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A B S T R A C T   

In this paper, the particle size-dependent issue of Lattice Particle Method (LPM) for simulating dynamic brittle 
and quasi-brittle fracture is addressed by coupling LPM with a local damage model based on fracture energy. The 
proposed model is simple and more robust than the Stress Intensity Factor (SIF)-based approach as it can model 
mixed-mode fracture with multiple cracks without any application-dependent tuning parameter. Numerical 
procedures for estimating the dissipative energy and the crack tip velocity for LPM simulation are also proposed. 
A series of benchmark problems involving dynamic fracture and crack branching are simulated using the pro
posed model. Good agreements are found against existing experimental observation and solutions from other 
numerical methods. Although a Cartesian-like (structured) lattice configuration is employed in the current LPM 
method, physically meaningful and accurate crack patterns can still be captured without any special numerical 
treatment.   

1. Introduction 

Due to its practical relevance in technology and an inherent scientific 
inquisitiveness, dynamic fracture in solid materials has been a subject of 
significant interest amongst engineers and scientists for more than a 
century. Under extreme dynamic conditions, forces applied at high rate 
either intentionally or accidentally, are encountered in numerous 
practical applications such as mining, blasting, natural disasters (e.g., 
flooding, tsunami), etc. Irrespective of the nature of these high-rate 
loadings, it is essential to comprehend the mechanisms and principles 
governing material failure under dynamic loadings. This understanding 
is crucial for designing effective procedures to assess susceptibility to 
material failure subject to dynamic loadings [1]. 

Traditionally, physical experiments [2,3] have been conducted to 
understand the mechanisms of dynamic fracture. Unfortunately, 
experimentation in the field of dynamic fracture is very challenging due 
to many technical complications such as short duration of the event, lack 
of reproducibility and scaling issues, etc. Therefore, performing nu
merical simulation using validated numerical models to study complex 
crack propagation under dynamic loading is a common practice nowa
days and various numerical techniques have been developed so far. 

Due to its predominant application for continuous problems, mesh- 

based methods such as the Finite Element Method (FEM) has been 
widely applied to model dynamic fracture in solid bodies. In general, 
there are two major crack modelling techniques proposed in most of the 
FEM studies, i.e., the discontinuous (sharp) method and the smeared 
(diffusive) method. The discontinuous approach, such as the popular 
Extended-Finite Element Method (XFEM) [4], permits the passage of 
crack paths through finite elements. While discontinuous approach can 
represent a crack sharply using some crack tracking algorithms, moni
toring the development of intricate fractured surfaces particularly in 
three-dimensional (3D) scenarios is undoubtedly a challenging and 
computationally intensive undertaking. The smeared method, on the 
other hand, does not require tracking of fractured surfaces algorithmi
cally. Instead, a specific form of damage function is solved and the el
ements with damage values above a certain threshold are used to 
represent the crack path. Therefore, it has been regarded as a more 
practical model for large scale simulation due to its computational 
simplicity [5,6]. 

In general, there are two types of smeared cracking model, i.e., local 
and non-local damage models, where different regularization techniques 
have been employed to address the mesh size dependency problem. 
Non-local damage model typically requires the solution of non-local 
stress/strain, either by using additional Partial Differential Equation 
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(PDE) that must be solved via the gradient-enhanced non-local model 
[7,8] or by performing weighted averaging of the neighboring local 
equivalent stress/strain via the integral non-local model [9,10]. While 
the issue of mesh size dependency can be resolved at the expense of extra 
computational cost, non-local damage models typically require a denser 
mesh particularly in the damaged region. In fact, the nature of those 
popular phase field models [11,12] is quite similar to that of non-local 
model, where the PDE of the phase field variable is solved. Interest
ingly, a recent study [13] has pointed out that phase field models tend to 
overestimate the dissipative energy. For local damage models, regula
rization techniques such as the crack band model [14], the cohesive 
crack model [15] and the fracture mechanics-based model [16] can be 
introduced to address the mesh size dependency issue. The major 
strength of local model is its ability in capturing complex crack paths at 
low computational cost (without solving any evolution equations) and 
no ad-hoc criteria is needed for crack growth [13]. Nevertheless, local 
models suffer from mesh bias issue in FEM and hence coupling with 
other advanced methods (hence extra computational cost) such as crack- 
tracking algorithm [17] and non-local strain averaging [18] are required 
to address this problem. 

