.25) 7.67s(0.63) 5.06s(0.30) 4.80s(0.25)

LSST
12.50(0.95) 52.00(3.60) 10.50(0.71) 8.46(0.68) 13.00(1.23) 8.00(0.74)
0.02s(0.00) 0.01s(0.00) 5.18s(0.49) 8.46s(0.48) 7.22s(0.66) 6.58s(0.50)

NATOPS
446.00(42.97) 656.00(48.58) 822.50(73.36) 818.67(50.49) 111.50(8.38) 128.00(11.78)
0.03s(0.00) 0.01s(0.00) 10.66s(1.01) 18.98s(1.29) 10.59s(1.05) 9.04s(0.71)

PenDigits
5.00(0.47) 11.00(1.08) 5.50(0.50) 5.43(0.27) 3.00(0.26) 3.00(0.20)
0.01s(0.00) 0.01s(0.00) 3.17s(0.25) 4.27s(0.38) 2.12s(0.17) 2.27s(0.20)

PhonemeSpectra
77.00(6.94) 153.50(9.71) 562.00(120.66) 632.27(82.72) 79.00(5.19) 71.00(3.69)
0.02s(0.00) 0.01s(0.00) 8.09s(0.57) 15.24s(1.48) 50.25s(4.40) 46.93s(3.90)

RacketSports
34.50(1.94) 116.50(7.01) 44.00(2.26) 41.61(2.69) 25.50(1.46) 20.50(1.25)
0.03s(0.00) 0.01s(0.00) 4.32s(0.43) 6.54s(0.63) 4.93s(0.28) 5.16s(0.31)

SelfRegulationSCP1
16.00(1.38) 3.00(0.24) 3.00(0.24) 3.04(0.29) 3.00(0.22) 3.00(0.22)
0.03s(0.00) 0.02s(0.00) 9.22s(0.73) 10.47s(0.58) 35.51s(3.08) 38.70s(3.21)

SpokenArabicDigits
219.00(14.77) 935.50(75.66) 638.00(39.57) 688.94(64.33) 115.00(8.01) 93.50(5.86)
0.02s(0.00) 0.01s(0.00) 4.91s(0.44) 6.68s(0.46) 21.41s(1.42) 21.91s(1.58)

StandWalkJump
10.50(0.66) 25.00(1.40) 29.00(1.61) 30.58(1.81) 12.00(0.68) 8.00(0.44)
0.08s(0.01) 0.06s(0.00) 32.19s(2.13) 32.44s(1.66) 151.23s(14.26) 164.26s(14.31)

UWaveGestureLibrary
27.00(1.61) 29.00(1.48) 36.00(3.26) 38.26(3.65) 21.00(1.81) 22.50(1.23)
0.02s(0.00) 0.01s(0.00) 4.42s(0.34) 8.38s(0.74) 52.47s(3.50) 56.89s(3.79)

MNIST
104.00(10.06) 167.00(15.72) 90.50(8.30) 95.51(6.70) 27.50(2.36) 18.00(1.56)
0.02s(0.00) 0.00s(0.00) 4.01s(0.30) 7.98s(0.76) 9.43s(0.66) 10.71s(0.96)

81

3.5. RESULTS AND DISCUSSION

arately use the classic BPSO and GA methods in the identification steps

of our framework. The results show that these two methods achieve very

similar performance, suggesting that our framework is not sensitive to the

choice of search methods. Therefore, users can adopt the search method

they want in the identification steps.

From the aspect of time expense, gradient-based methods are very fast,

since they only need back-propagation several times. But our framework

needs much more forward propagation, and, besides, the generation of the

perturbed inputs also takes time. Therefore, our method requires more

time. However, for most of the problems here, our method can provide ex-

planations within 20 seconds. For some applications where time constraints

are not so strict, our method can be acceptable. However, if we take the

quality of explanations into account, for example, in the MNIST data set,

our method identifies about 30 important features. But the others identify

nearly or more than 100 features. Therefore, it is worth sacrificing time for

better explanations.

3.5.3 Counterfactual Explanations

By now, we have shown that our framework can provide explanations by

pinpointing less important features than other methods, from which users

can clearly identify the features that are relevant for the predicted class.

However, only knowing which features are relevant is not enough. People

might want to see how these relevant features would a↵ect the classifier’s

output. If these features took other plausible values, what would the output

of the classifier be? The answers to this question can provide more insight

for ordinary people to understand the classifier (R. Fernández et al., 2022).

82

3.5. RESULTS AND DISCUSSION

Output: “Fist”

Output: “Pointing”
Va
lu
e

Va
lu
e

Time

ERing

(a)

Va
lu
e

Va
lu
e

Time

Output: “Forehand in squash”

Output: “Clear in badminton

RocketSports

(b)
Output: 8 Saliency Map Output:3

Output: 0 Saliency Map Output:9

Output: 6 Saliency Map Output:0

Output: 7 Saliency Map Output:9 Output: 8 Saliency Map Output:3

Output: 3 Saliency Map Output:8

Output: 2 Saliency Map Output:3

Output: 8 Saliency Map Output:9

(c)

Figure 3.7: Counterfactual explanations for instances taken from ERing (a)
and RocketSports (b) data set. The figures above are original time series,
where the most important features are highlighted. The figures below are
counterfactual inputs, where the important features take alternative values.
(c): Counterfactual explanations for instances from the MNIST data set.

Fortunately, our framework can easily provide counterfactual inputs to an-

swer this question. A counterfactual input is also a concrete MTS, which

is very similar to the original input, but has a di↵erent class predicted by

the classifier. The only di↵erence between the counterfactual input and

the original input is the features identified in the final explanations. Our

framework can easily provide counterfactual inputs by replacing the iden-

tified features with alternative values generated by the designed generative

model. Examples of counterfactual inputs are shown in Fig. 3.7. These

counterfactual inputs can further explain the classifier by telling users how

these features would a↵ect the classifier’s output. For example, if the iden-

tified features of input with the label ‘4’, took large values (shown by dark

pixels in the figure), the classifier would produce a label ‘9’.

83

3.5. RESULTS AND DISCUSSION

3.5.4 Stability analysis

In this section, stability analyses of the explanation results are carried

out. By stability, we mean that the explanations provided should be re-

producible, which means that the explanations provided for a given clas-

sification should not vary too much if we repeat the explanation process

multiple times. In our proposed framework, the inherent stochastic pro-

cesses in both the heuristic search and the generation of perturbed inputs

introduce apparent challenges in achieving stability. This aspect is demon-

strated in Fig. 3.8, where we observe varying explanations for a single input

from the CharacterTrajectories data set when the same explanation pro-

cess is performed multiple times. Such variability, as demonstrated in the

figure, underscores the influence of stochastic elements on the stability of

our explanatory framework. However, we argue that this instability results

mainly from a high number of degrees of freedom in the input space that

can change the output of the classifier. For example, the input shown in

Fig. 3.8a is predicted to be class ‘1’. However, the predicted class can be

changed to one of the other 19 classes by perturbing di↵erent features. Dur-

ing the heuristic search, the stochastic processes make it uncertain which

features are to be perturbed.

However, if the predicted label of the counterfactual explanation is con-

strained to a specific class, is the explanation stable? Specifically, which

group of features of the input predicted as class ‘1’, if replaced by other

plausible values, can lead the classifier to produce a specific class ‘4’? An-

swers to this question can be easily obtained. We only need to modify the

84

3.5. RESULTS AND DISCUSSION

Va
lu
e

Va
lu
e

Time Time

(a)
Va
lu
e

Va
lu
e

Time Time

(b)

Figure 3.8: Di↵erent explanations are provided for the two inputs in the
CharacterTrajectories data sets, where the most important features are
highlighted by red lines.

Va
lu
e

Va
lu
e

Va
lu
e

Time

(a)

Va
lu
e

Va
lu
e

Va
lu
e

Time

(b)

Figure 3.9: The saliency maps when the desired class is set to class “4” (a)
and class “11” (c). The identified important segments are colored in red.

fitness function (3.4) to (3.9):

Sup(W) =

8
>><

>>:

1 if f(c|x\r) 6= desired class

0 if f(c|x\r) = desired class

where xi,j 2 x\r, if Wi,j = 1

(3.9)

Fig. 3.9 shows the counterfactual explanations when the desired class is

specifically designed. It can be seen that the final explanations are much

more stable than in Fig. 3.8.

85

3.5. RESULTS AND DISCUSSION

Input Generative Model Zeros Random Noise Input Generative Model Zeros Random Noise

Figure 3.10: The saliency maps provided by our framework but using dif-
ferent perturbation strategies, including using the generative model, using
zeros, and random noise.

3.5.5 Ablation studies

In this section, ablation studies are carried out to analyse the contributions

of the two key components in the proposed framework, the designed gen-

erative model and the greedy-based segmentation and identification search

strategy.

Contribution of the generative model. Fig. 3.10 shows the saliency

maps provided for given classifications using our framework but with dif-

ferent strategies to generate perturbed inputs, including using the genera-

tive model and using traditional perturbation methods (zeros and random

noise). The results show that the generative model really helps in gener-

ating meaningful explanations. The identified features are compact and

located in the really meaningful regions rather than scattered among the

meaningless background. These improvements are the result of the mitiga-

tion of the OOD problem.

Contribution of the greedy-based segmentation and identification

strategy. In the proposed framework, a greedy-based segmentation and

identification search strategy is designed for time series to mitigate the

challenge of searching in a huge search space. The explanations provided

using the proposed search strategy are compared with those provided with-

86

3.6. SUMMARY

Va
lu
e

Time

(a)

Va
lu
e

Time

(b)

Figure 3.11: The saliency maps for the given inputs (a) provided with
our proposed search strategy and (b) provided by applying binary search
method directly over the original features space.

out this search strategy. The latter explanations are provided by applying

the same binary search algorithm (BPSO or GA) over the original fea-

ture space, where each feature is considered as one segment. As shown

in Fig. 3.11, without the proposed search method, the identified features

are scattered, while our method provides compact explanations, where the

identified important features tend to be continuous in time steps. Because

the proposed strategy considered features within continuous time steps as

one ‘super-feature’, the final identified features also tend to be continuous

in time. In addition, our search strategy is better in terms of sparsity. For

example, on average, for the MNIST, only 38.33 features are identified as

relevant with this strategy, while without our strategy, 69.09 features are

identified. Moreover, this strategy can also notably speed up the explain-

ing process: on average, for the MNIST, it takes about 20s to generate an

explanation, but direct searching needs about 100s.

3.6 Summary

This chapter promoted the development of XAI in MTSC. Specifically, it

proposed a model-agnostic framework that adopted a post-hoc approach

to provide feature importance explanations in MTSC scenarios. Within

this framework, two challenges were addressed. The first is the widely

acknowledged OOD problem. The accurate distribution of the training

87

3.6. SUMMARY

data set might not be accessible. Therefore, a generative model for MTS

was designed to approximate the distribution of the data set to create

perturbed inputs. The results of the experiments demonstrated that the

classifiers were more resistant to perturbed inputs produced by the genera-

tive model than to those produced by traditional perturbation techniques.

This suggests that the generative model was e↵ective at producing within-

distribution perturbed inputs. Another challenge comes from the huge

search space, which increases exponentially with the number of features

an MTS has. This challenge was addressed by a proposed greedy-based

segmentation and identification strategy. As a result, the search space was

significantly reduced, allowing classic search methods, including the BPSO

and GA methods, to achieve satisfying results. The results of the ablation

studies showed that the generative model and the proposed search strategy

were necessary components to provide meaningful explanations. In addi-

tion to feature importance explanations, this framework has the potential

to o↵er counterfactual explanations, which are more comprehensible to or-

dinary users and enhance their understanding of the classifier. Although

the focus of this work was on MTSC problems, the proposed framework can

be applied to any problem, such as those in image and language processing.

In this chapter, we concentrate on the precise identification of the most

significant features, a crucial aspect of feature importance explanations.

Moving forward, the next chapter will shift focus to another essential char-

acteristic of feature importance explanation: its stability. Stability here

refers to the consistency of explanations across multiple executions of ex-

planation methods. A stable explanation method guarantees that, for a

given task, the explanations it provides will always be consistent. Without

stability, users may struggle to discern which insights are reliable, lead-

ing to confusion and mistrust. The current literature reveals that several

88

3.6. SUMMARY

commonly used explanation methods, such as the widely recognised proxy

method LIME, struggle to o↵er stable explanations (Zhou et al., 2021;

Slack et al., 2021). Although some methods have been developed to en-

hance their stability, these methods, when applied in the MTSC context,

do not provide stable explanations. Therefore, further research is imper-

ative to uncover the reasons for this instability and provide more reliable

explanations.

89

Chapter 4

Stable LIME Framework using

a Generative Model and an

Adaptive Weighting Method

4.1 Introduction

In the previous chapter, we introduced a novel framework designed to ac-

curately highlight the most crucial features for feature importance expla-

nations. This chapter seeks to address another critical issue associated

with feature importance explanations: their stability. Stability refers to

the consistency of explanations provided across multiple runs of an ex-

planation method, an essential attribute for reliable feature importance

explanations. Stable explanations allow model users to trust the results

and take actions based on the insights provided.

In the existing literature, LIME stands out as a prominent explanation

method, widely recognised and used in various applications. However, it

90

4.1. INTRODUCTION

has been explicitly identified to have stability problems (Zhou et al., 2021;

Visani et al., 2020; Slack et al., 2021). E↵orts to improve its stability in-

clude increasing the number of neighbours (Zhou et al., 2021), optimising

its hyperparameters (Visani et al., 2020), and improving the neighbour

sampling process (Slack et al., 2021). Although these solutions have shown

improved performance in tabular data, their e↵ectiveness within the MTSC

context falls short of expectations. The explanations remain notably unsta-

ble, significantly hindering their applicability in safety-critical areas. The

root causes of this instability have not yet been fully understood, highlight-

ing the need for further investigation.

Within the spectrum of methods aimed at enhancing the stability of LIME,

a critical yet often overlooked aspect in these solutions is the method of

neighbour generation. Common practices involve perturbing features by

substituting them with noise or zeros, inadvertently leading to the creation

of OOD samples. This OOD issue is a key factor contributing to the in-

consistency of explanations. Addressing this issue is crucial for providing

more stable and reliable explanations. To address this, we introduce SE-

GAL (Stable Explanations using a Generative Model and an Adaptive

Weighting Method for LIME), a novel framework designed to enhance ex-

planation stability. Specifically, in this framework, a generative model is

used to create within-distribution neighbours, aiming to mitigate the OOD

issue. Furthermore, an adaptive weighting method is proposed to facili-

tate the hyperparameter optimisation process within LIME. Through this

innovative approach, SEGAL seeks to elucidate the underlying causes of

LIME’s unstable explanations in the MTSC context and o↵ers more stable

and reliable explanations.

The structure of this chapter is as follows: Section 4.2 provides a compre-

hensive description of the SEGAL framework, including the generation of

91

4.2. PROPOSED METHOD: SEGAL

neighbours using generative models and the adaptive weighting method.

Section 4.3 details the experimental design, while Section 4.4 presents the

results and analysis. Finally, conclusions are drawn in Section 4.5.

4.2 Proposed method: SEGAL

In this section, a detailed description of the proposed method for Stable

Explanations using aGenerative model and anAdaptive weighting method

for LIME (SEGAL), is provided. In order to address the challenge of gen-

erating within-distribution neighbours, we propose the use of a generative

model, of which the details are described in Section 4.2.1. The second

challenge is that the hyperparameters in the classic LIME framework sig-

nificantly influence the stability of the final explanations and are hard to

tune (Visani et al., 2020). To overcome this di�culty, a novel adaptive

weighting approach with optimised parameters is designed and described

in Section 4.2.2. An overview of the proposed method is shown in Fig. 4.1.

4.2.1 Creating neighbours using a generative model

and local sampling

The core idea behind LIME is to interpret how a model behaves for a given

input by analysing the model’s responses to nearby samples, often referred

to as neighbours. To be considered as neighbours, in this paper, we con-

sider that there are two requirements that samples must meet. First, they

should come from the same distribution as the training data set. Other-

wise, they might not be realistic and cannot represent what the model has

learnt from the data set, and therefore should not be used to provide expla-

92

4.2. PROPOSED METHOD: SEGAL

Classifier

Generative
Model

Training Dataset

Training
Classifier

L
earning

 D
istribution

Generating
Neighbours

 Adaptively Weighting
Neighbours

Classifier Predictions on Neighbours
Generated Neighbours

Proxy Dataset
(4)
Fitting an
Interpretable
Model

A Final Explanation
Classifier

Getting
Prediction

Class - “4”

Same classifier
shown above

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

0
0

0 Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

0
0

0

Time

Va
r 1

Va
r 2

Va
r 3

Multivariate Time Series

Time

Va
r 1

Va
r 2

Va
r 3

Mask

0
0

1
1

0
1

M

Random Making Window

1. Training data generation

re
ya

L r
e

mr
of

sn
ar

T

re
ya

L r
e

mr
of

sn
ar

T

...FC FC FC

2. Generative model structure

Transformer

Learning Data Distribution using a Generative Model

A given input time series

(###)

(1)

(1)

(2)

(2)

(3)

(3)

Figure 4.1: The workflow of the proposed method. Prior to generating
explanations, the classifier and a generative model are trained on the data
set. The details of training the generative model are shown on the top
right. The steps to explain the classifier prediction for the given input time
series (also known as the target sample to be explained) are as follows: (1)
Generation of neighbours for the given input using the trained generative
model; (2) Making of predictions on the generated neighbours using the
trained classifier; (3) Weighting of the created neighbours using the pro-
posed adaptive weighting method; (4) Fitting of an interpretable model on
the proxy data set to provide a final explanation.

nations (Hase et al., 2021; Meng et al., 2023). Second, they must be located

close to the target to provide local explanations. However, the traditional

neighbour generation process used in LIME does not meet the above re-

quirements. To mitigate this shortcoming, a generative method combined

with a local sampling approach is proposed. The generative model main-

tains the generation of within-distribution samples, and the local sampling

allows the within-distribution samples to be close to the target. The details

of these two parts are explained as follows.

