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A B S T R A C T   

This paper presents an improved failure model for simulating brittle fracture using the mesh-less 
Lattice Particle Method (LPM). By modelling the initial crack line using the Remove Bond (RB) 
approach as outlined in this paper, a new formulation is then developed for predicting the mode-I 
Stress Intensity Factor (SIF) near the crack tip. Compared to the conventional Remove Particle 
(RP) approach, it is found that the accuracy of the present SIF formulation based on the RB 
method is superior. A series of benchmark test cases are simulated to test the numerical accuracy 
and numerical convergence of the method. Finally, the LPM method is coupled with the 
Smoothed Particle Hydrodynamics (SPH) method for studying Fluid Structure Interaction (FSI) 
problems involving solid fracture and free surface. The coupled SPH-LPM method is implemented 
in the open-source code, DualSPHysics, which has been optimized for both CPU and GPU per
formances. Upon integrating LPM with SPH, the proposed FSI method is suitable for modelling 
fracture phenomena caused by natural hazards such as tsunami and flood.   

1. Introduction 

Fluid-structure interaction (FSI) problems are widely encountered in various engineering applications. Failing to consider the FSI 
effect could be disastrous and lead to unexpected structural failure. One of the famous examples is the collapse of the Tacoma Narrows 
Bridge due to aeroelastic flutter. Nowadays, due to the advancement of computing architecture, many advanced numerical schemes 
have been developed within the Computational Fluid Dynamics (CFD) and Computational Solid Mechanics (CSM) communities for 
analyzing challenging FSI problems. In general, there are two main computational approaches used to model FSI problem, i.e., 
monolithic, and partitioned approaches. Monolithic approach solves the fluid and solid governing equations simultaneously using a 
single solver. For partitioned approach, however, a specific solver for each fluid and solid domain are coupled; hence, the software 
modularity of each existing solver that has been well tested for either fluid equation or solid equation could be preserved. The current 
work employs the partitioned approach in FSI modelling. 

Numerical schemes developed for solving FSI problems are typically mesh-based in nature where the problem domain is discretized 
with a series of interconnected polygons. Most of these mesh-based schemes are developed based on the numerical frameworks of 
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Finite Element Method (FEM) [1,2] and Finite Volume Method (FVM) [3]. To model FSI problems involving large structural defor
mation using body conformal grid, an additional remeshing [4] procedure is often required so that the local mesh quality is not 
seriously deteriorated at the expense of higher computational cost. The overset grid method could be used to address FSI problem 
without remeshing [5]; however, its accuracy is dependent on the interpolation error level at the grid interface which could be high if 
large gradient is involved. The original immersed-boundary (IB) method of Peskin [6], which is one of the non-body conformal 
methods, involves a background Cartesian grid laid behind a solid body. The force interaction between the fluid and solid bodies is 
realized using a smoothed forcing term from the immersed solid boundary nodes, in which the interpolation accuracy is dependent on 
the mesh size. Other more accurate IB method that utilizes cut-cell method [7] near the solid boundary could be employed; however, 
special numerical treatments are needed at meshes close to the solid boundary and discretization of flow equations at those meshes is 
often non-trivial. The use of mesh-based method in FSI modelling is further complicated if free surface is involved. For example, the 
conventional level-set method suffers from mass conservation issue during the time evolution of the level-set function and special 
numerical treatment is often required to address this issue [8]. Also, it is numerically challenging for the Volume of Fluid (VOF) 
method to capture (or geometrically construct) the location of highly fragmented free surface on a fixed Eulerian mesh. In short, mesh- 
based method may require extensive remeshing and/or data interpolation procedures while modelling FSI problem involving large 
structural deformation and free surface. 

To address the limitations of mesh-based methods mentioned above, many mesh-less/particle methods have been developed and 
applied to model FSI problems involving large structural deformation and violent free surface flow. One of the widely used particle 
methods is Smoothed Particle Hydrodynamics (SPH) that was originally used for modelling astrophysical problem [9,10] and later 
extended by Monaghan [11] to simulate free surface flow. For modelling FSI problem involving large structural deformation, both fluid 
and solid bodies could be modelled using SPH [12–14], or the SPH fluid solver could be coupled with other structural solvers such as 
FEM [15–17] and Total-Lagrangian SPH (TLSPH) [18–21]. These structural solvers are generally developed based on continuum 
mechanics theory and might face difficulties while simulating solid fracture and fragmentation which involves spatial discontinuities, 
as these schemes are prone to numerical errors and crack-tip singularities due to the presence of spatial derivatives [22]. 

As a remedy to the limitation of continuum mechanics theory-based methods in fracture modelling, some discontinuous structural 
solvers such as Discrete Element Method (DEM) [23–25] and Peridynamics (PD) [22,26] that do not depend on partial differential 
equations have been recently coupled with SPH for simulating FSI problems involving solid fracture. Some two-dimensional test cases 
have been simulated using the SPH-DEM schemes [23,24] as well as the recently proposed SPH-PD schemes of Yao and Huang [26] and 
Rahimi and co-workers [22], although these schemes presented can be readily extended to 3D. In fact, as compared to most of the 
existing SPH-PD schemes, the very recent SPH-PD scheme of Yao and Huang [26] features a more accurate FSI coupling scheme that 
satisfies momentum conservation. In their work [26], PD particles are treated as either repulsive or ghost/dummy particles in the 
support domain of a SPH particle near the fluid–structure interface. Momentum conservation is then satisfied by enforcing force 
balance between the SPH and PD particles near the interface. In fact, the coupling scheme that satisfies momentum conservation has 
been previously implemented in our SPH-Lattice Particle Method (SPH-LPM) scheme [27] for simulating FSI problems. Although LPM 
can be regarded as a lattice-spring model like DEM, it was originally proposed by Chen and co-workers [28] to address the difficulties 
of DEM in simulating problems with a wider range of Poisson ratio. For solid mechanics problem, LPM has demonstrated its uniqueness 
and robustness in simulating fracture problems [28,29]. However, while modelling brittle fracture using LPM, tuning is often per
formed to determine the suitable critical stretch (or strain) via numerical tensile test. 

It is generally known that for ensuring numerical convergence while modelling brittle fracture problem, the fracture mechanics- 
based approach should be considered [30]. By modelling the initial crack line via removing a single layer of SPH particles (deno
ted as Remove Particle (RP) approach in this paper), Ganesh and co-workers [31] have recently shown that the mode-I Stress Intensity 
Factor (SIF) near the crack tip converges to the theoretical value (for a specific loading and initial crack configuration) as the particle 
resolution is refined. However, there is a lack of theoretical detail on how their SIF formula is derived. Separately, Tazoe and co- 
workers [32,33] have formulated a simple mode-I SIF (KI) formula based on the maximum principal stress and the diameter of the 
crack front particle. Although the crack propagation pattern is well captured, their computed KI value is apparently higher than the 
theoretical result. This could be attributed to the difficulty in getting an accurate stress value near the crack tip due to stress singularity. 