On the other hand, meshfree models have gained significant popu
larity for simulating dynamic fractures due to the elimination of mesh- 
related issues. In Peridynamics (PD), particles within the radius of in
fluence (or horizon) interact in a pair-wise manner and their motions are 
governed by integro-differential equations. There is no PDE involved in 
PD; hence, it is very suitable for simulating crack propagation problems 
[19,20] as spatial derivatives are undefined at discontinuity. The bond 
between a PD particle pair is broken if its elongation exceeds a critical 
value that is determined by the horizon size and the material fracture 
energy [21]. Smoothed Particle Hydrodynamics (SPH) works in a 
somewhat similar manner as PD where two particles within certain 
radius of influence mutually interact. However, unlike PD, SPH still 
employs differential equations where spatial derivatives are formulated 
in the form of weighted kernel summation. In SPH, dynamic fracture can 
be handled by breaking the pseudo-spring or energy bond between the 
interacting particles [22,23]. Another popular classical meshfree 
method known as the Discrete Element Method (DEM) has also been 
used to simulate brittle fracture in both quasi-static and dynamic con
ditions [24,25]. Typically, a DEM particle interacts with its nearest 
neighbors in a pair-wise manner and DEM might work only for a limited 
range of Poisson’s ratio. Different from DEM, Lattice Spring Models 
(LSM) that can handle a wider range of Poisson’s ratio have been 
developed, e.g., the Distinct LSM [26], the four-dimensional LSM [27], 

and the Lattice Particle Method (LPM) (or previous known as Volume 
Compensated Particle Method (VCPM)) [28]. LSM also involves pair- 
wise interactions between immediate neighboring particles, which are 
typically short-ranged. To simulate a wider range of Poisson’s ratio in 
LSM, non-local term is introduced by considering integral effect of all 
neighbors or using multi-body lateral (or shear) springs. According to 
Pan and co-workers [29], most of the failure criteria employed in LSM 
are critical stress (force) criterion [30,31], and critical strain 
(displacement) criterion [23,32,33]. Unfortunately, the numerical re
sults are highly dependent on the particle size, and other criteria based 
on fracture energy could be implemented to address the issue. For a 
more comprehensive review on meshfree methods for fracture model
ling, readers are referred to Refs. [29,34]. 

Some strategies have been implemented recently in addressing the 
particle size dependency issue using the LPM. Meng and Liu [33] 
introduced smoothing technique for the local damage parameter by 
incorporating the damage information of neighboring particles in a way 
similar to the integral nonlocal damage model. While this approach can 
address the particle size dependency issue, it is necessary to incorporate 
the characteristic length scale and the critical bond damage threshold 
(for bond breaking purpose), where calibrations are needed for different 
cases. Recently, Ng and Chen [35] have modelled the brittle fracture 
using LPM by calculating the Stress Intensity Factor (SIF) near the crack 
tip. Bond breaking is performed if the computed particle’s SIF value 
exceeds the fracture toughness of the material. Although the method has 
been successfully extended to simulate Fluid Structure Interaction (FSI) 
problems without mesh dependency issue, it is limited to mode-I frac
ture and hence complex crack patterns cannot be simulated accurately. 

In the current work, the main objective is to develop a more robust 
damage model for LPM in handling problems involving complex mixed- 
mode fractures under dynamic loadings. Emphasis is paid to incorpo
rating the local damage model based on fracture energy into LPM to 
simulate dynamic fracture for brittle and quasi-brittle materials. The 
force formulation in LPM is modified accordingly by incorporating the 
damage parameter in both the local and non-local terms. Techniques 
used to estimate the crack tip speed and the dissipative energy for LPM 
are formulated as well. To verify the proposed method, four numerical 
experiments involving dynamic fracture and crack branching are 
modelled and results are compared against experimental observations 
and numerical solutions using other models. The paper concludes with 
some potential implementations that could be considered for improving 
the current work. 

Fig. 1. (a) 2D square lattice and (b) 3D simple cubic lattice in LPM [41]. Dp is particle size/diameter. The centre-to-centre distances between local particle I and its 
first and second neighbours are Dp and 

̅̅̅
2

√
Dp, respectively. 
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2. Mathematical models and numerical methods 

2.1. Brief review of lattice particle method (LPM) 

The Lattice Particle Method (LPM) (or Volume Compensated Particle 
Method (VCPM) [28,36]) is a meshfree method originally developed by 
Chen and co-workers [28] for modelling solid mechanics problems such 
as those involving solid fracture [33,36] and Fluid Structure Interaction 
(FSI) [35,37,38,39]. By reformulating the classical continuum me
chanics model using discretized integro-differential equations, LPM 
solves the numerical issues in continuum mechanics-based models for 
discontinuous problems, such as crack tip singularity issue. Fig. 1 shows 
the 2D square lattice and 3D simple-cubic lattice used in LPM, where a 
solid particle I interacts with its first and second neighbouring particles J 
via bonds (with certain values of local stiffness k and non-local volu
metric stiffness T [28]). 