Creating within-distribution samples. As illustrated above, it is cru-

cial that the neighbour samples used in LIME are drawn from the same

distribution as the data set upon which the model is trained. If the dis-

tribution of the data set were readily available, the acquisition of samples

within the distribution would be straightforward. However, in practical

93

4.2. PROPOSED METHOD: SEGAL

applications, the reality is that gaining access to the precise distribution of

the real-world process underlying the data set is often impossible. As pre-

sented in Chapter 3, we propose to use a generative model to approximate

the underlying distribution of the training data set.

In particular, the aim of the distribution estimation is to generate plausible

alternative values for certain features, eliminating their contributions from

the model’s output via a marginalisation operation (Kim et al., 2020; Chang

et al., 2019):

f(c|x\r) =

Z
f(c|x⇤

r,x\r)p(x
⇤
r|x\r)dx

⇤
r

= Ex⇤
r⇠p(x⇤

r |x\r)[f(c|x
⇤
r,x\r)]

(4.1)

where xr denotes a subset of the input features, and x\r denotes its com-

plementary part, x = xr[x\r; f(c|x\r) denotes the classifier’s output when

the contributions of xr are removed. The di↵erence between f(c|x\r) and

f(c|x) measures the contributions of xr. p(xr|x\r) in Eq. (4.1) describes

the distribution of plausible values of xr conditioned by x\r. Therefore,

the objective of the generative model here is to estimate this conditional

distribution, p(xr|x\r).

The similar idea of using a generative model to approximate the distribu-

tion of the training data set and estimate the values of f(c|x\r) has been

adopted in (Chang et al., 2019; Meng et al., 2023). This idea follows the

following steps:

Training data generation. To train a generative model to estimate the dis-

tribution, p(x⇤
r|x⇤

\r), the first step is to obtain its inputs, x⇤
\r, and outputs,

x⇤
r. As shown in Fig. 4.1 we sample time series data from the data set,

and for each data, a binary mask is created to mask out certain features

through element-wise multiplication, x⇤ �M , creating an input for the

94

4.2. PROPOSED METHOD: SEGAL

generative model. The masked components, x⇤ � (1�M), are the target

that the generative model tries to generate.

Architecture of the generative model. In this work, the generative model

is designed based on the Transformer (Vaswani et al., 2017). The details

of the model structure are shown in Fig. 4.1, which is very similar to

that adopted in Chapter 3. The input time series data are processed by a

fully connected layer, which transforms it into a high-dimensional feature

space to better capture the temporal denpendency. This is followed by a

series of Transformer layers that comprise the Transformer encoder. Sub-

sequently, the output from the Transformer encoder is directed to another

fully connected layer, which includes a hyperbolic tangent (tanh) activa-

tion function. This function is specifically used to ensure that the predicted

values are within the range of [-1, 1].

Loss function. The generative model aims to produce the masked compo-

nent. Therefore, the loss functions adopted here is a reconstruction loss:

Lrec = ||(1�M)� (x�G(M � x))||2 (4.2)

where G denotes the whole generative model. This loss measures the dis-

tance between the masked components of the original inputs and those

generated by the generative model.

Estimating p(c|x\r) using Monte Carlo method. In our approach, we use

the Monte Carlo method to estimate p(c|x\r) as given in (4.1). To achieve

this, it is necessary to obtain samples from the distribution p(xr|x\r). The

generative model we propose is capable of predicting the values of xr when

conditioned on x\r. As demonstrated by (Gal and Ghahramani, 2016),

maintaining the dropout layers active in the generative model during infer-

95

4.2. PROPOSED METHOD: SEGAL

ence and repeatedly executing the forward process is identical to drawing

samples from the distribution p(xr|x\r). Thus, using a reparameterisation

trick, we can reformulate (4.1) as follows:

f(c|x\r) =

Z
f(c|x⇤

r,x\r)p(x
⇤
r|x\r)dx

⇤
r

=

Z
f(c|G✓,✏̂(x\r),x\r)d✏

= E✏̂⇠p(✏)f(c|G✓,✏̂(x\r),x\r)

(4.3)

where ✏̂ is a product of Bernoulli distribution with probabilities of 1 � p;

p represents the dropout rate in the training stage; the ✓ represents the

weights of the final fitted generative model. Keeping the dropout layers

active is equivalent to sampling ✏̂ from the distribution p(✏). To calculate

f(c|x\r), it is necessary to run multiple forwards of the generative model,

which is very time consuming, especially for large models. Therefore, in

this work, the expectation of the plausible alternative values is used to

estimate the values of f(c|x\r), which is also adopted in (Chang et al.,

2019) and can be represented as:

f(c|x\r) = E✏̂⇠p(✏)f(c|G✓,✏̂(x\r),x\r)

⇡ f(c|E✏̂⇠p(✏)[G✓,✏̂(x\r)],x\r)

= f(c|x0
r,x\r)

(4.4)

where x0
r denotes the expectations of the generated alternative values for

the features to be removed. Consequently, x0
r [x\r represents one within-

distribution sample. In this particular sample, the feature set denoted by r

is the expectation of the alternative values generated, while the remaining

features retain the original values. The value of x0
r can be obtained by

performing a forward propagation of the generative model with the dropout

layers deactivated, which improves the e�ciency of the proposed method.

96

4.2. PROPOSED METHOD: SEGAL

Creating neighbours with a local sampling approach. The objective

of the generative model above is to generate within-distribution samples.

However, it is also necessary for the generated within-distribution samples

to be close to the target to be considered neighbours. In Section 2.4.3,

it has been mentioned that creating a neighbour involves two steps: sam-

pling neighbours in the interpretable feature space, where the features are

‘0’ or ‘1’, and recovering the sampled neighbours in the original feature

space, where the features are real values. Traditionally, when sampling an

interpretable representation, each feature is independently sampled from a

Bernoulli distribution with a probability of 0.5. However, as will be illus-

trated in Section 4.4.1, this sampling approach cannot ensure that generate

neighbours close to the target. To address this shortcoming, we propose a

local sampling approach to sample the interpretable representation, which

takes the following two steps:

• First, a percentage value, p, is randomly sampled from a uniform

distribution, p ⇠ U(0.5, 1.0).

• Then, each interpretable feature is independently sampled from a

Bernoulli distribution with a probability of p1.

After an interpretable representation of the neighbour is obtained, the gen-

erative model is used to recover it into the original representation. Specif-

ically, the features indicated by ‘0’ in the interpretable representation are

masked out from the original time series. The generative model is then used

to generate values that e↵ectively impute these masked features, recovering

this neighbour in the original feature space.

1Traditionally, the p is usually fixed to 0.5.

97

4.2. PROPOSED METHOD: SEGAL

Figure 4.2: The proposed weighting method assigns the highest weights to
the closest neighbor, and the weights decrease exponentially as the neigh-
bors are farther away.

4.2.2 Adaptive weighting method

In (Visani et al., 2020), the authors showed that � in the exponential ker-

nel, which is ⇡x(z0) = exp(�D(x0,xt)/�2), plays a significant role in the

stability of the explanations. Therefore, they propose to search for a suit-

able � using an optimisation method. To optimise �, the first step is to

define an appropriate search interval to find the optimal �. Given the defi-

nition of the exponential kernel, an appropriate value of � can be expected

to depend on the absolute distances between the target and its neighbours.

These absolute distances might vary substantially across di↵erent problems

or even amongst various instances of the same problem. Consequently, the

ideal � can fluctuate considerably from instance to instance, complicating

the task of defining a suitable search interval for the optimisation method.

Since LIME’s weighting strategy aims to assign higher weights to closer

neighbours, it seems logical to develop a method that adaptively allocates

larger weights to closer neighbours, irrespective of the absolute distance

measurement. Thus, we propose an adaptive weighting method, which

always assigns the highest weight, for example ‘1’, to the closest neigh-

bours and progressively reduces the weights for neighbours further from

the target. This novel weighting strategy is shown in Fig. 4.2 and can be

98

4.2. PROPOSED METHOD: SEGAL

articulated as follows:

wk = exp(�↵ k

N
) (4.5)

where N denotes the total number of neighbours created during the ex-

plaining process, and k represents the rank of the distance from a specific

neighbour to the target. In this thesis, the distance is measured using dy-

namic time warping. The nearest neighbour has a rank of 0. The weight wk

is assigned to the k-th closest neighbour. The parameter ↵, known as the

adaptive weighting scalar, determines the range of neighbours considered

in the explanation process. For example, when ↵ = 0, all neighbours have

identical weights, which means that all neighbours are taken into account.

As ↵ increases to a large value, only the most closed neighbours among all

created neighbours are assigned non-zero weights. This indicates that only

a small range of neighbours is considered. Similarly to � in (2.6), in the

proposed method, ↵ also needs to be optimised. However, the appropriate

value of ↵ depends on the relative distances between the neighbours and

the target, ignoring the absolute distances. For a given problem, it can be

optimised within the same search interval.

As described in (4.5), the importance assigned to the samples decreases

exponentially with their distance rank from the target. This setting ensures

that only the nearest neighbours are considered significant. This nonlinear

decrease design is based on an important consideration: samples that are

very close to the target are less likely to be OOD. As distance increases,

the likelihood of encountering OOD samples also increases. Thus, this non-

linear decay e↵ectively mitigates the influence of OOD samples. Moreover,

such exponential decay ensures that the importance assigned to any sample

can never be zero or negative.

99

4.3. EXPERIMENTAL DESIGN

Table 4.1: Summary of data set characteristics and performance of the
adopted classifiers and generative model. The column, D ⇥ T , represents
the total number of features when fitting interpretable models.

Problem D ⇥ T
Accuracy Generative

Loss
Transformer LSTM

ArticularyWordRecognition 1296 0.9933 0.8400 0.0570
BasicMotions 600 0.9250 0.6250 0.1095
CharacterTrajectories 546 0.9889 0.6602 0.0890
Epilepsy 618 0.6087 0.5290 0.2021
ERing 260 0.9296 0.6704 0.2765
Handwriting 456 0.2506 0.0659 0.0741
JapaneseVowels 348 0.9595 0.8919 0.0573
Libras 90 0.8056 0.6556 0.3354
LSST 216 0.6111 0.6135 0.1445
NATOPS 1224 0.8722 0.8444 0.0510
PenDigits 16 0.9866 0.9874 0.3325
RacketSports 180 0.7763 0.7368 0.1134
SpokenArabicDigits 1209 0.9909 0.9850 0.0447
UWaveGestureLibrary 945 0.8750 0.4250 0.1641
MNIST 784 0.9998 0.9980 0.0321

4.3 Experimental Design

In this section, we describe in detail the experimental design of this chapter.

First, the adopted data sets and classifiers are described in Section 4.3.1.

Then, in Section 4.3.3, benchmarking methods are introduced and their

implementation details are given. Finally, a quantitative evaluation metric

for the stability of explanations is provided in Section 4.3.4.

4.3.1 Data sets and classifiers

To assess the performance of our proposed framework, we selected 15 data

sets from the UEA time series classification archive (Bagnall et al., 2018).

We limited our experiments to datasets with fewer than 2000 features due

100

4.3. EXPERIMENTAL DESIGN

to our computational constraints2. Details of the selected data sets are pro-

vided in Table 4.1. Some data sets in the archive contain a large number

of time steps, which significantly increases memory requirements during

the distribution approximation process with our generative model3. Addi-

tionaly, certain data sets present an extensive number of features, result-

ing in not only very large memory requirements during the fitting of the

interpretable model, but also making the explanation process very time-

consuming4. The handwriting image data set, MNIST (Lecun et al., 1998),

is also adopted. The main goal of using the MNIST data set is to facilitate

a qualitative evaluation of explanations. For the adopted data sets, we use

the original train/test split. The training samples are used to train the

classifiers and the proposed generative model, while the test samples are

used to evaluate the performance of explanation methods.

In this work, two currently popular black-box classifiers are implemented:

LSTM-based (Hochreiter and Schmidhuber, 1997) and Transformer-based

(Vaswani et al., 2017).

• LSTM-based : This is one of the widely adopted recurrent neural

networks to address time-series data. LSTM cells are used to encode

the entire time series, and the hidden states at the final step are fed

into a fully connected layer, followed by a softmax layer, to make

2All computational experiments were conducted on a machine equipped with an
Intel(R) Xeon(R) Bronze 3104 CPU, 64 GB of RAM, and an NVIDIA Titan V GPU.

3The core of a Transformer model, the backbone of our generative model, is the
attention mechanism, which calculates the importance of each point in the sequence to
every other point. In terms of memory, this means that the model must store a matrix of
size T -by-T , where T is the number of time steps. Therefore, the memory requirement
for these models scales quadratically with the sequence length

4In the process of fitting the linear model, we use the analytical solution to derive the
coe�cients for the respective features, expressed as � = (XT

X)�1
X

T
y. This process

requires the creation of an n-by-n matrix, where n represents the number of features.
With an increasing number of features, the size of this matrix can increase significantly,
thereby requiring extensive memory resources. Furthermore, the inversion of the ma-
trix, (XT

X)�1, is computationally demanding, involving a complexity of approximately
O(n3).

101

4.3. EXPERIMENTAL DESIGN

classification predictions. The main hyperparameters of this model

are as follows: the hidden state dimension is 128, and the model

consists of a two-layer LSTM architecture

• Transformer-based : This model adopts self-attention mechanisms

to capture temporal dependencies and has shown remarkable perfor-

mance in processing time series data. In this work, the Transformer

encoder is used to encode the entire time series, followed by a softmax

layer for making final predictions. In our experiments, the model has

a dimension of 128, a feed-forward layer dimension of 256, 4 encoder

layers, and 8 attention heads.

The LSTM-based model was chosen for its ability to sequentially process

time series data and e�ciently handle long-term dependencies. In contrast,

the Transformer model, which processes entire sequences concurrently, ex-

cels at capturing both local and global dependencies. Both models have

demonstrated strong performance in multivariate time series classification

tasks. Therefore, it is interesting to investigate the performance of the

proposed method in these two kinds of models. The statistical information

of the selected data sets and the classification performance of these two

classifiers are shown in Table 4.1.

4.3.2 Generative model

As outlined in our proposed framework, a generative model is utilized to

learn the data distribution. Therefore, prior to generating explanations,

the model is trained using training samples from each data set. The per-

formance of the generative model is then evaluated using test samples. The

generative losses, as defined in (4.2), are shown in the last column of Ta-

102

4.3. EXPERIMENTAL DESIGN

ble 4.1. The hyperparameters of the generative model are tuned carefully.

Specifically, the training data sets are used to train the model, and the

test data set is used to evaluate the model’s performance under various hy-

perparameter settings. The final tuned hyperparameters for the generative

model are as follows:

• Number of fully connected layers (before the Transformer encoder):

2

• Dimension of hidden features in the fully connected layers: 128

• Number of Transformer layers: 2

• Dimension of the Transformer layers: 64

• Number of fully connected layers (after the Transformer encoder): 1

• Dropout rate for the fully connected layers and the Transformer lay-

ers: 0.2

4.3.3 Benchmarking Explanation Methods

In order to demonstrate the e↵ectiveness of the proposed method, the key

works in the literature described in Section 2.4.4 are implemented and

compared with the proposed method. A summary and implementation

details are shown below.

• LIME (Ribeiro et al., 2016): This serves as the baseline method.

The neighbours are created and weighted according to the default

settings, shown in Table 2.1.

• Slime (Zhou et al., 2021): This method begins with a small number

of neighbours and gradually adds more neighbours to the proxy data

103

4.3. EXPERIMENTAL DESIGN

Table 4.2: Number of neighbours for the adopted methods.

Number of neighbours

LIME 10000
Slime Initial: 500; max: 20000

BayesLIME
Initial: 500; max: 10000

increase 500 for every iteration
OptiLIME 10000

SEGAL (ours) 10000

set until the given hypothesis test is passed or the maximum number

of neighbours is reached. Because in this work the performance of

these methods is compared based on the k most important features,

in Slime, the hypothesis test adopted is to determine whether the

k most important features remain the same. Similar to the original

work, the confidence level for the hypothesis test is set to 0.95.

• BayesLime (Slack et al., 2021): This method proposes focused sam-

pling to e�ciently sample interpretable representations of neighbours

(see Section 2.4.3).

• OptiLIME (Visani et al., 2020): This method requires optimising

� in (2.6). In our work, we employ Bayesian optimisation to find

the best �. The optimisation objective of the search method is to

maximise the stability evaluation metric for explanations, which will

be described in Section 4.3.4.

For the above and the proposed methods, the number of neighbours adopted

in the explaining process is an essential hyperparameter. The setting of this

parameter is shown in Table 4.2. The approach proposed by Slime involves

adding more neighbours should the test fail. Given that 10,000 neighbours,

which are set to other methods, might be insu�cient for the test to pass,

the maximum number of neighbours employed by Slime is doubled in com-

parison to other methods.

