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A B S T R A C T   

The present work revolves around the development of a 3D particle-based Fluid-Structure Interaction (FSI) solver 
to simulate hydroelastic problems that involve free surface. The three-dimensional Volume-Compensated Particle 
Method (VCPM) for modelling deformable solid bodies is developed within the open-source SPH software 
package DualSPHysics. Complex 3D FSI problems are readily simulated within a reasonable time frame thanks to 
the parallel scalability of DualSPHysics on both CPU and GPU. The Sequential Staggered (SS) scheme paired with 
a multiple time-stepping procedure is implemented in DualSPHysics for coupling the SPH and VCPM models. It is 
found that the SPH-VCPM method is computationally more efficient than the previously reported SPH-TLSPH 
method. Extensive validations have been performed based on some very recent 3D experimental setups that 
involve violent free surface and complex structural dynamics. Findings from this research highlight the capability 
of the 3D SPH-VCPM model to reproduce some of the physical observations that were not captured by previous 
2D studies. Some preliminary 3D FSI results involving solid fracture are also demonstrated.   

1. Introduction 

Fluid Structure Interaction (FSI) is prevalent across many engineer
ing disciplines such as coastal engineering (Danielsen et al., 2005), 
design of offshore structures for renewable energy (Chella et al., 2012; 
Wang et al., 2020), biomedical engineering (Ariane et al., 2017), marine 
engineering (Ming et al., 2018), and more. In general, it is very costly to 
perform experimental study on FSI problems. Fortunately, recent ad
vancements in computing architecture and numerical schemes devel
oped within the Computational Fluid Dynamics (CFD) and 
Computational Solid Mechanics (CSM) communities have enabled a 
more in-depth study of challenging problems involving FSI. 

Conventionally, mesh-based methods such as Finite Element Method 
(FEM) and Finite Volume Method (FVM) are used for solid and fluid 
modeling, respectively. Although FEM offers high accuracy and stabil
ity, it faces difficulty in modeling problems with large deformations and 
it often requires special techniques such as local re-meshing in order to 
preserve the mesh quality. Similarly, for fluid modeling, it becomes 
more difficult for mesh-based methods (e.g. FVM) to simulate flow 

problems involving large fluid deformations arising at the free surface 
(e.g. breaking waves) and moving fluid-fluid and fluid-solid interfaces. 
In order to model free surfaces using mesh-based methods, numerical 
techniques such as Volume of Fluid (VOF) (Hirt and Nichols, 1981) and 
Level-Set (LS) (Sussman, 1994) are common strategies used to track the 
position of a free surface. While VOF and LS methods can be used to 
simulate non-breaking free surface flow effectively, it is computationally 
challenging to reconstruct the highly fragmented free surface (e.g. 
breaking wave) using VOF/LS on Eulerian meshes. 

In view of this, particle method such as Smoothed Particle Hydro
dynamics (SPH) has been developed to address the limitations of mesh- 
based methods. For fluid modeling, unlike VOF/LS in mesh-based 
methods, the inherent advantage of a SPH model such as the weakly- 
compressible SPH (WCSPH) in simulating hydro-elastic problems is its 
ability to model the free surface without the need of tracking. For solid 
modeling, SPH can handle large deformations; however, it suffers from 
numerical issues such as linear inconsistency (Liu and Liu, 2006), tensile 
instability (Swelge et al., 1995; Gray et al., 2001) and rank deficiency 
(Vignjevic et al., 2000). The linear inconsistency issue in the 
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conventional SPH approximation can be resolved, for example, by using 
the kernel correction method (Bonet and Lok, 1999) and the corrective 
method based on Taylor series (Chen and Beraun, 2000). The Total 
Lagrangian SPH (TLSPH) formulation (Belytschko et al., 2000) can be 
adopted to eliminate the tensile instability completely, while for rank 
deficiency, an effective hourglass suppression algorithm by Ganzen
müller (2015) can be implemented relatively easily. Additionally, 
another variation of structural modeling using SPH is Hamiltonian SPH 
(HSPH), which provides the flexibility of modeling different elastic and 
hyperelastic materials by replacing the strain energy function in the 
momentum equation (Gotoh et al., 2021). For simulating FSI problems, 
several researchers have attempted to use SPH in both fluid and solid 
modeling. For example, Antoci and co-workers (Antoci et al., 2007) have 
modelled both fluid and solid media using SPH and compared the SPH 
results against their experimental data. Moreover, the TLSPH method for 
solid modeling has been implemented in some recent FSI models (Sun 
et al., 2021; O’Connor and Rogers, 2021) to avoid the tensile instability 
in the solid body. HSPH has also been extended into solving FSI prob
lems (Khayyer et al., 2018). In fact, other numerical techniques can be 
coupled with SPH to solve FSI problems as well. For example, SPH has 
been coupled with FEM (Yang et al., 2012; Fourey et al., 2017; Her
mange et al., 2019), as the latter is commonly regarded as the highly 
specialized solver for solid modelling. 

Most of the solvers mentioned above for solid modeling are 
continuum-based which require the use of complex constitutive equa
tions. In fact, a typical solid mechanics problem can also be simulated 
using discrete methods such as Lattice Spring Models (LSMs) that do not 
require the conventional solid constitutive equations. This kind of 

Fig. 1. The Simple Cubic (SC) lattice structure in 3D VCPM method (Chen and 
Liu, 2016). There are 18 neighbouring particles (6 first neighbours + 12 s 
neighbours) surrounding a solid particle I. 

Fig. 2. Solution sequence of the present Sequential Staggered (SS) coupling 
scheme. Note that at step 4, the solid solver is integrated multiple (ω) times to 
synchronize with the fluid solver. 

Fig. 3. Geometry of the hanging beam.  

Fig. 4. Normal stress developed within the hanging beam due to self-weight at 
t = 5 s. Dp = 0.0025 m. 
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discrete methods, in fact, are very suitable for simulating problems 
involving solid fracture by selectively removing the spring bond be
tween particles. One of the popular LSM models is the Discrete Element 
Method (DEM), which has been widely used to model collisions between 
two approaching bodies. Lately, some researchers have extended DEM 
to model deformation within a flexible solid body and coupled DEM with 
SPH to model FSI problems (Tang et al., 2018; Wu et al., 2016; Nasar 
et al., 2019). Most of the discontinuous methods, however, are appli
cable only for a narrow range of Poisson ratio to ensure non-negative 
spring stiffness values. In this respect, another LSM method known as 
Volume Compensated Particle Method (VCPM) (or known as Lattice 

Particle Method (LPM)) (Chen et al., 2014) has been developed to 
handle a wider range of Poisson ratios. Very recently, VCPM has been 
coupled with SPH to simulate a series of 2D FSI problems (Ng et al., 
2020, 2022). Its energy conservation property has been extensively 
studied and the SPH-VCPM method has been coupled with DEM as well 
to model fluid-solid mixture flow problems (Ng et al., 2021). 

Most of the aforementioned SPH-based FSI schemes are implemented 
in two-dimensional (2D) space; however, a 2D model might not accu
rately capture the actual flow physics in a complex domain. For 
example, the 2D SPH-DEM model proposed by Tang and co-workers 
(Tang et al., 2018) could not capture the secondary currents in 

Fig. 5. (a) The displacement along the axial (z-) direction of the hanging beam using different particle sizes (Dp). (b) Spatial convergence error plot where the error is 
measured against the grid-independent FEM solution at the free end (x = y = z = 0 m). 
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scouring. To date, several authors have coupled SPH with either 
mesh-based or particle-based method for simulating three-dimensional 
(3D) FSI problem. Hermange and co-workers (Hermange et al., 2019) 
have coupled FEM with SPH to study complex phenomena of tire 
hydroplaning in 3D. Zhan and co-workers (Zhan et al., 2019) have 
developed the GPU-accelerated WCSPH-TLSPH scheme for simulating 
3D FSI problems and compared the computational efficiencies between 
WCSPH and TLSPH. They found that the particle simulation time per 
step (referred to as GPUfactor in their work) of TLSPH is one order of 
magnitude higher than that of WCSPH. Very recently, TLSPH has been 
implemented in the open-source SPH code DualSPHysics (Crespo et al., 
2015) for simulating 2D and 3D FSI problems (O’Connor and Rogers, 
2021). Sun and co-workers (Sun et al., 2021) have introduced different 
time resolutions in solid and fluid bodies and integrated the solid and 
fluid equations sequentially in order to enhance the computational ef
ficiency of their 3D FSI solver. They have also pointed out the impor
tance of considering the 3D effects in certain FSI benchmark cases. From 
the current trend, due to the massive computational cost requirement of 

particle methods, the 3D extension of a SPH-based FSI solver is often 
accompanied with parallel computing through GPU (O’Connor and 
Rogers, 2021; Zhan et al., 2019), which could be owing to the superi
ority of GPU (vs. multiple CPUs) in terms of energy consumption and 
pricing. A more comprehensive review on Lagrangian meshfree frame
work for both solid and fluid solvers for FSI can be found in the recent 
work by Gotoh and co-workers (Gotoh et al., 2021). 