The motion of a solid particle I follows the Newton second law as: 

mI
dvI

dt
= FS,I , (1)  

where mI is mass of particle I, vI is the velocity of particle I, and FS,I is the 
net force acting on the particle I from all its neighbours J that can be 
determined as: 

FS,I =
∑

J
fIJ ûIJ , (2)  

where ûIJ = (rI − rJ)/‖rI − rJ‖ is the unit bond vector and fIJ is the bond 
force. In the current work, the damage incurred to an elongated half- 
bond connected to the local particle I is modelled by multiplying the 
force of the half-bond by a factor of (1 − DI), where DI is the local damage 

parameter of particle I. In fact, the above procedure is equivalent to that 
of multiplying the bond stiffness values by (1 − DI) as implemented by 
Choo and co-workers [40]. The value of damage parameter D ranges 
between 0 (undamaged) and 1 (fully damaged) and its modelling is 
further explained in the following section. By performing the same 
procedure on another half-bond connected to the neighbouring particle 
J and taking the arithmetic mean of these two half-bond forces to ensure 
momentum conservation, we obtain: 

fIJ = − (1 − DIJ)kδlIJ
⏟̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅⏟

local

−
T
2

(
∑

Q
(1 − DI)δlIQ +

∑

M
(1 − DJ)δlJM

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
non− local

, (3)  

where DIJ = (DI +DJ)/2. δlIJ takes the value of half-bond elongation 
between particles I and J. The subscripts Q and M indicate the neigh
bours of particles I and J, respectively. The bond stiffness values k and T 
can be determined by ensuring energy equivalency between the LPM 
description and its continuum counterpart [32]. The stiffness values of k 
and T are tabulated in Table 1 for different models. Note that the sub
scripts 1 and 2 of bond stiffness k refer to the first and the second 
neighbours (see Fig. 1), respectively. 

2.2. Isotropic local damage modelling 

For modelling the non-linear behaviour of quasi-brittle material 
using LPM, the isotropic damage model is implemented where its soft
ening behaviour is monitored through a scalar (directionally indepen
dent) parameter D, or better known as the damage parameter. The 
constitutive equation is redefined as: 

σij = (1 − D)σo
ij = (1 − D)Cijklεkl, (4)  

where σij is the stress tensor, σo
ij = Cijklεkl is the undamaged stress tensor, 

Cijkl is the material stiffness tensor and εkl is the strain tensor. The 
damage parameter is typically 0 (undamaged) in the elastic regime and 
it is within the range (0,1] in the softening (non-linear) regime. 

From the literature, various ways can be used to define the damage 
function in the softening regime, e.g., linear [42,43], exponential 
[6,16,42,44], etc. In the current work, we adopt the exponential 
approach where D is expressed as [42]: 

D =

⎧
⎪⎨

⎪⎩

0, σt ≤ σU

1 −
σU

σt e
− 2HS

(
σt − σU

σU

)

, σt > σU

, (5)  

where σt is the maximum equivalent stress in the deformation time 
history, i.e., σt = max(σeq(t)), σU is the material strength and HS is a 
positive constant to be determined from the uniaxial tension test as 
discussed below. 

Like being used in FEM, we assume that the bandwidth of the 
damaged zone in LPM is concentrated within a unit cell of certain 
characteristic length l*, which is dependent on the particle size Dp. This 
characteristic length could be calibrated accordingly [44] in order to 
reproduce the specified fracture energy in a given problem. The detail of 
the calibration procedure is discussed later. The area under the respec
tive stress–strain curve depicted in Fig. 2 is indeed the total specific 
dissipative energy (energy per unit volume) represented by gf . This 
specific dissipative energy is related to the fracture energy Gf [14] as: 

gf =
Gf

l*
. (6) 

By combining Eqs. (4) and (5), the stress–strain relationship for 1D 
problem can be written as: 

σ = (1 − D)Eε =

{
Eε, ε ≤ εU

EεUe− β(ε− εU ), ε > εU
, (7) 

Table 1 
The bond stiffness in terms of material properties for 2D square and 3D simple 
cubic lattices in LPM. Young’s modulus, Poisson’s ratio, material thickness and 
particle size are represented by E, υ, th and Dp, respectively.  

Model k1 k2 T 

2D plane stress 2Eth
1 + υ 

Eth
1 + υ 

Eth(3υ − 1)

2(1 + υ)(1 − υ)
(
1 +

̅̅̅
2

√ )2 

2D plane strain 2Eth
1 + υ 

Eth
1 + υ 

Eth(4υ − 1)

(1 + υ)(1 − 2υ)
(
2 +

̅̅̅
2

√ )2 

3D EDp

1 + υ  
EDp

1 + υ  
EDp(4υ − 1)

2(1 + υ)(1 − 2υ)
(
1 + 2

̅̅̅
2

√ )2   

Fig. 2. A typical stress–strain curve involving material softening.  
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upon defining β = 2HS/εU, σt = Eε and σU = EεU. Here, β is typically 
known as softening parameter in literature. From Fig. 2, the specific 
dissipative energy can be evaluated as: 

gf =

∫∞

0

σdε =
1
2

Eε2
U +

1
β

EεU =
Gf

l*
. (8)  

Rearranging terms in Eq. (8), it can be shown that: 

β =
EεUl*

Gf −
1
2 Eε2

Ul*
. (9)  

It is important to note that Eq. (9) is the form of softening parameter β 
reported in Ref. [13]. By noting β = 2HS/εU and making use of Eq. (9), 
the definition of HS by Cervera and Chiumenti [42] can be recovered 
accordingly as: 