104

4.3. EXPERIMENTAL DESIGN

In all instances of the LIME framework adopted for this study, a linear

regression model serves as the interpretable model. The inputs to this

model are features in the interpretable feature space, denoted by 0 or 1.

The output of the linear model is the probability of the target label. Lin-

ear regression is usually chosen in the LIME framework for its simplicity

and e↵ectiveness in providing clear, understandable relationships between

features and the target outcome.

In OptiLIME and our method, it is necessary to optimise the hyperparam-

eters, that is, � in Eq. (2.6) and ↵ in Eq. (4.5). Similar to the work (Visani

et al., 2020), Bayesian optimisation is used to achieve this goal. We carried

out preliminary experiments and defined the following search intervals. It

is [1e�4, 0] for � and [0, 80] for ↵. Given the small suitable interval for �,

the search interval is logarithmically distributed. We take the 10 starting

values evenly distributed over the corresponding intervals. Subsequently,

the stability of the explanations for these starting values was evaluated.

Then, an iterative process was initiated to find the satisfying hyperparam-

eters. We established a maximum iteration cap at 10, a number that we

found to be su�cient to obtain very stable explanations for the majority of

the adopted problems. For example, the final stability metric exceeds 0.9.

During this iteration process, a stability evaluation metric was measured

(the details of which will be explained in Section 4.3.4). If this metric ex-

ceeds 0.9, the iteration process will be terminated early to save time. The

number of iterations carried out is noted and used to evaluate and analyse

the performance of search e�ciency in Section 4.4.2.

In addition, we have implemented two variants of the proposed method

to investigate the contributions of each component in detail, the details

of which are listed in Table 4.3. SEGAL represents the complete pro-

posed method which incorporates the use of the generative model and the

105

4.3. EXPERIMENTAL DESIGN

Table 4.3: Method variants for detailed analysis

Method

Neighbours generation
Weighting
method

Sample
interpretable
neighbours

Recover
into real

neighbours

SEGAL
p ⇠ U(0.5, 1.0)
iid ⇠ Bern (p)

Generative
(4.5) with
optimised ↵

SEGKL
p ⇠ U(0.5, 1.0)
iid ⇠ Bern (p)

Generative
(2.6) with
optimised �

SETKL
p ⇠ U(0.5, 1.0)
iid ⇠ Bern (p)

Traditional*
(2.6) with
optimised �

*Traditional: replace features with the average of the
corresponding variables.

adaptive weighting method, while SEGKL exclusively adopts the proposed

generative model. The objective of SEGKL is to evaluate the contributions

of the proposed weighting method. In addition, SETKL is implemented,

which adopts the proposed local sampling method in the sampling of in-

terpretable neighbours, but utilises the traditional neighbour generation

and weighting approach. This method will be compared with SEGKL to

investigate the contribution of the generative model.

4.3.4 Stability Evaluation Metric

To evaluate the stability of explanations, it is necessary to consider which

types of explanation are stable from the perspective of the model users.

Users may focus only on the most important features, which means that

as long as the most important features identified remain consistent among

a set of explanations, these explanations are stable. For example, consider

two explanations, of which the top-k most important features are set A

and set B, respectively. If the similarity between these two sets is high, it

indicates that these two explanations are stable for users. Therefore, we

use the same evaluation metric as adopted in Slime (Zhou et al., 2021).

106

4.4. RESULTS AND ANALYSIS

Specifically, the Jaccard index is used to measure the similarity between

the identified most important features. It is defined as the size of the

intersection divided by the size of the union of those two sets:

J(A,B) =
|A \B|
|A [B| (4.6)

In this work, the same explanation process is carried out 20 times, as con-

ducted in (Zhou et al., 2021), for each instance to be explained. For each

explanation, its important feature set is composed of the top-k most im-

portant features, selected by ranking the features according to the absolute

values of their importance scores. Subsequently, the Jaccard index is used

to assess the similarity of these important feature sets. A higher Jaccard

index means more stable explanations. Here, the top 1% of the most im-

portant features of the explanations are used to assess the stability.

In this study, we employ the Wilcoxon Signed-Ranks test (Conover, 1999)

to analyse the performance di↵erences between the benchmarking methods

and the proposed one in detail. We set the significance level for the tests

at ↵ (0.05) (Holm, 1979), a standard choice in many scientific studies.

4.4 Results and analysis

In this section, details of the experimental results are provided. First,

Section 4.4.1 shows that the proposed method generates within-distribution

neighbours for LIME. Then Section 4.4.2 demonstrates the e↵ectiveness

of the proposed adaptive weighting method. Section 4.4.3 compares the

proposed method with benchmarking methods. Finally, in Section 4.4.4,

the contributions of the proposed generative method on the stability of

explanations are analysed.

107

4.4. RESULTS AND ANALYSIS

Table 4.4: Methods for creating samples for LIME

Method
Neighbours generation

Sample
interpretable
neighbours

Recover
into real

neighbours

Traditional method iid ⇠Bern (0.5) Traditional

Generative method iid ⇠Bern (0.5) Generative

Generative method
with local sampling

p ⇠ U(0.5, 1.0)
iid ⇠ Bern (p)

Generative

*Traditional: replace features with the average of the
corresponding variables.

4.4.1 Creating within-distribution neighbours

As mentioned in Section 4.2.1, neighbours should be located in close prox-

imity to the target to be used in the explanation process. However, the

traditional method described in Section 2.4.3 does not meet this require-

ment. In order to demonstrate this, we generate 10,000 neighbours for

every test sample of the adopted data sets using the traditional method, as

well as two generative methods, one employing solely the generative model

and the other integrating the local sampling strategy. Details of these

three methods are shown in Table 4.4. The average distances, measured

by cosine similarity, between the created neighbours and the corresponding

target samples are shown in Table 4.5. Numbers in bold indicate that the

corresponding method generates closer neighbours than the other methods.

For a more detailed investigation, in Fig. 4.3, we visualise an example of

the distance distributions between a target input selected from the Japane-

seVowels data set and the correspondingly generated 10,000 neighbours,

using all three methods. The results show that traditionally created neigh-

bours are significantly further from the target, highlighting the challenge

in using them to derive explanations that are relevant to the input sam-

ple in question. In contrast, generative approaches create neighbours that

108

4.4. RESULTS AND ANALYSIS

Table 4.5: Average distance between created neighbours and target samples
across the adopted data sets.

Data set
Traditional
method

Generative
method

Generative method
with local sampling

ArticularyWordRecognition 0.2554 0.0740 0.0251
BasicMotions 0.2186 0.1770 0.0777
CharacterTrajectories 0.2426 0.1275 0.0462
Epilepsy 0.2514 0.2417 0.1113
Ering 0.2422 0.1619 0.0682
Handwriting 0.2204 0.2062 0.0931
JapaneseVowels 0.2414 0.0513 0.0176
Libras 0.2699 0.2358 0.0995
LSST 0.1842 0.1575 0.0710
NATOPS 0.2602 0.0483 0.0197
PenDigits 0.2953 0.2577 0.0986
RacketSports 0.1841 0.1449 0.0629
SpokenArabicDigits 0.2105 0.0766 0.0297
UWaveGestureLibrary 0.2676 0.1596 0.0602
MNIST 0.0942 0.0232 0.0082

Figure 4.3: The distance distributions, measured by cosine similarity, be-
tween the target input and neighbours created by three di↵erent methods.
The target sample is taken from the JapaneseVowels data set.

are significantly closer to the target than those created by the traditional

method. However, using the generative method alone (where the features

of the interpretable neighbours are independently sampled from a Bernoulli

distribution with a probability of 0.5), the created neighbours tend to ‘sur-

round’ the target, which is shown by a low density in the immediate vicinity

of the target. However, for LIME, the ideal situation is to have neighbours

that ‘overlap’ the target, which enables these neighbours to represent the

behaviours of the models on the local region of the target. As depicted in

109

4.4. RESULTS AND ANALYSIS

SEGKL

(a)

SEGAL

(b)

Figure 4.4: The influence of � in SEGKL (a) and ↵ in SEGAL (b) on the
stability of final explanations. If these two hyperparameters are not chosen
suitably, the final explanations will not be stable (This sample comes from
the Handwritting data set and the classifier is Transformer-based.)

Fig. 4.3, the proposed generative method combined with the local sampling

method mitigates this shortcoming, resulting in a large number of neigh-

bours that cover the target. One thing that should be denoted is that the

results depicted in Fig. 4.3 can be somewhat misleading. It appears that

many samples have a zero distance to the target. However, in reality, the

distance between the created samples and the target can never be zero;

it is merely very close to the target. This approach achieves our goal of

creating very close neighbours to the target, facilitating the generation of

local explanations.

4.4.2 The contributions of the proposed weighting

method

In this section, the computational e�ciency of the proposed weighting

method in obtaining stable explanations is illustrated. In (Visani et al.,

2020), the authors highlight the significant influence of � in (2.6) on the

stability of the explanations, which can also be observed in Fig. 4.4. The x

axis represents the corresponding hyperparameters in SEGAL and SEGKL,

110

4.4. RESULTS AND ANALYSIS

while the y axis represents the stability evaluations with the various hyper-

parameter values. If � is not chosen properly, the final explanations will

not be stable. Consequently, they propose using Bayesian optimisation to

find the optimal � within a certain search interval. One thing to note is

that finding the optimal � is challenging. First, it is di�cult to determine

the search interval. Based on (2.6), the optimal � can be expected to de-

pend on the absolute distances between the created neighbours and the

corresponding target sample. For di↵erent problems or even for di↵erent

instances of the same problem, these distributions can vary significantly.

Therefore, the optimal � is expected to vary significantly across di↵erent

instances. Furthermore, Fig. 4.4a shows that the stability of the explana-

tions is highly sensitive to �. Therefore, if the search interval is not chosen

properly, achieving stable explanations becomes challenging.

To address this, in the proposed weighting method, the suitable ↵ in (4.5)

is independent of the absolute distance distributions. Therefore, the search

intervals can be consistent for di↵erent problems. More importantly, as

can be seen in Fig. 4.4b, the stability of the explanations is not very sensi-

tive to ↵, which facilitates the optimisation method to obtain the optimal

parameters.

To further demonstrate the e↵ectiveness of the proposed weighting method,

the Jaccard-based stability evaluation measures and the average time of

iterations carried out by the optimisation process for SEGKL and SEGAL

across the adopted data sets are presented in Table 4.6. Numbers in bold

indicate more stable explanations. The experimental design for these two

methods is shown in Table 4.3. The stability measure indicates that the

proposed weighting approach outperforms the traditional method in 11

data sets for both Transformer and LSTM classifiers. However, the p values

of the Wilcoxon tests suggest that these two methods are not significantly

111

4.4. RESULTS AND ANALYSIS

Table 4.6: The e↵ectiveness of the proposed weighting method

Average of Jaccard indices Average of Iteration Times

Transformer LSTM Transformer LSTM

Data set SEGKL SEGAL SEGKL SEGAL SEGKL SEGAL SEGKL SEGAL

ArticularyWordRecognition 0.3000 0.2711 0.5239 0.5047 9.00 8.92 8.22 8.34
BasicMotions 0.7736 0.7639 0.8752 0.8769 6.70 6.25 4.10 3.60
CharacterTrajectories 0.7678 0.7483 0.7365 0.7429 6.84 7.36 7.60 7.42
Epilepsy 0.8446 0.8512 0.8723 0.8799 4.86 4.38 5.16 4.90
Ering 0.7252 0.7345 0.9188 0.9056 6.50 6.46 2.84 3.10
Handwriting 0.9532 0.9595 0.9339 0.9464 2.28 1.48 2.16 2.04
JapaneseVowels 0.9090 0.9239 0.9169 0.9186 2.00 1.70 2.90 1.98
Libras 0.9364 0.9538 0.9373 0.9151 1.96 1.50 1.96 2.42
LSST 0.9416 0.9553 0.9624 0.9704 2.24 2.12 1.70 1.60
NATOPS 0.3798 0.3859 0.4638 0.4659 9.00 9.00 8.96 8.40
PenDigits 1.0000 1.0000 1.0000 1.0000 0.00 0.00 0.02 0.00
RacketSports 0.9920 0.9960 0.9889 1.0000 0.80 0.32 0.66 0.16
SpokenArabicDigits 0.5690 0.5896 0.5849 0.6155 9.00 9.00 9.00 9.00
UWaveGestureLibrary 0.4496 0.3524 0.6137 0.5408 8.86 8.82 8.62 7.66
MNIST 0.8527 0.8577 0.8523 0.8548 5.98 5.34 5.80 5.56

Wilcoxon p-value 0.6377 0.2719 0.0229 0.0413

di↵erent in terms of stability. However, with respect to search e�ciency, the

average iteration time, which is explained in Section 4.4.3, reveals that, by

adopting the proposed weighting method, the optimisation process requires

fewer iterations on 14 data sets for the Transformer and 12 data sets for

the LSTM classifiers. Furthermore, the p values suggest that the di↵erence

here is significant.

The primary aim of the novel weighting method is to facilitate the opti-

misation process, which essentially determines how many neighbours are

considered (or assigned non-zero weights) during the explanation phase.

Therefore, it is important to explore whether the novel weighting method

results in di↵erent explanations compared to the traditional method. To

illustrate this, Fig. 4.5 shows some explanations obtained by SEGKL and

SEGAL. Both of these two methods are carried out with searched opti-

mal parameters. In Fig. 4.5, the features considered most important are

coloured red. The results reveal a remarkable similarity between the ex-

planations derived from these two weighting strategies, suggesting the near

equivalence of these two methods in this case. In (2.6), when the hyperpa-

rameter � is extremely small, only the immediate neighbours are endowed

112

4.4. RESULTS AND ANALYSIS

SEGAL SEGKL

(a) Explanations for the LSTM

SEGAL SEGKL

(b) Explanations for the Transformer

SEGAL SEGKL

(c) Explanations for the LSTM

SEGAL SEGKL

(d) Explanations for the Transformer

Figure 4.5: Explanations provided by SEGKL and SEGAL for an instance
from the Epilepsy data set ((a) and (b)) and for an instance from the
Handwriting data set ((c) and (d)). The identified most important features
are coloured in red. The explanations provided by these two methods are
very similar.

with non-zero weights. This is equivalent to assigning a high value to ↵ in

(4.5), where only the lower-rank neighbours obtain non-zero weights. On

the contrary, when � is very large, each neighbour carrying is assigned an

identical weight of ‘0’, which is similar to assigning a very small value to ↵.

For the local proxy interpretable model used in both SEGKL and SEGAL,

the input and output are identical, and the weights are similar, since both

of these weighting methods assign larger weights to closer neighbours. As

a result, the final explanations provided by both SEGKL and SEGAL are

expected to be similar, which are shown in Fig. 4.5.

It is intriguing to observe that the explanations for these two types of

classifiers di↵er significantly. This suggests that if the mechanisms for

classifying the same data are entirely di↵erent between the models, then

the explanations may only be locally stable for each given classifier. In

other words, the explanations are specific to the architecture and dynamics

of the individual models, rather than providing a universally consistent

113

4.4. RESULTS AND ANALYSIS

Table 4.7: Jaccard-based stability measure across explanation methods and
data sets

Transformer LSTM

Data set LIME OptiLIME Slime BayesLIME SEGAL LIME OptiLIME Slime BayesLIME SEGAL

ArticularyWordRecognition 0.2421 0.4446 0.2314 0.2451 0.2711 0.567 0.5998 0.4527 0.5681 0.5047
BasicMotions 0.4621 0.7523 0.3918 0.4542 0.7639 0.7227 0.8328 0.5395 0.7229 0.8769
CharacterTrajectories 0.4123 0.5344 0.3348 0.4142 0.7483 0.4791 0.5831 0.4164 0.4756 0.7429
Epilepsy 0.7351 0.8396 0.4758 0.7292 0.8512 0.8086 0.8695 0.6676 0.8117 0.8799
Ering 0.4102 0.5481 0.324 0.4043 0.7345 0.7068 0.8067 0.4862 0.6999 0.9056
Handwriting 0.8359 0.9224 0.4781 0.846 0.9595 0.9297 0.9299 0.7221 0.9336 0.9464
JapaneseVowels 0.7614 0.8467 0.4775 0.7491 0.9239 0.6687 0.8036 0.5118 0.6845 0.9186
Libras 0.6507 0.8053 0.4869 0.6293 0.9538 0.5764 0.7244 0.4865 0.5769 0.9151
LSST 0.5427 0.8067 0.5383 0.5539 0.9553 0.7311 0.8914 0.5783 0.7178 0.9704
NATOPS 0.1953 0.3734 0.2249 0.1941 0.3859 0.5538 0.6473 0.3789 0.5621 0.4659
PenDigits 0.9609 1.0000 0.8076 0.9604 1.0000 0.9956 1.0000 0.7825 0.9793 1.0000
RacketSports 0.5240 0.9076 0.6564 0.5307 0.9960 0.6558 0.9320 0.3004 0.7067 1.0000
SpokenArabicDigits 0.3781 0.5648 0.2540 0.3764 0.5896 0.5361 0.5658 0.2338 0.5297 0.6155
UWaveGestureLibrary 0.3885 0.5252 0.206 0.3903 0.3524 0.3247 0.4316 0.5269 0.3245 0.5408
MNIST 0.5739 0.6546 0.4112 0.5674 0.8577 0.6154 0.6898 0.3687 0.6058 0.8548

Average Ranking 3.4667 1.8333 4.7333 3.6667 1.3000 3.4667 1.9667 4.8000 3.3333 1.4333
Wilcoxon Test p-value 0.0001 0.0480 0.0000 0.0000 / 0.0004 0.0413 0.0000 0.0009 /

understanding of the features important for classification. This variability

could pose challenges when interpreting model decisions for end users or

when attempting to generalise these explanations across di↵erent models.

