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Executive Summary

Monopiles support the majority of Offshore Wind Turbines (OWTs) in the North

Sea due to their simplicity in design, installation, and fabrication. However, as

demand outpaces research, modern practices have resorted to utilising offshore

design methodologies from the oil and gas industry. This has lead to conservative

designs, unnecessary costs, and uncertain structural longevity. To add, the indus-

try is moving towards larger turbines, which are dynamically sensitive structures

that are subject to millions of irregular loading cycles from wind and wave excita-

tion. This can cause significant damage to the soil-pile system over time, which is

often mis-represented in beam-spring models for monopiles with low slenderness

ratios.

Many wind turbines are required in unique soil conditions for a given offshore

wind array, therefore preliminary design estimates from in-situ ground investi-

gations would be advantageous. Chapter 3 develops and analyses a simplified

beam-spring element model that can be used to estimate the lateral response of

a monopile using Cone Penetration Test (CPT) data, which is often available at

the early stages of offshore projects. The multi-spring model is compared with

site tests of scaled laterally loaded monopiles in sand, and captures pile head

deflections within the anticipated operational range of a commissioned OWT.

Furthermore, many irregular load cycles can cause significant damage to the

soil-pile system over time. As the industry moves towards larger turbines, the dy-

namic soil-structure interaction becomes increasingly more complex. The overall

structural flexibility increases and resonance becomes likely, accelerating the rate

of substructure damage accumulation. Chapter 4 details the development of a

robust and efficient framework for a dynamic nonlinear beam-spring model that

facilitates soil damping by means of discrete hysteretic springs. Particular atten-

tion is geared towards reviewing time marching algorithms for dynamic analysis

and interrogating different definitions of hysteresis models. Such a model ensures

that empirically derived degradation models can be applied to the soil spring ele-

ments with confidence, which would ultimately serve as a strong design tool when

many simulations are of importance.
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Finally, Chapter 5 investigates the suitability of the pseudostatic approach for

the seismic analysis of piles in layered soils by means of experimental data from

centrifuge tests at 60g. Various theoretical approaches are reviewed, including

load characterisation, layering effects, and group efficiency modifiers. Bending

moment profiles are compared with the experimental data, and the influence of

the various parameters are discussed. The pseudostatic approach is found to be a

suitable method for estimating the seismic response of group piles in layered soils,

however, the damping ratio used to identify the idealised inertial load must be

considered carefully.
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Chapter 1

Introduction

Fossil fuel energy has spearheaded technological advancements in transportation,

agriculture and communication due to its high energy density and reliability. The

lucrative markets and well-established harvesting infrastructure of oil, coal, and

natural gas have been the economical backbone for developing countries in recent

decades. However, the growing demand has led to a rapid depletion of resources,

extreme environmental impacts, and geopolitical instability. Even as convenient

sources are expiring, discovering new deposits will likely still be at the top of

the political agenda, leading to less economically-viable harvesting practices in

environmentally sensitive areas. Fuel prices are likely to surge, and the need

for an alternative, greener means of producing energy will therefore always be

inevitable.

The challenges imposed on sustainable energy solutions include competing with

the financial viability of coal mining, oil drilling, and fracking. Achieving this will

require innovative solutions across all disciplines, from cradle to grave, to catalyse

investment and instil universal confidence. Wind power in Europe is emerging

as a leader in the renewable energy sector due to the fruitful coasts of the North

Sea and technological advancements in offshore wind infrastructure. However, the

foundation design and maintenance processes have much room for improvement,

and are crucial to the overall logistics of a wind farm project. This thesis will aim

to address these issues by exploring numerical modelling practices for pile soil-

structure interaction by significantly enhancing well-established methodologies.

1.1 Sustainable energy solutions

The environmental impacts of climate change are far-reaching and multifaceted,

and will require a combined effort from governments, businesses and individuals
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around the world to reduce harmful emissions. International cooperation is often

motivated by economical incentives to fulfil obligations, therefore many treaties

and agreements have been held to ratify global regulations and promote ambi-

tious commitments. As a product, domestic and transnational political processes

play out in the interest of mitigating the impact of climate change, leading to

large funding towards greener energy infrastructure. As an example, the Paris

Agreement mobilised financial commitments towards both nuclear and offshore

wind from the UK government to fulfil their nationally determined contribution

targets, which include net zero emissions by 2050 (UNFCCC, 2015).

Because of their simple construction and energy harvesting methods, Offshore

Wind Turbines (OWTs) provide quick energy returns. The consequence of their

downtime is minimal, and they benefit from the success of their onshore counter-

part. Nuclear fission, despite also being a strong contributor to sustainable energy,

imposes extensive construction and planning processes that demand substantial

investments. These financial commitments may present challenges to a nation’s

energy security. Additionally, nuclear power requires significant infrastructure and

commissioning time that can take decades to complete. Although nuclear power

plants have a lifespan of up to 60 years and OWTs have a lifespan of 20-30 years,

both sources will play an important role in combating the climate crisis and low-

ering carbon emissions. It is clear that nuclear energy is a long-term investment,

whereas offshore wind is a short-term solution to energy demand.

Hydrogen is abundant and emission-free at the point of use, making it a promis-

ing solution. However, due to the energy-intensive process of extracting hydrogen

from hydrogen-rich sources, its widespread adoption is restricted. One potential

solution is to leverage well-established sustainable energy sources, like offshore

wind and nuclear, to offset the high energy demands of hydrogen production.

This approach can enhance its viability, catalyse investment, and foster a more

competitive market. While hydrogen may not address immediate economic con-

cerns due to its relatively early stage of development, its long-term potential for

clean and sustainable energy is evident. Beyond the scope of current climate ac-

tion plans, hydrogen power could emerge as an effective and sustainable energy

source. However, in the interim, the offshore wind sector may play a crucial role

by offering a practical solution to the broader climate crisis. Its fast energy re-

turns and scalability provide immediate benefits for combatting climate change,

while also laying the foundation for more ambitious energy infrastructure, such as

hydrogen generation, in the long term.
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1.2 Wind energy in the UK and Europe

Onshore wind farms have successfully established themselves as a low-cost source

of renewable energy, but outstanding issues of visual landscape pollution and lim-

ited space are ever-present. As turbine and wind farm sizes increase to meet

demand, there are fewer suitable land areas for installation. For this reason, off-

shore wind farms are becoming more attractive, as they are less restricted by

socially-imposed size restrictions on rotor diameter and array population.

The North Sea has significant potential for generating green energy from OWTs

due to its low water depth average of 30 to 40 meters. Neighbouring countries are

already exploiting these shallow coastal environments in recent decades. Figure

1.1 provides an overview of the total capacity and the number of new onshore and

offshore installations in Europe as of 2021.

Europe's OWT Installations 2021

2645

2104

1925

1400 1344
1192 1139

754 750
676 671 660

359 338

1402

U
K

Sw
ed

en

G
er

m
an

y

Tur
ke

y

N
et

he
rla

nd
s

Fra
nc

e

R
us

si
a

D
en

m
ar

k

Spa
in

N
or

w
ay

Fin
la
nd

Pol
an

d

U
kr

ai
ne

G
re

ec
e

O
th

er
s

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r 

o
f 
In

s
ta

lla
ti
o
n
s

Offshore

Onshore

(a) Number of onshore and offshore installations per country as of 2021

Europe's Wind Capacity 2021

61

28 26.7

19

12 11 11
8 7 6 6 5 5 4 4.03

18

G
er

m
an

y

Spa
in U

K

Fra
nc

e

Sw
ed

en
Ita

ly

Tur
ke

y

N
et

he
rla

nd
s

D
en

m
ar

k

Pol
an

d

Por
tu

ga
l

Bel
gi
um

N
or

w
ay

G
re

ec
e

Ire
la
nd

O
th

er
s

0

10

20

30

40

50

60

70

C
a
p
a
c
it
y
 (

G
W

)

Offshore

Onshore

(b) Capacity (GW) of onshore and offshore wind turbine generators
per country as of 2021

Figure 1.1: Onshore and offshore statistic for different countries. Data provided
by Wind Europe (Wind Europe, 2021b)
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Figure 1.1 shows the UK’s shift from onshore to offshore wind farms, driven in

part by significant investments made to meet Paris Agreement targets and limited

onshore real estate. In 2022, offshore wind surpassed onshore wind in capacity,

contributing 14% and 12% to the UK’s total energy mix, respectively (Wind Eu-

rope, 2021a). The feasibility of offshore units was already well-established due

to the success of their onshore counterparts. However, ambitious wind capacity

targets naturally lead to significantly larger wind harvesting units that introduce

unprecedented challenges of their own. Figure 1.2 demonstrates the scale of com-

missioned OWT hubs in 2021.

Figure 1.2: Image demonstrating the scale of the Nacelle for 2021’s GE Haliade-X
OWT (source: greentechmedia.com)

1.3 Offshore wind infrastructure

Offshore environments have permitted larger rotor diameters and more OWT units

to be commissioned, overcoming the size constraints imposed by public concerns

over visual pollution of onshore wind farms (see Figure 1.3). The increase in size

is driven by demand, but the logistical challenges of offshore installations result in

their units costing two to three times more than onshore wind turbines, depending

on location (Wu et al., 2019).
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Figure 1.3: Evolution of OWT sizes and capacities over 30 years (source:
robeco.com)

The North Sea has the potential to generate 120GW of energy, over twice

the UK’s demand, if one-third of its shallower regions are occupied by OWTs

(MacKay, 2008). However, shallow sites are becoming increasingly more crowded

and expedite the development of OWTs in deeper oceans. The harsh weather

conditions impose horizontal loads that exceed what is expected in current design

practices (API, 2014; DNV, 2021). The performance and longevity of OWTs

under such conditions is therefore uncertain (Burd et al., 2017). Foundations can

constitute up to 15% of the unit’s cost in shallower waters and up to 35% in deeper

waters (Kallehave et al., 2015). Therefore, the selection of foundation type is

crucial for exploiting offshore wind. The water depth, soil stratum and turbine size

have a significant influence on most type of substructures. Common foundations

are illustrated in Figure 1.4, including both fixed and floating foundation types.

A brief description of each type of foundation is given below.

Figure 1.4: OWT foundation types and their percentage in Europe (Wind Europe,
2021a)

Gravity Base

Gravity-based foundations are reinforced concrete caissons that rely on the self-

weight of the substructure to resist extreme overturning moments imposed by
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wind and wave loads applied to the OWT. Due to their simple design, shallow

requirements, and well-understood physical behaviour, gravity-based foundations

were adopted by early offshore wind farms, such as the 0.5MW turbines used in

Vindeby, 1991 (Figure 1.3). Although commonly used in the onshore wind indus-

try, their popularity in offshore wind farms quickly diminished once alternative

methods were considered more industrially scalable for coastal conditions (Bhat-

tacharya, 2019; Byrne & Houlsby, 2003). They are still widely used for onshore

environments and are often combined with pile groups.

Suction Bucket

A suction bucket consists of a hollow open-bottom cylinder that self-embeds by

generating a pressure differential within a cavity between the seabed and the

bucket by pumping out seawater. This unique installation method results in an

exceptionally cost-effective fixity, but its effectiveness is highly dependent on the

type of soil, typically requiring soft clay, although it is not limited to such condi-

tions (Ibsen et al., 2005; Remmers et al., 2019). The design and analysis process

is similar to the monopile, where a suitable diameter and embedment depth are

defined (Grecu et al., 2021; Ibsen et al., 2005). Suction buckets can also serve as

an anchorage point for floating OWTs (Wu et al., 2019).

Monopile

Monopiles are steel tubular piles driven or vibrated into the seabed and are in-

stalled in water depths ranging between 20-40m. They are designed to have suffi-

cient diameters and embedment lengths to ensure horizontal stability from lateral

earth pressures. Monopiles can be geometrically quantified through a slenderness

ratio (embedment depth over diameter) which is typically less than 10 (Doherty &

Gavin, 2011). Recent advancements in infrastructure have led to slenderness ra-

tios as low as 3 (Burd et al., 2020b; Byrne et al., 2015, 2020a). The manufacturing

process of a steel tubular pile is simple and reproducible, and the on-site assembly

is manageable on a large scale. As a consequence, it has become a popular choice

for large offshore wind farms worldwide and supports 81% of OWTs in Europe as

of 2020 (Figure 1.4).

Tripod/Jacket

A tripod foundation consists of a submarine-jacketed steel structure supported

by three fixed points arranged in a triangular configuration (also known as a full
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jacket, see Figure 1.4). The upper tower loads transfer stresses to the foundation

fixities, which can be either steel piles or suction buckets, each with their own

installation challenges and site requirements (Sparrevik, 2019). The environmental

loads are transferred through the jacketed structure to the piles/buckets, where

resistance is generated through axial push-pull action. The tripod truss or space-

frame jacket structure is prefabricated onshore and transported on-site, making it

economical in terms of steel consumption. However; the storage, installation and

logistical processes are expensive and heavily influence project costs.

Floating

The economic feasibility of bottom-fixed foundations becomes less practical in

deeper environments due to the challenges associated with the required material

and installation processes. Supporting OWTs on floating structures becomes more

viable beyond 50 m depths, which presents complex problems in limiting pitch,

roll, and heave motions of the superstructure during intense storm events (Castro-

Santos & Diaz-Casas, 2016). The type of anchorage required varies depending on

the soil and climate conditions, which can include pile anchors, suction buckets,

and torpedo anchors (Wu et al., 2019). Although uncommon in the offshore in-

dustry to date (see Figure 1.4), floating wind turbines may become increasingly

more important as shallow coastal capacities reduce and the industry expands to

deeper oceans.

When considering the cost and construction differences between floating and

bottom-fixed OWTs, it is advisable to use bottom-fixed foundations whenever

possible (Byrne & Houlsby, 2003). With the increasing demand for renewable

energy and the anticipation of more wind farms with larger wind turbines, spe-

cific infrastructure requirements becomes more important. Foundation design is

therefore a crucial aspect to optimising the wind harvesting process, and is the

reason why monopile foundations have a demonstrable presence in the European

wind industry (Figure 1.4). Their simplicity in design, fabrication and installa-

tion should be exploited, yet do not come without their own design challenges.

Demand has outpaced research, leading to a questionable re-appropriation of tra-

ditional pile design practices as a means to keep up (API, 2014; Doherty & Gavin,

2011; Murchinson & O’Neill, 1986; Reese et al., 1974). This has led to uncertain

lifespans and over-conservative capacity designs in currently-commissioned OWTs.

This can be optimised with an improved representation of the soil-structure in-

teraction and other geotechnical challenges (Andersen, 2015; Byrne et al., 2017;

Lehane & Suryasentana, 2014; Zhang et al., 2016). The design process must con-

sider the environmental loads, wind turbine type, and soil-structure interaction
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for optimal design outputs, as these factors will also have an influence on the lo-

gistical and economical implications of the project accordingly (Arany et al., 2017;

Bhattacharya, 2019; Lehane et al., 2020b; Randolph et al., 2009).

1.4 Monopile design challenges

Monopiles resist lateral wind and wave loads by mobilising horizontal earth pres-

sures in competent near-surface soils. The diameter and embedment length of

the monopile are sized to restrict ground line deflections to serviceable tolerances,

while the wall thickness is selected to resist bending and material buckling with-

out compromising efficient fabrication methods. Capacity checks are generally

performed using a static analysis, where the nonlinearity of the soil-structure in-

teraction is represented using semi-empirical methods to estimate the monopile’s

horizontal or vertical capacity. The applied load is designed to represent different

combinations of harsh wind conditions and sea states (Arany et al., 2017).

Serviceability Limit State (SLS) design checks require that the foundation tilt

remains within rotation limits at the ground line (0.25° with 0.25° allowable for

installation error (DNV, 2021)), including a modal frequency analysis to determine

the natural frequency of the OWT (Carswell et al., 2016; Darvishi-Alamouti et al.,

2017; Prendergast et al., 2013). The designed natural frequency must avoid the

frequencies expected from external loads in order to avoid resonance, otherwise

excessive deflections occur and can result in an increased rate of accumulative

damage to the soil-structure interaction (Andersen, 2015; Kaynia et al., 2015;

Leblanc et al., 2010b).

Design procedures for OWTs must also factor in the longevity of the system

to ensure a safe and functional operation throughout its lifespan. However, the

design challenges for OWT durability and serviceability are compounded when

considering the evolving properties of the soil-structure interaction over time. Af-

ter many load cycles, monopiles may experience reduced lateral or horizontal ca-

pacity (Abadie et al., 2019; Damgaard et al., 2014; Lehane et al., 2020b), and

the natural frequency of the turbine may shift towards external excitation fre-

quencies (Darvishi-Alamouti et al., 2017; Kaynia et al., 2015). Additionally, the

accumulated rotation may exceed turbine tilt limits specified by the manufacturer,

affecting the wind harvesting efficiency. Thus, it is critical to consider substructure

degradation at the design stage and monitor it throughout operation

Geotechnical phenomena, such as near-surface gaps and ratcheting, also pose

common challenges for submerged piles in general, as this can affect the flexural

rigidity of the system (Gerolymos & Gazetas, 2005c; Houlsby et al., 2017; Pren-
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dergast et al., 2013; Williams et al., 2021). Wind and wave load misalignment

complicates these matters further (Mayoral et al., 2016; Pestana et al., 2000).

Intense storm events can also lead to changes in pore pressure (Andersen, 2015).

Large moments are expected due to longer turbine blades and deeper ocean en-

vironments, requiring stiffer pile cross-sections and lower embedment-diameter

ratios (L/D). This, in turn, leads to alternative monopile failure mechanisms and

additional mobilisation of soil resistances that must be considered in design mod-

els (Byrne et al., 2017; Fu et al., 2020; Murphy et al., 2018; Thieken et al., 2015;

Van Impe & Wang, 2020; Zhang & Andersen, 2019).

1.5 Thesis objectives and content overview

This thesis explores the analysis of monopile foundations for OWTs, focusing

on the response to lateral loads, dynamic loading conditions, and seismic events.

Table 1.1 provides a summary of each chapter’s focus and the specific contributions

to the field of offshore wind and geotechnical engineering. Chapter 2 reviews

the historical development of pile analysis and its influence on modern monopile

design practices. Chapters 3 and 4 detail the development of advanced monopile

beam-spring models for lateral static and lateral dynamic loading, respectively.

Chapter 5 presents insights from centrifuge tests, shedding light on the seismic

behaviour of pile foundations in layered soils. Finally, Chapter 6 summarises the

findings from the preceding chapters, discussing their implications, limitations,

and future directions. For each chapter, the work of collaborators is outlined, and

the publication status is described.

This thesis is presented as a hybrid format of thesis and paper publications,

whereby each chapter is either a standalone paper or derived from one.

Table 1.1: Thesis chapter summary and contributions

Chapter 2 This chapter provides an overview of monopile analysis and

general pile modelling for lateral loads. The purpose of this

chapter is to establish the evolution of design and modelling

methodologies for laterally loaded piles and how it has influ-

enced monopile design practices. The literature review will

outline the course of research presented in subsequent chap-

ters of this thesis.

Chapter Contribution

Continued on next page
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Table 1.1: Thesis chapter summary and contributions (Continued)

Chapter 3 This chapter details the development and analysis of a multi-

spring monopile model for lateral monotonic loading informed

with in-situ site investigation methods. The method modi-

fies the traditional beam-spring model for piles to incorpo-

rate additional soil reactions expected from large-diameter

monopiles, and the model is validated against pile pushover

field test reports performed by Murphy et al. (2018) and

McAdam et al. (2020).

This work included a collaboration with Prof. Ken Gavin at

Delft University of Technology, who provided insights to axial

pile analysis and interpretation of cone penetration tests. The

contributions to this chapter are currently under review for

publication towards the Ocean Engineering Journal.

Chapter 4 The purpose of this chapter is to develop a robust and efficient

dynamic modelling framework that facilitates irregular cyclic

loading conditions for OWTs. This chapter will review differ-

ent time marching algorithms and hysteresis models to facil-

itate the complexities associated with dynamic soil-structure

interaction. Computational efficiency is important, as many

time-domain simulations are required in design for many load-

ing conditions expected in the offshore environment. An ap-

propriate time marching algorithm and nonlinear spring model

is identified and trialled by applying a realistic load history in-

formed from wind and wave spectra typically used in the de-

sign process of OWTs. Features of the model’s performance

are discussed, and future work is outlined.

The content of this chapter is pending submission towards the

Journal of Sound and Vibration.

Chapter Contribution

Continued on next page
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Table 1.1: Thesis chapter summary and contributions (Continued)

Chapter 5 This chapter investigates the performance of the pseudostatic

approach for seismic analysis of pile foundations in layered

soils using centrifuge tests performed by Garala (2020) at

Cambridge University. Single and group pile behaviour is ex-

amined in a layered soil profile of soft clay on top of dense

sand, and are modelled using the American Petroleum Insti-

tute (API) reaction curves. Different modelling approaches

for the soil-structure interaction are compared, including al-

ternative approaches to idealising inertial loads and layered

soil profiles. The results are discussed, and the implications

for seismic design are outlined.

This work included a collaboration with Dr Thejesh Garala

and Prof. Gopal Madabhushi at Cambridge University, who

supplied the centrifuge data. All other aspects of the research

were conducted by the author, including model development,

data analysis, and result discussion. This chapter is published

in Soil Dynamics and Earthquake Engineering (Tott-Buswell

et al., 2022).

Chapter 6 The findings of each chapter are summarised and discussed in

the context of the broader research goals. The limitations of

the research are outlined, and future work is proposed.

Chapter Contribution
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Chapter 2

Literature review

The rapid growth of the offshore wind industry has lead to a reappropriation of

existing pile modelling methodologies that are well established in other industrial

fields such as oil and gas (API, 2014; DNV, 2021). However, the unique charac-

teristics of OWTs, such as the high horizontal to vertical load ratio configuration,

have put these methodologies under heavy scrutiny. This chapter reviews the cur-

rent modelling techniques available in literature and industrial design codes. A

brief introduction to the design philosophy of monopile foundations is presented,

highlighting general modelling techniques for the monotonic lateral response and

reviewing the efficacy when applied to typical monopile geometries. Then, the

cyclic and dynamic behaviour of OWTs will be reviewed and the various mod-

elling techniques available in literature.

The Ultimate Limit State (ULS) design philosophy determines the maximum

load required to cause structural collapse, and reviews both the structural and

geotechnical capacity of the OWT system. The Serviceability Limit State (SLS)

criteria limits the pile’s ground line rotations such that wind harvesting routines

are optimal (API, 2014; DNV, 2021). Calculating the natural frequency of the

OWT and monopile structure is also necessary to avoid resonance from environ-

mental and rotor excitations (Arany et al., 2017). However, soil can degrade

over time due to numerous load cycles, resulting in permanent pile rotation and

a change in soil properties (Andersen, 2015; Houlsby et al., 2017; Niemunis et

al., 2005). Fatigue Limit State (FLS) design checks are therefore required. The

natural frequency can change over its operational lifespan (Carswell et al., 2016;

Kaynia et al., 2015; Prendergast et al., 2013), meaning the loading conditions

for resonance may no longer align with initial design parameters. New resonance

conditions may occur that are more common, further accelerating accumulated

rotations and soil strength degradation. Ultimately, these factors may decrease

the calculated capacity established during initial ULS design estimates (Lo Presti
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et al., 2000; Long & Vanneste, 1994; Rascol, 2009).

Designing for the capacity, serviceability, and longevity of OWTs is therefore

an overlapping and multifaceted challenge, and each regard is summarised in the

following sections, including discussions about their influence on one another.

2.1 Monotonic pile modelling

The ULS design philosophy against horizontal loading ensures that the maximum

load capacity (i.e. the load that causes collapse) exceeds the maximum antici-

pated load during operation. This is determined by computing combinations of

load cases that idealise complex load histories expected in the offshore environ-

ment via detailed environmental survey (Arany et al., 2017; Bhattacharya, 2019).

According to design codes, the capacity of the foundation is determined as the

minimum of either the load that causes (i) soil failure or (ii) pile failure via plastic

hinge in the foundation (DNV, 2021). Typically, monopiles are designed to remain

within the steel’s elastic range of deformation to prevent permanent tilt due to

the material yielding. The soil’s bearing capacity is therefore considered as the

principle design parameter under lateral loading.

2.1.1 Lateral bearing capacity of piles

The lateral bearing capacity of the mobilised soil is an important aspect of the

design and analysis of piles. Piles under large monotonic horizontal loads develop

a passive failure wedge that forms near the surface as shown in Figure 2.1. At

a certain depth (the transition depth, zr), the failure mode of the soil occurs by

continued plastic flow around the pile (Figure 2.1c), which assumes only horizontal

soil mobilisation (Broms, 1964a). The local capacity of a soil layer pu therefore

depends on the depth from the surface z, as the failure mode can vary.
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Figure 2.1: (a) Pile failure under horizontal load (b) 3D illustration of passive
wedge failure mechanism (c) section view of flow-around failure mechanism

Broms (1964b) proposed that the lateral capacity of a circular pile Pu in sands

can be determined using the simple expression described in Equation 2.1.

Pu = 3Kpγ
′LD (2.1)

where Kp is the passive earth pressure coefficient and γ′ is the effective unit weight

of the soil. Tests results indicate that this method underestimates the lateral

capacities by approximately 30% (Poulos & Davis, 1980). This is likely due to

Broms (1964b) assuming that the lateral pressure exerted by the soil acts only

on the side opposite the the applied load, and applying a point load at the pile

tip to ensure moment equilibrium. This is not representative of the true physical

behaviour of a laterally loaded pile.

For circular piles in cohesive soils, Broms (1964a) assumed that the ultimate

lateral resistance is 9cuD, which decreases based on the deformation modes of the

pile. This value was derived from empirical analysis rather than theoretical justifi-

cation, but was later confirmed by Randolph and Houlsby (1984) with theoretical

analyses using plasticity-bound theorems for upper- and lower-bound solutions

(shown in Figure 2.1c). Randolph and Houlsby (1984) suggested an average ulti-

mate resistance of 10.5cuD for cohesive soils, with the lower bound limit of 9.14cuD

(for a perfectly smooth pile) and an upper limit of 11.94cuD (for a rough pile).

A perfectly smooth pile is in close agreement with Broms (1964a), but assumes a
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full flow-around mechanism along the depth of the pile with no wedge-type mo-

bilisation. This is only a valid approximation for laterally loaded piles with high

L/D ratios (≥ 35). However, as L/D decreases, the flexural rigidity of the pile

influences the mobilisation of the soil (Fan & Long, 2005; Murphy et al., 2018;

Poulos & Hull, 1989). The soil profiles are also assumed to be homogenous.

Hansen (1961) proposed a method to discretise the stratum into layers and

assume a lateral earth pressure on both sides of the pile, as opposed to Broms

(1964b). Layering enabled independent control of different layer’s failure mech-

anisms expected at certain depths z (Figure 2.1). The transition depth zr was

found by equating shallow and deep bearing capacities, which were defined using

two different lateral soil pressure coefficients (Hansen, 1961). Assuming the pile is

rigid and the rotation point is known, the maximum capacity was estimated and

showed agreement to site tests.

A rigid pile is an appropriate assumption for low L/D piles (such as for modern

monopiles, where L/D ≤ 4) due to the limited pile bending expected when lat-

erally loaded (Poulos, 1971). However, the bending stiffness and flexural rigidity

of a pile has a marked effect on the pile-soil interaction (Ashford & Juirnarongrit,

2003; Poulos & Davis, 1980). This suggests that defining comprehensive ana-

lytical expressions for the lateral capacity of a pile becomes difficult when the

geometry of a pile is neither very stocky nor exceedingly slender. Additionally,

the lateral response prior to reaching capacity is an equally important parameter

for monopiles supporting OWTs, as the maximum load is seldom reached during

operation (Arany et al., 2015).

2.1.2 The p-y method

It is beneficial if the monopile modelling procedure is as simplified as possible to

enable fast updates to the design process, offer quick tendering at the early design

phase, and reduce computational spend (Arany et al., 2017; Kallehave et al., 2015).

It is this reason why the most popular method for the analysis of laterally loaded

piles in the offshore industry is the p-y method, which was adopted in modern

design codes such as API (2014) and DNV (2021). The soil-structure interaction

is idealised to one horizontal dimension, utilising elastic beam elements to model

the pile and nonlinear springs as soil elements to encapsulate discrete layers in

the stratum. The springs are characterised by modelling the lateral soil pressure,

p, as a nonlinear function of the lateral displacement of the local pile section, y.

The springs are positioned along the embedment of the pile to characterise the

appropriate layer. This is similar to the methodology proposed by Hansen (1961)
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for computing the lateral bearing capacity, however the flexibility of the pile and

lateral response is now considered due to the elastic beam elements. Figure 2.2

demonstrates a typical beam-spring configuration with a point load and moment

applied at the pile head. Note that each p-y spring has a unique function.

Figure 2.2: (a) p-y model under horizontal load at the pile head and (b) a typical
p-y function and important parameters

This method is based on the Winkler approach, which states that the pressure

exerted by the soil on a loaded beam at a given point is proportional to the deflec-

tion of the beam and is independent of the response of adjacent springs (Winkler,

1867). Hence, the pile-soil interaction is represented by beams supported by non-

linear springs of bespoke material property values to encapsulate the soil layer,

and adjacent springs are assumed uncoupled. The governing Winkler equation for

a laterally loaded pile (using Euler-Bernoulli beam theory (Gupta & Basu, 2018))

is shown in Equation 2.2.

EpIp

(
d4y

dz4

)
+ Epy(y) · y = 0 (2.2)

where EpIp is the bending stiffness of the pile (Ep is Young’s modulus of pile

and Ip is second moment of area of pile) and Epy(y) is the stiffness of the spring

as a function of y. For discrete systems, the continuous equation described in

Equation 2.2 can be discretised using the Direct Stiffness Method. More details

can be found in Appendix A. The modulus of subgrade reaction is calculated as

Epy = p/y, and is illustrated in Figure 2.2b. The initial modulus of subgrade
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reaction Epy,0 is therefore the derivative of the soil reaction p evaluated at y = 0

(i.e Epy,0 = p′(0)), but is not limited to this definition (Biot, 1937; Kallehave et al.,

2012; Vesic, 1961). Table 2.1 summarises the parameters associated with subgrade

reaction theory.

Table 2.1: Summary of subgrade reaction theory parameters

Description Symbol Definition Dim.

Pile lateral deflection y − L

Soil resistance per unit length p p = f(y) F/L

Soil pressure P P = p/D F/L2

Modulus of subgrade reaction Epy Epy = p/y F/L2

Initial mod. of subgrade reaction Epy,0 Epy,0 = f ′(0) F/L2

Coefficient of subgrade reaction ksr ksr = P/y, ksr = Epy/D F/L3

Number of spring elements Ns − −
Spring spacing ∆L ∆L = L/Ns + 1 L

Spring force F F = p∆L F

Soil spring stiffness k k = F/y, k = Epy∆L F/L

Initial soil spring stiffness k0 k0 = Epy,0∆L F/L

Tangent spring stiffness kT kT = f ′(y)∆L F/L

Note the distinction between the dimensions of the modulus of subgrade re-

action and the coefficient of subgrade reaction (Epy and ksr, respectively). The

former is a pressure, whereas the latter is the modulus divided by the pile diam-

eter. Epy may also be considered as the secant stiffness of the p-y spring element

(as shown in Figure 2.2).

p-y functions are derived from empirical or semi-empirical methods (Cox et al.,

1974; Jeanjean et al., 2011; Li et al., 2014; Murchinson & O’Neill, 1986; Reese et

al., 1974; Suryasentana & Lehane, 2016), and encapsulate both the lateral bearing

capacity and initial lateral stiffness of the discrete layer as a function of depth, as

shown in Figure 2.2b. As noted in Section 2.1.1, the failure mechanism of the pile-

soil interaction varies along the depth, which must be included in models for pile

ULS design. This imposes an important challenge for pile models of the Winkler-

type, as the depth at which the failure mode transitions from a shallow wedge-

type mechanism to a deep flow-around mechanism will influence the maximum

value of the p-y function. Nevertheless, the shortcomings of the previous holistic

lateral capacity modelling approaches such as those proposed by Broms (1964b),

Hansen (1961), and Randolph (1981) are addressed with the p-y model, as non-

homogenous soil strata and various L/D ratios can be considered within this

model.
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The following sections will provide a description of common p-y functions as

well as modifications to facilitate certain soil-structure configurations.

API Sand

The p-y function proposed by Reese et al. (1974) for sands is defined by the

hyperbolic tangent relationship described in Equation 2.3, and is illustrated in

Figure 2.3.

p = Apu tanh

(
ksrz

Apu
y

)
(2.3)

Figure 2.3: Hyperbolic p-y function for API sand

where A is an empirical correction factor and is described as A = (3− 0.8z/D) ≥
0.9 (Reese et al., 1975). ksr is the depth-independent coefficient of subgrade re-

action (determined from Figure 2.4b or linear interpolation using Table 2.3), and

z is the depth of soil elements in the sand layer. For cyclic loading conditions, a

constant value of A = 0.9 (independent of depth) is recommended by API (2014).

pu is the ultimate lateral resistance of the sand element and is described using

the following expressions:

pu = min

(C1z + C2D)σ′
v Shallow failure, pus

C3Dσ
′
v Deep failure, pud

(2.4)

where C1, C2 and C3 are dimensionless constants which are functions of the angle

of internal friction ϕ′ of the sand, and can be derived using the equations in Table

2.2. σ′
v is the vertical effective stress in the sand and is taken as σ′

v = γ′z for

offshore conditions where the water table is above the ground line. σ′
v should be

adjusted for soil profiles where the water table is below the ground line. C1, C2

and C3 are plotted in Figure 2.4a.
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Table 2.2: Summary of API sand parameters

Parameter Equation

C1 K0
tan2 β tanα

tan(β − ϕ′)

(
tanϕ′ sin β

cosα tan(β − ϕ′)
+ tan β(tanϕ′ sin β − tan β)

)
C2

tan β

tan(β − ϕ′)
−Ka

C3 Ka(tan
8 β − 1) +K0 tanϕ

′(tan β)4

α ϕ′/2

β 45 + ϕ′/2

Ka Ka = 1− sin(ϕ′)/1 + sin(ϕ′)

K0 0.4

(a) C Coefficients for API sand (b) Coefficient of subgrade reaction, ksr

Figure 2.4: API sand coefficient values (from API (2014))

Table 2.3: Tabulated values of ksr for a given ϕ′ below the water table, adapted
from Figure 2.4b

Friction angle, ϕ′ ksr

MN/m3 lb/in3

25° 5.4 20

30° 11 40

35° 22 80

40° 45 165

The tangent stiffness kT of the API sand p-y function can be used to com-
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pute the initial stiffness k0 of the spring using the first derivative of Equation 2.3

evaluated at y = 0.

kT =
d

dy

[
Apu tanh

(
ksrz

Apu
y

)]
= ksrz sech

2

(
ksrz

Apu
y

)
(2.5)

Therefore, the initial stiffness of the p-y function defined by the API sand

model is:

k0 = kT |y=0 = ksrz (2.6)

Note that k0 is independent of A, meaning the initial stiffness is independent of

cyclic degradation effects. Cyclic degradation has a marked influence on small-

strain stiffness (Carswell et al., 2016; Kaynia & Andersen, 2015), and this is not

captured by the API sand model. This is covered in more detail in Section 2.2.

Equation 2.6 shows that the linear spring stiffness for sands can be determined

using Figure 2.4b (or linearly interpolated from Table 2.3) for a given depth z.

However, Kallehave et al. (2012) suggested improvements to the initial stiffness

of the API sand model for piles of larger diameters (such as monopiles). This

is important for calculating the natural frequency of OWTs, and is discussed in

more detail in Section 2.3. Sørensen (2012) replaced ksr with a parameter that is

dependent on the spring depth, the soil’s oedometric stiffness and pile diameter,

which demonstrated a better performance for larger diameter piles.

API Clay

The API clay p-y function is a function of the ultimate lateral resistance pu and the

lateral pile displacement at one-half the ultimate lateral resistance yc, calculated

as yc = 2.5ϵcD (Matlock, 1970). In the absence of experimental stress-strain

curves, a representative value for ϵc can be adopted in terms of cu using Table 2.4

(Sullivan et al., 1980).

Table 2.4: Representative values for ϵc for corresponding cu (Sullivan et al., 1980)

Undrained strength, cu ϵc

0-25kPa 0.02

25-50kPa 0.01

50-100kPa 0.007

100-200kPa 0.005

200-400kPa 0.004

For soft clays with constant unit weight and shear strength in the upper zone of
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the pile, a transition depth (zr) must be defined to describe the depth at which the

ultimate capacities of the spring shift from a passive wedge-type failure mechanism

at shallow depths to a flow-around failure mechanism at greater depths. The

transition depth for the API clay model is defined in Equation 2.7.

zr =
6cuD

γ′D + Jcu
(2.7)

where γ′ is the effective unit weight of the clay and J is an experimentally derived

dimensionless constant (Matlock, 1970). The shallow ultimate capacity pus is

defined as the ultimate capacity of the clay spring element for z ≤ zr, and the

deep ultimate capacity pud is defined as the ultimate capacity of the clay spring

element for z > zr. Equation 2.8 and 2.9 define the ultimate capacity depending

on the depth of the p-y spring.

pus =

(
3 +

γ′1
cu
z +

Jz

D

)
cuD (2.8)

pud = 9cuD (2.9)

Note that Equation 2.7 is obtained by equating Equation 2.8 and 2.9 and set-

ting z = zr. The corresponding p-y function for static loading conditions (mono-

tonically increasing loads) is described in Equation 2.10, which is a piecewise

relationship and illustrated as the solid line in Figure 2.5.

p

pu
=

0.5

(
y

yc

)1/3

for y ≤ 8yc

1 for y > 8yc

(2.10)

For cyclic loading conditions, the p-y function is described using Equations 2.11

and 2.12 for shallow and deep failure modes, respectively. Figure 2.5 illustrates

the various configurations of the cyclic p-y function as dashed lines. Note that

Equations 2.11 and 2.12 are independent of the number of cycles N , which is

known to have a marked effect on capacity (Hettler, 1981; Long & Vanneste,

1994; Pestana et al., 2000). Cyclic p-y functions are discussed in more detail in

Section 2.2.

p

pus
=

0.5

(
y

yc

)1/3

for y ≤ 3yc

0.72 for y > 3yc

(2.11)
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Figure 2.5: p-y function for API clay (modified from API (1993))

p

pud
=



0.5

(
y

yc

)1/3

for y/yc ≤ 3

0.72

(
1− (1− z

zr
)

(
y/yc − 3

12

))
for 3 < y/yc ≤ 15

0.72

(
z

zr

)
for y/yc > 15

(2.12)

To prevent an infinite initial stiffness with the current API clay p-y definition

(i.e. Epy,0 = ∞), the initial stiffness of the clay spring elements can be defined as

Epy,0 = 0.5pu/yc (Taciroglu et al., 2006) and pu is the appropriate ultimate soil

resistance value defined by either Equation 2.8 and 2.9.

CPT-based functions

The Cone Penetration Test (CPT) is a method of geotechnical investigation that

is used to determine the soil strength profile and soil properties. The CPT involves

pushing a cone-tipped rod into the ground at a constant rate of penetration, and

measuring the resistance of the soil. The resistance to penetration is measured

by the tip resistance qc and the sleeve friction fs, and is widely used due to its

simplicity, low cost, and non-destructive investigation process. The fast and reli-

able nature of the CPT has led to the development of many empirical correlations

between CPT results and soil properties (Ariannia, 2017; Baldi et al., 1989; Jar-

dine et al., 2005; Lunne & Christoffersen, 1983; Robertson & Cabal, 2014), which

makes it an ideal tool for offshore foundation design.

CPTs are characterised by configurations that closely resemble those of piles,
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which has opened up many research opportunities to develop both lateral and

axial CPT-based design methodologies for monopiles and piles in general (Byrne

et al., 2018; Lehane et al., 2020b; Lehane et al., 2005; Lunne et al., 1997; Wang

et al., 2022b). In particular, correlations from qc to p-y relationships can be

empirically derived from either three-dimensional Finite Element Analyses (FEA)

or site experiments. Table 2.5 summarises some of the CPT-based p-y functions

for sands derived in previous studies. It should be noted that CPT-based p-y

functions are not limited to cohesionless soils (Kim et al., 2016).

Table 2.5: Various CPT-based p-y functions derived in previous studies

Reference p-y Equation

Novello (1999) 2D(σ′
v)

0.33(qc)
0.67
( y
D

)0.5
(2.13)

Dyson and Randolph (2001) 1.35γD2

(
qc
σ′
v

)0.72 ( y
D

)0.58
(2.14)

Li et al. (2014) 3.6D(γ′D)

(
qc
γ′D

)0.72 ( y
D

)0.66
(2.15)

Suryasentana and Lehane

(2014)

2.4γzD

(
qc
γz

)0.67 ( z
D

)0.75
(2.16)

×
(
1− exp

[
−6.2

( z
D

)−1.2 ( y
D

)0.89])

Note that Equations 2.13, 2.14, and 2.15 are p-y functions described by a

power law relationship, whereas Equation 2.16 is of the exponential type. Power

law relationships are incapable of representing the initial spring stiffness Epy,0 or

ultimate soil resistance pu analytically, which are important parameters for small-

strain dynamic and ultimate capacity analyses, respectively. Suryasentana and

Lehane (2016) suggested a piecewise linearisation for small-strain mobilisation in

the p-y functions. Equation 2.17 relates the shear modulus of the soil G0 to the

small-strain stiffness of the spring k0.

k0 =

(
dp

dy

)
y=0

= 4G0(1− µs) (2.17)

p =

k0y for y/D ≤ 0.0001

f(y) for y/D > 0.01
(2.18)
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where f(y) is a CPT-based p-y function described in Table 2.5. Note that inter-

polation is required if 0.0001 < y/D ≤ 0.01. G0 can be correlated directly from

end resistance qc values using correlations derived by Baldi et al. (1989), and is

recommended by the ICP design standards if site data is not available (Jardine

et al., 2005). The equation for G0 is shown in Equation 2.19.

G0 =
qc

A+Bη + Cη2
(2.19)

where A, B, and C are empirically derived and are 0.0203, 0.00125, and 1.216 ×
10−6, respectively (Baldi et al., 1989; Jardine et al., 2005). η is equal to qc/

√
Paσ′

v

and Pa is the atmospheric pressure, taken as 100 kPa.

CPT-based p-y functions can offer fast estimates to soil strength profiles in

offshore environments and enable preliminary design approximations for offshore

foundations until more detailed site investigations can be carried out. This is

ideal for the tendering phase of a project where the foundation design is not yet

finalised. Naval units equipped with CPT apparatuses can be quickly deployed to

survey a site, and locations between investigation points can be interpolated using

geostatistical methods (Liu et al., 2021).

Layering effects

CPT-based p-y functions are informed directly from strength profiles measured

from variations in qc with depth. It is therefore possible to correlate variations

in the soil strength profile to appropriate p-y spring elements. However, all p-y

functions discussed thus far are derived from homogenous soil states, which may

not be applicable for piles in layered soils of different types.

Homogenous p-y functions assume the same soil type at all depths. However,

layers of different soil types will change the overburden pressure expected at certain

depths z (Georgiadis, 1983). This can have a marked effect on the lateral capacity

pu of the discrete layers. Georgiadis (1983) proposed a methodology to modify the

ultimate capacity of underlying soil layers to account for the change in overburden

pressure due to upper soil layers. Figure 2.6 illustrates an example of a single pile

embedded in dense sand beneath soft clay, and the pu values along the depth for

each layer derived from the API sand and API clay capacity models.
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Figure 2.6: Adjusting ultimate lateral capacity of soils in layered strata using the
API sand and API clay p-y model (Georgiadis, 1983)

As soft clay is typically lighter than dense sand, it is inappropriate to compute

the ultimate capacity of the sand layer using Equation 2.4 from z = 0. Otherwise,

this would consider a full stratum of sand and therefore a large lateral capacity for

the sand elements. Instead, Georgiadis (1983) proposed that an equivalent ground

line needs to be determined, which is the depth at which the capacity of the sand

layer’s lateral force capacity is equal to the lateral force capacity of the clay layer.

i.e. z = H1 − h2 would be more appropriate for determining the p-y functions

of sand, as illustrated in Figure 2.6. Graphically, this is the same as calculating

when h2 provides an equal hatched area in Figure 2.6.

This methodology is implemented in detail and reviewed in Chapter 5, and

includes the calculations necessary for this pile-soil configuration (Tott-Buswell

et al., 2022).

Pile groups

So far, only single piles have been discussed. In pile groups, the performance of

neighbouring piles is influenced by the presence of piles, as the behaviour of soil

surrounding one pile is impacted by the mobilised soil in the vicinity of another

pile. As a consequence, pile groups under lateral loads will generally exhibit less

lateral capacity than the sum of the lateral capacities of the individual piles,
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therefore p-y functions are not directly applicable. This is due to the so-called

‘shadowing’ effect, referring to the interference of the failure planes of the piles in

trailing rows with the failure planes of the piles in front of them. This effect is

illustrated in Figure 2.7. For this reason, the piles in the trailing rows exhibit less

lateral resistance (Rollins et al., 2005). The group efficiency of laterally loaded

pile groups increases with the ratio of pile spacing s over pile diameter D. Rollins

et al. (2005) recommends that pile group effects under lateral loading may be

considered negligible for a pile spacing of the order of 6D-8D.

Figure 2.7: The failure mechanisms of pile groups (a) Shadowing effect of pile
groups (Rollins et al., 2003), (b) Illustration of wedge failure mechanisms in pile
groups (Brown et al., 1988)

For lower values of piles spacing, the shadowing effect is usually treated by

employing an efficiency factor, commonly referred to as p-multipliers within the p-

y curve concept. This relates the force driving the pile group to the force required

to displace a single pile an equal distance (Brown et al., 1988). The p-y curves

for the piles in a group are modified using p-multipliers, which reduce both the

stiffness and the ultimate lateral capacity of the piles in a group with respect to

the single pile case, as shown in Figure 2.8. This enables the use of traditional p-y

models to model pile groups, as the p-y relationship is scaled to encapsulate the

grouping effects.
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Figure 2.8: Illustration of the capacity reduction in p-y curves for group effects

Table 2.6 provides a summary of pile group p-multipliers proposed by various

researchers based on physical models and field tests in clays and sands for pile

groups subjected to monotonic and cyclic lateral loads at the pile head.

