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Abstract 

This thesis explores the domain of salient object detection, aiming to find 

the most visually important objects within a given image. Many of the 

current approaches have focused on datasets with many images containing 

only a single salient object located towards the center. We focus here on the 

more complex task of images containing multiple objects, where relative 

saliency between objects must also be evaluated. A novel multiple salient 

object detection framework is proposed, utilizing both spatial and channel-

wise non-local blocks within a convolutional network. The experiments 

compare the approach against 14 state-of-the-art methods on five widely 

used SOD benchmarks and a newly curated multi-object dataset. The 

proposed method exceeds all previous state-of-the-art approaches in three 

evaluation metrics and provides a further performance boost against 

competing techniques on the proposed dataset. 

We then build upon this work to investigate the multiple salient object 

detection task in greater depth, exploring the problem of instance-level 

relative saliency ranking. This is an emerging field, and considering the lack 

of appropriate datasets in this domain, we produce a large-scale instance-

level relative saliency ranking dataset using real human fixations. To the best 

of our knowledge, this is the first and largest dataset created by real human 

fixations for relative saliency ranking. A novel framework is then introduced 

that models multi-scale ranking-aware information cues in a nested style 

graph, drawing features from a query-based transformer. Experimental 

findings demonstrate the effectiveness of this proposed method. We exceed 

all previous state-of-the-art approaches with a large margin under three 

evaluation metrics. The model and full dataset will be released into the 

community. 
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Chapter 1 Introduction 

1.1 Salient Object Detection 

The human brain and visual system are equipped with the capacity to swiftly 

focus on significant areas within visual scenes. This particular capability, 

known as visual attention and visual saliency, has been a pivotal research 

topic in fields such as cognitive science, neuroscience, and psychology. It 

has also drawn considerable interest from computer vision researchers, as 

understanding this capability could aid them in identifying the most unique 

elements that can effectively represent an image. 

Regarding visual saliency, two types of computational models have 

been established: Salient Object Detection (SOD) and Fixation Prediction 

(FP). Both models originated from the same community, but they serve 

different objectives. FP aims to highlight the points that human beings focus 

on when viewing a scene (e.g., Borji et al. [38][39]), while SOD aims to 

emphasize the most important salient object in an image. A strong correlation 

exists between the fixation points predicted in FP and the salient objects 

predicted in SOD. This is because both computational models often produce 

continuous-valued saliency maps, where pixels with higher values indicate 

the corresponding areas are likely to be more important and hence, attract 

more attention. 

SOD typically involves two steps: 1) identifying the most noticeable object 

within a given image, and 2) segmenting this salient object in the image. As 

illustrated in Figure 1-1, the diagram includes four input images and their 

corresponding saliency maps generated by the SOD. For instance, in the top-

left portion of this figure, an image including some buses is initially fed into 

the SOD model. Subsequently, the SOD model begins to detect the most 

significant salient objects in this image. Ultimately, the salient objects in this 
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image, the buses, are segmented as a binary saliency map, with pixels of 

higher values (shown as the white area) representing areas more likely to 

contain the salient object in the image. 

 

Figure 1-1 Some input visual scenes and the corresponding predicted 

saliency maps in SOD. 

As SOD seeks to highlight the most visually striking or crucial objects 

within a scene, it plays an essential role in computer vision pipelines, SOD 

has been widely used in numerous object-level tasks across various domains. 

These include object recognition [45], object detection [46][47], image 

retrieval [48], image captioning [49][50], weakly supervised semantic 

segmentation[51][52], few-shot learning [131], and image cropping [53]. 

The origin of SOD can be traced back to the pioneering work carried 

out by Liu et al. [40] and Achanta et al. [41]. Drawing inspiration from earlier 

models designed to detect salient regions (such as [42] and [43]), they were 

the first to frame visual saliency issues as a binary segmentation problem. 

This has led to an increased interest in SOD, resulting in the development of 

numerous SOD models. Most early SOD models depended on low-level 

features like [3] and [4] or heuristic priors such as contrast [5] and 

background prior [6]. However, these early models, due to their reliance on 

hand-crafted features, faced difficulties in capturing high-level semantic 

information, thus limiting their robustness in tackling complex scenarios. 

As deep learning technologies have progressed successfully in the field 

of computer vision, Convolutional Neural Networks (CNNs) [44] have 
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demonstrated their strong ability for visual feature extraction and 

representation. Consequently, there has been a growing emergence of deep 

learning-based SOD models since 2015. By leveraging multi-level and 

multi-scale features, CNNs are capable of accurately identifying the salient 

object without the need for any prior knowledge, such as information about 

the background. 

Despite significant advancements, numerous open challenges still 

remain. One such problem lies in the nature of the datasets currently being 

utilized. Most of these datasets are predominantly populated by images with 

a single, typically centralized, object. Indeed, this conventional practice does 

reflect a common characteristic of human visual perception, where our 

attention is often immediately drawn to a central object. However, this 

focuses on centrally placed single object oversimplifies the vastly intricate 

process of human vision. We are capable of identifying not just one, but 

multiple salient objects distributed across a visually complex scene. 

Therefore, the simplicity of the current datasets potentially misrepresents the 

inherent complexity of human visual perception, making this an interesting 

and important area that requires further exploration. We explore this problem 

in Chapter 3. We curate a new dataset that is more challenging than previous 

SOD datasets. Rather than relying on the standard single-object format 

centered in the visual scenes, our dataset comprises images containing 

multiple salient objects scattered across a given visual scene. This is an 

important step towards more accurately mirroring the complex nature of 

human vision within the dataset, allowing us to delve deeper into the 

intricacies of visual perception. 

To complement this new dataset, we also propose a novel architectural 

solution to the Multiple Salient Object Detection (MSOD) problem. By 

solving this problem, which is more complex than the traditional SOD 

problem, we are seeking to push the boundaries of what is possible in SOD, 

moving us closer to models that can mimic the depth and complexity of 
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human visual perception. We believe this to be a crucial component in 

advancing the field and bringing us closer to the goal of creating truly 

intelligent vision systems. 

1.2 Relative Saliency Ranking 

SOD aims to detect and segment the most visually prominent objects in a 

visual scene. Human beings have the ability to pay attention to multiple 

salient objects simultaneously [103] and this inspires us to explore the task 

of MSOD task in depth. However, simply detecting and segmenting multiple 

salient objects falls short in capturing the depth of human perceptual 

dynamics. It fails to reflect the inherent hierarchy of attention wherein not 

all salient objects command the same degree of focus. Without this relative 

ranking, the saliency representation remains incomplete, potentially limiting 

the efficacy of vision-based systems in applications that necessitate a deeper, 

more human-like understanding of visual priority. 

Relative Saliency Ranking (RSR) is a new task with only few studies 

delving into its depths. It provides a hierarchical discernment by assigning 

rankings, reflecting the varying degrees of saliency among detected 

instances (see Figure 1-2). When humans observe a scene, they don't merely 

notice the salient objects, they intuitively prioritize their attention among 

multiple salient objects contingent on intuitive cues in the visual scene, e.g., 

instance scales and color, and their respective degrees of prominence. 
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Figure 1-2 The differences between MSOD and instance-level RSR. 

Saliency ranking can benefit many down-stream tasks, such as image 

captioning [123][124], image cropping [125], video conversion [126] and 

autonomous driving [127]. In pioneering efforts, RSDNet [81] introduces the 

task of saliency ranking by assessing relative saliency values across pixels. 

However, its approach is limited to pixel-level saliency ranking without 

addressing object-level relative saliency. This limitation arises from its 

inherent design, which predicts saliency individually for each pixel, 

neglecting the ranking among distinct object instances. To attain object-level 

RSR with their approach, they need to leverage GT instance segmentation 

maps, which may not be feasible for real-world implementations. ASRNet 

[78] and IRSR [110] propose the instance-level RSR tasks, significantly 

boosting the development of RSR area. However, although remarkable 

process has been made, there still remain some open challenges.  

From the perspective of datasets, both [78] and [110] have formulated 

instance-level RSR datasets by combining MS-COCO dataset [79] and 

SALICON dataset [80]. The former offers pre-defined polygons, while the 

latter captures mouse-trajectory-based fixations while participants moving 
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the mouse to explore the interested area in given blurry images. Although 

mouse-trajectory-based data in SALICON dataset can provide the mouse 

movement patterns, it resembles more of a human's exploration path based 

on their interests, which is not ideally suited for RSR. This limitation stems 

from the current assumption in SRD datasets that mouse movements are an 

adequate substitute for real eye-fixation data, which is typically gathered 

through gaze measurements in controlled settings. However, this assumption 

is problematic for several reasons. Firstly, mouse movements are controlled 

consciously, in contrast to a significant portion of eye movements, 

particularly saccadic movements, which are reflexive and thus represent 

different saliency aspects [129]. Secondly, the way the human brain 

processes mouse movements and eye fixation shifts likely occurs in distinct 

reference frames. Consequently, mouse pointing behaviors might also 

display biases and constraints due to the differences in these response 

mechanisms [130]. 

From the perspective of models, ASRNet models the saliency ranking 

task derived from human-beings’ attention shifts. This is more like a scan-

path prediction [122] rather than RSR. On the other hand, IRSR introduce 

the person prior information to predict the saliency ranking, which is bias 

against and unfair to the salient instances in other classes.  

Among most of the saliency ranking methods [78] [81][112][113], they 

set a fixed number of output to predict limited saliency ranks, this is because 

the current datasets, ASSR and IRSR, set an arbitrary limit on the salient 

instances. However, setting a fixed number of outputs in saliency prediction 

models is a simplification that often fails to capture the real nuanced ways 

in which humans prioritize and attend to visual stimuli. Unlike machine 

models, our attention is not limited to a set number of items or regions in our 

visual field. Instead, it is continuously shifting and adapting based on our 

goals, experiences, and the context of the visual scenes. 

Addressing these challenges, we employ an eye-tracker to create a 
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large-scale dataset for instance-level saliency ranking based on the fixation 

duration without setting a fixed number limit on the number of salient 

instances, which is introduced in Chapter 4. To the best of knowledge, this 

is the first and largest dataset created by real human fixations for RSR. This 

data collecting strategy integrates the naturally viewing patterns of human 

observers, offering a closer approximation to real-world perception 

compared to other datasets. Besides, a novel QAGNet framework is 

proposed, modeling multi-scale ranking-aware information cues in a tri-

tiered nested style graph based on query-based transformers and this will be 

introduced in Chapter 5. 

Understanding the RSR provides a deeper comprehension of the 

underlying principles of human vision. As computer vision continues to 

strive for human-like perception capabilities, studies in this domain could 

potentially bridge the gap between machine vision and the intricate 

processes of the human visual cortex. Thus, delving into the area of instance-

level RSR is not just an academic pursuit; it holds potential real-world 

implications for the evolution of computer vision systems and the quest for 

AI that perceives the world as humans do. 

1.3 Objective and Contribution 

The primary objective of this research is to deepen the understanding and 

enhance the capabilities of SOD and RSR in computer vision. This is 

achieved through the introduction of novel datasets and computational 

models that more closely mirror human visual perception. The contributions 

of this research can be summarized as follows: 

(1) Creation of a New MSOD Dataset: Addressing the limitations of 

existing SOD datasets, where the images are with a single, centrally placed 

object, this research introduces a new dataset. This dataset is distinct in that 

it comprises images containing multiple salient objects dispersed throughout 
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the visual scene. The introduction of this dataset marks a step towards more 

accurately replicating the complexity of human vision and understanding 

visual perception. 

(2) Development of a Novel MSOD Model: In line with the new 

dataset, a novel model for the MSOD problem is proposed. This model aims 

to push the boundaries of traditional SOD by accommodating the detection 

of multiple salient objects in a single scene, thereby moving closer to 

replicating the depth and intricacy of human visual perception. 

(3) Advancing RSR with a Large-Scale Dataset Using Human 

Fixations: Current RSR datasets are typically created based on the mouse-

tracking data, which cannot reflect the real human visual system. This 

research proposes a large-scale RSR dataset based on real human fixations. 

This dataset does not impose a fixed number of salient instances, thereby 

offering a more natural and comprehensive understanding of human 

attention in visual scenes.  

(4) Development of a Novel RSR Model: A novel framework based 

on transformer techniques and graph reasoning is proposed, which leverages 

the query features from a query-based transformer into a nested style graph. 

This framework is crucial for modeling the nuances of human attention and 

visual priority. 

In summary, the research not only tries to address current challenges in 

SOD and RSR but also paves the way for future advancements in computer 

vision.  

1.4 Thesis Structure 

In this thesis, Chapter 2 provides background on both SOD and RSR. The 

task of SOD is similar to semantic segmentation, while the task of RSR 

typically involves instance segmentation. Therefore, the background of both 

semantic and instance segmentation is also introduced in Chapter 2. Chapter 
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3 introduces our contributions in MSOD. This includes the illustration of the 

proposed novel architecture and a curated dataset for testing competitive 

models’ ability on MSOD task. An in-depth exploration of the newly created 

dataset for instance-level saliency ranking is presented in Chapter 4, 

containing the data collecting strategy, dataset structure and the statistics 

information on the proposed dataset. Chapter 5 introduces the exploration of 

transformer-based techniques. Chapter 6 demonstrates our proposed nested-

style model, designed specifically for RSR. Finally, a conclusion is given in 

Chapter 7 illustrating the key findings and contributions of the works in this 

thesis. 

1.5 Papers from This Thesis 

1. Song, H., Deng, B., Pound, M., Özcan, E., & Triguero, I. (2022). A 

fusion spatial attention approach for few-shot learning. Information 

Fusion, 81, 187-202. [The content regarding SOD models in this thesis 

is applied to generate saliency maps, telling the feature extractor in this 

paper where to focus, which finally improves the performance of few-

shot learning.] 

2. Deng, B., French, A. P., & Pound, M. P. (2023). Addressing multiple 

salient object detection via dual-space long-range 

dependencies. Computer Vision and Image Understanding, 235, 103776. 

[This paper proposes a novel architecture for MSOD task. To evaluate 

competitive models’ ability on MSOD, a new dataset only including 

multiple salient object images is curated. The detailed information of this 

work can be found in Chapter 3] 

3. Deng, B., Song S., French, A. P., Schluppeck D. & Pound, M. P. (2024). 

Advancing Saliency Ranking with Human Fixations: Dataset, Models 

and Benchmarks. [This paper is accepted by CVPR 2024, including the 

content introduced in Chapter 4 and 5] 
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Chapter 2 Background 

2.1 Introduction 

This thesis explores the design and training of deep neural networks for SOD 

and RSR. This chapter introduces the background of the SOD and RSR 

problem.  

SOD, to some extent, can be defined as a special semantic segmentation 

problem, where semantic segmentation tries to segment all the objects into 

binary segmentation maps, while SOD only focuses on segmenting the 

visually striking objects. Therefore, not all segmented objects from semantic 

segmentation can be regarded as salient objects. In this chapter, Section 2.2 

will first demonstrate the popular semantic segmentation architectures used 

in SOD and then, Section 2.3 will introduce the state-of-the-art models in 

SOD area.  

In comparison, RSR task not only detects the salient objects, but also 

needs to differentiate the detected salient objects according to the saliency 

degree, which cannot be achieved directly through semantic segmentation 

ways. Instance segmentation is appropriate for detecting the distinct salient 

objects to be used for ranking reasoning. Therefore, before introducing the 

RSR works, instance segmentation background is firstly introduced in 

Section 2.4. Following that, current state-of-the-art RSR models will be 

described in Section 2.5.  

2.2 Semantic Segmentation 

Fully convolutional neural networks (FCNs) [2] and U-Net [3] have strongly 

boosted the development of SOD, inspiring a lot of researchers to build 

FCN-based and U-Net-based architectures for SOD with much better 

performance compared to previous models. 
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2.2.1 Fully Convolutional Neural Network 

FCN is a classic deep learning architecture, which is designed for the 

semantic segmentation problem. Compared to traditional CNNs using fully 

connected layers for prediction, FCN utilized fully convolutional operations 

to make pixel-level dense predictions, being able to assign semantic labels 

for each pixel in an image. 

The novel idea of FCN is to replace all the fully connected layers to 

convolutional operations. This operation makes the proposed method 

suitable for the input of different sizes and generating the same size output 

maps as the input image. The convolutional operations in traditional CNNs 

are used to extract the input image’s local features, and the fully connected 

layers are utilized to map the extracted feature to the classification prediction 

in a fixed size. In comparison, FCN combines the two operations, making 

itself can not only capture the local feature but also keep the space 

information and finally achieve end-to-end pixel-level classification. 

2.2.2 U-Net 

U-Net [3] was proposed by Ronneberger et al., in 2015 for biomedical image 

segmentation. It is an FCN-based architecture. In U-Net, the researchers 

modified and extended the architecture of FCN, resulting in an architecture 

that can be trained in a small number of images but achieve accurate 

segmentation results. 

The main idea of U-Net is to add a decoder similar to the encoder to 

make the whole architecture symmetrical. In the decoder of U-Net, there are 

also several convolutional operations, which generate multi-channel feature 

maps at different stages. This operation, to some extent, improves the feature 

representation. To better fuse the features in different levels, U-Net uses skip 

connections to combine the corresponding features in the encoder and 
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decoder. This operation makes the decoder get the information from different 

levels, therefore helping the model keep more detailed information. 

The architecture of U-Net inspires researchers in the computer vision 

community and at the same time, promotes progress in deep learning 

architectures and information fusion strategies. 

2.3 Salient Object Detection 

SOD is a special semantic segmentation task, but only focuses on generating 

the binary segmentation map for the visually important objects. The popular 

semantic segmentation works have been introduced in Section 2.2, and here, 

the state-of-the-art SOD models are presented. 

Most traditional approaches for SOD primarily depend on low-level 

features [3][4] or heuristic assumptions like color contrast [5] and 

background [6][7]. 

Early SOD methods based on deep learning mostly utilized multi-size 

image patches [8][9][10]. These approaches are delivering impressive results 

but are constrained by the absence of spatial context present in smaller image 

patches. 

Since the introduction of fully convolutional networks (FCNs) by Long 

et al. in 2015, numerous efficient and successful end-to-end SOD 

architectures have emerged. In particular, U-shape-based architectures have 

gained substantial popularity. 

Hou et al. 2017, 2019 [14][16] introduces short connections operations 

between deeper layers and shallower layers to merge high-level features and 

low-level features. Zhang et.al, 2018 [17] incorporates a gated pathway to 

facilitate bi-directional message passing and integration of multi-level 

features. Zhang et. al., 2018 [18] adopted multi-path recurrent connections 

and novel spatial attention modules for generating the saliency maps. Chen 

et al., 2018 [26] constructed a reverse attention block to highlight the non-



Background 

13 

 

object areas. Qin et al., 2019 [19] implemented a bottom-up and top-down 

architecture to enhance the coarse saliency maps produced by the prediction 

network, creating boundary-aware saliency maps using a hybrid loss 

approach. Feng et al., 2019 [20] utilized global perceptron modules and 

attentive feedback modules for global saliency detection and to establish 

encoder-decoder communications respectively. Zhao et al., 2019 [21] 

employed edge features to direct the extraction of multi-scale features from 

a U-shaped structure, then fuse multiple side-outputs into a final saliency 

map. Liu et al., 2019 [22] research the influence of the pooling layers in the 

U-shaped architecture and propose a global guidance module to transmit the 

localization information to the top-down pathway. A feature aggregation 

module is also proposed to further enhance the fused features. Wu et al., 2019 

[23] propose a cross-refinement unit for exchanging the information between 

edge features and saliency features. Zhao et al., 2020 [24] develop a gated 

dual branch network which includes a Fold-ASPP module to improve the 

localization of salient objects of various scales. Pang et al., [25] propose a 

transformation-interaction-fusion strategy to get multi-scale features 

efficiently and a consistency-enhanced loss to address the disparity issue 

between foreground and background. 

Inspired by the U-shape architecture, more and more advanced SOD 

models with excellent performance are proposed. The classic state-of-the-art 

models that significantly influence the SOD area will be introduced below. 

2.3.1 Deeply Supervised Salient Object Detection 

with Short Connections 

This work (DSS) [1] proposes a method that combines multi-level features 

extracted from FCN to enhance the representation of each layer. This is 

achieved by introducing short connections to the skip-layer structure. The 

authors find that the output in deep layers of backbones such as VGG and 
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ResNet typically contains high-level semantic information. However, due to 

the information loss during down-sampling operations, saliency maps 

generated from these features tend to have irregular shapes, especially when 

dealing with complex and cluttered saliency maps. On the other hand, the 

shallower layers normally encode rich spatial knowledge, which can be used 

to highlight the boundaries of the generated saliency map. Based on these 

observations, their approach is to combine the high-level and low-level 

features by establishing short connections to the skip layers in order to 

improve SOD performance. 

DSS extends the VGG architecture by adding an convolutional block 

and incorporates six side outputs (skip layers) to improve feature 

representations. These skip layers facilitate the gradual transmission of 

features from deeper layers to shallower layers, enabling the fusion of multi-

level and multi-scale information through short connections. 

In addition, DSS employs six side losses for each side output, as well 

as a final fusion loss, to enhance the quality of the generated saliency map 

by effectively combining information from different levels. While the binary 

cross-entropy loss is commonly used in SOD models, DSS employs these 

loss functions in conjunction with the proposed architecture and feature 

fusion mechanisms. 

To summarize, this work, as a pioneering effort utilizing deep learning 

techniques for SOD, achieves top-tier results by merging multi-level and 

multi-scale features through short connections. In this setup, the deep layers' 

high-level features are transmitted to the lower layers to assist in identifying 

the salient object, whereas the low-level features from the shallower layers 

aid in refining the irregular predicted saliency maps.  
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2.3.2 A Bi-directional Message Passing Model for 

Salient Object Detection 

In comparison to the earlier work introduced in Section 2.3.1, this study [17] 

utilizes a more effective method for fusing features produced from each side 

output via a bi-directional information passing strategy. Basically, the 

authors indicate that (1) the unweighted direct concatenation operation 

traditionally used to combine feature maps from each side output is not ideal, 

as not all features from each level are consistently beneficial, and 2) the 

erroneous information can sometimes undermine the performance of the 

SOD model, potentially leading to inaccurate saliency maps. Therefore, they 

propose a mechanism to filter out useless information. 

Basically, the entire architecture consists of a backbone (commonly, 

backbones such as VGG [27] and ResNet [28] are used for feature extraction 

in the SOD area, and in this paper, VGG-16 is employed), a Multi-scale 

Context-aware Feature Extraction Module (MCFEM), and a Gated Bi-

directional Message Passing Module (GBMPM). Once an image is fed into 

the backbone, the five side outputs are first introduced to the MCFEM 

module. Each block in the MCFEM applies four dilated convolutional layers 

[29] with a kernel size of 3x3 and dilation rates of 1, 3, 5, and 7 respectively, 

to expand the receptive field and detect multi-scale information. 

Then, the four feature maps produced from varying dilated 

convolutional layers are concatenated to form multi-scale contextual 

features 𝐹𝑐 = {𝑓𝑖
𝑐, 𝑖 = 1, . . . ,5} . These features are then inserted into the 

GBMPM module, eventually generating feature maps 𝐻3 = {ℎ𝑖
3, 𝑖 =

1, . . . ,5}. The GBMPM module is important in this model as it facilitates the 

exchange of semantic information in high-level features and spatial context 

information in low-level features. This module incorporates two directional 

connections: one starting from the first side output and ending at the last, and 
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another following the opposite direction. For instance, considering ℎ𝑖
0 = 𝑓𝑖

𝑐, 

the process of transferring information from the lower side output to the 

deeper side output can be represented as: 

ℎ𝑖
1 = 𝐷𝑜𝑤𝑛(∅(𝐶𝑜𝑛𝑣(ℎ𝑖−1

1 ; 𝜃𝑖−1,𝑖
1 ))) + ∅(𝐶𝑜𝑛𝑣(ℎ𝑖

0; 𝜃𝑖
1) (2 − 1) 

where 𝐶𝑜𝑛𝑣(∗; 𝜃) , 𝐷𝑜𝑤𝑛()  and ∅()  demonstrates the 

convolutional layer, downsampling layer and ReLU activation function 

respectively. Simultaneously, the final feature of the 𝑖𝑡ℎ  side output is 

computed by: 

ℎ𝑖
3 = ∅(𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(ℎ𝑖

1, ℎ𝑖
2); 𝜃𝑖

3)) (2 − 2)  

where 𝐶𝑎𝑡()  represents the concatenation operation. From Eq. 2-2, 

ℎ𝑖
3  is robust as it encompasses both high-level semantic information and 

low-level spatial information. 

However, the features produced from each side output may not 

consistently contribute to the prediction of the saliency map. The redundancy 

of information can degrade the quality of the resulting saliency maps. 

Consequently, this paper introduces a gate function as the message is being 

passed in the GBMPM module, therefore changing Eq. 2-1 as follows: 

ℎ𝑖
1 = 𝐷𝑜𝑤𝑛(𝐺(ℎ𝑖−1

0 ;  𝜃𝑖−1,𝑖
𝑔1

)  ⊗  ∅(𝐶𝑜𝑛𝑣(ℎ𝑖−1
1 ; 𝜃𝑖−1,𝑖

1 ))) + ∅(𝐶𝑜𝑛𝑣(ℎ𝑖
0; 𝜃𝑖

1)(2 − 3) 

where ⊗ conducts an element-wise product operation and 𝐺(∗; 𝜃𝑔) 

is the gate function including a 3x3 convolutional layer followed by an 

element-wise sigmoid function. By implementing the gate function, only the 

beneficial information will be transferred within the GBMPM module. 

Finally, the produced feature map ℎ𝑖
3 and the predicted saliency map 

from a higher level 𝑆𝑖+1 are merged to create improved saliency maps. This 

fusion process can be represented as: 

𝑆𝑖 = {
𝐶𝑜𝑛𝑣(ℎ𝑖

3; 𝜃𝑖
𝑓
) + 𝑈𝑝(𝑆𝑖+1), 𝑖 < 5

𝐶𝑜𝑛𝑣(ℎ𝑖
3; 𝜃𝑖

𝑓
), 𝑖 = 5

(2 − 4) 

where the 𝐶𝑜𝑛𝑣(∗; 𝜃𝑖
𝑓
)  denotes 1x1 convolutional layers. By 

employing this method, the g saliency maps from deeper layers will be 
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progressively transmitted to the shallower layers. 

In conclusion, this paper introduces a novel bi-directional message-

passing method for SOD. By using the MCFEM and GBMPM modules, 

high-level and low-level features can mutually interact, and the other 

information potentially detrimental to the quality of the saliency map is 

filtered out. Compared to the work mentioned in Section 2.3.1, this work 

gives a better approach to fuse the information from different levels with 

advanced performance. 

2.3.3 EGNet: Edge Guidance Network for Salient 

Object Detection 

It is widely accepted that the shallower layers of the backbone normally 

contain low-level features such as edges and texture details, while deeper 

layers encompass high-level features, including semantic information. 

However, the effective utilization of both low-level and high-level features 

remains a challenge in the SOD field. The researchers in this study suggest 

that good edge detection significantly enhances the performance of both 

segmentation and localization tasks. Therefore, compared to previous 

models that directly merge low-level and high-level features, this work [21] 

specifically models the edge information in shallower layers and effectively 

leverages the high-level features in deeper layers, ultimately generating 

high-quality saliency maps. 

Following the settings of DSS, this study adds another side path 

(Conv6-3) to the basic VGG structure to be the backbone. Simultaneously, 

since side output 1 is too close to the input, the feature generated at this 

location is disregarded. The features generated from the other side outputs 

can be represented as 𝐶(2), 𝐶(3), 𝐶(4), 𝐶(5), 𝐶(6) . Among these, 𝐶(2) 

contains better edge information [30] and is therefore selected to model the 

edge data. To acquire more comprehensive context information, a U-Net 
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structure is employed to output multi-resolution features. Three 

convolutional layers and a ReLu layer (𝑇) are added to each side output to 

generate robust features. Simultaneously, an additional convolutional layer 

(𝐷 ) is utilized to transform the feature maps into one-channel prediction 

saliency maps. 

The Non-Local Salient Edge Feature Extraction Module (NLSEFE) is 

constructed to model edge information. As previously mentioned, the lower 

layers (Conv2-2) carry richer edge details, while the higher layers (Conv6-

3) include semantic information. To model saliency object edges effectively, 

high-level semantic information is also required. As a result, the features 

from Conv2-2 and Conv6-3 are combined, with the combined features 𝐶̅(2) 

represented as: 

𝐶̅(2) = 𝐶(2) + 𝑈𝑝 (𝑅𝑒𝐿𝑈 (𝑇𝑟𝑎𝑛𝑠(�̂�(6); 𝜃)) ; 𝐶(2)) (2 − 5) 

where 𝑇𝑟𝑎𝑛𝑠(∗; 𝜃)  represents the convolutional layers with 

parameter 𝜃, designed to alter the number of channels. 𝑈𝑝() is employed 

to upsample the high-level features to match the size of 𝐶(2), while �̂�(6) 

denotes the enhanced features from the result of side output 6 (Conv6-3). 

After obtaining the combined features 𝐶̅(2), 3 convolutional layers are 

utilized to enhance the edge feature 𝐶̅(2) and produce the final salient edge 

feature 𝐹𝐸 . An additional salient edge supervision mechanism employing 

cross-entropy loss is designed to supervise the edge features. 

In the One-to-One Guidance (OTOGM) module, the enhanced edge 

features 𝐹𝐸  are integrated with each enhanced saliency feature �̂�(𝑖)  to 

better promote the saliency features when localizing and segmenting the 

salient object. This process can be represented as: 

𝐺(𝑖) = 𝑈𝑝 (∅(𝑇𝑟𝑎𝑛𝑠(�̂�(𝑖); 𝜃)) ; 𝐹𝐸) + 𝐹𝐸 , 𝑖 = 3,4,5,6 (2 − 6) 

Then, similar to PSFEM, a sequence of convolutional layers 𝑇  will 

further enhance the generated features and a converting layer 𝐷 will make 
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the multi-channel feature map into a one-channel prediction map. 

In contrast to other works, this study prioritizes modelling the saliency 

edge features, which is a highly efficient and effective method for preserving 

the boundaries of the generated saliency maps. By adopting this approach, 

the low-level edge features and high-level semantic features mutually 

enhance one another, ultimately producing high-quality saliency maps with 

clear boundaries. 

2.3.4 PoolNet: A Simple Pooling-Based Design for 

Real-Time Salient Object Detection 

This work [22] primarily explores the function of pooling layers in SOD 

models as utilizing the pooling operations would lead to more efficient but 

also effective models. Using the U-shaped architecture as a foundation, the 

authors introduce a global guidance module (GGM) that guides high-level 

semantic information to each phase of the top-down pathway. They also 

propose a feature aggregation module (FAM) to combine coarse-level 

semantic data with fine-level features in the top-down pathway. This paper 

pioneers the investigation of pooling-based models with the goal of 

enhancing SOD performance.  

A recognized issue with the U-shape structure is the progressive 

dilution of high-level semantic information from the backbone as it passes 

through the top-down pathway. To address this information loss, the authors 

propose a global guidance module, which incorporates a modified version of 

the pyramid pooling module (PPM) [31]. The information generated by this 

module is conveyed to each stage of the top-down pathway through the 

global guidance module (GGM). 

To be more specific, the GGM's PPM consists of four layers, with the 

first and last layers being an identity mapping layer and a global average 

pooling layer, respectively. For the intermediate layers, adaptive average 
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pooling layers are used to maintain the spatial dimensions of the output 

feature maps at 3x3 and 5x5. 

With the application of global guiding flows, the features generated by 

the PPM are directly transferred to the feature maps at varying levels, thus 

mitigating the information loss from dilution in the top-down pathway. 

Meanwhile, a novel feature aggregation module (FAM) is proposed in 

this work. The input feature map is initially transformed to different scales 

through the use of average pooling layers with varying downsampling rates. 

Then, these feature maps are processed by a convolutional layer, then 

upsampled and combined. This type of architecture presents two main 

benefits. First, it assists the model in reducing the aliasing effect of 

upsampling when passing the high-level semantic information, produced by 

the PPM, to the feature maps at each stage. This is particularly significant 

when the upsampling rate for high-level features is large, for instance, 8. 

Simultaneously, each sub-branch in the FAM observes the local context at 

different scales, contributing to the network's broader receptive field. 

In addition, this study also conducts an experiment involving joint 

training with edge detection. Images from both the SOD dataset and the edge 

detection dataset are alternately used during training, effectively enhancing 

the boundaries of the salient object. 

To summarize, this paper explores the capabilities of pooling layers in 

the field of SOD. Through the introduction of the global guidance module 

(GGM) and the feature aggregation module (FAM) to the U-shape 

architecture, this research is able to produce high-quality saliency maps with 

distinct boundaries. 

2.3.5 Pyramid Feature Attention Network for 

Saliency Detection 

The authors of this study [32] propose that different feature maps should 



Background 

21 

 

have distinct roles in the creation of the saliency map. To address this, they 

propose a new framework called the pyramid feature attention network 

(PFAN) for SOD. Within the proposed architecture, a context-aware pyramid 

feature extraction (CPFE) module is utilized to capture the context features 

of multi-scale high-level features. Simultaneously, the model uses channel-

wise attention (CA) and spatial attention (SA) techniques on the CPFE 

feature maps and low-level feature maps respectively, enhancing its ability 

to detect salient objects. 

It is acknowledged that each salient object has unique shape, scale, and 

position characteristics, therefore the direct usage of convolutional layers 

and pooling layers may not effectively manage this complex situation. 

Drawing inspiration from the feature extraction work of SIFT [33], the 

authors design a module capable of extracting features that vary in scale, 

shape, and location. 

Specifically, the side outputs of conv 3-3, conv 4-3, and conv 5-3 from 

a basic VGG-16 backbone are selected as the high-level features, which are 

then fed into the CPFE. To ensure that the extracted features contain 

information from different scales, shapes, and locations, atrous 

convolutional layers [34] are employed with dilation rates of 1, 3, 5, and 7 

to capture multi-level features. These features are then aggregated through 

cross-channel concatenation. After obtaining the three features of different 

scales, the two smaller ones are upsampled to match the size of the largest 

one, followed by another cross-channel concatenation operation to generate 

the final output of the CPFE module. 

Many existing models merge features from different levels 

indiscriminately, leading to information redundancy issues, which may 

potentially affect the final performance of the saliency map. The attention 

mechanism, with its ability to select features, is a good choice for feature 

fusion. 

The channel-wise attention technique is employed after the context-
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aware pyramid feature extraction module to assign higher weights to 

channels that respond strongly to salient objects. 

Regarding spatial attention, it is solely applied to low-level features. 

However, these features might contain certain details that negatively impact 

the final saliency map. Therefore, to guide the spatial attention towards the 

salient region, the high-level features are used to generate weights for the 

pixels in the salient region based on spatial attention. Subsequently, these 

weights are used to perform element-wise multiplication with the low-level 

features. Ultimately, the upsampled high-level features and low-level 

features are combined to produce the final saliency map. 

In conclusion, this study proposes a context-aware pyramid feature 

extraction module that employs various atrous convolutional layers and a 

channel-wise attention mechanism to capture high-level semantic 

information. For the low-level features, the study applies a spatial attention 

mechanism to solve the negative effects caused by background noise and to 

make the model focus more on the salient region. 

2.3.6 Stacked Cross Refinement Network for Edge-

Aware Salient Object Detection 

Most of the existing studies suggest that combining edges and saliency 

features can enhance the performance of SOD tasks, however, the presence 

of redundant and inaccurate edge features may compromise the quality of 

the generated saliency maps. Therefore, this paper [23] explores the 

relationships between the binary segmentation result and edge feature maps 

and proposes that the boundary region in an edge map is a subset of the object 

region in the segmentation map. Inspired by this notion, a new framework 

called the Stacked Cross Refinement Network (SCRN) has been introduced. 

SOD, as a binary classification problem, the ground truth saliency map 

can be defined as follows: 
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𝑀𝑠 = {𝑀𝑠
𝑝, 𝑝 ∈ (0,1), 𝑝 = 1, . . . , 𝑁} (2 − 7) 

In this formula, 𝑝 and 𝑁 represent a single pixel of an image and the 

total number of pixels in an image respectively. Similarly, the edge map of 

this image can be symbolized as 𝑀𝑒. For any given image, the white pixels 

of 𝑀𝑠 indicate the salient object, while the white pixels of 𝑀𝑒 emphasize 

the edges. This forms a logical relationship: 

{  
𝑀𝑠  ∧  𝑀𝑒  =  𝑀𝑒

𝑀𝑠 ∨ 𝑀𝑒  =  𝑀𝑠
(2 − 8) 

This logical relationship will be employed in this study to construct 

SOD models. 

Specifically, this work is based on ResNet50, where four levels of 

features, denoted as 𝐹 = {𝐹𝑖, 𝑖 = 1,2,3,4}, are extracted from the backbone.  

For each level, two 1x1 convolutional layers are employed to extract 

corresponding features with 32 channels for two different tasks. For these 

two tasks, 𝑆 = {𝑆𝑖, 𝑖 = 1,2,3,4}  and 𝐸 = {𝐸𝑖 , 𝑖 = 1,2,3,4}  are used to 

denote the features for SOD and edge detection respectively. 