In this work, the 2D SPH-VCPM method previously developed and 
presented in (Ng et al., 2020, 2022) is extended to three dimensions with 
the overarching goal to study more challenging FSI problems that 
involve material failure. As the first step, we present the work on 

Fig. 6. Geometry of the beam subjected to a dynamic loading F(t) at Point A.  

Fig. 7. Normal stress in the deformed cantilever beam at t = 0.48 s due to 
dynamic loading. Dp = 0.001 m. 

Fig. 8. Time histories of deflection for the cantilever beam at point A: (a) x- 
displacement and (b) z-displacement. 
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verifying and validating the proposed 3D FSI modeling methodology in 
this paper. In order to model these 3D FSI problems at realistic scales, 
the VCPM method is implemented in the open-source SPH code 

DualSPHysics in the current work, whose performance has been opti
mized for both CPU and GPU (Crespo et al., 2015). Recently, O’Connor 
and Rogers (O’Connor and Rogers, 2021) have implemented the Total 
Lagrangian SPH approach in DualSPHysics as well to simulate 3D FSI 
problems. Compared to their work, the major improvement from this 
research is the implementation of multiple time-stepping scheme in 
DualSPHysics so that the computational efficiency of the FSI solver is 
enhanced. Apart from performing validations using classical benchmark 
cases, the 3D numerical results from this research are also compared 
against those of new benchmark cases recently put forward by Yilmaz 
and co-workers (Yilmaz et al., 2021, 2022) in which the 2D numerical 
result and experimental data have been made available. It is believed 
that our 3D FSI model generated for replicating the recent experimental 
observation of Yilmaz and co-workers (Yilmaz et al., 2022) is the 
first-ever reported 3D computational model at the time of writing, and it 
is found that this 3D model is able to capture the free surface patterns 
more accurately as compared to the 2D model. The computational 
performance of VCPM is also reported and discussed. Finally, pre
liminary results regarding the capability of SPH-VCPM method in 
handling FSI problem involving solid rupture is demonstrated. 

2. Governing equations and numerical method 

2.1. Flow model 

The weakly-compressible SPH (WCSPH) approach implemented in 

Fig. 9. Geometric details (front and side views) of an elastic plate attached to the bottom of a rolling tank partially filled with oil.  

Fig. 10. The definition of local x’-displacement (qx’) as the flexible plate is 
deformed in the rolling tank. Picture is taken from (Ng et al., 2020). 

Fig. 11. Snapshot of the velocity field at t = 2.5 s for the three-dimensional sloshing flow (left) and close-up of the plate deformation (right) in the rolling tank study.  
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DualSPHysics is used to model the fluid dynamics. The mass balance 
equation of fluid flow can be written as: 

dρ
dt

= − ρ∇⋅v, (1)  

where ρ is the fluid density and v is the fluid velocity vector. By using the 
SPH approximation, the mass balance equation of a fluid particle i can be 
discretized as: 

dρi

dt
= ρi

∑

j
Vj
(
vi − vj

)
⋅∇iWij + 2δhcFDi . (2)  

Here, Vj is the volume of neighbouring particle j, ∇iWij =
dWij
dr

rij
rij 

and rij =

ri − rj. For all the cases considered here, the Wendland kernel function 
Wij (Wendland, 1995) with a compact support radius rc = 2h is 
employed. The smoothing length h is set as 1.5 × Dp, where Dp is the 

initial particle spacing. When using WCSPH, the pressure of a fluid 
particle i is explicitly computed using an equation of state (Monaghan, 
1994): 

Pi =
ρF(cF)

2

γ

((ρi

ρF

)γ
− 1
)
, (3)  

with the polytrophic index γ set as 7 and ρF indicating the initial fluid 
density. It is important to ensure that the fluid speed of sound cF to be at 
least 10vmax so that the fluid density fluctuations can be kept to 
approximately 1% of the reference density, thus leading to a quasi- 
incompressible flow behavior. Here, vmax is the anticipated maximum 
flow speed. 

The density diffusion term 2δhcFDi is introduced in the R.H.S. of 
Equation (2) to suppress the pressure noise typical of WCSPH schemes, 
and δ is usually taken as 0.1 (Antuono et al., 2012). The term Di is 
computed by using the density diffusion approach recently proposed by 

Fig. 12. Qualitative comparison of snapshots taken at various stages of the sloshing flow obtained from experiment (Souto-Iglesias et al., 2008; Paik and Carrica, 
2014) (left column), 2D SPH-VCPM method (center column) and 3D SPH-VCPM method (right column). 
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Fourtakas and co-workers (Fourtakas et al., 2019), which is known for 
its capability to restore the consistency near the free surface without 
having to compute the renormalized gradient (Antuono et al., 2012). 

The momentum balance equation of fluid particle i can be expressed 
as: 

Fig. 13. x’-displacement of the tip of the elastic plate clamped to the bottom of a rolling tank. Experimental data is obtained from (Souto-Iglesias et al., 2008).  

Fig. 14. Geometric details (front and side views) of a hanging elastic plate in a tank partially filled with water and subjected to rolling motion.  

Fig. 15. x’-displacement of the tip of the hanging plate predicted using various numerical methods: 2D FDM-FEM (Paik and Carrica, 2014), 2D SPH-TLSPH 
(O’Connor and Rogers, 2021) and the current SPH-VCPM method. Experimental data is obtained from (Idelsohn et al., 2008). 
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mi
dvi

dt
=Fi , (4)  

where Fi is the net force vector acting on a fluid particle i. Both the 
pressure force FP,i and viscous force FV,i are primary forces in fluid dy
namics. Other external force such as weight Fext,i = mi g can be included, 
where g is the gravitational acceleration vector. Therefore, the net force 
vector can be written as: 

Fi =FP,i + FV,i + Fext,i . (5) 

Note that in the current work, the fluid particle mass mi is treated as 
constant. Using SPH approximations, the pressure and viscous forces can 
be written respectively as: 

FP,i = −
∑

j
ViVj

(
Pi +Pj

)
∇iWij (6)  

and 

FV,i =
∑

j
mimj

4νF

ρi + ρj

∇iWij⋅rij
(
r2

ij + 0.01h2
)vij +

∑

j
mimj

(
τi

ρ2
i
+

τj

ρ2
j

)

∇iWij . (7) 

The first and second summation terms appearing in the R.H.S. of 
Equation (7) represent the laminar and turbulent viscous forces, 
respectively, where the turbulent stress tensor τ is modelled using the 
Large Eddy Simulation (LES) approach in (Dalrymple and Rogers, 2006). 

For the modelling of laminar viscous force, the fluid kinematic viscosity 
νF is prescribed. 

On the wall boundary condition, the dynamic boundary condition 
(DBC) (Crespo et al., 2007) is adopted as it is well-known for its 
robustness in simulating complex free-surface problem. For density 
update, the wall particles follow the same mass balance equation of fluid 
particles. The pressure values of wall particles can then be computed 
using the state equation. 