Table 2.6: Group interaction factors under lateral loads from previous studies.

Reference
Soil

type

Pile

spacing

Group

efficiency

factor

p-multipliers

R1 R2 R3 R4

Brown et al. (1987) Clay 3D 0.68-0.80 0.70 0.60 0.50 -

Rollins et al. (1998) Clay 2.83D 0.59-0.80 0.60 0.38 0.43 -

Snyder (2004) Clay 3.92D 0.85-0.90 1.00 0.81 0.59 0.71

Rollins et al. (2003)

Clay 3.3D 0.45-0.67 0.90 0.61 0.45 0.45

Clay 4.4D 0.75-1.00 0.90 0.80 0.69 0.73

Clay 5.65D 0.87-0.90 0.94 0.88 0.77 -

Brown et al. (1988) Sand 3D 0.63-0.70 0.80 0.40 0.30 -

Ruesta et al. (1997) Sand 3D 0.60-0.91 0.80 0.70 0.30 0.30

Rollins et al. (2005) Sand 3.3D 0.72-0.94 0.80 0.40 0.40 -

R1: Leading row, R2: Second row, R3: Third row, R4: Fourth row

Table 2.6 shows that p-multipliers for the leading-row piles are significantly

higher than those for the trailing-row piles. It is important to ensure that the

head fixity condition of a single pile and pile groups is similar before implementing

any efficiency factors, as the pattern of flexural deformation will be fundamentally

different between the two. Literature related to p-multipliers under time-varying

dynamic loading conditions is limited (Mostafa & Naggar, 2002), but is extensively

used in modified Winkler-type p-y models (Fayyazi et al., 2014; Reese & Van Impe,
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2010).

2.1.3 Modulus of subgrade reaction

The elastic beam elements in the p-y model encapsulate the flexural rigidity for

a range of L/D ratios if an appropriate beam theory is applied (Gupta & Basu,

2018). However, as p-y functions are empirically or semi-empirically derived, their

application is bound to the geometric calibration space for which they were initially

derived (Lehane & Suryasentana, 2014; Li et al., 2014; Murphy et al., 2018).

This includes the influence of diameter size on the modulus of subgrade reaction

(Epy = p/y). Terzaghi (1955) used the idea of a stress bulb to demonstrate the

influence of the pile diameter on subgrade reaction, and evaluated a large diameter

stress influence compared to a smaller diameter. A larger pile diameter experiences

greater displacement with the same pressure applied, generating a lower Epy value.

Terzaghi (1955) concluded that the coefficient of subgrade reaction (ksr = Epy/D)

is inversely proportional to the diameter of the pile. In other words Epy/D ∝ 1/D,

therefore the modulus of subgrade reaction (Epy) is independent of diameter. The

reader is referred to Table 2.1 for parameter definitions.

Vesic (1961) proposed an equation for the initial modulus of subgrade reac-

tion, Epy,0, which can be used to define elastic Winkler models, and is defined in

Equation 2.20.

Epy,0 =
0.65Es

1− µ2
s

[
EsD

4

EpIp

]1/12
(2.20)

where Es is the elastic modulus of the soil and µs is the Poisson ratio of the

soil. Considering that the second moment of area of a pile’s annulus is Ip =
π
64
(D4

out − D4
in) (where Dout and Din are the outer and inner diameters of the

pile, respectively), it can be shown that Equation 2.20 implicitly demonstrates

that Epy is independent of the diameter, as the D4 terms cancel. This is further

supported by full-scale pile tests on sand and clay in Reese et al. (1974) and

Reese et al. (1975), respectively. Additionally, Ashford and Juirnarongrit (2003)

performed 3D finite element analyses comparing two models; one with independent

Epy and diameter, and the other with Epy linearly dependent on diameter. The

independent model was found to be more accurate.

Other properties of the p-y relationship, such as the ultimate soil resistance

pu, has been noted to depend on the geometry of the pile (Fan & Long, 2005).

To add, a large diameter relative to embedment depth can introduce additional

soil resistance mechanisms outside of the modelling capability of lateral springs
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(see Section 2.1.4). Considering the anticipated rigidity of low L/D ratios of

prospective monopile geometries used to support the size of modern OWTs, the

efficacy of the traditional p-y model therefore comes into question.

2.1.4 Diameter effects

As the diameter of a pile becomes large relative to its embedment, the overall

deflection mode shifts from a slender, bending type, to a rigid, rotating type.

This is illustrated in Figure 2.9. The increased rigidity of the pile introduces

additional resistance mechanisms that are outside of the modelling capabilities of

the lateral spring (Byrne et al., 2015). Vertical interface frictional resistances will

become increasingly more present due to the rotation as the diameter increases

(Fu et al., 2020; Lam, 2013), and the influence of the large area of the pile tip can

no longer be ignored (Van Impe & Wang, 2020; Zhang & Andersen, 2019).

(a) Slender pile bending (b) Rigid pile rotation

Figure 2.9: Deflection modes of slender and rigid piles

When slender piles are laterally loaded, rotation attenuates along its depth

and leads to minimal mobilisation near the tip of the pile. However, rigid piles

transfer more of the applied horizontal load to the base (Van Impe & Wang, 2020;

Zhang & Andersen, 2019). This is not encapsulated in traditional p-y functions

due to their derived geometrical calibration space (Doherty & Gavin, 2011; O’Neill

& Murchison, 1983; Reese et al., 1974). Furthermore, plugging effects, where soil

enters the annulus of the pile during the installation process, will also become more

prevalent in lateral and axial resistance as the diameter increases (Amar Bouzid,

2018; Byrne et al., 2018; Lehane et al., 2020a; Prendergast et al., 2020). This

29



is particularly relevant for laterally loaded rigid monopiles, as the annular cross-

section can lead to direct shearing resistance across the base of the pile (Byrne

et al., 2020b; McAdam et al., 2020; Murphy et al., 2018; Zhang & Andersen,

2019). The large diameter at the tip also introduces a restoring moment due to

the mobilised bearing stresses when rotated (Byrne et al., 2017; Van Impe &Wang,

2020). In all, the total contribution towards lateral capacity from these additional

resistance mechanisms is as much as 20% for piles of L/D = 3 (Murphy et al.,

2018).

The additional resistance mechanisms deriving from low L/D ratio monopiles

can be encapsulated by appropriately calibrated p-y functions that are bespoke to

particular pile-soil configurations modelled in three-dimensional FEA. However,

the application of the traditional p-y model, comprising of lateral springs only, to

piles with stocky configurations is questionable. Adding new spring types to the

Winkler model may be more appropriate if their reaction curves can appropriately

isolate the soil-structure interaction (Lam, 2013; Zhang & Andersen, 2019).

2.1.5 PISA design method

A joint industry project was initiated in 2015 to develop a new design method for

OWT monopiles, accounting for the shortcomings of the traditional p-y method

originally developed for slender piles in the oil and gas industry (API, 2014; DNV,

2021). The Pile Soil Analysis (PISA) project was a collaboration between 13

industry partners and 5 research institutes, including the University of Oxford,

Imperial College London, and University College Dublin. The PISA model is il-

lustrated in Figure 2.10, including a diagram of the expected additional resistances

for laterally loaded low L/D monopiles.
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Figure 2.10: Illustration of the PISA model (a) additional resistance mechanisms
expected in monopiles and (b) PISA’s modified p-y model (Figure from Burd et al.
(2017))

The PISA model is an extension to the traditional p-y model, using both

lateral and rotational springs to represent the stiffness of the soil and resistance

mechanisms, as described in Section 2.1.4. The spring reaction functions are

informed using a conic function described in Equation 2.21, which is normalised for

generality and illustrated in Figure 2.11. The normalised parameters are calibrated

using three-dimensional FEA results for a particular pile-soil configuration and

slenderness ratio (Taborda et al., 2020; Zdravković et al., 2020b).

Figure 2.11: Illustration of the conic function used to describe the spring reaction
curves in the PISA model: (a) conic form; (b) bilinear form (Figure from Burd
et al. (2020b))

31



ȳ =


ȳu

2c

−b+
√
b2 − 4ac

for x̄ ≤ x̄u

ȳu for x̄ > x̄u

(2.21)

where

a =1− 2n

b =2n
x̄

x̄u
k − (1− n)

(
1 +

x̄

ȳu
k

)
c =(1− n)

x̄

ȳu
k − n

x̄2

x̄2u

k is the initial slope of the function, n determines the bilinearity of the curve

and varies between 0 and 1 (n = 0 for bilinear, n = 1 for conic), x̄u is the nor-

malised displacement at the ultimate resistance, and ȳu is the normalised ultimate

resistance (Burd et al., 2020b).

Lateral monopile push-over tests were performed at two different sites, Dunkirk

and Cowden, each having geological properties similar to sand and clay in offshore

conditions, respectively (Byrne et al., 2020b; McAdam et al., 2020; Zdravković et

al., 2020a). Each site investigation included 12 laterally loaded monopile push-

over tests of various geometries and scales. These site tests directly informed

three-dimensional finite element models, which in turn were used to calibrate the

parameters for the conic function described in Equation 2.21 (Taborda et al., 2020;

Zdravković et al., 2020b). Burd et al. (2020b) and Byrne et al. (2020b) described

the calibration process in detail for monopiles in sand and clay, respectively; in-

cluding preliminary design tables for reaction curve parameters within a certain

calibration space.

The PISA model therefore has two design methodologies; (i) using look-up ta-

bles for the reaction curves, and (ii) using the reaction curves calibrated directly

from bespoke three-dimensional finite element models. The former is more gen-

eral and can be used for piles within specific geometrical limits (2 ≤ L/D ≤ 6,

5 ≤ h/D ≤ 15, 40% ≤ Dr ≤ 90%), whereas the latter is more bespoke to the

particular pile-soil configuration and requires extensive geotechnical investigation

and three-dimensional finite element modelling to extract the necessary reaction

curves for the modified p-y model. Whilst effective, this undermines the simplicity

of the traditional p-y method, as three-dimensional finite element models are still

required for optimal design outputs.
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2.1.6 Summary

The p-y model is an effective and versatile design methodology for efficiently mod-

elling the lateral response of laterally loaded piles. However, it is limited in its

ability to model the additional resistance mechanisms that are present in low L/D

monopiles. The simplified representation of the soil-structure interaction enables

a computationally inexpensive simulation where the lateral deflection and bending

moments of the pile can be estimated. Complex pile configurations can also be

encapsulated with appropriate modifications, such as pile grouping and layering

effects, without compromising computational spend.

The PISA model extends the p-y method by accounting for additional mech-

anisms due to diameter effects. However, it requires bespoke three-dimensional

finite element models to calibrate the reaction curves effectively. This compro-

mises the simplicity of the p-y method, as three-dimensional finite element models

are still required for optimal design outputs. In this light, it would be beneficial

to inform the additional mechanical analogies in a multi-spring model with more

accessible data in offshore environments, such as CPT data. Such a model would

serve as a valuable tool for the design of OWTs, at least preliminarily, as low L/D

monopiles are common. CPT profiles are often the first indication of the seabed’s

strength during offshore site investigations. Therefore, appropriate CPT-based

formulations for all spring types in a preliminary OWT monopile design tool is

desirable. This type of model is investigated in Chapter 3, where a CPT-based

multi-spring model is developed and appraised.

The discussion thus far has been limited to monotonic loading. However, it

is important to consider the cyclic response of laterally loaded piles, as OWTs

will be subjected to millions of load cycles of various frequencies and amplitudes

throughout their operational lifetime. The design methodologies against cyclic

fatigue and degradation in industrial practice and literature are detailed in the

following section.
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2.2 Cyclic pile modelling

OWTs supported by monopiles are exposed to many years of cyclic wind and wave

loads that can lead to structural failure if not appropriately accounted for in design

models. According to DNV (2021), a typical OWT is designed for a fatigue load

with up to 107 cycles for FLS compliance. It is expected that, due to the cyclic

nature of wind and wave loads, the pile-soil interaction degrades overtime, leading

to both a reduced lateral capacity and a change in lateral stiffness (Andersen,

2009; Houlsby et al., 2017; Leblanc et al., 2010b; Long & Vanneste, 1994). A

continuous reconfiguration of stress states and particle arrangement in the soil

adjacent to the pile leads to permanent changes in soil properties. It is therefore

important that soil degradation is appropriately accounted for in the modelling

processes to fulfil a safe and serviceable operation.

2.2.1 Reduced capacity in p-y functions

For monopiles in sand, the API design codes recommend that the empirical scaling

factor in Equation 2.3 is taken as A = 0.9 for all spring depths (API, 2014; Reese

et al., 1974). This is based on field tests performed by Cox et al. (1974), and

encapsulates the effects due to cyclic loading after 100 cycles. The limited cyclic

loading data used to calibrate the p-y model is another significant limitation for

its application to OWT monopiles. The original cyclic loading modifications used

in the API clay’s p-y function are not as straight forward as the sand model (see

Figure 2.5), but also shares similar limitations (Reese et al., 1975).

Equation 2.3 shows that, since A affects the argument of the hyperbolic tan-

gent function, A scales both the p and y coordinate. Consequentially, the initial

modulus of subgrade reaction Epy,0 does not scale to reflect cyclic degradation in

the initial response of a pile (implicit in Equation 2.5 at y = 0). This is an impor-

tant consideration for small-strain dynamic analysis in OWT monopiles where the

initial response is of interest (Carswell et al., 2016; Darvishi-Alamouti et al., 2017;

Prendergast et al., 2013) (see Section 2.3.1). Dührkop et al. (2009) modified the

API sand model such that A is a function of N and appropriately influences the

initial stiffness of the p-y function. The modified p-y model for sand that accounts

for cyclic degradation is described in Equation 2.22 (Dührkop et al., 2009).

p = Âpu tanh

(
ksr
0.9pu

y

)
(2.22)

where Â = rA(3 − 1.143z/D + 0.343z/D). rA is dependent on the number of
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cycles and rA = 0.3 is for 100 cycles. rA = 1 gives the original API sand mono-

tonic p-y function described in Equation 2.3. Note that Â is omitted from the

denominator of the hyperbolic tangent argument and is fixed to 0.9, resulting

in a p-multiplier effect that reduces the spring stiffness and capacity. Whilst

this method demonstrates an improvement to the original API sand p-y function

for near-rigid monopiles under cyclic loading conditions, further model tests and

numerical investigations are necessary for systems with alternative pile-soil ar-

rangements and cyclic loading configurations, such as one-way or two-way loading

(Dührkop et al., 2009). However, it was shown that scaling p or y is an appro-

priate method to encapsulate the effects of cyclic degradation on pile capacity, if

appropriately informed.

2.2.2 Computing accumulated displacement

For monopiles under cyclic loading, the amount of accumulated displacement (or

rotation) after N load cycles is the primary design consideration, as it will directly

impact the efficiency of the wind turbine (Andersen et al., 2013; Leblanc et al.,

2010b; Song & Achmus, 2021). Equation 2.23 describes a general expression for

estimating pile head deflection after N number of cycles.

yh,N = yh,1 · f(N) (2.23)

where yh,N is the pile head deflection after N cycles, yh,1 is the head deflection

after 1 cycle (i.e. monotonic response), and f(N) is a function that describes how

the head deflection varies with the number of cycles. The change in displacement

derives from a change in the modulus of subgrade reaction, Epy. Recall from Table

2.1 that Epy can be considered as the secant stiffness of the p-y reaction curves

(Epy = p/y), then the cyclic degradation function f(N) can be directly applied to

local p-y functions to encapsulate the global response from the head displacement,

effectively serving as p- or y-multipliers.

Little and Briaud (1988) proposed an exponential function f(N) = Nα, where

α is an empirical factor derived from seven experimental pile tests. Tests were

performed with 50 one-way load cycles on slender piles (L/D = 39), but a gen-

eralised interpretation of the results was limiting. Long and Vanneste (1994)

compiled many cyclic pile experimental studies, including Hettler (1981), Little

and Briaud (1988), O’Neill and Murchison (1983), and Reese et al. (1974), and fur-

ther generalised Little and Briaud (1988)’s conclusion. Long and Vanneste (1994)

built upon the exponential form proposed by Little and Briaud (1988) and showed

that α is a function of the cyclic load configuration, soil density and installation
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method. One-way loading was deemed more onerous for laterally loaded piles,

and suggested scaling factors to p-y functions for both p and y. However, many of

the tests within this calibration space were below 100 load cycles under sinusoidal

loading, therefore extrapolation to many irregular cyclic loads is uncertain. The

application to low L/D monopiles is also questionable.

Lin and Liao (1999) proposed an extension to predictive accumulated displace-

ment models for variable cyclic loads. Using a strain superposition approach, the

cumulative strains due to the mixing of different amplitude loads can be esti-

mated. This is an extension of Stewart (1986), who explored this concept with

triaxial tests on ballast. The approach is illustrated in Figure 2.12, and utilises

the accumulation expression described in Equation 2.24.

Figure 2.12: Example method for strain superposition of various load packages
applied to piles (Lin & Liao, 1999; Stewart, 1986)

y1,if(N) = y1,i(1 + αi ln(Ni)) (2.24)

where i denotes the load parcel. This is an adaptation to Miner’s law (Miner,

1945), where the damage from one load parcel afterNa number of cycles is assumed

equivalent to another for Nb cycles.

Leblanc et al. (2010b) contextualised the above studies for OWTmonopiles and

investigated many number of cycles (N = 104) using scaled 1g model experiments.

It was assumed that the pile was rigid and defined the loading configuration with

two parameters, ζb and ζc. ζb can be interpreted as a metric that determines how

close the peak cyclic load is towards the maximum capacity of the pile, and follows

that 0 ≤ ζb ≤ 1. ζc defines the characteristics of the cyclic loading, where one-way

loading is ζc = 0, two-way loading is ζc = −1, and monotonic loading is ζc = 1.
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The two parameters are defined in Equation 2.25 and Illustrated in Figure 2.13.

ζb =
Mmax

MR

ζc =
Mmax

Mmin

(2.25)

Figure 2.13: Illustration of cyclic loading configurations (Leblanc et al., 2010b)

Using the same logarithmic model as Lin and Liao (1999), Leblanc et al.

(2010b) found that the most onerous cyclic loading configuration for rigid OWTs

exist when ζc = −0.5, as accumulated displacements were four times greater than

that of one-way loading (ζc = 0). This has profound implications on OWT design,

and contradicts previous research outputs (such as Little and Briaud (1988) and

Long and Vanneste (1994)). However, it is unclear if this is a consequence of the

pile’s low L/D ratio. It could be postulated that soil near the tip is more likely

to be cyclically mobilised due to less attenuated rotation along embedment in low

L/D monopiles due to low flexural rigidity, hence more soil-structure degradation

along the pile (Lesny et al., 2007). The various pile tests show that the stiffness

also significantly increased after 104 load cycles for all cases, and was estimated

to reach a 60% increase after 107 cycles (expected number of cycles during oper-

ational lifetime of OWT) (Leblanc et al., 2010b). This may be an overestimation

due to scaling effects inherent in the small-scale 1g modelling approach (Chang &

Whitman, 1988).

Lesny and Hinz (2007) underlines the importance of integrating cyclic sample

tests with cyclic monopile design, as the complex behaviour of bespoke site samples

should be reflected in competent three dimensional FEA models. Ronold (1993)

proposed the use of Cyclic Contour Diagrams (CCD) to encapsulate the response

of numerous sample tests, either Direct Simple Shear (DSS) or Triaxial (TX), of

various cyclic stress configurations, which was later generalised by Andersen et al.
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(2013). Figure 2.14a illustrates the cyclic and average stress/strain notation for

sample tests, and Figure 2.14b demonstrates how sample test data is represented

in three-dimensional space using the CCDs.

(a) Applied stresses and recorded
strains of a TX test

(b) Typical CCD for Drammen clay
(Andersen, 2015)

Figure 2.14: Typical cyclic triaxial test and stress/strain response

Figure 2.14b demonstrates that the three-dimensional coordinates indicate the

loading configuration described in Figure 2.14a (typically normalised by cu or

σ′
v for clay or sands, respectively). After N cycles for a given τa and τcy test

configuration, the associated strains γa and γcy are encapsulated as scalar values

at the respective coordinate point. Many cyclic tests therefore begin to form a

three-dimensional scalar field for interpolating average and cyclic strains for any

test configuration. Furthermore, two-dimensional planes can be extracted from the

three-dimensional CCD to produce convenient design charts, as shown in Figure

2.15.
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Figure 2.15: Example CCD plane extract for τa = 0 and the associated contour
plot (Andersen, 2015)

Originally developed for offshore gravity based systems, this method can esti-

mate the soil response to highly irregular load histories expected in the offshore

environment (Andersen et al., 2013). Cycle counting methods, such as the rain

flow counting algorithm (Anthes, 1997; Downing & Socie, 1982), can process load

signals of various cyclic averages and amplitudes and define load intervals known

as Load Parcels (LP), as shown in Figure 2.16a. Each LP therefore has an associ-

ated N , τcy and τa, which can be directly applied to the contour diagrams under

appropriate assumptions (Jostad et al., 2014). An equivalent number of cycles Neq

is then determined, which is a value representative of the original force time series

(Andersen, 2015). This methodology is illustrated in Figure 2.16b. Figure 2.16

demonstrates the navigation process for finding equivalent strains for an irregular

stress history. This is similar to the strain superposition process described by Lin

and Liao (1999) and Stewart (1986) (Figure 2.12), but sums the strains generated

after a load parcel is complete instead of determining a strain equivalency. Full

details on the calculating the accumulated strain can be found in Andersen (2015).
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(a) Load parcels from force-time history (b) Load parcels applied to CCD slice

Figure 2.16: Example illustration of applying irregular force-time signals to CCDs
(Andersen, 2015)

For OWT cyclic design, force-time signals from intense storm events can be pro-

cessed and directly applied to CCDs to estimate the foundation response, however

conservative assumptions are necessary (Andersen, 2015). After cycle-counting,

the signal is rearranged as load parcels in ascending order (shown in Figure 2.16a).

If the LP with the largest cyclic load is applied at the end, the majority of cyclic

degradation is expected to have occurred prior to this LP. Therefore, sequencing

the maximum load at the end enables a conservative estimate for the equivalent

strains, and is inline with post-storm capacity check methodologies (DNV, 2021;

Jostad et al., 2014).

Note that Figure 2.16a shows a force-time signal that has an irregular two-way

configuration. As such, the average stress in the load parcels is 0. This enables

direct application to the τa = 0 plane of the CCD to find Neq, as shown in Figure

2.15. This methodology may be appropriate for capacity checks for gravity based

structures such as oil and gas platforms, as two-way loading (τa = 0, τcy > 0) is

more critical (Kaynia et al., 2015). However, it is demonstrated by Leblanc et al.

(2010b), Lin and Liao (1999), and Long and Vanneste (1994) that one-way loading

(τa > 0, or ζc < 0) can be more critical for OWTs supported by monopiles. This is

especially true when accumulated strains are of concern, and would require more

advanced navigation methodologies that utilise the full three-dimensional CCD,

such as the method proposed by Page et al. (2021).

Applying CCDs to monopiles requires further considerations for capacity or

fatigue design checks (Zhang et al., 2016). Cycle counting methods combined with

strain superposition techniques have been proven to work well for estimating pile

head accumulation (Leblanc et al., 2010a; Lin & Liao, 1999). However, additional

modifications are required to modify p-y functions. Springs at different depths

experience different cyclic mobilisation magnitudes compared to the force-time
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history applied to the pile head (Lesny & Hinz, 2007; Zhang et al., 2020). This

requires deriving unique stress histories local to the spring such that a bespoke Neq

can be found from CCDs and used to scale the p-y function appropriately (Zhang

et al., 2017; Zhang et al., 2016). The soil sample test used to inform CCDs

(either DSS or TX) is also important, as soil loading must be representative of the

failure mode expected at a given depth along the pile (Andersen, 2015). Zhang

and Andersen (2017) suggested a method for scaling stress-strain to p-y for clays

using DSS tests, but this is limited to slender piles due to physical similarities

associated with DSS tests and the flow-around mobilisation inherent with slender

piles (Figure 2.1c). Pore pressure accumulation and soil densification can also be

represented in CCDs (Andersen, 2015; Long & Vanneste, 1994), however direct

application to monopiles is uncertain (Leblanc, 2009).

An ascending arrangement for load parcels provides a conservative estimate for

Neq when estimating a monopile’s degraded ultimate capacity. However, Luo et al.

(2020) demonstrated that the estimate Neq is highly dependent on the load parcel

order. Additionally, Norén-Cosgriff et al. (2015) suggested that the cycle counting

method has a large influence on the load parcels generated, and proposed a user-

dependent frequency-filtering algorithm that may be more appropriate. However,

the influence of LP order configuration and cycle counting method on Neq is still

not well understood, and requires further investigation. In some dynamical sys-

tems, the nonlinear behaviour between cycles may be of importance, especially

when energy dissipation and resonance design is of concern.

2.2.3 Summary

For lateral capacity design, it is already well established that the API p-y method-

ology for OWT monopiles is not adequate due to its empirical derivation from

slender pile tests (Reese et al., 1974). This is further exacerbated when consid-

ering cyclic effects, as the test data used to calibrate the p-y model is limited to

100 cycles with no consideration on the effects of cyclic amplitude or configuration

type (Cox et al., 1974).

The p-y method facilitates cyclic degradation by encapsulating cyclic loading

effects with scaling adjustments to the p-y functions, leading to a modified sub-

grade reaction modulus Epy. These models have demonstrated that this method-

ology can be extended to embody irregular cyclic loading, including one-way or

two-way cyclic configurations. Additionally, CCDs are an effective way of simpli-

fying the irregularity of wind and wave loads imposed on offshore infrastructure,

but requires underlying assumptions that are heavily dependent on cycle count-
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ing and LP arrangement methods (Luo et al., 2020; Norén-Cosgriff et al., 2015).

Additional assumptions become necessary when applying the theory to monopiles

(Zhang, 2016; Zhang, 2017a), which may compromise the initial goal of accurately

representing the wind and wave load history. Furthermore, none of the above

methods account for the nonlinear cycle-by-cycle behaviour, which can lead to ex-

cessive nonlinear mobilisation and further accelerate degradation effects (Houlsby

et al., 2017; Matasović & Vucetic, 1993; Ting, 1987; Vucetic & Dobry, 1988).
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2.3 Dynamic pile modelling

OWTs supported by monopiles are dynamically sensitive structures exposed to

many excitations of varying amplitudes and frequencies. These excitations in-

clude environmental loads deriving from wind and waves, as well as rotor forces

generated by the passing turbine blades. The available design bandwidth for the

natural frequency of the system is therefore limited, making resonance likely to

occur. As a result, OWTs are prone to large displacements that can accelerate

soil degradation and accumulate displacements over time (Andersen et al., 2013;

Carswell et al., 2016; Houlsby et al., 2017).

The standard approach for determining the natural frequency of a structural

system involves defining stiffness and mass matrices and conducting an eigen-

analysis, which is detailed in Section 2.3.2. However, due to the variability of

environmental loads, it’s customary to employ a time-domain analysis for inte-

grated OWT-monopile systems to gauge the structure’s dynamic response (Arany

et al., 2017; Bhattacharya, 2019; IEC, 2009). This process involves generating

numerous force histories based on wind and wave frequency spectra for different

sea states and wind speeds, which are then applied to the model as loads to assess

its dynamic response (Arany et al., 2015; Branlard, 2010; Corciulo, 2015).

Given the multitude of load cases in design, computational efficiency is para-

mount. Consequently, dynamic one-dimensional beam-spring models with linear

spring elements are commonly employed to represent soil-structure interaction, as

nonlinear models can incur substantial computational costs if not implemented

judiciously (Bathe, 2006; Chopra, 2013; Kontoe et al., 2008). However, in light

of concerns regarding dynamic amplification in such analyses, it is crucial to ac-

count for the energy dissipation mechanisms of the soil to mitigate the risk of

large oscillation amplitudes and potential resonance (Andersen, 2010; Anoyatis &

Lemnitzer, 2017b; Carswell et al., 2015; Krathe & Kaynia, 2016; Novak, 1974;

Tarp-Johansen et al., 2009).

This section will review the literature concerning dynamic pile modelling, en-

compassing small-strain dynamics, energy dissipation, and the utilisation of non-

linear hysteresis models to incorporate material damping effects within beam-

spring models.

2.3.1 Natural frequencies

As part of SLS design requirements, it is necessary to estimate the initial natural

frequency of the OWT structure such that resonance is appropriately avoided

43



(Arany et al., 2017; Bhattacharya, 2019; DNV, 2021). Resonance occurs when a

system vibrates at its natural frequency in response to an external force, resulting

in increased amplitude and energy transfer. Figure 2.17 illustrates the anticipated

excitation frequencies imposed on a typical OWT-monopile structure, and the

permissible design bandwidths as defined by design codes (DNV, 2021).

Figure 2.17: Illustration of the different OWT excitation loads and the normalised
spectral density of the external and internal frequencies

1P and 3P denote the 1-Pass and 3-Pass frequencies of the rotor and blades,

respectively, where 1P is a full blade rotation and 3P is each blade passing (for

three-blade turbines). According to the normalised power spectral density in Fig-

ure 2.17, the natural frequency of an OWT supported by monopiles are designed

to exist within the ‘soft-stiff’ bandwidth, which is between the 1P and 3P regions

(DNV, 2021). Design frequencies are far enough from both the environmental and

rotor excitations to avoid resonance, yet not too high to make the foundations

overly rigid and costly to fabricate. The soft-stiff region presents a distinct design

challenge due to an upper and lower limit, making it unclear whether design out-

puts are over- or under-conservative. Accurately computing the system’s natural

frequency is therefore crucial.

Turbine sizes are increasing due to the demand for renewable energy, mean-

ing the rotor speeds (and therefore blade-passing frequencies) are likely to de-

crease. Consequently, this reduces the permissible design frequency bandwidth

(as 3f1P = f3P, see Figure 2.17) and shifts the permissible region towards the

environmental excitation frequencies expected from wind and waves. Resonance

therefore becomes an increasing concern as the size of OWTs grow and appropriate

energy dissipation must be considered in models.
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2.3.2 Small-strain dynamics

The natural frequency of a monopile is dependent on the soil stiffness, pile ge-

ometry, and the mass of the structure, which can be estimated using numerical

methods such as linear (elastic) time-domain analyses or frequency domain anal-

yses (Chopra, 2013; Tedesco, 1999). Frequency domain offers quicker analysis for

linear systems, and the vibration and frequency modes are computed by solving

the eigenvalue problem of the system. The constitutive small-strain model is a

derivative of the traditional p-y model shown in Figure 2.2, where spring stiff-

nesses are elastic and an appropriate mass matrix is defined (see Appendix A).

The characteristic eigenproblem of the system is given in Equation 2.26.

([K]− [Λ][M ]) [Φ] = {0} (2.26)

where [K] and [M ] are the global stiffness and mass matrices of the system, re-

spectively, [Λ] stores the eigenvalues along the leading diagonal, [Φ] contains the

eigenvectors, and {0} is the zero vector. n corresponds to the vibrational mode.

Each vibrational mode is stored in the eigenvector [Φ] as a column vector ϕn, and

the corresponding modal frequencies are stored in [Λ] as the eigenvalues ω2
n.

The spring coefficients for the small-strain model can be defined using the

initial spring stiffness k0 = Epy,0∆L, where Epy,0 can be determined from p-y

relationships. Dührkop et al. (2009) and Kallehave et al. (2012) suggested up-

dated formulations for small-strain API sand, and Prendergast and Gavin (2016)

investigated the efficacy of different formulations of k0 derived from alternative

theories. However, the mass matrix of pile-soil systems are not as well defined

in the literature, as it is difficult to determine the contributing soil mass to the

modal vibrations. It is therefore often misrepresented in analyses (Fitzgerald et

al., 2019).

It is possible to derive appropriate mass and stiffness matrices by comparing the

frequency response of a numerical model to empirical data using a model updating

approach (Dezi et al., 2012; Prendergast et al., 2019; Wu et al., 2018). Such

methods are used in SHM practices to detect damage in structures by comparing

the frequency response of a structure to its baseline response (Domaneschi et al.,

2013; OBrien & Malekjafarian, 2016). This methodology can be applied to pile-soil

systems to detect geotechnical phenomena such as scour and gapping (Fitzgerald

et al., 2019; Giordano et al., 2020) which can have a marked effect on the natural

frequency (Prendergast et al., 2015, 2018).

The system’s design frequency is likely to evolve over time towards excitation
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bandwidths (Darvishi-Alamouti et al., 2017; Ziegler et al., 2015), which means that

resonance may occur at some point during the operational lifetime of an OWT and

accelerate degradation due to large oscillation amplitudes. It is therefore essen-

tial for modelling techniques to incorporate stiffness degradation following cyclic

events to prevent frequency shifts towards potentially onerous environmental exci-

tations (Kallehave et al., 2012; Kaynia et al., 2015). Furthermore, models should

include the principles of energy dissipation to mitigate large dynamic amplification

factors expected in linear systems (Andersen, 2010; Anoyatis & Lemnitzer, 2017b;

Carswell et al., 2015; Krathe & Kaynia, 2016; Novak, 1974; Tarp-Johansen et al.,

2009). This is not possible in linear small-strain models evaluated using frequency

domain methods, as the energy dissipation mechanisms are not accounted for in

the eigenanalysis described in Equation 2.26.

2.3.3 Energy dissipation

Energy dissipation in OWT systems can originate from both the super- and sub-

structure. Soil damping contributes the most to the first vibrational mode ϕ1

(Tarp-Johansen et al., 2009), and stems primarily from hysteretic (material) damp-

ing when large strains are expected (Ishihara, 1997). In oscillating systems, the

inclusion of energy dissipation is commonly represented in the equation of mo-

tion through an opposing force term that is proportional to velocity ẏ. Known

as viscous damping, the damping coefficient c generalises the energy loss, and is

demonstrated in Equation 2.27.

mÿ + cẏ + ky = F (t) (2.27)

wherem is the mass of the object and F (t) is the applied force as a function of time.

ÿ, ẏ and y is the acceleration, velocity and displacement of the object, respectively.

Figure 2.18 illustrates the total response of a viscously damped system using a

linear spring in parallel configuration with a dashpot, which is the mechanical

analogy of a viscous damper.
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(a) Spring and dashpot in parallel
(b) Spring and dashpot re-
sponse

(c) Total response of the kinematic elements

Figure 2.18: Response of a linear spring in parallel with a dashpot

Note that the dashpot exhibits an ellipse-type hysteresis in the p-y domain as

shown in Figure 2.18b. This corresponds to a linear behaviour in the p-ẏ domain

where the gradient is c, hence the viscous damping force is p2 = cẏ. The area of

the Ellipses in Figures 2.18b and 2.18c are the same.

∆W is the energy dissipated per cycle due to the dashpot, andW is the elastic

potential energy stored in the linear spring. Hence, the damping ratio ζ is defined

as the ratio of the energy dissipated per cycle to the energy stored in the spring,

or ζ = ∆W
4πW

. The model illustrated in Figure 2.18 is known as the visco-elastic

model, and is the simplest form of damping that can be applied to an oscillating

system. It has been successfully used in the dynamic analysis of Winkler-type

piles (Anoyatis & Lemnitzer, 2017b; Badoni & Makris, 1996; Gazetas & Dobry,

1984b; Ishihara & Wang, 2019; Shadlou & Bhattacharya, 2016). However, as will

be discussed in the following sections, this model alone is not sufficient to facilitate

the complexities associated with the soil’s nonlinearity and hysteretic behaviour

for large-strain models subject to irregular loading (Ishihara, 1997; Pyke, 1979;

Vucetic & Dobry, 1988).
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Radiation damping

Radiation damping occurs due to the propagation of radial vibration waves through

the soil medium induced by fast oscillations (Hardin & Drnevich, 1972a). The soil

does not respond instantaneously due to its inertial and compressive properties,

therefore the oscillatory response is out of phase from the applied stresses by a

time lag δ. The stress-strain response is therefore hysteretic in shape. This is

demonstrated in Figure 2.19.

Figure 2.19: Illustration of a pile subject to high frequency vibrations, and the
response of a distant soil element

The time lag δ is dependent on the frequency and distance from the vibrating

pile. Figure 2.19 shows that the stress-strain response resembles the visco-elastic

model described in Figure 2.18, therefore viscous dashpots can be used to model

this behaviour. Gazetas and Dobry (1984b) developed a simple model to capture

the radiation damping in piles by capturing the visco-elastic properties of soil

layers with dashpots in parallel with linear springs. The equation for the damping

coefficient due to radiation damping cr is given by Equation 2.28.

cr
2DρsVs

=

{
1 +

[
3.4

π(1− ν)

]5/4}(π
4

)3/4
a
−1/4
0 (2.28)

where Vs is the shear wave velocity of the soil, ρs is the density of the soil,

a0 = 2πfD/Vs is the dimensionless frequency. f is the frequency of the ap-

plied load. Frequency dependent dashpots have demonstrated to be effective in

capturing the radiation damping pile-soil systems subject to high frequency loads

(Badoni & Makris, 1996; Ishihara, 1997; Makris & Gazetas, 1992). However, piles

subject to large-strain loading conditions, such as storm events or seismic activ-

ity, require additional dissipative methods due to large-strain irregular loading

(El Naggar & Bentley, 2000; Gerolymos & Gazetas, 2005c; Kaynia & Andersen,
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2015). Furthermore, the frequencies of the expected excitations applied to OWTs

are less than 1 Hz, as shown in Figure 2.17 (Tarp-Johansen et al., 2009). Ander-

sen (2010) demonstrated that radiation damping can often be neglected due to

relatively slow loading conditions in offshore environments.

Material damping

Material damping occurs due to the soil’s plasticity during medium to large strains

(Ishihara, 1997). The stress-strain hysteresis loops occur due to nonlinear stress

path experienced during repeated load cycles (Vucetic & Dobry, 1991). Figure

2.20 illustrates the typical hysteretic behaviour of soil under large symmetrical

loads, including the energy dissipated per cycle.

Figure 2.20: Typical hysteretic behaviour of soil under large symmetrical loads,
including the energy lost (∆W ) and energy stored (W ) per cycle

The shape of the hysteresis can depend on many factors, including the stress

history, strain rate, number of cycles, and pore pressure (Andersen, 2015; Geroly-

mos & Gazetas, 2005a; Hardin & Drnevich, 1972b; Vucetic & Dobry, 1988). It

can also demonstrate the gapping phenomena in pile-soil models (Abadie et al.,

2019; Allotey & El Naggar, 2008; Swane & Poulos, 1984; Williams et al., 2021).

However, it is common practice for simplified models to capture the energy dissi-

pation due to material damping by using a viscous dashpot in combination with

a linear spring, taking the form of an equivalent visco-elastic model (Damgaard

et al., 2013). The damping coefficient is designed such that the elliptical area

of the dashpot (Figure 2.18c) is equal to the area expected inside the hystereses

formed by the soil’s nonlinear stress path (Anoyatis & Lemnitzer, 2017a; Mylon-

akis, 2001a).

It should be noted that material damping is a function of the strain amplitude

and the corresponding damping coefficient may not be the same for each complete
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load cycle. Therefore, material damping is a function of the strain history rather

than an intrinsic property of the soil material. It is not possible to encapsulate the

complex plastic behaviour of soils with a single damping coefficient informed from

in-situ or laboratory testing, especially when the system is loaded asymmetrically.

To add, utilising a linear spring model to consider the nonlinear stiffness properties

of the soil is unrepresentative of the physical problem, and highly limiting when

more complex geotechnical phenomena are involved.

An alternative approach to modelling material damping is to explicitly define

the stress path and calculate the change in stiffness over time within each cycle

using a nonlinear spring. While effective at modelling complex geotechnical behav-

iors under large, irregular loading, this method can be computationally expensive

due to time-domain simulations, requiring a substantial number of iterations to

converge to a solution (Kontoe et al., 2008). This is discussed in more detail in

Section 2.3.5.

2.3.4 Other forms of damping

Other forms of damping in OWT structures include:

� Structural: energy dissipation due to the internal friction of the structure’s

components and elastic deformation of the structural material

� Hydrodynamic: energy dissipation due to the interaction of the structure

with the surrounding fluid

� Aerodynamic: energy dissipation due to the interaction of the structure with

wind

These forms of energy losses are not considered in detail herein, as the focus is

on the soil-structure interaction and the energy dissipation mechanisms associated

with the hysteretic behaviour of the soil. However, they can be encapsulated in

an idealised way.

Rayleigh damping is a common approach to define the equivalent damping

coefficient that represents the combined effect of all the aforementioned damping

mechanisms. The model assumes the damping coefficient can be described as

a linear combination between the mass and stiffness of the system according to

Equation 2.29.

c = α1m+ α2k (2.29)

where α1 and α2 are the Rayleigh damping coefficients proportional to the mass
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and stiffness, respectively. The coefficients are calculated as:

α1 =
2ζtω1ω2

ω1 − ω2

(2.30)

α2 =
2ζt

ω1 + ω2

(2.31)

where ζt is the target damping ratio of the system, and ω1 and ω2 are the two

frequencies defining the frequency range over which the damping is approximately

constant at ζt. Clearly, this is an oversimplification to the complex dissipation

associated with the dynamic behaviour of OWTs. The Rayleigh damping model

is a simple approach to define the equivalent damping coefficient, and is commonly

used to idealise complex dissipative mechanisms such as hystereses and radiation

damping (Bathe & Wilson, 1976; Chopra, 2013; Ishihara, 1997; Tedesco, 1999).

This form of damping is also relevant for nonlinear systems to aid in obtaining

stable solution estimates (Vaiana et al., 2019).

2.3.5 Hysteresis modelling

Earthquakes have caused widespread destruction to buildings and infrastructure,

impacting the lives of countless people. These disasters have highlighted the need

for geotechnical earthquake engineers to develop more accurate predictions of dy-

namic soil-structure interaction under intense earthquake conditions (Fan et al.,

1991; Kagawa & Kraft, 1980; Lam & Martin, 1986). The sudden rise in com-

mercial availability of computational power in the 1980s facilitated the inaugural

shift towards more complex models to capture the dynamic nonlinear behaviour

of soil. This mainly involved implementing theory derived earlier in the century

into complex nonlinear time-domain algorithms (Iwan, 1967; Masing, 1926). This

section discusses some important advancements in modelling the hysteretic stress-

strain response of samples, and its application to pile soil-structure interaction

and dynamic p-y models.

Original masing rules

Elastic perfectly-plastic stress-strain models enable fast response estimations due

to their simplicity, and are commonly used in multi-directional dynamic FEA when

modelling seismic activity in soils (Kohgo et al., 1993; Sun et al., 2003, 2007).

However, the elasticity range of soils is extremely small, and plastic deformations

can be expected for strains as small as 0.001% (Ishihara, 1997). Curvilinear or

piecewise-linear models enable a more appropriate representation of the soil’s non-
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linear behaviour over many strain ranges (Iwan, 1967; Masing, 1926; Vucetic &

Dobry, 1988, 1991; Wen, 1976), but require more complex algorithms to solve.

Hysteretic models involve two main components to represent the stress path

of a complete cycle: (i) the initial stress-strain curve from rest (referred to as the

backbone curve herein) and (ii) the subsequent unload/reload curves that embody

the stress-strain response due to changes in direction of motion. Masing (1926)

proposed a methodology to capture this behaviour by taking a representative

monotonic backbone curve and transforming the function when a reversal occurs

accordingly. The general function of the transformation theory is described in

Equation 2.32.

τ − τi
C

=f

(
γ − γi
C

)
τ =Cf

(
γ − γi
C

)
+ τi (2.32)

where τi and γi indicate the stress-strain coordinates of the hysteretic reversal

points hi. C is the generalised scaling factor applied to the piecewise functions

that form the hysteresis shape. Originally, Masing (1926) proposed that, after the

initial loading sequence, the subsequent unload and reload paths take the form of

the backbone curve, and are scaled by a factor of 2. In other words; h0 = (0, 0)

and C = 1 for the initial loading curve, whereas the subsequent unload/reload

paths follow that hi+1 = (τa, γa) and C = 2, where τa and γa are the stress and

strain amplitudes of the soil’s response, respectively. This is illustrated in Figure

2.21 and is known as the Original Masing Rules (OMRs).

Figure 2.21: Original Masing rules for capturing the hysteretic stress-strain re-
sponse of soils (Masing, 1926)
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The OMR methodology enables a simplified analytical approach to comput-

ing the energy dissipated per cycle for symmetrical loading. The area within

the enclosed hysteresis loop in Figure 2.21 can be determined by integrating the

backbone function and subtracting the energy stored (W = 1
2
γaf(γa)) at γa. Mul-

tiplying the crescent-like shape by eight gives the total area within the hysteresis

loop, and therefore the energy dissipated per cycle ∆W . The expected damping

ratio from the OMR model is given in Equation 2.33.

ζ =
∆W

4πW
=

8

[∫ γa

0

f(γ)dγ −W

]
4πW

=
2

π

2
∫ γa

0

f(γ)dγ

γaf(γa)
− 1

 (2.33)

Equation 2.33 estimates the material damping for a symmetrically loaded soil

sample, if a backbone function τ = f(γ) is defined. The monotonic response of

most materials can be used to describe the backbone function if the expected load

rate is sufficiently slow (Ishihara, 1997). However, this approach has been shown

to overestimate the anticipated material damping for soils when compared to lab

experiments (Kondner & Zelasko, 1963; Matasović & Vucetic, 1993; Yi, 2010).

Typically, the backbone function includes parameters that represent the initial

(maximum) stiffness and the ultimate resistance. Many models have been defined

using a hyperbolic relationship taking the form described in Equation 2.34, such

as Duncan and Chang (1970), Hardin and Drnevich (1972b), Kondner and Zelasko

(1963), and Vucetic and Dobry (1988).