Drawing from the interrelationships between edge maps and binary 

segmentation maps, the concept of stacked cross refinement units (CRUs) is 

introduced to enhance multi-level features. Specifically, the feature 𝑆𝑛
𝑖  and 

𝐸𝑛
𝑖   (nth CRU and ith level) are calculated using the features 𝑆𝑛−1

𝑖   and 

𝐸𝑛−1
𝑖 , which can be defined as follows: 

𝑆𝑛
𝑖 = 𝑆𝑛−1

𝑖 + 𝑓(𝑆𝑛−1
𝑖 , 𝐸𝑛−1) (2 − 9) 

𝐸𝑛
𝑖 = 𝐸𝑛−1

𝑖 + 𝑔(𝐸𝑛−1
𝑖 , 𝑆𝑛−1) (2 − 10) 

For each level feature of one task, the corresponding level of the other 

task can be used to refine it. For example, 𝐸𝑛−1
𝑖  and 𝑆𝑛−1

𝑖  are utilized to 

refine each other. The multiplication operation can imitate the Boolean AND 

calculation when refining edge features based on binary segmentation 

features. The function 𝑔 for this process can be defined as follows: 
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𝑔 = 𝐶𝑜𝑛𝑣(𝐸𝑛−1
𝑖 ⊗𝑆𝑛−1

𝑖 ) (2 − 11) 

where ⊗ denotes the element-wise multiplication and Conv stands for 

a 3x3 convolutional layer. 

However, implementing the Boolean OR operation directly is 

challenging. As a result, an alternative method is employed to enhance the 

segmentation features, with the function 𝑓 being defined as follows: 

𝑓 = 𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(𝑆𝑛−1
𝑖 , 𝐸𝑛−1

𝑖 )) (2 − 12) 

where 𝐶𝑎𝑡 denotes the channel-wise concatenation operation. 

The high-level features encompass semantic information, whereas the 

low-level features incorporate spatial information. As such, this paper 

proposes a 'set-to-point' style for better encoding of multi-level features. 

More precisely, this method refines each layer feature of one task based on 

all other level features from the other task. For instance, 𝐸𝑛−1
𝑖   will be 

refined by the four other level features in the segmentation task (𝑆𝑛−1
𝑘 , 𝑘 =

1, . . . ,4) and the function 𝑔 can be expressed as: 

𝑔 = 𝐶𝑜𝑛𝑣 (𝐸𝑛−1
𝑖 ⊗∏𝑈𝑝(𝑆𝑛−1

𝑘 )

4

𝑘=1

) (2 − 13) 

In this equation, 𝑈𝑝 represents the upsampling operation coupled with 

a 1x1 convolutional layer. On the other hand, the function 𝑓 of the 'set-to-

point' style can be defined as follows: 

𝑓 = 𝐶𝑜𝑛𝑣(𝐶𝑎𝑡(𝑆𝑛−1
𝑖 , 𝐶𝑎𝑡𝑘=1

4 [𝑈𝑝(𝐸𝑛−1)
𝑘 )]) (2 − 14) 

In conclusion, this paper introduces a novel SOD framework that draws 

upon the interrelationship between segmentation maps and edge features. 

Thanks to the Cross Refinement Unit (CRU) module, multi-level features 

can share information between different tasks (segmentation and edge 

detection) to gradually refine each other. This ultimately leads to the 

generation of highly accurate saliency maps. 

Although remarkable progress has been made, there still remain many 
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open challenges in SOD area. Existing SOD datasets contain many images 

with a single object, often centered in the middle of the image. This makes 

most of the SOD methods solve this problem mainly on single salient object 

and ignore the relationship information between different objects. Human 

observers may be drawn naturally to centered objects, but in complex scenes 

they can identify numerous salient objects distributed throughout a scene. 

Therefore, we explore the possibility of multiple salient objects problem in 

Chapter 3. 

2.3.7 Summary of Popular SOD Models 

We have discussed SOD methods in Section 2.3, and their strengths, 

potential drawbacks, and more have been summarized in the Table 2-1. This 

table provides a clear overview of the main characteristics, advantages, 

disadvantages, and the results achieved by each method in terms of SOD 

performance. Through this comprehensive analysis of these advanced 

methods, we gain a deeper understanding of the current research dynamics 

in the SOD field, as well as the effectiveness and limitations of various 

techniques in tackling complex saliency detection challenges.  
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Method Key Features Advantages Potential 

Disadvantages 

Results 

Deeply 

Supervised 

Salient Object 

Detection with 

Short 

Connections 

(DSS) 

Combines multi-level 

features from FCN; 

adds short 

connections and side 

outputs to VGG 

architecture. 

Enhances layer 

representation; 

improves irregular 

saliency map 

shapes. 

May have 

complexity due to 

multiple 

connections and 

layers. 

Top-tier SOD 

results; refined 

saliency maps. 

Bi-directional 

Message 

Passing Model 

for SOD 

Utilizes bi-directional 

information passing; 

implements gated 

functions to filter 

information. 

Effective fusion of 

multi-level 

features; filters out 

detrimental 

information. 

Complexity in bi-

directional 

processing and 

feature filtering. 

Advanced SOD 

performance; 

more accurate 

saliency maps. 

EGNet: Edge 

Guidance 

Network for 

SOD 

Focuses on edge 

information; 

combines low-level 

and high-level 

features effectively. 

Enhances 

segmentation and 

localization; 

preserves saliency 

map boundaries. 

Specialized focus 

on edge features 

might limit general 

feature integration. 

High-quality 

saliency maps 

with clear 

boundaries. 

PoolNet: 

Pooling-Based 

Design for 

Real-Time SOD 

Explores pooling 

layers in SOD; 

introduces global 

guidance and feature 

aggregation modules. 

Efficient and 

effective model; 

distinct boundaries 

in saliency maps. 

Pooling operations 

might lead to 

information loss. 

High-quality 

saliency maps; 

efficient 

performance. 

Pyramid Feature 

Attention 

Network for 

Saliency 

Detection 

(PFAN) 

Implements context-

aware pyramid feature 

extraction; utilizes 

channel-wise and 

spatial attention. 

Captures multi-

scale high-level 

features; focuses 

on salient regions 

effectively. 

Complexity in 

managing multi-

scale features and 

attention 

mechanisms. 

High-quality 

saliency maps 

with focused 

salient regions. 

Stacked Cross 

Refinement 

Network 

(SCRN) for 

Edge-Aware 

SOD 

Focuses on 

interrelationship 

between edges and 

saliency features; 

introduces Cross 

Refinement Unit 

(CRU). 

Refines multi-

level features; 

accurate saliency 

maps with edge 

awareness. 

Complexity in 

managing cross 

refinement between 

edge and 

segmentation 

features. 

Highly accurate 

saliency maps 

with refined 

features. 

Table 2-1 Summary of popular SOD models with main characteristics, 

advantages, potential disadvantages, and results. 
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2.4 Instance Segmentation 

We have introduced the background works related to SOD in Section 2.3 and 

2.4. From this section, the related works for RSR will be presented. As the 

RSR task can be regarded as an instance segmentation work, the popular 

instance segmentation methods will be firstly introduced in Section 2.4. 

Following this, the state-of-the-art RSR works will be presented in Section 

2.5. The RSR problem is a new task, which normally utilizes the instance 

segmentation work first to generate salient instances and then learn the 

relationships between these instances to generate the instance-level RSR.  

As illustrated in [91], there are four similar tasks in computer vision 

community, viz., images classification, object localization, semantic 

segmentation and instance segmentation. To be more precise, image 

classification is a task defined as a process of identifying the class of an 

object within the image or providing a list of object classes present in the 

image according to their classification scores. Contrastingly, the task of 

object detection/localization not only identifies the classes of objects within 

an image but also determines their locations. This location information is 

typically represented in the form of bounding boxes or centroids, providing 

spatial context to the classified objects in the image. On the other hand, 

semantic segmentation aims to achieve a more granular level of inference by 

assigning labels to each pixel in an image. Each pixel is labeled according to 

the object or region it belongs to. Building upon this, instance segmentation 

takes a step further by solving both object detection and semantic 

segmentation simultaneously. It not only identifies the class of each object 

in an image but also differentiates between individual instances and 

segments them. 

Instance segmentation is a challenging task in computer vision that 

involves detecting objects and their boundaries. There are two main types of 

models used for this task: two-stage models and single-stage models.  
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Two-stage models first generate a set of region proposals that might 

contain an object. This is typically done using a Region Proposal Network 

(RPN). In the second stage, these proposals are classified into specific 

categories, and bounding boxes and masks are generated for each one. The 

two-stage process allows these models to be highly accurate, as the second 

stage can focus on a smaller number of high-quality proposals. However, 

this comes at the cost of computational efficiency, as the two-stage process 

can be slower than single-stage methods. 

In Comparison, single-stage models aim to perform object detection 

and instance segmentation in one step. Instead of generating region 

proposals, these models directly predict the class and shape of each object in 

the image. 

Single-stage models are typically faster than two-stage models, as they 

do not need a separate proposal generation stage. However, they may not be 

as accurate as two-stage models, especially for complex scenes with many 

overlapping objects. 

Mask RCNN, as a well-known two stage instance segmentation model, 

will be firstly introduced. 

2.4.1 Mask R-CNN 

Mask R-CNN [88] is a region-based CNN that extends the capabilities of 

Faster R-CNN [90]. Faster R-CNN is an object detection model. It is 

designed to identify the presence of objects in an image and classify them, 

while also providing their location within the image in the form of bounding 

boxes. It is a two-stage method: the first stage, called a Region Proposal 

Network (RPN), proposes candidate object bounding boxes, and the second 

stage uses these proposals to classify the objects and refine their bounding 

boxes. 

By incorporating a parallel branch for predicting object masks based on 
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Faster R-CNN, Mask R-CNN, with dual functionality, is able to perform 

object detection and instance segmentation simultaneously. 

The architecture of Mask R-CNN is a two-stage framework. The first 

stage involves a Region Proposal Network (RPN), a fully convolutional 

network that scans the input image and generates a set of candidate object 

bounding boxes. This process involves sliding a small window across the 

input feature map, generating multiple anchors of fixed sizes and aspect 

ratios at each window position. The RPN then predicts whether these anchors 

contain an object and refines the bounding boxes accordingly. 

The second stage of Mask R-CNN, known as RoI Align, takes these 

proposals and performs three parallel tasks: object classification, bounding 

box regression, and mask prediction. The RoI Align layer is a critical 

component of Mask R-CNN, designed to address the spatial misalignment 

issue caused by the RoI Pooling operation in Faster R-CNN. By using 

bilinear interpolation, RoI Align accurately maps the original pixel locations 

to the feature map, preserving the precise spatial locations and thereby 

improving the quality of the predicted masks. 

For each proposed region, Mask R-CNN first extracts features using 

RoI Align. These features are then passed through three parallel fully 

connected layers. The classification layer predicts the object's class, the 

bounding box regression layer refines the object's bounding box, and the 

mask prediction layer generates a binary mask for the object. The mask 

prediction is performed in a pixel-to-pixel manner, allowing for the 

definition of the object at an instance level. 

The training of Mask R-CNN is performed end-to-end, using a multi-

task loss function that includes classification loss, bounding box regression 

loss, and mask loss. The mask loss is a pixel-level binary cross-entropy loss, 

which encourages the precise prediction of the object mask. 

During inference, Mask R-CNN first generates proposals using the 

RPN. For each proposal, it performs classification, bounding box regression, 
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and mask prediction. Finally, it applies Non-Maximum Suppression (NMS) 

to remove overlapping detections, resulting in the final set of object 

detections and their associated instance masks. 

With its excellent performance, Mask R-CNN has set a strong 

benchmark in the field of instance segmentation, inspiring numerous 

subsequent works. 

2.4.2 CenterMask 

The CenterMask [92] model is a novel anchor-free one stage approach to 

instance segmentation that combines the strengths of the Fully 

Convolutional One-Stage Object Detector (FCOS) [93] with a spatial 

attention-guided mask branch. 

FCOS is motivated by FCN [2],  utilizing the pixel-wise prediction for 

object detection. The whole architecture of FCOS includes three key 

components: backbone, feature pyramid and head. The novel idea in FOCS 

is the proposal of using center-ness, which is to improve the quality of 

bounding box predictions. Center-ness is a measure of how close a location 

is to the center of an object. The center-ness score is calculated for each 

location within the bounding box of an object. It is defined as the minimum 

of the four normalized distances (left, right, top, bottom) from the location 

to the boundaries of the bounding box. The distances are normalized by the 

corresponding side length of the bounding box. The center-ness score ranges 

from 0 to 1, with 1 indicating that the location is at the exact center of the 

bounding box. During training, the center-ness score is used as a weighting 

factor in the calculation of the localization loss. This means that locations 

closer to the center of an object have a larger impact on the localization loss. 

This encourages the model to predict more accurate bounding boxes, as it is 

penalized more heavily for inaccuracies near the center of an object. During 

inference, the center-ness score is multiplied with the classification score to 
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produce the final detection score. This helps to suppress the scores of 

bounding boxes that are not well localized, improving the overall quality of 

the object detections. 

Based on FCOS, CenterMask propose to utilize a spatial attention-

guided mask branch for the one-stage instance segmentation task. After the 

backbone, the feature maps are then passed to the FCOS detector and the 

spatial attention-guided mask branch in parallel. The FCOS detector is 

responsible for generating class and box predictions, while the spatial 

attention-guided mask branch predicts a segmentation mask for each 

detected bounding box using a spatial attention map. 

The final instance segmentation is obtained by combining the class and 

box predictions from the FCOS detector with the mask predictions from the 

spatial attention-guided mask branch. This approach allows CenterMask to 

perform instance segmentation in real-time, making it a practical solution for 

applications that require fast inference speeds. 

The CenterMask model achieves state-of-the-art performance on the 

COCO dataset, demonstrating its effectiveness as a solution for instance 

segmentation.  

2.4.3 SOLO 

SOLO [94], namely Segmenting Objects by Locations, introduces a unique 

concept of "instance categories", which assigns categories to each pixel 

within an instance based on the instance's location and size. This innovative 

approach allows instance segmentation to be done in a single-stage anchor-

free framework. 

Specifically, the input image is initially divided into a grid of cells 𝑆𝑥𝑆. 

Here, for a simple illustration, 𝑆 is set to 5. Then the instance segmentation 

task is reformulated into two branches: a classification branch and a mask 

branch. The size of the classification branch is 𝑆𝑆𝐶, where 𝐶 represents 
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the number of categories. The size of the mask branch is 𝐻𝑊𝑆2, where 𝑆2 

represents the maximum number of predicted instances. The 𝑆2  can be 

mapped to the original image from top to bottom and from left to right. 

When the center of the target object falls into a certain cell, the 

corresponding position in the classification branch and the corresponding 

channel in the mask branch are responsible for predicting the object. For 

instance, if an instance is assigned to cell (𝑖, 𝑗), then channel 𝑘 = 𝑖 ∗ 𝑆 + 𝑗 

on the mask branch is responsible for predicting the mask of the target. Each 

cell belongs to a single instance.  

Due to the mask branch predicting 𝑆2 channels, if the grid cell is set 

too large, the output channel will become excessively large. Therefore, the 

paper proposes an improvement method called the Decoupled Head. 

Specifically, the mask branch is split into two directions: X and Y, each with 

𝑆 channels. The mask output is obtained by multiplying the two branches in 

an element-wise manner, reducing the prediction channels from 𝑆2 to 2𝑆, 

with no significant loss in accuracy observed in the experiments. In this case, 

to obtain the mask predicted by the 𝑘 grid cell, it only needs to extract the 

𝑖th channel from the Y branch and the 𝑗th channel from the X branch, and 

perform an element-wise multiplication, where 𝑘 = 𝑖 ∗ 𝑆 + 𝑗. 

In summary, SOLO model directly utilizes the mask prediction method 

to do the instance segmentation, which achieves state-of-the-art performance, 

strongly inspiring further development of one-stage anchor-free models. 

2.4.4 BlendMask 

This work [95] presents a novel approach to instance segmentation that 

combines the strengths of both top-down and bottom-up methods. The 

proposed method, BlendMask, leverages the advantages of top-down 

methods (such as Mask R-CNN) in terms of speed and simplicity, while also 

incorporating the fine-grained pixel-level information typically provided by 
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bottom-up methods, and finally proposing a single-stage anchor-free 

framework. 

The architecture of BlendMask is built based on the FCOS object 

detector. The bottom module utilizes features either from the backbone or 

the Feature Pyramid Network (FPN) to predict a collection of base elements. 

A single convolution layer is appended to the detection towers, which 

concurrently generates attention masks with each bounding box prediction. 

For every predicted instance, the blender extracts the bases within its 

bounding box and linearly combine them in accordance with the learned 

attention maps.  

The BlendMask framework consists of three main components: a 

backbone network, an attention mechanism, and a blending module. The 

backbone network is responsible for extracting feature maps from the input 

image. These feature maps are then fed into the attention mechanism, which 

generates a set of attention maps. Each attention map corresponds to a 

potential object instance in the image. 

The attention mechanism is designed to focus on the spatial context of 

each instance, effectively providing a rough localization of the object. 

However, unlike traditional top-down methods, which typically predict a 

binary mask for each instance, the attention mechanism in BlendMask 

produces a continuous attention map. This allows for more flexibility and 

can better handle instances with complex or irregular shapes. 

The blending module is the final component of the BlendMask 

framework. It takes the attention maps and the feature maps as input to 

produce the final instance masks. The blending module is designed to refine 

the rough localization provided by the attention mechanism, adding detailed 

pixel-level information to the instance masks. This is achieved by applying 

a blending operation to the attention maps and the feature maps, effectively 

fusing the coarse top-down information with the fine-grained bottom-up 

information. 
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One of the key advantages of BlendMask is its simplicity. Unlike many 

existing instance segmentation methods, which often involve complex multi-

stage processes or require sophisticated post-processing steps, BlendMask is 

a single-stage method that can be trained end-to-end. Furthermore, despite 

its simplicity, BlendMask achieves competitive performance on the COCO 

benchmark, demonstrating its effectiveness. 

In summary, BlendMask presents a novel approach to instance 

segmentation that effectively combines the strengths of top-down and 

bottom-up methods. By leveraging an attention mechanism and a blending 

module, BlendMask is able to produce high-quality instance masks that 

capture both the coarse spatial context of each instance and the fine-grained 

pixel-level details. 

2.4.5 Summary of Popular Instance Segmentation 

Models 

Table 2-2 provides a concise overview of the instance segmentation methods, 

highlighting the innovative aspects and the balance between efficiency and 

accuracy for each method. These methods represent strides in the field of 

computer vision, particularly in the challenging task of instance 

segmentation. They demonstrate the ongoing evolution of techniques aiming 

to optimize both speed and precision in processing and interpreting complex 

visual data. 
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Method Key Features Advantages Potential 

Disadvantages 

Results 

Mask R-

CNN 

Extends Faster R-

CNN; incorporates 

a parallel branch 

for object masks. 

Highly accurate; 

able to perform 

detection and 

segmentation 

simultaneously. 

Computationally 

less efficient due to 

two-stage process. 

Strong benchmark 

in instance 

segmentation; 

precise object 

masks. 

CenterMask Anchor-free, one-

stage approach; 

combines FCOS 

with a spatial 

attention-guided 

mask branch. 

Real-time 

performance; 

efficient for 

applications 

requiring fast 

inference. 

May not be as 

accurate as two-

stage models in 

complex scenes. 

State-of-the-art 

performance on 

COCO dataset; 

effective for real-

time instance 

segmentation. 

SOLO Single-stage, 

anchor-free; uses 

"instance 

categories" for 

segmenting objects 

by location. 

Simplifies instance 

segmentation 

process; reduces 

prediction channels. 

Complexity in 

managing instance 

categories and 

segmentation. 

State-of-the-art 

performance; inspires 

one-stage anchor-free 

model development. 

BlendMask Combines top-

down and bottom-

up methods in a 

single-stage 

anchor-free 

framework. 

Simple and end-to-

end training; 

captures both coarse 

and fine details. 

May face challenges 

with extremely 

complex object 

shapes. 

Competitive 

performance on 

COCO; effective 

fusion of detailed 

instance masks. 

Table 2-2 Summary of popular instance segmentation models with key 

features, advantages, potential disadvantages, and results. 

2.5 Relative Saliency Ranking 

RSR is a new task with only few studies explore this area in depth. RSR 

includes not only detecting the salient objects, but also giving different 

salient objects ranking information indicating the degree of saliency. This 

affects how people view and interact with the surroundings. So, studying 

RSR is not just interesting but also important for researchers that want to 

imitate or understand human vision. 



Background 

36 

 

2.5.1 RSDNet 

The pioneering work of Islam et al. [81] makes an initial attempt on RSR on 

pixel-level. The authors here observe an issue of a consensus due to the ill-

posed nature of defining what universally constitutes a salient object. 

Multiple observers might have varying opinions on what they deem salient, 

leading to the challenge of ranking salient objects. Rather than focusing 

solely on the binary classification of salient vs. non-salient, it is pivotal to 

address the relative ranking among salient objects. This perspective derives 

from the observation that some objects are more likely to be judged as salient 

than others, highlighting the existence of a relative rank among them.  

The paper introduces a novel deep learning solution that is based on a 

hierarchical representation of relative saliency, using the PASCAL-S [77] 

dataset. Note the PASCAL-S dataset includes ground-truth maps where 

different salient objects have different colors based on the degree of saliency. 

 

Figure 2-1 Stacked representation of ground truth maps [81]. 

In SOD or segmentation research, the ground-truth typically consists of 

numerical values that indicate the saliency level for each pixel. Historically, 

binary masks were created by thresholding, e.g., pixels are marked as white 

while pixels value more than 0.5, otherwise marked as black while pixels 

value less than 0.5. This ground-truth generation method does not reflect 

relative salience. Using such binary ground-truth masks is not ideal when the 

goal here is to model observer consensus. To address this limitation, this 

work introduces an approach to produce stacked ground-truth maps, each 

corresponding to a distinct saliency level determined by inter-observer 

consensus (see Figure 2-1). Given a base saliency map 𝒢𝑚 , a set 𝒢𝜗 
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comprising 𝑁  ground-truth maps (𝒢𝑖 , 𝒢𝑖+1, … , 𝒢𝑁)  can be derived. Each 

map 𝒢𝑖  contains binary data indicating that a minimum of 𝑖  observers 

perceived an object as salient, with this being represented on a pixel-by-pixel 

basis. Here, 𝑁 represents the number of participants involved in annotating 

the salient objects. This stacked ground-truth, 𝒢𝜗 , offers enhanced 

differentiation between multiple salient objects and establishes a relative 

ranking that instructs the neural network to prioritize saliency levels. It's 

crucial to recognize the inherent hierarchy in the stacked ground-truth, where 

𝒢𝑖+1 is a subset of 𝒢𝑖. This structure is vital because a format in which 𝒢𝑖 =

1 implies that 𝑖 observers are in agreement could lead to zeroed layers in 

the ground-truth stack, and large changes to ground truth based on small 

differences in degree of agreement. 

Regarding the overall architecture of RSDNet, the input image will be 

initially passed into an encoder (ResNet-101 for the best model) to generate 

a feature at 
1

8
  scale. Then, an additional convolution layer with a 3 × 3 

kernel and 𝑁 channels is applied (where N represents the total number of 

individual observers participating in the labeling). This forms the Nested 

Relative Salience Stack (NRSS). Following this, they incorporate a Stacked 

Convolutional Module (SCM) to determine the preliminary saliency score 

of each pixel. The SCM is composed of three convolutional layers 

responsible for producing the targeted saliency map. The first convolutional 

layer has six channels with a 3 × 3 kernel. This is succeeded by two more 

convolutional layers: one with three channels and a 3 × 3 kernel, and another 

with a single channel and a 1 × 1 kernel. Each channel within the SCM is 

trained to assign a soft weight to every spatial position of the NRSS, 

facilitating the labeling of pixels based on their likelihood of being part of a 

salient object. This process can be expressed as: 

𝒮𝜗
𝑡 = 𝒞3×3(𝑓enc (𝐼;𝒲); Θ), 𝒮𝑚

𝑡 = ∂(𝒮𝜗
𝑡) (2 − 15) 

where 𝐼 denotes the input image, (𝒲, Θ) represent the parameters for 
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the convolution C, 𝒮𝜗
𝑡  is the initial Nested Relative Salience Stack (NRSS) 

for stage 𝑡 . This stack captures varying saliency levels for every pixel, 

essentially predicting the likelihood of observers agreeing on an object's 

prominence. 𝒮𝑚
𝑡   stands for the initial saliency map, while ∂  symbolizes 

the Stacked Convolutional Module (SCM). The function 𝑓enc (.) produces 

the output feature map generated by the encoder network. 

While the deeper layer of an encoder provides the most comprehensive 

feature set, solely using convolution and unpooling during decoding to 

retrieve lost details can diminish prediction accuracy. Therefore, here, the 

authors suggest a multi-stage fusion-based refinement network that, during 

decoding, combines initial coarse representation with finer feature maps at 

prior layers. This network comprises consecutive rank-aware refinement 

units that aim to restore lost spatial details during each refinement step, while 

also maintaining the relative ranking of salient objects. Every refinement 

stage uses the prior NRSS and earlier, sharper representations as its input, 

executing a series of operations to produce an enhanced NRSS. This aids in 

crafting a more detailed saliency map. It's vital to realize that enhancing the 

hierarchical NRSS means that the refinement process utilizes varying 

agreement levels from the SCMs to boost confidence in relative ranking and 

overall prominence. Lastly, the refined saliency maps produced by the SCMs 

are combined to form the final saliency map. 

To integrate different features distinctly, a Rank-Aware Refinement 

Unit (RARU) is proposed. The RARU incorporates gate units, which 

regulate the information pass to reduce uncertainties related to figure-ground 

and salient objects. The first refinement unit ℛ𝜗
1  receives its input from the 

first NRSS 𝒮𝜗
𝑡  created by the feed-forward encoder. This refinement unit 

also uses the gated feature map 𝒢𝑎
𝑡 , produced by the gate unit [106], as a 

second input. Following [106], they derive 𝒢𝑎
𝑡  by merging two successive 

feature maps 𝑓𝜉
𝑡 and 𝑓𝜉

𝑡+1 from the encoder. The prior 𝒮𝜗
𝑡  is upscaled to 
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twice its original size. A transformation function 𝒯𝑓  — comprised of 

operations in sequence: convolution, batch normalization, and ReLU — is 

applied to the upscaled 𝒮𝜗
𝑡   and 𝒢𝑎

𝑡  , resulting in the refined NRSS 𝒮𝜗
𝑡+1. 

Following this, the SCM module is used on top of 𝒮𝜗
𝑡+1, producing the 

refined saliency map 𝒮𝑚
𝑡+1. The 𝒮𝜗

𝑡+1  is then passed to the next stage's 

rank-aware refinement unit. These operations can be summarized as: 

𝒮𝜗
𝑡+1 = 𝑤𝑏 ∗ 𝒯𝑓 (𝒢𝑎

𝑡 , 𝑢(𝒮𝜗
𝑡)) , 𝑆𝑚

𝑡+1 = 𝑤𝑠
𝑏 ∗ ∂(𝒮𝜗

𝑡+1) (2 − 16) 

where u stands for the upsampling operation. The parameters for the 

transformation function 𝒯𝑓  are represented by 𝑤𝑏 , and 𝑤𝑠
𝑏 denotes the 

parameters for the SCM, which is indicated by ∂ in the equations. Note that 

𝒯𝑓 specifies a specific stage within the refinement procedure. 

Furthermore, this paper also proposes other methods to deal with the 

stacked ground-truth maps. Specifically, the currently available dataset, 

PASCAL-S, offers data that facilitates the assignment of relative salience, 

based on consensus among several observers. Contrarily, in this work, they 

suggest ranking values in two distinct scenarios: Relative and Absolute. 

In the Relative scenario, rank values are determined by the total number 

of instances in the mask and their rank score, denoted as ℝ𝜒, where 𝜒 is a 

specific instance. For instance, if a mask contains 𝜏  total instances, the 

range [0, 255] is divided by 𝜏 to generate the numerical rank value. 

Conversely, in the Absolute scenario, rank values derive from the rank 

score set's percentile and are then adjusted to fit the range [50, 255], which 

equates to the gray-scale levels ranging from 20% to 100%. It will also 

produce a stacked representation of the ground truth.  
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Figure 2-2 Relative and absolute representations of ground-truth [81]. 

As shown in Figure 2-2, it demonstrates the relative and absolute 

representations of ground-truth. For the relative scenario, the initial layer of 

the stack highlights the most prominent object, while the following layer 

denotes the top two salient objects, and so forth. As for the absolute scenario: 

the first layer represents less than 20% of the fixations and the next one 

represents less than 40% of the fixations. Therefore, in the relative scenario, 

each slice gets a single new instance. On the other hand, in the absolute 

scenario, several instances might be incorporated simultaneously to a slice 

if they share the same percentile rank. 

This is the first work proposing the RSR problem. The methodology 

and findings detailed in this paper open new research avenues. Moreover, as 

the performance metrics on conventional SOD datasets seem to have reached 

their peak, alternative direction like rank order assignment is an interesting 

and promising area for future research. This paper in conjunction with the 

studies it builds on creates a robust groundwork for the future challenge of 

SOD. 

2.5.2 ASRNet 

This work [78] presents a novel approach to predict the saliency rank of 

objects in an image by inferring human attention shifts. This approach 

diverges from traditional methods that focus solely on identifying salient 

regions without considering the order of attention. Recognizing the sequence 
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in which humans shift their attention among objects provides a deeper 

understanding of human visual perception and can enhance the accuracy of 

saliency prediction models. To facilitate this research, the authors 

constructed a large-scale salient object ranking dataset. This dataset serves 

as a valuable resource for training and evaluating models designed to predict 

attention shift ranks. 

The overall architecture of ASSR is composed of a backbone network, 

a Selective Attention Module (SAM), a Spatial Mask Module (SMM), and a 

network dedicated to classifying salient object rankings. Mask-RCNN is 

chosen as the bottom-up backbone, which offers object proposals using the 

FPN [107] and object segmentation from its segmentation branch. The SMM, 

in a bottom-up manner, draws out the low-level features of the proposed 

objects, while the SAM, operating in a top-down approach, focuses on 

advanced contextual attention features. 

The SAM is constructed using the Scaled Dot-Product Attention 

mechanism [36], incorporating both image and object features. The pyramid 

feature P5, sourced from the backbone network, serves as the image feature. 

A 1 × 1 convolution followed by global average pooling is applied based on 

the pyramid features to generate high-level image feature. Prior to carry out 

the dot-product, the object and image attributes are projected into a 512-

dimensional space. In this stage, each object's features are embedded into 

distinct feature vectors using a universally shared fully connected layer. Two 

distinct feature vectors are produced using separate FC layers, both of which 

use the pooled image features as their input. The newly formed feature sets, 

derived from the pooled image feature, are then repeated M times. The 

attention mechanism subsequently employs these embeddings to conduct dot 

product similarity comparisons between individual object features and the 

image features. A scaling factor is used and followed by a softmax activation 

to generate the attention score. The attention module calculates attention 

scores using multiple heads (specifically, 4 heads) simultaneously. The 
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results from the multiple attention heads are concatenated and then processed 

through an FC layer. Finally, a residual connection and an additional FC 

layer are incorporated to produce the module's output. 

The authors propose that recognizing the relationships between the 

attributes of objects and the scene context is pivotal for selecting targets in 

complicated visual scene. For instance, small objects within a scene might 

not attract human gaze. Objects situated near the image's center might be 

perceived as more prominent, a phenomenon referred to the "center bias" 

principle [108][109]. Such insights drive the researchers’ decision to 

incorporate low-level object features, such as size and position, to learn 

contextual features that can model the relationship between objects and the 

visual scene. By leveraging the bounding boxes of objects proposals, a 

spatial mask for each individual object is generated. These spatial masks 

contain the information of size and location of the object proposals related 

to the visual scene. (This map is generated using a binary mask, wherein 

pixels situated within a bounding box are assigned a value of 1, while all 

others are designated a value of 0.) These spatial masks are then passed 

through a set of convolutional layers to generated 64-D feature vector. 

Subsequently, the spatial features of each object are combined with their 

respective object features via a concatenation layer, followed by a fully 

connected layer. This process reduces the feature dimension to a fixed size 

of 512.  

The authors’ initial approach of modeling the detection of salient 

objects and the ranking sequence of attention shifts is to regard it as a 

classification task. In the configuration, only C = 5 ranks is considered. By 

incorporating an extra background category for non-salient objects, the 

classification encompasses 6 classes, which is the sum of 5 and 1. The 

prediction of saliency and rank is carried out through a classification network, 

which is composed of three convolutional layers followed by a single 

classification layer. At the inference stage, the saliency rank classification is 
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combined with object segmentation (sourced from the segmentation branch) 

to produce the final map indicating the rank of salient objects. However, a 

challenge arises with this classification-based approach: it does not 

guarantee that the identified salient objects will be allocated unique saliency 

ranks. To solve this limitation, softmax rank classification probabilities is 

applied in a scoring mechanism. For every object, the probability of its 

saliency rank is adopted as the initial score. This score is then enhanced by 

both addition and multiplication, based on a value corresponding to the 

predicted rank. This methodology draws inspiration from [76], which 

generates the saliency rank of objects based on the descending average pixel 

saliency value attributed to each object. Through this strategy, it can be 

ensured that the prediction of a distinct saliency rank for every object. In the 

final step, the top-5 saliency rank order of objects is considered, determined 

by their descending score values. 

2.5.3 IRSR 

Traditional SOD models are limited in their ability to distinguish the 

importance of different salient objects. Although recent studies, such as 

RSDNet [81] and ASRNet [78], have attempted to detect saliency ranking 

by assigning varying degrees of saliency to different objects, these models 

either fail to differentiate between object instances or place more emphasis 

on sequential attention shift order inference. This paper [110] introduces a 

new approach to address a practical problem that carries out simultaneous 

segmentation of salient instances and their relative saliency rank order. This 

model employs an enhanced Mask R-CNN for salient instance segmentation, 

followed by the addition of a saliency ranking branch to infer relative 

saliency. 

The overall pipeline of IRSR is based on Mask R-CNN. Specifically, 

Mask R-CNN performs the instance segmentation and salient object 
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classification. An additional bottom-up pathway is introduced to enhance the 

transfer of low-level data to high-level feature maps, while also reducing the 

distance of information flow from the lower layers to the highest feature. 

Consequently, every multi-level feature can retrieve information from both 

lower and upper levels. Next, Region proposal networks (RPNs) are 

employed to produce salient object proposals. Each of the five-level features 

is passed to RPN to create proposals with a flexible scale. Following this, 

RoIAlign is utilized to extract RoI-specific feature, which is then directed to 

both a box head and a mask head. The former employs two fully connected 

layers for saliency classification and box regression for each proposal. In the 

case of the latter, the approach merges a convolution-deconvolution branch 

with a concurrent fully connected layer branch to achieve instance 

segmentation masks, benefitting the salient instance segmentation. 

For the task of RSR, a novel graph reasoning module is constructed by 

integrating four distinct graphs. These graphs capture various aspects, 

including the interaction relation between instances, local contrast, global 

contrast, and a high-level semantic prior. 

From the segmented salient instances and the saliency ranking feature 

map F, instance nodes {𝕀𝑖}𝑖=1
𝑁  , local context nodes {𝕃𝑖}𝑖=1

𝑁  , person prior 

nodes {ℙ𝑖}𝑖=1
𝑁 , and M × M global context nodes {𝔾𝑖}𝑖=1

𝑀2
 are established. 

Subsequently, four graphs are constructed: an interaction relation graph 𝒢𝑟, 

a local contrast graph 𝒢𝑙, a global contrast graph 𝒢𝑔, and a person prior 

graph 𝒢𝑝. Within 𝒢𝑟, every 𝕀𝑖 is linked to others and itself. For 𝒢𝑙 and 

𝒢𝑝, only 𝕃𝑖 or ℙ𝑖 is linked to 𝕀𝑖, respectively. In the context of 𝒢𝑔, all 

{𝔾𝑗} are connected to each 𝕀𝑖. After several steps of graph reasoning, fully 

connected layers are used to generate saliency rank scores. 

Additionally, a unique loss function is introduced to effectively train the 

saliency ranking branch. In the study by Islam et al. [81], the RSDNet is 

trained using the pixel-wise Euclidean loss between the predicted saliency 
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map and the ground truth (GT). Siris et al. [78] regards saliency ranking as 

a rank order classification challenge, employing a Softmax classifier 

combined with cross entropy loss to classify each instance into one of five 

rank orders. This paper focuses on predicting rank orders for images 

containing different numbers of salient instances. As a result, a ranking loss 

aligned with the GT rank order is introduced for training the saliency ranking 

branch. Drawing inspiration from [111], a pairwise ranking loss is utilized to 

promote higher saliency values for top-ranked instances and reduce values 

for those ranked lower. Specifically, for a training image with N instances, 

the GT ranks are represented as {𝑟1, 𝑟2, ⋯ , 𝑟𝑁}, with 𝑟𝑖 ranging from 1 to N, 

and lower values signifying higher ranks. All possible instance pairs 𝐶𝑁
2 are 

extracted for training. For any given pair q, its two instances are ranked 

based on the GT ranks, meaning q is expressed as 𝑞 = {𝑞1, 𝑞2} where both 

𝑞1  and 𝑞2  fall between 1 and N, and 𝑟𝑞1  is less than 𝑟𝑞2 . With the 

predicted saliency scores of the two instances being 𝑠𝑞1  and 𝑠𝑞2 , the 

ranking loss is defined as: 

𝐿 =
1

𝐶𝑁
2∑ 

𝐶𝑁
2

𝑞=1

log (1 + exp (−𝑠𝑞1 + 𝑠𝑞2)) (2 − 17) 

However, the aforementioned loss treats every instance pair uniformly, 

neglecting the specific GT rank orders. This can be detrimental when 

optimizing the saliency scores of instances that are ranked extremely high or 

low. To address this, a dynamic loss weight, denoted as β, is introduced. This 

weight assigns greater values to pairs with significant rank differences and 

lesser values to those with similar ranks. This approach explicitly optimizes 

instances that have extreme ranks. Specifically, the enhanced ranking loss is 

represented as: 

𝐿 =∑  

𝐶𝑁
2

𝑞=1

𝛽𝑞log (1 + exp ((−𝑠𝑞1 + 𝑠𝑞2))) (2 − 18) 
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where 𝛽𝑝 is determined based on the rank difference between 𝑞1 and 

𝑞2, and 𝑞1𝑞2 can be normalized using: 

𝛽𝑞 =
(𝑟𝑞1 − 𝑟𝑞2)

𝛾

∑  
𝐶𝑁
2

𝑜=1 (𝑟𝑜1 − 𝑟𝑜2)
𝛾

(2 − 19) 

Here, 𝛾 is a positive value. The larger its value, the more weight is 

given to pairs with significant rank differences. 