In the current work, inspired from the work of Tazoe and co-workers [32,33], a different way of modelling the initial crack line is 
pursued. Instead of removing a layer of particles to model the initial crack line (i.e., RP approach), the bonds of the respective particles 
representing the initial crack line are removed instead. We denote this approach as Remove Bond (RB) approach in this paper. To 
support this modelling approach, a new mode-I Stress Intensity Factor (SIF) formulation is developed, as the crack front particles are 
now oriented at 45◦ from the crack line. The above formulation is implemented in our previous LPM solver, upon which the numerical 
accuracy and numerical convergence are tested by using a series of static and dynamic fracture mechanics benchmark test cases. We 
then incorporate the above failure model in our SPH-LPM method [34] to simulate 2D FSI problems involving solid fracture. Mode-I 
brittle fracture, i.e., without considering plastic deformation, is the focus of the present study. For certain problems, when fresh non- 
bonded particles appear on newly formed crack surfaces, the possible collision between these particles are handled using a penalty 
approach. The current method is implemented in the open-source WCSPH code, DualSPHysics, which has been optimized for both CPU 
and GPU performances. As the fluid pressure is solved explicitly in the numerical framework of WCSPH, the WCSPH method is very 
attractive for large scale computation. 

The remainder of this paper is organized as follows. Firstly, in Section 2, the LPM method for solid modelling is presented, followed 
by a detailed discussion of brittle fracture model based on Stress Intensity Factor (SIF). The fluid modelling technique using SPH is then 
shown, followed by its coupling with the LPM method for FSI modelling. In Section 3, the proposed SIF formula is verified, and the 
present LPM solid fracture model is tested by comparing the simulated crack patterns against the published experimental and 
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numerical data obtained from the literature. Following this, several FSI problems involving brittle fracture are modelled to validate the 
proposed model. Some concluding remarks are made in Section 4, together with some recommendations for future work. This paper 
ends with a brief discussion of our on-going attempt to simulate fracture of a real 3D concrete structure due to tsunami, in which some 
preliminary numerical results on the validation against the experimental data are presented in the Appendix. 

2. Mathematical models and numerical methods 

2.1. Solid model 

The Lattice Particle Method (LPM) (or known as Volume Compensated Particle Method (VCPM)) has been implemented in 
DualSPHysics in our previous work [34] to model the deformation of linear elastic solid in FSI problems. LPM reformulates the classical 
continuum mechanics model using integro (spatial)-differential (temporal) equations by introducing 1D bond-level force–elongation 
relationship between discrete particles to avoid issues resulted from the continuity requirement from the partial differential equations. 
As depicted in Fig. 1 for the 2D square and 3D simple cubic lattice configuration, a solid particle I interacts with its first and second 
neighbours via 1D bonds. The equation of motion of a solid particle I can be written as: 

mI
dvI

dt
= FS,I +FF→S,I +Fext,I , (1)  

where mI is mass of solid particle I, vI is the velocity of solid particle I,FS,I is the net bonding force (due to neighbouring solid particles), 
FF→S,I is the hydrodynamic force acting on a solid particle I (to be discussed later) and Fext,I is any external force vector (e.g., gravity, 
solid–solid collision force, etc.). 

The net bonding force acting on a solid particle I, FS,I can be determined as: 

FS,I =
∑

J
fIJ ûIJ , (2)  

where ûIJ = (rI − rJ)/‖rI − rJ‖ is the unit bond vector and fIJ is the bond force that has the following explicit form: 

fIJ = − (1 − DIJ)kδLIJ − T

(
∑

Q
(1 − DIQ)δLIQ +

∑

M
(1 − DJM)δLJM

)

. (3) 

Here, δLIJ is the bond elongation between solid particles I and J. The subscripts Q and M indicate the neighbours of particles I and J, 
respectively. The bond stiffness k can be determined by ensuring energy equivalency between the LPM description and its continuum 
counterpart [35] based on Young’s modulus E and solid Poisson ratio υS. A non-local parameter T is introduced as well to remove the 
restriction of Poisson ratio [35]. The complete k and T formulations for 2D and 3D linear elastic solid bodies can be found from our 
previous works [27,28,35]. To monitor the state of the bond between two particles in modelling solid fracture problems, a bond 
damage parameter DIJ between solid particles I and J is introduced, which is further explained in the following section. 

Fig. 1. (a) 2D square (a) and (b) 3D simple cubic lattice structure used in LPM for domain discretization [36]. Dp is particle size.  
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2.1.1. Solid fracture model 
To simulate brittle fracture, there are several criteria available to determine the bond damage parameter. For example, the critical 

force criterion [29,37,38] states that a bond is broken (DIJ = 1) if the force developed within a spring bond exceeds the critical force 
within the bond. Here, the critical force is determined from the critical stress value obtained from the respective uniaxial tensile test. 
Other criterion such as critical elongation [35] has been proposed as well, where the bond is broken if the bond elongation exceeds a 
critical elongation value. The critical elongation value, however, is case-dependent and calibration is needed. In other meshfree 
method such as Peridynamics (PD), the critical elongation is related to the critical energy release rate and is horizon size dependent. 

The stress-based approach such as Rankine criterion has been recently adopted in particle method such as SPH [39] to model brittle 
fracture. When the maximum principal stress of a particle exceeds the material ultimate tensile strength, the particle becomes 
completely damaged and no longer interacts with other particles. Separately, Wiragunarsa and co-workers [40] have found that the 
crack growth direction can be predicted accurately by tracking the neighbouring particle with the highest maximum principal stress. 
Despite the simplicity of Rankine criterion, its implementation alone in simulating the brittle fracture of a pre-notched specimen would 
lead to the under-prediction of failure load at refined particle resolution [30]. This is attributed to the fact that the maximum principal 

Fig. 2. Methods of modelling the initial crack line. (a) Remove Particle (RP) and (b) Remove Bond (RB). Note that the locations of crack front 
particles are meant for Mode-I loading. 
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stress becomes infinitely large (in the context of Linear Elastic Fracture Mechanics (LEFM), where plasticity is assumed to be absent 
near the crack tip) as the particle size decreases. In other words, numerical convergence could not be assured if only the Rankine 
criterion alone is considered for brittle fracture modelling. 