τ =
G0γ

1 + γ
γr

(2.34)

where γr is the reference strain. Kondner and Zelasko (1963) suggested a hyper-

bolic backbone where γr = τult/G0, which has shown a good match to cohesionless

soil tests at medium strain amplitudes (when γ < 0.001%). However, Ishihara

(1997) demonstrated that, when the hyperbolic function is applied to Equation

2.33, and γr = τult/G0, the damping ratio determined from the area within the

hysteresis is ζ = 2/π = 0.637 for large strain amplitudes (when γ > 0.001%).

This is much higher than the material damping measured experimentally, which

typically ranges between 0.05 and 0.3 (Hardin & Black, 1968; Hardin & Drnevich,

1972b; Seed et al., 1986; Vucetic & Dobry, 1991). Matasović and Vucetic (1993)

proposed modifications to the γr definition to generalise the function for additional

types of sand, improving the ζ estimation using experimental results.

53



The hyperbolic model therefore involves two parameters, G0 and τult, to de-

termine the backbone function, and by extension the area within Masing-type

hysteresis loop. However, the initial stiffness and the ultimate resistance are not

completely indicative of the anticipated degree of material damping. Material

properties such as saturation, void-ratio, density and grain size can have a signif-

icant influence on the hysteretic response of soils (Carswell et al., 2015; Gazetas

& Dobry, 1984b; Hardin & Drnevich, 1972b; Seed et al., 1986). Furthermore,

external factors, such as the loading configuration, load rate, stress history and

confining pressure may also influence response (Ambrosini, 2006; Ashmawy et al.,

1995; Vucetic, 1990).

In light of this, it is convenient to encapsulate the overlapping factors that

influence the hysteretic response of soils into parameters that directly control the

geometrical shape of the hysteresis loop. The Ramberg-Osgood (RO) backbone

function facilitates this with two additional shape parameters, and is defined in

Equation 2.35.

τ =
G0γ

1 + α
∣∣∣ τ
τult

∣∣∣r−1 (2.35)

where α and r are empirically derived coefficients that best match test data. Note

that Equation 2.35 is a modification of the original RO model for soils, as recom-

mended by Idriss et al. (1978). The RO model is used extensively across multiple

disciplines when calibrating model behaviour to experimental results (Desai & Za-

man, 2013; Giardina, 2017; Pugasap, 2006; Sireteanu et al., 2014; Ueng & Chen,

1992). α and r are chosen such that the area within the hysteresis loop (energy

dissipated) matches well with experimental damping results, which typically leads

to appropriate representation of the stress path (Sireteanu et al., 2014).

The OMRs offer a convenient analytical approach to calibrating the backbone

function to the dynamic behaviour of τ -γ and p-y systems under simple har-

monic motion. However, the initial rules established by Masing (1926), where un-

load/reload functions are scaled with a factor of C = 2, cannot facilitate irregular

load signals due to inappropriate backbone scaling for varied cycling amplitudes.

As such, the OMRs are often used to characterise dashpots that encapsulate the

anticipated energy dissipation due to material damping for convenience in dynamic

analyses, rather than explicitly defining the stress path in a hysteretic spring.
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Extended masing rules

When large-strain dynamics is of concern in geotechnical systems, the input force

is seldom simply harmonic, for example seismic loading and storm events. In such

cases, equivalent dashpots or symmetrically hysteretic springs are not adequate to

capture the system’s true response to irregular load signals. This is particularly

true for soils (Baber & Noori, 1986; Pyke, 1979; Vucetic, 1990; Wen, 1976).

Masing’s theory was derived from an experiment where a brass bar was sym-

metrically loaded, which will have extremely different rheological behaviour to soil

(Masing, 1926). As such, Pyke (1979) outlined two crucial features of the OMRs

which defined the first two rules of the methodology, and added two additional

rules to comply with the expected cyclic behaviour of soil. The rules are as follows:

1. The tangent stiffness after an unload/reload sequence is equal to the initial

stiffness.

2. The unload/reload function is the same shape as the backbone curve, and is

scaled appropriately.

3. When the unload/reload curve exceeds the maximum past strain and inter-

sects the backbone curve, the stress-strain path follows that of the backbone

curve until the next reversal point.

4. If the unload/reload curve intersects the curve from the previous cycle, the

stress-strain path follows that of the previous cycle.

Note that if rule 2 is followed, rule 1 is implicit. These rules are commonly ap-

plied in modelling hysteresis loops of soils with non-degrading behaviour, primarily

due to their capability to retain the maximum stress experienced by the soil in the

past (Vucetic & Dobry, 1991). Figure 2.22 illustrates the four rules and demon-

strates their application in the Extended Masing Rules (EMRs) for constitutive

models of a non-degrading hysteresis, as introduced by Vucetic (1990).
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Figure 2.22: EMR illustration for an irregular stress sequence

When subjected to irregular cyclic loading, it is expected that the reversal

points hi = (γi, τi) will vary from cycle to cycle. If the OMR is used to define the

reload curves (where C = 2), then the stress path will likely exceed the ultimate

stress of the soil, which is problematic. To overcome this, Pyke (1979) suggested

a generalising equation for the unload/reload scaling factor C, and is defined in

Equation 2.36.

C =

∣∣∣∣sgn(γ̇)− τi
τult

∣∣∣∣ (2.36)

where γ̇ is the shear strain velocity of the system, sgn(γ̇) is the signum function

of γ̇ (i.e. ±1 for positive or negative γ̇, respectively), τi is the shear stress of

the previous load reversal, and τult is the ultimate shear stress of the soil. The

τi/τult term is important, as it ensures that the current stress path is scaled to

fit between the stress of the previous reversal ordinate τi and the ultimate stress

τult. As a consequence, Equation 2.36 enables a more realistic stress-strain path

for soils subjected to irregular cyclic loading, as a certain ‘memory’ of the soil’s

ultimate state is captured in the scaling factor. Figure 2.23 illustrates the effect

of Equation 2.36 on the stress-strain path of a system subjected to irregular cyclic

loading and demonstrates its ability to capture the EMRs.
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Figure 2.23: Arbitrary irregular loading signal applied to a Masing model informed
using Pyke’s rule (Equation 2.36)

Whilst Pyke’s rule does not explicitly capture rules 3 and 4 of the EMRs by

closing the loop, it can be argued that the modelled response is more indicative

of the observed behaviour of reloaded soils in sample tests (Barnes, 2010). Sub-

sequent reload curves are scaled using Equation 2.36 such that the stress path is

bound within τult and −τult.

This approach offers a practical method to define the unload/reload curves of a

system subjected to irregular cyclic loading (Amjadi & Johari, 2022; Beck & Pei,

2022; Restrepo & Taborda, 2018). However, ‘overshooting’ is a common issue for

hysteresis models that compose subsequent reload functions in real-time, whereby

small loops develop erroneous stress paths that do not sensibly follow the previous

cycle. Figure 2.24 shows that the reload curves in the small hystereses do not close

the loop, which lead to stress paths exceeding the desired response.

Figure 2.24: Overshooting due to Equation 2.36 for small reload cycles
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This issue is typically countered using pre-simulation signal filtering to remove

low amplitude, high frequency load reversals (Norén-Cosgriff et al., 2015), or com-

plex modifications to the EMR algorithm in order for the system to ‘memorise’

previous stress-paths and recognise when they are intersected (Benz, 2007). Re-

gardless, Pyke’s rule is a simple and effective method to define the reload curves of

a system subject to low frequency, high amplitude irregular cyclic loading, and is

used extensively in the literature (Basarah et al., 2019; Konstandakopoulou et al.,

2020; Su et al., 2020).

It is possible to model more advanced stress paths that facilitate certain soil-

structure interaction phenomena using the Masing algorithm. Beck and Pei (2022)

demonstrated that including a hardening spring in parallel with the nonlinear Mas-

ing spring can encapsulate changes in pore pressure. Other researchers directly

modified C to simulate certain behaviours. For example, Williams et al. (2022)

demonstrated a simple methodology to modify C when loaded in a certain di-

rection to encapsulate ratcheting effects. Vucetic (1990) suggested a degradation

model, where C is a function of the number of cycles. Pile-soil gapping is also

possible (Damgaard et al., 2013; Klinkvort & Hededal, 2013; Williams et al., 2021).

Modifying C is a powerful approach to encapsulating more advanced hysteretic

behaviour and degradation. However, C directly scales both the x and y axes,

which was suggested in the above examples. It is postulated here that it is possible

to uncouple the direction of scaling such that both degradation (vertical curve

scaling) and ratcheting (horizontal curve scaling) can be calibrated independently.

Equation 2.37 describes a more generalised form of the Masing algorithm, where

Cx and Cy are the horizontal and vertical scaling factors, respectively.

τ = Cyf

(
γ − γi
Cx

)
+ τi (2.37)

Iwan model

An alternative method for modelling the hysteretic behaviour of soil is to use a

series of bilinear springs which, when arranged in parallel, emulate the response

of the EMRs for a given initial load curve. Known as the Iwan model, the elastic

perfectly-plastic springs are back-derived from a backbone function by piecewising

the curve into linear segments1. Figure 2.25 demonstrates the decomposition of a

backbone function to form the Iwan spring elements for Ns = 4 bilinear springs.

The total response of the bilinear hysteretic springs described in Figure 2.25b is

1The model is described with reference to forces (F ) and displacements (x), in accordance
with the original literature.
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shown in Figure 2.26.

(a) Springs in parallel (b) Bilinear springs (c) Global Iwan spring

Figure 2.25: Iwan model for Ns = 4 springs
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Figure 2.26: Iwan hysteresis model response to arbitrary loading (Ns = 4)

It is clear from Figure 2.26 that the EMRs are strictly followed, as previous

load cycle stress paths are continued and internal loops are closed. Because of this,

overshooting is not an issue with the Iwan model. The parallel springs are evident

in the global Iwan model due to the polygonal shape. Note that the hysteresis is

continuous when Ns → ∞. Section 4.2.3 demonstrates that N = 20 is sufficient

for smooth hysteretic stress paths.

Similar to the Masing methodology, the Iwan model is capable of modifications

to facilitate complex geotechnical behaviour. Kaynia (2019) demonstrated that

describing intermediate bilinear springs as nonlinear-elastic developed a ‘pinching’

effect in the global Iwan spring, which is akin to soil-structure separation behaviour

in piles. Markou and Kaynia (2018) suggested parametrised micro-elements which

enable a calibration for the expected material damping in OWTs. Whyte et al.

(2020) developed an Iwan model for undrained clays, which applies spring-wise

scaling factors derived from three-dimensional FEA calibration tests to estimate
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pile-soil element strength degradation due to large amplitude cyclic loading, and

similar work was done by Prevost (1985). Mostaghel (1999) suggested a differential

equation description for piecewise-type hysteresis with degrading characteristics,

such as those proposed by Kaynia (2019) and Whyte et al. (2020). Ratcheting

behaviour is also possible with appropriate modifications to the reload stiffness in

the bilinear springs (Park, 1988). However, it has not been applied to the context

of OWT monopiles.

Bouc-Wen model

The Bouc-Wen (BW) model offers an alternative approach to defining the hys-

teretic stress path by utilising a first order differential equation. Originally pro-

posed by Bouc (1971), and later modified by Wen (1976), the model is described as

a linear and hysteresis spring in parallel2. The linear spring defines a post-yielding

stiffness, which can be neglected, and both springs are described in Equation 2.40.

Figure 2.27 illustrates the springs.

(a) Springs in parallel (b) Initial total response

Figure 2.27: Bouc-Wen spring combination describing total hysteretic response

Fel = α
Fult

xult
x (2.38)

Fh = (1− α)Fultz(t) (2.39)

F = Fel + Fh (2.40)

where α is a post-yielding stiffness parameter, xult is the ultimate strain and Fult

is the ultimate stress. z(t) is the hysteresis parameter that is computed by solving

the differential equation described in Equation 2.41.

2The model is described with reference to forces (F ) and displacements (x), in accordance
with the original literature.
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ż(t) =
1

xult
ẋ(t) [A− |z(t)|n (β − γsgn(ẋ(t)z(t)))] (2.41)

where A, n, β and γ are parameters which control the shape of the hysteresis.

Equation 2.41 is a nonlinear first order differential equation, which can be de-

scribed as a two-dimensional slope field in the F -x domain, where the solution

is the spring state. The β and γ parameters modify the slope direction to de-

velop unique shapes in the stress path, and n controls the curvature between the

initial and post-yielding stiffness (bilinear behaviour when n → ∞). Typically,

A is taken as unity such that Fult/xult in Equation 2.38 becomes the small-strain

elastic stiffness (Badoni & Makris, 1996; Constantinou et al., 1987). Note that the

signum function in Equation 2.41 governs the direction of the slope field, which

therefore controls the direction of the hysteresis loop. When ẋ is negative, the

slope field is reversed such that the new solution z(t) forms the unload curve.

It is difficult to explicitly define an analytical expression for the stress path

due to its nonlinear form when n > 1 and non-integer. The ordinary differential

equation described in Equation 2.41 is therefore typically solved using numerical

integration approaches, such as the fourth order Runge-Kutta algorithm (Butcher,

1996). Figure 2.28 shows the effect of β and γ on the hysteresis loop for the

arbitrary load sequence used in Figures 2.23 and 2.26.

61



-0.5 0 0.5 1

-1

-0.5

0

0.5

1

(a) β = 0.5, γ = 0.5

-0.5 0 0.5 1

-1

-0.5

0

0.5

(b) β = −0.5, γ = 0.2

-0.5 0 0.5 1

-1

-0.5

0

0.5

1

(c) β = 0.8, γ = 0.1

Figure 2.28: BW model for different β and γ parameters (n = 1)

The BW function can facilitate complex hysteresis shapes with simple paramet-

risation and demonstrates similar behaviour to Pyke’s rule when capturing the

4 EMRs in Figure 2.28a. However, note that rule 1 is often compromised for

this type of model. The first reloading sequence in Figure 2.28a does not have

the same initial stiffness as the first loading sequence. For this reason, the BW

hysteresis is commonly used in other structural engineering applications rather

than soil-structure interaction modelling (Pelliciari et al., 2020; Sengupta & Li,

2013). However, Badoni and Makris (1996) directly applied the BW model to piles

under earthquake excitations, and derived a method to directly inform Equation

2.41 using ultimate capacity and stiffness parameters defined in the API design

codes, such as Equation 2.4 and 2.9 (API, 2014). The results compared well with

numerous earthquake case studies.

Although the Masing rules are not strictly followed, the hysteresis geometry

of the BW spring is similar to those defined by Pyke’s equation demonstrated

in Figure 2.23, but offers further control of the hysteresis shape. This can serve

as a powerful model when more complex system behaviour is expected; such as

liquefaction, densification or general evolution of the constitutive soil-structure

properties. The stress path of the BW model is not informed by a backbone
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function, which makes empirical calibration difficult using tried methods such as

the OMRs formulation. However, Gerolymos and Gazetas (2005c) used the BW

model to describe the nonlinear seismic response of a rigid concrete caisson. The

hysteresis model was applied to both the dashpots (p-ẏ) and springs (p-y) and

showed good results, but required extensive and arduous calibration (Gerolymos

& Gazetas, 2005d). Separation and gapping behaviour is also possible (Baber &

Noori, 1985; Gerolymos & Gazetas, 2005b).

Due to similar structural geometries in the models, this model was also applied

to OWT monopiles, as large concrete caissons also exhibit diameter effects with

low L/D ratios (Kassas & Gerolymos, 2016). These effects were considered in

the model proposed by Gerolymos and Gazetas (2005c). Baber and Noori (1986),

Kottari et al. (2014), and Pelliciari et al. (2020) proposed that the shape parame-

ters in Equation 2.41 can be modified as a function of time or displacement, such

that the shape of the hysteresis evolves. Sivaselvan and Reinhorn (2001) sug-

gested multiple hysteretic springs in parallel to describe gapping and degradation

independently.

More advanced analysis is also possible with the BW due to its fully analytical

definition. Miguel et al. (2020) suggested a method to determine characteristic

parameters of the BW model through analysing the frequency spectrum of the dis-

placement signal. Defining the nonlinear characteristics of dynamic soil-structure

interaction using simple diagnostics, such as accelerometers, is a promising ap-

proach to determining the system’s nonlinear behaviour in-situ, and may be a

valuable tool for SHM of OWTs when observing lifetime degradation (Alexander,

2010; Alexander & Bhattacharya, 2011; Huang et al., 2018).

Hysteresis models for pile-soil interaction

Pile-soil interaction can be modelled using a variety of different methods to de-

scribe the stress paths. Typically, to simplify the problem, the OWT substructure

is encapsulated using a lateral, rotational and coupling spring at the ground line

(Arany et al., 2017; Carswell et al., 2015; Krathe & Kaynia, 2016). Whilst con-

venient for fast analysis and simple integration with superstructural models, the

local response of individual soil layers cannot be considered, which can have a sig-

nificant impact on the system’s response (Di Laora et al., 2013; Gazetas & Dobry,

1984a; Tott-Buswell et al., 2022; Yang & Jeremić, 2005). A system with multiple

degrees of freedom would be required to capture the full stratum, which requires

a significant increase in computational power and time to solve for nonlinear sys-

tems.
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Badoni and Makris (1996) used numerous hysteresis springs and frequency

dependent dashpots to model the lateral soil reaction of a slender pile subject

to earthquake motion. The model was informed using simple geotechnical pa-

rameters and compared to case study base excitations, which showed excellent

results. Rovithis et al. (2009) also used p-y-type models to replicate centrifuge

tests which demonstrated promise. However, it is important to address that mod-

els consisting of large numbers of degrees of freedom and hysteretic springs are

computationally expensive, as they require small time steps to accurately capture

the system’s response. This is particularly true for nonlinear systems, as the stiff-

ness is not constant. More degrees of freedom lead to additional modal vibrations

of higher natural frequencies (Bathe & Wilson, 1976; Tedesco, 1999), which can

result in profound instabilities for nonlinear systems due to excessive motion rever-

sals (Chopra, 2013), and may invoke erroneous stress paths in discrete hysteresis

models.

2.3.6 Summary

This section has discussed the different methods used to define the hysteretic re-

sponse of soils. The OMRs are a convenient approach to defining the stress paths

of a system subject to harmonic loading. This method is often used to define

the material damping behaviour of dashpots in dynamic soil-structure interaction

models, but is highly dependent on the governing backbone function and its exper-

imental calibration. Furthermore, The OMRs (where C = 2) were not suitable for

irregular cyclic loading, and therefore the EMRs were proposed by Pyke (1979).

Pyke’s modification enables a more realistic stress path for soils by calculating

the anticipated stress for the current irregular loading configuration, but can ex-

hibit erroneous behaviour. However, the Iwan model implicitly follows the EMRs

by piecewising backbone functions into elastic perfectly-plastic spring elements

arranged in parallel. Reversals are therefore determined on a local yielding crite-

ria, rather than explicit hysteresis reversal coordinates. Both of these models are

capable of modification to facilitate more complex hysteretic behaviour, such as

ratcheting, gapping and degradation, however the BW methodology encompasses

such behaviour with simple parametrisation.

Each methodology has been used to model dynamic pile-soil interaction in

literature. However, there has been no comparative review on the stability and

accuracy of the algorithms, particularly when computational efficiency is of im-

portance. OWTs are undergoing rapid development, and therefore the ability to

accurately and efficiently model the system’s response is crucial. SHM systems are

also becoming more common in OWTs due to the harsh environment and the need
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to ensure the structural integrity over long periods. If the nonlinear dynamic re-

sponse of a system can be accurately predicted, then a SHM system can be used to

monitor and estimate operational fatigue damage and encourage data-driven deci-

sion making. Such a model would also appropriately model the material damping

effects in the dynamic soil-structure interaction, which is a prominent component

in large OWTs subject to resonance and high intensity storm events.
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Chapter 3

Static multi-spring model:

development and analysis

This chapter aims to build upon the traditional p-y model by accounting for the

diameter effects experienced in low L/D monopiles. The static model developed in

this chapter is compared to laterally loaded monopile field tests performed in sand

at Blessington (Murphy et al., 2018) and Dunkirk (McAdam et al., 2020). The field

tests were not part of the work contributing to this thesis. The Blessington pile

tests are described in the following section and the problem definition is underlined

through a brief performance review on CPT-based p-y-only models in comparison

to the API sand p-y approach.

The objective is to derive soil reaction curves for each type of spring element

that is informed using cone tip resistance qc data. This will facilitate analysis

procedures that lead to quick preliminary designs of monopile foundations by im-

proving the traditional p-y methodology. The chapter concludes with a discussion

on the model’s limitations and potential improvements for future work.

3.1 Blessington pile test database

Lateral load tests were performed in two regions of the Blessington site, Dublin,

and are described herein. Blessington Lower quarry (BL) comprised three monopile

configurations with L/D = 3, 4.5, and 6; and one pile from Blessington Upper

quarry (BU) with L/D = 13. Full details on pile dimensions are given in Ta-

ble 3.1. The CPT investigations for each quarry demonstrate notable uniformity

across their respective site (Figure 3.1). Due to the lack of pile-specific CPT data,

the average qc profile is used. The water table is reported to be 13 m below ground

level for BU and >10 m below ground level for BL. The site contains dense, fine
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sand with relative density close to 100% and bulk unit weight of 19.8 kNm−3. All

piles were installed via driving. Detailed descriptions of the ground conditions

at the Blessington sites have been reported by Doherty et al. (2012), Gavin and

Lehane (2007), and Tolooiyan and Gavin (2011). Minimum, maximum, and aver-

age CPT profiles, including the G0 profile, are plotted in Figure 3.1 for both BL

and BU sites.
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Figure 3.1: (a) minimum, maximum and average qc profiles for Blessington Lower
quarry (b) minimum, maximum and average qc profiles for Blessington Upper
quarry (c) G0 profile used for Blessington Upper and Lower quarry

Table 3.1: Monopile geometries at Blessington site (Murphy et al., 2018)

Pile Embedment Diameter Ratio Thickness Eccentricity

Name L (mm) D (mm) L/D t (mm) h (mm)

LP2 1500 510 3.0 10 1000

LP3 2250 510 4.5 10 1000

LP4 3000 510 6.0 10 1000

UP1 4500 340 13.0 14 400
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3.2 CPT-based p-y models

The performance of the API sand and CPT-based p-y functions described in Table

2.5 are compared with the Blessington pile pushover tests outlined in Table 3.1.

The CPT-based p-y functions are informed using the qc profiles shown in Figure

3.1. For the API p-y function, the friction angle is assumed to be 40° and a unit

weight of 19kNm−3. The p-y model is developed in MATLAB’s coding environ-

ment, and details for model assembly and validation can be found in Appendices

A and B, respectively. The results are shown in Figure 3.2. Timoshenko beam

theory is used to model the elastic properties of a pile, particularly accounting for

internal shear forces that arise when rigid elements, such as monopile substruc-

tures, undergo deflection (Gupta & Basu, 2018). Ep=200 GPa, Gp=80.77 GPa,

ρ=7850 kgm−3, κ = 0.5 are assumed for all piles.
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Figure 3.2: Comparison of CPT-based p-y functions with API sand p-y function
against Blessington’s monotonic lateral pushover tests

The results in Figure 3.2 show that the API sand function overestimates pile

head deflections and underestimates the ultimate capacity for all pile geometries.
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This is because the API sand function is calibrated for piles of L/D ratios near 34

(Reese et al., 1974), therefore the parameters defined in Figure 2.3 and Figure 2.4

cannot be applied to the pile geometries tested at Blessington. Figure 3.2a shows

that most CPT models capture pile head deflection with reasonable accuracy.

The CPT-based models proposed by Dyson and Randolph (2001), Li et al. (2014),

Novello (1999), and Suryasentana and Lehane (2014) (see Table 2.5) all have

considerably lower L/D calibration spaces compared to the API function, therefore

UP1 (L/D = 13) is captured with reasonable accuracy. Li et al. (2014), Novello

(1999), and Suryasentana and Lehane (2014)’s models are in general a good fit,

whereas Dyson and Randolph (2001)’s p-y model overestimates the most out of

the CPT-based models for all piles.

UP1 and LP4 site tests do not reach capacity when laterally loaded, and

demonstrate a similar trend that is indicative of a similar failure mechanism. The

power law relationships describing the Li, Novello and Dyson estimate this shape

well (see Table 2.5), but have no consideration for the capacity in the formula-

tion. This is evident in relatively rigid pile tests LP3 and LP2, as the pile head

reaches maximum lateral load but the CPT functions do not show any indication

of reaching an ultimate value. It should be noted that the function developed by

Suryasentana and Lehane (2014) implicitly includes parameters that consider the

ultimate capacity of the pile (Equation 2.16). However, the model still fails to

estimate the capacity of LP3 and LP2 site tests, likely due to original calibration

space of the function. Conversely, the similar response shape to LP3 and LP2

and the API-defined p-y models suggests that the hyperbolic tangent formulation

(Equation 2.3) is an appropriate model for rigid piles. Currently, no CPT-based

model exists that uses a hyperbolic relationship.

The relative performance for all p-y models are the same for each pile test;

however, the model’s deflections become increasingly overestimated as the L/D

ratio decreases. This is in part due to further extrapolation of the calibration

ranges, and the transition from slender pile to rigid pile behaviour (see Section

2.1.4). Murphy et al. (2018) demonstrated that, for increasingly lower slenderness

ratios, the relative contribution of the p-y spring to the applied overturning mo-

ment reduces from approximately 90% to 80% for L/D = 6 and 3, respectively.

This trend is in line with what is observed in Figure 3.2, and suggests that addi-

tional resistance mechanisms are required to appropriately capture the behaviour

of rigid piles.

To summarise, Figure 3.2 demonstrates that CPT-based p-y functions can

capture the general response of laterally loaded piles with L/D ≥ 13, but are

restricted to more confining pile geometry calibration spaces. The overestimated
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deflections for lower L/D ratios for all functions suggests that there are residual

soil resistances unaccounted for in the traditional p-y spring element. It is a core

objective of this chapter to develop a model that can capture the behaviour of low

L/D monopiles, by incorporating additional CPT-based resistance mechanisms

that are not considered in traditional p-y models.

3.3 CPT-based multi-spring model development

Diameter effects have been addressed in various models in literature using multi-

spring models. Lai et al. (2021), Wang et al. (2020), and Zhang and Andersen

(2019) propose two-spring models in clay, where the p-y elements are accompa-

nied by a single rotational spring at the global rotation point of the pile that

encapsulates the lateral and rotational resistances at the tip. Wang et al. (2022a)

further simplified the approach by encapsulating all resistances using a single ro-

tational spring at the rotation point. Fu et al. (2020) proposed a three-spring

model that added a distributed moment and base shear mechanism; and Cao et

al. (2021) suggested a three-spring model with only lateral, base shear and base

moment springs, assuming the utilised p-y functions implicitly account for the

distributed moments. Burd et al. (2020b) and Zhang et al. (2023) proposed a

four-spring model that considers all resistances separately with respective spring

types. Among these models, the four-spring model system can comprehensively

simulate the expected resistances of a near-rigid pile under lateral load.

Figure 3.3 illustrates the four anticipated resistances for a rigid monopile when

laterally loaded at the pile head. The horizontal pile displacement y mobilises

lateral soil pressures p, and the local rotations θ induce shear tractions along the

pile-soil interface that generate a distributed moment m. The pile base is also

subject to a moment Mb and shearing Vb due to the bearing stresses qb at the tip.

Assuming Winkler’s theory, the soil-structure reaction mechanisms can be treated

as uncoupled and take the form of a p-y model with additional springs (Winkler,

1867), as shown in Figure 3.3b.
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Figure 3.3: (a) Resistances for monopiles under lateral loading and (b) schematic
of discretised multi-spring model

Using the Direct Stiffness Method (see Appendix A), the system can be discre-

tised into elements and solved for, where the nonlinear soil elements are described

by updating the secant modulus of the reaction curves. The lateral soil pressure

is captured using a traditional p-y definition, and the distributed moment due

to soil-pile interface friction is modelled as distributed m-θ spring elements. The

monopile is modelled using four degree-of-freedom elastic beam elements, where

each node is supported by lateral and rotational springs. Timoshenko beam the-

ory is used to capture internal shear deflections within the pile section that are

expected for low L/D monopiles (Gupta & Basu, 2018). Axial forces within the

monopile are neglected. A lateral and rotational spring is added to the pile base to

encapsulate tip resistances resulting from large diameter effects. The lateral base

shear spring (Vb-yb) models the lateral shearing due to the pile annulus and in-

ternal soil, and the base rotation spring (Mb-θb) represents the moment resistance

incurred due to soil bearing stress qb.

The CPT-based reaction curves for each new spring element are derived in the

following sections.

3.3.1 Lateral p-y springs

p-y functions are commonly derived from site test data or finite element calibration

procedures that are specific to a particular pile-soil configuration. This means that

these functions are typically only suitable for use within a limited range of pile
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dimensions and soil profiles for which they were originally derived or calibrated

(Jeanjean et al., 2011; Lehane & Suryasentana, 2014; Murphy et al., 2018; O’Neill

& Murchison, 1983; Reese et al., 1975). When choosing a p-y function to inform

the lateral resistance elements of a multi-spring model, it is necessary to isolate

the lateral soil pressure p to prevent an overlap with other mechanical resistances

that could be implicitly defined within the p-y relationship. Additionally, the p-y

function must exhibit an appropriate consideration of the flexural rigidity of the

pile, which can have a significant influence on the lateral resistance (Ashford &

Juirnarongrit, 2003; Fan & Long, 2005; Poulos & Hull, 1989).

The power law p-y relationship proposed by Li et al. (2014) was derived using

open-ended circular steel piles installed in siliceous sands, with L/D ratios ranging

between 6.5 and 20. As slenderness ratios as low as 6.5 were considered, resistance

mechanisms from the aforementioned diameter effects may be inherently included

in its parametrisation space. Murphy et al. (2018) showed that, when L/D = 6,

p-y springs can contribute to ∼ 90% by evaluating percentage contribution to

resisting the applied overturning moment for each spring type. It is therefore

assumed that the p-y relationship derived by Li et al. (2014) isolates the lateral

soil pressure p when used in a multi-spring framework, as the L/D ratio of the

most rigid pile in the calibration space is above L/D = 6 (Li et al., 2014). The

intended L/D ratio for the p-y relationship is also low enough that appropriate

pile flexibility may be assumed accounted for. To add, the function was derived

for piles with the cross-sectional properties of a monopile. The p-y function was

described in Table 2.5, and is repeated in Equation 3.1 for convenience.

p = 3.6D(γ′D)

(
qc
γ′D

)0.72 ( y
D

)0.66
(3.1)

where γ′ is the effective unit weight of sand.

It should be noted that Li’s p-y function cannot be used to model the ultimate

lateral capacity of piles due to the power law relationship, which was demonstrated

in Figure 3.2. As such, the multi-spring model is limited to small to medium range

deflections and cannot fulfil ULS design. However, it may still be used to estimate

the initial response and deflection range of a monopile within typical operational

deflections, as loading conditions that reach the designed ultimate capacity are

seldom experienced during OWT operation.
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3.3.2 Rotational m-θ springs

The distributed moment m due to vertical soil-pile interface friction becomes more

significant as the diameter of the monopile increases (Byrne et al., 2015; Lam,

2013). This is due to the pile radius acting as a lever arm as the pile rotates. This

is not explicitly captured in traditional p-y models. The moment-rotation relation-

ship of this spring element can be informed by scaling vertical shear-displacement

reaction curves (τ -w) to a moment-rotation function (m-θ), as demonstrated in

Figure 3.4. The τ -w curve is well defined in CPT-based axial capacity design

methodologies (Lehane et al., 2020b), therefore a CPT-based m-θ function can be

derived.

Figure 3.4: (a) Axial model with uniform friction and (b) rotational model with
varied friction

Lehane et al. (2020a) suggested a parabolic τ -w relationship, originally pro-

posed by Randolph (2003), because of its close match with the τ/τf against w/wf

load-transfer curve recommended in API (2014). The τ -w relationship is as fol-

lows:

τ = G0

( w

2D

)[
1− w

2wf

]
(3.2)

where wf is the local ultimate displacement and is defined as 4Dτf/G0, G0 is

the initial shear modulus of the soil and τf is the local maximum vertical shaft

shear resistance. G0 and τf are the only parameters required for full definition of

the τ -w relationship and can be estimated using CPT qc values in the absence of

appropriate site test data. For example, G0 can be approximated with qc using

empirical scaling relationships such as those proposed by Baldi et al. (1989) as

recommended in the ICP-05 design method (Jardine et al., 2005). See Section

2.1.2.

It is expected that dilation and plugging effects can be present for small-scale
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steel open-ended circular piles, which may have a marked effect on pile-soil in-

terface shearing capacities (Gavin et al., 2013; Lehane & Gavin, 2001; Lehane

et al., 2005). As such, it is important that scaling effects are accounted for when

comparing the model to scaled monopile site tests. The UWA CPT-based de-

sign methodology estimates the pile shaft friction at approximately 14 days after

driving and is shown in Equation 3.3 (Lehane et al., 2020b).

τf =

(
ft
fc

)
(σ′

rc +∆σ′
rd) tan δf (3.3a)

σ′
rc = (qc/44)A

0.3
re

[
max

(
1,
H

D

)]−0.4

(3.3b)

∆σ′
rd =

( qc
44

)( qc
σ′
v

)−0.33(
dCPT

D

)
(3.3c)

where ft/fc is the loading configuration ratio, Are is the effective area ratio, H

is the distance from the pile tip to the soil horizon of interest, σ′
v is the ef-

fective vertical stress (γ′z), dCPT is the diameter of the standard CPT probe

(35.7mm), and δf is the interface friction angle (defined as 29° in Lehane et al.

(2020a)). ft/fc is taken as 0.8 for general applications, as suggested by O’Neill

(2001). Equation (3.3b) represents the radial effective stress induced by plugging,

where Are = 1 − PLR(Di/D)2 and PLR is the Plug Length Ratio (defined as

PLR = tanh(0.3(Di/dCPT)
0.5)). Di is the internal diameter of the pile. Equation

3.3c represents the increase in radial effective stress due to dilation. Both σ′
rc

and ∆σ′
rd are inversely proportional to the pile diameter, therefore the function

can be extrapolated to larger pile configurations where plugging effects are less

pronounced (Lehane et al., 2020b).

Figure 3.5 illustrates how the friction forces vary around the pile circumference

with respect to the polar angle ψ. The relative local vertical deflection w can be

described using Equation 3.4.
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Figure 3.5: (a) section side view under rotation (b) section plan view with varying
shear force (modified from Fu et al. (2020))

w =
θD

2
cosψ (3.4)

The distributed moment per unit of resistance is:

m = 2

∫ π/2

−π/2

D

2
cosψdF (3.5)

It is important to note that the factor 2 assumes a symmetrical distribution of

frictional forces about the pile, meaning the shear stiffness of the sand is assumed

isotropic around the circumference of the pile. Fu et al. (2020) results suggest that

the shallow active side of the pile has no resistance due to soil-structure separation

at large deflections, and a reduced resistance on the active side at greater depths,

and Zhang et al. (2023) assumed only passive side resistance for conservatism.

Burd et al. (2020b) and Byrne et al. (2020a) coupled the local moment resistance

with local lateral resistances from the p-y springs. This was possible due to the

use of a 3D finite element calibration process which isolated element reaction

curves (Taborda et al., 2020; Zdravković et al., 2020b). However, it is likely that

semi-empirical p-y functions derived from field tests, such as Li et al. (2014), may

include this side-friction resistance implicitly. Coupling is therefore neglected in

this model.

Symmetrical interface shearing becomes less accurate as deflections increase.

The assumption is made that the alterations in the generated moments on either

side of the pile section are somewhat preserved when moments are calculated

around the axis of rotation of the pile. It is presumed that the resultant moment

remains constant despite the increasing interface shear on the passive side and
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decreasing interface shear on the active side. As such, any interface gaps and

notable asymmetry in soil stresses surrounding the pile section are considered

insignificant within the range of small to medium deflections under study.

Substituting dF = τdA (where dA = 0.5Ddψ) into Equation (3.5) gives m as

a function of τ(w).

m =
D2

2

∫ π/2

−π/2

τ(w) cosψdψ (3.6)

Substituting Equation 3.3 into 3.2 and subsequently Equation 3.2 into 3.6, then

solving the integral gives the total moment per unit length m as a parabolic

function of θ:

m(θ) =

aθ − bθ2 θ < θf

mf θ ≥ θf
(3.7a)

a =
G0D

2π

16
(3.7b)

b =
G2

0D
2

96τf
(3.7c)

wheremf is the ultimate moment capacity per unit length and θf is the rotation at

capacity. Full parametrisation of the m-θ function is shown in Table 3.2, including

the initial stiffness kθ. The function is illustrated in Figure 3.6.

Table 3.2: Key parameters of the m-θ function

Parameter Definition

Maximum moment, mf a2/4b = 3
32
π2D2τf

Failure rotation, θf a/2b = 3πτf/G0

Initial rotation stiffness, kθ a = πD2G0/16
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Figure 3.6: m-θ relationship as a parabolic function of θ

kθ enables the m-θ spring to be defined in terms of the initial shear modulus

of the soil, G0, and the pile diameter, D, and can be implemented in small-

strain analysis models such as those described in Section 2.3.2. This may help

to improve natural frequency estimations for low L/D monopiles (Prendergast &

Gavin, 2016).

It should be noted that the ultimate distributed moment per unit length (mf )

is defined without the consideration of gapping or asymmetrical normal stresses

around the pile. However, the chosen CPT-based p-y function already disregards

this condition for a ULS-type design process as Li’s model is not capable of mod-

elling lateral capacity (Figure 3.2).

3.3.3 Base moment Mb-θb spring

Pile tip resistances are not explicitly captured in traditional p-y models, and re-

cent modifications to address the diameter effects at the base of the pile involves

utilising macro spring elements that encapsulate base moment and shear mechan-

sims (Cao et al., 2021; Fu et al., 2020; Wang et al., 2020; Zhang & Andersen,

2019). However, it is difficult to correlate macro element parameters with CPT

end resistance values that represent local soil conditions. The base moment spring

is therefore assumed decoupled from the base shear resistance.

CPT-based correlations to estimate the moment resistance at the pile tip due to

overturning is not well-defined in literature, therefore cautious estimates are made

herein. A residual bearing stress qb,res at the pile base exists post-installation

(Byrne et al., 2018) and can resist rotation at the pile base. This can have a
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significant influence on the lateral resistance of low L/D monopiles (Burd et al.,

2017). Byrne et al. (2018) investigated the impact of qb,res on the driveability

of piles by estimating the residual stress as a function of the cone tip resistance

local to the base (qc,r). Defined as qb,res = αqc,r, the parameter α was varied

to achieve a best fit to the performance of driven pile site tests. It was found

that residual bearing stresses exist even for large diameter piles installed with no

plugging effects (Byrne et al., 2018).

qc,r should be chosen in a way that accounts for the variation in the local qc

values near the pile tip. In this study, qc,r is taken as the average qc over a range

above and below the pile tip. This range is set as a function of L/D, as monopiles

with smaller L/D values tend to be more sensitive to variations in soil strength

near the tip. This way the range is proportional to the slenderness ratio and will

appropriately decrease for low L/D monopiles. It is important to note that the

range will become disproportionately large for piles with a high L/D, but the

influence of the tips will become insignificant in this case. The range is taken as

0.25L/D above and below the pile tip, which was deemed appropriate for the piles

and CPT profiles used in this study. However, this value is at the discretion of

the user.

A bilinear relationship is proposed to simplify the quantification of the antici-

pated nonlinear relationship. For simplicity, the restoring moment of the rotating

pile base is assumed to act over a semi-circular area on the pile base. The maxi-

mum moment at the base is described in Equation 3.8.

Mb,f = qb,res
πD2

8
d (3.8)

where d is the lever arm taken and is taken as 2D/3π, which defines the distance

from the centroid of the loaded semicircular area to the centre of the pile cross-

section.

The PISA one-dimensional model has underlying similarities to the multi-

spring model presented herein (Burd et al., 2020a; Burd et al., 2020b; Byrne

et al., 2020a). Each spring is characterised using a dimensionless conic func-

tion that provides a convenient means to calibrate soil reactions to relevant dis-

placement/rotation variables (Burd et al., 2020b). The function’s ultimate soil

reaction, initial stiffness, and displacement/rotations are derived based on three-

dimensional finite element analysis calibration procedures of piles in dense sand

(Burd et al., 2020b), informed from soil sample tests extracted from the Dunkirk

site test (Zdravković et al., 2020a). All normalisation parameters for the conic

function were determined based on a calibration space of 2 ≤ L/D ≤ 6 and
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45% ≤ Dr ≤ 90%. From calibration procedures described in Burd et al. (2020b),

the failure rotation for a moment-rotation spring at the pile tip is given as:

θb,f =
θ̄bσ

′
b

G0

(3.9)

where σ′ is the vertical effective stress at the pile base and θ̄b is the calibrated ulti-

mate rotation dimensionless parameter, taken as 44.98 (Burd et al., 2020b). Note

that θ̄b is determined for piles with slenderness ratios between 2 and 6, therefore

its application to piles with L/D > 6 is uncertain. However, it is expected that

the moment induced at the pile tip will be increasingly insignificant for smaller

diameters (higher L/D ratios) due to the D3 term implicit in Equation 3.8.

3.3.4 Base shear Vb-yb spring

For large diameter monopiles, the soil within the annulus of the cross-section will

undergo horizontal shearing when the pile head is laterally loaded. It is assumed

that the residual bearing stress qb,res acts as the confining stress, such that the

horizontal shear at the base (τb,f ) can take a Mohr-Coulomb assumption. CPT-

based correlations that estimate the friction angle within the pile at the tip are

limited, therefore 35° is assumed for dense soil post-installation (Byrne et al.,

2018). τb,f is therefore approximated as qb,res tan 35°. The Mb-θb and Vb-yb spring

at the pile tip are both a function of the bearing stress post-installation.

The Vb-yb load-displacement function assumes a bilinear relationship, where

the capacity Vb is defined as the maximum shear force at the pile tip. Zhang and

Andersen (2019) suggested that the scoop-like shearing mechanism expected at

the tip of a rotating pile can be simplified to a horizontal shear across the pile

cross-section for large pile diameters. The shearing surface of the pile tip scoop and

the pile tip area become increasingly similar as the diameter increases, therefore

the shear force τb,f can be assumed to act over the area of the cross-section (Zhang

& Andersen, 2019). The expected maximum shear force is therefore proposed as:

Vb,f =
πD2

4
qb,res tan 35° (3.10)

The failure displacement yb,f for the bilinear lateral base spring is informed

based on the PISA methodology (Burd et al., 2020b) and is as follows:

yb,f =
2ȳb,fDσ

′
b

G0

(3.11)
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ȳb,f = ȳb,f1 + ȳb,f2

(
L

D

)
(3.12)

where ȳb,f1 = 0.52+2.88Dr and ȳb,f2 = 0.17−0.70Dr and Dr is the relative density

(Dr = 0.75 as recommended by Burd et al. (2020b)).

Equation 3.11 and 3.12 are calibrated based on three-dimensional finite element

analysis procedures and are used to define the normalised conic spring function

that models local horizontal soil reactions at the pile tip. ȳb,f is intended for

2 ≤ L/D ≤ 6 and 45% ≤ Dr ≤ 90% (Burd et al., 2020b).

According to Equation 3.12 it is possible for the initial stiffness of the bilinear

base shear spring (i.e. Vb,f/yb,f ) to be negative or have an extremely large value

for monopiles with large slenderness ratios. An arbitrary upper and lower limit

of L/D = 6 and L/D = 2 are applied to Equation 3.12 to remain within the

calibration space and to prevent inadmissible stiffness values. Due to the second

order power law relationship with respect to D in Equation 3.10, small diameters

(high L/D ratios) will reduce the expected shear force and consequently minimise

the significance of these limits, but will not affect monopile geometries where base

shearing is expected.

3.3.5 Calculation procedure

The pile deflections are computed using the Direct Stiffness Method (Tedesco,

1999), where {x} = [K]−1{F}. The secant stiffness matrix [K] is assembled from

the individual secant stiffnesses of the spring elements and the elastic Timoshenko

beam elements represent the pile. Details of the matrix assembly can be found

in Appendix A. The nodal displacements {x} are solved for using an iterative

procedure where [K] is updated with the secant stiffness of the spring elements

until convergence is achieved. {F} contains the force applied at the pile head,

including the anticipated applied momentM at the ground line due to eccentricity

h (M = Fh). The length of each beam element is set to ∆L = 0.05 m. The elastic

modulus, shear modulus, density and Poisson ratio is taken as 200 GPa, 80.77

GPa, 7850 kgm−3 and 0.3, respectively.

The CPT qc profile is averaged at depth increments of 0.05 m, which is the

same as the length of the beam element. The average qc value is then used to

inform the respective p-y and m-θ spring. qb,res is estimated as a percentage (α)

of the average qc value 0.25L/D above and below the pile tip. ∆L = 0.05 m is a

sufficiently small length to capture the spatial variability of the CPT profiles used

in this study, and reducing the value shows a negligible influence on results. The

numerical model is developed in MATLAB, and the pile tests described in the
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following sections are replicated using the multi-spring model and their respective

CPT profile. The deflections at the ground line node are recorded for each applied

load step and the results are compared to the field data.

The influence of the residual bearing stress qb,res on both the moment and

shearing spring mechanisms at the pile tip remains uncertain and warrants further

investigation. The subsequent analyses will evaluate the performance of the multi-

spring model by comparing it to site tests conducted on laterally loaded piles.

The parameter α is varied to identify an appropriate value for qb,res that aligns

with the performance of site investigations. A maximum value of 0.1 is used, as

recommended by Byrne et al. (2018).

3.4 Analysis and results

A wide range of monotonic push-over tests were performed at a site in Blessington,

Ireland, investigating the influence of slenderness ratio for open-ended circular steel

piles. Notable uniformity is demonstrated across the site (Doherty et al., 2012),

therefore the average CPT profile is used to inform the multi-spring model. Site

tests performed in Dunkirk, France, also investigated the performance of laterally

loaded scaled monopiles, including local CPT qc profiles for each pile’s location

(Zdravković et al., 2020a), enabling an improved investigation on the spatial vari-

ation sensitivity in CPT-based p-y models. Both site tests were performed in dry

sand, therefore the influence of groundwater was not considered.