2.2. Solid model 

The 3D Volume Compensated Particle Method (VCPM) (or known as 
Lattice Particle Method (LPM)) (Chen and Liu, 2016) is implemented in 
DualSPHysics to model the deformation of linear elastic solid. Unlike 
SPH, VCPM is more beneficial in modelling solid body since the motion 
of a solid particle is purely dependent on its first and second nearest 
neighbours, i.e., the same set of neighbours throughout the course of a 
simulation if solid fracture is not modelled. Furthermore, VCPM uses 1D 
bond-level force-elongation relationship, which avoids the use of com
plex constitutive equation as needed in continuum-based approaches 
such as FEM. 

In the current work, the 3D Simple Cubic (SC) lattice structure (Chen 
and Liu, 2016) is implemented in DualSPHysics as the SC configuration 
is compatible with the Cartesian particle layout generated by GenCase, 
the pre-processor of DualSPHysics. As depicted in Fig. 1, for a generic 

Fig. 16. Snapshot of particles’ pressure at t = 3.8 s predicted using 2D and 3D SPH-VCPM methods and visual comparison against the experimental data (Idelsohn 
et al., 2008). 
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flexible solid particle I, there are 6 first and 12 s neighbours at distances 
Dp and 

̅̅̅
2

√
Dp away from particle I, respectively. For modelling the 

elastic behaviour of a solid body, bonds are created between the particle 
I and all its neighbours. By ensuring energy equivalency between the 
VCPM description and its continuum counterpart, the values of bond 
stiffness can be expressed in terms of material elastic properties (Chen 
and Liu, 2016): 

k =
2RE

1 + υS , (8)  

where E is Young’s modulus, υS is Poisson ratio and R = 0.5 Dp. In order 
to remove the restriction of Poisson ratio, a non-local parameter T is 
introduced and can be determined in terms of material elastic properties 
as (Chen and Liu, 2016): 

T =
RE(4υS − 1)

(
9 + 4

̅̅̅
2

√ )
(1 + υS)(1 − 2υS)

. (9) 

Upon identifying the positions of all particles using GenCase, a 
separate algorithm is developed in order to establish the bonds con
necting all particles within the flexible solid body. Whenever necessary, 
bonds are created between the flexible solid and the neighbouring fixed 
and moving boundary particles in order to model the clamping of the 
respective flexible solid body. This bond network is generated only once, 
and it is then stored in memory and used to compute the forces between 
VCPM particles by using the procedure outlined in the following 
paragraphs. 

The equations of motion for a solid particle I can be written as: 

mI
dvI

dt
=FS,I + FF→S,I + Fext,I , (10)  

where FS,I is the net spring force, FF→S,I is the hydrodynamic force 
mapped onto the solid particle I and Fext,I is the sum of external forces (e. 
g., gravity). For a steady-state problem, a damping force term, which is 
dependent on the Young’s modulus E (Zhan et al., 2019), can be 
included in Fext,I as well: 

Fext,I =mIg − mI

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E

ρS(Dp)2

√

vI , (11)  

where the first and second terms on the R.H.S. of Equation (11) are the 
weight and the damping force, respectively. Here, the mass of the solid 
particle is fixed as mI = ρS(Dp)D, where Dp is the initial solid particle 
spacing (same as the initial fluid particle spacing in the current work). 
Moreover, ρS is the density of the solid body and D is the number of 
dimensionalities of the problem. 

The net bond force FS,I can be determined based on the total energy 
of a particle in VCPM as (Chen and Liu, 2016): 

FS,I =
∑

J
fIJ ûIJ , (12)  

where ûIJ = (rI − rJ)/rI − rJ is the unit bond vector and fIJ is the bond 

Fig. 17. Geometric details of the elastic sluice gate subjected to dam break flow: (a) front view; (b) side view of the elastic sluice gate assembly.  

Fig. 18. Details of the particles’ layout in the clamp and sluice gate domains.  
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force that has the following explicit form: 

fIJ = − kδlIJ −
T
2

(
∑

Q
δlIQ +

∑

M
δlJM

)

, (13)  

where δlIJ is half of the elongation of the bond between solid particles I 
and J. Note that Equation (13) involves not only the local particles I and 
J, but also their respective neighbours Q and M. More details about 
VCPM can be found in our earlier works (Chen et al., 2014; Ng et al., 
2020). 

In the following subsections, the hydrodynamic force acting on the 
solid particle I, i.e., FF→S,I will be discussed. 

2.3. Fluid-structure coupling 

To enforce the non-penetration and no-slip wall boundary conditions 

at the fluid-solid interface, the solid particles near the fluid-solid inter
face act as dummy particles in the DualSPHysics SPH solver. Here, the 
pressure of dummy/solid particle I, PI, near the fluid-solid interface is 
calculated based on the Dynamic Boundary Condition (DBC) approach 
(Crespo et al., 2007). Following this, the pressure and viscous forces 
acting on a fluid particle i due to the neighbouring dummy/solid particle 
I can be determined respectively as: 

FP,I→i = − ViVI(Pi +PI)∇iWiI (14)  

and 

FV,I→i =mimI
4νF

ρi + ρI

∇iWiI ⋅riI
(
r2

iI + 0.01h2
)viI + mimI

(
τi

ρ2
i
+

τI

ρ2
I

)

∇iWiI (15) 

Note that ρI is calculated based on the DBC approach by solving the 
mass balance equation. The volume of a dummy particle I, VI, can then 

Fig. 19. Comparison of flow sequences: experimental photos from (Yilmaz et al., 2021) (left) and results predicted using the current 3D SPH-VCPM method (right).  
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be computed accordingly as VI = mi
ρI

, where mi is the mass of an inter
acting fluid particle. Since the solid particle I acts as a dummy particle of 
a fluid particle i, the value of mI in Equation (15) is computed as mI = mi. 
As a result, the total hydrodynamic force exerted on a solid particle I, 
FF→S,I, is expressed as follows: 

FF→S,I = −
∑

i∈Nf

(
FP,I→i +FV,I→i

)
(16)  

where Nf is the number of fluid particles residing in the circle/sphere of 
influence of rc = 2h centered at the solid particle I. The negative sign is 
introduced before the summation term in the R.H.S. of Equation (16) so 
that Newton’s third law is satisfied. 

2.4. Multiple time-stepping 

2.4.1. Use of multiple time step size 
In some of the recent WCSPH FSI explicit solvers (O’Connor and 

Rogers, 2021; Zhan et al., 2019), the time step size Δt is restricted for 
stability purposes following the relation: 

Δt=min
(
ΔtF ,ΔtS ), (17)  

where ΔtF and ΔtS are the maximum allowable time step sizes for the 
fluid and solid solvers, respectively. In DualSPHysics, ΔtF is calculated in 
the following manner: 

ΔtF = 0.1min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

̅̅̅̅̅̅̅̅̅̅

h
aimax

√

,
h

cF +

⃒
⃒
⃒
⃒

hvij .rij
r2

ij+0.01h2

⃒
⃒
⃒
⃒

max

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (18)  

where aimax is the maximum acceleration of fluid particles. If solid dy
namics is considered, ΔtS can be determined as: 

ΔtS = 0.8
Dp
cS , (19)  

where cS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
B + 4G

3
)/

ρS
√

is the sound speed in the solid body, with B =

E/3(1 − 2νS) being the bulk modulus and G = E/2(1+νS) being the shear 
modulus. Although the use of a single time step size for both fluid and 
solid domains is simple in terms of implementation, its computational 
efficiency is often questionable as cS is likely to be larger than cF in most 
engineering problems. As a result, a very small global time step size must 
be adopted for ensuring overall numerical stability while integrating the 
fluid and solid governing equations explicitly. The other challenge is on 
how to couple the fluid and solid governing equations while ensuring 

computational efficiency and stability. Fourey and co-workers (Fourey 
et al., 2017) have investigated both Parallel Staggered (PS) and 
Sequential Staggered (SS) coupling schemes. In PS, both fluid and solid 
solvers progress at the same time upon exchanging information at the 
fluid-solid interface. In SS, however, the fluid and solid solver progresses 
sequentially. The fluid solver progresses first upon receiving the solid 
particle information (e.g., velocity and position). The fluid pressure and 
viscous forces acting on the solid body (loading) are then calculated, and 
this information is sent to the solid solver for updating the velocity and 
position of all solid particles. It has been reported in literature that SS is 
numerically more stable than PS (Sun et al., 2021; Fourey et al., 2017). 