This paper contributes a lot for the RSR problem, including the new 

state-of-the-art model and effective loss function, which strongly boost the 

development of RSR area. 

2.5.4 SORNet 

SORNet [112] is the first paper utilizing the Transformer technologies for 

RSR. Note the Transformer techniques will be reviewed and explored in 

Chapter 5. 

Regarding the overall architecture of SORNet, a CNN based backbone 

is firstly utilized for feature extraction. It takes a raw image as input and 

outputs a feature map. Before the ROI pooling operation (which extracts 

object-level features from each proposal), the X and Y coordinates are 

combined with the feature map to form: [FeatureMap; PositionMap]. Then, 

the detection branch and SOR branch are parallel. The detection branch 

employs standard detection techniques, such as Mask RCNN and 

CenterMask. Its main objective is to identify objects and predict their 

positions, classifications, and associated masks. Notably, this branch doesn't 

utilize the positional data of each proposal. SOR branch is specifically 

designed to rank each proposal based on visual saliency. The SOR branch 

focuses on ordering proposals instead of merely identifying them. The key 

idea in this branch is the proposal of Position-Preserved Attention (PPA) 

module, which consists of two stages: position embedding and feature 
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interaction. In the initial stage, both semantic and positional data are 

integrated to produce visual tokens. These tokens are subsequently processed 

in the feature interaction phase, resulting in contextualized descriptions for 

each proposal. The process is followed by a fully connected layer that 

predicts the ranking order for each proposal. The total loss is calculated 

based on the detection loss and ranking loss, where detection loss includes 

the box loss, classification loss and mask loss, while the ranking loss is the 

cross-entropy loss between the ground truth ranking and predicted ranking 

order. 

The key idea of this paper is the PPA module, which contains 2 stages: 

position embedding stage and feature interaction stage. The PPA module 

receives the feature representations of proposals with their positions as input. 

Specifically, the input dimensionality is N × 14 × 14 × (256 + 2), where N 

stands for the number of proposals, 14 represents the ROI pooling size and 

the channel number for the feature map and positional indices are 256 and 2, 

respectively. For a given proposal, denoted by its i-th bounding box (𝑏𝑏𝑜𝑥𝑖), 

the post-ROI pooling feature is determined by [  fea 
𝑖
; 𝑝𝑜𝑠𝑖 ] = 

RoIPooling([FeatureMap; PositionMap], 𝑏𝑏𝑜𝑥𝑖 ). The PPA module then 

produces contextualized representations for each proposal of dimension N × 

1024.  

In the position embedding stage, the main goal is to integrate semantic 

features with the positional information of each proposal. This integration 

contains several steps. Initially, the feature map is divided into semantic and 

positional components. Following this, a convolution layer with a ReLU 

activation function is applied to the positional component to extract low-

level features: 𝑝𝑜𝑠−𝑓𝑒𝑎𝑖 = Conv (𝑝𝑜𝑠𝑖). Subsequently, this newly derived 

feature is concatenated with the original positional data, resulting in a 

position embedding, expressed as  pos_embeding 
𝑖
= [𝑝𝑜𝑠𝑖;  pos 

−
𝑓𝑒𝑎𝑖] . 

The subsequent steps involve combining this embedding with the semantic 
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feature and processing the combined entity through a series of four 

convolution layers, formulated as 𝑓𝑒𝑎𝑖 = 𝐶𝑜𝑛𝑣𝑠 ([ fea 
𝑖
;  pos_embeding 

𝑖
]). 

Then, a flatten operation is applied, followed by two fully connected layers 

to convert the feature into a one-dimensional vector encompassing 1024 

channels, which is the visual token. 

In feature interaction stage, the goal is to utilize the information 

between different proposals. To achieve this, the self-attention mechanism 

of the Transformer's encoder is leveraged. The methodology strictly aligns 

with the conventional Transformer encoder structure. Within this 

architecture, multi-head self-attention modules and feed-forward neural 

network (FFNN) units are applied.  

In summary, this method is the first one using the Transformer 

technologies, achieving state-of-the-art performance in RSR task. 

2.5.5 OCOR 

This work [113] utilizes the query-based object detection models, such as 

QueryInst [114], to do the saliency ranking task. 

Specifically, given an input image, the query-based object detection 

technique is utilized to extract global context features. Subsequently, a 

collection of trainable salient object proposals (e.g., box and object queries 

that represent object positions and detailed object attributes) are employed 

to predict the final saliency rankings. The Saliency Rank Learning process 

includes: (1) a Selective Object Saliency (SOS) module that refines object-

level semantic details, (2) an Object Context Object Relation (OCOR) 

module that comprehends interactions between objects and their respective 

contexts in a bi-directional manner, and (3) ranking and mask heads that 

determine object-specific saliency rankings, building on the enhanced 

features from the SOS and OCOR modules. 

In SOS module, global covariance pooling [115][116] is firstly used to 
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capture object features and understand their relationships with both local and 

global contexts. Following this, a set of dynamic rectifying functions are 

learned to adjust channel attentions based on the high-order feature statistics 

derived from global covariance pooling. As a result, they collaboratively 

extract detailed object data to develop object representations. 

In OCOR module, the spatial attention mechanisms inherent in the 

human visual system with the goal of learning region prioritization is 

modeled. To achieve this, the object-context relationship is encoded using 

the enriched object representation from the SOS module. Then, a bi-

directional object-context-object relationship is constructed to simulate the 

way humans look at visual scenes. 

This model achieves state-of-the-art performance with high SOR score. 

However, there is a limitation to this approach. When objects with identical 

functions are present in a scene with limited context, the model might not 

determine the correct saliency ranking accurately.  

2.5.6 Summary of RSR Models 

Table 2-3 encapsulates the innovative strides each method has made in the 

field of RSR. It highlights their unique approaches to understanding and 

replicating human visual perception, focusing on not just identifying but also 

ranking the saliency of objects in complex visual scenes.  
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Method Key Features Advantages Potential 

Disadvantages 

Results 

RSDNet Hierarchical 

representation of 

saliency; stacked 

ground-truth maps 

based on observer 

consensus. 

First work to propose 

RSR task. 

Pixel-level saliency 

ranking is 

inpractical.. 

Pioneering in RSR; 

provides a 

foundation for 

further research. 

ASRNet Predicts saliency 

rank by inferring 

human attention 

shifts; large-scale 

salient object ranking 

dataset. 

Combines low-level 

and high-level 

features; unique in 

considering attention 

shift order. 

May struggle with 

accurately ranking 

objects in complex 

scenes with many 

salient items. 

Innovative in 

predicting attention 

shift ranks; enhances 

accuracy of saliency 

prediction models. 

IRSR Enhanced Mask R-

CNN for 

segmentation; graph 

reasoning module for 

saliency ranking. 

Simultaneous 

segmentation and 

ranking; captures 

various aspects like 

interaction and 

contrast. 

Using person prior 

information is unfair 

for other classes. 

Effective in 

differentiating 

importance among 

salient objects; 

introduces a novel 

ranking approach. 

SORNet Uses Transformer 

technology; 

combines semantic 

and positional 

information for 

ranking. 

First to apply 

Transformer tech in 

RSR; sophisticated 

integration of various 

data types. 

Complexity in 

managing 

Transformer 

architecture and data 

integration. 

State-of-the-art 

performance in RSR; 

innovative use of 

Transformer 

technology. 

OCOR Query-based object 

detection; focuses on 

refining object-level 

semantic details and 

context. 

Advanced object-

context relationship 

understanding; high 

saliency rank score 

achievement. 

May not accurately 

rank objects with 

identical functions in 

limited contexts. 

Good performance in 

saliency ranking; 

advancement in 

understanding object-

context relations. 

Table 2-3 Summary of popular RSR models with key features, 

advantages, potential disadvantages, and results. 

2.6 Conclusion 

In this chapter, the background of both SOD and RSR is illustrated. Existing 

SOD datasets contain many images with a single object, often centered in 

the middle of the image. Human observers may be drawn naturally to 

centered objects, but in complex scenes they can identify numerous salient 



Background 

51 

 

objects distributed throughout a scene. Therefore, the possibility of multiple 

salient object task is explored. RSR is a new area with only few methods and 

datasets. Current RSR datasets are constructed based on mouse-trajectory-

based fixations, which cannot reflect the real human visual systems. To 

address this problem, we create a large-scale instance-level saliency ranking 

dataset as well as novel model for benchmarking. From the next chapter, the 

research gaps and the corresponding proposed solutions in both SOD and 

RSR will be introduced in detail.  
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Chapter 3 Multiple Salient Object 

Detection 

3.1 Introduction 

Chapter 2 provided an overview of the relevant work in both SOD and RSR. 

There has been much progress in these areas in recent years, but techniques 

continue to be trained and tested on specific and limited datasets often 

containing quite simple scenes, with only a few salient objects. The 

performance of these methods on more complex scenes comprising many 

salient objects is untested. In this chapter we then present a new approach to 

SOD based on a U-shape architecture, the key focus of this work is the use 

of dual-space non-local blocks to provide improved performance where 

objects are spread throughout a scene by better considering long-range 

dependencies between image features. To evaluate this work, and the 

performance of existing methods on complex scenes, we curate a new dataset 

drawn from multiple existing SOD datasets. This dataset focuses exclusively 

on scenes containing numerous salient objects, specifically three or more. 

Compared to the state-of-the-art methods, we show that our approach offers 

higher performance on both the existing datasets and the new curated dataset. 

In section 3.2, the research gaps from SOD to MSOD is first illustrated. 

Then, the background related to our proposed method is introduced in 

section 3.3. Our proposed dataset is introduced in section 3.4. Section 3.5 

demonstrates the architecture of our proposed method, while section 3.6 

shows the experiments and results of our proposed model in detail. The 

content in this chapter has been accepted by the journal of Computer Vision 

and Image Understanding [103]. 
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3.2 Background 

In this section, the background works that highly inspire our proposed 

method for MSOD are introduced. 

3.2.1 Non-local Neural Networks 

Long-range dependencies are crucial in deep neural networks. Normally, 

when it comes to sequential data, recurrent operations are typically used to 

address long-range dependency issues. On the other hand, for image data, 

stacked convolutional layers with large receptive fields are commonly 

employed to model long-distance dependencies. 

The work in [35] propose a straightforward and efficient non-local 

operation to capture long-range dependencies in deep neural networks. This 

operation calculates the response of a particular position by computing the 

weighted sum of all other pixels in the input image. 

In this work, a non-local operation can be defined as follows: 

𝑦𝑖 =
1

𝐶(𝑥)
∑𝑓(𝑥𝑖, 𝑥𝑗)𝑔(𝑥𝑗)

∀𝑗

(3 − 1) 

where 𝑖 indicates the index of the output pixel and j denotes the index 

of all the other possible pixels. 𝑥 and 𝑦 are the input image and the output 

image respectively. Meanwhile, 𝑓 calculates a scalar value that represents 

the relationship between the output pixel at index 𝑖 and all other pixels at 

index 𝑗, while the function 𝑔 computes a representation of the input image 

at the position 𝑗. Finally, the result is normalized by factor 𝐶(𝑥). Compared 

to a traditional convolutional layer operation, which only considers the sum 

within a local neighborhood (e.g., 𝑖 − 1 ≤ 𝑗 ≪ 𝑖 + 1), this proposed non-

local operation is capable of effectively capturing long-range dependencies 

and global information. 
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For simplicity, this work only considers 𝑔  as a linear function: 

𝑔(𝑥𝑗) = 𝑊𝑔𝑥𝑗 . In this function, 𝑊𝑔  represents a weight matrix that is 

learned from a 1x1 convolutional layer. Then, after exploring several choices 

for function 𝑓, it was found that the dot product yields the best performance. 

The dot product function can be defined as follows: 

𝑓(𝑥𝑖, 𝑥𝑗) = 𝜃(𝑥𝑖)
𝑇∅(𝑥𝑗) (3 − 2) 

In this function, the normalization factor can be regarded as 𝐶(𝑥) = 𝑁, 

where N denotes total number of pixels in the input image x.  

In comparison, an alternative form of the function 𝑓 can be computed 

using the Gaussian function, which can be expressed as: 

𝑓(𝑥𝑖, 𝑥𝑗) = 𝑒𝜃(𝑥𝑖)
𝑇∅(𝑥𝑗) (3 − 3) 

where 𝜃(𝑥𝑖) = 𝑊𝜃𝑥𝑖  and ∅(𝑥𝑗) = 𝑊∅𝑥𝑗  are embeddings. This 

version resembles the self-attention module [36], while the 
1

𝐶(𝑥)
𝑓(𝑥𝑖, 𝑥𝑗) 

corresponds to the softmax operation. Specifically, 𝑦 =

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑥𝑇𝑊𝜃
𝑇𝑊∅𝑥)𝑔(𝑥). 

This work embeds the Eq. (3-1) within a non-local block, which can be 

defined as follows: 

𝑧𝑖 = 𝑊𝑧𝑦𝑖 + 𝑥𝑖 (3 − 4) 

where 𝑦𝑖 has been given in Eq. (3-1) and +𝑥𝑖 demonstrates a residual 

connection.  

In conclusion, this research introduces a non-local operation that can be 

integrated into various deep learning architectures. The non-local block 

proposed in this work effectively captures long-range dependencies by 

computing relationships between any two pixels in an image. By 

incorporating global information, it enhances the performance of baseline 

models across different tasks. 
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3.2.2 Dual Attention Network for Scene 

Segmentation 

This study [37] explores into the non-local operations with self-attention 

mechanisms for scene segmentation. In detail, it argues that prior research 

only employed multi-scale feature fusion mechanisms and convolutional 

operation for feature capture, which can only deal with the local receptive 

fields. To solve the problem, the study introduces two kinds of attention 

modules using the self-attention mechanism to capture the global contextual 

information, which are Position Attention Module and the Channel Attention 

Module. 

The whole process of the Dual Attention Network is demonstrated. 

Specifically, a pre-trained residual network with a dilated operation serves 

as the backbone for this architecture. The architecture conducts down-

sampling operations within the backbone and utilizes dilated convolutions 

in the residual network's final two blocks. The backbone's output is initially 

processed by two convolutional layers for dimension reduction, and 

subsequently, it is fed into the newly proposed Position Attention Module 

and Channel Attention Module. Ultimately, the outputs derived from these 

two modules are combined to achieve improved feature representations. 

The position attention module is designed on the spatial space based on 

self-attention mechanism. For a provided feature map, A, with dimensions  

𝐴 ∈ 𝑅𝐶×𝐻×𝑊, A will be firstly fed into 3 convolutional layers, resulting in 

three feature maps {𝐵, 𝐶, 𝐷} ∈ 𝑅𝐶𝑥𝐻𝑥𝑊. Then, these maps are then reshaped 

to  RC×N , where N denotes the number of pixels in a channel, e.g., 𝑁 =

𝐻 ×𝑊. After that, a matrix multiplication operation is performed between 

the transpose of B and C. This is then followed by a softmax layer to obtain 

the spatial attention map 𝑆 ∈ 𝑅𝑁×𝑁, which can be defined as follows: 
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𝑠𝑗𝑖 =
𝑒𝑥𝑝(𝐵𝑖 ∙ 𝐶𝑗)

∑ 𝑒𝑥𝑝(𝐵𝑖 ∙ 𝐶𝑗)
𝑁
𝑖=1

(3 − 5) 

In this equation, 𝑠𝑗𝑖 here indicates the 𝑖𝑡ℎ position’s response on 𝑗𝑡ℎ 

position. In this case, when the similarity between two positions is high, 

there will be a greater correlation observed. 

Simultaneously, a matrix multiplication is conducted between the 

transpose of 𝑆  and D. The result of this operation is reshaped back to 

𝑅𝐶𝑥𝐻𝑥𝑊 . Eventually, a weight parameter α and a residual operation are 

employed to generate the final output 𝐸 ∈ 𝑅𝐶𝑥𝐻𝑥𝑊: 

𝐸𝑗 = 𝛼∑(𝑠𝑗𝑖𝐷𝑖) + 𝐴𝑗

𝑁

𝑖=1

(3 − 6) 

As inferred from the Eq. 3-6, each position value in 𝐸 is a weighted 

summation of all the features. This illustrates the Position Attention 

Module's capability to capture global spatial information.  

To explore the interdependencies amongst various channel maps, this 

paper introduces a novel Channel Attention Module. 

Compared to the Position Attention Module, Channel Attention Module 

computes the attention map 𝑋 , with dimensions 𝑋 ∈ RC×C , without the 

need of convolutional layers. Initially, A is reshaped into 𝑅𝐶×𝑁. Following 

this, a matrix multiplication operation is conducted between A and its 

transpose. A softmax layer is then applied, resulting in the generation of the 

channel attention map. This process can be mathematically represented as: 

𝑥𝑗𝑖 =
𝑒𝑥𝑝(𝐴𝑖 ∙ 𝐴𝑗)

∑ 𝑒𝑥𝑝(𝐴𝑖 ∙ 𝐴𝑗)
𝐶
𝑖=1

(3 − 7) 

where 𝑥𝑗𝑖  demonstrates the 𝑖𝑡ℎ  channel’s response on 𝑗𝑡ℎ  channel. 

Then, a matrix multiplication operation is carried out between the transpose 

of 𝑋  and A, followed by a reshape operation. Similar to the Position 

Attention Module, a parameter β and an element-wise addition operation are 
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used to derive the final output E with dimensionsRCxHxW: 

𝐸𝑗 = 𝛽∑(𝑥𝑗𝑖𝐴𝑖) + 𝐴𝑗

𝐶

𝑖=1

(3 − 8) 

In conclusion, this study introduces an innovative structure, termed the 

Dual Attention Network, designed specifically for image segmentation. Two 

novel modules, namely the Position Attention Module and the Channel 

Attention Module, are proposed with the self-attention mechanism. The 

architecture is special designed to capture the global dependencies in both 

spatial and channel space, thereby facilitating the improved generation of 

segmentation maps. 

When compared to traditional image segmentation works, where the 

model generates segmentation maps with several objects from various 

classes labeled, SOD also produces segmentation maps but only highlights 

the salient object area. Therefore, there are many similarities between the 

semantic segmentation and SOD areas. These similarities greatly inspire my 

investigation into the role of global dependencies information in the SOD 

area. 

3.2.3 Discussion 

Regarding MSOD task, the given visual scenes usually not only contain a 

single salient object. Traditional popular SOD methods typically generate 

results with missing salient objects in the complicated visual scenarios with 

multiple salient objects. Inspired by the utilization of non-local information 

introduced in Section 3.2.1 and Section 3.2.2, the following chapters will 

investigate the use of non-local information for MSOD task. Compared to 

convolutional operation with limited receptive field, non-local information 

helps to give a global receptive field, reducing the risks of missing salient 

objects. 
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3.3 Research Gaps - From Salient Object Detection 

to Multiple Salient Object Detection 

Although remarkable progress has been made, there still remain many open 

challenges. Existing SOD datasets contain many images with a single object, 

often centered in the middle of the image. Human observers may be drawn 

naturally to centered objects, but in complex scenes they can identify 

numerous salient objects distributed throughout a scene. On the other hand, 

many existing saliency techniques are based on traditional U-shaped 

networks that only involve convolutional operations processing local 

neighborhoods. The size of the receptive field is critical in locating and 

segmenting salient objects across the image. Larger kernels aid in these 

segmentation tasks, but the experimental receptive fields are usually smaller 

than the ones in theory [22][32][54]. This is likely to limit the performance 

of SOD networks, especially when objects are spatially separated. Long-

range dependencies have been proven to play a crucial role in various 

classification tasks [35], and this is also applicable for pixel-level 

segmentation tasks like SOD. Current methods fail to leverage long-range 

pixel-wise or channel-wise relationships among features in an image, 

resulting in a reduced capability to address the issue of multiple salient 

objects. 

Recent state-of-the-art SOD approaches tackle salient object detection 

by refining and combining multi-level features into feature representations 

[16][17][23][22][32], incorporating additional losses into frameworks to 

provide structural information [20][19], or applying attention mechanisms 

to filter out redundant information and focus on valuable features 

[18][26][20][23]. 

However, existing SOD methodologies rarely take into account long-

range dependencies, which involve information sharing across spatially 
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distant pixels or between channel space feature maps. Among the few that 

do, Li et al., 2020 [55] and Sun et al.,2019 [56] deployed self-attention 

mechanisms to capture spatial long-range contexts. Zhou et al., 2020 [57] 

incorporated a multi-type of self-attention to capture pixel-level 

relationships for saliency detection in degraded images. Liu et al., 2020 [58] 

devised a self-mutual attention to seize long-range contextual dependencies 

in RGB-D. Despite these efforts, none have utilized channel-wise 

dependencies as we do here, and there is no ideal solution for MSOD. This 

has previously been hard to examine; existing public datasets contain some 

multi-object instances, but the frequency of these varies substantially. We 

have curated a dataset specifically for this purpose, allowing us to 

concentrate on this issue. 

In Chapter 3, we propose a novel architecture for MSOD that considers 

long-range dependencies in both spatial and channel space. Drawing 

inspiration from existing work [37], we propose a non-local guidance 

module (NLGM), comprised of several dual-space non-local blocks 

(DSNLBs) to capture pixel-wise and channel-wise relationships. Features at 

each location are aggregated by a weighted sum of all features in spatial 

space, while each channel map is updated by a weighted integration of all 

interconnected channel maps. Different from previous work [37], we stack 

several DSNLBs to progressively capture non-local features. These non-

local features and bottom-up convolutional features are fused in the decoder 

via feature fusion gates that manage the passage of information to the next 

stage of the decoder. This includes salient edge supervision to further 

improve the quality of the saliency maps. We demonstrate the improved 

performance of our network on various datasets, focusing also on MSOD 

problems by evaluating it on a dataset composed solely of complex multi-

saliency images.  
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3.4 Proposed Dataset 

Current popular SOD datasets include DUT-OMRON (Yang et al., 2013 [7]), 

HKU-IS (Li and Yu, 2015 [61]), DUTS (Wang et al., 2017 [59]), ECSSD 

(Yan et al., 2013 [60]), SOD (Movahedi and Elder, 2010 [62]). Specifically, 

the DUT-OMRON dataset consists of 5168 high-quality images featuring 

one or more salient objects and complex backgrounds. The HKU-IS contains 

4447 challenging images, some of which have several disconnected salient 

objects. The DUTS dataset is the largest SOD benchmark, encompassing 

10553 training images and 5019 testing images with various scales and 

locations. The ECSSD dataset includes 1000 images with semantically 

meaningful structures. The SOD dataset includes 300 challenging images. 

Most of the images in these datasets only feature a single salient object. 

Although scenes with multiple salient objects are found in each dataset, their 

frequency varies from a minimum of 9.8% in ECSSD to 50.3% in HKU-IS, 

with an average of 28% across all datasets. In these multi-object images, the 

majority contain only two objects. 

To specifically evaluate the performance of various state-of-the-art 

SOD models in MSOD task, we have curated a new dataset, namely MSOD. 

It consists of the most challenging multi-object scenes from the five existing 

datasets. To better evaluate our and other methods' effectiveness on multi-

object images, we only include scenes with three or more salient objects. The 

complete MSOD dataset encompasses 300 test images including 1342 

objects in total. The number of objects per image ranges from 3 to 19, as 

shown in Figure 3-1.  
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Figure 3-1 The distribution of the proposed MSOD dataset. 

The dataset includes a diverse range of object classes and a varying 

number of these objects spread across each image.  

 

Figure 3-2 Image examples in our proposed MSOD dataset. 
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Figure 3-3 Groundtruth examples in our proposed MSOD dataset. 

As depicted in Figure 3-2 and Figure 3-3, we provide examples of the 

images and their corresponding ground truths. It is clear that all the images 

presented encompass multiple salient objects. The multiple salient objects in 

each image raise the difficulty level, which pose a challenging scenario for 

all the SOD models. Therefore, our proposed dataset can be used to test the 

robustness and effectiveness of current state-of-the-art models and our 

proposed method in handling complex visual scenarios. 
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3.5 Proposed Method 

 

Figure 3-4 The overall pipeline of our proposed approach, here shown using 

a VGG backbone. The red, orange, and green boxes capture saliency features, 

non-local features, and edge features respectively. Element-wise 

multiplication operates between each pair of ERB-DSNLB (edge and non-

local features) and ERB-Conv (edge and saliency features). Our final 

prediction map is generated based on the fusion of 6 multi-scale saliency 

features in top-down pathway. 

The architecture of our proposed method is shown in Figure 3-4. Our model 

is based on a U-shaped Fully Convolutional Network (FCN) that 

incorporates a bottom-up pathway (the backbone) and a top-down pathway. 

Similar to most deep SOD models, we employ the VGG network to 

demonstrate our proposed structure. Following the approach of EGNet [21] 

and DSS [1], we truncate the last three fully connected layers and connect 

an additional side path to the last pooling layer of VGG. This provides six 

outputs from the bottom-up pathway, representing the multi-level features 

captured from Conv1-2 to Conv6-3, which can be defined as a feature set 

𝑆 = {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6}. 

The top-down pathway processes multi-scale saliency features through 

a series of convolutional blocks, each consisting of three convolutional 

layers and ReLU activations. This saliency feature set can be represented as 
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𝐹 = {𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6}, where 𝐹6 is the saliency feature output by the 

sixth convolutional block (the rightmost Conv in Figure 3-4), and so forth. 

Additionally, we apply deep supervision to each enhanced feature 𝐹𝑖 

using a cross-entropy loss. A convolutional layer 𝐷𝐹
𝑖   is used on each 

enhanced feature to transform multi-channel features into a single-channel 

prediction map. Therefore, the supervision can be expressed as: 

𝐿𝐹
𝑖 (𝐹𝑖;𝑊𝐷𝐹

𝑖 ) = − ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 1|𝐹𝑖;𝑊𝐷𝐹
𝑖 )

𝑗∈𝑌+

 

− ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 0|𝐹𝑖;𝑊𝐷𝐹
𝑖 )

𝑗∈𝑌−

, 𝑖 ∈ [1,6] (3 − 9) 

where  𝑃𝑟𝑒𝑑(𝑦𝑗 = 1|𝐹𝑖;𝑊𝐷𝐹
𝑖 )  denotes the prediction map and each 

value demonstrates the salient region confidence for the pixel. 𝑌+ and 𝑌− 

denotes the salient pixels set and the non-salient pixels set respectively, while 

𝑊𝐷𝐹
𝑖  denotes the parameters of the convolutional layers 𝐷𝐹

𝑖 . 

3.5.1 Non-Local Guidance Module 

In this module, we model long-range dependencies in both the spatial and 

channel spaces. Inspired by Fu et al., 2019 [37], we incorporate dual-space 

non-local information within two parallel pathways that capture pixel-wise 

contextual information and channel-wise relationships. Unlike Fu et al., 

2019 [37], who directly appended a single attention module on top of a Fully 

Convolutional Network (FCN) for scene segmentation, our NLGM 

comprises 5 stacked Dual-Space Non-Local Blocks (DSNLBs), each at a 

different stage of the top-down pathway. We select the feature map 𝑆5 

extracted from Conv5-3 as the input for the NLGM, as it holds high-level 

semantic information and still contains more spatial information than 𝑆6. 

Figure 3-5 illustrates the detailed structure of the first DSNLB.  
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Figure 3-5 The architecture of a dual-space non-local block (DSNLB). C, H 

and W demonstrate the channel number, height and width of given feature 

map respectively and K = H × W. 

3.5.1.1 Spatial-Space Non-Local Block 

For a given feature map 𝐴 ∈ 𝑅𝐶×𝐻×𝑊 , A will be firstly fed into 3 

convolutional layers to generate three feature maps {𝐵, 𝐶, 𝐷} ∈ RCxHxW . 

Then, B, C and D will be reshaped to 𝑅𝐶×𝐾 and K is the number of pixels in 

a channel, e.g., 𝐾 = 𝐻 ×𝑊. After that, a matrix multiplication operation 

between the transpose of B and C will be done and followed by a softmax 

layer to get the spatial attention map 𝑆 ∈ 𝑅(𝐻𝑥𝑊)𝑥(𝐻𝑥𝑊) , which can be 

defined as follows: 

𝑠𝑗𝑖 =
𝑒𝑥𝑝(𝐵𝑖 ∙ 𝐶𝑗)

∑ 𝑒𝑥𝑝(𝐵𝑖 ∙ 𝐶𝑗)
𝐾
𝑖=1

(3 − 10) 

where 𝑠𝑗𝑖 here indicates the 𝑖𝑡ℎ position’s response on 𝑗𝑡ℎ position. 

In this case, if the similarity between two positions is high, a greater 

correlation will be witnessed. 
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Meanwhile, a matrix multiplication will be done between the transpose 

of 𝑆 and D, of which the result will be reshaped to 𝑅𝐶𝑥𝐻𝑥𝑊. Different from 

the work in [37], we only use the residual operation without the weight 

parameter to get 𝑆𝑁 ∈ 𝑅𝐶𝑥𝐻𝑥𝑊: 

𝑆𝑁𝑗 =∑(𝑠𝑗𝑖𝐷𝑖) + 𝐴𝑗

𝐾

𝑖=1

(3 − 11) 

It can be found that the value of each position of 𝑆𝑁 is a weighted sum 

of all the positions.  

3.5.1.2 Channel-Space Non-Local Block 

A is firstly reshaped to 𝑅𝐶×𝐾. Then, a matrix multiplication between A and 

the transpose of it has been done. After a softmax layer, the channel attention 

map will be obtained, which can be defined as: 

𝑥𝑗𝑖 =
𝑒𝑥𝑝(𝐴𝑖 ∙ 𝐴𝑗)

∑ 𝑒𝑥𝑝(𝐴𝑖 ∙ 𝐴𝑗)
𝐶
𝑖=1

(3 − 12) 

where 𝑥𝑗𝑖  demonstrates the 𝑖𝑡ℎ  channel’s response on 𝑗𝑡ℎ  channel. 

Then, a matrix multiplication between the transpose of 𝑋 and A are done 

followed by a reshape operation. Similar to position attention module, an 

element-wise sum operation is used to obtain the final output 𝐶𝑁 ∈ 𝑅𝐶𝑥𝐻𝑥𝑊: 

𝐶𝑁𝑗 =∑(𝑥𝑗𝑖𝐴𝑖) + 𝐴𝑗

𝐶

𝑖=1

(3 − 13) 

Finally, an element-wise sum operation is carried out between the 

outputs from Spatial Attention Non-Local Block and Channel Attention 

Non-Local Block and followed by a convolutional layer 𝐷𝑁
𝑖  to get the final 

result 𝑁𝑖: 

𝑁𝑖 = 𝐷𝑁
𝑖 (𝑆𝑁𝑖 + 𝐶𝑁𝑖) (3 − 14) 

Multi-Hop Communications: 

The NLGM in our model comprises five Dual-Space Non-Local Blocks 

(DSNLBs). Each of these blocks generates non-local features, denoted as 
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𝑁𝑖, at each stage of the top-down pathway. By stacking several DSNLBs, 

these non-local features are progressively refined through a multi-hop 

communication mechanism between features that share affinity in both 

channel and spatial dimensions. 

In this manner, saliency-specific semantic information is distributed 

across the image space and feature space. The non-local features, with a 

global view, are better equipped to handle the complexities of diverse scenes 

and the detection of multiple salient objects. This is facilitated by their 

enhanced receptive field, allowing them to process a larger context within 

the image and thus improve the robustness and performance of SOD tasks, 

especially in complex scenarios with multiple salient objects. 

3.5.2 Feature Fusion 

3.5.2.1 Edge Refinement Module 

Inspired by the commonly used boundary detection technique in SOD 

models (Qin et al., 2019 [19]; Zhao et al., 2019 [21]), salient edge features 

are incorporated into the feature fusion gate to support the training of non-

local and salient features. 

It is acknowledged that the low-level features in shallower layers 

typically possess spatial information, including attributes like edges and 

corners, useful for recreating object boundaries. In comparison, the complex, 

high-level features in the deeper layers hold semantic information that's ideal 

for identifying the salient object. Consequently, we combine the low-level 

feature 𝑆2  and high-level feature 𝑆5  to serve as input for the Edge 

Refinement Guiding Module, which can be symbolized as: 

𝐸𝑖𝑛𝑝𝑢𝑡 = 𝑆
2 +𝑈𝑝(𝑆5; 𝑆2) (3 − 15) 

where 𝑈𝑝 (∗; 𝑆2) is the bilinear interpolation operation used to up-
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sample ∗ to have the same size as 𝑆2. 

Each Edge Refinement Block consists of a convolutional layer followed 

by a ReLU layer to enhance the edge feature. For simplicity, we denote the 

corresponding convolutional layer and ReLU layer with 𝐶𝐸
𝑖  . In the Edge 

Refinement Guiding Module, we stack five Edge Refinement Blocks and the 

resulting edge feature from each block can be denoted as: 

𝐸𝑖 = {
𝐶𝐸
𝑖 (𝐸𝑖+1), 𝑖 = 1,2,3,4

𝐶𝐸
5(𝐸𝑖𝑛𝑝𝑢𝑡), 𝑖 = 5

(3 − 16) 

Meanwhile, to effectively capture the edge information, we employ 

intermediate supervision for the edge feature. A convolutional layer, denoted 

as 𝐷𝐸
𝑖  , is utilized to transform the generated edge feature into a single-

channel prediction map. The supervision here can be expressed as: 

𝐿𝐸
𝑖 (𝐸𝑖;𝑊𝐷𝐸

𝑖 ) = − ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 1|𝐸
𝑖;𝑊𝐷𝐸

𝑖 )

𝑗∈𝑍+

 

− ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 0|𝐸𝑖;𝑊𝐷𝐸
𝑖 )

𝑗∈𝑍−

, 𝑖 ∈ [1,5] (3 − 17) 

where 𝑍+ and 𝑍− denote the edge pixels set of salient regions and 

background pixels set respectively. 𝑊𝐷𝐸
𝑖   denotes the parameters of the 

convolutional layer 𝐷𝐸
𝑖 . 

3.5.2.2 Feature Fusion Gate 

The majority of current SOD models directly fuse various features without 

distinction, which can introduce redundancy and, to some extent, undermine 

the performance of SOD models. Hence, it is vital to filter out redundant 

information and emphasize the useful information. As demonstrated in 

Figure 3-6, our proposed model incorporates a Feature Fusion Gate (FFG) 

to selectively fuse features drawn from three distinct sources. 

Salient edge features are integrated with salient and non-local features 

through element-wise multiplication. This procedure aims to emphasize the 
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activations that are shared between feature maps, promoting 

complementarity between the non-local, saliency and edge features. Features 

that align across modules will experience accelerated training, with 

activations of those that are less relevant to other blocks reduced. The 

subsequent salient and non-local features are then merged using channel-

wise attention. Firstly, we standardize the spatial size and channel count: 

𝑁𝑅𝑒𝑓𝑖𝑛𝑒𝑑
𝑖 = 𝑈𝑝(𝑇𝑟𝑎𝑛𝑠(𝑁𝑖; 𝑆𝑖); 𝑆𝑖), 𝑖𝜖[1,5] (3 − 18) 

𝐹𝑅𝑒𝑓𝑖𝑛𝑒𝑑
𝑖 = 𝑈𝑝(𝑇𝑟𝑎𝑛𝑠(𝐹𝑖; 𝑆𝑖); 𝑆𝑖+1), 𝑖𝜖[2,6] (3 − 19) 

𝐸𝐺𝑢𝑖𝑑𝑖𝑛𝑔
𝑖 = 𝑈𝑝(𝑇𝑟𝑎𝑛𝑠(𝐸𝑖; 𝑆𝑖); 𝑆𝑖), 𝑖𝜖[1,5] (3 − 20) 

where 𝑈𝑝(∗; 𝑆𝑖), 𝑇𝑟𝑎𝑛𝑠 (∗; 𝑆𝑖) denote Up-sampling the feature map 

∗ to has the same size as 𝑆𝑖 and convert the channel number of ∗ to has 

the same channel number of 𝑆𝑖 respectively. 

 

Figure 3-6 The structure of a feature fusion gate. N, E, F and S demonstrate 

non-local feature, edge feature, saliency feature and the corresponding side 

output of bottom-up pathway respectively. 

Then, the fused feature 𝐹𝑓𝑢𝑠𝑖𝑜𝑛
𝑖  can be defined as: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛
𝑖 = 𝐶𝐴 (𝐶𝑎𝑡(𝑁𝑅𝑒𝑓𝑖𝑛𝑒𝑑

𝑖 ⊗𝐸𝐺𝑢𝑖𝑑𝑖𝑛𝑔
𝑖 , 𝐹𝑅𝑒𝑓𝑖𝑛𝑒𝑑

𝑖+1 ⊗𝐸𝐺𝑢𝑖𝑑𝑖𝑛𝑔
𝑖 , 𝑆𝑖)) , 𝑖𝜖[1,5](3 − 21) 

where ⊗  denotes the element-wise multiplication, 𝐶𝑎𝑡  denotes the 

concatenation operation and 𝐶𝐴  denotes the channel-wise attention 
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operation, which can be formulated as: 

𝐶𝐴(∗, 𝜃𝑐𝑎) =∗⋅ (𝜎 (𝑓𝑐2 (𝛿 (𝑓𝑐1(𝑎𝑝(∗, 𝜃1))) , 𝜃2))) (3 − 22) 

Here, 𝜃𝑐𝑎  demonstrates the parameters in channel-wise attention, 

while 𝑎𝑝 stands for a global average pooling layer and 𝑓𝑐 refers to a fully-

connected layer. 𝜎  and 𝛿  represent the sigmoid function and ReLU 

functions respectively. Here, the feature fusion gate offers a mechanism to 

choose the most beneficial channels for saliency from each module, thereby 

fusing features in a distinctive manner. 