HS =
H̃Sl*

1 − H̃Sl*
, (10)  

where H̃S = σ2
U/
(
2Gf E

)
. Other researchers [6,45] have further intro

duced a constant parameter A and defined it as A = 2HS. From this 

definition, it is straightforward to show that A =
(

Gf E
l*σ2

U
− 1

2

)− 1
, thus 

reproducing the parameter A reported earlier by [6,45]. As HS must be 
positive, based on Eq. (10): l* < 1

H̃S
=

2Gf E
σ2

U
, which would limit the 

maximum particle size in the LPM simulation. To correctly reproduce 
the specified value of fracture energy using LPM, we have computed the 
fracture energy of a specimen (with known fracture energy) with 
different initial notch lengths from the simulated force–displacement 
curves obtained from the three-point bending test (see Li’s method 
[46]). After some sensitivity studies, it is found that the specified frac
ture energy for 2D problem can be reproduced at reasonable accuracy 
when l* ∼ Dp where Dp is the particle size. For 3D problem, l* ∼ Dp. 

2.3. Estimation of dissipative energy and crack tip speed 

Inspired by the work in Ref. [13], a method has been devised to es
timate the crack tip location/speed by identifying the fully damaged 
particles. Following Ref. [13], a particle is considered as fully damaged 
if D ≥ 0.95. For each time step, the position vector of the farthest fully 
damaged particle r is identified, as shown in Fig. 3. The crack tip speed 
vc,n+1 at time step n + 1 is then computed as: 

vc,n+1 =
Δln+1

tn+1 − tn
=

‖rn+1 − rn‖

tn+1 − tn
, (11)  

where Δl is the distance travelled by the crack tip within a certain time 
step size. Accordingly, the total dissipative energy per unit depth, Ud 
during the entire fracturing process can then be calculated as: 

Ud = Gf

∑N− 1

n=0
Δln+1 = Gf

∑N− 1

n=0
‖rn+1 − rn‖, (12)  

where N is the total number of time steps. The current method of esti
mating the dissipative energy based on crack length is analogous to that 
of the cracking node method of Song and Belytschko [47]. Note that Eq. 
(12) is valid only for 2D problems of constant thickness. 

2.4. Time integration 

In the current work, the equation of motion (Eq. (1)) is integrated 
using the predictor–corrector scheme detailed in our previous work 
[48]. It is briefly discussed here. 

Step 1: By using Eq. (1), the acceleration 
( dvI

dt
)m of solid particles I is 

computed. Its velocity (v) and displacement (r) vectors at interme
diate time step m+0.5 are predicted as: 

vI
m+0.5 = vI

m +
Δt
2

(
dvI

dt

)m

, (13)  

rI
m+0.5 = rI

m +
Δt
2

vI
m. (14)  

Here, m is the time step counter and Δt is the time step size, which is 
bounded to the stability criterion [37]: 

Δt < 0.8
Dp

cS
, (15)  

where cS is the sound speed in the solid body. 

Step 2: Based on the intermediate velocity and displacement vectors 
computed from Step 1, the acceleration of solid particle I, i.e., 
( dvI

dt
)m+0.5 is recalculated again using Eq. (1). Next, the velocity and 

displacement vectors of solid particle I at tm+1 are corrected as: 

Fig. 3. Scheme for tracking crack tip in LPM.  
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vI
m+1 = vI

m +Δt
(

dvI

dt

)m+0.5

, (16)  

rI
m+1 = rI

m +
Δt
2
(
vI

m + vI
m+1). (17)   

Step 3: At this stage, the damage value of each particle is calculated 
using Equation (5). In the current work, the equivalent stress is 
calculated using the standard Rankine criterion, i.e., σeq = 〈σo

1〉

where is the Macauley bracket and σo
1 is the maximum 

principal stress of the undamaged Cauchy stress tensor σo
ij. The 

Cauchy stress tensor of solid particle I is calculated as [33,49]: 

σo
ij = −

1
V

∑

J
LIJ fIJnJ

i nJ
j , (18)  

where V is the particle volume, LIJ is the original half-length of the bond 
connecting solid particle I and its neighbour J, fIJ is the bond force 
magnitude at undamaged state (setting D = 0 in Eq. (3)), nJ

i and nJ
j are 

the i- and j-components of the unit vector pointing from solid particle I to 
its neighbour J, respectively. To improve the accuracy of the stress 
computation at the boundary, the corrective approach suggested by 
Meng and co-workers [50] is adopted. Once the damage value is 
computed, the stress tensor of each particle can then be updated using 
Eq. (4). 

The detail of the above numerical procedure is outlined in Fig. 4. 

3. Result and discussion 

In this section, the accuracy of the proposed damage model for LPM 
is tested by simulating a series of cases involving dynamic fracture and 
crack branching. Numerical results including crack pattern, crack tip 
speed and dissipative energy are compared against experimental 
observation and numerical data available from open literature. Unless 
mentioned otherwise, plane stress conditions are assumed for the two- 
dimensional problems considered in the current work. 