To ensure numerical convergence of brittle fracture modelling, Tavarez and Plesha [30] have incorporated both the Rankine and 
fracture mechanics criteria in their DEM modelling. Specifically, two parameters are required in their fracture model, i.e., ultimate 
tensile strength, σUTS and fracture toughness, KI,C. Very recently, by using SPH, Ganesh and co-workers [31] have demonstrated the 
numerical convergence of mode-I Stress Intensity Factor (SIF), KI at the crack front particle near an initial crack line. In general, there 
are two ways of modelling an initial crack line as shown in Fig. 2, i.e. (a) Remove Particle (RP); and (b) Remove Bond (RB) methods, 
where recent works such as [31,32] have witnessed the use of RP method in modelling an initial crack line. Based on the Westergaard’s 
Mode-I crack formulation, near the crack tip, the normal stress σn (perpendicular to the crack line) of a crack front particle can be 
approximated as: 

σn =
KI
̅̅̅̅̅̅̅
2πr

√ C, (4)  

where C = cos θ
2
(
1 + sin θ

2 sin 3θ
2
)
. Here, r and θ are the radial distance and angular position of the crack front particle from the crack tip 

(see Fig. 2), respectively. For the RP model considered by Tazoe and co-workers [32] (Fig. 2(a)), r = Dp/2 and θ = 0o and hence C = 1. 
Here, Dp is the particle size. Recently, both [31,32] further reported that σn could be modelled as the maximum principal stress σ1 for 
Mode-I fracture and good accuracy in KI estimation has been reported in the recent work of [31]. Hence, the mode-I SIF, KI, can be 
further simplified as [32]: 

KI = σ1
̅̅̅̅̅̅̅̅̅̅
π.Dp

√
. (5) 

In the current work, Eq. (5) is implemented in LPM and the results are tested against those of [32]. In addition, the RB modelling of 
initial crack line (Fig. 2(b)), which is not considered in recent attempts [31,32], is implemented in the current work as well. By setting 
r = Dp/

̅̅̅
2

√
and θ = 45o in Eq. (4), the mode-I SIF, KI for the RB model can be computed as: 

KI =
8
̅̅̅
24

√

(
4 +

̅̅̅
2

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
2 +

̅̅̅
2

√ )√ σ1
̅̅̅̅̅̅̅̅̅̅
π.Dp

√
∼ 0.951σ1

̅̅̅̅̅̅̅̅̅̅
π.Dp

√
. (6) 

It is important to note that Eq. (6) is only applicable for pure Mode-I loading, i.e., the applied external force direction is orthogonal 
to the crack line. For cases where the external load is not acting perpendicular to the crack line, the crack front particle (for RB case) 
may be no longer located at r = Dp/

̅̅̅
2

√
and θ = 45o from the crack tip. As such, the R.H.S. of Eq. (4) should be expanded [41] 

accordingly to consider the SIFs of other modes of fracture and this is left for future development. 
When cracks are present in a specimen, the stress near the crack tip would reach the material’s ultimate tensile strength rapidly 

(more rapid if particle resolution is refined) during loading condition. Nevertheless, failure should not happen if the Stress Intensity 
Factor (SIF) is below the material’s fracture toughness. In the current work, inspired from [42], the maximum principal stress 
(Rankine) is merely used to determine the onset of fracture. A crack front particle is completely fractured only if: 

KI > KI,C. (7) 

Similar to [39,40], a fractured particle will lose its interactions with its neighbouring particles by breaking the associated spring 
bonds. At the beginning of simulation, a spring bond between solid particles I and J is assumed as undamaged, i.e., the bond damage 
parameter is taken as DIJ = 0. In this case, by evaluating Eq. (3), the interaction between particles I and J can be determined. When a 
fractured solid particle loses its interaction with its neighbours, the bond damage parameter DIJ is changed to 1, which indicates crack 
is nucleated between the particles I and J and the bond is damaged. The interaction between two particles with damaged bond ceases 
completely and irreversibly. The crack path can then be traced explicitly through the damage state of each particle, e.g., particle I, as: 

DI =

∑
JDIJ

Nb
, (8)  

where Nb is the total number of bonds connected to solid particle I at the beginning of simulation. 

2.2. Flow model 

The motion of an isothermal, incompressible fluid can be generally described using mass and momentum conservation equations: 

dρ
dt

= − ρ∇.v (9)  

and 

dv
dt

=
1
ρ∇P+E (10) 
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respectively. Here, ρ is the fluid density, v is the fluid velocity vector and E is the external acceleration vector (e.g., dissipation, gravity, 
etc.). In WCSPH, the equations governing mass and momentum conservation for each fluid particle i can be discretized as [43]: 

dρi

dt
= ρi

∑

j
Vj
(
vi − vj

)
⋅ ∇iWij + 2δhcFDi (11)  

and 

mi
dvi

dt
= Fi, (12)  

respectively. Here, V is the fluid volume, m is the fluid mass, and F is the force vector. The gradient vector ∇iWij is defined as ∇iWij =
dWij
dr

rij
‖rij‖

where rij = ri − rj is the position vector between particles i and j. In the current study, the Wendland [44] kernel function Wij 

with a compact support radius rc = 2 h is employed, where h = 1.5 × Dp is the smoothing length. The term 2δhcFDi is introduced in the 
R.H.S. of Eq. (11) to suppress the pressure noise in the WCSPH scheme where δ is the coefficient usually taken as 0.1 [45], Di is the 
density diffusion term taken from Fourtakas and co-workers [46] and cF is the fluid speed of sound. The fluid speed of sound cF is 
introduced in the framework of WCSPH as the modelled fluid (or artificial fluid [11]) is approximated as more compressible than the 
actual fluid. To ensure that the fluid density fluctuation is kept below 1% of the initial fluid density ρF, cF should be at least 10‖vmax‖

where ‖vmax‖ is the anticipated maximum flow speed as the density variation is proportional to the square of Mach number [11]. 
The force vector acting on fluid particle i can be further expanded as: 

Fi = FP,i +FV,i +Fext,i. (13) 

Here, FP,i is the force generated by pressure gradient: 

FP,i = −
∑

j
ViVj

(
Pi +Pj

)
∇iWij. (14) 

In WCSPH, the pressure of a liquid particle i, Pi such as water can be determined explicitly from the density ρi using the Tait’s 
equation of state: 

Pi =
ρF(cF)

2

γ

((ρi

ρF

)γ
− 1

)
, (15)  

where γ = 7 [11,47] is the polytrophic index and ρF is the initial fluid density. For inviscid fluid modelling using SPH, the artificial 
viscosity term is normally added for numerical stability purpose: 

FV,i =
∑

j
mimjαhcF

(
vi − vj

)
• rij

ρij

(
‖rij‖

2
+ 0.01h2

)∇iWij (16)  

where α is a numerical tuning parameter and ρij = 0.5(ρi + ρj). For real viscous fluid modelling, the viscous force FV,i can be expressed 
as: 

FV,i =
∑

j
mimj

4νF

ρi+ρj

∇iWij ⋅ rij
(
‖rij‖

2
+ 0.01h2

)
(
vi − vj

)
+
∑

j
mimj

(
¯̄τi

ρi
2 +

¯̄τj

ρj
2

)

∇iWij. (17) 

The laminar and turbulent viscous forces are represented as the first and the second summation terms appearing in the R.H.S. of Eq. 
(17), respectively. Here, νF is the fluid kinematic viscosity. The turbulent stress tensor ̄̄τ is modelled using the Large Eddy Simulation 
(LES) approach [48]. For details on the SPH discretization, interested readers are referred to [49]. In the current work, unless otherwise 
mentioned, the flow viscous term is modelled using Eq. (17). 