The SLS design philosophy for OWTs requires that the ground line rotations

remain within 0.25° (DNV, 2021). However, only the ground line displacement was

measured at the site tests used in this study. For this reason, it is assumed that

0.25° rotation is equivalent to 0.01D displacement at the ground line. This can be

justified by assuming the rotation point of a laterally loaded rigid pile is located

at 2/3L below the ground line (Arany et al., 2017; Chortis et al., 2020). Figure

3.7 illustrates the rigid pile assumption, and the following calculations justify that

0.25◦ ≡ 0.01D for low L/D ratios.
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Figure 3.7: Rigid pile assumption for lateral pile analysis

tan(0.25◦) =
0.01D

2L/3
=

0.01
2
3

(
L
D

) (3.13)

L

D
=

0.01
2
3
tan(0.25◦)

≃ 3.44 (3.14)

Therefore, under the rigidity and rotation depth assumptions, 0.25° rotation is

equivalent to 0.01D displacement at the ground line if the slenderness ratio (L/D)

is approximately 3.44. This is inline with the slenderness ratio of the site tests

reviewed in this chapter. To add, the rigidity assumption is deemed appropriate

for piles/caissons of this L/D (i.e. Gerolymos and Gazetas (2005e) and Grecu

et al. (2021)). However, it is important to note that this assumption becomes

increasingly more invalid as the slenderness of the pile increases due to bending.

It was observed that no piles demonstrated this behaviour in the model during

the analysis.

The field tests used in this investigation were incrementally loaded to capacity,

therefore creep is evident in the ground line responses. However, the creep effects

are expected to be minimal within the SLS deflection range.

3.4.1 Blessington benchmark

The piles described in Table 3.1 are replicated using the multi-spring model and

the springs are informed using the average CPT and G0 profile shown in Figure

3.1. Three different permutations of the multi-spring model are simulated to

demonstrate the individual spring-type contributions to lateral resistance. These

permutations include the traditional p-y-only method, p-y + m-θ, and the full

multi-spring model, which incorporates both rotational and lateral pile tip spring

elements. The results are shown in Figure 3.8. Two configurations of the multi-
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spring model are plotted: one with qb,res = 0.1qc,r and the other corresponding to

the qb,res value that provides the best fit to the site response.

Figure 3.8: Model performance compared to Blessington pile tests (a) LP2, L/D =
3.0 (b) LP3, L/D = 4.5 (c) LP4, L/D = 6.0 (d) UP1, L/D = 13.0

The multi-spring model compares well with the site tests for all piles at de-

flections below 0.01D when qb,res = 0.1qc,r, which can be improved for larger

deflections if an appropriate qb,res value is identified. Notably, the response of

different spring model permutations demonstrate that the influence of each spring

type diminishes as the slenderness ratio increases. For example, the difference

between the deflection estimated in the p-y +m-θ model and the p-y-only model

is greater for piles with low L/D ratios, such as piles LP2 and LP3 in Figs. 3.8a

and 3.8b, respectively. This is indicative of the contribution of the distributed m-θ

springs, and reduces for the more flexible piles such as LP4 and UP1, as shown

in Figure 3.8c and 3.8d, respectively. Pile UP1 indicates that, when L/D is high,

the additional spring mechanisms become negligible and the multi-spring model

collapses to the traditional p-y method. This is suggested in Figure 3.8d, as the

difference between the p-y and multi-spring model is minor, and demonstrates that

the diameter effects present in low L/D monopiles are captured effectively in the

proposed model. It is worth noting that the apparent underestimation of ground

line deflections in UP1 could potentially be attributed to the use of a site-averaged

CPT profile.
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The p-y function proposed by Li et al. (2014) is a power law relationship and is

calibrated for piles with L/D ≥ 6.5, therefore it is not suitable for the prediction

of low L/D piles loaded to failure. This is evident in Figs. 3.8a and 3.8b, as the

p-y -only model does not capture the yielding behaviour of piles LP2 and LP3. A

more appropriate p-y function should be applied if ULS analysis is required. The

issue is further exaggerated by the significant creep experienced at large ground

line deflections, which is not considered in the proposed model.

When qb,res = 0.1qc,r, the multi-spring model offers a satisfactory match to all

the pile tests conducted at Blessington for small deflections below 0.01D, and are

within the ground line rotation limit of 0.25°. However, the ground line deflection

at higher loads is underestimated for low L/D piles, giving a conservative design

estimate. Notably, LP2, LP3, and LP4 require different qb,res values (0.04qc,r,

0.08qc,r, and 0.1qc,r, respectively) to improve large head deflection estimates. This

observation suggests that qb,res increases with the L/D ratio. However, determin-

ing precise correlations for parameters localised near the pile tip remains challeng-

ing due to the many factors that influence ground line deflections. Furthermore,

the utilisation of an average CPT profile across the site limits the ability to directly

investigate such correlations. It is also important to address that changing the p-y

function will influence the appropriate value of qb,res required for large deflection

estimates, suggesting different α values are required for different p-y functions.

Accurate measurements of residual base stresses on open-ended piles in sand

are scarce. For instance, Gavin and O’Kelly (2007) found that the residual base

stress was linked to the Incremental Filling Ratio (IFR) during driving, pile diam-

eter, and end resistance values. Similarly, Paik et al. (2003) reported a residual

base stress of approximately 1.7MPa, or around 6% of the qc value at the pile tip,

for a pile with a diameter of 0.356m and an IFR of 75% at the end of driving. An-

other study by Gavin and Igoe (2021) measured very low residual stresses during

the initial driving stages of a 0.34m diameter pile when the IFR was high. Towards

the end of installation, with an IFR value of 40%, a residual base stress of 4MPa

was mobilised, approximately 20% of the qc value at the pile tip. Considering the

substantial diameter of offshore monopiles, significant plugging during installation

is unlikely. Therefore, it is recommended that residual stresses are conservatively

estimated, and designers should exercise caution.

3.4.2 Dunkirk benchmark

The PISA project conducted a series of lateral push-over tests in Dunkirk (France)

and Cowden (UK) to assess piles loaded in soil deposits similar to those encoun-
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tered in offshore environment (Burd et al., 2020b; McAdam et al., 2020; Zdravković

et al., 2020a). Twelve open-ended circular steel piles with various L/D ratios rang-

ing from 3 to 8 were investigated. For this study, seven pile tests were selected,

and are detailed in Table 3.3.

CPT investigations were conducted at each pile location and the profiles are

shown in Figure 3.9a. This enables a meaningful evaluation of the influence of

spatial variability on the CPT-based multi-spring model. The water table was

found to be at a depth of z = 5.4 m below ground level, with bulk unit weights of

γ = 17.1 kNm−3 and 19.9 kNm−3 above and below the water table, respectively.

Figure 3.9b presents the G0 profile, which was computed using a combination of

triaxial tests and seismic CPTs. Additional site-specific information is available

in Zdravković et al. (2020a).
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Figure 3.9: (a) qc profiles and (b) G0 profile for the Dunkirk site (Zdravković et al.,
2020a)
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Table 3.3: Monopile geometries at Dunkirk site (McAdam et al., 2020)

Pile Embedment Diameter Ratio Thickness Eccentricity

name L (mm) D (mm) L/D t (mm) h (mm)

DM3 6000 762 8.00 25 10000

DM4 4000 762 5.25 14 10000

DM7 2250 762 3.00 10 10000

DS1 1450 273 5.25 7 5000

DS2 1450 273 5.25 7 5000

DL1 10600 2000 5.25 38 9900

DL2 10600 2000 5.25 38 9900

The majority of pile tests were subject to incremental loading at an average

rate of 0.91 mm/min. DS2 was loaded continuously at a rate of 325 mm/min

to investigate the influence of load rate on pile response. Notably, DS1 and DS2

share the same pile geometry but differ in terms of the load application rate. DS2

is included in Section 3.4.3 to assess the influence of CPT profiles for identical

pile geometries. It’s worth noting that the proposed multi-spring model remains

independent of load rate, which adds interest to evaluating the extent to which

CPT variations influence pile response. Finally, DL1 and DL2 are included in this

analysis for the same reason, and are included in Section 3.4.3. Figure 3.10 shows

the results.
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Figure 3.10: Model performance compared to Dunkirk pile tests (a) DM7, L/D =
3.0 (b) DM4, L/D = 5.25 (c) DS1, L/D = 5.25 (d) DM3, L/D = 8.0

Similar to the Blessington site tests, the multi-spring model compares well

with the site tests for all piles at deflections below 0.01D when qb,res = 0.1qc,r.

Figure 3.10a and 3.10c suggest that piles DM7 and DS1 exhibit an improvement

in estimating the response when additional spring components are included, and

an appropriate qb,res value can be identified to improve medium to large-strain

deflections. Furthermore, these piles demonstrate that low L/D piles benefit from

low α values to improve estimates for large displacements, which is a similar trend

that was observed in the Blessington site tests.

Figure 3.10d and 3.10b show that all spring model permutations exhibit a

superficially stiff response in comparison to the DM3 and DM4 site tests. Notably,

the estimated ground line deflections do not improve when more spring elements

are added. This suggests that the issue is not entirely related to the additional

resistance mechanisms proposed in this study. Figure 3.9a shows that piles DM3

and DM4 are subject to excessive variability in qc along the depth of the pile. In

contrast, other pile tests, including those from the Blessington site, have either

partially constant or linearly increasing CPT end resistance profiles. To add, DS1

and DM4 both have a slenderness ratio of 5.25. Aside from differences in scale

between the two pile geometries, a key distinction between DS1 and DM4 lies in

the variability of the qc inputs, as shown in Figure 3.9. This suggests that high

variations in qc can lead to artificially large stiffness in p-y-only models. The qc
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discretisation method proposed may not adequately account for the horizontal

shear load transfer between sand layers and localised failures at regions carrying

locally elevated loads. This may be a limitation with CPT-based p-y models in

general.

According to Figure 3.10c, pile DS1 exhibits a significant contribution from the

base spring components, as the difference between the deflections estimated from

the multi-spring model (qb,res = 0.1qc,r) and the p-y +m-θ model is large. This

may be a consequence of the linearly-increasing CPT profile evident in Figure 3.9,

which ultimately causes a high stiffness in the base springs relative to the other

reaction elements.

The initial deflections are captured reasonably well regardless of the issues

associated with high CPT variation and uncertainty associated around qb,res. It

can be concluded that the CPT-based multi-spring model works best for relatively

uniform CPT end resistance profiles, as a high degree of spatial variability leads

to superficially stiff springs.

3.4.3 Sensitivity to CPT profiles

DS1, DS2, DL1 and DL2 offer an opportunity to investigate the influence of CPT

profile variations for identical pile geometries. For the following analysis, qb,res =

0.1qc,r is taken for piles DL1 and DL2, and qb,res = 0.06qc,r for piles DS1 and DS2,

as suggested by Figure 3.10c.
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Figure 3.11: Multi-spring model performance against pile tests DS1 and DS2 (b)
Multi-spring model performance against pile tests DL1 and DL2

As DS1 and DS2 were loaded at different rates (0.91 mm/min and 325 mm/min,

respectively), it was originally concluded that the apparent stiffness difference be-

tween DS1 and DS2 can be attributed to the isotach behaviour of soil (McAdam
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et al., 2020). However, in Figure 3.11a, it is observed that the multi-spring model

provides reasonable ground line deflection estimates for both DS1 and DS2. More

importantly, the model captures the apparent increase in stiffness in DS2. This

suggests that the difference in load rate alone does not account for the observed

change in resistance between piles DS1 and DS2. The multi-spring model is inde-

pendent of load rate, which implies that these differences may be attributed, at

least in part, to the local variations present in each CPT profile.

Figure 3.11b shows that the multi-spring model underestimates ground line

deflections beyond 0.01D and does not adequately capture the response of both

DL1 and DL2. Again, this is likely due to substantial depth variations in the CPT

profiles demonstrated in Figure 3.9, leading to a superficially high stiffness in the

model. Moreover, it is possible that the embedded depth of the pile tests may in-

fluence the model response. For example, the lateral bearing stresses experienced

along DS1 and DS2 are expected to be relatively low due to shallow embedment

depth of 1450 mm. In contrast, DL1 and DL2 are embedded at a depth of 10600

mm, which would lead to larger lateral bearing stresses and potentially a reduced

influence on CPT end resistance fluctuations. This is a limitation with the pro-

posed model, as it does not account for the influence of pile embedment depth on

the model response. Regardless, the model performs reasonably well for displace-

ments below 0.01D, and captures the relative difference between the deflections

of DL1 and DL2.

3.4.4 Spring Contributions

The contributions of each type of spring element to the total lateral resistance are

shown in Figure 3.12 for the Dunkirk site tests and the varying contribution for

different L/D ratios is demonstrated. The Moment Contribution Ratio (MCR) is

defined as the ratio of the moment resistance provided by each spring type (Mint)

to the total external moment applied (Mext = Fexth). Mint is calculated as force

multiplied by the eccentricity of the spring element from the rotation point. The

rotation point is calculated as the point at which the lateral displacement of the

pile is zero, and linear interpolation is used to estimate the rotation point between

the two closest nodes.
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Figure 3.12: Spring contributions for Dunkirk site tests (a) DM3, L/D= 8.0; (b)
DM4, L/D= 5.25; (c) DS1, L/D= 5.25; (d) DM7, L/D= 3.0

Figure 3.12a shows that the pile with the highest L/D ratio, DM3, has the

highest contribution percentage of approximately 90% from the p-y springs, which

is expected as the pile is more flexible and the resistance is dominated by the

lateral soil pressure p. Notably, at initial pile head displacements, the Vb-yb springs

contribute approximately 30% of moment resistance, and plateaus towards ∼ 10%

as displacement increases. The sudden redistribution of stresses is indicative of

the bilinear Vb-yb relationship described in Section 3.3.4. When the horizontal

displacement of the pile base exceeds yb,f (Equation 3.11), the secant stiffness of

the Vb-yb spring begins to reduce and the contributing resistances from the p-y

springs increases as a consequence. DM3 shows that the contribution from the

Mb-θb spring is negligible, which is indicative of zero rotation at the pile tip. This

is expected from flexible pile behaviour.

In general, the percentage contribution from the lateral springs reduces as the

L/D ratio reduces. Figure 3.12d illustrates that when L/D = 3, the lateral springs

contribute to ∼60% and the additional springs contribute to ∼40% of the total

moment resistance. Two pile tests for L/D = 5.25 are shown in Figure 3.12b and

3.12c (DM4 and DS1, respectively). Both plots demonstrate similar contributions

from the lateral springs; however, the contributions from the additional spring

mechanisms vary. This variance indicates the influence of CPT profiles on the

model response. Therefore, the analysis may not be exhaustive, as it does not

fully account for the nuanced behaviour associated with the variability between
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the CPT profiles in the Moment Contribution Ratio (MCR) calculations. However,

despite these limitations, the presented analysis provides valuable insights into the

behaviour of the structural system under consideration, and is in agreement with

similar analyses conducted in the literature (Murphy et al., 2018).

3.5 Conclusions

A one-dimensional CPT-based multi-spring Winkler model has been developed,

where each soil element is informed using discretised qc data. The traditional p-y

method is modified by incorporating additional spring mechanisms that encapsu-

late the expected resistances induced by diameter effects in low L/D monopiles.

CPT-based axial capacity methods are repurposed to approximate distributed

moment-resistances along the monopile, which arise from the rotation of large-

diameter sections. Pile tip resistances are estimated by decoupling the expected

base moment and horizontal shear mechanisms and utilising a rotational and lat-

eral bilinear spring positioned at the pile base. The capacity of each base spring is

informed by averaging qc values 0.25L/D above and below the pile tip to estimate

the post-installation residual bearing stress, qb,res. The following conclusions are

made:

1. The proposed model captures initial ground line deflections below 0.01D well

when qb,res = 0.1qc,r, which is in agreement with SLS design criteria. It is

not suitable for analysing large strains or predicting ultimate failure loads.

2. Determining an appropriate value for residual bearing stress (qb,res) is chal-

lenging, and a conservative estimate of qb,res = 0.1qc,r is recommended.

3. The m-θ, Vb-yb, and Mb-θb springs successfully encapsulate diameter effects

for low L/D monopiles, and become negligible as the slenderness ratio in-

creases.

4. The model works well for CPT profiles that are uniform or linearly increasing

with depth, such as those measured in the Blessington site.

5. Minor variations in CPT profiles are captured by the model. However, a

high degree of spatial variability leads to a superficially stiff response.

6. A more appropriate p-y function is required to capture the ultimate capacity

of the pile.
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It is difficult to establish a qb,res for lateral pile analysis using ground lines de-

flection estimates, as there are many overlapping factors that influence the ground

line response of a laterally loaded pile. Additionally, the underlying assumptions

of uncoupled springs may not be suitable for CPT profiles of high variability, as the

horizontal shearing between laterally loaded soil layers is not captured. This may

be significant for neighbouring soil horizons with large differences in qc. It is pos-

tulated that utilising site-average qc profiles may be more appropriate than CPT

profiles local to the pile, as the model performed better in general for Blessington

tests compared to Dunkirk tests. Averaging may reduce the degree of fluctuation

within the input data and improve the model’s performance. However, more data

from site tests is required to support this claim.

The proposed model is a step towards a more comprehensive CPT-based model

for laterally loaded monopiles. However, further work is required to improve the

estimated ultimate capacity of the pile. This may be achieved by defining a more

suitable p-y relationship that is a function of horizontal effective stress. This was

not within the scope of this investigation, however the multi-spring model offers

a modular framework to replace the current definition, should a more appropriate

CPT-based p-y definition be proposed. To add, some underlying assumptions

will require further modification. For example, the m-θ soil element assumes

no gapping at large pile deflections and vertical interface shear stresses remain

symmetrical about the central axis of the pile section. This can be improved by

coupling the m-θ element with the p-y element, as the confining stress imposed by

the lateral soil pressure p will have an influence on the amount of vertical shear

experienced. These are topics of interest for future research.
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Chapter 4

Dynamic p-y model: development

and analysis

This chapter describes the development of a dynamic nonlinear model that fa-

cilitates irregular load sequences that can be expected in offshore environments.

OWTs are dynamically sensitive structures, therefore it is imperative that energy

dissipation is adequately modelled. The model is developed using time-domain

approaches, which involves solving for the dynamic equilibrium of the system at

each step in time. To achieve this, Time Marching Algorithms (TMA) are em-

ployed. These algorithms are capable of facilitating nonlinear Multi-Degree of

Freedom (MDOF) models, and therefore can be used to estimate the response of

the dynamic soil-structure interaction of an embedded pile. Hysteresis algorithms

are used to establish distinct stress paths for discrete layers as nonlinear springs.

As discussed in Section 2.3, a time-domain analysis of an OWT-monopile sys-

tem is essential for capturing its dynamic response. This is because the system

is subject to irregular load sequences, therefore load histories should be randomly

generated from wind and wave frequency spectra of various sea states and wind

speeds to form realistic simulations of anticipated environmental excitations. The

guidelines provided by IEC (2009) suggest that the dynamic response of the sys-

tem is evaluated for a range of sea states and wind speeds to ensure that the

structure is safe and reliable, each with a unique frequency spectrum. To add, it

is common practice to generate numerous wind and wave load profiles from the

same spectrum, to explore all potential load scenarios in OWT design simulations.

This compounds the multitude of potential simulations required for a comprehen-

sive analysis of the dynamic response of the OWT, therefore a full design for a

single OWT-monopile configuration can take many hours. It is therefore essential

that the dynamic model is computationally efficient to facilitate the large number

of simulations required, especially when considering the nonlinear soil-structure
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interaction.

This chapter will emphasise the importance of time-domain analysis, the effi-

cacy of various hysteresis reaction models, and the sensitivity of numerical inte-

gration methods for both linear and nonlinear systems. Achieving this requires

appropriate modifications to the hysteresis algorithms, including considerations for

gapping, liquefaction, and ratcheting. Consequently, the model serves the purpose

of a digital twin, enhancing structural safety and reliability through data-driven

decision-making.

It is important to note that this chapter does not intend to evaluate the perfor-

mance of specific hysteresis modifications. The primary aim is to create a robust

and efficient dynamic nonlinear MDOF model that enables the exploration of such

effects. Figure 4.1 illustrates the modified p-y model from Chapter 3 for dynamic

analysis. Each spring is defined with a distinct hysteretic p-y relationship repre-

senting the dynamic nonlinear properties of the corresponding soil layer.

(a) OWT-monopile
structure (b) Nonlinear hysteresis model

Figure 4.1: MDOF dynamic nonlinear model of an OWT-monopile structure

The spring stiffness is defined as the tangent modulus rather than the secant

type in static p-y models, as shown in Figure 2.2b (Chopra, 2013). The mass

matrix is informed using a consistent-mass technique (Tedesco, 1999), which is

detailed in Appendix A. F (t) is the load history applied that encompasses external

environmental excitations (Figure 2.17). The super element in Figure 4.1b is a

simplified structural reduction methodology used to describe the superstructure
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with a point mass and cantilever, such that the dynamic properties are unchanged

(Branlard et al., 2020). The study of super elements is not within the scope of this

thesis and is therefore omitted in the analyses herein, but is a common approach

to reducing the complexity and computational spend of high MDOF structures

without compromising accuracy.

TMAs will be reviewed using a Single Degree of Freedom (SDOF) oscillating

linear mass-spring system. This is to establish a confidence in the simplistic case

of the algorithms before extending to a MDOF system. The model illustrated in

Figure 4.1b can be sensitive to both the TMA and the hysteresis representation

(Kontoe et al., 2008). It is important that the model converges to the true solution

and achieves stability (Wood, 1990). Therefore, this chapter will:

1. Investigate the stability and accuracy of TMAs in simple SDOF linear sys-

tems, therefore identifying the most appropriate method for the dynamic p-y

model.

2. Investigate the robustness of alternative hysteresis models in a controlled

simulation, and identify the most appropriate model for the dynamic p-y

model.

3. Review the performance of the dynamic p-y model by applying realistic wind

and wave load histories to an integrated OWT superstructure appended to

the dynamic p-y foundation model.

4.1 Time marching algorithms

Figure 4.2 shows the SDOF model of an oscillating mass on a nonlinear spring

with linear viscous dashpot. The three internal forces are illustrated in 4.2b. Note

that k is a function of x, indicating a nonlinear system.
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(a) SDOF mass on nonlinear spring and
viscous dashpot

(b) Free body diagram of particle, where
fs, fd and fi are the spring, damping and
inertial forces respectively

Figure 4.2: Illustration of the SDOF system and the forces applied to a dynamic
particle

The equation of motion for a driven oscillator with mass m and spring force

fs (Figure 4.2) can be described by Equation 4.1.

F (t) = mẍ(t) + cẋ(t) + fs(x) (4.1)

where F (t) is the externally applied load history, ẍ is the object’s acceleration, ẋ

is the object’s velocity, x is the object’s displacement and fs(x) is the nonlinear

spring force. c is the viscous damping coefficient that encapsulates the energy

dissipation other than material damping. Material damping is captured using

nonlinear restoring force of the spring fs(x), as discussed in Section 2.3.3. Closed

form solutions of x(t) exist for harmonically driven damped oscillators with one

degree of freedom and elastic properties (Bathe & Wilson, 1976; Chopra, 2013;

Tedesco, 1999). However, it is difficult to define analytical solutions for irregular

force-time histories, and even more so for MDOF nonlinear systems (Kovacic &

Brennan, 2011).

According to D’Alembert’s principle, the equation of motion can be solved for

using the concept of dynamic equilibrium (Chopra, 2013). At any point in time,

a fictitious inertial force acting in the direction opposing the acceleration can be

established to balance the system’s applied forces and ensure equilibrium. Thus,

at any instance in time, a free body diagram can be derived and the principles

of static equilibrium can be directly applied (Figure 4.2b). This is the primary

concept of TMAs when solving Equation 4.1, which can estimate the solution x(t)

to the second order differential equation (Equation 4.1) using numerical integration

methods.

TMA approximate the solution of the equation of motion with a set of algebraic

equations which are evaluated in a step-by-step manner. The continuous form of

the equation of motion is therefore discretised into time steps at ∆t intervals,
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whereby dynamic equilibrium is solved for to compute the system’s kinematics (x,

ẋ and ẍ) at each step in time. The variation of the kinematic forces are therefore

assumed within the time step, which depend on the type of numerical integration

method used. Many numerical integration methods exist in literature (Bathe &

Wilson, 1976; Hilber & Hughes, 1978; Newmark, 1959; Wilson et al., 1972), which

impose different kinematic assumptions within ∆t. This can have a significant

impact on the accuracy and stability of the simulation, as equilibrium is assumed

to only be achieved at ∆t intervals.

The following section will review the most common TMAs for linear SDOF

systems (fs(x) = kx), and will discuss their relative merits based on accuracy,

stability, efficiency and dissipative qualities. Both explicit and implicit TMA

methods are explored, where the former is typically less accurate but more effi-

cient, and the latter is accurate but computationally expensive. If i is the time

step count, explicit methods estimate the kinematics at ti+1 based on the current

kinematics at ti, which can be a source of instability if ∆t is large relative to the

natural period Tn of the system. Implicit methods solve for the response at ti+1 by

implying equilibrium at ti+1. This is favourable for linear systems, as the restor-

ing force is easily computed at ti+1 (fs(x) = k(xi+1 − xi)). However, nonlinear

restoring forces (fs = f(x)) require further iteration within time steps to achieve

equilibrium, or sufficiently small time steps to mitigate the error.

Most TMAs enable parametric modifications to control stability and algorith-

mic dissipation. This enables certain higher frequency modes in the estimated

displacement signal to be filtered out during the simulation, and is particularly

useful for nonlinear systems. The restoring force in hysteretic systems can be

highly dependent on the displacement history at large strains, therefore erroneous

oscillations should be mitigated. The derivation of TMAs and the importance of

their respective parameters are detailed herein.

4.1.1 Central difference method

The Central Difference Method (CDM) is based on the finite difference approxi-

mation of the kinematic derivatives outlined in Equation 4.2, where derivative of

any function f(x) can be approximated. If h is the generalised discrete step size,

then:

f ′(x) ≃ f(x+ h)− f(x− h)

2h
(4.2)

The first and second derivatives of displacement (ẋ and ẍ, respectively) can there-

fore be estimated using the same principles, and are illustrated in Figure 4.3 and

described in Equations 4.3 to 4.5.
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ẋiẋi+1 ẋi− 1
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(b) CDM for ẍ

Figure 4.3: Assumptions of the Central Difference Method for estimating ẋ and ẍ

ẋi =
xi+1 − xi−1

2∆t
(4.3)

In order to compute ẍi, the velocity at times ti− 1
2
= ti− 1

2
∆t and ti+ 1

2
= ti+

1
2
∆t are

required. These can be estimated using Equation 4.3 at ti− 1
2
and ti+ 1

2
respectively,

as illustrated in Figure 4.3b.

ẋi− 1
2
=
xi − xi−1

∆t
ẋi+ 1

2
=
xi+1 − xi

∆t
(4.4)

Equation 4.2 is then applied to find ẍi using ẋi− 1
2
and ẋi+ 1

2
.

ẍi =
ẋi+ 1

2
− ẋi− 1

2

∆t

ẍi =

xi+1 − xi
∆t

− xi − xi−1

∆t
∆t

ẍi =
xi+1 − 2xi + xi−1

∆t2

(4.5)

Equations 4.3 and 4.5 can be substituted directly into the equation of motion at

t = ti (Equation 4.1) and refactored to give a more convenient form to determine

the displacement at the next time step xi+1.

xi+1 =
F̂i

k̂
(4.6)

where

k̂ =
m

∆t2
+

c

2∆t
(4.7)

and

F̂i = Fi −
[ m
∆t2

− c

2∆t

]
xi−1 −

[
k − 2m

∆t2

]
xi (4.8)
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where k̂ is the effective stiffness and F̂i is the effective force. Both terms include

the dynamic properties of the system, but simplify the approximation of xi+1 to

resemble a static problem. k̂ and F̂i do not require the kinematic properties at

time ti+1, therefore this method is explicit.

According to Equation 4.8, xi−1 = x(t−∆t) is required to compute the effective

force F̂i. This is problematic, as the conditions of the system at t = 0 − ∆t are

typically unknown. The CDM is therefore not self-starting without appropriate

estimations at t = −∆t, which was one of the fundamental characteristics required

for a successful TMA according to Hilber and Hughes (1978).

4.1.2 Newmark-β Method

The Newmark-β methodology uses a Taylor series expansion, where ẋi+1 and ẍi+1

are estimated using polynomials to calculate xi+1 and ẋi+1 at t = ti, respectively

(Newmark, 1959).

xi+1 = xi + ẋi∆t+
1

2
ẍi∆t

2 +
1

6

...
x i∆t

3 + ...+O(∆t4) (4.9)

ẋi+1 = ẋi + ẍi∆t+
1

2

...
x i∆t

2 + ...+O(∆t3) (4.10)

where
...
x (ti) is the first derivative of acceleration with respect to time and O(∆t4)

and O(∆t3) are the truncation errors due to the infinite series. Newmark (1959)

proposed that the Mean Value Theorem can be applied to approximate
...
x (ti), i.e.:

xi+1 = xi + ẋi∆t+
1

2
ẍi∆t

2 + β
...
x i∆t

3 (4.11)

ẋi+1 = ẋi + ẍi∆t+ γ
...
x i∆t

2 (4.12)

where β ∈ [0, 1] and γ ∈ [0, 1] such that Equations 4.11 and 4.12 are true. These

parameters enable control of the stability, accuracy and dissipative properties of

the algorithm and encapsulate the truncation error of the Taylor series expansion.

Eliminating the
...
x i term gives:

xi+1 = xi +∆tẋi +

(
1

2
− β

)
∆t2ẍi + β∆t2ẍi+1 (4.13)

ẋi+1 = ẋi + (1− γ)∆tẍi + γ∆tẍi+1 (4.14)

which define the general governing kinematic equations for the Newmark-β al-

gorithm. Similar to the derivation of the CDM equations, the effective equilibrium

equation F̂i+1 = k̂xi+1 can be determined by rearranging Equation 4.13 for ẍi+1,
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substituting into Equation 4.14 then substituting both definitions of ẋi+1 and ẍi+1

into the equation of motion at time t = ti+1 (Equation 4.1). The effective force

and stiffness is therefore:

F̂i+1 = Fi+1 +

[
1

β∆t2
m+

γ

β∆t
c

]
xi

+

[
1

β∆t
m+

(
γ

β
− 1

)
c

]
ẋi

+

[(
1

2β
− 1

)
m+∆t

(
γ

2β
− 1

)
c

]
ẍi

(4.15)

and

k̂ = k +
γ

β∆t
c+

1

β∆t2
m (4.16)

Note that k̂ in Equation 4.16 requires the stiffness of the system k. Solving

F̂i+1 = k̂xi+1 is trivial for SDOF systems. However, for nonlinear MDOF systems

(where k updates at each time step), a stiffness matrix inversion is required and

can be computationally expensive. This is a major advantage of the CDM, as

undamped MDOF systems with a lumped mass configuration can be solved for

without the need for stiffness matrix inversion, as shown in Equations 4.6 and 4.7.

β and γ capture underlying assumptions in the Newmark-β theory, which by

extension controls different qualities of the algorithm. Furthermore, depending on

the selection of β and γ, the method can be either implicit or explicit. According

to Newmark (1959), the method is explicit if 0 ≤ β < 1
4
, with varying stability

and accuracy characteristics. When β ≥ 1
4
, the system is implicit.

γ controls the stability conditions of the system, and unconditional stability is

guaranteed if γ ≥ 1
2
and β ≥ 0.25(0.5+γ)2. Unconditional stability is a favourable

property of TMAs, as there is no prerequisite for ∆t in order to ensure an estimated

solution that does not grow without bound. This is discussed in more detail in

Section 4.1.5. If the Newmark-β algorithm is conditionally stable, the maximum

time step for stability (∆tcr) is given by:

∆tcr =
1

π
√
2

1

π
√
γ − 2β

Tn (4.17)

It is also possible to exhibit dissipative behaviour for higher modes, which

can be achieved if 2β ≥ γ > 1
2
(Hughes, 2000; Kontoe et al., 2008). Common

derivations for β and γ are derived herein.
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Constant Average Acceleration

The Constant Average Acceleration (CAA) method assumes that the acceleration

within the time step is constant and computed as the average of ẍi and ẍi+1. This

is shown in Figure 4.4, where τ denotes the variation of time within a time step.

The assumption is defined in Equation 4.18.

0 ti ti+1

0

ẍi

ẍi+1

τ

∆t
t

ẍ

Figure 4.4: Variation of acceleration within a time step for the CAA method

ẍ(τ) =
1

2
(ẍi+1 + ẍi) (4.18)

where
dẍ

dτ
=

...
x (τ) = 0. Therefore, substituting Equation 4.18 and

...
x (τ) = 0 into

Equation 4.9 and 4.10 for τ = ∆t gives the following expressions:

xi+1 = xi +∆tẋi +
1

4
∆t2ẍi +

1

4
∆t2ẍi+1 (4.19)

ẋi+1 = ẋi +
1

2
∆tẍi +

1

2
∆tẍi+1 (4.20)

Comparing Equation 4.19 with Equation 4.13 and Equation 4.20 with Equation

4.14 shows that the CAA method is equivalent to the general Newmark equations

when γ = 1
2
and β = 1

4
. The CAA method is therefore implicit, as β ≥ 1

4
.

Dahlquist (1963) demonstrated that the CAA method is the most accurate un-

conditionally stable implicit scheme.

Linear Acceleration

The Linear Acceleration (LA) method assumes that the acceleration within the

time step is varies linearly between ẍi and ẍi+1. This is shown in Figure 4.5,

where τ denotes the variation of time within a time step. Equation 4.21 defines
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the assumption.

0 ti ti+1

0

ẍi

ẍi+1

τ

∆t
t

ẍ

Figure 4.5: Variation of acceleration within a time step for the Linear Acceleration
method

ẍ(τ) = ẍi +
τ

∆t
(ẍi+1 − ẍi) (4.21)

where
dẍ

dτ
=

...
x (τ) =

ẍi+1 − ẍi
∆t

. Again, substituting Equation 4.21 and
...
x (∆t)

into Equation 4.9 and 4.10 gives the following expressions:

xi+1 = xi +∆tẋi +
1

3
∆t2ẍi +

1

6
∆t2ẍi+1 (4.22)

ẋi+1 = ẋi +
1

2
∆tẍi +

1

2
∆tẍi+1 (4.23)

Comparing Equation 4.22 with Equation 4.13 and Equation 4.23 with Equation

4.14 shows that the LA method is equivalent to the general Newmark equations

when γ = 1
2
and β = 1

6
. As β < 1

4
, the LA method is explicit and conditionally

stable.

Other variations of Newmark-β

Argyris and Mlejnek (1991) showed that, if β = 0 and γ = 1
2
, then Equations

4.13 and 4.14 can be rearranged to form the CDM method equations in Equations

4.3 and 4.5, if equilibrium is solved for at t = ti. In this light, it is shown again

that the CDM meets the conditions for an explicit algorithm but is conditionally

stable (since β < 1
4
and β < 0.25(0.5+γ)2). Equation 4.17 demonstrates a stability

condition of 1
π
∆t. The β and γ parameters clearly have a strong influence on the

underlying assumptions made when estimating how the kinematics vary within
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a time step, including the stability of the algorithm (Dahlquist, 1963). Fung

(2003) demonstrated that many more permutations of β and γ are possible that

exhibit dissipative properties with unconditional stability. The family of common

Newmark-β algorithms and their stability conditions are summarised in Table 4.1.

Table 4.1: Summary of Newmark-type algorithms and their stability conditions

Algorithm β γ Stability Condition

Central Difference Method (CDM) 0 1
2

∆tcr =
1
π
Tn (conditional)

Linear Acc. (LA) 1
6

1
2

∆tcr = 0.551Tn (conditional)

Constant Average Acc. (CAA) 1
4

1
2

∆tcr = ∞ (unconditional)

4.1.3 Wilson-θ Method

The Wilson θ method assumes that the acceleration is linear during the time

interval ti to ti + θ∆t (where θ ≥ 1), as shown in Figure 4.6. When θ ≥ 1,

equilibrium is solved for after t = ti+1, which causes dissipative behaviour in the

approximated solution for certain frequencies (Wilson et al., 1972). Equation 4.24

describes how acceleration varies over the time step.

0 ti ti +∆t ti + θ∆t
0

ẍi

ẍi+1

ẍi+θ

∆t

τ

t

ẍ

Figure 4.6: Wilson θ method acceleration assumption

ẍ(τ) = ẍi +
τ

θ∆t
(ẍi+θ − ẍi) (4.24)

where τ is the time variable within the time step, and ẋi+θ = ẍ(ti + θ∆t). The

θ parameter controls the stability and accuracy of the algorithm. When θ = 1,

Equation 4.24 collapses to Equation 4.21 and takes the form of the Newmark-β LA

method. Integrating Equation 4.24 twice and letting τ = θ∆t, the displacement

103



and velocity can be calculated as follows:

xi+θ = xi + θ∆tẋi +
θ2∆t2

6
(ẍi+θ + 2ẍi) (4.25)

ẋi+θ = ẋi +
θ∆t

2
(ẍi+θ + ẍi) (4.26)

where ẋi+θ = x(t + θ∆t) and ẍi+θ = ẍ(t + θ∆t). The equation of motion is

satisfied at t = ti + θ∆t. However, since a linear projection of acceleration is

assumed (Figure 4.6), then a linearly projected force vector is also required to

satisfy equilibrium (Tedesco, 1999). The equation of motion becomes:

mẍi+θ + cẋi+θ + kxi+θ = Fi + θ(Fi+θ − Fi) (4.27)

Equations 4.25 and 4.26 can be substituted into Equation 4.27 to obtain the

effective stiffness and effective force, which are as follows:

k̂ = k +
6

θ2∆t2
m+

3

θ∆t
c (4.28)

F̂i+θ = Fi + θ(Fi+θ − Fi)

+

[
6

θ2∆t2
m+

3

θ∆t
c

]
xi

+

[
12

θ2∆t2
m+ 2c

]
ẋi

+

[
2m+

θ∆t

2
c

]
ẍi

(4.29)

The Wilson-θ method is unconditionally stable when θ ≥ 1.37, and is a single-

parameter algorithm that enables dissipative behaviour (Wilson et al., 1972).

Goudreau and Taylor (1973) demonstrated that, when ∆t is large, the Wilson-

θ algorithm exhibits overestimated estimations of the solution for the first few

time steps, then eventually converges towards the exact solution. This is due to

the linear extrapolation of ẍi+1+θ when θ ≥ 1 (see Figure 4.6), resulting in an over

prediction of the kinematics. Hilber and Hughes (1978) suggested a TMA called

the Collocation Method, which combined Wilson-θ and the Newmark-β’s dissipa-

tive properties. This method enabled further control of the algorithm’s properties

and addressed the initial overestimation problem of the Wilson-θ method. For

brevity, the Collocation method is not discussed in this comparative study.
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4.1.4 α-Family Methods

α-family algorithms extend the Newmark-β method by applying α factors to differ-

ent kinematic terms in the equation of motion. The Hilbert Hughes Taylor (HHT)

approach (Hilber & Hughes, 1978) and the Wood Bossak Zienkiewicz (WBZ) ap-

proach (Wood et al., 1980) are two such methods that introduce α factors to the

stiffness and inertial terms, respectively, which were generalised by amalgamating

the two algorithms into the Generalised-α method (Chung & Hulbert, 1993).

Similar to the θ term in the Wilson-θ algorithm, the α terms introduce dissi-

pation into the algorithm by evaluating kinematic forces within the time-stepped

interval via linear interpolation. This modification enables a method of controlled

algorithmic dissipation that can target certain modal frequencies in the estimated

solution, which will be discussed in more detail in Section 4.1.5. The HHT and

WBZ methods are individually described herein, followed by their combination

into the Generalised-α method.

WBZ Method

The WBZ method introduces αm to control the evaluation of the inertial term in

the equation of motion (Wood et al., 1980), and is illustrated in Figure 4.7. The

equation of motion is modified and described in Equation 4.30.

0 ti ti+1−αm ti+1

0

ẍ(ti)

ẍ(ti+1−αm)

ẍ(ti+1)

αm∆t

∆t

Inertia evaluated

at ti+1−αm

t

ẍ

Figure 4.7: WBZ Linear interpolation of the inertial term within a time step

Fi+1 = mẍi+1−αm + cẋi+1 + kxi+1 (4.30)

where ti+1−αm is the time at which the evaluation of the inertial term takes place.

The linear interpolation of ẍ is calculated in Equation 4.31.
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ẍi+1−αm = (1− αm)ẍi+1 + αmẍi (4.31)

where ẍi+1−αm = ẍ(ti+1−αm). Note that only the inertial term is evaluated within

the time-stepped interval when the WBZ method is used.

HHT Method

The HHT method evaluates the stiffness and damping terms in the equation of mo-

tion by applying a factor αf to the displacement and velocity terms, respectively.

The interpolation of each term is illustrated in Figure 4.8.

0 ti ti+1−αf
ti+1

0

x(ti)

x(ti+1−αf
)

x(ti+1)

αf∆t

∆t

Stiffness evaluated

at ti+1−αf

t

x

(a) HHT stiffness term evaluation

0 ti ti+1−αf
ti+1

0

ẋ(ti)

ẋ(ti+1−αf
)

ẋ(ti+1)

αf∆t

∆t

Damping evaluated

at ti+1−αf

t

ẋ

(b) HHT damping term evaluation

Figure 4.8: HHT method acceleration assumptions

The stiffness and damping terms are evaluated at ti+1−αf
= ti + (1 − α)∆t.

Similar to the WBZ method, the equation of motion is updated based on the linear

interpolation illustrated in Figure 4.8 and is as follows:

Fi+1−αf
= mẍi+1 + cẋi+1−αf

+ kxi+1−αf
(4.32)

where

xi+1−αf
= (1− αf )xi+1 + αfxi

ẋi+1−αf
= (1− αf )ẋi+1 + αf ẋi

Fi+1−αf
= (1− αf )Fi+1 + αfFi

(4.33)

Note that for the HHT method the inertial term in Equation 4.32 is still eval-

uated at t = ti+1.
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Generalised-α Method

Chung and Hulbert (1993) combined the HHT method and WBZ method to form

the Generalised-α algorithm, and derived a more detailed description of the dis-

sipative properties for the parameters. The Generalised-α method is described in

Equation 4.34, which is notably a simple combination of Equations 4.30 and 4.32,

where both αm and αf are applied to the equation of motion.

Fi+1−αf
= mẍi+1−αm + cẋi+1−αf

+ kxi+1−αf
(4.34)

where

Fi+1−αf
= (1− αf )Fi+1 + αfFi

xi+1−αf
= (1− αf )xi+1 + αfxi

ẋi+1−αf
= (1− αf )ẋi+1 + αf ẋi

ẍi+1−αm = (1− αm)ẍi+1−αm + αmẍi

(4.35)

The Generalised-α method collapses to the HHT method when αm = 0 and to

the WBZ method when αf = 0. The algorithms are therefore generalised using

the α parameters, as the name suggests. As the Generalised-α method is an

extension to the Newmark-β method, Equations 4.13 and 4.14 are employed to

determine the displacement and velocity, respectively, at t = ti+1. Chung and

Hulbert (1993) showed that the β and γ parameters can be defined such that

unconditional stability and second order accuracy (see Section 4.1.6) is guaranteed.

These parameters can be expressed as functions of αm and αf as follows:

β =
1

4
(1− αm + αf )

2, γ =
1

2
− αm + αf (4.36)

It is clear that, when αm = αf = 0, the algorithm collapses to the Newmark CAA

method, as β = 1/4 and γ = 1/2.

The effective force F̂i+1 and effective stiffness k̂ can be determined when Sub-

stituting Equations 4.35, 4.13 and 4.14 into Equation 4.34, and are defined as

follows:

k̂ = (1− αm)m

(
1

β∆t2

)
+ (1− αf )c

(
γ

β∆t

)
+ (1− αf )k (4.37)
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F̂i+1 =(1− αf )Fi+1 + αfFi

+

[
(1− αm)m

(
1

β∆t2

)
+ (1− αf )c

(
γ

β∆t

)]
xi

+

[
(1− αm)m

(
1

β∆t

)
− (1− αf )c

(
1− γ

β

)
− αfc

]
ẋi

+

[
(1− αm)m

(
1

2β
− 1

)
− (1− αf )c

(
1− γ

2β

)
∆t− αmm

]
ẍi

(4.38)

The displacement at ti+1 is therefore xi+1 = F̂i+1/k̂.

The α terms allow for effective control over the dissipative properties of the

algorithm, as high frequency mode may be erroneous in the estimated solution and

can be targeted and filtered out based on appropriate parametrisation (Chung &

Hulbert, 1993). This is demonstrated in the following section.