3.1. Dynamic fracture in the Kalthoff-Winkler experiment 

The brittle fracture observed in the Kalthoff-Winkler experiment [3] 
has been previously simulated using various numerical methods 
[36,47,51]. The geometric configuration of this problem is shown in 
Fig. 5. In this example, a thin plate made of maraging steel 18Ni1900 
(Young’s modulus E = 190 GPa; Poisson’s ratio υ = 0.3; density ρ =
8000 kg/m3; material strength σU = 1.9 GPa; fracture energy Gf =

22130 J/m2) with two initial notches is impacted by a projectile moving 
at vo = 16.5 m/s [13]. From the experimental study [3,52], brittle 
fracture is observed, and the cracks propagate at ~ 70◦ (measured from 
the horizontal axis) at this relatively low impact speed. 

Following [11,13], the impact of the projectile is modelled by pre
scribing the horizontal velocity U (see Fig. 5) as a time-varying function: 

Fig. 4. Flow chart of the current numerical procedure using the explicit pre
dictor–corrector integration scheme. tmax is the user-specified maximum simu
lation time. 

Fig. 5. Geometry of notched plate used in the Kalthoff-Winkler experiment and the discretized model using LPM (Dimensions in mm).  
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Fig. 6. Damage field evolution predicted using (a) FEM [13]; (b) LPM (Dp = 0.5 mm); (c) LPM (Dp = 0.25 mm); (d) LPM (Dp = 0.125 mm) and (e) LPM (Dp =

0.0625 mm). 
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U =

⎧
⎨

⎩

t
to

vo, t < to

vo, t ≥ to

, (19)  

where to = 1 µs. In contrast with most of the existing studies where only 
half plate is considered due to symmetry [23,47], the entire plate is 
modelled in the current work, and it is confirmed that the simulated 
crack pattern is indeed symmetrical. As discussed previously [19,35,53], 
either Remove Bond (RB) or Remove Particle (RP) approach could be 
used to model a notch. Due to the natures of the loading condition and 
the notch location, the upper and lower edges of a notch would come in 
contact (leading to penetration) at the later stage of the simulation if RB 
is used. To address this problem, a collision detection algorithm could be 
employed; however, this is beyond the scope of the current study. 
Hence, one layer of particles is removed to model the notch using the RP 
method following [53] (see Fig. 5). Different particle sizes are used to 
test the convergence of the current method. 

Fig. 6 shows the predicted crack propagation in the plate. The 
damage function (D) (see Fig. 6 (b–e)) indicates that a small crack starts 
to grow from the notch tip at t ~ 25 μs. It is appealing to note that its 

Fig. 7. Effect of LPM particle size on the (a) dissipative energy per unit depth 
and (b) crack tip speed of the upper crack for the Kalthoff-Winkler dynamic 
brittle fracture case. 

Fig. 8. Geometry and configuration of the dynamic crack branching problem. 
The dashed line indicates initial notch. Dimensions in mm. 

Fig. 9. Comparison of crack paths predicted using (a) FEM-local damage model 
with locally refined unstructured mesh of size ~0.3 mm [13]; (b) Phase field 
model [11] with mesh spacing 0.0625 mm; (c) LPM (Dp = 0.25 mm); and (d) 
LPM (Dp = 0.125 mm). The colour legend is meant for (c) and (d). 
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propagation angle is quite consistent with that observed experimentally 
(~70◦) during the first 64 μs. Nevertheless, as the crack approaches the 
top surface, the propagation angle increases, which is consistent with 
other numerical observations reported earlier [47,54]. The crack pat
terns at different time levels obtained using LPM models of various 
particle resolutions have been compared against those from FEM [13] as 
shown in Fig. 6. It is found that the agreement is encouraging. The 
current simulation results clearly demonstrate the ability of LPM in 
capturing the brittle fracture. 

The estimated dissipative energies per unit depth obtained from LPM 
simulation are plotted in Fig. 7(a) for different particle sizes. As can be 
seen, the effect of particle size on the simulated dissipative energy is not 

Fig. 10. Comparison of crack path with experiment. (a) Experiment [2]; (b) LPM (Dp = 0.125 mm). The yellow dotted line shows the theoretical crack angle of 27◦

measured from the horizontal line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 11. Crack paths simulated using (a) the LPM model with relatively coarse 
particle spacing of Dp = 0.5 mm (16,000 particles) and the FEM-local damage 
model of Bui et al. [13] by employing (b) unstructured mesh (size of 0.5 mm; 
12,068 elements) and (c) structured mesh (size of 0.2 mm; 43,990 elements). 

Fig. 12. Dissipative energy per unit depth for the crack branching problem predicted using different methods.  