Any forces other than pressure and viscous forces are grouped in the external force term Fext,i. For example, the weight of a fluid 
particle i can be modelled as Fext,i = mi g, where g is the gravitational acceleration vector. 

2.3. Fluid-structure coupling 

For modelling the wall boundary conditions at the fluid–solid interface, the solid particles near the fluid–solid interface are treated 
as dummy particles in the support domain of SPH particle. Here, the Dynamic Boundary Condition (DBC) approach [50] is adopted to 
compute the pressure of dummy/solid particle I, PI. Following this, the pressure and viscous forces (from fluid and turbulent vis
cosities) acting on a fluid particle i due to a neighboring solid particle I can be determined as: 

FP,I→i = − ViVI(Pi + PI)∇iWiI (18)  

and 
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FV,I→i = mimI
4νF

ρi+ρI

∇iWiI ⋅ riI
(
‖riI‖

2
+ 0.01h2

) (vi − vI)+mimI

(
¯̄τi

ρi
2 +

¯̄τI

ρI
2

)

∇iWiI (19)  

respectively. The dummy particle density ρI is calculated using the DBC approach [50], whereas the dummy particle volume, VI is 
computed as VI = mi

ρI
. Here, mi is the mass of an interacting fluid particle. Note that the solid particle I is treated as the dummy particle 

of an interacting fluid particle i; hence, its mass, mI in Eq. (19) is taken as mI = mi. Finally, the total hydrodynamic force acting on a 
solid particle I, FF→S,I (see Eq. (1)) can then be computed: 

Fig. 3. Geometry of the 2D plate with an initial edge-crack line of length a. The side edges are subjected to either stress (σo) or velocity (V) 
boundary conditions. 

Fig. 4. Stress distribution with respect to the distance from the crack tip (θ = 0o). (a) Normal scale; (b) Logarithmic scale. The particle spacings for 
SPH [32] and LPM are Dp = 0.02 mm. 
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Fig. 5. Spatial convergence of KI using different methods. The theoretical value KI is 0.766 MPa.m1/2.  

Fig. 6. Convergence of the peak far-field stress at the right edge of the plate (with an initial crack line at the edge) due to brittle fracture. Solid data 
points in the close-up view indicates the respective far-field stress and the time instant when the first fracture near the crack tip is detected. 

Fig. 7. A semi-infinite plate of L = 10 m and H = 2 m with an initial crack of length a = 5 m subjected to a time-varying tensile stress applied at the 
top edge. 
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Fig. 8. Propagation of tensile stress wave (arrow indicates its direction) under step tensile loading (top edge) at t = (a) 0 s; (b) 3.4 × 10-4 s (= tc), (b) 
7.3 × 10-4 s (= 2.13tc); and (d) 1.0 × 10-3 s (= 3tc). The green line indicates the initial crack line. 
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FF→S,I = −
∑

i∈Nf

(
FP,I→i +FV,I→i

)
(20) 

Here, Nf is the number of fluid particles in the support domain of solid particle I. 
By incorporating the explicit predictor–corrector approach, both equations of motion of fluid and solid bodies are integrated in a 

staggered manner for fluid–structure coupling [51]. As the maximum allowable time step size in an explicit solid solver is generally 
smaller than that of a fluid solver, the equations of motion of solid bodies are integrated multiple times to achieve time synchronization 
with the fluid body. Interested readers are referred to our previous works for further details [34,51]. 

3. Results and discussion 

In this section, the brittle fracture model incorporated in the LPM method is validated first for pure solid mechanics problems. In 
particular, the accuracy and convergence of the mode-I Stress Intensity Factor (SIF) formula proposed in the current work (Eq. (6)) are 
investigated for both static and dynamic loading conditions by comparing the numerical results against the theoretical solutions of a 
series of benchmark test cases. The dynamic crack branching problem is then studied, and the result is validated by using the 
experimental and FEM data. Finally, the capability of the current SPH-LPM method in simulating FSI problems involving solid fracture 
is demonstrated. Unless otherwise specified, plane strain condition is assumed for all the 2D solid models. 

Fig. 9. Time history of the normalized stress intensity factor for various particle spacings simulated using LPM. Different σo(t) profiles are used: (a) 
Step profile; (b) Ramp profile. Time is normalized using tc = H/c1. 
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3.1. Static loading 

3.1.1. Stress intensity factor 
This test case was previously simulated by Tazoe and co-workers [32,33] using SPH to investigate the accuracy of their Mode-I SIF 

formulation (Eq. (5)). The plate is made of low carbon steel JIS-S50C with material properties [52]: E = 210 GPa; υS = 0.3; ρS = 7800 
kg.m− 3. The geometry layout is shown in Fig. 3, with W = 5 mm, L = 8 mm and a = 1 mm. Both left and right ends are subjected to a 
constant tensile stress σo = 10 MPa. 

Fig. 4 shows the stress value as a function of displacement from the crack tip (θ = 0o). Although the SPH solutions of Tazoe and co- 
workers [32] exhibit unphysical wiggles near the crack tip, the SPH solutions are in general trending quite well with the theoretical 
solution. Here, for θ = 0o, the theoretical stress value as a function of distance from the crack tip (r) is computed as: 

σ(r) = KI,theo
̅̅̅̅̅̅̅
2πr

√ , (21)  

which is valid only near the crack tip. For this plate geometry and initial crack configuration, the theoretical value of KI, i.e. KI,theo can 
be determined as [41]: 

Fig. 10. Crack propagation from the notch on the left and damage evolution at t = (a) 28 µs; (b) 36 µs and (c) 48 µs predicted using LPM. Dp =

0.0625 mm. 

Fig. 11. Comparison of the crack path: (a) experimental observation [56] and (b) simulation using the current LPM method (Dp = 0.0625 mm).  
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KI,theo = σo
̅̅̅̅̅
πa

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2W
πa tan πa

2W

√ [
0.752 + 2.02 a

W + 0.37
(
1 − sin πa

2W

)3
]

cos πa
2W

, (22)  

which turns out as KI,theo = 0.766 MPa.m1/2. It is important to note that the accuracy of Eq. (22) is 0.5 % for any value of a/W. In 
general, by modelling the initial crack line via particle removal method (RP method), the SPH-RP [32] and the current LPM-RP 
methods overpredict the stress value near the crack tip. The near-tip stress value predicted using FEM [32] is higher than the theo
retical solution as well. At locations further away from the crack tip, the predicted stresses using FEM, SPH and LPM are almost 
indiscernible and apparent discrepancies against the theoretical solution can be found at these locations. Nonetheless, it is important to 
note that the theoretical stress formula (Eq. (21)) is no longer valid at locations far from the crack tip. 