4.4.3 Comparison with benchmarking methods

The stability metrics for various explanation methods and datasets are

presented in Table 4.7. The numbers in bold represent the best results

for each combination of datasets and classifiers. The Wilcoxon test was

performed to assess the significance of performance di↵erences between

the proposed method and other pair-based benchmarking methods. The

corresponding p-values are listed in the last column of the table. Small

p-values (0.05) indicate statistically significant di↵erences between the

proposed methods and the benchmarking methods adopted. Furthermore,

the smaller average ranks of the proposed method suggest that it performs

significantly better than Lime, Slime, and BayesLIME.

Of course, it is not enough for the explanations to be stable. For example,

if an explanation method always identified the first 10 features as impor-

tant, this explanation would be perfectly stable, but also likely useless.

114

4.4. RESULTS AND ANALYSIS

In other words, beyond being stable, explanations should also be faithful,

meaning that the features identified as important in a feature importance

explanation should be really relevant to the model output being explained.

However, for a black-box model, the ground truth of its explanations is

lacking, which means that we do not know which features are genuinely

important for its outputs. This makes evaluating the faithfulness of the

explanations challenging. This is shown in the di↵erence between the ex-

planations generated for the di↵erent classifiers, such as those shown in

Fig. 4.5.

In this work, a simple handwriting data set, MNIST, is adopted as an

MTSC. On this data set, the two classifiers achieve very high prediction

accuracy. Because this data set is very simple, representing a digit written

on a whiteboard, we can assume that the relevant features for the classifiers

are visible on (or near) the written digits. Based on this assumption, we

can, to some extent, qualitatively evaluate the faithfulness of the explana-

tions. Fig. 4.6 shows the explanations provided by the adopted methods

for some selected instances from this data set. These instances are selected

because the explanations provided by these methods have a similar stabil-

ity evaluation. The results reveal that the relevant features identified by

our method consistently align with the written digits, while other meth-

ods identify some features located in the background as important, which

may not actually be relevant. These features are misidentified primarily

due to the OOD problem (Hase et al., 2021). The results indicate that

our method has the potential to provide not only more stable but also

meaningful explanations.

115

4.4. RESULTS AND ANALYSIS

LIME

OptiLIME

Slime

BayesLIME

SEGAL

Figure 4.6: Explanations provided for selected instances from the MNIST
data set, for the transformer classifier. The first column displays the origi-
nal input, while the remaining columns show explanations provided by the
corresponding methods that are carried out multiple times. In the expla-
nations, important features are highlighted in red.

4.4.4 The contributions of the generative method

In this section, the contributions of the generative method to the stability

of explanations are explored. For this purpose, the performance of SETKL

and SEGKL is analysed. The primary di↵erence between these two meth-

ods lies in the approach to generate neighbours, the details of which are

presented in Table 4.3. The stability evaluation metrics for these two meth-

ods across the adopted data sets are shown in Table 4.8. The results show

that for the transformer classifiers, SEGKL outperforms SETKL on 11 (out

of a total of 15) data sets. For LSTM classifiers, SEGKL performs better

on 10 data sets. The p values of the Wilcoxon tests suggest that their di↵er-

ence is significant. These findings imply that the integration of a generative

model improves the ability of LIME to provide more stable explanations.

The reasons behind this contribution from generative models are discussed

below.

First, the output surfaces of the classifiers for the samples generated by the

generative method are smooth. In this context, ‘smooth means that the

classifier output does not undergo significant changes with slight variations

in the input, as illustrated in Fig. 4.7. On the contrary, the output surfaces

of the classifiers on the traditionally created samples tend to be rough.

116

4.4. RESULTS AND ANALYSIS

Table 4.8: Stability measures of SETKL and SEGKL across the adopted
data sets

Transformer LSTM

data set SETKL SEGKL SETKL SEGKL

ArticularyWordRecognition 0.4326 0.3000 0.5997 0.5239
BasicMotions 0.6793 0.7736 0.8567 0.8752
CharacterTrajectories 0.5394 0.7678 0.6316 0.7365
Epilepsy 0.8423 0.8446 0.8826 0.8723
Ering 0.489 0.7252 0.8441 0.9188
Handwriting 0.9459 0.9532 0.9464 0.9915
JapaneseVowels 0.7651 0.909 0.7814 0.9169
Libras 0.8764 0.9364 0.8360 0.9373
LSST 0.9418 0.9416 0.9597 0.9624
NATOPS 0.4278 0.3798 0.5843 0.4659
PenDigits 1.0000 1.0000 1.0000 1.0000
RacketSports 0.9604 0.9920 0.9809 0.9889
SpokenArabicDigits 0.4118 0.5690 0.4552 0.6155
UWaveGestureLibrary 0.5019 0.4496 0.4921 0.6137
MNIST 0.4947 0.8527 0.5597 0.8548

Wilcoxon p-value 0.0479 0.0413

y y

target input
created samples
model output surface

x x

Smooth Output Surface Rough Output Surface

local interpretable proxy model

Figure 4.7: The output surfaces of the classifier on created samples.

Second, the sampling process involved in generating interpretable neigh-

bours leads to various interpretable models, resulting in di↵erent explana-

tions. In LIME, as shown in Fig. 4.7, if all neighbours of the target input

are obtained, the final explanations will be identical. However, obtaining

all neighbours becomes infeasible, especially in real-world problems with a

large number of features. Since each feature of an interpretable neighbour

can be ‘1’ or ‘0’, each target input has 2N neighbours, where N represents

the total number of features. Consequently, LIME samples a certain num-

ber of neighbours and constructs a proxy model based on these sampled

117

4.4. RESULTS AND ANALYSIS

sampled neighbors
local interpretable proxy model

Figure 4.8: Due to the sampling process in the neighbour generation pro-
cess, the rough output surface results in very di↵erent explanations (below).
On the contrary, if the output surface is smooth, the final explanations tend
to be stable (above).

xxx

y

Underfitting Model Well-performed Model Overfitting Model

Figure 4.9: Output surfaces of the classifiers with variant performance.

instances. If the output surface of the classifiers on the sampled instances is

rough, as depicted in Fig. 4.8, this sampling process may result in di↵erent

final local proxy models. In contrast, if the output surface of the created

neighbours is stable, as shown in Fig. 4.8 above, the sampling process will

not produce significantly di↵erent local proxy models. This leads LIME to

provide more stable explanations.

Therefore, the output surface of the classifier on the samples created in

LIME plays an important role in the stability of the explanations. For

118

4.4. RESULTS AND ANALYSIS

well-performing classifiers that generalise well on the test data sets, their

local output surface will generally be smooth. This can be illustrated in

Fig. 4.9. The explanations provided for these classifiers should be stable,

such as those for classifiers trained on the MNIST and JapaneseVowels data

sets. However, Table 4.8 shows that the explanations provided by SETKL

are not stable, suggesting that the output surfaces of the classifiers on the

created samples are not smooth. This is because these created samples

are not drawn from the same distribution as the training data set, and

the classifiers cannot generalise well on these OOD samples, resulting in

rough surfaces. On the contrary, the explanations provided by SEGKL are

stable, suggesting that the output surface of the classifiers is smooth on

these samples created by the generative model. The reason behind this is

that these samples are drawn from the distribution of the training data set,

which the generative model has learnt.

In certain data sets, such as LSST, SEGKL does not outperform SETKL.

This may be attributed to the limited generalisation ability of the clas-

sifier, resulting in a rough output surface similar to the output surfaces

of the overfitting models shown in Fig. 4.9. In this circumstance, even if

the created samples come from the same distribution as the training data

set, the final explanations may still be unstable. On the other hand, for

data sets like ArticularWordRecognition, the classifiers demonstrate good

generalisation performance. The output surfaces of these classifiers are ex-

pected to be smooth, and the explanations provided are expected to be

stable. However, for the ArticularWordRecognition problem, SEGKL does

not perform well. This might be due to the fact that the proposed gener-

ative model is not powerful enough to accurately capture the distribution

of the training data set. Consequently, the created samples may still be

OOD. We hope that future advances in the design of generative models can

119

4.5. SUMMARY

facilitate the generation of within-distribution samples.

Lastly, it is important to emphasise that achieving stable explanations is a

desirable attribute for both classifiers and explanations. If the explanations

are not stable, it could be due to the classifier’s poor generalisation ability

or the presence of OOD samples used during the explaining process. In ei-

ther case, the results obtained, predictions made by models or explanations

provided, would not be useful.

4.5 Summary

In this chapter, the stability issue of LIME when applied to MTSC problems

was investigated, where the influence of the OOD problem induced by

traditional neighbour generation methods was highlighted. We proposed

to use a generative method in the LIME neighbour generation step to

alleviate the OOD problem. The results indicated that by employing the

proposed generative method, the explanations provided by LIME become

more stable. Furthermore, the proposed adaptive weighting method further

improved the computational e�ciency of the explanation process.

The OOD problem is a well-recognised problem in the field of explainable

artificial intelligence and significantly influences the performance of final

explanations. This work is the first to thoroughly investigate its influence

on the stability of explanations provided by LIME. The OOD problem

often arises when samples need to be generated in the explanation process.

Therefore, not only LIME but also other similar explanation methods that

need to generate samples should consider this issue seriously. We hope that

our findings will inspire future research to continue to address this problem.

120

4.5. SUMMARY

In previous chapters, we have advanced XAI within the MTSC context by

developing frameworks that provide accurate and stable feature importance

explanations. However, to further enhance XAI in MTSC and broaden its

impact, relying solely on feature importance explanations might not be

su�cient. For many ordinary people, these explanations may not provide

enough insights. In certain scenarios, they seek more intuitive explana-

tions that can help them prevent undesirable outcomes or achieve preferred

ones. Consider, for example, an early failure prediction model that predicts

a machine’s failure using its historical operational data, such as temper-

ature, vibration, and rotation levels. For a machine maintainer, simply

knowing that the vibration level from the past day influenced the model’s

prediction is not enough. They would probably want to know what spe-

cific changes in the past vibration level could prevent the predicted failure.

With such detailed explanations, they can take more targeted and e↵ective

actions. In this light, counterfactual explanations emerge as a potentially

more useful tool. These explanations suggest alternative scenarios where

making certain changes to the current input could lead to a di↵erent out-

come. Therefore, to ensure that XAI benefits a wider audience, it is crucial

to develop e↵ective methods to provide counterfactual explanations. This

constitutes the next focus of this thesis.

121

Chapter 5

Creating Plausible

Counterfactuals using

Generative Models

5.1 Introduction

In the preceding chapters, we primarily focused on feature importance ex-

planations, which are foundational and intuitive types of explanation within

the XAI domain. These explanations are particularly insightful for experts

and data scientists who wish to understand the specific variables that most

influence model predictions with the aim of conducting feature selection to

improve the model’s performance or ensuring that the model’s behaviour

aligns with known domain knowledge. However, feature importance ex-

planations may not be as e↵ective for ordinary people who do not have

relevant domain knowledge. They wish to obtain clearer and more straight-

forward explanations. In this regard, counterfactual explanations, which

provide alternative scenarios or ‘what-if’ analyses, become particularly rel-

122

5.1. INTRODUCTION

evant (Barredo Arrieta et al., 2020). They can help people understand how

di↵erent outcomes could be achieved or what changes might lead to di↵er-

ent model outputs, thus making the complex decision-making processes of

AI models more accessible and understandable to the general public.

In the literature, some methods have been proposed to provide counter-

factual explanations in the MTSC domain (Delaney et al., 2021b; Wachter

et al., 2017). Existing methods usually focus on enhancing the sparsity or

proximity of counterfactuals (Guidotti, 2022). Sparsity-based methods aim

to reduce the number of features that should be modified to alter the out-

puts of classifiers. On the other hand, proximity-based approaches try to

minimise the distance between the counterfactuals and the original inputs.

However, the aspect of plausibility, which refers to counterfactuals being

realistic and originating from the same distribution as the data set, has not

received significant attention. This is the same OOD problem discussed in

previous chapters, and counterfactual explanations are not exempt from

this issue. If the counterfactuals do not align with the original data dis-

tribution, they are OOD, and the models’ outputs on such counterfactuals

are unpredictable and unreliable. Even if such counterfactuals can result

in di↵erent outputs, the underlying reasons may not stem from meaningful

changes in the input features but rather from the OOD problem. This

scenario results in explanations that could be misleading or irrelevant for

practical applications, undermining the e↵ectiveness of counterfactual ex-

planations, because the primary purpose of counterfactuals is not only to

lead to alternative outcomes, but also to provide insights that are action-

able and applicable within the real-world contexts reflected in the training

data.

In previous chapters, our focus has been on feature importance explana-

tions. Some existing research suggests that counterfactuals can be obtained

123

5.1. INTRODUCTION

from feature importance explanations (Delaney et al., 2021b; Selvaraju

et al., 2017b; Castro et al., 2009). These approaches typically involve iden-

tifying the most crucial features and then replacing these features with val-

ues from other time series instances that lead classifiers to produce di↵erent

outputs (Delaney et al., 2021b). However, this blunt replacement approach

may disrupt the temporal dependency inherent in time series, leading to

OOD time series. The framework introduced in Chapter 3 addresses this

issue by replacing crucial features with plausible values generated by a gen-

erative model. The approach proposed in this chapter aims to ensure that

the counterfactuals provided are aligned with the distribution of training

data, thus mitigating the risk of producing OOD counterfactuals. To do

this, this approach requires an e↵ective generative model capable of accu-

rately estimating the distribution of training data, a task that might prove

challenging in some complex real-world scenarios.

In this chapter, our objective is to develop counterfactual explanation meth-

ods that circumvent the necessity for feature importance explanations. The

primary emphasis is on the plausibility of counterfactuals, ensuring that the

counterfactuals provided align with the distribution of data across di↵er-

ent applications. Throughout this thesis, we adopt post-hoc approaches to

explain deep learning based classifiers, meaning that the classifiers to be

explained have already been trained prior to the explanation phase. During

their training phase, these classifiers process the input data sequentially,

transforming the original time series into a condensed feature space. In this

space, realistic data points naturally cluster tightly. Therefore, it is crucial

that plausible counterfactuals also appear within these densely populated

regions.

To this end, in this chapter, a novel counterfactual explanation strategy

is proposed, called DensityGuide. This strategy begins by estimating the

124

5.1. INTRODUCTION

data density distribution within the classifier’s compressed feature space,

utilising Gaussian Mixture Models (GMMs). Following this, a generative

model is trained to create plausible counterfactuals in the densest region of

this compressed feature space. However, the GMMs, which is the basis of

the DensityGuide method, may not always be able to accurately capture

the data distribution. To mitigate this, an alternative approach, named

LatentGAN, is designed. This method avoids making specific assumptions

about the data distribution and leverages the Generative Adversarial Net-

work (GAN) framework to ensure that counterfactuals are consistent with

the training data distribution in the latent feature space encoded by the

classifiers. Both approaches try to create counterfactuals using generative

models, with the aim of aligning created counterfactuals with the distri-

bution of realistic time series. Experiments carried out with real-world

data sets highlight the strengths of each approach in di↵erent real-world

problems. The significant di↵erence between the proposed methods and

existing ones lies in their focus on aligning counterfactuals with the orig-

inal data distribution. This alignment ensures that the final explanations

are realistic and meaningful.

One notable advantage of counterfactual explanations over feature impor-

tance explanations is their provision of clearer, actionable insights that

can guide users to take e↵ective actions. Recently, advancements in large

language models, such as ChatGPT, have opened up new possibilities for

refining and communicating counterfactuals in ways that can suggest prac-

tical actions to users. To maximise the benefits of counterfactual expla-

nations, this chapter also illustrates the use of ChatGPT to enhance their

interpretability and practicality. By leveraging ChatGPT, we aim to trans-

form these explanations into actionable guidance, bridging the gap between

counterfactual explanations and real actionable guidance.

125

5.2. DENSITYGUIDE

The remainder of this chapter is organised as follows. In Sections 5.2 and

5.3, the details of DensityGuide and LatentGAN are described. Section 5.4

details the experimental design used in our study. Subsequently, Section 5.5

discusses the results and analysis derived from these experiments. Sec-

tion 5.6 explores how ChatGPT can be leveraged to enhance the utility of

counterfactual explanations, making them even more actionable and user-

friendly. The chapter concludes with Section 5.7, where we summarise our

findings and their implications.

5.2 DensityGuide

In this section, we describe in detail the DensityGuide method. Figure 5.1

illustrates the workflow of this method, which includes a preliminary step

and a subsequent counterfactual generation step. The fundamental prin-

ciple of this approach is to ensure that the counterfactuals generated are

located in the densest regions within the training data manifold (Artelt

and Hammer, 2020). This strategy aims to maximise the likelihood that

counterfactuals occur in reality. Therefore, this approach begins with an

estimate of the density distribution of the training data, a process carried

out in the preliminary step. Following this, the counterfactual generation

step involves optimising a generative model. This optimisation objective is

to maximise the probability density of the counterfactuals, thereby align-

ing them closely with the most likely scenarios in the training data. The

details of these two substeps are described below.