4.1.5 Spectral Analysis

Spectral analysis enables a comprehensive review on the stability and dissipative

qualities of a particular algorithm for different values of ∆t. To investigate the

stability characteristics of an integration scheme for linear systems, it is common

practice to consider the modes of a system independently with a common time step

∆t (Bathe, 2006). Therefore, it is possible to evaluate the performance of TMAs

applied to a linear MDOF model by observing the behaviour of a simple SDOF

system. Consider the linear homogenous case of Equation 4.1 where F (t) = 0

and fs(x) = kx. A TMA can be generalised in the following form to estimate the

governing kinematics at the next time step ti+1:


xi+1

ẋi+1

ẍi+1

 = [A]


xi

ẋi

ẍi

 (4.39)

where [A] is the amplification matrix and contains the algebraic description of the

TMA. The eigenvalues of [A] are used to determine the stability and numerical

dissipation of a system. Known as the spectral radius, ρ([A]) is defined as the

maximum eigenvalue of [A], i.e.:

ρ([A]) = max(|λ1|, |λ2|, |λ3|) (4.40)

where λ1, λ2, and λ3 represent the three eigenvalues of matrix [A]. The TMA is

considered stable if ρ([A]) ≤ 1 and unstable otherwise. An example of the spectral

radius for the Newmark CAA is shown in Figure 4.9 (Section 4.1.2). In this Figure,

ρ([A]) is plotted against the normalised frequency fn∆t (or alternatively, ∆t/T )
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when the damping ratio is ζ = 0 and ζ = 0.5.
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Figure 4.9: Example spectral radius for Newmark’s Method (Constant Average
Acceleration) with and without damping

Note that, for both algorithms, ρ([A]) values for all normalised frequencies are

below or equal to unity, indicating that this TMA is unconditionally stable for

all values of ∆t. The spectral radius can be considered as a dissipating metric

for a particular frequency in the estimated response signal, where ρ([A]) = 1 in-

dicates no numerical dissipation and 0 indicates strong dissipation. In this light,

Figure 4.9 shows that the CAA method can capture all frequency modes in the

estimated response (i.e. no algorithmic dissipation). However, it is shown that

viscous damping (ζ = 0.5) in the CAA algorithm dissipates a certain frequency

bandwidth (approximately 10−3 < f∆t < 102) as there is a drop in ρ([A]). Chopra

(2013) suggests that including viscous damping is an appropriate method for aiding

stability in nonlinear simulations, as high frequency modes can cause unwanted

behaviour (Kontoe et al., 2008; Vaiana et al., 2019). However, as is shown in

Figure 4.9, the higher frequencies that are considered to have no engineering sig-

nificance in dynamic soil-structure interaction (i.e. f∆t > 102) are unaffected by

the presence of viscous damping, which are often the root cause of instabilities

in nonlinear simulations (Fung, 2003; Hughes, 1983; Kontoe et al., 2008; Wood,

1990). An algorithm with dissipative qualities is therefore desirable. The inaccu-

racies associated with higher modal vibrations in MDOF systems are reviewed in

Appendix C.1.
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4.1.5.1 Demonstrating algorithmic dissipation and instability

An integration scheme is considered stable if the estimated solution does not grow

without bound (Bathe, 2006). Unconditionally stable algorithms demonstrate

stability for all values of ∆t, whereas conditionally stable algorithms are only

stable when ∆t is sufficiently small. The condition for stability varies between

algorithms and can be dependent on its parametrisation. Conditionally stable

TMAs require ∆t to be below a certain critical value ∆tcr, which is a function

of the system’s smallest natural period Tn of the system (Bathe & Wilson, 1976;

Chopra, 2013; Hilber & Hughes, 1978; Tedesco, 1999). For large MDOF systems,

the smallest natural period is typically very small due to the many vibrational

modes, which directly affects the ∆tcr value required to achieve stability, thereby

requiring small values of ∆t. This can lead to long computation times, therefore

unconditionally stable algorithms are preferred for large systems.

The spectral radius enables a graphical representation of stability for various

∆t values, and is therefore a useful tool for comparing the stability of TMAs.

However, to understand spectral analysis, it is helpful to first evaluate a TMA that

demonstrates all algorithm characteristics with simple parametrisation. For this

reason, the Wilson-θ method is briefly reviewed, as the concept of the algorithmic

dissipation and stability condition can be conveniently demonstrated with different

values of a single parameter, θ.

Recalling from Section 4.1.3, the Wilson-θ method collapses to Newmark-β

LA approach if θ = 1, which has a stability condition of 0.551∆t
Tn

(see Table 4.1).

Otherwise, the Wilson-θ algorithm is unconditionally stable if θ ≥ 1.37. This is

demonstrated in Figure 4.10 by calculating ρ([A]) using the amplification matrix

[A] for different values of θ (see Appendix D).
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Figure 4.10: Spectral analysis of the Wilson-θ algorithm for different values of θ

Note that, when θ = 1, the Wilson-θ method coincides with Newmark LA’s

spectral radius, and ρ([A]) ≥ 1 when ∆t
Tn

> 0.551. The instability of the Wilson-

θ algorithm (and Newmark LA) can therefore be observed graphically. When

1 ≤ θ < 1.37, the stability condition also increases as θ increases from 1. This

is demonstrated when θ = 1.2, as the intersection with the stability threshold

has increased (i.e. ∆tcr > 0.551Tn). Also note that, for θ = 1.2, a normalised

frequency range of approximately 0.1 < fn∆t < 0.9 has ρ([A]) < 1. This is

indicative of the dissipative properties of the algorithm. If ∆t is selected such

that fn∆t ∈ [0.1, 0.9], the algorithm will dampen the system’s frequency modes

within this range. It is clear then, that further increasing θ will increase the

bandwidth of normalised frequencies that are algorithmically damped.

When θ ≃ 1.37, ρ([A]) ≤ 1 for all frequencies, meaning no condition is required

for stability, as there are no intersections with the stability threshold. The algo-

rithm is unconditionally stable. When θ = 2, ρ([A]) achieves an asymptotic value

of ρ([A]) = 0.63 as fn∆t → ∞. Termed ρ∞ herein, this is a favourable quality of

TMAs in general, as the consequence of all erroneous high frequency modes in the

estimated solution are minimised. In this light, a TMA that demonstrates a steep

ρ([A]) curve such that the line quickly approaches a low ρ∞ value is desired, as

high modal frequencies of no engineering significance will be quickly dissipated in

the time domain. However, recalling Figure 4.6, the physical meaning of θ indi-

cates the time at which the inertial term is evaluated after ti+1. Careless values of

θ are therefore prone to error due to an unrepresentative equilibrium approxima-
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tion, regardless of the dissipative properties exhibited (Hilber & Hughes, 1978).

As will be shown later in Section 4.1.6, the Wilson-θ method demonstrates the

largest numerical errors. It is recommended in literature that θ = 1.4 as a compro-

mise between output accuracy and dissipative qualities when using the Wilson-θ

method (Bathe & Wilson, 1976; Goudreau & Taylor, 1973).

The consequence of instability in the time domain is demonstrated in Figure

4.11. θ = 1 is used to estimate the response of an undamped SDOF system under

free vibrations with a natural period of Tn = 1 and initial conditions of x0 = 1,

and ẋ0 = 0, ẍ0 = −ω2
n and F (t) = 0. The exact closed-form solution is therefore

x(t) = cos(ωnt), where ωn is the natural circular frequency 2πfn.
∆t
Tn

= 0.5 and one

where ∆t
Tn

= 0.6 are simulated to demonstrate the stability limit of the Wilson-θ

method when θ = 1. The time-domain solution estimations are shown as insets in

Figure 4.11, including the true solution of x(t) in grey.
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Figure 4.11: Stability demonstration for the Wilson-θ algorithm in the time do-
main

When ∆t = 0.5 s, the estimated response remains stable but inaccurately es-

timates the deflections. This is due to the inherent numerical errors associated

with relatively large time steps, indicating a period elongation error. This will

be discussed in detail in Section 4.1.6. When ∆t = 0.6 s, the estimated response

increases without bound, which is obviously undesirable and indicative of insta-

bility.

Indeed, numerical errors that become apparent during the simulation at ∆t =

0.5 s are problematic, naturally suggesting a reduction in the time step size as an
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effective approach to address the exhibited computational inaccuracies. However,

it is important to understand the stability conditions (if any) are imperative to

adhere to for both linear and nonlinear MDOF systems. Conditionally stable

TMAs are often suitable for SDOF systems, as ensuring a TMA adheres to one

modal frequency of a linear system is trivial. However, for MDOF systems, the

number of natural periods is equal to the number of degrees of freedom, and

the stability condition becomes increasingly more difficult to satisfy. The largest

frequency mode is used to determine the stability condition, meaning Tn = 1
fn

is

often extremely small and therefore requires an even smaller time step. For this

reason, it is sensible to use unconditionally stable algorithms for MDOF systems,

such as the Wilson-θ method with θ ≥ 1.37. However, as shown in this analysis,

the Wilson-θ method does not offer much control on the dissipative properties,

and has inherent theoretical issues.

4.1.5.2 Comparing spectral radii for different algorithms

It is possible to describe the α parameters in the Generalised-α algorithm as a

function of ρ∞. Chung and Hulbert (1993) shown that αm and αf in Equation

4.34 can be expressed as follows:

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

(4.41)

Equation 4.41 can be directly substituted into the Generalised-α method’s defini-

tion for β and γ (Equation 4.36), such that β and γ are also functions of ρ∞ in

the Newmark-β algorithm. Therefore, the following analysis evaluates the perfor-

mance of ρ∞ = 0, 0.25, 0.5, 0.75 and 1 for both the Newmark-β and Generalised-α

algorithms. The spectral radii for each simulation configuration are shown in

Figure 4.12, including the Wilson-θ method for different θ values.
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Figure 4.12: Comparative spectral analysis study of different family of algorithms

The CDM algorithm is unstable when fn∆t ≥ 1
π

≃ 0.318, as described in

Section 4.1.2, which is evidently a stricter stability condition than the Newmark-β

LA method. Moreover, Figure 4.12 shows that the Wilson-θ family of algorithms

have limitations regarding the range of potential algorithmic dissipation when

compared to other algorithms. The Newmark-β family shows that a steep spectral

radius is possible for defined parametrisations. For instance, taking β = 1 and γ =

3/2 provides a ρ∞ of zero, and Figure 4.12 suggests that normalised frequencies

of approximately 15 and higher are completely filtered out. However, it is worth

noting that, at fn∆t ≃ 10−2, the spectral radius starts to deviate from unity,

which may lead to numerical dissipation in the fundamental modal frequency of

the estimated response if ∆t is too large. Given that the frequencies of interest for

an OWT system subjected to wind and wave loads are typically ≤ 1 Hz, ensuring

that the relevant vibration modes are not dissipated would require a considerably

small ∆t.

For the same ρ∞, Figure 4.12 suggests that the Generalised-α algorithm reduces

ρ([A]) at a higher fn∆t compared to an equivalent Newmark-β parametrisation

for ρ∞, but with the same rate of change. This is due to the α factors applied

to the kinematic terms in the equation of motion, and directly addresses the con-

cern posed by the Newmark family where low normalised frequencies experience

algorithmic damping. In general, this permits larger ∆t values without compro-

mising accuracy of the fundamental modal frequency of the system. Also note

that, when ρ∞ = 1, the Generalised-α method collapses to the Newmark CAA

method (β = 1/4, γ = 1/2, see Equation 4.36), which is recognised as the most

accurate unconditionally stable scheme (Dahlquist, 1963).

The Generalised-α presents itself as a promising choice for MDOF dynamic soil-
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structure interaction simulations due to the minimal requirements for setting up

a computationally efficient simulation prior to analysis. To demonstrate, consider

the dynamic p-y model in Figure 4.1b. Two parameters need be specified by the

user: ∆t and ρ∞. The modal frequencies of the system can be quickly identified

via an eigenanalysis (Section 2.3.2), allowing for a direct comparison with the

normalised frequencies outlined in the spectral radius plot provided in Figure

4.12. The user can then select a ∆t that is sufficiently small to ensure erroneous

modes are dissipated without compromising the first or second mode. ρ∞ can

then be selected in accordance with the modal characteristics of the system. This

process is notably straightforward and can be applied to any MDOF system, and

is amenable to automation through pre-simulation scripting.

It is important to note that estimated solutions using numerical integration

methods are still prone to numerical errors that are heavily dependent on the size

of the time step. It is therefore crucial that the anticipated numerical error for

a given normalised frequency is recognised and minimised. The following section

discusses how to quantify the numerical errors inherent with TMAs, and compares

the accuracy of the Generalised-α method with other TMAs.

4.1.6 Numerical error in TMAs

A TMA is considered accurate if the approximated solution is close to the ex-

act solution, and is said to be convergent when the approximation approaches

the exact solution as ∆t tends to zero. The numerical error is proportional to

(∆t/Tn)
ϵ, where ϵ is the order of accuracy, and Hilber and Hughes (1978) sug-

gested that algorithms that exhibit ϵ = 2 are suitable for structural dynamics

problems. Second-order accuracy is, therefore, a desirable property of TMAs.

Establishing the anticipated numerical error can provide a method to optimise

computational efficiency without compromising simulation accuracy. Numerical

errors in TMAs can be quantified in two forms: Amplitude Decay (AD) and Period

Elongation (PE). Figure 4.13 shows a SDOF response signal of an undamped

oscillator subject to free vibrations compared with a numerical estimation to the

system’s response using a TMA. The exact solution is x(t) = cos
(

2π
Tn
t
)
.
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Figure 4.13: Amplitude decay and period elongation of a numerical solution com-
pared to the exact solution x(t) = cos(ωnt)

The difference in the responses after one full cycle indicates the numerical error,

which can be quantified with reference to Figure 4.13. The PE can be determined

as the percentage error between true and estimated natural period (Tn and T ′
n,

respectively), and is defined in Equation 4.42.

PE =
T ′
n − Tn
Tn

(4.42)

AD resembles an energy loss due to mechanical properties such as viscous damping,

but is a consequence of computational error embedded in the numerical integra-

tion algorithm and is therefore artificial. As discussed previously, this can be a

favourable quality as erroneous modal frequencies can be targeted to achieve a

stable solution in nonlinear systems (Chung & Hulbert, 1993; Kontoe et al., 2008;

Wood, 1990). An artificial damping ratio ζ ′ can be determined using Equation

4.43 (Hilber et al., 1977).

ζ ′ =
− ln(Re2 + Im2)

2ω′
n

(4.43)

where Re is the real part and Im is imaginary part of the complex eigenvalues λ1,2

of the amplification matrix [A], which are complex conjugates. ω′
n is the circular

natural frequency of the numerical approximation (ω′ = 2π/T ′
n). A full derivation

of the numerical approximation function can be found in Hilber et al. (1977).

In hysteretic systems, maximum displacement occurs when there is a large

change in material properties (for example, a stiffness reset in the Masing rules).

This can have significant implications if not estimated accurately, as careless values

of ∆t could result in incorrect estimations of the nonlinear stiffness due to a miss-

approximation in maximum displacements. It is therefore important to understand

the relationship between the ∆t and the amplitude decay of the numerical solution.

Equations 4.42 and 4.43 depend on the first full oscillation cycle of the nu-

merical estimation T ′
n, which corresponds to the location of maximum displace-
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ment location along the time axis (Figure 4.13). However, for large ∆t values,

the resolution of the estimated displacement signal becomes compromised, mak-

ing it challenging to accurately identify the exact time in the simulation where

maximum displacements occur. To circumvent this, T ′
n is computed by utilis-

ing a discrete Fourier analysis on a displacement signal that was estimated using

numerical integration after many cycles. By leveraging the frequency spectrum

generated through this analysis, an approximate value for the natural frequency

of the system from the TMA f ′
n can be obtained. f ′

n is subsequently utilised to

ascertain T ′
n, ensuring a more precise estimation even in simulations where poor

resolution could otherwise impede accurate reversal determination.

The following analysis utilises this frequency domain approach to approximate

T ′
n for the different TMA families and a range of parameters. Initial conditions

to the undamped freely-oscillating SDOF system are x0 = 1, ẋ0 = 0, and ẍ0 =

−ω2
n, such that the true solution is x(t) = cos(ωnt) and the estimated response

is comparable. The algorithmic damping ratio is computed using Equation 4.43.

The results are shown in Figure 4.14.
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Figure 4.14: Comparative error analysis for different families of TMAs

Figure 4.14a suggests that all TMAs exhibit period elongation, and the New-

mark family of algorithms exhibit the highest sensitivity to period error depending

on the β and γ parameters. The Newmark LA method (β = 1/6, γ = 1/2) is the
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least susceptible to period elongation errors, but is conditionally stable as shown in

the spectral analysis in Figure 4.12. When β = 1 and γ = 3/2, the spectral analy-

sis shown that the algorithm offers the strongest dissipative properties. However,

it is evident in Figure 4.14a that this parametrisation of the Newmark-β method

introduces extremely large elongation errors for small increases in normalised fre-

quencies. The same goes for the Wilson-θ method when θ = 2, which shows a high

PE value in general for all acceptable values of θ. Figure 4.14a indicates that the

Generalised-α algorithm is generally less susceptible to period elongation errors

for a range of ρ∞ values. The CDM algorithm is the only method that exhibits a

period ‘shrinkage’.

Notably, when γ = 1/2, Newmark-β algorithms demonstrate no amplitude de-

cay for all normalised frequencies (including Generalised-α when ρ∞ = 1). When

γ ̸= 1/2, it is shown that algorithmic damping is observed when ∆t/Tn is very

small. In contrast, when ρ∞ = 0 for the Generalised-α algorithm, begins to dis-

sipate when ∆t/Tn ≥ 0.05. This limit improves as ρ∞ is increased. In general,

the Generalised-α algorithm demonstrates lower numerical dissipation for low nor-

malised frequencies when compared to the equivalently parametrised Newmark-β

algorithm. The artificial damping ratio for Wilson-θ family of algorithms is in

general low, but is subject to its own theoretical issues, as discussed previously,

and has extremely limited parametrisation.

4.1.7 Summary

The characteristics of various TMAs and how their parameters influence the nu-

merical estimation have been evaluated. The underlying assumptions of numerical

integration schemes have significant implications on their performance when ∆t is

relatively large. This is especially true for nonlinear MDOF models, which makes

such analyses necessary. The response of a linear SDOF system was estimated

using various TMAs to identify the most appropriate method to be applied to

the MDOF model. This is possible as the overall response of a linear system can

be represented as the superposition of individual vibration modes, therefore re-

viewing TMAs applied to one mode (i.e. a SDOF) is sufficient (Bathe & Wilson,

1976; Chopra, 2013). However, including nonlinear spring elements requires fur-

ther investigation, and involves complex analyses which is bespoke to the type of

nonlinearity (Chen & Ricles, 2008).

The spectral analysis provided a graphical representation of stability condi-

tions and demonstrated how modal frequencies can be targeted depending on

the TMA used. Results show that all algorithms can exhibit favourable proper-
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ties for nonlinear simulations (particularly in dissipating high modal frequencies),

but certain algorithms are constrained by their parametrisation. Newmark-β and

Generalised-α show similar capabilities, however Generalised-α demonstrated less

artificial damping to lower frequency modes. This is important for OWT systems,

as the first and second modal frequencies are typically below 1 Hz (Prendergast

et al., 2018; Tarp-Johansen et al., 2009).

This was further reinforced with the numerical error analysis, as the algorith-

mic damping ratio ζ ′ is less pronounced for lower normalised frequencies in the

Generalised-α method compared to the Newmark-β method. This permits larger

time steps in simulations without significant loss of information, as the algorithmic

decay doesn’t affect vibration modes of engineering significance. Period elongation

errors are also minimal, as ρ∞ has a smaller influence on expected errors compared

to other algorithm families and their parametrisations. This is ideal for slender

structures such as OWTs, as the natural frequencies of the system are typically

as low as 0.25 Hz.

The Generalised-α method collapses to Newmark’s CAA (β = 1/4 and γ =

1/2) when ρ∞ = 1 (See Equation 4.36). According to Dahlquist (1963), The CAA

is considered as the most accurate unconditionally stable methodology. Combining

this fact with the strengths demonstrated in the spectral and numerical error

analyses, the Generalised-α TMA is selected for the nonlinear MDOF model. The

development and analyses of the TMAs presented thus far do not consider the

implications of a hysteretic nonlinear restoring force, which is the focal point of

the following section.
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4.2 Hysteresis models

The hysteretic behaviour of soil can be encapsulated in the direct integration

method by computing and updating the nodal restoring force fs(x) of the spring

element at each time step. However, this will require significant modifications to

the TMA. The Masing, Iwan and Bouc-Wen hysteresis models will be investigated

using the Generalised-α algorithm, which was deemed the most appropriate TMA

for the application of soil-structure interaction and nonlinear MDOF systems.

Due to the system’s nonlinearity, it is not possible to perform a numerical

error analysis similar to Section 4.1.6. This is due to the absence of a closed-form

analytical solution for displacement which would otherwise serve as a benchmark.

Therefore, simulation robustness will be assessed by scrutinising the sensitivity of

the estimated response to variations in ∆t, ρ∞, and different load histories in an

MDOF configuration.

Each hysteresis model will adopt a similar backbone description to ensure a

meaningful comparison in the force-displacement domain over time. The backbone

function, denoted as fbb(x), takes the generalised form described in Equation 4.44,

which is inspired by the hyperbolic function found in API sands (Equation 2.3).

Equation 4.44 enables simple parametrisation, and is as follows:

fbb(x) = Fult tanh

(
k0x

Fult

)
(4.44)

where Fult is the ultimate spring force and k0 is the initial stiffness. It is impor-

tant to note that this section will provide a qualitative study towards nonlinear

dynamics. Hence, the specific values assigned to Equation 4.44 hold no signifi-

cance. The objective is to ensure comparability between nonlinear models and

determine appropriate parameter values for each hysteresis-type. The physical

value is therefore unimportant.

Nonlinear simulations (both SDOF and MDOF) require considerable modifi-

cations to TMAs derived for linear systems. The following section will describe

the modifications necessary to the Generalised-α algorithm such that it is appro-

priate for nonlinear systems. The Masing, Iwan and Bouc-Wen hysteresis models

will then be investigated using the Generalised-α algorithm for SDOF systems.

The most effective parameters for each model will be identified to enforce similar-

ity. Each hysteresis model is then applied to an MDOF system to determine the

most appropriate model for the application of dynamic soil-structure interaction

in OWT monopiles.
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4.2.1 Generalised-α for nonlinear systems

The implicit TMAs described in section 4.1, including the Generalised-α method,

compute the displacements at t = ti + ∆t by deriving an effective stiffness k̂

and effective force F̂ such that xi+1 = F̂i+1/k̂. This notation is advantageous

due to its resemblance to simple static linear spring mechanics. However, the

linear approximation F̂i+1/k̂ is no longer valid for nonlinear systems. Instead,

it is convenient to solve xi+1 = xi + ∆x, such that ∆x = ∆R̂/k̂T , where R̂ is

the residual force within the time step required to achieve equilibrium and k̂T

is the tangent stiffness of the system. After the initial linear approximation to

xi+1, there exists an imbalance within the internal kinematic forces of the system

at t = ti+1 that must be resolved. An iterative scheme is therefore required to

achieve equilibrium.

Equilibrium iterations within each time step reduces the residual out-of-balance

forces ∆R̂. The Modified Newton Raphson (MNR) approach is used to iterate

towards equilibrium using the system properties at t = ti. The MNR iteration

scheme, as well as the concept of force imbalance, is illustrated in Figure 4.15.

Figure 4.15: Force imbalance in nonlinear systems and the Modified Newton Raph-
son iteration scheme within a time step

The dynamic restoring force f̂d shown in Figure 4.15 encapsulates the internal

forces (inertial, damping and nonlinear restoring force) of the system. It is clear

then, that an effective residual force ∆R̂(1) between the applied external force

Fi+1 and internal forces f̂s will exist after the first estimation of xi+1 using ∆x =

∆F/k̂T . Using the effective tangent stiffness k̂T , the effective residual force is
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iteratively reduced until equilibrium is achieved after n number of iterations within

the time step, such that f̂s(xi+1) = Fi+1.

It now stands to reason that, similar to Equations 4.37 and 4.38; f̂d, k̂T and

F̂ must be defined in terms of the Generalised-α algorithmic parameters αm, αf ,

β and γ. Recalling that the Generalised-α method evaluates equilibrium within

the time stepped interval and not at the end of the time step, the equilibrium

condition is satisfied when:

f̂d(xi+1) = (1− αf )Fi+1 + αfFi (4.45)

Therefore, the updated MNR iteration scheme for the nonlinear Generalised-α

algorithm is shown in Figure 4.16, and the restoring force is described in Equation

4.46.

Figure 4.16: Modified Newton Raphson iteration scheme for the Generalised-α
algorithm

f̂d(x) = (1− αm)mẍi+1 + αmmẍi

+ (1− αf )cẋi+1 + αfcẋi

+ (1− αf )fs(xi+1) + αffs(xi)

(4.46)

By encapsulating the kinematic forces in an equivalent force f̂d(xi+1), the system

can be solved for using the method illustrated in Figure 4.15.
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k̂T is described as the first derivative of Equation 4.46 with respect to xi, i.e.:

k̂T =
∂f̂d(xi)

∂xi
= (1− αm)m

∂ẍi+1

∂xi
+ (1− αf )c

∂ẋi+1

∂xi
+ (1− αf )

∂fs(xi+1)

∂xi
(4.47)

Figure 4.16 shows that k̂T is constant for each iteration within the time step. The

traditional Newton Raphson method recalculates k̂T for each iteration j, which

is acceptable for SDOF systems due to the faster conversion towards equilibrium.

However, for MDOF models, this would require multiple inversions of the tangent

stiffness matrix within a time step, which can become computationally expensive

for long simulations that are highly nonlinear. Keeping k̂T constant within a

time step requires only one inversion of the stiffness matrix at the start, which

is computationally faster. For this reason, the ∂fs(xi+1)
∂xi

term in Equation 4.47 is

taken as the tangent stiffness of the spring kT at xi instead of x
(j)
i+1.

The derivatives of the inertial and damping terms in Equation 4.47 can be

determined from the Newmark-β Equations 4.13 and 4.14:

∂ẍi+1

∂xi
=

1

β∆t2
∂ẋi+1

∂xi
=

γ

β∆t
(4.48)

Therefore, k̂T can be rewritten as:

k̂T = (1− αm)m

(
1

β∆t2

)
+ (1− αf )c

(
γ

β∆t

)
+ (1− αf )kT (4.49)

To compute xi+1, ẋi+1 and ẍi+1 must be eliminated from Equation 4.46, which

can be done by rearranging the original Newmark-β formulations described in

Equations 4.13 and 4.14.

ẋi+1 =
γ

β∆t
(xi+1 − xi) +

(
1− γ

β

)
ẋi +∆t

(
1− γ

2β

)
ẍi (4.50)

ẍi+1 =
1

β∆t2
(xi+1 − xi)−

1

β∆t
ẋi − (

1

2β
− 1)ẍi (4.51)

According to Figure 4.16, ∆R̂(j) = (1− αf )Fi+1 + αfFi − f̂d(x
(j)
i+1). Therefore,

substituting Equations 4.50 and 4.51 into Equation 4.46 yields:

∆R̂(j) = (1− αf )Fi+1 + αfFi + a1xi − a2ẋi − a3ẍi...

− (1− αf )fs(x
(j)
i+1)− αffs(xi)− a1x

(j)
i+1

= F̂i+1 − f̂s(x
(j)
i+1)

(4.52)
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where

F̂i+1 = (1− αf )Fi+1 + αfFi + a1xi − a2ẋi − a3ẍi

f̂s(x
(j)
i+1) = (1− αf )fs(x

(j)
i+1) + αffs(xi) + a1xi+1

(4.53)

and

a1 = (1− αm)m

(
1

β∆t2

)
+ (1− αf )c

(
γ

β∆t

)
a2 = −(1− αm)m

(
1

β∆t

)
+ (1− αf )c

(
1− γ

β

)
+ αfc

a3 = −(1− αm)m

(
1

2β
− 1

)
+ (1− αf )c∆t

(
1− γ

2β

)
+ αmm

(4.54)

The MNR iteration scheme is complete once ∆R̂(j) is reduced to a sufficiently small

value. The condition for convergence is taken as ∆R̂(j) ≤ 10−6. It should be noted

that, for nonlinear systems with hysteretic properties, there would exist a condition

where equilibrium would not be achievable within the time step when utilising

MNR. This is due to a restoring force reversal in f̂d existing between Fi and Fi+1

(referring to Figure 4.15). As a consequence, k̂T derived at xi would not permit

convergence without an updated k̂T at x
(j)
i+1. This is known as the Original Newton

Raphson (ONR) iteration scheme. For this reason, when a reversal is detected

(change in velocity signage), the iteration scheme is switched from MNR to ONR,

which simply involves updating k̂T during the equilibrium iteration process.

The full time marching algorithm for the Generalised-α method applied to

nonlinear systems, including the equilibrium iteration process, is summarised in

Appendix C.2. The following analyses are produced in MATLAB.

4.2.2 Masing model

The Masing model informs the unload and reload stress paths of the hysteresis

by transforming and scaling the initial reaction function fbb(x) (Masing, 1926).

As discussed in Section 2.3.5 the Masing model can be generalised using Pyke’s

formulation described in Equation 2.36 (Pyke, 1979). The general spring force can

therefore be described as:

fs = Cfbb

(
x− xr
C

)
+ fr

= CFult tanh

(
k0(x− xr)

CFult

)
+ fr

(4.55)
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where xr and fr are the coordinates of reversal points of the hysteresis in the

force-displacement domain1. C is the scaling coefficient defined in Equation 2.36

that enables asymmetrical loading (Pyke, 1979), and scales the reload function

such that it does not exceed the ultimate resistance Fult. For nonlinear MDOF

systems, it is required that the tangent stiffness kT is determined at each time

step to inform the global stiffness matrix of the system (see Section 4.2.1). The

tangent stiffness can be determined by differentiating Equation 4.55.

kT =
dfs
dx

= f ′
(
x− xr
C

)
= k0 sech

2

(
k0(x− xr)

CFult

) (4.56)

fbb(x) in Equation 4.44 allows for a simple analytical expression for the tangent

stiffness for any reloading configuration by computing the first derivative as fol-

lows:

kT = f ′
bb(x) = k0 sech

2

(
k0x

Fult

)
(4.57)

However, the derivative for some backbone definitions may not be as trivial to

acquire. In such cases, kT can be determined using the finite difference approach

described in Equation 4.2 if the closed form solution for f ′
bb(x) is undefined.

It is important to note that the constitutive equations that form the Masing

model are dependent on the reversal coordinates (xr, fr) in the force-displacement

domain. This is problematic, as the reversal coordinates are not known a priori,

and can only be detected if there is a change in sign of velocity. The reversal

coordinate error is demonstrated in Figure 4.17, and shows how the error would

accumulate for each reversal. Notably, this error would become more pronounced

with larger ∆t values. One solution is to reduce the time step size to ensure

that the reversal point is captured with sufficient accuracy. However, this can be

computationally expensive, particularly for large MDOF systems when multiple

hysteretic springs are simulated.

1The following hysteresis models are described in the context of force-displacement rather
than p-y. However, the application is analogous.
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Figure 4.17: Reversal estimation error in the Masing model

An alternative approach that does not compromise a coarse resolution of time is

proposed herein. As ẋ = 0 during a reversal event, the moment of this occurrence

can be estimated through linear interpolation between the velocities at the time

steps just before and after the detection of the reversal, which happens when the

velocity’s sign changes during the algorithm’s computation. This is illustrated in

Figure 4.18. The parameter α is introduced to determine the time at which the

velocity is 0 along the time stepped interval ∆t. The reversal occurs at t = ti+α∆t.

Figure 4.18: Linear interpolation to determine the time at which a reversal occurs
between time steps

The velocity and displacement at the start and end of the time step are known,

therefore α can be determined using Equation 4.58.

α =
|ẋi|

|ẋi|+ |ẋi+1|
(4.58)

Figure 4.19 illustrates the method in the displacement-time domain. It can

be assumed that a quadratic relationship can provide a better estimate to the

turning point behaviour within the time step interval. The quadratic function is
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informed using the kinematics at t = ti and t = ti+1 as boundary conditions. The

general second order polynomial to be defined at each reversal point is described

in Equation 4.59 as g(τ), where τ is the variation of time along ∆t.

g(τ) = aτ 2 + bτ + c (4.59)

g′(τ) = 2aτ + b (4.60)

Figure 4.19: Quadratic estimation of the turning point within the time step using
α

Note that the first derivative in Equation 4.60 defines the straight line approx-

imation shown in Figure 4.18. a, b and c are coefficients to be determined using

the current kinematics as boundary conditions; i.e. g(0) = xi, g(∆t) = xi+1 and

g′(0) = ẋi. Substituting these boundary conditions into Equations 4.59 and 4.60

yields the following definition for the general quadratic curve used to estimate the

turning point at any reversal event:

x =
xi+1 − xi − ẋi∆t

∆t2
τ 2 − ẋiτ + xi (4.61)

According to Figure 4.18, the reversal occurs at τ = α∆t. Therefore, substituting

Equation 4.58 into the above equation yields the displacement at the reversal

point, which is described in Equation 4.62.

xr = α2xi+1 + (1− α2)xi − α(1− α)ẋi∆t (4.62)

The turning point in a discrete displacement-time signal has therefore the esti-

mated coordinate of (tr, xr), where tr = ti + α∆t. The hysteresis reversal point
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in the force-displacement domain can be estimated by calculating the force as

fr = fs(xr), where fs(x) is the force-displacement relationship of the Masing-type

hysteretic spring described in Equation 4.55.

It is not possible to evaluate the numerical error by means of PE and AD

assessment as done in Section 4.1.6, as there is no analytical solution to define

a benchmark. Furthermore, assessing stability conditions is also complicated for

nonlinear systems, and depends on the type of nonlinearity in the system (Chen,

2000; Chen & Ricles, 2008). Currently, no stability criteria exist in literature for

TMAs applied to nonlinear systems of the hysteretic-type. For this reason, the

‘true solution’ is considered as a response estimation whereby a sufficiently small

time step is applied, and smaller time steps have negligible effect on the system’s

response. ∆t is then increased until the response of the system diverges from the

true solution.

Figure 4.20 compares the performance of the default Masing model compared

with the optimised Masing model. The SDOF system is subjected to harmonic

excitation at a frequency of 0.05 Hz and an amplitude of 1 N. The mass is set

to m = 10 kg and backbone function is arbitrarily defined with parameters set

as Fult = 1 N and k0 =15 N/m. ζ = 0 and the simulation is run for 100 sec-

onds. Without the reversal estimator, the reversal displacement is taken as the

displacement at the start of the time step at which a change in velocity signage

was detected. Simulations ranging from ∆t = 0.01 s and ∆t = 2.5 s are shown in

Figure 4.20 for both Masing model configurations.
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(a) Masing model response without reversal improvements

0 50 100 150 200 250 300 350 400

-0.4

-0.2

0

0.2

0.4

(b) Masing model response with Equation 4.62

Figure 4.20: Response of a harmonically-driven Masing-type hysteretic system
with and without the proposed reversal estimation method

Figure 4.20a demonstrates the poor performance of the Masing model for large

time steps if no improvements are made to the reversal estimation. Simulations

with the largest ∆t value diverge the most from the true solution, and show varying

peak displacements. This is due to the error in the reversal estimation, which is

amplified with larger time steps and accumulated for each reversal.

Figure 4.20b shows that the stability of the estimated solution is significantly

improved for all values of ∆t and remains bound. However, the maximum dis-

placement increases with increase in ∆t, which may be a consequence of the small

error inherent with the quadratic estimation, as shown in Figure 4.19. In gen-

eral, the estimated solution for all investigated time steps compares well with the

‘true solution’. Stability is evidently achieved as the estimated solutions remains

bounded for all time steps throughout the simulation.

It should be noted that the large ∆t values investigated in Figure 4.20 are

not practical for simulations, and are only used to demonstrate the efficacy of

the reversal estimation method. ∆t will typically be sufficiently small enough to

ensure that this error is negligible.

4.2.3 Iwan model

The Iwan model requires an initial backbone function fbb(x) and is used to back-

calculate the bilinear springs as shown in Figure 4.23a. The combined response of
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Ns number of bilinear hysteretic springs result in a global cyclic behaviour akin to

the unload/reload behaviour expected in nonlinear dynamic soil-structure interac-

tion. One major advantage of the Iwan model is that the reversal coordinates are

not required to define the subsequent stress path, which is a notable cause for sta-

bility in the Masing model. Instead, the reversal behaviour is implicitly defined in

the global spring due to the yielding conditions of the individual bilinear springs.

No reversal location estimation is required.

Figure 4.21 shows the individual bilinear spring models that constitute the

Iwan model for Ns = 3.
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Figure 4.21: Individual Iwan springs and the global effective spring for Ns = 3

The global spring characteristics at xi+1 is determined by computing the indi-

vidual bilinear spring states at xi+1, and summing their reaction forces and tangent

stiffnesses. The parameters of the bilinear spring model is shown in Figure 4.22,

and Figure 4.23 illustrates the piecewising methodology for determining Fn and

Kn using the backbone function fbb(x). n is the bilinear spring number. The

process is defined in Table 4.2.

Figure 4.22: Parameter notation for individual bilinear springs in the Iwan model
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(a) Computing the piecewise backbone function
from the original backbone function fbb(x)

(b) Individual bilinear spring backbone functions

Figure 4.23: Piecewising the backbone function into Ns number of parallel springs

Table 4.2: Methodology for piecewising the backbone function into N number of
parallel springs

Defining Iwan Springs

1. Determine backbone yield displacement xult

2. Calculate space yield displacements such that xn =
xult
Ns

n

3. Find forces along backbone function F̄n = fbb(xn) for each xn

4. Determine piecewise stiffnesses along backbone K̄n = ∆F̄n/∆xn

5. Compute stiffnesses of bilinear springs Kn = ∆K̄n

6. Determine yield forces Fn = Knxn

The influence of the number of bilinear springs, Ns, on simulating nonlinear

systems is examined herein. The system is described using the same properties as

the Masing analysis in Section 4.2.2. The time step is set to ∆t = 0.01s such that

it is sufficiently small and does not introduce algorithmically-induced errors. Five

Iwan models are trialled; where Ns = 3, 5, 10, 20 and 50. The results are presented
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in Figure 4.24.
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Figure 4.24: Sensitivity of the Iwan model to the number of bilinear springs Ns

Figure 4.24 shows that the spring system converges to a solution as Ns in-

creases. This is expected, as the piecewise backbone function approaches the

original backbone function as Ns → ∞. Ns also influences the system’s maximum

displacement, which is likely due to the low resolution of the piecewise discreti-

sation process. For example, when Ns = 3, Figure 4.23a shows that there is a

significant under-approximation of the initial stiffness (i.e. K̄1 < f ′
bb(0)). As a

consequence, the initial stiffness of the global spring is reduced and the restoring

force is initially much less than if Ns was large. Increasing Ns reduces this initial

stiffness deficit, therefore the nonlinear systems with more bilinear springs will

demonstrate a stiffer response, as shown in Figure 4.24. Considering the impor-

tance of the reversal stiffness as outlined in the Original Masing Rules in Section

2.3.5, the initial stiffness must be accurately represented in the piecewise backbone

function (Vucetic & Dobry, 1991).

It is shown that there is a negligible difference between Ns = 50 and Ns =

500, therefore Ns = 50 provides a reasonable degree of convergence towards the

‘true solution’, which is when Ns → ∞. However, for large MDOF systems, the

number of nonlinear spring elements in the system is effectively increased by a

factor Ns, which can be computationally expensive. Minimising the value of Ns is

therefore ideal. An alternative solution is to implement a non-uniform piecewise

discretisation for the yield displacements xn, such that the initial stiffness of the

global Iwan spring is more accurately represented for lower Ns values. This would

require changes to Step 2 in Table 4.2. However, in the interest of simplicity, Ns

is taken as 20 for all implementations of the Iwan model herein, as Figure 4.24

shows that the difference between Ns = 20 and Ns = 500 is minor.
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4.2.4 Bouc-Wen model

The Bouc-Wen model does not require a backbone function or explicit reversal

coordinate estimates to define subsequent nonlinear stress paths. Instead, the

Bouc-Wen method encapsulates the unload/reload characteristics by means of a

slope field in fs-x space, where β, γ and n̂ control the shape (See Section 2.3.5).

The differential equation is:

dz

dt
=

1

xult
ẋ[1− |z|n(β + γsgn(ẋz))] (4.63)

where z is the hysteretic function to be solved for that governs the stress path. The

equation to determine the hysteretic force fs(x) is described in Equation 2.40, and

α is taken as zero herein to remove post-yielding stiffness properties (i.e. Fel = 0).

fs and kT are therefore as follows:

fs(x) = Fh = Fultz (4.64)

dfs
dx

= kT = Fult
dz

dx
(4.65)

dz

dx
can be determined from the chain rule:

dz

dx
=
dz

dt

dt

dx
=
dz

dt

1

ẋ
(4.66)

therefore the velocity term in Equation 4.63 is eliminated and the differential

equation to solve for is simply:

dz

dx
=

1

xult
[1− |z|n(β + γsgn(ẋz))] (4.67)

In order for the Bouc-Wen model to be in a comparative form to the Masing and

Iwan model, the shape parameters controlling the differential equation must be

defined such that the shape of the stress paths resemble the backbone function

when monotonically loaded, and the unload/reload behaviour should demonstrate

the EMR. This can be achieved by deriving an analytical solution to Equation 4.63

under specific conditions. It is recommended by Gerolymos and Gazetas (2005a)

that taking β = γ = 0.5 can resemble Masing-type behaviour as established by

the rules in Section 2.3.5. Figure 4.25 illustrates the various regions along the

hysteretic function z(x) for different signs of ẋ and z when β = γ = 0.5. n

controls the bilinearity of the solution.
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Figure 4.25: Regions of interest in the Bouc-Wen function when β = γ = 0.5

The signage of z and ẋ are crucial for determining the direction of the slope

field. It is shown in Figure 4.25 that the initial monotonic reaction occurs in region

AB when both z and ẋ are greater than zero. Similarly, regions BC and DE are

considered the initial reversal regions that satisfy the OMR criteria.

Taking the conditions pertaining to region AB, the differential Equation 4.63

can be simplified. Notably, when n = 2, Equation 4.63 is simplified further,

making it amenable to analytical solutions. Therefore, when β = γ = 0.5, n = 2,

z > 0 and ẋ > 0, Equation 4.67 is simplified and takes the form:

dz

dx
=

1

xult
(1− z2) (4.68)

Separation of variables leads to:∫
1

1− z2
dz =

1

xult

∫
dx (4.69)

where both sides can be integrated and rearranged for z(x), which yields:

z =
Ae2x/xult − 1

Ae2x/xult + 1
(4.70)

where A is an integration constant and can be determined by applying the ini-

tial conditions z = 0 and x = 0, giving A = 1. Therefore, the solution to the

differential equation is:

z =
e2x/xult − 1

e2x/xult + 1
(4.71)

If the numerator and denominator are multiplied by e−x/xult , the solution can be

simplified to the hyperbolic tangent function, i.e.:
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z(x) =
ex/xult − e−x/xult

ex/xult + e−x/xult
= tanh

(
1

xult
x

)
(4.72)

Note that, according to Figure 2.27b, xult = Fult/k0. Therefore, substitut-

ing Equation 4.72 into Equation 4.64 gives the general backbone function fbb(x)

described in Equation 2.34. The solution of the Bouc-Wen differential equation

under monotonic conditions z > 0 and ẋ > 0 is therefore a hyperbolic tangent

function when β = γ = 0.5 and n = 2, and is in a comparative form to the Masing

and Iwan models. This is validated in Appendix C.4 by comparing the monotonic

response of the three dynamic hysteretic theories informing a dynamic pile model

by slowly increasing the head load.

A solution estimate for the Bouc-Wen differential equation is computed at each

time step using the fourth order Runge-Kutta (RK4) method, which is a numerical

integration technique that is commonly used to solve first order ordinary differen-

tial equations (Butcher, 1996). The RK4 method approximates the solution of a

differential equation by considering multiple intermediate points within each step,

and then using a weighted average of each intermediate point to estimate the final

solution.

4.3 Dynamic p-y models

This section aims to provide a comparative assessment of the performance of

hysteresis algorithms in a dynamic p-y model using the Generalised-α numerical

integration method. A sensitivity study is first conducted to evaluate the perfor-

mance of the Masing, Iwan and Bouc-Wen models, where idealised two-way and

one-way load and moment profiles are applied to a monopile-only model. The ob-

jective of this investigation is to discern the strengths and vulnerabilities inherent

with each hysteresis model within an MDOF framework by evaluating the sta-

bility and computational efficiency for different loading conditions and algorithm

parameters.

The investigation is then extended to include an integrated 3.6MW OWT

superstructure on top of the dynamic p-y model. The superstructure ensures that

the vibration modes are adequately representative of an OWT system supported

by a pile, and inertial loads imposed on the substructure are realistic. Wind

and wave load histories are applied to the OWT system to encourage realistic

soil-structure interaction mobilisation. Finally, optimal algorithmic parameters

are determined that facilitate a stable and efficient model for the OWT system

supported by a dynamic p-y model.
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4.3.1 MDOF hysteresis sensitivity study

A simplified reference monopile model is used for this sensitivity analysis. The

monopile properties are described in Table 4.3 and the model is illustrated in

Figure 4.26. The monopile is assumed to be fully cored, therefore the soil mass

within each pile section is considered as a lumped mass applied to the nodes for

that respective layer.

Figure 4.26: MDOF hysteresis model for sensitivity study with N = 20 (from
MATLAB GUI)

Table 4.3: Reference monopile geometry for the MDOF analyses

Parameter Value Unit

diameter, D 6 m

wall thickness, t 0.08 m

Embedment, L 30 m

Density, ρ 7850 kg/m3

Young’s Mod., E 210,000 MPa

Eccentricity, h 0 m

Num. springs, N 20 -

Damping ratio, ζ 0.2 %

Natural Frequency, fn 9.43 Hz

The Rayleigh method is used to define the viscous damping (Section 2.3.4).

All spring models are informed using the API sand model for convenience, where

γ = 20 kPa and ϕ′ = 35°.
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Figures 4.27a and 4.27b display the spectral radii corresponding to different

ρ∞values alongside the first five normalised modal frequencies of the MDOF sys-

tem for time steps of ∆t = 0.01 s and ∆t = 0.05 s, respectively. The normalised

modal frequencies are obtained through eigenanalysis of the MDOF system using

the global mass and initial stiffness matrices (Section 2.3.2), multiplied by ∆t.
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Figure 4.27: Spectral radius diagram for the first 5 normalised modal frequencies
of the MDOF system

It is clear from Figure 4.27 that, when ρ∞ ≤ 1, the spectral radius decreases as

the normalised frequency increases. This is indicative of the numerical dissipation

inherent with the Generalised-α algorithm, which is more effective for the higher

modes of the system. Varying ∆t shifts the normalised modal frequencies and

changes the corresponding ρ([A]), therefore the discretisation of time also has

a significant influence on the anticipated numerical dissipation in the estimated

solution.