As shown in Figure 3-7, our non-local features can highlight the salient 

object locations across the visual scene, while the edge features can clearly 

define the boundaries of different objects. By selectively fusing different 

features, multiple salient objects are correctly defined with clear boundaries.  

 

Figure 3-7 Feature visualization of non-local features, edge features and the 

refined features after feature fusion. 

3.5.3 Saliency Inference 

To maximize the use of multi-scale saliency features, we generate the final 

prediction map in a hierarchical fashion based on the fusion of six saliency 

features 𝐹𝑖, in a coarse-to-fine manner. This multi-scale fusion strategy also 

helps reduce the risk of missing salient objects within multi-saliency visual 
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scenes. Complementary features 𝐹2, 𝐹3, 𝐹4, 𝐹5, 𝐹6  are upsampled and 

convolved to match the spatial and feature size of 𝐹1 . They are then 

combined using element-wise addition to generate a final feature 𝐹𝑓𝑖𝑛𝑎𝑙. A 

convolutional layer, 𝐷𝑓𝑖𝑛𝑎𝑙, is used to transform the feature map 𝐹𝑓𝑖𝑛𝑎𝑙 into 

a single-channel prediction map, which is trained using cross entropy: 

𝐿𝑓𝑖𝑛𝑎𝑙(𝐹𝑓𝑖𝑛𝑎𝑙;𝑊𝐷𝑓𝑖𝑛𝑎𝑙) = − ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 1|𝐹𝑓𝑖𝑛𝑎𝑙;𝑊𝐷𝑓𝑖𝑛𝑎𝑙)

𝑗∈𝑌+

 

− ∑ 𝑙𝑜𝑔𝑃𝑟𝑒𝑑(𝑦𝑗 = 0|𝐹𝑓𝑖𝑛𝑎𝑙;𝑊𝐷𝑓𝑖𝑛𝑎𝑙)

𝑗∈𝑌−

(3 − 23) 

where 𝑌+ and 𝑌− denotes the salient pixels set and the non-salient 

pixels set respectively and 𝑊𝐷𝑓𝑖𝑛𝑎𝑙  denotes the parameters of the 

convolutional layers 𝐷𝑓𝑖𝑛𝑎𝑙. 

Therefore, the total loss of the proposed model can be expressed as: 

𝐿𝑇𝑜𝑡𝑎𝑙 =∑𝐿𝐹
𝑖 (𝐹𝑖;𝑊𝐷𝐹

𝑖 )

𝑖=6

𝑖=1

+∑𝐿𝐸
𝑖 (𝐸𝑖;𝑊𝐷𝐸

𝑖 ) +

𝑖=5

𝑖=1

𝐿𝑓𝑖𝑛𝑎𝑙(𝐹𝑓𝑖𝑛𝑎𝑙;𝑊𝐷𝑓𝑖𝑛𝑎𝑙)(3 − 24) 

3.6 Experiment 

3.6.1 Datasets and Evaluation Metrics 

In order to demonstrate the performance of our proposed approach, we 

evaluate our model using five commonly used benchmark datasets. These 

include DUT-OMRON (Yang et al., 2013 [7]), HKU-IS (Li and Yu, 2015 

[61]), DUTS (Wang et al., 2017 [59]), ECSSD (Yan et al., 2013 [60]), SOD 

(Movahedi and Elder, 2010 [62]) and our proposed dataset MSOD.  

For evaluating performance, we employ three broadly used evaluation 

metrics: F-measure, mean absolute error (MAE), and the structure-based 

metric S-measure [63]. Here, the F-measure is a weighted combination of 

precision and recall, which can be articulated as: 
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𝐹𝛽 =
(1 + 𝛽2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(3 − 25) 

Following most of the SOD methods [21] [67] [23] [68] [25], 𝛽2 is 

assigned a value of 0.3 to place a higher emphasis on precision. Following 

most of the SOD models, we report the maximum 𝐹𝛽  derived from all 

precision-recall pairs. Nonetheless, F-measure doesn't evaluate the true 

negative pixels. To address this issue, we use MAE to calculate the mean 

absolute error on a pixel level, which can be defined as: 

𝑀𝐴𝐸 =
1

𝑊 × 𝐻
∑∑|𝑃(𝑖, 𝑗) − 𝑌(𝑖, 𝑗)|

𝐻

𝑗=1

𝑊

𝑖=1

(3 − 26) 

Here, 𝑊  and 𝐻  represent the width and the height of the images, 

while 𝑃  and 𝑌  stand for the prediction map and the ground truth, 

respectively. 

The above-mentioned metrics are computed at the pixel-wise level, 

which may not completely capture the structural information. The S-measure 

is designed to assess the region-aware 𝑆𝑟 and object-aware 𝑆𝑜 structural 

similarities between the real-valued saliency map and the binary ground 

truth, which can be articulated as: 

𝑆 = 𝛼 × 𝑆0 + (1 − 𝛼) × 𝑆𝑟 (3 − 27) 

Where 𝛼 is empirically set to 0.5. 

3.6.2 Implementation Details 

Our proposed method is implemented in PyTorch and trained on the DUTS-

TR dataset. The salient edge ground truth is calculated using the Sobel 

operator. To compare our method against other state-of-the-art techniques, 

we train our model using both VGG and ResNet-50 as backbones. The 

parameters of these backbones are initialized using pretrained models on 

ImageNet [64], while the weights of the newly added layers are randomly 
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initialized. We utilize the Adam optimize [65] with an initial learning rate of 

2e-5, which is reduced by a factor of 10 after 30 epochs. Our model is trained 

for a total of 40 epochs, a process which typically takes three days on a single 

2080Ti GPU, with a forward pass taking approximately 0.02 seconds. 

3.6.3 Quantitative Comparisons with the State-of-

the-Art 

We compare our proposed method against 14 recent state-of-the-art methods: 

DSS (Hou et al., 2017 [1]), BDMP (Zhang et al., 2018a [17]), PAGR (Zhang 

et al., 2018b [18]), RAS (Chen et al., 2018 [26]), BASNet (Qin et al., 2019 

[19]), AFNet (Feng et al., 2019 [20]), PiCANet (Liu et al., 2018 [66]), 

PoolNet (Liu et al., 2019 [22]), EGNet (Zhao et al., 2019 [21]), CPD (Wu et 

al., 2019a [67]), SCRN (Wu et al., 2019b [23]), GateNet (Zhao et al., 2020 

[68]), MINet (Pang et al., 2020 [25]), and SCWSSOD (Yu et al., 2021 [69]). 

To ensure a fair comparison, all the saliency maps of competing methods 

were either generated by pre-trained models or pre-produced by the 

respective authors. Note the competitive SOD methods are also trained on 

DUTS-TR dataset. 
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Model 

ECSSD DUTS-TE HKU-IS 

1000 images 5019 images 1447 images 

MaxF ↑   MAE ↓ S ↑ MaxF ↑   MAE ↓ S ↑ MaxF ↑   MAE ↓ S ↑ 

  VGG-Backbone 

DSS (CVPR2017) 0.9207 0.0517 0.8821 0.8251 0.0565 0.8237 0.9161 0.0401 0.8783 

BDMP (CVPR2018) 0.9284 0.0446 0.9109 0.8514 0.049 0.8616 0.9205 0.0389 0.9065 

PAGR (CVPR2018) 0.9259 0.0608 0.8883 0.854 0.0555 0.8383 0.9187 0.0475 0.8891 

RAS (ECCV2018) 0.9211 0.0564 0.8928 0.8311 0.0594 0.8385 0.9128 0.0454 0.8874 

BASNet (CVPR2019) 0.9425 0.037 0.9162 0.8594 0.0476 0.8656 0.9297 0.0329 0.9077 

AFNet (CVPR2019) 0.935 0.0418 0.9134 0.8628 0.0458 0.8666 0.9252 0.0355 0.9058 

Ours 0.9485 0.0344 0.9261 0.8894 0.0381 0.8878 0.935 0.03 0.9167 

  ResNet-Backbone 

PiCANet (CVPR2018) 0.9349 0.0464 0.917 0.8597 0.0506 0.8686 0.9193 0.0437 0.9045 

PoolNet (CVPR2019) 0.9489 0.035 0.9263 0.8891 0.0368 0.8865 0.9358 0.03 0.9187 

EGNet (ICCV2019) 0.9474 0.0374 0.9247 0.8885 0.0392 0.8868 0.9352 0.0309 0.9179 

CPD (CVPR2019) 0.9393 0.0371 0.9181 0.8653 0.0434 0.8689 0.9252 0.0339 0.9064 

SCRN (ICCV2019) 0.9496 0.0375 0.9272 0.8875 0.0398 0.8847 0.9351 0.0332 0.9169 

GateNet (ECCV2020) 0.9454 0.0401 0.9198 0.8873 0.0401 0.8847 0.9334 0.0331 0.9153 

MINet (CVPR2020) 0.9475 0.0335 0.9249 0.8836 0.0372 0.8837 0.9353 0.0283 0.9197 

SCWSSOD* (AAAI2021) 0.9145 0.0489 0.8818 0.844 0.0487 0.8405 0.9111 0.0375 0.8824 

Ours 0.9519 0.0325 0.9297 0.8967 0.0358 0.8946 0.9389 0.0293 0.9218 

Table 3-1 Quantitative comparison with other state-of-the-art methods on 3 

widely used relatively easy datasets. ↑ and ↓ indicate higher or lower is better 

respectively and * denotes weakly-supervised methods. The best three 

results among both backbones are marked as red, blue and cyan. Our method 

achieves top results under 3 evaluation metrics across all datasets without 

any pre-processing and post-processing. 

As shown in Table 3-1, it demonstrates the quantitative comparison 

with other state-of-the-art methods based on 3 relatively easy dataset: 

ECSSD, DUTS-TE, HKU-IS. 

3.6.3.1 ECSSD 

In terms of MaxF, our proposed Resnet-based method rank 1st , while the 

SCRN method rank 2nd, following by the PoolNet, with the MaxF scores 

being 0.9516, 0.9496, 0.9489 respectively. When it comes to MAE, our 

proposed ResNet-based method and VGG-based method rank 1st and 3rd 
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(0.0325 and 0.0344 respectively), MINet ranks the 2nd (0.0355). Regarding 

S-measure, the top-performing models are based on the ResNet-Backbone 

architectures. Our model secured the first place with an impressive S-

measure of 0.9297. Not far behind was the SCRN mode, achieving an S-

measure of 0.9272. The third position was held by the PoolNet mode, with 

an S-measure of 0.9263. 

3.6.3.2 DUTS-TE 

For the MaxF measure, the model with the highest performance is ours using 

the ResNet-Backbone architecture, achieving a MaxF score of 0.8967. This 

is closely followed by our VGG-based model, which gets a MaxF measure 

of 0.8894. The third highest MaxF performance is held by the PoolNet model, 

scoring 0.8891. Looking at the MAE measure, the model with the best 

performance is again ours with the ResNet-Backbone architecture, having 

an MAE score of 0.0358. PoolNet is the next best performing model, with 

an MAE score of 0.0368. MINet takes the third spot with an MAE measure 

of 0.0372. As for the S measure, the top performing model is ours with the 

ResNet-Backbone architecture, yielding an S score of 0.8946. Followed by 

our VGG-based model with an S measure of 0.8878. The third spot is taken 

by the EGNet model, with an S measure of 0. 8868. 

3.6.3.3 HKU-IS 

For the MaxF measure, the top performing model is ours with the ResNet-

Backbone architecture, achieving a MaxF score of 0.9389. Following in 

second place is PoolNet, with a MaxF score of 0.9358. In third place is 

MINet, scoring 0.9353 in MaxF. Regarding the MAE measure, where lower 

is better, MINet with the ResNet-Backbone architecture leads the group with 

an MAE score of 0.0283. The second best performance in this category is 

seen from our model, with an MAE measure of 0.0293. The third place is 
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held by PoolNet and our VGG model together with same MAE score of 

0.0300. In terms of the S measure, our model with the ResNet-Backbone 

architecture once again comes out on top with an S score of 0.9218. 

Following closely in second place is MINet, scoring 0.9197 in S measure. 

PoolNet takes the third position with an S score of 0.9187. 

Model 

DUT-O SOD MSOD 

5168 images 300 images 300 images 

MaxF ↑   MAE ↓ S ↑ MaxF ↑   MAE ↓ S ↑ MaxF ↑   MAE ↓ S ↑ 

  VGG-Backbone 

DSS (CVPR2017) 0.7812 0.0628 0.7899 0.841 0.1201 0.7478 0.824 0.055 0.7806 

BDMP (CVPR2018) 0.7739 0.0636 0.8091 0.8517 0.1057 0.7833 0.8401 0.0538 0.8379 

PAGR (CVPR2018) 0.7706 0.0709 0.7751 0.8358 0.1447 0.7137 0.8204 0.0627 0.7852 

RAS (ECCV2018) 0.7864 0.0617 0.8141 0.8473 0.1225 0.7608 0.837 0.0597 0.8167 

BASNet (CVPR2019) 0.8052 0.0565 0.8361 0.8487 0.1119 0.766 0.8396 0.0541 0.8306 

AFNet (CVPR2019) 0.797 0.0573 0.8258 0.8499 0.1087 0.77 0.8276 0.0547 0.8191 

Ours 0.8194 0.0541 0.8421 0.8761 0.0996 0.7922 0.8531 0.0478 0.841 

  ResNet-Backbone 

PiCANet (CVPR2018) 0.8027 0.0653 0.8318 0.8528 0.1024 0.7871 0.819 0.0641 0.8223 

PoolNet (CVPR2019) 0.8048 0.0539 0.8309 0.8706 0.1034 0.7854 0.8546 0.0459 0.8429 

EGNet (ICCV2019) 0.8152 0.0531 0.8408 0.8778 0.0969 0.8 0.8516 0.047 0.8402 

CPD (CVPR2019) 0.7964 0.056 0.8247 0.8568 0.1095 0.7646 0.8241 0.0539 0.8109 

SCRN (ICCV2019) 0.8112 0.056 0.8364 0.8655 0.1046 0.7851 0.8384 0.0527 0.8244 

GateNet (ECCV2020) 0.8178 0.0549 0.838 0.8731 0.0981 0.7948 0.8623 0.0483 0.8507 

MINet (CVPR2020) 0.8097 0.0555 0.8325 0.873 0.0905 0.7973 0.8472 0.0474 0.84 

SCWSSOD* (AAAI2021) 0.7823 0.0602 0.8117 0.8367 0.1077 0.7503 0.8329 0.0534 0.806 

Ours 0.8234 0.053 0.847 0.8786 0.0934 0.8024 0.872 0.0442 0.8614 

Table 3-2 Quantitative comparison with other state-of-the-art methods 

on 2 widely used relatively hard datasets and the proposed MSOD dataset. ↑ 

and ↓ indicate higher or lower is better respectively and * denotes weakly-

supervised methods. The best three results among both backbones are 

marked as red, blue and cyan. Our method achieves top results under 3 

evaluation metrics across all datasets without any pre-processing and post-

processing. 

 Table 3-2 demonstrates the quantitative comparison with other state-

of-the-art methods based on 3 relatively difficult datasets, most of which 

include challenging scenes, viz., multiple salient objects, connected salient 
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objects and so on. 

3.6.3.4 DUT-O 

For the MaxF measure, the highest performing model is our model with the 

ResNet-Backbone architecture, achieving a MaxF score of 0.8234. The 

second highest MaxF performance is achieved by our VGG-based model, 

with a score of 0.8194. The GateNet model holds the third position, scoring 

0.8178 in MaxF. In terms of the MAE measure, our model with the ResNet-

Backbone architecture again shows the best performance with an MAE score 

of 0.053. Following closely is the EGNet model, achieving an MAE measure 

of 0.0531. The third-best model in MAE is PoolNet, with an MAE score of 

0.0539. Regarding the S measure, our model with the ResNet-Backbone 

architecture remains the top performer with an S score of 0.847. Coming in 

second is our model with the VGG-Backbone architecture, showing an S 

measure of 0.8421. The third position is held by EGNet, with an S score of 

0.8408. 

3.6.3.5 SOD 

Regarding the MaxF measure, the top performer is our model using the 

ResNet-Backbone architecture, achieving a MaxF score of 0.8786. The 

second-highest performer is EGNet, with a MaxF score of 0.8778. The third 

spot is taken by our VGG model, achieving a MaxF score of 0.8761. In terms 

of the MAE measure, MINet using the ResNet-Backbone architecture leads 

with an MAE score of 0.0954. The second-best performance is by our model, 

with an MAE score of 0.0934. The third place is occupied by EGNet, with 

an MAE score of 0.0969. Looking at the S measure, our model using the 

ResNet-Backbone architecture again outperforms others, scoring 0.8024. 

The second position is held by EGNet, with an S score of 0.8. The third spot 

is occupied by MINet, presenting an S score of 0.7973. 
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3.6.3.6 MSOD 

With respect to the MaxF measure, the best performing model is ours, 

achieving a MaxF score of 0.872. This is followed by GateNet, which scores 

0.8623 in the MaxF measure. The third place is taken by PoolNet with a 

MaxF score of 0.8546. In terms of the MAE measure, our model using the 

ResNet-Backbone architecture again comes out on top, achieving an MAE 

score of 0.0442. Following that is PoolNet with an MAE score of 0.0459. 

The third spot is occupied by EGNet, which scores 0.047 in the MAE 

measure. Finally, looking at the S measure, our model using the ResNet-

Backbone architecture is once again the top performer with an S score of 

0.8614. GateNet takes the second spot with an S score of 0.8507, and the 

third spot is occupied by PoolNet, scoring 0.8429 in the S measure. 

In summary, compared to the current leading models: MINet, PoolNet, 

EGNe, and SCRN, our proposed approach shows an average enhancement 

of 0.92%, 2.27%, 2.43%, and 4.09% respectively across five commonly used 

datasets. When we turn our attention to the MSOD dataset, the average 

advancement over these methods rises to 4.08%, 2.64%, 3.63%, and 8.21% 

respectively. These results demonstrate the robust capabilities of our 

proposed method in MSOD, achieving state-of-the-art performance on this 

challenging dataset. 

3.6.4 Precision-Recall Curves Comparison 

In Figure 3-8, we present the comparison showing the precision-recall curves 

derived from three widely recognized SOD datasets, as well as from our 

newly proposed MSOD dataset.  

When analyzing precision-recall curves, the orientation towards the 

top-right corner of the graph plays a significant role in determining the 

model's performance. The closer a model's values fall to this top-right corner, 
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the better it is considered to be. The reasoning behind this is twofold. Firstly, 

precision, represented on the y-axis, refers to the fraction of relevant 

instances among the retrieved instances. A higher value of precision 

indicates that the model has a lower rate of false positives, which means that 

it is more accurate in its predictions. Secondly, recall, plotted on the x-axis, 

is a measure of the model's ability to find all the relevant cases within a 

dataset. A higher recall value suggests that the model is doing well in 

identifying true positives and minimizing the risk of false negatives. Thus, a 

model with values closer to the top-right side of the precision-recall curve 

excels in both precision and recall, indicating that it maintains a strong 

balance between these two metrics, where the model is not only capable of 

accurately identifying true positives but also ensures that it identifies most 

of the relevant cases, resulting in fewer missed detections or false negatives. 

Hence, in terms of model evaluation and comparison, those with precision-

recall curve values leaning towards the top-right corner are considered 

superior in performance. 

Our proposed method stands out from the rest due to its exceptional 

performance across the majority of the thresholds. This implies that our 

approach not only effectively identifies the salient objects in the majority of 

the cases, but it also maintains a low false-positive rate, leading to a higher 

precision score.  

The superiority of our proposed method becomes particularly clear 

when applied to the two largest datasets - DUT-OMRON and DUTS-TE. 

These two datasets are commonly used because of their size, and the fact 

that our method outperforms others on these two demonstrates its scalability 

and robustness. This suggests that our method is adaptable and reliable. 

When the analysis turns to the MSOD dataset, which is challenging due 

to the multiple salient objects, the gap in performance becomes even more 

broadens. Our proposed method begins to widen the margin and sets a new 

benchmark, significantly outperforming other techniques. This enhanced 
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performance on the MSOD dataset illustrates the method's capability to 

handle complex and challenging scenarios that involve multiple salient 

objects. The superior results obtained from this dataset demonstrate that our 

proposed technique is well-equipped to deal with intricate visual scenarios. 

Therefore, it is evident that our approach not only surpasses others on 

standard datasets but truly excels when the complexity and difficulty of the 

task increase. This adaptability to task difficulty makes our method a reliable 

and effective solution for multiple salient objects. The strong performance 

on the MSOD dataset suggests promising potential for real-world 

applications, where the scenarios could be as complex or even more 

challenging than those presented in this dataset.  

This all-around performance across various thresholds and datasets 

reaffirms our confidence in the robustness, reliability, and precision of our 

proposed method in SOD. 
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Figure 3-8 Precision (vertical axis) recall (horizontal axis) curves on three popular salient object detection datasets and the proposed MSOD dataset. 

The red solid line demonstrates our proposed method. 



Multiple Salient Object Detection 

82 

 

3.6.5 Visual Comparison 

The effectiveness of our approach can be visually assessed in Figure 3-9. It 

shows that our method provides excellent performance in the images 

containing multiple salient objects. Utilizing non-local features along with a 

top-down feature fusion strategy enables our system to thoroughly exploit 

the long-range dependencies between salient objects. This strategy allows 

for the sharing information from multiple salient objects of the image, 

leading to more comprehensive image processing. 

To be more precise, the first row of Figure 3-9 demonstrates a 

challenging scenario with very low contrast. MINet, SCRN, RAS and 

BASNet all get missed salient objects because of the low contrast. In 

comparison, although other methods can detect both salient objects, the 

quality of these saliency maps are very low, e.g., missing parts of objects or 

unclear edges. Compared to other methods, our proposed method generates 

very high-quality saliency maps with clear boundaries, this suggests our use 

of non-local features can help the proposed method accurately locate the 

salient objects and the edge guidance module embedded in the feature fusion 

gate works well for refining the objects’ boundaries. 

Regarding the second row of Figure 3-9, all the other models miss 

salient objects. Our proposed method not only detects all the salient objects, 

but also has clear detail information, which indicates the importance of 

utilizing the non-local features and edge features in our proposed method. 

The third row and the fifth row of Figure 3-9 also show challenging 

visual scenes, where small salient objects separated in the visual scene with 

low contrast. The other state-of-the methods either always get missing 

salient objects or even cannot make any predictions in these images. In 

comparison, our proposed method generates very good saliency maps 

including all the small salient objects. This also demonstrates the strong 

performance of our proposed method in dealing with the MSOD problem 
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even in complicated visual scene.  

The fourth row of Figure 3-9 introduces a scenario where several small 

salient object clustered. We can see from the results that other methods can 

always bring some redundant information between different small salient 

objects. This demonstrates the effectiveness of our proposed feature fusion 

gate, which can selectively choose the useful information between different 

features, therefore generating high-quality saliency maps without redundant 

information.  

In summary, by making full use of long-range dependencies and edge 

features based on features fusion gate, our proposed method can effectively 

highlight salient objects across the entire image with clear boundaries. This 

facilitates a more comprehensive view of the image, as information can be 

effectively relayed and interchanged between separate regions of the image 

with the redundant information filtered out. 
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Figure 3-9 Qualitative comparisons with state-of-the-art approaches over some of the challenging images. The main object classes are statuette, 

chairs, human and bowling. 
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3.6.6 Ablation Studies 

In the following section, we make exploration of the specific contributions 

made by various components of our proposed model. All the experiments we 

conduct on the two largest datasets, namely DUTS-TE and DUT-OMRON. 

Following PoolNet (Liu et al., 2019 [22]), EGNet (Zhao et al., 2019 [21]), 

we conduct the experiments based on VGG. 

  Models   DUTS-TE DUT-OMRON 

NLGM FFG   ERM E MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ 

  0.8761 0.0425 0.875 0.7958 0.0575 0.8276 

✓       0.8836 0.041 0.8809 0.8103 0.0562 0.8357 

✓   ✓   0.8847 0.041 0.8839 0.8138 0.0563 0.8366 

✓ ✓     0.8858 0.0396 0.8857 0.8153 0.056 0.8379 

✓ ✓   ✓ 0.8882 0.0395 0.8862 0.8175 0.0543 0.8407 

✓ ✓ ✓   0.8894 0.0381 0.8878 0.8194 0.0541 0.8421 

Table 3-3 Ablation analysis of different components in our proposed 

architecture. 

3.6.6.1 Effectiveness of NLGM 

When set against a fundamental baseline structure (as shown in the first row 

of Table 3-3), the utilization of non-local guidance module (indicated in the 

second row) results in enhancements in performance across all evaluative 

metrics for both datasets. These gains indicate the effectiveness of our 

NLGM in successfully capturing long-range dependencies. Precisely, the 

comparison provides clear evidence that the addition of non-local guidance 

can improve the accuracy and efficiency of the system. As opposed to the 

basic structure, the integration of non-local features allows the proposed 

model to detect and analyze relationships between objects in an image that 
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aren't stay close. This not only enhances the scope of understanding but also 

improves the richness of the model's interpretation, providing a more 

comprehensive view of the image. The positive impact on all evaluative 

measures reaffirms the effectiveness of the NLGM. Therefore, capturing 

these long-range dependencies through non-local guidance is an essential 

element for improving the performance of our proposed method on both 

DUTS-TE and DUT-OMRON datasets.  

3.6.6.2 Effectiveness of FFG 

The incorporation of feature fusion, as depicted in the 4th and 6th rows of 

Table 3-3, additionally boosts the performance of our model, surpassing the 

results of configurations without the Feature Fusion Gate (FFG). This 

improvement is evident across all evaluative metrics on both DUTS-TE and 

DUT-OMRON datasets. This demonstrates that feature fusion gate plays an 

important role in our posed method. 

Feature fusion gate's role in the architecture is like a gatekeeper, 

gradually sifting the input data, and ensuring that only the most relevant and 

significant features are used. This mechanism results in a substantial 

reduction of noise and unnecessary information, thereby enhancing the 

precision of our model. Integrating feature fusion into the system not only 

refines the process but also improve the performance to a higher level, 

outperforming models that don't incorporate the FFG. The results indicate 

the critical role of feature fusion in our method, demonstrating how 

effectively it removes redundant data, leaving only the most pertinent 

information in model's architecture.  

3.6.6.3 Effectiveness of ERM 

As indicated in Table 3-3, E denotes the output from the initial Edge-

Refinement Block (ERB) layer. This output is then passed to various stages 
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of our decoder, in a process similar to that designed in the EGNet. The 

introduction of the Edge-Refinement Module (ERM) results in a 

performance enhancement, as seen by comparing the 5th and 6th rows in 

Table 3-3. 

We hypothesize that the convolution operations of the ERM, applied in 

a cascade manner, assist the edge features in adaptively supporting the 

learning of non-local and salient features at various stages and resolutions.  

3.6.6.4 Effectiveness of NLGM & ERM 

When compared to the results from the second row, the third row in Table 

3-3 shows an improvement in performance. This serves as evidence of the 

effectiveness of introducing both the NLGM and ERM into our approach. 

The features that offer mutual benefits to both non-local and edge features 

are emphasized, enhancing the overall performance. 

These two modules seem to have a symbiotic relationship, each one 

benefiting and enhancing the performance of the other to create a 

comprehensive and boundary-aware model. The combination of non-local 

and edge allows for an accurate reconstruction of the salient regions in the 

image.  

3.6.6.5 Effectiveness of FFG & ERM 

The introduction of edge features embedded into the Feature Fusion Gate 

(FFG) shows noticeable performance improvements, as evidenced by the 

comparison between the 6th and 4th rows in Table 3-3. This indicates that 

the Edge-Refinement Module (ERM) plays a critical role in promoting 

relevant salient features before they are combined in the FFG. 

The ERM works as a key first step for the features before they go into 

the FFG. It fine-tunes and sharpens the edges of saliency features, which 

helps important parts of the image stand out and helps the model to separate 
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interesting objects from their background. This early step is vital to the 

whole process as it provides a clear input for the FFG, making it easier for it 

to sort and mix the most important features. 

In summary, adding edge details as a key part of the FFG bring 

performance gains, which demonsrates the benefit of using fine-tuned edge 

details to guide the mixing process, ultimately improving the final output of 

the model. 

3.6.6.6 Configurations of NLGM  

NLGM Configurations 

DUTS-TE DUT-OMRON 

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ 

SSNLB 0.8813 0.0411 0.8789 0.8081 0.0563 0.8336 

CSNLB 0.8816 0.0415 0.879 0.8079 0.0566 0.8348 

SSNLB+CSNLB 0.8836 0.041 0.8809 0.8103 0.0562 0.8357 

Table 3-4 Performance comparison of different NLGM configurations. 

SSNLB and CSNLB refer to spatial-space non-local block and channel- 

space non-local block respectively. All three configurations are without 

FFG and ERM. 

Table 3-4 presents the results of our experiments designed to assess the 

performance of various configurations of the NLGM. When compared to the 

baseline model (presented in the 1st row of Table 3-3), the models that 

incorporate either the Spatial-Space Non-Local Block (SSNLB) (shown in 

the 1st row of Table 3-4) or the Channel-Space Non-Local Block (CSNLB) 

(displayed in the 2nd row of Table 3-4) both exhibit improved performance 

on the two datasets. 

In comparison, the best performance is achieved when both the SSNLB 

and CSNLB are utilized together, as shown in the 3rd row of Table 3-4. This 

suggests that these two modules work complimentarily, each enhancing the 

other's contribution. The results indicate that both spatial and channel-wise 
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non-local features are crucial in highlighting the salient objects in an image. 

This combination of both modules allows the model to benefit from spatial 

space and channel space, making our model more robust in handling 

complicated MSOD scenarios. 

3.6.6.7 Architectures of NLGM 

 

Figure 3-10 Different architectures of NLGM. All structures here are without 

FFG and ERGM. Element-wise addition operation is used at each stage to 

fuse different features. 

NLGM Architectures 

DUTS-TE DUT-OMRON 

MaxF ↑ MAE ↓ S ↑ MaxF ↑ MAE ↓ S ↑ 

(a) 0.8796 0.0419 0.8787 0.8052 0.0567 0.8313 

(b) 0.8815 0.0415 0.8801 0.8075 0.0565 0.833 

(c) 0.8816 0.0417 0.8805 0.8083 0.0565 0.8345 

(d) 0.8836 0.041 0.8809 0.8103 0.0562 0.8357 

Table 3-5 Performance comparison of different NLGM architectures. All 

structures here are without FFG and ERM. 



Multiple Salient Object Detection 

90 

 

We perform experiments to explore the effect of different structures of 

NLGM. We evaluate four different architectures to incorporate non-local 

information into our U-shape network. The architectures and the 

corresponding performance are shown in Figure 3-10 and Table 3-5 

respectively. 

Model (a) is the simplest version of our design. This baseline model 

employs a single DSNLB to draw features from the Conv6-3. The output 

from this is then distributed across all top-down stages. This model sets the 

benchmark for our following architecture experiments. 

Model (b) is an extension of Model A. Instead of using a single DSNLB, 

we incorporate a sequence of 5 DSNLBs, all drawing from the same layer 

Conv6-3. This modification allows us to evaluate the impact of having 

chains of non-local blocks over single instances. From our findings, the 

stacked DSNLBs enhance all performance metrics, demonstrating the 

effectiveness of long-range multi-hop communications in building richer 

salient features, across both spatial and channel dimensions. 

Model (c) is an experiment where the features are again sourced from 

Conv6-3, but the DSNLBs are spread out along the top-down pathway. This 

alignment follows our main architecture as depicted in Figure 3-4. The 

spread-out DSNLBs result in slightly improved performance, likely because 

this one-to-one guidance method is more capable of generating adaptive 

non-local features that are suitable for each saliency scale. 

Model (d) is our final architecture, which draws features from Conv5-

3 instead of Conv6-3. The larger spatial size of these features from Conv5-3 

is potentially better utilized by the DSNLBs. This performance improvement 

implies better non-local features are exploited in this larger spatial size 

feature (Conv5-3) compared to the one using relatively small spatial 

dimensions of the features from Conv-6-3. 
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3.7 Conclusion 

This chapter focuses on tackling the challenging task of segmenting multiple 

salient objects. We introduce a novel framework for MSOD, taking 

advantage of both spatial and channel-wise long-range dependencies.  

A key component of our system, the Non-Local Guidance Module, is 

capable of capturing long-range dependencies among salient objects 

distributed across the image. This module significantly enhances the 

network's ability to distinctly identify multiple salient objects. 

Furthermore, we propose a Feature Fusion Gate, an innovative module 

designed to merge both salient and non-local features. This gate employs 

progressively refined edge features, which aids in highlighting the most 

pertinent features extracted from each module, thereby providing a more 

detailed and comprehensive view of the scene. 

Our method provides state-of-the-art performance across five widely 

used datasets, demonstrating its effectiveness and generalizability. Moreover, 

we have curated an additional dataset, specifically composed of scenes with 

multiple salient objects. A comparison with other methods reveals that the 

performance gap becomes even larger with this complex dataset, indicating 

the strengths of our approach in dealing with complicated multiple salient 

objects scenes. 

We believe the MSOD is an important area that requires deeper 

exploration in order to drive further advancements in image saliency 

research. Our network, along with the newly curated dataset, can serve as a 

baseline for performance evaluation in this field. 

It is acknowledged that the human visual system can simultaneously 

focus on multiple objects within a visual scene. Each of these salient objects 

captures our attention, contributing to the overall understanding of the scene. 

When studying saliency, it is therefore important to consider the existence 

of multiple salient objects and their interaction with one another, as this 
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reflects the complex human visual perception more accurately.  

When a visual scene includes multiple salient objects, different salient 

objects may have different importance. It is not sufficient to merely detect 

these multiple salient objects; understanding their relative importance is 

equally critical. As such, from the next chapter, we extend the problem and 

examine the complex issue of RSR. We aim to assign relative ranking to 

multiple salient objects within a single image, effectively distinguishing not 

just the objects themselves, but their relative significance within the image 

context. 
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Chapter 4 Saliency Ranking Dataset 

4.1 Introduction 

Chapter 3 introduced a method for SOD. We utilized non-local blocks to 

increase the ability of the network to combine features of a longer distance 

in an image, so-called long-range dependencies. We curated a new dataset to 

test this ability and found our approach to offer strong performance 

compared with recent methods. The problem solved was MSOD, which is 

inherently a binary segmentation task. In practice, for multiple salient object 

scenes, it can be challenging to determine which objects are or are not salient. 

Or, for example, which object is the most salient. New datasets and 

techniques have begun to be developed to address this, with the problem of 

RSR. New datasets in this area, however, often have limited number of 

objects making performance on complex scenes less effective. These 

datasets have typically been created based on mouse-trajectory data, rather 

than real human visual attention. The objective of the work in this chapter is 

to establish a large-scale dataset specifically for the instance-level RSR. We 

create a novel dataset of images in which object saliency is measured based 

on human eye tracking data. In doing so, we produce a challenging and 

diverse dataset, which can be used to develop new techniques for salient 

object ranking. 

Section 4.2 will first explore the current saliency ranking datasets. The 

research gaps will be outlined in Section 4.3. Our data collecting strategy 

used to create the proposed dataset is illustrated in Section 4.4. The data 

structure and examples of proposed dataset are shown in Section 4.5. Finally, 

the statistics of the proposed dataset will be shown in Section 4.6. 
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4.2 Background 

RSDNet [82], as a pioneering work in RSR, is trained and evaluated on the 

PASCAL-S [77] dataset. However, this dataset is suboptimal for this task 

due to several reasons. Firstly, it comprises only 850 images, with 40.4% of 

them containing just one saliency rank. Such images are unsuitable for 

training and evaluating saliency ranking models, while the remaining images 

are insufficient to train deep models effectively. Secondly, numerous images 

in this dataset present following problems: Multiple instances within the 

same image are annotated with the same rank. Some instances are over-

segmented into multiple regions with varying rank values. Both of these 

situations are inappropriate for the instance-level saliency ranking detection 

task. The researchers of [82] extend this idea and combine MS-COCO 

dataset [79] and SALICON dataset [80] in the journal version of their paper 

[81]. To be more precise, MS-COCO contains intricate images with object 

segmentation, while SALICON is an extension of MS-COCO designed 

specifically to provide mouse-trajectory-based fixations. Within the 

SALICON dataset, fixation data is available from two sources: 1) sequences 

of fixation points and 2) fixation maps corresponding to each image.  

 

Figure 4-1 An example of the mouse-contingent stimuli proposed in 

SALICON dataset [80]. The red circles indicate the movement of mouse 

cursor from one object to another. 

Figure 4-1 demonstrates an example of the fixation collecting strategy 

in SALICON dataset. In SALICON dataset, all the images are firstly blurred. 



Saliency Ranking Dataset 

95 

 

Each image is displayed for 5 seconds, followed by a 2-second waiting 

interval. The mouse cursor is shown as a red circle with a radius of 2 degrees 

of visual field, allowing for free viewing of the high-resolution focus area. 

The cursor automatically moves to the image center when the image 

appeared. The subjects are given the freedom to explore the images by 

moving the mouse cursor to any location they wish to look at. No specific 

instructions are provided on how to move the mouse or where to direct their 

gaze in the images. Whenever the subjects move the mouse, the display 

updates accordingly, with the high resolution area centered on the mouse 

position. The mouse position and the timestamp are recorded throughout the 

experiment.  

The authors [81] employ complicated hand-designed rules with 

adjustable parameters to curate their datasets by filtering out unsuitable 

images and selecting salient object instances. They create two versions of 

the dataset, one with loose parameters, resulting in a dataset, and another 

with stricter parameters, yielding a cleaner dataset. Despite their careful 

tuning and verification on smaller-scale data, these complicated designed 

rules may not be suitable for all scenarios and be able to guarantee annotation 

accuracy, particularly in complex visual scenes. 