Fig. 12. Comparison of crack tip propagation speeds using LPM and FEM-Element Deletion method [55]. No crack branching was detected when 
FEM-Element Deletion method was used. 

Fig. 13. Potential crack front particles during crack branching at t = 34.4 μs.  
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Next, by modelling the initial edge-crack line via removing the bonds of respective LPM particles (LPM-RB), it is found that the 
predicted near-tip stress value is quite close to the theoretical solution. The spatial convergence tests of LPM and SPH in predicting the 
mode-I Stress Intensity Factor, KI are then carried out and the results are shown in Fig. 5. In general, the numerical errors of SPH and 
LPM methods decrease with respect to the particle size; however, the errors of SPH-RP [32] and LPM-RP methods are still quite 
apparent even when a fine particle size (Dp = 0.02 mm) is used. For LPM-RB, it is encouraging to note that the predicted KI values 
compare quite well with the theoretical solution as the particle resolution is refined. At Dp = 0.02 mm, the computed KI value using 
LPM-RB (Eq. (6)) is 0.764 MPa.m1/2 (~0.26% difference as compared toKI,theo = 0.766 MPa.m1/2). 

In the following test cases, the LPM-RB method will be adopted, and the acronym LPM-RB will be replaced by LPM for brevity 
purpose. 

3.1.2. Failure load 
From the Linear Elastic Fracture Mechanics (LEFM) theory, for a plate with a sufficiently long initial edge crack as illustrated in 

Fig. 3, it might fail due to brittle fracture if the applied far-field stress σo is larger than the critical stress: 

σo,crit =
KI,C
̅̅̅̅̅
πa

√

⎡

⎢
⎢
⎢
⎣

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2W
πa tan πa

2W

√ [
0.752 + 2.02 a

W + 0.37
(
1 − sin πa

2W

)3
]

cos πa
2W

⎤

⎥
⎥
⎥
⎦

− 1

, (23)  

where KI,C is the fracture toughness of a material. 
The geometrical description of this test case is outlined in Fig. 3, with W = 0.25 m, L = 2.0 m, and a = 0.03 m. Following Tavarez 

and Plesha [30], the material properties are set as: E = 29.7 GPa; υS = 0.3; ρS = 2700 kg.m− 3; σUTS = 3.44 MPa and KI,C = 1.0 MPa.m1/2. 
A small constant velocity of 5 mm/s is imposed on the left and right edges of the plate to model the quasi-static state. This constant 
velocity is chosen as it is found that the peak far-field stress causing complete failure is almost similar to that simulated using a smaller 
constant speed of 2.5 mm/s. 

Fig. 6 compares the time histories of far-field stresses at the right edge of the plate subjected to tension (see the plate model in 
Fig. 3). As seen, when the particle resolution is refined, the simulated σo,crit leading to the first detection of fracture approaches to the 
theoretical value. Beyond this juncture, the crack would propagate unstably until complete failure occurs in the plate model, which is 
witnessed by the sudden drop of far-field stress in Fig. 6. 

3.2. Dynamic stress intensity factor 

Having tested the numerical accuracy and numerical convergence of Eq. (6) for static loading case, the test case involving a dy
namic stress boundary condition is considered in this section. The main intention is to test the accuracy of Eq. (6) in predicting the 
dynamic Mode-I SIF near the crack tip. Fig. 7 shows a plate with an initial crack of length subjected to a time-varying tensile stress at 
the top. Here, we intend to study the time evolution of mode-I stress intensity factor KI near the crack tip upon applying the time- 
varying tensile stress from the top. Two temporal profiles of applied tensile stresses are tested, which are the step loading profile: 

σo(t) =
{

0 t < 0
σ* t ≥ 0 , (24)  

and the ramp loading profile: 

Fig. 14. Geometric configuration of 2D elastic gate (clamped at the bottom). Point A is located at the middle of the gate’s tip.  
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Fig. 15. Fracturing of elastic plate due to dam breaking at (a) t = 0.04 s; (b) t = 0.08 s; (c) t = 0.12 s; (d) t = 0.16 s; (e) t = 0.24 s; (f) t = 0.28 s. Left: 
SPH-DEM [23]; Right: current 2D SPH-LPM. 
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σo(t) =

⎧
⎨

⎩

0 t < 0

5σ* t
tc

t ≥ 0
. (25)  

where σ* = 500 MPa [53]. The critical time tc is defined as tc = H/c1, where H = 2 m (see Fig. 7) and c1 = 5944 m/s is the dilatational 
speed [53]. Following [53], the material properties are set as: E = 210 GPa; υS = 0.3; ρS = 8000 kg.m− 3. 

If the crack shown in Fig. 7 exists in an infinite domain, an analytical solution on the time variation of KI near the crack tip is 
available [54]. However, since the current plate model is finite in size, the simulation is stopped at t = 3tc, i.e. the instant when the 
reflected wave from the bottom edge hits the crack tip [53,54]. Beyond t = 3tc, the analytical solution is no longer valid. Fig. 8 shows 
the travelling of stress wave simulated using the current LPM method and Fig. 8(d) clearly shows the reflected stress wave hits the 
crack tip from the bottom at t = 3tc. 

The KI value of the crack front particle obtained from Eq. (6) is normalized using σ* ̅̅̅̅
H

√
and the result is plotted in Fig. 9 in the 

normalized time (t/tc) domain. For cases simulated using coarser particle resolution, it is observed that the numerical oscillation for the 
step loading case is more apparent than that for the ramp loading one. It could be due to the ramp loading profile which is less abrupt 

Fig. 16. Close-up views of the fluid pressure and solid maximum principal stress at t = (a) 0.08 s; (b) 0.10 s; (c) 0.12 s and (d) 0.14 s.  

Fig. 17. Displacement of the plate’s tip (Point A).  

K.C. Ng and H. Chen                                                                                                                                                                                                 



Engineering Fracture Mechanics 289 (2023) 109453

16

(smoother) than the step loading profile. For both loading conditions, the numerical error is more apparent at t = tc when the stress 
wave first hits the crack tip (see Fig. 8 (b)). As shown in Fig. 9, by employing finer particle resolution, the numerical oscillation is 
suppressed, and the result converges to the analytical solution. 