Figure 4.27a shows that, when ρ∞ = 1, 0.75 and 0.5, the spectral radius ρ([A])

is 1 for the first natural frequency when ∆t = 0.01 s. Higher modes have lower

ρ([A]), therefore are dissipated. Higher modes of vibration in MDOF systems are
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known to be highly dependant on the constitutive model properties of the finite

element model (Bathe & Wilson, 1976; Kontoe et al., 2008). This is observed in

Appendix C.1. Furthermore, ρ(A) ≤ 1 for all values of ∆t and ρ∞values, which

is indicative of unconditional stability for all parameters in the Generalised-α

algorithm. As such, any observed instabilities will therefore be a consequence of

the hysteresis models, and not the numerical methods used. The generalised-α

method is validated in Appendix C.3.

When ρ∞ = 1, The Generalised-α method collapses to the CAA Newmark

method (see Section 4.1), which is the most common TMA for linear MDOF dy-

namic analyses due to its modal retention shown in Figure 4.27 (Chopra, 2013;

Goudreau & Taylor, 1973; Kampitsis et al., 2013; Markou & Kaynia, 2018; Tsaparli

et al., 2017). This algorithm configuration therefore provides a benchmark for the

following nonlinear analyses, and will also be evaluated.

A two-way simple sine load and moment history are applied to the ground

line node. This is a strategic simplification to evaluate the performance of the

hysteresis models in a controlled environment, and is not representative of the

complex loading conditions experienced by OWT foundations. To add, the natural

frequency of the pile is 9.43 Hz (Table 4.3), which is a superficially high value

for monopile systems. It is important to note that the water, turbine tower,

and nacelle mass are neglected in this study. The superstructure will have a

marked affect on natural vibrations of the system, including the anticipated load

history applied at the mudline due to inertial effects. However, the objective of

this investigation is to qualitatively evaluate the performance of the hysteresis

models in the context of a MDOF system under ideal loading conditions. They

are therefore neglected at this stage.

The load and moment functions are described in Equation 4.73.

F (t) = ΨF sin(ωt), M(t) = ΨM sin(ωt) (4.73)

where Ψ is the load factor, F is the load amplitude, M is the moment amplitude,

and ω is the circular frequency of the external load and moment (ω = 2πf).

The frequency is f = 0.1 Hz as an approximation to the general loading history

caused by a combination of wind and wave loads (see Figure 2.17). F and M

are derived to be consistent with SLS design compliance such that the load and

moment histories are assumed to resemble normal turbine operating conditions.

The computed horizontal load and overturning moment at the ground line are

1155 kN and 93225 kNm, respectively. For full derivation, see Prendergast et al.

(2018). The load factor Ψ is an arbitrary constant to encourage different degrees
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of mobilisation such that the unload-reload behaviour of each hysteresis model can

be reviewed.

The sensitivity study involves adjusting simulation parameters to assess poten-

tial instability or divergence in hysteresis models. Initially, the TMA parameters

are set at ρ∞ = 1 and ∆t = 0.05 s, providing a benchmark for subsequent modi-

fications. The load factor is then arbitrarily increased, and the ρ∞ and ∆t value

required to maintain stability is documented. This approach provides a practical

and systematic methodology for evaluating the sensitivity of each hysteresis model

to TMA parameters, aiding in the selection of the most robust and stable model

for application to fully-integrated OWT-monopile models. Simulations are run for

t = 1200s such that convergence can be observed. This corresponds to 120,000

time steps for ∆t = 0.01 s, 24,000 time steps for ∆t = 0.05 s, and 120 load cycles

for f = 0.1 Hz.

4.3.1.1 Analysis and results

A low-amplitude sinusoidal load history is applied to study the behaviour of the

hysteresis model under small strains. The load factor is set to Ψ = 1, therefore

the maximum load and moment are within serviceability limits and mobilisation

is expected to be minimal. The performance of each model is shown in Figures

4.28 to 4.30. The p-y hystereses for three different springs are plotted to provide

an overall understanding of the entire response of the pile.
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Figure 4.28: Masing model response for Ψ = 1, f = 0.1 Hz, ∆t = 0.05 s and
ρ∞ = 1
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Figure 4.29: Iwan model response for Ψ = 1, f = 0.1 Hz, ∆t = 0.05 s and ρ∞ = 1
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Figure 4.30: Bouc-Wen model response for Ψ = 1, f = 0.1 Hz, ∆t = 0.05 s and
ρ∞ = 1

All models show minimal mobilisation in each spring, which is expected for

low-amplitude load profiles derived from SLS conditions. Minor hystereses are

observed for each model at z = 1.5m, but become linear at greater depths due to

the API sand model and an attenuation in lateral pile displacement. Figure 4.28a

shows a slight shift in the p-y cycle at the end of the simulation, but is not present

in the deeper layers. This is likely due to the Masing model’s constitutive laws

defining the reload curves. The hyperbolic tangent function describing the back-

bone curve does not exhibit an initial linear region, therefore nonlinear behaviour

is expected regardless of displacement magnitude. In contrast, the Iwan model

discretises the backbone into linear sections, therefore small strains are defini-

tively linear. The Bouc-Wen model exhibits minor p-y loop cycles at all depths,

but the response is in general elastic and stable. All models have comparable p-y

responses and exhibit stability.

4.3.1.2 Two-way loading

The following simulations increase the amplitude factor to Ψ = 15 to encourage

hysteresis mobilisation. The p-y responses are presented in Figures 4.31 to 4.33

for each model. ∆t = 0.05s and ρ∞ = 1 (CAA) are used for this analysis.
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Figure 4.31: Masing model response for Ψ = 15, ∆t = 0.05 s and ρ∞ = 1
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Figure 4.32: Iwan model response for Ψ = 15, ∆t = 0.05 s and ρ∞ = 1
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Figure 4.33: Bouc-Wen model response for Ψ = 15, ∆t = 0.05 s and ρ∞ = 1

All hysteresis models demonstrate a high degree of mobilisation when Ψ = 15

near the ground line due large pile deflections in weaker soil layers near the ground

line. Figure 4.31 and Figure 4.33 shows that the Masing and Bouc-Wen model

experiences a cyclic drift at all depths, and suggest an accruing global counter-

clockwise pile rotation. Considering that the sinusoidal load is applied symmet-

rically at the pile head and no empirical soil-structure damage model is imple-

mented, this behaviour is erroneous and a consequence of the hysteresis model.

Figure 4.32 shows that the Iwan model does not exhibit global pile rotation. The

reversal laws defined by the Masing and Bouc-Wen are dependent on the velocity

of the node. Subsequent reaction curves of the Masing hysteresis model depend

on the p-y coordinate of the node’s maximum displacement (Equation 2.36). Ad-

ditionally, the governing differential equation for the Bouc-Wen model (Equation

4.63) is a function of the velocity. The velocity of the node is a critical param-

eter in the Masing and Bouc-Wen models. The high natural frequency of the

monopile (9.43 Hz) leads to small vibrations during the initial loading sequence,

which can cause unwanted oscillations in the p-y response. This transience arises

from inappropriate initial conditions where the model’s starting conditions do not

precisely match the system’s equilibrium within the first time step, resulting in

a significant acceleration that triggers vibration modes (Bathe & Wilson, 1976).

This behaviour is mostly evident in the Bouc-Wen model’s response in Figure 4.33,

where the first cycle exhibits spurious noise due to the initial load transience at

all depths. The Iwan model does not exhibit this behaviour, as the reversal laws
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are defined based on a yield criterion of individual bilinear springs (Figure 4.21),

which is independent on the velocity of the node. In general, the transience is

eventually dissipated in part due to Rayleigh damping and the energy dissipation

inherent with the hysteresis model.

Transience is a common issue for large MDOF dynamical systems and can be

resolved by increasing the damping ratio to quickly dissipate problematic vibra-

tions (Hilber & Hughes, 1978; Wilson et al., 1972). However arbitrarily increasing

the damping ratio can result in an overestimation of the idealised dissipation ef-

fects encapsulated by the Rayleigh viscous damping model. Decreasing ρ∞ is

therefore investigated. To add, given that Tn = 1/fn ≃ 0.1s and ∆t = 0.05s,

the time discretisation resolution is not sufficiently small enough to sample the

high frequency transience experienced in the first loop. Decreasing ∆t is another

solution, therefore ∆t = 0.01s is also investigated. The results are shown Figure

4.34 and Figure 4.35.

Figure 4.34: Masing, Iwan and Bouc-Wen model responses for z = 1.5 m, Ψ = 15,
ρ∞ = 1, and ∆t = 0.01 s

Evidently, decreasing the time step limits the drift in the Masing and Bouc-

Wen models. The Masing model converges within the first cycle, whereas the

Bouc-Wen model still exhibits minor drifting characteristics without convergence

after t = 1200 s. The Iwan model is unaffected by the change in ∆t.

The stability of the rate-dependent hysteresis models has improved. However,

this is at the expense of computational spend, as the number of required steps in

time (and therefore the number of operations) has increased by a factor of five.

The effect of decreasing ρ∞ to add numerical dissipation (whilst ∆t = 0.05 s) is

shown in Figure 4.35.
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Figure 4.35: Masing and Bouc-Wen model response for z = 1.5 m, Ψ = 15, and
∆t = 0.05 s

Figure 4.35a shows that, when ρ∞ = 0.75, the Masing model exhibits no drift

and converges to the same solution as the Iwan model when ρ∞ = 1 (Figure

4.32). However, hysteretic drift is only mitigated in the Bouc-Wen model, but

still present when ρ∞ = 0.75 (Figure 4.35b). Figure 4.35c shows that further

decreasing ρ∞ to 0.5 suppresses the lateral shift in the p-y response. When the

drift is removed, the Masing and Bouc-Wen model converge to the same solution

as the Iwan model when ρ∞ = 1 shown in Figure 4.32a.

It is important to note that the degree of numerical dissipation for the first five

modes of the model when ρ∞ = 0.75 and ∆t = 0.05s are shown in Figure 4.27b.

Both cases indicate that the spectral radius is less than one for the first mode, and

is therefore being dissipated by the TMA. Whilst it can achieve a stable hysteresis,

it may not be representative of the true physical behaviour of the monopile. This

is investigated in more detail in Section 4.3.2. The data in Figure 4.35 suggest

that the Bouc-Wen model is the most sensitive to the transient response of the

MDOF system.

It is shown in Figure 4.34 that the general shape of the Bouc-Wen hysteresis is

fundamentally different to the Iwan and Masing model. This is due to differences

in the constitutive laws governing the unload/reload behaviour. Unlike the Masing

model, the Bouc-Wen differential equation does not explicitly adhere to the criteria

defined by the Extended Masing Rules. After a change in direction, the stress path

exhibits a linear relationship until crossing the displacement axis, followed by the

hyperbolic tangent function (as discussed in Section 4.2.4). This behaviour is

clearly illustrated in Figure 4.36, where the tangent stiffness of each hysteresis

model is plotted against time at depth z = 1.5 m. Only the first three cycles are

plotted for clarity.
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Hysteresis model

The Bouc-Wen model briefly maintains its initial stiffness before decreasing,

which is not representative of the highly nonlinear nature of soil behaviour (Hardin

& Black, 1968; Idriss et al., 1978; Vucetic & Dobry, 1991). Under specific con-

ditions (see Figure 4.25), the stress path reverts to a hyperbolic function if the

model is parametrised using β = γ = 0.5 and n = 2. Consequently, the rate of

change of kT is comparable to that of the Masing and Iwan model, taking the

same shape.

All models adhere to the second extended Masing rule, where the stress path

returns to the initial stiffness upon reversing direction, as discussed in Section

2.3.5. In Figure 4.36, it is evident that the Iwan model exhibits a piecewise-linear

behaviour, with its tangent stiffness taking a stepped form of the Masing model’s

kT . Moreover, during directional reversals caused by higher modal frequencies,

the Iwan model briefly returns to the initial stiffness. Despite having ρ∞ = 1

(indicating that natural modal vibrations are not numerically dissipated), the

Iwan model still maintains stability, highlighting its robustness as a hysteresis

model when compared to the Bouc-Wen and Masing models.

4.3.1.3 One-way loading

The dynamic p-y models are exposed to force and moment histories representative

of one-way loading conditions to observe the performance under asymmetrical

loading conditions. The load factor is taken as Ψ = 10, and the load and moment

functions are described using the following Equations:

F (t) = ΨF (1− e−t) sin(ωt), M(t) = ΨM(1− e−t) sin(ωt) (4.74)

where the exponential term serves as a ramping function to gradually increase the

load and moment profile to one-way conditions. The force applied at the ground

line is plotted in Figure 4.37. The load and moment profiles are applied to each
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hysteresis model for t = 1200 s at f = 0.1 Hz (120 cycles). Each hysteresis model

is parametrised using the TMA values that achieved stability and convergence in

the two-way loading sensitivity analysis. The p-y responses are shown in Figures

4.38 to 4.40.
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Figure 4.37: One-way load profile applied at the ground line (first 20 seconds)
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Figure 4.38: Masing model response for Ψ = 10, ∆t = 0.05s and ρ∞ = 0.75
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Figure 4.39: Iwan model response for Ψ = 10, ∆t = 0.05s and ρ∞ = 1
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Figure 4.40: Bouc-Wen model response for Ψ = 10, ∆t = 0.05s and ρ∞ = 0.5
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Figures 4.38 and 4.40 demonstrate excessive hysteresis drift when one-way

loading conditions are applied to the Masing and Bouc-Wen models, regardless

of the TMA parameters. The evident strain accumulation in the Masing model

is due to Pyke’s scaling coefficient C, which is used to estimate the scale of the

subsequent stress path. Equation 2.36 suggests that C is a directionally-dependent

function of the ratio between the soil pressure at the previous reversal event prev

and the ultimate soil pressure pult (prev/pult). Figure 4.41 isolates the problem

using idealised oscillations bound between ymin and ymax.
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Figure 4.41: Example of Pyke’s scaling coefficient C for one-way loading conditions

It is clear that C is a function of the velocity signage, and is therefore highly

dependent on the direction of movement. Initial loading conditions correspond to

C = 1, and the following magnitudes of C after reversals fluctuate significantly

depending on the direction of motion. The first full load cycle therefore cannot

close the hysteresis loop, and a drift is observed. The tangent stiffness of the

stress path is therefore weaker when the velocity is positive, generating a super-

ficial ratchet-type behaviour in the foundation model, which is clearly observed

in Figure 4.38b. The Masing model is therefore not suitable for one-way loading

conditions, unless appropriate modifications are made to the fundamental scaling

laws describing the the unload-reload curves.

Figure 4.40 shows that the Bouc-Wen model exhibits a similar behaviour. Re-

call from Figure 4.25 that the Bouc-Wen p-y loop exhibits a linear stiffness when

(z < 0, ẏ > 0) or (z > 0, ẏ < 0), and a hyperbolic tangent when (z < 0, ẏ < 0) or

(z > 0, ẏ > 0) (if β = γ = 0.5 and n = 2). This was observed in Figures 4.34 and

4.36. This can lead to significantly different stress paths depending on the direc-

tion of motion, as the tangent stiffness can be linear in one direction and nonlinear
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in the other. The corresponding effect is a superficial ratcheting behaviour in the

p-y response, as observed in Figure 4.40b. The Bouc-Wen model is therefore not

suitable for one-way loading conditions.

The Iwan model is independent of velocity, therefore the stress path will not

change depending on the direction of motion. The response to one-way loading is

shown in Figure 4.39, and demonstrates a fast convergence after the first cycle. It

is likely that the first cycle is different to subsequent cycles due to large inertial

forces within the pile when initially loaded.

Exhibiting no numerical drift is an extremely important quality for hysteretic

OWT models, as the loading conditions are typically one-way (Leblanc et al.,

2010b; Page et al., 2021). A hysteresis that can facilitate asymmetrical loading

conditions without numerically-induced accumulated displacements can serve as

a basis for well-informed empirical ratcheting models, as the source of ratcheting

will be a function of the soil layer parameters and not the constitutive hysteresis

model.

4.3.1.4 Summary

A sensitivity study evaluated the performance of the Masing, Iwan and Bouc-

Wen hysteresis models under small-strain and large-strain loading conditions. The

Generalised-α algorithm was used to solve dynamic equilibrium for the nonlinear

MDOF system, and the influence of the ρ∞ parameter was investigated for hys-

teretic systems. It was found that the Masing and the Bouc-Wen models are

sensitive to the initial high-frequency transience, and their stability is compro-

mised unless numerical dissipation is applied or the time discretisation is suffi-

ciently small. Adjusting the numerical dissipation is favourable, as increasing the

number of time steps is computationally expensive. However, it can lead to over-

dissipation for the first frequency, which may not be physically representative. It

is unclear from this study if the stability condition is a function of the natural

modes of the system, which is investigated further in Section 4.3.2.

The Masing and Bouc-Wen models may not be suitable for one-way loading

conditions, as the stress path is highly dependent on the direction of motion. The

Iwan model was found to be the most robust, as it was stable for all values of

ρ∞, ∆t and types of loading. The study showed that the modal frequencies of

the model monopile did not affect the efficacy of the Iwan hystereses, therefore

ρ∞ = 1 (Newmark-β CAA method) is sufficient for dynamic p-y models of this

type.

The constitutive laws describing the hysteresis stress path in the Iwan model
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are independent of velocity, therefore no superficial ratcheting is observed in

the p-y response. This is an important quality for hysteretic OWT models, as

empirically-derived ratcheting models can be used to inform the source of ratchet-

ing in the p-y response with confidence. Monopiles supporting OWTs experience a

high degree of mobilisation during storm events, which typically leads to one-way

loading conditions (Arany et al., 2017; Byrne & Houlsby, 2003; Leblanc et al.,

2010b). Ratcheting is a common phenomenon in one-way loading conditions, and

is caused by asymmetrical stress paths and the plasticity of the soil layers (Abadie

et al., 2019; Houlsby et al., 2017; Ren et al., 2021; Williams et al., 2022). The Iwan

model is therefore selected for application to the fully-integrated OWT-monopile

model in Section 4.3.2.

It has been established from the sensitivity study that the a dynamic p-y

model informed with Iwan springs can be sufficiently solved for using the classical

Newmark-β algorithm (ρ∞ = 1), as all vibration modes were captured and did not

compromise the stability. However, high frequency modes may arise from many

sources, such as noise in sensors when determining load histories. Out-of-phase

wind and wave time series may also activate higher vibration modes. It is therefore

important to investigate the consequence of high modal frequencies in the dynamic

p-y model under realistic loading configurations.

4.3.2 Integrated dynamic p-y model

An OWT tower and nacelle structure is attached to the top of the monopile model

described in Figure 4.26. Only the Iwan hysteresis model is investigated herein, as

it was deemed the most robust soil-structure model in Section 4.2. The monopile

is extended above the Mean Sea Level (MSL), and the length of the beam elements

vary along the superstructure in the interest of minimising the number of degrees

of freedom. The integrated model is illustrated in Figure 4.42, and the properties

are summarised in Table 4.4.

148



Figure 4.42: Integrated OWT-Monopile model (from MATLAB GUI)

Table 4.4: Properties of the integrated OWT-Monopile model

Section Length (m) # elements Dia. (m) Thickness (m)

Tower 70.0 8 5 to 3.5 0.045

Pile above MSL 15.0 5 6.0 0.080

Pile below MSL 45.0 10 6.0 0.080

Pile embedded 20.0 20 6.0 0.080

The section and material properties of the monopile can be found in Table 4.3.

The monopile is extended 15m above MSL and the embedment depth is reduced

to 20 m. A turbine tower of length 70m is attached to the top of the monopile.

The tower is modelled using eight tapered beam elements, where the diameter

varies from 5m to 3.5m. The stiffness and mass properties of the transition piece

is neglected for simplicity. The nacelle is modelled by applying a lumped mass at

the top horizontal and rotational node of the tower structure, where the mass and

rotational inertia are taken as 230,000 kg and 3.5×107 kgm2, respectively. The

blade catchment diameter is taken as 120m. Eccentricities due to the offset of

the nacelle mass from the vertical and the gyroscopic motion of the blades is not

considered in this study. The Young’s modulus and Poisson’s ratio of the tower

is 210 GPa and 0.3, respectively. The density of the tower is 7850 kgm−3. The

submerged monopile section includes lumped masses to model the inertial effects

of the hydrodynamic (external) and entrapped (internal) sea water. The lumped
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mass is calculated using the following Equation:

mw = Caρw
πD2

4
Lb2 (4.75)

where mw is the added mass acting over a submerged monopile beam element,

Ca is the coefficient of added mass multiplying the area of fluid displaced by the

monopile, ρw is the density of sea water (1025 kgm−3).

4.3.2.1 Storm load design

Irregular wind and wave load profiles are applied to the nacelle and MSL, respec-

tively. The load time series for each load type is generated by superimposing a

number of linear sine waves with different amplitudes, frequencies and phases.

The amplitude and frequencies are derived from appropriate power density spec-

tra. The general equation used to describe the wind and wave load time series is

as follows:

h(t) =
N∑
i=1

Ai sin(2πfit+ ϕi) (4.76)

where N is the number of linear waves, i denotes the ith wave, Ai is the ampli-

tude, fi is the frequency and ϕi is the phase. Ai and fi are informed using the

appropriate wave spectra for wind and wave loading as recommended by the IEC

61400-3 standard (IEC, 2009), and the phase of each wave ϕi is randomly gener-

ated between 0 and 2π. The spectral density S(f) for a given wave spectrum can

be converted to the wave amplitude Ai using the following equation:

Ai =
√
2S(fi)∆f (4.77)

where ∆f is the frequency bandwidth and S(f) is the frequency spectrum describ-

ing the stochastic frequency content of a wind speed or wave elevation amplitude.

The time series for the wind and wave loads are derived in the following sections.

Wind Force Time Series

The wind speed U(t) is described as the sum of the mean wind speed Ū and the

random turbulence u(t), as shown in Equation 4.78.

U(t) = Ū + u(t) (4.78)
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Ū is determined using the wind shear power law described in Equation 4.79 for a

given reference height zr.

Ū = Ur

(
z

zr

)α

(4.79)

where Ur is the reference wind speed at height zr and α is the shear exponent

taken as α = 0.12 for open seas (Wilson, 2003). The random turbulence u(t) is

generated by superimposing a number of linear sine waves with different ampli-

tudes, frequencies and phases, as described in Equation 4.76. The wind speed

amplitudes for a given frequency of the individual sine waves are described using

the Kaimal spectrum (IEC, 2009), and the wind speed power spectral density

function is defined as follows:

Su(f) =
4σ2

uf

(1 + 6f)5/3
(4.80)

where σu is the standard deviation of the wind speed spectrum, and can be defined

σu = IŪ . I is the intensity of the storm (IEC, 2009). The wind speed amplitude

spectrum is computed using Equation 4.77 for a given frequency, and the phase

of each sine wave is randomised before superposition to achieve u(t). The wind

thrust time series can then be computed using the following expression:

Fu(t) =
1

2
ρaCT

πD2
r

4
Ū2 +

1

2
ρaCT

πD2
r

4
u(t)2 (4.81)

where ρa is the density of air (1.225kgm−3), Dr is the turbine catchment diameter,

and CT is the thrust coefficient, approximated as CT = 7/Ū (Arany et al., 2015).

Wave force time series

Similarly to the wind load, the sea wave elevation η(t) is defined by superimpos-

ing linear waves with different amplitudes, frequencies and phases, of which the

amplitudes and frequencies are informed using the JONSWAP spectrum (DNV,

2021; IEC, 2009). The wave elevation power spectral density function is defined

as follows:

Sw(f) =
αg2

(2π)4f 5
exp

((
−5

4

(
fp
f

)4
))

γr (4.82)

α = 0.076

(
Ū10

Xg

)0.22

fp =
22

2π

(
g2

Ū2
10X

)1/3

r = e

(
− (f−fp)

2

2σ2
wf2p

)
σw =

0.07 f ≤ fp

0.09 f > fp
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where γ = 3.3, Ū10 is the wind speed after 10 minutes of measurement, X is

the storm fetch, and σw is the standard deviation of the wave spectrum. The

amplitudes of the sea waves are determined using Equation 4.77, and subsequently

directly applied to Equation 4.76.

Under linear wave theory, it is assumed that the sum of forces due to the

individual sine waves gives the force time series of the total wave elevation over

time. The Morison equation can therefore be applied to compute the inertial and

drag forces acting on the monopile for a given sine wave, and superimposed to

determine the total wave force time series acting on the monopile. The Morison

equations for the inertial and drag forces of the waves are as follows:

FD =
1

2
CdρwD |v(s, z, t)| v(s, z, t) (4.83)

FI = Cmρw
πD2

4
v̇(s, z, t) (4.84)

where Cm and Cd are the inertial and drag coefficients, respectively. v(s, z, t) and

v̇(s, z, t) is the horizontal velocity and acceleration of the water particle, respec-

tively, for a given water depth z and horizontal displacement s. The wave particle

kinematics can be estimated using Airy’s theory using Equations 4.85 and 4.86.

v(s, z, t) =
Hi

2
ωi
cosh(ki(z + d))

sinh(kid)
cos(ks− ωit) (4.85)

v̇(s, z, t) =
Hi

2
ω2
i

cosh(ki(z + d))

sinh(kid)
sin(ks− ωit) (4.86)

where ωi = 2πfi, d is the water depth, and Hi is the wave height, which is double

the amplitude determined from the JONSWAP wave model described in Equation

4.82 (Hi = 2Ai). k is the wave number and can be computed using the dispersion

relation:

ω2
i = gki tanh(kid) (4.87)

Equation 4.87 is an implicit function of ki, therefore needs to be solved numer-

ically. However, an explicit approximation can be used to estimate k for a given

fi and d using the following equation:

ki =
ω2

g

(
tanh

(
2π
√

d/g

Ti

)3/2
)2/3

(4.88)

where Ti = 1/fi is the wave period. The total inertial and drag force produced
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by each sine wave can be computed by integrating Equations 4.83 and 4.84 over

the submerged length of the monopile and ignoring time variations. Assuming a

horizontal distance from the monopile of 0 (s = 0), and using 4.87, the maximum

inertial force F̂I and maximum drag force F̂D are as follows:

F̂D =ρwg
CdD

2

∫ η(t)=0

−d

v(s, z, t) |v(s, z, t)| dz

=ρwg
CdD

2

(
Hi

2

)2 [
1

2
+

kid

sinh(2kid)

] (4.89)

F̂I = ρwgCm
πD2

4

∫ η(t)=0

−d

v̇(s, z, t)dz

= ρwgCm
πD2

4

Hi

2
tanh(kid)

(4.90)

Note that the wave elevation η(t) is taken as zero to simplify the integral

and represents a force distribution from MSL to the seabed along the monopile.

According to Equations 4.85 and 4.86, the particle velocity is a cosine function of

time and the acceleration is a sine function of time. The maximum inertial and

drag forces therefore occur at a phase difference of π/2. Since cos t = sin(t+π/2),

the total wave force time series can be expressed as follows:

Fw(t) =
N∑
i=1

[
F̂I,i sin(ωit+ ϕi) + F̂D,i cos (ωit+ ϕi)

]
(4.91)

where ϕi is the random phase angle between 0 and 2π. The total wave force time

series is then applied to the MSL of the monopile model.

Storm parameters

A fictitious storm event lasting for 20 minutes is generated using the methodology

outlined above. The wave time series of the storm event is characterised by the

JONSWAP spectrum and models waves for an average wind speed of Ū = 65

m s−1 and a fetch of 150 km. Notably, this wind speed exceeds the turbine’s

cut-out threshold of 25 m s−1, rendering the rotor idle in practice. Therefore, it

is assumed that the wind load time series expected from a 65 m s−1 wind speed

storm for an idle rotor is equivalent to that of a Kaimal spectrum with a mean

wind speed of 25 m s−1 during operation. For a wind intensity of I = 20%, the

Kaimal wind spectrum and JONSWAP wave spectrum are shown in Figure 4.43.
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Figure 4.43: Frequency content of the Kaimal wind spectrum and JONSWAP
wave spectrum

The Kaimal spectrum is sampled at 300 frequencies between 0.01 Hz and 0.1

Hz, and the JONSWAP spectrum is sampled at 300 frequencies between 0.01 Hz

and 0.5 Hz, generating 300 sinusoidal wind speed and sea elevation sine waves.

The superimposed wind and wave time series are shown in Figure 4.44.
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Figure 4.44: Wind and wave force time series for a 20 minute storm event

Similar to the one-way load history derived in Figure 4.37, an exponential

ramping factor is applied to the wind and wave load time series to reduce the

transient behaviour in the model due to large sudden loading. Figure 4.44a shows

that the wind load is gradually increased to maximum after the first thirty seconds.

Large wave

An arbitrary large wave is superimposed on to the wave force time series to ob-

serve the response of the dynamic p-y model under extreme loading conditions.
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Known as a constrained wave, the free surface elevation history of the wave loads

is designed to include a singular wave of a determined height at a particular mo-

ment in time. The free surface elevation of the random waves cab be naturally

blended into the free surface elevation of the large wave (Rainey & Camp, 2007).

A simplified approach is adopted herein, where the large wave is modelled in the

time domain using a Gauss-like distribution function described in Equation 4.92,

and superimposed on the random free surface elevation.

FL(t) = F̂L exp

(
−(t− t′)2

2β2

)
(4.92)

where F̂L is the maximum force of the large wave, t′ is the time at which the

large wave occurs, and β is a parameter that describes the duration. The large

wave is applied at t′ = 500 s, and the duration parameter is taken as β = 3. The

maximum force of the large wave is arbitrarily taken as F̂L = 9.6 MN, which is

approximately 2 times the maximum wave force expected from the storm event.

The large wave force time series is shown in Figure 4.45.
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Figure 4.45: Wave force time series at t = 500 s

The force time series shown in Figures 4.44a and 4.45 are applied to the nacelle

and MSL of the dynamic p-y model, respectively, and the time required to com-

plete the simulations are noted. The blade-passing excitations are not considered

in this analysis.

4.3.2.2 Analysis and results

∆t = 0.01s is chosen such that the resolution of the estimation is sufficiently

small and errors are mitigated, and ρ∞ = 1 such that high frequency modes of

the model are captured. The ground line displacements is shown in Figure 4.46.

Three hystereses at various depths are shown in Figure 4.47.
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Figure 4.46: Ground line displacements for ∆t = 0.01s and ρ∞ = 1 (CAA)

Figure 4.47: Iwan hystereses at various depths for ∆t = 0.01s and ρ∞ = 1

The response is predominantly one-way due to the lever arm imposed by the

wind loads applied at the nacelle. Initially, the average displacement is approxi-

mately 0.075 m before the large wave, which then increases to approximately 0.1

m due to impact. This suggests permanent deformation due to high spring mo-

bilisation. This behaviour is also evident in Figure 4.47, where the p-y response

continues to mobilise along the API sand backbone function. Subsequent hys-

teresis loops occur due to the irregular loading sequence from both the wind and

wave time series. The p-y loops successfully close upon completing load cycles and

return to the previous stress path, as shown in Figure 4.47a at spring depth z = 1

m, in accordance with the Extended Masing Rules.

The wave impact is also evident at spring depths z = 9 m and z = 18 m, how-

ever the magnitude of the spring mobilisation and displacements are significantly

smaller due to the stiffness distribution described by the API sand model. The

p-y responses at different depths suggest that the hysteresis model is exhibiting

a permanent global monopile rotation. The frequency content of the ground line

response is shown in Figure 4.48, including the modal frequencies calculated by

an eigenanalysis described in Equation 2.26.
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Figure 4.48: Frequency content of the ground line displacements for ∆t = 0.01 s
and ρ∞ = 1

Note that the Kaimal and JONSWAP spectra are observable in Figure 4.48a.

The wave time series resonates with the first mode of the model at 0.24 Hz.

The one-way behaviour is a consequence of the wind loads, whilst the wave load is

responsible for the large displacements due to resonance, highlighting the dynamic

sensitivity of OWT structures. It is important to note that the API sand model

used to characterise the lateral springs may not be suitable for monopiles with

low L/D ratios, as discussed in detail in Chapter 3. Consequently, the stiffness of

the foundation model is considerably weaker, and will therefore produce a lower

natural frequency than expected.

The second, third and forth modal frequencies are also displayed in Figure

4.48b and are captured well by the TMA due to the small ∆t value used and

minimal period elongation errors. However, it is postulated here that the pres-

ence of high-frequency modes contribute to erroneous reversal events in the p-y

domain. Hysteresis reversals cause the tangent stiffness to revert to the initial

value, resulting in a momentary increase in stiffness that can encourage transient

behaviour. Furthermore, increasing the time step to reduce computational spend

can compromise the accuracy of the higher modes. Figure 4.49 illustrates the in-

fluence of the time step size on the modal accuracy of the monopile model. The

time required to complete the simulation on a standard computer with an AMD

RyzenTM 7 7745HX Processor (3.60 GHz) is recorded in Table 4.5.
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(a) ∆t = 0.05s
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(b) ∆t = 0.1s
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(c) ∆t = 0.25s
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(d) ∆t = 0.5s

Figure 4.49: Frequency content of ground line displacements for various time step
sizes

Table 4.5: Simulation time for the integrated OWT-Monopile model at various
time step sizes for 1200 seconds of simulation time

Time step size (s) Simulation time (s)

0.05 9.906

0.1 4.877

0.25 1.999

0.5 0.979

As ∆t is increased, the TMA becomes less effective at capturing the higher

modes of vibration due to the period elongation expected for large normalised

frequencies (Figure 4.14a). Obviously, this results in a quicker simulation time,

and a linear relationship is observed in Table 4.5. The algorithm demonstrates

reasonable accuracy in capturing the first two modes When ∆t is less than or

equal to 0.1 s. This is particularly important since the first two modes of an

OWT system are widely recognised as holding the most engineering significance

for OWT systems (Carswell et al., 2016; Prendergast et al., 2018; Tarp-Johansen

et al., 2009). Higher values of ∆t lead to a significant loss in accuracy for all
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frequencies.

∆t = 0.1 s is a suitable time step size for the proposed integrated dynamic

p-y model, as it is sufficiently small to capture the first two modes of the system

and can provide computationally efficient simulation. However, when ρ∞ = 1,

the TMA does not dissipate the poorly estimated high frequency modes evident

in Figure 4.49b. An appropriate ρ∞ value is therefore investigated for the dy-

namic p-y model at ∆t = 0.1 s. Figure 4.50 shows the spectral radius for modal

frequencies (normalised with ∆t = 0.1 s) and various values of ρ∞.
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Figure 4.50: Spectral radius of different ρ∞ values for the first six modal frequen-
cies normalised at ∆t = 0.1 s

Figure 4.50 suggests that, when ∆t = 0.1 s, the preservation of the first and

second vibration modes occurs when ρ∞ is greater than 0.4. The frequency content

of simulation with ρ∞ = 0.8, 0.7, 0.6 and 0.5 are shown in Figure 4.51, and are

compared with the frequency content of the simulation with ρ∞ = 1. Only the

second, third and fourth modal frequencies are shown for clarity.
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Figure 4.51: Frequency content of the ground line displacements for various ρ∞
values when ∆t = 0.1 s

The frequency content of the third and fourth mode are successfully dissipated

when ρ∞ is decreased. Notably, Figure 4.51 shows that, when ρ∞ = 0.5, the third

and fourth mode are completely filtered out by the TMA, and the second mode

is partially dissipated. ρ∞ = 0.6 preserves the amplitudes of the second modal

frequencies, whilst also dissipating the third and fourth modes. ρ∞ = 0.7 and

ρ∞ = 0.8 do not demonstrate sufficient dissipation of the third and fourth modes,

and therefore ρ∞ = 0.6 is chosen as the appropriate value for ρ∞.

Figure 4.14a shows the period elongation error for the Generalised-α algorithm.

Notably, the percentage error increases with ρ∞ for a given normalised frequency.

This is evident in Figure 4.51. When ρ∞ = 0.5, the second mode has minor period

elongation error, whereas for ρ∞ = 0.8, the period elongation is negligible. The

ground line displacements for ρ∞ = 1 when ∆t = 0.1 s and ∆t = 0.01 s, as well

as ρ∞ = 0.6 when ∆t = 0.1s are shown in Figure 4.52. The insets show 20 second

intervals along the 1200 second response signal at different points of interest.
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Figure 4.52: Ground line displacements when ∆t = 0.01s and ρ∞ = 1, ∆t = 0.1 s
and ρ∞ = 1, and ρ∞ = 0.6 and ∆t = 0.1 s

Inset A demonstrates the transient response of higher modes due to initial

loading conditions. Erratic high frequency oscillations are present when ρ∞ = 1,

but are dissipated quickly when ρ∞ = 0.6. Notably, the difference in estimated

response between ρ∞ = 1 and ρ∞ = 0.6 is negligible at all points in time. This

demonstrates that the erroneous frequency modes evident in Figure 4.51 are in-

consequential to the overall response of the model, and the simulation response is

dominated by the first and second vibrational modes.

Inset B shows the impact of the large wave at t = 500 s, and marks when

the difference between the ∆t = 0.1 s and ∆t = 0.01 s simulations becomes

most pronounced. The large wave causes a significant increase in the ground line

displacement, and the difference between the ∆t = 0.1 s and ∆t = 0.01 s is ap-

proximately 0.01m thereafter. This difference is also evident in inset C, suggesting

that the highly nonlinear response, as demonstrated in the spring stress paths in

Figure 4.47, has caused a degree of permanent displacement that is dependent

on the time step size. Considering that there is no difference between ρ∞ = 1

and ρ∞ = 0.6, it is postulated that the difference in permanent displacement is

not due to the erroneous high frequency modes, but rather the inherent numerical

errors associated with the time step size and nonlinear systems. This is difficult

to quantify in the presented analysis.

It is important to note that, when ∆t = 0.01s, it is not possible to evaluate

the influence of the first and second mode. This is because the normalised modal

frequencies (i.e. fn∆t) are too low for meaningful ρ∞ values to affect the response

in a comparative way. This is illustrated in Figure 4.53.
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Figure 4.53: Spectral radius of different ρ∞ values for the first six modal frequen-
cies normalised at ∆t = 0.01 s

Note that the majority of the meaningful vibration modes have a spectral

radius of unity when ρ∞ = 0. This means that the Generalised-α method cannot

dissipate erroneous frequency modes for systems with low natural frequencies and

relatively small time step sizes.

4.3.2.3 Summary

An integrated dynamic p-y model has been developed to simulate the response of

a monopile under intense wind and wave loading. The soil elements are informed

using the Iwan hysteresis method and the backbone function is characterised using

the API sand model. A qualitative review on the performance of the model has

shown that the Iwan model is capable of capturing the nonlinear response of the

soil for highly irregular one-way loading configurations without instabilities. It was

shown that the Newmark-β CAA algorithm is suitable for such models. However,

it is good practice to filter out the erroneous modes present for larger ∆t values.

A value of ρ∞ = 0.6 preserves the first two modal frequencies when ∆t = 0.1 s

(which are the most important for OWTs), and successfully filters out the higher

modes. This investigation showed that the first two modes are most dominant

in nonlinear analyses, as the difference between ∆t = 0.1 s simulations when

ρ∞ = 1 and ρ∞ = 0.6 is negligible. Further investigation is required to review the

model’s dependence on the time step size when the degree of nonlinearity in the

soil elements is high.
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4.4 Conclusions

A dynamic p-y model has been investigated by applying a strategically simplified

load and moment time series to evaluate the response of a monopile hysteresis

model in a controlled environment for different hysteresis definitions. It was found

that, when regular cyclic loading is applied to the pile head the Iwan model is the

most robust, whereas the Masing and Bouc-Wen models were unstable due to their

dependence on velocity. ρ∞ and ∆t were found to have a significant influence on

the dynamic response of the rate dependent hysteresis models, and therefore must

be carefully selected to ensure the model is stable and accurate.

The Iwan model was used to define the nonlinear soil resistance in a dynamic

p-y model with an appended OWT superstructure, and the backbone was informed

using the API sand model. A wind and wave load time series was derived from

design code spectra for an intense storm event. The dynamic response of the model

was evaluated using the Generalised-α method and the influence of the time step

size and spectral radius on the dynamic response of the model was investigated.

Wind and wave load time series are derived using the Kaimal and JONSWAP

spectra, respectively, to simulate an intense storm event. The load histories are ap-

plied to the appropriate points along the superstructure to ensure the ground line

excitations are inline with the anticipated response of a commissioned monopile

during a storm. The influence of the time step size and spectral radius on the

dynamic response of the model is investigated.

It was found that, for this model configuration, a ρ∞ value of approximately

0.6 is recommended to preserve the first two modal frequencies of the system and

filter out erroneous high frequency modes. However, ρ∞ will also be dependent on

the natural frequency of the system. The inaccurate modal frequencies for large

∆t values demonstrated to have a negligible influence on the overall response

of the model, suggesting that the first two modes dominate the response of the

nonlinear system. The analysis suggests that Newmark-β CAA method is suitable

for dynamic p-y models for OWTs. However, the Generalised-α method can be

more efficient and stable. It is good practice to use the Generalised-α method,

especially when dealing with loading sequences that may induce high-frequency

excitations, such as seismic loading. This was not within the scope of this study.

The displacements under highly nonlinear behaviour are dependent on the size of

the time step, and not the transient response of higher modes. However, this is

difficult to quantify in the presented analysis.

Future work will include characterising the soil element function with a more

appropriate soil model that is representative of the dynamic soil-structure inter-
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action of monopiles. The API sand model was used in this investigation, which

is derived from static loading conditions. This analysis was therefore qualitative,

and comparison to empirical data is not meaningful. Diameter effects from low

L/D monopiles was also not considered in this analysis, which will have a marked

influence on the stiffness of the foundation model, as discussed in Chapter 3. Fur-

thermore, it is possible to modify the spring elements to capture more advanced

geotechnical behaviour, such as gapping, ratcheting and liquefaction. In its current

form, the model offers a framework for the implementation of these phenomena,

and it was demonstrated that the proposed model does not exhibit superficial

ratcheting behaviour. An empirical ratcheting model can therefore be applied

with confidence. However, the relationship between highly nonlinear behaviour

and the size of the time step needs to be reviewed further.

A dynamic p-y model implicitly computes the local mobilisation of each soil

layer due to irregular load histories applied to the pile head. This means that the

degree of degradation for each layer can be quantified if an appropriate soil degra-

dation model is applied, such as the cyclic contour diagrams discussed in Section

2.2. This is a topic of interest in the offshore wind industry, as the amplitude and

frequency of irregular time series can have a marked influence on the fatigue life

of the structure (Andersen, 2009; Page et al., 2021; Zhang et al., 2017; Zhang &

Andersen, 2019).
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Chapter 5

Pseudostatic model: development

and analysis

The one-dimensional beam-spring model configuration is a popular methodology

for pile analysis due to its fast computational simulations and versatility in appli-

cation. So far, this thesis has focused on the development of a static and dynamic

p-y model for OWT monopiles. It is possible to extend the dynamic time-domain

p-y model to consider seismic effects by imposing motion on the boundary condi-

tions of each spring, but this approach is computationally expensive. Typically,

the peak bending moment of a pile is the governing design parameter for seis-

mic loading during earthquake events, which can be estimated using a static p-y

model if the loading configurations due to seismic excitation are appropriately

represented.

This chapter details the development and performance of a pseudostatic p-y

model for a single pile and a pile group embedded in a two-layered soil profile.

These tests were performed by associates at University of Cambridge (Garala,

2020), therefore experimental data curation and analysis were not conducted by

the author of this thesis, but are detailed in this chapter for the purpose of clar-

ity. The results of this chapter are published in Soil Dynamics and Earthquake

Engineering (Tott-Buswell et al., 2022).

5.1 The pseudostatic p-y model

Conventional pile design involves estimating the axial load capacity and satisfying

the serviceability criteria in terms of allowable settlements and durability under

static loads. In addition to axial loads, pile foundations are subjected to lateral

dynamic loads during an earthquake due to: (i) the oscillation of the superstruc-
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ture, which induces inertial loads at the pile head, and (ii) the ground deforma-

tion during the passage of seismic waves, which induce kinematic loads along the

pile. Traditionally, kinematic loads are neglected in pile foundation seismic design

as they are assumed insignificant in comparison to inertial loads applied at the

ground line. However, the significance of kinematic loads has been highlighted

by various post-earthquake reconnaissance reports (Mizuno, 1985; Nikolaou et

al., 2001) and thus, several revised seismic codes recommend the consideration of

kinematic loads in the seismic design of pile foundations under certain conditions

(EC8, 2000). Nevertheless, there are no specific methodologies recommended for

the seismic design of pile foundations in design codes, resulting in various design

approaches being followed by practitioners. These design approaches can range

from very simplistic methods, such as the pseudostatic methodology, to complex

computer analyses, such as time-domain simulations (Poulos, 2017).

Despite recent developments in two- and three-dimensional dynamic finite ele-

ment models including advanced soil constitutive behaviour, one-dimensional finite

element or finite difference-based methods, Winkler models are still commonly em-

ployed for seismic soil-pile-structure interaction analysis due to their simplicity.

The p-y method is widely employed for monotonic analysis, utilising a nonlinear

relationship between soil resistance p and lateral displacement of the pile y (as

shown in Chapters 3 and 4). However, it can be modified to encapsulate the

maximum stress conditions within the pile imposed by seismic activity (Tabesh &

Poulos, 2001). Alternatively, the variation in response of the pile foundation with

time-varying earthquake characteristics (intensity and frequency of excitation) can

be evaluated using time-domain dynamic analyses and appropriate soil element

hysteresis models (Kampitsis et al., 2013; Naggar & Bentley, 2000; Rovithis et al.,

2009). Such methods are computationally expensive and can be impractical for

design purposes, especially when the capacity of the pile is required. The pseu-

dostatic method offers a practical approach to estimating the maximum bending

moment if the applied loads are appropriately characterised based on the antici-

pated seismic activity (Poulos, 2017).