126

5.2. DENSITYGUIDE

Preliminary Steps -- Data Distribution Estimation

Counterfactual Generation Step

Step-P1: Training Multivariate Time Series Classifier

Step-P3: Fitting Gaussian Mixture Model for Each Class

Generating Counterfactual for x with a target class

Step-P2: Extracting Latent Representations of Training Samples

Va
r 1

Va
r 2

Va
r 3

0
1

-1
0

1
-1

0
1

-1

Time

0 10 20 30 40 50 60 70 80

Classifier f

Softmax
Dense Layer

Probability

Layer 0

Layer l

Layer N......

Noise Generative Model:

Classifier f

Figure 5.1: The workflow of the proposed method.

5.2.1 Preliminary Steps

The preliminary steps aim to estimate the density distribution of the train-

ing samples. Because the original inputs are multivariate time series, which

are high-dimensional and have complex dependency between features, esti-

mating their data distribution directly is much harder than that of tabular

data. Therefore, the data distributions of the training samples are esti-

mated using their latent representations encoded by the classifier, of which

the details are explained as follows.

In this thesis, the objective is to explain MTSC using a post-hoc approach.

Therefore, the initial step involves fitting a classifier. In the subsequent

step, the latent representations of the training samples are extracted using

the trained classifier. In this thesis, we focus on deep learning-based clas-

127

5.2. DENSITYGUIDE

sifiers. Therefore, classifiers, as illustrated in Fig. 5.1, are usually made

up of multiple layers. These layers sequentially process the input data,

transforming it from its original feature space into a series of latent rep-

resentations and ultimately into the final output space. This final output

space represents the probabilities of the predicted classes. A certain la-

tent representation of the input can be denoted as f l(x), where l specifies

that this latent representation is the output of the l-th inner layer. In

our approach, we extract the latent representations from the layer imme-

diately preceding the final dense layer that are followed by a softmax layer

to generate the probabilities of the di↵erent classes.

In the next step, GMMs are fitted to the training samples using the ex-

tracted latent representations. The choice of GMMs is motivated by several

factors. First, GMMs are adept at estimating a variety of data distributions

because of their composition of multiple independent Gaussian components.

This ability makes them particularly versatile for modelling complex data

patterns. Second, GMMs are characterised by their clear analytical rep-

resentations, which can be calculated straightforwardly and incorporated

into the construction of the loss function necessary to generate counter-

factuals in the subsequent step. Specifically, for each predicted label, a

distinct Gaussian model is fitted to capture the distribution of the samples

corresponding to its respective label, which can be mathematically denoted

as follows.

argmax
w,µ,⌃

pcgmm(f
l(x)),where f(x) = c (5.1)

where w,µ,⌃ are the weights, means, and the covariance of the corre-

sponding pcgmm fitted for the samples predicted as class c.

The use of latent representations to estimate data distributions o↵ers an-

other advantage beyond reducing the di�culty of estimating data distribu-

128

5.2. DENSITYGUIDE

tions. In the training phase, classifiers are trained to convert the original

inputs into a more compact and informative latent feature space. In this

feature space, training samples predicted to have the same labels tend to

be close to each other. Therefore, if a new input comes from the same

distribution of the training data, its latent representations should also be

located in the density area in the latent features of the classifier. On the

contrary, estimating the data distribution directly from the original input,

particularly in time series data, often involves encoding the input into a

distinct feature space. This new space can be vastly di↵erent from the

latent space used by the trained classifier, leading to discrepancies. For

instance, samples that appear similar in the classifier’s space might be

deemed di↵erent in the separately trained encoder’s space. In the context

of counterfactual generation, our aim is to produce samples that closely

resemble those in the training data set. Estimating the data distribution

within the latent feature space of the classifier is crucial for this purpose.

If the estimation is conducted directly in a di↵erent latent space, it risks

deviating from the perspective of the classifier, which can lead to less ac-

curate or relevant counterfactuals. Therefore, leveraging the latent feature

space of the classifier is a strategic choice to closely align the counterfactual

generation with the training data.

5.2.2 Counterfactual Generation Step

After obtaining the density distribution of the training data, counterfactual

explanations can be generated from the densest region. The current work

focuses on deep learning-based classifiers of which the gradient is accessible;

thus, the objective of generating counterfactual explanations is treated as

an optimisation problem and resolve it through gradient-based methods.

129

5.2. DENSITYGUIDE

Specifically, details are shown in Fig. 5.1.

The classifier predicts that x belongs to class cori. We are interested, for

example, in how the x change can cause the classifier to produce another

label, denoted ct. To answer this question, we propose to adopt a generative

model that takes pure random noise as input and produces a mask �, which

is the same size as x. The counterfactual is constructed by adding the

generated mask over the original input, denoted as x0 = x+ �.

Our objectives in counterfactual generation are two-sided. First, we wish

that the counterfactuals obtained are located in the densest region of the

samples predicted belonging to class ct. Mathematically, this objective can

be formulated as maximising the log-likelihood of the counterfactuals using

the corresponding fitted GMM pc
t

gmm. The second objective is that we wish

that the changes made on x are as small as possible, which is equivalent to

obtaining a sparse mask. Therefore, the training objective of the generative

model can be represented as follows:

argmin
✓

L = �log pc
t

gmm(f
l(x+ �)) + �||�|| (5.2)

where pc
t

gmm represents the obtained GMM model for the samples predicted

belonging to ct; � is a hyperparameter that controls the trade-o↵ between

the sparsity of the mask and the log-likelihood of the obtained counterfac-

tuals. In the optimisation stage, we are going to update the parameters ✓

within the generative model through gradient-based optimisation method.

The choice of �. The selection of the parameter � is crucial for the quality

of the final counterfactuals. If � is too large, the modifications applied to

x will be minimal. Consequently, the resulting counterfactual may not be

classified as belonging to ct or may not fall within the densest region of the

130

5.2. DENSITYGUIDE

distribution. On the other hand, a small � value may lead to a non-sparse

mask, making the counterfactual less interpretable for users.

To address this di�culty, we have proposed an automatic adjustment method

for �, of which the details are shown in Algorithm 2. Initially, � is set to

a small value (1.0 in this work), and the generative model is optimised to

maximise the likelihood of counterfactuals. Due to the nature of the GMMs

adopted in this work, there will be a point where the likelihood of x0 can-

not be further increased, leading to a plateau. Therefore, in Algorithm 2

(lines 14 to 17), operations are carried out to judge whether the plateau is

reached. This is achieved by assessing whether the maximum of the last

100 log-likelihood values recorded in LogProbSeq exceeds the minimum of

these by a predefined margin. If the plateau is reached, the average of

these last 100 log-likelihood values then defines the corresponding plateau

level. Once this plateau is reached, � is adjusted based on the current

likelihood. If the current likelihood is smaller than the plateau level, this

suggests space for further modifications to the input. Consequently, � can

be increased. On the contrary, if the current likelihood is lower than the

plateau level, indicating excessive modifications, � should be reduced ac-

cordingly. Using this proposed adjustment approach, the sparsity of the

mask obtained � can achieve the highest while maintaining the likelihood

of counterfactuals within the plateau level. The optimisation stops when

the sparsity of the obtained mask no longer improves over a certain num-

ber of iterations. This approach ensures that counterfactual explanations

achieve both high likelihood and optimal sparsity.

Generative model architecture. The architecture of our generative

model, illustrated in Fig. 5.2, is based primarily on LSTM (long-short-term

memory). The generative model receives pure noise sampled independently

from a standard normal distribution. This sampled noise is processed in

131

5.2. DENSITYGUIDE

Algorithm 2 Generative Process for Counterfactuals

1: Start Generative Process:
2: Initialise:
3: LogProbReachPlateau False
4: LogProbPlateauLevel Inf
5: � 1.0
6: LogProbSeq []
7: Begin Loop:
8: while optimisation not converged do
9: Sampling ✏ N (0, I)
10: � G✓(✏)
11: x0 x+ �.
12: logprob p

ct
gmm(x0)

13: LogProbSeq.append(logprob)
14: if �logprob < threshold then
15: LogProbReachPlateau True
16: LogProbPlateauLevel Calculate Plateau Level
17: end if
18: if LogProbReachPlateau then
19: if logprob > LogProbPlateauLevel then
20: � min(�⇥ 1.05, 1e8)
21: else
22: � max(�⇥ 0.95, 1.0)
23: end if
24: end if
25: L �log p

ct
gmm(f l(x+ �)) + �||�||

26: Update ✓ in G✓ using Adam optimisation method.
27: end while

sequence by the LSTM cells, and the LSTM outputs are further processed

by a dense layer, which then passes through a hyperbolic tangent (Tanh)

activation function, scaled by a factor of 2. This adjustment ensures that

the output values change from -2 to 2, aligning with the preprocessing

normalisation of the training samples, which are scaled to fall between -1

and 1. Consequently, this scaling guarantees that the maximal alteration

applied by the mask to the input remains within the bounds of -2 and 2.

In particular, the parameters of the dense layer are shared across all time

steps, which aims to ensure a uniform transformation of the LSTM output

and maintain the temporal coherence of the generated sequence.

132

5.3. LATENTGAN

LSTM LSTM LSTM

2*Tanh()
Dense Layer

2*Tanh()
Dense Layer

2*Tanh()
Dense Layer

... ...

Shared Parameters Shared Parameters

Figure 5.2: The architecture of the adopted generative model

5.3 LatentGAN

In our first proposed method, we hypothesise that the density distribution

of the training samples in the latent features space follows a mixture of

Gaussian distributions. Although GMMs are adept at capturing complex

data distributions, they may not always be suitable, particularly in scenar-

ios where the data deviates from mixture Gaussian distribution patterns.

This discrepancy can hinder the generation of high-quality counterfactuals.

To overcome this limitation, our second approach uses the GANs architec-

ture. The key advantage of GANs lies in their ability to ensure that both

the generated counterfactuals and the real time series originate from the

same distribution without making explicit assumptions about the type of

distribution, o↵ering a more flexible and robust solution for counterfactual

generation.

The GAN framework is also used in the development of counterfactual ex-

planation methods (Lang et al., 2023b). In the GAN architecture, the gen-

erator network aims to create synthetic data that mimic the real data set,

while the discriminator network aims to distinguish the generated (fake)

data from the actual (real) data. These two networks are optimised it-

eratively, where the generator strives to become increasingly proficient at

producing realistic data, and the discriminator becomes better at detecting

133

5.3. LATENTGAN

Noise Generative Model:

Generator

Discriminator

Standard GAN Framework

Noise Generative Model:

Generator

Discriminator

LatentGAN

Classifier f

Classifier f

Figure 5.3: Standard GAN framework and the LatentGAN framework used
in this work.

the di↵erences.

In the context of counterfactual explanations, the GAN is adapted to suit

this specific task. The generator is optimised to produce counterfactuals

that are indistinguishable from realistic data classified as belonging to a

particular class. This concept is illustrated in the standard GAN frame-

work shown in Fig. 5.3. Here, xreal represents the real time series that the

classifier predicts as belonging to class t, while xfake denotes the synthetic

time series generated by the GAN. In the GAN framework, the term �||�||

in generator loss is used to force the generator to produce sparse coun-

terfactual masks, thus improving the interpretability of the final explana-

tions. The generator and discriminator are iteratively optimised to produce

counterfactuals that are indiscernible from real time series associated with

134

5.3. LATENTGAN

a certain predicted class, thus enhancing the realism and relevance of the

generated counterfactuals.

However, as discussed in Section 2.5.2, adopting the standard GAN frame-

work presents significant challenges. These di�culties arise from various

factors, such as the training imbalance between the generator and the dis-

criminator, which is exacerbated by the complexity inherent in time series

data. The generator, trained to create realistic time series, often faces

greater di�culties, while the discriminator can more easily distinguish be-

tween real and fake data. Although fine-tuning the architecture of the

generator and discriminator can mitigate these issues to some extent, de-

signing a universal architecture that is suitable for various data sets remains

a significant challenge, which impedes the use of GAN to generate coun-

terfactual explanations.

Consequently, instead of using the standard GAN framework, a LatentGAN

approach is developed, as shown in Fig. 5.3. In the LatentGAN approach,

the generator maintains the same architecture as the standard GAN, and

a key di↵erence lies in the input to the discriminator. In this approach,

the discriminator receives latent representations of time series f l(xfake),

which are encoded by the classifier as described in Section 5.2.1. Conse-

quently, the objective of the generator is to produce counterfactuals that

are indistinguishable in the latent feature space encoded by the classifier.

This ensures that the counterfactuals generated align with the distribution

perceived by the classifier.

In our practice, training this LatentGAN has presented fewer di�culties.

The reason might be that the classifier’s involvement aids the generator

in focusing on making necessary alterations only to the relevant features,

while leaving una↵ected those features that do not a↵ect the model’s per-

135

5.4. EXPERIMENTAL DESIGN

formance. As a result, the complexity of the task for the generator is

substantially reduced, enhancing the overall e�ciency and e↵ectiveness of

the LatentGAN in generating plausible counterfactuals.

5.4 Experimental Design

In this section, the experimental design for this work is provided. First,

the adopted data set and the corresponding preprocessing approaches are

described. Then, comparable methods will be introduced, of which the per-

formance is compared with the proposed methods. Finally, the evaluation

metrics used in this work are introduced.

5.4.1 Data sets and Classifier

To evaluate the performance of our proposed framework, we use the same

data sets as those detailed in Section 4.3.1. This selection includes 14 data

sets from the UEA archive (Bagnall et al., 2018) and the MNIST handwrit-

ing data set (Lecun et al., 1998). For consistency, we apply identical data

preprocessing techniques as outlined in the preceding chapter. In addition,

the same LSTM-based classifier is used.

In this work, we also use the Microsoft Azure Predictive Maintenance data

set1. This data set comprises hourly averages of the voltage, rotation, pres-

sure, and vibration measurements collected from 100 machines. We focus

on predicting failures using this data set. Specifically, we used the 48-hour

historical time series data of voltage, rotation, pressure, and vibration as

input to our classifier. The same LSTM-based classifier as that described

1This data set is obtained from https://www.kaggle.com/datasets/
arnabbiswas1/microsoft-azure-predictive-maintenance/data

136

https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance/data
https://www.kaggle.com/datasets/arnabbiswas1/microsoft-azure-predictive-maintenance/data

5.4. EXPERIMENTAL DESIGN

in Section 4.3.1 is implemented and trained on this data set. This clas-

sifier is designed to predict the probability of machine failure in the next

24 hours. The selection of the Microsoft Azure Predictive Maintenance

data set for this chapter is motivated by the clear physical interpretations

of its time series data, such as voltage, rotation, pressure, and vibration

measurements. On the contrary, the data sets in the UEA archive contain

time series whose meanings are less clear. Using a data set with well-

defined physical attributes allows us to more e↵ectively demonstrate how

counterfactual explanations can o↵er actionable guidance, showcasing their

practical benefits in scenarios with clear real-world relevance.

5.4.2 Benchmarking Methods

There have some method proposed to provide counterfactuals explanations

for models. Some of them are initially designed for time series models,

while some methods are initially designed for tabular data. In this work,

we introduce some classic approaches and compare them with our proposed

method.

WACH (Wachter et al., 2017): TheWACHmethod, introduced byWachter

et al., stands out as one of the most well-known counterfactual explana-

tion techniques. WACH generates explanations by optimising the objective

defined in (2.8). In this optimisation objective, the parameter � plays a

crucial role, balancing the closeness of the classifier’s output to the desired

outcome against the similarity of the counterfactuals to the original in-

put. Following the Wachter et al. guidelines (Wachter et al., 2017), our

approach seeks to maximise � while minimising the di↵erence between the

classifier output and the desired result. Specifically, optimisation begins

with a small initial value of � = 1e � 4, focussing first on increasing the

137

5.4. EXPERIMENTAL DESIGN

probability of the target class produced by the classifier. This process con-

tinues until the predicted probability reaches a predefined threshold, set

here at 0.999. Once this threshold is achieved, � is adjusted adaptively,

similar as that outlined in Algorithm 2 (lines 19 to 23). Specifically, �

decreases if the predicted probability is below the threshold and increases

otherwise. This strategy aims to yield sparse counterfactuals while ensur-

ing that the classifier’s output reaches our desired outcome. In this work,

we use the MSE method to measure the distance between the original input

and the counterfactual.

NaiveGuide (Delaney et al., 2021b): This method was initially developed

for univariate time series classifiers but can be readily adapted to multi-

variate contexts. The process begins by identifying the most distinctive

segments of the input using attribution methods. Then, these identified

segments are replaced with those of their nearest neighbours. In the origi-

nal study (Delaney et al., 2021b), a convolutional neural network classifier

was used, which facilitated the use of Class Activation Maps (CAM) (Zhou

et al., 2016) to pinpoint the most significant subsequences. In our current

work, we use classifiers based on recurrent neural networks. Consequently,

we adopt Kernel SHAP (Lundberg and Lee, 2017) to identify the most

distinctive segments. The SHAP kernel uses the LIME framework to com-

pute Shapley values, which o↵ers a more e�cient way to derive these values

than direct computation. After calculating the Shapley values for the in-

put time series, we perform a smoothing operation. This step is designed

to eliminate the e↵ects of noise, ensuring that the most distinctive time

points remain continuous over time. Following this, we select the closest

samples with the desired predicted labels from the training data set. We

then gradually replace the most distinctive time points of the current series

with those of the closest sample until the classifier produces the desired la-

138

5.4. EXPERIMENTAL DESIGN

Noise Generative Model:

Classifier f

Classifier f

Variant-1

Variant-2

Figure 5.4: Investigated variants of the proposed method

bel. In this work, we use the MSE method to measure the distance between

the time series to find their closest counterfactual sample.