3.3. Dynamic crack branching 

Having verified the accuracy of SIF computation, the next task is to apply the failure criterion in simulating crack propagation 
problem. This case involves crack propagation in a rectangular plate with an initial crack line as outlined in Fig. 3, with W = 0.1 m, L =

Fig. 18. 2D Single-edge notch-bending specimen of width W = 0.04 m and initial crack length a = 0.01 m subjected to force P = 0.02 N at the top. 
The thickness of the specimen is assumed as B = 1.0 m. 

Fig. 19. Maximum principal stress near the crack tip for the single-edge notch-bending test at equilibrium condition. Dp = 0.5 mm. Black solid line 
indicates the initial crack line. 
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0.04 m and a = 0.05 m. By using LPM, this problem has been studied by Chen and co-workers using triangular LPM lattice and the 
critical force criterion [29]. In this study, we model it using square lattice to be consistent with the discretization used in SPH for 
simulating fluid problems later. The plate is subjected to a tensile stress of σo = 1 MPa applied at the left and right edges. The material 
properties of the rectangular plate are: Young’s modulus E = 32 GPa, Poisson ratio υS = 0.2 and solid density ρS = 2450 kg.m− 3. The 
material ultimate tensile strength σUTS and fracture toughness KI,C are taken as 12 MPa [29] and 0.316 MPa.m1/2 (consistent with 

Fig. 20. Comparison of KI values for the single-edge notch-bending test. The theoretical KI value is 0.522 Pa.m1/2.  

Table 1 
Computed Mode-I stress intensity factor (KI) for the single- 
edge notch-bending test using different LPM particle sizes.  

Particle size [mm] KI[Pa.m1/2]  

1.0  0.5157  
0.5  0.5191  
0.25  0.5204  
0.125  0.5209  

Fig. 21. Geometric configuration of the case consisting of a water column of height = 140 mm and width = 100 mm resting on a flexible plate of 
height = 4 mm. A vertical initial crack line (red colour) of length = 1.8 mm is located at the middle of the flexible plate. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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fracture energy of 3 J.m− 2 [55]). 
As shown in Fig. 10, the main crack propagates from the initial crack tip and branches into two oblique cracks subsequently and 

these new cracks propagate further in different directions. This is consistent with the experimental observation [56] as reported in 
Fig. 11. From the experimental photo (Fig. 11 (a)), it is observed as well that some minor cracks are generated from the main crack 
before the branching point. It is appealing to note that these experimentally observed minor cracks that grow only to a small length, 
which are completely missing in the previous XFEM prediction [55], are somewhat captured in our current numerical simulation (see 
Fig. 11 (b)). 

Fig. 12 compares the crack tip speeds predicted using different methods. It is found that the current LPM method shows marginal 
amount of particle size dependence in the crack tip speed. From the LPM results, the crack starts to propagate from the initial crack tip 
at t ~ 11 µs. The crack speed increases and bottoms at t ~ 21 µs, which is consistent with that simulated using FEM via the element 
deletion method [55]. The reason of this plunge in crack tip speed is unclear and it is worth further investigation in the future. The 
crack tip speed predicted using LPM rises to vtip ~ 1500 ms− 1 and it plateaus for around 5 µs before branching occurs (still below the 
Rayleigh speed) at around tbanching = 33 µs (cf. vtip ~ 1500 ms− 1 at tbanching ~ 30.2 µs predicted using cracking node method [57]). Upon 
branching, the crack propagation speed decreases, consistent to that reported by Bowden and co-workers [58]. On the other hand, 
branching does not occur when the element deletion method [55] is employed in FEM, which could be due to its relatively low 
predicted crack tip speed and hence branching cannot be triggered. 

The potential crack front particles in front of the crack tip during crack branching are shown in Fig. 13. As mentioned in Section 
2.1.1, strictly speaking, the pure mode-I SIF formula in Eq. (6) is no longer applicable during crack branching, as the crack line is not 
perpendicular to the external loading direction as shown in Fig. 13. For more accurate computation of the SIF values of these crack 
front particles, the R.H.S. of Eq. (4) should be modified [41] to include both Mode-I and Mode-II SIFs and this is left for future 
development. 

Fig. 22. Fluid pressure and solid maximum principal stress at different time frames for cases involving (a) no initial crack; (b) a vertical initial crack 
at the bottom of the plate. 
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3.4. Fluid structure interaction 

3.4.1. 2D elastic gate with FSI and fracture 
This 2D problem is the preliminary FSI test case involving fracture that was initially simulated by Wu and co-workers [23] using 

SPH-DEM method. The geometrical configuration of the test case is shown in Fig. 14. Here, 2D plane strain condition is assumed for the 
elastic gate. The material properties of the gate are: E = 12 MPa; υS = 0.33; ρS = 1100 kg.m− 3. The material tensile strength of the gate 
is assumed as σUTS = 0.52 MPa, which is small enough to allow for gate fracture to occur. To compare our results against those of [23], 
only the Rankine failure criterion is employed. In other words, the SIF criterion is not considered here, consistent with the assumption 
made in [23]. 

The water column collapses due to gravity, and it is anticipated that the elastic gate would deform accordingly until it is detached 
from the bottom support if the material tensile strength is exceeded. The simulation results are compared against those of Wu and co- 
workers [23] in Fig. 15. The maximum principal stress of the gate is plotted as well in Fig. 16. At t = 0.08 s (Fig. 16 (a)), due to gate 
bending, the tensile stress is concentrated at the side of the gate (facing the water body). At t = 0.12 s, the entire gate is detached from 
the bottom support, and it starts to fall towards the floor level. From Fig. 15(d), the gate touches the floor at t ~ 0.16 s, and it slides 
along the floor due to the fluid force from the collapsing water column. The sliding motion stops around t ~ 0.26 s as the x- 
displacement of the plate’s tip (Point A, see Fig. 14) forms a plateau at t > 0.26 s as shown in Fig. 17. It can be observed from Fig. 17 
that the plate’s tip speed experiences a sudden increase at t ~ 0.1 s immediately after the gate is detached from the bottom support. In 
general, the current SPH-LPM results compare quite well with those of Wu and co-workers [23]. The discrepancies between the two 
results are more noticeable upon the failure of the elastic gate which could be due to different numerical settings in both SPH FSI 
solvers. 