4.2.1 ASSR Dataset 

To solve the RSR problem, Siris et al., 2020 [78] propose a large-scale salient 

object ranking dataset (ASSR) based on the combination of the MS-COCO 

[79] and SALICON [80] datasets. 

In ASSR dataset, the key idea of assigning rank is related to attention 

shift, where up to the 10 object polygons in MS-COCO are considered, but 

for saliency ranking ground truth, top-5 objects are set to be a limit. ASSR 

concentrates on distinct objects fixated in a sequence while disregarding any 

repeated objects. In this process, the researchers here assign descending 
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scores to objects based on their order of fixation and then average these 

scores across all observers. In essence, the higher the score of an object, the 

higher its rank in the saliency list. 

The segmentation annotations of ASSR dataset are drawn from MS-

COCO, and the ranking information is captured from the mouse-trajectory-

based fixations in SALICON dataset, focusing on the sequence of these 

simulated fixations. ASSR dataset directly discards the images without 

object annotations in MS-COCO dataset and the images with smaller objects 

enclosed by large objects. The images containing at least two salient objects 

are selected to make sure all the images have relative ranking information. 

Finally, the ASSR dataset is created with 7646 training images,1436 

validation images and 2418 test images. 

4.2.2 IRSR Dataset 

IRSR dataset [110] is also created based on the combination of MS-COCO 

dataset and SALICON dataset. Several challenges are proposed in this work 

while combining the two datasets. Firstly, MS-COCO contains only 80 

annotated classes of object instances, leading to instances in some images 

having sufficient fixations but lacking mask annotations. The second 

challenge is related to the large number of annotated instances in many 

COCO images, which cannot all be utilized for saliency ranking due to the 

subjective nature of saliency perception. Humans may struggle to rank the 

saliency of numerous objects, especially those with a lower degree of 

saliency. Consequently, it becomes necessary to carefully select salient 

instances among the complex background while disregarding non-salient 

ones. The third challenge is related to the presence of annotation errors in 

MSCOCO, such as images that are either over-segmented or under-

segmented. These various challenges collectively hinder the direct 

utilization of these two datasets for saliency ranking purposes. 
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The researchers here argue that ASSR dataset is not optimal since it 

applies a straightforward filtering approach by removing images without 

object annotations and those containing smaller objects entirely enclosed by 

larger ones. Although this method helps select images, it also introduces 

noise, particularly because they are unable to filter out images with salient 

objects falling outside the 80 MS-COCO classes. Furthermore, they generate 

saliency ranking annotations based on attention shift, which results in their 

dataset being more similar to a scanpath prediction task rather than the RSR 

task. 

In this study, a more accurately annotated dataset is constructed for the 

relative salient instance ranking task. The process involves selecting 15,000 

images from the SALICON dataset within MS-COCO and extracting their 

instance segmentation masks. Subsequently, these images, along with their 

instance annotations, are presented to different subjects, consisting of five 

postgraduate students aged between 20 to 30, with four males and one female. 

The subjects are tasked with identifying appropriate images and selecting 

salient objects. 

The selection process obeys specific rules: 

(1) Each subject individually selects the objects they think to be salient 

within each displayed image. 

(2) Images containing salient objects that are not annotated in the MS-

COCO instance annotations are marked as inappropriate. 

(3) Images with evident segmentation errors, such as instances that are 

over or under-segmented, are also deemed inappropriate. 

(4) Images with more than eight or fewer than two salient instances, or 

lacking clear salient objects, are considered unsuitable. The 

maximum number of salient instances is limited to eight, following 

the PASCAL-S dataset, which has at most seven saliency ranks in 

each image, considering the relatively large number of objects in 

MS-COCO images. 
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Following the manual selection and annotation process, images marked 

as inappropriate by more than three subjects are filtered out. For the 

remaining images, objects labeled as salient by at least three subjects are 

designated as salient instances. 

To establish saliency ranking within each image, the researchers use the 

saliency maps provided by the SALICON dataset instead of fixation points. 

However, instead of utilizing the average saliency value within each instance 

mask, the labeled salient objects are ranked based on the maximum saliency 

value within their respective instance masks, as the degree of saliency for an 

object is primarily determined by its distinctive parts. 

The final dataset comprises 8,988 images, divided into 6,059 training 

images and 2,929 test images, following the training and validation split of 

SALICON. Similar to the PASCAL-S dataset, both instance segmentation 

and relative saliency ranks are represented as saliency maps. However, 

unlike PASCAL-S, saliency values in different salient instance masks are 

assigned by uniformly dividing the range [0, 255] based on their saliency 

rank orders. 

4.2.3 Summary of Saliency Ranking Dataset 

The summary of two popular saliency ranking datasets is presented in Table 

4-1. The ASSR dataset emphasizes the sequence of attention shifts in 

saliency ranking, while the IRSR dataset focuses on a more manual and 

detailed process of selecting and annotating images, aiming for a more 

accurate representation of relative saliency. Both datasets aim to provide a 

more robust foundation for training and evaluating RSR models. 
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Feature ASSR Dataset IRSR Dataset 

Base Datasets Combination of MS-COCO and 

SALICON 

Combination of MS-COCO and 

SALICON 

Rank 

Assignment 

Based on attention shift, up to top-10 

objects considered, but top-5 objects 

for saliency ranking 

Ranking based on the maximum saliency 

value within instance masks 

Image Selection Discards images without object 

annotations in MS-COCO; images 

with at least two salient objects 

selected 

Manual selection by subjects; 

inappropriate images and those with 

segmentation errors removed 

Segmentation 

Annotations 

From MS-COCO From MS-COCO 

Ranking 

Information 

Source 

Mouse-trajectory-based fixations 

from SALICON 

Saliency maps from SALICON, objects 

ranked by maximum saliency value 

within masks 

Dataset Size 7646 training, 1436 validation, 2418 

test images 

6059 training, 2929 test images 

Challenges 

Addressed 

Filters out images with smaller 

objects enclosed by larger ones; 

focuses on sequence of fixations 

Addresses issues of subjective saliency 

perception, annotation errors in MS-

COCO; limits salient instances to 8 per 

image 

Methodology Assigns descending scores based on 

order of fixation; averages scores 

across observers 

Objects labeled as salient by at least three 

subjects are designated as salient; ranks 

based on the maximum saliency value 

Table 4-1 Summary and comparison of current popular saliency ranking 

datasets ASSR and IRSR. 

4.3 Research Gaps 

4.3.1 From Mouse-Trajectory based Fixations to 

Eye-Tracker based Fixations 

The creation of both the ASSR and IRSR datasets is focused on instance-

level salient object ranking, achieved through the combination of the MS-

COCO dataset and the SALICON dataset. However, the data in the 

SALICON dataset is composed of mouse-trajectory based fixations. Eyes 
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and the visual cortex are fundamentally different from the parts of the brain 

that control hands to move a mouse. The are several issues while imitating 

the human beings’ gaze using mouse-tracking strategy: 

Accuracy: Fixations collected using mouse-trajectory-based methods 

may not be as precise as real human eye gaze data. Eye-tracking technology 

provides more accurate and fine-grained information about gaze positions 

and durations, while mouse-tracked fixations may be influenced by hand-

eye coordination and operational errors, leading to estimation biases in 

fixation locations and durations. 

Physiological Features: Eye-tracking data can reveal physiological 

features and cognitive processes subconsciously, such as involuntary 

changes in eye movement patterns. This information is crucial for 

understanding visual attention mechanisms and cognitive processes. The 

mouse-trajectory-based data in the SALICON dataset resembles more of a 

human's exploration path based on their interests. When presented with a 

blurry image on the screen, individuals consciously move the mouse to their 

point of interest. Therefore, SALICON dataset is really examining what 

people consciously find interesting, which is inherently a different task. 

The dataset proposed in this chapter introduces a significant advantage 

by incorporating real human eye-tracking data, capturing the genuine gaze 

of human observers. By using eye tracker data, we are able to obtain more 

reliable and accurate information about the saliency of objects within the 

images, reflecting the genuine perceptual responses of human viewers. 

The inclusion of real human gaze in our proposed dataset enhances the 

credibility and validity of the annotations, making it more suitable for 

training and evaluating models that are intended to capture and predict 

human visual attention. With this approach, we aim to provide a more 

realistic and reliable dataset for researchers and practitioners working in the 

field of computer vision, image processing, and visual attention modeling. 

Figure 4-2 demonstrates some common images in all three datasets. As 
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can be seen, given same image, the salient objects and corresponding ranking 

order generated from mouse-trajectory fixation is different from our real 

fixation based dataset. The difference in ranking is because of different 

ranking strategies and two totally different modalities: mouse-trajectory 

fixation and real fixation.  

 

Figure 4-2 Some common images in all three datasets. 

4.3.2 From Fixed Number Salient Instances to 

Unlimited Instances 

The ASSR dataset imposes a restriction on the number of salient instance 

rankings, limiting it to 5, whereas the IRSR dataset allows a maximum 

ranking of 8. In our proposed dataset, we have chosen not to limit the number 

of salient object rankings. The rationale behind this decision lies in the 

inherent nature of human visual perception. 

Human beings have the remarkable ability to visually focus on multiple 

salient objects simultaneously. In real-world scenarios, our attention can 

effortlessly shift between numerous points of interest, each carrying its own 

level of significance. Setting an arbitrary limit on the number of ranked 

salient objects in the dataset could potentially constrain the modeling of this 

inherent human capability. 

By allowing for an unrestricted number of salient object rankings, our 
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dataset aims to better reflect the complexity and diversity of real visual 

attention processes. This provides a more comprehensive and representative 

dataset. Removing such constraints also aligns with the goal of developing 

more robust and adaptable models that can handle a diverse range of saliency 

scenarios. 

4.3.3 Image Selection and Instance Ranking 

Annotations  

Both ASSR and IRSR combine MS-COCO and SALICON datasets, where 

the former provides the instance polygons and the latter gives mouse-

trajectory fixations.  

ASSR employs a straightforward filtering approach to combine the MS-

COCO and SALICON datasets, which directly removes images lacking 

object annotations in MS-COCO dataset, as well as those containing smaller 

objects fully enclosed by larger ones. This simple method introduces noise 

between the human mouse-trajectory fixations in SALICON, and the 

eventual ground truth in the ASSR dataset. The generated saliency ranking 

in ASSR is based on the attention shift, which is close to a scanpath 

prediction task rather than a saliency ranking task. 

The creation process of IRSR dataset directly shows each image with 

instance polygon annotations to different participants, for them to select if 

the objects are salient or not. This approach may introduce a potential bias 

for the participants; When instance annotations are visible to the participants, 

it can unfairly influence their judgments, particularly for objects that lack 

annotations. The presence of annotations, such as bounding boxes or 

polygons, draws attention to specific regions and shapes within the image. 

Consequently, participants may be inadvertently influenced by these 

annotations when making their saliency determinations. In such a setup, the 

participants' visual system might be subtly guided towards objects with 
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explicit annotations, while potentially overlooking equally salient objects 

that lack such annotations. This can result in an unintended skew in the 

dataset, impacting the overall accuracy and reliability of the human 

judgments. To ensure a more fair and objective evaluation of saliency, it is 

crucial to minimize any external factors that could bias the participants' 

perceptions. 

4.4 Data Collecting Strategy 

4.4.1 Step 1: Image Selection 

The objective of this work is to establish a large-scale dataset specifically for 

the instance-level RSR. To meet this objective, our selection criteria for 

images is limited to those sourced from the MS-COCO dataset containing 

more than three instances. We argue that images with fewer than three 

distinct instances might not provide enough variation in saliency to be 

informative for the study. By setting such a threshold, we aim to ensure a 

sufficiently complex visual environment, thereby facilitating a more 

comprehensive examination of the relative saliency ranking of different 

instances within a single image. After an automatic threshold, 4 subjects (2 

males and 2 females) who were told the purpose of this dataset are asked to 

view these images without original annotations. For each image shown, each 

subject selects if the image is appropriate according to following criteria: 

(1) If the image does not have more than 3 clear disconnected instances, the 

image will be marked as inappropriate. 

(2) The background area or objects will not be considered as one of the 

minimum three instances required for image selection. 

After the process, any images that are marked as inappropriate by more 

than two subjects will be filtered out from the dataset.  
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4.4.2 Step 2: Gaze Recording 

After getting the initial dataset, we proceed with a task of free viewing 

guided by an eye-tracking system, which is conducted by eight subjects (the 

authors of this work are exclusive). This group is balanced in terms of gender, 

consisting of four males and four females, all of whom are within the age 

range of 20 to 30 years. The tracking of gaze data is performed using a Tobii 

Pro Nano eye-tracker, set to a sampling frequency of 60 Hz. 

In order to ensure the fairness and consistency of the data collection 

process, all subjects interact with identical hardware. Specifically, they use 

the same eye-tracking device, the same 23-inch Lenovo ThinkVision 

T2364PA monitor with a resolution of 1920x1080 pixels and a refresh rate 

of 60 Hz, and the same PC. These devices are utilized sequentially by the 

subjects to ensure the uniformity of the viewing experience and the fairness 

of data. 

Each image is firstly resized proportionally to fit the full screen of 1920 

x 1080 resolution, which is then presented to the subjects for a fixed duration 

of 3 seconds. To maintain accuracy and calibration of the eye-tracking device, 

a recalibration procedure is carried out every 200 images. Alongside this, to 

relieve eye fatigue and ensure the quality of data, participants are offered the 

opportunity to rest or pause the gaze recording process at these same 200-

image intervals. 

It should be noted that this procedure is not a swift one, the entire 

process of gaze recording is spread over a span of six months, during which 

time all eight subjects complete their tasks. This deliberate pace is 

maintained to ensure the accuracy and reliability of the data captured, which 

in turn contribute robustness to this dataset. 
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4.4.3 Step 3: Fixation Filtering 

The Tobii Pro Nano eye tracker can record different kinds of gaze 

information, such as recording timestamp, gaze point location (x and y), 

presented media name, presented media width, presented media height, 

original media width, original media height and so on. This information is 

utilized to filter out the fixation point. 

The term filter is frequently used in eye-tracking analysis software and 

here it denotes the steps designed to identify the fixations with the raw gaze 

data. In eye-tracking research, two commonly used words to classify these 

data are “saccade” and “fixation” [84]. A saccade is a quick movement of the 

eyes that occurs between two fixation points. These are extremely fast jumps 

that the eyes make to move from one point of interest to another. Despite the 

fact that the eyes are moving during a saccade, the brain typically doesn't 

process visual information during this period, a phenomenon known as 

saccadic suppression [128]. In comparison, a fixation is a period when the 

eyes are still and focused on a particular point. During this time, our eyes are 

gathering and processing information about the object we are looking at. In 

the phase of fixation, our gaze is relatively stable, allowing our brain to 

process and interpret the image we're seeing. Within the field of human 

behavior research, fixations often gather the most interest in studies of eye 

movement. This is primarily because fixations provide indications of when 

and what information the brain registered during the visual observation 

process. For the problem of RSR, we think the duration of fixation points 

will directly reflect the relative ranking information among different 

instances. Therefore, it is necessary to filter out the fixations in the gaze raw 

data.  

Velocity-Threshold Identification (I-VT) [85] is an algorithm utilized 

for fixation classification, and its function relies primarily on velocity-based 

measurements. The core concept of the I-VT filter lies in the classification 
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of eye movements according to the velocity of the eye's directional shifts. 

When the calculated velocity exceeds a certain threshold, the corresponding 

sample is classified as a saccade; conversely, if the velocity falls below the 

threshold, the sample is identified as part of a fixation.  

Following the velocity-based fixation classification methods, the 

simple yet effective way is utilized to calculate the velocity among different 

gaze data points (see Equation 4-1): 

𝑉𝑡1𝑡2 =
|𝑆𝑡1 − 𝑆𝑡2|

|𝑡1 − 𝑡2|
(4 − 1) 

Where the Euclidean distance between two consecutive samples is 

calculated and then divided by the sampling time.  

We then set the threshold. Our saccade threshold is experimentally set 

to 1.5 pixels per millisecond, which is 1500 pixels per second. The gaze data 

and velocity chart from one subject while looking at an image in 3 seconds 

are shown in Figure 4-3. The blue line indicates the gaze point position along 

the x-axis, while the orange line indicates the calculated velocity between 

every two consecutive gaze points. The red indicates the saccade threshold 

based on the calculated velocity. In the classification process, each sample 

undergoes a velocity check, determining its classification as either a fixation 

or a saccade. When the velocity is below velocity threshold (red line), it is 

categorized as part of a fixation. Conversely, if the velocity meets or exceeds 

this parameter, the sample is classified as part of a saccade. The duration of 

fixation here can be calculated in the gap of two saccade. 
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Figure 4-3 Gaze data and velocity chart from one subject while looking at 

the image above. Here, 9 effective fixation events are captured after the 

threshold. 

After this, any fixation points exceeding a duration of 200 milliseconds 

are selected as effective fixation event. This decision is inspired by the 

research proposed in [84], which indicates that during periods of fixation - 

moments when our eyes remain still between saccades - the duration tends 

to range from approximately 200 to 300 milliseconds. Note that to reduce 

the center bias, we remove the first fixation point of each subject in each 

image. 

Finally, all images will be resized to the original image size and the 

corresponding effective fixation points in fixation event will be relocated 

proportionally. Then, all the noise fixation points out of the bound of the 

image size will be deleted (see Figure 4-4). 

 

Figure 4-4 Examples of noise fixation points in gaze recording. 
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4.4.4 Step 4: Salient Objects Threshold 

In order to generate the relative saliency ranking at instance level, it is 

necessary to firstly judge if the corresponding instances are salient objects. 

It is reasonable to combine the fixation data and the polygons information in 

MS-COCO for this task. A threshold is set to filter the salient instances based 

on the number of fixation points in each polygon.  

The complexity of this task arises while utilizing the MS-COCO dataset, 

which although provides instance-level polygon data, it does not offer an 

adequate quantity of polygons for each image to satisfactorily fulfill the 

needs of our task. We often encounter scenarios where fixation points exist 

within a object, however, the corresponding polygon information for this 

instance is not incorporated within the available polygons from the MS-

COCO dataset. Meanwhile, some images selected from MS-COCO test set 

do not have any annotations. Such instances present obstacles in our study. 

Second, MS-COCO dataset sometimes provides big polygons for a group of 

crowded instances, which cannot be directly used. To address the 

aforementioned problem, several strategies are applied (see Figure 4-5). 

Note the following steps will generate 2 things for each image: (1) The 

image with different color fixation points representing different types of 

fixations. (2) The initial rough polygons of salient instances from MS-COCO 

dataset or Mask RCNN, which will be displayed in the next step for 

participants to annotate. 

(1) Fixation points in existing standard MS-COCO polygons: 

We calculate the mean number 𝑚 of fixation points lying in different 

standard polygons and the corresponding standard deviation 𝜎.  

For the fixation points in existing MS-COCO polygons, if the existing 

MS-COCO polygon is not a crowded polygon, we do the following 

threshold: 

𝑁𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 ≥ 𝑚 − 𝜎 (4 − 2) 
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Where 𝑁𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛  is the number of fixation points in this polygon. 

𝑁𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 should be bigger than 𝑚 − 𝜎. 

If the polygon satisfies the above threshold, the polygon will be regarded 

as a salient instance, then the polygon and corresponding fixation points 

will be added to our initial draft dataset. These fixation points will be 

marked in red in the original image. 

(2) Fixation points in existing crowded MS-COCO polygons: 

If the existing MS-COCO polygon is a crowded polygon, the number of 

fixation points cannot be directly calculated here as the crowded polygon 

normally contains more than 2 instances. Therefore, these fixation points 

are input into the DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) [86] clustering algorithm. DBSCAN is a 

density-based clustering algorithm, as opposed to centroid-based 

methods like K-means [87]. DBSCAN operates under the principle that 

a cluster is a high-density area surrounded by a lower density region in 

the data space. The algorithm works by defining a neighborhood around 

a data point, and if there are enough points within this neighborhood, the 

data point is labeled as a core point and forms a cluster or part of a cluster. 

The process on DBSCAN is illustrated as follows: 

It starts with an arbitrary starting point that has not been visited. The 

neighborhood of this point is extracted using a distance epsilon (𝜀). If 

there are a sufficient number of points (according to a 𝑚𝑖𝑛𝑃𝑡𝑠 

parameter) within this neighborhood, a new cluster is started. Otherwise, 

the point is labeled as noise, meaning it doesn't belong to any cluster. It's 

important to note that this point might later be found in a sufficiently 

large 𝜀 -environment of a different point and, thus, be made part of a 

cluster. If a point is found to be a dense part of a cluster, its 𝜀 -

neighborhood is also part of that cluster. Hence, all points that are found 

within the 𝜀 -neighborhood are added, along with their own 𝜀 -

neighborhood when they are also dense. This process continues until the 
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density-connected cluster is completely found. Finally, the process 

restarts with a new unvisited point. 

The DBSCAN algorithm was selected in this experiment because it is a 

density-based algorithm without the need of providing the number of 

clusters. Here, DBSCAN algorithm is set with the 𝜀 and the 𝑚𝑖𝑛𝑃𝑡𝑠 

being 20 and 4 (half of the number of gaze recoding participants) 

respectively. This will generate 2 different groups of fixation points, the 

points constructing a cluster and the ones not constructing a cluster. 

After the clustering, only the fixation points constructing a cluster will 

be input to the same threshold as illustrated in (4-2): 𝑁𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 ≥ 𝑚 − 𝜎. 

The cluster passing the threshold are regarded as salient instance and the 

corresponding fixation points are then be added to initial draft dataset. 

The fixation points here will be marked as pink in the original image and 

at the same time, the bounding box for this kind of crowded polygon will 

be marked in original image. 

The existing MS-COCO polygons can cover most of the situations in our 

experiment. However, there are still some situations that the recorded 

fixation points lie in some instances that are not annotated by MS-COCO 

dataset. 

(3) Fixation points not in existing MS-COCO polygons: 

For the images in MS-COCO test set and the fixation points not in 

existing MS-COCO polygons, DBSCAN clustering algorithm with the 

same parameters (𝜀  and the 𝑚𝑖𝑛𝑃𝑡𝑠  being 20 and 4 respectively) is 

also applied.  

If the fixation points do not construct a cluster, these points will be 

regarded as noise. If some fixation points construct one of the clusters, a 

threshold will be applied here 𝑁𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛 ≥ 𝑚 − 𝜎 , which is the same as 

the one used for thresholding the fixation points in normal polygons. The 

cluster passing the threshold will be regarded as salient instance and the 

corresponding fixation points will be marked as green in original image 
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and added to our initial draft dataset. Otherwise, if the points are not 

satisfying the threshold, these points will be marked as yellow in original 

image and these clusters will not be regarded as salient instance. 

To reduce the workload of our annotators in the following steps, Mask 

RCNN [88] is firstly utilized to generate rough polygons. If the green 

points lie in the generated rough polygon, the corresponding polygon 

will be added to our initial draft dataset. 

In summary, the above-mentioned strategies will generate 2 things for 

each image: (1) The image with different color fixation points indicating 

different types of fixations. (2) The initial rough polygons of salient 

instances from MS-COCO dataset or Mask RCNN, which will be displayed 

in the next step for participants to annotate. Note that we are not using Mask 

RCNN in crowded situation to generate rough polygons because normally 

the density of instances is very high in this situation and the Mask RCNN 

cannot handle this complicated scenario. 

 

Figure 4-5 Several strategies applied to construct initial draft dataset. 

4.4.5 Step 5: Annotating 

Before illustrating the annotating process, two examples are shown to 

demonstrate the result from the initial dataset. 
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Figure 4-6 demonstrates an example without the crowded polygons. In 

this image, several fixation points have been shown in different colors. Red 

fixation points indicate the ones included in the existing MS-COCO 

polygons and these polygons are considered as salient instances. Green and 

yellow fixation points describe the ones not included in the existing MS-

COCO polygons. Green fixation points denote the ones that have been 

classified as clusters and pass the threshold to be regarded as salient 

instances, and yellow fixation points denote the ones constructing a cluster 

but not pass the threshold, which cannot be regarded as salient instance. 

There are two polygons in the original MS-COCO dataset and two polygons 

generated from Mask RCNN here (always shown in the light pink). It can be 

found that there still some green clusters lie in an instance but there are no 

existing polygons for that. 

Figure 4-7 shows an example with the crowded scene. In this image, 

green fixation points again represent clusters that pass the threshold (salient 

clusters), while the yellow fixations also represent clusters that do not pass 

the threshold (non-salient clusters). Red fixation points lying inside existing 

MS-COCO polygons and these polygons are regarded as salient polygons. It 

should be noted that there is crowded polygon here, where the pink fixation 

points indicate the ones lying inside the big, crowded polygon from MS-

COCO dataset. Only the bounding box of the crowded area has been shown.  

During the annotation process, we have ten participants, all ranging in 

age from 20 to 30, who are involved in the labeling task. The annotating 

process is based on LabelMe software, which is an open-source annotation 

tool. All the participants were instructed in the use of the software and were 

told the objectives of the study. Participants are asked to carry out two kinds 

of labelling tasks: (1) Create or refine the polygons (2) Assign classes to the 

polygons. 

As the creation of this dataset is specifically for the RSR task. To 

mitigate the workload of the participants involved in the annotation process, 
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12 super classes out of the 80 available in the MS-COCO dataset are focused 

on strategically. 

Each class out of the 80 available classes in the MS-COCO dataset is 

categorized under a super class, with a total of 12 such super classes. These 

super classes include 'person', 'vehicle', 'outdoor', 'animal', 'accessory', 

'sports', 'kitchen', 'food', 'furniture', 'electronic', 'appliance', and 'indoor'. 

By focusing on these super classes, the complexity of the task for the 

participants is reduced, thereby making the annotation process more 

manageable. Concurrently, the 12 super classes offer sufficient variety to 

ensure a comprehensive and diverse dataset for the RSR task.  

 

Figure 4-6 Example 1: an image for participants to annotate in LabelMe 

software without crowded polygons. 

 

Figure 4-7 Example 2: an image for participants to annotate in LabelMe 

software with crowded situation. 
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In the process of creating or refining the polygons, for each image, the 

participants are following these rules: 

(1) Check the existing polygons from MS-COCO dataset, refine all 

these polygons in instance-level with clear boundary and assign 

super class for the instances. 

(2) If there is polygon generated from Mask RCNN, refine the polygon 

with clear boundary and assign the super class for the instance. 

(3) If there is crowded scene containing a big bounding box, create 

instance-level polygons for the instances where the pink fixations 

points lie in and assign super class. 

(4) Check the green fixation clusters, if there are no existing polygons, 

create instance-level polygons for the green fixation clusters and 

assign super classes. 

(5) Check if there are 3 or more instance-level polygons, if the number 

of polygons is less than 3, mark the image as inappropriate. 

Finally, two other subjects checked all images and checked the ones 

marked as inappropriate for deletion. After this step, 8389 images are 

annotated. 6701 images are chosen for training set in our dataset as these 

images are all from the MS-COCO training set and validation set, while 1688 

images from MS-COCO test set are chosen to be the test set in our dataset. 

4.4.6 Step 6: Ranking Assignments 

The process of assigning ranks is based on the calculation of the number of 

fixation points within each polygon. These fixation points are derived from 

filtered fixation events with a duration exceeding 200 milliseconds. The 

number of fixation points within a polygon can reflect the duration of 

fixations, thereby providing an indication of the relative saliency importance 

information. 

Upon determining the number of fixation points within each polygon, 
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the relative ranking ground truth can be generated. We represent ground truth 

ranking as sequentially increasing integers starting from 0, with higher 

values signifying a higher degree of saliency, and a value of 0 indicating the 

instance with the lowest degree of saliency. 

It is worth noting that there is no predefined limit to the number of 

salient instances in each image for two reasons. Firstly, this choice is 

intended to enhance the complexity of the dataset for the RSR task, which 

we hope will provide a more accurate and comprehensive representation of 

the capabilities of our visual system. Secondly, setting an arbitrary limit on 

the number of salient instances within an image could potentially undermine 

the authenticity of the dataset and its ability to accurately represent the 

complexity of real-world visual perception. In real world, our eyes are 

constantly looking at different objects with a multitude of visual stimuli, and 

our brain is tasked with the complex job of identifying, categorizing, and 

prioritizing these stimuli based on their saliency. This process cannot be 

limited by an arbitrary limit, especially for the research of RSR. 

However, for the other computer vision tasks and objectives, it is 

entirely feasible to establish a limit for the salient instances within our 

dataset. This flexibility allows for the dataset to be tailored to suit a variety 

of research purposes and experimental designs. 

4.4.7 Step 7: Ground Truth Maps 

Following IRSR dataset, ground truth maps are constructed based on the 

assigned rankings and the annotated polygons. Each individual polygon is 

allocated a distinct color, the formulation of which can be expressed as 

follows: 

𝑐𝑖 =
255

𝐿
(𝑟𝑖 + 1), (4 − 3) 

Where 𝑐𝑖 denotes the color of 𝑖th instance, 𝐿 demonstrates the total 

instance number in this image and 𝑟𝑖 indicates the ranking of 𝑖th instance. 
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Subsequently, the ground truth maps for the RSR task are generated. 

Notably, if different polygons are assigned the same color, this dataset can 

also be repurposed for the conventional SOD task. 

As shown in Figure 4-8, it provides a visual representation of this 

process, demonstrating an image alongside its corresponding saliency 

ranking ground truth map and MSOD ground truth map. In terms of the 

Saliency Ranking Ground Truth (SR GT), it is evident that instance-level 

masks are generated with clear boundaries, with varying colors employed to 

indicate different degrees of saliency. 

Given that each image in the proposed dataset encompasses three or 

more instances, this dataset can also make a significant contribution to the 

field of SOD. Specifically, it can serve as a challenging dataset especially 

for MSOD. The MSOD ground truth is clearly defined and of high quality, 

making it an ideal resource for tasks involving MSOD. 

 

Figure 4-8 Examples of given images and the corresponding saliency 

ranking ground truth maps and MSOD ground truth maps. 
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4.5 Dataset Structure and Examples 

The whole dataset is splitted into training set and testing set. Within each set, 

RGB images and corresponding ground truth maps are organized and stored 

in distinct directories. The associated annotations for these images are 

compiled and preserved in a JSON file. 

 

Figure 4-9 An example of the annotations compiled in JSON file. Some 

JSON structure has been removed for clarity. 
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An illustrative example of an annotation for an image is provided in 

Figure 4-9. In this structure, the file name, image id, original image height, 

and original image width are provided. Following this, the annotations 

corresponding to different instances within the image are detailed. For each 

instance annotation, the bounding box is defined in an 'xywh' structure, 

which represents the position of the bounding box's center point, its width, 

and height, respectively. The 'segmentation' is a list that contains one or more 

sublists of points that construct the polygon. Occasionally, the list may 

contain more than one sublist, particularly when some instances are obscured 

by other instances and can only be represented by two or more separate 

polygons. Following this, the 'category_id' is displayed, which signifies the 

specific class of the polygon, such as person, animal, etc. Lastly, the ground 

truth rank information is provided. 

In Figure 4-10, some examples of generating the proposed dataset have 

been shown. We present a series of illustrative examples that describe the 

process of generating the proposed dataset. For each image, the process starts 

with gaze recording, fixation filtering, and the salient objects threshold. 

These initial steps work for the generation of the fixation maps depicted in 

the second column. These fixation maps are subsequently presented to our 

participants for annotation. Following the annotation process, the polygons 

representing salient instances with distinct boundaries are presented in the 

third column. Subsequently, a ranking is assigned to each instance based on 

the number of fixation points contained within the polygons of different 

salient instances. The final step in this process is the generation of ground 

truth maps for RSR as shown in the fourth column. These maps provide a 

visual representation of the relative importance of different areas within the 

image.  
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Figure 4-10 Examples of generated images in our dataset. 

4.6 Statistics on Proposed Dataset 

The dataset is composed of a total of 8389 images, with each image 

containing an average of approximately 6.22 salient instances. Out of these 

images, 6701 are allocated to the training set, while the remaining 1688 are 

assigned to the test set. The images in our training set are selected from the 

MS-COCO training and validation sets, while those in the test set are chosen 

from the MS-COCO test set. This allocation strategy is designed to better 

accommodate current transfer learning models. Considering the limit dataset 

in the area of RSR, most of the proposed models for saliency ranking utilize 

transfer learning techniques based on instance segmentation models, and the 

majority of these instance segmentation models are pre-trained on the MS-

COCO training set. Therefore, it is reasonable to construct the test set in our 

proposed dataset exclusively from images in the MS-COCO test set. This 

approach ensures a fair benchmark for model performance evaluation. 

The median number of salient instances per image in the dataset is 5. In 

total, the dataset encompasses 52173 salient instances, offering a rich and 

diverse collection for comprehensive analysis and study. This dataset is 

expected to provide valuable insights and contribute significantly to 
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advancements in the field of RSR. 

4.6.1 Instance Number Per Image 

Figure 4-11 demonstrate the statistics on the image quantity different salient 

instance numbers in each image. The dataset is curated to encompass a broad 

complexity level, as reflected by the number of salient instances per image 

ranging from the minimum number 3 to the maximum number 41. The 

distribution spans from relatively simple scenarios to highly intricate ones, 

thereby providing a comprehensive dataset for the development and 

evaluation of RSR models. 

 

Figure 4-11 Statistics on the image quantity of different salient instance 

numbers in each image. 

Approximately 16% of the images (1342 out of 8389) contain three 

salient instances. This subset of the dataset offers a substantial volume of 

simpler scenarios, where fewer objects are present, thereby facilitating the 

study of basic RSR tasks. 

The most common scenarios in the dataset are represented by images 

containing four and five salient instances, accounting for approximately 

18.66% (1565 images) and 16.99% (1425 images) of the total images, 
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respectively. These categories provide a rich source of data for investigating 

the dynamics of relative saliency ranking among a moderate number of 

instances. 

As the complexity increases to images with six and seven salient 

instances, the count drops to 1096 and 860, respectively, accounting for 

approximately 13.1% and 10.3% of the total images. These categories 

present more complex scenarios, with a higher number of instances 

interacting within the same scene, thereby challenging the robustness of RSR 

models. 

Further complexity is introduced with 624 images containing eight 

salient instances and 426 images with nine salient instances, representing 

approximately 7.4% and 5.1% of the total images, respectively. These 

categories, although less frequent, offer more intricate scenarios that push 

the boundaries of RSR tasks. 

The dataset also includes 1051 images that contain more than ten salient 

instances each, representing the most complex scenarios and accounting for 

approximately 12.5% of the total images. These images are particularly 

valuable for testing the performance of RSR models under highly 

challenging conditions. 

In summary, the dataset's diverse salient instance distribution, ranging 

from three to more than ten instances per image, ensures a comprehensive 

evaluation of RSR models. This variety not only enhances the models' 

adaptability but also their performance across a wide range of situations. 

4.6.2 Instance Categories 

The dataset includes a wide of instance categories shown in Figure 4-12, 

where the ‘Person’ and ‘Animal’ categories occupy the highest percentages, 

with the total proportion being approximately 74.3%. The remaining 

categories contribute to the remaining 25.7% of the salient instances. This 
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potentially indicates that observers may show more interest on the ‘Person’ 

and ‘Animal’ categories while doing the 'freeviewing' tasks. 

 

Figure 4-12 Statistics on the salient instances categories. 

The 'Person' category, represented by 20180 salient instances, 

constitutes a significant portion of the dataset. This accounts for 

approximately 38.68% of the total instances, playing an important role of 

human-centric contexts in RSR tasks. The substantial representation of this 

category ensures that models trained on this dataset are proficient in handling 

scenarios involving human beings. The 'Animal' category, with 18583 salient 

instances, contributes to around 35.62% of the total salient instances, which 

ranks the 2nd. This category normally introduces a diverse range of shapes, 

sizes, and textures, thereby enriching the dataset and enhancing the 

robustness of the RSR models. The 'Vehicle' category, represented by 3657 

instances, accounts for about 7% of the total salient instances and ranks the 

3rd. This category introduces scenarios typically found in urban and 

transportation situations, ensuring that the models can effectively handle 

man-made salient instances and structures. The 'Sports' category, with 3167 

instances, makes up approximately 6.1% of the total instances. This category 
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provides a variety of dynamic and high-speed scenarios, challenging the 

models to accurately identify the relative saliency regions. The 'Outdoor' 

category, represented by 2010 instances, accounts for nearly 3.9% of the total 

instances. This category introduces scenarios that involve the salient 

instances in outdoor environments, contributing to the diversity of the 

dataset. Lastly, the other categories ('accessory', 'kitchen', 'food', 'furniture', 

'electronic', 'appliance', and 'indoor'), which includes 4576 instances, makes 

up around 8.8% of the total instances. These categories encompass a variety 

of salient instances and subjects not covered by the other categories, further 

enhancing the diversity of the dataset. 

4.6.3 Relative Saliency Ranking in Categories 

Figure 4-13 shows an average normalized saliency ranking in different 

categories across two datasets: our proposed dataset and ASSR dataset. Note 

that there is no category information provided in the IRSR dataset. To 

calculate the average normalized saliency ranking, first, for each instance 

within an image, we compute a normalized saliency rank. This is done by 

dividing the ground truth rank of the instance by the total number of 

instances within the image. Each calculated normalized saliency rank is then 

added to the list corresponding to its respective category. Finally, for each 

category, we compute the average normalized saliency rank. This is achieved 

by calculating the mean of all normalized saliency ranks within the 

category's list. This process results in an average normalized saliency rank 

for each of the 12 categories, providing a standardized measure of saliency 

across different categories. 
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Figure 4-13 Statistics on average normalized saliency ranking in different 

categories. Blue bars indicate the data in our proposed dataset, while orange 

bars demonstrate the data in ASSR dataset. Note that ASSR dataset set a limit 

of salient instances to 5. 