Similar to the traditional p-y method, the pseudostatic model takes advantage

of the simplicity in pile-soil interaction representation by considering only one di-

mension. This method uses a beam-spring configuration under static loading to

estimate the maximum bending moment that occurs during an earthquake event

without the need for computationally expensive time-domain simulations. As is

the case with the p-y approach, the model assumes that discrete soil layers behave

as nonlinear spring. The pseudostatic methodology assumes a point load at the

pile head that is representative of the inertial force imposed by the superstruc-
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ture. This is estimated using a static inertial force with a magnitude equal to the

mass of the system times the acceleration of the excitation. The kinematic soil

forces induced by the ground accelerations are encapsulated with non-homogenous

boundary conditions on nonlinear springs. The pseudostatic model, including the

idealised forces, are shown in Figure 5.1.

Figure 5.1: Schematic of pseudostatic p-y model for a single pile, including inertial
loading and non-homogenous boundary conditions

Note that the spring elements are now described with a p-yel relationship,

where yel = yp − ys. yp and ys is the displacement of the pile and the free field

soil displacement, respectively. The depth and value of the maximum bending

moment can be calculated using the gradient matrix, which can be derived from

elastic beam theory (Bathe, 2006). See Appendix A.2.4.

A typical pseudostatic analysis for seismic loading involves two steps: (i) per-

forming a seismic ground response analysis to obtain the maximum free-field soil

displacement profile along the pile’s length, and (ii) imposing a static force (peak

inertial load) at the pile head and non-zero boundary conditions along the em-

bedded pile informed by discretising the maximum free-field soil displacements

(kinematic load). Abghari and Chai (1995) presented the first pseudostatic analy-

sis approach for piles in non-liquefying soils by considering the inertial force acting

at the pile head as the product of the cap-mass times a spectral acceleration as

recommended by Dowrick (1977). To this end, an approximation is necessary to

compute the associated natural period by considering the lateral pile head stiff-
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ness (Tabesh & Poulos, 2001). By comparing the results of pseudostatic analysis

with dynamic finite element analysis, the above authors concluded that 25% of the

peak inertial force should be combined with the peak kinematic displacement for

computing the peak pile deflection. Similarly, for computing the peak pile bend-

ing response, 50% of peak inertial force should be combined with peak kinematic

displacement. Later, Tabesh and Poulos (2001) contradicted this finding and rec-

ommended that imposing the total inertial force at the pile head can result in good

agreement between the pseudostatic approach and dynamic analysis. Castelli and

Maugeri (2009) considered both kinematic and inertial loads and highlighted the

suitability of pseudostatic approaches for the seismic analysis of single piles and

pile groups.

In this chapter, the pseudostatic methodology is adopted to estimate the bend-

ing moment profile of single and group piles in two-layered soils of high stiffness

contrasts. The soil-structure interaction is modelled using the well-established API

reaction curves, which were originally derived for the p-y methodology for slender

piles under monotonic loading (API, 2014; Murchinson & O’Neill, 1986; O’Neill &

Murchison, 1983; Reese et al., 1974). The efficacy of these design curves for seismic

loading in layered soils is evaluated by comparing the results of the pseudostatic

model with centrifuge test results. Model corrections to facilitate soil layer and

pile group effects are also investigated.

5.2 Description of centrifuge tests

The following sections describe the centrifuge experiments conducted by associates

at University of Cambridge (Garala, 2020) to investigate the seismic response of

single and group piles in two-layered soil profiles. Centrifuge experiments were

performed for single and group piles in dense sand underlying soft clay at 60g (g

= gravitational acceleration) under various sinusoidal and earthquake excitations.

The experimental setup, model instrumentation and soil strata are detailed herein.

The acceleration response of soil strata and pile foundations during the various

base excitations are also discussed.

5.2.1 Model pile instrumentation and preparation

The centrifuge experiments were conducted at 60g using the Turner beam

centrifuge (Schofield, 1980) facilities at the Schofield Centre, University of Cam-

bridge, UK. In this series of experiments, the soil models were prepared with a
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dense, poorly graded, fraction-B Leighton Buzzard sand underlying soft Speswhite

kaolin clay to maintain significant stiffness contrast between the soil layers. The

properties of fraction-B Leighton Buzzard sand and Speswhite kaolin clay can be

found in Garala et al. (2020). For model pile foundations, a single pile and a 1

x 3 row pile group were fabricated using an aluminium (Alloy 6061 T6) circular

tube of outer diameter (D) 11.1 mm and thickness (t) 0.9 mm. A centre-to-centre

spacing of 3 diameters is adopted between piles in the pile group. The bottom of

the tubular piles is closed with an aluminium plug to restrict the entry of soil into

the piles during pile installation. Further, the single pile and end piles of the pile

group were strain gauged to measure the bending moments during earthquakes.

Figure 5.2 shows the schematic view of the pile foundations used in the study

along with the location of strain gauges.

Figure 5.2: Schematic view of tested pile foundations: (a) single pile and (b) pile
group (prototype dimensions in parentheses) (Garala, 2020)

The mass of the plexiglass caps for single pile and the pile group are 11 grams

and 24 grams at model scale, respectively. These masses are less than half the

self-weight of the pile foundations (each model pile weighs 24 grams without strain

gauges) and are negligible compared with the axial load-carrying capacity of the

single pile (0.57 kg at model scale). Hence, the pile accelerations and bending

moments measured during K flight (kinematic loads only, not cap mass) can be

considered as the effect of kinematic loads alone. In K+I flight (including inertial

effects from cap mass), the brass caps will induce a static vertical force of 167.75
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N and 503.25 N at model scale (0.604 MN and 1.812 MN at prototype scale) for

the single pile and the pile group, respectively; therefore, the vertical load acting

per pile is the same for both the single pile and the pile groups.

5.2.2 Centrifuge preparation and instrumentation

The centrifuge models were prepared from bottom to top, first by pouring the

sand at the required relative density using an automatic sand pourer (Madabhushi

et al., 2006), followed by saturating the sand layer with de-aired water and then

filling the model container with kaolin slurry for consolidation (Garala, 2020). An

air hammer device, a small actuator that can act as a source to induce waves

within the soil model (Ghosh & Madabhushi, 2002), was placed at the bottom

of the model on a 10-15mm thick sand layer during sand pouring. The detailed

model preparation procedure and equivalent prototype characteristics of a single

pile can be found in Garala (2020) and Garala and Madabhushi (2020). The unit

weight of the saturated clay and the sand is 16.2 kNm−3 and 20.4 kNm−3, respec-

tively. Figure 5.3 shows the sectional view of the model along with the location of

various instruments used. Piezoelectric accelerometers were used to measure the

accelerations in the soil model at different depths, micro-electro mechanical system

accelerometers were used on top of pile caps to measure the accelerations, and pore

pressure transducers were used to measure the pore-water pressures at different

depths. Further, each centrifuge experiment was carried out in two flights, with

acrylic plexiglass used as pile caps in flight-01 (hereafter referred to as K flight)

and pile caps made from brass in flight-02 (hereafter referred to as K+I flight), to

examine the effects of kinematic and inertial loads individually.
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Figure 5.3: Sectional view of the centrifuge model with instruments and pile foun-
dation (prototype dimensions in parentheses) (Garala, 2020)

A T-bar 40 mm wide and 4 mm in diameter was used to determine the

undrained shear strength (cu) of the clay layer. To measure the soil stiffness,

the air hammer device was activated and the propagation of shear waves through

the soil profile was measured using an array of piezo-electric accelerometers placed

above the air hammer device (see Figure 5.3). Figures 5.4a and 5.4b show the cu

profile of the clay layer determined from in-flight T-bar tests and the small-strain

shear modulus (G0) of the soil layers determined from the air hammer device, re-

spectively, before subjecting the model to base excitations. G0 values determined

from published expressions (Hardin & Drnevich, 1972a; Oztoprak & Bolton, 2013;

Viggiani & Atkinson, 1995) are also shown in Figure 5.4b. By considering an

average G0 of 23 MPa and 184 MPa for the clay and sand layers (at a depth

of 4D-5D above and below the interface), respectively, a sharp stiffness contrast

between the two soil layers is obtained, referring to a small-strain shear modulus

ratio (G0,sand/G0,clay) equal to 8. Further, a quite large G0,clay/cu ratio around

2300 was obtained for the clay layer.
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Sand Layer

(a) (b)

Clay layer

Figure 5.4: (a) Undrained shear strength of clay layer from T-bar test and (b)
Maximum shear modulus of soil layers from air-hammer tests (Garala, 2020)

5.2.3 Acceleration response of soil strata and pile founda-

tions

Figure 5.5 shows the acceleration time-histories of the Base Excitations (BE)

considered in this study, including sinusoidal excitations of different driving fre-

quencies (BE1-BE4) and increasing intensity along with a scaled 1995 Kobe earth-

quake motion (BE5).

172



PBA = 0.046g

PBA = 0.087g

PBA = 0.174g

PBA = 0.193g

PBA = 0.164g

Figure 5.5: Acceleration time-histories and corresponding fast Fourier transforms
of base excitations BE1 to BE5 (Garala, 2020)

Figure 5.6a shows the peak acceleration measured at different depths of soil

strata during each base excitation (BE1-BE5) in K and K+I centrifuge flights. The

peak soil displacement profile, determined by double integration of the recorded

soil accelerations, is shown in Figure 5.6b. The amplification of motion as shear

waves propagate from the dense sand layer to the surface of the soft clay layer can

be clearly seen in Figures 5.6a and 5.6b. More details about the dynamic response

of tested soil-strata and the comparison of response from centrifuge soil-strata

with one-dimensional seismic ground response analysis can be found in Garala

and Madabhushi (2021).
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Figure 5.6: (a) peak accelerations and (b) peak displacements along the soil depth
(Garala, 2020)

Figure 5.7 shows the acceleration response at the soil surface and the pile-cap

as recorded during the two flights of centrifuge testing (see Figure 5.3 for ac-

celerometer locations). The soil-strata responded similarly in both flights, except

for BE4 excitation. As expected, the pile accelerations are different in K flight and

K+I flight, with the pile acceleration amplitude being larger in K+I flight com-

pared to K flight in most cases due to the presence of inertial loads in K+I flight.

However, for the single pile, the pile accelerations in K+I flight are smaller than

in K flight at some loading cycles during BE2, BE4 and BE5 excitations. This is

due to the phase difference between the kinematic and inertial loads. For the same

tested pile foundations, Garala and Madabhushi (2020) has shown that there is a

significant phase difference between the kinematic and inertial loads for the single

pile during BE2, BE4 and BE5 excitations and hence the pile accelerations in K+I

flight are smaller than those in K flight. For all other cases, the kinematic and

inertial loads act together or with smaller phase differences, leading to larger pile

accelerations in K+I flight compared to K flight. The significant phase difference

between the kinematic and inertial loads also leads to lower pile bending moments

as the piles are vibrating with smaller acceleration amplitudes. More details about

the phase difference between the kinematic and inertial loads and its influence on

pile accelerations and bending moments can be found in Garala and Madabhushi

(2020).
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Figure 5.7: Acceleration time histories of (a) soil surface, (b) single pile, and (c)
pile group during different excitations in K and K+I flights (Garala, 2020)

5.3 Development of the pseudostatic model

The pseudostatic model employed herein is presented in Figure 5.8 following

Tabesh and Poulos (2001). The beam-spring model consists of a series of linear-

elastic beam elements supported on nonlinear p-y spring elements at discrete points

to represent the pile and soil respectively. Euler-Bernoulli beam theory is used in

this theory due to the relatively slender pile model geometries (Figure 5.2) (Gupta

& Basu, 2018). The general ordinary differential equation of a beam on a Winkler

foundation is given by:

EpIp

(
d4yp
dz4

)
− p(yel)− FI = 0 (5.1)
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where EpIp is the flexural stiffness of the pile, yp is the pile displacement, p is

the soil pressure function, yel is the spring element’s displacement, referring to

the relative displacement between the free-field soil displacement ys and the pile

deflection yp (i.e. yel = yp − ys), and FI is the inertial load.

Figure 5.8: pseudostatic p-yel model illustration of a capped pile in a multi-layered
soil strata

The continuous form of the equilibrium equation can be solved using the Di-

rect Stiffness Method by discretising the physical system appropriately (Appendix

A). The pseudostatic model considers both kinematic and inertial loading in the

following manner:

1. Kinematic loading Fk induced from the free field soil lateral displacement ys

is modelled through imposing ys as non-homogeneous boundary conditions

on the spring elements as informed through the maximum soil displacements

recorded in the centrifuge tests for a given base excitation. It should be noted

that the maximum soil displacements at each depth may have occurred at

different times. Values are linearly interpolated where necessary for nodal

displacement values within the discretised Winkler model.

2. Inertial loading FI = Mcap(ÿs) due to the pile cap mass is modelled as a

single point load applied at the pile head, where Mcap is the mass of the
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pile cap and ÿs can be either the peak ground acceleration or the peak

spectral acceleration recorded in the centrifuge at soil surface for a given

base excitation.

A rotational fixity is assumed at the pile head location for the pile group to

simulate pile cap boundary conditions and for the single pile case the pile head is

free to rotate. The lateral soil pressure p is computed based on yel. The function

used to describe the p-yel element depends on the layer in which the corresponding

spring resides. For the present study, the API methodology is applied for both

the sand and clay layers, assuming y = yel (API, 2014). It should be noted that

the p-y curves in API (2014) were developed for laterally loaded pile foundations

using full-scale monotonic and cyclic pile head lateral load field tests on long

piles in different soil conditions. For these reasons, the p-y functions may not

be suitable for pile response analysis under dynamic loading. However, as there

are no dynamic p-yel curves recommended in the codes, cyclic p-y relationships

are used in this study as defined by API design codes for simplicity, which are

discussed in detail in Section 2.1.2.

5.3.1 API p-y model for each soil layer

The p-yel curves for the clay layer are hereby denoted as the first layer with

subscript 1. The API clay methodology proposed by Matlock (1970) suggests

that the lateral pressure of the first layer p1 is function of the ultimate lateral

resistance (pu,1) and the lateral pile displacement at one-half the ultimate lateral

resistance (yc), calculated as yc = 2.5ϵcD (Matlock, 1970). Due to the absence

absence of experimental stress-strain curves, a representative value for ϵc can be

adopted in terms of cu (Sullivan et al., 1980). For an average cu of 11 kPa (Figure

5.4), Sullivan et al. (1980) recommended ϵc = 0.02 (see Table 2.4).

The sand layer’s p-yel curves are denoted as the second layer herein, with

subscript 2. The API sand methodology proposed by O’Neill and Murchison

(1983) defines the lateral soil pressure of the second layer p2 using the hyperbolic

tangent relationship described in Equation 2.3.

Full details on the spring element definitions can be found in Section 2.1.2.

5.3.2 Soil layering effects

Design standards for laterally loaded piles do not explicitly advise any specific

p-y curves to account for layered soils or any suggestions to modify the above p-y

curves of homogeneous soils for use with layered soils (API, 2014). Therefore,
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in the presence of layered soils, underlying soil spring element functions must

be modified accordingly to account for the change in vertical stresses imposed

by upper soil layers. For soft clay underlain by dense sand, it is expected that

the sand’s strength would be less than what API’s hyperbolic definition suggests

(Equation 2.3), as the lighter clay imposes a lower overburden pressure at the soil

interface depth than what would be expected in a fully homogeneous dense sand

deposit. Therefore, the p-yel functions describing the sand’s lateral resistance to

pile motion must be modified. In the present study, the upper layer of soft clay

is modelled by using the API functions for clay under cyclic loading (Matlock,

1970) without any modifications. Two methods are used to modify the sand’s

p-yel curves.

Method A: Georgiadis’ approach

The effective depth at which API functions for sand are computed from is mod-

ified by calculating an equivalent height (h2) above the interface depth H1 that

would provide a lateral capacity equivalent to the original overlying soil layer, as

recommended by Georgiadis (1983). Using z2 = H1 − h2 as the effective ground

line depth for API sand functions in Equations 2.3 to 2.4 ensures that the lateral

capacity above z = H1 is fully considered when deriving the spring functions below

the interface depth. This method is illustrated in Figure 5.9 and demonstrates the

lateral capacities of the pile-soil interaction which are defined by the areas within

the respective pu functions in Equations 2.8, 2.9, 2.4b and 2.4c. Equating the two

hatched areas defined by the failure criteria of sand and clay above the interface

depth H1, the appropriate effective depth h2 can be calculated.

Denoting the hatched area in Figure 5.9 as F1, the lateral capacity of the soft

clay can be expressed analytically as follows:

F1 =

∫ zr

0

pus,1dz +

∫ H1

zr

pud,1dz =

∫ h2

0

pu2dh (5.2)

where h2 is the effective depth of sand to be solved for. Note that the clay layer

below zr has constant ultimate lateral resistance proportional to the undrained

shear strength, as defined by Equation 2.9. It is also important to note that h2

varies depending on the failure function (either Equation 2.4b or 2.4c) for the

ultimate resistance of the sand, as shown in Figure 5.9a and 5.9b. As it was not

specified in Georgiadis (1983) which failure definition should be considered for the

given stratum, therefore both shallow and deep failure definitions are evaluated

for the underlying dense sand layer.
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Figure 5.9: Failure criteria for (a) shallow sand failure and (b) deep sand failure
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To determine the equivalent depth h2 above the sand layer (Figure 5.9), the

total force acting on the pile at the bottom of clay layer (the layer transition

depth H1) is to be determined first. Therefore, the transition depth zr at which

the wedge failure criteria changes to deep failure criteria in the soft clay layer is

to be determined. For the given experimental set up as desribed in Section 5.2;

substituting γ′ = 6.5 kNm−3, average cu = 11 kPa, pile diameter D = 0.666 m

and J = 0.5 (for soft clays), the transition depth zr is computed as 4.47 m, as per

Equation 2.7.

Substituting Equation 2.8 and 2.9 into Equation 5.2 for the clay layer, and

Equation 2.4b and 2.4c for either shallow failure of sands, respectively, gives:

∫ 4.47

0

(
3 +

γ′

Cu

z +
J

b
z

)
cuDdz +

∫ 9

4.47

9cuDdz =


∫ h2

0

(C1z + C2D)γ′zdz∫ h2

0

C3Dγ
′zdz

Parameters for the API sand equations can be found in equation 2.3. Solving

Equation 5.2 using the expression above gives h2 = 3.07 m for the shallow sand

failure criterion using Equation 2.4b, and h2 = 1.40 m for the deep failure criterion

using Equation 2.4c.

Method B: Adjusting the overburden pressure

In method B, the layering effect is considered by imposing the upper clay layer as

an overburden stress on the lower sand layer through a modification in Equations

2.4b and 2.4c such that the sand’s ultimate resistance increases (i.e. σ′
v2 = γ′2z2 +

γ′1H1) and the effective depth z2 of the lower layer springs is now measured from

the interface depth. This method will result in a lower bound value for the ultimate

resistance of the sand layer, as suggested by Georgiadis (1983).

5.3.3 Model assembly

The model is solved under both kinematic and inertial loading through non-

homogenous boundary conditions and a nodal point load, respectively. The mod-

ulus of subgrade reaction (Epy) for each spring element is computed as the secant

stiffness of the p-yel reaction curves (p/yel). The global stiffness matrix is pop-

ulated by computing the spring stiffness k = Epy∆L and Euler-Bernoulli beam

elements. The details on this process are available in Appendix A and Appendix

B.1. 60 clay spring elements and 30 sand spring elements are evenly spaced across
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H1 and H2, respectively. A sensitivity study showed that additional springs had

negligible influence on the global response of the pile.

5.4 Pseudostatic model performance

Each permutation of the centrifuge configuration described in Section 5.2 is com-

pared with equivalent pseudostatic models described in Section 5.3. The kinematic

response and the combined kinematic and inertial response are investigated.

5.4.1 Kinematic bending moments - single pile

Strain gauges distributed along the pile continuously measure the bending

moments during different base excitations for both the single and pile group in

the centrifuge experiments (end piles only, see Figure 5.2) for both flights. The

measured bending moments in the K flight are considered as the kinematic pile

bending moments. Bending at the pile tip is assumed to be zero for both the single

pile and end piles in the group for both flights and only the response measured by

one end pile in a group is used for the numerical comparison.

The bending moment profile is determined from the pseudostatic model using

Method A and Method B by considering no inertial load at the pile cap location.

Figure 5.10 shows the comparison of peak bending moment profiles from centrifuge

data and the pseudostatic model for the single pile.

Method A (Shallow failure) Method A (Deep failure) Method BExperimental data

Maximum bending moment (MNm)

Figure 5.10: Comparison of kinematic pile bending moments obtained from cen-
trifuge experiment and numerical study for a single pile

In Figure 5.10b and 5.10d, there are discontinuities in the bending moment

profile generated from the experimental data. This is indicative of the maximum

181



moments occurring at different points in time during the centrifuge tests, which is

a principle assumption made in the pseudostatic methodology (Abghari & Chai,

1995; Tabesh & Poulos, 2001). Experimental results suggest that the maximum

moment occurs at the interface of the layered soils. This is also evident in the

numerical analysis, albeit the numerical model underestimates the peak moment

of the single pile for each base excitation. All tests suggest that the numerical

studies based on Method B underestimate the bending moment more than Method

A, and the deep failure criteria of Method A gives a larger bending moment. This

is expected, as the ultimate capacity of the sand spring will be greater for the deep

failure definition, leading to a larger stiffness contrast between soil layers and a

large moment at the interface. Figure 5.10d shows that BE4 experiences the largest

peak bending moment during the K flight centrifuge test, which demonstrated to

have the largest peak accelerations for single piles in Figure 5.7.

5.4.2 Kinematic pile bending moments - group pile

Figure 5.11 shows the bending moment profiles of the numerical models and the

centrifuge experiments for the pile group. Pile group effects are simulated in the

numerical model by applying a rotational fixity at the pile cap. No p-multipliers

were used for pile groups as group effects are usually neglected for the kinematic

loads (Fan et al., 1991; Nikolaou et al., 2001).

Method A (Shallow failure)Experimental data Method A (Deep failure) Method B

Maximum bending moment (MNm)

Figure 5.11: Comparison of kinematic pile bending moments obtained from cen-
trifuge experiment and numerical study for group piles (p-multiplier = 1.0)

Again, the maximum moment occurs near the interface of the layered soils, and

the numerical analysis underestimates the bending moment profile, especially for

the larger intensity base excitations. This indicates that the earthquake intensity

critically governs the accuracy of the pseudostatic results when considering kine-
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matic loads. When a pile cap rotational constraint is considered, the difference

between Method A and Method B is negligible for larger intensity earthquakes.

Notably, the rotation fixity results in a significant bending moment at the ground

line, which is near zero for single piles due to the free head boundary condition.

Figure 5.11 suggests that the pseudostatic model can predict the magnitude of the

bending moment at the ground line for the pile group. Regardless, the local max-

imum bending moment at the interface of the layered soils is still underestimated

for all base excitations.

It is clear from Figures 5.10 and 5.11 that the pseudostatic method highly un-

derestimates the kinematic pile bending moments for both the single pile and pile

group and the difference increases with the intensity of the excitation. This is to be

expected as the adopted code-based p-y curves are not developed for seismic kine-

matic loads. For evaluating pile bending under seismic kinematic loads, several

simplified procedures and analytical solutions have been proposed in the litera-

ture. Margason and Halloway (1977) assumed that the pile foundation follows

the surrounding soil motion during earthquakes and evaluated the pile bending

response based on the free-field soil curvatures using the finite-difference method.

Despite its simplicity, the Margason and Halloway (1977) method showed satisfac-

tory performance in predicting the pile head moment in homogeneous or two-layer

soils with the soil interface at deeper depths (Di Laora et al., 2013; Sanctis et al.,

2010). Nevertheless, the Margason and Halloway (1977) method is not useful for

a layered soil profile with sharp stiffness contrast between the layers. In this case,

Di Laora and Rovithis (2015), Di Laora et al. (2012), Dobry and O’Rourke (1983),

Mylonakis (2001b), Nikolaou et al. (1995), and Nikolaou et al. (2001), among oth-

ers, have proposed closed-form solutions for evaluating the peak bending moment

experienced along the pile based on beam on Winkler foundation or finite element

analyses. Garala et al. (2020) evaluated the accuracy of these analytical and nu-

merical solutions by comparing with experimental centrifuge data, and revealed

that only a few methods in the literature can reasonably estimate the peak bend-

ing moment. The importance of considering soil nonlinearity effects and accurate

shear strains at the interface of soil layers for a reliable assessment of the kinematic

pile bending moment from the methods in existing literature is also highlighted in

Garala et al. (2020).

5.4.3 Kinematic and inertial bending moments - single pile

The inertial force acting at the pile head can be computed by determining a

representative acceleration in two different ways: (i) by considering the maximum
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soil surface acceleration from the centrifuge experiments, and (ii) by considering

the peak spectral acceleration. In the case of liquefiable soils, Abghari and Chai

(1995) found that considering the spectral acceleration for the inertial force re-

sulted in the overestimation of pile response. On the other hand, Tabesh and

Poulos (2001) recommended to consider either peak ground acceleration or peak

spectral acceleration depending on the relevance between the dominant period of

the pile-cap-soil system and the frequency content of the surface motion. Ac-

cording to Tabesh and Poulos (2001), the former may be approximated by the

expression T = 2π
√
Mcap/Kx, where Kx is the lateral head stiffness of the pile.

However, the above expression involving a crude approximation of reducing the

mass of the supporting structure to a pile-cap mass should be used with caution as

any eccentricity of the superstructure mass may have an important effect on the

response. In this regard, the above authors suggested that for the case of relatively

small pile-cap masses, the natural frequency of pile-cap-soil system may not be

within the dominant frequencies of the ground surface motion, denoting negligible

inertial effects. For such cases, the free-field soil motion governs pile behaviour,

and the pseudostatic analysis can be performed by considering the peak ground

acceleration at soil surface. For larger pile-cap masses that can have dominant

frequencies close to the dominant frequencies of surface motion, inertial effects

may be significant. Under these circumstances, Tabesh and Poulos (2001) recom-

mended to consider the peak spectral acceleration rather than the maximum soil

surface acceleration as considering peak spectral acceleration can yield a conser-

vative result. The recommendations of Tabesh and Poulos (2001) suggest that

the ground natural frequency and that of the pile cap-structure govern whether

kinematic or inertial loads dominate.

The studies of Adachi et al. (2004) and Tokimatsu et al. (2005) also recommend

that whether kinematic and inertial loads dominate is a function of the relevance

between the natural frequencies of the soil and the pile-supported superstructure.

However, Garala and Madabhushi (2020) concluded that whether kinematic or

inertial loads dominate pile response is independent of the natural frequency of

the soil and the phase relationship between the kinematic and inertial loads follows

the conventional force-displacement phase variation for a viscously damped simple

oscillator excited by a harmonic force.

In this study, to keep the analysis simple, the kinematic and inertial loads

are assumed to act together on the pile foundations, indicating in-phase loading

conditions. Further, due to the uncertainty in choosing the peak soil surface

acceleration or the peak spectral acceleration for computing the inertial force in

pseudostatic analysis, both are considered in this study and the difference between
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the two is evaluated by comparing the results with centrifuge data.

First, the maximum soil surface acceleration from centrifuge experiments is

considered to compute the pseudostatic inertial force. Figure 5.12 shows the com-

parison of centrifuge data and the pseudostatic model for the single pile.

Method B (K+I)

Method B (I)Method A (Deep failure)
Experimental data

Method A (Shallow failure)

Maximum bending moment (MNm)

Figure 5.12: Comparison of pile bending moments obtained from centrifuge ex-
periment and numerical study for single pile

Note that the bending moment profiles produced by the pseudostatic model

for K+I and I are similar. This is indicative of the negligible kinematic forces

when the bending moment profile is estimated, and suggests that the effects of

poor kinematic bending moment profiles presented in Section 5.4.1 are minimised

in K+I analyses. To add, according to Figure 5.12, the pseudostatic analysis still

underestimates the peak bending moment during all base excitations when peak

ground accelerations is used to inform the inertial load due to the pile cap for single

piles. However, BE4 and BE5 demonstrates a close prediction in the peak bending

moment. It was highlighted in Section 5.2 that there was a marked phase difference

between the kinematic and inertial loads during the single pile tests for BE4 and

BE5, which would lead to vibrations with smaller acceleration amplitudes and

lower bending moments. Considering that BE4 and BE5 are regarded as intense

excitations, it is likely that this phase difference resulted in lower bending moments

in the experimental data evident in Figure 5.12d and 5.12e, and therefore a closer

match between the numerical and experimental results. The pseudostatic model

assumes in-phase loading conditions, therefore the peak bending moments would

be overestimated for BE4 and BE5. It can therefore be deduced that the kinematic

forces are poorly represented in the pseudostatic model for all base excitations,

and is likely the cause for the contrasting peak bending moments.

The maximum bending moment profile estimated using Method A and Method

B for layering effects is also shown in Figure 5.12. Results suggest that there is
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no significant difference in peak bending moment predicted by considering either

the top-layer as overburden or an equivalent depth for the bottom layer, following

Georgiadis (1983) procedure with shallow or deep failure criteria to account for

soil-layering effects. Notably, Figure 5.12c and Figure 5.12d show the bending

moment profiles differ in the lower sand layer due to the different failure crite-

ria and strength definitions used across Method A and Method B. However, the

difference in peak bending moment between Method A and Method B is still neg-

ligible. It should be noted that this might be valid only for the case of soils with

significant stiffness contrast between the layers. Additionally, The pseudostatic

model estimates the depth of the peak bending moment close to the transition

depth between the two soil layers, whereas the centrifuge tests suggest that the

peak bending moment occurs somewhere higher in the clay layer. This may be

due to a poor representation of the stiffness and dynamic properties of the API

soil reaction curves.

5.4.4 Kinematic and inertial bending moments - group pile

For the case of the pile group, the reduced stiffness and ultimate capacity is

accounted for through p-multipliers, as discussed earlier and in Section 2.1.2. Table

2.6 shows the p-multipliers proposed by various researchers for pile groups under

non-dynamic lateral loads in sands and clays. As a single row pile group is tested

in the centrifuge experiments, an average conservative value of the p-multiplier

of 0.7 is considered for both the clay and sand layers from Table 2.6, given that

p-multipliers depend primarily on pile spacing rather than soil layering (Castelli et

al., 2010). More details on the application of p-multipliers in beam-spring models

in general can be found in Section 2.1.2.

Figure 5.13 shows the comparison of maximum pile bending moments moments

computed from pseudostatic analysis and centrifuge data for a p-multiplier of 0.7.

A rotational fixity is applied at the pile cap in the numerical model.
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Maximum bending moment (MNm)

Method B (K+I)

Method B (I)Method A (Deep failure)
Experimental data

Method A (Shallow failure)

Figure 5.13: Comparison of pile bending moments obtained from centrifuge ex-
periment and numerical study for a pile in pile group with p-multiplier = 0.7

It is clear from Figure 5.13 that the pseudostatic analysis can better predict the

shape of the bending moment profile of group piles for all base excitations com-

pared to the single pile analysis, regardless of the p-multiplier. The locations of

the sigfinicant bending moments along the pile are also in close agreement between

the numerical model and experimental data. In contrast to the single pile tests,

the experimental data demonstrates a significant moment at the ground line due

to the pile cap. The rotational constraint in the numerical analysis successfully

models the pile group cap fixity, and the bending moments are in close agreement.

However, the bending moment at the layer interface is still underestimated, which

is indicative of the API reaction curves not capturing the pile-soil interection ef-

fectively under seismic conditions. The poor representation of kinematic forces

evident in Figures 5.10 and 5.11 may also be a contributing factor to the under-

estimation of the peak bending moment. Similar to the single pile case in Figure

5.12, the influence of kinematic forces on the peak bending moment are negligible.

The kinematic loads for the stronger base excitations, namely BE3 to BE5, are

likely to have a significant effect on the bending moment profile, which could be

the reason for the closer match between the numerical and experimental results

for BE1 and BE2 when compared to BE4 and BE5.

In general, Method A predicted the peak bending moments at the interface of

layered soils slightly better than Method B. This indicates that soil layering effects

can be considered either by equivalent depth approach or just by considering the

top layer as overburden on the bottom layer for the case of soil strata with signif-

icant stiffness contrast for the fixed-head pile group. Nevertheless, this approach

cannot predict the peak bending moments at the interface of layered soils to an

acceptable level.
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5.4.5 Inertial force from spectral accelerations

To further investigate the suitability of the pseudostatic approach, peak spec-

tral accelerations are used to compute the inertial forces for each base excitation.

Spectral acceleration, by definition, is the maximum acceleration that a ground

motion will cause in a linear oscillator with a specified natural period and damp-

ing ratio. The measured ground accelerations from the centrifuge for each base

excitation are used in a time-domain simulation to compute the frequency content

of the response. The Newmark-β time marching algorithm (Section 4.1.2) is used

to solve the response of a single degree of freedom system for a damping ratio that

is to be specified.

Although the geometric calibration space for the API sand and clay models are

appropriate for the piles in this study, the loading conditions are not. This means

that the reaction curves are not suitable for soils subjected to seismic excitation,

especially when considering the kinematic effects. To remedy this, an arbitrarily

large damping ratio of 20% is considered when computing the spectral accelera-

tions for deriving the inertial force. This is an attempt to implicitly consider the

dissipative properties of the extremely soft clay layer relative to the underlying

dense sand layer. Figure 5.14 shows the frequency content for a linear single de-

gree of freedom oscillator with 20% damping driven by the ground acceleration for

each base excitation. The peak acceleration for each base excitation from Figure

5.14 is then used to calculate the inertial load of the pseudostatic methodology.

20% Damping

Figure 5.14: acceleration frequency content of the oscillators determined from soil
surface accelerations of each base excitation with 20% damping

Figure 5.15 shows the maximum bending moment profiles from centrifuge ex-
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periments and numerical models for single piles under kinematic and inertial load-

ing, where the inertial forces are computed from peak spectral accelerations at

20% damping. Only Method A with shallow failure criteria and Method B with

both kinematic and inertial loads are considered in this spectral acceleration in-

vestigation.

Method A (Shallow failure) Method BExperimental data

Maximum bending moment (MNm)

Figure 5.15: Comparison of pile bending moments obtained from centrifuge ex-
periment and numerical analysis for single pile from spectral accelerations with
20% damping (Kinematic + Inertial loads)

Figure 5.15 shows that the pseudostatic model resulted in an improved es-

timation in the magnitude of peak bending moments, except for BE4. This is

again likely due to the in-phase assumption implicit with the pseudostatic method,

whereas the experimental data suggests a phase difference between the kinematic

and inertial loads that would limit acceleration amplitudes and reduce anticipated

bending moments. The estimated location of the peak bending moment is still

inadequate.

For group piles, the peak bending moments are compared between the numer-

ical model and the centrifuge experiments for the pile group with p-multipliers of

0.7 and 1 (no group modifications) in Figure 5.16.
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Method B (p-multiplier = 1)

Method B (p-multiplier =0.7)Method A (Shallow, p=0.7)
Experimental data

Method A (Shallow, p=1)

Maximum bending moment (MNm)

Figure 5.16: Comparison of pile bending moments obtained from centrifuge ex-
periment and numerical analysis for pile group from spectral accelerations with
20% damping (Kinematic + Inertial loads)

Recall that Figure 5.13 demonstrated that considering the peak ground accel-

eration for computing the pseudostatic inertial force can result in an acceptable

peak pile bending response for certain excitations (BE1 to BE3), and the gen-

eral bending moment profile shape was captured adequately. Figure 5.16 suggests

that a spectral acceleration derived with 20% damping can result in an improved

estimation for all base excitations, in particular near the soil layer interface. How-

ever, it merits mentioning that the inadequate representation of kinematic loads

in the pseudostatic model remains unadressed, as the evident improvement in the

peak bending moment estimation will be a product of the alternative inertial force

computation via spectral accelerations. In other words, the inertial load derived

from the spectral accelerations at 20% damping is compensating for the poor

kinematic bending moment estimations. Regardless, a clear improvement in the

general bending moment profile for the group piles is observed. Additionally, Fig-

ure 5.16 indicates that p-multiplier of 0.7 is necessary to improve bending moment

estimation for group piles.

5.5 Conclusions

The efficacy of pseudostatic approach for the seismic analysis of pile foundations

in layered soils is discussed in this study by comparing the performance of pseudo-

static models with centrifuge records. The latter was obtained by the University

of Cambridge (Garala, 2020) using centrifuge tests on a single pile and a 1 x 3

row pile group at 60g to evaluate the pile bending moments due to kinematic

and inertial loads. The soil profile consists of a soft clay layer underlain by dense

sand. A finite element model for pseudostatic analysis was developed that con-
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sists of a series of linear-elastic Euler-Bernoulli beam elements and nonlinear p-y

spring elements at discrete points taking the form of a beam-spring model. In

this study, p-y relationships recommended by the American Petroleum Institute

(API, 2014) for the laterally loaded piles (monotonically or cyclically) were used

for the clay and sand layer. The pseudostatic model considers both kinematic

and inertial loads by considering peak free-field soil displacements and maximum

inertial loads at the pile head, respectively. The effect of soil layering on p-yel

relationships was accounted for by considering the concept of equivalent depths

proposed by Georgiadis (1983) and by considering the top layer as an overburden

on the bottom layer. Pile group effects in soil-pile interaction were accounted for

by reducing the stiffness and ultimate capacity of the pile group using the concept

of p-multipliers. The following are the observations were made:

� The API p-y relationships were not able to capture the kinematic pile bend-

ing moments at the interface of the examined layered soil profile for both

single and group piles. These p-y curves refer to piles in homogeneous soils

subjected to monotonic or cyclic loads, and were not derived for seismic con-

ditions. In this regard, the numerical model critically under-predicted the

kinematic pile bending moments, which was observed to exacerbate with

increasing base excitation intensity.

� The peak bending moments computed for combined kinematic and inertial

loads from pseudostatic analysis using peak ground accelerations at the soil

surface may be under-predicted for a free-headed single pile if the kinematic

and inertial loads are in-phase. The location of the peak bending moment

is represented inadequately in the numerical model, which is likely due to

a higher stiffness contrast implicit with the API reaction curve definitions

compared to the soil in the centrifuge tests.

� It was observed that the pseudostatic model failed to capture the actual pile

bending moments at the interface of layered soils when the inertial force was

derived from peak ground acceleration at the soil surface for both single and

group piles. However, the general shape of the bending moment profile of

the group piles was captured adequately.

� An arbitrarily high damping ratio of 20% was used to derive the inertial

force via spectral accelerations due to the soft clay layer. In general, the

performance of the pseudostatic model improved as a consequence. For sin-

gle piles, the magnitude of the peak bending moment was estimated well

when the kinematic and inertial loads were in phase, however the calculated
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depth was insufficient. For group piles, all base excitation response estima-

tions were improved, likely due to the in-phase conditions for all group pile

centrifuge tests. However, the poor representation of kinematic loads in the

pseudostatic model remains unaddressed.

� There is a negligible difference in the peak bending moment values estimated

in the numerical model when using Method A or Method B. However, This is

likely only a valid conclusion for soil layers with significant stiffness contrasts.

� Using a p-multiplier of 0.7 for the pile group improves the bending moment

estimation for the group piles. The rotational constraint in the numerical

model is suitable, and the shape of the bending moment profiles are captured

well as a consequence.

Overall, this chapter reviews the efficacy of the API p-y curves when establish-

ing the largest moment experienced during base excitations via the pseudostatic

methodology. An attempt was made to correct the issues associated with the cali-

bration space of the reaction curves by modifying the inertial force to encapsulate

the dissipative properties using the spectral acceleration approach. The results

suggest that, if the base excitation causes in-phase kinematic and inertial con-

ditions, this modification can sufficiently estimate the peak bending moment for

both the single and pile groups in layered soils, albeit with a poor representation of

the kinematic loads. The location of the peak bending moment for single piles is,

however, still poorly captured. These findings may be limited to the specific soil

profile and pile geometry considered in this study, and further research is required

to validate conclusions.

The soil layering effects can be imposed on the p-y curves by implementing

the Georgiadis (1983) modifications or by treating the top layer as an over-burden

on bottom layer (for soil profiles similar to the one discussed in this article).

Nevertheless, both theories account for the effect of overlying layers on the lower

layers but not vice-versa. Relevant studies based on finite element simulations

(e.g., Yang and Jeremić (2005)) have demonstrated that layering effects can act in

two directions, namely that upper layers can also be affected by the properties of

lower layers. This aspect of soil layering effects is not considered in the equivalent

depth approach proposed by Georgiadis (1983) or where the top layer is treated

as an overburden on the bottom layer. Furthermore, it should be mentioned that

the seismic response of pile foundations is governed by lateral motions and axial

stresses induced by rocking of the single pile, or group, on piles of a pile group.

Lateral motion in only one direction is considered in this analysis, and the more
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realistic seismic pile behaviour can be captured by modelling both lateral motion

and rocking together.

It is of interest to invsetigate alternative p-y curves that are well established

in design codes and literature (Byrne et al., 2017; Jeanjean, 2009; Li et al., 2014;

Suryasentana & Lehane, 2016), which may be more appropriate for pseudostatic

analysis in layered soil deposits. However, these models only consider soil stiff-

ness and do not account for the dynamic response of the soil-structure system.

Advanced analysis in the time domain can be performed by incorporating dash-

pots and hysteretic spring elements to capture the dynamic response of the soil-

structure system more appropriately. This is a topic for future research, which

could be used to validate the results of the pseudostatic model.
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Chapter 6

Conclusions

Each chapter in this thesis focuses on pile models for different types of lateral

loading configurations. Specifically, Chapters 3 and 4 investigate the application of

one-dimensional beam-spring models to capture the static and dynamic responses

of monopiles, respectively. In Chapter 5, the pseudostatic method is examined

across a range of pile-soil configurations for seismic loading. Each chapter provides

individual conclusions. This chapter serves to summarise the key findings of the

thesis and present recommendations for future work.

6.1 Summary

The literature review in Chapter 2 outlined the analysis and design of piles for

the various forms of lateral loading. More importantly, this chapter highlighted

how traditional methodologies have evolved as a means to keep up with the rapid

growth of the offshore wind industry in recent decades. For example, Larger

turbines have lead to larger foundations and more dynamically sensitive sys-

tems, ultimately leading to a more complex soil-structure interaction. Low L/D

monopiles have an increased rigidity which introduces resistance mechanisms tra-

ditional methodologies cannot account for. This has necessitated novel approaches

to encapsulate additional soil-structure mechanisms from detailed ground inves-

tigations. Additionally, because of the increased dynamic sensitivity of modern

OWT-monopile systems, the design process necessitates time-domain simulations

that enable nonlinear solvers to leverage efficient algorithms to maximise computa-

tional spend. Such models should be qualified to facilitate geotechnical phenomena

expected when the elastic range of soil is exceeded, such as gapping and ratcheting.

Chapter 2 reviewed a variety of hysteresis models which can be used to capture

these effects, and the importance of time-domain analysis for capturing dynamic
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soil-structure interaction was highlighted. The literature review therefore raised

the following research questions: (i) Is it possible to inform a multi-spring-beam

model utilising only in-situ ground investigation data to streamline the preliminary

design process of OWT monopiles? (ii) Can an efficient solver for the dynamic

nonlinear response of monopiles under irregular cyclic loading be developed with-

out compromising accuracy? (iii) Can the static nonlinear beam-spring model

idealise pile-soil interaction for complex loading configurations?

These questions are answered by building upon the traditional p-y method

within each chapter. Chapter 3 details the development and performance of a

CPT-based multi-spring model. CPTs are often an early stage of ground investi-

gation in the offshore environment, which would therefore serve as a strong basis

for a preliminary design methodology. Given the inherent heterogeneity of offshore

soil profiles, the utilisation of CPT data to inform the soil reaction curves, which

account for the presence of diameter effects, becomes particularly advantageous.

The model is compared with field test reports of numerous open-ended circular

steel piles in sand exposed to a monotonic lateral load at the pile head. The results

show that the model can capture the response of the pile within 0.01D ground line

deflections, which is equivalent to 0.25° rotation at the ground line. This is the

rotation limit during operation for OWTs defined by the SLS design philosophy.

Identifying a suitable correlation between the residual bearing stress and the CPT

end resistance improved estimations for larger deflections. However, it has proven

difficult to identify a suitable correlation for qb,res and qc,r.

The random nature of wind and wave loads necessitate a time-domain approach

to modelling the hysteretic behaviour of pile-soil interaction on a cycle-by-cycle ba-

sis. Chapter 4 details the development of a dynamic p-y framework that estimates

pile deflections due to irregular load histories, where robustness and efficiency are

of high priority. This is crucial, as it is common practice to simulate many force

time series that are derived from different wind/wave loading configurations as

a part of the design process for OWT foundations. This approach not only en-

capsulates the largest source of energy loss in the system (material damping due

to medium to large soil strains), but can also facilitate more advanced geotech-

nical behaviour such as ratcheting and gap formation. A controlled simulation

demonstrated that the Masing and Bouc-Wen hysteresis models exhibit erroneous

drifting behaviour due to their dependency on velocity signage, underlining the

importance of this qualitative numerical study. It was shown that the Iwan model

is the most suitable hysteresis model for dynamic p-y models, as it was the least

sensitive to the loading configuration applied and the TMA used. A random wind

and wave load history was generated from frequency spectra established from de-
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sign codes, and applied to an OWT system appended on top of the dynamic p-y

model. The Iwan hysteresis and Generalised-α numerical integration algorithm

were employed to solve the nonlinear system. It was shown that high frequency

modes have a negligible influence on the highly nonlinear response, therefore the

Newmark-β TMA can be used. However, the Generalised-α method with ρ∞ = 0.6

is recommended for large ∆t values as it is good practice to dissipate the erroneous

modal frequencies.