In the current simulation, it is noticed that the elastic gate would penetrate through the floor if no collision modelling is considered. 
To address this problem, the pin-ball collision model [59,60] is employed when penetration occurs between two solid particles (or 
p > 0), where p = Dp − ‖rJ − rI‖ is the penetration distance. If penetration occurs, the collision force FC,I is added to Fext,I in Eq. (1) as: 

FC,I = K • min(F1,F2)(rI − rJ)
/
‖rI − rJ‖, (26)  

where 

Fig. 23. Fracturing of the flexible plate subjected to fluid pressure from the top predicted using the current SPH-LPM method (Dp = 0.125 mm) at t 
= (a) 15 ms; (b) 25 ms; (c) 26 ms and (d) 27 ms. 
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F1 =

⎧
⎪⎨

⎪⎩

ρIρJR3
I R3

J

ρIR
3
I + ρJR3

J

ṗ
Δt

ṗ > 0

0 ṗ ≤ 0
, (27)  

F2 =

[
GIGJ

GI + GJ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
RIRJ

RI + RJ

√ ]

p1.5, (28)  

ṗ = (vI − vJ) •
(rJ − rI)

‖rJ − rI‖
. (29) 

Here, RI is the radius of solid particle I taken as 0.5Dp, ρI and GI are density and shear modulus of solid particle I, respectively. It 
should be noted that the collision force is applied between non-bonded solid particles (appeared on newly formed crack surfaces) and 
solid-wall particles only. The parameter K is case-dependent, and it needs to be tuned. In the current simulation, K is set as 1200. 
Indeed, a tuning-free collision model is necessary to ensure the robustness of the current method. Nevertheless, this is not within the 
scope of the current work. 

3.4.2. Fracture due to hydrostatic fluid pressure 

3.4.2.1. 2D Single-edge notch-bending test. Before the recent FSI test case of Rahimi and co-workers [22] involving brittle fracture of a 
flexible plate (clamped at both ends) due to hydrostatic fluid pressure acting from the top is studied, a similar solid mechanics case 
involving a single-edge notch-bending specimen subjected to a concentrated force acting from the top is simulated first. Here, we 
intend to compute the KI value near the crack tip and make comparison against the theoretical solution. Fig. 18 shows the geometrical 
details of this test case. For this case, the theoretical solution of KI is available [61]: 

Fig. 24. Simulated vertical deflections at the middle lower point of the flexible plate. (a) Sensitivity of particle resolution. For SPH-PD [22], the 
solid particle spacing is 0.125 mm, and the fluid particle is 1 mm; (b) Sensitivity of viscous model. Dp = 0.125 mm. 
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KI,theo =
4P
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̅̅̅̅̅
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√ [
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, (30)  

where P = 0.02 N is the applied force, a = 0.01 m is the initial crack length, W = 0.04 m is the specimen width and B = 1.0 m is the 
specimen thickness. Based on the above data, KI,theo = 0.522 Pa.m1/2. Next, the KI value of the crack front particle where the maximum 
principal stress is the highest (see Fig. 19) is computed. As shown in Fig. 20, by using Dp = 0.125 mm, the predicted KI value approaches 
to the theoretical solution as time elapses. The sensitivity of particle resolution is investigated and the results are reported in Table 1. 
As seen, as the particle resolution is refined, the KI value converges to the analytical solution. 

3.4.2.2. Rahimi’s FSI case. Finally, we test our method in simulating FSI problem involving brittle fracture of a flexible plate subjected 
to the hydrostatic water pressure acting from the top. This problem has been recently simulated by Rahimi and co-workers [22] using 
the SPH-Peridynamics (SPH-PD) method. Fig. 21 shows the geometrical setup of this problem, where the water density and water 
kinematic viscosity are taken as ρF = 1000 kg.m− 3 and νF = 10-6 m2/s, respectively. To be consistent with the SPH model setting of 
[22], the fluid speed of sound cF is set as 60 ms− 1. The material properties of the flexible plate are: Young’s modulus E = 10 MPa, 
Poisson ratio υS = 0.35 and solid density ρS = 1200 kg.m− 3. Two-dimensional plane stress condition is assumed for the plate model 
[22]. The fracture toughness KI,C is prescribed as 16345.7 Pa.m1/2 to be consistent with the critical stretch value of 0.1 in PD [22] 
(assuming a horizon size of 3Dp). Unlike Rahimi’s work [22] where different particle resolutions are used in the fluid and solid bodies, a 
constant particle size is used in the current work. Two cases are considered here. First, the flexible plate is assumed to be initially 
flawless, and its dynamic response subjected to fluid pressure from the top is simulated to check the validity of the current FSI model. 
Next, a vertical crack line is introduced at the middle of the plate, and its rupture behaviour is examined. 

Fig. 22 shows the contour plots of the fluid pressure and maximum principal stresses developed in the flexible plate body at 
different time frames. For the FSI case involving a solid plate with no initial crack, the centre of the plate is deformed downward 
vertically due to the fluid pressure acting from the top and it rebounds at t ~ 40 ms to relax its strain energy. On the other hand, for the 
plate with a vertical crack line in the middle, it is unable to withstand the fluid pressure and complete failure takes place subsequently 
at t ~ 27 ms. Fig. 23 shows the close-up views on the fractured solid region near the initial crack line. As seen, the region with the 
highest maximum principal stress is concentrated near the crack tip, and it propagates as the crack grows in the direction perpendicular 
to the plate axis. Note that there is an apparent gap between the plate body and the neighbouring fluid particles which is due to the 
numerical artifact of dynamic boundary condition (DBC) adopted in the current work. 

The deflections at the middle lower point of the flexible plate predicted using different methods are compared in Fig. 24 (a). The 
dynamic response of the plate (without the initial crack line) predicted using the current SPH-LPM method compares quite well with 
that of the SPH-PD method [22]. For the plate with an initial vertical crack at the bottom, complete fracture can be predicted as the 
deflection speed of the plate undergoes an abrupt change. As observed from Fig. 23 and Fig. 24 (a), complete fracture occurs at t ~ 27 

Fig. 25. Geometry configuration of the concrete wall and concrete column subjected to tsunami from the right. The height of concrete column is 
same as that of the problem domain. All dimensions are in meter [m]. 
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ms as deduced from the current SPH-LPM simulation, which is slightly earlier than that predicted using the SPH-PD method [22] of t ~ 
30 ms. Nevertheless, the agreement between the deflection speeds immediately after the complete rupture predicted using both 
methods are quite encouraging. The discrepancy in the time instant when complete rupture takes place could be due to the differences 
in failure criterion and the particle resolution settings in both solvers. As mentioned, for SPH-PD [22], the solid particle spacing is 
0.125 mm, and the fluid particle is 8 times larger than the solid particle (Dp = 1 mm). As compared to the current SPH-LPM method, a 
uniform particle spacing is used for both solid and fluid bodies. The sensitivity study of particle sizes: Dp = 0.0625 mm, 0.125 mm and 
0.25 mm on the deflection at the middle lower point of the plate is performed using the current SPH-LPM method, and it is found that 
the deflection results show marginal dependence on particle size as shown in Fig. 24 (a). 