Beyond the comparison methods mentioned above, we have also developed

several variants of the DensityGuide method to assess the contributions of

specific components designed in this approach. The architectures of these

variants are illustrated in Fig. 5.4.

DensityGuide-V1 : This version focuses solely on the output of the clas-

sifier, with the aim of maximising the predicted probability of the desired

class. It does not consider the density probability of the resulting counter-

factual. The purpose of this variant is to evaluate the necessity of ensuring

that the counterfactuals have the highest possible density estimate.

DensityGuide-V2 : Unlike the original method, where parameters in the

generative model are optimised, this variant introduces and optimises a

randomly initialised mask directly. This approach is designed to explore

139

5.4. EXPERIMENTAL DESIGN

the e↵ect of the generative model in the counterfactual generation process.

5.4.3 Evaluation Metrics

The properties that a good counterfactual should meet have been intro-

duced in Section 2.5.1, which comprises the quantitative evaluation metrics

used in this chapter.

Proximity : This metric assesses the closeness of the counterfactuals to the

original input time series. Various measures can be used to evaluate the

similarity between two time series. In our study, we evaluate the proximity

of the counterfactuals provided using Dynamic Time Warping (DTW).

Sparsity : This metric evaluates the extent of modifications in the original

time series necessary to generate the counterfactuals. In our approach,

changes are implemented by adding a generated mask to the original time

series. Although each time step might undergo modifications, only a very

limited portion of these changes are significant. Therefore, we count only

those time steps where modifications exceed a noticeable threshold. Given

that all time series data in our study are scaled to the range [-1, 1], we set

this threshold at 0.01. This implies that any absolute changes greater than

0.01 at the time steps are considered noticeable.

Plausibility : This metric evaluates the likelihood that counterfactuals orig-

inate from the same distribution as the training data set. This assessment

is vital to ensure their relevance, realism, and comprehensibility. Directly

measuring the probability density of generated counterfactuals poses a chal-

lenge because of the unknown nature of the true distribution. In our study,

we adopt metrics commonly used in assessing the performance of gener-

ative models (Dhariwal and Nichol, 2021), notably the Fréchet Inception

140

5.4. EXPERIMENTAL DESIGN

Distance (FID). The aim of FID in this context is to quantitatively mea-

sure how well the distribution of generated counterfactuals approximates

the distribution of original data, based on deep features extracted by a

model trained on a broad dataset. Therefore, this metric is especially suit-

able for our context, which involves generating counterfactual explanations

that must closely mirror the real data distribution to ensure both their re-

alism and relevance. In our work we extract latent features from both the

real time series and their corresponding counterfactuals from the trained

classifier. Subsequently, the mean and covariance of these feature vectors

are calculated. Under the commonly held assumption in the FID applica-

tion that these features conform to a multivariate Gaussian distribution,

we calculate the Fréchet distance between these distributions. A smaller

Fréchet distance implies greater similarity, indicating a closer alignment

between the counterfactuals and the original data distribution.

Stability : Stability is a crucial attribute of explanations, especially for coun-

terfactuals upon which users may base their actions. Unstable explanations

could lead to confusion as users struggle to determine which explanation to

trust and what actions to take. To assess the stability, we measure the con-

sistency of the explanations. This is achieved by generating explanations

multiple times under the same conditions and then calculating the variance

between them. The lower variance indicates higher stability, which implies

that explanations are reliable and can be trusted for the decision-making

process.

141

5.5. RESULTS AND ANALYSIS

WACH NaiveGuide

LatentGAN DensityGuide

DensityGuide-V1 DensityGuide-V2

Figure 5.5: Counterfactual explanations for the classifier trained on the
Microsoft Azure Predictive Maintenance data set. The original time series,
shown in blue, leads to a prediction of machine failure in the next 24
hours. On the contrary, for the counterfactuals provided, coloured red, the
classifier predicts that the failure will not happen in the next 24 hours.

5.5 Results and analysis

In this section, the results of the experiments are analysed in detail. In

Section 5.5.1, we begin with a qualitative assessment of the counterfactual

explanations provided by the methods implemented. Following this, we

conducted a quantitative evaluation that measures the similarity, sparsity,

feasibility, and stability of the explanations in Section 5.5.2 to 5.5.4.

142

5.5. RESULTS AND ANALYSIS

Input WACH NaiveGuide LatentGAN DensityGuide DG-V1 DG-V2 Input WACH NaiveGuide LatentGAN DensityGuide DG-V1 DG-V2

Figure 5.6: Counterfactual explanations provided by the adopted methods.
The label predicted by the classifier for these counterfactuals is label “0”.

5.5.1 Qualitatively Evaluation

The counterfactual explanations generated by the adopted method are

shown in Fig. 5.5 and Fig. 5.6. The results indicate that the counter-

factuals provided by WACH and DensityGuide-V2 di↵er from the original

time series at separate time steps. This suggests that these methods try to

alter the values in specific time steps to prompt the classifier to produce a

particular output, which might break the temporal dependency within the

original input. In contrast, the counterfactuals generated by other methods

tend to di↵er from the original time series in continuous time steps. Specif-

ically, NaiveGuide are designed to identify continuous distinctive segments

for replacement, while LatentGAN, DensityGuide, and DensityGuide-V1

overlay a LSTM-generated mask on the original series, leading to continu-

ous di↵erence in time between counterfactuals and the original time series.

When comparing the DensityGuide-V1 method with both the DensityGuide

and the LatentGAN method, extra di↵erences between counterfactuals and

the original input time series are observed. In the DensityGuide, these ex-

tra di↵erences are particularly notable in terms of voltage and pressure

levels. Meanwhile, in the LatentGAN method, extra di↵erences are evi-

dent in voltage and rotation measurements. Although all counterfactuals

143

5.5. RESULTS AND ANALYSIS

Table 5.1: Proximity evaluation of the explanations provided by the
adopted methods across the data sets.

data sets
Proximity (the lower the better)

WACH NaiveGuide LatentGAN DensityGuide DensityGuide-V1 DensityGuide-V2

ArticularyWordRecognition 10.5293 20.0463 13.8009 20.5685 26.7308 18.9135
BasicMotions 4.6111 9.6063 6.1864 8.0649 7.7164 8.5026
CharacterTrajectories 10.6078 8.7463 6.5735 10.7624 9.1408 14.2606
Epilepsy 12.3536 10.4183 7.2021 16.0025 12.5248 13.2538
ERing 4.2136 8.0621 4.3260 8.0590 7.2547 8.0250
Handwriting 4.2963 7.6958 4.6240 8.8517 8.1265 8.6670
JapaneseVowels 4.1099 7.4337 6.3932 9.7527 5.6452 8.9386
Libras 5.4084 4.2025 6.7054 10.5639 5.6985 8.9396
LSST 5.6255 5.2105 7.4982 9.9473 7.3489 8.7021
NATOPS 8.0676 15.8449 12.1698 14.3732 12.0756 12.9017
PenDigits 1.4921 1.6729 2.8709 2.5375 1.6915 2.3017
RacketSports 2.0907 2.2913 3.3500 2.3883 2.3024 2.3741
SpokenArabicDigits 7.4783 13.8130 13.9141 14.7222 15.2104 17.5544
UWaveGestureLibrary 7.6352 15.2986 13.9162 19.2548 20.7006 10.0828
MNIST 6.9102 11.4213 9.9655 8.4163 10.0509 8.4782
PdM 6.2404 16.2685 14.6299 11.5064 10.0895 11.0797

provided by these three methods di↵er from the original time series in vi-

bration level, the di↵erences for LatentGAN and DensityGuide are more

significant. These findings imply that both the DensityGuide and Latent-

GAN necessitate more extensive modifications to the original time series

to fulfil their respective requirements. The DensityGuide-V1 method only

tries to adjust the classifier for a specific class prediction with a desired

probability. However, the DensityGuide tries to align the counterfactuals’

latent representations with the densest regions of the training data mani-

fold, and the LatentGAN focuses on ensuring that its counterfactual latent

features are indistinguishable from those of the training data. The latter

two criteria are more stringent than that of the DensityGuide-V1 method,

necessitating more substantial modifications in the original time series.

5.5.2 Proximity and Sparsity Evaluation

In this section, the proximity and sparsity of the counterfactuals generated

by the adopted methods are analysed, and the corresponding evaluation

metrics are detailed in Table 5.1 and Table 5.2. The findings indicate that

the WACH method generally results in the smallest changes to the original

144

5.5. RESULTS AND ANALYSIS

Table 5.2: Sparisity evaluation of the explanations provided by the adopted
methods across the data sets.

data sets
Sparisity (the lower the better)

WACH NaiveGuide LatentGAN DensityGuide DensityGuide-V1 DensityGuide-V2

ArticularyWordRecognition 147.83 774.79 705.56 1096.27 999.41 584.56
BasicMotions 54.68 279.05 313.38 346.26 495.95 244.20
CharacterTrajectories 262.31 327.07 380.91 451.88 479.13 442.00
Epilepsy 279.05 434.87 525.61 535.26 479.36 521.74
ERing 31.00 98.40 100.89 147.40 123.80 95.80
Handwriting 45.55 119.82 148.20 170.87 161.82 102.85
JapaneseVowels 27.90 152.08 180.35 179.27 87.40 156.63
Libras 47.00 27.00 81.75 87.50 54.00 89.00
LSST 55.64 38.48 120.72 126.85 59.40 116.13
NATOPS 91.40 588.30 666.50 854.30 762.40 416.60
PenDigits 5.43 9.33 14.71 11.88 5.86 11.80
RacketSports 5.17 9.43 19.95 17.56 7.75 14.94
SpokenArabicDigits 561.11 753.25 695.56 998.33 666.71 655.14
UWaveGestureLibrary 53.50 398.86 922.75 925.83 929.50 251.00
MNIST 58.02 105.19 271.72 152.86 217.33 300.26
PdM 77.08 151.08 402.88 218.35 209.66 371.84

time series when generating counterfactuals. This is evidenced by its lower

proximity measures in 12 of 16 data sets and the lower sparsity measures

in 14 of them. Such outcomes are consistent with WACH’s strategy, which

aims to modify the classifier output by altering the fewest possible features,

disregarding the distribution of data sets. However, this approach has a

risk: The counterfactuals it generates may not come from the same distri-

bution of training data. The changes leading to di↵erent outputs are not

due to meaningful alterations in the inputs, but are attributed to the OOD

issue. Consequently, these counterfactuals might not accurately represent

realistic and actionable scenarios, potentially leading to explanations that

are not practically useful. In contrast to WACH, DensityGuide-V2 takes

into account the distribution of data, resulting in more significant modifi-

cations to the original time series when generating counterfactuals. This

is evidenced by its higher proximity and sparsity measurements in all data

sets.

Compared to DensityGuide-V2, DensityGuide adopts a generative model

based on LSTM cells, which constrains counterfactuals di↵erent from the

original time series in a continuous time step. To locate the counterfactual

in the densest regions and maintain the changes continuous in time at the

145

5.5. RESULTS AND ANALYSIS

same time, DensityGuide needs to make more changes on the original time

series than DensityGuide-V2, which is reflected in the higher proximity

measurements (12 of the 16 data sets) and greater sparsity measurements

(13 of the 16 data sets).

Compared to DensityGuide, the counterfactuals provided by LatentGAN

make fewer changes than the original time series, which is reflected in the

higher proximity measurements (all the 16 data sets) and greater spar-

sity measurements (13 of the 16 data sets). This is because DensityGuide

tries to locate the counterfactuals in the densest regions of the data mani-

folds, which are described by the fitted GMMs. However, LatentGAN only

maintains that the counterfactuals are not distinguishable by the classifier,

which might be considered as a loose constraint on the changes made on

the original time series.

Compared with DensityGuide, the counterfactuals provided by DensityGuide-

V1 make fewer changes to the original input, as evidenced by its smaller

proximity measurements (11 of the 16 data sets) and smaller sparsity

measurements (11 of the 16 data sets). This could be explained that

DensityGuide-V1 only forces the classifier to make the corresponding pre-

dictions, but does not constrain that it need to be located in the densest

regions of the data manifold. This could be considered as looser constraint.

5.5.3 Plausible Evaluation

In this section, we aim to assess the plausibility of counterfactual explana-

tions produced by the adopted methods. The FID scores are presented in

Table 5.3, which measures how closely the counterfactuals provided align

with the original training data distribution. The results reveal that the

146

5.5. RESULTS AND ANALYSIS

Table 5.3: Plausibility evaluation of the explanations provided by the
adopted methods across the data sets.

data sets
Plausibility (FID scores) (the lower the better)

WACH NaiveGuide LatentGAN DensityGuide DensityGuide-V1 DensityGuide-V2

ArticularyWordRecognition 10.5173 17.4096 7.3682 6.2248 12.1058 8.0211
BasicMotions 45.2987 10.2264 4.6554 4.3153 17.2505 2.1961
CharacterTrajectories 26.7283 20.4959 14.8861 17.7778 53.7935 17.7359
Epilepsy 32.4024 26.7948 19.8340 14.7004 25.7584 15.0351
ERing 31.5238 21.7975 11.5931 11.1213 13.5479 14.3911
Handwriting 44.5989 30.6985 14.7712 12.5740 14.6117 13.4417
JapaneseVowels 5.5745 5.0735 1.8399 4.9583 4.8500 3.6836
Libras 10.1284 10.4941 4.9808 5.2382 10.6462 10.2583
LSST 13.4618 12.4550 6.1111 6.0459 9.7074 10.9258
NATOPS 25.2495 24.6456 12.8088 14.6802 15.0169 15.4695
PenDigits 2.7555 3.2992 2.2439 2.2660 2.8852 3.8367
RacketSports 3.8984 4.6464 2.8590 2.5620 3.1118 3.5836
SpokenArabicDigits 16.7902 27.8419 13.8540 15.1065 17.5892 16.3648
UWaveGestureLibrary 12.4342 19.9207 11.8067 10.0830 10.4584 12.3771
MNIST 1.1116 4.6246 0.2496 0.3151 1.0792 0.5464
PdM 1.3652 4.9247 0.3134 0.4531 1.2347 0.6727

counterfactuals from NaiveGuide and WACH are associated with higher

FID scores compared to other methods. This suggests a notable deviation

of these counterfactuals from the training data distribution, which could

indicate less plausible explanations. On the contrary, the DensityGuide

and LatentGAN approaches show lower FID scores, reflecting their greater

e�cacy in addressing the OOD problem and providing plausible counter-

factuals.

A specific comparison between DensityGuide and its variant, DensityGuide-

V2, reveals that the latter exhibits higher FID scores in 13 of 16 data sets.

The primary distinction between these two methods lies in that Densi-

tyGuide uses a generative model based on LSTM cells to ensure that the

changes made on the input are continuous in the time step. The lower

FID scores associated with DensityGuide underscore the e↵ectiveness of

this generative model in creating more plausible counterfactuals. This

advantage likely stems from the model’s ability to preserve the tempo-

ral dependencies inherent in time series data, ensuring that the obtained

counterfactuals remain consistent with the original data distribution. Fur-

thermore, when comparing DensityGuide with DensityGuide-V1, the latter

shows higher FID scores in 14 of the 16 data sets. This outcome indicates

147

5.5. RESULTS AND ANALYSIS

that focusing solely on the final output probability during counterfactual

generation may risk generating OOD counterfactuals.

5.5.4 Stability Evaluation

For counterfactual explanations to be e↵ectively used in decision-making

processes, their stability and consistency are crucial. Consistency and sta-

bility mean that when the same counterfactual explaining process is applied

to the input requiring explanation, the resulting counterfactuals are identi-

cal (or at least similar). In other words, the final counterfactuals eliminate

the impact of stochastic components, such as randomly initialised genera-

tive models. This enhances user trust in the final explanations. Without

these qualities, it becomes di�cult for users to determine which explana-

tions to trust and act upon. This section aims to investigate the stability

of the explanations provided by the methods we have adopted. The quan-

titative metrics for this evaluation are presented in Table 5.4.

Among the methods evaluated, the NaiveGuide method, which provides

deterministic counterfactuals by identifying and replacing the most impor-

tant features with those of the closest candidate, is not included in this

stability analysis. In terms of stability, methods that adopt the generative

model in the counterfactual generation process demonstrate better perfor-

mance, which suggests the contributions of the generative model to the

stability of explanations.

The underlying reasons for these di↵erences can be explained as follows.