In the current work, we pursue the idea of SS coupling scheme. To 
enhance the computational efficiency of SS coupling scheme, a multiple 
time-stepping scheme is implemented in DualSPHysics to enhance the 
computational efficiency. The schematic diagram is shown in Fig. 2. 
Upon solving the SPH fluid equations for each time step based on the 
existing position and velocity information of the flexible solid body, we 

perform the integer operation: ω = int
(

ΔtF
ΔtS

)
+ 1 and re-compute ΔtS 

accordingly using ΔtS = ΔtF/ω. The hydrodynamic forces acting on all 
flexible solid particles near the fluid-solid interface are then computed 
using Equation (16). These mapped hydrodynamic forces that act as the 
boundary conditions for the VCPM solver are fixed while integrating the 
solid equations of motion. By using ΔtS, the equations of motion of solid 
bodies are integrated ω times to achieve time synchronization with the 
fluid body. In what follows, the details of the numerical implementation 
of VCPM in DualSPHysics are explained. 

2.4.2. Symplectic scheme for VCPM in DualSPHysics 
Due to the use of multiple time steps as explained in the previous 

subsection, it is imperative to match the velocity marching interval 
while integrating the fluid and solid governing equations. Recently, 
Zhang and co-workers (Zhang et al., 2021) have recommended the use 
of a position-based Verlet scheme to achieve strict momentum conser
vation (c.f. Fig. 1 in (Zhang et al., 2021)) as the scheme requires only a 
single update of velocity within one time step. In fact, this scheme has 
been implemented in DualSPHysics, and it is more commonly known as 
the symplectic time integration scheme (Leimkuhler et al., 1996). To 
ensure the consistency of the time integration schemes implemented in 
both the fluid and solid domains, the same symplectic scheme imple
mented in DualSPHysics is used for integrating the equations of motion 
for a solid body. 

Assuming that the fluid governing equations have been integrated 
using the symplectic time integration scheme in DualSPHysics (i.e. vi

n+1,

ri
n+1 and ρi

n+1 have been obtained for all fluid particles) and the hy
drodynamic force acting on each solid particle I has been computed 

Fig. 20. Splashing of fluid particles behind the sluice gate at t = 0.38 s. The gate reopens upon the second wave impact.  
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using Equation (16), the following steps are carried out in order to solve 
the solid equations of motion. Note that the mapped hydrodynamic 
forces on all solid particles I near the fluid-solid interface are fixed while 
integrating the solid equations of motion. 

Step 1: By using Equation (10), the acceleration 
( dvI

dt
)m of a solid 

particle I is computed. Then, its position and displacement at inter
mediate time step tm+0.5 are updated as: 

vm+0.5
I = vm

I +
ΔtS

2

(
dvI

dt

)m

(20)  

rm+0.5
I = rm

I +
ΔtS

2
vm

I (21) 

This step is commonly known as the predictor stage in literature. 

Step 2: Based on the intermediate position and displacement values 
obtained from Step 1, the acceleration of the solid particle I, i.e. 
( dvI

dt
)m+0.5 is calculated again using Equation (10). Next, the position 

and displacement of the solid particle I at tm+1 are corrected as: 

vm+1
I = vm

I + ΔtS
(

dvI

dt

)m+0.5

(22) 

Fig. 21. Free surface patterns behind the sluice gate at t = 1.0 s using various methods: (a) Experiment in (Yilmaz et al., 2021); (b) 2D SPH-FEM (Yilmaz et al., 2021); 
(c) 2D SPH-VCPM and (d) 3D SPH-VCPM. 
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rm+1
I = rm

I +
ΔtS

2
(
vm

I + vm+1
I

)
(23)   

Step 3: At this point, both vI
m+1 and rI

m+1 at tm+1 may not syn
chronize perfectly with the fluid flow variables at tn+1 if ω > 1. 
Therefore, Equations (20)–(23) are repeated ω times in order to 
achieve time synchronization with the fluid body, i.e. tm+ω = tn+1. 

Upon synchronizing with the SPH fluid flow solver as outlined in 
Step 3, the available positions and velocities of all flexible solid particles 
are fed into the SPH solver in DualSPHysics to initiate the calculation of 
the next time step. 

3. Results and discussions 

In this section, several test cases are presented to demonstrate the 
accuracy of the 3D SPH-VCPM method. Upon validating our imple
mentation of VCPM in DualSPHysics by simulating both static and dy
namic solid mechanics problems, the method is then used to simulate 
several classical FSI test cases as well as the very recent FSI benchmark 
cases put forward by Yilmaz and co-workers (Yilmaz et al., 2021, 2022). 
Unless otherwise stated, the gravitational vector g is assumed as <0, 0, 
− 9.81> ms− 2. All the simulations are performed on an Nvidia Quadro 
RTX 8000 GPU. 

3.1. Beam deformation due to self-weight 

Our 3D implementation of VCPM in DualSPHysics is firstly verified 
by solving a static solid mechanics problem. As shown in Fig. 3, we 
simulate the deformation of a hanging beam due to its own weight. For 
this simple problem, the theoretical solution is available. 

The simulation is performed until t = 5 s so that the quasi steady- 

state condition can be obtained, accomplished by activating the damp
ing term in Equation (11). The material properties of the beam are: ρS =

2500 kgm− 3, E = 3 MPa and νS = 0.3. As the beam is supported at the 
upper end (z = 0.6 m) where the displacement is fixed, the local stress 
level (evaluated using (Chen, 2019)) is relatively high as shown in Fig. 4. 
The stress decreases along the negative z-direction and drops to almost 
zero at the lower/free end (z = 0 m). 

The beam deformations predicted using different particle resolutions 
are compared against the theoretical solution (Goodier and Timoshenko, 
1970) as shown in Fig. 5(a). The 3D VCPM solution approaches the 
theoretical one as Dp is refined. Nevertheless, our 3D VCPM results 
obtained using the finest resolution (Dp = 0.0025 m) is slightly higher 
than the theoretical solution and the difference becomes more apparent 
near the free end. This discrepancy is mainly due to the difference in 
boundary conditions (imposed at the upper end of the beam) considered 
in the theoretical model (Goodier and Timoshenko, 1970) and our nu
merical model. In the current numerical model, the displacements at the 
upper end are fixed whereas in the theoretical model, the constant-stress 
condition is applied (Goodier and Timoshenko, 1970). In order to 
confirm this, we have simulated the same problem by adopting the 
boundary condition in our numerical model while running the Finite 
Element Method (FEM) solver in ANSYS. Similar to our current VCPM 
model, the mesh-independent displacement values simulated using FEM 
are slightly higher than the theoretical ones, and the FEM results are 
very close to our VCPM solution obtained using the finest particle res
olution, as shown in Fig. 5(a). The spatial convergence of the 
z-displacement at the free end (x = y = z = 0 m) is shown in Fig. 5(b). 
Here, the error is measured against the mesh-independent FEM solution. 
For this simple case, the order of convergence is between 1 and 2. 