The sensitivity of using different viscous model is then studied and the result is presented in Fig. 24 (b). It is found that the 
deflection results simulated using the artificial viscous model (for bothα = 0.01 andα = 0.05) and the real viscous model are almost 

Fig. 26. Damage (D) field of the concrete wall of 6 cm thickness subjected to tsunami force at time (a) t = 0 s; (b) t = 0.60 s; (c) t = 0.64 s; (d) t =
0.65 s; (e) t = 0.68 s and (f) t = 0.74 s. The speed of water particles is shown. 
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indiscernible. Therefore, it can be concluded that viscosity does not play a key role in this case, and it could be sufficient to simulate 
this case using the artificial viscosity approach. 

4. Conclusion 

Based on the results above, some key conclusions can be summarized as follows:  

• By using the Lattice Particle Method (LPM) for brittle solid modelling, the so-called Remove Particle (RP) and Remove Bond (RB) 
approaches have been used to model the initial crack line. In the current work, a simple mode-I Stress Intensity Factor (SIF) 
formulation has been proposed for the latter approach and it is found that its accuracy in predicting the static SIF is superior to that 
of RP.  

• For dynamic loading cases, the present SIF model can capture the time evolution of dynamic SIF well, and the results show less 
numerical oscillations as compared to the previous FEM results.  

• Contrary to the maximum principal stress, the mode-I SIF shows insignificant dependence on the particle size as the particle 
resolution is made finer. This is attractive from the viewpoint of designing a convergent failure model of specimen with cracks.  

• The crack path and the crack propagation speed of the dynamic crack branching problem are well captured using the current 
method. The simulated crack path agrees considerably well with the experimental observation. Nevertheless, the accuracy of the 
computed mode-I SIF at the crack front particles upon crack branching might be reduced as the crack front particles might not lie at 
the angular position of θ = 45o from the crack line.  

• Upon combining the LPM with the Smoothed Particle Hydrodynamics (SPH) technique for fluid flow modelling, several FSI cases 
involving solid fracture have been successfully simulated, and results are comparable to those simulated using other particle 
methods. The current SPH-LPM methodology has been implemented in an open-source SPH code, i.e., DualSPHysics which has 
been optimized in terms of both CPU and GPU performance. 

The current SPH-LPM method has been witnessed its potential in simulating FSI problems involving brittle fracture. However, the 

Fig. 26. (continued). 
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failure model implemented in the current work is only limited to pure Mode-I fracture mode in 2D, which could limit its capability in 
simulating real problems involving mixed mode fracture. Other methods such as those based on fracture energy could be implemented. 
Also, a more robust collision model could be implemented to get rid of the tuning parameter in the current pin-ball collision model. 
Furthermore, other damage models that account for inelastic deformation such as plasticity could be implemented for studying 
fracture of ductile materials. 

In the Appendix, some of our preliminary simulation results on the level of damage of a 3D concrete structure subjected to a tsunami 
wave are shown. Our preliminary finding shows that the Rankine failure criterion alone could predict the crack pattern well. This is 
consistent with the previous finding reported in [39]. 

Fig. 26. (continued). 

Fig. 27. Fracturing of concrete wall of thickness 6 cm at t = 0.74 s due to tsunami. The speed of water particles is shown.  
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Appendix 

A1: Collapse of 3D concrete structure due to tsunami force 

In this Section, we intend to demonstrate the capability of SPH-LPM in capturing the failure mode of the concrete structure sub
jected to a strong tsunami force. The failure criterion is purely based on the Rankine criterion, as the fracture mechanics-based model 
for 3D brittle fracture modelling is still on-going. 

This test is inspired by Arikawa [62] where the author had performed a large-scale experiment to generate a tsunami wave with 
maximum height of ~ 3.5 m via a piston-type wave maker in a long channel of length 184 m for studying the failure mode of a concrete 

Fig. 28. Fractured concrete wall of thickness (a) 6 cm and (b) 10 cm at t = 0.74 s due to tsunami force. Left: 3D SPH-LPM; Right: Experiment [62].  
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structure. To reduce the computational cost of the current problem, the full-scale long channel is not modelled. Instead, following 
Cornejo and co-workers [4], a reduced channel length is considered, and an inlet condition is applied as depicted in Fig. 25. The inlet 
speed is prescribed as 2.0 ms− 1, which is consistent with the maximum speed measured experimentally. 

The detailed geometry of the concrete wall is shown in Fig. 25. As shown, both lateral sides of the concrete wall are supported by 
two concrete columns. The upper and lower sides of the concrete wall, however, are free to move. Note that a thin steel mesh is 
embedded within the concrete wall in the real experiment [62]. Nevertheless, the steel mesh is not considered in the current work and 
the concrete structure is modelled as isotropic homogeneous body with material properties [4]: E = 21 GPa; υS = 0.2; ρS = 2400 kg.m− 3 

and σUTS = 3 MPa. The particle spacing is set as Dp = 0.01 m. 
Fig. 26 shows the advancement of the tsunami wave from the water inlet until it hits the concrete structure of thickness 6 cm. It can 

be observed that once the tsunami wave hits the bottom part of the concrete wall at t ~ 0.64 s, two arc-like cracks are formed from the 
lateral sides of the concrete wall as shown in Fig. 26(c). These two cracks merge subsequently (Fig. 26(d)) and some new cracks are 
seen to be propagating to the upper part of the concrete wall. Some minor failures are seen at both the lateral supports of the concrete 
wall as well. Finally, a semi-circular-like hole is formed at the bottom of the concrete wall as the concrete fragments are washed away 
by the tsunami wave as clearly depicted in Fig. 27 at t = 0.74 s. At this time instant, the number of particles is ~ 15 millions. 

The crack patterns of the concrete wall of different thicknesses are compared against those observed experimentally in Fig. 28. At 
wall thickness of 6 cm, a large semi-circular-like hole at the bottom of the concrete wall has been observed experimentally (i.e., so- 
called punch-shearing failure mode [62]), which agrees well with our current numerical prediction (see Fig. 28(a)). The predicted 
crack formations at the lateral supports of the concrete wall are tallied with the experimental observation as well. At larger wall 
thickness of 10 cm, it is anticipated that the concrete wall should be able to sustain more impact force (before it fails), and this would 
lead to larger bending stress at the lateral supports. As a result, the cracks at the lateral supports of the concrete wall of thickness 10 cm 
are more apparent as compared to those of thickness 6 cm. Further increase of bending stress would lead to new cracks being formed in 
the concrete column (see Crack B in Fig. 28(b) for both the numerical and experimental observations), which might lead to failure of 
the entire concrete structure ultimately. The crack patterns on the concrete wall of thickness 10 cm are compared against the 
experimental observations in Fig. 28(b). As seen, the predicted semi-circular-like crack pattern at the bottom of the wall is not visually 
apparent in the experimental photo [62]. The experimentally observed oblique crack patterns at the top (Crack A), however, are 
clearly captured in the current numerical simulation. 
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