WACH and DensityGuide-V2 generate counterfactuals by directly optimis-

ing randomly initialised parameters. This approach results in a wide range

of potential modifications to achieve the desired classifier output, leading to

148

5.5. RESULTS AND ANALYSIS

Table 5.4: Stability evaluation of the explanations provided by the adopted
methods across the data sets.

data sets
Stability (the lower the better)

WACH NaiveGuide LatentGAN DensityGuide DensityGuide-V1 DensityGuide-V2

ArticularyWordRecognition 0.09880 \ 0.00103 0.00063 0.00439 0.32863
BasicMotions 0.08772 \ 0.00069 0.00076 0.00111 0.26226
CharacterTrajectories 0.29460 \ 0.00068 0.00093 0.00070 0.48043
Epilepsy 0.31659 \ 0.00069 0.00119 0.00070 0.71552
ERing 0.02217 \ 0.00045 0.00084 0.00064 0.20647
Handwriting 0.02640 \ 0.00059 0.00112 0.00081 0.23712
JapaneseVowels 0.03554 \ 0.00054 0.00115 0.00089 0.25860
Libras 0.27915 \ 0.00058 0.00044 0.00019 0.56391
LSST 0.35713 \ 0.00071 0.00040 0.00019 0.59327
NATOPS 0.07409 \ 0.00124 0.00139 0.00230 0.32878
PenDigits 0.11143 \ 0.00113 0.00058 0.00020 0.20039
RacketSports 0.11936 \ 0.00153 0.00085 0.00027 0.24497
SpokenArabicDigits 0.29442 \ 0.00069 0.00128 0.00102 0.37400
UWaveGestureLibrary 0.06961 \ 0.00033 0.00060 0.00012 0.13667
MNIST 0.06888 \ 0.00122 0.00085 0.00190 0.11403
PdM 0.06251 \ 0.00127 0.00078 0.00277 0.14840

variability in the final counterfactuals. In contrast, methods that use gen-

erative models optimise parameters within the model to transform original

random noise into useful counterfactuals that meet the required criteria.

This process ensures that the generative model can produce pertinent and

actual information regardless of the randomness of the input noise, result-

ing in more stable and consistent explanations.

As discussed in Chapter 2, the desirable properties of counterfactuals, in-

cluding the stability mentioned above and diversity, appear to be in conflict.

In our proposed framework, counterfactuals are generated by making mini-

mal changes to the original input while simultaneously altering the original

prediction label. Under this experimental setting, our approach produces

stable and repeatable counterfactuals, ensuring consistency in the final ex-

planations. However, our framework can also generate diverse counterfac-

tuals by simply adjusting the experimental settings. This is achieved by

modifying the values of the hyperparameters. For example, by setting the

value of � to a slightly larger number, the generative model can produce

counterfactuals that not only meet the requirements of these experimen-

tal settings, but also generate various counterfactuals, thereby achieving

diversity in explanations.

149

5.6. USING CHATGPT TO PROVIDE REAL EXPLANATIONS

5.6 Using ChatGPT to provide real expla-

nations

Up to this point, we have demonstrated the e↵ectiveness of our approaches

in providing more plausible counterfactual explanations compared to ex-

isting methods. To understand the working mechanisms and take e↵ective

actions, users need to discern and understand the di↵erences between the

original inputs and counterfactuals. However, if we can express the expla-

nations in natural language descriptions and tell specifically what needs

to do next to the users directly, such kinds of explanation might be more

meaningful. Fortunately, recent advances in large language models, such

as ChatGPT (OpenAI, 2023), can bridge the gap between the counter-

factuals provided and the more meaningful explanations. The advantage

of ChatGPT lies in its ability to interpret complex data and produce the

outputs in a way that is easily comprehensible to ordinary people. By in-

tegrating ChatGPT, we can transform raw data and counterfactuals into

clear, actionable insights presented in a user-friendly format, making the

explanation process more intuitive and e↵ective for all users.

Fig. 5.7 presents a real example that shows how ChatGPT can be used

to provide explanations that are easier to understand. Initially, we in-

put an image into ChatGPT, displaying both the original time series and

counterfactuals, along with the necessary textual descriptions to facilitate

the interpretation of the image. ChatGPT then analyses the di↵erences

between the counterfactual and the original time series, expressing these

distinctions in natural language.

Following this, we act as a person who wishes to take action to prevent

future failure predicted by the classifier. However, we might lack detailed

150

5.6. USING CHATGPT TO PROVIDE REAL EXPLANATIONS

Input for ChatGPT:
Image:

ChatGPT:

Text:
 The figure presents two distinct of multivariate time series data representing a machine's running state,
indicated by measurements of voltage, rotation, pressure, and vibration. These are visualized using
different colored lines: the original data is depicted with blue lines, while the counterfactual data is
represented by red lines. In the case of the original time series (blue lines), the classifier anticipates
a failure of the machine within the next 24 hours. However, the counterfactual time series (red lines)
leads the classifier to predict that the machine will continue to operate without failure.

Help to summarise this counterfactual explanation.

The primary difference between the original and counterfactual data lies in the vibration levels.
The original data showcases sudden spikes and drops in vibration, whereas the counterfactual maintains
a more steady and subdued profile. Excessive or erratic vibrations can be an indicator of potential issues,
often leading to premature wear and failure of machinery components.

ChatGPT:

Recommended Actions:

Regular Monitoring: Use vibration sensors and monitoring systems to keep an eye on vibration levels
in real-time. Set up alarms or notifications if the machine exceeds safe vibration thresholds.

Balancing: Ensure that all rotating parts of the machine are well-balanced.
Imbalances can lead to increased vibration levels.

Foundation & Mounting: Check the machine's foundation and mounting. Ensure it's on a stable surface
and tightly secured. If there are any signs of wear, loose bolts, or corrosion, address them immediately.

Maintenance: Schedule routine maintenance and inspections. Over time, wear and tear can lead to parts
becoming misaligned or loose, resulting in increased vibrations. Regular maintenance can catch and rectify
such issues before they become severe.

Damping: Consider incorporating damping materials or techniques to absorb and dissipate
unwanted vibrations

Input for ChatGPT:

I want to avoid the furture failure, do you have some recommended actions?

Figure 5.7: Using ChatGPT to provide more comprehensive explanations
and suggested actions

151

5.7. SUMMARY

knowledge about the machine and therefore be uncertain about the appro-

priate actions to take. ChatGPT addresses this by providing recommended

actions in a manner that is straightforward and easy to understand. It is

important to note that these suggestions are quite general in this example,

as specific details about the machine were not provided. Providing more

comprehensive information, such as a maintenance manual, would allow

ChatGPT to o↵er more targeted and useful action recommendations.

5.7 Summary

In this chapter, two distinct novel approaches were developed to generate

counterfactual explanations in the context of MTSC. These approaches

aim to provide counterfactuals aligned with the distribution of training

data, enhancing their feasibility and practical applicability. Regarding the

application of these two methods, the DensityGuide approach is suitable

for data sets whose distribution in the latent feature space is e↵ectively

characterised by GMMs. In scenarios where GMMs may not adequately

capture the distribution of data within the latent features, the LatentGAN

approach emerges as a preferable alternative. Experiments conducted with

real-world data sets demonstrated that the counterfactuals generated by

proposed approaches are more plausible than those provided by existing

methods while maintaining comparable levels of similarity and sparsity.

However, the proposed approaches are not without limitations. A signifi-

cant drawback is their computational expense; generating explanations for

each input requires training a separate generative model, leading to sub-

stantial time consumption. In the future, we plan to investigate approaches

that involve training a universal generative model capable of producing

152

5.7. SUMMARY

counterfactual explanations for any instance, given specific desired condi-

tions. Moreover, we note a limitation pertaining to our implicit assumption

that training data sets mirror real-world scenarios. In fact, this assumption

will not always be realistic. It is important to clarify that while the train-

ing data are intended to represent plausible samples that could occur in

real-world situations, they are inherently limited. They do not capture the

full spectrum of variability and complexity found in real-world conditions.

Data sets are often constrained by the scope of their collection and might

omit rare or unforeseen scenarios.

153

Chapter 6

Conclusions and Future Works

The primary objective of this thesis is to enhance the development of XAI

within the context of MTSC by providing various types of explanations

to meet the diverse needs of stakeholders. The explanations targeted are

feature importance and counterfactuals, as these two types of explanations

are popular and satisfy the requirements of most individuals. To provide

such a range of explanations, this thesis predominantly employs post-hoc

explanation techniques. However, a significant challenge encountered with

these techniques is the OOD problem, which refers to the fact that the

samples used in the explanation process do not align with the distribution

of the training data. This OOD issue often leads to unreliable and biased

explanations. To mitigate this issue, the main solution of this thesis is the

employment of generative models, which are trained to learn the distribu-

tion of the training data set and create within-distribution samples for the

explanation purpose. This chapter first summarises the main contributions

of the works detailed in the previous chapters. Then, it discusses in detail

the limitations of current methodologies and outlines potential avenues for

future works.

154

6.1. MAIN CONTRIBUTIONS

6.1 Main contributions

The main contribution of this thesis is the identification of shortcomings

in existing explanation techniques that overlook the OOD issue and the

proposal to address this problem through the use of generative models.

The detailed contributions are as follows:

6.1.1 A Feature Importance Explanation Framework

In Chapter 3, a feature importance explanation framework is presented

that addresses some critical challenges inherent in traditional perturbation-

based explanation methods. First, to address the OOD problem, a genera-

tive model is designed to approximate the data distribution upon which the

classifier is trained. This allows for the creation of perturbed inputs from

the training data distribution. Second, as highlighted in Chapter 2.4.4, due

to the joint contributions of the input features, obtaining precise impor-

tance scores for each feature is an NP-hard problem and intractable, espe-

cially for high-dimensional inputs. Therefore, instead of trying to calculate

the exact importance scores for each feature as traditional perturbation

methods do, the proposed framework aims to search for a set of the most

important features that can significantly a↵ect the outputs of classifiers

when replaced with plausible alternative values. To imporove the search

results and e�ciency, this framework is equipped with a greedy-based seg-

mentation and identification search method specifically designed for MTSC

problems. Experiments conducted on real-world datasets demonstrate the

e↵ectiveness of the proposed framework in identifying the most important

features.

155

6.1. MAIN CONTRIBUTIONS

6.1.2 SEGAL - A stable LIME framework

LIME is a renowned explanation method that has been widely applied in

various applications. However, recent research has highlighted the stability

issue with LIME, where the same explanation process produces varying

explanation results for the same prediction (Zhou et al., 2021; Visani et al.,

2020; Slack et al., 2021). Current solutions attempt to enhance LIME’s sta-

bility by increasing the number of neighbours (Zhou et al., 2021), employing

advanced sampling techniques in the neighbour generation process (Slack

et al., 2021), or tuning its hyperparameters (Visani et al., 2020). However,

when these solutions are applied to the MTSC problem, their e↵ectiveness

is less than satisfactory. The explanations provided remain unstable, indi-

cating that there are other causes for this instability that current solutions

overlook. Chapter 4 introduces the SEGAL framework. Unlike traditional

neighbour generation methods that simply replace certain features with

predefined baselines, which inevitably breaks the temporal dependency of

time series data and results in OOD samples, the neighbour generation

method within this framework incorporates a generative model, which is

trained with the aim of creating within-distribution neighbours. Experi-

ments have demonstrated that the explanations provided with the aim of

within-distribution neighbours are much more stable than those of tradi-

tional methods. This suggests that the OOD issue is another key reason

for unstable explanations. This constitutes the primary contribution of this

chapter. Furthermore, the SEGAL framework develops a novel adaptive

weighting method to replace the traditional exponential kernel weighting

method in the classic LIME framework. The experimental results show that

this novel adaptive weighting method improves the e�ciency of the hyper-

parameter tuning process. This represents the second major contribution

of this chapter.

156

6.1. MAIN CONTRIBUTIONS

6.1.3 Plausible Counterfactual Explanations

Compared to feature importance explanations, counterfactual explanations

might be preferred by individuals who lack expert knowledge. However, ex-

isting counterfactual methods often fail to account for the plausibility and

feasibility of the explanations provided. These methods typically focus

on making minimal alterations to the inputs with the aim of altering the

classifier’s output, ignoring the meaningfulness of explanations or whether

the explanations align with the training data distribution. Consequently,

the changes to the classifier’s outputs are not the result of meaningful or

insightful alterations, but rather stem from the OOD issue. As a result,

the explanations provided by these approaches can be meaningless and

cannot help people make informed decisions. To address this shortcom-

ing of current methods, the main contributions of Chapter 5 involve the

development of two innovative counterfactual explanation methods. The

core goal of these two methods is to ensure that the counterfactuals pro-

vided align with the distribution of the training data, thus increasing their

plausibility and applicability. The first method begins with the fitting

of a GMM to approximate the density of the training data distribution.

Then, it trains a generative model to create counterfactuals in the dens-

est region of the training data manifold. However, for some problems, the

data distribution might not be e↵ectively captured by GMMs. Therefore,

the second method adopts a GAN architecture. Specifically, a generative

model is trained alongside a discriminator to produce counterfactuals indis-

tinguishable from actual time series data, ensuring that these explanations

faithfully represent the real data distribution. Experimental evaluations of

both methods have demonstrated their e↵ectiveness in providing plausible

counterfactual explanations.

157

6.2. LIMITATIONS AND FUTURE WORKS

6.2 Limitations and Future Works

Although this thesis has contributed valuable insights into XAI within the

MTSC domain, it is important to recognise certain inherent limitations in

the proposed solutions, which open avenues for future research.

6.2.1 The capacity of time series generative models

A primary contribution of this thesis is the employment of generative mod-

els to address the potential OOD problem in the explanation process for

MTSC problems. Although experiments on real-world applications show-

case the e�cacy of proposed methods, such approaches encounter some

limitations, primarily concerning the models’ capacity. Time series data

often exhibit more complex relationships than tabular data, such as tem-

poral dependencies. Designing an e↵ective generative model that can ac-

curately capture the intricacies of complex time series data presents sig-

nificant challenges. If the generative model cannot capture the complex

data distribution of the time series data, the obtained samples might still

be OOD, which, in turn, results in unreliable explanations. Furthermore,

if the generative model only partially captures the distribution of data

points, it may learn only certain patterns within the data set and fail to

accurately represent the entire distribution. In such a scenario, although

the generated samples are within-distribution, they only reflect a portion of

the diversity of the data set. This can result in biased explanations, as the

model output may not fully represent the underlying complexities of the

data. Consequently, the performance of the framework proposed in Chap-

ter 3 and the SEGAL method in Chapter 4 is inherently upper bounded

by the capabilities of the underlying generative models. Therefore, future

158

6.2. LIMITATIONS AND FUTURE WORKS

e↵orts could be targeted towards developing more sophisticated time series

generative models. Enhancing these models’ ability to accurately reflect

complex data distributions will be crucial in overcoming current limita-

tions and advancing the reliability and applicability of explanations in the

MTSC context.

6.2.2 The computational e�ciency of proposed meth-

ods

Another limitation of the proposed methods is their time expense. For the

frameworks proposed in Chapters 3 and 4, generating within-distribution

samples requires running the generative model, which is more time-consuming

than traditional methods. To enhance the e�ciency of these approaches,

future work could explore methods to sample within-distribution samples

more e�ciently.

Furthermore, the counterfactual explanation methods presented in Chap-

ter 5 also face challenges with respect to time consumption, as they require

optimising a generative model for each individual input to be explained.

Although this approach is e↵ective, it can be prohibitively time-consuming

and may not suit applications that require real-time responses. An innova-

tive solution in the future could involve developing a universal generative

model that operates on a ’one-size-fits-all’ basis, which is capable of quickly

generating counterfactuals for any given input under specific conditions.

Implementing such a model could significantly speed up the explanation

process, thereby improving its practical utility in scenarios where time ef-

ficiency is paramount.

159

6.2. LIMITATIONS AND FUTURE WORKS

6.2.3 Exploring more types of explanations

Finally, this thesis, which aims to advance XAI within the MTSC context,

focuses on feature importance and counterfactual explanations; these may

not meet the diverse requirements of all users. The field of XAI is vast and

varied, with a spectrum of potential users, from data science professionals

requiring technical and detailed interpretations to ordinary people seeking

simpler and more intuitive explanations. Therefore, future research should

strive to broaden the spectrum of explanatory methods. This could include

the development of interactive visualisations, user-friendly interfaces, and

context-specific explanations tailored to meet the unique needs of various

user groups, thus improving the accessibility and applicability of XAI. One

thing that has to be denoted is that regardless of the type of explanation

provided, when taking post-hoc techniques, the OOD issue should always

be considered. Failing to address the OOD issues can lead to explanations

that are biased and potentially misleading.

6.2.4 Qualitative evaluation of the explanations

In this work, we have focused solely on the quantitative evaluation of ex-

planation results from various explanation methods. However, the primary

objective of XAI is to provide explanations that are comprehensible to

humans. It is therefore essential to assess whether explanations deemed

superior by quantitative metrics are truly helpful to users in understanding

the model’s behaviour. Consequently, future research should develop quali-

tative evaluation methods to more e↵ectively assess the overall performance

of the explanations provided.

160

Appendices

161

Appendix A

Glossary of Mathematical

Notations

This appendix serves as a glossary of some important mathematical nota-

tions used throughout this thesis. It is designed to provide quick reference

and facilitate a better understanding of the mathematical expressions and

formulas discussed.

Symbols

• x

– Description: multivariate time series.

• f (c|x)

– Description: the classifier produces the probability of time

series, x, belonging to class c.

• f (x)

162

– Description: the classifier produces the label for x, which has

the highest probability.

• p(x)

– Description: This represents the probability distribution of x.

• p(xr|x\r)

– Description: This represents the conditional probability dis-

tribution of xr given x\r. It is used to model the dependence of

the variable xr on the other variables represented by x\r.

• G✓,✏̂

– Description: Generative model designed to learn the training

data set distribution, which parameterised by model weights ✓

and the dropout rate ✏̂

163

Bibliography

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., and Kim,

B. (2018). Sanity checks for saliency maps. In Bengio, S., Wallach, H.,

Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., edi-

tors, Advances in Neural Information Processing Systems, volume 31.

Curran Associates, Inc.

Agarwal, C. and Nguyen, A. (2020). Explaining image classifiers by re-

moving input features using generative models. In Proceedings of the

Asian Conference on Computer Vision (ACCV).