The blue bars in Figure 4-13 present the average normalized saliency 

ranks across 12 distinct categories in our proposed dataset, which provide 

insight into how attention is distributed across these categories within 

images. The category 'person' holds the highest average normalized saliency 

rank of 0.61, indicating that instances of this category tend to draw the most 

attention. This is followed closely by 'electronic' and 'animal' categories with 

saliency ranks of 0.57 and 0.58, respectively. On the other hand, the 'kitchen' 

category exhibits the lowest saliency score of 0.44, suggesting that instances 

in this category often own less attention relative to other instances within the 

same image. Other categories such as 'sports', 'furniture', ‘appliance’ and 

'accessory' also have lower saliency scores, equal or under 0.5, indicating a 

generally lower degree of attention. The categories 'vehicle', 'outdoor', 'food', 

and 'indoor' present average normalized saliency ranks ranging from 0.54 to 

0.56, indicating a moderate level of attention drawn towards these categories.  

The ASSR dataset presents average normalized saliency ranks across 

the same 12 categories in orange. Note that ASSR is created based on the 

attention shift of imitated eye-movement as described in Section 4.2.1.  
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In ASSR dataset, the 'animal' category has the highest rank of 0.72, 

suggesting that instances of this category draw the most attention in terms of 

eye movement. This is closely followed by 'appliance' and 'person' categories 

with saliency ranks of 0.68 and 0.66 respectively. Conversely, the 'kitchen' 

and 'sports' categories have the lowest saliency scores, both at 0.49, 

indicating less eye movement towards these categories. Other categories 

such as 'indoor', 'furniture', and 'accessory' also exhibit lower saliency scores 

around 0.5 - 0.55. The categories 'vehicle', 'food', and 'electronic' have 

saliency ranks around 0.61 - 0.65, suggesting a moderate degree of eye 

movement towards these categories. The 'outdoor' category falls slightly 

behind with a score of 0.58. 

Comparing the ASSR dataset with ours, both datasets share similarities 

in the relative ranks of some categories. For instance, both datasets identify 

'person' and 'animal' as highly salient categories, drawing considerable 

attention. Similarly, categories like 'kitchen' and 'sports' generally receive 

less attention in both datasets. 

However, there are notable differences too. The 'appliance' category, for 

example, draws significantly more attention in the ASSR dataset compared 

to ours. 'Electronic' items also seem to draw more attention in our dataset 

than in the ASSR dataset. These differences may stem from the different 

modalities of dataset: fixation duration in our dataset versus attention shift 

from mouse-trajectory-based fixations in the ASSR dataset. This suggests 

that while some objects inherently draw more attention, the way we measure 

attention, whether by duration of fixation or by eye movement from mouse-

trajectory-based fixations, can also influence the saliency rankings. 

4.6.4 Category Complexity 

Figure 4-14 shows the average complexity in each of the 12 categories within 

our proposed dataset. Here, the meaning of complexity is defined by the ratio 
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of the mean area size to the mean perimeter in instance-level, where the mean 

area size refers to the average of the total space that each instance occupies 

within the images and the mean perimeter refers to the average length of the 

outer boundary of each instance. By dividing the mean area size by the mean 

perimeter, a simple quantitative measure has been established. 

 

Figure 4-14 Average complexity of each category in our proposed dataset. 

Basically, it is theoretically reasonable to posit a correlation between a 

category's average complexity and its saliency rank. Categories marked by 

higher complexity may generate a greater degree of attention, leading to a 

higher saliency rank, as they may make people more curious or require more 

thinking.  

By combining Figure 4-14 and Figure 4-13, it can be observed that 

categories like 'person' and 'animal' get relatively high complexity scores of 

6.14 and 6.26 respectively, which correspondingly demonstrate higher 

saliency ranks. This could potentially denote that more complicated 

instances, such as humans and animals, usually attract more substantial 

attention. 

Meanwhile, the 'kitchen' and 'food' categories, with the lowest 

complexity scores of 4.89 and 4.34 respectively, also present lower saliency 

ranks. This might suggest that less complex categories are associated with a 
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reduced degree of attention. 

However, it is important to acknowledge the other categories are not 

following this rule. For instance, the 'electronic' category exhibits a relatively 

low complexity score of 4.47, yet it commands a high saliency rank. 

Similarly, the 'accessory' category has a lower complexity score of 5.18 but 

still achieves a moderate saliency rank. These instances seem to imply that 

factors beyond complexity also have a significant influence on the relative 

saliency rank. This observation indicates that complexity alone may not be 

sufficient to predict the relative saliency rank of an object or category. Other 

aspects, such as image contrast, instance location, instance size and so on 

could potentially also play important roles in determining how salient an 

object appears to the viewer. While complexity in some categories appears 

to have a correlation with the relative saliency rank, it's important to note 

that this correlation does not imply a direct reason. The complexity of an 

object or category is just one of the several reasons that contributes to its 

saliency. Therefore, considering multiple influencing factors together may 

provide a more accurate and comprehensive understanding of relative 

saliency. 

4.6.5 Foreground Size 

Figure 4-15 shows the statistics on foreground salient objects size ratio on 3 

RSR datasets. Here, the foreground salient objects size ratio is defined by 

the proportion of the total pixels of salient instances in the whole image and 

the proportion in Y-axis indicates the percentage of images in the whole 

dataset. The size of the foreground salient objects is categorized into three 

classes: small, medium, and large. Specifically, small is defined as a 

foreground size ratio of 5% or less, medium is defined as a foreground size 

ratio between 5% and 30%, and large is defined as a foreground size ratio of 

30% or more. The corresponding data for these categories are presented in 
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Table 4-2. 

 

Figure 4-15 Statistics on foreground salient objects size ratio on three RSR 

dataset. 

 Ours ASSR IRSR 

Total Images 8389 11500 8988 

Large Foreground Images 1292 (15%) 4062 (35%) 3818 (43%) 

Medium Foreground Images 5202 (62%) 5855 (51%) 4535 (50%) 

Small Foreground Images 1895 (23%) 1583 (14%) 635 (7%) 

Maximum Ratio 0.84 1.0 1.0 

Minimum Ratio 0.01 0.01 0.01 

Table 4-2 Statistics on the foreground size. 

As can be observed from the Table 4-2, our dataset, consisting of 8389 

images, displays 15% of images with large foreground, 62% with medium 

foreground, and the remaining 23% with small foreground, approximately 

subject to a ratio of 1:4:2. The maximum and minimum size ratios are 0.84 

and 0.01, respectively. Comparatively, the ASSR dataset, containing 11500 

images, exhibits a larger proportion of images with a large foreground (35%), 
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and a smaller proportion with a medium (51%) and small foreground (14%). 

The size ratios range from 0.01 to a maximum of 1.0. The IRSR dataset, 

comprising 8988 images, presents an even higher proportion of images with 

a large foreground (43%), and similar proportions with a medium (50%) and 

small foreground (7%) as compared to the ASSR dataset. Like ASSR, the 

size ratios span from 0.01 to a maximum of 1.0. 

A particularly notable feature of our dataset, as revealed in the Figure 

4-15 and Table 4-2, is the higher proportion of images with smaller 

foreground salient objects, accounting for 23% of the total images. In 

contrast, the corresponding proportions in the ASSR and IRSR datasets are 

lower, at 14% and 7% respectively. The high proportion of these smaller 

instances in our dataset implies a higher level of complexity and presents a 

more challenging scenario for the task of RSR. This is because smaller 

salient objects can be harder to identify and distinguish. 

We argue that our proposed dataset introduces a more challenging task 

for RSR models, demanding improved sensitivity and precision in 

recognizing and ranking smaller salient objects spread across an image. 

Consequently, models trained on our dataset are expected to be more robust 

and capable of handling a broader range of situations in the real-world 

applications of RSR. 

In addition, another characteristic worth noting is the presence of salient 

instances with extraordinarily high foreground size ratios in both the ASSR 

and IRSR datasets. There are 16 images in the ASSR dataset and 6 images 

in the IRSR dataset where the foreground size ratio exceeds 0.95. The 

frequency of such images increases even further if we slightly lower the 

threshold to 0.9 for the foreground size ratio. This phenomenon typically 

arises due to images that are contaminated by the background, as depicted in 

as shown in Figure 4-16. In certain cases, the salient object segmentation is 

not limited to the actual foreground objects but also includes segments of the 

background. Consequently, this contributes to the corresponding ranking 
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information, thereby causing negative effects on the overall integrity and 

reliability of the dataset, which heavily influences the task of correctly 

identifying and ranking the actual salient objects. This may potentially 

confound the learning of RSR models, thereby undermining their 

generalizability and performance in real-world applications. 

 

Figure 4-16 Background-contamination examples in IRSR and ASSR. 

4.6.6 Instance Size 

Similar to Section 4.6.5, the statistics on instance-level size ratio are 

summarized in Table 4-3. Here, the salient instance size ratio is defined by 

the proportion of the total pixels of each salient instance in the whole image 

and the proportion in Y-axis indicates the percentage of instances in the 

whole dataset. The size of the salient instances is also categorized into three 

classes: small, medium, and large. Specifically, small is defined as an 

instance size ratio of 5% or less, medium is defined as an instance size ratio 

between 5% and 30%, and large is defined as an instance size ratio of 30% 

or more. 

Upon comparison of the three datasets, our proposed dataset exhibits a 

distinctively high concentration of smaller instances, making up 86.5% of 

the total instances. This proportion vastly outweighs those in the ASSR and 
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IRSR datasets, which stand at 70.1% and 55.7% respectively. 

Meanwhile, the large instances in our dataset make up a mere 0.2%, 

significantly less than the 3.7% and 5.1% found in the ASSR and IRSR 

datasets respectively. The medium instances in our dataset also constitute a 

lower percentage of 13.3%, compared to 26.2% in the ASSR and 39.2% in 

the IRSR datasets. 

 Ours ASSR IRSR 

Total Instances 52173 49445 30176 

Large Instances 102 (0.2%) 1852 (3.7%) 1533 (5.1%) 

Medium Instances 6924 (13.3%) 12959 (26.2%) 11837 (39.2%) 

Small Instances 45147 (86.5%) 34634 (70.1%) 16806 (55.7%) 

Maximum Ratio 0.51 0.98 1.0 

Minimum Ratio 0.01 0.01 0.01 

Table 4-3 Statistics on the instance size. 

The dominance of smaller instances in our dataset implies a more 

challenging situation for the task of RSR. The presence of smaller salient 

objects necessitates a higher level of precision and sophistication in RSR 

models, as they need to accurately detect and rank these less pronounced but 

equally important elements within the image. Therefore, our dataset 

introduces a more challenging benchmark for the training and evaluation of 

RSR models, ultimately contributing to their robustness and adaptability in 

real-world applications. 

4.6.7 Instance Location 

It is acknowledged that humans have an innate tendency to concentrate their 

attention on the center of a viewed scene to recognize salient objects. 

Therefore, it is necessary to evaluate if the datasets are suffering center bias. 

Following [89][61], the position of salient instances is calculated across the 

three RSR datasets. Two key metrics are calculated in this process: 𝐼𝑐 and 

 𝐼𝑚, where 𝐼𝑐 demonstrates the distance from the instance center point to 
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the image center point and 𝐼𝑚 indicates the distance from the farthest point 

of the boundary of each instance to the image center point. These generated 

distances are normalized by dividing each value by half the diagonal length 

of the image. This normalization process allows for a more meaningful 

comparison of deviation values across different images in different sizes. 

 

Figure 4-17 Statistics on instance location on three RSR datasets. 

Figure 4-17 demonstrates the statistics data based on 𝐼𝑐  and  𝐼𝑚  of 

each instance, where y axis indicates the proportion of instances. It can be 

found from the 𝐼𝑐 data that 3 datasets all slightly suffer from the center bias 

and all 3 datasets generate similar trend in terms of the center deviation of 

each instance.  

The analysis of 𝐼𝑚 reveals a more differentiated picture. The ASSR 

and IRSR datasets show a similar trend, characterized by a big proportion of 

instances with the farthest boundary points locating at the edges of the visual 

scenes. This spatial distribution could potentially imply that the salient 

objects in these datasets are relatively larger or extend towards the 

boundaries of the images. 
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On the other hand, our proposed dataset exhibits a different trend. It 

includes a greater proportion of instances whose farthest boundary points lie 

within a smaller distance from the image center, indicating a more evenly 

distributed spatial arrangement of salient objects. Furthermore, a comparison 

of the 𝐼𝑚  and 𝐼𝑐  trends in our dataset suggests that the instances are 

potentially closer together, creating more visually complex and challenging 

scenes. This characteristic could potentially make our dataset more effective 

for training models capable of identifying and ranking salient objects in real-

world scenarios, where salient objects are often located close together. 

4.6.8 Instance Contrast 

As suggested by [61], the saliency is related to the global contrast and local 

contrast in a visual scene. These two elements play important roles in 

determining the visibility of objects within an image, thereby significantly 

influencing our perception of saliency. 

To quantify these crucial factors, we have calculated both global and 

local contrasts for each instance in our study. In particular, for global contrast, 

we first compute the RGB color histograms for both the foreground and 

background of each instance. The Chi-square (𝑋2) distance is then used to 

measure the difference between the foreground and background histograms. 

This process yields a quantitative measure of the global contrast for each 

instance. 
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Figure 4-18 Statistics on global contrast and local contrast of each instance 

on three RSR datasets. 

On the other hand, the local contrast is computed by cropping a 5x5 

image patch at each boundary point of each salient instance, following the 

methodology outlined in [61]. Similar to the computation of global contrast, 

we generate separate RGB color histograms for the foreground and 

background of these cropped image patches. The Chi-square distance is 

again utilized to measure the differences between these histograms, thereby 

providing a numerical representation of the local contrast. 

The statistics on global contrast and local contrast in three datasets are 

shown in Figure 4-18. Interestingly, our proposed dataset exhibits a higher 

proportion of instances with greater global contrast. This finding suggests 

that our dataset contains more visually striking and distinguishable objects, 

which could potentially facilitate more effective and efficient saliency 

detection. 

In terms of local contrast, our dataset also demonstrates a higher 

frequency of instances with bigger local contrast. Given the manner in which 

local contrast is calculated, high local contrast implies the presence of well-

defined boundaries. Therefore, this observation could be interpreted as an 
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indication of the superior annotation quality in our dataset.  

4.7 Conclusion 

In this chapter, we provided a comprehensive overview of our proposed RSR 

dataset. Our data collection approach integrates the naturally viewing 

patterns of human observers, offering a closer approximation to real-world 

perception compared to existing datasets. To the best of our knowledge, this 

is the first large-scale dataset annotated based on real human fixation 

patterns for the purpose of RSR.  

Our proposed dataset also distinguishes itself from existing datasets by 

breaking away from the traditional norm of setting an arbitrary limit on the 

maximum number of salient instances per image. This is a common 

occurrence in existing datasets, and could potentially restrict the complexity 

and richness of visual scenes, thus limiting the robustness of saliency 

detection ranking models. In contrast, all the images in our dataset contain 

three or more salient instances, providing a more authentic representation of 

RSR issues and enhancing the diversity and intricacy of the dataset. 

The statistical analysis conducted on our dataset, including instance 

number, categories, size, location, and contrast, highlights the variety and 

challenge introduced by this new dataset. This level of complexity also offers 

a more difficult testing ground for new models, which will help drive the 

development of more robust models. 
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Chapter 5 Exploration of 

Transformers for Salient Object 

Detection 

5.1 Introduction 

In Chapter 3 we explored the CNN-based architectures to perform MSOD. 

Our proposed method achieved state-of-the-art performance, exceeding 

previous models by a large margin. To investigate MSOD task in depth, we 

created a large-scale instance-level RSR dataset in Chapter 4. Our aim is to 

develop new and powerful techniques for salient object ranking. Our work 

in chapter 3 was based on CNNs. More recently, transformer models have 

moved over from natural language processing, and have produced very 

impressive results on many visions tasks. Our hypothesis is that a 

transformer-based approach would perform well on a saliency ranking 

problem. However, we first explore the use of transformers on the simpler 

task of SOD. Where instance-level RSR is a combined instance level 

segmentation and prediction task, SOD can be regarded as a simple binary 

segmentation problem. One key challenge is that transformers have been 

seen to produce particularly good results on large datasets, whereas the 

existing SOD and RSR are comparatively small. In this chapter, we explore 

the use of a transformer-based network as an alternative to the method 

outlined in Chapter 3. With limited data, we find that the transformer-based 

models can achieve state-of-the-art performance in SOD tasks with careful 

use of a transfer-learning strategy. This offers an interesting alternative, or 

compliment to, traditional CNNs. The background of transformers is firstly 

introduced in Section 5.2. Following this, Section 5.3 shows the experiments 

carried out in evaluating transformers for SOD. We build upon our 
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experiments here in chapter 5, with a transformer-based approach for salient 

object ranking. 

5.2 Background 

Recently, transformers [36] have had a substantial impact on the field of 

machine translation, specifically in modeling long-range dependencies. Its 

fundamental mechanism, self-attention, allows transformers to repeatedly 

stack self-attention layers throughout the architecture. This facilitates the 

modeling of long-range dependencies at each layer, thereby offering a 

comprehensive view of data interactions and dependencies. This kind of 

transformer technique has also attracted the researchers in computer vision 

community. The Vision Transformer (ViT) [70] was a pioneering work that 

demonstrate the potential of Transformer techniques to replace standard 

convolutional operations in deep neural networks, particularly when dealing 

with large-scale computer vision datasets. Since then, multiple transformer-

based models appeared to address different kinds of computer vision 

problems. Considering transformer’s strong ability on feature extraction and 

long-range dependencies, classic transformers and vision transformers are 

introduced below. 

5.2.1 An Image is Worth 16x16 Words: Transformers 

for Image Recognition at Scale 

The transformer technique is initially introduced in the field of Natural 

Language Processing (NLP) and has attracted many researchers in the 

Computer Vision (CV) community. However, applying the Transformers 

technique to CV does not come without challenges, due to the different types 

of data structures used in NLP and CV. 

In NLP, the data is organized sequentially. On the other hand, the data 
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in CV is normally spatial, with width and height contributing to the overall 

structure of an image. These inherent differences pose a unique challenge 

when attempting to apply transformer techniques, originally designed for 

sequential data, to two-dimensional image data. 

As a result, a crucial step when employing Transformer techniques in 

CV is to convert visual data into a sequential format.  

The work in [70] presented a novel approach to tackle the issue of using 

the transformer technique with visual data. The researchers divide images 

into a series of flattened 2D patches, each treated as a token to construct 

sequential data compatible with the transformer architecture. 

This work not only demonstrates the possibility of utilizing the 

transformer technique in place of traditional convolutional operations but 

also highlights some of its limitations. When applied to mid-scale datasets, 

like ImageNet, the transformer's performance was observed to be slightly 

below that of traditional models such as ResNet. However, an interesting 

trend is noticed with the increase of dataset scale. As the scale of the dataset 

grow, the performance of transformer techniques shows a steady 

improvement. It is eventually able to match, and in some cases, even exceed 

the performance of current convolutional models. This observation suggests 

that large-scale datasets might enable transformers to learn important 

features, such as translation equivariance and locality, similarly to how 

CNNs operate. This demonstrates the potential of transformer techniques in 

computer vision tasks, especially when supplemented with large-scale 

datasets. It also indicates a promising direction for future research and 

optimization to further enhance the performance of transformer-based 

models in computer vision applications. 

The structure of the Vision Transformer (ViT) begins with an input 

image of dimensions H × W × C. This image is initially segmented into N 

patches, each with dimensions P × P × C (or P²C). These N patches are then 

combined into a N × (P²C) 2D matrix, which is also referred to as 'flattened 
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patches.' similar to the word vector configuration used in NLP transformers. 

It is worth noting that as the patch size P varies, so does P²C. In order 

to prevent the architecture from being affected by changes in patch size, this 

study implements a linear projection. This approach is used to transform 

different dimensional flattened patches into fixed size vectors, each with a 

dimension of D. As a result, the initial input of H × W × C is transformed 

into a N × D 2D matrix, maintaining a consistent input size irrespective of 

the original patch dimensions. 

Transformers have a powerful ability to learn relationships between 

pairs of features. However, one limitation for transformers is that they cannot 

learn and understand sequential positional information, as there is no 

position information in the self-attention mechanism. To overcome this, 

Position Embeddings are introduced into the architecture. These embeddings 

are added to different patch embeddings, helping to preserve the positional 

information within the data structure, thus providing the Transformer with a 

sense of spatial perception that it wouldn't naturally possess. 

Furthermore, an additional learnable class embedding is incorporated 

as part of the patch embeddings. This class embedding serves an important 

role in the architecture. Once the encoder has performed information 

exchange and applied the multi-head self-attention mechanism, the class 

embedding become a representation of the entire image. This representation 

not only includes the spatial and feature relationship information within the 

image but also the classification information.  

In this way, the original transformer architecture is adapted to handle 

computer vision tasks (image classification in this case). By integrating 

positional and class embeddings, it becomes possible to capture spatial 

context and categorization information that is critical for image analysis and 

understanding.  
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5.2.2 DETR: End-to-End Object Detection with 

Transformers 

This work [71] tackles the problem of object detection. It aims to identify 

the classification of distinct objects within each image while together 

generating corresponding bounding boxes that separating these objects. This 

approach allows for both object classification and localization effectively, 

meeting the two key objectives of object detection. 

Unlike [70], which relies purely on transformer techniques, this study 

constructs its model in a hybrid manner. It utilizes the strengths of both 

convolutional operations, which excel at feature extraction, and transformer 

structure, recognized for the power of modeling long-range dependencies. 

This allows for a more comprehensive understanding of images, thereby 

improving the object detection performance. This hybrid approach has 

inspired many researchers in the computer vision community. 

Specifically, an input image is first processed through a ResNet 

backbone to extract a feature representation. Subsequently, a 1x1 

convolutional layer is utilized to reduce the dimensionality of these features 

from 2048 to a more efficient size of 256. Taking inspiration from ViT [70], 

a positional encoding is integrated into the feature map. This step is crucial 

to ensure that spatial information related to the location of features within 

the image is preserved and can be processed by the transformer architecture.  

The sequence length is set to a constant value of 100, considering the 

maximum of 63 objects annotated in the Microsoft COCO dataset [72]. 

Consequently, the dimension of the input sequence becomes (b, 100, 256), 

where b represents the batch size. After the processing of the Transformer 

encoder, an output sequence of equivalent dimensions (b, 100, 256) is 

produced.  

Regarding the transformer decoder of the DETR model, the object 
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queries sequence is initially set to a shape of (100, 256). This is then 

preprocessed into a shape of (b, 100, 256), aligning with the batch size. 

Cross-attention operation is utilized here. Cross-attention here is a variant of 

the attention mechanism that connects the encoder and decoder parts of the 

model. Instead of self-attention, where the model attends to all positions in 

the same sequence, cross-attention allows the model to focus on different 

positions in a separate sequence. This is particularly beneficial when there 

are dependencies or relationships between the elements of two different 

sequences, which is a common scenario in tasks such as machine translation 

and question answering. In the context of the DETR model, the decoder 

incorporates a layer of cross-attention in its structure. The cross-attention 

mechanism allows the decoder to refer to the output sequence from the 

encoder, effectively enhancing the understanding of the spatial layout of the 

image. Each object query in the decoder not only interacts with other queries 

through self-attention but also attends to all positions in the encoder output 

via cross-attention. 

This process allows the object queries to gather information about the 

entire spatial layout of the image and integrate it into their predictions. It 

essentially means that each object query is informed about the positions and 

features of other objects in the image, allowing for a more robust prediction 

of object classes and their bounding boxes. The inclusion of the cross-

attention layer in the Transformer decoder thus significantly enhances the 

DETR model's capability to detect multiple objects and their locations in an 

image. 

After the information exchange executed by the transformer decoder, a 

Feedforward Network (FFN) is utilized to generate the predicted classes and 

their respective bounding boxes. 

In the Microsoft COCO dataset, individual objects are marked with 

indices ranging from 1 to 91. Thus, considering an additional class for 

background, the dimension of the class token is configured to be (b, 100, 92). 
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At the same time, each bounding box is represented by a 4D vector, encoding 

the bounding box center coordinates and the relative height and width with 

respect to the image size. As a result, the box token's dimension is set to (b, 

100, 4). 

The final stage of this process involves the use of the Hungarian 

algorithm [73], a combinatorial optimization method used to determine the 

optimal one-to-one match between the model's predictions and the ground 

truth labels. By utilizing this algorithm, the DETR model can effectively 

establish a correspondence between predicted and groundtruth objects and 

followed by supervied loss function to train the object detection task.  

In summary, this study presents a solution for object detection 

challenges using a transformer-based approach, generating comparable 

results to the optimized Faster RCNN [74] baseline on the COCO dataset. 

DETR employs a hybrid methodology, incorporating both CNNs and 

transformers, significantly inspiring researchers in this field and promoting 

the development of hybrid transformer-based models. This combined 

approach allows the model to leverage the strengths of both CNNs and 

transformers, resulting advancements in object detection tasks. 

5.2.3 Deformable DETR: Deformable Transformers 

for End-to-End Object Detection 

Deformable DETR is an advanced object detection model that combines the 

strengths of Transformers and deformable convolutions proposed by Zhu et 

al., 2021 [97]. 

Traditional DETR [71] has some limitations. It uses a fixed-size sliding 

window for self-attention computation, which is not optimal for objects of 

different sizes and aspect ratios. Moreover, DETR requires a large number 

of training epochs to converge, which makes it less practical for real-world 

applications. Deformable DETR addresses these issues by introducing a 
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modification to the original DETR model. 

Deformable Attention Module is proposed in deformable DETR to 

address the above-mentioned problems. Instead of using all the pixel 

location to carry out the self-attention mechanism, deformable attention 

module samples a subset of locations around the reference point for the self-

attention mechanism. This operation largely reduces the parameters and the 

computational complexity of the model. 

In deformable attention modules, for each reference point (query 

feature), the linear layers are utilized to predict the sampling offsets around 

the reference point. Then, only the offsets-guided points are used to carry out 

self-attention mechanisms. Other linear layers are also applied based on the 

reference point to generate the self-attention weights. In this process, only 

sampled points are utilized. 

Deformable DETR further introduces a multi-scale deformable 

attention mechanism, which allows the model to capture features at different 

scales. This is particularly useful for detecting small objects and fine-grained 

details. 

In experiments, Deformable DETR has achieved state-of-the-art 

performance on several benchmark datasets, including COCO and LVIS. It 

has also demonstrated superior performance in handling objects of different 

sizes and aspect ratios, as well as in detecting small objects and fine-grained 

details. 

5.2.4 CvT: Introducing Convolutions to Vision 

Transformers 

Despite progress being made in transformer-based models in computer 

vision, a multitude of unresolved issues continue to persist. Both the pure 

vision transformer [70] and the hybrid transformer model [71] always 

require a large volume of data and substantial computational resources to 
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successfully complete the training process. 

In contrast to these transformer models, CNNs tend to extract features 

in a different manner. CNNs typically identify and process features based on 

the spatial relationships of neighboring pixels. This is achieved through 

mechanisms such as local receptive fields (kernals), the use of shared 

weights, spatial subsampling and so on, the information of which is highly 

correlated and hierarchical (high-level features and low-level features), 

therefore making the training of CNN easier, requiring less data.  

The work in [75] aims to unify the previously mentioned strengths 

inherent to CNNs and the positive aspects of transformers. The result of this 

combination is a model known as the Convolutional Vision Transformer 

(CvT). This innovative model substantially minimizes the volume of data 

necessary for training transformer-based models, presenting a significant 

step forward in addressing the challenges of such models. 

One of the key innovations presented in this work is the introduction of 

the convolutional token embedding module. The purpose of this module is 

to gradually decrease the size of the input images at each stage of the process, 

where the feature maps become gradually high-level as they progress 

through the stages of the CvT. By implementing this method, the length of 

each sequential token is effectively reduced. 

In contrast to previous transformer-based models, which employ 

positional encoding to retain spatial location information, this research work 

introduces a unique design called a convolutional projection module. This 

module, instead of using positional encoding, applies a depth-wise 

convolutional operation directly to construct the query, key, and value for 

the multi-head self-attention mechanism. The depth-wise convolutional 

operation offers a number of benefits. One of the major advantages is its 

capability to extract spatially neighboring information, i.e. data or features 

that are in close proximity to each other within the spatial layout of the data, 

much like how our brains process information in our visual field. Compared 
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to the traditional positional encoding operation, this method is much more 

flexible. While positional encoding provides a fixed representation of 

position, the depth-wise convolutional operation can adapt to different 

scenarios and input sizes, providing a more dynamic way of handling the 

positional information. This flexibility can lead to a better understanding and 

representation of the data, potentially improving the model's performance in 

various computer vision tasks. 

The Convolutional Vision Transformer applies a series of stages in a 

repetitive manner to progressively extract features from the input data. In a 

typical CvT-21 model, the three stages contain a varying number of blocks, 

with stage 1 having 1 block, stage 2 containing 4 blocks, and stage 3 

consisting of 16 blocks. These stages, each containing multiple blocks, work 

in a hierarchical manner, allowing the CvT model to extract more 

complicated details at each stage. These blocks act as a medium for iterative 

feature extraction. They break down the input feature maps and extract 

essential features progressively, starting from simple low-level features and 

gradually moving towards more complex, high-level representations. 

At the final stage, a class token is appended to the sequence. The 

addition of a class token is a common practice in transformer models used 

for classification tasks. This class token represents the final output of the 

model and is used to solve the classification problem. It accumulates 

information throughout the stages of the model and is ultimately responsible 

for outputting the prediction. The classification results, derived from the 

class token, serve as the model's determination of what the input data 

represents, thereby solving the classification problem that the model was 

designed to tackle. 

In comparison to other transformer-based models, this work proves 

itself to be more efficient and effective in multiple ways. It requires less data 

for training, making it more feasible for applications where the data is 

limited or expensive to gather. Additionally, it demands less computational 
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power, which is a significant advantage given that computational resources 

can be costly and are often a limiting factor in model training and 

deployment. Furthermore, the model contains fewer parameters. This 

reduction in parameters not only simplifies the model but also helps mitigate 

overfitting. The model demonstrates state-of-the-art performance across 

various benchmarks. The efficiencies and effectiveness of this model 

provide considerable inspiration for the development of future transformer 

models.  

5.2.5 Swin Transformer: Hierarchical Vision 

Transformer using Shifted Windows 

Swin Transformer is a novel vision transformer model that was proposed by 

Liu et al., 2021 [96]. The name "Swin" stands for "Shifted Window", which 

reflects the unique design of the model. The Swin Transformer introduces a 

new mechanism for self-attention computation in Transformers, which is 

more suitable for image processing tasks. 

In ViT model mentioned in Section 5.2.1, the self-attention mechanism 

computes the attention scores for all pairs of tokens, which can be 

computationally expensive for large images. The Swin Transformer, on the 

other hand, divides the input image into non-overlapping windows and 

computes self-attention within each window, which significantly reduces the 

computational cost. The Swin Transformer also introduces a hierarchical 

structure, where the size of the windows is increased, and the number of 

tokens is reduced in the higher layers of the model. This design is similar to 

the convolutional layers in CNNs, where the receptive field increases in the 

higher layers. 

For an input image, the Patch Partition operation is firstly applied, 

which slides a 4x4 non-overlapped window on the input image. In this 

process, each 4x4 window will flatten the image patch along the channel 
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dimension. In this case, the RGB 3-dim image patch will be transformed into 

a 48-dim feature. Then, the Linear Embedding operation is used to transform 

the 48-dim features to 𝐶-dim features.  

The Patch Merging operation plays a similar role as the Patch Partition 

and Linear Embedding, which helps to reduce the width and height of the 

feature map and at the same time increase the channel numbers. Specifically, 

the Patch Merging layer concatenates the features of the same location in 

each 2x2 neighboring patches, followed by a layer normalization operation. 

Finally, linear layers are used to reduce the channel dimension from 4𝐶 to 

2𝐶. The whole process is shown in Figure 5-1. 

 

Figure 5-1 The process of Patch Merging. 

To reduce the computation, Swin Transformer utilizes W-MSA module 

to carry out the multi-head self-attention mechanism. Different from the 

traditional multi-head self-attention that calculate the long-range 

dependencies across all the pixels in an image, W-MSA only computes the 

multi-head self-attention within each window, which significantly reduces 

the computational cost. However, this operation obstructs the 

communications between different windows. 

To solve the problem, in the second transformer block, Shifted 

Windows Multi-Head Self-Attention (SW-MSA) is proposed. The result 

generated from layer 𝑙  only contain the long-range dependencies 

information within each window. In the following 𝑙 + 1 layer, the window 
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patch is shifted to generate new windows and SW-MSA is calculated based 

on the new generated windows. In new windows, the calculation of MSA 

crosses the boundaries of previous windows in layer 𝑙 , providing 

information exchange between different windows. 

A problem happens in the shifted window is that it will generate more 

windows and some windows are smaller. To solve this issue, a cyclic shift 

method is proposed. The new windows generated from SW-MSA is shifted 

to construct regular patches, and the self-attention operation is utilized in a 

masked manner to only calculate the MSA in the specific area, which is 

highly clean and efficient. 

The Swin Transformer has achieved state-of-the-art performance on a 

variety of vision tasks, including image classification, object detection, and 

semantic segmentation. One of the key advantages of the Swin Transformer 

is its flexibility and scalability. The model can be easily scaled up or down 

by adjusting the size of the windows and the number of Transformer layers.  

5.2.6 Mask2former: Masked-attention Mask 

Transformer for Universal Image Segmentation 

This work [98] presents a new architecture named Mask2Former, which is 

capable of addressing any image segmentation task, such as panoptic, 

instance, or semantic segmentation.  

Mask2Former is built upon a simple meta-architecture consisting of a 

backbone feature extractor, a pixel decoder, and a Transformer decoder.. The 

authors propose several innovative modules that enable better results and 

efficient training.  

First, to better recognize the small objects, this work proposes an 

efficient method that utilizes the high-resolution maps from the pixel decoder. 

Here, the multi-scale deformable attention Transformer [97] is applied in the 

pixel decoder. Specifically, at each stage, one of the multi-scale feature maps 
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will be fed into the corresponding layer of the Transformer decoder for the 

cross-attention based on query feature. This operation helps the model to 

extract important information from different scale high resolution feature 

maps, largely improve the performance for detecting small objects. 

Second, As discussed in the paper, it should be noticed the importance 

of context features for image segmentation and the slow convergence of 

Transformer-based models due to global context in the cross-attention layer. 

The authors propose masked attention, a variant of cross-attention that only 

focuses on extracting localized features by limiting cross-attention to the 

foreground area of each predicted mask, rather than spreading attention 

across the entire feature map. This operation is carried out based on the 

attention mechanism between the query feature and the highest resolution 

feature map in pixel decoder, which will learn to generate a mask for the 

cross-attention operation in the Transformer decoder layers at each stage. 

Third, this work proposes optimization improvements such as 

switching the order of self and cross-attention, making query features 

learnable, and removing dropout; all of which improve performance without 

additional compute.  

Finally, Mask2Former saves training memory without affecting the 

performance by calculating mask loss on a few randomly sampled points. 

These improvements not only boost the model performance but also make 

training significantly easier, making universal architectures more accessible 

to users with limited compute. 

One of the key findings in this paper is that the learnable queries can be 

regarded as region proposals. Region proposals [99], whether they are box-

shaped or mask-shaped, represent areas that are probable objects. When 

learnable queries are supervised by the mask loss, the predictions derived 

from these queries can act as mask proposals. This finding strongly inspires 

the future development of Transformer technologies. 

Mask2Former achieves state-of-the-art performance, but there are 
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remaining challenges that Mask2Former faces, particularly in segmenting 

small objects and fully utilizing multi-scale features. It is recognized by the 

authors here that better utilization of the feature pyramid and the design of 

losses specifically for small objects are crucial elements for enhancing its 

performance. 

5.2.7 Summary of Popular Transformer Models 

Table 5-1 highlights the summary and comparison of popular transformer 

techniques, showing how they have evolved to address specific needs in 

computer vision. 

Considering the effectiveness of CvT, efficiency, and the less data 

required for training, CvT is chosen at the first step to investigate the ability 

of transformer techniques. The related experiments are introduced in the next 

section. 
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Transformer 

Model 

Key Features Application Contributions Potential 

Limitations 

Vision 

Transformer 

(ViT) 

Divides images into 

flattened 2D patches; 

uses positional 

embeddings. 

Image 

classification at 

scale. 

Pioneering application 

of transformers in 

computer vision 

requires large-scale 

datasets for optimal 

performance. 

DETR Combines CNNs and 

transformers; positional 

encoding; Hungarian 

algorithm for object 

matching. 

Object 

detection. 

Integrates strengths of 

CNNs and 

transformers for 

improved object 

detection; effective in 

classification and 

localization. 

Requires significant 

computational 

resources; slower 

convergence 

compared to 

traditional models. 

Deformable 

DETR 

Deformable attention 

modules; multi-scale 

deformable attention. 

Advanced 

object 

detection. 

More efficient self-

attention computation; 

superior in handling 

objects of different 

sizes and aspect ratios. 

Requires training 

adjustments for 

optimal 

performance. 

Convolutional 

Vision 

Transformer 

(CvT) 

Convolutional token 

embedding; 

convolutional projection 

for self-attention; class 

token for classification. 

Image 

classification 

Reduces training data 

volume; unifies 

strengths of CNNs and 

transformers; efficient 

and effective feature 

extraction. 

May struggle with 

extreme variations in 

image size and 

content; further 

optimization needed 

for generalization. 

Swin 

Transformer 

Shifted window self-

attention; hierarchical 

structure; patch merging 

and partitioning. 

Image 

classification, 

object 

detection, 

semantic 

segmentation. 

Reduces 

computational cost; 

flexible and scalable; 

state-of-the-art 

performance across 

various tasks. 