Fig. 22. Deflection in the x-direction at various points of the elastic sluice gate: (a) M1; (b) M2; (c) M3 and (d) M4. Both experimental and 2D SPH-FEM results are 
obtained from (Yilmaz et al., 2021). 
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3.2. Beam deformation due to dynamic loading 

Next, the 3D VCPM method is applied to simulate a dynamical solid 
mechanics problem involving very large deformations. Fig. 6 shows the 
configuration details of the cantilever beam where the displacements are 
fixed at one end and a concentrated dynamic force F(t) = 1600t [N] (t in 
second) is acting at the other (free) end of the beam (Point A). Following 
(Zhan et al., 2019), the material properties used in this example are set 
as: ρS = 7800 kgm− 3, E = 2.1 GPa and νS = 0.3. The simulation is 
executed until t = 0.5 s. For this problem, no analytical solution is 
available and hence we have verified our results against the recently 
published TLSPH solution of Zhan and co-workers (Zhan et al., 2019) 
and the FEM solution obtained from the commercial software ANSYS. 
Zhan and co-workers (Zhan et al., 2019) have compared their TLSPH 
results against the FEM solution generated using the commercial FEM 
software package ABAQUS. When comparing both FEM solutions of 
ANSYS and ABAQUS (Zhan et al., 2019) using Dp = 0.001 m, it has been 
found that results are in very close agreement. 

Fig. 7 shows the normal stress level at t = 0.48 s and it is found that 

the stress distribution is quite similar to that of the stabilized TLSPH 
method (Zhan et al., 2019). Unlike TLSPH, our current VCPM method 
does not require any additional damping/stabilization term in ensuring 
the regularity of the solid particles. The time-dependent displacements 
at Point A are shown in Fig. 8 and the results are compared against the 
FEM solutions (obtained from ANSYS using Dp = 0.001 m). It is inter
esting to note that the time evolutions of the displacements at Point A 
during the course of dynamic loading agree considerably well with the 
FEM and TLSPH (Zhan et al., 2019) solutions. As the particle resolution 
is refined, our 3D VCPM solution converges well to the FEM solution. 

3.3. Oil sloshing in a rolling tank with an elastic plate 

This classical FSI test case, which involves an elastic plate clamped at 
the bottom of a tank undergoing rolling motion, has been physically 
tested and simulated by Souto-Iglesias and co-workers (Souto-Iglesias 
et al., 2008). Due to the periodic rolling motion, fluid sloshing occurs 
within the tank and hence the elastic plate is deformed accordingly. 
From the experimental data, the plate deformation appears to be quite 
large and hence it is interesting to test the capability of the current 3D 
FSI method in simulating this problem. 

The material properties of the elastic plate are: ρS = 1100 kgm− 3, E =
6 MPa and νS = 0.45. Fig. 9 shows the geometric details of the problem. 
It can be noticed that the width (measured along the y-direction) of the 
tank is relatively small as compared to its length and height. This implies 
that the side walls might affect the overall flow field significantly, pro
moting flow diffusion/damping effect due to the formation of 3D 
boundary layers near the side walls. The associated flow damping effect 
is further exacerbated when the fluid viscosity is high. In the current 
SPH simulation, an oil of density ρF = 917 kgm− 3 and kinematic vis
cosity νF = 5 × 10− 5 m2s− 1 is employed. For the rolling motion of the 
tank, the time history of the rolling angle θ (see Fig. 10) is extracted 
directly from (Souto-Iglesias et al., 2008) in order to correctly model the 
moving boundary conditions of the tank wall at different time steps. The 
particle spacing Dp is set to 1 mm, which is adequate to attain a 
converged solution (Hermange et al., 2019). As such, the total number of 
particles is approximately 4.2 million for this case. 

Fig. 11 shows the jet flow through the small gap between the elastic 
plate and the side wall. This high-speed oil current which is partially 
driven by the shearing action between the deforming plate and the 
rolling side wall would ultimately interact with the free surface and the 
3D boundary layer in the vicinity of the side walls. This important flow 
feature could not be modelled in our previous 2D FSI work (Ng et al., 
2020). According to (Bouscasse et al., 2013), the boundary layer for
mations near the side walls tends to produce additional flow damping 
effect on the global flow field. This has been witnessed in our current 3D 
work as well, as reported in Fig. 12. Therein, 2D results are associated 
with more dynamic oil sloshing and even breaking waves which are 
visible in Fig. 12 (b) and (d). These flow features captured from 2D 
simulations are not apparent in the experimental photos. Remarkably, 
the free surface evolution predicted from the current 3D SPH-VCPM 
method agrees considerably well with experimental observations. 

Fig. 13 shows the time history of the x’-displacement (see the coor
dinate system in Fig. 10) at the tip of the elastic plate. In general, the 
displacement amplitude predicted by the 3D model is smaller than that 
of the 2D model. The lower amplitude could be due to less dynamic oil 
sloshing in the 3D model. If compared to the 2D results, the 3D results 
are in better agreement with the experimental data as depicted in 
Fig. 13. As the flow is highly viscous in the current test case, the accu
racy of the 3D results can be further improved by implementing a more 
accurate wall model in DualSPHysics, e.g. the extrapolation of dummy 
particle velocity based on wall velocity (Adami et al., 2012) and the 
modified DBC (English et al., 2021) for all boundary particles, including 
the floating ones defined in DualSPHysics. 

Fig. 23. Free surface elevation at various stations: (a) P1; (b) P2; and (c) P3. 
Both experimental and 2D SPH-FEM results are obtained from (Yilmaz 
et al., 2021). 
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Fig. 24. Geometric details of the elastic baffle in a wet bed. (a) front view; (b) side view of the elastic baffle assembly.  

Fig. 25. Deflection in x-direction at various points of the elastic baffle: (a) M1; (b) M2; (c) M3 and (d) M4. Both experimental and SPH-Project Chrono results are 
obtained from (Yilmaz et al., 2022). 
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3.4. Hanging plate in a rolling tank 

This is another classical FSI test case whereby the experimental data 
is available (Idelsohn et al., 2008). The tank geometry is similar to that 
of Section 3.3, except that the plate clamped at the bottom is now 
replaced by a flexible plate of thickness 4 mm and height 287.1 mm 
which is hung at the top of the tank as shown in Fig. 14. From the 
experimental data (Idelsohn et al., 2008), the frequency of the plate 
deformation is quite high at the later stage of sloshing. Unlike the test 
case in Section 3.3, as the plate is hung at the top of the tank, 
fluid-structure interaction occurs only when the water wave hits the 
plate. This has led to a more complex dynamics of the plate. 

The material properties of the flexible plate are: ρS = 1900 kgm− 3, E 
= 4 MPa and νS = 0.45. Instead of using oil, the working fluid is changed 
to water, with density ρF = 998 kgm− 3 and kinematic viscosity νF = 1 ×
10− 6 m2s− 1. To the best of our knowledge, most of the previous nu
merical studies on this test case were conducted in 2D (O’Connor and 
Rogers, 2021; Paik and Carrica, 2014; Idelsohn et al., 2008). In the 
current work, the study is extended to 3D using our current SPH-VCPM 

method. To model the rolling motion of the tank, the time history of the 
rolling angle is extracted from (Idelsohn et al., 2008) in order to mimic 
the experimental condition and allow a correct benchmarking of the 
numerical results. 

Fig. 15 shows the x’-displacement (see its definition in Fig. 10) at the 
tip of the hanging beam. It is found that our 2D SPH-VCPM result is 
almost similar to that obtained using the 2D SPH-TLSPH FSI solver 
recently implemented in DualSPHysics (Dp = 0.5 mm) (O’Connor and 
Rogers, 2021). Meanwhile, our current 3D SPH-VCPM results are quite 
close to the 2D results, and within the spread of other previous nu
merical predictions such as the 2D Finite Difference Method - Finite 
Element Method (FDM-FEM) (Paik and Carrica, 2014) and the 2D 
SPH-TLSPH method (O’Connor and Rogers, 2021). As shown in Fig. 15 
for the 3D SPH-VCPM results (using Dp = 0.5 mm and Dp = 1.0 mm), in 
general, the sensitivity of the particle size on the overall time history of 
the plate displacement is not very apparent during the initial stage (0 < t 
< 1 s). Nevertheless, as the plate starts to have stronger interaction with 
the wave arisen from the rolling motion thereafter, some minor dis
crepancies are spotted on the time gradient of the plate displacement 

Fig. 26. Comparison of flow sequences: experiments in (Yilmaz et al., 2022) (left); 2D SPH-VCPM method (center); and 3D SPH-VCPM method (right).  
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ranging from t = 1.3 s to t = 2.3 s (i.e., as the plate interacts with the 
wave and travels from one far end to another) and the small-scale 
fluctuations in the later stages of sloshing. It is generally expected that 
the convergence can be improved by refining the particle size as the 
degree of unphysical boundary layer thickening (due to the use of DBC) 
near the structure can be further alleviated. Other more accurate wall 
boundary modelling techniques can be considered as well for improving 
the convergence ((Adami et al., 2012) (English et al., 2021)). 