Fig. 13. Comparison of crack tip speeds predicted using different methods. 
Upon branching, the speed of the top branch is shown. 
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apparent. More convincingly, like the cracking node method [47], the 
dissipative energies estimated using different LPM particle sizes 
converge to the theoretical solution of Ud = 1766.27 J/m, which could 
be attributed to the fact that the simulated crack angle is quite close to 
that observed experimentally (i.e., 70◦). It is noted that the theoretical 
solution is obtained from the theoretical crack length (assuming the 
crack is perfectly linear) for the ideal case where the crack propagates at 

70◦ from the horizontal axis [13]. As the dissipative energies calculated 
by the current approach (Eq. (12)) and the cracking node method [47] 
are based on crack length, the estimated dissipative energies should be 
closed to the theoretical value if the crack length (or crack angle) is 
estimated accurately. The FEM solution [13] is slightly higher than the 
theoretical solution due to the smaller crack propagation angle (65◦-66◦) 
that translates to larger crack length. 

Next, the crack tip velocities predicted using different LPM particle 
sizes are compared against those of FEM [13] in Fig. 7(b). The crack tip 
velocity is generally insensitive to the LPM particle size, except for the 
relatively coarse LPM particle resolution setup (e.g., Dp = 0.5 mm) 
where more fluctuations are spotted. In general, good agreement be
tween LPM results and FEM results is found, and all predicted tip ve
locities are below the Rayleigh wave speed vR of 2803 m/s. 

3.2. Dynamic crack branching 

Next, we intend to demonstrate the capability of the current method 
in simulating crack branching problems. Fig. 8 shows the geometrical 
detail and loading condition of the problem to be investigated in this 
example. Tensile stress applied at top and bottom edges of the rectan
gular plate is fixed at 1 MPa throughout the simulation. The material 
properties of the rectangular plate are [11]: Young’s modulus E = 32 
GPa, Poisson’s ratio υ = 0.2, density ρ = 2450 kg/m3, material strength 
σU = 4.5 MPa and fracture energy Gf = 3 J/m2. The initial notch in this 
problem is modelled by the Remove Bond (RB) method [35]. 

Fig. 14. Geometrical details of the three-point bending experimental setup of 
John and Shah [57]. Dimensions in mm. 

Fig. 15. Possible crack paths (shown in blue dashed lines) of the three-point 
bending experimental setup of John and Shah [57] due to different notch lo
cations. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 16. Crack patterns at notch positions predicted using LPM. (a) γ = 0.5; (b) 
γ = 0.72; (c) γ = 0.76 (=γt) and (d) γ = 0.875. The crack directions (represented 
by yellow solid lines) predicted using LEFM for (a) and (b) are 22◦ and 30◦

(measured from the vertical axis), respectively. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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The final crack paths predicted using different methods are shown in 
Fig. 9. As compared to FEM-local damage model [13], the damage zone 
along the crack path captured using the current approach is thicker, 

consistent to that simulated using the phase field approach [11]. This 
could be due to the lower material strength σU being considered in the 
current work and [11] as compared to that of [13] (σU = 8 MPa). Both 
the simulated upper and lower crack branches are symmetric to each 
other. Also, the crack patterns simulated using LPM with particle sizes 
Dp = 0.25 mm and Dp = 0.125 mm are almost indiscernible. The pre
dicted crack branching angle as shown in Fig. 10 is quite close to the 
experimental observation [2] and the theoretical branching angle of 27◦

[55]. 
As recently reported by Bui and co-workers [13], the irregular finite 

element mesh with reasonable size should be employed for obtaining a 
physically meaningful result for this dynamic crack branching problem. 
According to them, asymmetric crack branching is observed when the 
relatively coarse unstructured mesh of size ~0.5 mm is used as shown in 
Fig. 11(b) (almost symmetric crack branching is captured when finer 
unstructured mesh size of ~0.3 mm is used [13]). Moreover, if struc
tured finite element mesh is used (Fig. 11(c)), crack bifurcation would 
occur, and the crack might get arrested at one of the branches. Inter
estingly, by employing the current LPM model, a symmetric crack 
pattern can be obtained even by employing a structured (Cartesian) 
particle setup with coarse resolution of Dp = 0.5 mm (Fig. 11 (a)). 

The dissipative energies during crack formation estimated using 
different methods are plotted in Fig. 12. Before crack branching, all the 

Fig. 17. Simulated force–displacement curves in the three-point bending test of John and Shah [57]. Force and displacement at the point where impact occurs 
are measured. 

Fig. 18. Comparison of peak forces found during the impact of the three-point 
bending test of John and Shah [57]. 

Fig. 19. Geometric details (dimensions in mm) of the compact tension test performed on a U-shape concrete specimen [59]. The LPM model with Dp = 2 mm 
is shown. 
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estimated dissipative energies agree considerably well with each other. 
The effect of LPM particle size on the dissipative energy is also studied. It 
is found that the current LPM method shows marginal amount of particle 
size dependence in the dissipative energy. Fig. 13 shows the time evo
lution of the upper crack tip speed. It is appealing to note that our LPM 
results compare reasonably well with that from Ref. [13], albeit some 
wiggles are seen in the LPM solutions obtained using coarser particle 
resolution. In general, the estimated crack tip speeds within the time 
span considered are broadly below 60 % of the Rayleigh speed, which is 
agreeable with the phase field solution of Nguyen and Wu [56]. 