Potential limitations 

in handling very 

high-resolution 

images; complexity 

increases with scale. 

Mask2Former Multi-scale deformable 

attention; masked 

attention for localized 

features; training 

optimizations. 

Universal 

image 

segmentation. 

Addresses slow 

convergence; can be 

used for various 

segmentation tasks. 

Challenges in 

segmenting small 

objects; requires 

optimization for 

feature pyramid 

utilization. 

Table 5-1 Summary and comparison of popular transformer techniques 

including key features, applications, contributions and potential limitations. 
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5.3 Experiments 

The impressive capabilities of transformer-based techniques have served as 

a strong inspiration for exploring their applications across various fields. 

Taking into account the efficiency and effectiveness of the Convolutional 

Vision Transformer (CvT) [75], along with its lesser data requirements for 

training, we explore the application of CvT in easier task of SOD to 

investigate the ability of transformer-based techniques. 

5.3.1 CvT-21 Backbone 

We first construct a simple CvT-21 backbone, with the objective of 

examining its capacity to learn elements relevant to the SOD problem. The 

architecture of this CvT-21 is demonstrated in detail in Table 5-2.  

The output of the CvT-21, which is a 14x14 feature map, was directly 

utilized to generate saliency maps of the same dimensions. These generated 

maps were subsequently trained using corresponding 14x14 ground truth 

maps.  

However, the models built in this manner failed to exhibit any 

significant learning, yielding disappointing results. This inability to learn 

could be attributed to the relative insufficiency of the available training 

dataset for saliency detection. Although CvT-21 models typically require less 

data for training compared to other models, the available saliency training 

dataset, which consisted of nearly 10,000 images, was still insufficient for 

effectively training the transformer-based model. Therefore, using the 

pretrained CvT-21 model and transfer-learning technique are essential.  
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CvT-21 

  Output 

Spatial 

Size 

Output 

Channel Size 

Layer Name Layer Settings Number of 

blocks 

Stage1 56 ×56 64 Conv. 

Embed. 

7×7,64,stride 4 

 

56 ×56 64 Conv. Proj 3x3,64 1 

MHSA H1=1,D1=64 

MLP R1=4 

stage 2 28 x 28 192 Conv. 

Embed. 

3x3,192,stride 2 

 

28 x 28 192 Conv. Proj 3x3,192 4 

MHSA H2=3,D2=192 

MLP R2=4 

stage 3 14x14 384 Conv. 

Embed. 

3x3,384,stride 2 

 

14x14 384 Conv. Proj 3x3,384 16 

MHSA H3=6,D2=384 

MLP R3=4 

Table 5-2 Detailed architecture of CvT-21 proposed in [75]. Conv. Embed.: 

Convolutional Token Embedding. Conv. Proj.: Convolutional Projection. Hi 

and Di is the number of heads and embedding feature dimension in the ith 

MHSA module. Ri is the feature dimension expansion ratio in the ith MLP 

layer. 

5.3.2 CvT-21 backbone with Simple Decoder 

In order to further explore the ability of transformer-based models to process 

and learn from smaller datasets, a new experimental setup is designed. This 

setup takes the form of an encoder-decoder architecture that utilized a pre-

trained CvT-21 model as its backbone. In this architecture, the decoder is 

built using several convolutional layers at each stage. Additionally, it 

integrates skip-connections from the corresponding sections of the CvT-21 

encoder and finally generate the structure similar to a U-Net [3]. The input 

images and generated predicted maps are set to 224x224. 

Luckily, during the training process, the model displays promising 

indications of learning with the loss observed to gradually decrease. 
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Meanwhile, various performance evaluation metrics in validation set show a 

gradual increase. Despite these promising signs, the overall performance of 

this model is still relatively low (see Table 5-3). However, these results serve 

as an important indication that transformer-based models can indeed be 

trained using smaller datasets, particularly when employing a transfer 

learning strategy. These observations provide a significant inspiration to 

continue exploring the potential of transformer model. Although the 

performance levels might currently be sub-optimal, there is a clear indication 

of learning and potential for improvement, which provides a foundation for 

continued exploration and refinement in this direction. 

Methods MaxF ↑ MAE ↓ 

PoolNet (CVPR2019) [22] 0.8048 0.0539 

EGNet (ICCV2019) [21] 0.8152 0.0531 

MINet (CVPR2020) [25] 0.8097 0.0555 

Proposed in Chapter 3 0.8234 0.0530 

Version 1 (Section 5.3.2) 0.666 0.0994 

Table 5-3 Performance comparison between other state-of-the-art methods 

and the proposed architecture here on DUTOMRON dataset, the best result 

has been marked bold. 

5.3.3 CvT-21 backbone with reverse CvT-21 decoder 

Here, an architecture makes use of a CvT-21 as encoder and a reverse CvT-

21 as the decoder has been explored. It is acknowledged that in a CvT-21 

encoder, the token length is gradually decreasing because of the utilized 

convolutional operations. In the reverse CvT-21 decoder, the bilinear 

interpolation is applied to gradually upsample the token length (image size), 

which allows for recovery of the spatial information lost during the encoding 

process. Moreover, this architecture also incorporates skip connections. 

These connections are applied from each stage of the encoder to its 
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corresponding stage in the decoder, allowing for the preservation and 

utilisation of low-level feature information, which is often lost in deep 

networks. 

Both the input and output sizes are set to 224x224, which provides a 

balance between computational efficiency and the level of detail in the 

processed images. Regarding the settings of the transfer learning technique, 

the models that only the encoder loads pre-trained weights and that both the 

encoder and decoder load pre-trained weights are investigated. The 

performance has been shown in Table 5-4. It can be seen both model version 

2 and version 3 perform well, even archieve state-of-the-art performance in 

SOD area, surpassing our proposed method in Chapter 3. 

Methods MaxF ↑ MAE ↓ 

PoolNet (CVPR2019) [22] 0.8048 0.0539 

EGNet (ICCV2019) [21] 0.8152 0.0531 

MINet (CVPR2020) [25] 0.8097 0.0555 

Proposed in Chapter 3 0.8234 0.0530 

Version 2 (Section 5.3.3) 0.8263 0.0517 

Version 3 (Section 5.3.3) 0.8288 0.0514 

Table 5-4 Performance comparison between other state-of-the-art methods 

and the proposed architecture based on DUTOMRON dataset. Here, version 

2 indicates the model that only encoder loads pretrained parameters, while 

version 3 denotes the one that both encoder and decoder load pretrained 

parameters. 

5.3.4 CvT-21 backbone with reverse CvT-21 decoder 

using channel-wise attention transformer 

A transformer block typically encompasses several self-attention operations. 

However, currently, only spatial self-attention is implemented within these 

transformer blocks. Therefore, a CvT-based decoder that integrates channel-

wise self-attention operations is explored here. The upsampling method in 
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the decoder employed here continues to be bilinear interpolation. Skip 

connections are also used from each stage of the encoder to the 

corresponding place in decoder. Performance can be found in Table 5-5. Note 

here only the encoder loads pre-trained weights. The model using channel-

wise transformer block does not get very strong performance on MaxF but 

has relatively good MAE. 

Methods MaxF ↑ MAE ↓ 

PoolNet (CVPR2019) [22] 0.8048 0.0539 

EGNet (ICCV2019) [21] 0.8152 0.0531 

MINet (CVPR2020) [25] 0.8097 0.0555 

Proposed in Chapter 3 0.8234 0.0530 

Version 4 (Section 5.3.4) 0.8212 0.0466 

Table 5-5 Performance comparison between other SOD methods and the 

proposed model (version 4) using channel-wise attention mechanism based 

on DUTOMRON dataset.  

5.3.5 CvT-21 backbone with reverse CvT-21 decoder 

using channel-wise attention transformer and 

channel convolution for upsampling 

In a CvT-21 architecture, the convolutional embedding layer is used to 

gradually decrease the token length (image size) and increase the dimensions 

of channel space, which process the spatial relationships in local space, 

supporting the spatial long-range dependency information captured in 

transformer blocks. In comparison, channel-wise transformers can capture 

the long-range dependencies information in channel space, but no local 

relationships between each channel can be captured. If regarding a feature 

map as a cuboid, there might be local neighborhood and local relationship 

information in channel-space. Therefore, a model is designed here that 

utilizes convolutional operation on channel-space as the convolutional 
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embedding layer to gradually process the local relationships between each 

channel. As shown in Figure 5-2, the mechanism of this operation is very 

similar to the traditional convolutional operation in spatial space, which can 

gradually reduce the dimension of channel space and increase the spatial size 

(image size), therefore making it a tool used for upsampling. 

 

Figure 5-2 Difference between traditional convolutional operation and the 

proposed convolutional operation on channel space. 

The proposed decoder architecture has been shown in Table 5-6. 

Specifically, the output of the encoder is with dimension (𝐵, 𝐶, 𝐻, 𝑊) − (𝐵, 

384,14,14), which is firstly input into an adaptive layer to transfer the 

channel number to be 576, then, this feature will directly go to the 

transformer blocks. After stage 1, a convolutional embedding layer will be 

applied on the channel space of the output of stage 1. Here, the input feature 

map is of dimension (𝐵, 𝐶, 𝐻, 𝑊) − (𝐵, 576,14,14). The feature is firstly 

reshaped to be (𝐵, 𝐶, 𝐻 × 𝑊) − (𝐵, 576,196), then transformed to (𝐵, 𝐻 × 

𝑊, 𝐶) − (𝐵, 196,576), and finally reshaped based on the square root of 

channel space to make it (𝐵, 𝐻 × 𝑊, 𝑐, 𝑐) − (𝐵, 196,24,24). For an initial test 

experiment, the channel size should be square rooted. Then, this feature map 

will be input to the convolutional embedding layer. 

The final output is generated after doing a convolutional operation 

based on the output of this model to generate a single-channel prediction. 

The performance has been shown in Table 5-8 Version 5. Although the 

performance is not as well as the model using bilinear operation to upsample 
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feature maps, it worth exploring as this kind of method does gradually learn 

something. However, compared to state-of-the-art models, the results 

generated from this model lack clear edge segmentation. 

Adaptive Layer 

 

 

Output Output 

  

Number of 

Spatial Size Channel 

Size 

Layer Name blocks 

 

196 (14x14) 576 

(24x24) 

Conv.Adaptive 1x1, 576, stride 1 1 

Decoder (Channel Transformer) 

 

 

Output Output 

  

Number of 

Spatial Size Channel 

Size 

Layer Name blocks 

      

   

Conv. Proj 3x3,576 

 

 

196(14x14) 576 

(24x24) 

MHSA H1=9, D1=576 16 

Stage1 

  

MLP R1=4 

 

 

784 (28x28) 144 

(12x12) 

Conv. Embed. 3×3, 784, stride 2 

 

   

Conv. Proj 3x3, 144 

 

 

784 (28x28) 144 

(12x12) 

MHSA H2=6, D2=144 4 

Stage 2 

  

MLP R2=4 

 

 

3136 (56x56) 36 (6x6) Conv. Embed. 3×3, 3136, stride 2 

 

   

Conv. Proj 3x3, 36 

 

 

3136 (56x56) 36 (6x6) MHSA H3=3, D3=36 1 

Stage 3 

  

MLP R2=4 

 

 

50176 9 (3x3) Conv. Embed. 3×3, 50176, stride 2 

 

 

(224x224) 

Table 5-6 The detailed configuration of the proposed architecture here. 
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Besides, two different channel-wise transformer mechanisms based on 

different attention heads separating methods are investigated (Table 5-7). 

Specifically, Version 5 is the one using attention heads to separate (divide) the 

dimension of channel space, while Version 6 is one using attention heads to 

separate (divide) the dimension of spatial space. The result has been shown 

in Table 5-8. As a channel-wise transformer, Version 6 contains more channel-

wise relationships information and thus it achieves better results. This Version 

6 method can be regarded as a way to separate the whole feature map into 4 

patches (because of 4 attention heads) spatially and then compute the 

channel-wise long-range dependencies. 

 Input Query Attention 

Heads 

Separation (Query, Key)      Attention Map 

Version 5 1 196 24 24 1 196 576 9 1 9 196 64 1 9 64 64 

Version 6 1 196 24 24 1 196 576 4 1 4 576 49 1 4 576 576 

Table 5-7 Two different channel-wise self-attention methods explored here. 

Methods MaxF ↑ MAE ↓ 

PoolNet (CVPR2019) [22] 0.8048 0.0539 

EGNet (ICCV2019) [21] 0.8152 0.0531 

MINet (CVPR2020) [25] 0.8097 0.0555 

Proposed in Chapter 3 0.8234 0.0530 

Version 5 (Section 5.3.5) 0.7863 0.451 

Version 6 (Section 5.3.5) 0.7934 0.452 

Table 5-8 Performance comparison between other state-of-the-art methods 

and the proposed architecture with two different channel-wise self-attention 

methods based on DUTOMRON dataset.  

5.4 Conclusion 

In this chapter, several experiments have been performed to learn and 

explore the power of transformers for image saliency. We found that the 
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model with the best performance is the one in which a Convolutional Vision 

Transformer (CvT-21) is used as both an encoder, and reverse CvT-21 as the 

decoder. We also found that using the pretrained weights in the decoder in 

reverse order also improved performance above initializing the decoder from 

scratch. We hypothesize that these kinds of transformer models, while 

powerful, are often impractical to be well trained without extremely large 

datasets. This model achieved state-of-the-art performance in salient object 

detection on the challenging dataset DUTOMRON. In some configurations, 

the performance of this transformer approach also surpasses our previous 

work presented during Chapter 3. In the next chapter, transformer techniques 

and a transfer learning strategy are combined with graph neural networks 

and applied to design the architecture for challenging task: relative saliency 

ranking. As relative saliency ranking is an instance segmentation task and 

CvT cannot be directly applied for instance segmentation, the mask2former 

is chosen to be investigated as the detector of relative saliency ranking in the 

following chapter. 
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Chapter 6 Instance-Level Relative 

Saliency Ranking 

6.1 Introduction 

In previous chapters we have proposed an approach for SOD, new datasets 

for SOD and RSR, as well as the transformer techniques seen in Chapter 5. 

In this chapter, we combine a transformer-based detector that carries out 

instance segmentation with a novel graph reasoning architecture, which 

learns to rank objects based on their saliency. We train this network on public 

datasets, and the new proposed dataset presented in chapter 4, where the 

experimental results demonstrate our proposed method exceeds all previous 

state-of-the-art approaches for a large margin under three evaluation metrics. 

In Section 6.2, the related background technologies of graph reasoning 

will be described. After this, the research gaps in current instance-level RSR 

area will be discussed in Section 6.3. The detailed architecture of our 

proposed method for RSR is introduced in Section 6.4, while Section 6.5 

shows the experimental results of our proposed method. 

6.2 Background 

Saliency ranking task requires not only the detection of different salient 

objects, but also the relationships between each detected salient objects to 

generate the relative ranking. Transformer techniques can conduct object 

detection effectively, while regarding the relationships, graph reasoning 

methods are good options, which are introduced in the following sections. 

6.2.1 Graph Neural Networks 

Deep learning has proven to be highly effective in identifying hidden 
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patterns within Euclidean data [100]. In recent years, inspired by the 

development of Graph Neural Networks (GNNs) [102], a growing number 

of applications have represented data as graphs. For instance, facial 

landmarks can be represented as graphs to better conduct face recognition 

and face detection [135][136]. 

In e-commerce systems, a graph-based learning system can leverage the 

interactions between users and products to generate highly precise 

recommendations [133]. In the field of chemistry, molecules are depicted as 

graphs for the discovery of drugs [132]. 

As shown in Figure 6-1, a graph 𝐺 = (𝑉, 𝐸)  is composed of a 

collection of vertices, denoted as 𝑉 ∈ {𝑣𝑖𝜖𝑅
1𝑥𝐾} , and edges, denoted as 

𝐸 ∈ {𝑒𝑖,𝑗 = 𝑒(𝑣𝑖 , 𝑣𝑗)| 𝑣𝑖,  𝑣𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} . Here, 𝑣𝑖   demonstrates the 𝐾 

attributes of the object within the graph, and 𝑒𝑖,𝑗 denotes the edge feature 

that establishes the relationship between vertices 𝑣𝑖 and 𝑣𝑗 . Each pair of 

vertices can be linked by a maximum of one undirected edge or two directed 

edges. A common method to represent such edges is through the adjacency 

matrix 𝐴 ∈ 𝑅|𝑣|𝑥|𝑣|. In this matrix, all vertices in a graph are arranged such 

that each vertex corresponds to a specific row and column. Consequently, 

the existence of each edge 𝑒𝑖,𝑗 can be indicated by a binary value 𝐴𝑖,𝑗 = 1 

if and are 𝑣𝑖 and 𝑣𝑗  connected, or 𝐴𝑖,𝑗 = 0 if they are not. Notably, the 

adjacency matrix is always symmetric if all edges are undirected. However, 

it can be non-symmetric if there are one or more directed edges. 

 

Figure 6-1 Illustration of graph representation [101]. 

In a typical GNN, the process of learning and prediction involves three 
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primary steps: aggregation, updating, and looping. 

Aggregation is the first step in the process where the GNN collects 

information from the neighboring nodes of each node in the graph. The 

purpose of this step is to gather local information around each node using an 

aggregation function. This function can vary depending on the specific type 

of GNN, but common functions include sum, mean, or max operations. 

Consider the graph shown in Figure 6-2. To calculate the updated value of 

vertex B, the neighborhood vertices C, M and E are all considered to 

generate neighborhood information, which can be defined as: 

𝑁𝐵 = 𝑓𝑏(𝐶,𝑀, 𝐸) (6 − 1) 

Where 𝑁𝐵  indicates the aggregated neighborhood information of B, 

𝑓𝑏 denotes the aggregation function. 

 

Figure 6-2 An example graph. There are 5 vertices in this graph: B, C, M, E 

and F. 

After the aggregation step, the GNN updates the features of each node 

based on the aggregated information. This is typically done using a function 

that takes the current features of a node and the aggregated information as 

input, and outputs the updated features. This function can be a simple linear 

transformation followed by a non-linear activation function, or a more 

complex operation such as a multi-layer neural network. A simple updating 
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step can be formulated as: 

𝐵𝑢 = 𝜎(𝑊𝐵 + 𝛼 ∗ 𝑁𝐵) (6 − 2) 

Where 𝐵𝑢 denotes the updated vertex feature of B, 𝜎 is the activation 

function, 𝑊  is the learnable weights in the model and 𝛼  is a weight 

indicating how much neighborhood information B is going to require.  

The aggregation and updating steps are typically performed in a loop 

for a certain number of iterations. This allows information to propagate 

through the graph and enables each node to gather information from nodes 

that are more than one edge away. The number of iterations can be a fixed 

number, or it can be determined dynamically based on the data. 

GNNs have significantly boosted the development of deep learning, 

particularly for unregular graph-based predictions. An increasing number of 

research studies are introducing innovative concepts built upon the 

foundational GNNs for various tasks. Of these, modifications to the 

aggregation function have gained the most attention. 

6.2.2 Graph Attention Networks 

Graph Attention (GAT) networks [105] introduce attention mechanism into 

the aggregation process in traditional GNNs. The input to the Graph 

Attention Layer �⃗� = {ℎ⃗⃗1, ℎ⃗⃗2, ⋯ , ℎ⃗⃗𝑁}, ℎ⃗⃗𝑖 ∈ ℝ
𝐹   denotes the feature of the 

vertices, where 𝑁 is the number of vertices and 𝐹 is the dimension of the 

vertex feature. After passing through a Graph Attention Layer, a new feature 

vector is output, assuming the dimension of this vertex feature is 𝐹′ (which 

can be any value), this feature can be represented as �⃗�′ =

{ℎ′⃗⃗⃗⃗ 1, ℎ′⃗⃗⃗⃗ 2, … , ℎ′⃗⃗⃗⃗ 𝑁}, ℎ′⃗⃗⃗⃗ 𝑖 ∈ ℝ
𝐹′ . 
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Figure 6-3 The attention mechanism in GAT. 

Figure 6-3 demonstrates the architecture of a graph attention layer. In 

the graph attention layer, a weight matrix 𝐖 ∈ ℝ𝐹
′×𝐹  is first applied to 

each vertex, and then self-attention is used for each vertex to calculate an 

attention coefficient. The self-attention mechanism used here can be 

represented as 𝑎: 

𝑒𝑖𝑗 = 𝑎(𝐖ℎ𝑖⃗⃗⃗⃗ ,𝐖ℎ𝑗⃗⃗⃗⃗ ) (6 − 3) 

Where 𝑒𝑖𝑗 represents the importance of vertex 𝑗 to vertex 𝑖. In theory, 

the weight of any vertex in the graph to the updated vertex can be calculated. 

In GAT, in order to simplify the calculation, the vertices are limited to the 

one-step neighbors of the updated vertex. In addition, the vertex also 

considers itself as a neighbor vertex. The purpose of using self-attention here 

is to enhance the vertices feature 𝐡′⃗⃗ ⃗⃗ .  

There are multiple choices for 𝑎, which is parametrized by a learnable 

weight vector �⃗� ∈ ℝ2𝐹
′
, and then use LeakyReLU, which can be written as: 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(�⃗�
𝑇[𝐖ℎ𝑖⃗⃗⃗⃗ ||𝐖ℎ𝑗]⃗⃗⃗⃗⃗⃗ ) (6 − 4) 

Finally, softmax layer is used to normalize the neighbor vertices of the 

updated vertex: 

𝛼𝑖𝑗 = softmax𝑗(𝑒𝑖𝑗) =
exp(𝑒𝑖𝑗)

∑  𝑘∈𝒩𝑖 exp (𝑒𝑖𝑘)
(6 − 5) 
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Finally, the output feature of updated vertex is obtained by weighting 

the input vertices features: 

�⃗⃗⃗�𝑖
′ = 𝜎 ∑  

𝑗∈𝒩𝑖

𝛼𝑖𝑗 ℎ⃗⃗𝑗 (6 − 6) 

Where 𝜎 demonstrates the activation function. 

This work also demonstrates the effectiveness of GATs through 

extensive experiments, achieving or matching state-of-the-art results across 

four established graph benchmarks. This includes tasks such as vertex 

classification and graph classification, showing the robustness of the 

proposed approach. 

6.2.3 Graph Convolutional Networks 

In basic GNNs, the mean operation is commonly used for the aggregation 

and update operations, however, this can lead to some issues. For instance, 

considering a graph (see Figure 6-4) including several vertices, to calculate 

the updated value of vertex B, its unique neighbor vertex M should be firstly 

found, where M is connecting to many vertices. Normally, in the aggregation 

and updating period, B will be updated by the mean of B and M. However, 

it is unfair to B as B is only connected to one vertex M, but M will be 

influenced by many vertices. 

Graph Convolutional Networks (GCN) [104] have been proposed to 

solve this problem. The layer propagation of multi-layer GCN can be defined 

as: 

𝐻(𝑙+1) = 𝜎 (�̃�−
1
2�̃��̃�−

1
2𝐻(𝑙)𝑊(𝑙)) (6 − 7) 

Where �̃� = 𝐴 + 𝐼𝑁  denotes the adjacency matrix with self-

connections, 𝐼𝑁 is the identity matrix, �̃� is degree matrix (�̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 ) 

demonstrating the number of neighborhood vertices connected to each 

vertex, 𝜎  is the activation function and 𝐻(𝑙)  denotes the matrix of 
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activations in layer 𝑙. 

 

Figure 6-4 Example of the limitations of GNNs. 

The aggregation process �̃�−
1

2�̃��̃�−
1

2𝐻(𝑙) can be also denoted by: 

(�̃�−0.5�̃��̃�−0.5𝐻)
𝑖
= (�̃�−0.5�̃�)

𝑖
�̃�−0.5𝐻

= (∑  

𝑘

�̃�𝑖𝑘
−0.5�̃�𝑖) �̃�

−0.5𝐻

= �̃�𝑖𝑖
−0.5∑ 

𝑗

�̃�𝑖𝑗∑ 

𝑘

�̃�𝑗𝑘
−0.5𝐻𝑗

= �̃�𝑗𝑖
−0.5∑ 

𝑗

�̃�𝑖𝑗�̃�𝑗𝑗
−0.5𝐻𝑗

=∑  

𝑗

1

√�̃�𝑖𝑖�̃�𝑗𝑗

�̃�𝑖𝑗𝐻𝑗

(6 − 8) 

Here, it can be found that the aggregation process has been normalized 

by the degree of the corresponding vertices’ neighborhood �̃�𝑖𝑖�̃�𝑗𝑗 . This 

normalization strategy ensures that the propagation of information within the 

graph is not influenced by the degree of the nodes. 

6.2.4 Gated Graph ConvNet 

The Gated Graph ConvNet (GatedGCN), as described by Bresson and 
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Laurent [134], is a novel approach based on the idea of GCN, addressing the 

challenges in the learning on graph-structured data. GatedGCN incorporates 

key elements such as residual connections, batch normalization, and edge 

gates to enhance the model's learning capability. These features collectively 

contribute to a more robust and effective framework. 

A distinctive aspect of GatedGCN is the explicit maintenance of edge 

features alongside node features at each layer. The edge gates in GatedGCN 

can be perceived as a form of soft attention mechanism, similar to standard 

sparse attention mechanisms found in other models. This feature is 

particularly beneficial as it enables the model to know which neighbors in a 

graph are relevant for a specific learning task, thereby potentially improving 

performance. 

GatedGCN has been shown to outperform other models in several 

aspects. They are reported to be more accurate than traditional GCNs and 

faster. The use of gated edges and residual connections plays a pivotal role 

in these improvements, with residuality being especially crucial in learning 

multi-layer architectures, leading to a reported 10% gain in performance. 

These advancements make GatedGCN a compelling option for tasks 

involving graph-structured data, such as social networks, brain networks, 

and other similar domains. The ability to effectively handle variable graph 

sizes and structures, combined with superior performance, makes 

GatedGCN as an important contribution to the field of graph neural networks. 

6.2.5 Summary of Graph Reasoning Methods 

The evolution of graph-based deep learning methodologies highlights a 

progressive enhancement in handling graph-structured data. GNNs 

pioneered this domain by enabling the extraction of patterns from graph data. 

Building upon the foundational GNNs, GATs introduced an attention 

mechanism to the aggregation process. GATs enhance the model's capability 
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to weigh the importance of neighboring nodes, allowing for more nuanced 

information extraction and feature enhancement. GCNs addressed the 

limitations of basic GNNs, particularly in handling mean aggregation and 

update operations. GCNs introduced a normalization strategy in the 

aggregation process, ensuring that the information propagation within the 

graph is not biased by the nodes' degrees. This innovation provided a more 

balanced and effective approach to graph representation learning. 

GatedGCN represents a further advancement, building upon GCN principles. 

GatedGCNs incorporate residual connections, batch normalization, and edge 

gates, which collectively enhance learning capabilities.  

6.3 Research Gaps 

As a pioneering work, RSDNet [81] first proposed the saliency ranking task 

based on the relative saliency values of different pixels. However, their 

approach works as a pixel-level relative saliency solution rather than an 

object-level one that distinguishes between individual object instances. For 

them to achieve object-level relative saliency rankings, they need to utilize 

GT instance segmentation maps, making it impractical for real-world 

applications. ASRNet [78] proposed the instance-level saliency ranking task 

by deducing the patterns of human attention shifts, illustrating the process of 

how humans successively choose and divert attention from one object to 

another. Nevertheless, an object's saliency is predominantly based on gaze 

duration, rather than the sequence in which objects are observed [110]. IRSR 

[110] proposed to use graph-reasoning for instance-level RSR. They utilize 

a person prior in their design, biasing the model towards always predicting 

people as more salient instances, which may bias against other salient 

instances. SORNet [112] is the first transformer-based method for RSR. 

SORNet proposes a position-preserved attention module in the salient object 

ranking branch to infer spatial positional information. OCOR [113] 
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introduces a selective object saliency module and an object-context-object 

relation module to learn the instance-level saliency ranking. 

Among these methods, most of them prioritize salient object proposals 

and exclude the objects with less saliency while building the interactions 

between objects. Less salient objects that are not involved in interactions, 

though absent, are still valuable for saliency ranking. Psychological research 

into visual perception has consistently highlighted the nuanced ways in 

which humans process and prioritize visual stimuli [117]. While naturally 

salient objects often capture immediate attention, less salient objects can 

significantly influence overall scene comprehension and object ranking. For 

instance, in complex visual scenes, less prominent objects often provide 

contextual information, aiding in the interpretation and understanding of 

more salient objects [118]. This interplay between prominent and less-

prominent objects mirrors the challenges faced in salient object ranking. In 

this domain, while the focus has traditionally been on the most salient objects, 

it is becoming increasingly clear that less salient object proposals should not 

be overlooked. Their presence and interaction with more prominent objects 

can be pivotal in determining accurate saliency rankings. 

Furthermore, most of the methods set a fixed number of outputs to 

predict limited saliency rankings, this is because the current datasets also set 

an arbitrary limit on the salient instances. Setting a fixed number of outputs 

in saliency prediction models is a simplification that often fails to capture 

the nuanced ways in which humans prioritize and attend to visual stimuli. 

Our attention is not limited to a set number of items or regions in our visual 

field. Instead, it is continuously shifting and adapting based on our goals, 

experiences, and the context of the environment. For instance, two 

individuals might look at the same scene but focus on entirely different 

aspects based on their personal experiences and current emotional state. To 

truly mimic the human visual system, future saliency prediction methods 

should consider incorporating more adaptive and flexible mechanisms.  
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Although current methods have made significant strides in predicting 

visual saliency rankings, there is still a long way to go before we can truly 

replicate the intricacies of the human visual system. Therefore, it is crucial 

to bridge the gap between computational models and human perception. 

The task of saliency ranking necessitates not only the identification of 

distinct salient objects but also an in-depth understanding of the 

interconnections among these identified objects to establish their relative 

importance. While transformer-based techniques have proven adept at object 

detection, they may not adequately address the nuances of relational 

dynamics between objects. This is where graph reasoning methods are 

considered in this work, where graph reasoning excels in mapping and 

interpreting the intricate relationships between objects. This capability stems 

from its ability to represent objects as nodes and their interrelations as edges 

within a graph structure. This representation facilitates a more 

comprehensive analysis of the relational context, allowing for a nuanced 

understanding of how objects interact within a scene.  

6.4 Query as Graph Network 

Most of the current salient object ranking methods focus on the building the 

object interactions based on pre-generated saliency proposals. However, this 

will ignore the less salient object proposals, which are also valuable for the 

saliency ranking task. To solve the problem, we propose a Query as Graph 

Network (QAGNet) built upon the query-based detector [98], ensuring that 

both prominent and less-prominent objects are considered in the ranking 

process. Our approach actually supports relative ranking of flexible number 

of salient instance proposals in a given scene depending on the backbone in 

use. The overall architecture of one QAGNet layer is shown in Figure 6-5. 

Given an image, multi-scale features are generated after the backbone 

[28][96] and pixel decoder [97]. Then, an initial salient instance query 𝑄0 ∈
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ℝ𝑁×𝐷  is input into the transformer decoder, where 𝑁  demonstrates the 

number of queries and 𝐷 denotes the feature dimension of salient instance 

queries. Here, 𝑁  is set to 100 for ResNet and Swin-B, 200 for Swin-L 

backbone, while 𝐷  is set to 256. The learnable salient instance query 

operates similarly to a region proposal network [74], each of 𝑁 queries can 

be regarded as a salient instance proposal 𝕀 ∈ ℝ1×𝐷 and these 𝑁 queries 

include both the prominent and less-prominent instance proposals. 

Following [98], the multi-scale features from the pixel decoder are fed into 

9 transformer decoder layers in sequence, which will generate 9 new salient 

instance queries, 𝑄𝑙
𝑠 ∈ ℝ𝑁×𝐷. These queries represent all potential salient 

objects throughout different depths in the decoding stage, and at different 

scales. In our notation, we refer to scales 𝑠 ∈ {32,64,128}  as different 

stages of the decoder that draw features, via cross-attention, from different 

resolutions of the feature maps from the pixel decoder. We also denote 𝑙 ∈

{1,2,3}  as the relative position of the layer in the decoding stage. For 

example, 𝑄2
128 denotes the second salient instance query enriched by the 

feature map of scale 128. Each query vector such as this contains all of the 

salient instance proposals, for a total of 100 or 200, depending on the 

backbone network in use. We represent an individual salient instance 

proposal as 𝕀𝑖
𝑄2
128

 , corresponding to the 𝑖th  salient instance proposal 

belonging to query feature 𝑄2
128. Each of these instance proposals represent 

one salient object under consideration, and can be used as a feature within 

our graph structure in order to determine a saliency ranking. 

One limitation of [98] is that it commonly struggles to segment smaller 

objects and does not fully utilize multiscale features. Scale information is an 

important cue that can be used by humans to judge which instances are more 

salient. Also, small objects play a significant role in salient ranking tasks, 

failing to detect such objects will account for false ranking order. We 

leverage the instance-level salient proposals within the multi-scale query 
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features as input into a Graph Attention Network (GAT), for better modelling 

of the saliency ranking problem. We utilise three interconnected graph 

modules in our work. First, a Single Scale Graph (SSG) combines query 

features that represent the same scale 𝑠 , which are combined into 

representative features for each salient object instance at that scale, serving 

to enhance the object representation at the same scale. These are then 

combined within a Multi Scale Graph (MSG), which computes 

representative features for each salient instance across all scales, aiming to 

enrich the object representation in a multi-scale view. We call this forward 

process, from the original query features through to the output of the MSG, 

the Representative Aggregation (RA) pathway. From this, a Global 

Representative Graph (GRG) connects all salient instances together, aiming 

to capture the relationships information between each potential salient 

objects to learn ranking-aware features. After the GRG process, the query 

features contain rich ranking-aware information, which is useful both for 

saliency ranking prediction, but also as feedback to previous query features. 

We design a Representative Feedback (RF) pathway, which in essence 

performs the reverse of this hierarchical graph process, which brings the 

valuable ranking-aware information back to different object feature 

representations. We iterate this forward-reverse, and for each GRF computed, 

we can extract a saliency ranking prediction using a ranking head. Note as 

introduced in [119], the salient instance proposal order here is always in 

accordance with the initial query 𝑄0 in the transformer-decoder layers. 
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Figure 6-5 The overall architecture of one QAGNet layer. Here, SSG, MSG and GRG demonstrate the Single Scale Graph, Multi Scale Graph and 

Global Representative Graph. 
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6.4.1 Representative Aggregation Pathway 

We build Presentative Aggregation (RA) pathway to gradually refine the 

multi-scale salient instance query features. SSG and MSG in the RA process 

will learn to refine the salient instance proposals at different scales, and 

generate enriched feature representations respectively, viz., 3 multi-scale 

query representations 𝑅𝑠 ∈ ℝ
𝑁×𝐷 and global query representation 𝑅𝑔 ∈

ℝ𝑁×𝐷. As for the representation initialization strategy, we average each 3 

identical scale query features to initialize different 𝑅𝑠 and average 3 𝑅𝑠 to 

initialize the global query representation 𝑅𝑔. 

6.4.1.1 Single Scale Graph in RA Pathway 

Although transformer-based architectures can model long-range 

dependencies, there might be still information loss across multiple features 

in cascade-style transformer layers. To fully utilize the multi-scale query 

features, we firstly build relational SSG to enrich the salient instance queries 

in same scale. For each scale, we build a Relational SSG (RSSG) 𝒢𝑅𝑆𝑆𝐺
𝑠 =

(𝒱𝑅𝑆𝑆𝐺
𝑠 , ℰ𝑅𝑆𝑆𝐺

𝑠 )  to promote the salient instance query features, where 𝑠 ∈

{32,64,128}, 𝒱𝑅𝑆𝑆𝐺
𝑠 = {𝕀𝑖

𝑄𝑙
𝑠

}𝑖=1
𝑁  denotes the set of nodes corresponding to 

the 𝑁  salient instance proposals in 𝑄𝑙
𝑠  and ℰ𝑅𝑆𝑆𝐺

𝑠   demonstrates the 

relation edges. In each 𝒢𝑅𝑆𝑆𝐺
𝑠 , the nodes describing the identical instance in 

different 𝑄𝑙
𝑠  of same scale will be fully connected, including a self-

connection for each instance. In the feature updating process, a salient 

instance proposal 𝕀𝑖
𝑄𝑙
𝑠

 will be refined by the neighbors from other identical 

scale salient instance queries representing the same instance proposal. After 

this, we build directed RA SSGs 𝒢𝑅𝐴𝑆𝑆𝐺
𝑠 = (𝒱𝑅𝐴𝑆𝑆𝐺

𝑠 , ℰ𝑅𝐴𝑆𝑆𝐺
𝑠 ) . Here, 

𝒱𝑅𝐴𝑆𝑆𝐺
𝑠 = {𝕀𝑖

𝑄𝑙
𝑠′

, 𝕀𝑖
𝑅𝑠}𝑖=1

𝑁  demonstrates the updated nodes in accordance with 

the 𝑁 salient instance proposals within 𝑄𝑙
𝑠 and the corresponding instance 
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representative nodes in 𝑅𝑠, while ℰ𝑁2𝑅𝐼𝑆𝐺
𝑠  denotes the directed edges. The 

updated nodes 𝕀𝑖
𝑄𝑙
𝑠′

are pointing to the same salient instance representatives 

𝕀𝑖
𝑅𝑠, and finally generating 3 multi-scale representatives 𝑅32

′ , 𝑅64
′  and 𝑅128

′ . 