All numerical predictions agree very well in the early stage of the 
computation (0 < t < 1 s). By judging the crest and trough of the 
physically measured displacement curve (Idelsohn et al., 2008) at t > 3 
s, it seems that there is a phase lag between the physical and the 
simulated results. As shown in Fig. 16, this phase lag could be due to the 
wave bore (responsible for deforming the hanging plate) which is pre
dicted to be consistently ahead of the physically observed. In fact, this 
phase lag has also been observed by Khayyer and co-workers in their 
very recent multi-resolution SPH work (c.f. Figs. 15 and 17 in (Khayyer 
et al., 2021)), which deserves further attention in the future. From 

Fig. 16, it seems that the 3D SPH-VCPM model captures the experi
mentally observed non-breaking wave quite well, while the 2D 
SPH-VCPM result is accompanied by unphysical wave breaking. 

3.5. Wave impact on elastic sluice gate 

Recently, Yilmaz and co-workers (Yilmaz et al., 2021) have con
ducted a physical experiment to investigate the wave impact on an 
elastic sluice gate. This test case is interesting yet challenging as it in
volves multiple flow impacts on the sluice gate occurred at different time 
instants and the generation of hydraulic jump behind the gate as it 
retraces. 

The geometric details of the experiment are depicted in Fig. 17. As 
noticed, there is a small gap between the sluice gate and the side walls to 
avoid friction between them. There are three measurement stations 
(P1–P3) placed at different x-locations to measure the free surface 
height. Meanwhile, in order to measure the deflection of the sluice gate, 
four marker points (M1-M4) are placed at different locations of the gate. 
The locations of measurement stations and marker points are detailed in 
Fig. 17. 

In order to determine the Young’s modulus of the rubber-like sluice 
gate, Yilmaz and co-workers (Yilmaz et al., 2021) have measured the 
deformation due to the body weight of the sluice gate. These deforma
tion values have then been used to determine the Young’s modulus 
based on the Euler-Bernoulli beam theory. From their findings, the 
Young’s modulus is E = 4 MPa. The gate density and Poisson ratio are 
given as ρS = 1250 kgm− 3 and νS = 0.4, respectively. Yilmaz and 
co-workers (Yilmaz et al., 2021) have further simulated this problem 
using the SPH-FEM approach available in the commercial software 
LS-DYNA, where SPH and FEM are used for modeling the fluid and solid 
domains, respectively. Here, they have modelled the problem as 2D and 
employed the artificial viscosity approach to stabilize the SPH scheme. 
In their work, the particle resolution has been set to Dp = 2 mm. The 
water density and kinematic viscosity have been set as ρF = 1000 kgm− 3 

and νF = 1 × 10− 6 m2s− 1. 
In the current work, we extend the numerical study of Yilmaz and co- 

workers (Yilmaz et al., 2021) to 3D by using the SPH-VCPM approach. 
Instead of using the originally proposed particle resolution of 2 mm 
(Yilmaz et al., 2021), we have refined the particle resolution Dp to 1 mm 
in order to better resolve the thickness of the elastic sluice gate (= 0.7 
cm). As such, the total number of particles is ~13.5 million. Fig. 18 
shows the particle layouts in both the clamp (modelled as fixed 

Fig. 27. Three-dimensional views of fluid and solid particles at t = 0.3 s: fluid pressure and von-Mises solid stress representation (left); von-Mises stress within the 
rubber baffle (right). 

Table 1 
Simulation time for the 3D beam deformation due to self-weight (Section 3.1).  

Resolution 
[m] 

No of 
particles 

Total 
simulation 
time [s] 

No. of 
time 
step 

VCPM 
particle 
simulation 
time per step 
[s] 

Simulation 
time per 
step [s] 

0.02 750 2.9 10048 3.912E-07 0.000293 
0.01 6000 6.1 20096 5.042E-08 0.000303 
0.005 48000 32.6 40192 1.688E-08 0.000810 
0.0025 384000 571.6 80384 1.852E-08 0.007111  

Table 2 
Simulation time for the 3D beam deformation due to dynamic loading (Section 
3.2).  

Resolution 
[m] 

No of 
particles 

Total 
simulation 
time [s] 

No. of 
time step 

VCPM 
particle 
simulation 
time per 
step [s] 

Simulation 
time per 
step [s] 

0.001 10000 291.8 301010 9.693E-08 0.000969 
0.0005 80000 906.9 602019 1.883E-08 0.001506 
0.00025 640000 11890.3 1204037 1.543E-08 0.009875  
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particles) and the elastic sluice gate sub-domains. At the interface be
tween the clamp and the sluice gate, spring-like bonds are established 
between the clamp and sluice gate particles in order to model the contact 
between them. Yilmaz and co-workers (Yilmaz et al., 2021) have 
employed the artificial viscosity approach in their 2D SPH-FEM model. 
However, it is known that the artificial viscosity parameter is subjected 
to tuning based on the nature of the problem and particle resolution. 
Therefore, in our current 3D FSI model, the Laminar + LES model 
available in DualSPHysics is used to resolve the flow diffusion. 

Fig. 19 compares the free surface patterns obtained from both 
experimental and numerical observations. Due to the fact that the 
removal of the rigid plate is not modelled in the current work (as the 
gate removal velocity is not given in (Yilmaz et al., 2021)), it is apparent 
that the wave-front propagates faster than that observed experimentally 
at t = 0.2 s. The deformation of elastic sluice gate due to the impact of 
dam-break flow is witnessed at t = 0.3 s. Subsequently, complex wave 
breaking occurs behind the gate, which is accompanied by rigorous 
three-dimensional splashing of water particles as shown in Fig. 20. The 
formation of a hydraulic jump is clearly visible behind the sluice gate at 
t = 1.0 s as the dam-break wave interacts with the water particles behind 
the gate. As time elapses, the wave starts to reflect upstream and the 
water level behind the gate descends accordingly. As a result, the impact 
force acting on the gate eases, and the relaxation on the elastic sluice 
gate is observed as the gate retraces back to its original position. In 
general, our 3D SPH-VCPM results compare quite well with those 
observed experimentally. The free surface patterns behind the sluice 
gate at t = 1.0 s are further compared in Fig. 21. As can be seen, when 
adopting the 2D simulation approach, the motion of the free surface is 
more violent, which is accompanied by breaking waves. These breaking 
waves, however, are not apparent from the experimental photo. When 
compared to the 2D approach, the free surface captured from our 3D 
simulation approach is less violent and compares quite well against the 
experimental observation. This could be due to the additional flow 
damping effect as the side walls are included in the 3D model. 

The time histories of the deflection of the elastic sluice gate (Points 
M1-M4) are compared in Fig. 22. As can be seen, the gate starts to open 
when the dam-break wave firstly hits the gate at t ~0.21 s. The deflec
tion peaks at t ~0.3 s and retraces until t ~0.35 s, beyond which the 
deflection increases again due to the incoming water current. The gate 
opens gradually thereafter and reaches its maximum deflection level at t 
~0.75 s. The gate opening decreases steadily afterwards, as the water 
level behind the gate eases off when the wave is reflected upstream. 
From Fig. 22, in general, all the 2D and 3D simulation results are quite 
close to each other and compare well against the experimental data. Our 
2D SPH-VCPM results are slightly noisier than the 3D ones, which could 
be due to more violent wave-breaking phenomenon observed in the 2D 

model. Interestingly, this noise is not apparent in the 2D SPH-FEM 
model that employs the artificial viscosity approach. 