3.3. Mixed-Mode crack propagation in John-Shah Three-Point bending 
test 

In this case, we intend to simulate the mixed-mode crack pattern 
observed in the three-point bending experiment which was previously 
performed by John and Shah [57]. The geometrical details of this 
problem are outlined in Fig. 14, where the notch location could be 
varied by manipulating the parameter γ to produce different crack 
pattern. Again, like the previous test case, the notch is modelled by the 
Remove Bond (RB) approach. Some possible crack paths are depicted in 

Fig. 20. Comparison of crack patterns predicted using LPM at different loading speed conditions against experiment [59]. The predicted crack patterns using LPM are 
captured at t = 1000 µs, except for U = 0.304 m/s at t = 500 µs. 

Fig. 21. Time evolution of damage field predicted using (a) FEM [13] and (b) LPM at loading speed U = 3.318 m/s.  
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Fig. 15. When γ is less than the critical value γt , the crack grows from the 
notch. However, when the critical value is reached (γ = γt), cracks 
could be formed from the notch as well as the midspan. For larger values 
of γ such as γ > γt , crack propagates mainly from the midspan to the top 
edge of the specimen. It has been experimentally observed by John and 
Shah [57] that γt ~ 0.77. 

In the current numerical simulation, the material properties are: 
Young’s modulus E = 28 GPa, Poisson ratio υ = 0.2, density ρ = 2400 kg/ 
m3, material strength σU = 8 MPa and fracture energy Gf = 22 J/m2. 
Following [13], the particle size is set as 1 mm, and the impact velocity 
during the physical experiment is modelled using Eq. (19), where to =

196 µs and vo = 60 mm/s. To obtain γt numerically, a series of cases with 

different γ values are simulated. Some results simulated using LPM are 
shown in Fig. 16 and it is found that γt = 0.76, which agrees considerably 
well with that reported experimentally [57]. The crack angles for γ = 0.5 
and γ  = 0.72 have been compared against those of LEFM [58] and good 
agreement has been found at least at the beginning stage when the crack 
starts to grow from the notch. Nevertheless, as the crack approaches the 
top edge, the simulated crack angle deviates from that of LEFM, and the 
crack bends towards the direction of the top loading point. Similar 
observation is reported by Belytschko and co-workers [58] upon 
comparing the LEFM solution against the experimentally observed crack 
patterns. Unlike the element-free Galerkin method [58], it is worth 
noting that in the current LPM simulation, the crack propagates from the 

Fig. 22. Crack speeds predicted using LPM and FEM [13] for (a) low loading rate (U = 0.304 m/s and U = 1.375 m/s) and (b) high loading rate (U = 3.318 m/s and 
U = 3.993 m/s). For (b), crack speeds of the right branches are reported. 
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midspan naturally without introducing any small notch. 
Fig. 17 shows the force–displacement curves for different initial 

notch locations. As the initial notch is located away from the midspan, 
the peak force increases and plateaus at a relatively constant value when 
γ ≥ 0.77. Fig. 18 compares the experimental [57] and the simulated 
peak forces (using LPM). While the agreement is quite encouraging at 
low γ, the numerical error is getting more discernible as γ increases. Note 
that γ = 0 and γ > 0 corresponds to Mode-I and mixed mode fractures, 
respectively. For simulating mixed mode fracture accurately, instead of 
using the standard Rankine criterion, a more complex equivalent stress 
formulation might be required. 

3.4. Dynamic fracture of concrete subjected to compact tension 

Lastly, we intend to validate our LPM method by simulating the 
dynamic fracture in a real concrete specimen subjected to compact 
tension. This problem was initially studied by Ozbolt and co-workers 
[59] numerically and experimentally at different loading conditions. 
The loading condition and the geometrical details of this test case are 
depicted in Fig. 19, where the red edge is pulled with certain horizontal 
speed U and the green edge acts as a support. In the numerical setup, 
following [13], we apply Eq. (19) to model the loading condition by 
setting to = 200 µs and vo = 0.304, 1.375, 3.318 and 3.993 m/s. Different 
U values are tested here as we intend to capture the change from mode-I 
fracture to mixed-mode fracture as U increases, which was observed 
experimentally [59]. The support is modelled by setting the horizontal 
velocities of the particles at the support domain as zeros. The material 
properties are: Young’s modulus E = 36 GPa, Poisson ratio υ = 0.18, 
density ρ = 2400 kg/m3, material strength σU = 3.8 MPa and fracture 
energy Gf = 65 J/m2. The particle size is fixed at 2 mm, which roughly 
corresponds to the mesh size in the refined zone near the notch [13]. 