6.4.1.2 Multi Scale Graph in RA Pathway 

We model multi-scale instance-level salient proposals as graph here for 

enhancing the feature representatives of salient instance queries. Similar to 

SSG, we firstly build Relational MSG (RMSG) as fully-connected graph 

𝒢𝑅𝑀𝑆𝐺 = (𝒱𝑅𝑀𝑆𝐺 , ℰ𝑅𝑀𝑆𝐺) , where 𝒱𝑅𝑀𝑆𝐺 = {𝕀𝑖
𝑅𝑠
′
}𝑖=1
𝑁   demonstrates the set 

of nodes in accordance with the 𝑁 salient instance proposals with different 

scales in 𝑅𝑠
′   and ℰ𝑅𝑀𝑆𝐺  denotes the interactive relation edges. Nodes 

representing same salient instance proposals in different scales are fully 

connected including the self-connection. After the information exchange, 

each node will be leveraged by multi-scale information. We then build RA 

MSG as directed graph 𝒢𝑅𝐴𝑀𝑆𝐺 = (𝒱𝑅𝐴𝑀𝑆𝐺 , ℰ𝑅𝐴𝑀𝑆𝐺) , where 𝒱𝑅𝐴𝑀𝑆𝐺 =

{𝕀𝑖
𝑅𝑠
′′
, 𝕀
𝑖

𝑅𝑔}𝑖=1
𝑁  denotes the updated salient instance proposals in 𝑅𝑠

′  and the 

ones in global representatives 𝑅𝑔 respectively, while ℰ𝑅𝐴𝑀𝑆𝐺 indicates the 

directed edges. The updated nodes 𝕀𝑖
𝑅𝑠
′′

are directing to the corresponding 

instance proposal in global representative 𝑅𝑔  to forward instance-level 

multi-scale information.  

6.4.2 Global Representative Graph 

Now, we get the global representative 𝑅𝑔, each salient instance proposal 𝕀 

in 𝑅𝑔  contain in-depth feature representation from all salient instance 

queries. We build Global Representative Graph (GRG) as fully connected 

graph 𝒢𝐺𝑅𝐺 = (𝒱𝐺𝑅𝐺 , ℰ𝐺𝑅𝐺) to learn the interactive relationships among all 

the salient instance proposals, where 𝒱𝐺𝑅𝐺 = {𝕀
𝑖

𝑅𝑔}𝑖=1
𝑁  demonstrates the 𝑁 
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salient instance proposals in 𝑅𝑔 and ℰ𝐺𝑅𝐺 denotes the interactive relation 

edges. Here, all the salient instance proposals including less salient ones will 

contribute to the reasoning of ranking. After this, the final feature 

representative 𝑅𝑓 ∈ ℝ
𝑁×𝐷 is generated. Note in multi-layer QAGNet, short 

connection is introduced between 𝑅𝑓 in current stage and the one in last 

stage to reduce the rank-aware information loss in the process of information 

transmission. This operation also serves to highlight the ranking-related 

feature before the rank head. 𝑅𝑓 is then passed to a single linear layer in 

rank head to predict the rank scores for each salient instance. To enhance the 

convergence and robustness of model, we also incorporate intermediate 

ranking loss here. 

6.4.3 Representative Feedback Pathway 

After GRG, 𝑅𝑓  contains rich ranking-aware information gathered from 

different scale queries. We design Representative Feedback (RF) pathway to 

transfer the enriched feature back to the various query features though the 

MSG and SSGs. MSG and SSGs in RF process will feed valuable 

information back, enhancing the salient instance feature for the next 

QAGNet layer. 

6.4.3.1 Multi Scale Graph in RF Pathway 

In RF pathway, we directly build RF MSG as directed graph 𝒢𝑅𝐹𝑀𝑆𝐺 =

(𝒱𝑅𝐹𝑀𝑆𝐺 , ℰ𝑅𝐹𝑀𝑆𝐺), where 𝒱𝑅𝐹𝑀𝑆𝐺 = {𝕀
𝑖

𝑅𝑓 , 𝕀𝑖
𝑅𝑠
′′
}𝑖=1
𝑁  demonstrates the set of 

nodes corresponding to the 𝑁  salient instance proposals in 𝑅𝑓  and the 

hetero-scale instance representatives updated in RA process. ℰ𝐻𝑆𝐺𝑅𝐹𝑀𝑆𝐺  

denotes the directed edges. Here, 𝕀
𝑖

𝑅𝑓
  are directing to 𝕀𝑖

𝑅𝑠
′′

 aiming to 

backward transmit the global information to multi-scale representatives. 

This process will update 𝕀𝑖
𝑅𝑠
′′

 and generate new representatives 𝑅𝑠
′′′. Note 
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we are not building relational graph here as this will be carried out in the 

next QAGNet layer. 

6.4.3.2 Single Scale Graph in RF Pathway 

Finally, we are building directed graphs for different scales in order to pass 

the global representative information to the same scale salient instance 

queries. The directed RF SSGs can be denoted by 𝒢𝑅𝐹𝑆𝑆𝐺
𝑠 =

(𝒱𝑅𝐹𝑆𝑆𝐺
𝑠 , ℰ𝑅𝐹𝑆𝑆𝐺

𝑠 ) , where 𝒱𝑅𝐹𝑆𝑆𝐺
𝑠 = {𝕀𝑖

𝑅𝑠
′′′
, 𝕀𝑖
𝑄𝑙
𝑠′

}𝑖=1
𝑁   demonstrates the 

updated instance representative nodes in 𝑅𝑠
′′′  and the updated nodes 

corresponding to the 𝑁  salient instance proposals within 𝑄𝑙
𝑠′  in the RF 

process, while ℰ𝑅𝐹𝑆𝑆𝐺
𝑠   denotes the directed edges. After the information 

transmission, the new generated 9 salient instance queries are ready for the 

next QAGNet layer. 

6.4.4 Tri-tiered Nested Graph 

Building on this, a tri-tiered nested style graph is constructed (see Figure 

6-6). Various SSGs serve as subgraphs of MSG to promote the query feature 

in identical scale. Following this, the MSG acts as a bridge between the SSGs 

and GRG, carrying out information exchange between query features at 

difference scales, which can be viewed as the subgraph of GRG. Finally, 

GRG is designed to model the ranking-aware relationships among all salient 

instance proposals, facilitating a global information exchange. As can be 

found that the multi-scale representatives have been updated three times 

during the whole process of a QAGNet layer, this ensures the multi-scale 

information are fully captured and utilized. This nested style graph design 

promotes richer feature aggregation and feedback across multiple scales. 



Instance-Level Relative Saliency Ranking 

179 

 

 

Figure 6-6 Illustration example of the tri-tiered nested style graph. 

6.4.5 Multi-layer QAGNet 

We experimentally set the total number of layers to two in QAGNet. 

Specifically, we execute the graph reasoning process, as illustrated in Figure 

6-5, twice consecutively. This is then followed by a entire RA process, where 

the ultimate ranking prediction is derived from 𝑅𝑓 in the final GRG. The 

number of GAT [105] heads in the final GRG are experimentally set to 8 to 

effectively capturing the diverse features, therefore improving the 

generalization ability of the proposed method. 

Here, the multi-layer design provides a more comprehensive 

understanding of the data, allowing for more nuanced and precise inferences. 

Throughout this process, the ranking information of each salient instance is 

effectively captured. This means that not only does our model gain a more 

detailed perspective of individual instances, but it also ensures that their 

relative ranking is duly learned and incorporated. Such a design ensures a 

harmonious balance between depth and breadth in the learning process, 

leading to enhanced performance and robustness. 
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6.5 Experiment 

6.5.1 Datasets 

To demonstrate the performance of our prosed model, we conduct 

experiments on two public available saliency ranking datasets ASSR [78], 

IRSR [110] and our proposed dataset. ASSR provides 7646 training images, 

1436 validation images and 2418 test images with at most 5 salient objects 

per image. IRSR dataset comprises 8,988 images, divided into 6,059 training 

images and 2,929 test images with at most 8 salient objects. Our proposed 

dataset contains 6701 images for training and 1688 images for testing. We 

are not setting an arbitrary maximum number for the ranking of salient 

objects. 

6.5.2 Metrics 

We use three widely used metrics in saliency ranking area: Salient Object 

Ranking (SOR) [81], Segmentation-Aware SOR (SA-SOR) [110] and Mean 

Absolute Error (MAE).  

SOR: The work in [81] proposes several ways to generate rank order. 

One approach to determine rank order is by averaging the predicted saliency 

within a specific instance mask. Another proposed method involves 

assigning rank based on the output from a saliency map, where the saliency 

degree within an instance is divided by its size, raised to a designed power. 

Additionally, rank can be determined by considering the peak saliency value 

within the instance region. This can be formalized as: 

 Rank =

{
 
 

 
 SORavg  (𝒮(𝛿)) =     

∑  
𝜌𝛿
𝑖=1 𝛿(𝑥𝑖 , 𝑦𝑖)

𝜌𝛿

SORpow  (𝒮(𝛿); 𝛼) =     
∑  
𝜌𝛿
𝑖=1 𝛿(𝑥𝑖 , 𝑦𝑖)

𝜌𝛿
𝛼

SORmax  (𝒮(𝛿)) =     𝑚𝑎𝑥(𝛿(𝑥𝑖, 𝑦𝑖))

(6 − 9) 
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Where 𝛿 denotes a specific instance from the predicted saliency map 

𝒮. The value of 𝛼 is set to 0.3. The term 𝜌𝛿  represents the number of pixels 

within instance 𝛿, while 𝛿(𝑥𝑖, 𝑦𝑖) demonstrates the saliency score assigned 

to the pixel located at coordinates (𝑥𝑖, 𝑦𝑖).  

Here, we follow most of the saliency ranking methods and use SORavg  

to generate saliency rank order based on generated saliency map for 

calculating SOR score. Note in instance-level saliency ranking task, the pixel 

values in an instance are the same. Following this, SOR metric computes the 

Spearman’s rank-order correlation between the prediction and ground truth. 

However, SOR metric presupposes the predicted instances match the ground 

truth and only consider the rank orders. High SOR scores can be achieved if 

the identified salient instances maintain the correct ranking even in the case 

of missing, incorrect, or low-quality segmentations. 

SA-SOR: SA-SOR is proposed in [110], which utilizes the Intersection 

over Union (IoU) to choose the matched instances and then computes the 

Spearman’s rank-order. SA-SOR also penalizes the missing salient objects 

and false ranking. 

There are a number of issues with SOR metric. SOR metric presumes 

that the predicted instances align perfectly with those in the GT, focusing 

solely on rank orders. For instance, even if there are instances that are missed, 

incorrectly detected, or poorly segmented, high SOR scores can still be 

achieved as long as the detected salient instances maintain the correct rank 

order. 

For the task of instance-level saliency ranking, it's essential to both 

segment salient instances and determine their rank order concurrently. 

Consequently, any evaluation metric used should be sensitive to the quality 

of segmentation. Siris et al. [78] suggests a method to align GT instance 

masks with segmented ones. This is done by identifying the segmented 

instance with the most substantial mask area for each GT mask. This 
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approach somewhat reduces the issue of the original SOR metric not 

accounting for segmentation quality. Nonetheless, their simplistic matching 

technique doesn't ensure a strict one-to-one correspondence, potentially 

leading to ambiguities. Moreover, they disregard instances that are missed 

or incorrectly predicted, making their evaluation method not entirely 

sensitive to segmentation performance. 

To solve the problem, the segmentation-aware SOR (SA-SOR) metric 

is introduced in [110], designed to strictly consider the alignment between 

segmented salient instances and the GT masks. Specifically, for the 

segmented instances of a test image, the initial step involves ranking their 

predicted saliency scores and subsequently assigning these ranks to each 

instance. For ease of computation and clarity, an ascending rank order is 

employed for both the predicted and GT ranks. In this metric, higher rank 

values signify a greater degree of saliency, with 1 being the lowest rank. 

Following this, the segmented instance masks are matched with the GT 

masks using an Intersection over Union (IoU) threshold of t, which is set to 

0.5. The matching strategy employed is inspired by the strategy used to 

compute the average precision (AP) metric in instance segmentation tasks. 

Here, segmented masks are paired with GT masks that meet an overlap 

criterion, and this pairing is done in descending order based on instance 

confidence levels. In the end, each GT instance can be paired with a 

maximum of one segmented instance and vice versa. For two matched masks, 

their IoU should be at least t or greater. 

Following this, the ranks of the matched instances are selected, and the 

ranks of any missed instances are set to 0. This process results in a predicted 

rank order. The SA-SOR score is then calculated as the Pearson correlation 

between this predicted rank order and the GT. Consequently, instances that 

are segmented redundantly, also known as false positives will disrupt the 

predicted rank order. Additionally, the missing instances can only be 

assigned a rank of 0. Both factors will reduce the SA-SOR score, ensuring 
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that it is highly sensitive to the quality of segmentation. The introduced SA-

SOR score promotes both precise salient instance segmentation and accurate 

ranking orders. For fair comparison, we follow [110] to set the IoU threshold 

to 0.5 when evaluating using SA-SOR. 

MAE: We directly calculate the pixel-level difference between 

generated ranking saliency maps and ground truth maps. Different salient 

objects have been assigned different colors, 0 to 255, indicating their RSR 

in both predicted saliency maps and ground truth maps. As such, MAE here 

can also reflect the RSR performance. 

6.5.3 Implementation Details 

The implementation details are introduced below: 

Model Settings: The proposed method draws inspiration from the 

query-based detector Mask2former [98]. As discussed in Chapter 5, 

transformer techniques require large amount of data to train, we utilize the 

transfer learning strategy based on the pretrained Mask2former on MS-

COCO dataset. Consistent with the configurations of [98], the query number 

is set to 100 for ResNet [28] and Swin-B [96] backbones, 200 for Swin-L 

backbone. For our nested-style graph, we incorporate the GAT [105] for both 

edge calculations and node aggregation. This design has a feature dimension 

set at 256 and a dropout rate of 0.2. In inference, we determine the final 

confidence score by multiplying the saliency class confidence with the mask 

confidence. To ensure precision, only salient instance predictions exceeding 

a confidence threshold of 0.7 are retained. 

Training Settings: The pretrained weights are from the instance 

segmentation tasks in [98]. We train our model for 30,000 iterations on 

different datasets. The Adam-W [120] optimizer with weight decay 

1 × 10−4 is used to train the network with the learning rate starting from 

2.5 × 10−5 and reduced by a factor of 10 at 22,000th and 26,000th iterations. 
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We resize all the input images to 1024 × 1024 and do not apply additional 

pre-processing. We use 4 A6000 GPUs and set the batch size to 4 for Swin-

L backbone. 

Loss Settings: Following [98], we use binary cross-entropy loss and 

dice loss [121] for mask and set both weight to 5.0. For rank prediction, we 

utilize the pair-wise saliency rank loss [110] and set weights to 3.0 for side 

rank loss and 5.0 for final rank loss. The final loss is a combination of mask 

loss, saliency classification loss and rank loss. 

6.5.4 Comparisons with the State-of-the-Art 

We compare our proposed method with 5 state-of-the-art methods: RSDNet 

[81], ASRNet [78], IRSR [110], SORNet [112] and OCOR [113]. To ensure 

a fair comparison, we prioritize using the pre-trained models provided by the 

authors to produce all the results of competing methods. If the pre-trained 

models on specific datasets are not available, we retrain the model from 

source code with the recommended settings from the original papers.  

For models that output a fixed number of salient objects: RSDNet, 

ASRNet, SORNet, and OCOR, we adjust this fixed number to match each 

dataset's maximum instance count. Within RSDNet, we follow [81] to use 

the stacked representation of the ground-truth with relative setting 

(illustrated in Section 2.5.1) to regress the saliency values. We then average 

the predicted saliency values within each instance to get the saliency scores 

of different instances. As RSDNet cannot predict instance-level masks, we 

follow [110] to utilize the instance masks from the IRSR to calculate SA-

SOR. 

For IRSR and our proposed method, both models use a confidence score 

during inference to select the salient instances. This approach might produce 

instances surpassing the prescribed limits set on the ASSR and IRSR datasets. 

Therefore, we follow [110] to present top 5 and top 8 ranked instances in 
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these datasets as the limited version results. Moreover, results acquired 

directly post confidence thresholding are reported as the unlimited version. 

OCOR employs a low threshold (0.28) in inference to select instances 

in each rank predictions, which is possible to generate multiple instances for 

each rank. For fair comparison, we directly report this result as the unlimited 

version and also report the limited version result by only choosing the 

highest scoring (bigger than 0.28) instance in different rank predictions. Note 

that in the OCOR source code, predictions from a higher-ranking instances 

might be superseded by those from a lower-ranking instance if they pertain 

to the same instance in the resulting saliency maps. 

Currently, in RSR area, researchers typically release pre-trained models 

and corresponding saliency maps solely for individual datasets. In contrast, 

we intend to make saliency maps from varied models across different 

datasets available, paving the way for future investigations. 

6.5.4.1 Quantitative Comparisons 

In Table 6-1, we demonstrate the quantitative comparison of our method 

against other saliency ranking approaches. For fair comparison, we evaluate 

performance across various backbones: ResNet [28], VoVNet [92] and Swin 

[96]. We also provide information on the number of parameters for each 

model. It can be found that our proposed method outperforms all other 

saliency ranking methods by a large margin. The SOR metric does not 

penalize methods that miss salient instances, so here we focus on the 

comparison based on SA-SOR. 

In the ASSR dataset, compared to the second best model IRSR, our 

ResNet-based model improves the SA-SOR performance by 8.01%. When 

it comes to the Swin-based model, our best model surpasses IRSR by 11.0% 

in terms of SA-SOR. Here, it can be found OCOR gets a very high SOR 

score, but with a relatively low SA-SOR performance. High SOR scores can 
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be achieved if the identified salient instances maintain the correct ranking 

even with the situation of missing, redundant, or low-quality segmentations. 

This situation is seen on the OCOR result, reflected by its low SA-SOR and 

our qualitative comparison in the next section. As for the MAE, our proposed 

method exceeds all other methods dramatically. 

On the IRSR dataset, our ResNet-based model improves the SA-SOR 

score by 8.18% compared to the second best model IRSR, while our Swin-

L model pushes this improvement even further, registering a 14.5% growth. 

Across varying settings, our model maintains its dominant position in the 

MAE metric. 

Regarding our proposed dataset, our proposed method obtains a further 

performance improvement against competing techniques. Specifically, our 

ResNet-based model raises the SA-SOR metric by 9.6% against the second-

best model IRSR. This gap widens to 11.1% when deploying the Swin-L 

backbone.  Furthermore, it can be found most of the models experience a 

performance decrease in our proposed dataset, reflecting that our dataset is 

more challenging and presents greater complexities than ASSR and IRSR.   

In our evaluations across all three datasets, it is evident that our ResNet-

based QAGNet outperforms other methods in terms of SA-SOR and MAE. 

As a result, we're introducing the ResNet-based QAGNet as the lightweight 

edition with only 47.3 million parameters. Additionally, for those seeking 

more robust performance, we are launching the QAGNet with Swin-Base as 

the medium-sized variant, housing 110.2 million parameters. Lastly, for 

maximum performance and comprehensive functionality, we offer the 

QAGNet based on Swin-Large as our premier model, equipped with 200 

queries and a total of 218.8 million parameters. 
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Method Backbone 

ASSR IRSR Our Proposed Dataset 

#Para.(M) 

SASOR ↑ SOR ↑ MAE ↓ SASOR ↑ SOR ↑ MAE ↓ SASOR ↑ SOR ↑ MAE ↓ 

ResNet and VoVNet 

RSDNet (TPAMI 2019) ResNet-101 0.6313 0.7758 0.1236 0.4232 0.7096 0.1175 0.4791 0.7239 0.0772 42.7 

ASSR (CVPR 2020) ResNet-101 0.54 0.792 0.101 0.3207 0.6521 0.1098 0.3281 0.5843 0.0624 44.2 

IRSR_U (TPAMI 2021) ResNet-50 0.7051 0.8314 0.0923 0.5647 0.8143 0.0953 0.5585 0.7487 0.0465 

128.1 

IRSR_L (TPAMI 2021) ResNet-50 0.709 0.8283 0.0914 0.5648 0.8141 0.0953 0.5585 0.7487 0.0465 

SOR (CVPR 2021) VoVNet-39 0.6371 0.833 0.0799 0.5171 0.7909 0.0988 0.382 0.7554 0.058 119 

Our_Model_Res50_U ResNet-50 0.7545 0.8514 0.0619 0.611 0.8108 0.0845 0.6119 0.7899 0.0437 

47.3 

Our_Model_Res50_L ResNet-50 0.7658 0.8469 0.0609 0.6107 0.8106 0.0845 0.6119 0.7899 0.0437 

Swin 

OCOR_U (CVPR 2022) Swin-L 0.6413 0.8843 0.0786 0.5183 0.8149 0.1003 0.4392 0.7436 0.0488 

401.7 

OCOR_L (CVPR 2022) Swin-L 0.6474 0.8937 0.0863 0.5058 0.8184 0.1052 0.4426 0.7462 0.0531 

Our_Model_SwinB_U Swin-B 0.7741 0.8583 0.0538 0.6252 0.8152 0.0792 0.6167 0.7933 0.0409 

110.2 

Our_Model_SwinB_L Swin-B 0.7809 0.8529 0.0528 0.6252 0.8151 0.0792 0.6167 0.7933 0.0409 

Our_Model_SwinL_U Swin-L 0.7793 0.8591 0.0492 0.6466 0.8241 0.0768 0.6206 0.7982 0.0416 

218.8 

Our_Model_SwinL_L Swin-L 0.7873 0.8535 0.0478 0.6468 0.824 0.0767 0.6206 0.7982 0.0416 

Table 6-1 Quantitative Comparison with other saliency ranking methods. Different backbones are shown in the 2nd column, e.g., ResNet [28], 

VoVNet [92] and Swin [96]. We show our proposed method in ResNet-50, Swin-Base and Swin-large. The best two results have been marked as 
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red and blue. For different methods, the number of parameters is shown in the last column. ↑ indicates the higher the better, while ↓ denotes the 

lower the better. Note _U and _L indicate the unlimited version and limited version models as illustrated in Section 6.5.4. 
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6.5.4.2 Qualitative Comparison 

In Figure 6-7, we present the qualitative comparison with other saliency 

ranking methods. As the SA-SOR metric provides a more accurate 

representation of ranking performance, we select results from the models 

based on their SA-SOR scores across varying configurations. Note the most 

salient object is marked as red. 

We show the generated results of different models on our proposed 

dataset from low instance number (left) to high instance number order (right). 

Multiple challenging images have been shown here, including low-contrast, 

difficult illumination, small objects and high instance numbers. We can see 

that our proposed method can generate salient instances with clear 

boundaries and correct rank orders. Under these challenging conditions, 

other models can generate results containing superfluous or missing salient 

instances with incorrect rank order. For example, OCOR sometimes 

generates results that include incorrect or missing salient instances, but the 

matched salient objects get right rank order, which leads to a high SOR and 

a low SA-SOR. 
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Figure 6-7 Qualitative comparison between our proposed method and other saliency ranking approaches on our proposed dataset.
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6.5.5 Ablation Studies 

In this section, we investigate the contribution of different model settings on 

our proposed test set. The experiments here are based on Res-50 backbone.  

6.5.5.1 Module Analysis 

Setting Specific Configuration SASOR SOR MAE 

I (Baseline) Last query + Linear layer 0.5623 0.7292 0.0469 

II (Baseline) Average 9 queries + Linear layer 0.5807 0.7381 0.0456 

 
RA Pathway 

RF Pathway 
 

SSG MSG GRG 

III ✓ 
   

0.5837 0.7423 0.0451 

IV 
 

✓ 
  

0.5944 0.7582 0.0442 

V 
  

✓ 
 

0.5932 0.7599 0.0445 

VI 
 

✓ ✓ 
 

0.5989 0.7623 0.0441 

VII ✓ ✓ ✓ 
 

0.6016 0.7653 0.0442 

VIII ✓ ✓ ✓ ✓ 0.6086 0.7736 0.0439 

Table 6-2 Ablation analysis of different modules in our proposed method. 

As shown in Table 6-2, we explore the effectiveness of different modules in 

our proposed method. Baseline I directly applies a linear layer on the final 

query feature of [98] to regress the saliency rank scores. In contrast, Baseline 

II averages all 9 query features before applying the linear layer. It can be 

found setting II improves the performance, which might because of the 

information loss in the multi-layer transformer decoder and demonstrates the 

effectiveness of using all the query features. This observation led us to 

further investigate the potential benefits of various query features. 

Effectiveness of SSG: Setting III only contains a RA pathway with 

SSG built. The final output is generated based on the mean of all the updated 
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features from SSG. When comparing settings III with II or VII with VI, the 

benefits of the SSG become evident. The SSG refines salient instance 

proposals within the same scale, fostering richer feature representations for 

subsequent graph reasoning. 

Effectiveness of MSG: Comparing setting IV and II or VI and V both 

clearly demonstrate the effectiveness of MSG. Utilizing MSG increases the 

performance considerably. Multi-scale representatives are mutually 

promoted here, helping the model understand saliency features in a multi-

scale perspective. 

Effectiveness of GRG: The effectiveness of GRG can be observed by 

comparing the result from setting V and setting II. Specifically, setting V 

utilize the mean of all query features to construct a fully connected graph. 

This models instance-level mutual stimuli of human vision systems to learn 

the multi-relationships among all salient instances.  

Effectiveness of MSG & GRG: Solely employing GRG doesn't fully 

equip the model to grasp multi-instance ranking cues, which can be found 

by comparing VI and V, e.g., applying both MSG and GRG improve the 

performance a lot. The MSG plays a significant role in this model, 

forwarding multi-scale cues to GRG, and therefore promoting the learning 

process of ranking-aware relationships in multi-scale. Comparing setting V 

and IV can also potentially verify the importance of using MSG before GRG. 

Effectiveness of RA pathway: The effectiveness of RA pathway can 

be found in setting VII. Using full setting in RA pathway performs even 

better when compared to using the settings mentioned above, which 

demonstrates the effectiveness of all the constructed graphs in the 

representative aggregation process. These modules work together in RA 

pathway to generate robust feature representatives for ranking prediction. 

Effectiveness of RF pathway: Setting VIII integrates the 

representative feedback pathway to refine query features and followed by a 

full RA pathway to predict the rankings. This combination forms a complete 



Instance-Level Relative Saliency Ranking 

193 

 

QAGNet layer and delivers the best results. This demonstrates the 

effectiveness of our proposed RF pathway. By feeding the ranking-aware 

information back, the query feature representatives are gradually polished 

and passed to the next step of RA pathway. This process helps the model to 

learn ranking-aware cues in a bi-directional manner. 

6.5.5.2 Layer Number and Short Connection Analysis 

Setting Layer Number Short Connection SASOR SOR MAE 

I 1 ✓ 0.6086 0.7736 0.0439 

II 2 ✓ 0.6119 0.7899 0.0437 

III 2  0.6084 0.7803 0.0442 

IV 3 ✓ 0.6089 0.7794 0.044 

Table 6-3 Ablation analysis on the layer number and short connection of 

QAGNet. 

In Table 6-3, we delve into how the number of layers and short connection 

in QAGNet affects its performance. Setting I, which utilizes a single layer 

QAGNet with short connection applied between the first GRG RA and final 

GRG, exhibits a performance of 0.6086, 0.7736, and 0.0439 for SASOR, 

SOR, and MAE metrics respectively. When extended to two layers with 

short connection, as seen in setting II, there is a noticeable improvement in 

SASOR and SOR and a slightly better MAE, with values reaching 0.6119, 

0.7899 and 0.0437. However, continue adding layers to 3 with short 

connection (setting IV) does not give performance improvement, which 

yields a SASOR of 0.6077, SOR of 0.7794 and MAE of 0.044 but still 

outperforms the single-layer setup considering the metrics that can better 

reflect saliency ranking performance (SASOR and SOR). By comparing 

setting II and setting III, the effectiveness of short connection can be 

observed, which bridges the ranking-aware information between different 
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stages to highlight the ranking feature before rank head, promoting the model 

ability to conduct ranking-purpose task. Therefore, we choose 2-layer 

QAGNet with short connection to continue our experiment.  

6.5.5.3 The Number of Salient Instance Queries 

Setting Query Number SASOR SOR MAE 

I 50 0.6061 0.7702 0.0435 

II 100 0.6119 0.7899 0.0437 

III 200 0.6128 0.7886 0.0426 

Table 6-4 Ablation study on the number of salient instance queries. 

We evaluate the impact of varying the number of salient instance queries on 

our model's performance in Table 6-4. Setting I, which employs 50 queries, 

noticeably underperforms compared to setting II with 100 queries. This 

disparity potentially reflects the significance of considering not only the 

most salient objects but also those with less saliency. These less salient 

objects still contain valuable information for instance-level relationship cues, 

enabling the model to predict more accurate saliency rank. Setting III 

includes 200 queries, generating the best SASOR score and MAE but lower 

SOR score. Considering SOR does not pay penalty to the missing salient 

objects and segmentation quality, we put setting 3 as the premier choice. 

However, it can be observed that the performance difference between 

settings II and III remains marginal. Therefore, we employ 100 queries in 

our lightweight Resnet-50 and Swin-B backbone QAGNet models, while 

allocating 200 queries to the Swin-L backbone QAGNet for demonstrating 

the full capability version. 
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6.5.5.4 Initialization Method for Representative Queries 

Setting Initialization Method SASOR SOR MAE 

I Random 0.6106 0.7872 0.0438 

II Average 0.6119 0.7899 0.0437 

Table 6-5 Ablation study on the initialization method for representative 

queries. 

We assess the influence of different initialization methods for representative 

queries on our model's efficacy in Table 6-5. Specifically, setting I adopt 

random initialization method for the representative queries while setting II 

applies the mean method as used in our model. As can be seen, different 

initialization method has relatively close performance, where setting II is 

slightly better. This demonstrates the robustness of our proposed method in 

different initialization method. 

6.6 Conclusion 

In Chapter 5, we have explored the state-of-the-art transformer technologies, 

and in this chapter, we have proposed a novel architecture named QAGNet 

that built upon a strong transformer network (Mask2Former) with graph 

reasoning methods. Considering training transformer models require a large 

amount of data and the limited data in RSR area, we utilize the Mask2Former 

pretrained on MS-COCO dataset as our object detector.  In QAGNet, we 

design a Representative Aggregation pathway and a Representative 

Feedback pathway that include a Single Scale Graph, Multi Scale Graph and 

Global Representative Graph. These modules work together to construct a 

tri-tiered nested style graph that promotes different scale instance-level 

ranking-ware features, enhancing our model’s ability of correctly detecting 

multi-scale salient instances and giving accurate rank order. Experiments 
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shows the effectiveness of different modules in the proposed QAGNet. Our 

proposed method exceeds all previous state-of-the-art approaches for a large 

margin under three evaluation metrics. We will release the saliency ranking 

maps produced by all existing methods on all datasets in this domain. 

Additionally, we will make the dataset, code, and our pretrained models 

available. 
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Chapter 7 Conclusion 

7.1 Contributions 

In this thesis, we have explored machine learning approaches to SOD and 

RSR. SOD is usually framed as a binary segmentation task, in which we aim 

to discover the most salient, or interesting objects in an image. In chapter 3, 

we introduced a new approach for SOD and tested this on a new curated 

dataset comprising only complex, multi-object scenes. Saliency object 

ranking attempts to extend this problem to also separate object instances and 

rank them in terms of most to least salient. In Chapter 4, we developed a new 

dataset utilizing human gaze attention to accurately label and rank the 

importance of salient objects across thousands of images. In Chapter 5 we 

explored the use of transfer learning for large transformer networks applied 

to the SOD task, before extending this work on transformers into the full 

salient object ranking task in Chapter 6. Our results on existing datasets, as 

well as our new dataset, show leading performance across many metrics 

compared to existing methods. The primary contributions of this thesis are 

outlined below: 

• A novel MSOD framework is proposed in Chapter 3 that models long-

range dependencies in both spatial space and channel space. To the best of 

our knowledge, this is the first method that explicitly models long-range 

dependencies in this dual space for standard SOD and MSOD problems. The 

approach uses non-local guidance and edge refinement modules that work 

complementarily to enrich feature representations at each stage of the top-

down pathway. We curate a new dataset specifically for multi-object saliency 

problems. Results show that our approach exceeds the performance of 14 

state-of-the-art methods across five widely used SOD benchmarks and the 

proposed multi-object dataset.  
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• A large-scale instance-level RSR dataset using real human fixations is 

created in Chapter 4. To the best of our knowledge, this is the first and largest 

dataset created by real human fixations for RSR. Our data collecting strategy 

integrates the naturally viewing patterns of human observers, offering a 

closer approximation to real-world perception compared to other datasets. 

The focus on challenging multi-object scenes also complements the domain 

of saliency ranking, and our dataset comprises more objects on average, and 

a much higher maximum number of objects per scene than existing datasets. 

• A novel QAGNet framework is designed and implemented a in 

Chapter 6 that combines a modern transformer model for instance 

segmentation, with graph reasoning modules for saliency ranking. The 

framework draws query features on potential salient objects across different 

stages and resolutions of the transformer decoder. These are combined to 

learn the ranking-aware cues within three modules of graph reasoning, from 

features at the same scale, through features at different scales, and finally 

features at a global scale. Our results show a substantial jump in performance 

above other competing methods, including on our newly created ranking 

dataset. To guide and inspire future research in RSR, we will publish all the 

saliency ranking maps generated from all the existing methods on all datasets 

in this domain, as well as the dataset, code, and trained models for our 

approach. 

7.2 Future Work 

This thesis delves into the domain of saliency detection, starting from the 

SOD and then exploring a more complex task of MSOD in Chapter 3. 

Building upon this foundation, the subsequent chapters investigate the field 

of RSR and related techniques. RSR is a new task, with many remaining 

challenges that would be important to explore in the future.  

In Chapter 4, a large-scale instance-level RSR dataset using real human 
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fixations is created. Although we have carefully considered the way we 

designed the experiment, and utilised the captured data, further 

improvements to our experimental methodology may be possible in 

collaboration with experts in human visual saliency from the Psychology 

field. Such collaboration would offer valuable insights into the 

understanding of complicated human perception and cognitive processes, 

enabling the refinement of our experimental design and the enhancement of 

the dataset's reliability and applicability. 

In Chapter 5, popular transformer techniques are investigated, which 

are instrumental in the detection of objects for the task of RSR. However, 

transformer models normally require huge amount of data to be well-trained. 

This requirement poses a challenge in scenarios where data availability is 

limited such as the saliency ranking area. The exploration of transformer 

architectures that are efficient with less data is a crucial area for future 

research. Developing such models would not only enhance the feasibility of 

deploying transformers in data-scarce environments but also expand their 

applicability across various domains where extensive datasets are not readily 

available.  

In Chapter 6, a novel architecture using a query-based detector [98] and 

nested graph neural networks is proposed. This approach has shown strong 

performance among different the metrics discussed above. In this model, the 

process initiates with instance segmentation, followed by the 

implementation of our graph reasoning steps to understand the relationship 

among different salient instance proposals. The detection and segmentation 

of salient objects is highly dependent on the accuracy of transformer detector, 

which might be not always perform perfectly. Further investigation on how 

to transmit ranking-aware information within our graph reasoning modules 

back to transformer detectors may improve the accuracy of the detection of 

salient objects, their segmentation, and their eventual ranking. This could be 

done by building two pathways to conduct SOD and RSR simultaneously 
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with information exchange. Regarding the evaluation metrics, three metrics, 

namely SOR, SA-SOR, and MAE, are commonly utilized in the field of RSR. 

Among these, MAE is significantly impacted by the quality of segmentation 

and only marginally reflects the performance of saliency ranking. High SOR 

scores can be obtained when the salient identified instances maintain 

accurate ranking even with missing, incorrect, or low-quality segmentations. 

SA-SOR has been proposed as the solution to these issues. However, while 

SA-SOR effectively penalizes missing predictions and low-quality 

segmentations, it does not clearly address the problem of false-positive 

predictions. These predictions are essentially removed before a rank 

correlation is computed. There exists a substantial need to explore and 

develop more appropriate and reliable metrics to solve these limitations to 

better evaluate the accuracy and reliability of RSR models. Better ranking 

metrics may also be applicable for techniques that perform object bounding 

box detection, rather than segmentation, as part of a saliency ranking 

pipeline. 

7.3 Potential Applications 

This thesis mainly investigates the area of SOD and RSR. RSR improves 

upon SOD by differentiating between objects, providing richer 

representations. RSR can be widely used in numerous downstream tasks, 

these include object recognition [45], object detection [46][47], image 

retrieval [48], image captioning [49][50], weakly supervised semantic 

segmentation[51][52], few-shot learning [131], image cropping [53] and 

video conversion [126]. Regarding the specific potential applications of RSR, 

several areas worth for exploration in the future: 

Automotive and Transportation Safety: In autonomous driving 

systems, RSR can be pivotal for identifying and prioritizing critical objects 

on the road, such as pedestrians, other vehicles, and traffic signs. This aids 
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in enhancing navigational decisions and overall road safety. 

Medical Imaging and Healthcare: RSR can revolutionize diagnostics 

by pinpointing and ranking areas of interest in medical scans like MRIs or 

CTs. This application could assist healthcare professionals in quickly 

identifying critical anomalies, thereby improving the accuracy and 

efficiency of medical diagnoses. 

Retail and E-Commerce: Implementing RSR in online retail 

platforms could transform user experience by highlighting and ranking 

products that align with individual preferences. This approach could lead to 

more personalized shopping experiences and improve the effectiveness of 

recommendation systems. 

Security and Surveillance: In the field of security, especially in 

crowded or sensitive environments, RSR could enhance surveillance 

systems. By ranking individuals or objects based on certain criteria, the 

technology could aid in more effective threat detection and monitoring. 

Digital Media and Content Creation: In the area of content creation, 

including film and advertising, RSR can guide creators in emphasizing 

elements that capture viewers' attention. This can lead to more engaging and 

effective visual content. 

Robotics and Automation: In robotics, RSR can improve the 

interaction of robots with their environment, making them more efficient in 

tasks like object handling, navigation, and interaction with humans or other 

robots. 

Educational Tools and Resources: In educational software and 

resources, RSR can help create more engaging and interactive learning 

materials by highlighting key information or concepts in textbooks, 

instructional videos, or interactive modules. 
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