The free surface heights at stations P1–P3 predicted using both 2D 
and 3D models are compared in Fig. 23. The wiggling time evolution of 
the free surface is clearly visible in our 2D SPH-VCPM model, particu
larly at station P2, where it is residing within the hydraulic jump regime. 
Interestingly, our current 3D SPH-VCPM results are quite smooth and 
follow closely with the measured free surface heights. At station P1, the 
delay in the rise of water level after t = 1.5 s is quite apparent in the 2D 
SPH-FEM model. In this regard, by using the 3D SPH-VCPM model, the 
predicted time instant during which the water level rises abruptly due to 
the reflecting wave agrees quite well with the experimental data, albeit a 
slight delay is still observed. At station P2, the wave crest that is 
observed experimentally at t ~1.2 s is well resolved using the current 3D 
SPH-VCPM model. The water heights at station P3 (downstream of the 
gate) predicted using different models are quite similar to each other 
and close to the measured data. There is a slight decrease in water height 
at t ~0.4 s, which is mainly due to the relaxation of the elastic sluice 
gate. 

3.6. Wave impact on rubber baffle (wet bed) 

In contrast with the test case presented in Section 3.5, the rubber 
baffle is now located in a wet bed which is then subjected to wave impact 
due to dam break. This test case has been recently investigated by Yil
maz and co-workers (Yilmaz et al., 2022) both experimentally and 
numerically. Due to the rich and complex dynamics involved, it has been 
recently recommended by Yilmaz and co-workers (Yilmaz et al., 2022) 
as a suitable benchmark test case for hydroelastic analysis. 

Fig. 24 shows the geometrical details of the experimental setup, 
where a vertical gate is used to separate two water bodies of different 
initial heights in order to produce the wet bed condition. A rubber baffle, 
which is mounted to a rectangular block as shown in Fig. 24, is placed 
0.3 m downstream from the vertical gate. There is a small gap of 2.0 mm 
between the baffle and the side wall. Four marker points (M1-M4) are 
placed at various locations of the baffle (see Fig. 24) to measure the 
respective x-displacements. Again, Yilmaz and co-workers (Yilmaz et al., 
2022) have adopted the Euler-Bernoulli beam theory to estimate the 
Young’s modulus of the rubber baffle, i.e. E = 5.7 MPa. The density of 
the baffle is taken as ρS = 1250 kgm− 3. 

In our current numerical model, the initial particle spacing Dp is set 
as 1.0 mm. The fluid density and kinematic viscosity are prescribed as ρF 

= 1000 kgm− 3 and νF = 1 × 10− 6 m2s− 1, respectively. For fluid 
modeling, Yilmaz and co-workers (Yilmaz et al., 2022) have adopted the 
2D SPH modelling approach in DualSPHysics, resorting to the artificial 
viscosity to model flow diffusion. For the elastic baffle modelling, 

Table 3 
Simulation times for the 3D FSI problems.  

Case No. of particles Total sim. 
time [s] 

SPH sim. 
time [s] 

VCPM sim. 
timea [s] 

VCPM sim. 
timeb [s] 

SPH particle sim. 
time per step [ns] 

VCPM particle 
sim. time per 
stepa [ns] 

VCPM particle 
sim. time per 
stepb [ns] 

Sect. 3.3: 3D Oil 
Sloshing- Beam at the 
bottom (Dp = 1 mm) 

4,223,520c 15,048d 19,587 19117.6 469.4 376.8 16.2 46.1 24.1 

Sect. 3.4: 3D Water 
Sloshing – Hanging 
Beam (Dp = 1 mm) 

2,907,597c 37,884d 18,931 17632.3 1298.9 1218.6 11.8 36.6 32.5 

Sect. 3.5: 3D sluice gate 
(Dp = 1 mm) 

8,415,709–13,528,104c 

183,540d 
34,904 33733.6 1170.3 1051.0 15.3–24.6 25.5 21.5 

Sect. 3.6: 3D wet-bed 
dam break (Dp = 1 
mm) 

15,609,262c 59,185d 47,753 47368.4 384.4 298.4 18.3 28.0 19.3  

a FF→S,I (Equation (16)) + VCPM (Steps 1–3 in Section 2.4.2). 
b VCPM (Steps 1–3 in Section 2.4.2). 
c Number of SPH particles. 
d Number of VCPM particles. 
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however, they have segmented the baffle into 5 rigid bodies inter
connected with a hinge. The rigid body motion of each segmented baffle 
is then solved using the Chrono library available in DualSPHysics. In the 
current work, we intend to extend the model to 3D by using our current 
SPH-VCPM approach. To the best of our knowledge, this is the first ever 
3D computational FSI model that replicates this flow case. 

In contrast with the previous work of Yilmaz and co-workers (Yilmaz 
et al., 2022) for the sluice gate problem presented in Section 3.5, the 
value of the Poisson ratio was not provided for the current model. 
Therefore, the same value of Poisson ratio reported in their previous 
work of sluice gate (Yilmaz et al., 2021), i.e., νS = 0.4 is adopted in the 
current model. We have performed a sensitivity analysis of the value of 
Poisson ratio on the 2D SPH-VCPM model and the results are shown in 
Fig. 25(a). Indeed, for M1-M4 (see Fig. 25(a–d)), the 2D SPH-VCPM 
results with νS = 0.4 have shown good agreement with the 2D SPH re
sults of Yilmaz and co-workers (Yilmaz et al., 2022). Therefore, we have 
decided to carry out our 3D simulation using νS = 0.4. As shown in 
Fig. 25, the 3D results under-predict the actual baffle deformation. This 
could be due to the wall damping effect in the 3D model (due to side 
walls) as the baffle is partially/fully immersed in the water body during 
flow impact. In fact, it should be noted that the current linear elastic 
model may not be able to correctly capture the deformation behavior of 
rubber-like material. Further study is needed, for example, by imple
menting more complex material models to study the deformation 
behavior of the current rubber baffle. 

Upon the sudden removal of the vertical gate, the dam-break wave 
starts to drag the tail water downstream of the vertical gate and a bore is 
formed. The bore moves downstream towards the elastic baffle and hits 
the baffle at t ~0.28 s. This is accompanied by a sudden deflection on 
various parts of the baffle as shown in Fig. 26. Some degree of relaxation 
on the baffle can then be seen thereafter, while some water particles 
overtop the baffle and travel downstream. As such, the water level in the 
downstream region starts to build up, thus imposing fluid pressure on 
the leeside of the baffle. This causes the deflection of the baffle to ease 
off as time elapses, as the water levels on both sides of the baffle start to 
even out. 

As depicted in Fig. 26, the 2D SPH-VCPM results are associated with 
more dynamic wave breaking at t > 0.9 s, particularly in the down
stream region. These wave breakings are not apparent in the experi
mental photo and the 3D model. In fact, we notice that the free surface 
patterns predicted using our current 3D FSI model tally quite well with 
the experimental observation at various time frames. Nevertheless, the 
leakage flow through the small gap between the baffle and the side wall, 
which is observed experimentally beyond t = 0.5 s, is not well resolved 
in the current 3D model. This could be attributed to the insufficient 
number of SPH particles used to resolve the small gap (only 2 particles 
are used). The other reason could be due to the excessive repulsive force 
caused by the dynamic boundary condition (DBC) in wall modelling that 
could potentially limit the number of particles that are able to pass 
through this small gap. 

Fig. 27 shows the instantaneous deformation of the baffle when the 
dam-break wave starts to hit the baffle at t = 0.3s. Apart from the 
overtopping water particles, upstream water particles leak through the 
small gap (between the side wall and the baffle) at a relatively high 
speed and interact with the tail water downstream. It is appealing to 
note that the predicted stress field inside the rubber baffle is smooth. 

4. Computational time 

The computational times required to execute all the test cases 
mentioned earlier are listed in Table 1-Table 3. For the pure solid 
modelling tests using the 3D VCPM method (Table 1-Table 2), in gen
eral, it is observed that the VCPM particle simulation time per step (i.e., 
the total VCPM simulation time per VCPM particle is divided by the total 
number of VCPM time steps) decreases as the number of particles in
creases. However, for the static solid modelling test (deformation due to 

self-weight), the VCPM particle simulation time per step starts to level 
off and increases slightly when a reasonably fine particle resolution is 
used. We believe that the scalability of VCPM method could be further 
improved by managing the shared and global memories in GPU in a 
more effective manner. 