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein GAN.

arXiv.

Artelt, A. and Hammer, B. (2020). Convex density constraints for com-

puting plausible counterfactual explanations. In Farkaš, I., Masulli,

P., and Wermter, S., editors, Artificial Neural Networks and Machine

Learning – ICANN 2020, pages 353–365, Cham. Springer International

Publishing.

Assaf, R., Giurgiu, I., Bagehorn, F., and Schumann, A. (2019). MTEX-

CNN: Multivariate time series explanations for predictions with con-

volutional neural networks. In 2019 IEEE International Conference

on Data Mining (ICDM), pages 952–957.

164

Ates, E., Aksar, B., Leung, V. J., and Coskun, A. K. (2021a). Coun-

terfactual explanations for multivariate time series. In 2021 Interna-

tional Conference on Applied Artificial Intelligence (ICAPAI), pages

1–8. IEEE.

Ates, E., Aksar, B., Leung, V. J., and Coskun, A. K. (2021b). Counterfac-

tual explanations for multivariate time series. In 2021 International

Conference on Applied Artificial Intelligence (ICAPAI), pages 1–8.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R.,

and Samek, W. (2015). On pixel-wise explanations for non-linear

classifier decisions by layer-wise relevance propagation. PloS one,

10(7):e0130140.

Bagnall, A., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A.,

Southam, P., and Keogh, E. (2018). The UEA multivariate time series

classification archive, 2018. arXiv preprint arXiv:1811.00075.

Bahri, O., Boubrahimi, S. F., and Hamdi, S. M. (2022). Shapelet-based

counterfactual explanations for multivariate time series.

Barredo Arrieta, A., Dı́az-Rodŕıguez, N., Del Ser, J., Bennetot, A., Tabik,

S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R.,

Chatila, R., and Herrera, F. (2020). Explainable artificial intelligence

(XAI): Concepts, taxonomies, opportunities and challenges toward re-

sponsible AI. Information Fusion, 58:82–115.

Bento, J., Saleiro, P., Cruz, A. F., Figueiredo, M. A., and Bizarro, P.

(2021a). TimeSHAP: Explaining recurrent models through sequence

perturbations. In Proceedings of the 27th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining, KDD ’21, page 2565–2573,

New York, NY, USA. Association for Computing Machinery.

165

Bento, J., Saleiro, P., Cruz, A. F., Figueiredo, M. A., and Bizarro, P.

(2021b). Timeshap: Explaining recurrent models through sequence

perturbations. In Proceedings of the 27th ACM SIGKDD conference

on knowledge discovery & data mining, pages 2565–2573.

Berndt, D. J. and Cli↵ord, J. (1994). Using dynamic time warping to

find patterns in time series. In Proceedings of the 3rd international

conference on knowledge discovery and data mining, pages 359–370.

Cao, W., Wang, D., Li, J., Zhou, H., Li, L., and Li, Y. (2018). Brits:

Bidirectional recurrent imputation for time series. In Advances in

Neural Information Processing Systems, volume 31. Curran Associates,

Inc.

Castro, J., Gómez, D., and Tejada, J. (2009). Polynomial calculation of the

shapley value based on sampling. Computers & Operations Research,

36(5):1726–1730. Selected papers presented at the Tenth International

Symposium on Locational Decisions (ISOLDE X).

Chang, C.-H., Creager, E., Goldenberg, A., and Duvenaud, D. (2019).

Explaining image classifiers by counterfactual generation. In Interna-

tional Conference on Learning Representations.

Conover, W. J. (1999). Practical nonparametric statistics, volume 350. john

wiley & sons.

Crabbé, J. and Van Der Schaar, M. (2021). Explaining time series predic-

tions with dynamic masks. In Proceedings of the 38th International

Conference on Machine Learning, volume 139 of Proceedings of Ma-

chine Learning Research, pages 2166–2177. PMLR.

Delaney, E., Greene, D., and Keane, M. T. (2021a). Instance-based coun-

166

terfactual explanations for time series classification. In International

Conference on Case-Based Reasoning, pages 32–47. Springer.

Delaney, E., Greene, D., and Keane, M. T. (2021b). Instance-based coun-

terfactual explanations for time series classification. In Sánchez-Ruiz,

A. A. and Floyd, M. W., editors, Case-Based Reasoning Research and

Development, pages 32–47, Cham. Springer International Publishing.

Dhariwal, P. and Nichol, A. (2021). Di↵usion models beat gans on image

synthesis. In Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.,

and Vaughan, J. W., editors, Advances in Neural Information Process-

ing Systems, volume 34, pages 8780–8794. Curran Associates, Inc.

Ding, W., Abdel-Basset, M., Hawash, H., and Ali, A. M. (2022). Explain-

ability of artificial intelligence methods, applications and challenges:

A comprehensive survey. Information Sciences, 615:238–292.

Dong, Y., Sun, Z., and Jia, H. (2006). A cosine similarity-based nega-

tive selection algorithm for time series novelty detection. Mechanical

Systems and Signal Processing, 20(6):1461–1472. Special Issue: Laser

Doppler Vibrometry.

Doroudyan, M. H. and Niaki, S. T. A. (2021). Pattern recognition in finan-

cial surveillance with the arma-garch time series model using support

vector machine. Expert Systems with Applications, 182:115334.

Douzal-Chouakria, A. and Amblard, C. (2012). Classification trees for time

series. Pattern Recognition, 45(3):1076–1091.

Du, Q. and Xu, J. (2021). Model-agnostic local explanations with genetic

algorithms for text classification. In The 33rd International Conference

on Software Engineering & Knowledge Engineering.

167

Fong, R. C. and Vedaldi, A. (2017). Interpretable explanations of black

boxes by meaningful perturbation. In 2017 IEEE International Con-

ference on Computer Vision (ICCV), pages 3449–3457.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian approximation:

Representing model uncertainty in deep learning. In Proceedings of

The 33rd International Conference on Machine Learning, volume 48

of Proceedings of Machine Learning Research, pages 1050–1059, New

York, New York, USA. PMLR.

Geler, Z., Kurbalija, V., Ivanović, M., and Radovanović, M. (2020).

Weighted knn and constrained elastic distances for time-series clas-

sification. Expert Systems with Applications, 162:113829.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,

Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adver-

sarial nets. In Advances in Neural Information Processing Systems,

volume 27. Curran Associates, Inc.

Guidotti, R. (2022). Counterfactual explanations and how to find them:

literature review and benchmarking. Data Mining and Knowledge Dis-

covery, pages 1–55.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and

Pedreschi, D. (2018). A survey of methods for explaining black box

models. ACM Comput. Surv., 51(5).

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.

(2017). Improved training of wasserstein GANs. In Advances in Neural

Information Processing Systems, volume 30. Curran Associates, Inc.

Hamet, P. and Tremblay, J. (2017). Artificial intelligence in medicine.

168

Metabolism, 69:S36–S40. Insights Into the Future of Medicine: Tech-

nologies, Concepts, and Integration.

Hase, P., Xie, H., and Bansal, M. (2021). The Out-of-Distribution prob-

lem in explainability and search methods for feature importance ex-

planations. In Advances in Neural Information Processing Systems,

volume 34.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neu-

ral Computation, 9(8):1735–1780.

Holm, S. (1979). A simple sequentially rejective multiple test procedure.

Scandinavian Journal of Statistics, 6(2):65–70.

Höllig, J., Kulbach, C., and Thoma, S. (2022). Tsevo: Evolutionary coun-

terfactual explanations for time series classification. In 2022 21st

IEEE International Conference on Machine Learning and Applications

(ICMLA), pages 29–36.

Ismail, A. A., Gunady, M., Corrada Bravo, H., and Feizi, S. (2020). Bench-

marking deep learning interpretability in time series predictions. In

Advances in Neural Information Processing Systems, volume 33, pages

6441–6452. Curran Associates, Inc.

Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-

A. (2019). Deep learning for time series classification: a review. Data

mining and knowledge discovery, 33(4):917–963.

Kamath, U. and Liu, J. (2021). Explainable Artificial Intelligence: An

Introduction to Interpretable Machine Learning. Springer.

Kampouraki, A., Manis, G., and Nikou, C. (2008). Heartbeat time series

classification with support vector machines. IEEE transactions on

information technology in biomedicine, 13(4):512–518.

169

Karevan, Z. and Suykens, J. A. (2020). Transductive lstm for time-series

prediction: An application to weather forecasting. Neural Networks,

125:1–9.

Kim, B., Khanna, R., and Koyejo, O. O. (2016). Examples are not enough,

learn to criticize! criticism for interpretability. In Lee, D., Sugiyama,

M., Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in

Neural Information Processing Systems, volume 29. Curran Associates,

Inc.

Kim, S., Yi, J., Kim, E., and Yoon, S. (2020). Interpretation of NLP mod-

els through input marginalization. In Proceedings of the 2020 Confer-

ence on Empirical Methods in Natural Language Processing (EMNLP),

pages 3154–3167. Association for Computational Linguistics.

Lang, J., Giese, M. A., Ilg, W., and Otte, S. (2023a). Generating sparse

counterfactual explanations for multivariate time series. In Iliadis,

L., Papaleonidas, A., Angelov, P., and Jayne, C., editors, Artificial

Neural Networks and Machine Learning – ICANN 2023, pages 180–

193, Cham. Springer Nature Switzerland.

Lang, J., Giese, M. A., Ilg, W., and Otte, S. (2023b). Generating sparse

counterfactual explanations for multivariate time series. In Iliadis,

L., Papaleonidas, A., Angelov, P., and Jayne, C., editors, Artificial

Neural Networks and Machine Learning – ICANN 2023, pages 180–

193, Cham. Springer Nature Switzerland.

Laugel, T., Lesot, M.-J., Marsala, C., Renard, X., and Detyniecki, M.

(2019). The dangers of post-hoc interpretability: Unjustified coun-

terfactual explanations. In Proceedings of the 28th International Joint

Conference on Artificial Intelligence, IJCAI’19, page 2801–2807. AAAI

Press.

170

Le, T.-T.-H., Prihatno, A. T., Oktian, Y. E., Kang, H., and Kim, H. (2023).

Exploring local explanation of practical industrial ai applications: A

systematic literature review. Applied Sciences, 13(9):5809.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,

521(7553):436–444.

Lecun, Y., Bottou, L., Bengio, Y., and Ha↵ner, P. (1998). Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324.

Lee, Y.-H., Wei, C.-P., Cheng, T.-H., and Yang, C.-T. (2012). Nearest-

neighbor-based approach to time-series classification. Decision Support

Systems, 53(1):207–217.

Lipton, Z. C. (2018). The mythos of model interpretability: In machine

learning, the concept of interpretability is both important and slippery.

Queue, 16(3):31–57.

Lundberg, S. M. and Lee, S.-I. (2017). A unified approach to interpret-

ing model predictions. In Advances in Neural Information Processing

Systems, volume 30. Curran Associates, Inc.

Masini, R. P., Medeiros, M. C., and Mendes, E. F. (2023). Machine learning

advances for time series forecasting. Journal of Economic Surveys,

37(1):76–111.

Meng, H., Wagner, C., and Triguero, I. (2023). Explaining time series clas-

sifiers through meaningful perturbation and optimisation. Information

Sciences, 645:119334.

Miranda, L. J. V. (2018). PySwarms, a research-toolkit for Particle Swarm

Optimization in Python. Journal of Open Source Software, 3.

171

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Neuberg, L. G. (2003). Causality: models, reasoning, and inference, by

judea pearl, cambridge university press, 2000. Econometric Theory,

19(4):675–685.

Nti, I. K., Adekoya, A. F., Weyori, B. A., and Nyarko-Boateng, O. (2022).

Applications of artificial intelligence in engineering and manufacturing:

a systematic review. Journal of Intelligent Manufacturing, 33(6):1581–

1601.

OpenAI (2023). ChatGPT (Mar 14 version). https://chat.openai.com/

chat. Large language model.

Peters, J., Janzing, D., and Schölkopf, B. (2017). Elements of causal infer-

ence: foundations and learning algorithms. The MIT Press.

Poyiadzi, R., Sokol, K., Santos-Rodriguez, R., De Bie, T., and Flach, P.

(2020). Face: Feasible and actionable counterfactual explanations. In

Proceedings of the AAAI/ACM Conference on AI, Ethics, and Soci-

ety, AIES ’20, page 344–350, New York, NY, USA. Association for

Computing Machinery.

Qiu, L., Yang, Y., Cao, C. C., Liu, J., Zheng, Y., Ngai, H. H. T., Hsiao,

J., and Chen, L. (2021). Resisting Out-Of-Distribution data problem

in perturbation of XAI. arXiv preprint arXiv:2107.14000.

R. Fernández, R., Mart́ın de Diego, I., M. Moguerza, J., and Herrera, F.

(2022). Explanation sets: A general framework for machine learning

explainability. Information Sciences, 617:464–481.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should I trust

you?” explaining the predictions of any classifier. In Proceedings of

172

https://chat.openai.com/chat
https://chat.openai.com/chat

the 22nd ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, pages 1135–1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). Anchors: High-

precision model-agnostic explanations. In Proceedings of the Thirty-

Second AAAI Conference on Artificial Intelligence.

Roberts, H., Babuta, A., Morley, J., Thomas, C., Taddeo, M., and Floridi,

L. (2023). Artificial intelligence regulation in the united kingdom:

A path to good governance and global leadership? Internet Policy

Review, 12(2):1–31.

Rosafalco, L., Manzoni, A., Mariani, S., and Corigliano, A. (2020). Fully

convolutional networks for structural health monitoring through mul-

tivariate time series classification. Advanced Modeling and Simulation

in Engineering Sciences, 7(1):38.

Rudin, C. (2019). Stop explaining black box machine learning models for

high stakes decisions and use interpretable models instead. Nature

Machine Intelligence, 1(5):206–215.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Ba-

tra, D. (2017a). Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 618–626.

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., and Ba-

tra, D. (2017b). Grad-cam: Visual explanations from deep networks

via gradient-based localization. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV).

Serradilla, O., Zugasti, E., Rodriguez, J., and Zurutuza, U. (2022). Deep

173

learning models for predictive maintenance: a survey, comparison,

challenges and prospects. Applied Intelligence, 52(10):10934–10964.

Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. (2020). Financial time

series forecasting with deep learning : A systematic literature review:

2005–2019. Applied Soft Computing, 90:106181.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). Learning important

features through propagating activation di↵erences. In Precup, D. and

Teh, Y. W., editors, The 34th International Conference on Machine

Learning, volume 70 of Proceedings of Machine Learning Research,

pages 3145–3153. PMLR.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep inside convolu-

tional networks: Visualising image classification models and saliency

maps. In In Workshop at International Conference on Learning Rep-

resentations.

Situ, X., Zukerman, I., Paris, C., Maruf, S., and Ha↵ari, G. (2021). Learn-

ing to explain: Generating stable explanations fast. In Proceedings of

the 59th Annual Meeting of the Association for Computational Lin-

guistics and the 11th International Joint Conference on Natural Lan-

guage Processing (Volume 1: Long Papers), pages 5340–5355, Online.

Association for Computational Linguistics.

Slack, D., Hilgard, A., Singh, S., and Lakkaraju, H. (2021). Reliable post

hoc explanations: Modeling uncertainty in explainability. In Advances

in Neural Information Processing Systems, volume 34, pages 9391–

9404. Curran Associates, Inc.

Smilkov, D., Thorat, N., Kim, B., Viégas, F., and Wattenberg, M.

(2017). Smoothgrad: removing noise by adding noise. arXiv preprint

arXiv:1706.03825.

174

Sturmfels, P., Lundberg, S., and Lee, S.-I. (2020). Visualizing the impact

of feature attribution baselines. Distill, 5(1):e22.

Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic attribution for

deep networks. In Precup, D. and Teh, Y. W., editors, The 34th Inter-

national Conference on Machine Learning, volume 70 of Proceedings

of Machine Learning Research, pages 3319–3328. PMLR.

Tadapaneni, N. R. (2019). Artificial intelligence in finance and investments.

International Journal of Innovative Research in Science, Engineering

and Technology, 9(5).

Vafa, K., Deng, Y., Blei, D., and Rush, A. (2021). Rationales for sequen-

tial predictions. In Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, pages 10314–10332, Online

and Punta Cana, Dominican Republic. Association for Computational

Linguistics.

van der Waa, J., Nieuwburg, E., Cremers, A., and Neerincx, M. (2021).

Evaluating xai: A comparison of rule-based and example-based expla-

nations. Artificial Intelligence, 291:103404.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, L. u., and Polosukhin, I. (2017). Attention is all you

need. In Advances in Neural Information Processing Systems, vol-

ume 30. Curran Associates, Inc.

Visani, G., Bagli, E., and Chesani, F. (2020). Optilime: Optimized lime

explanations for diagnostic computer algorithms. Proceedings of the

CIKM 2020 Workshops, abs/2006.05714.

Wachter, S., Mittelstadt, B., and Russell, C. (2017). Counterfactual ex-

planations without opening the black box: Automated decisions and

175

the gdpr. Harvard Journal of Law & Technology (Harvard JOLT),

31(2):841–888.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. (2016).

Learning deep features for discriminative localization. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

Zhou, Z., Hooker, G., and Wang, F. (2021). S-lime: Stabilized-lime for

model explanation. In Proceedings of the 27th ACM SIGKDD Con-

ference on Knowledge Discovery and Data Mining, KDD ’21, page

2429–2438, New York, NY, USA. Association for Computing Machin-

ery.

176