Chapter 5 investigated the pseudostatic approach for general pile design for

a variety of different pile-soil configurations exposed to seismic loading. Design

codes offer limited guidance for seismic design of pile foundations under such con-

ditions, especially when determining the required moment capacity of a pile due

to earthquake excitations. Therefore, the purpose of this study was to examine

the effectiveness of the pseudostatic p-y method , a static beam-spring model with

idealised seismic loads, when informed using the API soil reaction definitions for

layered soils. Single and group piles in two-layer soil deposits were modelled in a

60g geotechnical centrifuged performed at the University of Cambridge, and were

used to evaluate the estimated bending moment from the pseudostatic model. It

was found that, for dense sand under soft clay, the pseudostatic model was able

to estimate the peak bending moment for single and group piles if the kinematic

and inertial forces are in-phase, and the inertial force is informed by the peak

spectral acceleration. Crucially, the spectral acceleration was determined using

a sufficiently high damping ratio, which was deemed appropraite due to the ex-

pected dissipative properties of the top loose clay layer. The location of the peak

bending moment for single piles was poorly estimated, which may be due to the

innappropriate use of monotonically-derived p-y curves or inadequate represen-

tation of kinematic forces, or a combination of both. For low-intensity seismic

events, the pseudostatic analysis with inertial pile head loading from peak ground

acceleration works well. However, for high-intensity earthquakes, using peak spec-

tral acceleration and damping considerations in the pseudostatic model is more

accurate for single piles but conservative for pile groups, compared to centrifuge

data.

6.2 Future work

In light of the findings and insights from the preceding chapters, several avenues

for future work become evident. The following areas warrant further exploration

and refinement:
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� Enhanced CPT-based multi-spring model: The CPT-based multi-

spring model can be improved with more consideration for ULS. The p-y

relationship contributes the most to lateral resistance, however the current

methodology is not suitable for capacity estimation for low L/D monopiles.

The underlying assumptions in the distributedm-θ and base springs can also

be improved to account for potential gap formation at large displacements.

� Improved soil reaction curve definition for dynamic p-y model: A

robust and efficient hysteresis MDOF framework has been established, how-

ever the API sand model used to describe the backbone function in Chapter 4

is not appropriate for low L/D monopiles. A quantitative study was there-

fore not sensible. Furthermore, the anticipated load rate under dynamic

conditions suggests that p-y functions derived by monotonic calibration pro-

cedures may not be appropriate for informing hysteresis models. A p-y curve

derived specifically for the expected loading rates (0.1 Hz) and the appro-

priate monopile dimensions is therefore an area for further investigation.

� Advanced degrading Iwan model: It is possible to modify the Iwan hys-

teresis model to capture hysteresis shapes that resemble common geotech-

nical behaviour in OWT monopiles. Section 2.2 reviewed cyclic contour

diagrams, which are commonly used to estimate the cyclic degradation of

offshore substructures based on site investigations and soil sample testing.

This includes the accumulated pore pressures and plastic strains from re-

peated cyclic loading. It is postulated here that the hysteresis parameters

that control a hypothetical gapping, ratcheting or pore pressure accumula-

tion model may be informed from cyclic contour diagrams, which is an area

for further investigation. However, a suitable backbone curve that encapsu-

lates the diameter effects and load rate needs to be established first.

� Multi-spring dynamic p-y model: A natural progression for static multi-

spring model derived in Chapter 3 is utilise the framework in a dynamic

context. However, the cyclic behaviour of the distributed m-θ and pile base

springs is not well understood, and warrants further investigation. Explicitly

modelling individual soil reaction mechanisms for low L/D monopiles may

be more appropriate for capturing the dynamic nonlinear response under

irregular cyclic loading, rather than utilising a hysteretic p-y-only model

that captures the diameter effects within its parametrisation space.

� Alternative p-y curves for the pseudostatic model: In Chapter 5, the

pseudostatic method was examined using API sand and API clay soil ele-

ments. As they are well established for piles in design, this chapter reviewed
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their efficacy in the context modelling the response of seismic excitations. It

is worth noting that CPT-based p-y methods for sand and clay profiles are

typically calibrated for piles with dimensions resembling those of the scaled

pile tests performed in the geotechnical centrifuge experiments discussed in

this study. Future work in this area may involve investigating the application

of CPT-based functions, or others, in the context of pseudostatic analysis of

single or group piles in layered soils exposed to seismic loading.

� Cross-comparison between pseudostatic and time-domain earth-

quake models: The base excitations used in Chapter 5 can be used to in-

form a time-domain model similar to the one developed in Chapter 4. This

would allow for a direct comparison between the two methodologies, and

provide insight into the limitations of the pseudostatic model. The dynamic

p-y model would require modifications to account for the the high-frequency

loads expected from seismic events, including moving boundary conditions

to emulate the kinematic forces.
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a dense marine sand at Dunkirk. Géotechnique, 70 (11), 1014–1029. https:

//doi.org/10.1680/jgeot.18.PISA.006

Taciroglu, E., Rha, C., & Wallace, J. W. (2006). A Robust Macroelement Model

for Soil–Pile Interaction under Cyclic Loads. Journal of Geotechnical and

Geoenvironmental Engineering, 132 (10), 1304–1314. https://doi.org/10.

1061/(ASCE)1090-0241(2006)132:10(1304)

220

https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(646)
https://doi.org/10.1061/(ASCE)0733-9410(1986)112:6(646)
https://doi.org/10.1016/j.soildyn.2020.106153
https://doi.org/10.3208/sandf.47.253
https://doi.org/10.3208/sandf.47.253
https://doi.org/10.1002/nag.313
https://doi.org/10.1680/geot.13.P.026
https://doi.org/10.1680/geot.13.P.026
https://doi.org/10.1680/jgeot.14.P.156
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(757)
https://doi.org/10.1061/(ASCE)1090-0241(2001)127:9(757)
https://doi.org/10.1680/jgeot.18.PISA.006
https://doi.org/10.1680/jgeot.18.PISA.006
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1304)
https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1304)


Tarp-Johansen, N. J., Andersen, L. V., Christensen, E. D., Mørch, C., Kallesøe,

B., & Frandsen, S. (2009). Comparing Sources of Damping of Cross-Wind

Motion. Proceedings of European Offshore Wind 2009 : Conference & Ex-

hibition, 1–10.

Tedesco, J. W. (1999). Structural dynamics : Theory and applications (W. G.

McDougal & C. A. Ross, Eds.). Addison Wesley Longman.

Terzaghi, K. (1955). Evalution of Conefficients of Subgrade Reaction.Géotechnique,

5 (4), 297–326. https://doi.org/10.1680/geot.1955.5.4.297

Thieken, K., Achmus, M., Lemke, K., & Terceros, M. (2015). Evaluation of p-y

Approaches for Large-Diameter Monopiles in Sand. International Journal

of Offshore and Polar Engineering, 25 (2), 134–144. https://doi.org/10.

17736/ijope.2015.cg09

Ting, J. M. (1987). Full-Scale Cyclic Dynamic Lateral Pile Responses. Journal of

Geotechnical Engineering, 113 (1), 30–45. https://doi.org/10.1061/(ASCE)

0733-9410(1987)113:1(30)

Tokimatsu, K., Suzuki, H., & Sato, M. (2005). Effects of inertial and kinematic

interaction on seismic behavior of pile with embedded foundation. Soil Dy-

namics and Earthquake Engineering, 25 (7-10), 753–762. https://doi.org/

10.1016/j.soildyn.2004.11.018

Tolooiyan, A., & Gavin, K. (2011). Modelling the Cone Penetration Test in sand

using Cavity Expansion and Arbitrary Lagrangian Eulerian Finite Element

Methods. Computers and Geotechnics, 38 (4), 482–490. https://doi.org/10.

1016/j.compgeo.2011.02.012

Tott-Buswell, J., Garala, T., Prendergast, L., Madabhushi, S., & Rovithis, E.

(2022). Seismic response of piles in layered soils: Performance of pseudo-

static Winkler models against centrifuge data. Soil Dynamics and Earth-

quake Engineering, 153, 107110. https://doi.org/10.1016/j.soildyn.2021.

107110

Tsaparli, V., Kontoe, S., Taborda, D. M., & Potts, D. M. (2017). The importance

of accurate time-integration in the numerical modelling of P-wave propa-

gation. Computers and Geotechnics, 86, 203–208. https://doi.org/10.1016/

j.compgeo.2017.01.017

Ueng, T.-S., & Chen, J.-C. (1992). Computational procedures for determining

parameters in Ramberg-Osgood elastoplastic model based on modulus and

damping versus strain (UCRL-ID-111487). Lawrence Livermore National

Lab. (LLNL), Livermore, CA (United States). https://doi.org/10.2172/

6496483

Paris Agreement to the United Nations Framework Convention on Climate Change

(2015, December 12).

221

https://doi.org/10.1680/geot.1955.5.4.297
https://doi.org/10.17736/ijope.2015.cg09
https://doi.org/10.17736/ijope.2015.cg09
https://doi.org/10.1061/(ASCE)0733-9410(1987)113:1(30)
https://doi.org/10.1061/(ASCE)0733-9410(1987)113:1(30)
https://doi.org/10.1016/j.soildyn.2004.11.018
https://doi.org/10.1016/j.soildyn.2004.11.018
https://doi.org/10.1016/j.compgeo.2011.02.012
https://doi.org/10.1016/j.compgeo.2011.02.012
https://doi.org/10.1016/j.soildyn.2021.107110
https://doi.org/10.1016/j.soildyn.2021.107110
https://doi.org/10.1016/j.compgeo.2017.01.017
https://doi.org/10.1016/j.compgeo.2017.01.017
https://doi.org/10.2172/6496483
https://doi.org/10.2172/6496483


Vaiana, N., Sessa, S., Marmo, F., & Rosati, L. (2019). Nonlinear dynamic analysis

of hysteretic mechanical systems by combining a novel rate-independent

model and an explicit time integration method. Nonlinear Dynamics, 98 (4),

2879–2901. https://doi.org/10.1007/s11071-019-05022-5

Van Impe, W. F., & Wang, S.-T. (2020). The advanced p-y method for analyzing

the behaviour of large-diameter monopiles supporting offshore wind tur-

bines (J. McCartney & I. Tomac, Eds.). E3S Web of Conferences, 205,

12008. https://doi.org/10.1051/e3sconf/202020512008

Vesic, A. (1961). Bending of beams resting on isotropic elastic solid. Journal of

Soil Mechanics and Foundation Engineering, 87, 35–53.

Viggiani, G., & Atkinson, J. H. (1995). Stiffness of fine-grained soil at very small

strains. Geotechnique, 45 (2), 249–265. https://doi.org/10.1680/geot.1995.

45.2.249

Vucetic, M. (1990). Normalized behavior of clay under irregular cyclic loading.

Canadian Geotechnical Journal, 27 (1), 29–46. https://doi.org/10.1139/

t90-004

Vucetic, M., & Dobry, R. (1988). Degradation of Marine Clays under Cyclic Load-

ing. Journal of Geotechnical Engineering, 114 (2), 133–149. https://doi .

org/10.1061/(ASCE)0733-9410(1988)114:2(133)

Vucetic, M., & Dobry, R. (1991). Effect of Soil Plasticity on Cyclic Response.

Journal of Geotechnical Engineering, 117 (1), 89–107. https://doi.org/10.

1061/(ASCE)0733-9410(1991)117:1(89)

Wang, H., Lehane, B., Bransby, M., Askarinejad, A., Wang, L., & Hong, Y.

(2022a). A simple rotational spring model for laterally loaded rigid piles in

sand. Marine Structures, 84, 103225. https://doi.org/10.1016/j.marstruc.

2022.103225
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Appendix A

Model assembly

This appendix describes the model assembly process, including element descrip-

tion, global matrix population, and boundary conditions. The dynamic multi-

degree of freedom model also requires the global mass matrix, which is defined

using the same population methodology. All simulations are performed using

MATLAB R2019a - R2023a.

A.1 Degrees of freedom and populating elements

The p-y model consists of elastic beam elements to encapsulate the lateral flex-

ibility of the pile, and nonlinear spring elements to represent the soil-structure

interaction. This is illustrated in Figure A.1. Figure A.2 shows the Degrees Of

Freedom (DOF) for the beam and spring elements used in this study. The beam

element has a rotational and lateral DOF at each end, therefore axial forces are

neglected in this type of model. Each end of the beam element is attached to a

lateral and spring element shown in Figures A.2b and A.2c, respectively. Each

spring type has 2 DOF. Figure A.1 shows that one end of each spring is fixed,

which is considered as the boundary condition of the model.
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Figure A.1: Modified p-y model DOF configuration

(a) Beam element DOFs

(b) Lateral spring element DOFs

(c) Rotational spring
element DOFs

Figure A.2: Element DOFs for beam and spring elements

The elements are connected as shown in Figure A.2 to create the full Winkler

model. Nb number of 4 by 4 beam elements are connected end-to-end vertically
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at ∆L lengths, and spring elements are attached to the shared nodes where ap-

propriate.

The cross-section for all beams that describe the monopile are constant along

the depth. The DOFs are numbered sequentially from the bottom of the pile,

starting with the lateral DOF at the bottom node, then the rotational DOF at

the bottom node, then the lateral DOF at the next node, and so on. The fixed

end of the spring subsequently follows after the pile DOFs are defined. the total

DOF (TDOF ) for the multi-spring is computed as 2Nb + 2Ns + 2, where Nb is

the number of beam elements and Ns is the number of lateral/rotational spring

elements. Note that, for the traditional p-y model (illustrated in Figure 2.2), the

rotational spring element is neglected (Figure A.2c), therefore the TDOF reduced

to 2Nb +Ns + 1.

The global stiffness matrix [K] and global mass matrix [M ] are assembled by

populating a TDOF by TDOF zero matrix with the beam and spring element ma-

trices described in the Appendix A.2. For each node in Figure A.1, the associated

DOF indices in the global matrix are populated with the element matrices at-

tached to that specific node. For example, DOF 1 to 4 will include the 4 by 4

beam element matrix; DOF 1 and 2Nb + 3 will apply the lateral spring stiffness

matrix; and DOF 2 and 2Nb+4 will apply the lateral spring stiffness matrix. This

is done for all beam and spring elements. The boundary conditions are applied by

removing associated rows and columns from the global matrix that correspond to

the fixed end of the spring elements (i.e. 2Nb + 3, 2Nb + 4, ... , 2Nb + 2Ns + 2 for

a model with lateral and rotational springs).

The force vector {F} is constructed by populating a TDOF by 1 vector of zeros

with the external loads and moments added at the appropriate indices. For the

model described in Figure A.1, the external loads and moments are applied at

DOFs 2Nb + 1 and 2Nb + 2, respectively, which is the position of the ground line

relative to the discretised model. Similar to the global matrices, the boundary

conditions are applied by removing the associated vector rows in {F} that are as-

sociated with the fixed ends of the spring. The displacement vector {x} can then

be solved for using {x} = [K]−1{F} (for static simulations), where the horizontal

displacement and rotation of each node is extracted from {x}. For dynamic simu-

lations, the global mass matrix [M ] is also populated using the same methodology

as the stiffness matrix, and {x} (including {ẋ} and {ẍ}) is solved using the TMA

described in Section 4.1.

For the integrated OWT-monopile model described in Chapter 4, the DOFs

of the system in Figure A.1 needs to be modified to accommodate additional

beam elements that represent the extended monopile above ground level and the
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appended OWT tower. For Nt additional beam elements, where Nt is the number

of beams that describe the structure above the ground line, the updated total

DOF is TDOF = 2Nb + 2Nt + Ns + 1. Note that the rotational springs are not

considered in the dynamic p-y model. The updated formulation for the boundary

conditions are therefore 2Nb + 2Nt + 1, 2Nb + 2Nt + 2, ... , 2Nb + 2Nt +Ns + 1.

The appended beam elements that encapsulate the OWT tower are tapered, and

therefore the beam element matrices are updated to account for this. According

to Table 4.4, the beam elements describing the model can have unique lengths

(different ∆L values), therefore the beam element matrices should reflect this.

The beam stiffness and mass element matrices are described in Section A.2.2.

A.2 Element matrices

The beam and spring element matrices are defined herein.

A.2.1 Spring element matrices

The 2 by 2 spring stiffness matrix is defined using Equation A.1. For each element,

the nodes are superimposed with the DOF indices in the global matrix, which

depends on the location of the spring (Figure A.1).

[Ks] =

[
−ks ks

ks −ks

]
(A.1)

where ks is the lateral/rotational stiffness of the spring, depending on the spring

type. Note that ks is a function of the p-y (or m-θ) relationship, and is defined

as ks = p∆L/y (or ks = m∆L/θ). For more details on soil modulus parameters

for a typical p-y model, see Table 2.1. For nonlinear simulations, ks is updated

based on the current y or θ value. Details on the nonlinear iteration process can

be found in Section B.1. Note that the spring does not have any attributed mass.

A.2.2 Beam element matrices

There are two primary beam theories commonly used in the analysis of beams; the

Euler-Bernoulli and Timoshenko beam theory. Euler-Bernoulli is commonly used

in structural analysis software and for slender structures, whereas Timoshenko is

more accurate for short, thick beams as it can account for shear deformations

during bending (Gupta & Basu, 2018). The 4 by 4 beam element matrices for

both Euler-Bernoulli and Timoshenko beam theories are detailed in this section.
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Euler-Bernoulli beam theory

The stiffness matrix is presented in Equation A.2, and is used in Chapter 5 for

the pseudostatic modelling approach.

[Kb] =
EI

L3


12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

 (A.2)

where E and I are the elastic modulus and moment of inertia of the beam element,

respectively.

The consistent beam mass matrix is presented in Equation A.3 (Bathe, 2006).

[Mb] = [MρA] + [MρI ] (A.3)

where

[MρA] =
ρAL

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2



[MρI ] =
ρI

30L


36 3L −36 3L

3L 4L2 −3L L2

−36 −3L 36 −3L

3L L2 −3L 4L2



A.2.3 Timoshenko beam theory

The stiffness matrix is presented in Equation A.4, and is used in Chapter 3 and

Chapter 4 to simulate the stocky behaviour of monopiles. Timoshenko beam

theory considers the influence of shear resistance, which is prominent in short,

thick beam elements under lateral bending (Gupta & Basu, 2018).

[Kb] = C


12 6L −12 6L

6L (4 + ϕ)L2 −6L (2− ϕ)L2

−12 −6L 12 −6L

6L (2− ϕ)L2 −6L (4 + ϕ)L2

 (A.4)

where
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C =
EI

(1 + ϕ)L3
, ϕ =

12

L2

(
EI

κGA

)
The Timoshenko mass matrix is presented in Equation A.5.

[Mb] = [MρA] + [MρI ] (A.5)

where

[MρA] =
ρAL

210(1 + ϕ)2


a b c −d
b e d f

c d a −b
−d f −b e



a = (70ϕ2 + 147ϕ+ 78)

b = (35ϕ2 + 77ϕ+ 44)
L

4

c = (35ϕ2 + 63ϕ+ 27)

d = −(35ϕ2 + 63ϕ+ 26)
L

4

e = (7ϕ2 + 14ϕ+ 8)
L2

4

f = −(7ϕ2 + 14ϕ+ 6)
L2

4

and

[MρI ] =
ρI

30(1 + ϕ)2L
36 −(15ϕ− 3) −36 −(15ϕ− 3)L

−(15ϕ− 3) (10ϕ2 + 5ϕ+ 4)L62 (15ϕ− 3)L (5ϕ2 − 5ϕ− 1)L2

−36 (15ϕ− 3)L 36 (15ϕ− 3)L

−(15ϕ− 3) (5ϕ2 − 5ϕ− 1)L2 (15ϕ− 3)L (10ϕ2 + 5ϕ+ 4)L2



A.2.4 Gradient matrix

To compute the bending moment profile in the pseudostatic model described in

Chapter 5, the gradient matrix for Euler-Bernoulli beam theory is required. This

can be derived from the shape functions (or interpolation functions) for Euler-

Bernoulli beams and are defined in Equation A.6 (Chopra, 2013).

[N ] = [N1, N2, N3, N4] (A.6)
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where

N1 = 1− 3x2

L2
+

2x3

L3

N2 = x− 2x2

L
+
x3

L2

N3 =
3x2

L2
− 2x3

L3

N4 = −x
2

L
+
x3

L2

The bending moment within a beam cross-section is defined asM = ϵEI
yN

, where

yN is the distance from the neutral axis and ϵ is the strain at point yN long the

cross-section. The maximum moment within the cross-section of the beam occurs

at the edge, therefore yN = D/2. The strain is defined as ϵ = [B]{xb}, where {xb}
is the displacement vector for a beam element ({xb} = [x1, θ1, x2, θ2]

T ). [B] is the

gradient matrix, and is the second derivative of the shape functions (Bathe, 2006).

The gradient matrix is defined in Equation A.7.

[B] = y[B1, B2, B3, B4] (A.7)

where

B1 =
12x

L3
− 6

L2

B2 =
6x

L2
− 4

L

B3 = −12x

L3
+

6

L2

B4 =
6x

L2
− 2

L

The maximum moment M can therefore be determined at any point x along

the beam element for a given beam displacement vector {xb}.

231



Appendix B

Programming and validation:

Static model

B.1 Nonlinear iterative process for static equi-

librium

The nonlinear static simulation is performed by first computing the linear re-

sponse, where the initial global stiffness matrix [K1] is populated with spring

elements informed with the appropriate initial stiffness k0. For details on populat-

ing the global stiffness matrix, see Section A.1. The initial deflection vector {x1}
is then calculated by solving {x1} = [K1]−1{F}. {x1} is then used to compute the

nodal displacements of the spring elements, which is used to compute the secant

stiffness of the lateral spring elements based on current nodal displacements, i.e.

kjs = p(yj−1)
yj−1 ∆L, where y is the lateral displacement of the node. For rotational

spring elements, kjs = m(θj−1)
θj−1 ∆L, where θ is the rotational displacement of the

node. The secant stiffness values are then used to update the global stiffness ma-

trix [K2], and the process is repeated until convergence is achieved. The nonlinear

static iteration process is detailed in Table B.1, and convergence is calculated

by comparing the percentage difference of the ground line displacements between

iterations, i.e. |δj+1 − δj|/|δj| ≤ 10−6.
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Table B.1: Nonlinear static iteration process

Nonlinear iteration for p-y model

1. Let j = 1. Compute the initial deflection vector {x} using initial

stiffness properties by solving {x} = [K]−1{F}
2. Determine the spring element secant stiffness kjs values using nodal

deflections from {xj}
3. Update the global stiffness matrix [Kj] by populating with new

spring stiffness values

4. Ccalculate the deflection vector {xj+1} by solving {xj+1} =

[Kj]−1{F}
5. Check for convergence by comparing the percentage difference of

the ground line displacements between iterations, i.e. |δj+1 −
δj|/|δj| ≤ 10−6

6. If convergence is not achieved, advance j and return to step 2

B.2 Nonlinear static model validation

The algorithm presented in Table B.1 is validated by comparing simulation results

to the commercially available software LPILE. LPILE is a nonlinear finite element

analysis software that is commonly used for the analysis of piles and drilled shafts

under lateral loading by also utilising the p-y methodology (Isenhower & Wang,

2016). Both the LPILE and MATLAB model will utilise the API sand model to

compare results. Details on the API sand reaction curves can be found in Section

2.1.2. To simplify the comparative study, only lateral springs are considered in

the following analysis. Three piles of varying geometries are considered herein,

and are detailed in Table B.2. 100 spring elements are considered for each pile,

and the soil properties are detailed in Table B.3. For a better comparison between

models, Euler-Bernoulli beam theory is applied to the MATLAB model. The L/D

ratio is varied to observe the performance of the model under different geometrical

conditions. The MATLAB pile models are illustrated in Figure B.1.
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(a) Pile 1 (b) Pile 2 (c) Pile 3

Figure B.1: MATLAB pile model geometries for nonlinear static validation

Table B.2: Pile geometries for nonlinear static validation

Pile D L L/D t h E

(m) (m) (-) (m) (m) (GPa)

1 2.0 10 5 0.01 1.0 210

2 1.5 15 10 0.01 1.0 210

3 1.0 30 30 0.01 1.0 210

Table B.3: Soil properties for nonlinear static validation

Parameter Value

Coeff. subgrade reaction, ksr 45 MN/m3

Eff. unit weight, γ′ 19 kN/m3

Angle of friction, ϕ 40◦

The water table is assumed to be below the embedment depth of the monopile.

A load eccentricity h is considered by computing the equivalent moment M due

to applied lateral load h (i.e. M = Fh). The horizontal load is increased until

considerable pile mobilisation is observed. The applied load F against head de-

flections δ are plotted in Figure B.2 for both MATLAB and LPILE simulations.

Five arbitrary load cases are considered in the LPILE tests.
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Figure B.2: Pile head displacement comparison between p-y models developed in
LPILE and MATLAB

Figure B.2 shows that the MATLAB model is able to replicate the LPILE

results with a high level of accuracy, and suggests that the nonlinear iteration

process towards static equilibrium is valid, including the implementation of the

API sand model. Figure B.3 shows the displacement profile along the depth of

the monopile for each model due to the maximum load applied in Figure B.2.
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Figure B.3: Pile deflection profile comparison between p-y models developed in
LPILE and MATLAB

Figure B.3 suggests that the global stiffness matrix [K] is correctly assembled

and the nonlinear convergence process is valid, as both models are in excellent

agreement in estimating the deflection profile of the monopile. It is also shown that

the degree of pile rigidity is apparent between the three investigated models. The
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Euler-Bernoulli gradient matrices described in Section A.2.4 are used to compute

the nodal bending moments along the pile depth, and are plotted in Figure B.4.
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Figure B.4: Pile bending moment profile comparison between p-y models devel-
oped in LPILE and MATLAB

Figure B.4 shows that the MATLAB model is able to replicate the LPILE

results with a high level of accuracy, and suggests that the gradient matrices are

correctly assembled. The bending moment profiles are also consistent with the

applied load, as the bending moment at ground line equates to the moment due

to load eccentricity (i.e. M = Fh).

In this comparative study, the model’s ability represent the nonlinear soil-

structure interaction within a traditional lateral spring model (p-y only) has been

demonstrated by comparing with the commercially-available software LPILE. Al-

though rotational and base springs were not included in this study, they can be

incorporated into the MATLAB model using a similar matrix indexing process

employed for the lateral spring elements (as discussed in Appendix A). It is worth

noting that options for software validation are limited in facilitating the creation

of custom nonlinear reaction curves for numerous nodal points programmatically.

However, this study has demonstrated that the framework of the MATLAB model

is capable of appropriately accommodating custom reaction curves.
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Appendix C

Programming and validation:

Dynamic model

C.1 Modal validation

The global stiffness and mass matrices assembled in MATLAB are validated by

means of a modal analysis by comparing results against the commercially available

software SAP2000 (CSi, 2016). Several simplified monopile models of various L/D

ratios are developed using MATLAB and are shown in Figure C.1. The beam-

spring models consists of seven nodal points interconnected with beam elements,

where all but the top nodes are supported by lateral and rotational spring elements.

Both Timoshenko and Euler-Bernoulli beam theory is investigated in this study.

The cross-section and material properties are the same for each model, and all pile

properties are outlined in Table C.1. The beam element lengths vary depending on

the embedment length and node spacing. The matrix assembly process is outlined

in previous sections.

(a) MP1: L = 10m, Ns = 6 (b) MP2: L = 16m, Ns = 5 (c) MP3: L = 6m, Ns = 4

Figure C.1: Simplified monopile model in MATLAB
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Table C.1: Section properties for the simplified monopile models

Pile D t L h E G ρ Ns

(m) (m) (m) (m) (GPa) (GPa) (kg/m3) (-)

1 1 0.01 10 2 210 80.8 7850 6

2 1 0.01 16 4 210 80.8 7850 5

3 1 0.01 6 2 210 80.8 7850 4

Both lateral and rotational springs are arbitrarily informed using a linearly

increasing stiffness function in accordance to depth, i.e. k0 = kGL + kzz, where

kGL is the stiffness at the ground line, and kz is the rate of stiffness increase with

depth z. For the lateral springs, kGL = 1, 000 kN/m and kz = 20, 000 kN/m/m.

The rotational springs have stiffness properties of kGL = 1, 000 kNm/rad and

kz = 1, 000 kNm/rad/m.

The spring stiffness profile is used to inform the identical spring-beam con-

figuration within SAP2000. The nodes in the SAP2000 model are constrained

to only move in the x direction and are free to rotate about the y-axis, match-

ing the boundary conditions of the one-dimensional Winkler model developed in

MATLAB. An example SAP2000 model is shown in Figure C.2.

Figure C.2: SAP2000 model of a simplified monopile structure (MP1)

The modal frequencies are computed through an eigenanalysis using the

eig(inv(M)*K) function in MATLAB. The SAP2000 model is analysed using an

eigenvalue solver, which is a standard feature of the software. Table C.2 shows

the first five modal frequency computations from both MATLAB and SAP2000

238



for each pile model. The modal frequencies for both the Euler-Bernoulli (EB) and

Timoshenko (TS) beam theories are computed in MATLAB.

Table C.2: First 5 modal frequencies computed using MATLAB and SAP2000 for
each pile model

Pile Mode SAP2000 MATLAB % diff. MATLAB % diff.

number (Hz) EB (Hz) (%) TS (Hz) (%)

1 21.073 22.023 4.5 21.708 3.0

2 68.818 71.132 3.4 70.540 2.5

MP1 3 104.991 109.193 4.0 107.113 2.0

4 141.419 159.855 13.0 153.562 8.6

5 188.611 248.181 31.6 228.636 21.2

1 9.386 10.173 8.4 10.018 6.7

2 41.164 46.734 13.5 46.206 12.2

MP2 3 67.882 72.670 7.1 72.113 6.2

4 85.230 91.884 7.8 90.745 6.5

5 106.936 125.648 17.5 122.232 14.3

1 24.253 24.516 1.1 24.409 0.6

2 86.476 87.484 1.2 87.079 0.7

MP3 3 293.820 351.867 19.8 321.932 9.6

4 510.432 825.349 61.7 649.644 27.3

5 642.203 1419.305 121.0 1001.327 55.9

For all pile models, it is shown that the percentage error for the first modal

frequency estimation is within an acceptable range for both EB and TS beam

theories, where TS agrees with SAP2000 better than EB for all cases. Note that,

for MP3, TS performs twice as well as EB for all modal frequencies, which is

likely due to the shorter pile length where shearing effects are more pronounced.

TS theory is capable of capturing the shear deformation effects, whereas it is

neglected in EB theory and is more appropriate for slender beams. SAP2000

utilises an alternative beam theory derived in Bathe and Wilson (1976), which can

be applied to both short and slender beam elements and therefore appropriately

accommodate the stockier pile geometry in MP3 (CSi, 2016).

In general, higher modal frequencies are poorly estimated. This is due to

estimations being more sensitive to the discrepancies in the constitutive model’s

matrix construction. For example, the SAP2000 manual states that the mass

matrices are derived using the lumped parameter method, where beam element

masses are localised to the nodes and no mass coupling between degrees of freedom

are present in the joints (CSi, 2016). In contrast, Section A.2.2 describes consistent
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mass element matrices for the beams in both EB and TS theory, therefore coupling

is assumed. Additional contrasts between the MATLAB model and the underlying

stiffness and mass element theory used in the SAP2000 model may also have an

impact on the modal frequency computation. Regardless, the results in Table C.2

show that the MATLAB model is capable of estimating the modal frequencies

of a simplified monopile structure with a reasonable degree of accuracy, and the

stiffness and mass matrices of the model are correctly assembled.

This analysis further highlights the importance of controlled numerical dissipa-

tion in time marching algorithms, as discussed in Section 4.1. The Generalised-α

method is capable of ensuring that the higher vibration modes are adequately dis-

sipated in the time domain, which have demonstrable inaccuracies in finite element

models according to Table C.2.
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C.2 Nonlinear iterative process for dynamic equi-

librium

The full Generalised-α time marching algorithm, including equilibrium iterations,

are described in Table C.3. The derivation of the Generalised-α integration scheme

and the hybrid Newton Raphson iteration scheme are available in Section 4.1.

It should be noted that the pseudocode in Table C.3 is written in a way that

an estimate solution for a nonlinear SDOF and MDOF system can be achieved.

Steps where the pseudocode is dependent on the type of system are highlighted

accordingly. Parameters are defined in Chapter 4.

Table C.3: Pseudocode describing Generalised-α algorithm with a hybrid Newton-
Raphson equilibrium iteration scheme for nonlinear dynamic system (both SDOF
and MDOF)

1.0 Initial calculations:

1.1 Choose x0, ẋ0, ∆t and ρ∞

1.2 †Determine initial spring state fs(x0) and K
∗
T

1.3 ††Initial acceleration ẍ0 =
F0 − cẋ0 − fs(0)

m
1.4 Compute αm, αf , β, γ, and a1,2,3 terms...

αm =
2ρ∞ − 1

ρ∞ + 1
, αf =

ρ∞
ρ∞ + 1

β =
1

4
(1− αm + αf )

2, γ =
1

2
− αm + αf

a1 = (1− αm)m

(
1

β∆t2

)
+ (1− αf )c

(
γ

β∆t

)
a2 = (1− αm)m

(
1

β∆t

)
− (1− αf )c

(
1− γ

β

)
− αfc

a3 = (1− αm)m

(
1

2β
− 1

)
− (1− αf )c∆t

(
1− γ

2β

)
− αmm

2.0 Calculations for each time step, i = 1,2,3, ...

2.1 †Initialise j = 1, x
(j)
i+1 = xi, fs(xi+1)

(j) = fs(xi)

2.2 F̂i+1 = (1− αf )Fi+1 + αfFi + a1xi + a2ẋi + a3ẍi

2.3 K̂T = KT + a1

241



3.0 For each iteration, j = 1,2,3, ...

3.1 †f̂s(xi+1)
(j) = (1− αf )fs(x

(j)
i+1) + αffs(xi) + a1xi+1

3.2 ∆R̂(j) = F̂i+1 − f̂s(xi+1)
(j)

3.3 Check for convergence ||R̂(j)|| ≤ 10−6. If condition is not met, implement

step 3.3 to 3.8. Otherwise, go to 4.0.

3.4 ††If j ≥ 100, unsuccessful convergence from Modified Newton Raphson

method. Therefore, switch to Original Newton Raphson iteration scheme

by update K̂T for x
(j)
i+1 and go to step 3.5

3.5 ††∆x(j) = ∆R̂(j)/K̂T

3.6 x
(j+1)
i+1 = x

(j)
i+1 +∆x(j)

3.7 †ẋ
(j+1)
i+1 =

γ

β∆t
(x

(j+1)
i+1 − xi) +

(
1− γ

β

)
ẋi +∆t

(
1− γ

2β

)
ẍi

3.8 † ††Determine nodal restoring forces from spring states, fs(x
(j+1)
i+1 ) and update

KT . For MDOF systems, fs(x
(j+1)
i+1 ) = fs(x

(j)
i+1) +KT (x

(j+1)
i+1 − xi)

3.9 Advance j by j + 1 and repeat steps 3.1 to 3.8; denote final value of x
(j+1)
i+1

as xi+1

4.0 Calculate velocity and acceleration at t = ti+1

4.1 ẋi+1 =
γ

β∆t
(xi+1 − xi) +

(
1− γ

β

)
ẋi +∆t

(
1− γ

2β

)
ẍi

4.2 ẍi+1 =
1

β∆t2
(xi+1 − xi)−

1

β∆t
ẋi −

(
1

2β
− 1

)
5.0 Repeat for next time step...

5.1 Advance i by i+ 1 and implement steps 2.0 to 4.2 for the next time step

† Step is dependent on hysteresis model. fs(xi+1) can also be a function of

velocity, therefore ẋi+1 is calculated within j iterations. See Section 4.2 for

details.
†† Step varies depending on type of model. Modify accordingly for MDOF

systems to accommodate matrix operations.

Step 3.4 exists due to the hysteretic restoring forces exhibiting reversals at

maximum displacements. The modified Newton Raphson iteration scheme fails to

converge due to a large change in stiffness when the time step starts before the

reversal point and ends after the reversal point. Therefore, convergence failure

is arbitrarily identified as many iteration counts (i.e. j > 100). The original
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Newton Raphson iteration scheme is then implemented by updating the stiffness

value/global stiffness matrix, which is then used to compute the displacement

increment based on post-reversal stiffness properties.

C.3 Dynamic equilibrium validation

The algorithm described in Table C.3 is validated by evaluating the internal forces

at each time step and ensuring that the sum is equal to the applied external force

at that node. The validation is performed for three MDOF pile models, each with

lateral spring elements informed using different hysteresis methods; Masing, Iwan

and Bouc-Wen. The purpose of the following analyses is to confirm the under-

lying physics of the numerical model are adequately captured. For this reason,

the parameters describing the soil and the pile geometry are arbitrarily selected

for convenient analysis. A quantitative study is not necessary. The monopile and

simulation properties are summarised in Table C.4. A sinusoidal load profile is ap-

plied at the top of the monopile and the amplitude is arbitrarily large to encourage

hysteretic behaviour.

Figure C.3: Simplified monopile model for dynamic equilibrium validation
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Table C.4: Simulation parameters for dynamic equilibrium validation

Property Value Unit

Diameter, D 2.5 m

Embedment Length, L 10 m

Slenderness ratio, L/D 4 -

Eccentricity, h 2 m

Wall thickness, t 0.01 m

Young’s modulus, E 210 GPa

Shear modulus, G 80.8 GPa

Density, ρ 7850 kg/m3

Damping ratio, ζ 0.02 -

Load type sine -

Load amplitude, F (t) 5 MN

Load frequency, fext 1 Hz

Number of springs 20 -

Sim. duration 10 s

Time step, ∆t 0.01 s

ρ∞ 0 -

Twenty lateral springs are used to model the lateral soil resistance. The back-

bone function for the Masing and Iwan restoring force models are informed using

the API sand methodology described in Section 2.1.2. The Bouc-Wen model de-

fined in accordance to Section 4.2.4 such that it is comparable with the Masing

and Iwan model. The number of bilinear springs in the Iwan model is set to

N = 20. The soil profile used in this analysis is the same as the static model

validation in Section B.2, therefore the soil properties are summarised in Table

. It is important to note that, although the API sand methodology is for static

p-y models only, this investigation is only concerned with evaluating the internal

forces of the constitutive model and ensuring equilibrium. The API sand model

is only used as a convenient method to parametrise the hysteresis models.

The Generalised-α algorithm solves for equilibrium within the time stepped in-

terval using α coefficients applied to each forcing term (see Section 4.2.1). There-

fore, to validate the algorithm described in Table C.3, the internal and external

forces must be computed at each time step with the α coefficients applied. The

internal and external forces are computed using the following equations:

Fi+1 = (1− αf )Fi+1 + αfFi (C.1)
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FI,i+1 = (1− αm)mẍi+1 + αmmẍi (C.2)

FD,i+1 = (1− αf )cẋi+1 + αfcẋi (C.3)

FK,i+1 = (1− αf )fs(xi+1) + αffs(xi) (C.4)

where Fi+1, FI,i+1, FD,i+1 and FK,i+1 are the external force, inertial force, damping

force and spring force at t = ti+1, respectively. The algorithm is validated by

ensuring that the external force is equal to the sum of the inertial, damping and

spring forces at each time step. This can be done by observing the nodal forces

during the simulation at different depths along the pile. The forces for each spring

model at various depths are shown in Figures C.4, C.5 and C.6 for the Masing, Iwan

and Bouc-Wen models, respectively. Only the first 4 seconds of the simulation are

shown for clarity.
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Figure C.4: Internal nodal forces for the Masing model at various spring depths

Figure C.4 shows that the internal force sum to 0 at each point in time. Note

that the external force is not evident at these depths as there is no external force

applied at these nodes. It is also important to note that FK includes the lateral
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stiffness of the beam as well as soil pressure p. Each node demonstrates a transient

period during the first time steps of the simulation due to the fast initial loading

rate of the sine function. This is quickly dissipated due to the presence of viscous

damping (ζ = 0.02), the generalised alpha algorithm (ρ∞ = 0), and the material

damping effects of the hysteretic springs. The algorithm still facilitates equilibrium

during the transient oscillations. The performance of the MDOF Iwan hysteresis

model is shown in Figure C.5.
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Figure C.5: Internal nodal forces for the Iwan model at various spring depths

The internal forces in Figure C.5 exhibit a high frequency oscillation that is not

apparent in the Masing model. This is due to the piece-wise linear nature of the

Iwan model and the yielding of the bilinear springs continually redistributing forces

as the springs mobilise. The Masing hysteresis does not exhibit this behaviour due

to it’s continuous formulation. Regardless, the equilibrium iteration algorithm is

still capable of balancing the internal and external forces at each time step.
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Figure C.6: Internal nodal forces for the Bouc-Wen model at various spring depths

Similar to the Masing model, Figure C.6 demonstrates that the Bouc-Wen

model does not exhibit high frequency oscillations due to its continuous form.

The equilibrium iteration algorithm is still capable of balancing the internal and

external forces at each time step, despite the drift.

Summary

This analysis demonstrated the efficacy of the nonlinear dynamic equilibrium it-

eration scheme by evaluating the nodal internal forces of a MDOF pile model

informed using three different hysteresis models. The model was validated by

demonstrating that, when a sinusoidal lateral load is applied to the top of the

monopile model, the inertial, damping and stiffness forces were balanced at each

time step.
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C.4 Dynamic pushover test

The dynamic p-y model is validated against LPILE by applying a force history at

the pile head that resembles a monotonic lateral push-over load, which is shown in

Figure C.7. The model monopiles are informed with identical properties to those

used in Appendix B. The pile properties are summarised in Table C.5, and the

soil properties can be found in Table B.3.

Table C.5: Pile properties for dynamic pushover validation

Pile D L L/D t h E F

(m) (m) (-) (m) (m) (GPa) (kN)

1 2.0 10 5 0.01 1.0 210 7000

2 1.5 15 10 0.01 1.0 210 6500

3 1.0 30 30 0.01 1.0 210 5500

The monotonic loading function is modelled by taking the first quarter period

of a sine function and maintaining the amplitude for the remainder of the simula-

tion. The loading function is shown in Figure C.7, where F (t) is slowly increased

to maximum load such that inertial effects are minimal. Increasing the loading

for five seconds and then holding for an additional five seconds was deemed ap-

propriate. The simulation is run with ∆t = 0.01 s and ρ∞ = 0 for 10 seconds to

observe monotonic behaviour. The maximum load applied for piles 1, 2, and 3 are

7000 kN, 6500 kN and 5500 kN, respectively. The pile head displacements over

time for the dynamic p-y model are compared to the head deflections estimated

from LPILE, and the results are shown in Figure C.8.
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Figure C.7: Loading function for the dynamic pushover test
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Figure C.8: Pile head displacement during 10 second pushover test for each pile
and hysteresis model

Figure C.8 show that the dynamic model is capable of replicating the LPILE

results for all piles and hysteresis models. The load rate is slow enough to limit

inertial effects, and the head displacement is maintained for the last 5 seconds of

the simulation.

All three hysteresis models are capable of replicating the LPILE results. The

Masing and Iwan models are explicitly informed by the API sand function, there-

fore the performance of the models are expected. The Bouc-Wen differential equa-

tion that describes the hysteretic behaviour is parametrised to resemble the API

sand function, and the results show that the model is capable of replicating the

LPILE results. The Bouc-Wen model’s response to increasing load is the same

as both the Masing and Iwan model. This verifies that, when β = γ = 0.5 and

n = 2, the exact solution of the Bouc-Wen, at least when on the initial loading

curve, is a hyperbolic tangent and therefore identical to Equation 2.3.
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Appendix D

Amplification matrices

The amplification matrix [A] encapsulates a time marching algorithm for a SDOF

system in matrix form, such that [A] is a linear transformation of the state vector

from t = ti to t = ti + ∆t. The amplification matrix is used to determine the

stability of a system, and is therefore a useful tool for evaluating the performance

of a time marching algorithm. The kinematics at t = ti+1 can be determined using

the following relationship:


xi+1

ẋi+1

ẍi+1

 = [A]


xi

ẋi

ẍi

 (D.1)

where

[A] =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 (D.2)

The following sections will detail the amplification matrices for the Generalised-

α and the Wilson-θ methods. Note that the Generalised-α algorithm is an exten-

sion to the Newmark-β algorithm, and therefore the amplification matrix for the

Newmark-β method is a special case of the Generalised-α amplification matrix.

D.1 Generalised-α amplification matrix

If Ω = ω∆t, where ω is the circular frequency of the system, then the amplification

matrix for the Generalised-αmethod is given using the Equations D.5 to D.9. Note

that the Newmark-β amplification matrix is obtained if αm = 0 and αf = 0.
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a11 =
(1− αm) + 2(1− αf )ζΩγ − αfβΩ

2

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.3)

a12 =
[(1− αm) + 2(1− αf )ζΩ(γ − β)− 2αfζΩβ] ∆t

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.4)

a13 =
[(1− αm − 2β) + 2(1− αf )ζΩγ(1− 2β)− 4(1− αf )ζΩβ(1− γ)] ∆t2

2

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.5)

a21 =
−Ω2γ

[(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β] ∆t
(D.6)

a22 =
(1− αm) + (1 + αf )(β − γ)Ω2 − 2αfγζΩ

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.7)

a23 =

[
(1− γ − αm) + (1− αf )Ω

2(β − γ
2
)
]
∆t

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.8)

a31 =
−Ω2

[(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β] ∆t2
(D.9)

a32 =
−2ζΩ− (1− αf )Ω

2

[(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β] ∆t
(D.10)

a33 =
−αm − (1− αf )(

1
2
− β)Ω2 − 2(1− αf )ζΩ(1− γ)

(1− αm) + 2(1− αf )ζΩγ + (1− αf )Ω2β
(D.11)

D.2 Wilson-θ amplification matrix

The amplification matrix entries for the Wilson-θ method is given using the Equa-

tions D.12 to D.20.

λ =

(
θ

ω2∆t2
+

ζθ2

ω∆t
+
θ3

6

)−1

and κ =
ζλ

ω∆t

a11 = − λ

∆t2
(D.12)

a12 = −λθ + 2κ

∆t
(D.13)
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a13 = 1− λθ2

3
− 1

θ
− κθ (D.14)

a21 = − λ

2∆t
(D.15)

a22 = 1− βθ

2
− κ (D.16)

a23 = 1− 1

2θ
− λθ2

6
− κθ

2
∆t (D.17)

a31 = 1− λ

6
(D.18)

a32 = 1− βθ

6
− κ

3
∆t (D.19)

a33 =
1

2
− 1

6θ
− λθ2

18
− κθ

6
∆t2 (D.20)

∼ Ut Tensio, Sic Vis ∼
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