Table 3 shows the simulation times required to execute the 3D FSI 
cases presented in the current work. Note that the computational times 
required for input data loading and output data saving are not consid
ered. As shown, the total simulation time of SPH is considerably longer 
than that of VCPM due to the substantially larger number of SPH par
ticles. Recently, Zhan and co-workers (Zhan et al., 2019) reported that 
the TLSPH particle simulation time per step (or known as GPUfactor in 
their work) is one order of magnitude larger than that of SPH. As 
compared to TLSPH (Zhan et al., 2019), it is interesting to note that the 
VCPM particle simulation time per step is in the same order of magni
tude as that of SPH implemented in the highly-optimized DualSPHysics 
solver for all the FSI test cases shown, even when the computation time 
spent for mapping the hydrodynamic force on VCPM particles near the 
fluid-solid interface is taken into account (see superscript a in Table 3). 
As compared to TLSPH, we infer that less computational time is needed 
for a lattice-spring model (e.g., VCPM) as operations such as deforma
tion gradient and stress tensor computations are not required for each 
time step. 

5. Conclusion 

In this work, we have extended our previous Fluid Structure Inter
action (FSI) solver to 3D by implementing the Volume Compensated 
Particle Method (VCPM) in the highly optimized open-source SPH code 
(DualSPHysics) for simulating 3D FSI problems. The main intention of 
employing VCPM as the solid solver is to allow us to simulate FSI 
problems involving solid fracture without experiencing singularity- 
related issue as encountered in continuum-mechanics-based method 
such as FEM. The Simple Cubic (SC) version of VCPM method has been 
adopted to model the linear elastic behavior of solid body as the SC 
lattice structure is fully compatible with the initial SPH particle layout 
generated using GenCase, the pre-processor of DualSPHysics. For each 
fluid time step, the SPH fluid equations are solved first, followed by 
integrating the solid governing equations based on the VCPM algorithm. 
To enhance the computational efficiency, the solid governing equations 
are integrated multiple times within a fluid step so that the time levels of 
both solid and fluid bodies are synchronized. 

Compared to our previous works where only simple 2D FSI problems 
are considered, the current work has witnessed the capability of the new 
solver in simulating complex 3D FSI problems. Several hydroelastic 
cases, including those that have been very recently tested in the 
respective experimental facility, have been simulated. In general, it has 
been found that the flow damping effect is more pronounced in 3D, upon 
including the side walls as per the real physical model. For example, for 
the case of oil sloshing in a rolling tank, it has been found that the free 
surface predicted using the current 3D SPH-VCPM method is less violent 
(i.e., no unphysical wave breaking) than that of the 2D counterpart, 
which is tallied with the experimental observation. For the problem 
involving flow impact on a sluice gate in which the real experiment has 
been recently performed at Iskenderun Technical University, it has been 
found that the hydraulic jump phenomenon behind the sluice gate can 
be better reproduced using our current 3D FSI method as compared to 
the 2D FSI models. In general, the better prediction of free surface 
patterns has translated into more accurate estimation of free surface 
heights with respect to time at various locations. 

From the simulation results, it is evident that the pressure field is not 
smooth near the boundary and the boundary layer thickens in a some
what unphysical manner. This could be due to the artefact of the dy
namic boundary condition (DBC) used for wall modeling. More accurate 
wall modeling techniques and associated analyses for FSI problems are 
hence necessary, without sacrificing the robustness of DBC. While the 
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VCPM particle simulation time per step reported in the current work is in 
the same order of magnitude as that of SPH (TLSPH particle simulation 
time per step is one order of magnitude larger than that of SPH (Zhan 
et al., 2019)) in the highly optimized DualSPHysics code, we believe that 
scalability of VCPM can be further improved by managing the shared 
and global memories more effectively. In fact, the real strength of VCPM 
method is its capability in modeling solid fracture. Some preliminary FSI 
results on the use of 3D SPH-VCPM method in modeling solid fracture 
have been shown in Appendix. Future works will include validation of 
this class of FSI problems involving solid fracture and implementation of 
more sophisticated bond-based failure criteria for studying real material 
fracture. One such interesting problem is the impact damage of laminate 
composites in the naval applications. 
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Appendix 

Collapse of a 3D solid structure – preliminary study 

The inherent strength of lattice-spring model such as VCPM is its capability in modeling crack and fracture in a solid domain. Here, we intend to 
show some preliminary results of our 3D SPH-VCPM method in modeling crack in solid domain due to both actions of fluid force and solid body 
weight. The geometric details are shown in Fig. A1, where the solid structure consists of horizontal and vertical arms. A hydrostatic water column is 
located beside the vertical arm of the structure. The solid material considered is a brittle PMMA material with properties E = 2.94 GPa, νS = 0.38, 
ultimate tensile strength σT = 48 MPa and ρS = 1180 kgm− 3. As shown in Fig. A1, there is an initial crack (represented using dark brown particles) near 
the bottom of the vertical arm which is supported on the ground. In the current simulation, the bond-based critical elongation failure criterion is 
adopted to model the cracking phenomenon in the solid structure. For this PMMA material, Chen and co-workers (Chen and Liu, 2016) have calibrated 
the following: 

ΔLcrit =α(Dp) (A1)  

where Dp is the original bond length (initial particle spacing), ΔLcrit is the critical elongation of a spring bond, and α is the calibrated constant based on 
the material properties (α = 1.25 Dp.σT

2k ). Here, k is the stiffness of the spring bond. Once the elongation of a spring bond exceeds ΔLcrit, the respective 
spring bond is broken, and force is no longer transmissible through the spring bond. 

Fig. A2 shows the crack path of the PMMA structure as well as the speed of the SPH fluid particles as time elapses. It is interesting to note that the 
crack propagation in the solid structure is not started from the initial crack near the bottom of the vertical arm. Instead, as the extended horizontal arm 
(larger weight than the vertical arm) bends downward due to gravity, a new crack starts to form near the intersection between the horizontal and 
vertical arms and propagates thereafter (see Fig. A2 (c)). This new crack grows until the horizontal arm is completely detached from the vertical arm as 
shown in Fig. A2 (d). Soon after this complete detachment, the pre-existing crack near the bottom of the vertical arm starts to propagate as well as 
highlighted in Fig. A2 (e). In general, as the structure is collapsing, the fluid particles start to gain their momentums. As shown in Fig. A3, the fluid 
particles near the bottom start to enter the crack gap as it widens. 

In the current preliminary simulation, the collision between those particles upon which the inter-connected bonds are broken is not considered. 
Future study will involve the implementations of suitable collision model to avoid the collision problem and other bond-based failure criteria. 
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Fig. A1. Water column (blue particles) beside a PMMA structure (grey and dark brown particles) with crack near the bottom of the structure. Geometric information: 
a = 151 m; b = 71 m; c = 31 m; d = 49 m; e = 69 m; f = 70 m; g = 4 m; h = 6 m; and i = 11 m. The solid particles with disconnected bond in between (i.e. crack) are 
highlighted in dark brown colour. The ground is represented using purple particles.  
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Fig. A2. The collapse of a solid structure and its interaction with neighbouring water particles coloured with speed values at different time frames: (a) t = 0 s; (b) t =
1.20 s; (c) t = 1.58 s; (d) t = 1.70 s; (e) t = 2.00 s and (f) t = 2.96 s. The solid particles with disconnected bond in between (i.e. crack) are highlighted in dark 
brown colour. 
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Fig. A2. (continued). 
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Fig. A2. (continued).  
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Fig. A3. Close-up views of particles near the crack at the bottom of the vertical arm at (a) t = 0 s and (b) t = 2.96 s. Water particles (coloured with speed values) start 
to move into the crack gap at t = 2.96 s as the gap widens. The solid particles with disconnected bond in between (i.e. crack) are highlighted in dark brown colour. 
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