Fig. 20 compares the predicted crack patterns using LPM against 
those captured experimentally at different loading rates. The simulated 
crack patterns agree considerably well with the experimental ones for all 
loading conditions. It is also interesting to note also that the change from 
mode-I fracture to mixed-mode fracture (including the crack branching) 
as the loading rate is higher is well captured using the current LPM 
method. The dynamic fracture patterns for U = 3.318 m/s at different 
time levels have been compared against those of FEM [13] and the re
sults are presented in Fig. 21. As seen, the agreement between both sets 
of numerical results is promising at all time levels. 

Next, the calculated crack speeds using LPM are compared against 
those of FEM [13] for low and high loading rates as shown in Fig. 22. 
Specifically, at low loading rate (U = 0.304 m/s and U = 1.375 m/s), no 
crack branching is found, and the crack tip speed is almost uniform upon 
the crack formation from the circular arc. At high loading rates (U =
3.318 m/s and U = 3.993 m/s), the crack tip speed decays almost lin
early upon the crack branching event occurred at t ~ 125 µs. In general, 
the current LPM results agree generally well with those of FEM, except 
that the latter suggests an earlier crack nucleation. 

The time history of the reaction force at the support is recorded and 
the result is compared against those of FEM [13] as shown in Fig. 23. 
Here, the reaction force is obtained by the expression: 

∑
GσxxΔA where 

G is the support region (see Fig. 19) and ΔA is the differential area of 
each LPM particle (ΔA = th × DP for 2D, where th = 25 mm is the 
thickness). At low loading rates, the LPM results agree quite well with 
those of FEM in general, except that the estimated peak force for the U =
1.375 m/s case using LPM is higher than that of FEM. At high loading 
rates, the agreement between both LPM and FEM results is good before 
crack branching occurs. After crack branching, it seems that there is a 
phase lag between both sets of numerical results. The effect of 2D plane 
strain and 3D LPM models on the reaction force for the highest loading 
rate (U = 3.993 m/s) is studied as well. In general, the results are almost 
similar between all LPM modelling approaches, with more discrepancy 
is found after the crack branches. The respective crack patterns at t ~ 
500 µs using different LPM modelling approaches are depicted in Fig. 24 
and the results show no significant difference between each other. 

4. Conclusion 

In this study, a local damage model has been developed for the 
Lattice Particle Method (LPM) for simulating dynamic fracture. To verify 
and validate the developed model, several benchmark examples have 
been studied, and good agreements have been found with both experi
mental observations and numerical results obtained using other nu
merical models. Based on the numerical results obtained from the 
current work, some key conclusions can be summarized as below: 

Fig. 23. Reaction forces predicted using LPM and FEM [13] for (a) low loading 
speed (U = 0.304 m/s and U = 1.375 m/s) and (b) high loading speed (U =
3.318 m/s and U = 3.993 m/s). For (c), 2D and 3D LPM results are shown for U 
= 3.993 m/s, where crack branches at t ~ 125 µs based on LPM result. 
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• By developing the local damage model in LPM, we have successfully 
simulated dynamic brittle and quasi-brittle fractures of various 
modes. Different from our previous fracture model based on mode-I 
Stress Intensity Factor (SIF) for LPM, the current model is more 
robust as it can handle problems with multiple cracks and under 
mixed-mode. By using the force formulation developed in the current 
work, a bond connecting two LPM particles is intrinsically 
“damaged” (hence it carries zero load) when the damage values of 
two interacting particles approach 1.0. Unlike some FEM models 
where damaged elements might be deleted (when the damage value 
exceeds a preset threshold) for numerical stability purpose [60], no 
special treatment (e.g., bond deletion) is needed for ensuring the 
numerical stability of the current LPM method.  

• The method can produce particle size independent solution by 
employing a simple local damage description based on fracture 
mechanics. Quantities such as dissipative energy and crack tip speed 
at different time steps have been compared against the theoretical 
and other numerical solutions and good agreement has been found. 
For the Kalthoff-Winkler dynamic fracture case, the simulated 
dissipative energy using LPM is very close to the theoretical solution.  

• Most FEM procedures rely on the use of unstructured mesh to get rid 
of the mesh-bias issue. Otherwise, some advanced numerical treat
ments such as crack tracking, non-local strain averaging, etc. are 
needed. In the current LPM approach, although a structured particle 
layout (square lattice for 2D and cubic lattice for 3D) is employed, a 
physically meaningful crack pattern can still be obtained without any 
special numerical treatment. 

Using the current local damage model, we have extended the capa
bility of LPM in simulating challenging dynamic brittle and quasi-brittle 
fracture problems with complex crack patterns in a more convincing 
manner. In future, a collision model is undoubtedly required to model 
the possible collision between two newly formed fractured surfaces. In 
this regard, a bond between two “damaged” particles could be deleted 
and replaced it with a DEM bond. The implementation of other more 
advanced yield surfaces could be needed to simulate more challenging 
mixed-mode fracture problems subjected to more complex loading 
conditions. Furthermore, the effect of random nature of the spatial 
distribution of material properties can be directly incorporated into the 
present method for studying fracture in real material. 
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